

Jason Hales, Almantas Karpavicius, and Mateus Viegas

Kickstart your career as a software developer

with C#

The

C#
Workshop

The C# Workshop
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors nor Packt Publishing
and its dealers and distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Jason Hales, Almantas Karpavicius, and Mateus Viegas

Reviewers: Omprakash Pandey and Dara Oladapo

Development Editor: M Keerthi Nair

Acquisitions Editors: Royluis Rodrigues, Kunal Sawant, and Anindya Sil

Production Editor: Shantanu Zagade

Editorial Board: Vijin Boricha, Megan Carlisle, Ketan Giri, Heather Gopsill,
Akin Babu Joseph, Bridget Kenningham, Manasa Kumar, Alex Mazonowicz,
Monesh Mirpuri, Aaron Nash, Abhishek Rane, Brendan Rodrigues, Ankita Thakur,
Nitesh Thakur, and Jonathan Wray

First published: September 2022

Production reference: 1260922

ISBN: 978-1-80056-649-1

Published by Packt Publishing Ltd.
Livery Place, 35 Livery Street
Birmingham B3 2PB, UK

Table of Contents

Preface i

Chapter 1: Hello C# 1

Introduction .. 2

Running and Developing C# with the .NET CLI 2

Creating Programs with the CLI and VS Code .. 4

Basic Anatomy of a C# Program .. 5

Exercise 1.01: Creating a Console App that Says "Hello World" 5

Top-Level Statements...6

Declaring Variables .. 7

Declaring Variables Explicitly ..8

Declaring Variables Implicitly ..9

Explicit versus Implicit Declaration ..9

Exercise 1.02: Assigning Variables to User Inputs 10

Data Types ... 11

Strings .. 11

Exercise 1.03: Checking String Immutability .. 12

Comparing Strings ... 13

Numeric Types ... 14

Exercise 1.04: Using the Basic Arithmetic Operators 15

Classes .. 16

Dates ... 19

Exercise 1.05: Using Date Arithmetic ... 20

Formatting Dates ... 22

Logical Operators and Boolean Expressions 22

Using if-else Statements ... 24

Exercise 1.06: Branching with if-else ... 24

The Ternary Operator ... 27

Reference and Value Types .. 27

Exercise 1.07: Grasping Value and Reference Equality 30

Default Value Types ..33

Enhancing Decision Making with the switch Statement 33

Exercise 1.08: Using switch to Order Food .. 34

Iteration Statements ... 37

while ...37

Exercise 1.09: Checking Whether a Number is Prime
with a while Loop ... 38

Jump Statements ..39

do-while ...42

Arrays ...42

for Loops ..43

Exercise 1.10: Ordering an Array Using Bubble Sort 44

foreach Statements ..46

File Handling ... 47

FileAccess ...48

FileMode ..48

Exercise 1.11: Reading Content from Text Files 49

Disposable Objects ...50

Exercise 1.12: Writing to a Text File ... 51

Exceptions ... 53

Exercise 1.13: Handling Invalid User Inputs with try/catch 53

Activity 1.01: Creating a Guessing Game .. 57

Summary .. 58

Chapter 2: Building Quality Object-Oriented Code 61

Introduction ... 62

Classes and Objects .. 62

Constructors .. 63

Fields and Class Members .. 64

Exercise 2.01: Creating Classes and Objects ... 65

Reference Types .. 67

Properties ... 71

Object Initialization ... 75

Comparing Functions and Methods .. 76

An Effective Class ... 77

Exercise 2.02: Comparing the Area Occupied by Different Shapes 79

The Four Pillars of OOP .. 84

Encapsulation ... 84

Inheritance ... 85

Polymorphism .. 92

What is the Benefit of Polymorphism? ..94

Abstraction ... 97

Interfaces .. 101

Exercise 2.03: Covering Floor in the Backyard 105

SOLID Principles in OOP ... 108

Single Responsibility Principle .. 109

Open-Closed Principle ... 113

Liskov Substitution .. 114

Interface Segregation .. 115

Dependency Inversion .. 118

How C# Helps with Object-Oriented Design 121

Static .. 122

Sealed .. 124

Partial .. 124

Virtual .. 125

Internal .. 126

Conditional Operators .. 126

Ternary Operators ... 127

Overloading Operators ... 129

Nullable Primitive Types ... 131

Generics .. 132

Enum .. 136

Extension Methods .. 136

Struct .. 137

Record ... 140

Init-Only Setters ... 144

ValueTuple and Deconstruction ... 144

Exercise 2.04: Creating a Composable
Temperature Unit Converter .. 146

Activity 2.01: Merging Two Circles ... 153

Summary .. 155

Chapter 3: Delegates, Events, and Lambdas 157

Introduction ... 158

Delegates ... 159

Defining a Custom Delegate ... 165

Exercise 3.01: Defining and Invoking Custom Delegates 166

The Inbuilt Action and Func Delegates ... 171

Assigning Delegates ... 174

Invoking a Delegate ... 176

Exercise 3.02: Assigning and Invoking Delegates 177

Multicast Delegates ... 183

Exercise 3.03: Invoking a Multicast Delegate 185

Multicasting with a Func Delegate ...191

What Happens When Things Go Wrong? ...193

Exercise 3.04: Ensuring All Target Methods
Are Invoked in a Multicast Delegate .. 194

Events .. 199

Defining an Event ... 199

Exercise 3.05: Publishing and Subscribing to Events 204

Events or Delegates? .. 208

Static Events Can Cause Memory Leaks .. 209

Lambda Expressions ... 210

Exercise 3.06: Using a Statement Lambda
to Reverse Words in a Sentence ... 214

Captures and Closures .. 216

Activity 3.01: Creating a Web File Downloader 220

Summary .. 223

Chapter 4: Data Structures and LINQ 225

Introduction ... 226

Data Structures ... 226

Lists .. 230

Exercise 4.01: Maintaining Order within a List 238

Queues .. 243

Stacks .. 245

HashSets ... 250

Dictionaries ... 252

Exercise 4.02: Using a Dictionary to Count
the Words in a Sentence ... 257

LINQ .. 261

Query Operators .. 262

Query Expressions ... 263

Deferred Execution .. 263

Standard Query Operators ... 264

Projection Operations ..264

Select ..264

Anonymous Types ..265

SelectMany ..268

Filtering Operations ... 270

Sorting Operations .. 276

OrderBy and OrderByDescending ..276

ThenBy and ThenByDescending ...278

Exercise 4.03: Filtering a List of Countries
by Continent and Sorting by Area .. 281

Partitioning Operations .. 283

Grouping Operations ... 286

Exercise 4.04: Finding the Most Commonly Used Words in a Book ... 288

Aggregation Operations .. 294

Quantifier Operations ... 297

Join Operations .. 301

Using a let Clause in Query Expressions ... 304

Activity 4.01: Treasury Flight Data Analysis .. 305

Summary .. 311

Chapter 5: Concurrency: Multithreading
Parallel and Async Code 313

Introduction ... 314

Running Asynchronous Code Using Tasks 317

Creating a New Task .. 317

Using Task.Factory.StartNew ..322

Using Task.Run ..323

Exercise 5.01: Using Tasks to Perform Multiple Slow-Running
Calculations .. 326

Coordinating Tasks .. 329

Waiting for Tasks to Complete ..330

Exercise 5.02: Waiting for Multiple Tasks
to Complete Within a Time Period ... 332

Continuation Tasks .. 336

Using Task.WhenAll and Task.WhenAny with Multiple Tasks339

Exercise 5.03: Waiting for All Tasks to Complete 340

Asynchronous Programming ... 348

Async Lambda Expressions .. 355

Canceling Tasks .. 358

Exercise 5.04: Canceling Long-Running Tasks 360

Exception Handling in Async/Await Code ... 369

Exercise 5.05: Handling Async Exceptions .. 372

The AggregateException Class ... 376

IAsyncEnumerable Streams .. 381

Parallel Programming ... 384

Data Parallelism ..385

Task Parallelism ..385

The Parallel Class ..386

Parallel.For and Parallel.ForEach ..388

Activity 5.01: Creating Images from a Fibonacci Sequence 401

Summary .. 407

Chapter 6: Entity Framework with SQL Server 409

Introduction ... 410

Creating a Demo Database Before You Start 411

Modeling Databases Using EF .. 412

Connection String and Security ..414

Which One to Choose—EF or EF Core? ...417

Model ...418

DbContext and DbSet .. 421

AdventureWorks Database ...425

Exercise 6.01: Reading Stock Locations from
AdventureWorks Database ... 425

Querying a Database—LINQ to SQL ... 428

Query Syntax .. 430

The Rest of CRUD ... 432

Exercise 6.02: Updating Products and Manufacturers Table 436

Database First .. 440

Revisiting DbContext ..442

Generating DbContext from an Existing Database444

Code First and Migrations ...445

Exercise 6.03: Managing Product Price Changes 449

Pitfalls of EF ... 453

Examples Setup .. 454

Multiple Adds ... 456

Equals over == .. 457

Using IEnumerable over IQueryable ... 458

Lazy over Eager Loading ... 459

Read-Only Queries ..460

Summary of Results ... 460

Tools to Help You Spot Problems Early On ... 461

Working with a Database in Enterprise ... 462

Repository Pattern ... 462

Exercise 6.04: Creating a Generic Repository 465

Testing Data Persistence Logic Locally .. 469

In-Memory Database Provider ..469

SQLite Database Provider ..471

A Few Words on Repository .. 473

Query and Command Handlers Patterns ..474

Separating the Database Model from
the Business Logic (Domain) Model ...477

Activity 6.01: Tracking System for Trucks Dispatched 478

Summary .. 480

Chapter 7: Creating Modern Web Applications
with ASP.NET 483

Introduction ... 484

Anatomy of an ASP.NET Web App ... 484

Program.cs and the WebApplication ... 486

Middlewares ... 487

Logging .. 488

Dependency Injection .. 490

Exercise 7.01: Creating Custom Logging Middleware 491

Dependency Lifetimes ... 496

Razor Pages .. 498

Basic Razor Syntax ..498

File Structure ...499

Exercise 7.02: Creating a Kanban Board with Razor 501

PageModel .. 504

The Life Cycle with Page Handlers ..505

Rendering Reusable Static Code with Tag Helpers506

Exercise 7.03: Creating Reusable Components with Tag Helpers 507

Model Binding .. 512

Exercise 7.04: Creating a New Page to Submit Tasks 512

Validation .. 519

Dynamic Behavior with Partial Pages ... 520

Exercise 7.05: Refactoring a Tag Helper to a Partial
Page with Custom Logic .. 521

Activity 7.01: Creating a Page to Edit an Existing Task 523

View Components ... 524

Exercise 7.06: Creating a View Component
to Display Task Statistics ... 526

Activity 7.02: Writing a View Component to Display Task Log 530

Summary .. 532

Chapter 8: Creating and Using Web API Clients 535

Introduction ... 536

Browser .. 537

Web API .. 539

RESTful API .. 539

Postman .. 540

Client ... 542

Octokit ... 542

API Key ... 544

Azure Text Analytics .. 544

Exercise 8.01: Performing Sentimental Text Analysis on Any Text 549

Your Own Client .. 554

HttpClient .. 554

HttpClient and IDisposable..558

OAuth .. 559

Real-life Analogy ...559

API Analogy ..559

OAuth App for GitHub ... 559

Authorization Header .. 565

Basic Authentication ... 567

API Key and Personal Access Token ...568

Third-Party Authentication—OAuth2 .. 570

Request Idempotency ... 576

PUT, PATCH, or POST ..576

Exercise 8.02: HttpClient Calling a Star Wars Web API 576

Activity 8.01: Reusing HttpClient for the Rapid
Creation of API Clients ... 581

RestSharp ... 583

Activity 8.02: The Countries API Using RestSharp
to List all Countries .. 585

Refit .. 586

Activity 8.03: The Countries API Using Refit to List all Countries 587

Other Ways of Making HTTP Requests ... 588

Exercise 8.03: A Strongly Typed HTTP Client
for Testing Payments in a PayPal Sandbox ... 589

Activity 8.04: Using an Azure Blob Storage Client
to Upload and Download Files ... 600

Summary .. 603

Chapter 9: Creating API Services 605

Introduction ... 606

ASP.NET Core Web API ... 606

Creating a New Project .. 606

Web API Project Structure ...608

An In-Depth Look at WeatherForecastController ...608

Responding with Different Status Codes ...610

Exercise 9.01: .NET Core Current Time Service 614

Bootstrapping a Web API .. 615

Dependency Injection ..615

Program.cs and Minimal API ...615

The Inner Workings of the AddLogging Method 618

The Lifetime of an Injected Component ..618

DI Examples within a Service .. 619

Singleton ... 623

Scoped ... 624

Transient ... 624

TryAdd ..625

Manual Injection Using an IoC Container ..626

Exercise 9.02: Displaying Current Time in a
Country API Time Zone .. 628

OpenAPI and Swagger ... 630

Using Swagger Swashbuckle ...630

Error Handling .. 642

Request Validation ... 643

Configuration ... 646

Development Environments and Configuration ...647

Bootstrapping ... 649

Calling Another API .. 654

RapidAPI ...654

Service Client ...661

DTO and Mapping Using AutoMapper ...663

HttpClient DI ..665

Exercise 9.03: Performing File Operations
by Calling Azure Blob Storage .. 667

Securing a Web API .. 678

Azure Active Directory ...678

JWT ..679

OpenID Connect ..679

Application Registration .. 680

Implementing Web API Security .. 683

Token Generator App ...684

Configuring Swagger Auth ...690

Troubleshooting Token Validation Errors..693

Service-Oriented Architecture .. 694

Microservice Architecture ...695

Activity 9.01: Implementing the File Upload Service
Using Microservice Architecture .. 695

Azure Functions ... 698

Summary .. 703

Index 707

Preface

ii | Preface

About the Book
C# is a powerful and versatile Object-Oriented Programming (OOP) language that
can unlock a variety of career paths. But, as with any programming language, learning
C# can be challenging. With a wide range of different resources available, it's difficult
to know where to start.

That's where The C# Workshop comes in. Written and reviewed by industry experts, it
provides a fast-paced, supportive learning experience that will quickly get you writing
C# code and building applications. Unlike other software development books that
focus on dry, technical explanations of the underlying theory, this workshop cuts
through the noise and uses engaging examples to help you learn how each concept is
applied in the real world.

As you work through the book, you'll tackle realistic exercises that simulate the types
of problems software developers work on every day. These mini-projects include
building a random-number guessing game, using the publisher-subscriber model
to design a web file downloader, creating a to-do list using Razor Pages, generating
images from the Fibonacci sequence using async/await tasks, and developing a
temperature unit conversion app that you will then deploy to a production server.

By the end of this book, you'll have the knowledge, skills, and confidence required to
advance your career and tackle your ambitious projects with C#.

Audience

This book is for aspiring C# developers. It is recommended that you have a basic
knowledge of core programming concepts before you start. Prior experience
with another programming language would be beneficial, though it is not
absolutely necessary.

About the Authors
Jason Hales has been developing low-latency, real-time applications using various
Microsoft technologies since the first release of C# in 2001. He is a keen advocate
of design patterns, OO principles, and test-driven practices. When he's not dabbling
with code, he likes to spend time with his wife, Ann, and their three daughters in
Cambridgeshire, UK.

About the Chapters | iii

Almantas Karpavicius is a lead software engineer working in the information and
technology company, TransUnion. He has been a professional programmer for over
five years. On top of his full-time programming career, Almantas has spent three
years teaching programming for free in his free time on Twitch.tv. He is a founder of a
C# programming community called C# Inn that boasts over 7000 members and the
creator of two free C# boot camps in which he has helped hundreds of people get
a start in their careers. He has taken interviews with programming celebrities, such
as Jon Skeet, Robert C. Martin (Uncle Bob), Mark Seemann, and was also a part-time
Java teacher for a time. Almantas likes talking about software design, clean code, and
architecture. He is also interested in Agile (Scrum, in particular) and is a big fan of
automated tests, especially those done using BDD. He also holds a two-year Microsoft
MVP (https://packt.link/2qUJp).

Mateus Viegas has been working in Software Engineering and Architecture for over
a decade, dedicating the last few years to Leadership and Management roles. His
main interests in technology are C#, Distributed Systems, and Product Development.
A lover of the outdoors, when not working he likes to spend his time either exploring
nature with his family, taking photographs, or running.

About the Chapters
Chapter 1, Hello C#, introduces the fundamental concepts of the language, such as
variables, constants, loops, and arithmetic and logical operators.

Chapter 2, Building Quality Object-Oriented Code, covers the basics of Object-oriented
programming and its four pillars, before introducing the five main principles of clean
coding—SOLID. This chapter also covers the latest features in the C# language.

Chapter 3, Delegates, Events, and Lambdas, introduces delegates and events, which
form the core mechanism for communicating between objects, and lambda syntax,
which offers a way to clearly express the intent of code.

Chapter 4, Data Structures and LINQ, covers the common collection classes that are
used to store multiple values and the integrated language LINQ which is designed for
querying collections in memory.

Chapter 5, Concurrency: Multithreading Parallel and Async Code, provides an
introduction to writing efficient code that is high performing across different
scenarios and how to avoid common pitfalls and mistakes.

http://Twitch.tv
https://packt.link/2qUJp

iv | Preface

Chapter 6, Entity Framework with SQL Server, introduces database design and storage
using SQL and C# and provides an in-depth look at object-relational mapping using
Entity Framework. The chapter also teaches common design patterns for working
with databases.

Note

For those who are interested in learning the basics of databases and how to
work with PostgreSQL, a reference chapter has been included in the GitHub
repository of this book. You can access it at https://packt.link/oLQsL.

Chapter 7, Creating Modern Web Applications with ASP.NET, looks at how to write simple
ASP.NET applications and how to use approaches such as server-side rendering and
single-page applications to create web applications.

Chapter 8, Creating and Using Web API Clients, introduces APIs and teaches you how to
access and consume Web APIs from ASP.NET code.

Chapter 9, Creating API Services, continues with the topic of APIs and teaches you how
to create your API services for consumption, and how to secure it. The chapter also
introduces you to the concept of microservices.

Note

There are also two bonus chapters (Chapter 10, Automated Testing, and
Chapter 11, Production-Ready C#: From Development to Deployment)
which you can find at https://packt.link/44j2X and https://packt.link/39qQA,
respectively.

You can also find solutions for all activities in this Workshop online at
https://packt.link/qclbF.

This book has some conventions set to arrange content efficiently. Read about them
in the next section.

https://packt.link/oLQsL
https://packt.link/44j2X
https://packt.link/39qQA
https://packt.link/qclbF

About the Chapters | v

Conventions

Block of Code

In the book, a block of code is set as follows:

using System;

namespace Exercise1_01

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Hello World!");

 }

 }

}

In cases where inputting and executing some code gives an immediate output, this is
shown as follows:

dotnet run

Hello World!

Good morning Mars!

Emphasis

Definitions, new terms, and important words are shown like this:

Multithreading is a form of concurrency whereby multiple threads are used to
perform operations.

Technical Terms

Language commands within the body of the chapter are indicated in the
following manner:

Here, the simplest Task constructor is passed an Action lambda statement, which
is the actual target code that you want to execute. The target code writes the message
Inside taskA to the console.

vi | Preface

Added Information

Essential information is indicated in the following way:

Note

The term Factory is often used in software development to represent
methods that help create objects.

Truncation

Long code snippets are truncated and the corresponding names of the code files on
GitHub are placed at the top of the truncated code. Permalinks to the entire code are
placed below the code snippet, as follows:

HashSetExamples.cs

using System;
using System.Collections.Generic;
namespace Chapter04.Examples
{
}

You can find the complete code here: http://packt.link/ZdNbS.

Before you dive into the power of the C# language, you will need to install the .NET
runtime and the C# development and debugging tools.

Before You Begin

You can either install the full Visual Studio Integrated Development Environment
(IDE), which offers a fully featured code editor (this is a costly license) or you can
install Visual Studio Code (VS Code), Microsoft's lightweight cross-platform editor.
The C# Workshop targets the VS Code editor as this does not require a license fee and
works seamlessly across multiple platforms.

http://packt.link/ZdNbS

Installing VS Code | vii

Installing VS Code
Visit the VS Code site at https://code.visualstudio.com and download it for Windows,
macOS, or Linux, following the installation instructions for your preferred platform.

Note

It is better to check the Create a Desktop Icon checkbox for ease
of use.

VS Code is free and open source. It supports multiple languages and needs to be
configured for the C# language. Once VS Code is installed, you will need to add the
C# for Visual Studio Code (powered by OmniSharp) extension to support
C#. This can be found at https://marketplace.visualstudio.com/items?itemName=ms-
dotnettools.csharp. To install the C# extension, follow the per-platform instructions:

1. Open the Extension tab and type C#.

Note

If you do not want to directly install the C# extension from the website,
install it from VS code itself.

2. Select the first selection, that is, C# for Visual Studio Code (powered
by OmniSharp).

3. Click on the Install button.

viii | Preface

4. Restart VS Code:

Figure 0.1: Installing the C# extension for VS Code

You will see that the C# extension gets successfully installed on VS Code. You
have now installed VS Code on your system.

The next section will cover how VS Code can be used as you move between the
book chapters.

Moving Between Chapters in VS Code

To change the default project to build (whether it is an activity, exercise, or demo), you
will need to point to these exercise files:

• tasks.json / tasks.args

• launch.json / configurations.program

There are two different patterns of exercise that you should be aware of. Some
exercises have a project of their own. Others have a different main method. The main
method of a single project per exercise can be configured like this (in this example
for Chapter 3, Delegates, Events, and Lambdas, you are configuring Exercise02 to be the
build and launch points):

Installing VS Code | ix

launch.json

{

 "version": "0.2.0",

 "configurations": [

 {

 "name": ".NET Core Launch (console)",

 "type": "coreclr",

 "request": "launch",

 "preLaunchTask": "build",

 "program": "${workspaceFolder}/Exercises/ /Exercise02/bin/
Debug/net6.0/Exercise02.exe",
 "args": [],

 "cwd": "${workspaceFolder}",

 "stopAtEntry": false,

 "console": "internalConsole"

 }

]

}

tasks.json

{

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "command": "dotnet",

 "type": "process",

 "args": [

 "build",

 "${workspaceFolder}/Chapter05.csproj",

 "/property:GenerateFullPaths=true",

 "/consoleloggerparameters:NoSummary"

],

 "problemMatcher": "$msCompile"

 },

]

}

x | Preface

One project for each exercise (for example, Chapter05 Exercise02) can be
configured like this:

launch.json

{

 "version": "0.2.0",

 "configurations": [

 {

 "name": ".NET Core Launch (console)",

 "type": "coreclr",

 "request": "launch",

 "preLaunchTask": "build",

 "program": "${workspaceFolder}/bin/Debug/net6.0/Chapter05.
exe",
 "args": [],

 "cwd": "${workspaceFolder}",

 "stopAtEntry": false,

 "console": "internalConsole"

 }

]

}

tasks.json

{

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "command": "dotnet",

 "type": "process",

 "args": [

 "build",

 "${workspaceFolder}/Chapter05.csproj",

 "/property:GenerateFullPaths=true",

 "/consoleloggerparameters:NoSummary",

 "-p:StartupObject=Chapter05.Exercises.Exercise02.
Program",
],

 "problemMatcher": "$msCompile"

 },

Installing VS Code | xi

]

}

Now that you are aware of launch.json and tasks.json, you can proceed to the
next section which details the installation of the .NET developer platform.

Installing the .NET Developer Platform

The .NET developer platform can be downloaded from https://dotnet.microsoft.com/
download. There are variants for Windows, macOS, and Docker on Linux. The C#
Workshop book uses .NET 6.0.

Follow the steps to install the .NET 6.0 platform on Windows:

1. Select the Windows platform tab:

Figure 0.2: .NET 6.0 download window

2. Click on the Download .NET SDK x64 option.

Note

The screen shown in Figure 0.2 may change depending on the latest release
from Microsoft.

https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download

xii | Preface

3. Open and complete the installation according to the respective OS installed on
your system.

4. Restart the computer after the installation.

Follow the steps to install the .NET 6.0 platform on macOS:

1. Select the macOS platform tab (Figure 0.2).

2. Click on the Download .NET SDK x64 option.

After the download is complete, open the installer file. You should have a screen
similar to Figure 0.3:

Figure 0.3: The macOS installation starting screen

Installing VS Code | xiii

3. Click on the Continue button.

The following screen will confirm the amount of space that will be required for
the installation:

4. Click on the Install button to continue:

Figure 0.4: Window displaying the disk space required for installation

xiv | Preface

You will see a progress bar moving on the next screen:

Figure 0.5: Window showing the Installation progress

Installing VS Code | xv

Soon after the installation is finalized, you'll have a success screen (Figure 0.6):

Figure 0.6: Window showing the installation as complete

5. In order to check whether the installation was a success, open your Terminal
app and type:

 dotnet –list-sdks

This will check the version of .NET installed on your machine. Figure 0.7 shows the
output where your installed SDKs will be listed:

Figure 0.7: Checking the installed .NET SDKs in Terminal

xvi | Preface

With these steps, you can install the .NET 6.0 SDK on your machine and check the
installed version.

Note

Net 6.0 installation steps for Linux are not included as they are like Windows
and macOS.

Before proceeding further, it is important to know about .NET 6.0 features.

The .NET 6.0 Features Found in Windows, macOS, and Linux

Windows

• .NET 6.0: This is the latest long-term support (LTS) version recommended for
Windows. It can be used for building many different types of applications.

• .NET Framework 4.8: This is a Windows-only version for building any type of app
to run on Windows only.

macOS

• .NET 6.0: This is the LTS version recommended for macOS. It can be used
for building many different types of applications. Choose the version that is
compatible with the processor of your Apple Computer—x64 for Intel chips and
ARM64 for Apple chips.

Linux

• .NET 6.0: This is the LTS version recommended for Linux. It can be used for
building many different types of applications.

.NET Command-Line Interface (CLI) | xvii

Docker

• .NET images: This developer platform can be used for building different types
of applications.

• .NET Core images: This offers lifetime support for building many types
of applications.

• .NET framework images: These are Windows-only versions of .NET for building
any type of app that runs on Windows.

With .NET 6.0 installed on your system, the next step is to configure projects using CLI.

.NET Command-Line Interface (CLI)
Once you have installed .NET, the CLI can be used to create and configure projects for
use with VS Code. To launch the .NET CLI, run the following at the command prompt:

dotnet

If .NET is installed correctly, you will see the following message on your screen:

Usage: dotnet [options]

Usage: dotnet [path-to-application]

Once you have the CLI installed to configure projects with VS Code, you need to know
about the powerful open source object-relational database system that uses and
extends the SQL language that is, PostgreSQL.

Note

You will first go through the instructions to install PostgreSQL for Windows
followed by macOS, and then by Linux.

xviii | Preface

PostgreSQL Installation for Windows

PostgreSQL has been used in Chapter 6, Entity Framework with SQL Server. Before you
proceed with that chapter, you must install PostgreSQL on your system using the
following steps:

1. Go to https://www.enterprisedb.com/downloads/postgres-postgresql-downloads and
download the latest version installer for Windows:

Figure 0.8: Latest PostgreSQL versions for each platform

Note

The screen shown in Figure 0.8 may change depending upon the latest
release from the vendor.

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

.NET Command-Line Interface (CLI) | xix

2. Open the downloaded interactive installer and click the Next button. The Setup
PostgreSQL screen gets displayed:

Figure 0.9: Welcome screen for PostgreSQL upload

xx | Preface

3. Click on the Next button to move to the next screen which asks for the
installation directory details:

Figure 0.10: PostgreSQL default installation directory

4. Leave the default Installation Directory unchanged and click the
Next button.

5. Select the following from the list in Figure 0.11:

• PostgreSQL Server refers to the database.

• pgAdmin 4 is the database management tool.

.NET Command-Line Interface (CLI) | xxi

• Stack Builder is the PostgreSQL environment builder (optional).

• Command Line Tools work with the database using a command line.

Figure 0.11: The PostgreSQL components selected to proceed

6. Then click the Next button.

xxii | Preface

7. In the next screen, the Data Directory screen asks you to enter the directory for
storing your data. So, enter the data directory name:

Figure 0.12: The directory for storing data

.NET Command-Line Interface (CLI) | xxiii

8. Once you have entered the data directory, click on the Next button to continue.
The next screen asks you to enter the password.

9. Enter the new Password.

10. Retype the password beside Retype password for the database superuser:

Figure 0.13: Providing password for database superuser

11. Then click the Next button to continue.

xxiv | Preface

12. The next screen displays the Port as 5432. Use the default port—that is, 5432:

Figure 0.14: Selecting Port

13. Click the Next button.

.NET Command-Line Interface (CLI) | xxv

14. The Advanced Options screen asks you to type the locale for the Database
cluster. Leave it as [Default locale]:

Figure 0.15: Selecting the locale for the Database cluster

xxvi | Preface

15. Then click the Next button.

16. When the Preinstallation Summary screen gets displayed, click the Next button
to go ahead:

Figure 0.16: Setup window showing ready to install message

17. Continue selecting the Next button (leaving the default settings unchanged)
until the installation process begins.

.NET Command-Line Interface (CLI) | xxvii

18. Wait for it to complete. On completion, the Completing the PostgreSQL Setup
Wizard screen gets displayed.

19. Uncheck the Launch Stack Builder at exit option:

Figure 0.17: Installation complete with Stack Builder unchecked

The Stack Builder is used to download and install additional tools. The default
installation contains all tools needed for the exercises and activities.

xxviii | Preface

20. Finally, click the Finish button.

21. Now open pgAdmin4 from Windows.

22. Enter a master Password for connecting to any database inside PostgreSQL in
the Set Master Password window:

Figure 0.18: Setting Master Password for connecting to a PostgreSQL server

Note

It is better to type a password that you can easily memorize as it will be
used to manage all your other credentials.

23. Next click the OK button.

24. On the left side of the pgadmin window, expand the Server by clicking the
arrow beside it.

25. You will be asked to enter your PostgreSQL server password. Type the same
password that you entered in Step 22.

.NET Command-Line Interface (CLI) | xxix

26. Do not click Save password for security reasons:

Figure 0.19: Setting the postgres user password for the PostgreSQL server

PostgreSQL server password is the password you will use when connecting to the
PostgreSQL server and using the postgres user.

27. Finally click the OK button. You will see the pgAdmin dashboard:

Figure 0.20: pgAdmin 4 dashboard window

In order to explore the pgAdmin dashboard, move to the Exploring pgAdmin
Dashboard section.

xxx | Preface

PostgreSQL Installation for macOS

Install PostgreSQL on your macOS using the following steps:

1. Visit the official site of the Postgres app to download and install PostgreSQL on
your mac platform: https://www.enterprisedb.com/downloads/postgres-postgresql-
downloads.

2. Download the latest PostgreSQL for macOS:

Note

The following screenshots were taken for version 14.4 on macOS Monterey
(version 12.2).

Figure 0.21: Installation page for PostgreSQL

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

.NET Command-Line Interface (CLI) | xxxi

3. Once you have downloaded the installer file for macOS, double-click the
installer file to launch the PostgreSQL Setup Wizard:

Figure 0.22: Launching the PostgreSQL setup wizard

xxxii | Preface

4. Select the location where you want PostgreSQL installed:

Figure 0.23: Selecting the installation directory

5. Click on the Next button.

6. In the next screen, select the following components for installation:

• PostgreSQL Server

• pgAdmin 4

• Command Line Tools

.NET Command-Line Interface (CLI) | xxxiii

7. Uncheck the Stack Builder component:

Figure 0.24: Selecting the components for installation

8. Once you have selected the options, click on the Next button.

xxxiv | Preface

9. Specify the data directory in which PostgreSQL will store the data:

Figure 0.25: Specifying the data directory

10. Click on the Next button.

.NET Command-Line Interface (CLI) | xxxv

11. Now set a Password for the Postgres database superuser:

Figure 0.26: Setting the password

Make sure to note down the password safely for logging in to the
PostgreSQL database.

xxxvi | Preface

12. Click on the Next button.

Set the port number where you want to run the PostgreSQL server. Here the
default Port number is set as 5432:

Figure 0.27: Specifying the port number

13. Click on the Next button.

.NET Command-Line Interface (CLI) | xxxvii

14. Select the locale to be used by PostgreSQL. Here, [Default locale] is the
locale selected for macOS:

Figure 0.28: Selecting the locale specification

15. Click on the Next button.

xxxviii | Preface

16. In the next screen, check the installation details:

Figure 0.29: Pre Installation summary page

.NET Command-Line Interface (CLI) | xxxix

Finally, click on the Next button to start the installation process of the
PostgreSQL database server on your system:

Figure 0.30: Ready to Install page before starting the installation process

xl | Preface

17. Wait for a few moments for the installation process to complete:

Figure 0.31: Setup Installation in progress

.NET Command-Line Interface (CLI) | xli

18. When prompted, click the Next button. The next screen displays the message
that the PostgreSQL installation is complete on your system:

Figure 0.32: Success message showing the setup as complete

19. Click the Finish button once the installation gets complete.

20. Now load the database in the PostgreSQL server.

21. Double-click on the pgAdmin 4 icon to launch it from your Launchpad.

xlii | Preface

22. Enter the password for the PostgreSQL user that you had set during the
installation process.

23. Then click the OK button. You will now see the pgAdmin dashboard.

This completes the installation of PostgreSQL for the macOS. The next section will
familiarize you with the PostgreSQL interface.

Exploring pgAdmin Dashboard

Once you have installed PostgreSQL in Windows and macOS, follow these steps to
grasp the interface better:

1. Open pgAdmin4 from Windows/ macOS (in case pgAdmin is not open on
your system).

2. Click on the Servers option on the left:

Figure 0.33: Clicking on Servers to create a database

3. Right-click on PostgreSQL 14.

4. Then click on the Create option.

5. Choose the Database… option to create a new database:

.NET Command-Line Interface (CLI) | xliii

Figure 0.34: Creating a new database

This will open a Create – Database window.

6. Enter the database name, as TestDatabase.

7. Select the Owner of the database or leave it as default. For now, just use the
Owner as postgres:

Figure 0.35: Selecting the owner of the database

xliv | Preface

8. Then click on the Save button. This will create a database.

9. Right-click on Databases and choose the Refresh button:

Figure 0.36: Clicking the Refresh… button after right-clicking Databases

A database with the name TestDatabase is now displayed within
the dashboard:

Figure 0.37: TestDatabase ready for use

.NET Command-Line Interface (CLI) | xlv

Now your database is ready to be used for Windows and Mac environments.

PostgreSQL Installation on Ubuntu

In this example, you are using Ubuntu 20.04 for installation. Perform the following
steps to do so:

1. In order to install PostgreSQL, open your Ubuntu terminal first.

2. Make sure to update your repository using the following command:

$ sudo apt update

3. Install the PostgreSQL software along with additional packages using the
following command (recommended):

$ sudo apt install postgresql postgresql-contrib

Note

To install only PostgreSQL (not recommended without additional packages),
use the command $ sudo apt install postgresql and then
press Enter.

This installation process creates a user account called postgres that has the
default Postgres role.

Accessing the postgres User Account with the postgres Role

There are two ways to start the PostgreSQL CLI using the postgres user account:

Option 1 is as follows:

1. To log in as a postgres user, use the following command:

$ sudo -i -u postgres

xlvi | Preface

2. Access the CLI by using the following command:

$ psql

Note

Sometimes, while executing the preceding command, a psql error may be
displayed as could not connect to server: No such file
or directory. This is because of a port issue on your system. Due to
this port blockage, the PostgreSQL application may not work. You can try
the command again after some time.

3. To quit the CLI, use the following command:

$ \q

Option 2 is as follows:

1. To log in as a postgres user, use the following command:

$ sudo -u postgres psql

2. To quit the CLI, use the following command:

$ \q

Verifying the postgres User Account as a postgres User Role

1. To verify the user account, log in and use the conninfo command:

$ sudo -u postgres psql

$ \conninfo

$ \q

Using this command, you can ensure that you are connected to the postgres
database as the postgres user via port 5432. If you don't want to use the
default user, postgres, you can create a new user for you.

Downloading the Code | xlvii

Accessing a New User and Database

1. Create a new user by using the following command and pressing Enter:

$ sudo -u postgres createuser –interactive

The preceding command will ask the user to add the name of the role and
its type.

2. Enter the name of the role, for example, testUser.

3. Next, enter y when prompted to set a new role to be a superuser:

Prompt:

Enter the name of the role to add: testUser

Shall the new role be a superuser? (y/n) y

This will create a new user with the name testUser.

4. Create a new database with the name testdb using the following command:

$ sudo -u postgres createdb testdb

5. Log in to the newly created user account using the following command:

$ sudo -u testUser psql -d testdb

6. Use the following command to check the connection details:

$ \conninfo

7. To quit the CLI, use the following command:

$ \q

Using this command, you can ensure that you are connected to the testdb
database as the testUser user via port 5432.

With these steps, you have completed the PostgreSQL installation for Ubuntu.

Downloading the Code
Download the code from GitHub at https://packt.link/sezEm. Refer to these files for the
complete code.

The high-quality color images used in this book can be found at https://packt.
link/5XYmX.

If you have any issues or questions about installation, please email us at
workshops@packt.com.

https://packt.link/sezEm
https://packt.link/5XYmX
https://packt.link/5XYmX

Overview

This chapter introduces you to the basics of C#. You will start by learning
about the basics of the .NET Command-Line Interface (CLI) and how to
use Visual Studio Code (VS Code) as a basic Integrated Development
Environment (IDE). You will then learn about the various C# data types and
how to declare variables for these types, before moving on to a section
about arithmetic and logical operators. By the end of the chapter, you will
know how to handle exceptions and errors and be able to write simple
programs in C#.

Hello C#

1

2 | Hello C#

Introduction
C# is a programming language created in the early 2000s by a team at Microsoft
led by Anders Hejlsberg, who is also among the creators of some other popular
languages, such as Delphi and Turbo Pascal, both widely used in the 1990s. Over the
last 20 years, C# has grown and evolved, and today it is one of the most widely used
programming languages globally, according to Stack Overflow's 2020 insights.

It has its reasons for holding such an honorable place in the tech community. C#
allows you to write applications for a wide segment of markets and devices. From the
banking industry, with its high-security standards, to e-commerce companies, which
hold enormous volumes of transactions, it is a language trusted by companies that
need both performance and reliability. Besides that, C# also makes it possible to write
web, desktop, mobile, and even IoT applications, allowing you to develop for almost
every kind of device.

C# was initially limited to work only on Windows; however, there have been concerted
efforts by the C# team over the past few years to make it cross-platform compatible.
Today, it can be used with all major OS distributions, namely, Windows, Linux, and
macOS. The goal is simple: to develop, build, and run C# anywhere, letting each
developer and team choose their most productive or favorite environment.

Another remarkable characteristic of C# is that it is a strongly typed programming
language. You will dive into this more deeply in the upcoming sections, and you will
see that strong typing enables better data security while programming.

Besides that, C# has become open source over the last few years, with Microsoft as its
principal maintainer. This is highly advantageous, as it allows the language to receive
continuous improvements from around the globe, with a solid backing company that
both promotes and invests in it. C# is also a multi-paradigm language, meaning that
you can use it to write software in many programming styles, in a beautiful, concise,
and proper manner.

Running and Developing C# with the .NET CLI
One term you'll hear a lot in the C# world is .NET. It is the foundation of C#, a
framework that the language is built on top of. It has both a Software Development
Kit (SDK) that allows the language to be developed and a runtime that allows the
language to run.

Running and Developing C# with the .NET CLI | 3

That said, to start developing with C#, you only need to install the .NET SDK. This
installation will provide both a compiler and the runtime on the development
environment. In this section, you will cover the basic steps of preparing your
environment for developing and running C# locally.

Note

Please refer to the Preface of this book for step-by-step instructions on how
to download the .NET 6.0 SDK and install it on your machine.

Once the installation of the .NET 6.0 SDK is completed, you will have something called
the .NET CLI. This Command-Line Interface (CLI) allows you to create new projects,
compile them, and run them with very simple commands that you can run directly
from your terminal.

After the installation, run the following command on your favorite terminal:

dotnet --list-sdks

You should see an output like this:

6.0.100 [/usr/local/share/dotnet/sdk]

This output shows that you have the 6.0.100 version of the SDK installed on your
computer. That means you are ready to start developing your applications. If you
type dotnet -–help, you will notice that several commands will appear for you as
options to run within the CLI. In this section, you will cover the most basic ones that
you need to create and run applications: new, build, and run.

The dotnet new command allows you to create a bootstrap project to start
developing. The CLI has several built-in templates, which are nothing more than basic
bootstraps for various types of applications: web apps, desktop apps, and so on. You
must specify two things in the dotnet new command:

• The template name

• The project name

The name is passed as an argument, which means you should specify it with a -n or
–name flag. The command is as follows:

dotnet new TYPE -n NAME

4 | Hello C#

For instance, to create a new console application named MyConsoleApp you can
simply type:

dotnet new console -n MyConsoleApp

This will generate a new folder with a file named MyConsoleApp.csproj, which is
the C# project file that contains all the metadata needed by the compiler to build your
project, and some files needed for the application to be built and run.

Next, the dotnet build command allows you to build an application and make it
ready to run. This command should be placed only in two locations:

• A project folder, containing a .csproj file.

• A folder containing a .sln file.

Solution (.sln) files are files that contain the metadata of one or more project files.
They are used to organize multiple project files into single builds.

Finally, the third important command is dotnet run. This command allows you to
properly run an application. It can be called without any arguments from the folder
that contains the .csproj file of your .NET app, or without passing the project folder
with the -–project flag on the CLI. The run command also automatically builds the
application prior to the run.

Creating Programs with the CLI and VS Code

While working through this book, you will use Visual Studio Code (VS Code) as your
code editor. It works on all platforms, and you can download the version for your OS
at https://code.visualstudio.com/. Although VS Code is not a complete Integrated
Development Environment (IDE), it has a lot of extensions that make it a powerful
tool to develop and do proper C# coding, regardless of the OS being used.

To properly develop C# code, you will primarily need to install the Microsoft C#
extension. It equips VS Code with the ability to do code completion and identify errors
and is available at https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.
csharp.

Note

Before proceeding, it is recommended that you install VS Code and the
Microsoft C# extension. You can find a step-by-step breakdown of the
installation process in the Preface of this book.

https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp

Running and Developing C# with the .NET CLI | 5

Basic Anatomy of a C# Program

In order to run, every C# program needs something called an entry point. In C#, the
standard entry point for a program is the Main method. Regardless of your program
type, whether it is a web application, desktop application, or even a simple console
one, the Main method will be the entry point for your C# program. This means that
each time an application runs, the runtime searches for this method within your code
and executes the code blocks inside it.

This structure is created for you by the CLI, with the new command. A Program.
cs file contains a class named Program, with a method named Main, which, in
turn, contains a single instruction that will be executed after the program is built and
running. You will learn more about methods and classes later, but for now, just know
that a class is something that usually contains a set of data and that can perform
actions on this data through these methods.

Another important thing to note regarding basic C# concepts is comments.
Comments allow you to place free text inside C# code files, without affecting the
compiler. A comment section should always start with //.

Exercise 1.01: Creating a Console App that Says "Hello World"

In this exercise, you will see the CLI commands you learned about in the previous
section, as you build your first ever C# program. It will be a simple console app that
will print Hello World to the console.

Perform the following steps to do so:

1. Open the VS Code integrated terminal and type the following:

dotnet new console -n Exercise1_01

This command will create a new console application in the Exercise1_01
folder.

2. On the command line, type the following:

dotnet run --project Exercise1_01

6 | Hello C#

You should see the following output:

Figure 1.1: "Hello World" output on the console

Note

You can find the code used for this exercise at https://packt.link/HErU6.

In this exercise, you created the most basic program possible with C#, a console
application that prints some text to the prompt. You also learned how to use
.NET CLI, which is the mechanism built within the .NET SDK to create and manage
.NET projects.

Now proceed to the next section to grasp how top-level statements are written.

Top-Level Statements

You must have noticed in Exercise 1.01 that, by default, when you create a console
application, you have a Program.cs file that contains the following:

• A class named Program.

• The static void Main keywords.

https://packt.link/HErU6

Running and Developing C# with the .NET CLI | 7

You will learn about classes and methods in detail later, but for now, for the sake of
simplicity, you do not need these resources to create and execute programs with C#.
The latest version (.NET 6) introduced a feature that makes writing simple programs
much easier and less verbose. For instance, consider the following:

using System;

namespace Exercise1_01

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Hello World!");

 }

 }

}

You can simply replace this snippet with two lines of code, as follows:

using System;

Console.WriteLine("Hello World!");

By using such top-level statements, you can write concise programs. You can simply
put the statements to be executed at the top of the program. This is also useful for
speeding up the learning curve with C#, as you need not worry about advanced
concepts upfront. The only thing to look out for here is that the project can have only
one file with top-level statements.

That is why in this chapter, you will find that all exercises will use this format, to make
things as clear as possible.

Declaring Variables

You will now take your first steps in creating your own programs. This section will
delve into the concept of variables—what they are and how to use them.

A variable is a name given to a computer memory location that holds some data that
may vary. For a variable to exist, it first must be declared with a type and a name. It
can also have a value assigned to it. The declaration of a variable can be achieved in a
few different ways.

8 | Hello C#

There are some basic considerations regarding naming conventions for variables
in C#:

• The names must be unique, starting with a letter, and should contain only
letters, digits, and the underscore character (_). The names can also begin with
an underscore character.

• The names are case-sensitive; thus, myVariable and MyVariable are
different names.

• Reserved keywords, such as int or string, cannot be used as names (this is a
compiler restriction) unless you put an @ symbol in front of the name, such as @
int or @string.

Variables can be declared in two ways: explicitly and implicitly. Both styles of the
declaration have their pros and cons, which you will explore in the next section.

Declaring Variables Explicitly

A variable can be declared explicitly by writing both its type and value. Suppose you
want to create two variables, a and b, both containing integers. Doing so explicitly
would look like this:

int a = 0;

int b = 0;

Before a variable is used, it must have a value assigned. Otherwise, the C# compiler
will give an error while building your program. The following example illustrates that:

int a;

int b = a; // The compiler will prompt an error on this line: Use of
unassigned local variable

It is also possible to declare multiple variables in the same line, like in the following
snippet, where you are declaring three variables; two hold the value 100 and one
holds the value 10:

int a, b = 100, c = 10;

Running and Developing C# with the .NET CLI | 9

Declaring Variables Implicitly

Remember that C# is a strongly typed programming language; this means that a
variable will always have a type associated with it. It does not matter whether the type
is declared implicitly or explicitly. With the var keyword, the C# compiler will infer the
variable type based on the value that has been assigned to it.

Consider that you want to create a variable that holds some text using this method.
This can be done with the following statement:

var name = "Elon Musk";

For storing text in a variable, you should start and end the text with double quotes
("). In the preceding example, by looking at the value that was assigned to name,
C# knows that the type this variable holds is a string, even though the type is not
mentioned in the statement.

Explicit versus Implicit Declaration

Explicit declarations enhance readability with the type declared, and this is one of
the main advantages of this technique. On the other hand, they tend to let the code
become more verbose, especially when working with some data types (that you will
see further ahead), such as Collections.

Essentially, deciding on the style of declaration depends on the personal preferences
of the programmer, and may be influenced by the company's guidelines in some
cases. In this journey of learning, it is recommended that you pick one that makes
your learning path smoother, as there are few substantial differences from a purely
technical standpoint.

In the next exercise, you will do this yourself by assigning variables to inputs that
come from a user's interaction with a console application, where the user will be
asked to input their name. To complete this exercise, you will make use of the
following built-in methods that C# provides, which you will be using frequently in
your C# journey:

• Console.ReadLine(): This allows you to retrieve a value that the user
prompted on the console.

• Console.WriteLine(): This writes the value passed as an argument as an
output to the console.

10 | Hello C#

Exercise 1.02: Assigning Variables to User Inputs

In this exercise, you will create an interactive console application. The app should ask
you for your name, and once provided, it should display a greeting with your name
in it.

To complete this exercise, perform the following steps:

1. Open Command Prompt and type the following:

dotnet new console -n Exercise1_02

This command creates a new console application in the Exercise1_02 folder.

2. Open the Program.cs file. Paste the following inside the Main method:

Console.WriteLine("Hi! I'm your first Program. What is your name?");

var name = Console.ReadLine();

Console.WriteLine($"Hi {name}, it is very nice to meet you. We have a
really fun journey ahead.");

3. Save the file. On the command line, type the following:

dotnet run --project Exercise1_02

This outputs the following:

Hi! I'm your first Program. What is your name?

4. Now, type your name into the console and hit Enter on your keyboard. For
example, if you type in Mateus, the following will be the output:

Hi! I'm your first Program. What is your name?

Mateus

Hi Mateus, it is very nice to meet you. We have a really fun journey
ahead.

Note

You can find the code used for this exercise at https://packt.link/1fbVH.

You are more familiar with what variables are, how to declare them, and how to
assign values to them. Now it is time to start talking about what data these variables
can store and, more specifically, what types of data there are.

https://packt.link/1fbVH

Data Types | 11

Data Types
In this section, you will talk about the main data types within C# and
their functionalities.

Strings

C# uses the string keyword to identify data that stores text as a sequence of
characters. You can declare a string in several ways, as shown in the following
snippet. However, when assigning some value to a string variable, you must place the
content between a pair of double quotes, as you can see in the last two examples:

// Declare without initializing.

string message1;

// Initialize to null.

string message2 = null;

// Initialize as an empty string

string message3 = System.String.Empty;

// Will have the same content as the above one

string message4 = "";

// With implicit declaration

var message4 = "A random message" ;

One simple but effective technique (that you used in the preceding Exercise 1.02) is
one called string interpolation. With this technique, it is very simple to mix plain text
values with variable values, so that the text is combined among these two. You can
combine two or more strings by following these steps:

1. Before the initial quotes, insert a $ symbol.

2. Now, inside the strings, place curly brackets and the name of the variable that
you want to put into the string. In this case, this is done by putting {name}
inside the initial string:

$"Hi {name}, it is very nice to meet you. We have a really fun
journey ahead.");

12 | Hello C#

Another important fact to remember about strings is that they are immutable.
This means that a string object cannot be changed after its creation. This happens
because strings in C# are an array of characters. Arrays are data structures that
gather objects of the same type and have a fixed length. You will cover arrays in
detail in an upcoming section.

In the next exercise, you will explore string immutability.

Exercise 1.03: Checking String Immutability

In this exercise, you will use two strings to demonstrate that string references are
always immutable. Perform the following steps to do so:

1. Open the VS Code integrated terminal and type the following:

dotnet new console -n Exercise1_03

2. Open the Program.cs file and create a method with the void return type,
which replaces part of a string like so:

static void FormatString(string stringToFormat)

{

stringToFormat.Replace("World", "Mars");

}

In the preceding snippet, the Replace function is used to replace the first string
(World, in this case) with the second one (Mars).

3. Now, create a method that does the same thing but returns the result instead:

static string FormatReturningString(string stringToFormat)

{

return stringToFormat.Replace("Earth", "Mars");

}

4. Now insert the following after the previous methods. Here, you create two
string variables and observe their behavior after trying to modify them with the
methods created previously:

var greetings = "Hello World!";

FormatString(greetings);

Console.WriteLine(greetings);

var anotherGreetings = "Good morning Earth!";

Console.WriteLine(FormatReturningString(anotherGreetings));

Data Types | 13

5. Finally, call dotnet run --project Exercise1_03 from the command
line. You should see the following output on the console:

dotnet run

Hello World!

Good morning Mars!

Note

You can find the code used for this exercise at https://packt.link/ZoNiw.

With this exercise, you saw the concept of string immutability in action. When you
passed a string that was a reference type (Hello World!) as a method argument,
it was not modified. That is what happens when you use the FormatString
method, which returns void. Due to string immutability, a new string is created but
not allocated to any variable, and the original string stays the same. With the second
method, it returns a new string, and this string is then printed to the console.

Comparing Strings

Even though strings are reference values, when you use the .Equals() method, the
equality operator (==), and other operators (such as !=), you are actually comparing
the values of the strings, as can be seen in the following example:

string first = "Hello.";

string second = first;

first = null;

Now you can compare these values and call Console.WriteLine() to output the
result, like so:

Console.WriteLine(first == second);

Console.WriteLine(string.Equals(first, second));

Running the preceding code results in the following output:

False

False

https://packt.link/ZoNiw

14 | Hello C#

You get this output because, even though strings are reference types, both the ==
and .Equals comparisons run against string values. Also, remember that strings
are immutable. This means that when you assign second to first and set first
as null, a new value is created for first and, therefore, the reference for second
does not change.

Numeric Types

C# has its numeric types subdivided into two main categories—integral and floating-
point type numbers. The integral number types are as follows:

• sbyte: Holds values from -128 to 127

• short: Holds values from -32,768 to 32,767

• int: Holds values from -2,147,483,648 to 2,147,483,647

• long: Holds values from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Deciding which type of integral type to use depends on the size of the values you
want to store.

All these types are called signed values. This means that they can store both negative
and positive numbers. There is also another range of types called unsigned types.
Unsigned types are byte, ushort, uint, and ulong. The main difference between
them is that signed types can store negative numbers and unsigned types can store
only numbers greater than or equal to zero. You will use signed types most of the
time, so do not worry about remembering this all at once.

The other category, namely, floating-point types, refers to the types used to store
numbers with one or more decimal points. There are three floating-point types in C#:

• float: This occupies four bytes and can store numbers from ± 1.5 x 10−45 to ±
3.4 x 1038 with a precision range of six to nine digits. To declare a float number
using var, you can simply append f to the end of the number, like so:

var myFloat = 10f;

• double: This occupies eight bytes and can store numbers from ± 5.0 × 10−324
to ± 1.7 × 1030 with a precision range of 15 to 17 digits. To declare a double
number using var, you can append d to the end of the number, like so:

var myDouble = 10d;

Data Types | 15

• decimal: This occupies 16 bytes and can store numbers from ± 1.0 x 10-28 to
± 7.9228 x 1028 with a precision range from 28 to 29 digits. To declare a decimal
number using var, you must simply append m to the end of the number, like so:

var myDecimal = 10m;

Choosing the floating-point type depends mainly on the degree of precision required.
For instance, decimal is mostly used for financial applications that need a very
high degree of precision and cannot rely on rounding for accurate calculations. With
GPS coordinates, double variables might be appropriate if you want to deal with
sub-meter precisions that usually have 10 digits.

Another relevant point to consider when choosing numeric types is performance. The
larger the memory space allocated to a variable, the less performant the operations
with these variables are. Therefore, if high precision is not a requirement, float
variables will be better performers than doubles, which, in turn, will be better
performers than decimals.

Here you grasped what variables are and their main types. Now you will perform
some basic calculations with them, such as addition, subtraction, and multiplication.
This can be done using the arithmetic operators available in C#, such as +, -, /, and
*. So, move on to the next exercise where you will create a basic calculator using
these operators.

Exercise 1.04: Using the Basic Arithmetic Operators

In this exercise, you will create a simple calculator that receives two inputs and shows
the results between them, based on which arithmetic operation is selected.

The following steps will help you complete this exercise:

1. Open the VS Code integrated terminal and type the following:

dotnet new console -n Exercise1_04

2. Navigate to the project folder, open the Program.cs file, and inside the Main
method, declare two variables that read the user input, like so:

Console.WriteLine("Type a value for a: ");

var a = int.Parse(Console.ReadLine());

Console.WriteLine("Now type a value for b: ");

var b = int.Parse(Console.ReadLine());

16 | Hello C#

The preceding snippet uses the .ReadLine method to read the input. This
method, however, gives a string, and you need to evaluate a number.
Therefore, the Parse method has been used here. All the numeric types have a
method called Parse, which receives a string and converts it into a number.

3. Next, you need to write the output of these basic operators to the console. Add
the following code to the Main method:

Console.WriteLine($"The value for a is { a } and for b is { b }");

Console.WriteLine($"Sum: { a + b}");

Console.WriteLine($"Multiplication: { a * b}");

Console.WriteLine($"Subtraction: { a - b}");

Console.WriteLine($"Division: { a / b}");

4. Run the program using the dotnet run command, and you should see the
following output, if you input 10 and 20, for instance:

Type a value for a:

10

Now type a value for b:

20

The value for a is 10 and b is 20

Sum: 30

Multiplication: 200

Subtraction: -10

Division: 0

Note

You can find the code used for this exercise at https://packt.link/ldWVv.

Thus, you have built a simple calculator app in C# using the arithmetic operators.
You also learned about the concept of parsing, which is used to convert strings to
numbers. In the next section, you will briefly cover the topic of classes, one of the
core concepts of programming in C#.

Classes
Classes are an integral part of coding in C# and will be covered comprehensively in
Chapter 2, Building Quality Object-Oriented Code. This section touches upon the basics
of classes so that you can begin using them in your programs.

https://packt.link/ldWVv

Classes | 17

The reserved class keyword within C# is used when you want to define the type of
an object. An object, which can also be called an instance, is nothing more than a
block of memory that has been allocated to store information. Given this definition,
what a class does is act as a blueprint for an object by having some properties
to describe this object and specifying the actions that this object can perform
through methods.

For example, consider that you have a class named Person, with two properties,
Name and Age, and a method that checks whether Person is a child. Methods
are where logic can be placed to perform some action. They can return a value of
a certain type or have the special void keyword, which indicates that they do not
return anything but just execute some action. You can also have methods calling
other methods:

public class Person

{

 public Person() { }

 public Person(string name, int age)

{

 Name = name;

 Age = age;

}

 public string Name { get; set; }

 public int Age { get; set; }

 public void GetInfo()

{

 Console.WriteLine($"Name: {Name} – IsChild? {IsChild()}");

}

 public bool IsChild()

{

 return Age < 12;

}

}

18 | Hello C#

One question remains, though. Since classes act as blueprints (or definitions if you
prefer), how do you actually allocate memory to store the information defined by
a class? This is done through a process called instantiation. When you instantiate
an object, you allocate some space in memory for it in a reserved area called the
heap. When you assign a variable to an object, you are setting the variable to have
the address of this memory space, so that each time you manipulate this variable, it
points to and manipulates the data allocated at this memory space. The following is a
simple example of instantiation:

var person = new Person();

Note that Person has properties that have two magic keywords—get and set.
Getters define that a property value can be retrieved, and setters define that a
property value can be set.

Another important concept here is the concept of a constructor. A constructor is a
method with no return type, usually present at the top level of the class for better
readability. It specifies what is needed for an object to be created. By default, a class
will always have a parameter-less constructor. If another constructor with parameters
is defined, the class will be constrained to only this one. In that case, if you still want
to have a parameter-less constructor, you must specify one. This is quite useful, as
classes can have multiple constructors.

That said, you can assign values to an object property that has a setter in the
following ways:

• At the time of creation, via its constructor:

var person = new Person("John", 10);

• At the time of creation, with direct variable assignment:

var person = new Person() { Name = "John", Age = 10 };

• After the object is created, as follows:

var person = new Person();

person.Name = "John";

person.Age = 10;

Dates | 19

There is a lot more to classes that you will see further on. For now, the main ideas are
as follows:

• Classes are blueprints of objects and can have both properties and methods that
describe these objects.

• Objects need to be instantiated so that you can perform operations with them.

• Classes have one parameter-less constructor by default, but can have many
customized ones as required.

• Object variables are references that contain the memory address of a special
memory space allocated to the object inside a dedicated memory section named
the heap.

Dates
A date can be represented in C# using the DateTime value type. It is a struct with
two static properties called MinValue, which is January 1, 0001 00:00:00, and
MaxValue, which is December 31, 9999 11:59:59 P.M. As the names suggest, both
these values represent the minimum and maximum dates according to the Gregorian
calendar date format. The default value for DateTime objects is MinValue.

It is possible to construct a DateTime variable in various ways. Some of the most
common ways are as follows:

• Assigning the current time as follows:

var now = DateTime.Now;

This sets the variable to the current date and time on the calling computer,
expressed as the local time.

var now = DateTime.UtcNow;

This sets the variable to the current date and time on this computer, expressed
as the Coordinated Universal Time (UTC).

• You can also use constructors for passing days, months, years, hours, minutes,
and even seconds and milliseconds.

20 | Hello C#

• There is also a special property available for DateTime objects called Ticks.
It is a measure of the number of 100 nanoseconds elapsed since DateTime.
MinValue. Every time you have an object of this type, you can call the Ticks
property to get such a value.

• Another special type for dates is the TimeSpan struct. A TimeSpan object
represents a time interval as days, hours, minutes, and seconds. It is useful
when fetching intervals between dates. You will now see what this looks like
in practice.

Exercise 1.05: Using Date Arithmetic

In this exercise, you will use the TimeSpan method/struct to calculate the difference
between your local time and the UTC time. To complete this exercise, perform the
following steps:

1. Open the VS Code integrated terminal and type the following:

dotnet new console -n Exercise1_05

2. Open the Program.cs file.

3. Paste the following inside the Main method and save the file:

Console.WriteLine("Are the local and utc dates equal? {0}", DateTime.
Now.Date == DateTime.UtcNow.Date);

Console.WriteLine("\nIf the dates are equal, does it mean that
there's no TimeSpan interval between them? {0}",
(DateTime.Now.Date - DateTime.UtcNow.Date) == TimeSpan.Zero);

DateTime localTime = DateTime.Now;

DateTime utcTime = DateTime.UtcNow;

TimeSpan interval = (localTime - utcTime);

Console.WriteLine("\nDifference between the {0} Time and {1} Time:
{2}:{3} hours",
 localTime.Kind.ToString(),

 utcTime.Kind.ToString(),

Dates | 21

 interval.Hours,

 interval.Minutes);

Console.Write("\nIf we jump two days to the future on {0} we'll be on
{1}",
 new DateTime(2020, 12, 31).ToShortDateString(),

 new DateTime(2020, 12, 31).AddDays(2).ToShortDateString());

In the preceding snippet, you first checked whether the current local date and
UTC dates were equal. Then you checked for the interval between them, if any,
using the TimeSpan method. Next, it printed the difference between the local
and UTC time and printed the date two days ahead of the current one (31/12/
2020, in this case).

4. Save the file. On the command line, type the following:

dotnet run --project Exercise1_05

You should see an output like the following:

Are the local and utc dates equal? True

If the dates are equal, does it mean there's no TimeSpan interval
between them? True

Difference between the Local Time and Utc Time: 0:0 hours

If we jump two days to the future on 31/12/2020 we'll be on
02/01/2021

Note

You can find the code used for this exercise at https://packt.link/WIScZ.

Note that depending on your time zone, you will likely see different output.

https://packt.link/WIScZ

22 | Hello C#

Formatting Dates

It is also possible to format DateTime values to localized strings. That means
formatting a DateTime instance according to a special concept within the C#
language called a culture, which is a representation of your local time. For instance,
dates are represented differently in different countries. Now take a look at the
following examples, where dates are outputted in both the format used in France
and the format used in the United States:

var frenchDate = new DateTime(2008, 3, 1, 7, 0, 0);

Console.WriteLine(frenchDate.ToString(System.Globalization.CultureInfo.

 CreateSpecificCulture("fr-FR")));

// Displays 01/03/2008 07:00:00

var usDate = new DateTime(2008, 3, 1, 7, 0, 0);

Console.WriteLine(frenchDate.ToString(System.Globalization.CultureInfo.
CreateSpecificCulture("en-US")));

// For en-US culture, displays 3/1/2008 7:00:00 AM

It is also possible to explicitly define the format you want the date to be output in, as
in the following example, where you pass the yyyyMMddTHH:mm:ss value to say
that you want the date to be output as year, then month, then day, then hour, then
minutes preceded by a colon, and finally, seconds, also preceded by a colon:

var date1 = new DateTime(2008, 3, 1, 7, 0, 0);

Console.WriteLine(date1.ToString("yyyyMMddTHH:mm:ss"));

The following output gets displayed:

 20080301T07:00:00

Logical Operators and Boolean Expressions
You are already familiar with these. Recall that in the preceding exercise, you did the
following comparison:

var now = DateTime.Now.Date == DateTime.UtcNow.Date;

This output assigns the value true to now if the dates are equal. But as you know,
they might not necessarily be the same. Therefore, if the dates are different, a false
value will be assigned. These two values are the result of such Boolean expressions
and are called Boolean values. That is why the now variable has the type of bool.

Logical Operators and Boolean Expressions | 23

Boolean expressions are the base for every logical comparison in every program.
Based on these comparisons, a computer can execute a certain behavior
in a program. Here are some other examples of Boolean expressions and
variable assignments:

• Assigning the result of a comparison that checks whether a is greater than b:

var basicComparison = a > b;

• Assigning the result of a comparison that checks whether b is greater than or
equal to a:

bool anotherBasicComparison = b >= a;

• Checking whether two strings are equal and assigning the result of this
comparison to a variable:

var animal1 = "Leopard";

var animal2 = "Lion";

bool areTheseAnimalsSame = animal1 == animal2;

Clearly, the result of the previous comparison would be false and this value
will be assigned to the areTheseAnimalsSame variable.

Now that you have learned what Booleans are and how they work, it is time to look at
some logical operators you can use to compare Boolean variables and expressions:

• The && (AND) operator: This operator will perform an equality comparison. It will
return true if both are equal and false if they are not. Consider the following
example, where you check whether two strings have the length 0:

bool areTheseStringsWithZeroLength = "".Length == 0 && " ".Length ==
0;
Console.WriteLine(areTheseStringsWithZeroLength);// will return false

• The || (OR) operator: This operator will check whether either of the values being
compared is true. For example, here you are checking whether at least one of
the strings has zero length:

bool isOneOfTheseStringsWithZeroLength = "".Length == 0 || " ".Length
== 0;
Console.WriteLine(isOneOfTheseStringsWithZeroLength); // will return
true

24 | Hello C#

• The ! (NOT) operator: This operator takes a Boolean expression or value and
negates it; that is, it returns the opposite value. For example, consider the
following example, where you negate the result of a comparison that checks
whether one of the strings has zero length:

bool isOneOfTheseStringsWithZeroLength = "".Length == 0 || " ".Length
== 0;
bool areYouReallySure = !isOneOfTheseStringsWithZeroLength;

Console.WriteLine(areYouReallySure); // will return false

Using if-else Statements

Up till now, you have learned about types, variables, and operators. Now it is time to
go into the mechanisms that help you to use these concepts in real-world problems—
that is, decision-making statements.

In C#, if-else statements are some of the most popular choices for implementing
branching in code, which means telling the code to follow one path if a condition
is satisfied, else follow another path. They are logical statements that evaluate
a Boolean expression and continue the program's execution based on this
evaluation result.

For example, you can use if-else statements to check whether the password
entered satisfies certain criteria (such as having at least six characters and one digit).
In the next exercise, you will do exactly that, in a simple console application.

Exercise 1.06: Branching with if-else

In this exercise, you will use if-else statements to write a simple credentials
check program. The application should ask the user to enter their username; unless
this value is at least six characters in length, the user cannot proceed. Once this
condition is met, the user should be asked for a password. The password should
also have a minimum of six characters containing at least one digit. Only after both
these criteria are met should the program display a success message, such as User
successfully registered.

The following steps will help you complete this exercise:

1. Inside the VS Code integrated terminal, create a new console project called
Exercise1_06:

dotnet new console -n Exercise1_06

Logical Operators and Boolean Expressions | 25

2. Inside the Main method, add the following code to ask the user for a username,
and assign the value to a variable:

Console.WriteLine("Please type a username. It must have at least 6
characters: ");
var username = Console.ReadLine();

3. Next, the program needs to check whether the username has more than six
characters and if not, write an error message to the console:

if (username.Length < 6)

{

Console.WriteLine($"The username {username} is not valid.");

}

4. Now, within an else clause, you will continue the verification and ask the user
to type a password. Once the user has entered a password, three points need
to be checked. The first condition to check is whether the password has at least
six characters and then whether there is at least one number. Then, if either
of these conditions fails, the console should display an error message; else, it
should display a success message. Add the following code for this:

else

{

Console.WriteLine("Now type a

password. It must have a length of at least 6 characters and also
contain a number.");

var password = Console.ReadLine();

if (password.Length < 6)

 {

 Console.WriteLine("The password must have at least 6
characters.");
}

 else if (!password.Any(c => char.IsDigit©))

 {

 Console.WriteLine("The password must contain at least
one number.");
}

26 | Hello C#

else

 {

 Console.WriteLine("User successfully registered.");

}

}

From the preceding snippet, you can see that if the user enters fewer than six
characters, an error message is displayed as The password must have at
least 6 characters.. If the password doesn't contain a single digit but
satisfies the preceding condition, another error message is displayed as The
password must contain at least one number..

Notice the logical condition used for this, which is !password.Any(c =>
char.IsDi©(c)). You will learn more about the => notation in Chapter 2,
Building Quality Object-Oriented Code, but for now, you just need to know that
this line checks every character in the password and uses the IsDigit function
to check whether the character is a digit. This is done for every character, and if
no digit is found, the error message is displayed. If all the conditions are met, a
success message is displayed as User successfully registered..

5. Run the program using dotnet run. You should see an output like
the following:

Please type a username. It must have at least 6 characters:

thekingjames

Now type a password. It must have at least 6 characters and a number.

James123!"#

User successfully registered

Note

You can find the code used for this exercise at https://packt.link/3Q7oK.

In this exercise, you worked with if-else branching statements to implement a simple
user registration program.

https://packt.link/3Q7oK

Logical Operators and Boolean Expressions | 27

The Ternary Operator

Another simple-to-use, yet effective, decision-making operator is the ternary
operator. It allows you to set the value of a variable based on a Boolean comparison.
For example, consider the following example:

var gift = person.IsChild() ? "Toy" : "Clothes";

Here, you are using the ? symbol to check whether the Boolean condition placed
before it is valid. The compiler runs the IsChild function for the person object. If
the method returns true, the first value (before the : symbol) will be assigned to the
gift variable. If the method returns false, the second value (after the : symbol)
will be assigned to the gift variable.

The ternary operator is simple and makes assignments based on simple Boolean
verifications even more concise. You will be using this quite often in your C# journey.

Reference and Value Types

There are two types of variables in C#, namely, reference types and value types.
Variables of value types, such as structs, contain the values themselves, as the name
suggests. These values are stored in a memory space called the stack. When a
variable of such a type is declared, specific memory space is allocated to store this
value, as illustrated in the following figure:

Figure 1.2: Memory allocation for a value type variable

Here, the value of the variable, which is 5, is stored in memory at the location
0x100 in the RAM. The built-in value types for C# are bool, byte, char, decimal,
double, enum, float, int, long, sbyte, short, struct, uint, ulong,
and ushort.

28 | Hello C#

The scenario for reference type variables is different, though. The three main
reference types you need to know about in this chapter are string, array, and
class. When a new reference type variable is assigned, what is stored in memory is
not the value itself, but instead a memory address where the value gets allocated. For
example, consider the following diagram:

Figure 1.3: Memory allocation for a reference type variable

Here, instead of the value of the string variable (Hello), the address where it is
allocated (0x100) is stored in memory. For brevity, you will not dive deep into this
topic, but it is important to know the following points:

• When value type variables are passed as parameters or assigned as the value of
another variable, the .NET runtime copies the value of the variable to the other
object. This means that the original variable is not affected by any changes made
in the newer and subsequent variables, as the values were literally copied from
one place to another.

• When reference type variables are passed as parameters or assigned as the
value of another variable, .NET passes the heap memory address instead of the
value. This means that every subsequent change made in this variable inside a
method will be reflected outside.

For instance, consider the following code, which deals with integers. Here, you declare
an int variable named a and assign the value 100 to it. Later, you create another
int variable named b and assign the value of a to it. Finally, you modify b, to be
incremented by 100:

using System;

int a = 100;

Console.WriteLine($"Original value of a: {a}");

int b = a;

Console.WriteLine($"Original value of b: {b}");

b = b + 100;

Console.WriteLine($"Value of a after modifying b: {a}");

Console.WriteLine($"Value of b after modifying b: {b}");

Logical Operators and Boolean Expressions | 29

The values of a and b will be displayed in the following output:

Original value of a: 100

Original value of b: 100

Value of a after modifying b: 100

Value of b after modifying b: 200

In this example, the value from a was copied into b. From this point, any other
modification you do on b will reflect changes only in b and a will continue to have
its original value.

Now, what if you pass reference types as method arguments? Consider the
following program. Here, you have a class named Car with two properties—Name
and GearType. Inside the program is a method called UpgradeGearType that
receives an object of the Car type and changes its GearType to Automatic:

using System;

var car = new Car();

car.Name = "Super Brand New Car";

car.GearType = "Manual";

Console.WriteLine($"This is your current configuration for the car {car.
Name}: Gea–Type - {car.GearType}");

UpgradeGearType(car);

Console.WriteLine($"You have upgraded your car {car.Name} for the
GearType {car.GearType}");

void UpgradeGearType(Car car)

{

 car.GearType = "Automatic";

}

class Car

{

 public string Name { get; set; }

 public string GearType { get; set; }

}

30 | Hello C#

After you create a Car instance and call the UpgradeGearType() method, the
output will be as the follows:

This is your current configuration for the car Super Brand New Car:
GearType – Manual
You have upgraded your car Super Brand New Car for the GearType Automatic

Thus, you see that if you pass an object of a reference type (car in this case) as an
argument to a method (UpgradeGearType in this example), every change made
inside this object is reflected after and outside the method call. This is because
reference types refer to a specific location in memory.

Exercise 1.07: Grasping Value and Reference Equality

In this exercise, you will see how equality comparison is different for value types and
reference types. Perform the following steps to do so:

1. In VS Code, open the integrated terminal and type the following:

dotnet new console -n Exercise1_07

2. Open the Program.cs file. In the same file, create a struct named
GoldenRetriever with a Name property, as follows:

struct GoldenRetriever

{

 public string Name { get; set; }

}

3. Still in the same file, create one more class named BorderCollie with a
similar Name property:

class BorderCollie

{

 public string Name { get; set; }

}

4. One final class must be created, a class named Bernese, also having the Name
property, but with an extra override of the native Equals method:

class Bernese

{

 public string Name { get; set; }

 public override bool Equals(object obj)

 {

Logical Operators and Boolean Expressions | 31

 if (obj is Bernese borderCollie && obj != null)

 {

 return this.Name == borderCollie.Name;

 }

 return false;

 }

}

Here, the this keyword is used to refer to the current instance of the
borderCollie class.

5. Finally, in the Program.cs file, you will create some objects for these types.
Note that since you are using top-level statements, these declarations should
be above the class and the struct declarations:

 var aGolden = new GoldenRetriever() { Name = "Aspen" };

 var anotherGolden = new GoldenRetriever() { Name = "Aspen" };

 var aBorder = new BorderCollie() { Name = "Aspen" };

 var anotherBorder = new BorderCollie() { Name = "Aspen" };

 var aBernese = new Bernese() { Name = "Aspen" };

 var anotherBernese = new Bernese() { Name = "Aspen" };

6. Now, right after the previous declarations, compare these values using the
Equals method and assign the result to some variables:

var goldenComparison = aGolden.Equals(anotherGolden) ? "These Golden
Retrievers have the same name." : "These Goldens have different
names.";

var borderComparison = aBorder.Equals(anotherBorder) ? "These Border
Collies have the same name." : "These Border Collies have different
names.";

var berneseComparison = aBernese.Equals(anotherBernese) ? "These
Bernese dogs have the same name." : "These Bernese dogs have different
names.";

32 | Hello C#

7. Finally, print the comparison results to the console with the following:

 Console.WriteLine(goldenComparison);

 Console.WriteLine(borderComparison);

 Console.WriteLine(berneseComparison);

8. Run the program from the command line using dotnet run and you will see
the following output:

These Golden Retrievers have the same name.

These Border Collies have different names.

These Bernese dogs have the same name.

Note

You can find the code used for this exercise at https://packt.link/xcWN9.

As mentioned earlier, structs are value types. Therefore, when two objects of
the same struct are compared with Equals, .NET internally checks all the struct
properties. If those properties have equal values, then true is returned. With
Golden Retrievers, for instance, if you had a FamilyName property and this
property was different between the two objects, the result of the equality comparison
would be false.

For classes and all other reference types, the equality comparison is quite different.
By default, object reference is checked on equality comparison. If the references
are different (and they will be, unless the two variables are assigned to the same
object), the equality comparison will return false. This explains the result you see
for Border Collies in the example that the references were different for the
two instances.

However, there is a method that can be implemented in reference types called
Equals. Given two objects, the Equals method can be used for comparison following
the logic placed inside the method. That is exactly what happened with the Bernese
dogs example.

https://packt.link/xcWN9

Logical Operators and Boolean Expressions | 33

Default Value Types

Now that you have dealt with value and reference types, you will briefly explore
the default value types. In C#, every type has a default value, as specified in the
following table:

Figure 1.4: Default value types table

These default values can be assigned to a variable using the default keyword.
To use this word in a variable declaration, you must explicitly declare the variable
type before its name. For example, consider the following snippet, where you are
assigning the default value to two int variables:

int a = default;

int b = default;

Both a and b will be assigned the value 0 in this case. Note that it is not possible to
use var in this case. This is because, for implicitly declared variables, the compiler
needs a value assigned to the variable in order to infer its type. So, the following
snippet will lead to an error because no type was set, either through an explicit
declaration or by variable assignment:

var a = default;

var b = default;

Enhancing Decision Making with the switch Statement

The switch statement is often used as an alternative to the if-else construct if a
single expression is to be tested against three or more conditions, that is, when you
want to select one of many code sections to be executed, such as the following:

switch (matchingExpression)

{

 case firstCondition:

 // code section

34 | Hello C#

 break;

 case secondCondition:

 // code section

 break;

 case thirdCondition:

 // code section

 break;

 default:

 // code section

 break;

}

The matching expression should return a value that is of one of the following types:
char, string, bool, numbers, enum, and object. This value will then be
evaluated within one of the matching case clauses or within the default clause if it
does not match any prior clause.

It is important to say that only one switch section in a switch statement will
be executed. C# doesn't allow execution to continue from one switch section to
the next. However, a switch statement does not know how to stop by itself. You
can either use the break keyword if you only wish to execute something without
returning or return something if that is the case.

Also, the default keyword on a switch statement is where the execution goes if
none of the other options are matched. In the next exercise, you will use a switch
statement to create a restaurant menu app.

Exercise 1.08: Using switch to Order Food

In this exercise, you will create a console app that lets the user select from a menu
of food items available at a restaurant. The app should display an acknowledgment
receipt for the order. You will use the switch statement to implement the logic.

Follow these steps to complete this exercise:

1. Create a new console project called Exercise1_08.

2. Now, create an instance of System.Text.StringBuilder. This is a class
that helps build strings in many ways. Here, you are building strings line by line
so that they can be properly displayed on the console:

var menuBuilder = new System.Text.StringBuilder();

menuBuilder.AppendLine("Welcome to the Burger Joint. ");

Logical Operators and Boolean Expressions | 35

menuBuilder.AppendLine(string.Empty);

menuBuilder.AppendLine("1) Burgers and Fries - 5 USD");

menuBuilder.AppendLine("2) Cheeseburger - 7 USD");

menuBuilder.AppendLine("3) Double-cheeseburger - 9 USD");

menuBuilder.AppendLine("4) Coke - 2 USD");

menuBuilder.AppendLine(string.Empty);

menuBuilder.AppendLine("Note that every burger option comes with
fries and ketchup!");

3. Display the menu on the console and ask the user to choose one of the options:

Console.WriteLine(menuBuilder.ToString());

Console.WriteLine("Please type one of the following options to
order:");

4. Read the key that the user presses and assign it to a variable with the Console.
ReadKey() method. This method works similarly to ReadLine(), which you
have used before, with the difference that it reads the key that is immediately
pressed after calling the method. Add the following code for this:

var option = Console.ReadKey();

5. Now it is time to use the switch statement. Use option.KeyChar.
ToString() as the matching expression of the switch clause here. Keys 1,
2, 3, and 4 should result in orders accepted for burgers, cheeseburgers,
double cheeseburgers, and Coke, respectively:

switch (option.KeyChar.ToString())

{

 case "1":

 {

 Console.WriteLine("\nAlright, some burgers on the go.
Please pay the cashier.");
 break;

 }

 case "2":

 {

 Console.WriteLine("\nThank you for ordering
cheeseburgers. Please pay the cashier.");
 break;

 }

 case "3":

 {

 Console.WriteLine("\nThank you for ordering double
cheeseburgers, hope you enjoy them. Please pay the cashier!");

36 | Hello C#

Any other input, however, should be considered invalid and a message gets
displayed, letting you know you have selected an invalid option:

 break;

 }

 case "4":

 {

 Console.WriteLine("\nThank you for ordering Coke. Please
pay the cashier.");
 break;

 }

 default:

 {

 Console.WriteLine("\nSorry, you chose an invalid
option.");
 break;

 }

}

6. Finally, run the program with dotnet run --project Exercise1_08 and
interact with the console to see the possible outputs. For example, if you type 1,
you should see an output like the following:

Welcome to the Burger Joint.

1) Burgers and Fries – 5 USD

2) Cheeseburger – 7 USD

3) Double-cheeseburger – 9 USD

4) Coke – 2 USD

Note that every burger option comes with fries and ketchup!

Please type one of the follow options to order:

1

Alright, some burgers on the go! Please pay on the following cashier!

Note

You can find the code used for this exercise at https://packt.link/x1Mvn.

https://packt.link/x1Mvn

Logical Operators and Boolean Expressions | 37

Similarly, you should get the output for the other options as well. You have learned
about branching statements in C#. There is another type of statement that you will
use often while programming using C#, called iteration statements. The next section
covers this topic in detail.

Iteration Statements

Iteration statements, also called loops, are types of statements that are useful in
the real world, as you often need to continuously repeat some logical execution in
your applications while or until some condition is met, such as operating with a
number that must be incremented until a certain value. C# offers numerous ways
of implementing such iterations, and in this section, you will examine each of these
in detail.

while

The first iteration statement you will consider is the while statement. This
statement allows a C# program to execute a set of instructions while a certain
Boolean expression is evaluated to be true. It has one of the most basic structures.
Consider the following snippet:

int i = 0;

while (i < 10)

{

Console.WriteLine(i);

i = i +1;

}

The preceding snippet shows how you can use the while statement. Note that the
while keyword is followed by a pair of brackets enclosing a logical condition; in this
case, the condition is that the value of i must be less than 10. The code written inside
the curly braces will be executed until this condition is true.

Thus, the preceding code will print the value of i, starting with 0, up to 10. This is
fairly simplistic code; in the next exercise, you will use the while statement for
something a little more complex, such as checking whether a number entered by
you is a prime number.

38 | Hello C#

Exercise 1.09: Checking Whether a Number is Prime with a while Loop

In this exercise, you will use a while loop to check whether a number you enter
is prime. To do so, the while loop will check whether the counter is less than or
equal to the integer result of the division of the number by 2. When this condition
is satisfied, you check whether the remainder of the division of the number by the
counter is 0. If not, you increment the counter and continue until the loop condition is
not met. If it is met, it means the number is not false and the loop can stop.

Perform the following steps to complete this exercise:

1. Inside the VS Code integrated terminal, create a new console project called
Exercise1_09.

2. Inside the Program.cs file, create the following method, which will perform the
logic you introduced at the beginning of the exercise:

static bool IsPrime(int number)

{

if (number ==0 || number ==1) return false;

bool isPrime = true;

int counter = 2;

while (counter <= Math.Sqrt(number))

 {

 if (number % counter == 0)

 {

 isPrime = false;

 break;

}

counter++;

}

 return isPrime;

}

Logical Operators and Boolean Expressions | 39

3. Now, input a number, so you can check whether it is prime:

Console.Write("Enter a number to check whether it is Prime: ");

var input = int.Parse(Console.ReadLine());

4. Now, check whether the number is prime and print the result:

Console.WriteLine($"{input} is prime? {IsPrime(input)}.");

5. Finally, on the VS Code integrated terminal, call dotnet run --project
Exercise1_09 and interact with the program. For example, try entering 29 as
an input:

Enter a number to check whether it is Prime:

29

29 is prime? True

As expected, the result for 29 is true since it is a prime number.

Note

You can find the code used for this exercise at https://packt.link/5oNg5.

The preceding exercise aimed to show you the simple structure of a while loop with
some more complex logic. It checks a number (named input) and prints whether
it is a prime number. Here, you have seen the break keyword used again to stop
program execution. Now proceed to learn about jump statements.

Jump Statements

There are some other important keywords used within loops that are worth
mentioning as well. These keywords are called jump statements and are used to
transfer program executions to another part. For instance, you could rewrite the
IsPrime method as follows:

static bool IsPrimeWithContinue(int number)

 {

 if (number == 0 || number ==1) return false;

 bool isPrime = true;

https://packt.link/5oNg5

40 | Hello C#

 int counter = 2;

 while (counter <= Math.Sqrt(number))

 {

 if (number % counter != 0)

 {

 counter++;

 continue;

 }

 isPrime = false;

 break;

 }

 return isPrime;

 }

Here, you have inverted the logical check. Instead of checking whether the remainder
is zero and then breaking the program execution, you have checked that the
remainder is not zero and, if so, have used the continue statement to pass the
execution to the next iteration.

Now look at how you can rewrite this using another special keyword, goto:

static bool IsPrimeWithGoTo(int number)

 {

 if (number == 0 || number ==1) return false;

bool isPrime = true;

 int counter = 2;

 while (counter <= Math.Sqrt(number))

 {

 if (number % counter == 0)

 {

 isPrime = false;

 goto isNotAPrime;

 }

Logical Operators and Boolean Expressions | 41

 counter++;

 }

 isNotAPrime:

 return isPrime;

 }

The goto keyword can be used to jump from one part of the code to another one
defined by what is called a label. In this case, the label was named isNotAPrime.
Finally, take a look at one last way of writing this logic:

static bool IsPrimeWithReturn(int number)

 {

 if (number == 0 || number ==1) return false;

 int counter = 2;

 while (counter <= Math.Sqrt(number))

 {

 if (number % counter == 0)

 {

 return false;

 }

 counter ++;

 }

 return true;

 }

Now, instead of using break or continue to stop the program execution, you
simply use return to break the loop execution since the result that you were looking
for was already found.

42 | Hello C#

do-while

The do-while loop is like the previous one, but with one subtle difference:
it executes the logic at least once, while a simple while statement may
never be executed if the condition is not met at the first execution. It has the
following structure:

int t = 0;

do

{

 Console.WriteLine(t);

 t++;

} while (t < 5);

In this example, you write the value of t, starting from 0, and keep incrementing it
while it is smaller than 5. Before jumping into the next type of loop, learn about a
new concept called arrays.

Arrays

An array is a data structure used to store many objects of the same type. For
instance, the following example is a variable declared as an array of integer numbers:

int[] numbers = { 1, 2, 3, 4, 5 };

The first important thing to note about arrays is that they have a fixed capacity.
This means that an array will have the length defined at the time of its creation and
this length cannot change. The length can be determined in various ways. In the
preceding example, the length is inferred by counting the number of objects in the
array. However, another way of creating an array is like this:

var numbers = new int[5];

Here, you are creating an array that has the capacity of 5 integers, but you do not
specify any value for the array elements. When an array of any data type is created
without adding elements to it, the default values for that value type are set for each
position of the array. For example, consider the following figure:

Figure 1.5: Value type array with no index assigned

Logical Operators and Boolean Expressions | 43

The preceding figure shows that when you create an integer array of five elements,
without assigning a value to any element, the array is automatically filled with the
default value at every position. In this case, the default value is 0. Now consider the
following figure:

Figure 1.6: Reference type array with fixed size and only one index assigned

In the preceding example, you have created an array of five objects and assigned the
"Hello" string value to the element at index 1. The other positions of the array are
automatically assigned the default value for objects, which is null.

Finally, it is worth noting that all arrays have indexes, which refers to the positions of
the individual array elements. The first position will always have an index 0. Thus, the
positions in an array of size n can be specified from index 0 to n-1. Therefore, if you
call numbers[2], this means that you are trying to access the element in position 2
inside the numbers array.

for Loops

A for loop executes a set of instructions while a Boolean expression matches a
specified condition. Just like while loops, jump statements can be used to stop a
loop execution. It has the following structure:

for (initializer; condition; iterator)

{

 [statements]

}

The initializer statement is executed before the loop starts. It is used to declare and
assign a local variable that will be used only inside the scope of the loop.

44 | Hello C#

But in more complex scenarios, it can be used to combine other statement
expressions as well. The condition specifies a Boolean condition that indicates when
the loop should either continue or exit. The iterator is usually used to increment or
decrement the variable created in the initializer section. Take the following example,
where a for loop is used to print the elements of an integer array:

int[] array = { 1, 2, 3, 4, 5 };

for (int j = 0; j < array.Length - 1; j++)

{

Console.WriteLine(array[j]);

}

In this example, an initializer variable, j, has been created that is assigned 0 initially.
The for loop will keep executing while j is smaller than the array length minus
1 (remember that indexes always start at 0). After each iteration, the value of j
is incremented by 1. In this way, the for loop goes through the entire array and
performs the given action, that is, printing the value of the current array element.

C# also allows the usage of nested loops, that is, a loop within a loop, as you will
see in the next exercise.

Exercise 1.10: Ordering an Array Using Bubble Sort

In this exercise, you will execute one of the simplest sorting algorithms. Bubble sort
consists of going through every pair of elements inside an array and swapping them
if they are unordered. In the end, the expectation is to have an array ordered in
ascending order. You will use nested for loops to implement this algorithm.

To begin with, the array to be sorted should be passed as a parameter to this
method. For each element of this array, if the current element is greater than the
next, their positions should be swapped. This swap occurs by storing the value
of the next element in a temporary variable, assigning the value of the current
element to the next element, and finally, setting the value of the current element
with the temporary value stored. Once the first element is compared to all others, a
comparison starts for the second element and so on, till finally, the array is sorted.

Logical Operators and Boolean Expressions | 45

The following steps will help you complete this exercise:

1. Create a new console project using the following command:

dotnet new console -n Exercise1_10

2. Inside the Program.cs file, create the method to implement the sorting
algorithm. Add the following code:

static int[] BubbleSort(int[] array)

{

 int temp;

 // Iterate over the array

 for (int j = 0; j < array.Length - 1; j++)

 {

 // If the last j elements are already ordered, skip them

 for (int i = 0; i < array.Length - j - 1; i++)

 {

 if (array[i] > array[i + 1])

 {

 temp = array[i + 1];

 array[i + 1] = array[i];

 array[i] = temp;

 }

 }

 }

 return array;

}

3. Now create an array with some numbers, as follows:

int[] randomNumbers = { 123, 22, 53, 91, 787, 0, -23, 5 };

4. Call the BubbleSort method, passing the array as an argument, and assign the
result to a variable, as follows:

int[] sortedArray = BubbleSort(randomNumbers);

46 | Hello C#

5. Finally, you need to print the message that the array was sorted. To do so, iterate
over it, printing the array elements:

Console.WriteLine("Sorted:");

for (int i = 0; i < sortedArray.Length; i++)

{

 Console.Write(sortedArray[i] + " ");

}

6. Run the program with the dotnet run --project Exercise1_10
command. You should see the following output on your screen:

Sorted:

-23 0 5 22 53 91 123 787

Note

You can find the code used for this exercise at https://packt.link/cJs8y.

In this exercise, you used the two concepts learned in the last two sections: arrays
and for loops. You manipulated arrays, accessing their values through indexes, and
used for loops to move through these indexes.

There is another way to go through every element of an array or group in C#, called
foreach statements. You will explore this in the following section.

foreach Statements

A foreach statement executes a set of instructions for each element of a collection.
Just like a for loop, the break, continue, goto, and return keywords can also
be used with foreach statements. Consider the following example, in which you
iterate over every element of an array and write it to the console as the output:

var items = new int[] { 1, 2, 3, 4, 5 };

foreach (int element in items)

{

Console.WriteLine(element);

}

https://packt.link/cJs8y

Logical Operators and Boolean Expressions | 47

The preceding snippet prints the numbers from 1 to 5 to the console. You can use
foreach statements with much more than arrays; they can also be used with
lists, collections, and spans, which are other data structures that will be covered in
later chapters.

File Handling

So far, you have been creating programs that interact mostly with CPU and memory.
This section will focus on I/O operations, that is, input and output operations, on the
physical disk. A great example of this type of operation is file handling.

C# has several classes that help you perform I/O operations. Some of these are
as follows:

• File: This class provides methods for the manipulation of files, that is, reading,
writing, creating, deleting, copying, and moving files on the disk.

• Directory: Like the File class, this class includes methods to create, move,
and enumerate directories and subdirectories on the disk.

• Path: This provides utilities to deal with absolute and relative paths of files and
directories on the disk. A relative path is always related to some path inside the
current directory where the application is being executed, and an absolute path
refers to an absolute location inside the hard drive.

• DriveInfo: This provides information about a disk drive, such as Name,
DriveType, VolumeLabel, and DriveFormat.

You already know that files are mostly some sets of data located somewhere in a
hard drive that can be opened for reading or writing by some program. When you
open a file in a C# application, your program reads the file as a sequence of bytes
through a communication channel. This communication channel is called a stream.
Streams can be of two types:

• The input streams are used for reading operations.

• The output streams are used for writing operations.

The Stream class is an abstract class in C# that enables common operations
regarding this byte flow. For file handling on a hard disk, you will use the
FileStream class, designed specifically for this purpose. The following are
two important properties of this class: FileAccess and FileMode.

48 | Hello C#

FileAccess

This is an enum that provides you with options to choose a level of access when
opening a specified file:

• Read: This opens a file in read-only mode.

• ReadWrite: This opens a file in read and write mode.

• Write: This opens a file in write-only mode. This is rarely used, as you usually
do some reading along with the writing.

FileMode

This is an enum that specifies the operations that can be performed on a file. It
should be used along with the access mode as some modes only work with some
levels of access. Take a look at the options, as follows:

• Append: Use this when you want to add content at the end of the file. If the
file does not exist, a new one will be created. For this operation, the file must
have write permission; otherwise, any attempt to read fails and throws a
NotSupportedException exception. Exceptions are an important concept
that will be covered later in this chapter.

• Create: Use this to create a new file or overwrite an existing one. For this
option, too, write permission is required. In Windows, if the file exists but is
hidden, an UnauthorizedAccessException exception is thrown.

• CreateNew: This is like Create but is used to create new files and also
requires write permission. However, if the file already exists, an IOException
exception is thrown.

• Open: As the name suggests, this mode is used to open a file. The file
must have read or read and write permissions. If the file does not exist, a
FileNotFoundException exception is thrown.

• OpenOrCreate: This is like Open, except it creates a new file if it does not
already exist.

Logical Operators and Boolean Expressions | 49

Exercise 1.11: Reading Content from Text Files

In this exercise, you will read text from a Comma-Separated Values (CSV) file. CSV
files simply contain data represented by strings and separated either by colons
or semicolons.

Perform the following steps to complete this exercise:

1. Open Command Prompt and type the following:

dotnet new console -n Exercise1_11

2. At the Exercise1_11 project folder location in your computer, create a file
named products.csv and paste the following content inside it:

Model;Memory;Storage;USB Ports;Screen;Condition;Price USD

Macbook Pro Mid 2012;8GB;500GB HDD;USB 2.0x2;13"
screen;Refurbished;400
Macbook Pro Mid 2014;8GB;512GB SSD;USB 3.0x3;15"
screen;Refurbished;750
Macbook Pro Late 2019;16GB;512GB SSD;USB 3.0x3;15"
screen;Refurbished;1250

3. Open the Program.cs file and replace its contents with the following:

using System;

using System.IO;

using System.Threading.Tasks;

namespace Exercise1_11

{

 public class Program

 {

 public static async Task Main()

 {

 using (var fileStream = new FileStream("products.csv",
FileMode.Open, FileAccess.Read))
 {

 using (var reader = new StreamReader(fileStream))

 {

 var content = await reader.ReadToEndAsync();

 var lines = content.Split(Environment.NewLine);

 foreach (var line in lines)

50 | Hello C#

 {

 Console.WriteLine(line);

 }

 }

 }

 }

 }

}

4. Call dotnet run in Command Prompt and you will get an output that is the
same as the contents of the CSV file you have created.

Note

You can find the code used for this exercise at https://packt.link/5flid.

This exercise has some pretty interesting outcomes, which you are going to learn
step by step. First, you opened a file using the FileStream class. This allows you to
start streaming bytes from a file with two special properties, namely, FileMode and
FileAccess. It will return a stream of bytes with the file contents. However, to read
this content as text, you need to use the StreamReader class. This class enables
you to read these bytes as text characters.

Notice also that your Main method changed from void to async Task. Additionally,
the await keyword has been used, which is used for asynchronous operations. You
will learn more about these topics in upcoming chapters. For now, you only need
to know that an async operation is something that does not block the program
execution. This means that you can output lines as they are being read; that is, you do
not have to wait for all of them to be read.

In the next section, learn about the special keyword that handles files, databases, and
network connections.

Disposable Objects

Another special thing about the preceding exercise was the using keyword. It is a
keyword used to clean up unmanaged resources from memory. These resources
are special objects that handle some operational system resources, such as files,
databases, and network connections. They are called special because they do what
is called I/O operations; that is, they interact with the real resources of the machine,
such as network and hard drives, not just with memory spaces.

https://packt.link/5flid

Logical Operators and Boolean Expressions | 51

The memory used by objects in C# is handled by something called the garbage
collector. By default, C# handles the memory space in the stack and the
heap. The only types of objects that do not perform this cleanup are called
unmanaged objects.

Cleaning these objects from memory means that the resources will be free to be used
by another process in the computer. That means a file can be handled by another
one, a database connection is free to be used again by a connection pool, and so on.
Those types of resources are called disposable resources. Every time you deal with a
disposable resource, you can use the using keyword when creating an object. Then,
the compiler knows that when the using statement closes, it can automatically free
these resources.

Exercise 1.12: Writing to a Text File

In this exercise, you will write some text into a CSV file, again using the
FileStream class.

Follow these steps to complete this exercise:

1. Open the VS Code integrated terminal and type the following:

dotnet new console -n Exercise1_12

2. At a preferred location on your computer, copy the products.csv file from
the previous exercise and paste it into this exercise's folder.

3. In Program.cs, create a method named ReadFile that will receive
a FileStream file and iterate over the file lines to output the result to
the console:

static async Task ReadFile(FileStream fileStream)

 {

 using (var reader = new StreamReader(fileStream))

 {

 var content = await reader.ReadToEndAsync();

 var lines = content.Split(Environment.NewLine);

 foreach (var line in lines)

 {

 Console.WriteLine(line);

52 | Hello C#

 }

 }

 }

4. Now, in your program, open the products.csv file with StreamWriter and
add some more information to it, as follows:

 using (var file = new StreamWriter("products.
csv", append: true))
 {

 file.Write("\nOne more macbook without details.");

 }

5. Finally, read the contents of the file after modification:

using (var fileStream = new FileStream("products.csv", FileMode.Open,

 FileAccess.Read))

 {

 await ReadFile(fileStream);

 }

6. Call dotnet run --project Exercise1_12 in the VS Code integrated
terminal and you will be able to see the contents of the CSV file you just created,
in addition to the line you just appended:

Model;Memory;Storage;USB Ports;Screen;Condition;Price USD

Macbook Pro Mid 2012;8GB;500GB HDD;USB 2.0x2;13"
screen;Refurbished;400
Macbook Pro Mid 2014;8GB;512GB SSD;USB 3.0x3;15"
screen;Refurbished;750
Macbook Pro Late 2019;16GB;512GB SSD;USB 3.0x3;15"
screen;Refurbished;1250
One more macbook without details.

Note that for each run, the program will append a new line, so you will see more
lines being added.

Note

You can find the code used for this exercise at https://packt.link/dUk2z.

Sometimes your program will fail to execute at some point and may not provide an
output. Such an instance is called an exception error. The next section details all
about such an error.

https://packt.link/dUk2z

Logical Operators and Boolean Expressions | 53

Exceptions

Exceptions indicate that a program has failed to execute at some point for some
reason and can be raised by either the code itself or the .NET runtime. Usually, an
exception is a severe failure and can even terminate your program's execution.
Fortunately, C# provides a special way of handling exceptions, which is try/
catch blocks:

try

{

// some logic that might throw an exception

}

catch

{

// error handling

}

Inside the try clause, you call the code that might throw an exception, and inside the
catch clause, you can treat the exception that was raised. For instance, consider the
following example:

double Divide(int a, int b) => a/b;

This method takes two integers and returns the result of a division between them.
However, what will happen if b is 0? In such a case, the runtime will throw System.
DivideByZeroException, indicating that it is not possible to execute the division.
How could you handle this exception in a real-world program? You will explore this in
the next exercise.

Exercise 1.13: Handling Invalid User Inputs with try/catch

In this exercise, you will create a console app that takes two inputs from you, divides
the first number by the second one, and outputs the result. If you enter an invalid
character, the app should throw an exception, and all of this should be handled inside
the program logic.

Perform the following steps to complete this exercise:

1. Inside the VS Code integrated terminal, create a new console app called
Exercise1_13.

54 | Hello C#

2. Create the following method inside the Program.cs file:

static double Divide(int a, int b)

{

 return a / b;

}

3. Now, create a Boolean variable to indicate whether the division was properly
executed. Assign false to it as its initial value:

bool divisionExecuted = false;

4. Write a while loop that will check whether the division happened successfully.
If it did, the program should terminate. If not, the program should prompt you
to input valid data and perform the division again. Add the following code to
do this:

while (!divisionExecuted)

{

 try

 {

 Console.WriteLine("Please input a number");

 var a = int.Parse(Console.ReadLine());

 Console.WriteLine("Please input another number");

 var b = int.Parse(Console.ReadLine());

 var result = Divide(a, b);

 Console.WriteLine($"Result: {result}");

 divisionExecuted = true;

 }

 catch (System.FormatException)

 {

 Console.WriteLine("You did not input a number. Let's start
again ... \n");
 continue;

 }

 catch (System.DivideByZeroException)

 {

Logical Operators and Boolean Expressions | 55

 Console.WriteLine("Tried to divide by zero. Let's start again
... \n");
 continue;

 }

}

5. Finally, execute the program using the dotnet run command and interact
with the console. Try to insert strings instead of numbers and see what output
you get. Look at the following output as an example:

Please input a number

5

Please input another number

0

Tried to divide by zero. Let's start again …

Please input a number

5

Please input another number

s

You did not input a number. Let's start again …

Please input a number

5

Please input another number

1

Result: 5

Note

You can find the code used for this exercise at https://packt.link/EVsrJ.

In this exercise, you handled two types of exceptions that are as follows:

• The int.Parse(string str) method throws System.
FormatException if it is not possible to convert the string
variable into an integer.

• The double Divide(int a, int b) method throws System.
DivideByZeroException if b is 0.

https://packt.link/EVsrJ

56 | Hello C#

Now that you have seen how exceptions are handled, it is important to note a rule of
thumb that will help you in your C# journey, which is that you should only catch what
you can or what you need to handle. There are only a few situations where exception
handling is really needed, as follows:

• When you want to mask an exception, that is, catch it and pretend that nothing
happened. This is known as exception suppression. That should take place
when the exception that is thrown does not impact the flow of your program.

• When you want to control your program's execution flow to perform some
alternate actions, as you did in the preceding exercise

• When you want to catch a type of exception to throw it as another type.
For instance, when communicating with your web API, you might see an
exception of type HttpException that indicates that the destination
is unreachable. You could make use of a custom exception here, such as
IntegrationException, to indicate more clearly that it happened in a
part of your application that performs some integrations with external APIs.

The throw keyword can also be used to intentionally stop the program execution
flow in certain cases. For example, consider that you are creating a Person object
and that the Name property should not be null at the time of creation. You can
enforce on this class a contract that says: if these parameters are not correctly
provided, it cannot be used. Typically, you would do so by throwing System.
ArgumentException or System.ArgumentNullException, as in the
following snippet, which uses ArgumentNullException to do so:

class Person

{

Person(string name)

 {

if (string.
IsNullOrWhiteSpace(name)) throw new ArgumentNullException(nameof(name));

Name = name;

 }

 String Name { get ; set; }

}

Logical Operators and Boolean Expressions | 57

Here, if the value of the name argument is null or if you only enter space
characters, ArgumentNullException is thrown, and the program does not
execute successfully. The null/white space condition is checked with the help of the
IsNullOrWhiteSpace function, which can be used for string variables.

Now it's time to practice all that you learned in the previous sections through
an activity.

Activity 1.01: Creating a Guessing Game

To complete this activity, you need to create a guessing game using the concepts you
have learned about and practiced so far in this chapter. In this game, first, a random
number from one to 10 must be generated, not to be output to the console. The
console should then prompt the user to input a number and then guess which
random number has been generated, and the user should get a maximum of
five chances.

Upon every incorrect input, a warning message should be displayed, letting the user
know how many chances they have left, and if all five chances are exhausted with
incorrect guesses, the program terminates. However, once the user guesses correctly,
a success message should be displayed, before the program terminates.

The following steps will help you complete this activity:

1. Create a variable called numberToBeGuessed that is assigned to a random
number within C#. You can use the following snippet to do so:

new Random().Next(0, 10)

This generates a random number for you, between 0 and 10. You could replace
10 with a higher number if you wanted to make the game a little more difficult,
or with a smaller number to make it easier, but for this activity, you will use 10
as the maximum value.

2. Create a variable called remainingChances that will store the remaining
number of chances that the user has.

3. Create a numberFound variable and assign a false value to it.

58 | Hello C#

4. Now, create a while loop that will execute while there are still some chances
remaining. Within this loop, add code to output the number of chances
remaining, until the correct guess is made. Then, create a variable called
number that will receive the parsed integer for the user input. Finally, write
code to check whether the number variable is the correct guess, and assign the
value true to the numberFound variable if so. If not, the number of remaining
chances should be reduced by 1.

5. Finally, add code to inform users whether they have guessed the number
correctly. You can output something such as Congrats! You've guessed
the number with {remainingChanges} chances left! if they
guessed correctly. If they ran out of chances, output You're out of
chances. The number was {numberToBeGuessed}..

Note

The solution to this activity can be found at https://packt.link/qclbF.

Summary
This chapter gave you an overview of the fundamentals of C# and what it looks like to
write programs with it. You explored everything from the variable declaration, data
types, and basic arithmetic and logical operators to file and exception handling. You
also explored how C# allocates memory while dealing with value and reference types.

In the exercises and activities in this chapter, you were able to solve some real-world
problems and think of solutions that can be implemented with this language and
its resources. You learned how to prompt for user inputs in console apps, how to
handle files within a system, and finally, how to deal with unexpected inputs through
exception handling.

The next chapter will cover the essentials of Object-oriented programming,
diving deeper into the concept of classes and objects. You will also learn about
the importance of writing clean, concise code that is easy to maintain, and the
principles you can follow for writing such code.

https://packt.link/qclbF

Overview

In this chapter, you will learn how to simplify complex logic using Object-
Oriented Programming (OOP). You will start by creating classes and
objects, before exploring the four pillars of OOP. You will then learn about
some of the best practices in coding, known as the SOLID principles, and
see how you can use C# 10 features to write effective code guided by these
principles. By the end of this chapter, you will be able to write clean code
using object-oriented design with C#.

Building Quality Object-

Oriented Code

2

62 | Building Quality Object-Oriented Code

Introduction
How do people write software that is still maintainable even after many decades?
What is the best way to model software around real-world concepts? The answer
to both questions is Object Oriented Programming (OOP). OOP is a widely used
paradigm in professional programming and is especially useful in enterprise settings.

OOP can be thought of as a bridge that connects real-world concepts and source
code. A cat, for example, has certain defining properties, such as age, fur color, eye
color, and name. The weather can be described using factors such as temperature
and humidity. Both of these are real-world concepts that humans have identified and
defined over time. In OOP, classes are what help in defining the logic of a program.
When assigning concrete values to the properties of these classes, the result is an
object. For example, using OOP, you can define a class for representing a room in a
house, and then assign values to its properties (color and area) to create an object of
that class.

In Chapter 1, Hello C#, you learned how to use C# to write basic programs. In this
chapter, you will see how you can design your code by implementing OOP concepts
and using C# at its best.

Classes and Objects
A class is like a blueprint that describes a concept. An object, on the other hand,
is the result you get after the application of this blueprint. For example, weather
can be a class, and 25 degrees and cloudless could refer to an object of this
class. Similarly, you can have a class named Dog, while a four-year-old Spaniel can
represent an object of the Dog class.

Declaring a class in C# is simple. It starts with the class keyword, followed by the
class name and a pair of curly braces. To define a class named Dog, you can write the
following code:

class Dog

{

}

Right now, this class is just an empty skeleton. However, it can still be used to create
objects by using the new keyword, as follows:

Dog dog = new Dog();

Constructors | 63

This creates an object named dog. Currently, the object is an empty shell, as it lacks
properties. You will see in an upcoming section how to define properties for classes,
but first, you will explore constructors.

Constructors
In C#, constructors are functions used to create new objects. You can also use
them to set the initial values of an object. Like any function, a constructor has a name,
takes arguments, and can be overloaded. A class must have at least one constructor,
but if needed, it can have multiple constructors with different arguments. Even
if you do not explicitly define a single constructor, a class will still have a default
constructor–one that does not take any arguments or perform any actions but
simply assigns memory to the newly created object and its fields.

Consider the following snippet, where a constructor for the Dog class is
being declared:

// Within a class named Dog

public class Dog

{

 // Constructor

 public Dog()

 {

 Console.WriteLine("A Dog object has been created");

 }

}

Note

You can find the code used for this example at https://packt.link/H2lUF.
You can find the usage of the code at https://packt.link/4WoSX.

If a method has the same name as the class and does not provide a return type, it
is a constructor. Here, the snippet of the code is within a class named Dog. So, the
constructor is within the specified line of code. Note that by defining this constructor
explicitly, you hide the default constructor. If there is one or more such custom
constructors, you will no longer be able to use a default constructor. Once the new
constructor is called, you should see this message printed in the console: "A Dog
object has been created".

https://packt.link/H2lUF
https://packt.link/4WoSX

64 | Building Quality Object-Oriented Code

Fields and Class Members

You already know what a variable is: it has a type, a name, and a value, as you saw
in Chapter 1, Hello C#. Variables can also exist in the class scope, and such a variable
is called a field. Declaring a field is as simple as declaring a local variable. The only
difference is the addition of a keyword at the start, which is the access modifier. For
example, you can declare a field within the Dog class with the public access modifier,
as follows:

public string Name = "unnamed";

This line of code states that the Name field, which is a string with the value
"unnamed", can be accessed publicly. Besides public, the other two main access
modifiers in C# are private and protected, which you will look at them in
detail later.

Note

You can find more information regarding access modifiers at https://docs.
microsoft.com/en-us/dotnet/csharp/language-reference/keywords/access-
modifiers.

Everything a class holds is called a class member. Class members can be accessed
from outside of a class; however, such access needs to be granted explicitly using the
public access modifier. By default, all members have a private access modifier.

You can access class members by writing the object name followed by a dot (.) and
the member name. For example, consider the following snippet in which two objects
of the Dog class are being created:

Dog sparky = new Dog();

Dog ricky = new Dog();

Here, you can declare two independent variables, sparky and ricky. However, you
haven't explicitly assigned these names to the objects; note that these are only the
variable names. To assign the names to the objects, you can write the following code
using dot notation:

sparky.Name = "Sparky";

ricky.Name = "Ricky";

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/access-modifiers.
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/access-modifiers.
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/access-modifiers.

Constructors | 65

You can now have hands-on experience of creating classes and objects through
an exercise.

Exercise 2.01: Creating Classes and Objects

Consider that there are two books, both by an author named New Writer. The
first one, called First Book, was published by Publisher 1. There is no
description available for this book. Similarly, the second one is named Second
Book and was published by Publisher 2. It has a description that simply says,
"Interesting read".

In this exercise, you will model these books in code. The following steps will help you
complete this exercise.

1. Create a class called Book. Add fields for Title, Author, Publisher,
Description, and the number of pages. You must print this information
from outside the class, so make sure every field is public:

 public class Book

 {

 public string Title;

 public string Author;

 public string Publisher;

 public int Pages;

 public string Description;

 }

2. Create a class named Solution, with the Main method. As you saw in
Chapter 1, Hello C#, this class with the Main method is the starting point of
your application:

 public static class Solution

 {

 public static void Main()

 {

 }

 }

66 | Building Quality Object-Oriented Code

3. Inside the Main method, create an object for the first book and set the values
for the fields, as follows:

Book book1 = new Book();

book1.Author = "New Writer";

book1.Title = "First Book";

book1.Publisher = "Publisher 1";

Here, a new object named book1 is created. Values are assigned to different
fields by writing dot (.) followed by the field name. The first book does not have
a description, so you can omit the field book1.Description.

4. Repeat this step for the second book. For this book, you need to set a value for
the Description field as well:

Book book2 = new Book();

book2.Author = "New Writer";

book2.Title = "Second Book";

book2.Publisher = "Publisher 2";

book2.Description = "Interesting read";

In practice, you will rarely see fields with public access modifiers. Data mutates
easily, and you might not want to leave your program open to external changes
after initialization.

5. Inside the Solution class, create a method named Print, which takes a
Book object as an argument and prints all fields and their values. Use string
interpolation to concatenate book information and print it to the console using
Console.WriteLine(), as follows:

private static void Print(Book book)

{

 Console.WriteLine($"Author: {book.Author}, " +

 $"Title: {book.Title}, " +

 $"Publisher: {book.Publisher}, " +

 $"Description: {book.Description}.");

}

Reference Types | 67

6. Inside the Main method, call the Print method for book1 and book2:

Print(book1);

Print(book2);

Upon running this code, you will see the following output on the console:

Author: New Writer, Title: First Book, Publisher: Publisher 1,
Description: .
Author: New Writer, Title: Second Book, Publisher: Publisher 2,
Description: Interesting read.

Note

You can find the code used for this exercise at https://packt.link/MGT9b.

In this exercise, you saw how to use fields and class members are used in simple
programs. Now proceed to know about reference types.

Reference Types
Suppose you have an object and the object is not created, just declared, as follows:

Dog speedy;

What would happen if you tried accessing its Name value? Calling speedy.Name
would throw a NullReferenceException exception because speedy is yet to be
initialized. Objects are reference types, and their default value is null until initialized.
You have already worked with value types, such as int, float, and decimal.
Now you need to grasp that there are two major differences between value and
reference types.

Firstly, value types allocate memory on the stack, whereas reference types allocate
memory on the heap. The stack is a temporary place in memory. As the name
implies, in a stack, blocks of memory are stacked on top of each other. When you call
a function, all local function variables will end up on a single block of the stack. If you
call a nested function, the local variables of that function will be allocated on another
block of the stack.

https://packt.link/MGT9b

68 | Building Quality Object-Oriented Code

In the following figure, you can see which parts of code will allocate memory in the
stack during execution, and which will do so in the heap. Method calls (1, 8, 10) and
local variables (2, 4) will be stored in the stack. Objects (3, 5) and their members (6)
will be stored on the heap. Stacks use the Push method to allocate data, and Pop
to deallocate it. When memory is allocated, it comes on top of the stack. When it is
deallocated, it is removed from the top as well. You deallocate memory from the
stack as soon as you leave the scope of a method (8, 10, 11). Heap is much more
random, and Garbage Collector (GC) automatically (unlike some other languages,
where you need to do it yourself), deallocates memory.

Note

GC is a massive topic in itself. If you want to find out more, please refer
to the official Microsoft documentation at https://docs.microsoft.com/en-us/
dotnet/standard/garbage-collection/fundamentals.

Figure 2.1: Stack and heap comparison

https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals

Reference Types | 69

Note

If you make too many nested calls, you will run into a
StackoverflowException exception because the stack ran out of
memory. Freeing up memory on the stack is just a matter of exiting from
a function.

The second difference is that, when value types are passed to a method, their value
is copied, while for reference types, only the reference is copied. This means that
the reference type object's state is modifiable inside a method, unlike a value type,
because a reference is simply the address of an object.

Consider the following snippet. Here, a function named SetTo5 sets the value of the
number to 5:

private static void SetTo5(int number)

{

 number = 5;

}

Now, consider the following code:

int a = 2;

// a is 2

Console.WriteLine(a);

SetTo5(a);

// a is still 2

Console.WriteLine(a);

This should result in the following output:

2

2

If you run this code, you find that the printed value of a is still 2 and not 5. This is
because a is a value type that passed the value 2, and therefore its value is copied.
Inside a function, you never work with the original; a copy is always made.

70 | Building Quality Object-Oriented Code

What about reference types? Suppose you add a field named Owner inside the
Dog class:

public class Dog

{ public string Owner;

}

Create a function, ResetOwner, that sets the value of the Owner field for an object
to None:

private static void ResetOwner(Dog dog)

{

 dog.Owner = "None";

}

Now, suppose the following code is executed:

Dog dog = new Dog("speedy");

Console.WriteLine(dog.Owner);

ResetOwner(dog);

// Owner is "None"- changes remain

Console.WriteLine(dog.Owner);

This should result in the following output:

speedy

None

Note

You can find the code used for this example at https://packt.link/gj164.

If you try running this snippet of code yourself, you will first see the name speedy
on one line and then None printed on another. This would change the dog's name,
and the changes would remain outside the function. This is because Dog is a class,
and a class is a reference type. When passed to a function, a copy of a reference is
made. However, a copy of a reference points to the whole object, and therefore the
changes that are made remain outside as well.

https://packt.link/gj164

Reference Types | 71

It might be confusing to hear that you pass a copy of a reference. How can you be
sure you are working with a copy? To learn this, consider the following function:

private static void Recreate(Dog dog)

{

 dog = new Dog("Recreated");

}

Here, creating a new object creates a new reference. If you change the value of a
reference type, you are working with a completely different object. It may be one that
looks the same but is stored in a completely different place in memory. Creating an
object for a passed parameter will not affect anything outside the object. Though this
may sound potentially useful, you should generally avoid doing this as it can make
code difficult to comprehend.

Properties

The Dog class has one flaw. Logically, you wouldn't want the name of a dog to be
changed once it is assigned. However, as of now, there is nothing that prevents
changing it. Think about the object from the perspective of what you can do with it.
You can set the name of a dog (sparky.Name = "Sparky") or you can get it by
calling sparky.Name. However, what you want is a read-only name that can be set
just once.

Most languages take care of this through setter and getter methods. If you add
the public modifier to a field, this means that it can be both retrieved (read) and
modified (written). It isn't possible to allow just one of these actions. However, with
setters and getters, you can restrict both read and write access. In OOP, restricting
what can be done with an object is key to ensuring data integrity. In C#, instead of
setter and getter methods, you can use properties.

In OOP languages (for example Java), to set or get the values of a name, you would
write something like this:

public string GetName()

{

 return Name;

}

public string SetName (string name)

{

 Name = name;

}

72 | Building Quality Object-Oriented Code

In C#, it is as simple as the following:

public string Name {get; set;}

This is a property, which is nothing but a method that reads like a field. There are
two types of properties: getters and setters. You can perform both read and write
operations with them. From the preceding code, if you remove get, it will become
write-only, and if you remove set, it will become read-only.

Internally, the property includes a setter and a getter method with a backing field.
A backing field is simply a private field that stores a value, and getter and setter
methods work with that value. You can write custom getters and setters as well,
as follows:

private string _owner;

public string Owner

{

 get

 {

 return _owner;

 }

 set

 {

 _owner = value;

 }

}

In the preceding snippet, the Owner property shows what the default getter and
setter methods would look like for the Dog class.

Just like other members, individual parts of a property (either getter or setter) can
have their own access modifier, like the following:

public string Name {get; private set;}

In this case, the getter is public, and the setter is private. All parts of the
property (getter, setter, or both, as defined) take the access modifier from the
property (Name, in this case) unless explicitly specified otherwise (as in the case of
private set). If you do not need to set a name, you can get rid of the setter. If you
need a default value, you can write the code for this as follows:

public string Name {get;} = "unnamed";

Reference Types | 73

This piece of code means that the Name field is read-only. You can set the name only
through a constructor. Note that this is not the same as a private set because the
latter means you can still change the name within the Dog class itself. If no setter is
provided (as is the case here), you can set the value in only one place, the constructor.

What happens internally when you create a read-only property? The following code is
generated by the compiler:

private readonly string _name;

public string get_Name()

{

 return _name;

}

This shows that getter and setter properties are simply methods with a backing field.
It is important to note that, if you have a property called Name, the set_Name()
and get_Name() methods will be reserved because that's what the compiler
generates internally.

You may have noticed a new keyword in the previous snippet, readonly. It signifies
that the value of a field can only be initialized once—either during declaration or in
a constructor.

Returning a backing field with a property may seem redundant sometimes. For
example, consider the next snippet:

private string _name;

public string Name

{

 get

 {

 return "Dog's name is " + _name;

 }

}

This code snippet is a custom property. When a getter or a setter is more than
just a basic return, you can write the property in this way to add custom logic to
it. This property, without affecting the original name of a dog, will prepend Dog's
name is before returning the name. You can make this more concise using
expression-bodied property syntax, as follows:

public string Name => "Dog's name is " + _name;

74 | Building Quality Object-Oriented Code

This code does the same thing as the previous code; the => operator indicates that
it is a read-only property, and you return a value that is specified on the right side of
the => operator.

How do you set the initial value if there is no setter? The answer to that is a
constructor. In OOP, a constructor serves one purpose—that is, setting the initial
values of fields. Using a constructor is great for preventing the creation of objects in
an invalid state.

To add some validation to the Dog class, you can write the following code:

public Dog(string name)

{

 if(string.IsNullOrWhitespace(name))

 {

 throw new ArgumentNullException("name")

 }

 Name = name;

}

The code you have just written will prevent an empty name from being passed when
creating a Dog instance.

It is worth mentioning that within a class, you have access to the object itself that will
be created. It might sound confusing, but it should make sense with this example:

private readonly string name;

public Dog(string name)

{

 this.name = name;

}

The this keyword is most often used to clear the distinction between class members
and arguments. this refers to the object that has just been created, hence, this.
name refers to the name of that object and name refers to the passed parameter.

Creating an object of the Dog class, and setting the initial value of a name, can now
be simplified as follows:

Dog ricky = new Dog("Ricky");

Dog sparky = new Dog("Sparky");

Reference Types | 75

You still have a private setter, meaning the property that you have is not entirely
read-only. You can still change the value of a name within the class itself. However,
fixing that is quite easy; you can simply remove the setter and it will become truly
read-only.

Note

You can find the code used for this example at http://packt.link/hjHRV.

Object Initialization

Often, a class has read and write properties. Usually, instead of setting the property
values via a constructor, they are assigned after the creation of an object. However, in
C# there is a better way—object initialization. This is where you create a new object
and set the mutable (read and write) field values right away. If you had to create a
new object of the Dog class and set the value of Owner for this object to Tobias,
you could add the following code:

Dog dog = new Dog("Ricky");

dog.Owner = "Tobias";

This can be done using object initialization as follows:

Dog dog = new Dog("Ricky")

{

 Owner = "Tobias"

};

Setting initial properties like this when they are not a part of a constructor is generally
more concise. The same applies to arrays and other collection types. Suppose you
had two objects of the Dog class, as follows:

Dog ricky = new Dog("Ricky");

Dog sparky = new Dog("Sparky");

In such a case, one way of creating an array would be as follows:

Dog[] dogs = new Dog[2];

dogs[0] = ricky;

dogs[1] = sparky;

http://packt.link/hjHRV

76 | Building Quality Object-Oriented Code

However, instead of this, you can just add the following code, which is more concise:

Dog[] dogs = {ricky, sparky};

In C# 10, you can simplify object initialization without providing the type, if it can be
inferred from the declaration, as in the following code:

Dog dog = new("Dog");

Comparing Functions and Methods

Up until now, you might have seen the terms—function and method—used quite
often, almost interchangeably. Now proceed to gain further insight into functions and
methods. A function is a block of code that you can call using its name and some
input. A method is a function that exists within a class.

However, in C#, you cannot have functions outside of a class. Therefore, in C#, every
function is a method. Many languages, especially non-OOP languages, have only
some functions that can be called methods (for example, JavaScript).

The behavior of a class is defined using methods. You have already defined some
behavior for the Dog class, that is, getting its name. To finish implementing the
behaviors for this class, you can implement some real-world parallels, such as sitting
and barking. Both methods will be called from the outside:

public void Sit()

{

 // Implementation of how a dog sits

}

public void Bark()

{

 // Implementation of how a dog barks

}

You can call both methods like this:

Ricky.Sit();

Sparky.Bark();

In most cases, it is preferable to avoid exposing data publicly, so you should only ever
expose functions publicly. Here, you might be wondering, What about properties?
Properties are just getter and setter functions; they work with data but aren't data
themselves. You should avoid exposing data publicly directly, for the same reason
you lock your doors, or carry your phone in a case. If data were public, everyone
could access it without any restrictions.

Reference Types | 77

Also, data should not change when the program requires it to be constant. A method
is a mechanism that ensures that an object is not used in invalid ways, and if it is, it's
well handled.

What if you need to validate the fields consistently throughout the application?
Again, properties, that is, getter and setter methods, can help with this. You can limit
what you can do with data and add validation logic to it. Properties help you be in
full control of how you can get and set data. Properties are handy, but it's important
to use them with discretion. If you want to do something complex, something that
needs extra computing, it is preferable to use a method.

For example, imagine that you have a class for an inventory made up of items,
each having some weight. Here, it might make sense to have a property to return
the heaviest item. If you chose to do so through a property (call it MaxWeight),
you might get unexpected results; getting the heaviest item would require iterating
through a collection of all items and finding the maximum by weight. This process
is not as fast as you would expect. In fact, in some cases, it might even throw an
error. Properties should have simple logic, otherwise working with them might
yield unexpected results. Therefore, when the need for compute-heavy properties
arises, consider refactoring them to a method. In this case, you would refactor the
MaxWeight property into the GetMaxWeight method.

Properties should be avoided for returning results of complex calculations, as calling
a property could be expensive. Getting or setting the value of a field should be
straightforward. If it becomes expensive, it should no longer be treated as property.

An Effective Class

The Dog class models a dog object; therefore, it can be called a model. Some
developers prefer to have a strict separation between data and logic. Others try to
put as much logic in a model as possible, so long as it is self-contained. There is no
right or wrong way here. It all depends on the context you are working with.

Note

This discussion is outside the scope of this chapter, but if you would like to
know more, you can refer to the discussion on Domain-Driven Design
(DDD) at https://martinfowler.com/bliki/DomainDrivenDesign.html.

https://martinfowler.com/bliki/DomainDrivenDesign.html

78 | Building Quality Object-Oriented Code

It is hard to pinpoint what an effective class looks like. However, when deciding
whether a method fits better in class A or class B, try asking yourself these questions:

• Would someone, who is not a programmer, know that you are talking about the
class? Is it a logical representation of a real-world concept?

• How many reasons does the class have to change? Is it just one or are there
more reasons?

• Is private data tightly related to public behavior?

• How often does the class change?

• How easy is it to break the code?

• Does the class do something by itself?

High cohesion is a term used to describe a class that has all its members strongly
related, not only semantically, but logically as well. In contrast, a low cohesion class
has loosely related methods and fields that probably could have a better place. Such
a class is inefficient because it changes for multiple reasons and you cannot expect to
look for anything inside it, as it simply has no strong logical meaning.

For example, a part of a Computer class could look like this:

class Computer

{

 private readonly Key[] keys;

}

However, Computer and keys are not related at the same level. There could be
another class that better suits the Key class, that is Keyboard:

class Computer

{

 private readonly Keyboard keyboard;

}

class Keyboard

{

 private readonly Key[] keys;

}

Note

You can find the code used for this example at https://packt.link/FFcDa.

https://packt.link/FFcDa

Reference Types | 79

A keyboard is directly related to keys, just as it is directly related to a computer.
Here, both Keyboard and the Computer class have high cohesion because the
dependencies have a stable logical place. You can now learn more about it through
an exercise.

Exercise 2.02: Comparing the Area Occupied by Different Shapes

You have two sections of a backyard, one with circular tiles and the other with
rectangular tiles. You would like to deconstruct one section of the backyard, but you
are not sure which one it should be. Obviously, you want as little mess as possible
and have decided to pick the section that occupies the least area.

Given two arrays, one for different sized rectangular tiles and the other for different-
sized circular tiles, you need to find which section to deconstruct. This exercise
aims to output the name of the section occupying less area, that is, rectangular
or circular.

Perform the following steps to do so:

1. Create a Rectangle class as follows. It should have fields for width, height,
and area:

public class Rectangle

{

 private readonly double _width;

 private readonly double _height;

 public double Area

 {

 get

 {

 return _width * _height;

 }

 }

 public Rectangle(double width, double height)

 {

 _width = width;

 _height = height;

 }

}

80 | Building Quality Object-Oriented Code

Here, _width and _height have been made immutable, using the readonly
keyword. The type chosen is double because you will be performing math
operations. The only property that is exposed publicly is Area. It will return
a simple calculation: the product of width and height. The Rectangle is
immutable, so all it needs is to be passed once through a constructor and it
remains constant thereafter.

2. Similarly, create a Circle class as follows:

public class Circle

{

 private readonly double _radius;

 public Circle(double radius)

 {

 _radius = radius;

 }

 public double Area

 {

 get { return Math.PI * _radius * _radius; }

 }

}

The Circle class is similar to Rectangle class, except that instead of
width and height, it has radius, and the Area calculation uses a different
formula. The constant PI has been used, which can be accessed from the
Math namespace.

3. Create a Solution class with a skeleton method named Solve:

public static class Solution

{

 public const string Equal = "equal";

 public const string Rectangular = "rectangular";

 public const string Circular = "circular";

 public static string Solve(Rectangle[] rectangularSection,
Circle[] circularSection)
 {

Reference Types | 81

 var totalAreaOfRectangles =
CalculateTotalAreaOfRectangles(rectangularSection);
 var totalAreaOfCircles =
CalculateTotalAreaOfCircles(circularSection);

 return GetBigger(totalAreaOfRectangles, totalAreaOfCircles);

 }

}

Here, the Solution class demonstrates how the code works. For now, there
are three constants based on the requirements (which section is bigger?
rectangular or circular, or are they equal?). Also, the flow will be to calculate the
total area of rectangles, then of circles and finally return the bigger.

Before you can implement the solution, you must first create side methods for
calculating the total area of the rectangular section, calculating the total area
of the circular section, and comparing the two. You will do this over the next
few steps.

4. Inside Solution class, add a method to calculate the total area of the
rectangular section:

private static double CalculateTotalAreaOfRectangles(Rectangle[]
rectangularSection)
{

 double totalAreaOfRectangles = 0;

 foreach (var rectangle in rectangularSection)

 {

 totalAreaOfRectangles += rectangle.Area;

 }

 return totalAreaOfRectangles;

}

This method goes through all the rectangles, gets the area of each, and adds it to
the total sum.

5. Similarly, add a method to calculate the total area of the circular section:

private static double CalculateTotalAreaOfCircles(Circle[]
circularSection)
{

 double totalAreaOfCircles = 0;

 foreach (var circle in circularSection)

 {

82 | Building Quality Object-Oriented Code

 totalAreaOfCircles += circle.Area;

 }

 return totalAreaOfCircles;

}

6. Next, add a method to get the bigger area, as follows:

private static string GetBigger(double totalAreaOfRectangles, double
totalAreaOfCircles)
{

 const double margin = 0.01;

 bool areAlmostEqual = Math.Abs(totalAreaOfRectangles -
totalAreaOfCircles) <= margin;
 if (areAlmostEqual)

 {

 return Equal;

 }

 else if (totalAreaOfRectangles > totalAreaOfCircles)

 {

 return Rectangular;

 }

 else

 {

 return Circular;

 }

}

This snippet contains the most interesting part. In most languages, numbers
with a decimal point are not accurate. In fact, in most cases, if a and b are floats
or doubles, it is likely that they will never be equal. Therefore, when comparing
such numbers, you must consider precision.

In this code, you have defined the margin, to have an acceptable range of
accuracy of your comparison for when the numbers are considered equal (for
example, 0.001 and 0.0011 will be equal in this case since the margin is 0.01).
After this, you can do a regular comparison and return the value for whichever
section has the biggest area.

7. Now, create the Main method, as follows:

public static void Main()

{

 string compare1 = Solve(new Rectangle[0], new Circle[0]);

Reference Types | 83

 string compare2 = Solve(new[] { new Rectangle(1, 5)}, new
Circle[0]);
 string compare3 = Solve(new Rectangle[0], new[] { new Circle(1)
});
 string compare4 = Solve(new []

 {

 new Rectangle(5.0, 2.1),

 new Rectangle(3, 3),

 }, new[]

 {

 new Circle(1),

 new Circle(10),

 });

 Console.WriteLine($"compare1 is {compare1}, " +

 $"compare2 is {compare2}, " +

 $"compare3 is {compare3}, " +

 $"compare4 is {compare4}.");

}

Here, four sets of shapes are created for comparison. compare1 has two empty
sections, meaning they should be equal. compare2 has a rectangle and no
circles, so the rectangle is bigger. compare3 has a circle and no rectangle, so
the circles are bigger. Finally, compare4 has both rectangles and circles, but the
total area of the circles is bigger. You used string interpolation inside Console.
WriteLine to print the results.

8. Run the code. You should see the following being printed to the console:

compare1 is equal, compare2 is rectangular, compare3 is circular,
compare4 is circular.

Note

You can find the code used for this exercise at https://packt.link/tfDCw.

What if you did not have objects? What would the section be made of in that case? For
a circle, it might be viable to just pass radii, but for rectangles, you would need to pass
another collinear array with widths and heights.

Object-oriented code is great for grouping similar data and logic under one shell,
that is, a class, and passing those class objects around. In this way, you can simplify
complex logic through simple interaction with a class.

https://packt.link/tfDCw

84 | Building Quality Object-Oriented Code

You will now know about the four pillars of OOP.

The Four Pillars of OOP
Efficient code should be easy to grasp and maintain, and OOP strives to achieve such
simplicity. The entire concept of object-oriented design is based on four main tenets,
also known as the four pillars of OOP.

Encapsulation

The first pillar of OOP is encapsulation. It defines the relationship between data and
behavior, placed in the same shell, that is, a class. It refers to the need to expose only
what is necessary and hide everything else. When you think about encapsulation,
think about the importance of security for your code: what if you leak a password,
return confidential data, or make an API key public? Being reckless often leads to
damage that can be hard to fix.

Security is not just limited to protection from malicious intent, but also extends to
preventing manual errors. Humans tend to make mistakes. In fact, the more options
there are to choose from, the more mistakes they are likely to make. Encapsulation
helps in that regard because you can simply limit the number of options available to
the person who will use the code.

You should prevent all access by default, and only grant explicit access when
necessary. For example, consider a simplified LoginService class:

public class LoginService

{

 // Could be a dictionary, but we will use a simplified example.

 private string[] _usernames;

 private string[] _passwords;

 public bool Login(string username, string password)

 {

 // Do a password lookup based on username

 bool isLoggedIn = true;

 return isLoggedIn;

 }

}

The Four Pillars of OOP | 85

This class has two private fields: _usernames and _passwords. The key point to
note here is that neither passwords nor usernames are accessible to the public, but
you can still achieve the required functionality by exposing just enough logic publicly,
through the Login method.

Note

You can find this code used for this example at https://packt.link/6SO7a.

Inheritance

A police officer can arrest someone, a mailman delivers mail, and a teacher teaches
one or more subjects. Each of them performs widely different duties, but what do
they all have in common? In the context of the real world, they are all human. They
all have a name, age, height, and weight. If you were to model each, you would need
to make three classes. Each of those classes would look the same, other than one
unique method for each. How could you express in code that they are all human?

The key to solving this problem is inheritance. It allows you to take all the properties
from a parent class and transfer them to its child class. Inheritance also defines an
is-a relationship. A police officer, a mailman, and a teacher are all humans, and so
you can use inheritance. You will now write this down in code.

1. Create a Human class that has fields for name, age, weight, and height:

public class Human

{

 public string Name { get; }

 public int Age { get; }

 public float Weight { get; }

 public float Height { get; }

 public Human(string name, int age, float weight, float height)

 {

 Name = name;

 Age = age;

 Weight = weight;

 Height = height;

 }

}

https://packt.link/6SO7a

86 | Building Quality Object-Oriented Code

2. A mailman is a human. Therefore, the Mailman class should have all that a
Human class has, but on top of that, it should have the added functionality of
being able to deliver mail. Write the code for this as follows:

public class Mailman : Human

{

 public Mailman(string name, int age, float weight, float height) :
base(name, age, weight, height)
 {

 }

 public void DeliverMail(Mail mail)

 {

 // Delivering Mail...

 }

}

Now, look closely at the Mailman class. Writing class Mailman : Human
means that Mailman inherits from Human. This means that Mailman takes
all the properties and methods from Human. You can also see a new keyword,
base. This keyword is used to tell which parent constructor is going to be used
when creating Mailman; in this case, Human.

3. Next, create a class named Mail to represent the mail, containing a field for a
message being delivered to an address:

public class Mail

{

 public string Message { get; }

 public string Address { get; }

 public Mail(string message, string address)

 {

 Message = message;

 Address = address;

 }

}

Creating a Mailman object is no different than creating an object of a class that
does not use inheritance.

The Four Pillars of OOP | 87

4. Create mailman and mail variables and tell the mailman to deliver the mail
as follows:

var mailman = new Mailman("Thomas", 29, 78.5f, 190.11f);

var mail = new Mail("Hello", "Somewhere far far way");

mailman.DeliverMail(mail);

Note

You can find the code used for this example at https://packt.link/w1bbf.

In the preceding snippet, you created mailman and mail variables. Then, you told
the mailman to deliver the mail.

Generally, a base constructor must be provided when defining a child constructor.
The only exception to this rule is when the parent has a parameter-less constructor.
If a base constructor takes no arguments, then a child constructor using a base
constructor would be redundant and therefore can be ignored. For example, consider
the following snippet:

Public class A

{

}

Public class B : A

{

}

A has no custom constructors, so implementing B would not require a custom
constructor either.

In C#, only a single class can be inherited; however, you can have a multi-level
deep inheritance. For example, you could have a child class for Mailman named
RegionalMailman, which would be responsible for a single region. In this way,
you could go deeper and have another child class for RegionalMailman, called
RegionalBillingMailman, then EuropeanRegionalBillingMailman, and
so on.

https://packt.link/w1bbf

88 | Building Quality Object-Oriented Code

When using inheritance, it is important to know that even if everything is inherited,
not everything is visible. Just like before, public members only will be accessible
from a parent class. However, in C#, there is a special modifier, named protected,
that works like the private modifier. It allows child classes to access protected
members (just like public members) but prevents them from being accessed from
the outside of the class (just like private).

Decades ago, inheritance used to be the answer to many problems and the key to
code reuse. However, over time, it became apparent that using inheritance comes at
a price, which is coupling. When you apply inheritance, you couple a child class with
a parent. Deep inheritance stacks class scope all the way from parent to child. The
deeper the inheritance, the deeper the scope. Deep inheritance (two or more levels
deep) should be avoided for the same reason you avoid global variables—it is hard
to know what comes from where and hard to control the state changes. This, in turn,
makes the code difficult to maintain.

Nobody wants to write duplicate code, but what is the alternative? The answer to that
is composition. Just as a computer is composed of different parts, code should be
composed of different parts as well. For example, imagine you are developing a 2D
game and it has a Tile object. Some tiles contain a trap, and some tiles move. Using
inheritance, you could write the code like this:

class Tile

{

}

class MovingTile : Tile

{

 public void Move() {}

}

class TrapTile : Tile

{

 public void Damage() {}

}

//class MovingTrapTile : ?

This approach works fine until you face more complex requirements. What if there
are tiles that could both be a trap and move? Should you inherit from a moving
tile and rewrite the TrapTile functionality there? Could you inherit both? As you
have seen, you cannot inherit more than one class at a time, therefore, if you were
to implement this using inheritance, you would be forced to both complicate the
situation, and rewrite some code. Instead, you could think about what different tiles
contain. TrapTile has a trap. MovingTile has a motor.

The Four Pillars of OOP | 89

Both represent tiles, but the extra functionality they each have should come
from different components, and not child classes. If you wanted to make this a
composition-based approach, you would need to refactor quite a bit.

To solve this, keep the Tile class as-is:

class Tile

{

}

Now, add two components—Motor and Trap classes. Such components serve as logic
providers. For now, they do nothing:

class Motor

{

 public void Move() { }

}

class Trap

{

 public void Damage() { }

}

Note

You can find the code used for this example at https://packt.link/espfn.

Next, you define a MovingTile class that has a single component, _motor.
In composition, components rarely change dynamically. You should not expose class
internals, so apply private readonly modifiers. The component itself can have a
child class or change, and so should not be created from the constructor. Instead, it
should be passed as an argument (see the highlighted code):

class MovingTile : Tile

{

 private readonly Motor _motor;

 public MovingTile(Motor motor)

 {

 _motor = motor;

 }

https://packt.link/espfn

90 | Building Quality Object-Oriented Code

 public void Move()

 {

 _motor.Move();

 }

}

Note that the Move method now calls _motor.Move(). That is the essence of
composition; the class that holds composition often does nothing by itself. It just
delegates the calls of logic to its components. In fact, even though this is just an
example class, a real class for a game would look quite similar to this.

You will do the same for TrapTile, except that instead of Motor, it will contain a
Trap component:

class TrapTile : Tile

{

 private readonly Trap _trap;

 public TrapTile(Trap trap)

 {

 _trap = trap;

 }

 public void Damage()

 {

 _trap.Damage();

 }

}

Finally, it's time to create the MovingTrapTile class. It has two components that
provide logic to the Move and Damage methods. Again, the two methods are passed
as arguments to a constructor:

class MovingTrapTile : Tile

{

 private readonly Motor _motor;

 private readonly Trap _trap;

 public MovingTrapTile(Motor motor, Trap trap)

 {

 _motor = motor;

 _trap = trap;

 }

The Four Pillars of OOP | 91

 public void Move()

 {

 _motor.Move();

 }

 public void Damage()

 {

 _trap.Damage();

 }

}

Note

You can find the code used for this example at https://packt.link/SX4qG.

It might seem that this class repeats some code from the other class, but the
duplication is negligible, and the benefits are well worth it. After all, the biggest chunk
of logic comes from the components themselves, and a repeated field or a call is
not significant.

You may have noticed that you inherited Tile, despite not extracting it as a
component for other classes. This is because Tile is the essence of all the classes
that inherit it. No matter what type a tile is, it is still a tile. Inheritance is the second
pillar of OOP. It is powerful and useful. However, it can be hard to get inheritance
right, because in order to be maintainable, it truly needs to be very clear and logical.
When choosing whether you should use inheritance, consider these factors:

• Not deep (ideally single level).

• Logical (is-a relation, as you saw in your tiles example).

• Stable and extremely unlikely for the relationship between classes to change in
the future; not going to be modified often.

• Purely additive (child class should not use parent class members, except for
a constructor).

If any one of these rules is broken, it is recommended to use composition instead
of inheritance.

https://packt.link/SX4qG

92 | Building Quality Object-Oriented Code

Polymorphism

The third pillar of OOP is polymorphism. To grasp this pillar, it is useful to look at the
meaning of the word. Poly means many, and morph means form. So, polymorphism
is used to describe something that has many forms. Consider the example of a
mailman, Thomas. Thomas is both a human and a mailman. Mailman is the
specialized form and Human is the generalized form for Thomas. However, you
can interact with Thomas through either of the two forms.

If you do not know the jobs for every human, you can use an abstract class.

An abstract class is a synonym for an incomplete class. This means that it
cannot be initialized. It also means that some of its methods may not have an
implementation if you mark them with the abstract keyword. You can implement
this for the Human class as follows:

public abstract class Human

{

 public string Name { get; }

 protected Human(string name)

 {

 Name = name;

 }

 public abstract void Work();

}

You have created an abstract (incomplete) Human class here. The only difference
from earlier is that you have applied the abstract keyword to the class and added
a new abstract method, public abstract void Work(). You have also
changed the constructor to protected so that it is accessible only from a child class.
This is because it no longer makes sense to have it public if you cannot create an
abstract class; you cannot call a public constructor. Logically, this means that
the Human class, by itself, has no meaning, and it only gets meaning after you have
implemented the Work method elsewhere (that is, in a child class).

The Four Pillars of OOP | 93

Now, you will update the Mailman class. It does not change much; it just gets an
additional method, that is, Work(). To provide an implementation for abstract
methods, you must use the override keyword. In general, this keyword is used to
change the implementation of an existing method inside a child class. You will explore
this in detail later:

public override void Work()

{

 Console.WriteLine("A mailman is delivering mails.");

}

If you were to create a new object for this class and call the Work method, it would
print "A mailman is delivering mails." to the console. To get a full picture
of polymorphism, you will now create one more class, Teacher:

public class Teacher : Human

{

 public Teacher(string name, int age, float weight, float height) :
base(name, age, weight, height)
 {

 }

 public override void Work()

 {

 Console.WriteLine("A teacher is teaching.");

 }

}

This class is almost identical to Mailman; however, a different implementation for
the Work method is provided. Thus, you have two classes that do the same thing
in two different ways. The act of calling a method of the same name, but getting
different behavior, is called polymorphism.

You already know about method overloading (not to be confused with overriding),
which is when you have methods with the same names but different inputs. That is
called static polymorphism and it happens during compile time. The following is an
example of this:

public class Person

{

 public void Say()

 {

 Console.WriteLine("Hello");

94 | Building Quality Object-Oriented Code

 }

 public void Say(string words)

 {

 Console.WriteLine(words);

 }

}

The Person class has two methods with the same name, Say. One takes no
arguments and the other takes a string as an argument. Depending on the arguments
passed, different implementations of the method will be called. If nothing is passed,
"Hello" will be printed. Otherwise, the words you pass will be printed.

In the context of OOP, polymorphism is referred to as dynamic polymorphism,
which happens during runtime. For the rest of this chapter, polymorphism should be
interpreted as dynamic polymorphism.

What is the Benefit of Polymorphism?

A teacher is a human, and the way a teacher works is by teaching. This is not the
same as a mailman, but a teacher also has a name, age, weight, and height, like a
mailman. Polymorphism allows you to interact with both in the same way, regardless
of their specialized forms. The best way to illustrate this is to store both in an array of
humans values and make them work:

Mailman mailman = new Mailman("Thomas", 29, 78.5f, 190.11f);

Teacher teacher = new Teacher("Gareth", 35, 100.5f, 186.49f);

// Specialized types can be stored as their generalized forms.

Human[] humans = {mailman, teacher};

// Interacting with different human types

// as if they were the same type- polymorphism.

foreach (var human in humans)

{

 human.Work();

}

The Four Pillars of OOP | 95

This code results in the following being printed in the console:

A mailman is delivering mails.

A teacher is teaching.

Note

You can find the code used for this example at https://packt.link/ovqru.

This code was polymorphism in action. You treated both Mailman and Teacher
as Human and implemented the Work method for both. The result was different
behaviors in each case. The important point to note here is that you did not have to
care about the exact implementations of Human to implement Work.

How would you implement this without polymorphism? You would need to write if
statements based on the exact type of an object to find the behavior it should use:

foreach (var human in humans)

{

 Type humanType = human.GetType();

 if (humanType == typeof(Mailman))

 {

 Console.WriteLine("Mailman is working...");

 }

 else

 {

 Console.WriteLine("Teaching");

 }

}

As you see, this is a lot more complicated and harder to grasp. Keep this example
in mind when you get into a situation with many if statements. Polymorphism can
remove the burden of all that branching code by simply moving the code for each
branch into a child class and simplifying the interactions.

https://packt.link/ovqru

96 | Building Quality Object-Oriented Code

What if you wanted to print some information about a person? Consider the
following code:

Human[] humans = {mailman, teacher};

foreach (var human in humans)

{

 Console.WriteLine(human);

}

Running this code would result in the object type names being printed to the console:

Chapter02.Examples.Professions.Mailman

Chapter02.Examples.Professions.Teacher

In C#, everything derives from the System.Object class, so every single type in
C# has a method called ToString(). Each type has its own implementation of this
method, which is another example of polymorphism, widely used in C#.

Note

ToString() is different from Work() in that it provides a default
implementation. You can achieve that using the virtual keyword, which
will be covered in detail later in the chapter. From the point of view of a child
class, working with the virtual or abstract keyword is the same. If
you want to change or provide behavior, you will override the method.

In the following snippet, a Human object is given a custom implementation of the
ToString() method:

public override string ToString()

{

 return $"{nameof(Name)}: {Name}," +

 $"{nameof(Age)}: {Age}," +

 $"{nameof(Weight)}: {Weight}," +

 $"{nameof(Height)}: {Height}";

}

The Four Pillars of OOP | 97

Trying to print information about the humans in the same foreach loop would result
in the following output:

Name: Thomas,Age: 29,Weight: 78.5,Height: 190.11

Name: Gareth,Age: 35,Weight: 100.5,Height: 186.49

Note

You can find the code used for this example at https://packt.link/EGDkC.

Polymorphism is one of the best ways to use different underlying behaviors when
dealing with missing type information.

Abstraction

The last pillar of OOP is abstraction. Some say that there are only three pillars of
OOP because abstraction does not really introduce much that is new. Abstraction
encourages you to hide implementation details and simplify interactions between
objects. Whenever you need the functionality of only a generalized form, you should
not depend on its implementation.

Abstraction could be illustrated with an example of how people interact with their
computers. What occurs in the internal circuitry when you turn on the computer?
Most people would have no clue, and that is fine. You do not need to know about the
internal workings if you only need to use some functionality. All you have to know is
what you can do, and not how it works. You know you can turn a computer on and off
by pressing a button, and all the complex details are hidden away. Abstraction adds
little new to the other three pillars because it reflects each of them. Abstraction is
similar to encapsulation, as it hides unnecessary details to simplify interaction. It
is also similar to polymorphism because it can interact with objects without knowing
their exact types. Finally, inheritance is just one of the ways to create abstractions.

https://packt.link/EGDkC

98 | Building Quality Object-Oriented Code

You do not need to provide unnecessary details coming through implementation
types when creating functions. The following example illustrates this problem. You
need to make a progress bar. It should keep track of the current progress and should
increment the progress up to a certain point. You could create a basic class with
setters and getters, as follows:

public class ProgressBar

{

 public float Current { get; set; }

 public float Max { get; }

 public ProgressBar(float current, float max)

 {

 Max = max;

 Current = current;

 }

}

The following code demonstrates how to initialize a progress bar that starts at 0
progress and goes up to 100. The rest of the code illustrates what happens when
you want to set the new progress to 120. Progress cannot be more than Max, hence,
if it is more than bar.Max, it should just remain at bar.Max. Otherwise, you can
update the new progress with the value you set. Finally, you need to check whether
the progress is complete (at Max value). To do so, you will compare the delta with the
allowed margin of error tolerance (0.0001). A progress bar is complete if it is close
to tolerance. So, updating progress could look like the following:

var bar = new ProgressBar(0, 100);

var newProgress = 120;

if (newProgress > bar.Max)

{

 bar.Current = bar.Max;

}

else

{

 bar.Current = newProgress;

}

const double tolerance = 0.0001;

var isComplete = Math.Abs(bar.Max - bar.Current) < tolerance;

The Four Pillars of OOP | 99

This code does what is asked for, but it needs a lot of detail for a function. Imagine if
you had to use this in other code; you would need to perform the same checks once
again. In other words, it was easy to implement but complex to consume. You have
so little within the class itself. A strong indicator of that is that you keep on calling
the object, instead of doing something inside the class itself. Publicly, it's possible to
break the object state by forgetting to check the Max value of progress and setting it
to some high or negative value. The code that you wrote has low cohesion because to
change ProgressBar, you would do it not within the class but somewhere outside
of it. You need to create a better abstraction.

Consider the following snippet:

public class ProgressBar

{

 private const float Tolerance = 0.001f;

 private float _current;

 public float Current

 {

 get => _current;

 set

 {

 if (value >= Max)

 {

 _current = Max;

 }

 else if (value < 0)

 {

 _current = 0;

 }

 else

 {

 _current = value;

 }

 }

 }

100 | Building Quality Object-Oriented Code

With this code, you have hidden the nitty-gritty details. When it comes to updating
progress and defining what the tolerance is, that is up to the ProgressBar class to
decide. In the refactored code, you have a property, Current, with a backing field,
_current, to store the progress. The property setter checks whether progress is
more than the maximum and, if it is, it will not allow the value of _current to be set
to a higher value, =. It also cannot be negative, as in those cases, the value will be
adjusted to 0. Lastly, if it is not negative and not more than the maximum, then you
can set _current to whatever value you pass.

Clearly, this code makes it much simpler to interact with the ProgressBar class:

var bar = new ProgressBar(0, 100);

bar.Current = 120;

bool isComplete = bar.IsComplete;

You cannot break anything; you do not have any extra choices and all you can do is
defined through minimalistic methods. When you are asked to implement a feature,
it is not recommended to do more than what is asked. Try to be minimalistic and
simplistic because that is key to an effective code.

Remember that well-abstracted code is full of empathy toward the reader. Just
because today, it is easy to implement a class or a function, you should not forget
about tomorrow. The requirements change, the implementation changes, but the
structure should remain stable, otherwise, your code can break easily.

Note

You can find the code used for this example can be found at https://packt.
link/U126i. The code given in GitHub is split into two contrasting examples—
ProgressBarGood and ProgressBarBad. Both codes are simple
ProgressBar but were named distinctly to avoid ambiguity.

https://packt.link/U126i
https://packt.link/U126i

The Four Pillars of OOP | 101

Interfaces

Earlier, it was mentioned that inheritance is not the proper way of designing
code. However, you want to have an efficient abstraction as well as support for
polymorphism, and little to no coupling. What if you wanted to have robot or ant
workers? They do not have a name. Information such as height and weight are
irrelevant. And inheriting from the Human class would make little sense. Using an
interface solves this conundrum.

In C#, by convention, interfaces are named starting with the letter I, followed by their
actual name. An interface is a contract that states what a class can do. It does not
have any implementation. It only defines behavior for every class that implements it.
You will now refactor the human example using an interface.

What can an object of the Human class do? It can work. Who or what can do work? A
worker. Now, consider the following snippet:

public interface IWorker

{

 void Work();

}

Note

Interface methods will never have an access modifier. This is due to the
nature of an interface. All the methods that an interface has are methods
you would like to access publicly so that you can implement them. The
access modifier that the Work method will have is the same as the
interface access modifier, in this case, public.

An ant is not a human, but it can work. With an interface, abstracting an ant as a
worker is straightforward:

public class Ant : IWorker

{

 public void Work()

 {

 Console.WriteLine("Ant is working hard.");

 }

}

102 | Building Quality Object-Oriented Code

Similarly, a robot is not a human, but it can work as well:

public class Robot : IWorker

{

 public void Work()

 {

 Console.WriteLine("Beep boop- I am working.");

 }

}

If you refer to the Human class, you can change its definition to public abstract
class Human : IWorker. This can be read as: Human class implements the
IWorker interface.

In the next snippet, Mailman inherits the Human class, which implements the
IWorker interface:

public class Mailman : Human

{

 public Mailman(string name, int age, float weight, float height) :
base(name, age, weight, height)
 {

 }

 public void DeliverMail(Mail mail)

 {

 // Delivering Mail...

 }

 public override void Work()

 {

 Console.WriteLine("Mailman is working...");

 }

}

If a child class inherits a parent class, which implements some interfaces, the child
class will also be able to implement the same interfaces by default. However, Human
was an abstract class and you had to provide implementation to the abstract
void Work method.

The Four Pillars of OOP | 103

If anyone asked what a human, an ant, and a robot have in common, you could say
that they can all work. You can simulate this situation as follows:

IWorker human = new Mailman("Thomas", 29, 78.5f, 190.11f);

IWorker ant = new Ant();

IWorker robot = new Robot();

IWorker[] workers = {human, ant, robot};

foreach (var worker in workers)

{

 worker.Work();

}

This prints the following to the console:

Mailman is working...

Ant is working hard.

Beep boop- I am working.

Note

You can find the code used for the example at https://packt.link/FE2ag.

C# does not support multiple inheritance. However, it is possible to implement
multiple interfaces. Implementing multiple interfaces does not count as multiple
inheritance. For example, to implement a Drone class, you could add an
IFlyer interface:

public interface IFlyer

{

 void Fly();

}

Drone is a flying object that can do some work; therefore it can be expressed
as follows:

public class Drone : IFlyer, IWorker

{

 public void Fly()

 {

https://packt.link/FE2ag

104 | Building Quality Object-Oriented Code

 Console.WriteLine("Flying");

 }

 public void Work()

 {

 Console.WriteLine("Working");

 }

}

Listing multiple interfaces with separating commas means the class implements
each of them. You can combine any number of interfaces, but try not to overdo this.
Sometimes, a combination of two interfaces makes up a logical abstraction. If every
drone can fly and does some work, then you can write that in code, as follows:

public interface IDrone : IWorker, IFlyer

{

}

And the Drone class becomes simplified to public class Drone : IDrone.

It is also possible to mix interfaces with a base class (but no more than one base
class). If you want to represent an ant that flies, you can write the following code:

public class FlyingAnt : Ant, IFlyer

{

 public void Fly()

 {

 Console.WriteLine("Flying");

 }

}

An interface is undoubtedly the best abstraction because depending on it does not
force you to depend on any implementation details. All that is required is the logical
concepts that have been defined. Implementation is prone to change, but the logic
behind relations between classes is not.

If an interface defines what a class can do, is it also possible to define a contract for
common data? Absolutely. An interface holds behavior, hence it can hold properties
as well because they define setter and getter behavior. For example, you should be
able to track the drone, and for this, it should be identifiable, that is, it needs to have
an ID. This can be coded as follows:

public interface IIdentifiable

{

The Four Pillars of OOP | 105

 long Id { get; }

}

public interface IDrone : IWorker, IFlyer

{

}

In modern software development, there are several complex low-level details that
programmers use on a daily basis. However, they often do so without knowing. If you
want to create a maintainable code base with lots of logic and easy-to-grasp code,
you should follow these principles of abstraction:

• Keep it simple and small.

• Do not depend on details.

• Hide complexity.

• Expose only what is necessary.

With this exercise, you will grasp how OOP functions.

Exercise 2.03: Covering Floor in the Backyard

A builder is building a mosaic with which he needs to cover an area of x square
meters. You have some leftover tiles that are either rectangular or circular. In this
exercise, you need to find out whether, if you shatter the tiles to perfectly fill the area
they take up, can the tiles fill the mosaic completely.

You will write a program that prints true, if the mosaic can be covered with tiles, or
false, if it cannot. Perform the following steps to do so:

1. Create an interface named IShape, with an Area property:

public interface IShape

{

 double Area { get; }

}

This is a get-only property. Note that a property is a method, so it is okay to
have it in an interface.

106 | Building Quality Object-Oriented Code

2. Create a class called Rectangle, with width and height and a method for
calculating area, called Area. Implement an IShape interface for this, as shown
in the following code:

Rectangle.cs

public class Rectangle : IShape
{
 private readonly double _width;
 private readonly double _height;

 public double Area
 {
 get
 {
 return _width * _height;
 }
 }

 public Rectangle(double width, double height)
 {

You can find the complete code here: https://packt.link/zSquP.

The only thing required is to calculate the area. Hence, only the Area property
is public. Your interface needs to implement a getter Area property, achieved
by multiplying width and height.

3. Create a Circle class with a radius and Area calculation, which also
implements the IShape interface:

public class Circle : IShape

{

 Private readonly double _radius;

 public Circle(double radius)

 {

 _radius = radius;

 }

 public double Area

 {

 get { return Math.PI * _radius * _radius; }

 }

}

https://packt.link/zSquP

The Four Pillars of OOP | 107

4. Create a skeleton Solution class with a method named IsEnough, as follows:

public static class Solution

{

 public static bool IsEnough(double mosaicArea, IShape[]
tiles)
 {

 }

}

Both the class and the method are just placeholders for the implementation to
come. The class is static because it will be used as a demo and it does not
need to have a state. The IsEnough method takes the needed mosaicArea,
an array of tiles objects, and returns whether the total area occupied by the tiles
is enough to cover the mosaic.

5. Inside the IsEnough method, use a for loop to calculate the totalArea.
Then, return whether the total area covers the mosaic area:

 double totalArea = 0;

 foreach (var tile in tiles)

 {

 totalArea += tile.Area;

 }

 const double tolerance = 0.0001;

 return totalArea - mosaicArea >= -tolerance;

 }

6. Inside the Solution class, create a demo. Add several sets of different shapes,
as follows:

public static void Main()

{

 var isEnough1 = IsEnough(0, new IShape[0]);

 var isEnough2 = IsEnough(1, new[] { new Rectangle(1, 1) });

 var isEnough3 = IsEnough(100, new IShape[] { new Circle(5) });

 var isEnough4 = IsEnough(5, new IShape[]

 {

108 | Building Quality Object-Oriented Code

 new Rectangle(1, 1), new Circle(1), new Rectangle(1.4,1)

 });

 Console.WriteLine($"IsEnough1 = {isEnough1}, " +

 $"IsEnough2 = {isEnough2}, " +

 $"IsEnough3 = {isEnough3}, " +

 $"IsEnough4 = {isEnough4}.");

}

Here, you use four examples. When the area to cover is 0, then no matter what
shapes you pass, it will be enough. When the area to cover is 1, a rectangle of
area 1x1 will be just enough. When it's 100, a circle of radius 5 is not enough.
Finally, for the fourth example, the area occupied by three shapes is added up,
that is, a rectangle of area 1x1, a circle of radius 1, and the second rectangle of
area 1.4x1. The total area is 5, which is less than the combined area of these
three shapes.

7. Run the demo. You should see the following output on your screen:

IsEnough1 = True, IsEnough2 = True, IsEnough3 = False, IsEnough4 =
False.

Note

You can find the code used for this exercise at https://packt.link/EODE6.

This exercise is very similar to Exercise 2.02. However, even though the assignment is
more complex, there is less code than in the previous assignment. By using the OOP
pillars, you were able to create a simple solution for a complex problem. You were
able to create functions that depend on abstraction, rather than making overloads for
different types. Thus, OOP is a powerful tool, and this only scratches the surface.

Everyone can write code that works but writing code that lives for decades and is easy
to grasp is hard. So, it is imperative to know about the set of best practices in OOP.

SOLID Principles in OOP
SOLID principles are a set of best practices for OOP. SOLID is an acronym for five
principles, namely, single responsibility, open-closed, Liskov substitution, interface
segregation, and dependency inversion. You will not explore each of these in detail.

https://packt.link/EODE6

SOLID Principles in OOP | 109

Single Responsibility Principle

Functions, classes, projects, and entire systems change over time. Every change is
potentially a breaking one, so you should limit the risk of too many things changing
at a time. In other words, a part of a code block should have only a single reason
to change.

For a function, this means that it should do just one thing and have no side effects.
In practice, this means that a function should either change, or get something, but
never do both. This also means that functions responsible for high-level things should
not be mixed with functions that perform low-level things. Low-level is all about
implementing interactions with hardware, and working with primitives. High-level is
focused on compositions of software building blocks or services. When talking about
high- and low-level functions, it is usually referred to as a chain of dependencies.
If function A calls function B, A is considered higher-level than B. A function should
not implement multiple things; it should instead call other functions that implement
doing one thing. The general guideline for this is that if you think you can split your
code into different functions, then in most cases, you should do that.

For classes, it means that you should keep them small and isolated from one another.
An example of an efficient class is the File class, which can read and write. If it
implemented both reading and writing, it would change for two reasons (reading
and writing):

public class File

{

 public string Read(string filePath)

 {

 // implementation how to read file contents

 // complex logic

 return "";

 }

 public void Write(string filePath, string content)

 {

 // implementation how to append content to an existing file

 // complex logic

 }

}

110 | Building Quality Object-Oriented Code

Therefore, to conform to this principle, you can split the reading code into a class
called Reader and writing code into a class called Writer, as follows:

public class Reader

{

 public string Read(string filePath)

 {

 // implementation how to read file contents

 // complex logic

 return "";

 }

}

public class Writer

{

 public void Write(string filePath, string content)

 {

 // implementation how to append content to an existing file

 // complex logic

 }

}

Now, instead of implementing reading and writing by itself, the File class will simply
be composed of a reader and writer:

public class File

{

 private readonly Reader _reader;

 private readonly Writer _writer;

 public File()

 {

 _reader = new Reader();

 _writer = new Writer();

 }

 public string Read(string filePath) => _reader.Read(filePath);

 public void Write(string filePath, string content) => _writer.
Write(filePath, content);
}

SOLID Principles in OOP | 111

Note

You can find the code used for this example at https://packt.link/PBppV.

It might be confusing because what the class does essentially remains the
same. However, now, it just consumes a component and is not responsible for
implementing it. A high-level class (File) simply adds context to how lower-level
classes (Reader, Writer) will be consumed.

For a module (library), it means that you should strive to not introduce dependencies,
which would be more than what the consumer would want. For example, if you are
using a library for logging, it should not come with some third-party logging provider-
specific implementation.

For a subsystem, it means that different systems should be as isolated as possible. If
two (lower level) systems need to communicate, they could call one another directly.
A consideration (not mandatory) would be to have a third system (higher-level)
for coordination. Systems should also be separated through a boundary (such as
a contract specifying communication parameters), which hides all the details. If a
subsystem is a big library collection, it should have an interface to expose what it can
do. If a subsystem is a web service, it should be a collection of endpoints. In any case,
a contract of a subsystem should provide only the methods that the client may want.

Sometimes, the principle is overdone and classes are split so much that making a
change requires changing multiple places. It does keep true to the principle, as a class
will have a single reason to change, but in such a case, multiple classes will change for
the same reason. For example, suppose you have two classes: Merchandise and
TaxCalculator. The Merchandise class has fields for Name, Price, and Vat:

public class Merchandise

{

 public string Name { get; set; }

 public decimal Price { get; set; }

 // VAT on top in %

 public decimal Vat { get; set; }

}

https://packt.link/PBppV

112 | Building Quality Object-Oriented Code

Next, you will create the TaxCalculator class. vat is measured as a percentage,
so the actual price to pay will be vat added to the original price:

public static class TaxCalculator

{

 public static decimal CalculateNextPrice(decimal price, decimal vat)

 {

 return price * (1 + vat / 100);

 }

}

What would change if the functionality of calculating the price moved to the
Merchandise class? You would still be able to perform the required operation.
There are two key points here:

• The operation by itself is simple.

• Also, everything that the tax calculator needs come from the
Merchandise class.

If a class can implement the logic by itself, as long as it is self-contained (does not
involve extra components), it usually should. Therefore, a proper version of the code
would be as follows:

public class Merchandise

{

 public string Name { get; set; }

 public decimal Price { get; set; }

 // VAT on top in %

 public decimal Vat { get; set; }

 public decimal NetPrice => Price * (1 + Vat / 100);

}

This code moves the NetPrice calculation to the Merchandise class and the
TaxCalculator class has been removed.

Note

Singe Responsibility Principle (SRP) can be summarized in a couple of
words: split it. You can find the code used for this example at https://packt.
link/lWxNO.

https://packt.link/lWxNO
https://packt.link/lWxNO

SOLID Principles in OOP | 113

Open-Closed Principle

As mentioned previously, every change in code is potentially a breaking one. As a
way around this, instead of changing existing code, it is often preferable to write
new code. Every software entity should have an extension point, through which the
changes should be introduced. However, after this change is done, a software entity
should not be interfered with. The Open-Closed Principle (OCP) is hard to implement
and takes a lot of practice, but the benefits (a minimum number of breaking changes)
are well worth it.

If a multiple-step algorithm does not change, but its individual steps can change, you
should split it into several functions. A change for an individual step will no longer
affect the entire algorithm, but rather just that step. Such minimization of reasons for
a single class or a function to change is what OCP is all about.

Note

You can find more information on OCP at https://social.technet.microsoft.
com/wiki/contents/articles/18062.open-closed-principle-ocp.aspx.

Another example where you may want to implement this principle is a function
working with combinations of specific values in code. This is called hardcoding and is
generally deemed an inefficient practice. To make it work with new values, you might
be tempted to create a new function, but by simply removing a hardcoded part and
exposing it through function parameters, you can make it extensible. However, when
you have variables that are known to be fixed and not changing, it is fine to hardcode
them, but they should be flagged as constant.

Previously, you created a file class with two dependencies—Reader and Writer.
Those dependencies are hardcoded, and leave you with no extension points. Fixing
that will involve two things. First, add the virtual modifier for both the Reader and
Writer class methods:

public virtual string Read(string filePath)

public virtual void Write(string filePath, string content)

https://social.technet.microsoft.com/wiki/contents/articles/18062.open-closed-principle-ocp.aspx
https://social.technet.microsoft.com/wiki/contents/articles/18062.open-closed-principle-ocp.aspx

114 | Building Quality Object-Oriented Code

Then, change the constructor of the File class so that it accepts instances of
Reader and Writer, instead of hardcoding the dependencies:

public File(Reader reader, Writer writer)

{

 _reader = reader;

 _writer = writer;

}

This code enables you to override the existing reader and writer behavior and replace
it with whatever behavior you want, that is, the File class extension point.

OCP can be summarized in a few words as don't change it, extend it.

Liskov Substitution

The Liskov Substitution Principle (LSP) is one of the most straightforward principles
out there. It simply means that a child class should support all the public behavior of
a parent class. If you have two classes, Car and CarWreck, where one inherits the
other, then you have violated the principle:

class Car

{

 public object Body { get; set; }

 public virtual void Move()

 {

 // Moving

 }

}

class CarWreck : Car

{

 public override void Move()

 {

 throw new NotSupportedException("A broken car cannot start.");

 }

}

Note

You can find the code used for this example at https://packt.link/6nD76.

https://packt.link/6nD76

SOLID Principles in OOP | 115

Both Car and CarWreck have a Body object. Car can move, but what about
CarWreck? It can only stay in one place. The Move method is virtual because
CarWreck intends to override it to mark it as not supported. If a child can no longer
support what a parent can do, then it should no longer inherit that parent. In this
case, a car wreck is not a car, it's simply a wreck.

How do you conform to this principle? All you have to do is to remove the inheritance
relationship and replicate the necessary behavior and structure. In this case,
CarWreck still has a Body object, but the Move method is unnecessary:

class CarWreck

{

 public object Body { get; set; }

}

Code changes happen quite often, and you can sometimes inadvertently use the
wrong method to achieve your goals. Sometimes, you couple code in such a way
that what you thought was flexible code turns out to be a complex mess. Do not
use inheritance as a way of doing code reuse. Keep things small and compose
them (again) instead of trying to override the existing behavior. Before things can
be reusable, they should be usable. Design for simplicity and you will get flexibility
for free.

LSP can be summarized in a few words: don't fake it.

Note

You can find more information on LSP at https://www.microsoftpressstore.
com/articles/article.aspx?p=2255313.

Interface Segregation

The interface segregation principle is a special case of the OCP but is only applicable
to contracts that will be exposed publicly. Remember, every change you make is
potentially a breaking change, and this especially matters in making changes to a
contract. Breaking changes are inefficient because they will often require effort to
adapt to the change from multiple people.

https://www.microsoftpressstore.com/articles/article.aspx?p=2255313
https://www.microsoftpressstore.com/articles/article.aspx?p=2255313

116 | Building Quality Object-Oriented Code

For example, say you have an interface, IMovableDamageable:

interface IMovableDamageable

{

 void Move(Location location);

 float Hp{get;set;}

}

A single interface should represent a single concept. However, in this case, it does two
things: move and manage Hp (hit points). By itself, an interface with two methods is
not problematic. However, in scenarios of the implementation needing only a part of
an interface, you are forced to create a workaround.

For example, score text is indestructible, but you would like it to be animated and to
move it across a scene:

class ScoreText : IMovableDamageable

{

 public float Hp

 {

 get => throw new NotSupportedException();

 set => throw new NotSupportedException();

 }

 public void Move(Location location)

 {

 Console.WriteLine($"Moving to {location}");

 }

}

public class Location

{

}

Note

The point here isn't to print the location; just to give an example of where it
is used. It's up to location's implementation whether it will be printed or not
as such.

SOLID Principles in OOP | 117

Taking another example, you might have a house that does not move but can
be destroyed:

class House : IMovableDamageable

{

 public float Hp { get; set; }

 public void Move(Location location)

 {

 throw new NotSupportedException();

 }

}

In both scenarios, you worked around the issue by throwing
NotSupportedException. However, another programmer should not be given
an option to call code that never works in the first place. In order to fix the problem
of representing too many concepts, you should split the IMoveableDamageable
interface into IMoveable and IDamageable:

interface IMoveable

{

 void Move(Location location);

}

interface IDamageable

{

 float Hp{get;set;}

}

And the implementations can now get rid of the unnecessary parts:

class House : IDamageable

{

 public float Hp { get; set; }

}

class ScoreText : IMovable

{

 public void Move(Location location)

 {

 Console.WriteLine($"Moving to {location}");

 }

}

118 | Building Quality Object-Oriented Code

The Console.WriteLine, in the preceding code, would display the namespace
name with the class name.

Note

Interface segregation can be summarized as don't enforce it. You can
find the code used for this example at https://packt.link/32mwP.

Dependency Inversion

Large software systems can consist of millions of classes. Each class is a small
dependency, and if unmanaged, the complexity might stack into something
impossible to maintain. If one low-level component breaks, it causes a ripple effect,
breaking the whole chain of dependencies. The dependency inversion principle
states that you should avoid hard dependence on underlying classes.

Dependency injection is the industry-standard way of implementing dependency
inversion. Do not mix the two; one is a principle and the other refers to the
implementation of this principle.

Note that you can also implement dependency inversion without dependency
injection. For example, when declaring a field, instead of writing something like
private readonly List<int> _numbers = new List<int>();, it is
preferable to write private readonly IList<int> = _numbers, which
shifts dependency to abstraction (IList) and not implementation (List).

What is dependency injection? It is the act of passing an implementation and setting it
to an abstraction slot. There are three ways to implement this:

• Constructor injection is achieved by exposing an abstraction through the
constructor argument and passing an implementation when creating an object
and then assigning it to a field. Use it when you want to consistently use the
same dependency in the same object (but not necessarily the same class).

• Method injection is done by exposing an abstraction through a method
argument, and then passing an implementation when calling that method. Use
it when, for a single method, a dependency might vary, and you do not plan to
store the dependency throughout that object's lifetime.

https://packt.link/32mwP

SOLID Principles in OOP | 119

• Property injection is implemented by exposing an abstraction through a
public property, and then assigning (or not) that property to some exact
implementation. Property injection is a rare way of injecting dependencies
because it suggests that dependency might even be null or temporary and there
are many ways in which it could break.

Given two types, interface IBartender { } and class Bar : Bartender
{ }, you can illustrate the three ways of dependency injection for a class called Bar.

First, prepare the Bar class for constructor injection:

class Bar

{

 private readonly IBartender _bartender;

 public Bar(IBartender bartender)

 {

 _bartender = bartender;

 }

}

The constructor injection is done as follows:

var bar = new Bar(new Bartender());

This kind of dependency injection is a dominating kind of inheritance, as it enforces
stability through immutability. For example, some bars have just one bartender.

Method injection would look like this:

class Bar

{

 public void ServeDrinks(IBartender bartender)

 {

 // serve drinks using bartender

 }

}

The injection itself is as follows:

var bar = new Bar();

bar.ServeDrinks(new Bartender());

120 | Building Quality Object-Oriented Code

Often, this kind of dependency injection is called interface injection because the
method often goes under an interface. The interface itself is a great idea, but that
does not change the idea behind this kind of dependency injection. Use method
injection when you immediately consume a dependency that you set, or when you
have a complex way of setting new dependencies dynamically. For example, it makes
sense to use different bartenders for serving drinks.

Finally, property injection can be done like this:

class Bar

{

 public IBartender Bartender { get; set; }

}

Bartender is now injected like this:

var bar = new Bar();

bar.Bartender = new Bartender();

For example, a bar might have bartenders changing shifts, but one bartender at
a time.

Note

You can find the code used for this example at https://packt.link/JcmAT.

Property injection in other languages might have a different name: setter injection.
In practice, components do not change that often, so this kind of dependency
injection is the rarest.

For the File class, this should mean that instead of exposing classes
(implementation), you should expose abstractions (interfaces). This means that your
Reader and Writer classes should implement some contract:

public class Reader : IReader

public class Writer: IWriter

Your file class should expose reader and writer abstractions, instead of
implementations, as follows:

private readonly IReader _reader;

private readonly IWriter _writer;

https://packt.link/JcmAT

How C# Helps with Object-Oriented Design | 121

public File(IReader reader, IWriter writer)

{

 _reader = reader;

 _writer = writer;

}

This allows for a choice of the kind of IReader and IWriter you would like to
inject. A different reader may read a different file format, or a different writer may
output in a different way. You have a choice.

Dependency injection is a powerful tool that is used often, especially in an enterprise
setting. It allows you to simplify complex systems by putting an interface in between
and having 1:1 dependencies of implementation-abstraction-implementation.

Writing effective code that does not break can be paradoxical. It is the same as buying
a tool from a shop; you can't know for sure how long it will last, or how well it will
work. Code, just like those tools, might work now but break in the near future, and
you will only know that it does not work if and when it breaks.

Observing and waiting, seeing how the code evolves, is the only way to know for
sure if you have written an effective code. In small, personal projects, you might not
even notice any changes, unless you expose the project to the public or involve other
people. To most people, SOLID principles often sound like old, outdated principles,
like over-engineering. But they are actually a set of best practices that have withstood
the test of time, formulated by top professionals seasoned in enterprise settings. It
is impossible to write perfect, SOLID code right away. In fact, in some cases, it is not
even necessary (if a project is small and meant to be short-lived, for example). As
someone who wants to produce quality software and work as a professional, you
should practice it as early on as possible.

How C# Helps with Object-Oriented Design
So far, the principles you have learned are not language-specific. It is time to learn
how to use C# for OOP. C# is a great language because it is full of some very useful
features. It is not only one of the most productive languages to work with, but it also
allows you to write beautiful, hard-to-break code. With a rich selection of keywords
and languages features, you can model your classes completely the way you want,
making the intentions crystal clear. This section will delve deep into C# features that
help with object-oriented design.

122 | Building Quality Object-Oriented Code

Static

Up till now in this book, you have interacted mostly with static code. This refers to
code that does not need new classes and objects, and that can be called right away.
In C#, the static modifier can be applied in five different scenarios—methods, fields,
classes, constructors, and the using statement.

Static methods and fields are the simplest application of the static keyword:

public class DogsGenerator

{

 public static int Counter { get; private set; }

 static DogsGenerator()

 {

 // Counter will be 0 anyways if not explicitly provided,

 // this just illustrates the use of a static constructor.

 Counter = 0;

 }

 public static Dog GenerateDog()

 {

 Counter++;

 return new Dog("Dog" + Counter);

 }

}

Note

You can find the code used for this example at https://packt.link/748m3.

Here, you created a class called DogsGenerator. A static class cannot be
initialized manually (using the new keyword). Internally, it is initialized, but only once.
Calling the GenerateDog method returns a new Dog object with a counter next to
its name, such as Dog1, Dog2, and Dog3. Writing a counter like this allows you to
increment it from everywhere as it is public static and has a setter. This can be
done by directly accessing the member from a class: DogsGenerator.Counter++
will increment the counter by 1.

https://packt.link/748m3

How C# Helps with Object-Oriented Design | 123

Once again, note that this does not require a call through an object because
a static class instance is the same for the entire application. However,
DogsGenerator is not the best example of a static class. That's because you
have just created a global state. Many people would say that static is inefficient
and should be avoided because it might create unpredictable results due to being
modified and accessed uncontrollably.

A public mutable state means that changes can happen from anywhere in the
application. Other than being hard to grasp, such code is also prone to breaking in
the context of applications with multiple threads (that is, it is not thread-safe).

Note

You will learn about threading in detail in Chapter 5, Concurrency:
Multithreading Parallel and Async Code.

You can reduce the impact of a global state by making it publicly immutable. The
benefit of doing so is that now you are in control. Instead of allowing a counter
increment to happen from any place inside a program, you will change it within
DogsGenerator only. For the counter property, achieving it is as simple as
making the setter property private.

There is one valuable use case for the static keyword though, which is with helper
functions. Such functions take an input and return the output without modifying any
state internally. Moreover, a class that contains such functions is static and has
no state. Another good application of the static keyword is creating immutable
constants. They are defined with a different keyword (const). The Math library is
probably the best example of helper functions and constants. It has constants such as
PI and E, static helper methods such as Sqrt and Abs, and so on.

The DogsGenerator class has no members that would be applicable to an object. If
all class members are static, then the class should be static as well. Therefore,
you should change the class to public static class DateGenerator.
Be aware, however, that depending on static is the same as depending on a
concrete implementation. Although they are easy to use and straightforward, static
dependencies are hard to escape and should only be used for simple code, or code
that you are sure will not change and is critical in its implementation details. For that
reason, the Math class is a static class as well; it has all the foundations for
arithmetic calculations.

124 | Building Quality Object-Oriented Code

The last application of static is using static. Applying the static keyword
before a using statement causes all methods and fields to be directly accessible
without the need to call a class. For example, consider the following code:

using static Math;

public static class Demo

{

 public static void Run()

 {

 //No need Math.PI

 Console.WriteLine(PI);

 }

}

This is a static import feature in C#. By using static Math, all static members can
be accessed directly.

Sealed

Previously, you mentioned that inheritance should be handled with great care
because the complexity can quickly grow out of hand. You can carefully consider
complexity when you read and write code, but can you prevent complexity by design?
C# has a keyword for stopping inheritance called sealed. If it logically makes no
sense to inherit a class, then you should mark it with the sealed keyword. Security-
related classes should also be sealed because it is critical to keep them simple and
non-overridable. Also, if performance is critical, then methods in inherited classes
are slower, compared to being directly in a sealed class. This is due to how method
lookup works.

Partial

In .NET, it is quite popular to make desktop applications using WinForms. The way
WinForms works is that you can design how your application looks, with the help
of a designer. Internally, it generates UI code and all you have to do is double-click a
component, which will generate event handler code. That is where the partial class
comes in. All the boring, autogenerated code will be in one class and the code that
you write will be in another. The key point to note is that both classes will have the
same name but be in different files.

How C# Helps with Object-Oriented Design | 125

You can have as many partial classes as you want. However, the recommended
number of partial classes is no more than two. The compiler will treat them as one
big class, but to the user, they will seem like two separate ones. Generating code
generates new class files, which will overwrite the code you write. Use partial
when you are dealing with autogenerated code. The biggest mistake that beginners
make is using partial to manage big complex classes. If your class is complex, it's
best to split it into smaller classes, not just different files.

There is one more use case for partial. Imagine you have a part of code in a class
that is only needed in another assembly but is unnecessary in the assembly it is
originally defined in. You can have the same class in different assemblies and mark it
as partial. That way, a part of a class that is not needed will only be used where it
is needed and be hidden where it should not be seen.

Virtual

Abstract methods can be overridden; however, they cannot be implemented. What
if you wanted to have a method with a default behavior that could be overridden
in the future? You can do this using the virtual keyword, as shown in the
following example:

public class Human

{

 public virtual void SayHi()

 {

 Console.WriteLine("Hello!");

 }

}

Here, the Human class has the SayHi method. This method is prefixed with
the virtual keyword, which means that it can change behavior in a child class,
for example:

public class Frenchman : Human

{

 public override void SayHi()

 {

 Console.WriteLine("Bonjour!");

 }

}

126 | Building Quality Object-Oriented Code

Note

You can find the code used for this example at https://packt.link/ZpHhI.

The Frenchman class inherits the Human class and overrides the SayHi method.
Calling SayHi from a Frenchman object will print Bonjour.

One of the things about C# is that its behavior is hard to override. Upon declaring
a method, you need to be explicit by telling the compiler that the method can be
overridden. Only virtual methods can be overridden. Interface methods are virtual
(because they get behavior later), however, you cannot override interface methods
from child classes. You can only implement an interface in a parent class.

An abstract method is the last type of virtual method and is the most similar to
virtual in that it can be overridden as many times as you need (in child and
grandchild classes).

To avoid having fragile, changing, overridable behavior, the best kind of virtual
methods are the ones that come from an interface. The abstract and virtual
keywords enable changing class behavior in child classes and overriding it, which
can become a big issue if uncontrolled. Overriding behavior often causes both
inconsistent and unexpected results, so you should be careful before using the
virtual keyword.

Internal

public, private, and protected are the three access modifiers that have
been mentioned. Many beginners think that the default class modifier is private.
However, private means that it cannot be called from outside a class, and in the
context of a namespace, this does not make much sense. The default access modifier
for a class is internal. This means that the class will only be visible inside the
namespace it is defined in. The internal modifier is great for reusing classes across
the same assembly, while at the same time hiding them from the outside.

Conditional Operators
A null reference exception is probably the most common error in programming. For
example, refer to the following code:

int[] numbers = null;

numbers.length;

https://packt.link/ZpHhI

Conditional Operators | 127

This code will throw NullReferenceException because you are interacting with
a variable that has a null value. What is the length of a null array? There is no proper
answer to this question, so an exception will be thrown here.

The best way to protect against such an error is to avoid working with null values
altogether. However, sometimes it is unavoidable. In those cases, there is another
technique called defensive programming. Before using a value that might be null,
make sure it is not null.

Now recall the example of the Dog class. If you create a new object, the value of
Owner could be null. If you were to determine whether the owner's name starts
with the letter A, you would need to check first whether the value of Owner is null,
as follows:

if (dog.Owner != null)

{

 bool ownerNameStartsWithA = dog.Owner.StartsWith('A');

}

However, in C#, using null-conditional, this code becomes as simple as the following:

dog.Owner?.StartsWith('A');

Null-conditional (?) is an example of conditional operators in C#. It is an
operator that implicitly runs an if statement (a specific if statement is based
on the operator) and either returns something or continues work. The Owner?.
StartsWith('A') part returns true if the condition is satisfied and false if it is
either not satisfied or the object is null.

There are more conditional operators in C# that you will learn about.

Ternary Operators

There is hardly any language that does not have if statements. One of the most
common kinds of if statement is if-else. For example, if the value of Owner
is null for an instance of the Dog class, you can describe the instance simply as
{Name}. Otherwise, you can better describe it as {Name}, dog of {Owner}, as
shown in the following snippet:

if (dog1.Owner == null)

{

 description = dog1.Name;

}

else

128 | Building Quality Object-Oriented Code

{

 description = $"{dog1.Name}, dog of {dog1.Owner}";

}

C#, like many other languages, simplifies this by using a ternary operator:

description = dog1.Owner == null

 ? dog1.Name

 : $"{dog1.Name}, dog of {dog1.Owner}";

On the left side, you have a condition (true or false), followed by a question mark (?),
which returns the value on the right if the condition is true, followed by a colon (:),
which returns the value to the left if the condition is false. $ is a string interpolation
literal, which allows you to write $"{dog1.Name}, dog of {dog1.Owner}"
over dog1.Name + "dog of" + dog1.Owner. You should use it when
concatenating text.

Imagine there are two dogs now. You want the first dog to join the second one (that
is, be owned by the owner of the second dog), but this can only happen if the second
one has an owner to begin with. Normally, you would use the following code:

if (dog1.Owner != null)

{

 dog2.Owner = dog1.Owner;

}

But in C#, you can use the following code:

dog1.Owner = dog1.Owner ?? dog2.Owner;

Here, you have applied the null-coalescing operator (??), which returns the value
to the right if it is null and the value on the left if it is not null. However, you can
simplify this further:

dog1.Owner ??= dog2.Owner;

This means that if the value that you are trying to assign (on the left) is null, then
the output will be the value on the right.

The last use case for the null-coalescing operator is input validation. Suppose there
are two classes, ComponentA and ComponentB, and ComponentB must contain
an initialized instance of ComponentA. You could write the following code:

public ComponentB(ComponentA componentA)

{

 if (componentA == null)

Conditional Operators | 129

 {

 throw new ArgumentException(nameof(componentA));

 }

 else

 {

 _componentA = componentA;

 }

}

However, instead of the preceding code, you can simply write the following:

_componentA = componentA ?? throw new
ArgumentNullException(nameof(componentA));

This can be read as If there is no componentA, then an exception must be thrown.

Note

You can find the code used for this example at https://packt.link/yHYbh.

In most cases, null operators should replace the standard if null-else
statements. However, be careful with the way you use the ternary operator and
limit it to simple if-else statements because the code can become unreadable
very quickly.

Overloading Operators

It is fascinating how much can be abstracted away in C#. Comparing primitive
numbers, multiplying, or dividing them is easy, but when it comes to objects, it is
not that simple. What is one person plus another person? What is a bag of apples
multiplied by another bag of apples? It is hard to say, but it can make total sense in
the context of some domains.

Consider a slightly better example. Suppose you are comparing bank accounts.
Finding out who has more money in a bank account is a common use case. Normally,
to compare two accounts, you would have to access their members, but C# allows
you to overload comparison operators so that you can compare objects. For example,
imagine you had a BankAccount class like so:

public class BankAccount

{

 private decimal _balance;

https://packt.link/yHYbh

130 | Building Quality Object-Oriented Code

 public BankAccount(decimal balance)

 {

 _balance = balance;

 }

}

Here, the balance amount is private. You do not care about the exact value of
balance; all you want is to compare one with another. You could implement a
CompareTo method, but instead, you will implement a comparison operator. In the
BankAccount class, you will add the following code:

public static bool operator >(BankAccount account1, BankAccount account2)

 => account1?._balance > account2?._balance;

The preceding code is called an operator overload. With a custom operator overload
like this, you can return true when a balance is bigger and false otherwise. In C#,
operators are public static, followed by a return type. After that, you have
the operator keyword followed by the actual operator that is being overloaded.
The input depends on the operator being overloaded. In this case, you passed two
bank accounts.

If you tried to compile the code as it is, you would get an error that something is
missing. It makes sense that the comparison operators have a twin method that does
the opposite. Now, add the less operator overload as follows:

public static bool operator <(BankAccount account1, BankAccount account2)

 => account1?._balance < account2?._balance;

The code compiles now. Finally, it would make sense to have an equality comparison.
Remember, you will need to add a pair, equal and not equal:

public static bool operator ==(BankAccount account1, BankAccount
account2)
 => account1?._balance == account2?._balance;

public static bool operator !=(BankAccount account1, BankAccount
account2)
 => !(account1 == account2);

Next, you will create bank accounts to compare. Note that all numbers have an m
appended, as this suffix makes those numbers decimal. By default, numbers with a
fraction are double, so you need to add m at the end to make them decimal:

var account1 = new BankAccount(-1.01m);

var account2 = new BankAccount(1.01m);

Conditional Operators | 131

var account3 = new BankAccount(1001.99m);

var account4 = new BankAccount(1001.99m);

Comparing two bank accounts becomes as simple as this now:

Console.WriteLine(account1 == account2);

Console.WriteLine(account1 != account2);

Console.WriteLine(account2 > account1);

Console.WriteLine(account1 < account2);

Console.WriteLine(account3 == account4);

Console.WriteLine(account3 != account4);

Running the code results in the following being printed to the console:

False

True

True

True

True

False

Note

You can find the code used for this example at https://packt.link/5DioJ.

Many (but not all) operators can be overloaded, but just because you can do so does
not mean you should. Overloading operators can make sense in some cases, but in
other cases, it might be counterintuitive. Again, remember to not abuse C# features
and use them when it makes logical sense, and when it makes code easier to read,
learn, and maintain.

Nullable Primitive Types

Have you ever wondered what to do when a primitive value is unknown? For example,
say a collection of products are announced. Their names, descriptions, and some
other parameters are known, but the price is revealed only before the launch. What
type should you use for storing the price values?

https://packt.link/5DioJ

132 | Building Quality Object-Oriented Code

Nullable primitive types are primitive types that might have some value or no value.
In C#, to declare such a type, you have to add ? after a primitive, as shown in the
following code:

int? a = null;

Here, you declared a field that may or may not have a value. Specifically, this means
that a can be unknown. Do not confuse this with a default value because, by default,
the value of int types is 0.

You can assign a value to a nullable field quite simply, as follows:

a = 1;

And to retrieve its value afterward, you can write the code as follows:

int b = a.Value;

Generics

Sometimes, you will come across situations where you do the exact same thing with
different types, where the only difference is because of the type. For example, if you
had to create a method that prints an int value, you could write the following code:

public static void Print(int element)

{

 Console.WriteLine(element);

}

If you need to print a float, you could add another overload:

public static void Print(float element)

{

 Console.WriteLine(element);

}

Similarly, if you need to print a string, you could add yet another overload:

public static void Print(string element)

{

 Console.WriteLine(element);

}

Conditional Operators | 133

You did the same thing three times. Surely, there must be a way to reduce code
duplication. Remember, in C#, all types derive from an object type, which has the
ToString() method, so you can execute the following command:

public static void Print(object element)

{

 Console.WriteLine(element);

}

Even though the last implementation contains the least code, it is actually the least
efficient. An object is a reference type, whereas a primitive is a value type. When you
take a primitive and assign it to an object, you also create a new reference to it. This is
called boxing. It does not come for free, because you move objects from stack to
heap. Programmers should be conscious of this fact and avoid it wherever possible.

Earlier in the chapter, you encountered polymorphism—a way of doing different
things using the same type. You can do the same things with different types as well
and generics are what enable you to do that. In the case of the Print example, a
generic method is what you need:

public static void Print<T>(T element)

{

 Console.WriteLine(element);

}

Using diamond brackets (<>), you can specify a type, T, with which this function
works. <T> means that it can work with any type.

Now, suppose you want to print all elements of an array. Simply passing a collection
to a WriteLine statement would result in printing a reference, instead of all
the elements. Normally, you would create a method that prints all the elements
passed. With the power of generics, you can have one method that prints an array of
any type:

public static void Print<T>(T[] elements)

{

 foreach (var element in elements)

 {

 Console.WriteLine(element);

 }

}

134 | Building Quality Object-Oriented Code

Please note that the generic version is not as efficient as taking an object type,
simply because you would still be using a WriteLine overload that takes an object
as a parameter. When passing a generic, you cannot tell whether it needs to call an
overload with an int, float, or String, or whether there is an exact overload in
the first place. If there was no overload that takes an object for WriteLine, you
would not be able to call the Print method. For that reason, the most performant
code is actually the one with three overloads. It is not terribly important though
because that is just one, very specific scenario where boxing happens anyway. There
are so many other cases, however, where you can make it not only concise but
performant as well.

Sometimes, the answer to choosing a generic or polymorphic function hides
in tiny details. If you had to implement a method for comparing two elements
and return true if the first one is bigger, you could do that in C# using an
IComparable interface:

public static bool IsFirstBigger1(IComparable first, IComparable second)

{

 return first.CompareTo(second) > 0;

}

A generic version of this would look like this:

public static bool IsFirstBigger2<T>(T first, T second)

 where T : IComparable

{

 return first.CompareTo(second) > 0;

}

The new bit here is where T : IComparable. It is a generic constraint. By
default, you can pass any type to a generic class or method. Constraints still allow
different types to be passed, but they significantly reduce the possible options. A
generic constraint allows only the types that conform to the constraint to be passed
as a generic type. In this case, you will allow only the types that implement the
IComparable interface. Constraints might seem like a limitation on types; however,
they expose the behavior of the constrained types that you can use inside a generic
method. Having constraints enables you to use the features of those types, so it is
very useful. In this case, you do limit yourself to what types can be used, but at the
same time, whatever you pass to the generic method will be comparable.

Conditional Operators | 135

What if instead of returning whether the first element is bigger, you needed to return
the first element itself? You could write a non-generic method as follows:

public static IComparable Max1(IComparable first, IComparable second)

{

 return first.CompareTo(second) > 0

 ? first

 : second;

}

And the generic version would look as follows:

public static T Max2<T>(T first, T second)

 where T : IComparable

{

 return first.CompareTo(second) > 0

 ? first

 : second;

}

Also, it is worth comparing how you will get a meaningful output using each version.
With a non-generic method, this is what the code would look like:

int max1 = (int)Comparator.Max1(3, -4);

With a generic version, the code would be like this:

int max2 = Comparator.Max2(3, -4);

Note

You can find the code used for this example at https://packt.link/sIdOp.

In this case, the winner is obvious. In the non-generic version, you have to do a cast.
Casting in code is frowned upon because if you do get errors, you will get them
during runtime and things might change and the cast will fail. Casting is also one
extra action, whereas the generic version is far more fluent because it does not have
a cast. Use generics when you want to work with types as-is and not through their
abstractions. And returning an exact (non-polymorphic) type from a function is one of
the best use cases for it.

C# generics will be covered in detail in Chapter 4, Data Structures and LINQ.

https://packt.link/sIdOp

136 | Building Quality Object-Oriented Code

Enum

The enum type represents a set of known values. Since it is a type, you can pass it
instead of passing a primitive value to methods. enum holds all the possible values,
hence it isn't possible to have a value that it would not contain. The following snippet
shows a simple example of this:

public enum Gender

{

 Male,

 Female,

 Other

}

Note

You can find the code used for this example at https://packt.link/gP9Li.

You can now get a possible gender value as if it were in a static class by writing
Gender.Other. Enums can easily be converted to an integer using casting—(int)
Gender.Male will return 0, (int)Gender.Female will return 1, and so on. This
is because enum, by default, starts numbering at 0.

Enums do not have any behavior and they are known as constant containers. You
should use them when you want to work with constants and prevent invalid values
from being passed by design.

Extension Methods

Almost always, you will be working with a part of code that does not belong to you.
Sometimes, this might cause inconvenience because you have no access to change it.
Is it possible to somehow extend the existing types with the functionality you want? Is
it possible to do so without inheriting or creating new component classes?

You can achieve this easily through extension methods. They allow you to add
methods on complete types and call them as if those methods were natively there.

https://packt.link/gP9Li

Struct | 137

What if you wanted to print a string to a console using a Print method, but call
it from a string itself? String has no such method, but you can add it using an
extension method:

public static class StringExtensions

{

 public static void Print(this string text)

 {

 Console.WriteLine(text);

 }

}

And this allows you to write the following code:

"Hey".Print();

This will print Hey to the console as follows:

Hey

Note

You can find the code used for this example at https://packt.link/JC5cj.

Extension methods are static and must be placed within a static class. If you
look at the semantics of the method, you will notice the use of the this keyword.
The this keyword should be the first argument in an extension method. After that,
the function continues as normal and you can use the argument with the this
keyword as if it was just another argument.

Use extension methods to add (extend, but not the same extensions as what happens
with inheritance) new behavior to existing types, even if the type would not support
having methods otherwise. With extension methods, you can even add methods to
enum types, which is not possible otherwise.

Struct
A class is a reference type, but not all objects are reference types (saved on the heap).
Some objects can be created on the stack, and such objects are made using structs.

https://packt.link/JC5cj

138 | Building Quality Object-Oriented Code

A struct is defined like a class, but it is used for slightly different things. Now, create a
struct named Point:

public struct Point

{

 public readonly int X;

 public readonly int Y;

 public Point(int x, int y)

 {

 X = x;

 Y = y;

 }

}

The only real difference here is the struct keyword, which indicates that this
object will be saved on the stack. Also, you might have noticed that there is no use
of properties. There are many people who would, instead of Point, type x and y.
It is not a big deal, but instead of one variable, you would be working with two. This
way of working with primitives is called primitive obsession. You should follow the
principles of OOP and work with abstractions, well-encapsulated data, as well as
behavior to keep things close so that they have high cohesion. When choosing where
to place variables, ask yourself this question: can x change independently of y? Do
you ever modify a point? Is a point a complete value on its own? The answer to all of
this is yes and therefore putting it in a data structure makes sense. But why choose a
struct over a class?

Structs are fast because they do not have any allocations on the heap. They are
also fast because they are passed by value (therefore, access is direct, not through
a reference). Passing them by value copies the values, so even if you could modify
a struct, changes would not remain outside of a method. When something is just a
simple, small composite value, you should use a struct. Finally, with structs, you get
value equality.

Another effective example of a struct is DateTime. DateTime is just a unit
of time, containing some information. It also does not change individually and
supports methods such as AddDays, TryParse, and Now. Even though it has
several different pieces of data, they can be treated as one unit, as they are date- and
time-related.

Struct | 139

Most structs should be immutable because they are passed by a copy of a value,
so changing something inside a method will not keep those changes. You can add a
readonly keyword to a struct, making all its fields readonly:

public readonly struct Point

{

 public int X { get; }

 public int Y { get; }

 public Point(int x, int y)

 {

 X = x;

 Y = y;

 }

}

A readonly struct can have either a readonly field or getter properties. This is
useful for the future maintainers of your code base as it prevents them from doing
things that you did not design for (no mutability). Structs are just tiny grouped bits
of data, but they can have behavior as well. It makes sense to have a method to
calculate the distance between two points:

public static double DistanceBetween(Point p1, Point p2)

{

 return Math.Sqrt((p1.X - p2.X) * (p1.X - p2.X) + (p1.Y - p2.Y) *
(p1.Y - p2.Y));
}

The preceding code has a little bit of math in it—that is, distance between two points
is the square root of points x's and y's squared differences added together.

It also makes sense to calculate the distance between this and other points. You do
not need to change anything because you can just reuse the existing code, passing
correct arguments:

public double DistanceTo(Point p)

{

 return DistanceBetween(this, p);

}

140 | Building Quality Object-Oriented Code

If you wanted to measure the distance between two points, you could create them
like this:

var p1 = new Point(3,1);

var p2 = new Point(3,4);

And use a member function to calculate distance:

var distance1 = p1.DistanceTo(p2);

Or a static function:

var distance2 = Point.DistanceBetween(p1, p2);

The result for each version will be as follows:

– 3.

Note

You can find the code used for this example at https://packt.link/PtQzz.

When you think about a struct, think about it as just a group of primitives. The key
point to remember is that all the data members (properties or fields) in a struct must
be assigned during object initialization. It needs to be done for the same reason local
variables cannot be used without having a value set initially. Structs do not support
inheritance; however, they do support implementing an interface.

Structs are actually a great way to have simple business logic. Structs should be kept
simple and should not contain other object references within them; they should be
primitive-only. However, a class can hold as many struct objects as it needs. Using
structs is a great way of escaping the obsessive use of primitives and using simple
logic naturally, within a tiny group of data where it belongs—that is, a struct.

Record

A record is a reference type (unlike a struct, more like a class). However, out of the
box, it has methods for comparison by value (both using the equals method and
the operator). Also, a record has a different default implementation of ToString(),
which no longer prints a type, but instead all the properties. This is exactly what is
needed in many cases, so it helps a lot. Finally, there is a lot of syntactic sugar around
records, which you are about to witness.

https://packt.link/PtQzz

Struct | 141

You already know how to create custom types in C#. The only difference between
different custom types is the keyword used. For record types, such a keyword
is record. For example, you will now create a movie record. It has a Title,
Director, Producer, Description, and a ReleaseDate:

public record MovieRecordV1

{

 public string Title { get; }

 public string Director { get; }

 public string Producer { get; }

 public string Description { get; set; }

 public DateTime ReleaseDate { get; }

 public MovieRecordV1(string title, string director, string producer,
DateTime releaseDate)
 {

 Title = title;

 Director = director;

 Producer = producer;

 ReleaseDate = releaseDate;

 }

}

So far, you should find this very familiar, because the only difference is the keyword.
Regardless of such a minor detail, you already reap major benefits.

Note

The intention of having MovieRecordV1 class in chapter, as against
MovieClass in GitHub code, was to have a type, similar to a class and
then refactor highlighting how record helps.

Create two identical movies:

private static void DemoRecord()

{

 var movie1 = new MovieRecordV1(

 "Star Wars: Episode I – The Phantom Menace",

 "George Lucas",

 "Rick McCallum",

142 | Building Quality Object-Oriented Code

 new DateTime(1999, 5, 15));

 var movie2 = new MovieRecordV1(

 "Star Wars: Episode I – The Phantom Menace",

 "George Lucas",

 "Rick McCallum",

 new DateTime(1999, 5, 15));

}

So far, everything is the same. Try to print a movie to the console:

 Console.WriteLine(movie1);

The output would be as follows:

MovieRecordV1 { Title = Star Wars: Episode I - The Phantom Menace,
Director = George Lucas, Producer
= Rick McCallum, Description = , ReleaseDate = 5/15/1999 12:00:00 AM }

Note

You can find the code used for this example at https://packt.link/xylkW.

If you tried doing the same to a class or a struct object, you would only get a type
printed. However, for a record, a default behavior is to print all of its properties and
their values.

That is not the only benefit of a record. Again, a record has value-equality semantics.
Comparing two movie records will compare them by their property values:

 Console.WriteLine(movie1.Equals(movie2));

 Console.WriteLine(movie1 == movie2);

This will print true true.

With the same amount of code, you have managed to get the most functionality
by simply changing a data structure to a record. Out of the box, a record provides
Equals(), GetHashCode() overrides, == and != overrides, and even a
ToString override, which prints the record itself (all the members and their values).
The benefits of records do not end there because, using them, you have a way to
reduce a lot of boilerplate code. Take full advantage of records and rewrite your
movie record:

public record MovieRecord(string Title, string Director, string Producer,
string Description, DateTime ReleaseDate);

https://packt.link/xylkW

Struct | 143

This is a positional record, meaning all that you pass as parameters will end up in
the right read-only data members as if it was a dedicated constructor. If you ran the
demo again, you would notice that it no longer compiles. The major difference with
this declaration is that, now, changing a description is no longer possible. Making a
mutable property is not difficult, you just need to be explicit about it:

public record MovieRecord(string Title, string Director, string Producer,
DateTime ReleaseDate)
{

 public string Description { get; set; }

}

You started this paragraph with a discussion on immutability, but why is the primary
focus on records? The benefits of records are actually immutability-focused. Using
a with expression, you can create a copy of a record object with zero or more
properties modified. So, suppose you add this to your demo:

var movie3 = movie2 with { Description = "Records can do that?" };

movie2.Description = "Changing original";

Console.WriteLine(movie3);

The code would result in this:

MovieRecord { Title = Star Wars: Episode I - The Phantom Menace, Director
= George Lucas, Producer
= Rick McCallum, ReleaseDate = 5/15/1999 12:00:00 AM, Description =
Records can do that? }

As you see, this code copies an object with just one property changed. Before records,
you would need a lot of code to ensure all the members are copied, and only then
would you set a value. Keep in mind that this creates a shallow copy. A shallow
copy is an object with all the references copied. A deep copy is an object with all the
reference-type objects recreated. Unfortunately, there is no way of overriding such
behavior. Records cannot inherit classes, but they can inherit other records. They can
also implement interfaces.

Other than being a reference type, records are more like structs in that they have
value equality and syntactic sugar around immutability. They should not be used as
a replacement for structs because structs are still preferable for small and simple
objects, which have simple logic. Use records when you want immutable objects for
data, which could hold other complex objects (if nested objects could have a state
that changes, shallow copying might cause unexpected behavior).

144 | Building Quality Object-Oriented Code

Init-Only Setters

With the introduction of records, the previous edition, C# 9, also introduced init-
only setter properties. Writing init instead of set can enable object initialization
for properties:

public class House

{

 public string Address { get; init; }

 public string Owner { get; init; }

 public DateTime? Built { get; init; }

}

This enables you to create a house with unknown properties:

var house2 = new House();

Or assign them:

var house1 = new House

{

 Address = "Kings street 4",

 Owner = "King",

 Built = DateTime.Now

};

Using init-only setters is especially useful when you want read-only data, which can
be known or not, but not in a consistent matter.

Note

You can find the code used for this example at https://packt.link/89J99.

ValueTuple and Deconstruction

You already know that a function can only return one thing. In some cases, you can
use the out keyword to return a second thing. For example, converting a string to a
number is often done like this:

var text = "123";

var isNumber = int.TryParse(text, out var number);

https://packt.link/89J99

Struct | 145

TryParse returns both the parsed number and whether the text was a number.

However, C# has a better way of returning multiple values. You can achieve this using
a data structure called ValueTuple. It is a generic struct that contains from one
to six public mutable fields of any (specified) type. It is just a container for holding
unrelated values. For example, if you had a dog, a human, and a Bool, you could
store all three in a ValueTuple struct:

var values1 = new ValueTuple<Dog, Human, bool>(dog, human, isDogKnown);

You can then access each—that is, dog through values1.Item1, human through
values1.Item2, and isDogKnown through values.Item3. Another way of
creating a ValueTuple struct is to use brackets. This does exactly the same thing as
before, but using the brackets syntax:

var values2 = (dog, human, isDogKnown);

The following syntax proves extremely useful because, with it, you can declare a
function that virtually returns multiple things:

public (Dog, Human, bool) GetDogHumanAndBool()

{

 var dog = new Dog("Sparky");

 var human = new Human("Thomas");

 bool isDogKnown = false;

 return (dog, human, isDogKnown);

}

Note

You can find the code used for this example at https://packt.link/OTFpm.

You can also do the opposite, using another C# feature called deconstruction.
It takes object data members and allows you to split them apart, into separate
variables. The problem with a tuple type is that it does not have a strong name. As
mentioned before, every field will be called ItemX, where X is the order in which the
item was returned. Working with all that, GetDogHumanAndBool would require the
results to be assigned to three different variables:

var dogHumanAndBool = GetDogHumanAndBool();

var dog = dogHumanAndBool.Item1;

https://packt.link/OTFpm

146 | Building Quality Object-Oriented Code

var human = dogHumanAndBool.Item2;

var boo = dogHumanAndBool.Item3;

You can simplify this and instead make use of deconstruction—assigning object
properties to different variables right away:

var (dog, human, boo) = GetDogHumanAndBool();

Using deconstruction, you are able to make this a lot more readable and concise. Use
ValueTuple when you have multiple unrelated variables and you want to return
them all from a function. You do not have to always work around using the out
keyword, nor do you have to add overhead by creating a new class. You can solve this
problem by simply returning and then deconstructing a ValueTuple struct.

You can now have hands-on experience of using SOLID principles for writing codes
incrementally through the following exercise.

Exercise 2.04: Creating a Composable Temperature Unit Converter

Temperature can be measured in different units: Celsius, Kelvin, and Fahrenheit.
In the future, more units might be added. However, units do not have to be added
dynamically by the user; the application either supports it or not. You need to make
an application that converts temperature from any unit to another unit.

It is important to note that converting to and from that unit will be a completely
different thing. Therefore, you will need two methods for every converter. As
a standard unit, you will use Celsius. Therefore, every converter should have
a conversion method from and to Celsius, which makes it the simplest unit of
a program. When you need to convert non-Celsius to Celsius, you will need to
involve two converters—one to adapt the input to the standard unit (C), and then
another one to convert from C to whatever unit you want. The exercise will aid you
in developing an application using the SOLID principles and C# features you have
learned in this chapter, such as record and enum.

Perform the following steps to do so:

1. Create a TemperatureUnit that uses an enum type to define constants—that
is, a set of known values. You do not need to add it dynamically:

public enum TemperatureUnit

{

 C,

 F,

 K

}

Struct | 147

In this example, you will use three temperature units that are C, K, and F.

2. Temperature should be thought of as a simple object made of two properties:
Unit and Degrees. You could either use a record or a struct because it
is a very simple object with data. The best choice would be picking a struct
here (due to the size of the object), but for the sake of practicing, you will use
a record:

public record Temperature(double Degrees, TemperatureUnit Unit);

3. Next, add a contract defining what you want from an individual specific
temperature converter:

public interface ITemperatureConverter

{

 public TemperatureUnit Unit { get; }

 public Temperature ToC(Temperature temperature);

 public Temperature FromC(Temperature temperature);

}

You defined an interface with three methods—the Unit property to identify
which temperature the converter is for, and ToC and FromC to convert from
and to standard units.

4. Now that you have a converter, add the composable converter, which has an
array of converters:

public class ComposableTemperatureConverter

{

 private readonly ITemperatureConverter[] _converters;

5. It makes no sense to have duplicate temperature unit converters. So, add an
error that will be thrown when a duplicate converter is detected. Also, not having
any converters makes no sense. Therefore, there should be some code for
validating against null or empty converters:

public class InvalidTemperatureConverterException : Exception

{

 public InvalidTemperatureConverterException(TemperatureUnit unit)
: base($"Duplicate converter for {unit}.")
 {

 }

 public InvalidTemperatureConverterException(string message) :
base(message)

148 | Building Quality Object-Oriented Code

 {

 }

}

When creating custom exceptions, you should provide as much information as
possible about the context of an error. In this case, pass the unit for which the
converter was not found.

6. Add a method that requires non-empty converters:

private static void RequireNotEmpty(ITemperatureConverter[]
converters)
{

 if (converters?.Length > 0 == false)

 {

 throw new InvalidTemperatureConverterException("At least one
temperature conversion must be supported");
 }

}

Passing an array of empty converters throws an
InvalidTemperatureConverterException exception.

7. Add a method that requires non-duplicate converters:

private static void RequireNoDuplicate(ITemperatureConverter[]
converters)
{

 for (var index1 = 0; index1 < converters.Length - 1; index1++)

 {

 var first = converters[index1];

 for (int index2 = index1 + 1; index2 < converters.Length;
index2++)
 {

 var second = converters[index2];

 if (first.Unit == second.Unit)

 {

 throw new InvalidTemperatureConverterException(first.
Unit);
 }

 }

 }

}

Struct | 149

This method goes through every converter and checks that, at other indexes,
the same converter is not repeated (by duplicating TemperatureUnit).
If it finds a duplicate unit, it will throw an exception. If it does not, it will just
terminate successfully.

8. Now combine it all in a constructor:

public ComposableTemperatureConverter(ITemperatureConverter[]
converters)
{

 RequireNotEmpty(converters);

 RequireNoDuplicate(converters);

 _converters = converters;

}

When creating the converter, validate against converters that are not empty and
not duplicates and only then set them.

9. Next, create a private helper method to help you find the requisite converter,
FindConverter, inside the composable converter:

private ITemperatureConverter FindConverter(TemperatureUnit unit)

{

 foreach (var converter in _converters)

 {

 if (converter.Unit == unit)

 {

 return converter;

 }

 }

 throw new InvalidTemperatureConversionException(unit);

}

This method returns the converter of the requisite unit and, if no converter is
found, throws an exception.

150 | Building Quality Object-Oriented Code

10. To simplify how you search and convert from any unit to Celsius, add a
ToCelsius method for that:

private Temperature ToCelsius(Temperature temperatureFrom)

{

 var converterFrom = FindConverter(temperatureFrom.Unit);

 return converterFrom.ToC(temperatureFrom);

}

Here, you find the requisite converter and convert the Temperature to Celsius.

11. Do the same for converting from Celsius to any other unit:

private Temperature CelsiusToOther(Temperature celsius,
TemperatureUnit unitTo)
{

 var converterTo = FindConverter(unitTo);

 return converterTo.FromC(celsius);

}

12. Wrap it all up by implementing this algorithm, standardize the temperature
(convert to Celsius), and then convert to any other temperature:

public Temperature Convert(Temperature temperatureFrom,
TemperatureUnit unitTo)
{

 var celsius = ToCelsius(temperatureFrom);

 return CelsiusToOther(celsius, unitTo);

}

13. Add a few converters. Start with the Kelvin converter, KelvinConverter:

public class KelvinConverter : ITemperatureConverter

{

 public const double AbsoluteZero = -273.15;

 public TemperatureUnit Unit => TemperatureUnit.K;

 public Temperature ToC(Temperature temperature)

 {

 return new(temperature.Degrees + AbsoluteZero,
TemperatureUnit.C);
 }

 public Temperature FromC(Temperature temperature)

Struct | 151

 {

 return new(temperature.Degrees - AbsoluteZero, Unit);

 }

}

The implementation of this and all the other converters is straightforward.
All you had to do was implement the formula to convert to the correct unit
from or to Celsius. Kelvin has a useful constant, absolute zero, so instead of
having a magic number, –273.15, you used a named constant. Also, it is
worth remembering that a temperature is not a primitive. It is both a degree
value and a unit. So, when converting, you need to pass both. ToC will always
take TemperatureUnit.C as a unit and FromC will take whatever unit the
converter is identified as, in this case, TemperatureUnit.K.

14. Now add a Fahrenheit converter, FahrenheitConverter:

public class FahrenheitConverter : ITemperatureConverter

{

 public TemperatureUnit Unit => TemperatureUnit.F;

 public Temperature ToC(Temperature temperature)

 {

 return new(5.0/9 * (temperature.Degrees - 32),
TemperatureUnit.C);
 }

 public Temperature FromC(Temperature temperature)

 {

 return new(9.0 / 5 * temperature.Degrees + 32, Unit);

 }

}

Fahrenheit is identical structure-wise; the only differences are the formulas and
unit value.

15. Add a CelsiusConverter, which will accept a value for the temperature and
return the same value, as follows:

 public class CelsiusConverter : ITemperatureConverter

 {

 public TemperatureUnit Unit => TemperatureUnit.C;

 public Temperature ToC(Temperature temperature)

 {

152 | Building Quality Object-Oriented Code

 return temperature;

 }

 public Temperature FromC(Temperature temperature)

 {

 return temperature;

 }

 }

CelsiusConverter is the simplest one. It does not do anything; it just returns
the same temperature. The converters convert to standard temperature—
Celsius to Celsius is always Celsius. Why do you need such a class at all? Without
it, you would need to change the flow a bit, adding if statements to ignore
the temperature if it was in Celsius. But with this implementation, you can
incorporate it in the same flow and use it in the same way with the help of the
same abstraction, ITemperatureConverter.

16. Finally, create a demo:

Solution.cs

public static class Solution
{
 public static void Main()
 {
 ITemperatureConverter[] converters = {new FahrenheitConverter(), new
KelvinConverter(), new CelsiusConverter()};
 var composableConverter = new
ComposableTemperatureConverter(converters);

 var celsius = new Temperature(20.00001, TemperatureUnit.C);

 var celsius1 = composableConverter.Convert(celsius,
TemperatureUnit.C);
 var fahrenheit = composableConverter.Convert(celsius1,
TemperatureUnit.F);
 var kelvin = composableConverter.Convert(fahrenheit,
TemperatureUnit.K);
 var celsiusBack = composableConverter.Convert(kelvin,
TemperatureUnit.C);

 Console.WriteLine($"{celsius} = {fahrenheit}");

You can find the complete code here: https://packt.link/ruBph.

In this example, you have created all the converters and passed them to the
converters container called composableConverter. Then you have created
a temperature in Celsius and used it to perform conversions from and to all the
other temperatures.

https://packt.link/ruBph

Struct | 153

17. Run the code and you will get the following results:

Temperature { Degrees = 20.00001, Unit = C } = Temperature { Degrees
= 68.000018, Unit = F }
Temperature { Degrees = 68.000018, Unit = F } = Temperature { Degrees
= -253.14998999999997, Unit = K }
Temperature { Degrees = -253.14998999999997, Unit = K } = Temperature
{ Degrees = 20.000010000000003, Unit = C }

Note

You can find the code used for this exercise at https://packt.link/dDRU6.

A software developer, ideally, should design code in such a way that making a change
now or in the future will take the same amount of time. Using SOLID principles, you
can write code incrementally and minimize the risk of breaking changes, because
you never change existing code; you just add new code. As systems grow, complexity
increases, and it might be difficult to learn how things work. Through well-defined
contracts, SOLID enables you to have easy-to-read, and maintainable code because
each piece is straightforward by itself, and they are isolated from one another.

You will now test your knowledge of creating classes and overriding operators
through an activity.

Activity 2.01: Merging Two Circles

In this activity, you will create classes and override operators to solve the following
mathematics problem: A portion of pizza dough can be used to create two circular
pizza bites each with a radius of three centimeters. What would be the radius of a
single pizza bite made from the same amount of dough? You can assume that all
the pizza bites are the same thickness. The following steps will help you complete
this activity:

1. Create a Circle struct with a radius. It should be a struct because it is a
simple data object, which has a tiny bit of logic, calculating area.

2. Add a property to get the area of a circle (try to use an expression-bodied
member). Remember, the formula of a circle's area is pi*r*r. To use the PI
constant, you will need to import the Math package.

https://packt.link/dDRU6

154 | Building Quality Object-Oriented Code

3. Add two circles' areas together. The most natural way would be to use an
overload for a plus (+) operator. Implement a + operator overload that takes two
circles and returns a new one. The area of the new circle is the sum of the areas
of the two old circles. However, do not create a new circle by passing the area.
You need a Radius. You can calculate this by dividing the new area by PI and
then taking the square root of the result.

4. Now create a Solution class that takes two circles and returns a result—the
radius of the new circle.

5. Within the main method, create two circles with a radius of 3 cm and define a
new circle, which is equal to the areas of the two other circles added together.
Print the results.

6. Run the main method and the result should be as follows:

Adding circles of radius of 3 and 3 results in a new circle with a
radius 4.242640687119285

As you can see from this final output, the new circle will have a radius of 4.24
(rounded to the second decimal place).

Note

The solution to this activity can be found at https://packt.link/qclbF.

This activity was designed to test your knowledge of creating classes and overriding
operators. Operators are not normally employed to solve this sort of problem, but in
this case, it worked well.

https://packt.link/qclbF

Summary | 155

Summary
In this chapter, you learned about OOP and how it helps take complex problems and
abstract them into simple concepts. C# has several useful features and, roughly every
one or two years, a new language version is released. The features mentioned in this
chapter are just some of the ways in which C# aids in productivity. You have seen
how, by design, it allows for better, clearer code, less prone to error. C# is one of the
best languages when it comes to productivity. With C#, you can make effective code,
and quickly, because a lot of the boilerplate code is done for you.

Finally, you learned the SOLID principles and used them in an application. SOLID is
not something you can just read and learn immediately; it takes practice, discussions
with your peers, and a lot of trial and error before you get it right and start applying
it consistently. However, the benefits are worth it. In modern software development,
producing fast, optimal code is no longer a number one priority. Nowadays, the focus
is a balance of productivity (how fast you develop) and performance (how fast your
program is). C# is one of the most efficient languages out there, both in terms of
performance and productivity.

In the next chapter, you will learn what functional programming is and how to work
with lambdas and functional constructs such as delegates.

Overview

In this chapter, you will learn how delegates are defined and invoked, and
you will explore their wide usage across the .NET ecosystem. With this
knowledge, you will move on to the inbuilt Action and Func delegates
to discover how their usage reduces unnecessary boilerplate code. You
will then see how multicast delegates can be harnessed to send messages
to multiple parties, and how events can be incorporated into event-driven
code. Along the way, you will discover some common pitfalls to avoid and
best practices to follow that prevent a great application from turning into an
unreliable one.

This chapter will demystify the lambda syntax style and show how it can
be used effectively. By the end of the chapter, you will be able to use the
lambda syntax comfortably to create code that is succinct, as well as easy
to grasp and maintain.

Delegates, Events, and

Lambdas

3

158 | Delegates, Events, and Lambdas

Introduction
In the previous chapter, you learned some of the key aspects of Object Oriented
Programming (OOP). In this chapter, you will build on this by looking at the common
patterns used specifically in C# that enable classes to interact.

Have you found yourself working with a code that has to listen to certain signals and
act on them, but you cannot be sure until runtime what those actions should be?
Maybe you have a block of code that you need to reuse or pass to other methods
for them to call when they are ready. Or, you may want to filter a list of objects, but
need to base how you would do that on a combination of user preferences. Much of
this can be achieved using interfaces, but it is often more efficient to create chunks
of code that you can then pass to other classes in a type-safe way. Such blocks are
referred to as delegates and form the backbone of many .NET libraries, allowing
methods or pieces of code to be passed as parameters.

The natural extension to a delegate is the event, which makes it possible to offer a
form of optional behavior in software. For example, you may have a component that
broadcasts live news and stock prices, but unless you provide a way to opt into these
services, you may limit the usability of such a component.

User Interface (UI) apps often provide notifications of various user actions, for
example, keypresses, swiping a screen, or clicking a mouse button; such notifications
follow a standard pattern in C#, which will be discussed fully in this chapter. In
such scenarios, the UI element detecting such actions is referred to as a publisher,
whereas the code that acts upon those messages is called a subscriber. When
brought together, they form an event-driven design referred to as the publisher-
subscriber, or pub-sub, pattern. You will see how this can be used in all types of C#.
Remember that its usage is not just the exclusive domain of UI applications.

Finally, you will learn about lambda statements and lambda expressions, collectively
known as lambdas. These have an unusual syntax, which can initially take a while
to become comfortable with. Rather than having lots of methods and functions
scattered within a class, lambdas allow for smaller blocks of code that are often self-
contained and located within close proximity to where they are used in the code,
thereby offering an easier way to follow and maintain code. You will learn about
lambdas in detail in the latter half of this chapter. First, you will learn about delegates.

Delegates | 159

Delegates
The .NET delegate is similar to function pointers found in other languages, such
as C++; in other words, it is like a pointer to a method to be invoked at runtime. In
essence, it is a placeholder for a block of code, which can be something as simple
as a single statement or a full-blown multiline code block, complete with complex
branches of execution, that you ask other code to execute at some point in time. The
term delegate hints at some form of representative, which is precisely what this
placeholder concept relates to.

Delegates allow for minimum coupling between objects, and much less code. There is
no need to create classes that are derived from specific classes or interfaces. By using
a delegate, you are defining what a compatible method should look like, whether it is
in a class or struct, static, or instance-based. The arguments and return type define
this calling compatibility.

Furthermore, delegates can be used in a callback fashion, which allows multiple
methods to be wired up to a single publication source. They often require much less
code and provide more features than found using an interface-based design.

The following example shows how effective delegates can be. Suppose you have a
class that searches for users by surname. It would probably look like this:

public User FindBySurname(string name)

{

 foreach(var user in _users)

 if (user.Surname == name)

 return user;

 return null;

}

You then need to extend this to include a search of the user's login name:

public User FindByLoginName(string name)

{

 foreach(var user in _users)

 if (user.LoginName == name)

 return user;

 return null;

}

160 | Delegates, Events, and Lambdas

Once again, you decide to add yet another search, this time by location:

public User FindByLocation(string name)

{

 foreach(var user in _users)

 if (user.Location == name)

 return user;

 return null;

}

You start the searches with code like this:

public void DoSearch()

{

 var user1 = FindBySurname("Wright");

 var user2 = FindByLoginName("JamesR");

 var user3 = FindByLocation("Scotland");

}

Can you see the pattern that is occurring every time? You are repeating the same
code that iterates through the list of users, applying a Boolean condition (also known
as a predicate) to find the first matching user.

The only thing that is different is that the predicate decides whether a match has
been found. This is one of the common cases where delegates are used at a basic
level. The predicate can be replaced with a delegate, acting as a placeholder, which
is evaluated when required.

Converting this code to a delegate style, you define a delegate named FindUser
(this step can be skipped as .NET contains a delegate definition that you can reuse;
you will come to this later).

All you need is a single helper method, Find, which is passed a FindUser delegate
instance. Find knows how to loop through the users, invoking the delegate passing in
the user, which returns true or false for a match:

private delegate bool FindUser(User user);

private User Find(FindUser predicate)

{

 foreach (var user in _users)

 if (predicate(user))

 return user;

 return null;

}

Delegates | 161

public void DoSearch()

{

 var user4 = Find(user => user.Surname == "Wright");

 var user5 = Find(user => user.LoginName == "JamesR");

 var user6 = Find(user => user.Location == "Scotland");

}

As you can see, the code is kept together and is much more concise now. There is no
need to cut and paste code that loops through the users, as that is all done in one
place. For each type of search, you simply define a delegate once and pass it to Find.
To add a new type of search, all you need to do is define it in a single statement line,
rather than copying at least eight lines of code that repeat the looping function.

The lambda syntax is a fundamental style used to define method bodies, but its
strange syntax can prove to be an obstacle at first. At first glance, lambda expressions
can look odd with their => style, but they do offer a cleaner way to specify a target
method. The act of defining a lambda is similar to defining a method; you essentially
omit the method name and use => to prefix a block of code.

You will now look at another example, using interfaces this time. Consider that you
are working on a graphics engine and need to calculate the position of an image
onscreen each time the user rotates or zooms in. Note that this example skips any
complex math calculations.

Consider that you need to transform a Point class using the ITransform interface
with a single method named Move, as shown in the following code snippet:

public class Point

{

 public double X { get; set; }

 public double Y { get; set; }

}

public interface ITransform

{

 Point Move(double height, double width);

}

162 | Delegates, Events, and Lambdas

When the user rotates an object, you need to use RotateTransform, and for a
zoom operation, you will use ZoomTransform, as follows. Both are based on the
ITransform interface:

public class RotateTransform : ITransform

{

 public Point Move(double height, double width)

 {

 // do stuff

 return new Point();

 }

}

public class ZoomTransform : ITransform

{

 public Point Move(double height, double width)

 {

 // do stuff

 return new Point();

 }

}

So, given these two classes, a point can be transformed by creating a new
Transform instance, which is passed to a method named Calculate, as shown
in the following code. Calculate calls the corresponding Move method, and does
some extra unspecified work on point, before returning point to the caller:

public class Transformer

{

 public void Transform()

 {

 var rotatePoint = Calculate(new RotateTransform(), 100, 20);

 var zoomPoint = Calculate(new ZoomTransform(), 5, 5);

 }

 private Point Calculate(ITransform transformer, double height, double
width)
 {

Delegates | 163

 var point = transformer.Move(height, width);

 //do stuff to point

 return point;

 }

}

This is a standard class and interface-based design, but you can see that you have
made a lot of effort to create new classes with just a single numeric value from a
Move method. It is a worthwhile idea to have the calculations broken down into an
easy-to-follow implementation. After all, it could have led to a future maintenance
problem if implemented in a single method with multiple if-then branches.

By re-implementing a delegate-based design, you still have maintainable code, but
much less of it to look after. You can have a TransformPoint delegate and a new
Calculate function that can be passed a TransformPoint delegate.

You can invoke a delegate by appending brackets around its name and passing in
any arguments. This is similar to how you would call a standard class-level function
or method. You will cover this invocation in more detail later; for now, consider the
following snippet:

 private delegate Point TransformPoint(double height, double width);

 private Point Calculate(TransformPoint transformer, double height,
double width)
 {

 var point = transformer(height, width);

 //do stuff to point

 return point;

 }

You still need the actual target Rotate and Zoom methods, but you do not have the
overhead of creating unnecessary classes to do this. You can add the following code:

 private Point Rotate(double height, double width)

 {

 return new Point();

 }

 private Point Zoom(double height, double width)

 {

 return new Point();

 }

164 | Delegates, Events, and Lambdas

Now, calling the method delegates is as simple as the following:

 public void Transform()

 {

 var rotatePoint1 = Calculate(Rotate, 100, 20);

 var zoomPoint1 = Calculate(Zoom, 5, 5);

 }

Notice how using delegates in this way helps eliminate a lot of unnecessary code.

Note

You can find the code used for this example at https://packt.link/AcwZA.

In addition to invoking a single placeholder method, a delegate also contains extra
plumbing that allows it to be used in a multicast manner, that is, a way to chain
multiple target methods together, each being invoked one after the other. This is
often referred to as an invocation list or delegate chain and is initiated by code that
acts as a publication source.

A simple example of how this multicast concept applies can be seen in UIs. Imagine
you have an application that shows the map of a country. As the user moves their
mouse over the map, you may want to perform various actions, such as the following:

• Changing the mouse pointer to a different shape while over a building.

• Showing a tooltip that calculates the real-world longitude and
latitude coordinates.

• Showing a message in a status bar that calculates the population of the area
where the mouse is hovering.

To achieve this, you would need some way to detect when the user moves the mouse
over the screen. This is often referred to as the publisher. In this example, its sole
purpose is to detect mouse movements and publish them to anyone who is listening.

To perform the three required UI actions, you would create a class that has a list of
objects to notify when the mouse position changes, allowing each object to perform
whatever activity it needs, in isolation from the others. Each of these objects is
referred to as a subscriber.

https://packt.link/AcwZA

Delegates | 165

When your publisher detects that the mouse has moved, you follow this pseudo code:

MouseEventArgs args = new MouseEventArgs(100,200)

foreach(subscription in subscriptionList)

{

 subscription.OnMouseMoved(args)

}

This assumes that subscriptionList is a list of objects, perhaps based on an
interface with the OnMouseMoved method. It is up to you to add code that enables
interested parties to subscribe to and unsubscribe from the OnMouseMoved
notifications. It would be an unfortunate design if code that has previously subscribed
has no way to unsubscribe and gets called repeatedly when there is no longer any
need for it to be called.

In the preceding code, there is a fair amount of coupling between the publisher and
subscribers, and you are back to using interfaces for a type-safe implementation.
What if you then needed to listen for keypresses, both key down and key up? It would
soon get quite frustrating having to repeatedly copy such similar code.

Fortunately, the delegate type contains all this as inbuilt behavior. You can use single
or multiple target methods interchangeably; all you need to do is invoke a delegate
and the delegate will handle the rest for you.

You will take an in-depth look at multicast delegates shortly, but first, you will explore
the single-target method scenario.

Defining a Custom Delegate

Delegates are defined in a way that is similar to that of a standard method. The
compiler does not care about the code in the body of a target method, only that it can
be invoked safely at some point in time.

The delegate keyword is used to define a delegate, using the following format:

public delegate void MessageReceivedHandler(string message, int size);

The following list describes each component of this syntax:

• Scope: An access modifier, such as public, private, or protected, to
define the scope of the delegate. If you do not include a modifier, the compiler
will default to marking it as private, but it is always better to be explicit in
showing the intent of your code.

• The delegate keyword.

166 | Delegates, Events, and Lambdas

• Return type: If there is no return type, void is used.

• Delegate name: This can be anything that you like, but the name must be unique
within the namespace. Many naming conventions (including Microsoft's) suggest
adding Handler or EventHandler to your delegate's name.

• Arguments, if required.

Note

Delegates can be nested within a class or namespace; they can also
be defined within the global namespace, although this practice is
discouraged. When defining classes in C#, it is common practice to
define them within a parent namespace, typically based on a hierarchical
convention that starts with the company name, followed by the product
name, and finally the feature. This helps to provide a more unique identity to
a type.

By defining a delegate without a namespace, there is a high chance that it
will clash with another delegate with the same name if it is also defined in a
library without the protection of a namespace. This can cause the compiler
to become confused as to which delegate you are referring to.

In earlier versions of .NET, it was common practice to define custom delegates. Such
code has since been replaced with various inbuilt .NET delegates, which you will look
at shortly. For now, you will briefly cover the basics of defining a custom delegate. It is
worthwhile know about this if you maintain any legacy C# code.

In the next exercise, you will create a custom delegate, one that is passed a
DateTime parameter and returns a Boolean to indicate validity.

Exercise 3.01: Defining and Invoking Custom Delegates

Say you have an application that allows users to order products. While filling in the
order details, the customer can specify an order date and a delivery date, both of
which must be validated before accepting the order. You need a flexible way to
validate these dates. For some customers, you may allow weekend delivery dates,
while for others, it must be at least seven days away. You may also allow an order to
be back-dated for certain customers.

Delegates | 167

You know that delegates offer a way to vary an implementation at runtime, so that
is the best way to proceed. You do not want multiple interfaces, or worse, a complex
jumble of if-then statements, to achieve this.

Depending on the customer's profile, you can create a class named Order, which
can be passed different date validation rules. These rules can be validated by a
Validate method:

Perform the following steps to do so:

1. Create a new folder called Chapter03.

2. Change to the Chapter03 folder and create a new console app, called
Exercise01, using the CLI dotnet command, as follows:

source\Chapter03>dotnet new console -o Exercise01

You will see the following output:

The template "Console Application" was created successfully.

Processing post-creation actions...

Running 'dotnet restore' on Exercise01\Exercise01.csproj...

 Determining projects to restore...

 Restored source\Chapter03\Exercise01\Exercise01.csproj (in 191 ms).

Restore succeeded.

3. Open Chapter03\Exercise01.csproj and replace the contents with
these settings:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net6.0</TargetFramework>

 </PropertyGroup>

</Project>

4. Open Exercise01\Program.cs and clear the contents.

168 | Delegates, Events, and Lambdas

5. The preference for using namespaces to prevent a clash with objects from other
libraries was mentioned earlier, so to keep things isolated, use Chapter03.
Exercise01 as the namespace.

To implement your date validation rules, you will define a delegate that takes
a single DateTime argument and returns a Boolean value. You will name it
DateValidationHandler:

using System;

namespace Chapter03.Exercise01

{

 public delegate bool DateValidationHandler(DateTime dateTime);

}

6. Next, you will create a class named Order, which contains details of the order
and can be passed to two date validation delegates:

 public class Order

 {

 private readonly DateValidationHandler _orderDateValidator;

 private readonly DateValidationHandler _deliveryDateValidator;

Notice how you have declared two read-only, class-level instances of
DateValidationHandler, one to validate the order date and a second to
validate the delivery date. This design assumes that the date validation rules are
not going to be altered for this Order instance.

7. Now for the constructor, you pass the two delegates:

 public Order(DateValidationHandler orderDateValidator,

 DateValidationHandler deliveryDateValidator)

 {

 _orderDateValidator = orderDateValidator;

 _deliveryDateValidator = deliveryDateValidator;

 }

In this design, a different class is typically responsible for deciding which
delegates to use, based on the selected customer's profile.

8. You need to add the two date properties that are to be validated. These dates
may be set using a UI that listens to keypresses and applies user edits directly to
this class:

 public DateTime OrderDate { get; set; }

 public DateTime DeliveryDate { get; set; }

Delegates | 169

9. Now add an IsValid method that passes OrderDate to the
orderDateValidator delegate and DeliveryDate to the
deliveryDateValidator delegate:

 public bool IsValid() =>

 _orderDateValidator(OrderDate) &&

 _deliveryDateValidator(DeliveryDate);

 }

If both are valid, then this call will return true. The key here is that Order
doesn't need to know about the precise implementation of an individual
customer's date validation rules, so you can easily reuse Order elsewhere in a
program. To invoke a delegate, you simply wrap any arguments in brackets, in
this case passing the correct date property to each delegate instance:

10. To create a console app to test this, add a static class called Program:

 public static class Program

 {

11. You want to create two functions that validate whether the date passed to them
is valid. These functions will form the basis of your delegate target methods:

 private static bool IsWeekendDate(DateTime date)

 {

 Console.WriteLine("Called IsWeekendDate");

 return date.DayOfWeek == DayOfWeek.Saturday ||

 date.DayOfWeek == DayOfWeek.Sunday;

 }

 private static bool IsPastDate(DateTime date)

 {

 Console.WriteLine("Called IsPastDate");

 return date < DateTime.Today;

 }

Notice how both have the exact signature that the DateValidationHandler
delegate is expecting. Neither is aware of the nature of the date that they are
validating, as that is not their concern. They are both marked static as they do
not interact with any variables or properties anywhere in this class.

170 | Delegates, Events, and Lambdas

12. Now for the Main entry point. Here, you create two
DateValidationHandler delegate instances, passing IsPastDate to one
and IsWeekendDate to the second. These are the target methods that will get
called when each of the delegates is invoked:

 public static void Main()

 {

 var orderValidator = new DateValidationHandler(IsPastDate);

 var deliverValidator = new
DateValidationHandler(IsWeekendDate);

13. Now you can create an Order instance, passing in the delegates and setting the
order and delivery dates:

 var order = new Order(orderValidator, deliverValidator)

 {

 OrderDate = DateTime.Today.AddDays(-10),

 DeliveryDate = new DateTime(2020, 12, 31)

 };

There are various ways to create delegates. Here, you have assigned them to
variables first to make the code clearer (you will cover different styles later).

14. Now it's just a case of displaying the dates in the console and calling IsValid,
which, in turn, will invoke each of your delegate methods once. Notice that a
custom date format is used to make the dates more readable:

 Console.WriteLine($"Ordered: {order.OrderDate:dd-MMM-yy}");

 Console.WriteLine($"Delivered: {order.DeliveryDate:dd-
MMM-yy }");
 Console.WriteLine($"IsValid: {order.IsValid()}");

 }

 }

}

15. Running the console app produces output like this:

Ordered: 07-May-22

Delivered: 31-Dec-20

Called IsPastDate

Called IsWeekendDate

IsValid: False

This order is not valid as the delivery date is a Thursday, not a weekend as
you require:

Delegates | 171

You have learned how to define a custom delegate and have created two instances
that make use of small helper functions to validate dates. This gives you an idea of
how flexible delegates can be.

Note

You can find the code used for this exercise at https://packt.link/cmL0s.

The Inbuilt Action and Func Delegates

When you define a delegate, you are describing its signature, that is, the return type
and a list of input parameters. With that said, consider these two delegates:

public delegate string DoStuff(string name, int age);

public delegate string DoMoreStuff(string name, int age);

They both have the same signature but vary by name alone, which is why you can
declare an instance of each and have them both point at the same target method
when invoked:

public static void Main()

{

 DoStuff stuff = new DoStuff(MyMethod);

 DoMoreStuff moreStuff = new DoMoreStuff(MyMethod);

 Console.WriteLine($"Stuff: {stuff("Louis", 2)}");

 Console.WriteLine($"MoreStuff: {moreStuff("Louis", 2)}");

}

private static string MyMethod(string name, int age)

{

 return $"{name}@{age}";

}

https://packt.link/cmL0s

172 | Delegates, Events, and Lambdas

Running the console app produces the same results in both calls:

Stuff: Louis@2

MoreStuff: Louis@2

Note

You can find the code used for this example at https://packt.link/r6B8n.

It would be great if you could dispense with defining both DoStuff and
DoMoreStuff delegates and use a more generalized delegate with precisely
the same signature. After all, it does not matter in the preceding snippet if you
create a DoStuff or DoMoreStuff delegate, since both make a call to the same
target method.

.NET does, in fact, provide various inbuilt delegates that you can make use of directly,
saving you the effort of defining such delegates yourself. These are the Action and
Func delegates.

There are many possible combinations of Action and Func delegates, each
allowing an increasing number of parameters. You can specify anywhere from zero
to 16 different parameter types. With so many combinations available, it is extremely
unlikely that you will ever need to define your own delegate type.

It is worth noting that Action and Func delegates were added in a later version
of .NET and, as such, the use of custom delegates tends to be found in older legacy
code. There is no need to create new delegates yourself.

In the following snippet, MyMethod is invoked using the three-argument Func
variation; you will cover the odd-looking <string, int, string> syntax shortly:

Func<string, int, string> funcStuff = MyMethod;

Console.WriteLine($"FuncStuff: {funcStuff("Louis", 2)}");

This produces the same return value as the two earlier invocations:

FuncStuff: Louis@2

https://packt.link/r6B8n

Delegates | 173

Before you continue exploring Action and Func delegates, it is useful to explore
the Action<string, int, string> syntax a bit further. This syntax allows type
parameters to be used to define classes and methods. These are known as generics
and act as placeholders for a particular type. In Chapter 4, Data Structures and LINQ,
you will cover generics in much greater detail, but it is worth summarizing their usage
here with the Action and Func delegates.

The non-generic version of the Action delegate is predefined in .NET as follows:

public delegate void Action()

As you know from your earlier look at delegates, this is a delegate that does not
take any arguments and does not have a return type; it is the simplest type of
delegate available.

Contrast that with one of the generic Action delegates predefined in .NET:

public delegate void Action<T>(T obj)

You can see this includes a <T> and T parameter section, which means it accepts a
single-type argument. Using this, you can declare an Action that is constrained to a
string, which takes a single string argument and returns no value, as follows:

Action<string> actionA;

How about an int constrained version? This also has no return type and takes a
single int argument:

Action<int> actionB;

Can you see the pattern here? In essence, the type that you specify can be used to
declare a type at compile time. What if you wanted two arguments, or three, or four…
or 16? Simple. There are Action and Func generic types that can take up to 16
different argument types. You are very unlikely to be writing code that needs more
than 16 parameters.

This two-argument Action takes int and string as parameters:

Action<int, string> actionC;

You can spin that around. Here is another two-argument Action, but this takes a
string parameter and then an int parameter:

Action<string, int> actionD;

These cover most argument combinations, so you can see that it is very rare to create
your own delegate types.

174 | Delegates, Events, and Lambdas

The same rules apply to delegates that return a value; this is where the Func types
are used. The generic Func type starts with a single value type parameter:

public delegate T Func<T>()

In the following example, funcE is a delegate that returns a Boolean value and takes
no arguments:

Func<bool> funcE;

Can you guess which is the return type from this rather long Func declaration?

Func<bool, int, int, DateTime, string> funcF;

This gives a delegate that returns a string . In other words, the last argument type
in a Func defines the return type. Notice that funcF takes four arguments: bool,
int, int, and DateTime.

In summary, generics are a great way to define types. They save a lot of duplicate
code by allowing type parameters to act as placeholders.

Assigning Delegates

You covered creating custom delegates and briefly how to assign and invoke a
delegate in Exercise 3.01. You then looked at using the preferred Action and Func
equivalents, but what other options do you have for assigning the method (or
methods) that form a delegate? Are there other ways to invoke a delegate?

Delegates can be assigned to a variable in much the same way that you might assign
a class instance. You can also pass new instances or static instances around without
having to use variables to do so. Once assigned, you can invoke the delegate or pass
the reference to other classes so they can invoke it, and this is often done within the
Framework API.

You will now look at a Func delegate, which takes a single DateTime argument and
returns a bool value to indicate validity. You will use a static class containing two
helper methods, which form the actual target:

public static class DateValidators

{

 public static bool IsWeekend(DateTime dateTime)

 => dateTime.DayOfWeek == DayOfWeek.Saturday ||

 dateTime.DayOfWeek == DayOfWeek.Sunday;

Delegates | 175

 public static bool IsFuture(DateTime dateTime)

 => dateTime.Date > DateTime.Today;

}

Note

You can find the code used for this example at https://packt.link/mwmxh.

Note that the DateValidators class is marked as static. You may have heard
the phrase statics are inefficient. In other words, creating an application with many
static classes is a weak practice. Static classes are instantiated the first time they are
accessed by running code and remain in memory until the application is closed. This
makes it difficult to control their lifetime. Defining small utility classes as static is less
of an issue, provided they do indeed remain stateless. Stateless means they do not
set any local variables. Static classes that set local states are very difficult to unit test;
you can never be sure that the variable set is from one test or another test.

In the preceding snippet, IsFuture returns true if the Date property of the
DateTime argument is later than the current date. You are using the static
DateTime.Today property to retrieve the current system date. IsWeekend is
defined using an expression-bodied syntax and will return true if the DateTime
argument's day of the week falls on a Saturday or Sunday.

You can assign delegates the same way that you would assign regular variables
(remember you do not have to assign a variable to pass to other classes). You will
now create two validator variables, futureValidator and weekendValidator.
Each constructor is passed the actual target method, the IsFuture or IsWeekend
instance, respectively:

var futureValidator = new Func<DateTime, bool>(DateValidators.IsFuture);

var weekendValidator = new Func<DateTime, bool>(DateValidators.
IsWeekend);

Note that it is not valid to use the var keyword to assign a delegate without wrapping
in the Func prefix:

var futureValidator = DateValidation.IsFuture;

This results in the following compiler error:

Cannot assign method group to an implicitly - typed variable

https://packt.link/mwmxh

176 | Delegates, Events, and Lambdas

Taking this knowledge of delegates, proceed to how you can invoke a delegate.

Invoking a Delegate

There are several ways to invoke a delegate. For example, consider the
following definition:

var futureValidator = new Func<DateTime, bool>(DateValidators.IsFuture);

To invoke futureValidator, you must pass in a DateTime value, and it will
return a bool value using any of these styles:

• Invoke with the null-coalescing operator:

var isFuture1 = futureValidator?.Invoke(new DateTime(2000, 12, 31));

This is the preferred and safest approach; you should always check for a
null before calling Invoke. If there is a chance that a delegate does not
point to an object in memory, then you must perform a null reference check
before accessing methods and properties. A failure to do so will result in
NullReferenceException being thrown. This is the runtime's way of
warning you that the object is not pointing at anything.

By using the null-coalescing operator, the compiler will add the null check for
you. In the code, you explicitly declared futureValidator, so here it cannot
be null. But what if you had been passed futureValidator from another
method? How can you be sure that the caller had correctly assigned a reference?

Delegates have additional rules that make it possible for them to throw
NullReferenceException when invoked. In the preceding example,
futureValidator has a single target, but as you will see later, the multicast
feature of delegates allows multiple methods to be added and removed from a
list of target methods. If all target methods are removed (which can happen), the
runtime will throw a NullReferenceException.

• Direct Invoke

This is the same as the previous method, but without the safety of the null check.
This is not recommended for the same reason; that is, the delegate can throw a
NullReferenceException:

var isFuture1 = futureValidator.Invoke(new DateTime(2000, 12, 31));

Delegates | 177

• Without the Invoke prefix

This looks more succinct as you simply call the delegate without the Invoke
prefix. Again, this is not recommended due to a possible null reference:

var isFuture2 = futureValidator(new DateTime(2050, 1, 20));

Try assigning and safely invoking a delegate through an exercise by bringing
them together.

Exercise 3.02: Assigning and Invoking Delegates

In this exercise, you are going to write a console app showing how a Func delegate
can be used to extract numeric values. You will create a Car class that has
Distance and JourneyTime properties. You will prompt the user to enter the
distance traveled yesterday and today, passing this information to a Comparison
class that is told how to extract values and calculate their differences.

Perform the following steps to do so:

1. Change to the Chapter03 folder and create a new console app, called
Exercise02, using the CLI dotnet command:

source\Chapter03>dotnet new console -o Exercise02

2. Open Chapter03\Exercise02.csproj and replace the entire file with
these settings:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net6.0</TargetFramework>

 </PropertyGroup>

</Project>

3. Open Exercise02\Program.cs and clear the contents.

4. Start by adding a record called Car. Include the System.Globalization
namespace for string parsing. Use the Chapter03.Exercise02 namespace
to keep code separate from the other exercises.

178 | Delegates, Events, and Lambdas

5. Add two properties, Distance and JourneyTime. They will have init-only
properties, so you will use the init keyword:

using System;

using System.Globalization;

namespace Chapter03.Exercise02

{

 public record Car

 {

 public double Distance { get; init; }

 public double JourneyTime { get; init; }

 }

6. Next, create a class named Comparison that is passed a Func delegate to
work with. The Comparison class will use the delegate to extract either the
Distance or JourneyTime properties and calculate the difference for two
Car instances. By using the flexibility of delegates, Comparison will not know
whether it is extracting Distance or JourneyTime, just that it is using a
double to calculate the differences. This shows that you can reuse this class
should you need to calculate other Car properties in the future:

 public class Comparison

 {

 private readonly Func<Car, double> _valueSelector;

 public Comparison(Func<Car, double> valueSelector)

 {

 _valueSelector = valueSelector;

 }

7. Add three properties that form the results of the calculation, as follows:

 public double Yesterday { get; private set; }

 public double Today { get; private set; }

 public double Difference { get; private set; }

8. Now for the calculation, pass two Car instances, one for the car journey
yesterday, yesterdayCar, and one for today, todayCar:

 public void Compare(Car yesterdayCar, Car todayCar)

 {

Delegates | 179

9. To calculate a value for Yesterday, invoke the valueSelector Func
delegate, passing in the yesterdayCar instance. Again, remember that
the Comparison class is unaware whether it is extracting Distance or
JourneyTime; it just needs to know that when the delegate is invoked
with a Car argument, it will get a double number back:

 Yesterday = _valueSelector(yesterdayCar);

10. Do the same to extract the value for Today by using the same Func delegate,
but passing in the todayCar instance instead:

 Today = _valueSelector(todayCar);

11. Now it is just a case of calculating the difference between the two extracted
numbers; you don't need to use the Func delegate to do that:

 Difference = Yesterday - Today;

 }

 }

12. So, you have a class that knows how to invoke a Func delegate to extract a
certain Car property when it is told how to. Now, you need a class to wrap up
the Comparison instances. For this, add a class called JourneyComparer:

 public class JourneyComparer

 {

 public JourneyComparer()

 {

13. For the car journey, you need to calculate the difference between the
Yesterday and Today Distance properties. To do so, create a
Comparison class that is told how to extract a value from a Car instance. You
may as well use the same name for this Comparison class as you will extract a
car's Distance. Remember that the Comparison constructor needs a Func
delegate that is passed a Car instance and returns a double value. You will add
GetCarDistance() shortly; this will eventually be invoked by passing Car
instances for yesterday's and today's journeys:

 Distance = new Comparison(GetCarDistance);

180 | Delegates, Events, and Lambdas

14. Repeat the process as described in the preceding steps for a JourneyTime
Comparison; this one should be told to use GetCarJourneyTime()
as follows:

 JourneyTime = new Comparison(GetCarJourneyTime);

15. Finally, add another Comparison property called AverageSpeed as follows.
You will see shortly that GetCarAverageSpeed() is yet another function:

 AverageSpeed = new Comparison(GetCarAverageSpeed);

16. Now for the GetCarDistance and GetCarJourneyTime local
functions, they are passed a Car instance and return either Distance or
JourneyTime accordingly:

 static double GetCarDistance(Car car) => car.Distance;

 static double GetCarJourneyTime(Car car) => car.
JourneyTime;

17. GetCarAverageSpeed, as the name suggests, returns the average speed.
Here, you have shown that the Func delegate just needs a compatible function;
it doesn't matter what it returns as long as it is double. The Comparison class
does not need to know that it is returning a calculated value such as this when it
invokes the Func delegate:

 static double GetCarAverageSpeed(Car car)
 => car.Distance / car.JourneyTime;
 }

18. The three Comparison properties should be defined like this:

 public Comparison Distance { get; }

 public Comparison JourneyTime { get; }

 public Comparison AverageSpeed { get; }

19. Now for the main Compare method. This will be passed two Car instances, one
for yesterday and one for today, and it simply calls Compare on the three
Comparison items passing in the two Car instances:

 public void Compare(Car yesterday, Car today)

 {

 Distance.Compare(yesterday, today);

 JourneyTime.Compare(yesterday, today);

 AverageSpeed.Compare(yesterday, today);

 }

 }

Delegates | 181

20. You need a console app to enter the miles traveled per day, so add a class called
Program with a static Main entry point:

 public class Program

 {

 public static void Main()

 {

21. You can randomly assign journey times to save some input, so add a new
Random instance and the start of a do-while loop, as follows:

 var random = new Random();

 string input;

 do

 {

22. Read for yesterday's distance, as follows:

 Console.Write("Yesterday's distance: ");

 input = Console.ReadLine();

 double.TryParse(input, NumberStyles.Any,
 CultureInfo.CurrentCulture, out var
distanceYesterday);

23. You can use the distance to create yesterday's Car with a random
JourneyTime, as follows:

 var carYesterday = new Car

 {

 Distance = distanceYesterday,

 JourneyTime = random.NextDouble() * 10D

 };

24. Do the same for today's distance:

 Console.Write(" Today's distance: ");

 input = Console.ReadLine();

 double.TryParse(input, NumberStyles.Any,
 CultureInfo.CurrentCulture, out var
distanceToday);

 var carToday = new Car

 {

182 | Delegates, Events, and Lambdas

 Distance = distanceToday,

 JourneyTime = random.NextDouble() * 10D

 };

25. Now that you have two Car instances populated with values for yesterday and
today, you can create the JourneyComparer instance and call Compare. This
will then call Compare on your three Comparison instances:

 var comparer = new JourneyComparer();

 comparer.Compare(carYesterday, carToday);

26. Now, write the results to the console:

 Console.WriteLine();

 Console.WriteLine("Journey Details Distance\tTime\
tAvg Speed");
 Console.
WriteLine("---");

27. Write out yesterday's results:

 Console.Write($"Yesterday {comparer.Distance.
Yesterday:N0} \t");
 Console.WriteLine($"{comparer.JourneyTime.
Yesterday:N0}\t {comparer.AverageSpeed.Yesterday:N0}");

28. Write out today's results:

 Console.Write($"Today {comparer.Distance.
Today:N0} \t");
 Console.WriteLine($"{comparer.JourneyTime.Today:N0}\t
{comparer.AverageSpeed.Today:N0}");

29. Finally, write the summary values using the Difference properties:

 Console.WriteLine(
"===");
 Console.Write($"Difference {comparer.
Distance.Difference:N0} \t");
 Console.WriteLine($"{comparer.JourneyTime.
Difference:N0} \t{comparer.AverageSpeed.Difference:N0}");
 Console.WriteLine(
"===");

30. Finish off the do-while loop, exiting if the user enters an empty string:

 }

 while (!string.IsNullOrEmpty(input));

 }

 }

}

Delegates | 183

Running the console and entering distances of 1000 and 900 produces the
following results:

Yesterday's distance: 1000

 Today's distance: 900

Journey Details Distance Time Avg Speed

Yesterday 1,000 8 132

Today 900 4 242

===

Difference 100 4 -109

The program will run in a loop until you enter a blank value. You will notice a
different output as the JourneyTime is set using a random value returned by
an instance of Random class.

Note

You can find the code used for this exercise at https://packt.link/EJTtS.

In this exercise, you have seen how a Func<Car, double> delegate is used to
create general-purpose code that can be easily reused without the need to create
extra interfaces or classes.

Now it is time to look at the second important aspect of deletes and their ability to
chain multiple target methods together.

Multicast Delegates

So far, you have invoked delegates that have a single method assigned, typically in the
form of a function call. Delegates offer the ability to combine a list of methods that
are executed with a single invocation call, using the multicast feature. By using the
+= operator, any number of additional target methods can be added to the target list.
Every time the delegate is invoked, each one of the target methods gets invoked too.
But what if you decide you want to remove a target method? That is where the -=
operator is used.

https://packt.link/EJTtS

184 | Delegates, Events, and Lambdas

In the following code snippet, you have an Action<string> delegate named
logger. It starts with a single target method, LogToConsole. If you were to
invoke this delegate, passing in a string, then the LogToConsole method will be
called once:

Action<string> logger = LogToConsole;

logger("1. Calculating bill");

If you were to watch the call stack, you would observe these calls:

logger("1. Calculating bill")

--> LogToConsole("1. Calculating bill")

To add a new target method, you use the += operator. The following statement adds
LogToFile to the logger delegate's invocation list:

logger += LogToFile;

Now, every time you invoke logger, both LogToConsole and LogToFile will be
called. Now invoke logger a second time:

logger("2. Saving order");

The call stack looks like this:

logger("2. Saving order")

--> LogToConsole("2. Saving order")

--> LogToFile("2. Saving order")

Again, suppose you use += to add a third target method called LogToDataBase
as follows:

logger += LogToDataBase

Now invoke it once again:

logger("3. Closing order");

The call stack looks like this:

logger("3. Closing order")

--> LogToConsole("3. Closing order")

--> LogToFile("3. Closing order")

--> LogToDataBase("3. Closing order")

Delegates | 185

However, consider that you may no longer want to include LogToFile in the target
method list. In such a case, simply use the -= operator to remove it, as follows:

logger -= LogToFile

You can again invoke the delegate as follows:

logger("4. Closing customer");

And now, the call stack looks like this:

logger("4. Closing customer")

--> LogToConsole("4. Closing customer")

--> LogToDataBase("4. Closing customer")

As can be seen, this code resulted in just two method calls, LogToConsole and
LogToDataBase.

By using delegates in this way, you can decide which target methods get called based
on certain criteria at runtime. This allows you to pass this configured delegate into
other methods, to be invoked as and when needed.

You have seen that Console.WriteLine can be used to write messages to
the console window. To create a method that logs to a file (as LogToFile does
in the preceding example), you need to use the File class from the System.
IO namespace. File has many static methods that can be used to read and write
files. You will not go into full details about File here, but it is worth mentioning the
File.AppendAllText method, which can be used to create or replace a text file
containing a string value, File.Exists, which is used to check for the existence of
a file, and File.Delete, to delete a file.

Now it is time to practice what you have learned through an exercise.

Exercise 3.03: Invoking a Multicast Delegate

In this exercise, you will use a multicast delegate to create a cash machine that logs
details when a user enters their PIN and asks to see their balance. For this, you will
create a CashMachine class that invokes a configured logging delegate, which you
can use as a controller class to decide whether messages are sent to the file or to
the console.

You will use an Action<string> delegate as you do not need any values to return.
Using +=, you can control which target methods get called when your delegate is
invoked by CashMachine.

186 | Delegates, Events, and Lambdas

Perform the following steps to do so:

1. Change to the Chapter03 folder and create a new console app, called
Exercise03, using the CLI dotnet command:

source\Chapter03>dotnet new console -o Exercise03

2. Open Chapter03\Exercise03.csproj and replace the entire file with
these settings:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net6.0</TargetFramework>

 </PropertyGroup>

</Project>

3. Open Exercise03\Program.cs and clear the contents.

4. Add a new class called CashMachine.

5. Use the Chapter03.Exercise03 namespace:

using System;

using System.IO;

namespace Chapter03.Exercise03

{

 public class CashMachine

 {

 private readonly Action<string> _logger;

 public CashMachine(Action<string> logger)

 {

 _logger = logger;

 }

The CashMachine constructor is passed the Action<string> delegate,
which you can assign to a readonly class variable called _logger.

6. Add a Log helper function that checks whether the _logger delegate is null
before invoking:

 private void Log(string message)

 => _logger?.Invoke(message);

Delegates | 187

7. When the VerifyPin and ShowBalance methods are called, a message
should be logged with some details. Create these methods as follows:

 public void VerifyPin(string pin)

 => Log($"VerifyPin called: PIN={pin}");

 public void ShowBalance()

 => Log("ShowBalance called: Balance=999");

 }

8. Now, add a console app that configures a logger delegate that you can pass
into a CashMachine object. Note that this is a common form of usage: a class
that is responsible for deciding how messages are logged by other classes. Use a
constant, OutputFile, for the filename to be used for file logging, as follows:

 public static class Program

 {

 private const string OutputFile = "activity.txt";

 public static void Main()

 {

9. Each time the program runs, it should start with a clean text file for logging, so
use File.Delete to delete the output file:

 if (File.Exists(OutputFile))

 {

 File.Delete(OutputFile);

 }

10. Create a delegate instance, logger, that starts with a single target method,
LogToConsole:

 Action<string> logger = LogToConsole;

11. Using the += operator, add LogToFile as a second target method to also be
called whenever the delegate is invoked by CashMachine:

 logger += LogToFile;

12. You will implement the two target logging methods shortly; for now, create a
cashMachine instance and get ready to call its methods, as follows:

 var cashMachine = new CashMachine(logger);

188 | Delegates, Events, and Lambdas

13. Prompt for a pin and pass it to the VerifyPin method:

 Console.Write("Enter your PIN:");

 var pin = Console.ReadLine();

 if (string.IsNullOrEmpty(pin))

 {

 Console.WriteLine("No PIN entered");

 return;

 }

 cashMachine.VerifyPin(pin);

 Console.WriteLine();

In case you enter a blank value, then it is checked and a warning is displayed.
This will then close the program using a return statement.

14. Wait for the Enter key to be pressed before calling the ShowBalance method:

 Console.Write("Press Enter to show balance");

 Console.ReadLine();

 cashMachine.ShowBalance();

 Console.Write("Press Enter to quit");

 Console.ReadLine();

15. Now for the logging methods. They must be compatible with your
Action<string> delegate. One writes a message to the console and the
other appends it to the text file. Add these two static methods as follows:

 static void LogToConsole(string message)

 => Console.WriteLine(message);

 static void LogToFile(string message)

 => File.AppendAllText(OutputFile, message);

 }

 }

}

Delegates | 189

16. Running the console app, you see that VerifyPin and ShowBalance calls are
written to the console:

Enter your PIN:12345

VerifyPin called: PIN=12345

Press Enter to show balance

ShowBalance called: Balance=999

17. For each logger delegate invocation, the LogToFile method will also be
called, so when opening activity.txt, you should see the following line:

VerifyPin called: PIN=12345ShowBalance called: Balance=999

Note

You can find the code used for this exercise at https://packt.link/h9vic.

It is important to remember that delegates are immutable, so each time you use the
+= or -= operators, you create a new delegate instance. This means that if you alter
a delegate after you have passed it to a target class, you will not see any changes to
the methods called from inside that target class.

You can see this in action in the following example:

MulticastDelegatesAddRemoveExample.cs

using System;
namespace Chapter03Examples
{
 class MulticastDelegatesAddRemoveExample
 {
 public static void Main()
 {
 Action<string> logger = LogToConsole;
 Console.WriteLine($"Logger1 #={logger.GetHashCode()}");

 logger += LogToConsole;
 Console.WriteLine($"Logger2 #={logger.GetHashCode()}");

 logger += LogToConsole;
 Console.WriteLine($"Logger3 #={logger.GetHashCode()}");

You can find the complete code here: https://packt.link/vqZMF.

https://packt.link/h9vic
https://packt.link/vqZMF

190 | Delegates, Events, and Lambdas

All objects in C# have a GetHashCode() function that returns a unique ID. Running
the code produces this output:

Logger1 #=46104728

Logger2 #=1567560752

Logger3 #=236001992

You can see that the hashcode is changing after each += call. This shows that the
object reference is changing each time.

Now look at another example using an Action<string> delegate. Here, you
will use the += operator to add target methods and then use -= to remove the
target methods:

MulticastDelegatesExample.cs

using System;

namespace Chapter03Examples

{

 class MulticastDelegatesExample

 {

 public static void Main()

 {

 Action<string> logger = LogToConsole;

 logger += LogToConsole;

 logger("Console x 2");

 logger -= LogToConsole;

 logger("Console x 1");

 logger -= LogToConsole;

You can find the complete code here: https://packt.link/Xe0Ct.

You start with one target method, LogToConsole, and then add the same target
method a second time. Invoking the logger delegate using logger("Console x
2") results in LogToConsole being called twice.

https://packt.link/Xe0Ct

Delegates | 191

You then use -= to remove LogToConsole twice such that had two targets and
now you do not have any at all. Running the code produces the following output:

Console x 2

Console x 2

Console x 1

However, rather than logger("logger is now null") running correctly, you
end up with an unhandled exception being thrown like so:

System.NullReferenceException

 HResult=0x80004003

 Message=Object reference not set to an instance of an object.

 Source=Examples

 StackTrace:

 at Chapter03Examples.MulticastDelegatesExample.Main() in Chapter03\
MulticastDelegatesExample.cs:line 16

By removing the last target method, the -= operator returned a null reference, which
you then assigned to the logger. As you can see, it is important to always check that a
delegate is not null before trying to invoke it.

Multicasting with a Func Delegate

So far, you have used Action<string> delegates within multicast scenarios.
When invoked, a string value is passed to any target method. As the target methods
do not return a value, you use Action delegates.

You have seen that Func delegates are used when a return value is required from an
invoked delegate. It is also perfectly legal for the C# complier to use Func delegates
in multicast delegates.

Consider the following example where you have a Func<string, string>
delegate. This delegate supports functions that are passed a string and return a
formatted string is returned. This could be used when you need to format an email
address by removing the @ sign and dot symbols:

using System;

namespace Chapter03Examples

{

 class FuncExample

 {

 public static void Main()

 {

192 | Delegates, Events, and Lambdas

You start by assigning the RemoveDots string function to emailFormatter and
invoke it using the Address constant:

 Func<string, string> emailFormatter = RemoveDots;

 const string Address = "admin@google.com";

 var first = emailFormatter(Address);

 Console.WriteLine($"First={first}");

Then you add a second target, RemoveAtSign, and invoke emailFormatter a
second time:

 emailFormatter += RemoveAtSign;

 var second = emailFormatter(Address);

 Console.WriteLine($"Second={second}");

 Console.ReadLine();

 static string RemoveAtSign(string address)

 => address.Replace("@", "");

 static string RemoveDots(string address)

 => address.Replace(".", "");

 }

 }

}

Running the code produces this output:

First=admin@googlecom

Second=admingoogle.com

The first invocation returns the admin@googlecom string. The dot symbol has been
removed, but the next invocation, with RemoveAtSign added to the target list,
returns a value with only the @ symbol removed.

Note

You can find the code used for this example at https://packt.link/fshse.

https://packt.link/fshse

Delegates | 193

Both Func1 and Func2 are invoked, but only the value from Func2 is returned
to both ResultA and ResultB variables, even though the correct arguments are
passed in. When a Func<> delegate is used with multicast in this manner, all of the
target Func instances are called, but the return value will be that of the last Func<>
in the chain. Func<> is better suited in a single method scenario, although the
compiler will still allow you to use it as a multicast delegate without any compilation
error or warning.

What Happens When Things Go Wrong?

When a delegate is invoked, all methods in the invocation list are called. In the case of
single-name delegates, this will be one target method. What happens in the case of
multicast delegates if one of those targets throws an exception?

Consider the following code. When the logger delegate is invoked, by passing in
try log this, you may expect the methods to be called in the order that they
were added: LogToConsole, LogToError, and finally LogToDebug:

MulticastWithErrorsExample.cs

using System;
using System.Diagnostics;
namespace Chapter03Examples
{
 class MulticastWithErrorsExample
 {
 public static void Main()
 {
 Action<string> logger = LogToConsole;
 logger += LogToError;
 logger += LogToDebug;

 try
 {
 logger("try log this");

You can find the complete code here: https://packt.link/Ti3Nh.

If any target method throws an exception, such as the one you see in LogToError,
then the remaining targets are not called.

Running the code results in the following output:

Console: try log this

Caught oops!

All done

https://packt.link/Ti3Nh

194 | Delegates, Events, and Lambdas

You will see this output because the LogToDebug method wasn't called at all.
Consider a UI with multiple targets listening to a mouse button click. The first method
fires when a button is pressed and disables the button to prevent double-clicks, the
second method changes the button's image to indicate success, and the third method
enables the button.

If the second method fails, then the third method will not get called, and the button
could remain in a disabled state with an incorrect image assigned, thereby confusing
the user.

To ensure that all target methods are run regardless, you can enumerate
through the invocation list and invoke each method manually. Take a look at
the .NET MulticastDelegate type. You will find that there is a function,
GetInvocationList, that returns an array of the delegate objects. This array
contains the target methods that have been added:

public abstract class MulticastDelegate : Delegate
{
 public sealed override Delegate[] GetInvocationList();

}

You can then loop through those target methods and execute each one inside a try/
catch block. Now practice what you learned through this exercise.

Exercise 3.04: Ensuring All Target Methods Are Invoked in a Multicast Delegate

Throughout this chapter, you have been using Action<string> delegates to
perform various logging operations. In this exercise, you have a list of target methods
for a logging delegate and you want to ensure that "all" target methods are invoked
even if earlier ones fail. You may have a scenario where logging to a database or
filesystem fails occasionally, maybe due to network issues. In such a situation,
you will want other logging operations to at least have a chance to perform their
logging activity.

Perform the following steps to do so:

1. Change to the Chapter03 folder and create a new console app, called
Exercise04, using the CLI dotnet command:

source\Chapter03>dotnet new console -o Exercise04

Delegates | 195

2. Open Chapter03\Exercise04.csproj and replace the entire file with
these settings:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net6.0</TargetFramework>

 </PropertyGroup>

</Project>

3. Open Exercise04\Program.cs and clear the contents.

4. Now add a static Program class for your console app, including System and,
additionally, System.IO as you want to create a file:

using System;

using System.IO;

namespace Chapter03.Exercise04

{

 public static class Program

 {

5. Use a const to name the logging file. This file is created when the
program executes:

 private const string OutputFile = "Exercise04.txt";

6. Now you must define the app's Main entry point. Here you delete the output file
if it already exists. It is best to start with an empty file here, as otherwise, the log
file will keep growing every time you run the app:

 public static void Main()

 {

 if (File.Exists(OutputFile))

 {

 File.Delete(OutputFile);

 }

7. You will start with logger having just one target method, LogToConsole,
which you will add shortly:

 Action<string> logger = LogToConsole;

196 | Delegates, Events, and Lambdas

8. You use the InvokeAll method to invoke the delegate, passing in "First
call" as an argument. This will not fail as logger has a single valid method
and you will add InvokeAll shortly, too:

 InvokeAll(logger, "First call");

9. The aim of this exercise is to have a multicast delegate, so add some additional
target methods:

 logger += LogToConsole;

 logger += LogToDatabase;

 logger += LogToFile;

10. Try a second call using InvokeAll as follows:

 InvokeAll(logger, "Second call");

 Console.ReadLine();

11. Now for the target methods that were added to the delegate. Add the following
code for this:

 static void LogToConsole(string message)

 => Console.WriteLine($"LogToConsole: {message}");

 static void LogToDatabase(string message)

 => throw new ApplicationException("bad thing
happened!");

 static void LogToFile(string message)

 => File.AppendAllText(OutputFile, message);

12. You can now implement the InvokeAll method:

 static void InvokeAll(Action<string> logger, string arg)

 {

 if (logger == null)

 return;

It is passed an Action<string> delegate that matches the logger delegate
type, along with an arg string to use when invoking each target method. Before
that though, it is important to check that logger is not already null and there is
nothing you can do with a null delegate.

Delegates | 197

13. Use the delegate's GetInvocationList() method to get a list of all the
target methods:

 var delegateList = logger.GetInvocationList();

 Console.WriteLine($"Found {delegateList.Length} items
in {logger}");

14. Now, loop through each item in the list as follows:

 foreach (var del in delegateList)

 {

15. After wrapping each loop element in a try/catch, cast del into an
Action<string>:

 try

 {

 var action = del as Action<string>;

GetInvocationList returns each item as the base delegate type regardless
of their actual type.

16. If it is the correct type and not null, then it is safe to try invoking:

 if (del is Action<string> action)

 {

 Console.WriteLine($"Invoking '{action.
Method.Name}' with '{arg}'");
 action(arg);

 }

 else

 {

 Console.WriteLine("Skipped null");

 }

You have added some extra details to show what is about to be invoked by using
the delegate's Method.Name property.

198 | Delegates, Events, and Lambdas

17. Finish with a catch block that logs the error message if an error was caught:

 }

 catch (Exception e)

 {

 Console.WriteLine($"Error: {e.Message}");

 }

 }

 }

 }

 }

}

18. Running the code, creates a file called Exercise04.txt with the
following results:

Found 1 items in System.Action`1[System.String]

Invoking '<Main>g__LogToConsole|1_0' with 'First call'

LogToConsole: First call

Found 4 items in System.Action`1[System.String]

Invoking '<Main>g__LogToConsole|1_0' with 'Second call'

LogToConsole: Second call

Invoking '<Main>g__LogToConsole|1_0' with 'Second call'

LogToConsole: Second call

Invoking '<Main>g__LogToDatabase|1_1' with 'Second call'

Error: bad thing happened!

Invoking '<Main>g__LogToFile|1_2' with 'Second call'

You will see that it catches the error thrown by LogToDatabase and still allows
LogToFile to be called.

Note

You can find the code used for this exercise at https://packt.link/Dp5H4.

It is now important to expand upon the multicast concept using events.

https://packt.link/Dp5H4

Delegates | 199

Events

In the previous sections, you have created delegates and invoked them directly in
the same method or passed them to another method for it to invoke when needed.
By using delegates in this way, you have a simple way for code to be notified when
something of interest happens. So far, this has not been a major problem, but you
may have noticed that there appears to be no way to prevent an object that has
access to a delegate from invoking it directly.

Consider the following scenario: you have created an application that allows other
programs to register for notifications when a new email arrives by adding their target
method to a delegate that you have provided. What if a program, either by mistake or
for malicious reasons, decides to invoke your delegate itself? This could quite easily
overwhelm all the target methods in your invocation list. Such listener programs
should never be allowed to invoke a delegate in this way—after all, they are meant to
be passive listeners.

You could add extra methods that allow listeners to add or remove their target
methods from the invocation list and shield the delegate from direct access, but what
if you have hundreds of such delegates available in an application? That is a great
deal of code to write.

The event keyword instructs the C# complier to add extra code to ensure that a
delegate can only be invoked by the class or struct that it is declared in. External
code can add or remove target methods but is prevented from invoking the delegate.
Attempting to do so results in a compiler error.

This pattern is commonly known as the pub-sub pattern. The object raising an event
is called the event sender or publisher; the object(s) receiving the event are called
event handlers or subscribers.

Defining an Event

The event keyword is used to define an event and its associated delegates. Its
definition looks similar to the way delegates are defined, but unlike delegates, you
cannot use the global namespace to define events:

public event EventHandler MouseDoubleClicked

200 | Delegates, Events, and Lambdas

Events have four elements:

• Scope: An access modifier, such as public, private, or protected, to
define the scope.

• The event keyword.

• Delegate type: The associated delegate, EventHandler in this example.

• Event name: This can be anything you like, MouseDoubleClicked, for
example. However, the name must be unique within the namespace.

Events are typically associated with the inbuilt .NET delegates, EventHandler, or its
generic EventHandler<> version. It is rare to create custom delegates for events,
but you may find this in older legacy code created prior to the Action and generic
Action<T> delegates.

The EventHandler delegate was available in early versions of .NET. It has the
following signature, taking a sender object and an EventArgs parameter:

public delegate void EventHandler(object sender, EventArgs e);

The more recent generic-based EventHandler<T> delegate looks similar; it also
takes a sender object and a parameter defined by the type T:

public delegate void EventHandler<T>(object sender, T e);

The sender parameter is defined as object, allowing any type of object to be sent
to subscribers for them to identify the sender of the event. This can be useful in a
situation where you have a centralized method that needs to work on various types
of objects rather than specific instances.

For example, in a UI app, you may have one subscriber that listens for an OK
button being clicked, and a second subscriber that listens for a Cancel button being
clicked–each of these could be handled by two separate methods. In the case of
multiple checkboxes used to toggle options on or off, you could use a single target
method that simply needs to be told that a checkbox is the sender, and to toggle the
setting accordingly. This allows you to reuse the same checkbox handler rather than
creating a method for every checkbox on a screen.

It is not mandatory to include details of the sender when invoking an
EventHandler delegate. Often, you may not want to divulge the inner workings of
your code to the outside; in this case, it is common practice to pass a null reference to
the delegate.

Delegates | 201

The second argument in both delegates can be used to provide extra contextual
information about the event (for example, was it the left or right mouse button
that was pressed?). Traditionally, this extra information was wrapped up using a
class derived from EventArgs, but that convention has been relaxed in newer
.NET versions.

There are two standard .NET delegates you should for your event definition?

• EventHandler: This can be used when there is no extra information to
describe the event. For example, a checkbox click event may not need any extra
information, it was simply clicked. In this case, it is perfectly valid to pass null or
EventArgs.Empty as the second parameter. This delegate can often be found
in legacy apps that use a class derived from EventArgs to describe the event
further. Was it a double-click of the mouse that triggered this event? In this case,
a Clicks property may have been added to an EventArgs derived class to
provide such extra details.

• EventHandler<T>: Since the inclusion of generics in C#, this has become
the more frequently used delegate for events, simply because using generics
requires fewer classes to be created.

Interestingly, no matter what scope you give to your event (public, for example),
the C# compiler will internally create a private member with that name. This is the key
concept with events: only the class that defines the event may invoke it. Consumers
are free to add or remove their interest, but they cannot invoke it themselves.

When an event is defined, the publisher class in which it is defined can simply invoke
it as and when needed, in the same way that you invoke delegates. In the earlier
examples, a point was made of always checking that the delegate is not null before
invoking. The same approach should be taken with events, as you have little control
over how or when a subscriber may add or remove their target methods.

When a publisher class is initially created, all events have an initial value of null. This
will change to not null when any subscriber adds a target method. Conversely, as
soon as a subscriber removes a target method, the event will revert to null if there
are no methods left in the invocation list and all this is handled by the runtime. This is
the standard behavior you saw earlier with delegates.

202 | Delegates, Events, and Lambdas

You can prevent an event from ever becoming null by adding an empty delegate to
the end of the event definition:

public event EventHandler<MouseEventArgs> MouseDoubleClicked = delegate
{};

Rather than having the default null value, you are adding your own default delegate
instance—one that does nothing. Hence the blank between the {} symbols.

There is a common pattern often followed when using events within a publisher class,
particularly in classes that may be subclassed further. You will now see this with the
help of a simple example:

1. Define a class, MouseClickedEventArgs, that contains additional
information about the event, in this case, the number of mouse clicks that
were detected:

using System;

namespace Chapter03Examples

{

 public class MouseClickedEventArgs

 {

 public MouseClickedEventArgs(int clicks)

 {

 Clicks = clicks;

 }

 public int Clicks { get; }

 }

Observe the MouseClickPublisher class, This has a MouseClicked event
defined using the generic EventHandler<> delegate.

2. Now add the delegate { }; block to prevent MouseClicked from being
null initially:

 public class MouseClickPublisher

 {

 public event EventHandler<MouseClickedEventArgs> MouseClicked =
delegate { };

Delegates | 203

3. Add an OnMouseClicked virtual method that gives any further subclassed
MouseClickPublisher classes a chance to suppress or change the event
notification, as follows:

 protected virtual void OnMouseClicked(MouseClickedEventArgs
e)
 {

 var evt = MouseClicked;

 evt?.Invoke(this, e);

 }

4. Now you need a method that tracks the mouse clicks. In this example,
you will not actually show how mouse clicks are detected, but you will call
OnMouseClicked, passing in 2 to indicate a double-click.

5. Notice how you have not invoked the MouseClicked event directly; you always
go via the OnMouseClicked intermediary method. This provides a way for
other implementations of MouseClickPublisher to override the event
notification if they need to:

 private void TrackMouseClicks()

 {

 OnMouseClicked(new MouseClickedEventArgs(2));

 }

 }

6. Now add a new type of publisher that is based on MouseClickPublisher:

 public class MouseSingleClickPublisher : MouseClickPublisher

 {

 protected override void OnMouseClicked(MouseClickedEventArgs
e)
 {

 if (e.Clicks == 1)

 {

 OnMouseClicked(e);

 }

 }

 }

}

204 | Delegates, Events, and Lambdas

This MouseSingleClickPublisher overrides the OnMouseClicked
method and only calls the base OnMouseClicked if a single click was detected.
By implementing this type of pattern, you allow different types of publishers to
control whether events are fired to subscribers in a customized manner.

Note

You can find the code used for this example at https://packt.link/J1EiB.

You can now practice what you learned through the following exercise.

Exercise 3.05: Publishing and Subscribing to Events

In this exercise, you will create an alarm clock as an example of a publisher. The
alarm clock will simulate a tick every minute and publish a Ticked event. You will
also add a WakeUp event that is published when the current time matches an alarm
time. In .NET, DateTime is used to represent a point in time, so you will use that
for the current time and alarm time properties. You will use DateTime.Subtract
to get the difference between the current time and the alarm time and publish the
WakeUp event when it is due.

Perform the following steps to do so:

1. Change to the Chapter03 folder and create a new console app, called
Exercise05, using the CLI dotnet command:

dotnet new console -o Exercise05

2. Open Chapter03\Exercise05.csproj and replace the entire file with
these settings:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net6.0</TargetFramework>

 </PropertyGroup>

</Project>

3. Open Exercise05\Program.cs and clear the contents.

https://packt.link/J1EiB

Delegates | 205

4. Add a new class called AlarmClock. Here you need to use a DateTime class,
so include the System namespace:

using System;

namespace Chapter03.Exercise05

{

 public class AlarmClock

 {

You will offer two events for subscribers to listen to—WakeUp, based on
the non-generic EventHandler delegate (since you will not pass any extra
information in this event), and Ticked, which uses the generic EventHandler
delegate with a DateTime parameter type.

5. You will use this to pass along the current time to display in the console. Notice
that both have the initial delegate {}; safety mechanism:

 public event EventHandler WakeUp = delegate {};

 public event EventHandler<DateTime> Ticked = delegate {};

6. Include an OnWakeUp override as an example, but do not do the same with
Ticked; this is to show the different invocation approaches:

 protected void OnWakeUp()

 {

 WakeUp.Invoke(this, EventArgs.Empty);

 }

7. Now add two DateTime properties, the alarm and clock times, as follows:

 public DateTime AlarmTime { get; set; }

 public DateTime ClockTime { get; set; }

8. A Start method is used to start the clock. You simulate a clock ticking once
every minute for 24 hours using a simple loop as follows:

 public void Start()

 {

 // Run for 24 hours

 const int MinutesInADay = 60 * 24;

206 | Delegates, Events, and Lambdas

9. For each simulated minute, increment the clock using DateTime.AddMinute
and publish the Ticked event, passing in this (the AlarmClock sender
instance) and the clock time:

 for (var i = 0; i < MinutesInADay; i++)

 {

 ClockTime = ClockTime.AddMinutes(1);

 Ticked.Invoke(this, ClockTime);

ClockTime.Subtract is used to calculate the difference between the click
and alarm times.

10. You pass the timeRemaining value to the local function, IsTimeToWakeUp,
calling the OnWakeUp method and break out of the loop if it is time to wake up:

 var timeRemaining = ClockTime
 .Subtract(AlarmTime)
 .TotalMinutes;

 if (IsTimeToWakeUp(timeRemaining))

 {

 OnWakeUp();

 break;

 }

 }

11. Use the IsTimeToWakeUp, a relational pattern, to see whether there is less
than one minute remaining. Add the following code for this:

 static bool IsTimeToWakeUp(double timeRemaining)

 => timeRemaining is (>= -1.0 and <= 1.0);

 }

 }

12. Now add a console app that subscribes to the alarm clock and its two events by
starting from the static void Main entry point:

 public static class Program

 {

 public static void Main()

 {

Delegates | 207

13. Create the AlarmClock instance and use the += operator to subscribe to the
Ticked event and the WakeUp events. You will define ClockTicked and
ClockWakeUp shortly. For now, just add the following code:

 var clock = new AlarmClock();

 clock.Ticked += ClockTicked;

 clock.WakeUp += ClockWakeUp;

14. Set the clock's current time, use DateTime.AddMinutes to add 120 minutes
to the alarm time, and then start the clock, as follows:

 clock.ClockTime = DateTime.Now;

 clock.AlarmTime = DateTime.Now.AddMinutes(120);

 Console.WriteLine($"ClockTime={clock.ClockTime:t}");

 Console.WriteLine($"AlarmTime={clock.AlarmTime:t}");

 clock.Start();

15. Finish off Main by prompting for the Enter key to be pressed:

 Console.WriteLine("Press ENTER");

 Console.ReadLine();

16. Now you can add the event subscriber local methods:

 static void ClockWakeUp(object sender, EventArgs e)

 {

 Console.WriteLine();

 Console.WriteLine("Wake up");

 }

ClockWakeUp is passed sender and EventArgs arguments. You don't use
either of these, but they are required for the EventHandler delegate. When
this subscriber's method is called, you write "Wake up" to the console.

17. ClockTicked is passed the DateTime argument as required by the
EventHandler<DateTime> delegate. Here, you pass the current time, so you
write that to the console using :t to show the time in a short format:

 static void ClockTicked(object sender, DateTime e)

 => Console.Write($"{e:t}...");

 }

 }

}

208 | Delegates, Events, and Lambdas

18. Running the app produces this output:

ClockTime=14:59

AlarmTime=16:59

15:00...15:01...15:02...15:03...15:04...15:05...15:06...15:07...
15:08...15:09...15:10...15:11...15:12...15:13...15:14...15:15...
15:16...15:17...15:18...15:19...15:20...15:21...15:22...15:23...
15:24...15:25...15:26...15:27...15:28...15:29...15:30...15:31...
15:32...15:33...15:34...15:35...15:36...15:37...15:38...15:39...
15:40...15:41...15:42...15:43...15:44...15:45...15:46...15:47...
15:48...15:49...15:50...15:51...15:52...15:53...15:54...15:55...
15:56...15:57...15:58...15:59...16:00...16:01...16:02...16:03...
16:04...16:05...16:06...16:07...16:08...16:09...16:10...16:11...
16:12...16:13...16:14...16:15...16:16...16:17...16:18...16:19...
16:20...16:21...16:22...16:23...16:24...16:25...16:26...16:27...
16:28...16:29...16:30...16:31...16:32...16:33...16:34...16:35...
16:36...16:37...16:38...16:39...16:40...16:41...16:42...16:43...
16:44...16:45...16:46...16:47...16:48...16:49...16:50...16:51...
16:52...16:53...16:54...16:55...16:56...16:57...16:58...16:59...

Wake up

Press ENTER

In this example you see that the alarm clock simulates a tick every minute and
publishes a Ticked event.

Note

You can find the code used for this exercise at https://packt.link/GPkYQ.

Now it is time to grasp the difference between events and delegates.

Events or Delegates?
On the face of it, events and delegates look remarkably similar:

• Events are an extended form of delegates.

• Both offer late-bound semantics, so rather than calling methods that are known
precisely at compile-time, you can defer a list of target methods when known
at runtime.

• Both are called using Invoke() or, more simply, the () suffix shortcut, ideally
with a null check before doing so.

https://packt.link/GPkYQ

Events or Delegates? | 209

The key considerations are as follows:

• Optionality: Events offer an optional approach; callers can decide to opt into
events or not. If your component can complete its task without needing any
subscriber methods, then it is preferable to use an event-based approach.

• Return types: Do you need to handle return types? Delegates associated with
events are always void.

• Lifetime: Event subscribers typically have a shorter lifetime than their publishers,
leaving the publisher to continue detecting new messages even if there are no
active subscribers.

Static Events Can Cause Memory Leaks

Before you wrap up your look at events, it pays to be careful when using events,
particularly those that are statically defined.

Whenever you add a subscriber's target method to a publisher's event, the publisher
class will store a reference to your target method. When you have finished using a
subscriber instance and it remains attached to a static publisher, it is possible that
the memory used by your subscriber will not be cleared up.

These are often referred to as orphaned, phantom, or ghost events. To prevent this,
always try to pair up each += call with a corresponding -= operator.

Note

Reactive Extensions (Rx) (https://github.com/dotnet/reactive) is a
great library for leveraging and taming event-based and asynchronous
programming using LINQ-style operators. Rx provides a way to time-shift,
for example, buffering a very chatty event into manageable streams with
just a few lines of code. What's more, Rx streams are very easy to unit test,
allowing you to effectively take control of time.

Now read about the interesting topic of lambda expressions.

https://github.com/dotnet/reactive

210 | Delegates, Events, and Lambdas

Lambda Expressions
Throughout the previous sections, you have mainly used class-level methods
as targets for your delegates and events, such as the ClockTicked and
ClockWakeUp methods, that were also used in Exercise 3.05:

var clock = new AlarmClock();

clock.Ticked += ClockTicked;

clock.WakeUp += ClockWakeUp;

static void ClockTicked(object sender, DateTime e)

 => Console.Write($"{e:t}...");

static void ClockWakeUp(object sender, EventArgs e)

{

 Console.WriteLine();

 Console.WriteLine("Wake up");

}

The ClockWakeUp and ClockTicked methods are easy to follow and step
through. However, by converting them into lambda expression syntax, you can have a
more succinct syntax and closer proximity to where they are in code.

Now convert the Ticked and WakeUp events to use two different lambda
expressions:

clock.Ticked += (sender, e) =>

{

 Console.Write($"{e:t}...");

};

clock.WakeUp += (sender, e) =>

{

 Console.WriteLine();

 Console.WriteLine("Wake up");

};

You have used the same += operator, but instead of method names, you see
(sender, e) => and identical blocks of code, as seen in ClockTicked
and ClockWakeUp.

Lambda Expressions | 211

When defining a lambda expression, you can pass any parameters within
parentheses, (), followed by => (this is often read as goes to), and then by your
expression/statement block:

(parameters) => expression-or-block

The code block can be as complex as you need and can return a value if it is a Func-
based delegate.

The compiler can normally infer each of the parameter types, so you do not even
need to specify their types. Moreover, you can omit the parentheses if there is only
one argument and the compiler can infer its type.

Wherever a delegate (remember that Action, Action<T>, and Func<T> are
inbuilt examples of a delegate) needs to be used as an argument, rather than creating
a class or local method or function, you should consider using a lambda expression.
The main reason is that this often results in less code, and that code is placed closer
to the location where it is used.

Now consider another example on Lambda. Given a list of movies, you can use
the List<string> class to store these string-based names, as shown in the
following snippet:

using System;

using System.Collections.Generic;

namespace Chapter03Examples

{

 class LambdaExample

 {

 public static void Main()

 {

 var names = new List<string>

 {

 "The A-Team",

 "Blade Runner",

 "There's Something About Mary",

 "Batman Begins",

 "The Crow"

 };

212 | Delegates, Events, and Lambdas

You can use the List.Sort method to sort the names alphabetically (the final
output will be shown at the end of this example):

 names.Sort();

 Console.WriteLine("Sorted names:");

 foreach (var name in names)

 {

 Console.WriteLine(name);

 }

 Console.WriteLine();

If you need more control over how this sort works, the List class has another Sort
method that accepts a delegate of this form: delegate int Comparison<T>(T
x, T y). This delegate is passed two arguments of the same type (x and y) and
returns an int value. The int value can be used to define the sort order of items in
the list without you having to worry about the internal workings of the Sort method.

As an alternative, you can sort the names to exclude "The" from the beginning of
movie titles. This is often used as an alternative way to list names. You can achieve
this by passing a lambda expression, using the () syntax to wrap two strings, x, y,
that will be passed by Sort() when it invokes your lambda.

If x or y starts with your noise word, "The", then you use the string.Substring
function to skip the first four characters. String.Compare is then used to return a
numeric value that compares the resulting string values, as follows:

 const string Noise = "The ";

 names.Sort((x, y) =>

 {

 if (x.StartsWith(Noise))

 {

 x = x.Substring(Noise.Length);

 }

 if (y.StartsWith(Noise))

 {

 y = x.Substring(Noise.Length);

 }

 return string.Compare(x , y);

 });

Lambda Expressions | 213

You can then write out the sorted results to the console:

 Console.WriteLine($"Sorted excluding leading '{Noise}':");

 foreach (var name in names)

 {

 Console.WriteLine(name);

 }

 Console.ReadLine();

 }

 }

}

Running the example code produces the following output:

Sorted names:

Batman Begins

Blade Runner

The A-Team

The Crow

There's Something About Mary

Sorted excluding leading 'The ':

The A-Team

Batman Begins

Blade Runner

The Crow

There's Something About Mary

You can see that the second set of names is sorted with "The" is ignored.

Note

You can find the code used for this example at http://packt.link/B3NmQ.

To see these lambda statements put into practice, try your hand at the
following exercise.

http://packt.link/B3NmQ

214 | Delegates, Events, and Lambdas

Exercise 3.06: Using a Statement Lambda to Reverse Words in a Sentence

In this exercise, you are going to create a utility class that splits the words in a
sentence and returns that sentence with the words in reverse order.

Perform the following steps to do so:

1. Change to the Chapter03 folder and create a new console app, called
Exercise06, using the CLI dotnet command:

source\Chapter03>dotnet new console -o Exercise06

2. Open Chapter03\Exercise06.csproj and replace the entire file with
these settings:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net6.0</TargetFramework>

 </PropertyGroup>

</Project>

3. Open Exercise02\Program.cs and clear the contents.

4. Add a new class named WordUtilities with a string function called
ReverseWords. You need to include the System.Linq namespace to help
with the string operations:

using System;

using System.Linq;

namespace Chapter03.Exercise06

{

 public static class WordUtilities

 {

 public static string ReverseWords(string sentence)

 {

5. Define a Func<string, string> delegate called swapWords that takes a
string input and returns a string value:

 Func<string, string> swapWords =

6. You will accept a string input argument named phrase:

 phrase =>

Lambda Expressions | 215

7. Now for the lambda statement body. Use the string.Split function
to split the phrase string into an array of strings using a space as the
splitting character:

 {

 const char Delimit = ' ';

 var words = phrase

 .Split(Delimit)

 .Reverse();

 return string.Join(Delimit, words);

 };

String.Reverse reverses the order of strings in the array, before finally
joining the reversed words string array in a single string using string.Join.

8. You have defined the required Func, so invoke it by passing the sentence
parameter and returning that as the result:

 return swapWords(sentence);

 }

 }

9. Now for a console app that prompts for a sentence to be entered, which is
passed to WordUtilities.ReverseWords, with the result being written to
the console:

 public static class Program

 {

 public static void Main()

 {

 do

 {

 Console.Write("Enter a sentence:");

 var input = Console.ReadLine();

 if (string.IsNullOrEmpty(input))

 {

 break;

 }

 var result = WordUtilities.ReverseWords(input);

 Console.WriteLine($"Reversed: {result}")

216 | Delegates, Events, and Lambdas

Running the console app produces results output similar to this:

Enter a sentence:welcome to c#

Reversed: c# to welcome

Enter a sentence:visual studio by microsoft

Reversed: microsoft by studio visual

Note

You can find the code used for this exercise at https://packt.link/z12sR.

You will conclude this look at lambdas with some of the less obvious issues that you
might not expect to see when running and debugging.

Captures and Closures

Lambda expressions can capture any of the variables or parameters within the
method where they are defined. The word capture is used to describe the way that
a lambda expression captures or reaches up into the parent method to access any
variables or parameters.

To grasp this better, consider the following example. Here you will create a
Func<int, string> called joiner that joins words together using the
Enumerable.Repeat method. The word variable (known as an Outer
Variables) is captured inside the body of the joiner expression:

var word = "hello";

Func<int, string> joiner =

 input =>

 {

 return string.Join(",", Enumerable.Repeat(word, input));

 };

Console.WriteLine($"Outer Variables: {joiner(2)}");

https://packt.link/z12sR

Lambda Expressions | 217

Running the preceding example produces the following output:

Outer Variables: hello,hello

You invoked the joiner delegate by passing 2 as an argument. At that moment in
time, the outer word variable has a value of "hello", which is repeated twice.

This confirms that captured variables, from the parent method, were evaluated only
when Func was invoked. Now change the value of word from hello to goodbye
and invoke joiner once again, passing 3 as the argument:

word = "goodbye";

Console.WriteLine($"Outer Variables Part2: {joiner(3)}");

Running this example produces the following output:

Outer Variables Part2: goodbye,goodbye,goodbye

It is worth remembering that it does not matter where in the code you defined
joiner. You could have changed the value of word to any number of strings before
or after declaring joiner.

Taking captures one step further, if you define a variable with the same name inside
a lambda, it will be scoped locally to the expression. This time, you have a locally
defined variable, word, which will have no effect on the outer variable with the same
name:

Func<int, string> joinerLocal =

 input =>

 {

 var word = "local";

 return string.Join(",", Enumerable.Repeat(word, input));

 };

Console.WriteLine($"JoinerLocal: {joinerLocal(2)}");

Console.WriteLine($"JoinerLocal: word={word}");

The preceding example results in the following output. Notice how the outer variable,
word, remains unchanged from goodbye:

JoinerLocal: local,local

JoinerLocal: word=goodbye

Finally, you will look at the concept of closures that is a subtle part of the C#
language and often leads to unexpected results.

218 | Delegates, Events, and Lambdas

In the following example, you have a variable, actions, that contains a List of
Action delegates. You use a basic for loop to add five separate Action instances
to the list. The lambda expression for each Action simply writes that value of i from
the for loop to the console. Finally, the code simply runs through each Action in
the actions list and invokes each one:

var actions = new List<Action>();

for (var i = 0; i < 5; i++)

{

 actions.Add(() => Console.WriteLine($"MyAction: i={i}")) ;

}

foreach (var action in actions)

{

 action();

}

Running the example produces the following output:

MyAction: i=5

MyAction: i=5

MyAction: i=5

MyAction: i=5

MyAction: i=5

The reason why MyAction: i did not start from 0 is that the value of i, when
accessed from inside a Action delegate, is only evaluated once the Action is
invoked. By the time each delegate is invoked, the outer loop has already repeated
five times over.

Note

You can find the code used for this example at https://packt.link/vfOPx.

This is similar to the capture concept you observed, where the outer variables, i in
this case, are only evaluated when invoked. You used i in the for loop to add each
Action to the list, but by the time you invoked each action, i had its final value of 5.

https://packt.link/vfOPx

Lambda Expressions | 219

This can often lead to unexpected behavior, especially if you assume that an
incrementing value for i is being used inside each action's loop variable. To ensure
that the incrementing value of i is used inside each lambda expression, you need
to introduce a new local variable inside the for loop, one that takes a copy of the
iterator variable.

In the following code snippet, you have added the closurei variable. It looks very
subtle, but you now have a more locally scoped variable, which you access from
inside the lambda expression, rather than the iterator, i:

var actionsSafe = new List<Action>();

for (var i = 0; i < 5; i++)

{

 var closurei = i;

 actionsSafe.Add(() => Console.WriteLine($"MyAction:
closurei={closurei}"));
}

foreach (var action in actionsSafe)

{

 action();

}

Running the example produces the following output. You can see that the
incrementing value is used when each Action is invoked, rather than the value of 5
that you saw earlier:

MyAction: closurei=0

MyAction: closurei=1

MyAction: closurei=2

MyAction: closurei=3

MyAction: closurei=4

You have covered the key aspects of delegates and events in event-driven
applications. You extended this by using the succinct coding style offered by lambdas,
to be notified when events of interest occur.

You will now bring these ideas together into an activity in which you will use some of
the inbuilt .NET classes with their own events. You will need to adapt these events to
your own format and publish so they can be subscribed to by a console app.

220 | Delegates, Events, and Lambdas

Now it is time to practice all you have learned through the following activity.

Activity 3.01: Creating a Web File Downloader

You plan to investigate patterns in US storm events. To do this, you need to download
storm event datasets from online sources for later analysis. The National Oceanic and
Atmospheric Administration is one such source of data and can be accessed from
https://www1.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles.

You are tasked with creating a .NET Core console app that allows a web address to be
entered, the contents of which are downloaded to a local disk. To be as user-friendly
as possible, the application needs to use events that signal when an invalid address is
entered, the progress of a download, and when it completes.

Ideally, you should try to hide the internal implementation that you use to download
files, preferring to adapt any events that you use to ones that your caller can
subscribe to. This form of adaption is often used to make code more maintainable by
hiding internal details from callers.

For this purpose, the WebClient class in C# can be used for download requests. As
with many parts of .NET, this class returns objects that implement the IDisposable
interface. This is a standard interface and it indicates that the object you are using
should be wrapped in a using statement to ensure that any resources or memory
are cleaned away for you when you have finished using the object. using takes this
format:

using (IDisposable) { statement_block }

Finally, the WebClient.DownloadFileAsync method downloads files in the
background. Ideally, you should use a mechanism that allows one part of your code
to wait for a signal to be set once the download has been completed. System.
Threading.ManualResetEventSlim is a class that has Set and Wait methods
that can help with this type of signaling.

For this activity, you will need to perform the following steps:

1. Add a progress changed EventArgs class (an example name could be
DownloadProgressChangedEventArgs) that can be used when
publishing progress events. This should have ProgressPercentage and
BytesReceived properties.

https://www1.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles

Lambda Expressions | 221

2. The WebClient class from System.Net should be used to download a
requested web file. You should create an adapter class (a suggested name is
WebClientAdapter) that hides your internal usage of WebClient from
your callers.

3. Your adapter class should provide three events—DownloadCompleted,
DownloadProgressChanged, and InvalidUrlRequested—that a caller
can subscribe to.

4. The adapter class will need a DownloadFile method that calls the
WebClient class's DownloadFileAsync method to start the download
request. This requires converting a string-based web address into a Uniform
Resource Identifier (URI) class. The Uri.TryCreate() method can create
an absolute address from the string entered via the console. If the call to Uri.
TryCreate fails, you should publish the InvalidUrlRequested event to
indicate this failure.

5. WebClient has two events—DownloadFileCompleted and
DownloadProgressChanged. You should subscribe to these two events and
republish them using your own similar events.

6. Create a console app that uses an instance of WebClientAdapter (as created
in Step 2) and subscribe to the three events.

7. By subscribing to the DownloadCompleted event, you should indicate
success in the console.

8. By subscribing to DownloadProgressChanged, you should report
progress messages to the console showing the ProgressPercentage and
BytesReceived values.

9. By subscribing to the InvalidUrlRequested event, you should show a
warning on the console using a different console background color.

10. Use a do loop that allows the user to repeatedly enter a web address.
This address and a temporary destination file path can be passed to
WebClientAdapter.DownloadFile() until the user enters a blank
address to quit.

222 | Delegates, Events, and Lambdas

11. Once you run the console app with various download requests, you should see
an output similar to the following:

Enter a URL:

https://www1.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/
StormEvents_details-ftp_v1.0_d1950_c20170120.csv.gz
Downloading https://www1.ncdc.noaa.gov/pub/data/swdi/stormevents/
csvfiles/StormEvents_details-ftp_v1.0_d1950_c20170120.csv.gz...
Downloading...73% complete (7,758 bytes)

Downloading...77% complete (8,192 bytes)

Downloading...100% complete (10,597 bytes)

Downloaded to C:\Temp\StormEvents_details-ftp_v1.0_d1950_c20170120.
csv.gz

Enter a URL:

https://www1.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/
StormEvents_details-ftp_v1.0_d1954_c20160223.csv.gz
Downloading https://www1.ncdc.noaa.gov/pub/data/swdi/stormevents/
csvfiles/StormEvents_details-ftp_v1.0_d1954_c20160223.csv.gz...
Downloading...29% complete (7,758 bytes)

Downloading...31% complete (8,192 bytes)

Downloading...54% complete (14,238 bytes)

Downloading...62% complete (16,384 bytes)

Downloading...84% complete (22,238 bytes)

Downloading...93% complete (24,576 bytes)

Downloading...100% complete (26,220 bytes)

Downloaded to C:\Temp\StormEvents_details-ftp_v1.0_d1954_c20160223.
csv.gz

By completing this activity, you have seen how to subscribe to events from an
existing .NET event-based publisher class (WebClient), adapting them to your own
specification before republishing them in your adapter class (WebClientAdapter),
which were ultimately subscribed to by a console app.

Note

The solution to this activity can be found at https://packt.link/qclbF.

https://packt.link/qclbF

Summary | 223

Summary
In this chapter, you took an in-depth look at delegates. You created custom delegates
and saw how they could be replaced with their modern counterparts, the inbuilt
Action and Func delegates. By using null reference checks, you discovered the safe
way to invoke delegates and how multiple methods can be chained together to form
multicast delegates. You extended delegates further to use them with the event
keyword to restrict invocation and followed the preferred pattern when defining and
invoking events. Finally, you covered the succinct lambda expression style and saw
how bugs can be avoided by recognising the use of captures and closures.

In the next chapter, you will look at LINQ and data structures, the fundamental parts
of the C# language.

Overview

In this chapter, you will learn about the main collections and their primary
usage in C#. You will then see how Language-Integrated Query (LINQ)
can be used to query collections in memory using code that is efficient and
succinct. By the end of this chapter, you will be well versed in using LINQ
for operations such as sorting, filtering, and aggregating data.

Data Structures and LINQ

4

226 | Data Structures and LINQ

Introduction
Throughout the previous chapters, you have used variables that refer to a single
value, such as the string and double system types, system class instances, and
your own class instances. .NET has a variety of data structures that can be used to
store multiple values. These structures are generally referred to as collections. This
chapter builds on this concept by introducing collection types from the System.
Collections.Generic namespace.

You can create variables that can store multiple object references using collection
types. Such collections include lists that resize to accommodate the number of
elements and dictionaries that offer access to the elements using a unique key as an
identifier. For example, you may need to store a list of international dialing codes
using the codes as unique identifiers. In this case, you need to be certain that the
same dialing code is not added to the collection twice.

These collections are instantiated like any other classes and are used extensively
in most applications. Choosing the correct type of collection depends primarily on
how you intend to add items and the way you would like to access such items once
they are in a collection. The commonly used collection types include List, Set, and
HashSet, which you will cover in detail shortly.

LINQ is a technology that offers an expressive and concise syntax for querying
objects. Much of the complexities around filtering, sorting, and grouping objects
can be removed using the SQL-like language, or if you prefer, a set of extension
methods that can be chained together to produce collections that can be enumerated
with ease.

Data Structures
.NET provides various types of in-built data structures, such as the Array, List, and
Dictionary types. At the heart of all data structures are the IEnumerable and
ICollection interfaces. Classes that implement these interfaces offer a way to
enumerate through the individual elements and to manipulate their items. There is
rarely a need to create your own classes that derive directly from these interfaces, as
all the required functionality is covered by the built-in collection types, but it is worth
knowing the key properties as they are heavily used throughout .NET.

Data Structures | 227

The generic version of each collection type requires a single type parameter, which
defines the type of elements that can be added to a collection, using the standard
<T> syntax of the generic types.

The IEnumerable interface has a single property, that is, IEnumerator<T>
GetEnumerator(). This property returns a type that provides methods that allow
the caller to iterate through the elements in the collection. You do not need to call the
GetEnumerator() method directly, as the compiler will call it whenever you use
a foreach statement, such as foreach(var book in books). You will learn
more about using this in the upcoming sections.

The ICollection interface has the following properties:

• int Count { get; }: Returns the number of items in the collection.

• bool IsReadOnly { get; }: Indicates if the collection is read-only. Certain
collections can be marked as read-only to prevent callers from adding, deleting,
or moving elements in the collection. C# will not prevent you from amending the
properties of individual items in a read-only collection.

• void Add(T item): Adds an item of type <T> to the collection.

• void Clear(): Removes all items from the collection.

• bool Contains(T item): Returns true if the collection contains
a certain value. Depending on the type of item in the collection, this can
be value-equality, where an object is similarly based on its members, or
reference-equality, where the object points to the same memory location.

• void CopyTo(T[] array, int arrayIndex): Copies each element
from the collection into the target array, starting with the first element at a
specified index position. This can be useful if you need to skip a specific number
of elements from the beginning of the collection.

• bool Remove(T item): Removes the specified item from the collection. If
there are multiple occurrences of the instance, then only the first instance is
removed. This returns true if an item was successfully removed.

228 | Data Structures and LINQ

IEnumerable and ICollection are interfaces that all collections implement:

Figure 4.1: ICollection and IEnumerable class diagram

Data Structures | 229

There are further interfaces that some collections implement, depending on how
elements are accessed within a collection.

The IList interface is used for collections that can be accessed by index position,
starting from zero. So, for a list that contains two items, Red and Blue, the element
at index zero is Red and the element at index one is Blue.

Figure 4.2: IList class diagram

230 | Data Structures and LINQ

The IList interface has the following properties:

• T this[int index] { get; set; }: Gets or sets the element at the
specified index position.

• int Add(T item): Adds the specified item and returns the index position of
that item in the list.

• void Clear(): Removes all items from the list.

• bool Contains(T item): Returns true if the list contains the
specified item.

• int IndexOf(T item): Returns the index position of the item, or -1 if
not found.

• void Insert(int index, T item): Inserts the item at the index
position specified.

• void Remove(T item): Removes the item if it exists within the list.

• void RemoveAt(int index): Removes the item at the specified
index position.

You have now seen the primary interfaces common to collections. So, now you will
now take a look at the main collection types that are available and how they are used.

Lists

The List<T> type is one of the most extensively used collections in C#. It is used
where you have a collection of items and want to control the order of items using
their index position. It implements the IList interface, which allows items to be
inserted, accessed, or removed using an index position:

Data Structures | 231

Figure 4.3: List class diagram

232 | Data Structures and LINQ

Lists have the following behavior:

• Items can be inserted at any position within the collection. Any trailing items will
have their index position incremented.

• Items can be removed, either by index or value. This will also cause trailing items
to have their index position updated.

• Items can be set using their index value.

• Items can be added to the end of the collection.

• Items can be duplicated within the collection.

• The position of items can be sorted using the various Sort methods.

One example of a list might be the tabs in a web browser application. Typically, a
user may want to drag a browser tab amongst other tabs, open new tabs at the end,
or close tabs anywhere in a list of tabs. The code to control these actions can be
implemented using List.

Internally, List maintains an array to store its objects. This can be efficient
when adding items to the end, but it may be inefficient when inserting items,
particularly near the beginning of the list, as the index position of items will need to
be recalculated.

The following example shows how the generic List class is used. The code uses the
List<string> type parameter, which allows string types to be added to the
list. Attempts to add any other type will result in a compiler error. This will show the
various commonly used methods of the List class.

1. Create a new folder called Chapter04 in your source code folder.

2. Change to the Chapter04 folder and create a new console app, called
Chapter04, using the following .NET command:

source\Chapter04>dotnet new console -o Chapter04

The template "Console Application" was created successfully.

3. Delete the Class1.cs file.

4. Add a new folder called Examples.

5. Add a new class file called ListExamples.cs.

Data Structures | 233

6. Add the System.Collections.Generic namespace to access the
List<T> class and declare a new variable called colors:

using System;

using System.Collections.Generic;

namespace Chapter04.Examples

{

 class ListExamples

 {

 public static void Main()

 {

 var colors = new List<string> {"red", "green"};

 colors.Add("orange");

The code declares the new colors variable, which can store multiple color
names as strings. Here, the collection initialization syntax is used so that
red and green are added as part of the initialization of the variable. The Add
method is called, adding orange to the list.

7. Similarly, AddRange adds yellow and pink to the end of the list:

 colors.AddRange(new [] {"yellow", "pink"});

8. At this point, there are five colors in the list, with red at index position 0 and
green at position 1. You can verify this using the following code:

 Console.WriteLine($"Colors has {colors.Count} items");

 Console.WriteLine($"Item at index 1 is {colors[1]}");

Running the code produces the following output:

Colors has 5 items

Item at index 1 is green

9. Using Insert, blue can be inserted at the beginning of the list, that is, at index
0, as shown in the following code. Note that this moves red from index 0 to 1
and all other colors will have their index incremented by one:

 Console.WriteLine("Inserting blue at 0");

 colors.Insert(0, "blue");

 Console.WriteLine($"Item at index 1 is now {colors[1]}");

234 | Data Structures and LINQ

You should see the following output on running this code:

Inserting blue at 0

Item at index 1 is now red

10. Using foreach you can iterate through the strings in the list, writing each string
to the console, as follows:

 Console.WriteLine("foreach");

 foreach (var color in colors)

 Console.Write($"{color}|");

 Console.WriteLine();

You should get the following output:

foreach

blue|red|green|orange|yellow|pink|

11. Now, add the following code to reverse the array. Here, each color string is
converted into an array of char type using ToCharArray:

 Console.WriteLine("ForEach Action:");

 colors.ForEach(color =>

 {

 var characters = color.ToCharArray();

 Array.Reverse(characters);

 var reversed = new string(characters);

 Console.Write($"{reversed}|");

 });

 Console.WriteLine();

This does not affect any of the values in the colors List, as characters refers
to a different object. Note that foreach iterates through each string, whereas
ForEach defines an Action delegate to be invoked using each string (recall that
in Chapter 3, Delegates, Events, and Lambdas, you saw how lambda statements
can be used to create Action delegates).

12. Running the code leads to this output:

ForEach Action:

eulb|der|neerg|egnaro|wolley|knip|

Data Structures | 235

13. In the next snippet, the List constructor accepts a source collection. This
creates a new list containing a copy of the colors strings in this case, which is
sorted using the default Sort implementation:

 var backupColors = new List<string>(colors);

 backupColors.Sort();

The string type uses value-type semantics, which means that the
backupColors list is populated with a copy of each source string value.
Updating a string in one list will not affect the other list. Conversely, classes
are defined as reference-types so passing a list of class instances to the
constructor will still create a new list, with independent element indexes, but
each element will point to the same shared reference in memory rather than an
independent copy.

14. In the following snippet, prior to removing all colors (using colors.Clear),
each value is written to the console (the list will be repopulated shortly):

 Console.WriteLine("Foreach before clearing:");

 foreach (var color in colors)

 Console.Write($"{color}|");

 Console.WriteLine();

 colors.Clear();

 Console.WriteLine($"Colors has {colors.Count} items");

Running the code produces this output:

Foreach before clearing:

blue|red|green|orange|yellow|pink|

Colors has 0 items

15. Then, AddRange is used again, to add the full list of colors back to the colors
list, using the sorted backupColors items as a source:

 colors.AddRange(backupColors);

 Console.WriteLine("foreach after addrange (sorted
items):");
 foreach (var color in colors)

 Console.Write($"{color}|");

 Console.WriteLine();

You should see the following output:

foreach after addrange (sorted items):

blue|green|orange|pink|red|yellow|

236 | Data Structures and LINQ

16. The ConvertAll method is passed a delegate that can be used to return a new
list of any type:

 var indexes = colors.ConvertAll(color =>
 $"{color} is at index {colors.IndexOf(color)}");
 Console.WriteLine("ConvertAll:");

 Console.WriteLine(string.Join(Environment.NewLine,
indexes));

Here, a new List<string> is returned with each item being formatted using
its value and the item's index in the list. As expected, running the code produces
this output:

ConvertAll:

blue is at index 0

green is at index 1

orange is at index 2

pink is at index 3

red is at index 4

yellow is at index 5

17. In the next snippet, two Contains() methods are used to show string value-
equality in action:

 Console.WriteLine($"Contains RED: {colors.
Contains("RED")}");
 Console.WriteLine($"Contains red: {colors.
Contains("red")}");

Note that the uppercase RED is not in the list, but the lowercase red will be.
Running the code produces this output:

Contains RED: False

Contains red: True

18. Now, add the following snippet:

 var existsInk = colors.Exists(color => color.
EndsWith("ink"));
 Console.WriteLine($"Exists *ink: {existsInk}");

Here, the Exists method is passed a Predicate delegate, which returns True
or False if the test condition is met. Predicate is an inbuilt delegate, which
returns a boolean value. In this case, True will be returned if any item exists
where the string value ends with the letters ink (pink, for example).

Data Structures | 237

You should see the following output:

Exists *ink: True

19. You know there is already a red color, but it will be interesting to see what
happens if you insert red again, twice, at the very beginning of the list:

 Console.WriteLine("Inserting reds");

 colors.InsertRange(0, new [] {"red", "red"});

 foreach (var color in colors)

 Console.Write($"{color}|");

 Console.WriteLine();

You will get the following output:

Inserting reds

red|red|blue|green|orange|pink|red|yellow|

This shows that it is possible to insert the same item more than once into a list.

20. The next snippet shows you how to use the FindAll method. FindAll is
similar to the Exists method, in that it is passed a Predicate condition. All
items that match that rule will be returned. Add the following code:

 var allReds = colors.FindAll(color => color == "red");

 Console.WriteLine($"Found {allReds.Count} red");

You should get an output as follows. As expected, there are three red
items returned:

Found 3 red

21. Finishing the example, the Remove method is used to remove the first red from
the list. There are still two reds left. You can use FindLastIndex to get the
index of the last red item:

 colors.Remove("red");

 var lastRedIndex = colors.FindLastIndex(color => color ==
"red");
 Console.WriteLine($"Last red found at index
{lastRedIndex}");
 Console.ReadLine();

 }

 }

}

238 | Data Structures and LINQ

Running the code produces this output:

Last red found at index 5

Note

You can find the code used for this example at https://packt.link/dLbK6.

With the knowledge of how the generic List class is used, it is time for you to work
on an exercise.

Exercise 4.01: Maintaining Order within a List

At the beginning of the chapter, web browser tabs were described as an ideal
example of lists. In this exercise, you will put this idea into action, and create a class
that controls the navigation of the tabs within an app that mimics a web browser.

For this, you will create a Tab class and a TabController app that allows new tabs
to be opened and existing tabs to be closed or moved. The following steps will help
you complete this exercise:

1. In VSCode, select your Chapter04 project.

2. Add a new folder called Exercises.

3. Inside the Exercises folder, add a folder called Exercise01 and add a file
called Exercise01.cs.

4. Open Exercise01.cs and define a Tab class with a string URL constructor
parameter as follows:

using System;

using System.Collections;

using System.Collections.Generic;

namespace Chapter04.Exercises.Exercise01

{

 public class Tab

 {

 public Tab()

 {}

 public Tab(string url) => (Url) = (url);

https://packt.link/dLbK6

Data Structures | 239

 public string Url { get; set; }

 public override string ToString() => Url;

 }

Here, the ToString method has been overridden to return the current URL to
help when logging details to the console.

5. Create the TabController class as follows:

 public class TabController : IEnumerable<Tab>

 {

 private readonly List<Tab> _tabs = new();

The TabController class contains a List of tabs. Notice how the class inherits
from the IEnumerable interface. This interface is used so that the class
provides a way to iterate through its items, using a foreach statement. You
will provide methods to open, move, and close tabs, which will directly control
the order of items in the _tabs list, in the next steps. Note that you could
have exposed the _tabs list directly to callers, but it would be preferable to
limit access to the tabs through your own methods. Hence, it is defined as a
readonly list.

6. Next, define the OpenNew method, which adds a new tab to the end of the list:

 public Tab OpenNew(string url)

 {

 var tab = new Tab(url);

 _tabs.Add(tab);

 Console.WriteLine($"OpenNew {tab}");

 return tab;

 }

7. Define another method, Close, which removes the tab from the list if it exists.
Add the following code for this:

 public void Close(Tab tab)

 {

 if (_tabs.Remove(tab))

 {

 Console.WriteLine($"Removed {tab}");

 }

 }

240 | Data Structures and LINQ

8. To move a tab to the start of the list, add the following code:

 public void MoveToStart(Tab tab)

 {

 if (_tabs.Remove(tab))

 {

 _tabs.Insert(0, tab);

 Console.WriteLine($"Moved {tab} to start");

 }

Here, MoveToStart will try to remove the tab and then insert it at index 0.

9. Similarly, add the following code to move a tab to the end:

 public void MoveToEnd(Tab tab)

 {

 if (_tabs.Remove(tab))

 {

 _tabs.Add(tab);

 Console.WriteLine($"Moved {tab} to end. Index={_tabs.
IndexOf(tab)}");
 }

 }

Here, calling MoveToEnd removes the tab first, and then adds it to the end,
logging the new index position to the console.

Finally, the IEnumerable interface requires that you implement two
methods, IEnumerator<Tab> GetEnumerator() and IEnumerable.
GetEnumerator(). These allow the caller to iterate through a collection
using either a generic of type Tab or using the second method to iterate via an
object-based type. The second method is a throwback to earlier versions of C#
but is needed for compatibility.

10. For the actual results for both methods, you can use the GetEnumerator
method of the _tab list, as that contains the tabs in list form. Add the following
code to do so:

 public IEnumerator<Tab> GetEnumerator() => _tabs.
GetEnumerator();
 IEnumerator IEnumerable.GetEnumerator() => _tabs.
GetEnumerator();
 }

Data Structures | 241

11. You can now create a console app that tests the controller's behavior. Start by
opening three new tabs and logging the tab details via LogTabs (this will be
defined shortly):

 static class Program

 {

 public static void Main()

 {

 var controller = new TabController();

 Console.WriteLine("Opening tabs...");

 var packt = controller.OpenNew("packtpub.com");

 var msoft = controller.OpenNew("microsoft.com");

 var amazon = controller.OpenNew("amazon.com");

 controller.LogTabs();

12. Now, move amazon to the start and packt to the end, and log the tab details:

 Console.WriteLine("Moving...");

 controller.MoveToStart(amazon);

 controller.MoveToEnd(packt);

 controller.LogTabs();

13. Close the msoft tab and log details once more:

 Console.WriteLine("Closing tab...");

 controller.Close(msoft);

 controller.LogTabs();

 Console.ReadLine();

 }

14. Finally, add an extension method that helps log the URL of each
tab in TabController. Define this as an extension method for
IEnumerable<Tab>, rather than TabController, as you simply need an
iterator to iterate through the tabs using a foreach loop.

15. Use PadRight to left-align each URL, as follows:

 private static void LogTabs(this IEnumerable<Tab> tabs)

 {

 Console.Write("TABS: |");

 foreach(var tab in tabs)

242 | Data Structures and LINQ

 Console.Write($"{tab.Url.PadRight(15)}|");

 Console.WriteLine();

 }

 }

}

16. Running the code produces the following output:

Opening tabs...

OpenNew packtpub.com

OpenNew microsoft.com

OpenNew amazon.com

TABS: |packtpub.com |microsoft.com |amazon.com |

Moving...

Moved amazon.com to start

Moved packtpub.com to end. Index=2

TABS: |amazon.com |microsoft.com |packtpub.com |

Closing tab...

Removed microsoft.com

TABS: |amazon.com |packtpub.com |

Note

Sometimes Visual Studio might report a non-nullable property error the
first time you execute the program. This is a helpful reminder that you are
attempting to use a string value that may have a null value at runtime.

The three tabs are opened. amazon.com and packtpub.com are then moved
before microsoft.com is finally closed and removed from the tab list.

Note

You can find the code used for this exercise at https://packt.link/iUcIs.

In this exercise, you have seen how lists can be used to store multiple items of
the same type while maintaining the order of items. The next section covers the
Queue and Stack classes, which allow items to be added and removed in a
predefined sequence.

https://packt.link/iUcIs

Data Structures | 243

Queues

The Queue class provides a first-in, first-out mechanism. Items are added to the
end of the queue using the Enqueue method and are removed from the front of the
queue using the Dequeue method. Items in the queue cannot be accessed via an
index element.

Queues are typically used when you need a workflow that ensures items are
processed in the order in which they are added to the queue. A typical example
might be a busy online ticketing system selling a limited number of concert tickets to
customers. To ensure fairness, customers are added to a queuing system as soon as
they log on. The system would then dequeue each customer and process each order,
in full, either until all tickets have been sold or the customer queue is empty.

The following example creates a queue containing five CustomerOrder
records. When it is time to process the orders, each order is dequeued using the
TryDequeue method, which will return true until all orders have been processed.
The customer orders are processed in the order that they were added. If the number
of tickets requested is more than or equal to the tickets remaining, then the customer
is shown a success message. An apology message is shown if the number of tickets
remaining is less than the requested amount.

Figure 4.4: The Queue's Enqueue() and Dequeue() workflow

244 | Data Structures and LINQ

Perform the following steps to complete this example:

1. In the Examples folder of your Chapter04 source folder, add a new class
called QueueExamples.cs and edit it as follows:

using System;

using System.Collections.Generic;

namespace Chapter04.Examples

{

 class QueueExamples

 {

 record CustomerOrder (string Name, int TicketsRequested)

 {}

 public static void Main()

 {

 var ticketsAvailable = 10;

 var customers = new Queue<CustomerOrder>();

2. Add five orders to the queue using the Enqueue method as follows:

 customers.Enqueue(new CustomerOrder("Dave", 2));

 customers.Enqueue(new CustomerOrder("Siva", 4));

 customers.Enqueue(new CustomerOrder("Julien", 3));

 customers.Enqueue(new CustomerOrder("Kane", 2));

 customers.Enqueue(new CustomerOrder("Ann", 1));

3. Now, use a while loop that repeats until TryDequeue returns false,
meaning all current orders have been processed:

 // Start processing orders...

 while(customers.TryDequeue(out CustomerOrder nextOrder))

 {

 if (nextOrder.TicketsRequested <= ticketsAvailable)

 {

 ticketsAvailable -= nextOrder.TicketsRequested;

 Console.WriteLine($"Congratulations {nextOrder.
Name}, you've purchased {nextOrder.TicketsRequested} ticket(s)");
 }

 else

 {

 Console.WriteLine($"Sorry {nextOrder.Name},
cannot fulfil {nextOrder.TicketsRequested} ticket(s)");

Data Structures | 245

 }

 }

 Console.WriteLine($"Finished.
Available={ticketsAvailable}");
 Console.ReadLine();

 }

 }

}

4. Running the example code produces the following output:

Congratulations Dave, you've purchased 2 ticket(s)

Congratulations Siva, you've purchased 4 ticket(s)

Congratulations Julien, you've purchased 3 ticket(s)

Sorry Kane, cannot fulfil 2 ticket(s)

Congratulations Ann, you've purchased 1 ticket(s)

Finished. Available=0

Note

The first time you run this program, Visual Studio might show a non-nullable
type error. This error is a reminder that you are using a variable that could
be a null value.

The output shows that Dave requested two tickets. As there are two or more tickets
available, he was successful. Both Siva and Julien were also successful, but by
the time Kane placed his order of two tickets, there was only one ticket available,
so he was shown the apology message. Finally, Ann requested one ticket and was
successful in her order.

Note

You can find the code used for this example at https://packt.link/Zb524.

Stacks

The Stack class provides the opposite mechanism to the Queue class; items are
processed in last-in, first-out order. As with the Queue class, you cannot access
elements via their index position. Items are added to the stack using the Push
method and removed using the Pop method.

https://packt.link/Zb524

246 | Data Structures and LINQ

An application's Undo menu can be implemented using a stack. For example, in a
word processor, as the user edits a document, an Action delegate is created, which
can reverse the most recent change whenever the user presses Ctrl + Z. The most
recent action is popped off the stack and the change is undone. This allows multiple
steps to be undone.

Figure 4.5: The Stack's Push() and Pop() workflow

The following example shows this in practice.

You will start by creating an UndoStack class that supports multiple undo
operations. The caller decides what action should run each time the Undo request
is called.

A typical undoable operation would be storing a copy of text prior to the user adding
a word. Another undoable operation would be storing a copy of the current font prior
to a new font being applied. You can start by adding the following code, where you
are creating the UndoStack class and defining a readonly Stack of Action
delegates, named _undoStack:

1. In your Chapter04\Examples folder, add a new class called
StackExamples.cs and edit it as follows:

using System;

using System.Collections.Generic;

namespace Chapter04.Examples

{

Data Structures | 247

 class UndoStack

 {

 private readonly Stack<Action> _undoStack = new
Stack<Action>();

2. When the user has done something, the same action can be undone. So push an
undoable Action to the front of _undoStack:

 public void Do(Action action)

 {

 _undoStack.Push(action);

 }

3. The Undo method checks to see if there are any items to undo, then calls Pop
to remove the most recent Action and invoke it, thus undoing the change that
was just applied. The code for this can be added as follows:

 public void Undo()

 {

 if (_undoStack.Count > 0)

 {

 var undo = _undoStack.Pop();

 undo?.Invoke();

 }

 }

 }

4. Now, you can create a TextEditor class that allows edits to be added to
UndoStack. This constructor is passed UndoStack as there could be multiple
editors that need to add various Action delegates to the stack:

 class TextEditor

 {

 private readonly UndoStack _undoStack;

 public TextEditor(UndoStack undoStack)

 {

 _undoStack = undoStack;

 }

 public string Text {get; private set; }

248 | Data Structures and LINQ

5. Next, add the EditText command, which takes a copy of the previousText
value and creates an Action delegate that can revert the text to its previous
value, if invoked:

 public void EditText(string newText)

 {

 var previousText = Text;

 _undoStack.Do(() =>

 {

 Text = previousText;

 Console.Write($"Undo:'{newText}'".PadRight(40));

 Console.WriteLine($"Text='{Text}'");

 });

6. Now, the newText value should be appended to the Text property, using the
+= operator. The details for this are logged to the console, using PadRight to
improve the format:

 Text += newText;

 Console.Write($"Edit:'{newText}'".PadRight(40));

 Console.WriteLine($"Text='{Text}'");

 }

 }

7. Finally, it is time to create a console app that tests TextEditor and
UndoStack. Four edits are initially made, followed by two undo operations,
and finally two more text edits:

 class StackExamples

 {

 public static void Main()

 {

 var undoStack = new UndoStack();

 var editor = new TextEditor(undoStack);

 editor.EditText("One day, ");

 editor.EditText("in a ");

 editor.EditText("city ");

 editor.EditText("near by ");

Data Structures | 249

 undoStack.Undo(); // remove 'near by'

 undoStack.Undo(); // remove 'city'

 editor.EditText("land ");

 editor.EditText("far far away ");

 Console.ReadLine();

 }

 }

}

8. Running the console app produces the following output:

Edit:'One day, ' Text='One day, '

Edit:'in a ' Text='One day, in a '

Edit:'city ' Text='One day, in a city '

Edit:'near by ' Text='One day, in a city near
by '
Undo:'near by ' Text='One day, in a city '

Undo:'city ' Text='One day, in a '

Edit:'land ' Text='One day, in a land '

Edit:'far far away ' Text='One day, in a land far
far away '

Note

Visual Studio may show non-nullable property error the first time the code is
executed. This is because Visual Studio notices that the Text property can
be a null value at runtime so offers a suggestion to improve the code.

The left-hand output shows the text edits and undoes operations as they are applied
and the resulting Text value on the right-hand side. The two Undo calls result in
near by and city being removed from the Text value, before land and far
far away are finally added to the Text value.

Note

You can find the code used for this example at https://packt.link/tLVyf.

https://packt.link/tLVyf

250 | Data Structures and LINQ

HashSets

The HashSet class provides mathematical set operations with collections of objects
in an efficient and highly performant manner. HashSet does not allow duplicate
elements and items are not stored in any particular order. Using the HashSet class
is ideal for high-performance operations, such as needing to quickly find where two
collections of objects overlap.

Typically, HashSet is used with the following operations:

• public void UnionWith(IEnumerable<T> other): Produces a set
union. This modifies HashSet to include the items present in the current
HashSet instance, the other collection, or both.

• public void IntersectWith(IEnumerable<T> other): Produces a
set intersect. This modifies HashSet to include items present in the current
HashSet instance and the other collection.

• public void ExceptWith(IEnumerable<T> other): Produces a set
subtraction. This removes items from the HashSet that are present in the
current HashSet instance and the other collection.

HashSet is useful when you need to include or exclude certain elements from
collections. As an example, consider that an agent manages various celebrities and
has been asked to find three sets of stars:

• Those that can act or sing.

• Those that can act and sing.

• Those that can act only (no singers allowed).

In the following snippet, a list of actors' and singers' names is created:

1. In your Chapter04\Examples folder, add a new class called
HashSetExamples.cs and edit it as follows:

using System;

using System.Collections.Generic;

namespace Chapter04.Examples

{

 class HashSetExamples

 {

 public static void Main()

 {

Data Structures | 251

 var actors = new List<string> {"Harrison Ford", "Will
Smith",
 "Sigourney Weaver"};

 var singers = new List<string> {"Will Smith", "Adele"};

2. Now, create a new HashSet instance that initially contains singers only and
then use UnionWith to modify the set to contain a distinct set of those that can
act or sing:

 var actingOrSinging = new HashSet<string>(singers);

 actingOrSinging.UnionWith(actors);

 Console.WriteLine($"Acting or Singing: {string.Join(", ",

 actingOrSinging)}");

3. For those that can act and sing, start with a HashSet instance of singers, and
modify the HashSet instance using IntersectWith to contain a distinct list
of those that are in both collections:

 var actingAndSinging = new HashSet<string>(singers);

 actingAndSinging.IntersectWith(actors);

 Console.WriteLine($"Acting and Singing: {string.Join(",
",
 actingAndSinging)}");

4. Finally, for those that can act only, start with the actor collection, and use
ExceptWith to remove those from the HashSet instance that can also sing:

 var actingOnly = new HashSet<string>(actors);

 actingOnly.ExceptWith(singers);

 Console.WriteLine($"Acting Only: {string.Join(", ",
actingOnly)}");
 Console.ReadLine();

 }

 }

}

5. Running the console app produces the following output:

Acting or Singing: Will Smith, Adele, Harrison Ford, Sigourney Weaver

Acting and Singing: Will Smith

Acting Only: Harrison Ford, Sigourney Weaver

252 | Data Structures and LINQ

From the output, you can see that out of the given list of actors and singers, only
Will Smith can act and sing.

Note

You can find the code used for this example at https://packt.link/ZdNbS.

Dictionaries

Another commonly used collection type is the generic Dictionary<TK, TV>.
This allows multiple items to be added, but a unique key is needed to identify an
item instance.

Dictionaries are commonly used to look up values using known keys. The key and
value type parameters can be of any type. A value can exist in a Dictionary more
than once, provided that its key is unique. Attempting to add a key that already exists
will result in a runtime exception being thrown.

A common example of a Dictionary might be a registry of known countries
that are keyed by their ISO country code. A customer service application may
load customer details from a database and then use the ISO code to look up the
customer's country from the country list, rather than having the extra overhead of
creating a new country instance for each customer.

Note

You can find more information on standard ISO country codes at
https://www.iso.org/iso-3166-country-codes.html.

The main methods used in the Dictionary class are as follows:

• public TValue this[TKey key] {get; set;}: Gets or sets a value
associated with the key. An exception is thrown if the key does not exist.

• Dictionary<TKey, TValue>.KeyCollection Keys { get; }:
Returns a KeyCollection dictionary instance that contains all keys.

• Dictionary<TKey, TValue>.ValueCollection Values { get; }:
Returns a ValueCollection dictionary instance that contains all values.

https://packt.link/ZdNbS
https://www.iso.org/iso-3166-country-codes.html

Data Structures | 253

• public int Count { get; }: Returns the number of elements in
the Dictionary.

• void Add(TKey key, TValue value): Adds the key and associated
value. If the key already exists, an exception is thrown.

• void Clear(): Clears all keys and values from the Dictionary.

• bool ContainsKey(TKey key): Returns true if the specified key exists.

• bool ContainsValue(TValue value): Returns true if the specified
value exists.

• bool Remove(TKey key): Removes a value with the associated key.

• bool TryAdd(TKey key, TValue value): Attempts to add the key and
value. If the key already exists, an exception is "not" thrown. Returns true if the
value was added.

• bool TryGetValue(TKey key, out TValue value): Gets the value
associated with the key, if it is available. Returns true if it was found.

The following code shows how a Dictionary can be used to add and navigate
Country records:

1. In your Chapter04\Examples folder, add a new class called
DictionaryExamples.cs.

2. Start by defining a Country record, which is passed a Name parameter:

using System;

using System.Collections.Generic;

namespace Chapter04.Examples

{

 public record Country(string Name)

 {}

 class DictionaryExamples

 {

 public static void Main()

 {

254 | Data Structures and LINQ

3. Use the Dictionary initialization syntax to create a Dictionary with five
countries, as follows:

 var countries = new Dictionary<string, Country>

 {

 {"AFG", new Country("Afghanistan")},

 {"ALB", new Country("Albania")},

 {"DZA", new Country("Algeria")},

 {"ASM", new Country("American Samoa")},

 {"AND", new Country("Andorra")}

 };

4. In the next code snippet, Dictionary implements the IEnumerable
interface, which allows you to retrieve a key-value pair representing the key and
value items in the Dictionary:

 Console.WriteLine("Enumerate foreach KeyValuePair");

 foreach (var kvp in countries)

 {

 Console.WriteLine($"\t{kvp.Key} = {kvp.Value.Name}");

 }

5. Running the example code produces the following output. By iterating through
each item in countries, you can see the five country codes and their names:

Enumerate foreach KeyValuePair

 AFG = Afghanistan

 ALB = Albania

 DZA = Algeria

 ASM = American Samoa

 AND = Andorra

6. There is an entry with the AFG key, so using the set indexer passing in AFG
as a key allows a new Country record to be set that replaces the previous item
with the AGF key. You can add the following code for this:

 Console.WriteLine("set indexor AFG to new value");

 countries["AFG"] = new Country("AFGHANISTAN");

 Console.WriteLine($"get indexor AFG: {countries["AFG"].
Name}");

Data Structures | 255

7. When you run the code, adding a key for AFG allows you to get a value using
that key:

set indexor AFG to new value

get indexor AFG: AFGHANISTAN

ContainsKey AGO: False

ContainsKey and: False

8. Key comparisons are case-sensitive with string keys, so AGO is present but and is
not as the corresponding country (Andorra) is defined with the uppercase AND
key. You can add the following code to check this:

 Console.WriteLine($"ContainsKey {"AGO"}:
 {countries.ContainsKey("AGO")}");
 Console.WriteLine($"ContainsKey {"and"}:
 {countries.ContainsKey("and")}"); // Case
sensitive

9. Using Add to add a new entry will throw an exception if the key already exists.
This can be seen by adding the following code:

 var anguilla = new Country("Anguilla");

 Console.WriteLine($"Add {anguilla}...");

 countries.Add("AIA", anguilla);

 try

 {

 var anguillaCopy = new Country("Anguilla");

 Console.WriteLine($"Adding {anguillaCopy}...");

 countries.Add("AIA", anguillaCopy);

 }

 catch (Exception e)

 {

 Console.WriteLine($"Caught {e.Message}");

 }

10. Conversely, TryAdd does not throw an exception if you attempt to add a
duplicate key. There already exists an entry with the AIA key, so using TryAdd
simply returns a false value rather than throwing an exception:

 var addedAIA = countries.TryAdd("AIA", new
Country("Anguilla"));
 Console.WriteLine($"TryAdd AIA: {addedAIA}");

256 | Data Structures and LINQ

11. As the following output shows, adding Anguilla once using the AIA key is
valid but attempting to add it again using the AIA key results in an exception
being caught:

Add Country { Name = Anguilla }...

Adding Country { Name = Anguilla }...

Caught An item with the same key has already been added. Key: AIA

TryAdd AIA: False

12. TryGetValue, as the name suggests, allows you to try to get a value by key.
You pass in a key that may be missing from the Dictionary. Requesting an
object whose key is missing from the Dictionary will ensure that an exception
is not thrown. This is useful if you are unsure whether a value has been added
for the specified key:

 var tryGet = countries.TryGetValue("ALB", out Country
albania1);
 Console.WriteLine($"TryGetValue for ALB: {albania1}
 Result={tryGet}");
 countries.TryGetValue("alb", out Country albania2);

 Console.WriteLine($"TryGetValue for ALB: {albania2}");

 }

 }

}

13. You should see the following output upon running this code:

TryGetValue for ALB: Country { Name = Albania } Result=True

TryGetValue for ALB:

Note

Visual Studio might report the following warning: Warning CS8600:
Converting null literal or possible null value to
non-nullable type. This is a reminder from Visual Studio that a
variable may have a null value at runtime.

You have seen how the Dictionary class is used to ensure that only unique
identities are associated with values. Even if you do not know which keys are in the
Dictionary until runtime, you can use the TryGetValue and TryAdd methods
to prevent runtime exceptions.

Data Structures | 257

Note

You can find the code used for this example at https://packt.link/vzHUb.

In this example, a string key was used for the Dictionary. However, any type
can be used as a key. You will often find that an integer value is used as a key
when source data is retrieved from relational databases, as integers can often be
more efficient in memory than strings. Now it is time to use this feature through
an exercise.

Exercise 4.02: Using a Dictionary to Count the Words in a Sentence

You have been asked to create a console app that asks the user to enter a sentence.
The console should then split the input into individual words (using a space character
as a word delimiter) and count the number of times that each word occurs. If
possible, simple forms of punctuation should be removed from the output, and you
are to ignore capitalized words so that, for example, Apple and apple both appear
as a single word.

This is an ideal use of a Dictionary. The Dictionary will use a string as the key
(a unique entry for each word) with an int value to count the words. You will use
string.Split() to split a sentence into words, and char.IsPunctuation to
remove any trailing punctuation marks.

Perform the following steps to do so:

1. In your Chapter04\Exercises folder, create a new folder
called Exercise02.

2. Inside the Exercise02 folder, add a new class called Program.cs.

3. Start by defining a new class called WordCounter. This can be marked as
static so that it can be used without needing to create an instance:

using System;

using System.Collections.Generic;

namespace Chapter04.Exercises.Exercise02

{

 static class WordCounter

 {

https://packt.link/vzHUb

258 | Data Structures and LINQ

4. Define a static method called Process:

 public static IEnumerable<KeyValuePair<string, int>> Process(
 string phrase)
 {

 var wordCounts = new Dictionary<string, int>();

This is passed a phrase and returns IEnumerable<KeyValuePair>, which
allows the caller to enumerate through a Dictionary of results. After this
definition, the Dictionary of wordCounts is keyed using a string (each
word found) and an int (the number of times that a word occurs).

5. You are to ignore the case of words with capital letters, so convert the string
into its lowercase equivalent before using the string.Split method to split
the phrase.

6. Then you can use the RemoveEmptyEntries option to remove any empty
string values. Add the following code for this:

 var words = phrase.ToLower().Split(' ',
 StringSplitOptions.RemoveEmptyEntries);

7. Use a simple foreach loop to iterate through the individual words found in
the phrase:

 foreach(var word in words)

 {

 var key = word;

 if (char.IsPunctuation(key[key.Length-1]))

 {

 key = key.Remove(key.Length-1);

 }

The char.IsPunctuation method is used to remove punctuation marks
from the end of the word.

8. Use the TryGetValue method to check if there is a Dictionary entry with
the current word. If so, update the count by one:

 if (wordCounts.TryGetValue(key, out var count))

 {

 wordCounts[key] = count + 1;

 }

 else

 {

 wordCounts.Add(key, 1);

Data Structures | 259

 }

 }

If the word does not exist, add a new word key with a starting value of 1.

9. Once all the words in the phrase have been processed, return the
wordCounts Dictionary:

 return wordCounts;

 }

 }

10. Now, write the console app that allows the user to enter a phrase:

 class Program

 {

 public static void Main()

 {

 string input;

 do

 {

 Console.Write("Enter a phrase:");

 input = Console.ReadLine();

The do loop will end once the user enters an empty string; you will add the code
for this in an upcoming step.

11. Call the WordCounter.Process method to return a key-value pair that can be
enumerated through.

12. For each key and value, write the word and its count, padding each word to
the right:

 if (!string.IsNullOrEmpty(input))

 {

 var countsByWord = WordCounter.Process(input);

 var i = 0;

 foreach (var (key, value) in countsByWord)

 {

 Console.Write($"{key.PadLeft(20)}={value}\t");

 i++;

 if (i % 3 == 0)

 {

 Console.WriteLine();

 }

260 | Data Structures and LINQ

 }

 Console.WriteLine();

A new line is started after every third word (using i % 3 = 0) for improved
output formatting.

13. Finish off the do-while loop:

 }

 } while (input != string.Empty);

 }

 }

}

14. Running the console using the opening text from The Gettysburg Address of 1863
produces this output:

Enter a phrase:
Four score and seven years ago our fathers brought forth, upon this
continent, a new nation, conceived in liberty, and dedicated to the
proposition that all men are created equal. Now we are engaged in a
great civil war, testing whether that nation, or any nation so
conceived, and so dedicated, can long endure.

 four=1 score=1 and=3

 seven=1 years=1 ago=1

 our=1 fathers=1 brought=1

 forth=1 upon=1 this=1

 continent=1 a=2 new=1

 nation=3 conceived=2 in=2

 liberty=1 dedicated=2 to=1

 the=1 proposition=1 that=2

 all=1 men=1 are=2

 created=1 equal=1 now=1

 we=1 engaged=1 great=1

 civil=1 war=1 testing=1

 whether=1 or=1 any=1

 so=2 can=1 long=1

 endure=1

Note

You can search online for The Gettysburg Address or visit https://rmc.library.
cornell.edu/gettysburg/good_cause/transcript.htm.

https://rmc.library.cornell.edu/gettysburg/good_cause/transcript.htm
https://rmc.library.cornell.edu/gettysburg/good_cause/transcript.htm

LINQ | 261

From the results, you can see that each word is displayed only once and that certain
words, such as and and that, appear more than once in the speech. The words are
listed in the order they appear in the text, but this is not always the case with the
Dictionary class. It should be assumed that the order will not remain fixed this
way; dictionaries' values should be accessed using a key.

Note

You can find the code used for this exercise at https://packt.link/Dnw4a.

So far, you have learned about the main collections commonly used in .NET. It is
now time to look at LINQ, which makes extensive use of collections based on the
IEnumerable interface.

LINQ
LINQ (pronounced link) is short for Language Integrated Query. LINQ is a general-
purpose language that can be used to query objects in memory by using a syntax that
is similar to Structured Query Language (SQL), that is, it is used to query databases.
It is an enhancement of the C# language that makes it easier to interact with objects
in memory using SQL-like Query Expressions or Query Operators (implemented
through a series of extension methods).

Microsoft's original idea for LINQ was to bridge the gap between .NET code and data
sources, such as relational databases and XML, using LINQ providers. LINQ providers
form a set of building blocks that can be used to query various sources of data, using
a similar set of Query Operators, without the caller needing to know the intricacies
of how each data source works. The following is a list of providers and how they
are used:

• LINQ to Objects: Queries applied to objects in memory, such as those defined in
a list.

• LINQ to SQL: Queries applied to relational databases such as SQL Server,
Sybase, or Oracle.

• LINQ to XML: Queries applied to XML documents.

https://packt.link/Dnw4a

262 | Data Structures and LINQ

This chapter will cover LINQ to Objects. This is, by far, the most common use of LINQ
providers and offers a flexible way to query collections in memory. In fact, when
talking about LINQ, most people refer to LINQ to Objects, mainly due to its ubiquitous
use throughout C# applications.

At the heart of LINQ is the way that collections can be converted, filtered, and
aggregated into new forms using a concise and easy-to-use syntax. LINQ can be
used in two interchangeable styles:

• Query Operators

• Query Expressions

Each style offers a different syntax to achieve the same result, and which one you
use often comes down to personal preference. Each style can be interwoven in
code easily.

Query Operators

These are based on a series of core extension methods. The results from one method
can be chained together into a programming style, which can often be easier to grasp
than their expression-based counterparts.

The extension methods typically take an IEnumerable<T> or IQueryable<T>
input source, such as a list, and allow a Func<T> predicate to be applied to that
source. The source is generic-based, so Query Operators work with all types. It is just
as easy to work with List<string> as it is with List<Customer>, for example.

In the following snippet, .Where, .OrderBy, and .Select are the extension
methods being called:

books.Where(book => book.Price > 10)

 .OrderBy(book => book.Price)

 .Select(book => book.Name)

Here, you are taking the results from a .Where extension method to find all books
with a unit price greater than 10, which is then sorted using the .OrderBy extension
method. Finally, the name of each book is extracted using the .Select method.
These methods could have been declared as single lines of code, but chaining in
this way provides a more intuitive syntax. This will be covered in more detail in the
upcoming sections.

LINQ | 263

Query Expressions

Query Expressions are an enhancement of the C# language and resemble SQL syntax.
The C# compiler compiles Query Expressions into a sequence of Query Operator
extension method calls. Note that not all Query Operators are available with an
equivalent Query Expression implementation.

Query Expressions have the following rules:

• They start with a from clause.

• They can contain at least one or more optional where, orderby, join, let,
and additional from clauses.

• They end with either a select or a group clause.

The following snippet is functionally equivalent to the Query Operator style defined in
the previous section:

from book in books
where book.Price > 10
orderby book.Price
select book.Name

You will take a more in-depth look at both styles as you learn about the standard
Query Operators shortly.

Deferred Execution

Whether you choose to use Query Operators, Query Expressions, or a mixture of the
two, it is important to remember that for many operators, the query that you define
is not executed when it is defined, but only when it is enumerated over. This means
that it is not until a foreach statement or a ToList, ToArray, ToDictionary,
ToLookup, or ToHashSet method is called that the actual query is executed.

This allows queries to be constructed elsewhere in code with additional criteria
included, and then used or even reused with a different collection of data. Recall that
in Chapter 3, Delegates, Lambdas, and Events, you saw similar behavior with delegates.
Delegates are not executed where they are defined, but only when they are invoked.

264 | Data Structures and LINQ

In the following short Query Operator example, the output will be abz even though
z is added after the query is defined but before it is enumerated through. This
demonstrates that LINQ queries are evaluated on demand, rather than at the point
where they are declared:

var letters = new List<string> { "a", "b"}

var query = letters.Select(w => w.ToUpper());

letters.Add("z");

foreach(var l in query)

 Console.Write(l);

Standard Query Operators

LINQ is driven by a core set of extension methods, referred to as standard Query
Operators. These are grouped into operations based on their functionality. There are
many standard Query Operators available, so for this introduction, you will explore all
the main operators that you are likely to use regularly.

Projection Operations

Projection operations allow you to convert an object into a new structure using
only the properties that you need. You can create a new type, apply mathematical
operations, or return the original object:

• Select: Projects each item in the source into a new form.

• SelectMany: Projects all items in the source, flattens the result, and optionally
projects them to a new form. There is no Query Expression equivalent for
SelectMany.

Select

Consider the following snippet, which iterates through a List<string> containing
the values Mon, Tues, and Wednes, outputting each with the word day appended.

In your Chapter04\Examples folder, add a new file called
LinqSelectExamples.cs and edit it as follows:

using System;

using System.Collections.Generic;

using System.Linq;

namespace Chapter04.Examples

{

LINQ | 265

 class LinqSelectExamples

 {

 public static void Main()

 {

 var days = new List<string> { "Mon", "Tues", "Wednes" };

 var query1 = days.Select(d => d + "day");

 foreach(var day in query1)

 Console.WriteLine($"Query1: {day}");

Looking at the Query Operator syntax first, you can see that query1 uses the
Select extension method and defines a Func<T> like this:

d => d + "day"

When executed, the variable d is passed to the lambda statement, which appends the
word day to each string in the days list: "Mon", "Tues", "Wednes". This returns
a new IEnumerable<string> instance, with the original values inside the source
variable, days, remaining unchanged.

You can now enumerate through the new IEnumerable instance using foreach,
as follows:

 var query2 = days.Select((d, i) => $"{i} : {d}day");

 foreach (var day in query2)

 Console.WriteLine($"Query2: {day}");

Note that the Select method has another overload that allows the index position
in the source and value to be accessed, rather than just the value itself. Here, d
(the string value) and i (its index) are passed, using the (d , i) => syntax
and joined into a new string. The output will be displayed as 0 : Monday, 1 :
Tuesday, and so on.

Anonymous Types

Before you continue looking at Select projections, it is worth noting that C# does
not limit you to just creating new strings from existing strings. You can project into
any type.

266 | Data Structures and LINQ

You can also create anonymous types, which are types created by the compiler
from the properties that you name and specify. For example, consider the following
example, which results in a new type being created that represents the results of the
Select method:

 var query3 = days.Select((d, i) => new

 {

 Index = i,

 UpperCaseName = $"{d.ToUpper()}DAY"

 });

 foreach (var day in query3)

 Console.WriteLine($"Query3: Index={day.Index},
 UpperCaseDay={day.
UpperCaseName}");

Here, query3 results in a new type that has an Index and UpperCaseName
property; the values are assigned using Index = i and UpperCaseName =
$"{d.ToUpper()}DAY".

These types are scoped to be available within your local method and can then be
used in any local statements, such as in the previous foreach block. This saves you
from having to create classes to temporarily store values from a Select method.

Running the code produces output in this format:

Index=0, UpperCaseDay=MONDAY

As an alternative, consider how the equivalent Query Expression looks. In the
following example, you start with the from day in days expression. This assigns
the name day to the string values in the days list. You then use select to project
that to a new string, appending "day" to each.

This is functionally equivalent to the example in query1. The only difference is the
code readability:

 var query4 = from day in days

 select day + "day";

 foreach (var day in query4)

 Console.WriteLine($"Query4: {day}");

LINQ | 267

The following example snippet mixes a Query Operator and Query Expressions.
The select Query Expression cannot be used to select a value and index, so the
Select extension method is used to create an anonymous type with a Name and
Index property:

 var query5 = from dayIndex in

 days.Select((d, i) => new {Name = d, Index =
i})
 select dayIndex;

 foreach (var day in query5)

 Console.WriteLine($"Query5: Index={day.Index} : {day.
Name}");

 Console.ReadLine();

 }

 }

}

Running the full example produces this output:

Query1: Monday

Query1: Tuesday

Query1: Wednesday

Query2: 0 : Monday

Query2: 1 : Tuesday

Query2: 2 : Wednesday

Query3: Index=0, UpperCaseDay=MONDAY

Query3: Index=1, UpperCaseDay=TUESDAY

Query3: Index=2, UpperCaseDay=WEDNESDAY

Query4: Monday

Query4: Tuesday

Query4: Wednesday

Query5: Index=0 : Mon

Query5: Index=1 : Tues

Query5: Index=2 : Wednes

Again, it largely comes down to personal choice as to which you prefer using. As
queries become longer, one form may require less code than the other.

Note

You can find the code used for this example at https://packt.link/wKye0.

https://packt.link/wKye0

268 | Data Structures and LINQ

SelectMany

You have seen how Select can be used to project values from each item in a source
collection. In the case of a source that has enumerable properties, the SelectMany
extension method can extract the multiple items into a single list, which can then be
optionally projected into a new form.

The following example creates two City records, each with multiple Station
names, and uses SelectMany to extract all stations from both cities:

1. In your Chapter04\Examples folder, add a new file called
LinqSelectManyExamples.cs and edit it as follows:

using System;

using System.Collections.Generic;

using System.Linq;

namespace Chapter04.Examples

{

 record City (string Name, IEnumerable<string> Stations);

 class LinqSelectManyExamples

 {

 public static void Main()

 {

 var cities = new List<City>

 {

 new City("London", new[] {"Kings Cross KGX",
 "Liverpool Street LVS",
 "Euston EUS"}),

 new City("Birmingham", new[] {"New Street NST"})

 };

 Console.WriteLine("All Stations: ");

 foreach (var station in cities.SelectMany(city => city.
Stations))
 {

 Console.WriteLine(station);

 }

The Func parameter, which is passed to SelectMany, requires you to specify
an enumerable property, in this case, the City class's Stations property,
which contains a list of string names (see the highlighted code).

LINQ | 269

Notice how a shortcut is used here, by directly integrating the query into a
foreach statement. You are not altering or reusing the query variable, so
there is no benefit in defining it separately, as done earlier.

SelectMany extracts all the station names from all of the items in the
List<City> variable. Starting with the City class at element 0, which has the
name London, it will extract the three station names ("Kings Cross KGX",
"Liverpool Street LVS", and "Euston EUS"). It will then move on to
the second City element, named Birmingham, and extract the single station,
named "New Street NST".

2. Running the example produces the following output:

All Stations:

Kings Cross KGX

Liverpool Street LVS

Euston EUS

New Street NST

3. As an alternative, consider the following snippet. Here, you revert to using a
query variable, stations, to make the code easier to follow:

 Console.Write("All Station Codes: ");

 var stations = cities

 .SelectMany(city => city.Stations.Select(s =>
s[^3..]));
 foreach (var station in stations)

 {

 Console.Write($"{station} ");

 }

 Console.WriteLine();

 Console.ReadLine();

 }

 }

}

Rather than just returning each Station string, this example uses a nested
Select method and a Range operator to extract the last three characters from
the station name using s[^3..], where s is a string for each station name and
^3 indicates that the Range operator should extract a string that starts at the
last three characters in the string.

270 | Data Structures and LINQ

4. Running the example produces the following output:

All Station Codes: KGX LVS EUS NST

You can see the last three characters of each station name are shown in
the output.

Note

You can find the code used for this example at https://packt.link/g8dXZ.

In the next section you will read about the filtering operations that filter a result as
per a condition.

Filtering Operations

Filtering operations allow you to filter a result to return only those items that match a
condition. For example, consider the following snippet, which contains a list of orders:

1. In your Chapter04\Examples folder, add a new file called
LinqWhereExample.cs and edit it as follows:

LinqWhereExamples.cs

using System;
using System.Collections.Generic;
using System.Linq;

namespace Chapter04.Examples
{
 record Order (string Product, int Quantity, double Price);

 class LinqWhereExamples
 {
 public static void Main()
 {
 var orders = new List<Order>
 {
 new Order("Pen", 2, 1.99),
 new Order("Pencil", 5, 1.50),
 new Order("Note Pad", 1, 2.99),

You can find the complete code here: https://packt.link/ZJpb5.

Here, some order items are defined for various stationery products. Suppose
you want to output all orders that have a quantity greater than five (this should
output the Ruler and USB Memory Stick orders from the source).

https://packt.link/g8dXZ
https://packt.link/ZJpb5

LINQ | 271

2. For this, you can add the following code:

 Console.WriteLine("Orders with quantity over 5:");

 foreach (var order in orders.Where(o => o.Quantity > 5))

 {

 Console.WriteLine(order);

 }

3. Now, suppose you extend the criteria to find all products where the product is
Pen or Pencil. You can chain that result into a Select method, which will
return each order's total value; remember that Select can return anything
from a source, even a simple extra calculation like this:

 Console.WriteLine("Pens or Pencils:");

 foreach (var orderValue in orders

 .Where(o => o.Product == "Pen" || o.Product ==
"Pencil")
 .Select(o => o.Quantity * o.Price))

 {

 Console.WriteLine(orderValue);

 }

4. Next, the Query Expression in the following snippet uses a where clause to find
the orders with a price less than or equal to 3.99. This projects them into an
anonymous type that has Name and Value properties, which you enumerate
through using a foreach statement:

 var query = from order in orders

 where order.Price <= 3.99

 select new {Name=order.Product, Value=order.
Quantity*order.Price};
 Console.WriteLine("Cheapest Orders:");

 foreach(var order in query)

 {

 Console.WriteLine($"{order.Name}: {order.Value}");

 }

 }

 }

}

272 | Data Structures and LINQ

5. Running the full example produces this result:

Orders with quantity over 5:

Order { Product = Ruler, Quantity = 10, Price = 0.5 }

Order { Product = USB Memory Stick, Quantity = 6, Price = 20 }

Pens or Pencils:

3.98

7.5

Cheapest Orders:

Pen: 3.98

Pencil: 7.5

Note Pad: 2.99

Stapler: 3.99

Ruler: 5

Now you have seen Query Operators in action, it is worth returning to deferred
execution to see how this affects a query that is enumerated multiple times over.

In this next example, you have a collection of journeys made by a vehicle, which
are populated via a TravelLog record. The TravelLog class contains an
AverageSpeed method that logs a console message each time it is executed, and,
as the name suggests, returns the average speed of the vehicle during that journey:

1. In your Chapter04\Examples folder, add a new file called
LinqMultipleEnumerationExample.cs and edit it as follows:

using System;

using System.Collections.Generic;

using System.Linq;

namespace Chapter04.Examples

{

 record TravelLog (string Name, int Distance, int Duration)

 {

 public double AverageSpeed()

 {

 Console.WriteLine($"AverageSpeed() called for '{Name}'");

 return Distance / Duration;

 }

 }

LINQ | 273

 class LinqMultipleEnumerationExample

 {

2. Next, define the console app's Main method, which populates a travelLogs
list with four TravelLog records. You will add the following code for this:

 public static void Main()

 {

 var travelLogs = new List<TravelLog>

 {

 new TravelLog("London to Brighton", 50, 4),

 new TravelLog("Newcastle to London", 300, 24),

 new TravelLog("New York to Florida", 1146, 19),

 new TravelLog("Paris to Berlin", 546, 10)

 };

3. You will now create a fastestJourneys query variable, which includes a
Where clause. This Where clause will call each journey's AverageSpeed
method when enumerated.

4. Then, using a foreach loop, you enumerate through the items in
fastestJourneys and write the name and distance to the console (note that
you do not access the AverageSpeed method inside the foreach loop):

 var fastestJourneys = travelLogs.Where(tl =>
tl.AverageSpeed() > 50);
 Console.WriteLine("Fastest Distances:");

 foreach (var item in fastestJourneys)

 {

 Console.WriteLine($"{item.Name}: {item.Distance}
miles");
 }

 Console.WriteLine();

5. Running the code block will produce the following output, the Name and
Distance for each journey:

Fastest Distances:

AverageSpeed() called for 'London to Brighton'

AverageSpeed() called for 'Newcastle to London'

AverageSpeed() called for 'New York to Florida'

New York to Florida: 1146 miles

AverageSpeed() called for 'Paris to Berlin'

Paris to Berlin: 546 miles

274 | Data Structures and LINQ

6. You can see that AverageSpeed was called four times, once for each journey
as part of the Where condition. This is as expected so far, but now, you can
reuse the same query to output the Name and, alternatively, the Duration:

 Console.WriteLine("Fastest Duration:");

 foreach (var item in fastestJourneys)

 {

 Console.WriteLine($"{item.Name}: {item.Duration}
hours");
 }

 Console.WriteLine();

7. Running this block produces the same four calls to the AverageSpeed method:

Fastest Duration:

AverageSpeed() called for 'London to Brighton'

AverageSpeed() called for 'Newcastle to London'

AverageSpeed() called for 'New York to Florida'

New York to Florida: 19 hours

AverageSpeed() called for 'Paris to Berlin'

Paris to Berlin: 10 hours

This shows that whenever a query is enumerated, the full query is re-evaluated
every time. This might not be a problem for a fast method such as
AverageSpeed, but what if a method needs to access a database to extract
some data? That would result in multiple database calls and, possibly, a very
slow application.

8. You can use methods such as ToList, ToArray, ToDictionary, ToLookup,
or ToHashSet to ensure that a query that could be enumerated many times
is executed once only rather than being re-evaluated repeatedly. Continuing
with this example, the following block uses the same Where clause but includes
an extra ToList call to immediately execute the query and ensure it is
not re-evaluated:

 Console.WriteLine("Fastest Duration Multiple loops:");

 var fastestJourneysList = travelLogs

 .Where(tl => tl.AverageSpeed() > 50)

 .ToList();

 for (var i = 0; i < 2; i++)

 {

LINQ | 275

 Console.WriteLine($"Fastest Duration Multiple loop
iteration {i+1}:");
 foreach (var item in fastestJourneysList)

 {

 Console.WriteLine($"{item.Name}: {item.Distance}
in {item.Duration} hours");
 }

 }

 }

 }

}

9. Running the block produces the following output. Notice how AverageSpeed
is called four times only and is called prior to either of the two Fastest
Duration Multiple loop iteration messages:

Fastest Duration Multiple loops:

AverageSpeed() called for 'London to Brighton'

AverageSpeed() called for 'Newcastle to London'

AverageSpeed() called for 'New York to Florida'

AverageSpeed() called for 'Paris to Berlin'

Fastest Duration Multiple loop iteration 1:

New York to Florida: 1146 in 19 hours

Paris to Berlin: 546 in 10 hours

Fastest Duration Multiple loop iteration 2:

New York to Florida: 1146 in 19 hours

Paris to Berlin: 546 in 10 hours

Notice that from the collection of journeys made by a vehicle, the code returns the
average speed of the vehicle during the journeys.

Note

You can find the code used for this example at https://packt.link/CIZJE.

https://packt.link/CIZJE

276 | Data Structures and LINQ

Sorting Operations

There are five operations to sort items in a source. Items are primarily sorted and
that can be followed by an optional secondary sort, which sorts the items within
their primary group. For example, you can use a primary sort to sort a list of people
firstly by the City property and then use a secondary sort to further sort them by
the Surname property:

• OrderBy: Sorts values into ascending order.

• OrderByDescending: Sorts values into descending order.

• ThenBy: Sorts values that have been primarily sorted into a secondary
ascending order.

• ThenByDescending: Sorts values that have been primarily sorted into a
secondary descending order.

• Reverse: Simply returns a collection where the order of elements in the source
is reversed. There is no expression equivalent.

OrderBy and OrderByDescending

In this example, you will use the System.IO namespace to query files in the host
machine's temp folder, rather than creating small objects from lists.

The static Directory class offers methods that can query the filesystem.
FileInfo retrieves details about a specific file, such as its size or creation date. The
Path.GetTempPath method returns the system's temp folder. To illustrate the
point, in the Windows operating system, this can typically be found at C:\Users\
username\AppData\Local\Temp, where username is a specific Windows login
name. This will be different for other users and other systems:

1. In your Chapter04\Examples folder, add a new file called
LinqOrderByExamples.cs and edit it as follows:

using System;

using System.IO;

using System.Linq;

namespace Chapter04.Examples

{

 class LinqOrderByExamples

 {

 public static void Main()

 {

LINQ | 277

2. Use the Directory.EnumerateFiles method to find all filenames with the
.tmp extension in the temp folder:

 var fileInfos = Directory.EnumerateFiles(Path.
GetTempPath(), "*.tmp")
 .Select(filename => new FileInfo(filename))

 .ToList();

Here, each filename is projected into a FileInfo instance and chained into
a populated collection using ToList, which allows you to further query the
resulting fileInfos details.

3. Next, the OrderBy method is used to sort the earliest files by comparing the
CreationTime property of the file:

 Console.WriteLine("Earliest Files");

 foreach (var fileInfo in fileInfos.OrderBy(fi =>
fi.CreationTime))
 {

 Console.WriteLine($"{fileInfo.CreationTime:dd MMM yy}:
{fileInfo.Name}");
 }

4. To find the largest files, re-query fileInfos and sort each file by its Length
property using OrderByDescending:

 Console.WriteLine("Largest Files");

 foreach (var fileInfo in fileInfos
 .OrderByDescending(fi =>
fi.Length))

 {

 Console.WriteLine($"{fileInfo.Length:N0} bytes:
\t{fileInfo.Name}");
 }

5. Finally, use where and orderby descending expressions to find the largest
files that are less than 1,000 bytes in length:

 Console.WriteLine("Largest smaller files");

 foreach (var fileInfo in

 from fi in fileInfos

 where fi.Length < 1000

 orderby fi.Length descending

 select fi)

 {

 Console.WriteLine($"{fileInfo.Length:N0} bytes:
\t{fileInfo.Name}");

278 | Data Structures and LINQ

 }

 Console.ReadLine();

 }

 }

}

6. Depending on the files in your temp folder, you should see an output like this:

Earliest Files

05 Jan 21: wct63C3.tmp

05 Jan 21: wctD308.tmp

05 Jan 21: wctFE7.tmp

04 Feb 21: wctE092.tmp

Largest Files

38,997,896 bytes: wctE092.tmp

4,824,572 bytes: cb6dfb76-4dc9-494d-9683-ce31eab43612.tmp

4,014,036 bytes: 492f224c-c811-41d6-8c5d-371359d520db.tmp

Largest smaller files

726 bytes: wct38BC.tmp

726 bytes: wctE239.tmp

512 bytes: ~DF8CE3ED20D298A9EC.TMP

416 bytes: TFR14D8.tmp

With this example, you have queried files in the host machine's temp folder,
rather than creating small objects from lists.

Note

You can find the code used for this example at https://packt.link/mWeVC.

ThenBy and ThenByDescending

The following example sorts popular quotes, based on the number of words found
in each.

In your Chapter04\Examples folder, add a new file called
LinqThenByExamples.cs and edit it as follows:

using System;

using System.IO;

https://packt.link/mWeVC

LINQ | 279

using System.Linq;

namespace Chapter04.Examples

{

 class LinqThenByExamples

 {

 public static void Main()

 {

You start by declaring a string array of quotes as follows:

 var quotes = new[]

 {

 "Love for all hatred for none",

 "Change the world by being yourself",

 "Every moment is a fresh beginning",

 "Never regret anything that made you smile",

 "Die with memories not dreams",

 "Aspire to inspire before we expire"

 };

In the next snippet, each of these string quotes is projected into a new anonymous
type based on the number of words in the quote (found using String.Split()).
The items are first sorted in descending order to show those with the most words and
then sorted in alphabetical order:

 foreach (var item in quotes

 .Select(q => new {Quote = q, Words = q.Split("
").Length})
 .OrderByDescending(q => q.Words)

 .ThenBy(q => q.Quote))

 {

 Console.WriteLine($"{item.Words}: {item.Quote}");

 }

 Console.ReadLine();

 }

 }

}

280 | Data Structures and LINQ

Running the code lists the quotes in word count order as follows:

7: Never regret anything that made you smile

6: Aspire to inspire before we expire

6: Change the world by being yourself

6: Every moment is a fresh beginning

6: Love for all hatred for none

5: Die with memories not dreams

Note how the quotes with six words are shown alphabetically.

The following (highlighted code) is the equivalent Query Expression with orderby
quote.Words descending followed by the quote.Words ascending clause:

var query = from quote in

 (quotes.Select(q => new {Quote = q, Words = q.Split("
").Length}))
 orderby quote.Words descending, quote.Words ascending

 select quote;

foreach(var item in query)

 {

 Console.WriteLine($"{item.Words}: {item.Quote}");

 }

 Console.ReadLine();

 }

 }

}

Note

You can find the code used for this example at https://packt.link/YWJRz.

Now you have sorted popular quotes based on the number of words found in each. It
is time to apply the skills learnt in the next exercise.

https://packt.link/YWJRz

LINQ | 281

Exercise 4.03: Filtering a List of Countries by Continent and Sorting by Area

In the preceding examples, you have looked at code that can select, filter, and sort a
collection source. You will now combine these into an exercise that filters a small list
of countries for two continents (South America and Africa) and sorts the results by
geographical size.

Perform the following steps to do so:

1. In your Chapter04\Exercises folder, create a new Exercise03 folder.

2. Add a new class called Program.cs in the Exercise03 folder.

3. Start by adding a Country record that will be passed the Name of a country, the
Continent to which it belongs, and its Area in square miles:

using System;

using System.Linq;

namespace Chapter04.Exercises.Exercise03

{

 class Program

 {

 record Country (string Name, string Continent, int Area);

 public static void Main()

 {

4. Now create a small subset of country data defined in an array, as follows:

 var countries = new[]

 {

 new Country("Seychelles", "Africa", 176),

 new Country("India", "Asia", 1_269_219),

 new Country("Brazil", "South America",3_287_956),

 new Country("Argentina", "South America", 1_073_500),

 new Country("Mexico", "South America",750_561),

 new Country("Peru", "South America",494_209),

 new Country("Algeria", "Africa", 919_595),

 new Country("Sudan", "Africa", 668_602)

 };

The array contains the name of a country, the continent it belongs to, and its
geographical size in square miles.

282 | Data Structures and LINQ

5. Your search criteria must include South America or Africa. So define them
in an array rather than hardcoding the where clause with two specific strings:

 var requiredContinents = new[] {"South America",
"Africa"};

This offers extra code flexibility should you need to alter it.

6. Build up a query by filtering and sorting by continent, sorting by area, and using
the .Select extension method, which returns the Index and item value:

 var filteredCountries = countries

 .Where(c => requiredContinents.Contains(c.Continent))

 .OrderBy(c => c.Continent)

 .ThenByDescending(c => c.Area)

 .Select((cty, i) => new {Index = i, Country = cty});

 foreach(var item in filteredCountries)

 Console.WriteLine($"{item.Index+1}: {item.Country.
Continent}, {item.Country.Name} = {item.Country.Area:N0} sq mi");
 }

 }

}

You finally project each into a new anonymous type to be written to the console.

7. Running the code block produces the following result:

1: Africa, Algeria = 919,595 sq mi

2: Africa, Sudan = 668,602 sq mi

3: Africa, Seychelles = 176 sq mi

4: South America, Brazil = 3,287,956 sq mi

5: South America, Argentina = 1,073,500 sq mi

6: South America, Mexico = 750,561 sq mi

7: South America, Peru = 494,209 sq mi

LINQ | 283

Notice that Algeria has the largest area in Africa, and Brazil has
the largest area in South America (based on this small subset of data).
Notice how you add 1 to each Index for readability (since starting at zero is
less user-friendly).

Note

You can find the code used for this exercise at https://packt.link/Djddw.

You have seen how LINQ extension methods can be used to access items in a data
source. Now, you will learn about partitioning data, which can be used to extract
subsets of items.

Partitioning Operations

So far, you have looked at filtering the items in a data source that match a defined
condition. Partitioning is used when you need to divide a data source into two distinct
sections and return either of those two sections for subsequent processing.

For example, consider that you have a list of vehicles sorted by value and want to
process the five least expensive vehicles using some method. If the list is sorted
in ascending order, then you could partition the data using the Take(5) method
(defined in the following paragraphs), which will extract the first five items and
discard the remaining.

There are six partitioning operations that are used to split a source, with either of the
two sections being returned. There are no partitioning Query Expressions:

• Skip: Returns a collection that skips items up to a specified numeric position
in the source sequence. Used when you need to skip the first N items in a
source collection.

• SkipLast: Returns a collection that skips the last N items in the
source sequence.

• SkipWhile: Returns a collection that skips items in the source sequence that
match a specified condition.

https://packt.link/Djddw

284 | Data Structures and LINQ

• Take: Returns a collection that contains the first N items in the sequence.

• TakeLast: Returns a collection that contains the last N items in the sequence.

• TakeWhile: Returns a collection that contains only those items that match the
condition specified.

The following example demonstrates various Skip and Take operations on an
unsorted list of exam grades. Here, you use Skip(1) to ignore the highest grade in a
sorted list.

1. In your Chapter04\Examples folder, add a new file called
LinqSkipTakeExamples.cs and edit it as follows:

using System;

using System.Linq;

namespace Chapter04.Examples

{

 class LinqSkipTakeExamples

 {

 public static void Main()

 {

 var grades = new[] {25, 95, 75, 40, 54, 9, 99};

 Console.Write("Skip: Highest Grades (skipping first):");

 foreach (var grade in grades

 .OrderByDescending(g => g)

 .Skip(1))

 {

 Console.Write($"{grade} ");

 }

 Console.WriteLine();

2. Next, the relational is operator is used to exclude those less than 25 or greater
than 75:

 Console.Write("SkipWhile@ Middle Grades (excluding 25 or
75):");
 foreach (var grade in grades

 .OrderByDescending(g => g)

 .SkipWhile(g => g is <= 25 or >=75))

 {

LINQ | 285

 Console.Write($"{grade} ");

 }

 Console.WriteLine();

3. By using SkipLast, you can show the bottom half of the results. Add the code
for this as follows:

 Console.Write("SkipLast: Bottom Half Grades:");

 foreach (var grade in grades

 .OrderBy(g => g)

 .SkipLast(grades.Length / 2))

 {

 Console.Write($"{grade} ");

 }

 Console.WriteLine();

4. Finally, Take(2) is used here to show the two highest grades:

 Console.Write("Take: Two Highest Grades:");

 foreach (var grade in grades

 .OrderByDescending(g => g)

 .Take(2))

 {

 Console.Write($"{grade} ");

 }

 }

 }

}

5. Running the example produces this output, which is as expected:

Skip: Highest Grades (skipping first):95 75 54 40 25 9

SkipWhile Middle Grades (excluding 25 or 75):54 40 25 9

SkipLast: Bottom Half Grades:9 25 40 54

Take: Two Highest Grades:99 95

This example demonstrated the various Skip and Take operations on an
unsorted list of exam grades.

Note

You can find the code used for this example at https://packt.link/TsDFk.

https://packt.link/TsDFk

286 | Data Structures and LINQ

Grouping Operations

GroupBy groups elements that share the same attribute. It is often used to group
data or provide a count of items grouped by a common attribute. The result is an
enumerable IGrouping<K, V> type collection, where K is the key type and V is
the value type specified. IGrouping itself is enumerable as it contains all items that
match the specified key.

For example, consider the next snippet, which groups a List of customer
orders by name. In your Chapter04\Examples folder, add a new file called
LinqGroupByExamples.cs and edit it as follows:

LinqGroupByExamples.cs

using System;
using System.Collections.Generic;
using System.Linq;

namespace Chapter04.Examples
{
 record CustomerOrder(string Name, string Product, int Quantity);

 class LinqGroupByExamples
 {
 public static void Main()
 {
 var orders = new List<CustomerOrder>
 {
 new CustomerOrder("Mr Green", "LED TV", 4),
 new CustomerOrder("Mr Smith", "iPhone", 2),
 new CustomerOrder("Mrs Jones", "Printer", 1),

You can find the complete code here: https://packt.link/GbwF2.

In this example, you have a list of CustomerOrder objects and want to group them
by the Name property. For this, the GroupBy method is passed a Func delegate,
which selects the Name property from each CustomerOrder instance.

Each item in the GroupBy result contains a Key (in this case, the customer's Name).
You can then sort the grouping item to show the CustomerOrders items sorted by
Quantity, as follows:

 foreach (var item in grouping.OrderByDescending(i =>
i.Quantity))
 {

 Console.WriteLine($"\t{item.Product} * {item.
Quantity}");
 }

 }

https://packt.link/GbwF2

LINQ | 287

 Console.ReadLine();

 }

 }

}

Running the code produces the following output:

Customer Mr Green:

 LED TV * 4

 MP3 Player * 1

 Microwave Oven * 1

Customer Mr Smith:

 PC * 5

 iPhone * 2

 Printer * 2

Customer Mrs Jones:

 Printer * 1

You can see the data is first grouped by customer Name and then ordered by order
Quantity within each customer grouping. The equivalent Query Expression is
written like this:

 var query = from order in orders

 group order by order.Name;

 foreach (var grouping in query)

 {

 Console.WriteLine($"Customer {grouping.Key}:");

 foreach (var item in from item in grouping

 orderby item.Quantity descending

 select item)

 {

 Console.WriteLine($"\t{item.Product} * {item.
Quantity}");
 }

 }

You have now seen some of the commonly used LINQ operators. You will now bring
them together in an exercise.

288 | Data Structures and LINQ

Exercise 4.04: Finding the Most Commonly Used Words in a Book

In Chapter 3, Delegates, Events, and Lambdas, you used the WebClient class to
download data from a website. In this exercise, you will use data downloaded from
Project Gutenberg.

Note

Project Gutenberg is a library of 60,000 free eBooks. You can search online
for Project Gutenberg or visit https://www.gutenberg.org/.

You will create a console app that allows the user to enter a URL. Then, you will
download the book's text from the Project Gutenberg URL and use various LINQ
statements to find the most frequent words in the book's text.

Additionally, you want to exclude some common stop-words; these are words such
as and, or, and the that appear regularly in English, but add little to the meaning
of a sentence. You will use the Regex.Split method to help split words more
accurately than a simple space delimiter. Perform the following steps to do so:

Note

You can find more information on Regex can be found at
https://packt.link/v4hGN.

1. In your Chapter04\Exercises folder, create a new Exercise04 folder.

2. Add a new class called Program.cs in the Exercise04 folder.

3. First, define the TextCounter class. This will be passed the path to a file,
which you will add shortly. This should contain common English stop-words:

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Net;

using System.Text;

using System.Text.RegularExpressions;

namespace Chapter04.Exercises.Exercise04

https://www.gutenberg.org/
https://packt.link/v4hGN

LINQ | 289

{

 class TextCounter

 {

 private readonly HashSet<string> _stopWords;

 public TextCounter(string stopWordPath)

 {

 Console.WriteLine($"Reading stop word file:
{stopWordPath}");

4. Using File.ReadAllLines, add each word into the _stopWords HashSet.

 _stopWords = new HashSet<string>(File.
ReadAllLines(stopWordPath));
 }

You have used a HashSet, as each stop-word is unique.

5. Next, the Process method is passed a string that contains the book's text and
the maximum number of words to show.

6. Return the result as a Tuple<string, int> collection, which saves you from
having to create a class or record to hold the results:

 public IEnumerable<Tuple<string, int>> Process(string text,
 int
maximumWords)

 {

7. Now perform the query part. Use Regex.Split with the pattern @"\s+" to
split all the words.

In its simplest form, this pattern splits a string into a list of words, typically using
a space or punctuation marks to identify word boundaries. For example, the
string Hello Goodbye would be split into an array that contains two elements,
Hello and Goodbye. The returned string items are filtered via where to
ensure all stop-words are ignored using the Contains method. The words are
then grouped by value, GroupBy(t=>t), projected to a Tuple using the word
as a Key, and the number of times it occurs using grp.Count.

8. Finally, you sort by Item2, which for this Tuple is the word count, and then
take only the required number of words:

 var words = Regex.Split(text.ToLower(), @"\s+")

 .Where(t => !_stopWords.Contains(t))

 .GroupBy(t => t)

 .Select(grp => Tuple.Create(grp.Key, grp.Count()))

290 | Data Structures and LINQ

 .OrderByDescending(tup => tup.Item2) //int

 .Take(maximumWords);

 return words;

 }

 }

9. Now start creating the main console app:

 class Program

 {

 public static void Main()

 {

10. Include a text file called StopWords.txt in the Chapter04 source folder:

 const string StopWordFile = "StopWords.txt";

 var counter = new TextCounter(StopWordFile);

Note

You can find StopWords.txt on GitHub at https://packt.link/Vi8JH, or you
can download any standard stop-word file, such as NLTK's https://packt.link/
ZF1Tf. This file should be saved in the Chapter04\Exercises folder.

11. Once TextCounter has been created, prompt the user for a URL:

 string address;

 do

 {

 //https://www.gutenberg.org/files/64333/64333-0.txt

 Console.Write("Enter a Gutenberg book URL: ");

 address = Console.ReadLine();

 if (string.IsNullOrEmpty(address))

 continue;

12. Enter a valid address and create a new WebClient instance and download the
data file into a temporary file.

https://packt.link/Vi8JH
https://packt.link/ZF1Tf
https://packt.link/ZF1Tf

LINQ | 291

13. Perform extra processing to the text file before passing its contents
to TextCounter:

 using var client = new WebClient();

 var tempFile = Path.GetTempFileName();

 Console.WriteLine("Downloading...");

 client.DownloadFile(address, tempFile);

The Gutenberg text files contain extra details such as the author and title.
These can be read by reading each line in the file. The actual text of the book
doesn't begin until finding a line that starts *** START OF THE PROJECT
GUTENBERG EBOOK, so you need to read each line looking for this start
message too:

 Console.WriteLine($"Processing file {tempFile}");

 const string StartIndicator = "*** START OF THE
PROJECT GUTENBERG EBOOK";
 //Title: The Little Review, October 1914(Vol. 1, No.
7)
 //Author: Various

 var title = string.Empty;

 var author = string.Empty;

14. Next, append each line read into a StringBuilder instance, which is efficient
for such string operations:

 var bookText = new StringBuilder();

 var isReadingBookText = false;

 var bookTextLineCount = 0;

15. Now parse each line inside tempFile, looking for the Author, Title, or the
StartIndicator:

 foreach (var line in File.ReadAllLines(tempFile))

 {

 if (line.StartsWith("Title"))

 {

 title = line;

 }

 else if (line.StartsWith("Author"))

 {

 author = line;

 }

 else if (line.StartsWith(StartIndicator))

292 | Data Structures and LINQ

 {

 isReadingBookText = true;

 }

 else if (isReadingBookText)

 {

 bookText.Append(line);

 bookTextLineCount++;

 }

 }

16. If the book text is found, provide a summary of lines and characters read before
calling the counter.Process method. Here, you want the top 50 words:

 if (bookTextLineCount > 0)

 {

 Console.WriteLine($"Processing
{bookTextLineCount:N0} lines ({bookText.Length:N0} characters)..");
 var wordCounts = counter.Process(bookText.
ToString(), 50);
 Console.WriteLine(title);

 Console.WriteLine(author);

17. Once you have the results, use a foreach loop to output the word count
details, adding a blank line to the output after every third word:

 var i = 0;

 //deconstruction

 foreach (var (word, count) in wordCounts)

 {

 Console.Write($"'{word}'={count}\t\t");

 i++;

 if (i % 3 == 0)

 {

 Console.WriteLine();

 }

 }

 Console.WriteLine();

 }

 else

 {

LINQ | 293

18. Running the console app, using https://www.gutenberg.org/
files/64333/64333-0.txt as an example URL produces the
following output:

Reading stop word file: StopWords.txt

Enter a Gutenberg book URL: https://www.gutenberg.org/
files/64333/64333-0.txt
Downloading...

Processing file C:\Temp\tmpB0A3.tmp

Processing 4,063 lines (201,216 characters)..

Title: The Little Review, October 1914 (Vol. 1, No. 7)

Author: Various

'one'=108 'new'=95 'project'=62

'man'=56 'little'=54 'life'=52

'would'=51 'work'=50 'book'=42

'must'=42 'people'=39 'great'=37

'love'=37 'like'=36 'gutenberg-tm'=36

'may'=35 'men'=35 'us'=32

'could'=30 'every'=30 'first'=29

'full'=29 'world'=28 'mr.'=28

'old'=27 'never'=26 'without'=26

'make'=26 'young'=24 'among'=24

'modern'=23 'good'=23 'it.'=23

'even'=22 'war'=22 'might'=22

'long'=22 'cannot'=22 '_the'=22

'many'=21 'works'=21 'electronic'=21

'always'=20 'way'=20 'thing'=20

'day'=20 'upon'=20 'art'=20

'terms'=20 'made'=19

Note

Visual Studio might show the following when the code is run for the first
time: warning SYSLIB0014: 'WebClient.WebClient()'
is obsolete: 'WebRequest, HttpWebRequest,
ServicePoint, and WebClient are obsolete. Use
HttpClient instead.

This is a recommendation to use the newer HttpClient class instead of
the WebClient class. Both are, however, functionally equivalent.

294 | Data Structures and LINQ

The output shows a list of words found amongst the 4,063 lines of text
downloaded. The counter shows that one, new, and project are the most
popular words. Notice how mr., gutenberg-tm, it., and _the appear as
words. This shows that the Regex expression used is not completely accurate
when splitting words.

Note

You can find the code used for this exercise at https://packt.link/Q7Pf8.

An interesting enhancement to this exercise would be to sort the words by count,
include a count of the stop words found, or find the average word length.

Aggregation Operations

Aggregation operations are used to compute a single value from a collection of values
in a data source. An example could be the maximum, minimum, and average rainfall
from data collected over a month:

• Average: Calculates the average value in a collection.

• Count: Counts the items that match a predicate.

• Max: Calculates the maximum value.

• Min: Calculates the minimum value.

• Sum: Calculates the sum of values.

The following example uses the Process.GetProcess method from the System.
Diagnostics namespace to retrieve a list of processes currently running on
the system:

In your Chapter04\Examples folder, add a new file called
LinqAggregationExamples.cs and edit it as follows:

using System;

using System.Diagnostics;

using System.Linq;

namespace Chapter04.Examples

{

 class LinqAggregationExamples

 {

https://packt.link/Q7Pf8

LINQ | 295

 public static void Main()

 {

First, Process.GetProcesses().ToList() is called to retrieve a list of the
active processes running on the system:

 var processes = Process.GetProcesses().ToList();

Then, the Count extension method obtains a count of the items returned. Count has
an additional overload, which accepts a Func delegate used to filter each of the items
to be counted. The Process class has a PrivateMemorySize64 property, which
returns the number of bytes of memory the process is currently consuming, so you
can use that to count the small processes, that is, those using less than 1,000,000
bytes of memory:

 var allProcesses = processes.Count;

 var smallProcesses = processes.Count(proc =>
 proc.PrivateMemorySize64 <
1_000_000);

Next, the Average extension method returns the overall average of a specific value
for all items in the processes list. In this case, you use it to calculate the average
memory consumption, using the PrivateMemorySize64 property again:

 var average = processes.Average(p => p.PrivateMemorySize64);

The PrivateMemorySize64 property is also used to calculate the maximum and
minimum memory used for all processes, along with the total memory, as follows:

 var max = processes.Max(p => p.PrivateMemorySize64);

 var min = processes.Min(p => p.PrivateMemorySize64);

 var sum = processes.Sum(p => p.PrivateMemorySize64);

Once you have calculated the statistics, each value is written to the console:

 Console.WriteLine("Process Memory Details");

 Console.WriteLine($" All Count: {allProcesses}");

 Console.WriteLine($"Small Count: {smallProcesses}");

 Console.WriteLine($" Average: {FormatBytes(average)}");

 Console.WriteLine($" Maximum: {FormatBytes(max)}");

 Console.WriteLine($" Minimum: {FormatBytes(min)}");

 Console.WriteLine($" Total: {FormatBytes(sum)}");

 }

296 | Data Structures and LINQ

In the preceding snippet, the Count method returns the number of all processes
and, using the Predicate overload, you Count those where the memory is less
than 1,000,000 bytes (by examining the process.PrivateMemorySize64
property). You can also see that Average, Max, Min, and Sum are used to calculate
statistics for process memory usage on the system.

Note

The aggregate operators will throw InvalidOperationException
with the error Sequence contains no elements if you attempt to
calculate using a source collection that contains no elements. You should
check the Count or Any methods prior to calling any aggregate operators.

Finally, FormatBytes formats the amounts of memory into their
megabyte equivalents:

 private static string FormatBytes(double bytes)

 {

 return $"{bytes / Math.Pow(1024, 2):N2} MB";

 }

 }

}

Running the example produces results similar to this:

Process Memory Details

 All Count: 305

Small Count: 5

 Average: 38.10 MB

 Maximum: 1,320.16 MB

 Minimum: 0.06 MB

 Total: 11,620.03 MB

From the output you will observe how the program retrieves a list of processes
currently running on the system.

Note

You can find the code used for this example at https://packt.link/HI2eV.

https://packt.link/HI2eV

LINQ | 297

Quantifier Operations

Quantifier operations return a bool that indicates whether all or some elements in a
sequence match a Predicate condition. This is often used to verify any elements in
a collection match some criteria, rather than relying on Count, which enumerates all
items in the collection, even if you need just one result.

Quantifier operations are accessed using the following extension methods:

• All: Returns true if all elements in the source sequence match a condition.

• Any: Returns true if any element in the source sequence matches a condition.

• Contains: Returns true if the source sequence contains the specified item.

The following card-dealing example selects three cards at random and returns a
summary of those selected. The summary uses the All and Any extension methods
to determine whether any of the cards were clubs or red and whether all cards were
diamonds or an even number:

1. In your Chapter04\Examples folder, add a new file called
LinqAllAnyExamples.cs.

2. Start by declaring an enum that represents each of the four suits in a pack of
playing cards and a record class that defines a playing card:

using System;

using System.Collections.Generic;

using System.Linq;

namespace Chapter04.Examples

{

 enum PlayingCardSuit

 {

 Hearts,

 Clubs,

 Spades,

 Diamonds

 }

 record PlayingCard (int Number, PlayingCardSuit Suit)

 {

298 | Data Structures and LINQ

3. It is common practice to override the ToString method to provide a user-
friendly way to describe an object's state at runtime. Here, the card's number
and suit are returned as a string:

 public override string ToString()

 {

 return $"{Number} of {Suit}";

 }

 }

4. Now create a class to represent a deck of cards (for ease, only create cards
numbered one to 10). The deck's constructor will populate the _cards
collection with 10 cards for each of the suits:

 class Deck

 {

 private readonly List<PlayingCard> _cards = new();

 private readonly Random _random = new();

 public Deck()

 {

 for (var i = 1; i <= 10; i++)

 {

 _cards.Add(new PlayingCard(i, PlayingCardSuit.
Hearts));
 _cards.Add(new PlayingCard(i, PlayingCardSuit.
Clubs));
 _cards.Add(new PlayingCard(i, PlayingCardSuit.
Spades));
 _cards.Add(new PlayingCard(i, PlayingCardSuit.
Diamonds));
 }

 }

5. Next, the Draw method randomly selects a card from the _cards List, which it
removes before returning to the caller:

 public PlayingCard Draw()

 {

 var index = _random.Next(_cards.Count);

 var drawnCard = _cards.ElementAt(index);

 _cards.Remove(drawnCard);

LINQ | 299

 return drawnCard;

 }

 }

6. The console app selects three cards using the deck's Draw method. Add the
code for this as follows:

 class LinqAllAnyExamples

 {

 public static void Main()

 {

 var deck = new Deck();

 var hand = new List<PlayingCard>();

 for (var i = 0; i < 3; i++)

 {

 hand.Add(deck.Draw());

 }

7. To show a summary, use the OrderByDescending and Select operations to
extract the user-friendly ToString description for each PlayingCard. This is
then joined into a single delimited string as follows:

 var summary = string.Join(" | ",

 hand.OrderByDescending(c => c.Number)

 .Select(c => c.ToString()));

 Console.WriteLine($"Hand: {summary}");

8. Using All or Any, you can provide an overview of the cards and their score
using the Sum of the card numbers. By using Any, you determine whether any
of the cards in the hand are a club (the suit is equal to
PlayingCardSuit.Clubs):

 Console.WriteLine($"Any Clubs: {hand.Any(card => card.
Suit == PlayingCardSuit.Clubs)}");

9. Similarly, Any is used to see if any of the cards belong to the Hearts or
Diamonds suits, and therefore, are Red:

 Console.WriteLine($"Any Red: {hand.Any(card => card.Suit
==
PlayingCardSuit.Hearts || card.Suit == PlayingCardSuit.Diamonds)}");

300 | Data Structures and LINQ

10. In the next snippet, the All extension looks at every item in the collection and
returns true, in this case, if all cards are Diamonds:

 Console.WriteLine($"All Diamonds: {hand.All(card => card.
Suit == PlayingCardSuit.Diamonds)}");

11. All is used again to see if all card numbers can be divided by two without a
remainder, that is, whether they are even:

 Console.WriteLine($"All Even: {hand.All(card => card.
Number % 2 == 0)}");

12. Conclude by using the Sum aggregation method to calculate the value of the
cards in the hand:

 Console.WriteLine($"Score :{hand.Sum(card => card.
Number)}");
 }

 }

}

13. Running the console app produces output like this:

Hand: 8 of Spades | 7 of Diamonds | 6 of Diamonds

Any Clubs: False

Any Red: True

All Diamonds: False

All Even: False

Score :21

The cards are randomly selected so you will have different hands each time you
run the program. In this example, the score was 21, which is often a winning
hand in card games.

Note

You can find the code used for this example at https://packt.link/xPuTc.

https://packt.link/xPuTc

LINQ | 301

Join Operations

Join operations are used to join two sources based on the association of objects in
one data source with those that share a common attribute in a second data source. If
you are familiar with database design, this can be thought of as a primary and foreign
key relationship between tables.

A common example of a join is one where you have a one-way relationship, such as
Orders, which has a property of type Products, but the Products class does not
have a collection property that represents a backward relationship to a collection of
Orders. By using a Join operator, you can create a backward relationship to show
Orders for Products.

The two join extension methods are the following:

• Join: Joins two sequences using a key selector to extract pairs of values.

• GroupJoin: Joins two sequences using a key selector and groups the
resulting items.

The following example contains three Manufacturer records, each with a unique
ManufacturerId. These numeric IDs are used to define various Car records, but
to save memory, you will not have a direct memory reference from Manufacturer
back to Car. You will use the Join method to create an association between the
Manufacturer and Car instances:

1. In your Chapter04\Examples folder, add a new file called
LinqJoinExamples.cs.

2. First, declare the Manufacturer and Car records as follows:

using System;

using System.Collections.Generic;

using System.Linq;

namespace Chapter04.Examples

{

 record Manufacturer(int ManufacturerId, string Name);

 record Car (string Name, int ManufacturerId);

302 | Data Structures and LINQ

3. Inside the Main entry point, create two lists, one for the manufacturers and the
other to represent the cars:

LinqJoinExamples.cs

 class LinqJoinExamples
 {

 public static void Main()
 {

 var manufacturers = new List<Manufacturer>
 {
 new(1, "Ford"),
 new(2, "BMW"),
 new(3, "VW")
 };

 var cars = new List<Car>
 {
 new("Focus", 1),
 new("Galaxy", 1),
 new("GT40", 1),

You can find the complete code here: https://packt.link/Ue7Fj.

4. At this point, there is no direct reference, but as you know, you can use
ManufacturerId to link the two together using the int IDs. You can add the
following code for this:

 var joinedQuery = manufacturers.Join(

 cars,

 manufacturer => manufacturer.ManufacturerId,

 car => car.ManufacturerId,

 (manufacturer, car) => new
 {ManufacturerName = manufacturer.Name,
 CarName = car.Name});

 foreach (var item in joinedQuery)

 {

 Console.WriteLine($"{item}");

 }

 }

 }

}

https://packt.link/Ue7Fj

LINQ | 303

In the preceding snippet, the Join operation has various parameters. You
pass in the cars list and define which properties in the manufacturer and
car classes should be used to create the join. In this case, manufacturer.
ManufacturerId = car.ManufacturerId determines the correct join.

Finally, the manufacturer and car arguments return a new anonymous type
that contains the manufacturer.Name and car.Name properties.

5. Running the console app produces the following output:

{ ManufacturerName = Ford, CarName = Focus }

{ ManufacturerName = Ford, CarName = Galaxy }

{ ManufacturerName = Ford, CarName = GT40 }

{ ManufacturerName = BMW, CarName = 1 Series }

{ ManufacturerName = BMW, CarName = 2 Series }

{ ManufacturerName = VW, CarName = Golf }

{ ManufacturerName = VW, CarName = Polo }

As you can see, each of the Car and Manufacturer instances has been joined
correctly using ManufacturerId.

6. The equivalent Query Expression would be as follows (note that in this case, it is
a more concise format than the Query Operator syntax):

var query = from manufacturer in manufacturers

 join car in cars

 on manufacturer.ManufacturerId equals car.
ManufacturerId
 select new

 {

 ManufacturerName = manufacturer.Name, CarName = car.
Name
 };

foreach (var item in query)

{

 Console.WriteLine($"{item}");

}

Note

You can find the code used for this example at http://packt.link/Wh8jK.

http://packt.link/Wh8jK

304 | Data Structures and LINQ

Before you finish exploring LINQ, there is one more area related to LINQ Query
Expressions—the let clause.

Using a let Clause in Query Expressions

In earlier Query Expressions, you are often required to repeat similar-looking code
in various clauses. Using a let clause, you can introduce new variables inside an
Expression Query and reuse the variable's value throughout the rest of the query.
For example, consider the following query:

var stations = new List<string>

{

 "Kings Cross KGX",

 "Liverpool Street LVS",

 "Euston EUS",

 "New Street NST"

};

var query1 = from station in stations

 where station[^3..] == "LVS" || station[^3..] == "EUS" ||

 station[0..^3].Trim().ToUpper().EndsWith("CROSS")

 select new { code= station[^3..],
 name= station[0..^3].Trim().ToUpper()};

Here, you are searching for a station with the LVS or EUS code or a name ending
in CROSS. To do this, you must extract the last three characters using a range,
station[^3..], but you have duplicated that in two where clauses and the
final projection.

The station code and station names could both be converted into local variables using
the let clause:

var query2 = from station in stations

 let code = station[^3..]

 let name = station[0..^3].Trim().ToUpper()

 where code == "LVS" || code == "EUS" ||

 name.EndsWith("CROSS")

 select new {code, name};

LINQ | 305

Here, you have defined code and name using a let clause and reused them
throughout the query. This code looks much neater and is also easier to follow
and maintain.

Running the code produces the following output:

Station Codes:

KGX : KINGS CROSS

LVS : LIVERPOOL STREET

EUS : EUSTON

Station Codes (2):

KGX : KINGS CROSS

LVS : LIVERPOOL STREET

EUS : EUSTON

Note

You can find the code used for this example at https://packt.link/b2KiG.

By now you have seen the main parts of LINQ. Now you will now bring these together
into an activity that filters a set of flight records based on a user's criteria and
provides various statistics on the subset of flights found.

Activity 4.01: Treasury Flight Data Analysis

You have been asked to create a console app that allows the user to download
publicly available flight data files and apply statistical analysis to the files. This analysis
should be used to calculate a count of the total records found, along with the average,
minimum, and maximum fare paid within that subset.

The user should be able to enter a number of commands and each command should
add a specific filter based on the flight's class, origin, or destination properties. Once
the user has entered the required criteria, the go command must be entered, and the
console should run a query and output the results.

https://packt.link/b2KiG

306 | Data Structures and LINQ

The data file you will use for this activity contains details of flights made by the
UK's HM Treasury department between January 1 to December 31, 2011 (there are
714 records.) You will need to use WebClient.DownloadFile to download the
data from the following URL: https://www.gov.uk/government/uploads/system/uploads/
attachment_data/file/245855/HMT_-_2011_Air_Data.csv

Note

The website might open differently for Internet Explorer or Google Chrome.
This depends on how IE or Chrome are configured on your machine. Using
WebClient.DownloadFile, you can download the data as suggested.

Ideally, the program should download data once and then reread it from the local
filesystem each time it is started.

Figure 4.6: Preview of HM Treasury traffic data in Excel

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/245855/HMT_-_2011_Air_Data.csv
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/245855/HMT_-_2011_Air_Data.csv

LINQ | 307

Once downloaded, the data should then be read into a suitable record structure
before being added to a collection, which allows various queries to be applied.
The output should show the following aggregate values for all rows that match the
user's criteria:

• Record count

• Average fare

• Minimum fare

• Maximum fare

The user should be able to enter the following console commands:

• Class c: Adds a class filter, where c is a flight class to search for, such as
economy or Business class.

• Origin o: Adds an origin filter, where o is the flight origin, such as dublin,
london, or basel.

• Destination d: Adds a destination filter, where d is the flight destination,
such as delhi.

• Clear: Clears all filters.

• go: Applies the current filters.

If a user enters multiple filters of the same type, then these should be treated as an
OR filter.

An enum can be used to identify the filter criteria type entered, as shown in the
following line of code:

enum FilterCriteriaType {Class, Origin, Destination}

Similarly, a record can be used to store each filter type and comparison operand,
as follows:

record FilterCriteria(FilterCriteriaType Filter, string Operand)

Each filter specified should be added to a List<FilterCriteria> instance.
For example, if the user enters two origin filters, one for dublin and another
for london, then the list should contain two objects, each representing an origin
type filter.

308 | Data Structures and LINQ

When the user enters the go command, a query should be built that performs the
following steps:

• Extracts all class filter values into a list of strings (List<string>).

• Extracts all origin filter values into List<string>.

• Extracts all destination filter values into List<string>.

• Uses a where extension method to filter the fight records for each criteria type
specified using the List<string>. It contains a method to perform a case-
insensitive search.

The following steps will help you complete this activity:

1. Create a new folder called Activities in the Chapter04 folder.

2. Add a new folder called Activity01 to that new folder.

3. Add a new class file called Flight.cs. This will be a Record class with fields
that match those in the flight data. A Record class should be used as it offers a
simple type purely to hold data rather than any form of behavior.

4. Add a new class file called FlightLoader.cs. This class will be used for
downloading or importing data. FlightLoader should include a list of the field
index positions within the data file, to be used when reading each line of data
and splitting the contents into a string array, for example:

public const int Agency = 0;

public const int PaidFare = 1;

5. Now for the FlightLoader implementation, use a static class to define the
index of known field positions in the data file. This will make it easier to handle
any future changes in the layout of the data.

6. Next, a Download method should be passed a URL and destination file. Use
WebClient.DownloadFile to download the data file and then defer to
Import to process the downloaded file.

7. An Import method is to be added. This is passed the name of the local file
to import (downloaded using the Import method) and will return a list of
Flight records.

8. Add a class file called FilterCriteria.cs. This should contain a
FilterCriteriaType enum definition. You will offer filters based on the
flight's class, origin, and destination properties, so FilterCriteriaType
should represent each of these.

LINQ | 309

9. Now, for the main filtering class, add a new class file called FlightQuery.
cs. The constructor will be passed a FlightLoader instance. Within it, create
a list named _flights to contain the data imported via FlightLoader.
Create a List<FilterCriteria> instance named _filters that represent
each of the criteria items that are added, each time the user specifies a new
filter condition.

10. The Import and Download methods of FlightLoader should be called by
the console at startup, allowing previously downloaded data to be processed, via
the _loader instance.

11. Create a Count variable that returns the number of flight records that have
been imported.

12. When the user specifies a filter to add, the console will call AddFilter,
passing an enum to define the criteria type and the string value being filtered for.

13. RunQuery is the main method that returns those flights that match
the user's criteria. You need to use the built-in StringComparer.
InvariantCultureIgnoreCase comparer to ensure string comparison
ignores any case differences. You define a query variable that calls Select on
the flights; at the moment, this would result in a filtered result set.

14. Each of the types of filter available is string-based, so you need to extract all the
string items. If there are any items to filter, you add an extra Where call to the
query for each type (Class, Destination, or Origin). Each Where clause
uses a Contains predicate, which examines the associated property.

15. Next, add the two helper methods used by RunQuery. GetFiltersByType
is passed each of the FilterCriteriaType enums that represent a known
type of criteria type and finds any of these in the list of filters using the .Where
method. For example, if the user added two Destination criteria such as
India and Germany, this would result in the two strings India and Germany
being returned.

16. FormatFilters simply joins a list of filterValues strings into a
user-friendly string with the word OR between each item, such as London
OR Dublin.

17. Now create the main console app. Add a new class called Program.cs, which
will allow the user to input requests and process their commands.

18. Hardcode the download URL and destination filename.

310 | Data Structures and LINQ

19. Create the main FlightQuery class, passing in a FlightLoader instance.
If the app has been run before, you can Import the local flight data, or use
Download if not.

20. Show a summary of the records imported and the available commands.

21. When the user enters a command, there might also be an argument, such as
destination united kingdom, where destination is the command
and united kingdom is the argument. To determine this, use the IndexOf
method to find the location of the first space character in the input, if any.

22. For the go command, call RunQuery and use various aggregation operators on
the results returned.

23. For the remaining commands, clear or add filters as requested. If the Clear
command is specified, call the query's ClearFilters method, which will clear
the list of criteria items.

24. If a class filter command is specified, call AddFilter specifying the
FilterCriteriaType.Class enum and the string Argument.

25. The same pattern should be used for Origin and Destination commands.
Call AddFilter, passing in the required enum value and the argument.

The console output should be similar to the following, here listing the commands
available to the user:

Commands: go | clear | class value | origin value | destination value

26. The user should be able to add two class filters, for economy or Business
Class (all string comparisons should be case-insensitive), as shown in the
following snippet:

Enter a command:class economy

Added filter: Class=economy

Enter a command:class Business Class

Added filter: Class=business class

27. Similarly, the user should be able to add an origin filter as follows (this example
is for london):

Enter a command:origin london

Added filter: Origin=london

Summary | 311

28. Adding the destination filter should look like this (this example is for zurich):

Enter a command:destination zurich

Added filter: Destination=zurich

29. Entering go should show a summary of all filters specified, followed by the
results for flights that match the filters:

Enter a command:go

Classes: economy OR business class

Destinations: zurich

Origins: london

Results: Count=16, Avg=266.92, Min=-74.71, Max=443.49

Note

The solution to this activity can be found at https://packt.link/qclbF.

Summary
In this chapter, you saw how the IEnumerable and ICollection interfaces form
the basis of .NET data structures, and how they can be used to store multiple items.
You created different types of collections depending on how each collection is meant
to be used. You learned that the List collection is most extensively used to store
collections of items, particularly if the number of elements is not known at compile
time. You saw that the Stack and Queue types allow the order of items to be
handled in a controlled manner, and how the HashSet offers set-based processing,
while the Dictionary stores unique values using a key identifier.

You then further explored data structures by using LINQ Query Expressions and
Query Operators to apply queries to data, showing how queries can be altered at
runtime depending on filtering requirements. You sorted and partitioned data and
saw how similar operations can be achieved using both Query Operators and Query
Expressions, each offering a preference and flexibility based on context.

In the next chapter, you will see how parallel and asynchronous code can be used to
run complex or long-running operations together.

https://packt.link/qclbF

Overview

C# and .NET provide a highly effective way to run concurrent code,
making it easy to perform complex and often time-consuming actions. In
this chapter, you will explore the various patterns that are available, from
creating tasks using the Task factory methods to continuations to link tasks
together, before moving on to the async/await keywords, which vastly
simplify such code. By the end of this chapter, you will see how C# can be
used to execute code that runs concurrently and often produces results far
quicker than a single-threaded application.

Concurrency: Multithreading

Parallel and Async Code

5

314 | Concurrency: Multithreading Parallel and Async Code

Introduction
Concurrency is a generalized term that describes the ability of software to do more
than one thing at the same time. By harnessing the power of concurrency, you can
provide a more responsive user interface by offloading CPU-intensive activities from
the main UI thread. On the server side, taking advantage of modern processing power
through multi-processor and multi-core architectures, scalability can be achieved by
processing operations in parallel.

Multithreading is a form of concurrency whereby multiple threads are used
to perform operations. This is typically achieved by creating many Thread
instances and coordinating operations between them. It is regarded as a legacy
implementation, having largely been replaced by parallel and async programming;
you may well find it used in older projects.

Parallel programming is a class of multithreading where similar operations are run
independently of each other. Typically, the same operation is repeated using multiple
loops, where the parameters or target of the operation themselves vary by iteration.
.NET provides libraries that shield developers from the low-level complexities of
thread creation. The phrase embarrassingly parallel is often used to describe an
activity that requires little extra effort to be broken down into a set of tasks that can
be run in parallel, often where there are few interactions between sub-tasks. One
such example of parallel programming could be counting the number of words found
in each text file within a folder. The job of opening a file and scanning through the
words can be split into parallel tasks. Each task executes the same lines of code but is
given a different text file to process.

Asynchronous programming is a more recent form of concurrency where an
operation, once started, will complete at some point in the future, and the calling
code is able to continue with other operations. This completion is often known as a
promise (or a future in other languages) and is implemented through the task and
its generic Task<> equivalent. In C# and .NET, async programming has become the
preferred means to achieve concurrent operations.

A common application of asynchronous programming is where multiple slow-running
or expensive dependencies need to be initialized and marshaled prior to calling a
final step that should be called only when all or some of the dependencies are ready
to be used. For example, a mobile hiking application may need to wait for a reliable
GPS satellite signal, a planned navigation route, and a heart-rate monitoring service
to be ready before the user can start hiking safely. Each of these distinct steps would
be initialized using a dedicated task.

Introduction | 315

Another very common use case for asynchronous programming occurs in UI
applications where, for example, saving a customer's order to a database could
take 5-10 seconds to complete. This may involve validating the order, opening a
connection to a remote server or database, packaging and sending the order in a
format that can be transmitted over the wire, and then finally waiting for confirmation
that the customer's order has been successfully stored in a database. In a single-
threaded application, this would take much longer, and this delay would soon be
noticed by the user. The application would become unresponsive until the operation
was completed. In this scenario, the user may rightly think the application has
crashed and may try to close it. That is not an ideal user experience.

Such issues can be mitigated by using async code that performs any of the slow
operations using a dedicated task for each. These tasks may choose to provide
feedback as they progress, which the UI's main thread can use to notify the user.
Overall, the operation should complete sooner, thus freeing the user to continue
interacting with the app. In modern applications, users have come to expect this
method of operation. In fact, many UI guidelines suggest that if an operation may
take more than a few seconds to complete, then it should be performed using
async code.

Note that when code is executing, whether it's synchronous or asynchronous code, it
is run within the context of a Thread instance. In the case of asynchronous code, this
Thread instance is chosen by the .NET scheduler from a pool of available threads.

The Thread class has various properties but one of the most useful is
ManagedThreadId, which will be used extensively throughout this chapter. This
integer value serves to uniquely identify a thread within your process. By examining
Thread.ManagedThreadId, you can determine that multiple thread instances
are being used. This can be done by accessing the Thread instance from within your
code using the static Thread.CurrentThread method.

For example, if you started five long-running tasks and examined the Thread.
ManagedThreadId for each, you would observe five unique IDs, possibly numbered
as two, three, four, five, and six. In most cases, the thread with ID number one is the
process's main thread, created when the process first starts.

Keeping track of thread IDs can be quite useful, especially when you have time-
consuming operations to perform. As you have seen, using concurrent programming,
multiple operations can be executed at the same time, rather than using a traditional
single-threaded approach, where one operation must complete before a subsequent
operation can start.

316 | Concurrency: Multithreading Parallel and Async Code

In the physical world, consider the case of building a train tunnel through a
mountain. Starting at one side of a mountain and tunneling through to the other
side could be made considerably faster if two teams started on opposite sides of
the mountain, both tunneling toward each other. The two teams could be left to
work independently; any issues experienced by a team on one side should not
have an adverse effect on the other side's team. Once both sides have completed
their tunneling, there should be one single tunnel, and the construction could then
continue with the next task, such as laying the train line.

The next section will look at using the C# Task class, which allows you to execute
blocks of code at the same time and independently of each other. Consider again the
example of the UI app, where the customer's order needs to be saved to a database.
For this, you would have two options:

Option 1 is to create a C# Task that performs each step one after another:

• Validate the order.

• Connect to the server.

• Send the request.

• Wait for a response.

Option 2 is to create a C# Task for each of the steps, executing each in parallel
where possible.

Both options achieve the same end result, freeing the UI's main thread to respond to
user interactions. Option one may well be slower to finish, but the upside is that this
would require simpler code. However, Option two would be the preferred choice as
you are offloading multiple steps, so it should complete sooner. Although, this could
involve additional complexity as you may need to coordinate each of the individual
tasks as they are complete.

In the upcoming sections, you will first get a look at how Option one could be
approached, that is, using a single Task to run blocks of code, before moving on
to the complexity of Option two where multiple tasks are used and coordinated.

Running Asynchronous Code Using Tasks | 317

Running Asynchronous Code Using Tasks
The Task class is used to execute blocks of code asynchronously. Its usage has been
somewhat superseded by the newer async and await keywords, but this section
will cover the basics of creating tasks as they tend to be pervasive in larger or mature
C# applications and form the backbone of the async/await keywords.

In C#, there are three ways to schedule asynchronous code to run using the Task
class and its generic equivalent Task<T>.

Creating a New Task

You'll start off with the simplest form, one that performs an operation but does not
return a result back to the caller. You can declare a Task instance by calling any of
the Task constructors and passing in an Action based delegate. This delegate
contains the actual code to be executed at some point in the future. Many of the
constructor overloads allow cancellation tokens and creation options to further
control how the Task runs.

Some of the commonly used constructors are as follows:

• public Task(Action action): The Action delegate represents the body
of code to be run.

• public Task(Action action, CancellationToken
cancellationToken): The CancellationToken parameter can be used
as a way to interrupt the code that is running. Typically, this is used where the
caller has been provided with a means to request that an operation be stopped,
such as adding a Cancel button that a user can press.

• public Task(Action action, TaskCreationOptions
creationOptions): TaskCreationOptions offers a way to control how
the Task is run, allowing you to provide hints to the scheduler that a certain
Task might take extra time to complete. This can help when running related
tasks together.

318 | Concurrency: Multithreading Parallel and Async Code

The following are the most often used Task properties:

• public bool IsCompleted { get; }: Returns true if the Task
completed (completion does not indicate success).

• public bool IsCompletedSuccessfully { get; }: Returns true if
the Task completed successfully.

• public bool IsCanceled { get; }: Returns true if the Task was
canceled prior to completion.

• public bool IsFaulted { get; }: Returns true if the Task has
thrown an unhandled exception prior to completion.

• public TaskStatus Status { get; }: Returns an indicator of the task's
current status, such as Canceled, Running, or WaitingToRun.

• public AggregateException Exception { get; }: Returns the
exception, if any, that caused the Task to end prematurely.

Note that the code within the Action delegate is not executed until sometime after
the Start() method is called. This may well be some milliseconds after and is
determined by the .NET scheduler.

Start here by creating a new VS Code console app, adding a utility class named
Logger, which you will use in the exercises and examples going forward. It will be
used to log a message to the console along with the current time and current thread's
ManagedThreadId.

The steps for this are as follows:

1. Change to your source folder.

2. Create a new console app project called Chapter05 by running the
following command:

source>dotnet new console -o Chapter05

3. Rename the Class1.cs file to Logger.cs and remove all the template code.

Running Asynchronous Code Using Tasks | 319

4. Be sure to include the System and System.Threading namespaces.
System.Threading contains the Threading based classes:

using System;

using System.Threading;

namespace Chapter05

{

5. Mark the Logger class as static so that it can be used without having to create
an instance to use:

 public static class Logger

 {

Note

If you use the Chapter05 namespace, then the Logger class will be
accessible to code in examples and activities, provided they also use the
Chapter05 namespace. If you prefer to create a folder for each example
and exercise, then you should copy the file Logger.cs into each folder
that you create.

6. Now declare a static method called Log that is passed a string message
parameter:

 public static void Log(string message)

 {

 Console.WriteLine($"{DateTime.Now:T} [{Thread.
CurrentThread.ManagedThreadId:00}] {message}");
 }

 }

}

When invoked, this will log a message to the console window using the
WriteLine method. In the preceding snippet, the string interpolation feature
in C# is used to define a string using the $ symbol; here, :T will format the
current time (DateTime.Now) into a time-formatted string and :00 is used to
include Thread.ManagedThreadId with a leading 0.

320 | Concurrency: Multithreading Parallel and Async Code

Thus, you have created the static Logger class that will be used throughout the
rest of this chapter.

Note

You can find the code used for this example at https://packt.link/cg6c5.

In the next example, you will use the Logger class to log details when a thread
is about to start and finish.

7. Start by adding a new class file called TaskExamples.cs:

using System;

using System.Threading;

using System.Threading.Tasks;

namespace Chapter05.Examples

{

 class TaskExamples

 {

8. The Main entry point will log that taskA is being created:

 public static void Main()

 {

 Logger.Log("Creating taskA");

9. Next, add the following code:

 var taskA = new Task(() =>

 {

 Logger.Log("Inside taskA");

 Thread.Sleep(TimeSpan.FromSeconds(5D));

 Logger.Log("Leaving taskA");

 });

Here, the simplest Task constructor is passed an Action lambda statement,
which is the actual target code that you want to execute. The target code writes
the message Inside taskA to the console. It pauses for five seconds using
Thread.Sleep to block the current thread, thus simulating a long-running
activity, before finally writing Leaving taskA to the console.

https://packt.link/cg6c5

Running Asynchronous Code Using Tasks | 321

10. Now that you have created taskA, confirm that it will only invoke its target
code when the Start() method is called. You will do this by logging a message
immediately before and after the method is called:

 Logger.Log($"Starting taskA. Status={taskA.Status}");

 taskA.Start();

 Logger.Log($"Started taskA. Status={taskA.Status}");

 Console.ReadLine();

 }

 }

}

11. Copy the contents of Logger.cs file to same folder as the TaskExamples.
cs example.

12. Next run the console app to produce the following output:

10:47:34 [01] Creating taskA

10:47:34 [01] Starting taskA. Status=Created

10:47:34 [01] Started taskA. Status=WaitingToRun

10:47:34 [03] Inside taskA

10:47:39 [03] Leaving taskA

Note that the task's status is WaitingToRun even after you've called Start.
This is because you are asking the .NET scheduler to schedule the code to
run—that is, to add it to its queue of pending actions. Depending on how busy
your application is with other tasks, it may not run immediately after you've
called Start.

Note

You can find the code used for this example at https://packt.link/DHxt3.

In earlier versions of C#, this was the main way to create and start Task objects
directly. It is no longer recommended and is only included here as you may find
it used in older code. Its usage has been replaced by the Task.Run or Task.
Factory.StartNew static factory methods, which offer a simpler interface for the
most common usage scenarios.

https://packt.link/DHxt3

322 | Concurrency: Multithreading Parallel and Async Code

Using Task.Factory.StartNew

The static method Task.Factory.StartNew contains various overloads that
make it easier to create and configure a Task. Notice how the method is named
StartNew. It creates a Task and automatically starts the method for you. The .NET
team recognized that there is little value in creating a Task that is not immediately
started after it is first created. Typically, you would want the Task to start performing
its operation right away.

The first parameter is the familiar Action delegate to be executed, followed by
optional cancelation tokens, creation options, and a TaskScheduler instance.

The following are some of the common overloads:

• Task.Factory.StartNew(Action action): The Action delegate
contains the code to execute, as you have seen previously.

• Task.Factory.StartNew(Action action, CancellationToken
cancellationToken): Here, CancellationToken coordinates the
cancellation of the task.

• Task.Factory.StartNew(Action<object> action,
object state, CancellationToken cancellationToken,
TaskCreationOptions creationOptions, TaskScheduler
scheduler): The TaskScheduler parameter allows you to specify a type of
low-level scheduler responsible for queuing tasks. This option is rarely used.

Consider the following code, which uses the first and simplest overload:

var taskB = Task.Factory.StartNew((() =>

{

 Logger.Log("Inside taskB");

 Thread.Sleep(TimeSpan.FromSeconds(3D));

 Logger.Log("Leaving taskB");

}));

Logger.Log($"Started taskB. Status={taskB.Status}");

Console.ReadLine();

Running this code produces the following output:

21:37:42 [01] Started taskB. Status=WaitingToRun

21:37:42 [03] Inside taskB

21:37:45 [03] Leaving taskB

Running Asynchronous Code Using Tasks | 323

From the output, you can see that this code achieves the same result as creating
a Task but is more concise. The main point to consider is that Task.Factory.
StartNew was added to C# to make it easier to create tasks that are started for you.
It was preferable to use StartNew rather than creating tasks directly.

Note

The term Factory is often used in software development to represent
methods that help create objects.

Task.Factory.StartNew provides a highly configurable way to start tasks, but
in reality, many of the overloads are rarely used and need a lot of extra parameters
to be passed to them. As such, Task.Factory.StartNew itself has also become
somewhat obsolete in favor of the newer Task.Run static method. Still, the
Task.Factory.StartNew is briefly covered as you may see it used in legacy
C# applications.

Using Task.Run

The alternative and preferred static factory method, Task.Run, has various
overloads and was added later to .NET to simplify and shortcut the most common
task scenarios. It is preferable for newer code to use Task.Run to create started
tasks, as far fewer parameters are needed to achieve common threading operations.

Some of the common overloads are as follows:

• public static Task Run(Action action): Contains the Action
delegate code to execute.

• public static Task Run(Action action, CancellationToken
cancellationToken): Additionally contains a cancelation token used to
coordinate the cancellation of a task.

324 | Concurrency: Multithreading Parallel and Async Code

For example, consider the following code:

var taskC = Task.Run(() =>

{

 Logger.Log("Inside taskC");

 Thread.Sleep(TimeSpan.FromSeconds(1D));

 Logger.Log("Leaving taskC");

 });

Logger.Log($"Started taskC. Status={taskC.Status}");

Console.ReadLine();

Running this code will produce the following output:

21:40:27 [03] Inside taskC

21:40:27 [01] Started taskC. Status=WaitingToRun

21:40:28 [03] Leaving taskC

As you can see, the output is pretty similar to the outputs of the previous two code
snippets. Each wait for a shorter time than its predecessor before the associated
Action delegate completes.

The main difference is that creating a Task instance directly is an obsolete practice
but will allow you to add an extra logging call before you explicitly call the Start
method. That is the only benefit in creating a Task directly, which is not a particularly
compelling reason to do so.

Running all three examples together produces this:

21:45:52 [01] Creating taskA

21:45:52 [01] Starting taskA. Status=Created

21:45:52 [01] Started taskA. Status=WaitingToRun

21:45:52 [01] Started taskB. Status=WaitingToRun

21:45:52 [01] Started taskC. Status=WaitingToRun

21:45:52 [04] Inside taskB

21:45:52 [03] Inside taskA

21:45:52 [05] Inside taskC

21:45:53 [05] Leaving taskC

21:45:55 [04] Leaving taskB

21:45:57 [03] Leaving taskA

Running Asynchronous Code Using Tasks | 325

You can see various ManagedThreadIds being logged and that taskC completes
before taskB, which completes before taskA, due to the decreasing number of
seconds specified in the Thread.Sleep calls in each case.

It is preferable to favor either of the two static methods, but which should you use
when scheduling a new task? Task.Run should be used for the majority of cases
where you need to simply offload some work onto the thread pool. Internally, Task.
Run defers down to Task.Factory.StartNew.

Task.Factory.StartNew should be used where you have more advanced
requirements, such as defining where tasks are queued, by using any of the
overloads that accept a TaskScheduler instance, but in practice, this is seldom
the requirement.

Note

You can find more information on Task.Run and Task.Factory.
StartNew at https://devblogs.microsoft.com/pfxteam/task-run-vs-task-
factory-startnew/ and https://blog.stephencleary.com/2013/08/startnew-is-
dangerous.html.

So far, you have seen how small tasks can be started, each with a small delay before
completion. Such delays can simulate the effect caused by code accessing slow
network connections or running complex calculations. In the following exercise, you'll
extend your Task.Run knowledge by starting multiple tasks that run increasingly
longer numeric calculations.

This serves as an example to show how potentially complex tasks can be started and
allowed to run to completion in isolation from one another. Note that in a traditional
synchronous implementation, the throughput of such calculations would be severely
restricted, owing to the need to wait for one operation to complete before the
next one can commence. It is now time to practice what you have learned through
an exercise.

https://devblogs.microsoft.com/pfxteam/task-run-vs-task-factory-startnew/
https://devblogs.microsoft.com/pfxteam/task-run-vs-task-factory-startnew/
https://blog.stephencleary.com/2013/08/startnew-is-dangerous.html
https://blog.stephencleary.com/2013/08/startnew-is-dangerous.html

326 | Concurrency: Multithreading Parallel and Async Code

Exercise 5.01: Using Tasks to Perform Multiple Slow-Running Calculations

In this exercise, you will create a recursive function, Fibonacci, which calls itself twice
to calculate a cumulative value. This is an example of potentially slow-running code
rather than using Thread.Sleep to simulate a slow call. You will create a console
app that repeatedly prompts for a number to be entered. The larger this number, the
longer each task will take to calculate and output its result. The following steps will
help you complete this exercise:

1. In the Chapter05 folder, add a new folder called Exercises. Inside that
folder, add a new folder called Exercise01. You should have the folder
structure as Chapter05\Exercises\Exercise01.

2. Create a new file called Program.cs.

3. Add the recursive Fibonacci function as follows. You can save a little
processing time by returning 1 if the requested iteration is less than or
equal to 2:

using System;

using System.Globalization;

using System.Threading;

using System.Threading.Tasks;

namespace Chapter05.Exercises.Exercise01

{

 class Program

 {

 private static long Fibonacci(int n)

 {

 if (n <= 2L)

 return 1L;

 return Fibonacci(n - 1) + Fibonacci(n - 2);

 }

4. Add the static Main entry point to the console app and use a do-loop to
prompt for a number to be entered.

Running Asynchronous Code Using Tasks | 327

5. Use int.TryParse to convert the string into an integer if the user enters
a string:

 public static void Main()

 {

 string input;

 do

 {

 Console.WriteLine("Enter number:");

 input = Console.ReadLine();

 if (!string.IsNullOrEmpty(input) &&
 int.TryParse(input, NumberStyles.Any,
CultureInfo.CurrentCulture, out var number))

6. Define a lambda statement that captures the current time using DateTime.
Now, calls the slow-running Fibonacci function, and logs the time taken
to run:

 {

 Task.Run(() =>

 {

 var now = DateTime.Now;

 var fib = Fibonacci(number);

 var duration = DateTime.Now.Subtract(now);

 Logger.Log($"Fibonacci {number:N0} = {fib:N0}
(elapsed time: {duration.TotalSeconds:N0} secs)");
 });

 }

The lambda is passed to Task.Run and will be started by Task.Run shortly,
freeing the do-while loop to prompt for another number.

7. The program shall exit the loop when an empty value is entered:

 } while (input != string.Empty);

 }

 }

}

328 | Concurrency: Multithreading Parallel and Async Code

8. For running the console app, start by entering the numbers 1 and then 2.
As these are very quick calculations, they both return in under one second.

Note

The first time you run this program, Visual Studio will show a warning similar
to "Converting null literal or possible null value
to non-nullable type". This is a reminder that you are using a
variable that could be a null value.

Enter number:1

Enter number:2

11:25:11 [04] Fibonacci 1 = 1 (elapsed time: 0 secs)

Enter number:45

11:25:12 [04] Fibonacci 2 = 1 (elapsed time: 0 secs)

Enter number:44

Enter number:43

Enter number:42

Enter number:41

Enter number:40

Enter number:10

11:25:35 [08] Fibonacci 41 = 165,580,141 (elapsed time: 4 secs)

11:25:35 [09] Fibonacci 40 = 102,334,155 (elapsed time: 2 secs)

11:25:36 [07] Fibonacci 42 = 267,914,296 (elapsed time: 6 secs)

Enter number: 39

11:25:36 [09] Fibonacci 10 = 55 (elapsed time: 0 secs)

11:25:37 [05] Fibonacci 43 = 433,494,437 (elapsed time: 9 secs)

11:25:38 [06] Fibonacci 44 = 701,408,733 (elapsed time: 16 secs)

Enter number:38

11:25:44 [06] Fibonacci 38 = 39,088,169 (elapsed time: 1 secs)

11:25:44 [05] Fibonacci 39 = 63,245,986 (elapsed time: 2 secs)

11:25:48 [04] Fibonacci 45 = 1,134,903,170 (elapsed time: 27 secs)

Notice how the ThreadId is [04] for both 1 and 2. This shows that the same
thread was used by Task.Run for both iterations. By the time 2 was entered, the
previous calculation had already been completed. So .NET decided to reuse thread
04 again. The same occurs for the value 45, which took 27 seconds to complete even
though it was the third requested.

Running Asynchronous Code Using Tasks | 329

You can see that entering values above 40 causes the elapsed time to increase quite
dramatically (for each increase by one, the time taken almost doubles). Starting with
higher numbers and descending downward, you can see that the calculations for 41,
40, and 42 were all completed before 44 and 43, even though they were started at
similar times. In a few instances, the same thread appears twice. Again, this is .NET
re-using idle threads to run the task's action.

Note

You can find the code used for this exercise at https://packt.link/YLYd4.

Coordinating Tasks

In the previous Exercise 5.01, you saw how multiple tasks can be started and left to
run to completion without any interaction between the individual tasks. One such
scenario is a process that needs to search a folder looking for image files, adding a
copyright watermark to each image file found. The process can use multiple tasks,
each working on a distinct file. There would be no need to coordinate each task and
its resulting image.

Conversely, it is quite common to start various long-running tasks and only continue
when some or all of the tasks have completed; maybe you have a collection of
complex calculations that need to be started and can only perform a final calculation
once the others have completed.

In the Introduction section, it was mentioned that a hiking application needed a GPS
satellite signal, navigation route, and a heart rate monitor before it could be used
safely. Each of these dependencies can be created using a Task and only when all of
them have signaled that they are ready to be used should the application then allow
the user to start with their route.

Over the next sections, you will cover various ways offered by C# to coordinate
tasks. For example, you may have a requirement to start many independent tasks
running, each running a complex calculation, and need to calculate a final value once
all the previous tasks have completed. You may either like to start downloading data
from multiple websites but want to cancel the downloads that are taking too long to
complete. The next section will cover this scenario.

https://packt.link/YLYd4

330 | Concurrency: Multithreading Parallel and Async Code

Waiting for Tasks to Complete

Task.Wait can be used to wait for an individual task to complete. If you are working
with multiple tasks, then the static Task.WaitAll method will wait for all tasks
to complete. The WaitAll overloads allow cancellation and timeout options to be
passed in, with most returning a Boolean value to indicate success or failure, as you
can see in the following list:

• public static bool WaitAll(Task[] tasks, TimeSpan
timeout): This is passed an array of Task items to wait for. It returns true if
all of the tasks complete within the maximum time period specified (TimeSpan
allows specific units such as hours, minutes, and seconds to be expressed).

• public static void WaitAll(Task[] tasks,
CancellationToken cancellationToken): This is passed an array of
Task items to wait for, and a cancellation token that can be used to coordinate
the cancellation of the tasks.

• public static bool WaitAll(Task[] tasks,
int millisecondsTimeout, CancellationToken
cancellationToken): This is passed an array of Task items to wait for and
a cancellation token that can be used to coordinate the cancellation of the tasks.
millisecondsTimeout specifies the number of milliseconds to wait for all
tasks to complete by.

• public static void WaitAll(params Task[] tasks): This allows
an array of Task items to wait for.

If you need to wait for any task to complete from a list of tasks, then you can use
Task.WaitAny. All of the WaitAny overloads return either the index number
of the first completed task or -1 if a timeout occurred (the maximum amount of
time to wait for).

For example, if you pass an array of five Task items and the last Task in that
array completes, then you will be returned the value four (array indexes always
start counting at zero).

• public static int WaitAny(Task[] tasks,
int millisecondsTimeout, CancellationToken
cancellationToken): This is passed an array of Task items to wait for, the
number of milliseconds to wait for any Task to complete by, and a cancellation
token that can be used to coordinate the cancellation of the tasks.

Running Asynchronous Code Using Tasks | 331

• public static int WaitAny(params Task[] tasks): This is passed
an array of Task items to wait for any Task to be completed.

• public static int WaitAny(Task[] tasks, int
millisecondsTimeout): Here, you pass the number of milliseconds to wait
for any tasks to complete.

• public static int WaitAny(Task[] tasks, CancellationToken
cancellationToken) CancellationToken: This is passed a cancellation
token that can be used to coordinate the cancellation of the tasks.

• public static int WaitAny(Task[] tasks, TimeSpan
timeout): This is passed the maximum time period to wait for.

Calling Wait, WaitAll, or WaitAny will block the current thread, which can
negate the benefits of using a task in the first place. For this reason, it is preferable
to call these from within an awaitable task, such as via Task.Run as the following
example shows.

The code creates outerTask with a lambda statement, which itself then creates
two inner tasks, inner1, and inner2. WaitAny is used to get the index of the first
inner task to complete. In this example, inner2 will complete first as it pauses for a
shorter time, so the resulting index value will be 1:

TaskWaitAnyExample.cs

1 var outerTask = Task.Run(() =>
2 {
3 Logger.Log("Inside outerTask");
4 var inner1 = Task.Run(() =>
5 {
6 Logger.Log("Inside inner1");
7 Thread.Sleep(TimeSpan.FromSeconds(3D));
8 });
9 var inner2 = Task.Run(() =>
10 {
11 Logger.Log("Inside inner2");
12 Thread.Sleep(TimeSpan.FromSeconds(2D));
13 });
14
15 Logger.Log("Calling WaitAny on outerTask");

You can find the complete code here: http://packt.link/CicWk.

http://packt.link/CicWk

332 | Concurrency: Multithreading Parallel and Async Code

When the code runs, it produces the following output:

15:47:43 [04] Inside outerTask

15:47:43 [01] Press ENTER

15:47:44 [04] Calling WaitAny on outerTask

15:47:44 [05] Inside inner1

15:47:44 [06] Inside inner2

15:47:46 [04] Waitany index=1

The application remains responsive because you called WaitAny from inside a
Task. You have not blocked the application's main thread. As you can see, thread ID
01 has logged this message: 15:47:43 [01] Press ENTER.

This type of pattern can be used in cases where you need to fire and forget a task.
For example, you may want to log an informational message to a database or a log
file, but it is not essential that the flow of the program is altered if either task fails
to complete.

A common progression from fire-and-forget tasks is those cases where you need to
wait for several tasks to complete within a certain time limit. The next exercise will
cover this scenario.

Exercise 5.02: Waiting for Multiple Tasks to Complete Within a Time Period

In this exercise, you will start three long-running tasks and decide your next course of
action if they all completed within a certain randomly selected time span.

Here, you will see the generic Task<T> class being used. The Task<T> class
includes a Value property that can be used to access the result of Task (in this
exercise, it is a string-based generic, so Value will be a string type). You won't use
the Value property here as the purpose of this exercise is to show that void and
generic tasks can be waited for together. Perform the following steps to complete
this exercise:

Running Asynchronous Code Using Tasks | 333

1. Add the main entry point to the console app:

using System;

using System.Threading;

using System.Threading.Tasks;

namespace Chapter05.Exercises.Exercise02

{

 class Program

 {

 public static void Main()

 {

 Logger.Log("Starting");

2. Declare a variable named taskA, passing Task.Run a lambda that pauses the
current thread for 5 seconds:

 var taskA = Task.Run(() =>

 {

 Logger.Log("Inside TaskA");

 Thread.Sleep(TimeSpan.FromSeconds(5));

 Logger.Log("Leaving TaskA");

 return "All done A";

 });

3. Create two more tasks using the method group syntax:

 var taskB = Task.Run(TaskBActivity);

 var taskC = Task.Run(TaskCActivity);

As you may recall, this shorter syntax can be used if the compiler can determine
the type of argument required for a zero- or single-parameter method.

4. Now pick a random maximum timeout in seconds. This means that either of the
two tasks may not complete before the timeout period has elapsed:

 var timeout = TimeSpan.FromSeconds(new Random().Next(1,
10));
 Logger.Log($"Waiting max {timeout.TotalSeconds}
seconds...");

Note that each of the tasks will still run to completion as you have not added
a mechanism to stop executing the code inside the body of the Task.Run
Action lambda.

334 | Concurrency: Multithreading Parallel and Async Code

5. Call WaitAll, passing in the three tasks and the timeout period:

 var allDone = Task.WaitAll(new[] {taskA, taskB, taskC},
timeout);
 Logger.Log($"AllDone={allDone}: TaskA={taskA.Status},
TaskB={taskB.Status}, TaskC={taskC.Status}");

 Console.WriteLine("Press ENTER to quit");

 Console.ReadLine();

 }

This will return true if all tasks complete in time. You will then log the status of
all tasks and wait for Enter to be pressed to exit the application.

6. Finish off by adding two slow-running Action methods:

 private static string TaskBActivity()

 {

 Logger.Log($"Inside {nameof(TaskBActivity)}");

 Thread.Sleep(TimeSpan.FromSeconds(2));

 Logger.Log($"Leaving {nameof(TaskBActivity)}");

 return "";

 }

 private static void TaskCActivity()

 {

 Logger.Log($"Inside {nameof(TaskCActivity)}");

 Thread.Sleep(TimeSpan.FromSeconds(1));

 Logger.Log($"Leaving {nameof(TaskCActivity)}");

 }

 }

}

Each will log a message when starting and leaving a task, after a few seconds.
The useful nameof statement is used to include the name of the method for
extra logging information. Often, it is useful to examine log files to see the
name of a method that has been accessed rather than hardcoding its name as a
literal string.

Running Asynchronous Code Using Tasks | 335

7. Upon running the code, you will see the following output:

14:46:28 [01] Starting

14:46:28 [04] Inside TaskBActivity

14:46:28 [05] Inside TaskCActivity

14:46:28 [06] Inside TaskA

14:46:28 [01] Waiting max 7 seconds...

14:46:29 [05] Leaving TaskCActivity

14:46:30 [04] Leaving TaskBActivity

14:46:33 [06] Leaving TaskA

14:46:33 [01] AllDone=True: TaskA=RanToCompletion,
TaskB=RanToCompletion, TaskC=RanToCompletion
Press ENTER to quit

While running the code, a seven-second timeout was randomly picked by the
runtime. This allowed all tasks to complete in time, so true was returned by
WaitAll and all tasks had a RanToCompletion status at that point. Notice
that the thread ID, in square brackets, is different for all three tasks.

8. Run the code again:

14:48:20 [01] Starting

14:48:20 [01] Waiting max 2 seconds...

14:48:20 [05] Inside TaskCActivity

14:48:20 [06] Inside TaskA

14:48:20 [04] Inside TaskBActivity

14:48:21 [05] Leaving TaskCActivity

14:48:22 [04] Leaving TaskBActivity

14:48:22 [01] AllDone=False: TaskA=Running, TaskB=Running,
TaskC=RanToCompletion
Press ENTER to quit

14:48:25 [06] Leaving TaskA

This time the runtime picked a two-second maximum wait time, so the WaitAll
call times out with false being returned.

You may have noticed from the output that Inside TaskBActivity can
sometimes appear before Inside TaskCActivity. This demonstrates the
.NET scheduler's queuing mechanism. When you call Task.Run, you are asking
the scheduler to add this to its queue. There may only be a matter of milliseconds
between the time that you call Task.Run and when it invokes your lambda, but
this can depend on how many other tasks you have recently added to the queue; a
greater number of pending tasks could increase that time period.

336 | Concurrency: Multithreading Parallel and Async Code

Interestingly, the output shows Leaving TaskBActivity, but the taskB status
was still Running just after WaitAll finished waiting. This indicates that there can
sometimes be a very slight delay when a timed-out task's status is changed.

Some three seconds after the Enter key is pressed, Leaving TaskA is logged.
This shows that the Action within any timed-out tasks will continue to run, and .NET
will not stop it for you.

Note

You can find the code used for this exercise at https://packt.link/5lH0o.

Continuation Tasks

So far, you have created tasks that are independent of one another, but what if you
need to continue a task with the results of the previous task? Rather than blocking
the current thread, by calling Wait or accessing the Result property, this can be
achieved using the Task ContinueWith methods.

These methods return a new task, referred to as a continuation task, or more simply,
a continuation, which can consume the previous task's or the antecedent's results.

As with standard tasks, they do not block the caller thread. There are several
ContinueWith overloads available, many allowing extensive customization.
A few of the more commonly used overloads are as follows:

• public Task ContinueWith(Action<Task<TResult>>
continuationAction): This defines a generic Action<T> based Task to
run when the previous task completes.

• public Task ContinueWith(Action<Task<TResult>>
continuationAction, CancellationToken cancellationToken):
This has a task to run and a cancellation token that can be used to coordinate
the cancellation of the task.

• public Task ContinueWith(Action<Task<TResult>>
continuationAction, TaskScheduler scheduler): This also has a
task to run and a low-level TaskScheduler that be used to queue the task.

https://packt.link/5lH0o

Running Asynchronous Code Using Tasks | 337

• public Task ContinueWith(Action<Task<TResult>>
continuationAction, TaskContinuationOptions
continuationOptions): A task to run, with the behavior for the task
specified with TaskContinuationOptions. For example, specifying
NotOnCanceled indicates that you do not want the continuation to be called if
the previous task is canceled.

Continuations have an initial WaitingForActivation status. The .NET
Framework will execute this task once the antecedent task or tasks have completed.
It is important to note that you do not need to start a continuation and attempting to
do so will result in an exception.

The following example simulates calling a long-running function, GetStockPrice
(this may be some sort of web service or database call that takes a few seconds
to return):

ContinuationExamples.cs

1 class ContinuationExamples
2 {
3 public static void Main()
4 {
5 Logger.Log("Start...");
6 Task.Run(GetStockPrice)
7 .ContinueWith(prev =>
8 {
9 Logger.Log($"GetPrice returned {prev.Result:N2},
status={prev.Status}");
10 });
11
12 Console.ReadLine();
13 }
14

You can find the complete code here: http://packt.link/rpNcx.

The call to GetStockPrice returns a double, which results in the generic
Task<double> being passed to as a continuation (see the highlighted part).
The prev parameter is a generic Action of type Task<double>, allowing
you to access the antecedent task and its Result to retrieve the value returned
from GetStockPrice.

http://packt.link/rpNcx

338 | Concurrency: Multithreading Parallel and Async Code

If you hover your mouse over the ContinueWith method, you will see the
IntelliSense description for it as follows:

Figure 5.1: ContinueWith method signature

Note

The ContinueWith method has various options that can be used
to fine-tune behavior, and you can get more details about them from
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.
taskcontinuationoptions.

Running the example produces an output similar to the following:

09:30:45 [01] Start...

09:30:45 [03] Inside GetStockPrice

09:30:50 [04] GetPrice returned 76.44, status=RanToCompletion

In the output, thread [01] represents the console's main thread. The task that
called GetStockPrice was executed by thread ID [03], yet the continuation was
executed using a different thread, thread ([04]).

Note

You can find the code used for this example at https://packt.link/rpNcx.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions
https://packt.link/rpNcx

Running Asynchronous Code Using Tasks | 339

The continuation running on a different thread may not be a problem, but it certainly
will be an issue if you are working on UWP, WPF, or WinForms UI apps where it's
essential that UI elements are updated using the main UI thread (unless you are using
binding semantics).

It is worth noting that the TaskContinuationOptions.
OnlyOnRanToCompletion option can be used to ensure the continuation only
runs if the antecedent task has run to completion first. For example, you may create
a Task that fetches customers' orders from a database and then use a continuation
task to calculate the average order value. If the previous task fails or is canceled by
the user, then there is no point in wasting processing power to calculate the average
if the user no longer cares about the result.

Note

The ContinueWith method has various options that can be used to fine-
tune behavior, and you can see https://docs.microsoft.com/en-us/dotnet/api/
system.threading.tasks.taskcontinuationoptions for more details.

If you access the Task<T> Result property on a failed or canceled antecedent
task, this will result in an AggregateException being thrown. This will be covered
in more detail later.

Using Task.WhenAll and Task.WhenAny with Multiple Tasks

You have seen how a single task can be used to create a continuation task, but what if
you have multiple tasks and need to continue with a final operation when any or all of
the previous tasks have completed?

Earlier, the Task.WaitAny and Task.WaitAll methods were used to wait for
tasks to complete, but these block the current thread. This is where Task.WhenAny
and Task.WhenAll can be used. They return a new Task whose Action delegate
is called when any, or all, of the preceding tasks have completed.

There are four WhenAll overloads, two that return a Task and two that return a
generic Task<T> allowing the task's result to be accessed:

1. public static Task WhenAll(IEnumerable<Task> tasks): This
continues when the collection of tasks completes.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions

340 | Concurrency: Multithreading Parallel and Async Code

2. public static Task WhenAll(params Task[] tasks): This
continues when the array of tasks completes.

3. public static Task<TResult[]> WhenAll<TResult>(params
Task<TResult>[] tasks): This continues when the array of generic
Task<T> items complete.

4. public static Task<TResult[]>
WhenAll<TResult>(IEnumerable<Task<TResult>> tasks): This
continues when the collection of generic Task<T> items complete.

WhenAny has a similar set of overloads but returns the Task or Task<T> that is
the first task to complete. You'll next perform a few exercises showing WhenAll and
WhenAny in practice.

Exercise 5.03: Waiting for All Tasks to Complete

Say you have been asked by a car dealer to create a console application that
calculates the average sales value for cars sold across different regions. A dealership
is a busy place, but they know it may take a while to fetch and calculate the average.
For this reason, they want to enter a maximum number of seconds that they are
prepared to wait for the average calculation. Any longer and they will leave the app
and ignore the result.

The dealership has 10 regional sales hubs. To calculate the average, you need to first
invoke a method called FetchSales, which returns a list of CarSale items for each
of these regions.

Each call to FetchSales could be to a potentially slow-running service (you will
implement random pauses to simulate such a delay) so you need to use a Task for
each as you can't know for sure how long each call will take to complete. You also do
not want slow-running tasks to affect other tasks, but to calculate a valid average, it's
important to have all results returned before continuing.

Create a SalesLoader class that implements IEnumerable<CarSale>
FetchSales() to return the car sales details. Then, a SalesAggregator class
should be passed a list of SalesLoader (in this exercise, there will be 10 loader
instances, one for each region). The aggregator will wait for all loaders to finish using
Task.WhenAll before continuing with a task that calculates the average across
all regions.

Running Asynchronous Code Using Tasks | 341

Perform the following steps to do so:

1. First, create a CarSale record. The constructor accepts two values, the name of
the car and its sale price (name and salePrice):

using System;

using System.Collections.Generic;

using System.Globalization;

using System.Linq;

using System.Threading;

using System.Threading.Tasks;

namespace Chapter05.Exercises.Exercise03

{

 public record CarSale

 {

 public CarSale(string name, double salePrice)

 => (Name, SalePrice) = (name, salePrice);

 public string Name { get; }

 public double SalePrice { get; }

 }

2. Now create an interface, ISalesLoader, that represents the sales data
loading service:

 public interface ISalesLoader

 {

 public IEnumerable<CarSale> FetchSales();

 }

It has just one call, FetchSales, returning an enumerable of type CarSale.
For now, it's not important to know how the loader works; just that it returns a
list of car sales when called. Using an interface here allows using various types of
loader as needed.

3. User the aggregator class to call an ISalesLoader implementation:

 public static class SalesAggregator

 {

 public static Task<double> Average(IEnumerable<ISalesLoader>
loaders)
 {

342 | Concurrency: Multithreading Parallel and Async Code

It is declared as static as there is no state between calls. Define an Average
function that is passed an enumerable of ISalesLoader items and returns a
generic Task<Double> for the final average calculation.

4. For each of the loader parameters, use a LINQ projection to pass a loader.
FetchSales method to Task.Run:

 var loaderTasks = loaders.Select(ldr => Task.Run(ldr.
FetchSales));
 return Task

 .WhenAll(loaderTasks)

 .ContinueWith(tasks =>

Each of these will return a Task<IEnumerable<CarSale>> instance.
WhenAll is used to create a single task that continues when all of the loader
tasks have completed via a ContinueWith call.

5. Use the LINQ SelectMany to grab all of the CarSale items from every loader
call result, before calling the Linq Average on the SalePrice field of each
CarSale item:

 {

 var average = tasks.Result

 .SelectMany(t => t)

 .Average(car => car.SalePrice);

 return average;

 });

 }

 }

}

6. Implement the ISalesLoader interface from a class called SalesLoader:

 public class SalesLoader : ISalesLoader

 {

 private readonly Random _random;

 private readonly string _name;

 public SalesLoader(int id, Random rand)

 {

 _name = $"Loader#{id}";

 _random = rand;

 }

Running Asynchronous Code Using Tasks | 343

The constructor will be passed an int variable used for logging and a Random
instance to help create a random number of CarSale items.

7. Your ISalesLoader implementation requires a FetchSales function.
Include a random delay of between 1 and 3 seconds to simulate a less
reliable service:

 public IEnumerable<CarSale> FetchSales()

 {

 var delay = _random.Next(1, 3);

 Logger.Log($"FetchSales {_name} sleeping for {delay}
seconds ...");
 Thread.Sleep(TimeSpan.FromSeconds(delay));

You are trying to test that your application behaves with various time delays.
Hence, the random class use.

8. Use Enumerable.Range and random.Next to pick a random number from
one to five:

 var sales = Enumerable

 .Range(1, _random.Next(1, 5))

 .Select(n => GetRandomCar())

 .ToList();

 foreach (var car in sales)

 Logger.Log($"FetchSales {_name} found: {car.Name} @
{car.SalePrice:N0}");

 return sales;

 }

This is the total number of CarSale items to return using your
GetRandomCar function.

9. Use the GetRandomCar to generate a CarSale item with a random
manufacturer's name from a hardcoded list.

344 | Concurrency: Multithreading Parallel and Async Code

10. Use the carNames.length property to pick a random index number between
zero and four for the car's name:

 private readonly string[] _carNames = { "Ford", "BMW",
"Fiat", "Mercedes", "Porsche" };
 private CarSale GetRandomCar()

 {

 var nameIndex = _random.Next(_carNames.Length);

 return new CarSale(

 _carNames[nameIndex], _random.NextDouble() * 1000);

 }

 }

11. Now, create your console app to test this out:

 public class Program

 {

 public static void Main()

 {

 var random = new Random();

 const int MaxSalesHubs = 10;

 string input;

 do

 {

 Console.WriteLine("Max wait time (in seconds):");

 input = Console.ReadLine();

 if (string.IsNullOrEmpty(input))

 continue;

Your app will repeatedly ask for a maximum time that the user is prepared to
wait while data is downloaded. Once all the data has been downloaded, the app
will use this to calculate an average price. Pressing Enter alone will result in the
program loop ending. MaxSalesHubs is the maximum number of sales hubs to
request data for.

Running Asynchronous Code Using Tasks | 345

12. Convert the entered value into an int type, then use Enumerable.Range
again to create a random number of new SalesLoader instances (you have up
to 10 different sales hubs):

 if (int.TryParse(input, NumberStyles.Any,
CultureInfo.CurrentCulture, out var maxDelay))
 {

 var loaders = Enumerable.Range(1,
 random.Next(1,
MaxSalesHubs))

 .Select(n => new SalesLoader(n, random))

 .ToList();

13. Pass loaders to the static SalesAggregator.Average method to receive a
Task<Double>.

14. Call Wait, passing in the maximum wait time:

 var averageTask = SalesAggregator.
Average(loaders);
 var hasCompleted = averageTask.Wait(
 TimeSpan.FromSeconds(maxDelay));
 var average = averageTask.Result;

If the Wait call does return in time, then you will see a true value for
has completed.

15. Finish off by checking hasCompleted and log a message accordingly:

 if (hasCompleted)

 {

 Logger.Log($"Average={average:N0}");

 }

 else

 {

 Logger.Log("Timeout!");

 }

 }

 } while (input != string.Empty);

 }

 }

}

346 | Concurrency: Multithreading Parallel and Async Code

16. When running the console app and entering a short maximum wait of 1 second,
you see three loader instances randomly created:

Max wait time (in seconds):1

10:52:49 [04] FetchSales Loader#1 sleeping for 1 seconds ...

10:52:49 [06] FetchSales Loader#3 sleeping for 1 seconds ...

10:52:49 [05] FetchSales Loader#2 sleeping for 1 seconds ...

10:52:50 [04] FetchSales Loader#1 found: Mercedes @ 362

10:52:50 [04] FetchSales Loader#1 found: Ford @ 993

10:52:50 [06] FetchSales Loader#3 found: Fiat @ 645

10:52:50 [05] FetchSales Loader#2 found: Mercedes @ 922

10:52:50 [06] FetchSales Loader#3 found: Ford @ 9

10:52:50 [05] FetchSales Loader#2 found: Porsche @ 859

10:52:50 [05] FetchSales Loader#2 found: Mercedes @ 612

10:52:50 [01] Timeout!

Each loader sleeps for 1 second (you can see various thread IDs are logged)
before returning a random list of CarSale records. You soon reach the
maximum timeout value, hence the message Timeout! with no average
value displayed.

17. Enter a larger timeout period of 10 seconds:

Max wait time (in seconds):10

20:08:41 [05] FetchSales Loader#1 sleeping for 2 seconds ...

20:08:41 [12] FetchSales Loader#4 sleeping for 1 seconds ...

20:08:41 [08] FetchSales Loader#2 sleeping for 1 seconds ...

20:08:41 [11] FetchSales Loader#3 sleeping for 1 seconds ...

20:08:41 [15] FetchSales Loader#5 sleeping for 2 seconds ...

20:08:41 [13] FetchSales Loader#6 sleeping for 2 seconds ...

20:08:41 [14] FetchSales Loader#7 sleeping for 1 seconds ...

20:08:42 [08] FetchSales Loader#2 found: Porsche @ 735

20:08:42 [08] FetchSales Loader#2 found: Fiat @ 930

20:08:42 [11] FetchSales Loader#3 found: Porsche @ 735

20:08:42 [12] FetchSales Loader#4 found: Porsche @ 735

20:08:42 [08] FetchSales Loader#2 found: Porsche @ 777

20:08:42 [11] FetchSales Loader#3 found: Ford @ 500

20:08:42 [12] FetchSales Loader#4 found: Ford @ 500

20:08:42 [12] FetchSales Loader#4 found: Porsche @ 710

20:08:42 [14] FetchSales Loader#7 found: Ford @ 144

Running Asynchronous Code Using Tasks | 347

20:08:43 [05] FetchSales Loader#1 found: Fiat @ 649

20:08:43 [15] FetchSales Loader#5 found: Ford @ 779

20:08:43 [13] FetchSales Loader#6 found: Porsche @ 763

20:08:43 [15] FetchSales Loader#5 found: Fiat @ 137

20:08:43 [13] FetchSales Loader#6 found: BMW @ 415

20:08:43 [15] FetchSales Loader#5 found: Fiat @ 853

20:08:43 [15] FetchSales Loader#5 found: Porsche @ 857

20:08:43 [01] Average=639

Entering a value of 10 seconds allow 7 random loaders to complete in time and
to finally create the average value of 639.

Note

You can find the code used for this exercise at https://packt.link/kbToQ.

So far, this chapter has considered the various ways that individual tasks can be
created and how static Task methods are used to create tasks that are started for us.
You saw how Task.Factory.StartNew is used to create configured tasks, albeit
with a longer set of configuration parameters. The Task.Run methods, which were
more recently added to C#, are preferable by using their more concise signatures for
most regular scenarios.

Using continuations, single and multiple tasks can be left to run in isolation,
only continuing with a final task when all or any of the preceding tasks have run
to completion.

Now it is time to look at the async and wait keywords to run asynchronous
code. These keywords are a relatively new addition to the C# language. The
Task.Factory.StartNew and Task.Run methods can be found in older
C# applications, but hopefully, you will see that async/await provides a much
clearer syntax.

https://packt.link/kbToQ

348 | Concurrency: Multithreading Parallel and Async Code

Asynchronous Programming
So far, you have created tasks and used the static Task factory methods to run
and coordinate such tasks. In earlier versions of C#, these were the only ways to
create tasks.

The C# language now provides the async and await keywords to mark a method
as asynchronous. This is the preferred way to run asynchronous code. Using the
async/await style results in less code and the code that is created is generally
easier to grasp and therefore easier to maintain.

Note

You may often find that legacy concurrent-enabled applications were
originally created using Task.Factory.StartNew methods are
subsequently updated to use the equivalent Task.Run methods or are
updated directly to the async/await style.

The async keyword indicates that the method will return to the caller before it has
had a chance to complete its operations, therefore the caller should wait for it to
complete at some point in time.

Adding the async keyword to a method instructs the compiler that it may
need to generate additional code to create a state machine. In essence, a state
machine extracts the logic from your original method into a series of delegates
and local variables that allows code to continue onto the next statement following
an await expression. The compiler generates delegates that can jump back to
the same location in the method once they have completed.

Note

You don't normally see this extra complied code, but if you are interested in
learning more about state machines in C#, visit https://devblogs.microsoft.
com/premier-developer/dissecting-the-async-methods-in-c.

https://devblogs.microsoft.com/premier-developer/dissecting-the-async-methods-in-c
https://devblogs.microsoft.com/premier-developer/dissecting-the-async-methods-in-c

Asynchronous Programming | 349

Adding the async keyword does not mean that all or any part of the method will
actually run in an asynchronous manner. When an async method is executed, it
starts off running synchronously until it comes to a section of code with the await
keyword. At this point, the awaitable block of code (in the following example, the
BuildGreetings call is awaitable due to the preceding async keyword) is checked
to see if it has already been completed. If so, it continues executing synchronously.
If not, the asynchronous method is paused and returns an incomplete Task to the
caller. This will be complete once the async code has been completed.

In the following console app, the entry point, static Main, has been marked as
async and the Task return type added. You cannot mark a Main entry point, which
returns either int or void, as async because the runtime must be able to return a
Task result to the calling environment when the console app closes:

AsyncExamples.cs

1 using System;
2 using System.Threading;
3 using System.Threading.Tasks;
4
5 namespace Chapter05.Examples
6 {
7 public class AsyncExamples
8 {
9 public static async Task Main()
10 {
11 Logger.Log("Starting");
12 await BuildGreetings();
13
14 Logger.Log("Press Enter");
15 Console.ReadLine();

You can find the complete code here: http://packt.link/CsCek.

Running the example produces an output like this:

18:20:31 [01] Starting

18:20:31 [01] Morning

18:20:41 [04] Morning...Afternoon

18:20:42 [04] Morning...Afternoon...Evening

18:20:42 [04] Press Enter

As soon as Main runs, it logs Starting. Notice how the ThreadId is [01]. As you
saw earlier, the console app's main thread is numbered as 1 (because the Logger.
Log method uses the 00 format string, which adds a leading 0 to numbers in the
range zero to nine).

http://packt.link/CsCek

350 | Concurrency: Multithreading Parallel and Async Code

Then the asynchronous method BuildGreetings is called. It sets the string
message variable to "Morning" and logs the message. The ThreadId is still
[01]; this is currently running synchronously.

So far, you have been using Thread.Sleep to block the calling thread in order or
simulate long-running operations, but async/await makes it easier to simulate slow
actions using the static Task.Delay method and awaiting that call. Task.Delay
returns a task so it can also be used in continuation tasks.

Using Task.Delay, you will make two distinct awaitable calls (one that waits for 10
seconds and the second for two seconds), before continuing and appending to your
local message string. The two Task.Delay calls could have been any method in
your code that returns a Task.

The great thing here is that each awaited section gets its correct state in the order
that it was declared in the code, irrespective of waiting 10 (or two) seconds prior.
The thread IDs have all changed from [01] to [04]. This tells you that a different
thread is running these statements. Even the very last Press Enter message has a
different thread to the original thread.

Async/await makes it easier to run a series of task-based codes using the familiar
WhenAll, WhenAny, and ContinueWith methods interchangeably.

The following example shows how multiple async/await calls can be applied at
various stages in a program using a mixture of various awaitable calls. This simulates
an application that makes a call to a database (FetchPendingAccounts) to fetch a
list of user accounts. Each user in the pending accounts list is given a unique ID (using
a task for each user).

Based on the user's region, an account is then created in the northern region or the
other region, again, using a task for each. Finally, an awaitable Task.WhenAll call
signals that everything has been completed.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

namespace Chapter05.Examples

{

Asynchronous Programming | 351

Use an enum to define a RegionName:

 public enum RegionName { North, East, South, West };

A User record constructor is passed a userName and the user's region:

 public record User

 {

 public User(string userName, RegionName region)

 => (UserName, Region) = (userName, region);

 public string UserName { get; }

 public RegionName Region { get; }

 public string ID { get; set; }

 }

AccountGenerator is the main controlling class. It contains an async
CreateAccounts method that can be awaited by a console app (this is
implemented at the end of the example):

 public class AccountGenerator

 {

 public async Task CreateAccounts()

 {

Using the await keyword, you define an awaitable call to
FetchPendingAccounts:

 var users = await FetchPendingAccounts();

For each one of the users returned by FetchPendingAccounts, you make an
awaitable call to GenerateId. This shows that a loop can contain multiple awaitable
calls. The runtime will set the user ID for the correct user instance:

 foreach (var user in users)

 {

 var id = await GenerateId();

 user.ID = id;

 }

352 | Concurrency: Multithreading Parallel and Async Code

Using a Linq Select function, you create a list of tasks. For each user, a Northern or
Other account is created based on the user's region (each one of the calls is a Task
per user):

 var accountCreationTasks = users.Select(

 user => user.Region == RegionName.North

 ? Task.Run(() => CreateNorthernAccount(user))

 : Task.Run(() => CreateOtherAccount(user)))

 .ToList();

The list of account creation tasks is awaited using the static WhenAll call. Once
this completes, UpdatePendindAccounts will be called passing in the updated
user list. This shows that you can pass lists of tasks between async statements:

 Logger.Log($"Creating {accountCreationTasks.Count}
accounts");
 await Task.WhenAll(accountCreationTasks);

 var updatedAccountTask = UpdatePendingAccounts(users);

 await updatedAccountTask;

 Logger.Log($"Updated {updatedAccountTask.Result} pending
accounts");
 }

The FetchPendingAccounts method returns a Task containing a list of users
(here you simulate a delay of 3 seconds using Task.Delay):

 private async Task<List<User>> FetchPendingAccounts()

 {

 Logger.Log("Fetching pending accounts...");

 await Task.Delay(TimeSpan.FromSeconds(3D));

 var users = new List<User>

 {

 new User("AnnH", RegionName.North),

 new User("EmmaJ", RegionName.North),

 new User("SophieA", RegionName.South),

 new User("LucyG", RegionName.West),

 };

Asynchronous Programming | 353

 Logger.Log($"Found {users.Count} pending accounts");

 return users;

 }

GenerateId uses Task.FromResult to generate a globally unique ID using the
Guid class. Task.FromResult is used when you want to return a result but do not
need to create a running task as you would with Task.Run:

 private static Task<string> GenerateId()

 {

 return Task.FromResult(Guid.NewGuid().ToString());

 }

The two bool task methods create either a northern account or other
account. Here, you return true to indicate that each account creation call was
successful, regardless:

 private static async Task<bool> CreateNorthernAccount(User user)

 {

 await Task.Delay(TimeSpan.FromSeconds(2D));

 Logger.Log($"Created northern account for {user.UserName}");

 return true;

 }

 private static async Task<bool> CreateOtherAccount(User user)

 {

 await Task.Delay(TimeSpan.FromSeconds(1D));

 Logger.Log($"Created other account for {user.UserName}");

 return true;

 }

354 | Concurrency: Multithreading Parallel and Async Code

Next, UpdatePendingAccounts is passed a list of users. For each user, you create
a task that simulates a slow-running call to update each user and returning a count of
the number of users subsequently updated:

 private static async Task<int>
UpdatePendingAccounts(IEnumerable<User> users)
 {

 var updateAccountTasks = users.Select(usr => Task.Run(

 async () =>

 {

 await Task.Delay(TimeSpan.FromSeconds(2D));

 return true;

 }))

 .ToList();

 await Task.WhenAll(updateAccountTasks);

 return updateAccountTasks.Count(t => t.Result);

 }

 }

Finally, the console app creates an AccountGenerator instance and waits for
CreateAccounts to finish before writing an All done message:

 public static class AsyncUsersExampleProgram

 {

 public static async Task Main()

 {

 Logger.Log("Starting");

 await new AccountGenerator().CreateAccounts();

 Logger.Log("All done");

 Console.ReadLine();

 }

 }

}

Asynchronous Programming | 355

Running the console app produces this output:

20:12:38 [01] Starting

20:12:38 [01] Fetching pending accounts...

20:12:41 [04] Found 4 pending accounts

20:12:41 [04] Creating 4 accounts

20:12:42 [04] Created other account for SophieA

20:12:42 [07] Created other account for LucyG

20:12:43 [04] Created northern account for EmmaJ

20:12:43 [05] Created northern account for AnnH

20:12:45 [05] Updated 4 pending accounts

20:12:45 [05] All done

Here, you can see that thread [01] writes the Starting message. This is the
application's main thread. Note, too, that the main thread also writes Fetching
pending accounts... from the FetchPendingAccounts method. This
is still running synchronously as the awaitable block (Task.Delay) has not yet
been reached.

Threads [4], [5], and [7] create each of the four user accounts. You used Task.
Run to call the CreateNorthernAccount or CreateOtherAccount methods.
Thread [5] runs the last statement in CreateAccounts: Updated 4 pending
accounts. The thread numbers might differ in your system because .NET uses an
internal pool of threads which vary based on how busy each thread is.

Note

You can find the code used for this example at https://packt.link/ZIK8k.

Async Lambda Expressions

Chapter 3, Delegates, Events, and Lambdas, looked at lambda expressions and how
they can be used to create succinct code. You can also use the async keyword
with lambda expressions to create code for an event handler that contains various
async code.

https://packt.link/ZIK8k

356 | Concurrency: Multithreading Parallel and Async Code

The following example uses the WebClient class to show two different ways to
download data from a website (this will be covered in great detail in Chapter 8,
Creating and Using Web API Clients and Chapter 9, Creating API Services).

using System;

using System.Net;

using System.Net.Http

using System.Threading.Tasks;

namespace Chapter05.Examples

{

 public class AsyncLambdaExamples

 {

 public static async Task Main()

 {

 const string Url = "https://www.packtpub.com/";

 using var client = new WebClient();

Here, you add your own event handler to the WebClient class
DownloadDataCompleted event using a lambda statement that is prefixed with
the async keyword. The compiler will allow you to add awaitable calls inside the
body of the lambda.

This event will be fired after DownloadData is called and the data requested has
been downloaded for us. The code uses an awaitable block Task.Delay to simulate
some extra processing on a different thread:

 client.DownloadDataCompleted += async (sender, args) =>

 {

 Logger.Log("Inside DownloadDataCompleted...looking
busy");
 await Task.Delay(500);

 Logger.Log("Inside DownloadDataCompleted..all done now");

 };

Asynchronous Programming | 357

You invoke the DownloadData method, passing in your URL and then logging
the length of the web data received. This particular call itself will block the main
thread until data is downloaded. WebClient offers a task-based asynchronous
version of the DownloadData method called DownloadDataTaskAsync. So
it's recommended to use the more modern DownloadDataTaskAsync method
as follows:

 Logger.Log($"DownloadData: {Url}");

 var data = client.DownloadData(Url);

 Logger.Log($"DownloadData: Length={data.Length:N0}");

Once again, you request the same URL but can simply use an await statement,
which will be run once the data download has been completed. As you can see, this
requires less code and has a cleaner syntax:

 Logger.Log($"DownloadDataTaskAsync: {Url}");

 var downloadTask = client.DownloadDataTaskAsync(Url);

 var downloadBytes = await downloadTask;

 Logger.Log($"DownloadDataTaskAsync: Length={downloadBytes.
Length:N0}");

 Console.ReadLine();

 }

 }

}

Running the code produces this output:

19:22:44 [01] DownloadData: https://www.packtpub.com/

19:22:45 [01] DownloadData: Length=278,047

19:22:45 [01] DownloadDataTaskAsync: https://www.packtpub.com/

19:22:45 [06] Inside DownloadDataCompleted...looking busy

19:22:45 [06] DownloadDataTaskAsync: Length=278,046

19:22:46 [04] Inside DownloadDataCompleted..all done now

358 | Concurrency: Multithreading Parallel and Async Code

Note

When running the program, you may see the following warning: "Warning
SYSLIB0014: 'WebClient.WebClient()' is obsolete:
'WebRequest, HttpWebRequest, ServicePoint, and
WebClient are obsolete. Use HttpClient instead.'".
Here, Visual Studio has suggested that the HttpClient class be used,
as WebClient has been marked as obsolete.

DownloadData is logged by thread [01], the main thread, which is blocked for
around one second until the download completes. The size of the downloaded file is
then logged using the downloadBytes.Length property.

The DownloadDataTaskAsync request is handled by thread 06. Finally, the
delayed code inside the DownloadDataCompleted event handler completes via
thread 04.

Note

You can find the code used for this example at https://packt.link/IJEaU.

Canceling Tasks

Task cancelation is a two-step approach:

• You need to add a way to request a cancelation.

• Any cancelable code needs to support this.

You cannot provide cancelation without both mechanisms in place.

Typically, you will start a long-running task that supports cancelation and provide
the user with the ability to cancel the operation by pressing a button on a UI. There
are many real-world examples where such cancellation is needed, such as image
processing where multiple images need to be altered allowing a user to cancel the
remainder of the task if they run out of time. Another common scenario is sending
multiple data requests to different web servers and allowing slow-running or pending
requests to be canceled as soon as the first response is received.

https://packt.link/IJEaU

Asynchronous Programming | 359

In C#, CancellationTokenSource acts as a top-level object to initiate a
cancelation request with its Token property, CancellationToken, being passed
to concurrent/slow running code that can periodically check and act upon this
cancellation status. Ideally, you would not want low-level methods to arbitrarily cancel
high-level operations, hence the separation between the source and the token.

There are various CancellationTokenSource constructors, including one that
will initiate a cancel request after a specified time has elapsed. Here are a few of
the CancellationTokenSource methods, offering various ways to initiate a
cancellation request:

• public bool IsCancellationRequested { get; }: This returns
true if a cancellation has been requested for this token source (a caller has
called the Cancel method). This can be inspected at intervals in the target code.

• public CancellationToken Token { get; }: The
CancellationToken that is linked to this source object is often passed to
Task.Run overloads, allowing .NET to check the status of pending tasks or for
your own code to check while running.

• public void Cancel(): Initiates a request for cancellation.

• public void Cancel(bool throwOnFirstException): Initiates a
request for cancellation and determines whether further operations are to be
processed should an exception occur.

• public void CancelAfter(int millisecondsDelay): Schedules a
cancel request after a specified number of milliseconds.

CancellationTokenSource has a Token property. CancellationToken
contains various methods and properties that can be used for code to detect a
cancellation request:

• public bool IsCancellationRequested { get; }: This returns
true if a cancellation has been requested for this token.

• public CancellationTokenRegistration Register(Action
callback): Allows code to register a delegate that will be executed by the
system if this token is canceled.

• public void ThrowIfCancellationRequested(): Calling this method
will result in OperationCanceledException being thrown if a cancellation
has been requested. This is typically used to break out of loops.

360 | Concurrency: Multithreading Parallel and Async Code

Throughout the previous examples, you may have spotted that
CancellationToken can be passed to many of the static Task methods. For
example, Task.Run, Task.Factory.StartNew, and Task.ContinueWith all
contain overrides that accept CancellationToken.

.NET will not try to interrupt or stop any of your code once it is running, no matter
how many times you call Cancel on a CancellationToken. Essentially, you
pass these tokens into target code, but it is up to that code to periodically check the
cancellation status whenever it can, such as within a loop, and then decide how it
should act upon it. This makes logical sense; how would .NET know at what point it
was safe to interrupt a method, maybe one that has hundreds of lines of code?

Passing CancellationToken to Task.Run only provides a hint to the queue
scheduler that it may not need to start a task's action, but once started, .NET will not
stop that running code for you. The running code itself must subsequently observe
the cancelation status.

This is analogous to a pedestrian waiting to cross a road at a set of traffic lights.
Motor vehicles can be thought of as tasks that have been started elsewhere. When
the pedestrian arrives at the crossing and they press a button (calling Cancel on
CancellationTokenSource), the traffic lights should eventually change to red
so that the moving vehicles are requested to stop. It is up to each individual driver to
observe that the red light has changed (IsCancellationRequested) and then
decide to stop their vehicle. The traffic light does not forcibly stop each vehicle (.NET
runtime). If a driver notices that the vehicle behind is too close and stopping soon
may result in a collision, they may decide to not stop immediately. A driver that is not
observing the traffic light status at all may fail to stop.

The next sections will continue with exercises that show async/await in action,
some of the commonly used options for canceling tasks, in which you will need to
control whether pending tasks should be allowed to run to completion or interrupted,
and when you should aim to catch exceptions.

Exercise 5.04: Canceling Long-Running Tasks

You will create this exercise in two parts:

• One that uses a Task that returns a double-based result.

• Second that provides a fine-grained level of control by inspecting the Token.
IsCancellationRequested property.

Asynchronous Programming | 361

Perform the following steps to complete this exercise:

1. Create a class called SlowRunningService. As the name suggests, the
methods inside the service have been designed to be slow to complete:

using System;

using System.Globalization;

using System.Threading;

using System.Threading.Tasks;

namespace Chapter05.Exercises.Exercise04

{

 public class SlowRunningService

 {

2. Add the first slow-running operation, Fetch, which is passed a delay time
(implemented with a simple Thread.Sleep call), and the cancellation token,
which you pass to Task.Run:

 public Task<double> Fetch(TimeSpan delay, CancellationToken
token)
 {

 return Task.Run(() =>

 {

 var now = DateTime.Now;

 Logger.Log("Fetch: Sleeping");

 Thread.Sleep(delay);

 Logger.Log("Fetch: Awake");

 return DateTime.Now.Subtract(now).TotalSeconds;

 },

 token);

 }

When Fetch is called, the token may get canceled before the sleeping
thread awakes.

362 | Concurrency: Multithreading Parallel and Async Code

3. To test whether Fetch will just stop running or return a number, add a console
app to test this. Here, use a default delay (DelayTime) of 3 seconds:

 public class Program

 {

 private static readonly TimeSpan DelayTime=TimeSpan.
FromSeconds(3);

4. Add a helper function to prompt for a maximum number of seconds that you are
prepared to wait. If a valid number is entered, convert the value entered into a
TimeSpan:

 private static TimeSpan? ReadConsoleMaxTime(string message)

 {

 Console.Write($"{message} Max Waiting Time (seconds):");

 var input = Console.ReadLine();

 if (int.TryParse(input, NumberStyles.Any, CultureInfo.
CurrentCulture, out var intResult))
 {

 return TimeSpan.FromSeconds(intResult);

 }

 return null;

 }

5. Add a standard Main entry point for the console app. This is marked async and
returns a Task:

public static async Task Main()

 {

6. Create an instance of the service. You will use the same instance in a
loop, shortly:

 var service = new SlowRunningService();

Asynchronous Programming | 363

7. Now add a do-loop that repeatedly asks for a maximum delay time:

 Console.WriteLine($"ETA: {DelayTime.TotalSeconds:N}
seconds");

 TimeSpan? maxWaitingTime;

 while (true)

 {

 maxWaitingTime = ReadConsoleMaxTime("Fetch");

 if (maxWaitingTime == null)

 break;

This allows you to try various values to see how that affects the cancel token and
the results you receive back. In the case of a null value, you will break out of
the do-loop.

8. Create CancellationTokenSource, passing in the maximum waiting time:

 using var tokenSource = new CancellationTokenSource(
maxWaitingTime.Value);
 var token = tokenSource.Token;

This will trigger a cancellation without having to call the Cancel
method yourself.

9. Using the CancellationToken.Register method, pass an Action
delegate to be invoked when the token gets signaled for cancellation. Here,
simply log a message when that occurs:

 token.Register(() => Logger.Log($"Fetch: Cancelled
token={token.GetHashCode()}"));

10. Now for the main activity, call the service's Fetch method, passing in the default
DelayTime and the token:

 var resultTask = service.Fetch(DelayTime, token);

364 | Concurrency: Multithreading Parallel and Async Code

11. Before you await resultTask, add a try-catch block to catch any
TaskCanceledException:

 try

 {

 await resultTask;

 if (resultTask.IsCompletedSuccessfully)

 Logger.Log($"Fetch: Result={resultTask.
Result:N0}");
 else

 Logger.Log($"Fetch: Status={resultTask.
Status}");
 }

 catch (TaskCanceledException ex)

 {

 Logger.Log($"Fetch: TaskCanceledException {ex.
Message}");
 }

 }

 }

 }

}

When using cancelable tasks, there is a possibility that they will throw
TaskCanceledException. In this case, that is okay as you do expect that
to happen. Notice that you only access the resultTask.Result if the task
is marked as IsCompletedSuccessfully. If you attempt to access the
Result property of a faulted task, then AggregateException instance is
thrown. In some older projects, you may see non-async/await code that catches
AggregateException.

12. Run the app and enter a waiting time greater than the ETA of three seconds, 5 in
this case:

ETA: 3.00 seconds

Fetch Max Waiting Time (seconds):5

16:48:11 [04] Fetch: Sleeping

16:48:14 [04] Fetch: Awake

16:48:14 [04] Fetch: Result=3

As expected, the token was not canceled prior to completion, so you see
Result=3 (the elapsed time in seconds).

Asynchronous Programming | 365

13. Try this again. For the cancellation to be triggered and detected, enter 2 for the
number of seconds:

Fetch Max Waiting Time (seconds):2

16:49:51 [04] Fetch: Sleeping

16:49:53 [08] Fetch: Cancelled token=28589617

16:49:54 [04] Fetch: Awake

16:49:54 [04] Fetch: Result=3

Notice that the Cancelled token message is logged before the
Fetch awakes, but you still end up receiving a result of 3 seconds with no
TaskCanceledException message. This emphasizes the point that passing a
cancellation token to Start.Run does not stop the task's action from starting,
and more importantly, it did not interrupt it either.

14. Finally, use 0 as the maximum waiting time, which will effectively trigger the
cancellation immediately:

Fetch Max Waiting Time (seconds):

0

16:53:32 [04] Fetch: Cancelled token=48717705

16:53:32 [04] Fetch: TaskCanceledException A task was canceled.

You will see the canceled token message and TaskCanceledException
being caught, but there are no Sleeping or Awake messages logged at all.
This shows that the Action passed to Task.Run was not actually started
by the runtime. When you pass a CancelationToken to Start.Run, the
task's Action gets queued but TaskScheduler will not run the action if
it notices that the token has been canceled prior to starting; it just throws
TaskCanceledException.

Now for an alternative slow-running method, one that allows you to support
cancellable actions via a loop that polls for a change in the cancellation status.

15. In the SlowRunningService class, add a FetchLoop function:

 public Task<double?> FetchLoop(TimeSpan delay,
CancellationToken token)
 {

 return Task.Run(() =>

 {

 const int TimeSlice = 500;

 var iterations = (int)(delay.TotalMilliseconds /
TimeSlice);

366 | Concurrency: Multithreading Parallel and Async Code

 Logger.Log($"FetchLoop: Iterations={iterations}
token={token.GetHashCode()}");

 var now = DateTime.Now;

This produces a result similar to the earlier Fetch function but its purpose is to
show how a function can be broken into a repeating loop that offers the ability
to examine CancellationToken as each loop iteration runs.

16. Define the body of a for...next loop, which checks, for each iteration, if the
IsCancellationRequested property is true and simply returns a nullable
double if it detects that a cancellation has been requested:

 for (var i = 0; i < iterations; i++)

 {

 if (token.IsCancellationRequested)

 {

 Logger.Log($"FetchLoop: Iteration {i + 1}
detected cancellation token={token.GetHashCode()}");
 return (double?)null;

 }

 Logger.Log($"FetchLoop: Iteration {i + 1}
Sleeping");
 Thread.Sleep(TimeSlice);

 Logger.Log($"FetchLoop: Iteration {i + 1}
Awake");
 }

 Logger.Log("FetchLoop: done");

 return DateTime.Now.Subtract(now).TotalSeconds;

 }, token);

 }

This is a rather firm way to exit a loop, but as far as this code is concerned,
nothing else needs to be done.

Note

You could have also used a continue statement and
cleaned up before returning. Another option is to call token.
ThrowIfCancellationRequested() rather than checking token.
IsCancellationRequested, which will force you to exit the for loop.

Asynchronous Programming | 367

17. In the Main console app, add a similar while loop that calls the FetchLoop
method this time. The code is similar to the previous looping code:

 while (true)

 {

 maxWaitingTime = ReadConsoleMaxTime("FetchLoop");

 if (maxWaitingTime == null)

 break;

 using var tokenSource = new
CancellationTokenSource(maxWaitingTime.Value);
 var token = tokenSource.Token;

 token.Register(() => Logger.Log($"FetchLoop:
Cancelled token={token.GetHashCode()}"));

18. Now call the FetchLoop and await the result:

 var resultTask = service.FetchLoop(DelayTime, token);

 try

 {

 await resultTask;

 if (resultTask.IsCompletedSuccessfully)

 Logger.Log($"FetchLoop: Result={resultTask.
Result:N0}");
 else

 Logger.Log($"FetchLoop: Status={resultTask.
Status}");
 }

 catch (TaskCanceledException ex)

 {

 Logger.Log($"FetchLoop: TaskCanceledException
{ex.Message}");
 }

 }

19. Running the console app and using a 5-second maximum allows all the
iterations to run through with none detecting a cancellation request. The result
is 3 as expected:

FetchLoop Max Waiting Time (seconds):5

17:33:38 [04] FetchLoop: Iterations=6 token=6044116

17:33:38 [04] FetchLoop: Iteration 1 Sleeping

17:33:38 [04] FetchLoop: Iteration 1 Awake

17:33:38 [04] FetchLoop: Iteration 2 Sleeping

368 | Concurrency: Multithreading Parallel and Async Code

17:33:39 [04] FetchLoop: Iteration 2 Awake

17:33:39 [04] FetchLoop: Iteration 3 Sleeping

17:33:39 [04] FetchLoop: Iteration 3 Awake

17:33:39 [04] FetchLoop: Iteration 4 Sleeping

17:33:40 [04] FetchLoop: Iteration 4 Awake

17:33:40 [04] FetchLoop: Iteration 5 Sleeping

17:33:40 [04] FetchLoop: Iteration 5 Awake

17:33:40 [04] FetchLoop: Iteration 6 Sleeping

17:33:41 [04] FetchLoop: Iteration 6 Awake

17:33:41 [04] FetchLoop: done

17:33:41 [04] FetchLoop: Result=3

20. Use 2 as the maximum. This time the token is auto-triggered during iteration 4
and spotted by iteration 5, so you are returned a null result:

FetchLoop Max Waiting Time (seconds):

2

17:48:47 [04] FetchLoop: Iterations=6 token=59817589

17:48:47 [04] FetchLoop: Iteration 1 Sleeping

17:48:48 [04] FetchLoop: Iteration 1 Awake

17:48:48 [04] FetchLoop: Iteration 2 Sleeping

17:48:48 [04] FetchLoop: Iteration 2 Awake

17:48:48 [04] FetchLoop: Iteration 3 Sleeping

17:48:49 [04] FetchLoop: Iteration 3 Awake

17:48:49 [04] FetchLoop: Iteration 4 Sleeping

17:48:49 [06] FetchLoop: Cancelled token=59817589

17:48:49 [04] FetchLoop: Iteration 4 Awake

17:48:49 [04] FetchLoop: Iteration 5 detected cancellation
token=59817589
17:48:49 [04] FetchLoop: Result=

21. By using 0, you see the same output as the earlier Fetch example:

FetchLoop Max Waiting Time (seconds):

0

17:53:29 [04] FetchLoop: Cancelled token=48209832

17:53:29 [08] FetchLoop: TaskCanceledException A task was canceled.

The action doesn't get a chance to run. You can see a Cancelled token
message and TaskCanceledException being logged.

Asynchronous Programming | 369

By running this exercise, you have seen how long-running tasks can be automatically
marked for cancellation by the .NET runtime if they do not complete within a specified
time. By using a for loop, a task was broken down into small iterative steps, which
provided a frequent opportunity to detect if a cancellation was requested.

Note

You can find the code used for this exercise at https://packt.link/xa1Yf.

Exception Handling in Async/Await Code

You have seen that canceling a task can result in TaskCanceledException being
thrown. Exception handling for asynchronous code can be implemented in the same
way you would for standard synchronous code, but there are a few things you need
to be aware of.

When code in an async method causes an exception to be thrown, the task's status
is set to Faulted. However, an exception will not be rethrown until the awaited
expression gets rescheduled. What this mean is that if you do not await a call, then
it's possible for exceptions to be thrown and to go completely unobserved in code.

Unless you absolutely cannot help it, you should not create async void methods.
Doing so makes it difficult for the caller to await your code. This means they cannot
catch any exceptions raised, which by default, will terminate a program. If the caller is
not given a Task reference to await, then there is no way for them to tell if the called
method ran to completion or not.

The general exception to this guideline is in the case of fire-and-forget methods as
mentioned at the start of the chapter. A method that asynchronously logs the usage
of the application may not be of such critical importance, so you may not care if such
calls are successful or not.

It is possible to detect and handle unobserved task exceptions. If you attach an event
delegate to the static TaskScheduler.UnobservedTaskException event, you
can receive a notification that a task exception has gone unobserved. You can attach
a delegate to this event as follows:

TaskScheduler.UnobservedTaskException += (sender, args) =>

{

 Logger.Log($"Caught UnobservedTaskException\n{args.Exception}");

};

https://packt.link/xa1Yf

370 | Concurrency: Multithreading Parallel and Async Code

The runtime considers a task exception to be unobserved once the task object
is finalized.

Note

You can find the code used for this example at https://packt.link/OkH7r.

Continuing with some more exception handling examples, see how you can catch a
specific type of exception as you would with synchronous code.

In the following example, the CustomerOperations class provides the
AverageDiscount function, which returns Task<int>. However, there is a
chance that it may throw DivideByZeroException, so you will need to catch
that; otherwise, the program will crash.

using System;

using System.Threading.Tasks;

namespace Chapter05.Examples

{

 class ErrorExamplesProgram

 {

 public static async Task Main()

 {

 try

 {

Create a CustomerOperations instance and wait for the AverageDiscount
method to return a value:

 var operations = new CustomerOperations();

 var discount = await operations.AverageDiscount();

 Logger.Log($"Discount: {discount}");

 }

 catch (DivideByZeroException)

 {

 Console.WriteLine("Caught a divide by zero");

 }

 Console.ReadLine();

https://packt.link/OkH7r

Asynchronous Programming | 371

 }

 class CustomerOperations

 {

 public async Task<int> AverageDiscount()

 {

 Logger.Log("Loading orders...");

 await Task.Delay(TimeSpan.FromSeconds(1));

Choose a random value for ordercount between 0 and 2. An attempt to divide by
zero will result in an exception being thrown by the .NET runtime:

 var orderCount = new Random().Next(0, 2);

 var orderValue = 1200;

 return orderValue / orderCount;

 }

 }

 }

}

The results show that when orderCount was zero, you did catch
DivideByZeroException as expected:

15:47:21 [01] Loading orders...

Caught a divide by zero

Running a second time, there was no error caught:

17:55:54 [01] Loading orders...

17:55:55 [04] Discount: 1200

On your system you may find that the program needs to be run multiple times
before the DivideByZeroException is raised. This is due to the use of a random
instance to assign a value to orderCount.

Note

You can find the code used for this example at https://packt.link/18kOK.

So far, you have created single tasks that may throw exceptions. The following
exercise will look at a more complex variant.

https://packt.link/18kOK

372 | Concurrency: Multithreading Parallel and Async Code

Exercise 5.05: Handling Async Exceptions

Imagine you have a CustomerOperations class that can be used to fetch a list
of customers via a Task. For each customer, you need to run an extra async task,
which goes off to a service to calculate the total value of that customer's orders.

Once you have your customer list, the customers need to be sorted in descending
order of sales, but due to some security restrictions, you are not allowed to read a
customer's TotalOrders property if their region name is West. In this exercise you
will create a copy of the RegionName enum that was used in the earlier example.

Perform the following steps to complete this exercise:

1. Start by adding the Customer class:

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4 using System.Threading.Tasks;

5

6 namespace Chapter05.Exercises.Exercise05

7 {

8 public enum RegionName { North, East, South, West };

9

10 public class Customer

11 {

12 private readonly RegionName _protectedRegion;

13

14 public Customer(string name, RegionName region,
RegionName protectedRegion)
15 {

The constructor is passed the customer name and their region, along with a
second region that identifies the protectedRegion name. If the customer's
region is the same as this protectedRegion, then throw an access violation
exception on any attempt to read the TotalOrders property.

Asynchronous Programming | 373

2. Then add a CustomerOperations class:

public class CustomerOperations

{

 public const RegionName ProtectedRegion = RegionName.West;

This knows how to load a customer's name and populate their total order value.
The requirement here is that customers from the West region need to have a
restriction hardcoded, so add a constant called ProtectedRegion that has
RegionName.West as a value.

3. Add a FetchTopCustomers function:

 public async Task<IEnumerable<Customer>> FetchTopCustomers()

 {

 await Task.Delay(TimeSpan.FromSeconds(2));

 Logger.Log("Loading customers...");

 var customers = new List<Customer>

 {

 new Customer("Rick Deckard", RegionName.North,
ProtectedRegion),
 new Customer("Taffey Lewis", RegionName.North,
ProtectedRegion),
 new Customer("Rachael", RegionName.North,
ProtectedRegion),
 new Customer("Roy Batty", RegionName.West,
ProtectedRegion),
 new Customer("Eldon Tyrell", RegionName.East,
ProtectedRegion)
 };

This returns a Task enumeration of Customer and is marked as async as you
will make further async calls to populate each customer's order details inside
the function. Await using Task.Delay to simulate a slow-running operation.
Here, a sample list of customers is hardcoded. Create each Customer
instance, passing their name, actual region, and the protected region constant,
ProtectedRegion.

4. Add an await call to FetchOrders (which will be declared shortly):

 await FetchOrders(customers);

374 | Concurrency: Multithreading Parallel and Async Code

5. Now, iterate through the list of customers, but be sure to wrap each call
to TotalOrders with a try-catch block that explicitly checks for the
access violation exception that will be thrown if you attempt to view a
protected customer:

 var filteredCustomers = new List<Customer>();

 foreach (var customer in customers)

 {

 try

 {

 if (customer.TotalOrders > 0)

 filteredCustomers.Add(customer);

 }

 catch (AccessViolationException e)

 {

 Logger.Log($"Error {e.Message}");

 }

 }

6. Now that the filteredCustomers list has been populated with a filtered list
of customers, use the Linq OrderByDescending extension method to return
the items sorted by each customer's TotalOrders value:

 return filteredCustomers.OrderByDescending(c =>
c.TotalOrders);
 }

7. Finish off CustomerOperations with the FetchOrders implementation.

8. For each customer in the list, use an async lambda that pauses for 500
milliseconds before assigning a random value to TotalOrders:

 private async Task FetchOrders(IEnumerable<Customer>
customers)
 {

 var rand = new Random();

 Logger.Log("Loading orders...");

 var orderUpdateTasks = customers.Select(

 cust => Task.Run(async () =>

 {

 await Task.Delay(500);

Asynchronous Programming | 375

 cust.TotalOrders = rand.Next(1, 100);

 }))

 .ToList();

The delay could represent another slow-running service.

9. Wait for orderUpdateTasks to complete using Task.WhenAll:

 await Task.WhenAll(orderUpdateTasks);

 }

 }

10. Now create a console app to run the operation:

 public class Program

 {

 public static async Task Main()

 {

 var ops = new CustomerOperations();

 var resultTask = ops.FetchTopCustomers();

 var customers = await resultTask;

 foreach (var customer in customers)

 {

 Logger.Log($"{customer.Name} ({customer.Region}):
{customer.TotalOrders:N0}");
 }

 Console.ReadLine();

 }

 }

}

11. On running the console, there are no errors as Roy Batty from the West
region was skipped safely:

20:00:15 [05] Loading customers...

20:00:16 [05] Loading orders...

20:00:16 [04] Error Cannot access orders for Roy Batty

20:00:16 [04] Rachael (North): 56

20:00:16 [04] Taffey Lewis (North): 19

20:00:16 [04] Rick Deckard (North): 10

20:00:16 [04] Eldon Tyrell (East): 6

376 | Concurrency: Multithreading Parallel and Async Code

In this exercise, you saw how exceptions can be handled gracefully with
asynchronous code. You placed a try-catch block at the required location,
rather than over-complicating and adding too many unnecessary levels of nested
try-catch blocks. When the code was run, an exception was caught that did not
crash the application.

Note

You can find the code used for this exercise at https://packt.link/4ozac.

The AggregateException Class

At the beginning of the chapter, you saw that the Task class has an Exception
property of type AggregateException. This class contains details about one or
more errors that occur during an asynchronous call.

AggregateException has various properties, but the main ones are as follows:

• public ReadOnlyCollection<Exception> InnerExceptions
{ get; }: A collection of exceptions that caused the current exception. A
single asynchronous call can result in multiple exceptions being raised and
collected here.

• public AggregateException Flatten(): Flattens all of the
AggregateException instances in the InnerExeceptions property
into a single new instance. This saves you from having to iterate over
AggregateException nested with the exceptions list.

• public void Handle(Func<Exception, bool> predicate): Invokes
the specified Func handler on every exception in this aggregate exception. This
allows the handler to return true or false to indicate whether each exception
was handled. Any remaining unhandled exceptions will be thrown for the caller
to catch as required.

When something goes wrong and this exception is caught by a caller,
InnerExceptions contains a list of the exceptions that caused the current
exception. These can be from multiple tasks, so each individual exception is added to
the resulting task's InnerExceptions collection.

https://packt.link/4ozac

Asynchronous Programming | 377

You may often find async code with a try-catch block that catches
AggregateException and logs each of InnerExceptions details. In this
example, BadTask returns an int based task, but it can be the cause of an
exception when run. Perform the following steps to complete this example:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

namespace Chapter05.Examples

{

 class WhenAllErrorExamples

 {+

It sleeps for 1,000 milliseconds before throwing the
InvalidOperationException in case the number passed in is an even number
(using the % operator to see if the number can be divided by 2 with no remainder):

 private static async Task<int> BadTask(string info, int n)

 {

 await Task.Delay(1000);

 Logger.Log($"{info} number {n} awake");

 if (n % 2 == 0)

 {

 Logger.Log($"About to throw one {info} number {n}"…");

 throw new InvalidOperationException"($"Oh dear from
{info} number "n}");
 }

 return n;

 }

378 | Concurrency: Multithreading Parallel and Async Code

Add a helper function, CreateBadTasks, that creates a collection of five bad
tasks. When started, each of the tasks will eventually throw an exception of type
InvalidOperationException:

 private static IEnumerable<Task<int>> CreateBadTasks(string info)

 {

 return Enumerable.Range(0, 5)

 .Select(i => BadTask(info, i))

 .ToList();

 }

Now, create the console app's Main entry point. You pass the results of
CreateBadTasks to WhenAll, passing in the string [WhenAll] to make it easier
to see what is happening in the output:

 public static async Task Main()

 {

 var whenAllCompletedTask = Task.
WhenAll(CreateBadTasks("[WhenAll]"));

Before you attempt to await the whenAllCompletedTask task, you need to wrap
it in try-catch, which catches the base Exception type (or a more specific one if
you are expecting that).

You cannot catch AggregateException here as it's the first exception inside
the Task that you receive, but you can still use the Exception property of
whenAllCompletedTask to get at the AggregateException itself:

 try

 {

 await whenAllCompletedTask;

 }

 catch (Exception ex)

 {

You've caught an exception, so log its type (this will be
InvalidOperationException instance that you threw) and the message:

 Console.WriteLine($"WhenAll Caught {ex.GetType().Name},
Message={ex.Message}");

Asynchronous Programming | 379

Now you can examine whenAllCompletedTask, iterating though this task's
AggregateException to see its InnerExceptions list:

 Console.WriteLine($"WhenAll Task.
Status={whenAllCompletedTask.Status}");
 foreach (var ie in whenAllCompletedTask.Exception.
InnerExceptions)
 {

 Console.WriteLine($"WhenAll Caught Inner Exception:
{ie.Message}");
 }

 }

 Console.ReadLine();

 }

 }

}

Running the code, you'll see five tasks that sleep, and eventually, numbers 0, 2, and 4
each throw InvalidOperationException, which you will catch:

17:30:36 [05] [WhenAll] number 3 awake

17:30:36 [09] [WhenAll] number 1 awake

17:30:36 [07] [WhenAll] number 0 awake

17:30:36 [06] [WhenAll] number 2 awake

17:30:36 [04] [WhenAll] number 4 awake

17:30:36 [06] About to throw one [WhenAll] number 2...

17:30:36 [04] About to throw one [WhenAll] number 4...

17:30:36 [07] About to throw one [WhenAll] number 0...

WhenAll Caught InvalidOperationException, Message=Oh dear from [WhenAll]
number 0
WhenAll Task.Status=Faulted

WhenAll Caught Inner Exception: Oh dear from [WhenAll] number 0

WhenAll Caught Inner Exception: Oh dear from [WhenAll] number 2

WhenAll Caught Inner Exception: Oh dear from [WhenAll] number 4

Notice how number 0 appears to be the only error that was caught ((Message=Oh
dear from [WhenAll] number 0). However, by logging each entry in the
InnerExceptions list, you see all three erroneous tasks with number 0
appearing once again.

380 | Concurrency: Multithreading Parallel and Async Code

You can try the same code, but this time use WhenAny. Remember that WhenAny
will complete when the first task in the list completes, so notice the complete lack of
error handling in this case:

 var whenAnyCompletedTask = Task.
WhenAny(CreateBadTasks("[WhenAny]"));
 var result = await whenAnyCompletedTask;

 Logger.Log($"WhenAny result: {result.Result}");

Unless you wait for all tasks to complete, you may miss an exception raised by a task
when using WhenAny. Running this code results in not a single error being caught
and the app does not break. The result is 3 as that completed first:

18:08:46 [08] [WhenAny] number 2 awake

18:08:46 [10] [WhenAny] number 0 awake

18:08:46 [10] About to throw one [WhenAny] number 0...

18:08:46 [07] [WhenAny] number 3 awake

18:08:46 [09] [WhenAny] number 1 awake

18:08:46 [07] WhenAny result: 3

18:08:46 [08] About to throw one [WhenAny] number 2...

18:08:46 [06] [WhenAny] number 4 awake

18:08:46 [06] About to throw one [WhenAny] number 4...

You will finish this look at async/await code by looking at some of the newer
options in C# around handling streams of async results. This provides a way to
efficiently iterate through the items of a collection without the calling code having
to wait for the entire collection to be populated and returned before it can start
processing the items in the list.

Note

You can find the code used for this example at https://packt.link/SuCXK.

https://packt.link/SuCXK

Asynchronous Programming | 381

IAsyncEnumerable Streams

If your application targets .NET 5, .NET6, .NET Core 3.0, .NET Standard 2.1, or any
of the later versions, then you can use IAsyncEnumerable streams to create
awaitable code that combines the yield keyword into an enumerator to iterate
asynchronously through a collection of objects.

Note

Microsoft's documentation provides this definition of the yield keyword:
When a yield return statement is reached in the iterator method,
expression is returned, and the current location in code is retained.
Execution is restarted from that location the next time that the iterator
function is called.

Using the yield statement, you can create methods that return an enumeration of
items to the caller. Additionally, the caller does not need to wait for the entire list of
items to be returned before they can start traversing each item in the list. Instead, the
caller can access each item as soon as it becomes available.

In this example, you will create a console app that replicates an insurance quoting
system. You will make five requests for an insurance quote, once again using Task.
Delay to simulate a 1-second delay in receiving each delay.

For the list-based approach, you can only log each quote once all five results have
been received back to the Main method. Using IAsyncEnumerable and the
yield keyword, the same one second exists between quotes being received, but as
soon as each quote is received, the yield statement allows the calling Main method
to receive and process the value quoted. This is ideal if you want to start processing
items right away or potentially do not want the overhead of having thousands of
items in a list for longer than is needed to process them individually:

using System;

using System.Collections.Generic;

using System.Threading.Tasks;

namespace Chapter05.Examples

{

 class AsyncEnumerableExamplesProgram

 {

 public static async Task Main()

 {

382 | Concurrency: Multithreading Parallel and Async Code

Start by awaiting for GetInsuranceQuotesAsTask to return a list of strings
and iterate through each, logging the details of each quote. This code will wait for all
quotes to be received before logging each item:

 Logger.Log("Fetching Task quotes...");

 var taskQuotes = await GetInsuranceQuotesAsTask();

 foreach(var quote in taskQuotes)

 {

 Logger.Log($"Received Task: {quote}");

 }

Now for the async stream version. If you compare the following code to the
preceeding code block, you'll see that there are fewer lines of code needed to
iterate through the items returned. This code does not wait for all quote items
to be received but instead writes out each quote as soon as it is received from
GetInsuranceQuotesAsync:

 Logger.Log("Fetching Stream quotes...");

 await foreach (var quote in GetInsuranceQuotesAsync())

 {

 Logger.Log($"Received Stream: {quote}");

 }

 Logger.Log("All done...");

 Console.ReadLine();

 }

The GetInsuranceQuotesAsTask method returns a Task of strings. Between
each of the five quotes, you wait for one second to simulate a delay, before adding
the result to the list and finally returning the entire list back to the caller:

 private static async Task<IEnumerable<string>>
GetInsuranceQuotesAsTask()
 {

 var rand = new Random();

 var quotes = new List<string>();

 for (var i = 0; i < 5; i++)

 {

 await Task.Delay(1000);

Asynchronous Programming | 383

 quotes.Add($"Provider{i}'s quote is {rand.Next(5, 10)}");

 }

 return quotes;

 }

The GetInsuranceQuotesAsync method contains the same delay between
each quote, but rather than populating a list to return back to the caller, the yield
statement is used to allow the Main method to process each quote item immediately:

 private static async IAsyncEnumerable<string>
GetInsuranceQuotesAsync()
 {

 var rand = new Random();

 for (var i = 0; i < 5; i++)

 {

 await Task.Delay(1000);

 yield return $"Provider{i}'s quote is {rand.Next(5,
10)}";
 }

 }

 }

}

Running the console app produces the following output:

09:17:57 [01] Fetching Task quotes...

09:18:02 [04] Received Task: Provider0's quote is 7

09:18:02 [04] Received Task: Provider1's quote is 9

09:18:02 [04] Received Task: Provider2's quote is 9

09:18:02 [04] Received Task: Provider3's quote is 8

09:18:02 [04] Received Task: Provider4's quote is 8

09:18:02 [04] Fetching Stream quotes...

09:18:03 [04] Received Stream: Provider0's quote is 7

09:18:04 [04] Received Stream: Provider1's quote is 8

09:18:05 [05] Received Stream: Provider2's quote is 9

09:18:06 [05] Received Stream: Provider3's quote is 8

09:18:07 [04] Received Stream: Provider4's quote is 7

09:18:07 [04] All done...

384 | Concurrency: Multithreading Parallel and Async Code

Thread [04] logged all five task-based quote details five seconds after the app
started. Here, it waited for all quotes to be returned before logging each quote.
However, notice that each of the stream-based quotes was logged as soon as it was
yielded by threads 4 and 5 with 1 second between them.

The overall time taken for both calls is the same (5 seconds in total), but yield is
preferrable when you want to start processing each result as soon as it is ready. This
is often useful in UI apps where you can provide early results to the user.

Note

You can find the code used for this example at https://packt.link/KarKW.

Parallel Programming

So far, this chapter has covered async programming using the Task class and
async/await keywords. You have seen how tasks and async blocks of code
can be defined and the flow of a program can be finely controlled as these
structures complete.

The Parallel Framework (PFX) offers further ways to utilize multicore processors
to efficiently run concurrent operations. The phrase TPL (Task Parallel Library) is
generally used to refer to the Parallel class in C#.

Using the Parallel Framework, you do not need to worry about the complexity
of creating and reusing threads or coordinating multiple tasks. The framework
manages this for you, even adjusting the number of threads that are used, in order to
maximize throughput.

For parallel programming to be effective, the order in which each task executes must
be irrelevant and all tasks should be independent of each other, as you cannot be
certain when one task completes and the next one begins. Coordinating negates any
benefits. Parallel programming can be broken down into two distinct concepts:

• Data parallelism

• Task parallelism

https://packt.link/KarKW

Asynchronous Programming | 385

Data Parallelism

Data parallelism is used when you have multiple data values, and the same
operation is to be applied concurrently to each of those values. In this scenario,
processing each of the values is partitioned across different threads.

A typical example might be calculating the prime numbers from one to 1,000,000.
For each number in the range, the same function needs to be applied to determine
whether the value is a prime. Rather than iterating through each number one at a
time, an asynchronous approach would be to split numbers across multiple threads.

Task Parallelism

Conversely, task parallelism is used where a collection of threads all performs a
different action, such as calling different functions or sections of code, concurrently.
One such example is a program that analyzes the words found in a book, by
downloading the book's text and defining separate tasks to do the following:

• Count the number of words.

• Find the longest word.

• Calculate the average word length.

• Count the number of noise words (the, and, of, for example).

Each of these tasks can be run concurrently and they do not depend on each other.

For the Parallel class, the Parallel Framework provides various layers that offer
parallelism, including Parallel Language Integrated Query (PLINQ). PLINQ is a
collection of extension methods that add the power of parallel programming to the
LINQ syntax. The PLINQ won't be covered here in detail, but the Parallel class will
be covered in more detail.

Note

If you're interested in learning more about PLINQ, you can refer to the
online documentation at https://docs.microsoft.com/en-us/dotnet/standard/
parallel-programming/introduction-to-plinq.

https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/introduction-to-plinq
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/introduction-to-plinq

386 | Concurrency: Multithreading Parallel and Async Code

The Parallel Class

The Parallel class contains just three static methods but there are numerous
overloads providing options to control and influence how actions are performed.
Each of the methods block the current thread, and if an exception occurs, whilst an
iterator is working, the trailing iterators are stopped and an exception is thrown to
the caller. Due to this blocking behavior, the Parallel class is often called from
within an awaitable block such as Task.Run.

It is worth remembering that the runtime may run the required operations in parallel
only if it thinks that is warranted. In the case of individual steps completing sooner
than others, the runtime may decide that the overhead of running the remaining
operations in parallel is not justified.

Some of the commonly used Parallel method overloads are as follows:

• public static ParallelLoopResult For(int from, int to,
Action<int> body): This data parallelism call executes a loop by invoking
the body Action delegate, passing in an int value across the from and to
numeric range. It returns ParallelLoopResult, which contains details of the
loop once completed.

• public static ParallelLoopResult For(int from, int to,
ParallelOptions options, Action<int, ParallelLoopState>
body): A data parallelism call that executes a loop across the numeric
range. ParallelOptions allows loop options to be configured and
ParallelLoopState is used to monitor or manipulate the state of the loop
as it runs. It returns ParallelLoopResult.

• public static ParallelLoopResult
ForEach<TSource>(IEnumerable<TSource> source,
Action<TSource, ParallelLoopState> body): A data parallelism call
that invokes the Action body on each item in the IEnumerable source. It
returns ParallelLoopResult.

• public static ParallelLoopResult
ForEach<TSource>(Partitioner<TSource> source,
Action<TSource> body): An advanced data parallelism call that invokes the
Action body and allows you to specify Partitioner to provide partitioning
strategies optimized for specific data structures to improve performance. It
returns ParallelLoopResult.

• public static void Invoke(params Action[] actions): A task
parallelism call that executes each of the actions passed.

Asynchronous Programming | 387

• public static void Invoke(ParallelOptions
parallelOptions, params Action[] actions): A task parallelism
call that executes each of the actions and allows ParallelOptions to be
specified to configure method calls.

The ParallelOptions class can be used to configure how the Parallel
methods operate:

• public CancellationToken CancellationToken { get; set;
}: The familiar cancelation token that can be used to detect within loops if
cancellation has been requested by a caller.

• public int MaxDegreeOfParallelism { get; set; }: An advanced
setting that determines the maximum number of concurrent tasks that can be
enabled at a time.

• public TaskScheduler? TaskScheduler { get; set; }: An
advanced setting that allows a certain type of task queue scheduler to be set.

ParallelLoopState can be passed into the body of an Action for that action
to then determine or monitor flow through the loop. The most commonly used
properties are as follows:

• public bool IsExceptional { get; }: Returns true if an iteration
has thrown an unhandled exception.

• public bool IsStopped { get; }: Returns true if an iteration has
stopped the loop by calling the Stop method.

• public void Break(): The Action loop can call this to indicate execution
should cease beyond the current iteration.

• public void Stop(): Requests that the loop should cease execution at the
current iteration.

• ParallelLoopResult, as returned by the For and ForEach methods,
contains a completion status for the Parallel loop.

• public bool IsCompleted { get; }: Indicates that the loop ran to
completion and did not receive a request to end before completion.

• public long? LowestBreakIteration { get; }: If Break is called
while the loop runs. This returns the index of the lowest iteration the loop
arrived at.

388 | Concurrency: Multithreading Parallel and Async Code

Using the Parallel class does not automatically mean that a particular bulk
operation will complete any faster. There is an overhead in scheduling tasks, so care
should be taken when running tasks that are too short or too long. Sadly, there is no
simple metric that determines an optimal figure here. It is often a case of profiling to
see if operations do indeed complete faster using the Parallel class.

Note

You can find more information on data and task parallelism at https://docs.
microsoft.com/en-us/dotnet/standard/parallel-programming/potential-pitfalls-
in-data-and-task-parallelism.

Parallel.For and Parallel.ForEach

These two methods offer data parallelism. The same operation is applied to a
collection of data objects or numbers. To benefit from these, each operation should
be CPU-bound, that is it should require CPU cycles to execute rather than being
IO-bound (accessing a file, for example).

With these two methods, you define an Action to be applied, which is passed an
object instance or number to work with. In the case of Parallel.ForEach, the
Action is passed an object reference parameter. A numeric parameter is passed to
Parallel.For.

As you saw in Chapter 3, Delegates, Events, and Lambdas, the Action delegate code
can be as simple or complex as you need:

using System;

using System.Threading.Tasks;

using System.Globalization;

using System.Threading;

namespace Chapter05.Examples

{

 class ParallelForExamples

 {

 public static async Task Main()

 {

https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/potential-pitfalls-in-data-and-task-parallelism
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/potential-pitfalls-in-data-and-task-parallelism
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/potential-pitfalls-in-data-and-task-parallelism

Asynchronous Programming | 389

In this example, calling Parallel.For, you pass an inclusive int value to
start from (99) and an exclusive end value (105). The third argument is a lambda
statement, Action, that you want invoked over each iteration. This overload uses
Action<int>, passing an integer via the i argument:

 var loopResult = Parallel.For(99, 105, i =>

 {

 Logger.Log($"Sleep iteration {i}");

 Thread.Sleep(i * 10);

 Logger.Log($"Awake iteration {i}");

 });

Examine the ParallelLoopResult IsCompleted property:

 Console.WriteLine($"Completed: {loopResult.IsCompleted}");

 Console.ReadLine();

 }

 }

}

Running the code, you'll see that it stops at 104. Each iteration is executed by a set
of different threads and the order appears somewhat random with certain iterations
awaking before others. You have used a relatively short delay (using Thread.
Sleep) so the parallel task scheduler may take a few additional milliseconds to
activate each iteration. This is the reason why the orders in which iterations are
executed should be independent of each other:

18:39:37 [10] Sleep iteration 104

18:39:37 [03] Sleep iteration 100

18:39:37 [06] Sleep iteration 102

18:39:37 [04] Sleep iteration 101

18:39:37 [01] Sleep iteration 99

18:39:37 [07] Sleep iteration 103

18:39:38 [03] Awake iteration 100

18:39:38 [01] Awake iteration 99

18:39:38 [06] Awake iteration 102

18:39:38 [04] Awake iteration 101

18:39:38 [07] Awake iteration 103

18:39:38 [10] Awake iteration 104

Completed: True

390 | Concurrency: Multithreading Parallel and Async Code

Using the ParallelLoopState override, you can control the iterations from with
the Action code. In the following example, the code checks to see if it is at iteration
number 15:

 var loopResult1 = Parallel.For(10, 20,
 (i, loopState) =>
 {

 Logger.Log($"Inside iteration {i}");

 if (i == 15)

 {

 Logger.Log($"At {i}…break when you're ready");

Calling Break on loopState communicates that the Parallel loop should cease
further iterations as soon as it can:

 loopState.Break();

 }

 });

 Console.WriteLine($"Completed: {loopResult1.IsCompleted},
LowestBreakIteration={loopResult1.LowestBreakIteration}");
 Console.ReadLine();

From the results, you can see you got to item 17 before things actually stopped,
despite asking to break at iteration 15, as can be seen from the following snippet:

19:04:48 [03] Inside iteration 11

19:04:48 [03] Inside iteration 13

19:04:48 [03] Inside iteration 15

19:04:48 [03] At 15...break when you're ready

19:04:48 [01] Inside iteration 10

19:04:48 [05] Inside iteration 14

19:04:48 [07] Inside iteration 17

19:04:48 [06] Inside iteration 16

19:04:48 [04] Inside iteration 12

Completed: False, LowestBreakIteration=15

The code used ParallelLoopState.Break; this indicates the loop should
cease at the next iteration if possible. In this case, you actually arrived at iteration 17
despite requesting a stop at iteration 15. This generally occurs when the runtime has
already started a subsequent iteration and then detects a Break request just after.
These are requests to stop; the runtime may run extra iterations before it can stop.

Asynchronous Programming | 391

Alternatively, the ParallelLoopState.Stop method can be used for a more
abrupt stop. An alternative Parallel.For overload allows state to be passed into
each loop and return a single aggregate value.

To better learn about these overloads, you will calculate the value of pi in the next
example. This is an ideal task for Parallel.For as it means repeatedly calculating
a value, which is aggregated before being passed to the next iteration. The higher the
number of iterations, the more accurate the final number.

Note

You can find more information on the formula at https://www.mathscareers.
org.uk/article/calculating-pi/.

You use a loop to prompt the user to enter the number of series (the number of
decimal places to be shown) as a multiple of a million (to save typing many zeroes):

 double series;

 do

 {

 Console.Write("Pi Series (in millions):");

 var input = Console.ReadLine();

Try to parse the input:

 if (!double.TryParse(input, NumberStyles.Any,
CultureInfo.CurrentCulture, out series))
 {

 break;

 }

Multiply the entered value by one million and pass it to the awaitable CalcPi
function (which will be defined shortly):

 var actualSeries = series * 1000000;

 Console.WriteLine($"Calculating PI {actualSeries:N0}");

 var pi = await CalcPi((int)(actualSeries));

https://www.mathscareers.org.uk/article/calculating-pi/
https://www.mathscareers.org.uk/article/calculating-pi/

392 | Concurrency: Multithreading Parallel and Async Code

You eventually receive the value of pi, so use the string interpolation feature to write
pi to 18 decimal places using the :N18 numeric format style:

 Console.WriteLine($"PI={pi:N18}");

 }

Repeat the loop until 0 is entered:

 while (series != 0D);

 Console.ReadLine();

Now for the CalcPi function. You know that the Parallel methods all block the
calling thread, so you need to use Task.Run which will eventually return the final
calculated value.

The concept of thread synchronization will be covered briefly. There is a danger
when using multiple threads and shared variables that one thread may read a value
from memory and attempt to write a new value at the same time a different thread
is trying to do the same operation, with its own value and what it thinks is the correct
current value, when it may have read an already out-of-date shared value.

To prevent such issues, a mutual-exclusion lock can be used so that a given thread
can execute its statements while it holds a lock and then releases that lock when
finished. All other threads are blocked from acquiring the lock and are forced to wait
until the lock is released.

This can be achieved using the lock statement. All of the complexities are handled
by the runtime when the lock statement is used to achieve thread synchronization.
The lock statement has the following form:

lock (obj){ //your thread safe code here }.

Conceptually, you can think of the lock statement as a narrow gate that has
enough room to allow just one person to pass through at a time. No matter how
long a person takes to pass through the gate and what they do while they are there,
everyone else must wait to get through the gate until the person with the key has left
(releasing the lock).

Asynchronous Programming | 393

Returning to the CalcPi function:

 private static Task<double> CalcPi(int steps)

 {

 return Task.Run(() =>

 {

 const int StartIndex = 0;

 var sum = 0.0D;

 var step = 1.0D / (double)steps;

The gate variable is of type object and used with the lock statement inside the
lambda to protect the sum variable from unsafe access:

 var gate = new object();

This is where things get a little more complex, as you use the Parallel.For
overload, which additionally allows you to pass in extra parameters and delegates:

• fromInclusive: The start index (0 in this case).

• toExclusive: The end index (steps).

• localInit: A Func delegate that returns the initial state of data local to
each iteration.

• body: The actual Func delegate that calculates a value of Pi.

• localFinal: A Func delegate that performs the final action on the local state
of each iteration.

 Parallel.For(

 StartIndex,

 steps,

 () => 0.0D, // localInit

 (i, state, localFinal) => // body

 {

 var x = (i + 0.5D) * step;

 return localFinal + 4.0D / (1.0D + x * x);

 },

 localFinal => //localFinally

 {

394 | Concurrency: Multithreading Parallel and Async Code

Here, you now use the lock statement to ensure that only one thread at a time can
increment the value of sum with its own correct value:

 lock (gate)

 sum += localFinal;

 });

 return step * sum;

 });

 }

By using the lock(obj) statement, you have provided a minimum level of thread
safety, and running the program produces the following output:

Pi Series (in millions):1

Calculating PI 1,000,000

PI=3.141592653589890000

Pi Series (in millions):20

Calculating PI 20,000,000

PI=3.141592653589810000

Pi Series (in millions):30

Calculating PI 30,000,000

PI=3.141592653589750000

Parallel.ForEach follows similar semantics; rather than a range of numbers
being passed to the Action delegate, you pass a collection of objects to work with.

Note

You can find the code used for this example at https://packt.link/1yZu2.

The following example shows Parallel.ForEach using ParallelOptions
along with a cancelation token. In this example, you have a console app that creates
10 customers. Each customer has a list containing the value of all orders placed. You
want to simulate a slow-running service that fetches a customer's order on demand.
Whenever any code accesses the Customer.Orders property, the list is populated
only once though. Here, you will use another lock statement per customer instance
to ensure the list is safely populated.

https://packt.link/1yZu2

Asynchronous Programming | 395

An Aggregator class will iterate through the list of customers and calculate
the total and average order costs using a Parallel.ForEach call. Allow the
user to enter a maximum time period that they are prepared to wait for all of the
aggregations to complete and then show the top five customers.

Start by creating a Customer class whose constructor is passed a name argument:

using System;

using System.Collections.Generic;

using System.Globalization;

using System.Linq;

using System.Threading;

using System.Threading.Tasks;

namespace Chapter05.Examples

{

 public class Customer

 {

 public Customer(string name)

 {

 Name = name;

 Logger.Log($"Created {Name}");

 }

 public string Name { get; }

You want to populate the Orders list on demand and once only per customer,
so use another lock example that ensures the list of orders is safely populated
once. You simply use the Orders get accessor to check for a null reference on
the _orders variable, before creating a random number of order values using the
Enumerable.Range LINQ method to generate a range of numbers.

396 | Concurrency: Multithreading Parallel and Async Code

Note, you also simulate a slow request by adding Thread.Sleep to block the
thread that is accessing this customer's orders for the first time (as you're using the
Parallel class, this will be a background thread rather than the main thread):

ParallelForEachExample.cs

1 private readonly object _orderGate = new object();
2 private IList<double> _orders;
3 public IList<double> Orders
4 {
5 get
6 {
7 lock (_orderGate)
8 {
9 if (_orders != null)
10 return _orders;
11
12 var random = new Random();
13 var orderCount = random.Next(1000, 10000);
14

You can find the complete code here: https://packt.link/Nmx3X.

The Total and Average properties that will be calculated by your Aggregator
class are as follows:

 public double? Total { get; set; }

 public double? Average { get; set; }

 }

Looking at the Aggregator class, note that its Aggregate method is passed a list
of customers to work with and CancellationToken, which will automatically raise
a cancellation request based on the console user's preferred timespan. The method
returns a bool-based Task. The result will indicate whether the operation was
canceled partway through processing the customers:

 public static class Aggregator

 {

 public static Task<bool> Aggregate(IEnumerable<Customer>
customers, CancellationToken token)
 {

 var wasCancelled = false;

https://packt.link/Nmx3X

Asynchronous Programming | 397

The main Parallel.ForEach method is configured by creating a
ParallelOptions class, passing in the cancellation token. When invoked by the
Parallel class, the Action delegate is passed a Customer instance (customer
=>) that simply sums the order values and calculates the average which is assigned to
the customer's properties.

Notice how the Parallel.ForEach call is wrapped in a try-catch block that
catches any exceptions of type OperationCanceledException. If the maximum
time period is exceeded, then the runtime will throw an exception to stop processing.
You must catch this; otherwise, the application will crash with an unhandled
exception error:

ParallelForEachExample.cs

1 return Task.Run(() =>
2 {
3 var options = new ParallelOptions { CancellationToken = token
};
4
5 try
6 {
7 Parallel.ForEach(customers, options,
8 customer =>
9 {
10 customer.Total = customer.Orders.Sum();
11 customer.Average = customer.Total /
12 customer.Orders.Count;
13 Logger.Log($"Processed {customer.Name}");
14 });
15 }

You can find the complete code here: https://packt.link/FfVNA.

The main console app prompts for a maximum waiting time, maxWait:

 class ParallelForEachExampleProgram

 {

 public static async Task Main()

 {

 Console.Write("Max waiting time (seconds):");

 var input = Console.ReadLine();

 var maxWait = TimeSpan.FromSeconds(int.TryParse(input,
NumberStyles.Any, CultureInfo.CurrentCulture, out var inputSeconds)
 ? inputSeconds

 : 5);

https://packt.link/FfVNA

398 | Concurrency: Multithreading Parallel and Async Code

Create 100 customers that can be passed to the aggregator:

 var customers = Enumerable.Range(1, 10)

 .Select(n => new Customer($"Customer#{n}"))

 .ToList();

Create CancellationTokenSource instance, passing in the maximum wait
time. As you saw earlier, any code that uses this token will be interrupted with a
cancellation exception should the time limit be exceeded:

 var tokenSource = new CancellationTokenSource(maxWait);

 var aggregated = await Task.Run(() => Aggregator.
Aggregate(customers,
 tokenSource.Token));

Once the task completes, you simply take the top five customers ordered by total. The
PadRight method is used to align the customer's name in the output:

 var topCustomers = customers

 .OrderByDescending(c => c.Total)

 .Take(5);

 Console.WriteLine($"Cancelled: {aggregated }");

 Console.WriteLine("Customer \tTotal \tAverage \
tOrders");

 foreach (var c in topCustomers)

 {

 Console.WriteLine($"{c.Name.PadRight(10)}\t{c.Total:N0}\
t{c.Average:N0}\t\t{c.Orders.Count:N0}");
 }

 Console.ReadLine();

 }

 }

}

Asynchronous Programming | 399

Running the console app with a short time of 1 second produces this output:

Max waiting time (seconds):1

21:35:56 [01] Created Customer#1

21:35:56 [01] Created Customer#2

21:35:56 [01] Created Customer#3

21:35:56 [01] Created Customer#4

21:35:56 [01] Created Customer#5

21:35:56 [01] Created Customer#6

21:35:56 [01] Created Customer#7

21:35:56 [01] Created Customer#8

21:35:56 [01] Created Customer#9

21:35:56 [01] Created Customer#10

21:35:59 [07] Processed Customer#5

21:35:59 [04] Processed Customer#3

21:35:59 [10] Processed Customer#7

21:35:59 [06] Processed Customer#2

21:35:59 [05] Processed Customer#1

21:35:59 [11] Processed Customer#8

21:35:59 [08] Processed Customer#6

21:35:59 [09] Processed Customer#4

21:35:59 [05] Caught The operation was canceled.

Cancelled: True

Customer Total Average Orders

Customer#1 23,097,348 2,395 9,645

Customer#4 19,029,182 2,179 8,733

Customer#8 15,322,674 1,958 7,827

Customer#6 9,763,247 1,568 6,226

Customer#2 6,189,978 1,250 4,952

400 | Concurrency: Multithreading Parallel and Async Code

The operation of creating 10 customers ran using Thread 01 as this was
intentionally synchronous.

Note

Visual Studio may show the following warning the first time you run the
program: Non-nullable field '_orders' must contain a
non-null value when exiting constructor. Consider
declaring the field as nullable. This is a suggestion to
check the code for the possibility of a null reference.

Aggregator then starts processing each of the customers. Notice how different
threads are used and processing does not start with the first customer either. This
is the task scheduler deciding which task is next in the queue. You only managed to
process eight of the customers before the token raised the cancelation exception.

Note

You can find the code used for this example at https://packt.link/1LDxI.

You have looked at some of the features available in the Parallel class. You can
see that it provides a simple yet effective way to run code across multiple tasks or
pieces of data.

The phrase embarrassingly parallel was covered under Parallel Programming section
at the beginning of the chapter and refers to cases in which a series of tasks can
be broken down into small independent chunks. Using the Parallel class is an
example of this and can be a great utility.

The next section will bring these concurrency concepts into an activity that uses
multiple tasks to generate a sequence of images. As each of the images can take a
few seconds to create, you will need to offer the user a way to cancel any remaining
tasks if the user so chooses.

https://packt.link/1LDxI

Asynchronous Programming | 401

Activity 5.01: Creating Images from a Fibonacci Sequence

In Exercise 5.01, you looked at a recursive function to create a value called a Fibonacci
number. These numbers can be joined into what is known as a Fibonacci sequence
and used to create interesting spiral-shaped images.

For this activity, you need to create a console application that allows various inputs to
be passed to a sequence calculator. Once the user has entered their parameters, the
app will start the time-consuming task of creating 1,000 images.

Each image in the sequence may take a few seconds to compute and create
so you will need to provide a way to cancel the operation midway using
TaskCancellationSource. If the user cancels the task, they should still be
able to access the images that were created prior to the cancellation request.
Essentially, you are allowing the user to try different parameters to see how this
affects output images.

Figure 5.2: Fibonacci sequence image files

402 | Concurrency: Multithreading Parallel and Async Code

This is an ideal example for the Parallel class or async/await tasks if you prefer.
The following inputs will be needed from the user:

• Input the value for phi (values between 1.0 and 6.0 provide ideal images).

• Input the number of images to create (the suggestion is 1,000 per cycle).

• Input the optional number of points per image (a default of 3,000
is recommended).

• Input the optional image size (defaults to 800 pixels).

• Input the optional point size (defaults to 5).

• Next input the optional file format (defaults to .png format).

• The console app should use a loop that prompts for the preceding parameters
and allows the user to enter new criteria while images are created for
previous criteria.

• If the user presses Enter whilst a previous set of images is still being created,
then that task should be canceled.

• Pressing x should close the application.

As this activity is aimed at testing your asynchronous skills, rather than math or
image processing, you have the following classes to help with calculations and
image creation:

• The Fibonacci class defined here calculates X and Y coordinates
for successive sequence items. For each image loop, return a list of
Fibonacci classes.

• Create the first element by calling CreateSeed. The remainder of the list
should use CreateNext, passing in the previous item:

Asynchronous Programming | 403

FibonacciSequence.cs

1 public class Fibonacci
2 {
3 public static Fibonacci CreateSeed()
4 {
5 return new Fibonacci(1, 0D, 1D);
6 }
7
8 public static Fibonacci CreateNext(Fibonacci previous, double angle)
9 {
10 return new Fibonacci(previous, angle);
11 }
12
13 private Fibonacci(int index, double theta, double x)
14 {
15 Index = index;

You can find the complete code here: http://packt.link/I7C6A.

• Create a list of Fibonacci items using the following FibonacciSequence.
Calculate method. This will be passed the number of points to be drawn and
the value of phi (both as specified by the user):

FibonacciSequence.cs

1 public static class FibonacciSequence
2 {
3 public static IList<Fibonacci> Calculate(int indices, double phi)
4 {
5 var angle = phi.GoldenAngle();
6
7 var items = new List<Fibonacci>(indices)
8 {
9 Fibonacci.CreateSeed()
10 };
11
12 for (var i = 1; i < indices; i++)
13 {
14 var previous = items.ElementAt(i - 1);
15 var next = Fibonacci.CreateNext(previous, angle);

You can find the complete code here: https://packt.link/gYK4N.

http://packt.link/I7C6A
https://packt.link/gYK4N

404 | Concurrency: Multithreading Parallel and Async Code

• Export the generated data to .png format image files using the dotnet add
package command to add a reference to the System.Drawing.Common
namespace. Within your project's source folder, run this command:

source\Chapter05>dotnet add package System.Drawing.Common

• This image creation class ImageGenerator can be used to create each of the
final image files:

ImageGenerator.cs

1 using System.Collections.Generic;
2 using System.Drawing;
3 using System.Drawing.Drawing2D;
4 using System.Drawing.Imaging;
5 using System.IO;
6
7 namespace Chapter05.Activities.Activity01
8 {
9 public static class ImageGenerator
10 {
11 public static void ExportSequence(IList<Fibonacci> sequence,
12 string path, ImageFormat format,
13 int width, int height, double pointSize)
14 {
15 double minX = 0;

You can find the complete code here: http://packt.link/a8Bu7.

To complete this activity, perform the following steps:

1. Create a new console app project.

2. The generated images should be saved in a folder within the system's Temp
folder, so use Path.GetTempPath() to get the Temp path and create a
subfolder called Fibonacci using Directory.CreateDirectory.

3. Declare a do-loop that repeats the following Step 4 to Step 7.

4. Prompt the user to enter a value for phi (this typically ranges from 1.0 to
6.00). You will need to read the user's input as a string and use double.
TryParse to attempt to convert their input into a valid double variable.

http://packt.link/a8Bu7

Asynchronous Programming | 405

5. Next, prompt the user to enter a value for the number of image files to create
(1,000 is an acceptable example value). Store the parsed input in an int
variable called imageCount.

6. If either of the entered values is empty, this will indicate that the user
pressed the Enter key alone, so break out of the do-loop. Ideally,
CancellationTokenSource can also be defined and used to cancel
any pending calculations.

7. The value of phi and imageCount should be passed to a new method called
GenerateImageSequences, which returns a Task.

8. The GenerateImageSequences method needs to use a loop that iterates for
each of the image counts requested. Each iteration should increment phi, and
a constant value (a suggestion is 0.015) before awaiting a Task.Run method
that calls FibonacciSequence.Calculate, passing in phi and a constant
for the number of points (3,000 provides an acceptable example value). This
will return a list of Fibonacci items.

9. GenerateImageSequences should then pass the generated Fibonacci list
to the image creator ImageGenerator.ExportSequence, awaiting using
a Task.Run call. An image size of 800 and a point size of 5 are recommended
constants for the call to ExportSequence.

10. Running the console app should produce the following console output:

Using temp folder: C:Temp\Fibonacci\

Phi (eg 1.0 to 6.0) (x=quit, enter=cancel):1

Image Count (eg 1000):1000

Creating 1000 images...

20:36:19 [04] Saved Fibonacci_3000_1.015.png

20:36:19 [06] Saved Fibonacci_3000_1.030.png

20:36:20 [06] Saved Fibonacci_3000_1.090.png

406 | Concurrency: Multithreading Parallel and Async Code

You will find that various image files have been generated in the Fibonacci folder
in the system's Temp folder:

Figure 5.3: Windows 10 Explorer image folder contents (a subset of images produced)

By completing this activity, you have seen how multiple long-running operations can
be started and then coordinated to produce a single result, with each step running in
isolation, allowing other operations to continue as necessary.

Note

The solution to this activity can be found at https://packt.link/qclbF.

https://packt.link/qclbF

Summary | 407

Summary
In this chapter, you considered some of the power and flexibility that concurrency
provides. You started by passing target actions to tasks that you created and then
looked at the static Task factory helper methods. By using continuation tasks,
you saw that single tasks and collections of tasks can be coordinated to perform
aggregate actions.

Next, you studied the async/await keywords that can help you write simpler and
more concise code that is, hopefully, easier to maintain.

This chapter looked at how C# provides, with relative ease, concurrency patterns
that make it possible to leverage the power of multicore processors. This is great for
offloading time-consuming calculations, but it does come at a price. You saw how
the lock statement can be used to safely prevent multiple threads from reading or
writing to a value simultaneously.

In the next chapter, you will look at how Entity Framework and SQL Server can be
used to interact with relational data in C# applications. This chapter is about working
with databases. If you are unfamiliar with database structure or would like a refresher
on the basics of PostgreSQL, please refer to the bonus chapter available in the GitHub
repository for this book.

Overview

This chapter introduces you to the basics of database design, storage, and
processing using SQL and C#. You will learn about the Entity Framework
(EF), and Object-Relational Mapper (ORM) and use them to convert
database results into C# objects. You will then learn about the main
performance pitfalls of SQL and EF and how to find and fix them.

Finally, you will delve into enterprise practices of working with databases
by looking at Repository and Command Query Responsibility Segregation
(CQRS) patterns and also by setting up a local database for development
and testing. By the end of this chapter, you will be able to create and design
your own database using PostgreSQL Server and use EF to hook a C#
backend to it.

Entity Framework with SQL

Server

6

410 | Entity Framework with SQL Server

Introduction
There are multiple types of databases, but the most common one is relational, and
the language for managing relational databases is SQL. SQL is optimized for data
persistence. However, executing business rules in it is inefficient. Therefore, before
consumption, data is often fetched in application memory and transformed into
objects. This transformation is called object-relational mapping.

There is a lot of complexity in mapping database records to objects. However, this
complexity is mitigated by Object-Relational Mapper (ORM). Some ORMs only do
mapping (called micro-ORMs), but many popular ORMs also abstract away database
language and allow you to use the same language to execute business rules and
process data:

Figure 6.1: How an ORM works in translating C# to SQL and back

The focus of this chapter will be on Entity Framework (EF)—the most popular ORM
in .NET. In the practical sections of this chapter, you will use it to rapidly prototype
relational databases, and then make queries against them. It's worth mentioning that
internally, whenever databases are involved, you are interacting with the ADO.NET
part of .NET.

Before proceeding, however, it's recommended that you install the latest version
of PostgreSQL with PostgreSQL Server found here: https://www.enterprisedb.com/
downloads/postgres-postgresql-downloads. You can find the installation instructions for
this in the Preface.

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

Creating a Demo Database Before You Start | 411

This chapter will use the AdventureWorks database, which is an adaptation of a
popular example database that Microsoft often uses; it will be defined in detail in the
following section.

Note

For those who are interested in learning the basics of databases and how to
work with PostgreSQL, a reference chapter has been included in the GitHub
repository of this book. You can access it at https://packt.link/sezEm.

Creating a Demo Database Before You Start
You will use Adventureworks as an example because it is a common database
used by Microsoft and has just enough complexity to learn about databases topic.

Perform the following steps to do so:

1. Open the command line and make a directory where you will call
AdventureWorks database and move to that directory:

C:\<change-with-your-download-path-to-The-C-Sharp-Workshop>\
Chapter06\AdventureWorks\>

Note

Replace <change-with-your-download-path-to-The-C-
Sharp-Workshop> with a directory where you downloaded the The-C-
Sharp-Workshop repository.

2. Create an empty Adventureworks database by running the following
command in the console:

psql -U postgres -c "CREATE DATABASE \"Adventureworks\";"

3. Create tables and populate them with data using the installation script.

Note

The installation script is found at https://packt.link/0SHd5.

https://packt.link/sezEm
https://packt.link/0SHd5

412 | Entity Framework with SQL Server

4. Run the following command pointing to the installation script:

psql -d Adventureworks -f install.sql -U postgres

Modeling Databases Using EF

Working with a database from any other language comes with an interesting problem
and that is, how do you convert table rows into C# objects? In C#, communicating
with a database requires a database connection and SQL statements. Executing
the statements will bring up a results reader, which is very similar to a table. Using
the results reader dictionary, you can go through the results and map them into a
new object.

The code for this would look like the following:

using var connection = new NpgsqlConnection(Program.
GlobalFactoryConnectionString);
connection.Open();

NpgsqlCommand command = new NpgsqlCommand("SELECT * FROM factory.
product", connection);
var reader = command.ExecuteReader();

var products = new List<Product>();

while (reader.Read())

{

 products.Add(new Product

 {

 Id = (int)reader["id"],

 //ManufacturerId = (int)reader["ManufacturerId"],

 Name = (string)reader["name"],

 Price = (decimal)reader["price"]

 });

}

return products;

Don't worry about the details of this code yet; it will be broken down soon. For now,
it is enough to know that the preceding snippet returns all rows from the factory.
product table and maps the results to a list named products. Using this approach
may be okay when working with a single table, but when joins are involved, it
becomes tricky. Mapping from one type to another, as has been done here, is very
granular and can become tedious. In order to run this example, go to https://packt.
link/2oxXn and comment all lines within static void Main(string[] args)
body except Examples.TalkingWithDb.Raw.Demo.Run();.

https://packt.link/2oxXn
https://packt.link/2oxXn

Creating a Demo Database Before You Start | 413

Note

You can find the code used for this example at https://packt.link/7uIJq.

Another factor to consider is that when you deal with SQL from the client side, you
should be careful. You should not assume that a user will use your program as
intended. So, you should therefore add validation on both the client and server sides.
For example, if a textbox requires a user ID to be entered, the client could enter 105
and get the details of the user of that ID. The query for this would be as follows:

SELECT * FROM Users WHERE UserId = 105

A user could also enter 105 or 1 = 1, which is always true and thus this query
returns all users:

SELECT * FROM Users WHERE UserId = 105 or 1 = 1

At best, this breaks your application. At worst, it leaks all the data. This kind of exploit
is called SQL injection.

A simple yet effective way to solve the problem of accepting any kind of user input
is to use an ORM as it allows you to convert database tables into C# objects and
vice versa. In the .NET ecosystem, the three ORMs most commonly used are EF,
Dapper, and NHibernate. Dapper is effective when top performance is needed
because working with it involves executing raw SQL statements. Such ORMs are
called micro-ORMs because they just do the mapping and nothing else.

NHibernate originated with the Java ecosystem and was one of the first ORMs in
.NET. NHibernate, just like EF, solves a bigger problem than micro-ORMs by trying
to abstract away SQL and database-related low-level details. Using a full-fledged
ORM, such as EF or Nhibernate, often means that you don't need to write SQL to
communicate with a database. In fact, the two ORMs allow you to generate complex
databases out of the objects you have. The opposite is also possible (that is, you can
generate objects out of databases you already have).

In the next sections, the focus will be on EF. Why not Dapper? Because Dapper
requires knowledge of SQL and you want to make use of a simplified syntax. Why not
NHibernate? Because NHibernate is old, it has too many configuration options, none
of which are useful for getting started with ORMs.

Before delving into EF, you first need to connect to a database. So, proceed to learn
about connection string and security.

https://packt.link/7uIJq

414 | Entity Framework with SQL Server

Connection String and Security

No matter what language you use, connecting to a database will always involve using
a connection string. It contains three important parts:

• IP or a server name.

• The name of the database you would like to connect to.

• Some sort of security credentials (or none, if using a trusted connection only
used for databases on the same network).

To connect to the local database you were previously working on in the Modeling
Databases Using EF section (new NpgsqlConnection(ConnectionString)),
you could use the following connection string (the password has been obfuscated for
security reasons):

"Host=localhost;Username=postgres;Password=*****;Database=
globalfactory2021"

The connection string will be used when you will add the environment variables in
your OS. This is detailed ahead. Different databases use different connections. For
example, the following databases use these connections:

• SQL Server: SqlConnection

• PostgreSQL: NpgsqlConnection

• MySql: MySqlConnection

• SQLite: SqliteConnection

The connection object is the touching point between .NET and SQL database because
it is only through it that you can communicate with a database.

Hardcoding a connection string comes with a few problems:

• To change a connection string, the program must be recompiled.

• It's not secure. The connection string can be viewed by everyone who knows how
to decompile code (or worse, is publicly visible if it's an open-source project).

Therefore, a connection string is usually stored in a configuration file. This does
not solve the problem of sensitive parts of a connection string being stored.
To fix that, often, either the whole string or a part of it is replaced during the
application's deployment. There are three main ways to securely store and
retrieve application secrets:

Creating a Demo Database Before You Start | 415

• Environment variables: These are variables unique to a system and can be
accessed by any application on the same machine. This is the simplest secure
approach and might not be safe in a production environment.

• Secret Manager tool (available in both .NET and .NET Core applications): Similar
to environment variables but more .NET specific, it will store all secrets on the
local machine as well but in a file called secrets.json. This option, too, might
not be safe in a production environment.

• Key vault: This is the most secure approach because, unlike the other two,
it is not coupled with a specific environment. Key vaults store secrets in one
centralized place; usually remotely. This approach is most commonly used for
enterprise applications. In the context of Azure, Azure Key Vault is the best
choice and is perfect for a production environment.

In the following example, you'll try to securely store the connection string you
made previously. You will use the simplest secure approach that is suitable for a
development environment—that is, environment variables. This approach fits local
development the best because the other two require third-party tools to set up and
take much longer.

Note

Before you continue, make sure to go through Exercise 1 of the Reference
Chapter, A Primer for Simple Databases and SQL. It has the steps needed to
create a new database with the needed tables.

Adding an environment variable in your OS is just a matter of performing
some simple steps. Perform the following steps in Windows to set the
environment variables:

1. Go to Control Panel.

2. Click System & Security and choose System.

3. Type Environmental Variables in the search box.

4. Then choose Edit Environment Variables for your account from
the list displayed.

5. Inside the Environment Variables window, click New under the System
Variables window.

416 | Entity Framework with SQL Server

6. Inside the New System variable window, type GlobalFactory beside the
Variable name.

7. Beside Variable value, paste the following:

Host=localhost;Username=postgres;Password=*****;Database=
globalfactory2021

8. Next click OK on all windows to set your environment variables.

Note

Here the password would carry your database superuser password which
you entered while creating the globalfactory2021 database in
PostgreSQL.

• Mac: From the command line, find bash-profile: ~/.bash-profile
f. Open it using any text editor, then at the end of the file, add export
GlobalFactory='Host=localhost;Username=postgres;
Password=*****;Database=globalfactory2021'. Lastly,
run source ~/.bash-profile, which will update the
environment variables.

• Linux: From the command line, run this: export
GlobalFactory='Host=localhost;Username=postgres;
Password=*****;Database=globalfactory2021'.

Getting the environment variable instead of an in-memory one can now be done by
placing a property in Program.cs, at the top of the class, as follows:

public static string ConnectionString { get; } = Environment.
GetEnvironmentVariable("GlobalFactory", EnvironmentVariableTarget.User);

This line returns the value of the GlobalFactory environment variable, configured
for the local user. In the preceding snippet, you have added this line to Program.cs
and made it static because that makes it easily accessible throughout the application.
While in big applications, it is not a practice you would want to go for; however, for
your purposes here, this is fine.

Before you grasp models—the centerpiece of a program—you need to know about
the major versions of EF.

Creating a Demo Database Before You Start | 417

Which One to Choose—EF or EF Core?

There are two major versions of EF—EF and EF Core. Both are widely used, but you
should be aware of some factors before making the choice that fits your project's
requirements the best. EF was first released in 2008. At that time, there was no .NET
Core and C# was for Windows only and strictly required .NET Framework. Currently,
the latest major version of EF is 6 and it's likely that there won't be any other major
version, because in 2016, along with .NET Core 1.0 came EF Core 1 (a rework of EF 6).

EF Core was initially named EF 7. However, it was a complete rewrite of EF 6 and
therefore was soon renamed EF Core 1.0. EF works only on .NET and is for Windows
only, whereas .NET Core works only on .NET Core and is multi-platform.

Feature-wise, both frameworks are similar and are still being developed. However,
the focus these days is on EF Core because the future of C# is associated with .NET
6, which is a multi-platform framework. At the time of writing this book, EF 6 has a
richer set of features. However, EF Core is quickly catching up and is likely to soon be
ahead. If your project's specifications do not require working with .NET Framework, it
is preferable to stick with EF Core.

Note

For the latest list of differences between the two, please refer to a
comparison by Microsoft here: https://docs.microsoft.com/en-us/ef/efcore-
and-ef6/.

Before you proceed, install the EF Core NuGet package so that you get access to the
EF Core API. With the project open in Visual Studio Code (VS Code), run the following
line in the terminal:

dotnet add package Microsoft.EntityFrameworkCore

By itself, EntityFrameworkCore is just a tool to abstract away database
structures. To connect it with a specific database provider, you will need another
package. Here you are using PostgreSQL. Therefore, the package you will install is
Npgsql.EntityFrameworkCore.PostgreSQL. In order to install it, from the VS
Code console, run the following:

dotnet add package Npgsql.EntityFrameworkCore.PostgreSQL

https://docs.microsoft.com/en-us/ef/efcore-and-ef6/
https://docs.microsoft.com/en-us/ef/efcore-and-ef6/

418 | Entity Framework with SQL Server

You are now aware of the two versions of EF and how they work with .NET
Framework and .NET. The next section will delve into the models which are the
heart of a program.

Model

A class designed to represent a business object is called a model. It always has data
managed by properties or methods. Models are the centerpiece of a program. They
don't depend on anything; other parts of a program point to them.

An object to which an ORM maps data tables is called an entity. In simple
applications, an entity and a model are the same class. In complex applications, a
change to a database is a common thing. That means that entities change often, and
if you do not have a separate class for a model, your model would be impacted as
well. Business logic should be isolated from database changes, and it is therefore
recommended to have two classes—one for an entity and one for a model.

Before you continue with the next section, have a quick look at the factory.
product and factory.manufacturer tables. One manufacturer makes many
products. The following Entity Relationship (ER) diagram illustrates this relationship
in Figure 6.2.

Figure 6.2: ER diagram of products and manufacturers

Creating a Demo Database Before You Start | 419

An entity, ideally, should mirror table columns. You can mirror columns through
properties. For example, a factory.product table has id, name, price, and
manufacturerId. An object that maps to that would look like this:

public class Product

{

 public int id { get; set; }

 public string name { get; set; }

 public decimal price { get; set; }

 public int manufacturerId { get; set; }

}

You know that only the price of a product can change; the rest of the properties
would not. However, in the preceding snippet, a setter has still been written for every
property. This is because entities created through an ORM always need to have all
properties with setters, or else it might not set the value.

An entity should be designed to match a table structure, but it does not always have
to be that way. For example, if the Id property were renamed to PrimaryKey, you
could still use EF the same way by using a special data annotation [Key]:

public class Product

{

 [Key]

 public int PrimaryKey { get; set; }

 public string name { get; set; }

 public decimal price { get; set; }

 public int manufacturerId { get; set; }

}

Data Annotation is an attribute that adds metadata to a property. You can use it to
provide a different name, have a constraint column as a key, add the minimum and
maximum lengths for fields, add precision, declare a field as mandatory, and more.
On their own, data annotations don't do anything. They don't add logic to a model.
Some other components will consume annotated objects, which will involve reading
their attributes and performing actions based on that.

420 | Entity Framework with SQL Server

Your model (illustrating the ER diagram from Figure 6.2) is almost complete, but there
are a few problems to be addressed:

• First, the table-model mapping is missing a schema (factory, in this case), and
so you need to specify it explicitly using a Table attribute.

• Second, by default if you wanted to also retrieve a manufacturer, you would
need another query. You can fix this by adding a navigational property that
refers to the manufacturer. But why should you use a navigational property? If
there were only an ID, you would need a separate query to get the related entity.
However, using navigational properties, you can use eager loading and get two
or more entities at once.

The following code snippet will show you how to create a Manufacturer class and
fix these issues for both models:

[Table("manufacturer", Schema = "factory")]

public class Manufacturer

{

 public int id { get; set; }

 public string name { get; set; }

 public string country { get; set; }

 public virtual ICollection<Product> Products { get; set; } = new
List<Product>();
}

Note the new List<Product>(); part. It is needed so that if a table does not
yet have products, the code would still function when you try to add a new product
without throwing NullReferenceException.

In the following snippet of code, a model is created for a product table:

[Table("product", Schema = "factory")]

public class Product

{

 public int id { get; set; }

 public string name { get; set; }

 public decimal price { get; set; }

 public int manufacturerId { get; set; }

 public virtual Manufacturer Manufacturer { get; set; }

}

Creating a Demo Database Before You Start | 421

The two models are complete for mapping to tables from your database. You did not
replace an ID property with a navigational property; both are present. If you did not
do this, it would require the parent entity (Manufacturer) to be fetched before you
could do anything with a product. With this approach, you can work with a product in
isolation from the manufacturer. All you need is an ID link.

On top of the mentioned fixes, you made your navigational properties
(Manufacturer and Products) virtual. This is needed to enable lazy loading for
EF. Lazy loading means that there is no data loaded in a property until that property
is referenced.

Finally, it is worth mentioning that for manufacturer products, you used
ICollection and not IEnumerable or other collections. This makes sense
because EF will need to populate the collection when it retrieves and map the items.
List or even Set could work, but when designing object-oriented code, you should
focus on the highest abstraction you can depend on, in this case it is ICollection.

Note

You can find the code used for this example at https://packt.link/gfgB1.

In order to run this example, go to https://packt.link/2oxXn and comment all lines
within the static void Main(string[] args) body, except Examples.
TalkingWithDb.Orm.Demo.Run();.

You are now clear about the entity, models, entity relationship, data annotation,
eager loading, and lazy loading. The next section will show you how to combine
everything and communicate with a database through EF Core.

DbContext and DbSet

DbContext is what EF uses as an abstraction to a database. A new database
abstraction must be derived from the DbContext class and provide a way
of connecting to a database. Just like a database contains one or more tables,
DbContext contains one or more DbSet entities. For example, consider the
following code:

public class FactoryDbContext : DbContext

{

 public DbSet<Product> Products { get; set; }

https://packt.link/gfgB1
https://packt.link/2oxXn

422 | Entity Framework with SQL Server

 public DbSet<Manufacturer> Manufacturers { get; set; }

 protected override void OnConfiguring(DbContextOptionsBuilder
optionsBuilder)
 {

 if (!optionsBuilder.IsConfigured)

 {

 optionsBuilder.UseNpgsql(Program.
GlobalFactoryConnectionString);
 }

 }

}

Here, FactoryDbContext is an abstraction of the database that you created
before, with two tables: Products and Manufacturers. The OnConfiguring
method takes DbContextOptionsBuilder, which allows you to specify what
database you want to connect to and how that connection is made. In this case, you
are using PostgreSQL Server and specifying a database to connect to. Please note
that in case there is an already configured database provider then you will not use
Npgsql in the if statement i.e., the if (!optionsBuilder.IsConfigured)
statement.

It is important to note that you should not completely depend on a specific database
provider for two reasons:

• Firstly, changing a database provider is easy; it is just a matter of using a
different extension method on a builder.

• Secondly, EF has an in-memory database provider, which is effective for testing.
Alternatively, you could use SQLite as well as a lightweight database meant just
for testing.

Currently, your database abstraction needs improvement because it only lets you
communicate with the SQL Server database. Instead of hardcoding the options,
you will inject them. Injecting allows you to configure an existing class differently,
without modifying it. You do not need to change the models to be able to choose
the database you want to connect to. You can specify which database you want
to connect to by passing an options object through the FactoryDbContext
constructor:

 public FactoryDbContext(DbContextOptions<FactoryDbContext> options)

 : base(options)

{

}

Creating a Demo Database Before You Start | 423

The default constructor is for the default provider, which will be used when no
options are supplied. In this case, the context was designed to use PostgreSQL;
therefore, you would add the following code:

public FactoryDbContext()

 : base(UsePostgreSqlServerOptions())

{

}

DbContext can be configured using DbContextOptions. In this example, you
need to configure a database provider (PostgreSQL) and a connection string. Choose
the provider using DbContextOptionsBuilder. The UseNpgsql is how you
hook the PostgreSQL provider with your database context, as shown here:

protected static DbContextOptions UsePostgreSqlServerOptions()

{

 return new DbContextOptionsBuilder()

 .UseNpgsql(Program.ConnectionString)

 .Options;

}

The full DbContext now looks like this:

FactoryDbContext.cs

public class FactoryDbContext : DbContext
{
 public DbSet<Product> Products { get; set; }
 public DbSet<Manufacturer> Manufacturers { get; set; }

 public FactoryDbContext(DbContextOptions<FactoryDbContext> options)
 : base(options)
 {
 }

 public FactoryDbContext()
 : base(UsePostgreSqlServerOptions())
 {
 }

The complete code can be found here: https://packt.link/0uVPP.

In order to run this example, go to https://packt.link/2oxXn and comment all lines
within the static void Main(string[] args) body, except Examples.
TalkingWithDb.Orm.Demo.Run();.

https://packt.link/0uVPP
https://packt.link/2oxXn

424 | Entity Framework with SQL Server

To get the products from the database you have made, you first connect to a
database by initializing an instance of your DbContext. You then call a wanted
DbSet from that context and send a call to a database by calling ToList():

using var context = new FactoryDbContext();

var products = context.Products.ToList();

In this case, you create a FactoryDbContext (which creates a connection to the
GlobalFactory database) and the context.Products.ToList() equates to
a SELECT * FROM Products SQL statement.

Note

The two lines mentioned are not included within GitHub. They are trivial and
are here only for illustrative purposes.

When you initialize a DbContext, you almost always create a connection to a
database, and if not managed, you might eventually run out of connections inside a
connection pool (a collection of available connections). DbContext is an unmanaged
resource; it implements the IDisposable interface, and so it needs explicit
cleanup. Here, you applied a C# feature—inline using—which disposes of the object
after it leaves the scope it is at:

using var context = new FactoryDbContext()

When you have a DbContext, getting data from it is trivial:

• Access a DbSet.

• Convert it into a list.

Why do you need to make any conversions, though? That is because DbSet, much
like IEnumerable, is lazy-loaded. It encapsulates the SQL needed to execute. So,
unless you explicitly demand it (for example, by calling ToList), there won't be any
data queried. Calling ToList does the actual call to a database and retrieves all
the products.

You now know all about databases. The next section will touch on the
AdventureWorks database which is a common database for teaching SQL
to beginners.

Creating a Demo Database Before You Start | 425

AdventureWorks Database

AdventureWorks is a database used for learning purposes. It contains dozens
of tables and has hundreds of records in each table. The tables are focused on
wholesale, which is a common scenario in enterprise applications. In other words, the
AdventureWorks database provides examples for learning with closeness to real-
world problems.

Note

You must first create the AdventureWorks database in PostgreSQL. You
can find the steps to create this database in the reference chapter placed
on GitHub.

The previous sections covered entity, models, and how to combine everything and
communicate with a database. You also learned about DbContext and DbSet. This
concludes the theoretical portion of this section. In the following section, you will put
this into practice with an exercise.

Exercise 6.01: Reading Stock Locations from AdventureWorks Database

The simplest use case of EF is to read data tables into C# objects. This exercise will
teach you how to create a data entity class and add correct attributes to it. For this,
you will create an inventory location table within the example AdventureWorks
database. Perform the following steps to do so:

1. Create a Location entity. It should have LocationId, Name, Costrate,
Availability, and ModifiedDate properties, as follows:

[Table("location", Schema = "production")]

public class Location

{

 [Column("locationid")]

 public int LocationId { get; set; }

 [Column("name")]

 public string Name { get; set; }

 [Column("costrate")]

 public double Costrate { get; set; }

 [Column("availability")]

426 | Entity Framework with SQL Server

 public double Availability { get; set; }

 [Column("modifieddate")]

 public DateTime ModifiedDate { get; set; }

}

A [Table] attribute has been applied because you need to specify a schema
as well as a properly capitalized table name. On top of that, every column
name needs to be explicitly specified using the [Column] attribute since the
capitalization does not match.

2. Create a class named AdventureWorksContext, which inherits the
DbContext, as follows:

public class AdventureWorksContext : DbContext

{

 public DbSet<Location> Locations { get; set; }

 public AdventureWorksContext()

 : base(UsePostgreSqlServerOptions())

 {

 }

 protected static DbContextOptions UsePostgreSqlServerOptions()

 {

 return new DbContextOptionsBuilder()

 .UseNpgsql(Program.AdventureWorksConnectionString)

 .Options;

 }

Inheriting DbContext is necessary if you want to reuse the base functionality
of database abstraction such as connecting to a database. The use of base
functionality is visible in the two base constructors. In the parameterized
constructor, you use PostgreSQL; in non-parameterized you can supply whatever
database provider you choose.

3. Now use the Program.AdventureWorksConnectionString connection
string as follows:

Host=localhost;Username=postgres;Password=****;Database=
Adventureworks. DbSet<Location>Locations

Creating a Demo Database Before You Start | 427

This represents the needed location table.

Note

Please keep your PostgreSQL passwords safe. Don't write them in code in
plaintext, instead use environment variables or secrets.

4. Connect to a database:

var db = new AdventureWorksContext();

This is as simple as creating a new DbContext.

5. Get all products by adding the following code:

var locations = db.Locations.ToList();

6. Now that you have queried the locations and no longer need to keep the
connection open, it is better to disconnect from the database. In order to
disconnect from the database, call the Dispose method as follows:

db.Dispose();

7. Print the results by adding the following code:

foreach (var location in locations)

{

 Console.WriteLine($"{location.LocationId} {location.Name}
{location.Costrate} {location.Availability} {location.ModifiedDate}");
}

The code itself is run from https://packt.link/2oxXn. Make sure to comment all lines
within static void Main(string[] args) body, except Exercises.
Exercise03.Demo.Run(). When you run the code, the following output
gets displayed:

1 Tool Crib 0 0 2008-04-30 00:00:00

2 Sheet Metal Racks 0 0 2008-04-30 00:00:00

3 Paint Shop 0 0 2008-04-30 00:00:00

4 Paint Storage 0 0 2008-04-30 00:00:00

5 Metal Storage 0 0 2008-04-30 00:00:00

6 Miscellaneous Storage 0 0 2008-04-30 00:00:00

7 Finished Goods Storage 0 0 2008-04-30 00:00:00

10 Frame Forming 22,5 96 2008-04-30 00:00:00

20 Frame Welding 25 108 2008-04-30 00:00:00

https://packt.link/2oxXn

428 | Entity Framework with SQL Server

30 Debur and Polish 14,5 120 2008-04-30 00:00:00

40 Paint 15,75 120 2008-04-30 00:00:00

45 Specialized Paint 18 80 2008-04-30 00:00:00

50 Subassembly 12,25 120 2008-04-30 00:00:00

60 Final Assembly 12,25 120 2008-04-30 00:00:00

Working with EF is simple. As you can see from this exercise, it is intuitive and feels
like a natural extension to C#.

Note

You can find the code used for this exercise at https://packt.link/9Weup.

Querying a Database—LINQ to SQL
One of the more interesting features of EF is that running SQL statements is very
much like working with a collection. For example, say you want to retrieve a product
by its name. You can get a product by name the same way you would be using LINQ:

public Product GetByName(string name)

{

 var product = db.Products.FirstOrDefault(p => p.Name == name);

 return product;

}

Here, FirstOrDefault returns the first matching product by its name. If no
product by that name exists, then it returns a null.

What about finding a unique element by its ID? In that case, you would use a special
method (Find), which either gets an entity from a database or, if one with the same
ID has been retrieved recently, returns it from memory:

public Product GetById(int id)

{

 var product = db.Products.Find(id);

 return product;

}

https://packt.link/9Weup

Querying a Database—LINQ to SQL | 429

When using a primary key, it is better to use Find instead of Where because it has a
slightly different meaning in the context of EF. Instead of trying to create a SQL query
and execute it, Find will check whether this item has already been accessed and will
retrieve it from a cache, rather than going through a database. This makes for more
efficient operations.

What about finding all products by the related manufacturer ID? You can create
a method that returns an IEnumerable<Product> for this purpose, named
GetByManufacturer, as follows:

public IEnumerable<Product> GetByManufacturer(int manufacturerId)

{ var products = db

 .Products

 .Where(p => p.Manufacturer.Id == manufacturerId)

 .ToList();

 return products;

}

You might be wondering why you should choose to use Where instead of
Find here. That is because you are getting many products by their foreign key
manufacturerId. Be careful not to mix foreign and primary keys; Find is used
only for primary keys.

In order to run this example, go to https://packt.link/2oxXn and comment all lines within
static void Main(string[] args) body except Examples.Crud.Demo.
Run();.

Note

You can find the code used for this example at https://packt.link/pwcwx.

Now, how about retrieving related entities? If you simply call db.Manufacturers.
ToList(), you will have null products. This is because the products will not be
retrieved automatically unless explicitly specified. If you didn't call ToList(), you
could make use of lazy-loading (that is, loading the required entities on demand), but
that would result in a very suboptimal solution as you would always be querying child
entities for every parent.

https://packt.link/2oxXn
https://packt.link/pwcwx

430 | Entity Framework with SQL Server

A proper solution is to call Include(parent => parent.ChildToInclude):

db.Manufacturers

.Include(m => m.Products)

.ToList();

This approach is called eager loading. With this approach, you specify which child
entities should be retrieved immediately. There will be scenarios where child entities
will have their child entities; there, you could call ThenInclude. In order to run this
example, comment all lines within static void Main(string[] args) body
except Examples.Crud.Demo.Run(); in Program.cs.

Note

You can find the code used for this example at https://packt.link/c82nA.

Remember when it was established that trying to get everything from a table is not
the right thing to do in most cases? Eager loading has the same problem. So, what
should you do if you only want some properties? It's time to learn about the other
side of LINQ.

Query Syntax

Query syntax is an alternative syntax to LINQ lambdas. It is very similar to SQL. The
main advantage of query syntax over lambdas is that it feels more natural to write
queries when you have complex joins and want only some of the data back. Imagine
you wanted to get all product-manufacturer name pairs. You cannot simply get
manufacturers and include products; you only want two products. If you tried using
LINQ, the code would like the following:

db.Products

.Join(db.Manufacturers,

 p => p.ManufacturerId, m => m.Id,

 (p, m) => new {Product = p.Name, Manufacturer = m.Name})

.ToList();

The same operation using query syntax looks like this:

(from p in db.Products

join m in db.Manufacturers

https://packt.link/c82nA

Querying a Database—LINQ to SQL | 431

 on p.ManufacturerId equals m.Id

select new {Product = p.Name, Manufacturer = m.Name}

).ToList();

Break the code down:

from p in db.Products

Now select all products and their columns:

join m in db.Manufacturers

For every product, add manufacturer columns like this:

on p.ManufacturerId equals m.Id

Manufacturer columns are added only for products which have ManufacturerId
equal to the Id of the manufacturer (INNER JOIN).

Note

Why can't you write == instead of equals? That is because, in LINQ query
syntax, equals completes a join; it is not just a comparison of two values.

The select part is the same in both lambda and query syntax; however, it's worth
mentioning what you selected. The select new {...} means that you create a
new anonymous object to have all the things you want to select. The idea is to later
use this to return a strongly typed object that you need. Therefore, after a ToList
method, you are likely to perform another select operation to map the results
for the final return. You cannot do the mapping right away because before you do
ToList, you are still working with an expression that is yet to be converted into SQL.
Only after ToList is called can you be sure that you are working with C# objects.

Finally, you may be wondering why the join is surrounded by brackets before calling
ToList. That's because you were still in query syntax mode and the only way to
escape it and go back to normal LINQ is by surrounding it with brackets.

If you struggle to remember LINQ query syntax, remember a foreach loop:

foreach(var product in db.Products)

The query syntax of from is as follows:

from product in db.Products

432 | Entity Framework with SQL Server

The highlighted part in the preceding code snippet is the syntax parts that overlap on
both. This also applies to join. The two make the most of query syntax.

Both lambda and query syntax has the same performance metrics because, in the
end, the query syntax will be compiled into the lambda equivalent. When making
complex joins, it might make more sense to use a query syntax because it will look
closer to SQL and therefore might be easier to grasp.

Now run the code. In order to run this example, comment all lines within static
void Main(string[] args) body except Examples.Crud.Demo.Run();
in Program.cs:

Note

You can find the code used for this example at https://packt.link/c82nA.

You now know that query syntax is an alternative syntax to LINQ lambdas. But how
you can perform the remaining operations with rows that are, create, update, and
delete, using query syntax? The next section details how that can be done.

The Rest of CRUD

Adding, updating, and removing data using query syntax is also similar to basic LINQ.
However, similar to executing the queries by calling ToList, it involves one extra
step that is, committing the changes. Consider the following code where you are
creating a new product:

var product = new Product

{

 Name = "Teddy Bear",

 Price = 10,

 ManufacturerId = 1

};

db.Products.Add(product);

db.SaveChanges();

This code should look almost completely familiar, except for the last line. The
SaveChanges method is used to run the actual SQL. If you don't call it, nothing
will happen, and the changes will be gone after disconnecting from the database.
Also, when adding a child entity (product), you don't have to get a parent entity
(manufacturer). All you have to do is to provide a link between the two via the
foreign key (ManufacturerId).

https://packt.link/c82nA

Querying a Database—LINQ to SQL | 433

Why do you need an extra method to apply your changes? Wouldn't it be simpler
to call Add and immediately have a new product row created? In practice, it is not
that simple. What happens if multiple Add methods of different entities need to
be performed, and what if one of them fails? Should you allow some of them to
succeed, while others fail? The worst thing you can do is to put your database in an
invalid state, or, in other words, break data integrity. You need a mechanism to either
complete fully or fail without affecting anything.

In the SQL context, such commands that are run together are called a transaction.
You can do two things with transactions—either commit or roll them back. In EF,
every action, other than a query, results in a transaction. The SaveChanges
completes the transaction, whereas a command failing rolls the transaction back.

If you were to call plain SQL commands in C#, you would need to create a
parameterized SQL command, provide each argument separately, and concatenate
SQL for multi-query updates. For a small entity it may be easy; however, as the
size grows the complexity increases as well. Using EF, you don't need to care
about low-level details, such as passing arguments to a command. For example,
with EF, adding a manufacturer with a few products is as simple as adding a
manufacturer to a Manufacturers list:

var manufacturer = new Manufacturer

{

 Country = "Lithuania",

 Name = "Toy Lasers",

 Products = new List<Product>

 {

 new()

 {

 Name = "Laser S",

 Price = 4.01m

 },

 new()

 {

 Name = "Laser M",

 Price = 7.99m

 }

 }

};

db.Manufacturers.Add(manufacturer);

db.SaveChanges();

434 | Entity Framework with SQL Server

As you can see, creating manufacturers is nearly the same as adding an element
to a list. The major difference is the need to complete the changes using
db.SaveChanges() method.

What about updating an existing product? Set the price of a product to 45.99:

var productUpdate = new Product

{

 Id = existingProduct.Id,

 Price = 45.99m,

 ManufacturerId = existingProduct.ManufacturerId,

 Name = existingProduct.Name

};

db.Products.Update(productUpdate);

 db.SaveChanges();

If you look carefully at this code, you are provided with not only the updated Price
and an existing item Id but also all other fields. This is because there is no way for
EF to know whether you want to set existing values to null or only set the new values.
But don't worry; logically, there is rarely a case when you update something out of
nowhere. You should have a set of items loaded somewhere. Therefore, updating
an existing object would simply be a matter of setting a new value of a property of
that object.

Of course, there are exceptions when you want to update just one thing. In that case,
you can have a dedicated method and be completely in control. In the following
snippet, you will update product values, but only when they are not null:

var productToUpdate = db.Products.Find(productUpdate.Id);

var anyProductToUpdate = productToUpdate != null;

if (anyProductToUpdate)

{

 productToUpdate.Name = productUpdate.Name ?? productToUpdate.Name;

 productToUpdate.ManufacturerId = (productUpdate.ManufacturerId !=
default)
 ? productUpdate.ManufacturerId

 : productToUpdate.ManufacturerId;

 productToUpdate.Price = (productUpdate.Price != default)

 ? productUpdate.Price

Querying a Database—LINQ to SQL | 435

 : productToUpdate.Price;

 db.SaveChanges();

}

Here, you would only update the values if they were not the default ones. Ideally,
when working in situations like this (in which you only want to update some of the
fields), you should have a dedicated model for the updated fields, send those fields,
and map them using libraries such as AutoMapper.

Note

To learn more about AutoMapper, refer to their official documentation at
https://docs.automapper.org/en/stable/Getting-started.html.

What about deleting existing rows from a database? This involves first getting the
object you want to remove and only then remove it. For example, say you want to
remove a product with a particular ID:

var productToDelete = db.Products.Find(productId);

if (productToDelete != null)

{

 db.Products.Remove(productToDelete);

 db.SaveChanges();

}

Once again, removing something from a database is nearly the same as removing
an element from a list with a small difference that db.SaveChanges() is used to
confirm the changes. In order to run this example, comment all lines within static
void Main(string[] args) body except Examples.Crud.Demo.Run(); in
Program.cs.

Note

You can find the code used for this example at https://packt.link/bH5c4.

https://docs.automapper.org/en/stable/Getting-started.html
https://packt.link/bH5c4

436 | Entity Framework with SQL Server

You have grasped that the basic concept of CRUD is a combination of four functions—
create, read, update, and delete. Now it is time to put this into practice in the
following exercise.

Exercise 6.02: Updating Products and Manufacturers Table

You have already created a GlobalFactory database with Products and
Manufacturers tables, and you now have enough components to perform
full Create, Read, Update and Delete (CRUD) on the database. In this exercise,
you will use FactoryDbContext to create methods inside a new class called
GlobalFactoryService, which can accomplish the following tasks:

• Add a list of manufacturers in the US.

• Add a list of products to all manufacturers in the US.

• Update any one product in the US with a given discount price.

• Remove any one product from the US region.

• Get all manufacturers from the US and their products.

Perform the following steps to complete this exercise:

1. First, create a GlobalFactoryService class.

2. Create FactoryDbContext inside a constructor and inject the context.
Injecting the context means that you have a choice of setting it up in any way you
want (for example, using different providers).

3. Create a constructor that accepts FactoryDbContext as an argument,
as follows:

public class GlobalFactoryService : IDisposable

{

 private readonly FactoryDbContext _context;

 public GlobalFactoryService(FactoryDbContext context)

 {

 _context = context;

 }

Querying a Database—LINQ to SQL | 437

4. Create a public void
CreateManufacturersInUsa(IEnumerable<string> names)
method, as follows:

public void CreateManufacturersInUsa(IEnumerable<string> names)

{

 var manufacturers = names

 .Select(name => new Manufacturer()

 {

 Name = name,

 Country = "USA"

 });

 _context.Manufacturers.AddRange(manufacturers);

 _context.SaveChanges();

}

A manufacturer has only two custom fields—Name and Country. In this case,
the value of the Country is known to be "USA". All you have to do is to pass a
list of manufacturer names and build Manufacturers by combining the value
of the Country with their name.

5. To create the products, create a public void
CreateUsaProducts(IEnumerable<Product> products) method.

6. Then get all the manufacturers in the US.

7. Finally, iterate each manufacturer and add all the products to each of them:

public void CreateUsaProducts(IEnumerable<Product> products)

{

 var manufacturersInUsa = _context

 .Manufacturers

 .Where(m => m.Country == "USA")

 .ToList();

 foreach (var product in products)

 {

438 | Entity Framework with SQL Server

 manufacturersInUsa.ForEach(m => m.Products.Add(

 new Product {Name = product.Name, Price = product.Price}

));

 }

 _context.SaveChanges();

}

Note that in this example, you have recreated a new product every time that you
add the same product to a manufacturer. This is done because even though the
product has the same properties, it belongs to a different manufacturer. In order
for that distinction to be set, you need to pass different objects. If you do not do
that, the products will be assigned to the same (last referenced) manufacturer.

8. Create a public void SetAnyUsaProductOnDiscount(decimal
discountedPrice) method.

9. To set any USA product on discount, first get all the products from the US region
and then select the first of them (order doesn't matter).

10. Next set a new Price for that product, and call SaveChanges() to confirm it:

public void SetAnyUsaProductOnDiscount(decimal discountedPrice)

{

 var anyProductInUsa = _context

 .Products

 .FirstOrDefault(p => p.Manufacturer.Country == "USA");

 anyProductInUsa.Price = discountedPrice;

 _context.SaveChanges();

}

11. Create a public void RemoveAnyProductInUsa() method.

12. To delete an item, simply select the first product in the "USA" group and
remove it:

public void RemoveAnyProductInUsa()

{

 var anyProductInUsa = _context

 .Products

 .FirstOrDefault(p => p.Manufacturer.Country == "USA");

Querying a Database—LINQ to SQL | 439

 _context.Remove(anyProductInUsa);

 _context.SaveChanges();

}

Note

Observe that the SaveChanges has been called after every step.

13. In order to get a manufacturers from USA, create a public
IEnumerable<Manufacturer> GetManufacturersInUsa() method.

14. Call the ToList() at the end of a query so that the SQL gets executed:

 public IEnumerable<Manufacturer> GetManufacturersInUsa()

 {

 var manufacturersFromUsa = _context

 .Manufacturers

 .Include(m => m.Products)

 .Where(m => m.Country == "USA")

 .ToList();

 return manufacturersFromUsa;

 }

}

15. Create a Demo class where you call all functions:

Demo.cs

public static class Demo
{
 public static void Run()
 {
 var service = new GlobalFactoryService(new FactoryDbContext());
 service.CreateManufacturersInUsa(new []{"Best Buy", "Iron Retail"});
 service.CreateUsaProducts(new []
 {
 new Product
 {
 Name = "Toy computer",
 Price = 20.99m
 },
 new Product
 {

The complete code can be found here: https://packt.link/qMYbi.

https://packt.link/qMYbi

440 | Entity Framework with SQL Server

In order to run this exercise, comment all lines within static void
Main(string[] args) body except Exercises.Exercise02.Demo.
Run(); in Program.cs. The output of the preceding code will be as follows:

Best Buy:

Loli microphone 5

Iron Retail:

Toy computer 20,99

Loli microphone 7,51

This output shows exactly what you wanted to achieve. You created two
manufacturers: Best Buy and Iron Retail. Each of them had two products,
but from the first manufacturer, Best Buy, you removed one. Therefore,
only a single product appears under it, as opposed to two products under
Iron Retail.

Note

You can find the code used for this exercise at https://packt.link/uq97N.

At this point, you know how to interact with an existing database. However, what
you have done so far is manually written models to fit the GlobalFactory
database you have created. Using EF, you only need one side—either a database
or a DbContext schema. In the next sections, you will learn how to work with
either approach.

Database First

In some cases, you won't have to design a database yourself. Often, an architect will
do that for you and then a database administrator will handle further changes. In
other cases, you may get to work with some really old projects and a legacy database.
Both scenarios are perfect for a database first approach because you can generate
a DbContext schema with all the needed models using an existing database.

https://packt.link/uq97N

Querying a Database—LINQ to SQL | 441

The project selected must be an executable project. For example, WebApi and
ConsoleApp are okay; however, a class library is not (you cannot run a class library;
you can only reference it from other applications). So, install EF tools by running this
in the console:

dotnet add package Microsoft.EntityFrameworkCore.tools

Finally, run the following:

dotnet ef dbcontext scaffold
"Host=localhost;Username=postgres;Password=****;Database=Adventureworks"
Npgsql.EntityFrameworkCore.PostgreSQL -o your/models/path --schema
"production"

This command reads the database schema (you specified to generate the database
from all the schemas rather than just one production schema) and generates models
out of it. You used the AdventureWorks database. Using the -o flag, you select the
output directory, and using the –schema flag, you specify the schemas you would
like to generate the database from.

Note

The generated models from an existing database can be found at
https://packt.link/8KIOK.

The models generated are quite interesting. They reveal two things that have not yet
been talked about. When you created a Manufacturer class (read the Modeling
Databases Using EF section), you did not initialize a collection of products from a
constructor. This is not a big issue, but instead of not returning data, you get a null
reference exception, which might not be what you want. None of the models, no
matter how simple or complex they are, have attributes.

You are almost done with the db-first approach. The next section will revisit
DbContext and inspect how EF does it so you can then apply what you learned
in a code-first approach.

https://packt.link/8KIOK

442 | Entity Framework with SQL Server

Revisiting DbContext

By logically grasping the following snippet, AdventureWorksContext, you will
notice that the default configuration is passed slightly differently from the one
created in the DbContext and DbSet section. Instead of directly using a connection
string for SQL Server, the generated context uses the OnConfiguring method to
double-check the given context options and if they are unconfigured, set one. This is
a cleaner approach because you don't have to manually initialize the builder yourself
and prevent unconfigured options:

public globalfactory2021Context()

 {

 }

 public
globalfactory2021Context(DbContextOptions<globalfactory2021Context>
options)

 : base(options)

 {

 }

 protected override void OnConfiguring(DbContextOptionsBuilder
optionsBuilder)
 {

 if (!optionsBuilder.IsConfigured)

 {

 optionsBuilder.UseNpgsql(Program.
GlobalFactoryConnectionString);
 }

 }

Next, there is a method named OnModelCreating. It is a method that takes
ModelBuilder that is used to dynamically build models for your database.
ModelBuilder directly replaces the attribute-based approach because it allows
you to keep the models attribute-free and add whatever constraints or mappings are
needed when the context is initialized. It includes column names, constraints, keys,
and indexes.

ModelBuilder allows you to use Fluent API (that is, method chaining), which in
turn allows you to add extra configurations to models. Consider the following single,
fully configured model:

Querying a Database—LINQ to SQL | 443

globalfactory2021Context.cs

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
modelBuilder.Entity<Manufacturer>(entity =>
{
 entity.ToTable("manufacturer", "factory");

 entity.Property(e => e.Id)
 .HasColumnName("id")
 .UseIdentityAlwaysColumn();

 entity.Property(e => e.Country)
 .IsRequired()
 .HasMaxLength(50)
 .HasColumnName("country");

The complete code can be found here: https://packt.link/S5s6d.

Looking at this part of ModelBuilder will give you a full picture of how the model
maps to a table and its columns, keys, indexes, and relations. The generated code is
broken down for you. To begin configuring an entity, you need to call the following:

modelBuilder.Entity< Manufacturer >(entity =>

Mapping to the table and schema looks like this:

entity.ToTable("manufacturer", "factory");

You can also add constraints (for example, to make sure that a field is not null) and
set the character limit and name of a column the property maps to. In the following
code, you're doing so for Name:

entity.Property(e => e.Name)

 .IsRequired()

 .HasMaxLength(50)

 .HasColumnName("name");

Lastly, some entities have multiple navigational properties associated with them.
When multiple navigational properties are involved, EF may not be able to clearly
interpret what the relationship should be. In those cases, you will need to configure it
manually, as shown in the following code:

 entity.HasOne(d => d.Manufacturer)

 .WithMany(p => p.Products)

 .HasForeignKey(d => d.Manufacturerid)

 .HasConstraintName("product_manufacturerid_id");

https://packt.link/S5s6d

444 | Entity Framework with SQL Server

The preceding code maps the Manufacturer entity to Product with a 1:n
relationship and sets the foreign key column to product_manufacturerid_
id. Spotting those cases might be tricky; therefore, you should only add manual
configurations when an error informs you about such an ambiguity:

Unable to determine the relationship represented by navigation property
Entity.NavProperty' of type 'AnotherEntity'. Either manually configure the
relationship, or ignore this property from the model.

Note

There is no runnable code here; this is just a scaffold of a database.

Now you know what a generated DbContext looks like and how to customize
models yourself. Without touching model classes, and instead using ModelBuidler,
it is time to get familiar with doing the opposite, which is generating a database out of
the context.

Generating DbContext from an Existing Database

For subsequent examples, you will be using the GlobalFactory2021 database.
Just to be sure that what you have made is the same as what the database contains,
you'll perform database scaffolding one more time. Scaffolding is an operation that
takes a database schema (or DbContext, in this case) and generates a physical
database out of it.

Open the console and run the following:

dotnet ef dbcontext scaffold
"Host=localhost;Username=postgres;Password=****;Database=
globalfactory2021" Npgsql.EntityFrameworkCore.PostgreSQL -o Examples/
GlobalFactory2021.

For security, do not forget to replace the hardcoded connection string in DbContext
with the one from the environment variable. The resulting DbContext should look
like this:

Figure 6.3: DbContext generated after applying the scaffold command

Querying a Database—LINQ to SQL | 445

One of the main advantages of EF is that you can quickly define entities and then
create a database out of them. But first, you'll need to learn the code first approach.

Code First and Migrations

Usually, when you need to create a proof of concept, you will create a DbContext
schema with the models and then generate a database out of that. Such an approach
is called code first.

In this example, you will use the context you have generated from the
GlobalFactory2021 database and then generate a new database out of it. This
approach requires an extra package named Design, so make sure it is installed by
running the following command:

dotnet add package Microsoft.EntityFrameworkCore.Design

EF is able to generate a database and have different versioning for it. In fact, it can
move from one database version to another. A single database version at any given
time is called migration. Migrations are needed to ensure that you do not just always
recreate databases (after all, you don't want to lose the existing data), but instead,
apply them neatly in a secure and trusted way. To add the first migration, from the VS
Code terminal, run the following:

dotnet ef migrations add MyFirstMigration -c globalfactory2021Context

This will generate a migration file:

Figure 6.4: New migration with defaults placed under the project Migrations folder
in the project root

446 | Entity Framework with SQL Server

The migration provides EF with information about the next database schema version
and can therefore be used to generate a database from (or apply new changes to
an existing database). Note that since you have multiple DbContext schemas
and EF cannot tell you which context to use, you have to provide one explicitly. It
is also worth mentioning that running this command requires selecting a default
project, which includes the required context. and placing the migrations in that
project's directory.

Why can't you just generate a database right away? When working with data,
capturing a change at any given time and being able to go back to a previous version
is very important. Even though directly generating a database might sound easy, it is
not a viable approach because changes happen all the time. You want to be in control
and have a choice to switch between versions at will. The migrations approach also
works with code versioning systems, such as Git, because you can see the changes
made to your database through a migration file. You will learn more about version
control in Chapter 11, Production-Ready C#: from Development to Deployment.

Before creating a database, make sure you change the database name inside the
connection string so that a new database can be created and not overwritten.
Creating a new database from a migration you have can be done by running
this command:

dotnet ef database update -c globalfactory2021context

If you open pgAdmin, you will see a very familiar view with the manufacturer and
product. However, there is one new table for the migration history:

Figure 6.5: Generated database inside pgAdmin browser (simplified view for brevity)

Querying a Database—LINQ to SQL | 447

The __EFMigrationsHistory table lays out all the migrations performed,
when they were performed, and the EF version with which they were executed.
In the following screenshot, you can see the first migration created as
MyfirstMigration:

Figure 6.6: EFMigrationsHistory table rows

You might find it strange that a migrations table has only two columns. However,
those two columns have all the needed information, such as when, what, and how.
Under MigrationId, the digits before _ refer to the date and time the migration
was run. This is followed by the migration name. The ProductVersion refers to
the EF Core version with which the command was executed.

What if you wanted to make changes in your data models? What if you would like the
manufacturer table to also have a date for the foundation? You would need to go
through the same flow—add a migration and update the database.

So first, you would add a new property inside a Manufacturer class:

public DateTime FoundedAt { get; set; }

Here FoundedAt is a date. It does not need time associated with it, so you should
specify an appropriate SQL Server type that maps to it. You would do this in
GlobalFactory2021Context inside the OnModelCreating method:

entity.Property(e => e.FoundedAt)

 .HasColumnType("date")

Now you can add that to a new migration:

dotnet ef migrations add AddManufacturerFoundedDate -c
globalfactory2021Context

448 | Entity Framework with SQL Server

Apply the new migration to the database:

dotnet ef database update -c globalfactory2021context

This will add a new entry to the migration history:

Figure 6.7: Migration 2 as the new migration created in the migrations table

You should see the new column in the manufacturer table as follows:

Figure 6.8: The manufacturer table with the new column named as foundedat

Now you know how to apply your models, change them, and generate a database out
of the models. So far, you have made the following changes:

• Added the FoundedAt property and model builder changes.

• Created a migration file.

• Updated a database with that migration file.

Undoing those changes will involve doing the opposite, in this sequence:

• Rolling back database changes (updating the database to the last
successful migration).

• Removing the migration file.

• Removing model builder changes.

Querying a Database—LINQ to SQL | 449

EF migrations allow you to selectively apply any migration you want. Here, you will be
applying the previous migration:

dotnet ef database update MyFirstMigration -c globalfactory2021context

You will delete the migration file using the following command:

dotnet ef migrations remove -c globalfactory2021Context

When working with big and complex databases, especially when they are already
in production, performing migration using EF tools may become too complex. After
all, you do not have full control of the exact script EF will generate for a migration. If
you ever need a custom migration script, EF will no longer fit your bill. However, you
can always convert whatever EF would do into SQL. You can do this by running the
following command:

dotnet ef migrations script -c globalfactory2021context

This command produces, instead of a C# migration class, a SQL script. Executing
a SQL script (often modified) is the preferred way of performing migrations in a
production environment.

Those are just some basic yet common scenarios that you will be dealing with when
working with databases. Change almost always happens; therefore, you should
expect it and be prepared, as you will see in the following exercise.

Exercise 6.03: Managing Product Price Changes

Once again, your manager is impressed with your results. This time, they have
asked you to keep track of product price changes. They would like a new table,
ProductPriceHistory, that holds a record of the changes in the price of
a product.

The following steps will help you complete this exercise:

1. To track price changes, add a new model, ProductPriceHistory with the
following fields:

• Id

• Price

• DateOfPrrice

• ProductId

• Product

450 | Entity Framework with SQL Server

The code for the new model will be as follows:

public class ProductPriceHistory

{

 public int Id { get; set; }

 public decimal Price { get; set; }

 public DateTime DateOfPrice { get; set; }

 public int ProductId { get; set; }

 public Product Product { get; set; }

}

2. Next, update the Product model so that it includes the historical price changes.
So, add a new collection property, ProductPriceHistory:

public ICollection<ProductPriceHistory> PriceHistory { get; set; }

3. Change the Price column. Price should now be a method that gets the latest
price of a product and the full model now looks like this:

public partial class Product

{

 public int Id { get; set; }

 public string Name { get; set; }

 public int ManufacturerId { get; set; }

 public decimal GetPrice() => PriceHistory

 .Where(p => p.ProductId == Id)

 .OrderByDescending(p => p.DateOfPrice)

 .First().Price;

 public Manufacturer Manufacturer { get; set; }

 public ICollection<ProductPriceHistory> PriceHistory { get; set;
}
}

Querying a Database—LINQ to SQL | 451

4. Update DbContext to include a new DbSet and add the
ProductPriceHistory configuration to the OnModelCreating method,
as follows:

modelBuilder.Entity<ProductPriceHistory>(entity =>

{

 entity.ToTable("ProductPriceHistory", "Factory");

 entity.Property(e => e.Price)

 .HasColumnType("money");

 entity.Property(e => e.DateOfPrice)

 .HasColumnType("date");

The preceding code provides mappings to a table and column property types.
A Product has many historical price changes, therefore it forms a 1:n relation
with a PriceHistory.

5. Just after the preceding code, create a 1:n relation between Product
and PriceHistory:

 RelationalForeignKeyBuilderExtensions.
HasConstraintName((ReferenceCollectionBuilder)
 entity.HasOne(d => d.Product)

 .WithMany(p => p.PriceHistory)

 .HasForeignKey(d => d.ProductId), "FK_
ProductPriceHistory_Product");
});

6. For the database change to be captured (so that you can apply the change from
code to database or roll back), add the migration as follows:

dotnet ef migrations add AddProductPriceHistory -c
globalfactory2021Contextv3 -o Exercises/Exercise03/Migrations

452 | Entity Framework with SQL Server

The following will be generated:

Figure 6.9: The generated database migrations and extra files

7. In order to apply the migration, run the following command:

dotnet ef database update -c globalfactory2021contextv3

8. Create a Demo by adding some dummy data:

Demo.cs

public static class Demo
{
 public static void Run()
 {
 var db = new globalfactory2021Contextv3();
 var manufacturer = new Manufacturer
 {
 Country = "Canada",
 FoundedAt = DateTime.UtcNow,
 Name = "Fake Toys"
 };

 var product = new Product
 {
 Name = "Rubber Sweater",

The complete code can be found here: https://packt.link/4FMz4.

Here, you first created a manufacturer and its product and then added a
few price changes. Once the changes were saved, you disconnected from the
database (so that you don't work with cached entities). In order to test whether
it works, you queried all "Fake Toys" manufacturer with their products and
their price history.

Note

When working with dates, especially in the context of databases or
environments that may be shared beyond your local, prefer to use dates
without your locale by calling DateTime.UtcNow.

https://packt.link/4FMz4

Pitfalls of EF | 453

9. In order to run this exercise, comment all lines within static void
Main(string[] args) body except Exercises.Exercise03.Demo.
Run(); in Program.cs. You will see the following output:

Fake Toys Rubber Sweater 15.5000

In the Demo, you created a manufacturer with one product which is a toy
(Rubber Sweater). The toy has two prices: 15.11 and 15.50 (the latest).
You then saved that toy in the database, disconnected, and reconnected from
that database (making sure that the toy is not cached, but rather fetched), and
executed an eager loading-based join.

Note

You can find the code used for his exercise at https://packt.link/viVZW.

EF is effective for rapid database development, but for that same reason, it is also
very dangerous. Inexperienced developers often rely on the magic that happens
behind the scenes and therefore forget that EF cannot magically optimize data
models to fit your specific scenario or guess that the intended query should perform
better. The following sections will review the main mistakes that people make while
working with EF.

Pitfalls of EF
EF abstracts a lot of details from you, significantly simplifying your work. However, it
also introduces the risk of not being aware of what is actually happening. Sometimes,
you might achieve what you want, but there may be a chance that you are not
optimally achieving your goal. The following are some of the most common mistakes
made in EF.

https://packt.link/viVZW

454 | Entity Framework with SQL Server

Examples Setup

For all the following examples, assume that you will have this line initialized at
the start:

var db = new GlobalFactory2021Context();

Assume, too, that every example will finish with this:

db.Dispose();

Also, the data itself will be seeded (pre-generated) using the following code:

DataSeeding.cs

public static class DataSeeding
{
 public const string ManufacturerName = "Test Factory";
 public const string TestProduct1Name = "Product1 ";
 /// <summary>
 /// Padding should be 13 spaces to the right as per our test data, db and
filtering requirements
 /// </summary>
 public const string TestProduct2NameNotPadded = "Product2";
 public const decimal MaxPrice = 1000;

 public static void SeedDataNotSeededBefore()
 {
 var db = new globalfactory2021Context();
 var isDataAlreadySeeded = db.Manufacturers.Any(m => m.Name ==
ManufacturerName);
 if (isDataAlreadySeeded) return;

The complete code can be found here: https://packt.link/58JTd.

The preceding code creates a manufacturer with 10,000 products, but only if that
manufacturer does not already exist. The ManufacturerName will be exactly
13 characters long, and their prices will be random, but no bigger than the maximum
price. All of this information is saved to a database before you disconnect from it.

Note

This is no runnable code and will be used in all the performance
comparison examples.

https://packt.link/58JTd

Pitfalls of EF | 455

All the examples will compare two functions achieving the same output. A summary
of all the comparisons is done by executing this demo code:

Demo.cs

public static class Demo
{
 public static void Run()
 {
 // For benchmarks to be more accurate, make sure you run the seeding before
anything
 // And then restart the application
 // Lazy loading is a prime example of being impacted by this inverting the
intended results.
 DataSeeding.SeedDataNotSeededBefore();
 // Slow-Faster example pairs
 // The title does not illustrate which you should pick
 // It rather illustrates when it becomes a problem.

 CompareExecTimes(EnumerableVsQueryable.Slow, EnumerableVsQueryable.Fast,
"IEnumerable over IQueryable");
 CompareExecTimes(MethodChoice.Slow, MethodChoice.Fast, "equals over ==");
 CompareExecTimes(Loading.Lazy, Loading.Eager, "Lazy over Eager loading");

The complete code can be found here: https://packt.link/xE0Df.

Here, you compare in-memory and SQL filtering, lazy and eager loading, tracked and
untracked entities, and adding entities one by one as opposed to adding them in bulk.
In the paragraphs that follow, you will find the functions being compared, but every
comparison will show the following:

• Names of a scenario

• Slow and fast versions for doing the same thing

You will be using a stopwatch to measure execution time and print a formatted
comparison after each run. In order to run this example, comment all lines
within static void Main(string[] args) body except Examples.
PerformanceTraps.Demo.Run(); in Program.cs. You can refer to the
Summary of Results section for the output.

The idea behind these examples is to compare an efficient way of working with EF
with a direct equivalent inefficient way. The slow scenario is the inefficient way and
the fast (which is the efficient one) is the way it should be done. The next section will
detail the efficient way of using EF.

https://packt.link/xE0Df

456 | Entity Framework with SQL Server

Multiple Adds

Sometimes, without realizing it at the time, you'll find that you tend to use the most
straightforward route while writing programs. For example, to add 100 items, you
may use 100 individual addition operations. However, this isn't always the optimal
approach and is especially inefficient when you're using EF. Instead of one query
for a bulk of 100, you might run a single insert 100 times. As an example, see the
following code:

for (int i = 0; i < 1000; i++)

{

 var product = new Product

 {

 Name = productName,

 Price = 11,

 ManufacturerId = 2

 };

 db.Products.Add(product);

}

This code creates 1,000 products and attaches them to DbContext. What happens
is that those 1,000 entities inside a DbContext schema are tracked. Instead of
tracking them all as a single batch, you track each individually.

What you want to do, though, is to work with range operations:

• AddRange or

• UpdateRange, or

• RemoveRange

A better version of the preceding code, designed to work in an optimal way with
batches, looks like this:

var toAdd = new List<Product>();

for (int i = 0; i < 1000; i++)

{

 var product = new Product

 {

 Name = productName,

 Price = 11,

 Manufacturerid = 2

 };

Pitfalls of EF | 457

 toAdd.Add(product);

}

db.Products.AddRange(toAdd);

When creating multiple items with the intention to add them to the database, you
should first add them to a list. After your list is complete, you can add the items
as a batch to DbSet<Product>. You still have the problem of multiple adds, but
the benefit of it over directly calling a DbSet<Product> add is that you no longer
hit the change tracker with every add. In order to run this example, comment all
lines within static void Main(string[] args) body except Examples.
PerformanceTraps.Demo.Run(); in Program.cs.

Note

You can find the code used for this example at https://packt.link/wPLyB.

The next section will take a look at another pitfall—how to query properly based on
equality of properties.

Equals over ==

The devil lies in the details. C# developers usually do not make this mistake, but if
you are moving between languages (especially from Java), you might be doing this
when filtering:

var filtered = db.Products

 .Where(p => p.Name.Equals(DataSeeding.TestProduct1Name))

 .ToList();

For LINQ, it is harmless. However, while using EF, this approach is not recommended.
The problem is that EF can convert only some expressions to SQL. Usually, a
complex method, such as equals, cannot be converted because it comes from a
base object class, which can have multiple implementations. Instead, use a simple
equality operator:

var filtered = db.Products

 .Where(p => p.Name == DataSeeding.TestProduct1Name)

 .ToList();

https://packt.link/wPLyB

458 | Entity Framework with SQL Server

The problem with the first attempt was that it would first get all products (that
is, execute a get statement in SQL) and only then the filter would be applied (in
memory, in C#). Once again, this is problematic because getting with a filter applied
in a database-native language is optimal but getting products in SQL and then
filtering in C# is suboptimal. The problem is solved in the second attempt by replacing
Equals with the equality operator, ==. In order to run this example, comment all
lines within static void Main(string[] args) body except Examples.
PerformanceTraps.Demo.Run(); in Program.cs.

Note

You can find the code used for this example at https://packt.link/js2es.

Using IEnumerable over IQueryable

Another example involves misunderstanding the concept of
IEnumerable<Product>:

IEnumerable<Product> products = db.Products;

var filtered = products

 .Where(p => p.Name == DataSeeding.TestProduct1Name)

 .ToList();

Here, you are getting products by a specific product name. But what happens when
you assign a DbSet<Product> object to Ienumerable<Product> is that the
SELECT * statement is executed. Therefore, instead of getting only the filtered
products that you need, you will first get everything and then manually filter it.

You might wonder why you couldn't filter right away. In some cases, it makes
sense to build queries and pass them across methods. But when doing so, you
should not execute them until they are completely built. Therefore, instead of
Ienumerable<Product>, you should use Iqueryable<Product>, which is
an abstraction of queried entities—an expression that will be converted to SQL after
calling ToList<Product> or similar. An efficient version of the preceding code
would look like this:

IQueryable<Product> products = db.Products;

var filtered = products

 .Where(p => p.Name == DataSeeding.TestProduct1Name)

 .ToList();

https://packt.link/js2es

Pitfalls of EF | 459

The latter works faster because you apply a filter in SQL and not in memory. In order
to run this example, comment all lines within static void Main(string[]
args) body except Examples.PerformanceTraps.Demo.Run(); in
Program.cs.

Note

You can find the code used for this example at https://packt.link/ehq6C.

Eager and lazy loading has already been mentioned, but there is still another
complexity that is significant enough and should be covered. The next section
details them.

Lazy over Eager Loading

In EF, you have an interesting n+1 queries problem. For example, if you get a list of
items, then getting the list of their respective manufacturers afterward would result in
a SQL query being executed; this would be lazy-loaded. Fortunately, from EF 2.1, this
no longer happens by default, and it needs to be enabled explicitly. Assume that in
the following examples, you have already enabled it.

Here is a query to get any first item and its manufacturer:

var product = db.Products.First();

// Lazy loaded

var manufacturer = product.Manufacturer;

Initially, upon looking at this code, you might think that there is no issue, but this
small chunk of code executes two SQL queries:

• First, it selects the top product.

• Then it selects the associated manufacturer, along with the manufacturer ID.

To make the code more efficient, you need to explicitly specify that you do want the
Manufacturer to be included with a product. A better, more efficient version of the
code is as follows:

var manufacturer = db.Products

 // Eager loaded

 .Include(p => p.Manufacturer)

 .First()

 .Manufacturer;

https://packt.link/ehq6C

460 | Entity Framework with SQL Server

The latter translates to a single query where a join between two tables is made and
the first item from one of them is returned. In order to run this example, comment
all lines within static void Main(string[] args) body except Examples.
PerformanceTraps.Demo.Run(); in Program.cs.

Note

You can find the code used for this example at https://packt.link/osrEM.

Read-Only Queries

EF assumes many things when running your queries. In most cases, it gets it right,
but there are many cases when you should be explicit and order it not to assume.
For example, you could get all the products like this:

var products = db.Products

 .ToList();

By default, EF will track all retrieved and changed entities. This is useful in some
cases, but not always. When you have read-only queries, to just get and not modify
entities, you would explicitly tell EF to not track any of them. An optimal way of getting
products is as follows:

var products = db.Products

 .AsNoTracking()

 .ToList();

All this code does is run a query against the database and map the results. EF keeps
the context clean. In order to run this example, comment all lines within static
void Main(string[] args) body except Examples.PerformanceTraps.
Demo.Run(); in Program.cs.

Note

You can find the code used for this example at https://packt.link/rSW1k.

Summary of Results

The following snippet shows all results from the previous sections, in a
tabulated form:

https://packt.link/osrEM
https://packt.link/rSW1k

Pitfalls of EF | 461

IENUMERABLE OVER IQUERYABLE Scenario1: 75ms, Scenario2: 31ms

EQUALS OVER == Scenario1: 33ms, Scenario2: 24ms

LAZY OVER EAGER LOADING Scenario1: 3ms, Scenario2: 29ms

READ-ONLY QUERIES Scenario1: 40ms, Scenario2: 10ms

MULTIPLE ADDS Scenario1: 8ms, Scenario2: 8ms

Note that the output depends on the machine you are running the database, the
data, and more. The point of this comparison is not to give you hard rules of what
should be chosen, but rather to show how different approaches might save a lot of
computing time.

EF is a powerful tool that allows rapid work with databases; however, you should be
careful with how you use it. Do not worry, even if you think you are not sure how the
queries work internally, there is still a way to see what happens underneath.

Tools to Help You Spot Problems Early On

EF is a toolbox in itself; it allows you to easily hook into it and track what is happening
without any external tools. You can enable logging all the EF actions by adding this to
the OnConfiguring method:

optionsBuilder.LogTo((s) => Debug.WriteLine(s));

If you run any of the example's code, this will log the trace inside an output window,
as follows:

Figure 6.10: Debugging output after running the performance pitfalls demo

The image shows what SQL is generated when EF executes the code—specifically
selecting all products.

462 | Entity Framework with SQL Server

This approach is useful when you want to both fully debug your application and know
every step EF makes. It is efficient for spotting queries that you expect to execute as
SQL but execute in memory.

In the next section, you will learn about patterns that will help you organize database
communication code.

Working with a Database in Enterprise
When talking about databases, you usually imagine SQL or another language to talk
with them. On top of that, another language (C#, in this case) is most often used
to connect to a database to execute SQL queries. If not controlled, C# gets mixed
with SQL, and it causes a mess of your code. Over the years, there have been a few
patterns refined to implement the communication with a database in a clean way.
Two such patterns, namely, Repository and CQRS, are commonly used to this day.

Repository Pattern

The Repository is a pattern that targets a model and defines all (if needed) possible
CRUD operations. For example, if you take a Product model, you could have a
repository with this interface:

public interface IProductRepository

{

 int Create(Product product);

 void Delete(int id);

 void Update(Product product);

 Product Get(int id);

 IEnumerable<Product> Get();

}

This is a classical repository pattern where every database operation is abstracted
away. This allows you to do pretty much anything you want in a database without
worrying about the underlying database or even the technology you use to
communicate with the database.

Note that a Create method in this case returns an integer. Usually, when writing
code, you would segregate methods that change a state from those that query
something. In other words, do not try to both get something and change something.
However, in this case, it is difficult to achieve because the ID of an entity will be
generated by the database. Therefore, if you want to do something with the entity,
you will need to get that ID. You could instead return the whole entity, but that is like
getting a house when all you need is an address.

Working with a Database in Enterprise | 463

Given you want to do the same four operations (create, delete, update, and get), the
pattern would look like this:

public interface IManufacturerRepository

{

 int Create(Manufacturer product);

 void Delete(int id);

 void Update(Manufacturer product);

 Manufacturer Get(int id);

 IEnumerable<Manufacturer> Get();

}

It looks almost the same; the only difference is the targeted entity. Given that you had
a very simple application that just does data processing in a very simple way, it would
make sense to make these repositories generic:

public interface IRepository<TEntity>: IDisposable where TEntity : class

{

 int Create(TEntity productentity);

 void Delete(long id)(int id);

 void Update(TEntity entityproduct);

 TEntity Get(long id)(int id);

 IEnumerable<TEntity> Get();

 void Dispose();

}

Here, instead of Product or Manufacturer, the interface takes a generic
TEntity that must be a class. You have also inherited an IDisposable interface
to clean up all the resources that a repository used. This repository is still flawed.
So, should you be able to persist any class? In that case, it would be nice to mark the
classes that you could persist in.

Yes, you can do that. When talking about a repository, you should realize that even
if something is supposed to be saved in a database, that does not mean that it will
be saved separately. For example, contact information will always be saved with
a person. A person can exist without contact information but contact information
cannot exist without a person. Both person and contact information are entities.
However, a person is also an aggregate (that is the entity that you will be targeting
when adding data to a database), and it can exist by itself. This means that it makes
no sense to have a repository for contact information if storing it would violate data
integrity. Therefore, you should create a repository not per entity, but per aggregate.

464 | Entity Framework with SQL Server

What should every row in a database have? It should have an ID. An entity is a model
that you can persist (that is, have an ID); therefore, you can define an interface for it:

public interface IEntity

{

 int Id { get; }

}

Please note that here you are using a get-only property because it does not make
sense to set an ID in all cases. However, being able to identify an object (by getting
the ID) is critical. Also note that the ID, in this case, is an integer because it is just a
simple example and there will not be much data; but in real applications, it is usually
either an integer or a GUID. Sometimes, an ID could even be both. In those cases, a
consideration to make an entity interface generic (that is, taking generic TId) could
be made.

What about an aggregate? An aggregate is an entity; you would therefore write
the following:

public interface IAggregate : IEntity

{

}

In this scenario, you would then just write Person: IAggregate,
ContactInfo: IEntity. If you apply the same principles to the two tables you
had, you will get Product: IAggregate, Manufacturer: IAggregate
because the two can be saved separately.

Note

There is no runnable code here; however, you will be using it in the
upcoming exercise. You can find the code used for this example at https://
packt.link/JDLAo.

Writing a repository for every aggregate might become a tedious job, especially if
there is no special logic to the way persistence is done. In the upcoming exercise, you
will learn how to generalize and reuse repositories.

https://packt.link/JDLAo
https://packt.link/JDLAo

Working with a Database in Enterprise | 465

Exercise 6.04: Creating a Generic Repository

Being coupled to an ORM may make your business logic harder to test. Also, due
to persistence being so rooted at the core of most applications, it might be a hassle
to change an ORM. For those reasons, you may want to put an abstraction layer in
between business logic and a database. If you use DbContext as is, you couple
yourself to EntityFramework.

In this exercise, you will learn how to create a database operations abstraction—a
generic repository—that will work on any entity and support create, delete, update,
and get operations. Implement those methods one by one:

1. First, create a generic repository class that takes DbContext in the constructor:

public class Repository<TAggregate>: IRepository<TAggregate> where
TAggregate: class
{

 private readonly DbSet<TAggregate> _dbSet;

 private readonly DbContext _context;

 public Repository(DbContext context)

 {

 _dbSet = context.Set<TAggregate>();

 _context = context;

 }

The context.Set<TEntity>() allows getting a table-model binding and
then using it throughout the repository. Another interesting point is that you
didn't have to supply a concrete DbContext as it uses generic entities, and a
generic repository is applicable to every kind of context.

2. To implement a Create operation, add a method to insert a single aggregate:

public int Create(TAggregate aggregate)

{

 var added = _dbSet.Add(aggregate);

 _context.SaveChanges();

 return added.Entity.Id;

}

466 | Entity Framework with SQL Server

3. To implement a Delete operation, add a method to delete an aggregate by ID:

 public void Delete(int id)

 {

 var toRemove = _dbSet.Find(id);

 if (toRemove != null)

 {

 _dbSet.Remove(toRemove);

 }

 _context.SaveChanges();

 }

4. To implement an Update operation, add a method to update an entity by
overriding the old values with the values of a new entity:

 public void Update(TAggregate aggregate)

 {

 _dbSet.Update(aggregate);

 _context.SaveChanges();

 }

5. To implement a Read operation, add a method to get a single entity by ID:

 public TAggregate Get(int id)

 {

 return _dbSet.Find(id);

 }

6. A Read operation should also support getting all the entities. So, add a method
to get all entities:

 public IEnumerable<TAggregate> Get()

 {

 return _dbSet.ToList();

 }

Working with a Database in Enterprise | 467

7. Passing a DbContext to a constructor will open a database connection. As soon
as you are done using a database, you should disconnect. In order to support a
conventional disconnect, implement an IDisposable pattern:

 public void Dispose()

 {

 _context?.Dispose();

 }

}

8. To test whether the generic repository works, create a new Run() method:

public static void Run()

{

9. Inside the Run() method, initialize a new repository for the
Manufacturer entity:

 var db = new FactoryDbContext();

 var manufacturersRepository = new Repository<Manufacturer>(db);

10. Test whether the Create operation works, by inserting a new manufacturer
as shown in the following code:

 var manufacturer = new Manufacturer { Country = "Lithuania", Name
= "Tomo Baldai" };
 var id = manufacturersRepository.Create(manufacturer);

11. Test whether the Update operation works, by updating the manufacturer's
name as follows:

 manufacturer.Name = "New Name";

 manufacturersRepository.Update(manufacturer);

12. Test whether the Read operation works on a single entity, by retrieving the new
manufacturer from a database and print it:

 var manufacturerAfterChanges = manufacturersRepository.Get(id);

 Console.WriteLine($"Id: {manufacturerAfterChanges.Id}, " +

 $"Name: {manufacturerAfterChanges.Name}");

You should see the following output:

Id: 25, Name: New Name

468 | Entity Framework with SQL Server

13. Test whether the Read operation works on all entities by getting the count of all
manufacturers with the following code:

 var countBeforeDelete = manufacturersRepository.Get().Count();

14. You can test whether the Delete operation works by deleting the new
manufacturer as follows:

 manufacturersRepository.Delete(id);

15. In order to see the impact of delete (one less manufacturer is expected),
compare the counts as follows:

 var countAfter = manufacturersRepository.Get().Count();

 Console.WriteLine($"Before: {countBeforeDelete}, after:
{countAfter}");
}

16. In order to run this exercise, comment all lines within static void
Main(string[] args) body except Exercises.Exercise04.Demo.
Run(); in Program.cs. You should see the following output upon running the
dotnet run command:

Before: 3, after: 2

Repositories used to be the way to go (maybe 10-20 years ago) for implementing
interactions with a database because these were a well-abstracted way to make calls
against a database. An abstraction from a database would enable people to change
the underlying database provider if needed. If a database changes, only the class
that implements the interface will change but whatever consumes the interface will
remain unaffected.

Looking back at DbContext and DbSet, you might ask why those can't be used
directly. The answer is that you can, and it serves a similar purpose as repositories do.
That is why the repository pattern should only be used if your queries are sufficiently
complex (meaning it's several lines long).

Note

You can find the code used for this exercise at https://packt.link/jDR0C.

https://packt.link/jDR0C

Working with a Database in Enterprise | 469

The next section will explore another benefit of EF that is, local database testing.

Testing Data Persistence Logic Locally

When developing software, you should always have quality and testability in mind.
The problem with database testability is that it often requires a physical machine
to host a database somewhere. However, you do not always have access to such a
setup, especially at the start of a project.

Thankfully, EF is very flexible and offers a few packages to help out here. There are
three main ways of testing with EF—InMemory, using SQLite, and calling an actual
database. You have already seen plenty of demos calling a physical database. Next,
you'll explore the other two: In-Memory and SQLite.

In-Memory Database Provider

An in-memory database provider is just a bunch of in-memory lists available
internally that make no queries whatsoever to a database. Usually, even garbage
collection eliminates its state. Before you can continue, just like all other database
providers, you will need to add one to your project.

Run the following command:

dotnet add package Microsoft.EntityFrameworkCore.InMemory

This command enables you to use an in-memory database when supplying
DbContextOptionsBuilder with the UseInMemoryDatabase option, as done
in the following snippet:

var builder = new DbContextOptionsBuilder<FactoryDbContext>();

builder.UseInMemoryDatabase(Guid.NewGuid().ToString());

var options = builder.Options;

_db = new FactoryDbContext(options);

In this snippet, you've used an options builder and created a new, isolated,
in-memory database. The most important part here is the builder.
UseInMemoryDatabase(); method, which specifies that an in-memory database
should be created. Also, note the Guid.NewGuid().ToString() argument. This
argument is for a database name. In this case, it means that every time you call that
line you will generate a unique database name, thus ensuring isolation between the
new test databases. If you don't use this argument, you risk affecting a context under
the test state. You want to avoid that for testing scenarios. When it comes to testing,
starting with a fresh state is the right way to go.

470 | Entity Framework with SQL Server

In order to run this example, comment all lines within static void
Main(string[] args) body except Examples.TestingDb.Demo.Run();
in Program.cs.

Note

You can find the code used for this example at https://packt.link/mOodJ.

To test whether a generic repository for manufacturers works (assume that the
preceding code will be reused), first create a new repository:

var productsRepository = new Repository<Product>(db);

The power of this pattern is that a new entity repository is simply specified as a
different generic argument. If you wanted to test a manufacturer, you would not
need to design a repository class for it. All you would have to do is to initialize a
repository with Manufacturer passed as a generic argument, for example new
Repository<Manfacturer>(db).

Now, create a test product and save it:

var product = new Product {Name = "Test PP", ManufacturerId = 1, Price =
9.99m};
var id = productsRepository.Create(product);

To test the price update method, update product.Price and call the
Update method:

product.Price = 19m;

productsRepository.Update(product);

In order to check whether a product was created successfully, call a Get method and
pass the new product id:

var productAfterChanges = productsRepository.Get(id);

Type the following to print the product to the console:

Console.WriteLine($"Id: {productAfterChanges.Id}, " +

 $"Name: {productAfterChanges.Name}, " +

 $"Price: {productAfterChanges.Price}");

The output will get displayed as follows:

Id: 1, Name: Test PP, Price: 19

https://packt.link/mOodJ

Working with a Database in Enterprise | 471

Now you need to check whether delete works. So, create a new product:

var productToDelete = new Product { Name = "Test PP 2", ManufacturerId =
1, Price = 9.99m };
var idToDelete = productsRepository.Create(productToDelete);

Check the current count of products in a repository:

var countBeforeDelete = productsRepository.Get().Count();

Now delete the product:

productsRepository.Delete(idToDelete);

Check the count once again, comparing it with the previous one:

var countAfter = productsRepository.Get().Count();

Console.WriteLine($"Before: {countBeforeDelete}, after: {countAfter}");

In order to run this example, comment all lines within static void
Main(string[] args) body except Examples.TestingDb.Demo.Run();
in Program.cs. The following output will get displayed:

Before: 2, after: 1

Note

You can find the code used for this example at https://packt.link/DGjf2.

Using an In-Memory provider has its limitations. Up next, you will learn another
alternative to testing code depending on the DbContext with fewer limitations.

SQLite Database Provider

The problem with in-memory providers is that you cannot run any SQL statements
on them. If you do, the code fails. Also, an in-memory provider is all about in-memory
data structures and has nothing to do with SQL. SQLite database provider is free from
those problems. The only issue it has is that SQLite is a dialect of SQL, so some raw
SQL queries of other providers might not work.

To try out SQLite, run the following command in the VS Code terminal:

dotnet add package Microsoft.EntityFrameworkCore.Sqlite

https://packt.link/DGjf2

472 | Entity Framework with SQL Server

The installed NuGet allows you to use SQLite provider when creating a DbContext
schema, like this:

var connection = new SqliteConnection("Filename=:memory:");

connection.Open();

var builder = new DbContextOptionsBuilder<FactoryDbContext>();

builder.UseSqlite(connection);

var options = builder.Options;

var db = new FactoryDbContext(options);

db.Database.EnsureCreated();

In the preceding snippet, you have created a SQL connection, specifying that an
in-memory SQLite database will be used. The Db.Database.EnsureCreated()
was needed because the database would not always be created using that connection
string. In order to run this example, comment all lines within static void
Main(string[] args) body except Examples.TestingDb.Demo.Run();
in Program.cs.

Note

You can find the code used for this example at https://packt.link/rW3JS.

If you were to create ProductsRepository and run the same code from the
InMemory database example, you would get an error: SQLite Error 19:
'FOREIGN KEY constraint failed'. This is due to a missing manufacturer
with an ID of 1 to which you are trying to link the new test products. This is a prime
example of why the EF in-memory provider is not that reliable.

In order to fix this, add the following just before creating a test product:

var manufacturer = new Manufacturer() { Id = 1 };

db.Manufacturers.Add(manufacturer);

db.SaveChanges();

https://packt.link/rW3JS

Working with a Database in Enterprise | 473

The only thing to remember is to clean up. After you are done using a database
context that was created using a SQL connection, do not forget to dispose of that
connection this way:

connection.Dispose();

At this point, you already know how to use DbContext in many different ways in
order to communicate with a database. However, a dependency on a third-party
library (EF Core) and unit testing maybe be tricky if all depends on a specific ORM. In
the next paragraph, you will learn how to escape such a dependency.

A Few Words on Repository

The Repository pattern works for simple CRUD applications because it can further
simplify database interactions. However, given you are using EF, it is already simple
enough to interact with a database and another layer of abstraction is not always
justified. After all, one of the key reasons why the Repository pattern caught so
much attention is that it allows you to escape database interactions. However, the
EF in-memory provider allows that too, so there is even less of a reason to use
a repository.

The generic repository pattern is a useful abstraction. It abstracts away database
interaction under a simple interface. However, for non-trivial scenarios, you are likely
to need your custom CRUD operations and then you would create a non-generic
repository. In fact, non-generic repositories are the recommended approach (given
you want to implement the pattern) because you rarely want all the CRUD methods
for all the entities. It is not rare to end up with as little as a single method on a
repository. If you use a generic repository, you could still make all methods virtual
and override them, but then you will end up overriding all the time or having methods
that you don't use. It is less than ideal.

The following section will explore a different pattern that strives to make simple,
optimal interactions per database operation—CQRS.

474 | Entity Framework with SQL Server

Query and Command Handlers Patterns

Command Query Responsibility Segregation (CQRS) is a pattern that aims to
separate reads from writes. Instead of one class for all CRUD operations, you will
have one class per CRUD method. On top of that, instead of one entity that fits all,
you will have request and query object models dedicated to those specific scenarios.
In CQRS, all database operations can be classified into two:

• Command: An operation that changes state (create, update, delete).

• Query: An operation that gets something, without affecting the state.

Figure 6.11: CQRS pattern as used by Martin Fowler

Note

The original source for this diagram can be found at
https://www.martinfowler.com/bliki/CQRS.html.

https://www.martinfowler.com/bliki/CQRS.html

Working with a Database in Enterprise | 475

In order to implement a command handler for creating a product, you would start by
defining the command. What does the product need? It needs a name and a price,
as well as a manufacturer. The ID for the create command is not needed (because
the database generates it) and the manufacturer property can be removed as well
because you will not make use of navigational properties. The name of a CQRS
operation is made up of three parts—operation name, entity name, and command
or query suffix. You are creating a product; therefore, the model will be called
CreateProductCommand:

public class CreateProductCommand

{

 public string Name { get; set; }

 public decimal Price { get; set; }

 public int ManufacturerId { get; set; }

}

Next, you will create a handler of this command. In the constructor, pass the
database context. In the Handle method, pass CreateProductCommand:

CreateProductQueryHandler.cs

public class CreateProductCommandHandler
{
 private readonly FactoryDbContext _context;

 public CreateProductCommandHandler(FactoryDbContext context)
 {
 _context = context;
 }

 public int Handle(CreateProductCommand command)
 {
 var product = new Product
 {
 ManufacturerId = command.ManufacturerId,
 Name = command.Name,

The complete code can be found here: https://packt.link/xhAVS.

Handlers are simple, single-method objects that implement all that is needed
to process a command or a query. In order to test things, you'll also create a
GetProductQueryHandler class:

public class GetProductQueryHandler

{

 private readonly FactoryDbContext _context;

 public GetProductQueryHandler(FactoryDbContext context)

 {

https://packt.link/xhAVS

476 | Entity Framework with SQL Server

 _context = context;

 }

 public Product Handle(int id)

 {

 return _context.Products.Find(id);

 }

}

The idea is almost the same, except that, in this case, querying is so simple that
the optimal model for it is a simple integer. In some scenarios, if you can predict
the complexity growing and the query becoming more complex, then even such an
integer could go to a model (in order to avoid a breaking change of query format
changing completely—from a primitive integer to an object).

In order to see whether the command and query work, you will be using an
in-memory database context once again. So, create a command to create a new
product, a handler to handle it, execute it, and print the results as follows:

var command = new CreateProductCommand { Name = "Test PP", Manufacturerid
= 1, Price = 9.99m };
var commandHandler = new CreateProductCommandHandler(db);

var newProductId = commandHandler.Handle(command);

Create a query to get the created product and a handler to execute the query:

var query = newProductId;

var queryHandler = new GetProductQueryHandler(db);

var product = queryHandler.Handle(query);

Console.WriteLine($"Id: {product.Id}, " +

 $"Name: {product.Name}, " +

 $"Price: {product.Price}");

In order to run this example, comment all lines within static void
Main(string[] args) body except Examples.Cqrs.Demo.Test(); in
Program.cs. The output will be displayed as follows:

Id: 1, Name: Test PP, Price: 9,99

Note

You can find the code used for this example at https://packt.link/Ij6J8.

https://packt.link/Ij6J8

Working with a Database in Enterprise | 477

You might have wondered why, after so many demos, the ProductId is still 1.
That's because it is an in-memory database—one that you create fresh for a new
test every time. Since you are starting with an empty database every time, the first
addition of a new entity to a database results in a new item with an ID of 1.

You might wonder if you made some changes to a database or added a column to it,
and how it would impact the rest of the codebase and the business logic. The next
section will detail these scenarios.

Separating the Database Model from the Business Logic (Domain) Model

Databases often change. However, should that impact the rest of the codebase?
Should the fact that a column type changed, or another column was added affect the
business logic? There is no straight answer to that. It all depends on the project scope,
the resources, and the team's maturity. However, if you are working on a medium or
a big project, you should consider segregating the database and domain completely.
This does not only mean that different logic should be placed in different projects, but
it also means that those projects should be decoupled from one another.

It is okay for a database layer to consume a domain layer, but it is not okay for the
domain layer to do the same. If you want a complete separation between the two,
you will have to introduce an anti-corruption layer. It is a concept that says not
to consume foreign models and instead map them as soon as they hit the public
component of that layer. The idea is that all interfaces should be domain-specific
(that is, work with domain models). However, for a database communication
implementation, internally, you will be working with database entities instead
of domain models. This requires mapping one to another (when taking input or
returning output).

In cases where database entities change completely, the domain-specific interface
will remain the same. Only the mapping will change, which will prevent the database
from impacting anything else. It is not an easy thing to grasp and implement for a
beginner. It is recommended that you ignore that for now; your personal project
scope is not worth the effort and you might not see any benefit.

This concludes the theoretical portion of this section. In the following section, you will
put this into practice with an activity.

478 | Entity Framework with SQL Server

Activity 6.01: Tracking System for Trucks Dispatched

A logistics company has hired you to keep track of dispatched trucks. A single
dispatch includes the current location of a truck, the truck's ID, and the driver's ID.
In this activity, you will create a database for dispatched trucks, seed it with a few
dispatches, and prove it works by getting all possible data from it.

You will create two classes (Truck and Person), which consist of the
following objects:

• Truck: Id, Brand, Model, YearOfMaking

• Person: Id, Name, DoB

All tables are stored in the TruckLogistics database, in the
TruckLogistics schema.

Perform the following steps to complete this activity:

1. Create a Person class.

2. Create a Truck class.

3. Create a TruckDispatch class.

4. Create a TruckDispatchDbContext schema with three tables.

5. Create a connection string (ideally from environment variables).

6. Add a database migration.

7. Generate a database from the migration.

8. Connect to a database.

9. Seed the database with the initial data.

10. Get all data from the database.

11. Print the results.

12. Dispose of the TruckDispatchesDbContext schema (that is, disconnect).

After completing these steps correctly, you should see the following output:

Dispatch: 1 1,1,1 2021-11-02 21:45:42

Driver: Stephen King 2021-07-25 21:45:42

Truck: Scania R 500 LA6x2HHA 2009

Working with a Database in Enterprise | 479

Note

In order to run this activity, comment all lines within static void
Main(string[] args) body except Activities.Activity01.
Demo.Run(); in Program.cs.

The database should look like this:

Figure 6.12: Generated TruckLogistics database (simplified for brevity)

480 | Entity Framework with SQL Server

And the following migration files (similar, not exact) will be created:

Figure 6.13: Migration files created for the solution

Note

The solution to this activity can be found at https://packt.link/qclbF.

With the successful execution of this activity, you should now have solid know-how of
how EF is used for rapidly developing solutions integrated with a database.

Summary
In this chapter, you covered the benefits of an ORM and how to talk with a
database from C# using the EF Core 6. EF allowed you to abstract a database
using DbContext and include abstractions to tables, DbSet.

You experienced the simplicity of consuming a database using EF, which felt almost
the same as writing LINQ queries. The only difference was the initial setup of a
connection using a database context. You learned the client input should not be
trusted, but ORMs allow you to consume queries with confidence because they take
security into consideration and protect you from SQL injection. However, the way
you connect to a database (that is, the connection string) has to be secured, and for
that reason, you must store it just like any other secret and not hardcode it. You also
studied the most common pitfalls when working with EF and tools that could help
avoid those pitfalls. This chapter has given you enough skills to create and consume
databases using EF.

In the next chapter, you will be focusing more on web applications—what they are,
and how to build them.

https://packt.link/qclbF

Overview

There are many types of applications in use nowadays and web apps top
the list of the most used ones. In this chapter, you will be introduced to ASP.
NET, a web framework built with C# and the .NET runtime, made to create
web apps with ease. You will also learn the anatomy of a basic ASP.NET
application, web application development approaches such as server-side
rendering and single-page applications, and how C# helps implement these
approaches to build safe, performant, and scalable applications.

Creating Modern Web

Applications with ASP.NET

7

484 | Creating Modern Web Applications with ASP.NET

Introduction
In Chapter 1, Hello C#, you learned that .NET is what brings C# to life, as it contains
both a Software Development Kit (SDK) used to build your code and a runtime that
executes the code. In this chapter, you will learn about ASP.NET, which is an open-
source and cross-platform framework embedded within the .NET runtime. It is used
for building applications for both frontend and backend applications for web, mobile,
and IoT devices.

It is a complete toolbox for these kinds of development, as it provides several built-in
features, such as lightweight and customizable HTTP pipelines, dependency injection,
and support for modern hosting technologies, such as containers, web UI pages,
routing, and APIs. A well-known example is Stack Overflow; its architecture is built
entirely on top of ASP.NET.

The focus of this chapter is to acquaint you with the fundamentals of ASP.NET and
to give you both an introduction and an end-to-end overview of web application
development with Razor Pages, a built-in toolbox included in ASP.NET to build
web apps.

Anatomy of an ASP.NET Web App
You'll begin this chapter by creating a new Razor Pages application with ASP.NET. It is
just one of the various types of apps that can be created with ASP.NET but will be an
effective starting point as it shares and showcases a lot of commonalities with other
web application types that can be built with the framework.

1. To create a new Razor Pages app, enter the following commands in the CLI:

dotnet new razor -n ToDoListApp
dotnet new sln -n ToDoList
dotnet sln add ./ToDoListApp

Here you are creating a to-do list application with Razor Pages. Once
the preceding command is executed, you will see a folder with the
following structure:

/ToDoListApp
|-- /bin
|-- /obj
|-- /Pages

Anatomy of an ASP.NET Web App | 485

|-- /Properties
|-- /wwwroot
|-- appsettings.json
|-- appsettings.Development.json
|-- Program.cs

|-- ToDoListApp.csproj

|ToDoList.sln

2. Open the root folder in Visual Studio Code.

There are some files inside these folders that will be covered in the upcoming
sections. For now, consider this structure:

• bin is the folder where the final binaries go after the application is built.

• obj is the folder where the compiler places intermediate outputs during the
build process.

• Pages is the folder where the application Razor Pages will be placed.

• Properties is a folder containing the launchSettings.json file, a
file where the run configurations are placed. In this file, you can define some
configuration for local run i.e., environment variables and application ports.

• wwwroot is the folder where all the static files of the application go.

• appsettings.json is a configuration file.

• appsettings.Development.json is a configuration file for the
Development environment.

• Program.cs is the program class that you have seen since Chapter 1, Hello C#.
It is the entry point of an application.

Now that you know that in .NET 6.0, it is the Program.cs file, created at the root
of the folder, that brings a WebApplication to life, you can begin to explore
Program.cs in greater depth in the next section.

486 | Creating Modern Web Applications with ASP.NET

Program.cs and the WebApplication

As mentioned earlier, Program.cs is the entry point of any C# application. In this
section, you will see how a typical Program class is structured for an ASP.NET app.
Consider the following example of Program.cs, which describes a very simple ASP.
NET application:

Program.cs

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
builder.Services.AddRazorPages();

var app = builder.Build();

// Configure the HTTP request pipeline.
if (!app.Environment.IsDevelopment())
{
app.UseExceptionHandler("/Error");

// The default HSTS value is 30 days. You may want to change this for production
scenarios, see https://aka.ms/aspnetcore-hsts.

The complete code can be found here: https://packt.link/tX9iK.

The first thing done here is the creation of a WebApplicationBuilder object.
This object contains everything that's needed to bootstrap a basic Web Application
in ASP.NET—Configuration, Logging, DI, and Service Registration, Middlewares,
and other Host configurations. This Host is the one responsible for the lifetime
management of a web application; they set up a web server and a basic HTTP pipeline
to process HTTP requests.

As you can see, it is quite impressive how, in a few lines of code, so many things can
be done that enable you to run a well-structured web application. ASP.NET does
all of that so that you can focus on providing value through the functionalities you
will build.

Note

Bootstrap is a CSS library for the beautification of web content. You can
know more about it at the official website.

https://packt.link/tX9iK

Anatomy of an ASP.NET Web App | 487

Middlewares

Think of middleware as small pieces of applications that connect to each other
to form a pipeline for handling HTTP requests and responses. Each piece is a
component that can do some work either before or after another component is
executed on the pipeline. They are also linked to each other through a next() call,
as shown in Figure 7.1:

Figure 7.1: The Middleware for an HTTP pipeline

Middleware is a whole universe unto itself. The following list defines the salient
features for building a web application:

• The order in which the middleware is placed matters. As they are chained one
after another, the placement of each component impacts the way the pipeline
is processed.

• The before logic, as shown in Figure 7.1, is executed until the endpoint is finally
reached. Once the endpoint is reached, the pipeline continues to process the
response using the after logic.

• next() is a method call that will execute the next middleware in the pipeline,
before executing the after logic of the current middleware.

In ASP.NET applications, middleware can be defined in the Program.cs file after the
WebApplicationBuilder calls the Build method with a WebApplication?
object as a result of this operation.

The application you created in the Program.cs and the WebApplication section, already
contains a set of middlewares placed for new boilerplate Razor Pages applications
that will be called sequentially when an HTTP request arrives.

488 | Creating Modern Web Applications with ASP.NET

This is easily configurable because the WebApplication object contains a generic
UseMiddleware<T> method. This method allows you to create middleware to
embed into the HTTP pipeline for requests and responses. When used within the
Configure method, each time the application receives an incoming request, this
request will go through all the middleware in the order the requests are placed
within the Configure method. By default, ASP.NET provides basic error handling,
autoredirection to HTTPS, and serves static files, along with some basic routing
and authorization.

However, you might notice in your Program.cs file, of the Program.cs and the
WebApplication section, there are no UseMiddleware<> calls. That's because
you can write extension methods to give a more concise name and readability to
the code, and the ASP.NET framework already does it by default for some built-in
middlewares. For instance, consider the following example:

using Microsoft.AspNetCore.HttpsPolicy;

public static class HttpsPolicyBuilderExtensions

{

public static IApplicationBuilder UseHttpsRedirection(this WebApplication
app)
 {

 app.UseMiddleware<HttpsRedirectionMiddleware>();

 return app;

}

}

Here, a sample of the built-in UseHttpsRedirection extension method is used
for enabling a redirect middleware.

Logging

Logging might be understood as the simple process of writing everything that is done
by an application to an output. This output might be the console application, a file,
or even a third-party logging monitor application, such as the ELK Stack or Grafana.
Logging has an important place in assimilating the behavior of an application,
especially with regard to error tracing. This makes it an important concept to learn.

One thing that enables ASP.NET to be an effective platform for enterprise applications
is its modularity. Since it is built on top of abstractions, any new implementation
can be easily done without loading too much into the framework. The logging
abstractions are some of these.

Anatomy of an ASP.NET Web App | 489

By default, the WebApplication object created in Program.cs adds some
logging providers on top of these logging abstractions, which are Console, Debug,
EventSource, and EventLog. The latter—EventLog—is an advanced feature
specific to the Windows OS only. The focus here will be the Console logging
provider. As the name suggests, this provider will output all the logged information to
your application console. You'll learn more about it later in this section.

As logs basically write everything your application does, you might wonder whether
these logs will end up being huge, especially for large-scale apps. They might be,
but an important thing while writing application logs is to grasp the severity of the
log. There might be some information that is crucial to log, such as an unexpected
exception. There might also be information that you would only like to log to a
development environment, to know some behaviors better. That said, a log in .NET
has seven possible log levels, which are:

• Trace = 0

• Debug = 1

• Information = 2

• Warning = 3

• Error = 4

• Critical = 5

• None = 6

Which level is output to the provider is defined via variables set either as environment
variables or via the appSettings.json file in the Logging:LogLevel section,
as in the following example:

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "ToDoListApp": "Warning",

 "ToDoListApp.Pages": "Information"

 }

 }

}

490 | Creating Modern Web Applications with ASP.NET

In this file, there are log categories, which are either the Default category or part
of the namespace of the type that wants to set the log. That is exactly why these
namespaces exist. For instance, you could set two different levels of logging for files
inside the namespace.

In the preceding example configuration, the entire ToDoListApp is a set namespace
to write logs only with LogLevel equal to or higher than Warning. You are also
specifying that, for the ToDoListApp.Pages category/ namespace, the application
will write all logs with a level equal to or higher than Information. This means that
the changes on a more specific namespace override the settings that were set at a
higher level.

This section showed you how to configure log levels for an application. With
this knowledge, you can now grasp the concept of DI, as discussed in the
following section.

Dependency Injection

Dependency Injection (DI) is a technique supported natively by the ASP.
NET framework. It is a form of achieving a famous concept in object-oriented
programming called Inversion of Control (IoC).

Any component that an object requires to function can be termed a dependency. In
the case of a class, this might refer to parameters that need to be constructed. In the
case of a method, it might be the method that parameters need for the execution.
Using IoC with dependencies means delegating the responsibility of creating a class
to the framework, instead of doing everything manually.

In Chapter 2, Building Quality Object-Oriented Code, you learned about interfaces.
Interfaces are basically a common form of establishing a contract. They allow you to
focus on what the outcome is of a call, rather than how it is executed. When you use
IoC, your dependencies can now be interfaces instead of concrete classes. This allows
your classes or methods to focus on the contracts established by these interfaces,
instead of implementation details. This brings the following advantages:

• You can easily replace implementations without affecting any class that depends
on the contracts.

• It decouples the application boundaries and modules, as the contracts usually do
not need any hardened dependencies.

• It makes testing easier, allowing you to create these explicit dependencies as
mocks, or fakes, and focus on behavior instead of real implementation details.

Anatomy of an ASP.NET Web App | 491

Imagine now that to create the middleware of your application, you need to construct
each of their dependencies, and you have a lot of middleware chained to each other
on the constructor. Clearly, this would be a cumbersome process. Also, testing any
of this middleware would be a tedious process, as you would need to rely on every
single concrete implementation to create an object.

By injecting dependencies, you tell the compiler how to construct a class that has its
dependencies declared on the constructor. The DI mechanism does this at runtime.
This is equivalent to telling the compiler that whenever it finds a dependency of a
certain type, it should resolve it using the appropriate class instance.

ASP.NET provides a native DI container, which stores the information pertaining to
how a type should be resolved. You'll next learn how to store this information in
the container.

In the Program.cs file, you'll see the call builder.Services.
AddRazorPages(). The Services property is of type IServiceCollection
and it holds the entire set of dependencies—also known as services—that is injected
into the container. A lot of the required dependencies for an ASP.NET application
to run are already injected in the WebApplication.CreateBuilder(args)
method called at the top of the Program.cs file. This is true, for instance, for some
native logging dependencies as you will see in the next exercise.

Exercise 7.01: Creating Custom Logging Middleware

In this exercise, you will create custom logging middleware that will output the details
and the duration of an HTTP request to the console. After creating it, you will place it
in the HTTP pipeline so that it is called by every request your application receives. The
purpose is to give you a first practical introduction to the concepts of middleware,
logging, and DI.

The following steps will help you complete this exercise:

1. Create a new folder called Middlewares.

2. Inside this folder, create a new class named RequestLoggingMiddleware.

3. Create a new private readonly field named RequestDelegate and initialize
this field inside the constructor:

private readonly RequestDelegate _next;

public RequestLoggingMiddleware(RequestDelegate next)

{

 _next = next;

}

492 | Creating Modern Web Applications with ASP.NET

This is the reference that ASP.NET gathers as the next middleware to be
executed on the HTTP pipeline. By initializing this field, you can call the next
registered middleware.

4. Add a using statement to the System.Diagnostics namespace so that a
special class named Stopwatch can be added It will be used to measure the
request time length:

using System.Diagnostics;

5. Create a private readonly ILogger field. The ILogger interface is the
default interface provided by .NET to manually log information.

6. After that, place a second parameter inside the constructor for the
ILoggerFactory type. This interface is another one provided by .NET
that allows you to create ILogger objects.

7. Use the CreateLogger<T> method from this factory to create a logger object:

private readonly ILogger _logger;

private readonly RequestDelegate _next;

public RequestLoggingMiddleware(RequestDelegate next, ILoggerFactory
loggerFactory)
{

 _next = next;

 _logger = loggerFactory.CreateLogger<RequestLoggingMiddleware>();

}

Here, T is a generic parameter that refers to a type, which is the log category, as
seen in the Logging section. In this case, the category will be the type of the class
where the logging will be done that is, the RequestLoggingMiddleware
class.

8. Once the fields have been initialized, create a new method with the
following signature:

public async Task InvokeAsync(HttpContext context) { }

Anatomy of an ASP.NET Web App | 493

9. Inside this method, declare a variable called Stopwatch and assign the
Stopwatch.StartNew() value to it:

var stopwatch = Stopwatch.StartNew();

The Stopwatch class is a helper that measures the execution time from the
moment the .StartNew() method is called.

10. After this variable, write a try-catch block with code to call the next request
as well as a call to the .Stop() method from the stopwatch to measure the
elapsed time that the _next() call took:

using System.Diagnostics;

namespace ToDoListApp.Middlewares;

public class RequestLoggingMiddleware

{

 private readonly ILogger _logger;

 private readonly RequestDelegate _next;

 public RequestLoggingMiddleware(RequestDelegate next,
ILoggerFactory loggerFactory)
 {

 _next = next;

 _logger = loggerFactory.
CreateLogger<RequestLoggingMiddleware>();
 }

You can also deal with a possible exception here. So, it is better to wrap these
two calls inside a try-catch method.

11. In the Program.cs file, call the custom middleware by placing the declaration
as follows:

var app = builder.Build();

// Configure the HTTP request pipeline.
app.UseMiddleware<RequestLoggingMiddleware>();

Write it in the line right below where the app variable is assigned.

494 | Creating Modern Web Applications with ASP.NET

12. Finally, in the Program.cs file, place a using statement to ToDoListApp.
Middlewares:

Program.cs

using ToDoListApp.Middlewares;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
builder.Services.AddRazorPages();

var app = builder.Build();

// Configure the HTTP request pipeline.
app.UseMiddleware<RequestLoggingMiddleware>();

if (!app.Environment.IsDevelopment())
{
 app.UseExceptionHandler("/Error");

The complete code can be found here: https://packt.link/tX9iK.

13. To see the application running on your web browser and its output in the Visual
Studio Code, type the following command at the address bar:

localhost:####

Here #### represents the port number. This would be different for
different systems.

14. After pressing enter, the following screen gets displayed:

Figure 7.2: Application running on the browser

https://packt.link/tX9iK

Anatomy of an ASP.NET Web App | 495

15. Perform Step 13 each time after executing the exercise/ activity in VS Code.

16. Press Control+C inside the VS code terminal to break the task before
executing another exercise/ activity.

17. After executing the application in your browser, you'll see a similar output in the
Visual Studio Code terminal:

info: ToDoListApp.Middlewares.RequestLoggingMiddleware[0]

 HTTP GET request for path / with status 200 executed in 301 ms

info: ToDoListApp.Middlewares.RequestLoggingMiddleware[0]

 HTTP GET request for path /lib/bootstrap/dist/css/bootstrap.
min.css with status 200 executed in 18 ms
info: ToDoListApp.Middlewares.RequestLoggingMiddleware[0]

 HTTP GET request for path /css/site.css with status 200
executed in 1 ms
info: ToDoListApp.Middlewares.RequestLoggingMiddleware[0]

 HTTP GET request for path /favicon.ico with status 200 executed
in 1 ms

You will observe that the output on the console logs messages with an elapsed time
of HTTP requests coming in the middleware pipelines. Since you've declared it with
your methods, it should take the execution time considering all the pipeline chains.

In this exercise, you created your first middleware—the
RequestLoggingMiddleware. This middleware measures the execution
time of an HTTP request, in your HTTP pipeline. By placing it right before all other
middlewares, you will be able to measure the entire execution time of a request that
goes through the entire middleware pipeline.

Note

You can find the code used for this exercise at https://packt.link/i04Iq.

Now imagine you have 10 to 20 middleware for the HTTP pipeline, each has its own
dependencies, and you must manually instantiate each middleware. IoC comes in
handy in such cases by delegating to ASP.NET the instantiation of these classes, as
well as injecting their dependencies. You have already seen how to create custom
middleware that uses the native ASP.NET logging mechanism with DI.

https://packt.link/i04Iq

496 | Creating Modern Web Applications with ASP.NET

In ASP.NET, logging and DI are powerful mechanisms that allow you to create very
detailed logs for an application. This is possible, as you've seen, through logger
injection via constructors. For these loggers, you can create an object of a log
category in two ways:

• As shown in the exercise, one way is the injection of ILoggerFactory.
You could call the CreateLogger(categoryName) method,
which receives a string as an argument. You could also call the
CreateLogger<CategoryType>() method, which receives a generic type.
This approach is preferable as it sets the category for the logger as the full
name of the type (including the namespace).

• Another way would be through the injection of ILogger<CategoryType>.
In this case, the category type is usually the type of the class where you
are injecting the logger, as seen in the previous exercise. In the previous
exercise, you could replace the injection of ILoggerFactory with
ILogger<RequestLoggingMiddleware> and assign this new injected
dependency directly to the ILogger private field as follows:

private readonly ILogger _logger;

private readonly RequestDelegate _next;

public RequestLoggingMiddleware(RequestDelegate next, ILogger<
RequestLoggingMiddleware> logger)
{

 _next = next;

 _logger = logger;

}

You now know that logging and DI are powerful mechanisms that allow you to create
very detailed logs for an application. Before moving to Razor pages, it is important
to learn about the life cycle of an object within an application. This is called the
dependency lifetimes.

Dependency Lifetimes

Before moving on to the next and main topic of this chapter, it is important to talk
about dependency lifetimes. All the dependencies used in the previous exercise
were injected via the constructor. But the resolution of these dependencies was only
possible because ASP.NET registers these dependencies beforehand, as mentioned
in the Program.cs section. In the following code, you can see an example of code
built into ASP.NET that deals with the logging dependency registration, by adding the
ILoggerFactory dependency to the services container:

Anatomy of an ASP.NET Web App | 497

LoggingServiceCollectionExtensions.cs

public static IServiceCollection AddLogging(this IServiceCollection services,
Action<ILoggingBuilder> configure)
{T
if (services == null)
 {
 throw new ArgumentNullException(nameof(services));
 }

 services.AddOptions();

 services.TryAdd(ServiceDescriptor.Singleton<ILoggerFactory, LoggerFactory>());

services.TryAdd(ServiceDescriptor.Singleton(typeof(ILogger<>), typeof(Logger<>)));

services.TryAddEnumerable(ServiceDescriptor.
Singleton<IConfigureOptions<LoggerFilterOptions>>(new
DefaultLoggerLevelConfigureOptions(LogLevel.Information)));

configure(new LoggingBuilder(services));

return services;
}

The complete code can be found here: https://packt.link/g4JPp.

Note

The preceding code is an example from a standard library and built into
ASP.NET that deals with the logging dependency registration.

A lot is going on here, but the two important things to consider are as follows:

• The method here is TryAdd, which registers a dependency on the DI container.

• The ServiceDescriptor.Singleton method is what defines a
dependency lifetime. This is the final important concept of the Dependency
Injection section of this chapter.

A dependency lifetime describes the life cycle of an object within an application. ASP.
NET has three default lifetimes that can be used to register a dependency:

• Transient: Objects with this lifetime are created every time they are requested
and disposed of after use. This is effective for stateless dependencies, which
are dependencies that do not need to keep the state when they are called. For
instance, if you need to connect to an HTTP API to request some information,
you can register a dependency with this lifetime, since HTTP requests
are stateless.

https://packt.link/g4JPp

498 | Creating Modern Web Applications with ASP.NET

• Scoped: Objects with a scoped lifetime are created once for each client
connection. For instance, in an HTTP request, a scoped dependency will have
the same instance for the entire request, no matter how many times it is called.
This dependency carries some state around for a certain amount of time. At the
end of the connection, the dependency is disposed of.

• Singleton: Objects with a singleton lifetime are created once for an entire
application's lifetime. Once they are requested, their instance will be carried
on while the application is running. This kind of lifetime should be considered
carefully as it might consume a lot of memory.

As mentioned before, the manual registration of these dependencies can be done
in the ConfigureServices method located in the Startup class. Every new
dependency that is not provided and automatically registered by ASP.NET should be
manually registered there and knowing about these lifetimes is important as they
allow the application to manage the dependencies in different ways.

You have learned that the resolution of these dependencies was only possible
because ASP.NET registers three default lifetimes that can be used to register a
dependency. You will now move on to Razor pages that enable the construction of
page-based applications with all the capabilities provided and powered by ASP.NET.

Razor Pages

Now that you have covered the main aspects pertaining to an ASP.NET application,
you'll continue to build the application that you started at the beginning of the
chapter. The goal here is to build a to-do list application, where you can easily create
and manage a list of tasks on a Kanban-style board.

Earlier sections have referenced Razor Pages, but what exactly is it? Razor Pages is
a framework that enables the construction of page-based applications with all the
capabilities provided and powered by ASP.NET. It was created to enable the building
of dynamic data-driven applications with a clear separation of concerns that is, having
each method and class with separate but complementary responsibilities.

Basic Razor Syntax

Razor Pages uses Razor syntax, a syntax powered by Microsoft that enables a page
to have static HTML/ CSS/ JS, C# code, and custom tag helpers, which are reusable
components that enable the rendering of HTML pieces in pages.

Anatomy of an ASP.NET Web App | 499

If you look at the .cshtml files generated by the dotnet new command that you
ran in the first exercise, you will notice a lot of HTML code and, inside this code, some
methods, and variables with a @ prefix. In Razor, as soon as you write this symbol, the
compiler detects that some C# code will be written. You're already aware that HTML
is a markup language used to build web pages. Razor uses it along with C# to create
powerful markup combined with server-rendered code.

If you want to place a block of code, it can be done within brackets like:

@{ … }

Inside this block, you are allowed to do basically everything you can do with C#
syntax, from local variable declarations to loops and more. If you want to put a
static @, you have to escape it by placing two @ symbols for it to be rendered in
HTML. That happens, for instance, in email IDs, such as james@@bond.com.

File Structure

Razor Pages end with the .cshtml extension and might have another file, popularly
called the code-behind file, which has the same name but with the .cshtml.cs
extension. If you go to the root folder of your application and navigate to the Pages
folder, you will see the following structure generated upon the creation of a page:

|-- /Pages

|---- /Shared
|------ _Layout.cshtml
|------ _ValidationScriptsPartial.cshtml
|---- _ViewImports.cshtml
|---- _ViewStart.cshtml

|---- Error.cshtml

|---- Error.cshtml.cs

|---- Index.cshtml

|---- Index.cshtml.cs

|---- Privacy.cshtml

|---- Privacy.cshtml.cs

The Index, Privacy, and Error pages are automatically generated after project
creation. Briefly look at the other files here.

500 | Creating Modern Web Applications with ASP.NET

The /Shared folder contains a shared Layout page that is used by default in the
application. This page contains some shared sections, such as navbars, headers,
footers, and metadata, that repeat in almost every application page:

_Layout.cshtml

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - ToDoListApp</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
 <link rel="stylesheet" href="~/css/site.css" asp-append-version="true" />
 <link rel="stylesheet" href="~/ToDoListApp.styles.css" asp-append-
version="true" />
</head>
<body>
 <header>
 <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-
white border-bottom box-shadow mb-3">
 <div class="container">
 ToDoListApp</
a>

The complete code can be found here: https://packt.link/2Hb8r.

Keeping these shared sections in a single file makes reusability and maintainability
easier. If you look at this Layout page generated in your boilerplate, there are some
things worth highlighting:

• By default, a Razor Pages app is generated using Twitter Bootstrap for design—a
library used for writing beautiful, simple, and responsive websites—and jQuery
for basic scripting. This can be customized for each application, as those are just
static files.

• There is a special RenderBody() method that indicates where the generated
HTML for the application pages will be placed.

• Another method, named RenderSection(), is useful for rendering
predefined sections per page. It is useful, for instance, when some static file,
such as an image, script, or stylesheet, is needed only for some pages. In this
way, you can place these files inside specific sections only in the pages where
they are needed and call the RenderSection method at the level of the HTML
you want them to be rendered. This is done on the _Layout.cshtml page.

https://packt.link/2Hb8r

Anatomy of an ASP.NET Web App | 501

The _ViewImports.cshtml file is another important file; it enables the application
pages to share common directives and reduces effort by placing these directives
on every page. It is where all the global using namespaces, tag helpers, and global
Pages namespaces are defined. Some of the directives this file supports are
as follows:

• @namespace: Used to set the base namespace for Pages.

• @inject: Used to place DI within the page.

• @model: Includes PageModel, a class that will determine what information the
page will handle.

• @using: Similar to the .cs files, this directive allows you to fully qualify
namespaces at the top level of a Razor page to avoid repeating these
namespaces throughout the code.

The _ViewStart.cshtml file is used to place code that will be executed at the
start of each page call. On this page, you define the Layout property while setting
the Layout page.

Now that you are familiar with the basics of Razor Pages, it is time to start working on
your application and dive into some more interesting topics. You will start by creating
the basic structure of the to-do list application.

Exercise 7.02: Creating a Kanban Board with Razor

The goal of this exercise will be to start the to-do application creation with its first
component—a Kanban board. This board is used for controlling workflows, where
people can divide their work into cards and move these cards between different
statuses, such as To Do, Doing, and Done. A popular application that uses this is
Trello. The same ToDoListApp project created in the Exercise 7.01 will be used
throughout this chapter to learn new concepts and incrementally evolve the
application, including in this exercise. Perform the following steps:

1. Navigate to the root folder of your application and create a folder
named Models.

2. Inside the Models folder, create a new enum called ETaskStatus with the
ToDo, Doing, and Done options:

public enum ETaskStatus
{
ToDo,

Doing,

502 | Creating Modern Web Applications with ASP.NET

Done

}

3. Again, in the Models folder, create a new class called ToDoTask that will be
used to create a new task for your to-do list with the following properties:

namespace ToDoListApp.Models;

public class ToDoTask

{

 public Guid Id { get; set; }

 public DateTime CreatedAt { get; set; }

 public DateTime? DueTo { get; set; }

 public string Title { get; set; }

 public string? Description { get; set; }

 public ETaskStatus Status { get; set; }

}

4. Create two constructors as shown here for the ToDoTask class:

ToDoTask.cs

namespace ToDoListApp.Models;

public class ToDoTask
{
 public ToDoTask()
 {
 CreatedAt = DateTime.UtcNow;
 Id = Guid.NewGuid();
 }

 public ToDoTask(string title, ETaskStatus status) : this()
 {
 Title = title;
 Status = status;
 }

The complete code can be found here: https://packt.link/nFk00.

Create one with no parameters to set the default values for the Id and
CreatedAt properties, and the other with lowercase-named parameters for
the preceding class to initialize the Title and Status properties.

The Pages/ Index.cshtml is automatically generated in your application
boilerplate. It is this page that will be the entry point of your application.

https://packt.link/nFk00

Anatomy of an ASP.NET Web App | 503

5. Now, customize it by editing the file Pages/ Index.cshtml.cs and replacing
the boilerplate code with the code shown as follows:

Index.cshtml.cs

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc.RazorPages;
using ToDoListApp.Models;

namespace ToDoListApp.Pages;

public class IndexModel : PageModel
{
 public IList<ToDoTask> Tasks { get; set; } = new List<ToDoTask>();

 public IndexModel()
 {
 }

The complete code can be found here: https://packt.link/h8mni.

Basically, this code fills your model. Here, the OnGet method of PageModel is
used to tell the application that when the page is loaded, it should fill the model
with the properties assigned to Task

6. Replace the code within Pages/ Index.cshtml with the code shown as
follows in order to create your Kanban board with the task cards:

Index.cshtml

@page
@using ToDoListApp.Models
@model IndexModel
@{
 ViewData["Title"] = "My To Do List";
}

<div class="text-center">
 <h1 class="display-4">@ViewData["Title"]</h1>
 <div class="row">
 <div class="col-4">
 <div class="card bg-light">
 <div class="card-body">
 <h6 class="card-title text-uppercase text-truncate py-
2">To Do</h6>
 <div class="border border-light">

The complete code can be found here: https://packt.link/IhELU.

This page is your view. It shares the properties from the Pages/ Index.
cshtml.cs class (also called the code-behind class). When you assign a value
to the Tasks property in the code-behind class, it becomes visible to the view.
With this property, you can populate the HTML from the page.

https://packt.link/h8mni
https://packt.link/IhELU

504 | Creating Modern Web Applications with ASP.NET

7. Now, run your application with the dotnet run command. You will see the
following on the Index page when the application is loaded on the browser:

Figure 7.3: Displaying your first application, the Kanban board

Notice that, for now, the application does not contain any logic. What you built here is
simply a UI powered by the PageModel data.

Note

You can find the code used for this exercise at https://packt.link/1PRdq.

As you saw in Exercise 7.02, for every page created there are two main types of files
which are a .cshtml and a .cshtml.cs file. These files form the foundations of
each Razor page. The next section will detail about this difference in the filename
suffix and how these two files complement each other.

PageModel

In the Index.cshtml.cs file that you created in Exercise 7.02, you might have
noticed that the class inside it inherits from the PageModel class. Having this code-
behind class provides some advantages—such as a clear separation of concerns
between the client and the server—and this makes maintenance and development
easier. It also enables you to create both unit and integration tests for the logic placed
on the server. You will learn more about testing in Chapter 10, Automated Testing.

https://packt.link/1PRdq

Anatomy of an ASP.NET Web App | 505

A PageModel may contain some properties that are bound to the view. In Exercise
7.02, the IndexModel page has a property that is a List<ToDoTask>. This
property is then populated when the page loads on the OnGet() method. So how
does populating happen? The next section will discuss the life cycle of populating
properties and using them within PageModel.

The Life Cycle with Page Handlers

Handler methods are a core feature of Razor Pages. These methods are automatically
executed when the server receives a request from the page. In Exercise 7.02,
for instance, the OnGet method will be executed each time the page receives a
GET request.

By convention, the handler methods will answer according to the HTTP verb of the
request. So, for instance, if you wanted something to be executed after a POST
request, you should have an OnPost method. Also, after a PUT request, you should
have an OnPut method. Each of these methods has an asynchronous equivalent,
which changes the method's signature; an Async suffix is added to the method
name, and it returns a Task property instead of void. This also makes the await
functionality available for the method.

There is, however, one tricky scenario in which you may want a form to perform
multiple actions with the same HTTP verb. In that case, you could perform some
confusing logic on the backend to handle different inputs. Razor Pages, however,
provides you with a functionality right out of the box called tag helpers, which
allows you to create and render HTML elements on the server before placing them
on the client. The anchor tag helper has an attribute called asp-page-handler
that allows you to specify the name of the handler being called on the server. Tag
helpers will be discussed in the next section, but for now, consider the following code
as an example. The code contains an HTML form containing two submit buttons, to
perform two different actions—one for creating an order, and the other for canceling
an order:

<form method="post">

 <button asp-page-handler="PlaceOrder">Place Order</button>

 <button asp-page-handler="CancelOrder">Cancel Order</button>

</form>

506 | Creating Modern Web Applications with ASP.NET

On the server side, you only need to have two handlers, one for each action, as
shown in the following code:

public async Task<IActionResult> OnPostPlaceOrderAsync()

{

 // …

}

public async Task<IActionResult> OnPostCancelOrderAsync()

{

 // …

}

Here, the code behind the page matches the value of the form method and the
asp-page-handler tag on the .cshtml file to the method name on the code-
behind file. That way, you can have multiple actions for the same HTTP verb in the
same form.

A final note on this subject is that in this case, the method name on the server should
be written as:

On + {VERB} + {HANDLER}

This is written with or without the Async suffix. In the previous example, the
OnPostPlaceOrderAsync method is the PlaceOrder handler for the
PlaceOrder button, and OnPostCancelOrderAsync is the handler for the
CancelOrder button.

Rendering Reusable Static Code with Tag Helpers

One thing you might have noticed is that the HTML written previously is lengthy. You
created Kanban cards, lists, and a board to wrap it all. If you take a closer look at the
code, it has the same pattern repeated all the way through. That raises one major
problem, maintenance. It is hard to imagine having to handle, maintain, and evolve all
this plain text.

Fortunately, tag helpers can be immensely useful in this regard. They are basically
components that render static HTML code. ASP.NET has a set of built-in tag helpers
with custom server-side attributes, such as anchors, forms, and images. Tag helpers
are a core feature that helps make advanced concepts easy to handle, such as model
binding, which will be discussed a little further ahead.

Anatomy of an ASP.NET Web App | 507

Besides the fact that they add rendering capabilities to built-in HTML tags, they are
also an impressive way to achieve reusability on static and repetitive code. In the next
exercise, you will learn how to create a customized tag helper.

Exercise 7.03: Creating Reusable Components with Tag Helpers

In this exercise, you are going to improve upon your work in the previous one. The
improvement here will be to simplify the HTML code by moving part of this code that
could be reused to custom tag helpers.

To do so, perform the following steps:

1. Open the _ViewImports.cshtml file, which was created with
your application.

2. Add the following lines to the end with the content to define custom tag helpers
@addTagHelper directive:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

@addTagHelper *, ToDoListApp

In the preceding code, you added all the custom tag helpers that exist within this
namespace using the asterisk (*).

3. Now, create a new folder under the project's root (ToDoApp)
called TagHelpers.

4. Create a new class inside this folder called KanbanListTagHelper.cs.

5. Make this class inherit from the TagHelper class:

namespace ToDoListApp.TagHelpers;

6. This inheritance is what allows ASP.NET to identify both built-in and custom
tag helpers.

7. Now place a using statement for the Microsoft.AspNetCore.Razor.
TagHelpers namespace:

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace ToDoListApp.TagHelpers;

public class KanbanListTagHelper : TagHelper

{

}

508 | Creating Modern Web Applications with ASP.NET

8. For the KanbanListTagHelper class, create two string properties, called
Name and Size, with getters and setters:

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace ToDoListApp.TagHelpers;

public class KanbanListTagHelper : TagHelper

{

 public string? Name { get; set; }

 public string? Size { get; set; }

}

9. Override the base asynchronous ProcessAsync (TagHelperContext
context, TagHelperOutput) output method with the following code:

KanbanListTagHelper.cs

public override async Task ProcessAsync(TagHelperContext context,
TagHelperOutput output)
{
 output.TagName = "div";
 output.Attributes.SetAttribute("class", $"col-{Size}");

 output.PreContent.SetHtmlContent(
 $"<div class=\"card bg-light\">"
 + "<div class=\"card-body\">"
 + $"<h6 class=\"card-title text-uppercase text-truncate py-
2\">{Name}</h6>"
 + "<div class \"border border-light\">");

 var childContent = await output.GetChildContentAsync();
 output.Content.SetHtmlContent(childContent.GetContent());

The complete code can be found here: https://packt.link/bjFIk.

Every tag helper has a standard HTML tag as an output. That is why, at the
beginning of your methods, the TagName property was called from the
TagHelperOutput object to specify the HTML tag that will be used as
output. Additionally, you can set the attributes for this HTML tag by calling
the Attributes property and its SetAttribute method from the
TagHelperOutput object. That is what you did right after specifying the
HTML output tag.

https://packt.link/bjFIk

Anatomy of an ASP.NET Web App | 509

10. Now, create another class named KanbanCardTagHelper.cs with the same
inheritance and namespace using a statement such as the previous one:

namespace ToDoListApp.TagHelpers;

using Microsoft.AspNetCore.Razor.TagHelpers;

public class KanbanCardTagHelper: TagHelper

{

 public string? Task { get; set; }

}

For this class, create a string property with public getters and setters
named Task.

11. In this new class, override the base synchronous
Process(TagHelperContext context, TagHelperOutput output)
method. Within this method, write the following code:

public override void Process(TagHelperContext context,
TagHelperOutput output)
{

 output.TagName = "div";

 output.Attributes.SetAttribute("class", "card");

 output.PreContent.SetHtmlContent(

 "<div class=\"card-body p-2\">"

 + "<div class=\"card-title\">");

 output.Content.SetContent(Task);

 output.PostContent.SetHtmlContent(

 "</div>"

 + "<button class=\"btn btn-primary btn-sm\">View</button>"

 + "</div>");

output.TagMode = TagMode.StartTagAndEndTag;

}

510 | Creating Modern Web Applications with ASP.NET

An important concept to know about is how the HTML content is placed within
the tag helper. As you can see, the code uses three different properties from the
TagHelperOutput object to place the content:

• PreContent

• Content

• PostContent

The pre-and post-properties are useful to set the content right before and after
that you want to generate. A use case for them is when you want to set up fixed
content as div containers, headers, and footers.

Another thing you did here was set how the tag helper will be rendered through
the Mode property. You used TagMode.StartTagAndEndTag as a value
because you used a div container as a tag output for the tag helper, and
div elements have both start and end tags in HTML. If the output tag were
some other HTML element, such as email, which is self-closing, you would use
TagMode.SelfClosing instead.

12. Finally, go to the Index.cshtml file under the Pages folder and replace the
HTML created in Exercise 7.02 with the tag helpers to make your code concise:

Index.cshtml

@page
@using ToDoListApp.Models
@model IndexModel
@{
 ViewData["Title"] = "My To Do List";
}

<div class="text-center">
 <h1 class="display-4">@ViewData["Title"]</h1>
 <div class="row">
 <kanban-list name="To Do" size="4">
 @foreach (var task in Model.Tasks.Where(t => t.Status ==
ETaskStatus.ToDo))
 {
 <kanban-card task="@task.Description">
 </kanban-card>

The complete code can be found here: https://packt.link/YIgdp.

13. Now run the application with the following command:

dotnet run

https://packt.link/YIgdp

Anatomy of an ASP.NET Web App | 511

14. In your browser, navigate to the localhost:#### address provided by the Visual
Studio console output just like you did in the last exercise:

Figure 7.4: The frontend displayed in the browser

You will see the same result at the frontend that you had before, as shown in
Figure 7.3. The improvement is in the fact that even though the output is the same,
you have now a much more modular and concise code to maintain and evolve.

Note

You can find the code used for this exercise at https://packt.link/YEdiU.

In this exercise, you used tag helpers to create reusable components that generate
static HTML code. You can see now that the HTML code is much cleaner and more
concise. The next section will detail about creating interactive pages by linking what's
on the Code Behind with your HTML view using the concept of model binding.

https://packt.link/YEdiU

512 | Creating Modern Web Applications with ASP.NET

Model Binding

So far, you have covered concepts that helped create a foundation for the to-do app.
As a quick recap, the main points are as follows:

• PageModel is used to add data to a page.

• Tag helpers add custom static rendering to the HTML generated by the server.

• Handler methods define the way a page interacts with an HTTP request.

One final overarching concept that is central to building Razor Pages applications is
model binding. The data used as arguments in handler methods and passed through
the page model is rendered through this mechanism. It consists of extracting data in
key/ value pairs from HTTP requests and placing them in either the client-side HTML
or the server-side code, depending on the direction of the binding that is, whether the
data is moving from client to server or from server to client.

This data might be placed in routes, forms, or query strings and is binding to .NET
types, either primitive or complex. Exercise 7.04 will help clarify how the model
binding works when coming from the client to the server.

Exercise 7.04: Creating a New Page to Submit Tasks

The goal of this exercise is to create a new page. It will be used to create new tasks
that will be displayed on the Kanban board. Perform the following steps to complete
this exercise:

1. Inside the project root folder, run the following commands:

dotnet add package Microsoft.EntityFrameworkCore

dotnet add package Microsoft.EntityFrameworkCore.Sqlite

dotnet add package Microsoft.EntityFrameworkCore.Design

2. At the root of the project, create a new folder named Data with a
ToDoDbContext class inside it. This class will inherit from Entity Framework's
DbContext and will be used to access the database.

Anatomy of an ASP.NET Web App | 513

3. Now add the following code in it:

using Microsoft.EntityFrameworkCore;

using ToDoListApp.Models;

namespace ToDoListApp.Data;

public class ToDoDbContext : DbContext

{

 public ToDoDbContext(DbContextOptions<ToDoDbContext> options) :
base(options)
 {

 }

 public DbSet<ToDoTask> Tasks { get; set; }

}

4. Update your Program.cs file to match the following:

Program.cs

using Microsoft.EntityFrameworkCore;
using ToDoListApp.Data;
using ToDoListApp.Middlewares;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
builder.Services.AddRazorPages();

builder.Services.AddDbContext<ToDoDbContext>(opt => opt.UseSqlite("Data
Source=Data/ToDoList.db"));

var app = builder.Build();

// Configure the HTTP request pipeline.
app.UseMiddleware<RequestLoggingMiddleware>();

The complete code can be found here: https://packt.link/D4M8o.

This change will register the DbContext dependencies within the DI container,
as well as sets up the database access.

https://packt.link/D4M8o

514 | Creating Modern Web Applications with ASP.NET

5. Run the following commands on the terminal to install the dotnet ef tool.
This is a CLI tool that will help you to iterate with database helpers, such as
schema creation and update:

dotnet tool install --global dotnet-ef

6. Now, build the application and run the following commands on the terminal:

dotnet ef migrations add 'FirstMigration'

dotnet ef database update

These commands will create a new migration that will create the schema from
your database and apply this migration to your database.

7. After the migration has run and the database is updated, create a new folder
called Tasks inside the Pages folder.

8. Move the Index page files—index.cshtml and index.cshtml.cs—to the
Tasks folder.

9. Next, replace the AddRazorPages call in the Program.cs with the
following call:

builder.Services.AddRazorPages(opt =>
{
 opt.Conventions.AddPageRoute("/Tasks/Index", "");
});

This will add a convention for the page routes to be called.

10. Replace the header tag inside the _Layout.cshtml file (under Pages/
Shared/) to create a shared navbar for the application:

<header>

 <nav class="navbar navbar-expand-sm navbar-toggleable-sm
navbar-light bg-white border-bottom box-shadow mb-3">
 <div class="container">

 <a class="navbar-brand" asp-area="" asp-page="/
Index">MyToDos
 <button class="navbar-toggler" type="button"
data-toggle="collapse" data-target=".navbar-collapse" aria-
controls="navbarSupportedContent"

 aria-expanded="false" aria-label="Toggle
navigation">

 </button>

 <div class="navbar-collapse collapse d-sm-inline-flex
flex-sm-row-reverse">
 <ul class="navbar-nav flex-grow-1">

Anatomy of an ASP.NET Web App | 515

 <li class="nav-item">

 <a class="nav-link text-dark" asp-area=""
asp-page="/tasks/create">Create Task

 </div>

 </div>

 </nav>

 </header>

This navbar will allow you to access the newly created page.

11. Create the Create.cshtml page (under Pages/Tasks/) and add the
following code:

Create.cshtml

@page "/tasks/create"
@model CreateModel
@{
 ViewData["Title"] = "Task";
}

<h2>Create</h2>
<div>
 <h4>@ViewData["Title"]</h4>
 <hr />
 <dl class="row">
 <form method="post" class="col-6">
 <div class="form-group">
 <label asp-for="Task.Title"></label>
 <input asp-for="Task.Title" class="form-control" />

The complete code can be found here: https://packt.link/2NjdN.

This should contain a form that will use a PageModel class to create the new
tasks. For each form input field, an asp-for attribute is used inside the input
tag helper. This attribute is responsible for filling the HTML input with a proper
value in the name attribute.

Since you are binding to a complex property inside the page model named
Task, the name value is generated with the following syntax:

{PREFIX}_{PROPERTYNAME} pattern

https://packt.link/2NjdN

516 | Creating Modern Web Applications with ASP.NET

Here PREFIX is the complex object name on the PageModel. So, for an ID
of a task, an input with name="Task_Id" is generated on the client-side and
the input is populated with the value attribute having the Task.Id property
value that comes from the server. In the case of the page, as you are creating
a new task, the field does not come previously populated. That is because with
the OnGet method you assigned a new object to the Task property of the
PageModel class.

12. Now, create the code-behind page, named CreateModel.cshtml.cs (placed
in Pages/Tasks/):

Create.cshtml.cs

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using ToDoListApp.Data;
using ToDoListApp.Models;

namespace ToDoListApp.Pages.Tasks;

public class CreateModel : PageModel
{
 private readonly ToDoDbContext _context;

 public CreateModel(ToDoDbContext context)
 {
 _context = context;
 }

The complete code can be found here: https://packt.link/06ciR.

When posting a form, all the values inside the form are placed in the incoming
HttpRequest. The call to TryUpdateModelAsync tries to populate an
object with these values that the request brought from the client-side. Since the
form is created with the name attribute in the input element with the format that
has been explained previously, this method knows how to extract these values
and bind them to the object. Put simply, that is the magic behind model binding.

https://packt.link/06ciR

Anatomy of an ASP.NET Web App | 517

13. Now, replace the code of Index.cshtml (under Pages/Tasks/) with
the following:

Index.cshtml

@page
@using ToDoListApp.Models
@model IndexModel
@{
 ViewData["Title"] = "My To Do List";
}

<div class="text-center">
 @if (TempData["SuccessMessage"] != null)
 {
 <div class="alert alert-success" role="alert">
 @TempData["SuccessMessage"]
 </div>
 }
 <h1 class="display-4">@ViewData["Title"]</h1>

The complete code can be found here: https://packt.link/hNOTx.

This code adds a section that introduces an alert to be displayed if there is an
entry with the SuccessMessage key in the TempData dictionary.

14. Finally, add some display and validation rules via data annotations to the
Models/ToDoTask.cs class properties:

ToDoTask.cs

using System.ComponentModel;
using System.ComponentModel.DataAnnotations;

namespace ToDoListApp.Models;

public class ToDoTask
{
 public ToDoTask()
 {
 CreatedAt = DateTime.UtcNow;
 Id = Guid.NewGuid();
 }

 public ToDoTask(string title, ETaskStatus status) : this()
 {

The complete code can be found here: https://packt.link/yau4p.

https://packt.link/hNOTx
https://packt.link/yau4p

518 | Creating Modern Web Applications with ASP.NET

Here the Required data annotation over the property is to ensure that this
property is set with a valid value. In this exercise, you added persistence with
Entity Framework Core and SQLite and created a new page that creates a task
for the to-do application, finally saving it into the database.

15. Now run the code in VS Code.

16. To see the output on your web browser, type the following command on the
address bar:

Localhost:####

Here #### represents the port number. This would be different for
different systems.

After pressing enter, the following screen is displayed:

Figure 7.5: Home page with Create Task button in the navigation bar

Anatomy of an ASP.NET Web App | 519

17. Click on the Create Task button, and you'll see the page you just created to
insert new cards into your Kanban Board:

Figure 7.6: The Create Task page

Note

You can find the code used for this exercise at https://packt.link/3FPaG.

Now, you'll take a deep dive into how model binding brings it all together, enabling
you to transport data back and forth between the client and the server. You will also
know more about validations in the next section.

Validation

Validating data is something you will often need to do while developing an
application. Validating a field may either mean that it is a required field or that it
should follow a specific format. An important thing you may have noticed in the final
part of the previous exercise is that you placed some [Required] attributes on top
of some model properties in the final step of the last exercise. Those attributes are
called data annotations and are used to create server-side validations. Moreover,
you can add some client-side validation combined with this technique.

https://packt.link/3FPaG

520 | Creating Modern Web Applications with ASP.NET

Note that in Step 10 of Exercise 7.04, the frontend has some span tag helpers
with an asp-validation-for attribute pointing to the model properties.
There is one thing that binds this all together—the inclusion of the _
ValidationScriptsPartial.cshtml partial page. Partial pages are a subject
discussed in the next section, but for now, it is enough to know that they are pages
that can be reused inside other ones. The one just mentioned includes default
validation for the pages.

With those three placed together (that is, the required annotation, the
asp-validation-for tag helper, and the ValidationScriptsPartial
page), validation logic is created on the client-side that prevents the form from being
submitted with invalid values. If you want to perform the validation on the server,
you could use the built-in TryValidateModel method, passing the model to
be validated.

Dynamic Behavior with Partial Pages

So far, you have built a board to display tasks and a way to create and edit them. Still,
there is one major feature for a to-do application that needs adding—a way to move
tasks across the board. You can start as simple as moving one way only—from to-do
to doing, and from doing to done.

Until now, your task cards were built using tag helpers. However, tag helpers are
rendered as static components and do not allow any dynamic behavior to be
added during rendering. You could add tag helpers directly to your page, but you
would have to repeat it for every board list. That is exactly where a major Razor Pages
feature comes into play and that is Partial Pages. They allow you to create reusable
page code snippets in smaller pieces. That way, you can share the base page dynamic
utilities and still avoid duplicate code in your application.

This concludes the theoretical portion of this section. In the following section, you will
put this into practice with an exercise.

Anatomy of an ASP.NET Web App | 521

Exercise 7.05: Refactoring a Tag Helper to a Partial Page with Custom Logic

In this exercise, you will create a partial page to replace KanbanCardTagHelper
and add some dynamic behavior to your task's cards, such as changing content based
on custom logic. You will see how partial pages help in reducing duplicate code and
make it more easily reusable. Perform the following steps to complete this exercise:

1. Inside the Pages/Tasks folder, create a new file called _TaskItem.cshtml
with the following content:

_TaskItem.cshtml

@model ToDoListApp.Models.ToDoTask

<form method="post">
 <div class="card">
 <div class="card-body p-2">
 <div class="card-title">
 @Model.Title
 </div>
 View
 @if (Model.Status == Models.ETaskStatus.ToDo)
 {
 <button type="submit" class="btn btn-warning btn-sm" href="@
Model.Id" asp-page-handler="StartTask" asp-route-id="@Model.Id">
 Start
 </button>

The complete code can be found here: https://packt.link/aUOcj.

The _TaskItem.cshtml is basically a partial page that contains the .cshtml
code of a card from the Kanban board.

2. Now, replace the code within the Index.cshtml.cs file with the following
code that can read the saved tasks from the database and place the actions you
created on the partial page:

Index.cshtml.cs

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.RazorPages;
using ToDoListApp.Data;
using ToDoListApp.Models;

namespace ToDoListApp.Pages
{
 public class IndexModel : PageModel
 {
 private readonly ToDoDbContext _context;

 public IndexModel(ToDoDbContext context)

The complete code can be found here: https://packt.link/Tqgup.

https://packt.link/aUOcj
https://packt.link/Tqgup

522 | Creating Modern Web Applications with ASP.NET

This code creates handler methods for the three HTTP requests—a GET request
and two POST requests. It also places the logic to be executed on these
handlers. You will read values from the database with GET and save them back
with POST.

3. Finally, update the Index.cshtml page with the following code to replace the
use of tag helpers by the partial Razor page with your Kanban cards:

Index.cshtml

@page
@using ToDoListApp.Models

@model IndexModel
@{
 ViewData["Title"] = "MyToDos";
}

<div class="text-center">

 @if(TempData["SuccessMessage"] != null)
 {
 <div class="alert alert-success" role="alert">
 @TempData["SuccessMessage"]
 </div>

The complete code can be found here: https://packt.link/9SRsY.

Doing so, you'll notice how much duplicate code gets eliminated.

4. Now run the application with the following command:

dotnet run

5. Next click at the Create Task button and fill the form. After a Task is created,
you'll see a confirmation message, as shown in Figure 7.7.

Figure 7.7: The Home screen after a Task creation

https://packt.link/9SRsY

Anatomy of an ASP.NET Web App | 523

Note

If you have created some tasks in the previous screen, the screen display
might be different on your system.

In this exercise, you created an almost fully functional to-do application in which you
can create tasks and save them to the database, and even log your requests to see
how long they take.

Note

You can find the code used for this exercise at https://packt.link/VVT4M.

Now, it is time to work on an enhanced feature through an activity.

Activity 7.01: Creating a Page to Edit an Existing Task

Now it's time to enhance the previous exercise with a new and fundamental feature
that is, to move tasks across the Kanban board. You must build this application using
the concepts covered in this chapter such as model binding, tag helpers, partial
pages, and DI.

To complete this activity, you need to add a page to edit the tasks. The following steps
will help you complete this activity:

1. Create a new file called Edit.cshtml with the same form as Create.
cshtml.

2. Change the route at the page directive to receive "/tasks/{id}".

3. Create the code-behind file that loads a task by the OnGet ID from the
DbContext schema. If the ID does not return a task, redirect it to the
Create page.

4. On the Post form, recover the task from the database, update its values, send a
success message, and redirect to the Index view afterward.

https://packt.link/VVT4M

524 | Creating Modern Web Applications with ASP.NET

The output of a page is displayed as follows:

Figure 7.8: The Edit Task Page as output to the activity

Note

The solution to this activity can be found at https://packt.link/qclbF.

With the examples and activity so far, you now know how to develop pages with
Razor. In the next section, you will learn how to work with a tool that has an even
smaller scope of isolated and reusable logic called view components.

View Components
So far, you have seen two ways of creating reusable components to provide better
maintenance and reduce the amount of code and that is tag helpers and partial
pages. While a tag helper produces mainly static HTML code (as it translates a
custom tag into an existing HTML tag with some content inside it), a partial
page is a small Razor page inside another Razor page that shares the page data-
binding mechanism and can perform some actions such as form submission. The
only downside to partial pages is that the dynamic behavior relies on the page
that contains it.

https://packt.link/qclbF

View Components | 525

This section is about another tool that allows you to create reusable components
that is, view components. View components are somewhat similar to partial
pages, as they also allow you to provide dynamic functionality and have logic on the
backend. However, they are even more powerful as they are self-contained. This
self-containment allows them to be developed independently of the page and be fully
testable on their own.

There are several requirements for creating view components, as follows:

• The custom component class must inherit from Microsoft.AspNetCore.
Mvc.ViewComponent.

• It must either have the ViewComponent suffix in the class name or be
decorated with the [ViewComponent] attribute.

• This class must implement either a IViewComponentResult
Invoke() synchronous method or a Task<IViewComponentResult>
InvokeAsync() asynchronous method (when you need to call async methods
from within).

• The result of both previous methods is typically the View(model) method with
the view component model as an argument. On the frontend, the default view
filename should, by convention, be called Default.cshtml.

• For the view to be rendered, it must be located in either Pages/Components/
{MY_COMPONENT_NAME}/Default.cshtml or /Views/Shared/
Components/{MY_COMPONENT_NAME}/Default.cshtml.

• If not located in any of the preceding paths, the location of the view must be
explicitly passed as an argument on the View method returned in the Invoke
or InvokeAsync methods.

This concludes the theoretical portion of this section. In the following section, you will
put this into practice with an exercise.

526 | Creating Modern Web Applications with ASP.NET

Exercise 7.06: Creating a View Component to Display Task Statistics

In this exercise, you will create a view component that allows you to display some
statistics regarding delayed tasks on the navbar of the application. Working through
this exercise, you will learn the basic syntax of view components and how to place
them in Razor Pages. Perform the following steps to do so:

1. Under the root of the ToDoListApp project, create a new folder called
ViewComponents.

2. Inside this folder, create a new class called StatsViewComponent:

namespace ToDoListApp.ViewComponents;

public class StatsViewComponent

{

}

3. Again, inside the ViewComponents folder, create a new class named
StatsViewModel with two public int properties, named Delayed and
DueToday:

namespace ToDoListApp.ViewComponents;

public class StatsViewModel

{

 public int Delayed { get; set; }

 public int DueToday { get; set; }

}

4. Edit the StatsViewComponent class to inherit from the ViewComponent
class that is contained in the Microsoft.AspNetCore.Mvc namespace:

using Microsoft.AspNetCore.Mvc;

public class StatsViewComponent : ViewComponent

{

}

View Components | 527

5. Inject ToDoDbContext via a constructor initializing a private
readonly field:

public class StatsViewComponent : ViewComponent

{

 private readonly ToDoDbContext _context;

 public StatsViewComponent(ToDoDbContext context) => _context =
context;
}

Place the proper using namespaces.

6. Create a method named InvokeAsync with the following signature
and content:

StatsViewComponent.cs

using ToDoListApp.Data;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace ToDoListApp.ViewComponents;

public class StatsViewComponent : ViewComponent
{
 private readonly ToDoDbContext _context;
 public StatsViewComponent(ToDoDbContext context) => _context = context;

 public async Task<IViewComponentResult> InvokeAsync()
 {
 var delayedTasks = await _context.Tasks.Where(t =>

The complete code can be found here: https://packt.link/jl2Ue.

This method will use ToDoDbContext to query the database and retrieve the
delayed tasks, as well as the ones that are due on the current day.

7. Now under the Pages folder, create a new folder called Components.

8. Under it make another folder called Stats.

9. Then, inside the Stats folder, create a new file called default.cshtml with
the following content:

@model ToDoListApp.ViewComponents.StatsViewModel

<form class="form-inline my-2 my-lg-0">

 @{

 var delayedEmoji = Model.Delayed > 0 ? " " : " ";

 var delayedClass = Model.Delayed > 0 ? "btn-warning" :
"btn-success";

https://packt.link/jl2Ue

528 | Creating Modern Web Applications with ASP.NET

 var dueClass = Model.DueToday > 0 ? "btn-warning" :
"btn-success";
 }

 <button type="button" class="btn @delayedClass my-2 my-sm-0">

 @Model.Delayed Delayed
Tasks @delayedEmoji
 </button>

 <button type="button" class="btn @dueClass my-2 my-sm-0">

 @Model.DueToday Tasks
Due Today
 </button>

</form>

The default.cshtml will contain the view part of the view component class.
Here, you are basically creating a .cshtml file based on a model specified.

10. Finally, in _Layout.cshtml (under Pages/Shared/), add a call to the
ViewComponent by adding the <vc:stats></vc:stats> tag inside your
navbar. Replace the page code with the following:

_Layout.cshtml

<!DOCTYPE html>
<html lang="en">

<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - ToDoListApp</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css"
/>
 <link rel="stylesheet" href="~/css/site.css" asp-append-version="true" />
 <link rel="stylesheet" href="~/ToDoListApp.styles.css" asp-append-
version="true" />
</head>

<body>
 <header>
 <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light
bg-white border-bottom box-shadow mb-3">

The complete code can be found here: https://packt.link/DNUBC.

https://packt.link/DNUBC

View Components | 529

11. Run the application to see your navbar as shown in Figure 7.8:

Figure 7.9: The Task stats view component

In this exercise, you created your first view component which is a task stat displayed
right on your navbar. As you may have noticed, one efficient thing about view
components that distinguishes them from partial pages is that they are independent
of the page they are displayed on. You build both your frontend and backend all self-
contained inside the component, with no external dependencies on the page.

Note

You can find the code used for this exercise at https://packt.link/j9eLW.

This exercise covered view components, which allow you to display some statistics
regarding delayed tasks on the navbar of the application. With this knowledge, you
will now complete an activity wherein you will work in a view component to show a
log history.

https://packt.link/j9eLW

530 | Creating Modern Web Applications with ASP.NET

Activity 7.02: Writing a View Component to Display Task Log

As the final step of this chapter, this activity will be based on a common task in real-
world applications—to have a log of user activities. In this case, you will write every
change the user does to a field to the database and display it in a view. To do so, you
would need to use a view component.

The following steps will help you complete this activity:

1. Create a new class under the Models folder named ActivityLog. This
class should have the following properties: Guid Id, String EntityId,
DateTime Timestamp, String Property, String OldValue, and
String NewValue.

2. Create a new DbSet<ActivityLog> property for this model under
ToDoDbContext.

3. Under your DbContext, create a method to generate activity logs for
the modified properties of Entries under the Entity Framework's
ChangeTracker with EntityState.Modified.

4. Override SaveChangesAsync() in DbContext, by adding the generated logs
to DbSet right before calling the base method.

5. Create a new Entity Framework Core migration and update the database to
support this migration.

6. Create the ViewComponent class, which should load all logs for a given
taskId passed on the invocation and return them to the ViewComponent.

7. Create the ViewComponent view, which should take a collection of
ActivityLog as a model and display them in a Bootstrap table, if any exists. If
no logs are recorded, show an alert saying that no logs are available.

8. Add the view component to the Edit page, passing the taskId property.

View Components | 531

9. Run the application and check the final output by opening a task's details. You
will see a box on the right with your activity logs or a message with no logs, if
there are no activity logs recorded, for that task yet.

Figure 7.10: The Activity log being displayed with no logs

In this activity, you were able to create an isolated view component with completely
new functionality that's decoupled from a page, allowing it to work on a single feature
at a time.

Note

The solution to this activity can be found at https://packt.link/qclbF.

https://packt.link/qclbF

532 | Creating Modern Web Applications with ASP.NET

Summary
In this chapter, you learned the foundations of building a modern web application
with C# and Razor Pages. You focused on important concepts at the beginning of the
chapter, such as middleware, logging, DI, and configuration. Next, you used Razor
Pages to create CRUD models along with Entity Framework and used some more
advanced features, such as custom tag helpers, partial pages, and view components,
which enable you to create more easily maintainable application features.

Finally, you saw how ASP.NET model binding works so that there can be a two-way
data binding between the client and the server. By now, you should have an effective
foundation for building modern web applications with ASP.NET and Razor Pages on
your own.

Over the next two chapters, you will learn about building and communicating
with APIs.

Overview

In this chapter, you will step into the world of HTTP practice by making calls
to Web APIs. You will interact with Web APIs in a variety of ways using a
web browser, your own HTTP client, and NuGet packages. You will learn
the basics of security involved in Web APIs, use PayPal to make sandbox
payments, and explore cloud services such as Azure Text Analytics and
Azure Blob storage.

By the end of this chapter, you will be able to read HTTP requests and
response messages, make calls to any Web API, and create your own
HTTP client to simplify your work with complex APIs. You will also be able
to dissect and learn both incoming HTTP requests and outgoing HTTP
responses in any form and use development tools in the Chrome browser to
inspect traffic moving back and forth when browsing your favorite websites.

Creating and Using Web API

Clients

8

536 | Creating and Using Web API Clients

Introduction
The World Wide Web (WWW) (or just the web) is a big store of all sorts of documents
(XML, JSON, HTML, MP3, JPG, etc.) accessible through Uniform Resource Locators
(URLs). A document in the context of the web is often called a resource. Some
resources do not change. They are stored somewhere, and with every request, the
same resource will be returned. Such resources are called static. Other resources are
dynamic, which means they will be generated on demand.

Communication on the web happens through protocols. In the context of retrieving
documents, you use Hypertext Transfer Protocol (HTTP). Hypertext is a special
text that holds a link to a resource on the web. Clicking on it opens the resource
it points to. HTTP is based on a client-server architecture. In simple terms, a
client sends requests, and the server responds. An example of this in practice is
the communication between a browser (client) and a website (hosted on a server).
Usually, a single server serves many clients:

Figure 8.1: Client-server architecture

Browser | 537

When you navigate to a website, you send an HTTP GET request, and the server
responds by displaying the relevant site content in the browser. GET is an HTTP
verb—a method identifying how a request should be treated. Common HTTP verbs
are the following:

• GET: Get a resource.

• POST: Create a resource or send a complex query.

• PUT: Update all resource fields.

• PATCH: Update a single field.

• DELETE: Remove a resource.

Browser
A modern browser is more than just a tool to access content on the internet. It
includes tools to dissect elements of a website, inspect traffic, and even execute code.
This side of a browser is called developer tools. The exact key binds may vary but
pressing F12 or Control + Shift + I should call up the Developer Tools tab.
Perform the following steps to get to know it better:

1. Open Google Chrome or any other browser.

2. Navigate to google.com. Press the keys Control + Shift + I.

http://google.com

538 | Creating and Using Web API Clients

3. Go to Network (1). The following window should be displayed:

Figure 8.2: Chrome with developer tools open with google.com loaded

4. Select the first entry, www.google.com (2).

5. Click Headers (3).

6. In the General (4) section, you can observe the effects when you navigated to
google.com. The first thing that happened was HTTP GET request was sent to
https://www.google.com/.

7. In the Request Headers section (5), you can see the metadata sent with
the request.

8. To see how Google responded, click the Response section (6).

This flow is called the client-server architecture, and the following applies:

• The client is the Chrome browser that sends a request to google.com.

• The server is a machine(s) hosting google.com that responds with google.com
website contents.

http://www.google.com
http://google.com
https://www.google.com/
http://google.com
http://google.com
http://google.com

Web API | 539

Web API
An Application Programming Interface (API) is an interface through which you
can call some functionality using code. It could be a class or an interface in C#, or a
browser (you can interact with it through code provided by its own interface), but in
the context of HTTP, it is a web service. A web service is an API hosted on a remote
machine that is accessible through HTTP. An access point used to invoke a single
piece of functionality on a Web API is called an endpoint. The most commonly used
Web API type is RESTful.

RESTful API

A Representational State Transfer (REST) API is an API built on the following six
principles. Four principles are a given whatever framework you use implementing a
RESTful API, and, as a client, they should be expected:

• Client-server: A connection is made between a client and server. The client
sends a request in order to get a response from a server.

• Stateless: The server will be able to process requests regardless of prior
requests. This means that each request should contain all the information,
rather than relying on a server to remember what happened before.

• Cacheable: The ability to specify which requests can be cached using HTTP
methods or headers.

• Code on demand (optional): REST allows scripts to be downloaded and executed
on the client side. Back when the internet was made mostly of static pages, this
was useful, but nowadays it is either not needed or is seen as a security risk.

However, the other two principles (Client-server and Stateless) depend on you, and
thus you will want to pay more attention to them. A layered system is a system
made of layers, and each layer communicates only with the layer directly below it. A
typical example of this is a three-tier architecture, where you separate presentation,
business logic, and the data store. From a practical point of view, this means that a
RESTful API (business logic layer) should not send HTML as a response because the
responsibility for rendering output lies with the client (the presentation layer).

540 | Creating and Using Web API Clients

The last principle is called a uniform interface. It defines a set of rules for an API:

• Identification of resources:

Some examples of these are get all instances of a resource (/resource), create
a resource (/resource), get a single resource (/resource/id), and get all
instances of a subresource in a resource (/resource/subresource/).

• Manipulation of resources through these representations:

Resources are manipulated using HTTP verbs representing Create, Read,
Update, and Delete (CRUD)—GET, UPDATE, PUT, PATCH, DELETE.

• Self-descriptive messages:

A response that includes all the required information, without any extra
documentation, and indicates how the message should be processed (headers,
mime type, etc.).

• Hypermedia as the engine of application state (HATEOAS):

Hyperlinks are included in response to all the related resources so that you can
navigate to them. This guideline is usually ignored.

REST is not the same as HTTP. REST is a set of guidelines, while HTTP is a protocol.
The two might be confused because HTTP constraints heavily overlap with REST
constraints (methods, headers, etc.). However, a RESTful API does not have to use
HTTP to be RESTful, and at the same time HTTP can violate REST constraints by using
a session or query parameters to provide actions to perform. A RESTful API can work
with both XML and JSON data formats. However, almost all scenarios involve JSON.

Postman

Postman is one of the most popular tools used for testing different kinds of Web
APIs. It is easy to set up and use. Postman, just like a browser, acts as an HTTP client.
In order to download Postman, go to https://www.postman.com/. You will need to sign
up and then download the installer. Once you have installed Postman, perform the
following steps:

1. Open Postman.

2. Create your workspace by clicking Workspaces and then click on Create
Workspace.

3. In the new window, go to the Collections tab (2) and click the Create new
Collection (+) button (3).

https://www.postman.com/

Web API | 541

4. Create a New Collection (4).

5. Click on Add a request (5):

Figure 8.3: New Postman collection without requests

A new request window will open.

6. Click the edit symbol beside New Request and name the new request
Users (6).

7. Select the GET HTTP verb and copy-paste the URL https://api.github.com/users/
github-user (7).

Note

Here, and in all places that follow, replace github-user with your own
GitHub username.

8. Click the Send button (8).

https://api.github.com/users/github-user
https://api.github.com/users/github-user

542 | Creating and Using Web API Clients

9. Now scroll down to see the response result returned (9):

Figure 8.4: GET GitHub user request in Postman

Postman is superior to a browser when it comes to acting as an HTTP client. It is
focused on forming HTTP requests and displays response information compactly,
offering multiple output formats. In Postman, you can use multiple environments, set
up pre-and post-conditions for requests, automated calls, and a lot more, but going
through those advanced features is beyond the scope of this chapter. For now, it is
enough to learn that Postman is a go-to tool for testing Web APIs by hand.

Client

REST requires communication between a client and a server. In the previous
examples, the client role was taken by either a browser or Postman. However,
neither a browser nor Postman can replace a client in your code. Instead, you'll
need to create an HTTP request using C#.

Popular Web APIs often have a client created for you (in most common languages as
well). The purpose of a Web API client is to simplify interactions with the underlying
API. For example, instead of sending a DELETE request on an endpoint that does not
support it and getting the response Method Not Allowed, you won't even have
such an option on a custom client.

Octokit

Octokit is a GitHub API client. It exposes a C# class through which you can pass
objects to make calls to GitHub. The benefit of such a client is that you don't need to
worry about which headers to pass or how to name things so that they are properly
serialized. An API client handles all that for you.

Web API | 543

You can install the Octokit client in your project by running the following command in
the VS Code terminal or command prompt:

dotnet add package Octokit

Once you have the Octokit client installed, you can use it to create a GitHub client,
as follows:

var github = new GitHubClient(new ProductHeaderValue("Packt"));

In the preceding snippet, you needed a new ProductHeaderValue because
GitHub expects a UserAgent header. As mentioned earlier, custom HTTP clients
prevent a mistake from happening before you can even make a request. In this
case, not providing a UserAgent header (through ProductHeaderValue) is
not an option.

To see whether the client works, try to get information on the username github-
user:

const string username = "github-user";

var user = await github.User.Get(username);

Note

In GitHub, github-user is displayed as Almantask. It is better to
change it to your individual GitHub username for the code to work.

To print the date when the user was created, type the following code:

Console.WriteLine($"{username} created profile at {user.CreatedAt}");

You will see the following output:

github-user created profile at 2018-06-22 07:51:56 +00:00

Every method available on the GitHub API is also available on GitHub client Octokit.
You don't need to worry about the endpoint, mandatory headers, a response, or the
request format; it is all defined by the strongly typed client.

Note

You can find the code used for this example at https://packt.link/DK2n2.

https://packt.link/DK2n2

544 | Creating and Using Web API Clients

API Key

With many public free APIs, you may be faced with concerns such as the following:

• How can you control an overwhelming number of requests?

• At what point should which client be charged?

If all these public APIs offered only anonymous access, you would not be able to
identify the clients or determine how many calls each of them has made. An API
key serves as the most basic means of authentication (identifying the client) and
authorization (granting them access to do something with an API). Simply put, an API
key allows you to call an API. Without it, you would have little to no access to an API.

To help you grasp the use of API keys better, the next section will look at a Web API
that requires one, that is, Azure Text Analytics.

Azure Text Analytics

Azure Text Analytics is an Azure API used to analyze text in the following ways:

• Identify named entities (people, events, organizations)

• Interpret the mood of the text (positive, negative, neutral)

• Produce a summary of a document or highlight key phrases

• Process unstructured medical data, such as recognizing people, classifying
diagnoses, and so on

In order to demonstrate the Azure Text Analytics API, you will focus on sentimental
analysis. This is the process of evaluating text according to a positive, negative, or
neutral confidence score:

• The score of 1, which means 100%, is the probability that the prediction
(negative, positive, neutral) is correct.

Web API | 545

• The score of 0, which means 0%, is an impossible prediction.

Note

Using Azure Text Analytics is free until you analyze more than 5,000 words
per 30 days.

Before you begin coding, you'll need to set up Azure Text Analytics on the Azure
cloud. After all, you need both an endpoint and an API key to make a call to this API.

Note

Make sure you have set up an Azure subscription. If you don't have one, go
to https://azure.microsoft.com/en-gb/free/search and follow the instructions
there to create a free subscription. An Azure free trial offers many services
for free. Some of those services will remain free even after a year. A
student subscription is an option for getting Azure credits and free services
for a longer period. A credit or debit card is required to create an Azure
subscription; however, you won't be charged unless you exceed the given
Azure credits of the free service limitations.

One way in which Azure Text Analytics could be used to sort positive and negative
feedback is by determining whether what you wrote sounds passive-aggressive
or friendly. To see this in action, follow the steps to create a small application that
analyzes any text you input into a console:

1. First, go to https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics.

https://azure.microsoft.com/en-gb/free/search
https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics

546 | Creating and Using Web API Clients

2. Click Continue to create your resource without using any
additional features:

Figure 8.5: Azure Text Analytics resource creation

3. In the Create text analytics window, click the Basics tab. This is the first tab
opened at the start of the creation of a new resource.

4. Select an option in the Subscription and Resource group fields:

Figure 8.6: Entering the project details for new resource creation

Web API | 547

5. Then, select the region, for example, North Europe.

6. Enter the name, for example, Packt-Test.

7. After that, select the Free F0 pricing tier and click the Review +
create button:

Figure 8.7: Azure Text Analytics pricing tier

A new window gets displayed confirming your input.

8. Click the Create option. The Text Analytics API will start deploying. After
the deployment of the service is done, a new window will open saying Your
deployment is complete.

9. Click on the Go to resource button:

Figure 8.8: The Text Analytics API showing the deployment as complete

The Text Analytics resource window gets displayed.

548 | Creating and Using Web API Clients

10. Click the Keys and Endpoint option. You will see the Endpoint option
along with KEY 1 and KEY 2 to make calls to this API. You can choose from
either of the keys:

Figure 8.9: Azure Text Analytics quick start window with API key hyperlink

11. Keep track of KEY 1 (an API key). An API key is a secret and should not be
exposed in plain text. You will once again be using the environment variables to
store it.

Create an environment variable with key and value pair. The value will be the
endpoint API key required to connect to Azure Text Analytics. To help identify the
missing environment variable, use a helper class. The GetOrThrow method will
get a user environment variable, and if it doesn't exist, will throw an exception:

 public static class EnvironmentVariable

 {

 public static string GetOrThrow(string environmentVariable)

 {

 var variable = Environment.
GetEnvironmentVariable(environmentVariable, EnvironmentVariableTarget.
User);

 if (string.IsNullOrWhiteSpace(variable))

 {

 throw new ArgumentException($"Environment variable
{environmentVariable} not found.");
 }

Web API | 549

 return variable;

 }

 }

12. Keep track of the Endpoint option. You will use it in the upcoming exercise to
call the API you have just deployed.

This section helped you to set up Azure Text Analytics on the Azure cloud, in addition
to setting both an endpoint and an API key to make a call to the API. In the following
exercise, you will be using the Azure Text Analytics client to make calls to the API.

Exercise 8.01: Performing Sentimental Text Analysis on Any Text

Azure Text Analytics is just another REST API. Once again, you make HTTP calls to it
and get a response. This time, you will send over a text to get its sentimental analysis.
Do another practice run of using a strongly typed client and make calls to a RESTful
API from C#.

Using a recently deployed Azure Text Analytics service (Pack-Test, in this case),
perform sentimental analysis on any text you want. Perform the following steps to
complete this exercise:

1. Install the Azure.AI.TextAnalytics NuGet package to get an Azure Text
Analytics API client as follows:

dotnet add package Azure.AI.TextAnalytics

2. Add the TextAnalysisApiKey environmental variable.

3. Then add the TextAnalysisEndpoint environmental variable.

4. Create a Demo class and add references to the two environmental variables that
you have recently added:

public class Demo

{

 private static string TextAnalysisApiKey { get; } =
EnvironmentVariable.GetOrThrow("TextAnalysisApiKey");
 private static string TextAnalysisEndpoint { get; } =
EnvironmentVariable.GetOrThrow("TextAnalysisEndpoint");

These properties are used to hide sensitive values of the API key and endpoint.

550 | Creating and Using Web API Clients

5. Create a new BuildClient method to build an API client:

static TextAnalyticsClient BuildClient()

{

 var credentials = new AzureKeyCredential(TextAnalysisApiKey);

 var endpoint = new Uri(TextAnalysisEndpoint);

 var client = new TextAnalyticsClient(endpoint, credentials);

 return client;

}

The API client requires both a base URL—a kind of Unified Resource
Identifier (URI)—and an API key to operate, both of which are passed to it
during initialization.

6. Using the client, create the PerformSentimentalAnalysis method to
analyze the text:

private static async Task<DocumentSentiment>
PerformSentimentalAnalysis(TextAnalyticsClient client, string text)
{

 var options = new AnalyzeSentimentOptions { IncludeOpinionMining
= true };
 DocumentSentiment documentSentiment = await client.
AnalyzeSentimentAsync(text, options: options);

 return documentSentiment;

}

Here, you are using the configuration object AnalyzeSentimentOptions
to extract targets and opinions on them. The client has both the
AnalyzeSentimentAsync and AnalyzeSentiment methods. For public
client libraries, exposing both async and non-async versions of the same method
is a very common scenario. After all, not everyone will be comfortable with an
async API. However, when making calls to another machine (DB, API, and similar)
it's best to use an async API. This is because an async call will not block the
thread on which the call is made while it is waiting for a response from an API.

Web API | 551

7. Now create a DisplaySentenceSymmary function to display the sentence's
overall evaluation:

private static void DisplaySentenceSummary(SentenceSentiment
sentence)
{

 Console.WriteLine($"Text: \"{sentence.Text}\"");

 Console.WriteLine($"Sentence sentiment: {sentence.Sentiment}");

 Console.WriteLine($"Positive score: {sentence.ConfidenceScores.
Positive:0.00}");
 Console.WriteLine($"Negative score: {sentence.ConfidenceScores.
Negative:0.00}");
 Console.WriteLine($"Neutral score: {sentence.ConfidenceScores.
Neutral:0.00}{Environment.NewLine}");
}

8. Create a DisplaySentenceOpinions function to display the message
Opinions for every target in a sentence:

private static void DisplaySentenceOpinions(SentenceSentiment
sentence)
{

 if (sentence.Opinions.Any())

 {

 Console.WriteLine("Opinions: ");

 foreach (var sentenceOpinion in sentence.Opinions)

 {

 Console.Write($"{sentenceOpinion.Target.Text}");

 var assessments = sentenceOpinion

 .Assessments

 .Select(a => a.Text);

 Console.WriteLine($" is {string.Join(',',
assessments)}");
 Console.WriteLine();

 }

 }

}

The target of a sentence is a subject that has an opinion (grammatical modifier)
applied to it. For example, with the sentence, a beautiful day, day would be a
target and beautiful an opinion.

552 | Creating and Using Web API Clients

9. To perform a sentimental analysis on text typed in a console, create a
SentimentAnalysisExample method:

static async Task SentimentAnalysisExample(TextAnalyticsClient
client, string text)
{

 DocumentSentiment documentSentiment = await
PerformSentimentalAnalysis(client, text);
 Console.WriteLine($"Document sentiment: {documentSentiment.
Sentiment}\n");

 foreach (var sentence in documentSentiment.Sentences)

 {

 DisplaySentenceSummary(sentence);

 DisplaySentenceOpinions(sentence);

 }

}

The analysis text, in the preceding code snippet, evaluates the overall text's
sentiment and then breaks it down into sentences, evaluating each.

10. To demonstrate how your code works, create a static Demo.Run method:

public static Task Run()

{

 var client = BuildClient();

 string text = "Today is a great day. " +

 "I had a wonderful dinner with my family!";

 return SentimentAnalysisExample(client, text);

}

With the environment variable set correctly, the following output should
be displayed:

Document sentiment: Positive

Text: "Today is a great day."

Sentence sentiment: Positive

Positive score: 1,00

Negative score: 0,00

Neutral score: 0,00

Web API | 553

Text: "I had a wonderful dinner with my family!"

Sentence sentiment: Positive

Positive score: 1,00

Negative score: 0,00

Neutral score: 0,00

Opinions:

dinner is wonderful

You did not hardcode the value of an API key here because an API key, exposed
publicly, poses a risk of being used not the way it was intended to. If stolen, it
could have disastrous consequences (for example, being overused, creating a false
resource, leaking data, deleting data, etc.). That is why when dealing with secrets, use
the minimal possible countermeasures, that is, environmental variables.

Another benefit of environment variables is the ability to have a different value in
different environments (local, integration, system test, production, etc.). Different
environments often use different resources. So, pointing to those resources through
environment variables will not require any changes to the code.

In order to run this exercise, go to https://packt.link/GR27A and comment all lines within
the static void Main(string[] args) body, except await Exercises.
Exercise01.Demo.Run();. Similarly, uncomment the respective exercises'/
examples'/activities' code lines in Program.cs before executing each of them.

Note

You can find the code used for this exercise at https://packt.link/y1Bqy.

This exercise is just one of the many in which you consumed a public Web API.
Azure is full of services like this. Calling an API using a strongly typed client is simple;
however, not all APIs have one. In the next section, you will learn how to create your
own Web API client.

https://packt.link/GR27A
https://packt.link/y1Bqy

554 | Creating and Using Web API Clients

Your Own Client
So far, you've only used a premade client to consume a Web API. However, for less
popular APIs, there will not be any client for you to use. In those cases, you will have
to make HTTP calls yourself. In .NET, the way of making calls has evolved quite a lot. If
you don't want any third-party libraries, you can use the HttpClient class.

HttpClient

In this section, you'll repeat the GitHub Users example (from the Postman section),
but this time using HttpClient. The flow for this is quite simple and is described
for you in detail in the following example:

1. Within the GitHttp static class, create the GetUser method:

public static async Task GetUser()

2. Within the GitExamples method, first, create a client:

client = new HttpClient { BaseAddress = new Uri("https://api.github.
com") };
client.DefaultRequestHeaders.Add("User-Agent", "Packt");

Creating a client almost always involves specifying a specific base URL. Often,
Web APIs require mandatory headers to be passed, or else they will invalidate
the request (400 Bad Request). For GitHub, you need to send the User-
Agent header identifying the client that calls the API. Adding the Packt user
agent header to default headers will send that header with every request to
the client.

3. You then create a request as follows:

const string username = "github-user"; //replace with your own

var request = new HttpRequestMessage(HttpMethod.Get, new Uri($"users/
{username}", UriKind.Relative));

Remember to replace github-user with your own GitHub username. Here,
you've specified that you want to create a GET request. You did not specify a
full path, but rather only the endpoint you want to hit; therefore, you had to flag
UriKind as Relative.

4. Next, send a request using the client:

var response = await client.SendAsync(request);

Your Own Client | 555

There is only an async version of sending an HTTP request message, so
you need to wait for it. The result of sending HttpRequestMessage is
HttpResponseMessage.

5. Then, deserialize the content to a usable object as follows:

var content = await response.Content.ReadAsStringAsync();

var user = JsonConvert.DeserializeObject<User>(content);

Deserializing is the act of converting a structured text such as JSON into
in-memory objects. For this, you need to convert the content to a string and then
deserialize it. You could use a user model from Octokit NuGet. Since you are
already making custom calls, you might as well use a custom model. For the bare
minimum (only the fields you use), your model could look like this:

public class User

{

 public string Name { get; set; }

 [JsonProperty("created_at")]

 public DateTime CreatedAt { get; set; }

}

The line [JsonProperty("created_at")], above public DateTime
CreatedAt { get; set; }, binds the JSON field to the C# property. This
binding is needed because the names don't match.

If you want to create your own client (for making GitHub calls), it's your
responsibility to expose all data that the API returns and not just the data you
may need for a particular scenario by letting the consumer choose.

6. Use the message from a previous call from Postman to get the GitHub user
response body to generate models to deserialize to. In this case, the response
message is as follows (message truncated for clarity):

{

 "login":"github-user",

 "id":40486932,

 "node_id":"MDQ6VXNlcjQwNDg2OTMy",

 "name":"Kaisinel",

 "created_at":"2018-06-22T07:51:56Z",

 "updated_at":"2021-08-12T14:55:29Z"

}

There are many tools available that can convert JSON to the C# model.

556 | Creating and Using Web API Clients

7. In this case, use https://json2csharp.com/ to convert JSON to the C# model code.

8. Copy the response (GET github/user) and go to https://json2csharp.com/.

9. Paste the response into the textbox on the left and click the Convert button:

Figure 8.10: Converting JSON to the C# model code

The left side displays a model for the JSON, while the right side displays the code
(C# class) that is generated from JSON.

10. Copy the content on the right and paste it into your code:

public class Root

{

 public string login { get; set; }

 public int id { get; set; }

 public string node_id { get; set; }

 public string name { get; set; }

 public DateTime created_at { get; set; }

 public DateTime updated_at { get; set; }

}

https://json2csharp.com/
https://json2csharp.com/

Your Own Client | 557

This is your model. Observe in the preceding code that Root is an unreadable
class name. This is because the converter didn't have a way to know what class
JSON represents. The Root class represents a user; therefore, rename it User.

Lastly, the converter was probably created prior to .NET 5, which is why it didn't
have a feature for records. A record is a great class for serialization purposes
and a great candidate for a data transfer object (DTO). A DTO is a class that has
no logic but simply data, and sometimes attributes for binding serialization. The
benefits you get are the following:

• Value equality

• ToString will return properties and their values

• The ability to define them with a less verbose syntax

So, use a record for defining DTOs in your applications whenever possible.

11. Rename the (Root to User) and change the type from class to record.
The code line looks like this with no changes needed to the properties:

public record User

12. Finally, run the following line of code:

Console.WriteLine($"{user.Name} created profile at {user.CreatedAt}");

The output gets displayed as follows:

Kaisinel created profile at 2018-06-22 07:51:56

In order to run this exercise, go to https://packt.link/GR27A and comment all lines
within the static void Main(string[] args) body, except await
Examples.GitHttp.Demo.Run();. Similarly, uncomment the respective
exercises'/examples'/activities' code lines in Program.cs before execution.

Note

You can find the code used for this example at https://packt.link/UPxmW.

https://packt.link/GR27A
https://packt.link/UPxmW

558 | Creating and Using Web API Clients

Now that you have seen the benefits of using the HttpClient class in lieu
of third-party libraries, you can now explore the IDisposable pattern in the
following section.

HttpClient and IDisposable

HttpClient implements the IDisposable pattern. In general, right after you
are done using an object that implements IDisposable, you should clean up
and call the Dispose method or wrap the calls within a using block. However,
HttpClient is special in that you should not frequently create and dispose of
it all over again. The problem with disposing and re-initializing HttpClient is
that HttpClient manages connections it makes to other APIs and disposing of
HttpClient does not properly close those connections (or sockets).

The most dangerous part about that is that you will not notice any difference in
developing your application locally, due to the massive number of connections
available. However, when deploying an application to a live environment, you risk
running out of free socket connections. Once again, avoid calling a Dispose method
and reinitializing HttpClient. If you must, use HttpClientFactory. Not only
does HttpClientFactory manage the lifetime of socket connections by managing
HttpClientMessageHandler (the component responsible for sending the HTTP
request and receiving the response) but it also provides logging capability, allows
centralized management of clients' configuration, supports injecting middleware to
clients, etc. The mentioned benefits are important if you use HttpClient in an
enterprise setting. You can learn more about HttpClientFactory in Chapter 9,
Creating API Services.

Ideally, you should have one static HttpClient, which you can reuse for calls
to Web APIs throughout your application. However, you should not have a single
HttpClient for everything. The point about not disposing of HttpClient and
having a static one is not a hard rule. If you call many different APIs, they will have
their own base addresses, mandatory headers, and so on. Having a single object for
all is not a viable scenario.

The requests you've handled so far were publicly accessible and did not have
security. However, expensive or private operations in Web APIs are usually protected.
Typically, protection is set up using an Authorization header. In many cases, an
Authorization header involves some sort of an ID and secret. In the case of the GitHub
API, it involves a client ID and client secret. But to get them, you will need to create an
OAuth app.

Before you can do this though, you need to get familiar with OAuth.

Your Own Client | 559

OAuth

OAuth is an open-standard authorization protocol that allows delegating access on
behalf of a user. This section will explore two examples:

• Real-life analogy

• API analogy

Real-life Analogy

Imagine a child at school. The teacher of that child is organizing a trip to another city.
A permission slip from the parents is needed. The parents give a note: It's okay for my
child to go to place X. The child gives the note to the teacher and gets permission to
travel to a field trip to destination X.

API Analogy

Many applications are interconnected, with integrations to each other. For example,
the famous social platform Discord allows you to display whatever accounts you have
on other social media. But to do that, you need to connect to the platform of social
media you want to display. For example, when you are on Discord and try to link a
Twitter account, you will be required to log in on Twitter. A login will require a certain
scope of access (your profile name, in this case). A successful login is proof that
access is given, and Discord will be able to display your profile information on Twitter
on your behalf.

OAuth App for GitHub

Returning to the subject of GitHub, what is an OAuth app? It is a registration for a
single point of security. It acts as your application identity. A GitHub user might have
zero or more applications. As mentioned before, an OAuth app includes a client ID
and secret. Through them, you can use the GitHub API. In other words, you can set
it up to request access to secure features of GitHub, such as changing your personal
data on GitHub.

GitHub has an interesting API limitation. If more than 60 unauthenticated requests
come from the same IP, it will block subsequent requests for up to an hour. However,
the rate limitation can be removed by authorizing requests. That is the prime reason
why you will be using authorization for an otherwise public endpoint.

560 | Creating and Using Web API Clients

OAuth usually involves two client applications:

• One that requests permission on behalf of someone

• Another that grants that permission

Therefore, when setting up OAuth, you will most likely be required to create a URL to
return to after the permission is granted from the client that can grant access. Setting
up an OAuth app on GitHub involves these steps:

1. In the top-right corner, click on your profile picture and click Settings:

Figure 8.11: Account settings in GitHub

Your Own Client | 561

2. On the left side, scroll down almost to the bottom of the menu and click the
Developer settings option:

Figure 8.12: Developer settings in GitHub

3. Now select the Oauth Apps option:

Figure 8.13: Selecting OAuth apps in Developer settings in GitHub

562 | Creating and Using Web API Clients

4. Then click the Register a new application button:

Figure 8.14: Creating a new OAuth app in GitHub

Note

If you have previously created an OAuth app, then this window will display
all those listed. In order to create a new one, you will have to click New
OAuth App.

5. In the next window, you will complete the form. Start by filling in Application
name (5). Avoid using special characters.

6. Next, fill in Homepage URL (6).

This URL usually points to a website that describes the use of OAuth for a
particular case and why it is required. Even if you don't have a website that
describes such a case, you can type a placeholder URL (in this case, myapp.
com). The field accepts anything as long as it is a valid URL.

7. Fill in the Authorization callback URL (7) field. This can be whatever
you want. Here, myapp.com/home is used. Use a valid callback URL.

Your Own Client | 563

8. Click Register application (8):

Figure 8.15: New OAuth app window in GitHub

564 | Creating and Using Web API Clients

9. In the new window, you will see Client ID and Client secrets:

Figure 8.16: Details of a new OAuth app on GitHub with app
credentials—Client ID and Client secrets

It is best to store a client secret in a safe place for future reference because you
will see it only once on GitHub. If you forget it, you will have to create a new
secret and delete the old one.

Now you have successfully created an OAuth app on GitHub. The client secret
is partly hidden in this screenshot for a reason. You should never expose it
publicly. In order to use it in a demo, you will use environmental variables first
to hide them.

10. So, store the values in environmental variables GithubClientId
and GithubSecret.

Your Own Client | 565

11. Then expose the two through static properties in Demo.cs (explained earlier)
as follows:

private static string GitHubClientId { get; } = Environment.
GetEnvironmentVariable("GithubClientId", EnvironmentVariableTarget.
User);

private static string GitHubSecret { get; } = Environment.
GetEnvironmentVariable("GithubSecret", EnvironmentVariableTarget.
User);

This section covered the steps to set up an OAuth app in GitHub that can be used
to request access to secure features of GitHub, such as changing your personal
data. With this knowledge, you can now use a client ID and client secret to create
authorized calls on the GitHub API, as demonstrated in the following section.

Authorization Header

Authorization headers come in three forms—basic, API key (or personal access
token), and third-party authentication. The GitHub API does not allow an unlimited
number of calls from the same source. Like the Azure Text Analytics client, it uses an
API key as well. However, in this case, the API key is used for rate limiting (how many
calls you can make in an hour). For anonymous calls, it only allows 60 calls an hour.
However, by using a valid Authorization header, the amount is increased to 5,000.

In the following example, you'll make one more call than the rate limit allows (60 + 1 =
61). That way, you will get user information 61 times. For that to happen, you will also
make sure that the CacheControl header is set to NoCache because you don't
want a request to be ignored after 60 consecutive calls:

public static async Task GetUser61Times()

{

 const int rateLimit = 60;

 for (int i = 0; i < rateLimit + 1; i++)

 {

 const string username = "github-user";

 var request = new HttpRequestMessage(HttpMethod.Get, new
Uri($"users/{username}", UriKind.Relative));
 request.Headers.CacheControl = new CacheControlHeaderValue()
{NoCache = true};

566 | Creating and Using Web API Clients

 var response = await client.SendAsync(request);

 if (!response.IsSuccessStatusCode)

 {

 throw new Exception(response.ReasonPhrase);

 }

This block of code is an adaptation of the GetUser method from the HttpClient
section. There are three main adjustments here:

• The first is that everything in a loop runs 61 times.

• You have also added an error handler, which means if a response is not a
success, you will print an error message returned by the API.

• Lastly, you add a CacheControl header to ignore caching (because you do
want 61 calls to the server).

Running this code results in an error message on the sixty-first call, which proves the
API rate limitation (the error message has been truncated for clarity):

60) Kaisinel created profile at 2018-06-22 07:51:56

Unhandled exception. System.Exception: rate limit exceeded

To fix this, you will need to add an Authorization header (you will add it just
under the CacheControl header):

GitHttp.cs

public static async Task GetUser61Times(string authHeader)
{
 const int rateLimit = 60;
 for (int i = 0; i < rateLimit + 1; i++)
 {
 const string username = "github-user"; // replace with your own
 var request = new HttpRequestMessage(HttpMethod.Get, new
Uri($"users/{username}", UriKind.Relative));
 request.Headers.CacheControl = new CacheControlHeaderValue(){NoCache
= true};
 request.Headers.Add("Authorization", authHeader);

 var response = await client.SendAsync(request);
 if (!response.IsSuccessStatusCode)
 {
 throw new Exception(response.ReasonPhrase);
 }

The complete code can be found here: https://packt.link/1C5wb.

https://packt.link/1C5wb

Your Own Client | 567

Due to GitHub's limitations on anonymous calls (for example, the fact that you can
make only 60 requests per hour to get user profile information), you will find it more
efficient to provide an Authorization header so that you are identified and therefore
released from such strict constraints. In the examples that follow, you will get an
authorization token that you will feed to this method, thus showing how authorization
will help you overcome the rate limit.

When running the demo code placed at https://packt.link/Uz2BL, it is recommended
that you run one example at a time (i.e., uncomment one line and comment the rest
within the Run method). This is because the Demo.cs file is a mix of authorized
and anonymous calls, and you might get unexpected results. However, keep the line
where you get a token as it may be required by individual examples.

At the end of this section, you should have grasped the logic behind the Authorization
header and its three forms—basic, API key (or personal access token), and third-party
authentication—and learned that, like the Azure Text Analytics client, the GitHub API
uses an API key. Now you can move on to basic authentication.

Basic Authentication

Basic authentication involves a username and password. The two are usually
combined in a single string and encoded using the following format:

Basic username:password

Here is the code used to generate an authorization taken for basic authentication:

public static string GetBasicToken()

{

 var id = GitHubClientId;

 var secret = GitHubSecret;

 var tokenRaw = $"{id}:{secret}";

 var tokenBytes = Encoding.UTF8.GetBytes(tokenRaw);

 var token = Convert.ToBase64String(tokenBytes);

 return "Basic " + token;

}

Use a username and password to get a basic token. Then pass it to the
GetUser61Times method:

var basicToken = GitExamples.GetBasicToken();

await GitExamples.GetUser61Times(basicToken);

https://packt.link/Uz2BL

568 | Creating and Using Web API Clients

Calling GetUser61Times no longer displays an error because the rate limitation is
avoided by supplying an Authorization header.

Note

You can find the code used for this example at https://packt.link/Uz2BL and
https://packt.link/UPxmW.

The next section will cover the more specialized API key and personal access token,
which are similar as they both grant access to otherwise protected data.

API Key and Personal Access Token

A personal access token is limited to personal data. However, an API key can be used
for the whole API. Other than the scope of what can be accessed, the two have no
difference in how they are used. You can add an API key or a personal access token to
an Authorization header as is.

But, of course, to use an access token of a certain API, you first need to create it. You
can do this through the following steps:

1. Go to GitHub's Developer settings option under Settings window.

2. Navigate to Personal access tokens (1).

3. Select Generate new token button (2):

Figure 8.17: Creating a new personal access token

4. Next, enter your GitHub password.

5. Add a note (this can be anything) and scroll down. This screen will help you to
modify user data, so check the user checkbox (4) to get access to it.

https://packt.link/Uz2BL
https://packt.link/UPxmW

Your Own Client | 569

6. Click the Generate token button (5):

Figure 8.18: Scope of access configured for a personal access token

In the new window, you will see all the personal access tokens, along with the
newly added ones:

Figure 8.19: A new personal access token created on GitHub

570 | Creating and Using Web API Clients

Note

Remember that you will see the value of a token only once. So, make sure
you copy and store it securely. Also, be aware that the personal access
token expires after a month, at which point you need to regenerate it.

7. Create an environmental variable called GitHubPersonalAccess.

8. Add the personal access token to Demo.cs:

private static string GitHubPersonAccessToken { get; } =
Environment.GetEnvironmentVariable("GitHubPersonalAccess",
EnvironmentVariableTarget.User);

9. Run the following code:

await GetUser61Times(GitHubPersonAccessToken);

You will observe that calling the GetUser61Times method does not fail.

Access tokens, authorization tokens, API keys, and JWTs (which will be further covered
in the following sections) are different means to prove to an API that you have been
granted access to it and have rights to a resource you want. But regardless of which
specific kind of authorization you use, they will usually all go to the same place—that
is, the Authorization header.

The next section will detail an authorization protocol called OAuth2.

Third-Party Authentication—OAuth2

GitHub is an example of an authorization server. It allows access to a resource or
functionality in the name of the owner. For example, updating the user's employment
status is only available to a logged-in user. However, this can be done directly given
the user has been granted the access to do so. A program getting access on behalf of
someone is what OAuth2 is all about.

Perform the following steps to modify the user's employment status:

1. Navigate to this URL or send an HTTP GET request:

https://github.com/login/oauth/authorize?client_
id={{ClientId}}&redirect_uri={{RedirectUrl}}

Your Own Client | 571

Here, {{ClientId}} and {{RedirectUrl}} are the values that you have
set in the OAuth2 GitHub app.

Note

Replace the placeholders {{ClientId}} and {{RedirectUrl}} with
the ones from your GitHub OAuth app.

The following screen prompts you to log in to your GitHub app:

Figure 8.20: Signing in to OAuth2 GitHub app

2. Complete Username and Password.

3. Next, click the Sign in button to log in.

After a successful login, you will be redirected to a URL specified in your
OAuth2 app.

572 | Creating and Using Web API Clients

4. Create a request for the token by sending an HTTP POST request to a URI in the
following format:

{tokenUrl}?client_id={clientId}&redirect_uri={redirectUri}&client_
secret={secret}&code={code}:

The code for it is as follows:

private static HttpRequestMessage CreateGetAccessTokenRequest()

{

 const string tokenUrl = "https://github.com/login/oauth/access_
token";
 const string code = "2ecab6ecf412f28f7d4d";

 const string redirectUri = "https://www.google.com/";

 var uri = new Uri($"{tokenUrl}?client_
id={GitHubClientId}&redirect_uri={redirectUri}&client_
secret={GitHubSecret}&code={code}");

 var request = new HttpRequestMessage(HttpMethod.Post, uri);

 return request;

}

In this case, the redirect URL was https://www.google.com. The URI you ended up
with was https://www.google.com/?code=a681b5126b4d0ba160ba. The code= part
is the code needed to get the OAuth access token. The token is returned in the
following format:

access_token=gho_
bN0J89xHZqhKOUhI5zd5xgsEZmCKMb3WXEQL&scope=user&token_type=bearer

5. Before this token can be used, you need to parse it from the response. So, create
a function to parse the token response:

private static Dictionary<string, string> ConvertToDictionary(string
content)
{

 return content

 .Split('&')

 .Select(kvp => kvp.Split('='))

 .Where(kvp => kvp.Length > 1)

 .ToDictionary(kvp => kvp[0], kvp => kvp[1]);

}

This takes every = property and puts it into a dictionary. The string before = is a
key and the string after = is a value.

https://www.google.com
https://www.google.com/?code=a681b5126b4d0ba160ba

Your Own Client | 573

6. Use the GetToken function to create and send a request and parse a response,
then format the token and return it:

private static async Task<string> GetToken()

{

 HttpRequestMessage request = CreateGetAccessTokenRequest();

 var response = await client.SendAsync(request);

 var content = await response.Content.ReadAsStringAsync();

 Dictionary<string, string> tokenResponse =
ConvertToDictionary(content);

 // ValidateNoError(tokenResponse);

 var token = $"{tokenResponse["token_type"]}
{tokenResponse["access_token"]}";
 return token;

}

Here, you created a request, sent it to a client, parsed the response as a token,
and then returned it. ValidateNoError is commented out for now. You will
come back to it later. The returned token should look something like this:

bearer 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

This token is a bearer token, which is a token generated by an authorization
server (in this case, GitHub) that grants access to GitHub on behalf of you (or any
other username used for logging in to GitHub). You can use it to send requests
that require special access. For example, update the employment status of
a user.

7. To update the employment status of a user, use the
UpdateEmploymentStatus function:

public static async Task UpdateEmploymentStatus(bool isHireable,
string authToken)
{

 var user = new UserFromWeb

 {

 hireable = isHireable

 };

 var request = new HttpRequestMessage(HttpMethod.Patch, new Uri("/
user", UriKind.Relative));
 request.Headers.Add("Authorization", authToken);

574 | Creating and Using Web API Clients

 var requestContent = JsonConvert.SerializeObject(user, new
JsonSerializerSettings { NullValueHandling = NullValueHandling.Ignore
});

 request.Content = new StringContent(requestContent, Encoding.
UTF8, "application/json");
 var response = await client.SendAsync(request);

 var responseContent = await response.Content.ReadAsStringAsync();

 Console.WriteLine(responseContent);

}

This block of code sets the user's property isHireable to true and prints the
updated user information. The important part here is content; when sending
PUT, PATCH, or a POST request, you often need a body with a request (or
content in other words).

The act of converting an in-memory object into structured text (for example,
JSON) is called serialization. In this case, a body is a user update. You send a
PATCH request because you only want to change the updated values. If a value
is not provided in the content, it should not change. That's the key difference
between a PATCH and POST request—a successful request overrides all values
(even if you don't provide them).

You used new JsonSerializerSettings { NullValueHandling =
NullValueHandling.Ignore } in order to avoid providing null values.
This is because you do not want to update all the fields; just the ones you
have supplied.

When creating HTTP content, you also need to supply a MIME type (a type of
media sent over with the request). It is needed so that the server has a hint for
how it is expected to process the request. A MIME type follows this format:

type/subtype

In this case, application/json means that the client should expect JSON
from a server. application is the most common MIME type, which means
binary data.

There is also StringContent, which is a type of serialized content, usually as
JSON or XML. Alternatively, you could use StreamContent or ByteContent,
but those are slightly rarer and are used when performance or the volume of
data is of concern.

Your Own Client | 575

The following code shows the full demo:

public static async Task Run()

{

 var oathAccessToken = await GitExamples.GetToken();

 await GitExamples.UpdateEmploymentStatus(true, oathAccessToken);

}

In the GetToken method (used in Step 6 of the Third-Party Authentication
(OAuth2) section), there was one commented line of code, ValidateNoError.
Uncomment it and implement the GetToken method, because you won't
always get a successful response, and parsing a token in that case will fail (i.e., it
won't exist). Therefore, it is always a good idea to validate the server response
and throw an exception when the unexpected happens. Look at the following
GitHub error format:

error=bad_verification_code&error_
description=The+code+passed+is+incorrect+or+expired.&error_
uri=https%3A%2F%2Fdocs.github.com%2Fapps%2Fmanaging-oauth-
apps%2Ftroubleshooting-oauth-app-access-token-request-
errors%2F%23bad-verification-code

It is not very readable. ValidateNoError will format the response and throw
that as an exception, instead of letting it fail silently:

private static void ValidateNoError(Dictionary<string, string>
tokenResponse)
{

 if (tokenResponse.ContainsKey("error"))

 {

 throw new Exception(

 $"{tokenResponse["error"].Replace("_", " ")}. " +

 $"{tokenResponse["error_description"].Replace("+", "
")}");
 }

}

If you run the code again and it fails for the same reasons, the error message will
now read as follows:

bad verification code. The code passed is incorrect or expired.

576 | Creating and Using Web API Clients

This section covered the basics of how to send HTTP requests with some sort of
security in place. In the sections that follow (Restsharp and Refit), you will create
clients using third-party libraries to remove some of the boilerplate code required by
HttpClient.

Note

You can find the code used for this example at https://packt.link/UPxmW.

Request Idempotency

An idempotent HTTP request is a request that always results in the same outcome.
Only GET, PUT, and PATCH requests are idempotent because they either make no
change or make the same change all over again, but that change does not ever cause
an error and results in the same data. DELETE is not idempotent because deleting an
already deleted item will produce an error. POST may or may not be idempotent, but
that solely depends on the implementation.

PUT, PATCH, or POST

The difference between PUT, PATCH, and POST can be summed up as follows:

• PUT is used for overriding fields in a model. Even if a single value is explicitly
provided, the whole model will have the unprovided values (or at least that's the
expectation). For example, if you wanted to update user details by first getting
the old details and then sending a modified version, you would use PUT.

• PATCH is used for updating only a single value that was provided explicitly. For
example, if you wanted to update a username, it would make sense to send
PATCH over a PUT request.

• POST is used for creating items or sending a complex query. Either way, the
default expectation of this verb is to have side effects. For example, if you
wanted to create a user, you would use a POST request.

Exercise 8.02: HttpClient Calling a Star Wars Web API

You might be familiar with Star Wars. There are movies, games, and TV series.
However, did you know that it also has multiple APIs to retrieve data? The upcoming
exercise will introduce you to a different format of an API and will make you familiar
with deserializing slightly more complex responses.

https://packt.link/UPxmW

Your Own Client | 577

In this exercise, you will create a strongly typed API client that will, under the hood,
use HttpClient. The client will be used to return Star Wars movies. You will be
using Star Wars API (SWAPI) (https://swapi.dev/). The required endpoint is https://swapi.
dev/api/films/. Perform the following steps to complete this exercise:

1. Create a new class to hold HttpClient with a base URL:

public class StarWarsClient

 {

 private readonly HttpClient _client;

 public StarWarsClient()

 {

 _client = new HttpClient {BaseAddress = new Uri("https://
swapi.dev/api/")};
 }

This will act as a strongly typed API client.

Note

The / at the end of the URI indicates that more text will be appended to the
URI (after api rather than after dev).

2. Create a type for representing a movie:

Film.cs

public record Film
{
 public string Title { get; set; }
 public int EpisodeId { get; set; }
 public string OpeningCrawl { get; set; }
 public string Director { get; set; }
 public string Producer { get; set; }
 [JsonProperty("release_date")]
 public string ReleaseDate { get; set; }
 public string[] Characters { get; set; }
 public string[] Planets { get; set; }
 public string[] Starships { get; set; }
 public string[] Vehicles { get; set; }
 public string[] Species { get; set; }
 public DateTime Created { get; set; }

The complete code can be found here: https://packt.link/tjHLa.

https://swapi.dev/
https://swapi.dev/api/films/
https://swapi.dev/api/films/
https://packt.link/tjHLa

578 | Creating and Using Web API Clients

This is a class you will use for deserializing movies within a response. The
ReleaseDate property has [JsonProperty("release_date")] above it
to specify that the "release_date" JSON field will map to the ReleaseDate
C# property.

3. Create a type for storing results:

public record ApiResult<T>

{

 public int Count { get; set; }

 public string Next { get; set; }

 public string Previous { get; set; }

 [JsonProperty("results")]

 public T Data { get; set; }

}

This is also a type for deserializing a movie response; however, the Star Wars API
returns results in paginated format. It contains Previous and Next properties
pointing to previous and next pages. For example, if you don't provide the page
you want, it will return a value of null. However, the next property will point to
the next page only if there are any elements left (otherwise it will also be null).
Querying the API using next or previous as a URI will return the resources of that
page. You used the JsonProperty attribute above T Data to provide JSON-
to-property mapping because the property and JSON names do not match (the
JSON field name is results while Data is the property name).

Note

You could have changed ApiResult to have the Results property
instead of Data. However, ApiResult.Results is a bit confusing.
When writing code, instead of ease of automation (in this case,
serialization), choose ease of maintainability and readability. For this
reason, the name chosen in Step 3 is different but clearer.

Your Own Client | 579

4. Now, create a method to get multiple films:

public async Task<ApiResult<IEnumerable<Film>>> GetFilms()

{

You've returned a task so that others can await this method. Almost all HTTP
calls will be async Task.

5. Create an HTTP request to get all movies:

var request = new HttpRequestMessage(HttpMethod.Get, new Uri("films",
UriKind.Relative));

The URI is relative because you're calling it from HttpClient that already has a
base URI set.

6. To query the Star Wars API for movies, send this request:

var response = await _client.SendAsync(request);

7. It returns HttpResponseMessage. There are two important parts to this:
status code and response body. C# has a method to determine whether
there were any errors based on the status code. To handle errors, use the
following code:

if (!response.IsSuccessStatusCode)

{

 throw new HttpRequestException(response.ReasonPhrase);

}

Error handling is important because a failed HTTP request will often result in an
error status code rather than an exception. It's recommended you do something
similar before trying to deserialize the response body as, if it fails, you might get
an unexpected body.

8. Now, call the ReadAsStringAsync method:

var content = await response.Content.ReadAsStringAsync();

var films = JsonConvert.DeserializeObject<ApiResult<Film>>(content);

 return films;

}

580 | Creating and Using Web API Clients

The response has content that is more likely to be a kind of stream. To convert
HttpContent to a string, call the ReadAsStringAsync method. This returns
a string (JSON), which allows you to convert JSON to a C# object and deserialize
the results. Lastly, you get the results by deserializing the response content body
and converting it all to ApiResult<Film>.

9. For a demo, create the client and use it to get all the Star Wars films, then
print them:

public static class Demo

{

 public static async Task Run()

 {

 var client = new StarWarsClient();

 var filmsResponse = await client.GetFilms();

 var films = filmsResponse.Data;

 foreach (var film in films)

 {

 Console.WriteLine($"{film.ReleaseDate} {film.Title}");

 }

 }

}

If everything is fine, you should see the following result:

1977-05-25 A New Hope

1980-05-17 The Empire Strikes Back

1983-05-25 Return of the Jedi

1999-05-19 The Phantom Menace

2002-05-16 Attack of the Clones

2005-05-19 Revenge of the Sith

This exercise illustrates how to create strongly typed HTTP clients for simplicity.

Note

You can find the code used for this exercise at https://packt.link/2CHpb.

https://packt.link/2CHpb

Your Own Client | 581

You might have noticed that sending an HTTP request and using an HTTP client is very
similar to the way a simple text file is sent to the GitHub API. Even if it was different,
endpoints throughout the same API usually share the same requirements. However,
if you manually craft an HTTP request every time you need to call an API, you are
not being very efficient. A better way is to create something reusable. A common
approach is to create BaseHttpClient. You will put this into practice in the
following activity.

Activity 8.01: Reusing HttpClient for the Rapid Creation of API Clients

The problem with HttpClient is that you still have to manage many things
by yourself:

• Error handling

• Serializing and deserializing

• Mandatory headers

• Authorization

When working in a team or on a bigger project, you are likely to be making more than
just one HTTP call. The consistency and same requirements between different calls
need to be managed.

The aim of this activity is to show one of many ways you can simplify working with
repetitive HTTP calls. You will be using the BaseHttpClient class, which you will
create first. The class will generalize error handling and deserializing responses and
requests, which will significantly simplify different HTTP calls that you make. Here,
you will learn how to implement a base client by rewriting StarWarsClient using
BaseHttpClient.

Perform the following steps to complete this activity:

1. Create a base HttpClient class. A base client wraps HttpClient. Therefore,
you will hold a private reference to it and allow it to be created from a URL. The
inner HttpClient often also includes base headers, but they are not required
in this case.

2. Define a way to create requests for every method. For brevity, stick to a GET
request. Within a GET request, it is a common practice to define the default
headers, but once again, it is not mandatory in this example.

582 | Creating and Using Web API Clients

3. Create a method to send requests and include error handling
and deserialization.

4. In SWAPI, if you are querying multiple results, you get back
ApiResult<IEnumerable<T>> for pagination. Create a
SendGetManyRequest method.

5. Use the base client you have created and simplify the client from Exercise 8.02.

6. Run the code through the same demo code but using the new version of
StarWarsClient.

7. If you run the demo once again with the new StarWarsClient, you should
see the same films returned:

1977-05-25 A New Hope

1980-05-17 The Empire Strikes Back

1983-05-25 Return of the Jedi

1999-05-19 The Phantom Menace

2002-05-16 Attack of the Clones

2005-05-19 Revenge of the Sith

In order to run this activity, go to https://packt.link/GR27A and comment all lines
within the static void Main(string[] args) body, except await
Activities.Activity01.Demo.Run();.

Note

The solution to this activity can be found at https://packt.link/qclbF.

Reusing HttpClient like that is very useful because it removes code duplication.
However, calling a Web API and removing duplicate code is a common problem and
is likely to be solved in some way by some libraries. The following section will explore
how to simplify calls to a Web API using two popular NuGet packages:

• RestSharp

• Refit

https://packt.link/GR27A
https://packt.link/qclbF

RestSharp | 583

RestSharp
The idea behind RestSharp is very similar to the base HttpClient—reducing code
duplicity. It simplifies the creation of a request and provides a lot of the utility for
making HTTP calls. Redo StarWarsClient using RestSharp, but first, you'll install
the RestSharp NuGet:

dotnet add package RestSharp

Now create a client that is very similar to the one you created in Activity 8.01:

 public class StarWarsClient

 {

 private readonly RestClient _client;

 public StarWarsClient()

 {

 _client = new RestClient("https://swapi.dev/api/");

 }

Having RestSharp created gives you a response serialization out of the box. It is
also able to guess which HTTP method you will use:

 public async Task<ApiResult<IEnumerable<Film>>> GetFilms()

 {

 var request = new RestRequest("films");

 var films = await _client.
GetAsync<ApiResult<IEnumerable<Film>>>(request);

 return films;

 }

 }

You passed the minimum required information to make an HTTP request (calling
films, returning ApiResult<IEnumerable<Film>>) and the rest is done. This is
very much like the base client you wrote previously.

Note

ApiResult is the same type used in Exercise 8.02.

584 | Creating and Using Web API Clients

However, if you run this code against your demo, you will notice that the Data
property (on JSON) comes back as null. This is because you had a JsonProperty
attribute on the response and film classes. RestSharp uses a different serializer,
which does not know about those attributes. To make it work, you could either
change all the attributes to what RestSharp comprehends or use the same serializer
as before. You are using Newtonsoft.Json and, in order to use that in RestSharp,
you need to call the UseSerializer method, selecting JsonNetSerializer:

 public StarWarsClient()

 {

 _client = new RestClient("https://swapi.dev/api/");

 _client.UseSerializer(() => new JsonNetSerializer());

 }

On running the demo, the following output gets displayed:

1977-05-25 A New Hope

1980-05-17 The Empire Strikes Back

1983-05-25 Return of the Jedi

1999-05-19 The Phantom Menace

2002-05-16 Attack of the Clones

2005-05-19 Revenge of the Sith

The results are the same as those in Exercise 8.02; however, the difference is using the
Newtonsoft serializer in the preceding example. RestSharp is probably the best
abstraction for HttpClient as it minimizes the amount of code you need to write to
make HTTP calls even while keeping its similarities with HttpClient.

Note

You can find the code used for this example at https://packt.link/f5vVG.

The example aims to communicate with Web APIs using HTTP requests. Even
though the demo files look the same, they are using either a different library or
design pattern. In the following activity, you will practice consuming more APIs
using RestSharp.

https://packt.link/f5vVG

RestSharp | 585

Activity 8.02: The Countries API Using RestSharp to List all Countries

The address https://restcountries.com/v3/ is a public web API that provides a list of all
existing countries. Suppose that using that API, you need to get a list of all countries,
find a country by its capital city (for example, Vilnius), and find all the countries that
speak in a given language (for example, Lithuanian). You need to print only the first
two country names, their regions, and their capitals, and implement a strongly typed
client to access this API using RestSharp.

The aim of this activity is to make you feel more comfortable using third-party
libraries (RestSharp) when making HTTP calls. Using third-party libraries often
saves a lot of time. It allows you to reuse something that is already available.

Perform the following steps to complete this activity:

1. Create a base client class using the URL https://restcountries.com/v3/.

Note

Navigating to https://restcountries.com/v3/ will return the HTTP status code
404 with a Page Not Found message. This is because the base API
URI doesn't contain any information on a resource; it is yet to be completed
and is just the beginning of a full URI for a resource.

2. Create models for serialization.

3. Use the example https://restcountries.com/v3/name/peru to get a response.

4. Copy the response and then use a class generator, such as https://json2csharp.
com/, to make models out of JSON (response).

5. Within the client, create the following methods: Get, GetByCapital, and
GetByLanguage.

6. Create a demo calling all three methods.

7. Print the countries within each response.

The result should be as follows:

All:

Aruba Americas Oranjestad

Afghanistan Asia Kabul

Lithuanian:

https://restcountries.com/v3/
https://restcountries.com/v3/
https://restcountries.com/v3/
https://restcountries.com/v3/name/peru
https://json2csharp.com/
https://json2csharp.com/

586 | Creating and Using Web API Clients

Lithuania Europe Vilnius

Vilnius:

Lithuania Europe Vilnius

Note

The solution to this activity can be found at https://packt.link/qclbF.

You now know that RestSharp simplifies the creation of a request and provides a lot
of the utilities for making HTTP calls. The next section will help you practice using
Refit, which is another way to consume an API.

Refit
Refit is the smartest client abstraction because it generates a client from an interface.
All you have to do is provide an abstraction:

1. To use the Refit library, first install the Refit NuGet:

dotnet add package Refit

2. To create a client in Refit, first create an interface with HTTP methods:

public interface IStarWarsClient

{

 [Get("/films")]

 public Task<ApiResult<IEnumerable<Film>>> GetFilms();

}

Please note that the endpoint here is /films rather than films. If you run
the code with films, you will get an exception suggesting that you change the
endpoint with a preceding /.

3. To resolve the client, simply run the following code:

var client = RestService.For<IStarWarsClient>("https://swapi.dev/
api/");

On running the demo, the following output gets displayed:

1977-05-25 A New Hope

1980-05-17 The Empire Strikes Back

1983-05-25 Return of the Jedi

https://packt.link/qclbF

Refit | 587

1999-05-19 The Phantom Menace

2002-05-16 Attack of the Clones

2005-05-19 Revenge of the Sith

The results are the same as the ones you saw in Exercise 8.02; however,
the difference is in the implementation.

Note

You can find the code used for this example at https://packt.link/cqkH5.

Use Refit only when your scenarios are trivial. Though Refit might seem like the
easiest solution, it comes with its own complications when you need custom
authorization for more complex scenarios. You will simplify the solution further in
the following activity.

Activity 8.03: The Countries API Using Refit to List all Countries

The more different ways you know of doing the same thing, the easier you can make
a choice and pick the best tool for the job. Different teams may use different tools
and Refit is quite a unique, minimalistic approach that you may encounter. Others
may say it complicates work because there is too much hidden in the client interface
(less code often does not mean that you can grasp the code easily). It doesn't matter
whether you are for Refit or against it; it's good to have practiced things first-hand
and formed your own opinion. This activity will help you do exactly that. Here, you will
access the Countries API to display all countries, countries by their language, and by
their capital city.

The aim of this activity is to show how practical Refit can be for rapid prototyping
when it comes to consuming simple APIs. The steps for this are as follows:

1. Create models for serialization. For that, use the example https://restcountries.
com/v3/name/peru to get a response.

2. Now copy the response.

3. Then use a class generator, such as https://json2csharp.com/, to make models out
of JSON (response).

4. Define an interface with methods: Get, GetByCapital, and
GetByLanguage.

https://packt.link/cqkH5
https://restcountries.com/v3/name/peru
https://restcountries.com/v3/name/peru
https://json2csharp.com/

588 | Creating and Using Web API Clients

5. Create a demo printing a country name, region, and country status.

The result will be displayed as follows:

All:

Aruba Americas Oranjestad

Afghanistan Asia Kabul

Lithuanian:

Lithuania Europe Vilnius

Vilnius:

Lithuania Europe Vilnius

Note

The solution to this activity can be found at https://packt.link/qclbF.

.NET has a few other native ways of creating HTTP requests, and for that, you can use
HttpWebRequest or WebClient. The two are not deprecated and it is fine to use
them, but they are older alternatives compared to the newer HttpClient. The next
section covers all these.

In the following section, you'll find out about other libraries that solve the problem of
code duplication when using HttpClient.

Other Ways of Making HTTP Requests
Refit and RestSharp are just two of many libraries solving the problem of code
duplication when using HttpClient. Flurl and TinyRest are another two popular
alternatives. New libraries are created every year and they are ever evolving. There
is no one best way that suits all scenarios. To be sure you make the right choice,
you'll want to do a little research first as there are some pitfalls to these alternatives
to consider.

https://packt.link/qclbF

Other Ways of Making HTTP Requests | 589

HttpClient was designed for the lowest-level HTTP calls in .NET. It is the safest
option because it is well-documented, tested, and allows the most freedom. Though
there are many libraries that are much simpler to use than HttpClient, they often
target basic scenarios (no authorization, no dynamically set headers). When it comes
to creating advanced HTTP calls, they often turn out to be quite complicated.

When it comes to choosing which client to use, first go for the one provided natively
by the API. If there is no client for the API, think about the complexity and scope of
your project. For simple, small-scope projects, use whatever NuGet HttpClient
alternative you find the most convenient. But if the scope of a project is big and the
calls are complex, use the native HttpClient offered by the framework.

In the next exercise, you will implement an example where using Refit will turn
it into a complication. To fix that complication, you will use both HttpClient
and RestSharp.

Exercise 8.03: A Strongly Typed HTTP Client for Testing Payments in a PayPal

Sandbox

A common scenario in programming is making payments. However, during the
development stage, you don't want to use a real bank account and thus look for ways
to process payments in a test environment—that is, a sandbox. In this exercise, you
will learn how to call a payments sandbox API. You will use PayPal's sandbox API
(https://developer.paypal.com/docs/api/orders/v2/) to create an order and get the order
that you have created.

This exercise will use Refit for the client interface and the implementation
resolution. It will also use HttpClient to provide a way of getting auth headers for
Refit. Lastly, you will use RestSharp to get an access token from within HttpClient.
Perform the following steps to complete this exercise:

1. Go to https://www.paypal.com/tt/webapps/mpp/account-selection.

2. Create a PayPal account (either personal or business).

3. Choose your location and click the Get Started button.

4. Provide your mobile number.

https://developer.paypal.com/docs/api/orders/v2/
https://www.paypal.com/tt/webapps/mpp/account-selection

590 | Creating and Using Web API Clients

5. Click the Next button and enter the code.

6. Set up your profile by entering an email address and password.

7. Provide your address details.

8. Now link your credit or debit card. You can also do this for free by following the
instructions given at https://www.paypal.com/tt/webapps/mpp/account-selection.

Note

Creating an account on PayPal is free. The linking of credit (or debit) card
requirement is just a part of account creation, and it doesn't charge you.
The payment gets refunded as soon as the authentication is confirmed.

9. Now log out of the account and go to https://developer.paypal.com/developer/
accounts/.

10. Click the Log in to Dashboard button and proceed ahead:

Figure 8.21: Log in to the PayPal dashboard to manage both sandbox and live environments

11. Then enter the requested credentials and proceed to the next screen.

https://www.paypal.com/tt/webapps/mpp/account-selection
https://developer.paypal.com/developer/accounts/
https://developer.paypal.com/developer/accounts/

Other Ways of Making HTTP Requests | 591

12. Click the Accounts option under the Sandbox option. You will see two test
accounts created for you:

Figure 8.22: Sandbox PayPal accounts for testing

You will use these accounts to do testing in the next steps.

Note

The PayPal sandbox is free.

13. Go to https://developer.paypal.com/developer/applications to get your client ID and
secret. Just like the GitHub example, PayPal uses an OAuth app to provide you
with a client ID and a secret.

https://developer.paypal.com/developer/applications

592 | Creating and Using Web API Clients

14. For one of the default accounts, PayPal also generates a default OAuth app. So,
click the Sandbox tab and select Default Application:

Figure 8.23: OAuth app creation for PayPal

15. In the new window, inspect both Client ID and Secret.

16. Take note of both and store them in environmental variables:

Figure 8.24: Default application details displaying Client ID and Secret

Other Ways of Making HTTP Requests | 593

17. Create properties for accessing the PayPal client ID and secret in a new empty
class, Exercise03.AuthHeaderHandler.cs:

public static string PayPalClientId { get; } = EnvironmentVariable.
GetOrThrow("PayPalClientId");
public static string PayPalSecret { get; } = EnvironmentVariable.
GetOrThrow("PayPalSecret");

Here, the EnvironmentVariable.GetOrThrow helper methods are used
to get the user's environment variable or throw it if it doesn't exist. You will use
these properties to make a connection to the sandbox PayPal API.

Note

You can find the code used for environment variables at https://packt.link/
y2MCy.

18. In the Demo.cs class, add a const variable for the BaseAddress of a
PayPal sandbox:

public const string BaseAddress = "https://api.sandbox.paypal.com/";

BaseAddress will be used for initializing different clients (RestSharp and Refit)
with the PayPal URL.

19. Use Refit to create a client with CreateOrder and GetOrder methods:

public interface IPayPalClient

{

 [Post("/v2/checkout/orders")]

 public Task<CreatedOrderResponse> CreateOrder(Order order);

 [Get("/v2/checkout/orders/{id}")]

 public Task<Order> GetOrder(string id);

}

To get a sample request, refer to the documentation of the API that you
want to call. Usually, they have an example request. In this case, the PayPal
CreateOrder request can be found at https://developer.paypal.com/docs/api/
orders/v2/:

{

 "intent":"CAPTURE",

 "purchase_units":[

https://packt.link/y2MCy
https://packt.link/y2MCy
https://developer.paypal.com/docs/api/orders/v2/
https://developer.paypal.com/docs/api/orders/v2/

594 | Creating and Using Web API Clients

 {

 "amount":{

 "currency_code":"USD",

 "value":"100.00"

 }

 }

]

}

Figure 8.25: PayPal CreateOrder example request with highlighted body

In Figure 8.25, -d is an argument and does not belong to the request body.

20. Use https://json2csharp.com/ and generate C# classes out of the JSON.
The corresponding C# classes will be generated for you.

https://json2csharp.com/

Other Ways of Making HTTP Requests | 595

21. Rename RootObject to Order and change all classes to the record type
because it's a more suitable type for DTO:

IPayPalClient.cs

public record Order
{
 public string intent { get; set; }
 public Purchase_Units[] purchase_units { get; set; }
}

public record Name
{
 public string name { get; set; }
}

public record Purchase_Units
{
 public Amount amount { get; set; }
 public Payee payee { get; set; }

The complete code can be found here: https://packt.link/GvEZ8.

22. Using the same PayPal docs (https://developer.paypal.com/docs/api/orders/v2/), copy
the example response:

{

 "id": "7XS70547FW3652617",

 "intent": "CAPTURE",

 "status": "CREATED",

 "purchase_units": [

 {

 "reference_id": "default",

 "amount": {

 "currency_code": "USD",

 "value": "100.00"

 },

 "payee": {

 "email_address": "sb-emttb7510335@business.example.
com",
 "merchant_id": "7LSF4RYZLRB96"

 }

 }

],

 "create_time": "2021-09-04T13:01:34Z",

 "links": [

https://packt.link/GvEZ8
https://developer.paypal.com/docs/api/orders/v2/

596 | Creating and Using Web API Clients

 {

 "href": "https://api.sandbox.paypal.com/v2/checkout/
orders/7XS70547FW3652617",
 "rel": "self",

 "method": "GET"

 }

]

}

23. Use https://json2csharp.com/ and generate C# classes out of the JSON. Here, you
will get classes very similar to the ones from request JSON. The only difference is
the response (simplified for brevity):

public class CreateOrderResponse

{

 public string id { get; set; }

}

24. Use AuthHeaderHandler to fetch an access token when you make a request
and make sure it inherits DelegatingHandler:

public class AuthHeaderHandler : DelegatingHandler

{

To make calls to PayPal, you will need an auth header with every request.
The auth header value is retrieved from yet another endpoint. Refit cannot
just add a header on a whim. You can, however, set up Refit using a custom
HttpClient with a custom HttpMessageHandler that fetches an access
token whenever you make a request. The AuthHeaderHandler is used for
that reason.

DelegatingHandler is a class that allows intercepting HttpRequest
when it's being sent and doing something before or after it. In this case, before
you send an HTTP request, you will fetch an auth header and add it to the
request sent.

25. Now, override SendRequest by adding a bearer token to
AuthenticationHeader:

protected override async Task<HttpResponseMessage>
SendAsync(HttpRequestMessage request, CancellationToken
cancellationToken)

{

 var accessToken = await
GetAccessToken(CreateBasicAuthToken());
 request.Headers.Authorization = new

https://json2csharp.com/

Other Ways of Making HTTP Requests | 597

AuthenticationHeaderValue("Bearer", accessToken);

 return await base.SendAsync(request,
cancellationToken).ConfigureAwait(false);
}

26. To get an access token, you first need to get an OAuth token using basic auth
(the client ID and secret):

 private static string CreateBasicAuthToken()

 {

 var credentials = Encoding.GetEncoding("ISO-8859-1").
GetBytes(PayPalClientId + ":" + PayPalSecret);
 var authHeader = Convert.ToBase64String(credentials);

 return "Basic " + authHeader;

 }

27. Getting an access token will require an auth token. Use the RestSharp client
and add an Authorization header to the request.

28. Next, set content-type to application/x-www-form-urlencoded as
per the PayPal API spec.

29. Add the body content grant_type=client_credentials as follows:

 private static async Task<string> GetAccessToken(string
authToken)
 {

 var request = new RestRequest("v1/oauth2/token");

 request.AddHeader("Authorization", authToken);

 request.AddHeader("content-type", "application/x-www-
form-urlencoded");
 request.AddParameter("application/x-www-form-
urlencoded", "grant_type=client_credentials", ParameterType.
RequestBody);

30. Execute the preceding request and return the response using the private
nested class Response to simplify your work:

 var response = await RestClient.
ExecuteAsync<Response>(request, Method.POST);

 return response.Data.access_token;

 }

 private class Response

 {

598 | Creating and Using Web API Clients

 public string access_token { get; set; }

 }

 }

Why is the nested class needed? Here, the access token is nested within the
response. It's not just a string that it returns, but rather an object. To parse
it yourself from JSON would be a little complicated. However, you already
know how to deserialize objects. So, even if it's just one property, deserializing
still helps.

31. Now, create RestClient for the GetAccessToken method. Do so in the
AuthHandler class:

private static readonly RestClient RestClient = new
RestClient(baseAddress);

32. In the Demo class, create the method Run:

public static async Task Run()

 {

33. Resolve a Refit client with a custom AuthHeaderHandler provider:

 var authHandler = new AuthHeaderHandler {InnerHandler =
new HttpClientHandler() };
 var payPalClient = RestService.For<IPayPalClient>(new
HttpClient(authHandler)
 {

 BaseAddress = new Uri(baseAddress)

 });

34. Assuming that a payment was made by creating an Order object, run the
following code:

var order = new Order

 {

 intent = "CAPTURE",

 purchase_units = new[]

 {

 new Purchase_Units

 {

 amount = new Amount

 {

 currency_code = "EUR", value = "100.00"

 }

Other Ways of Making HTTP Requests | 599

 }

 }

 };

35. Now, call PayPal API and create an order endpoint with the order you've
just created.

36. Get the created order to see if it works and print the retrieved order
payment information:

var createOrderResponse = await payPalClient.CreateOrder(order);

var payment = await payPalClient.GetOrder(createOrderResponse.id);

var pay = payment.purchase_units.First();

Console.WriteLine($"{pay.payee.email_address} - " +

 $"{pay.amount.value}" +

 $"{pay.amount.currency_code}");

With the environment variables set correctly, you should see the
following output:

sb-emttb7510335@business.example.com - 100.00EUR

As mentioned earlier, this is a sandbox API. However, a switch to a live environment
with real money would just be a matter of setting up new PayPal accounts in that
environment and calling a different endpoint: https://api-m.paypal.com.

Note

You won't be able to access https://api-m.paypal.com because it is for
production PayPal use and is paid. However, that should be the only
change in code (a different base URI) when you are ready to move on to
real integration with PayPal.

Please make sure you have the environment variables set and are using your own
client and secret. Otherwise, some unhandled exception errors may be displayed.

Note

You can find the code used for this exercise at https://packt.link/cFRq6.

https://api-m.paypal.com
https://api-m.paypal.com
https://packt.link/cFRq6

600 | Creating and Using Web API Clients

You now know how to do simple CRUD operations with Web APIs. However, you have
only worked with text so far. So, will calling an API with an image be any different?
Find that out in the next activity.

Activity 8.04: Using an Azure Blob Storage Client to Upload and Download Files

Azure Blob Storage is a cloud service on Azure for storing different files (logs,
images, music, and whole drives). Before you can use any Azure Storage services, you
will need a storage account. Blobs are just files, but they cannot be directly stored
within an account; instead, they need a container.

An Azure Storage Container is like a directory where other files are stored. However,
unlike a directory, a container cannot contain other containers. Use an Azure Storage
Account to create two containers, upload an image and a text file, and then download
the uploaded files locally. All this will be done in your own client, which wraps around
the Azure Blob storage client.

The aim of this activity is to familiarize yourself with working on files through cloud
storage while putting all that you have learned so far to the test. Perform the
following steps to complete this activity:

1. Navigate to Azure Storage Accounts.

2. Create a new Azure Storage Account.

3. Store a blob storage access key in environmental variables with the name
BlobStorageKey.

4. Install the Azure Blob Storage client.

5. Create the FilesClient class for storing fields for blobs client and default
container client (where blobs will be stored by default).

6. Create a constructor to initialize the two clients (to support access to
different containers).

7. Add a method to create a container or get an existing one if it already exists.

8. Create a method to upload a file to a specific container.

9. Create a method to download a file from a specific container.

10. Create a Demo class with paths to download and upload directories.

11. Add test data, namely the two files—that is, an image and a text file (Figure 8.26,
Figure 8.27, and Figure 8.28):

Other Ways of Making HTTP Requests | 601

Figure 8.26: Two Azure Storage containers, exercise04 and exercise04b,
in your storage account

Text file:

Figure 8.27: Test1.txt file uploaded in exercise04 container

602 | Creating and Using Web API Clients

Image file:

Figure 8.28: Morning.jpg file uploaded in exercise04b container

12. Create the method Run to upload a text file and then download it locally.

13. Run the code. If you did everything correctly, you should see the following output
with both files downloaded locally:

Figure 8.29: Morning.jpg and Test1.txt files downloaded from the two containers
after the demo code execution

Note

The solution to this activity can be found at https://packt.link/qclbF.

https://packt.link/qclbF

Summary | 603

It is near impossible to create a perfect client that is suitable for everyone. Therefore,
even when there is a solution for some problem given to you, you will often still need
to further abstract it away, adapting it to solve exactly the problem you have. The
problem you had was in uploading and downloading a file from and to a specific
folder. To solve the problem, you abstracted away layers of clients exposing just two
functions—one for uploading a file and another for downloading a file.

Summary
No matter the kind of programmer you are, there will be many scenarios in which
you will have to consume a web service. There are different kinds of services
online, but the most common type is RESTful. REST is just a set of guidelines and
should therefore not be mixed up with HTTP. REST APIs are simple, self-documented,
well-structured, and are currently a golden standard of Web APIs. However, in most
cases in the context of RESTful APIs, a request is sent over HTTP and your message
contains JSON.

The main tool for making HTTP calls using C# is HttpClient, however, before you
try to implement HTTP calls yourself, you should look for a NuGet package of the Web
API you're trying to consume. Azure Blob storage, Azure Text Analytics, PayPal, and
GitHub are just a few examples of Web APIs.

In this chapter, you learned about a lot of functionality on the web that is done for
you. It's not hard to consume; all you need to know now is how to communicate with
the third-party RESTful Web APIs. In the next chapter, you will learn how to create
your own RESTful web services using the ASP.NET Core Web API template as well as
being introduced to Azure Functions and the special tools Swagger and NuGet.

Overview

In modern software development, most logic is served through distinct
web services. This is essential to be able to both call and make new web
services as a developer.

In this chapter, you will be creating your own RESTful web service using the
ASP.NET Core Web API template. You will learn not only how to do it but
also some of the best practices for designing and building a Web API. You
will also learn how to protect an API using Azure Active Directory (AAD),
centralize error handling, troubleshoot errors, generate documentation,
and more.

By the end of this chapter, you will be able to create professional Web APIs
that are secured with AAD, hosted on the cloud, scalable, and able to serve
thousands of users.

Creating API Services

9

606 | Creating API Services

Introduction
ASP.NET Core is a part of the .NET Core framework that is targeted at creating web
apps. Using it, you can create both frontend (such as Razor or Blazor) and backend
(such as Web API or gRPC) applications. However, in this chapter, you will be focusing
on creating RESTful Web APIs. Creating a new web service for the first time might
sound like a daunting task, but don't worry too much; for most scenarios, there is
a template to get you started. In this chapter, you will create a few Web APIs using
ASP.NET Core 6.0.

ASP.NET Core Web API
In Chapter 8, Creating and Using Web API Clients, you learned how to call RESTful APIs.
In this chapter, you will be making one. Web API is a template for creating RESTful
Web APIs in .NET. It contains routing, Dependency Injection (DI), an example
controller, logging, and other useful components to get you started.

Creating a New Project

In order to create a new Web API, follow these steps:

1. Create a new directory.

2. Name it after a project you want to create.

3. Navigate to that directory using the cd command.

4. Execute the following at the command line:

dotnet new webapi

That is all it takes to get started.

ASP.NET Core Web API | 607

5. To see whether this is executing as expected, run the following and see your
application come to life (Figure 9.1):

dotnet run --urls=https://localhost:7021/

Figure 9.1: Terminal window showing the port the application is hosted on

In Figure 9.1, you will see port 7021 for the https version of the application. There
may be multiple ports, especially if you are hosting both HTTP and HTTPs versions of
an application. However, the key thing to remember is that you can the port where an
application runs (for example, through the command line).

A port is a channel through which you allow a certain application to be called by all
other applications. It is a number that appears after a base URL and it allows a single
application through. Those applications don't have to be outsiders; the same rules
also apply to internal communication.

Localhost refers to an application hosted locally. Later in this chapter, you will
configure the service to bind to whatever port you want.

Note

There are 65,535 ports available on a single machine. Ports zero through
1023 are called well-known ports because usually, the same parts of the
system listen on them. Typically, if a single application is hosted on one
machine, the port will be 80 for http and 443 for https. If you are hosting
multiple applications, the ports will vary drastically (usually starting from
port 1024).

608 | Creating API Services

Web API Project Structure

Every Web API is made of at least two classes—Program and one or more controllers
(WeatherForecastController in this case):

• Program: This is the starting point of an application. It serves as a low-level
runner of an application and manages dependencies.

• Controller: This is a REST API endpoint in .NET. It usually follows
a pattern of [Model]Controller. In this example case,
WeatherForecastController will be called using a /weatherforecast
endpoint.

Figure 9.2: The newly created MyProject structure in VS Code with key parts highlighted

An In-Depth Look at WeatherForecastController

The controller from the default template is preceded by two attributes:

• [ApiController]: This attribute adds common, convenient (yet opinionated)
Web API functionality.

• [Route("[controller]")]: This attribute is used to provide a routing
pattern of a given controller.

ASP.NET Core Web API | 609

For example, in cases where these attributes are absent or the request is complex,
you would need to validate an incoming HTTP request yourself without routing out of
the box:

[ApiController]

[Route("[controller]")]

public class WeatherForecastController : ControllerBase

{

This controller has /WeatherForecast as the route. The route is usually made of
the word that precedes the word Controller unless specified otherwise. When
developing APIs professionally, or when you have a client- and server-side application,
it is recommended to preappend /api to the route, making it [Route("api/
[controller]")].

Next, you'll learn about the controller class declaration. Common controller functions
come from a derived ControllerBase class and a few components (usually a
logger) and services. The only interesting bit here is that, instead of Ilogger, you
use ILogger<WeatherForecastController>:

 private readonly ILogger<WeatherForecastController> _logger;

 public WeatherForecastController(ILogger<WeatherForecastController>
logger)
 {

 _logger = logger;

 }

The reason behind using the generic part is solely for getting the context from the
place where the log was called. Using a generic version of a logger, you use a fully
qualified name of a class that is supplied as a generic argument. Calling logger.
Log will prefix it with a context; in this case, it will be Chapter09.Service.
Controllers.WeatherForecastController[0].

Lastly, look at the following controller method:

 [HttpGet]

 public IEnumerable<WeatherForecast> Get()

 {

 return new List<WeatherForecast>(){new WeatherForecast()};

 }

}

610 | Creating API Services

The [HttpGet] attribute binds the Get method with the root controller endpoint's
(/WeatherForecast) HTTP GET method. There is a version of that attribute for
every HTTP method, and they are HttpGet, HttpPost, HttpPatch, HttpPut,
and HttpDelete. To check whether the service works, run the application using the
following command:

dotnet run --urls=https://localhost:7021/

Here, the -urls=https://localhost:7021/ argument is not a requirement.
This argument simply makes sure that the port picked by .NET is the same as is
indicated in this example during execution.

To see the output, navigate to https://localhost:7021/weatherforecast/
in the browser. This will return a single default WeatherForecast upon calling
HTTP GET:

[{"date":"0001-01-01T00:00:00","temperatureC":0,"temperature
F":32,"summary":null}].

Note

When https://localhost:7021/weatherforecast/ displays
an error message (localhost refused to connect), it means
that the application is likely running, but on a different port. So, always
remember to specify a port as described in the Creating a New Project
section (Step 5).

Responding with Different Status Codes

Find out what status codes can public IEnumerable<WeatherForecast>
Get() respond with. Using the following steps, you can play around with it and
inspect what happens in the browser:

1. Navigate to https://localhost:7021/weatherforecast/ in
the browser.

2. Click on More tools.

ASP.NET Core Web API | 611

3. Select the Developer tools option. Alternatively, you can use the F12 key to
launch the developer tools.

4. Next, click on the Network tab.

5. Click on the Headers tab. You will see that https://localhost:7021/
weatherforecast/ responds with 200 Status Code:

Figure 9.3: Dev tools Network tab—inspecting response headers of a successful response

6. Create a new endpoint called GetError that throws an exception if a rare
circumstance arises while a program is running:

 [HttpGet("error")]

 public IEnumerable<WeatherForecast> GetError()

 {

 throw new Exception("Something went wrong");

 }

612 | Creating API Services

7. Now, call https://localhost:7021/weatherforecast/error. It
responds with a status code of 500:

Figure 9.4: Dev tools Network tab—inspecting a response with an exception

What should you do if you want a different status code to be returned? For that, the
BaseController class contains utility methods for returning any kind of status
code you require. For example, if you wanted to explicitly return an OK response,
instead of returning a value right away, you could return Ok(value). However, if
you try changing the code, you will get the following error:

Cannot implicitly convert type 'Microsoft.AspNetCore.Mvc.OkObjectResult'
to 'Chapter09.Service.Models.WeatherForecast'

This does not work because you do not return an HTTP status code from a controller;
you either return some value or throw some error. To return any status code of your
choice, you need to change the return type. For that reason, a controller should never
have a return type of some value. It should always return the IActionResult
type—a type that supports all status codes.

Create one more method for getting the weather for any day of the week. If the
day is not found (a value less than 1 or more than 7), you will explicitly return 404 –
not found:

[HttpGet("weekday/{day}")]

public IActionResult GetWeekday(int day)

{

ASP.NET Core Web API | 613

 if (day < 1 || day > 7)

 {

 return NotFound($"'{day}' is not a valid day of a week.");

 }

 return Ok(new WeatherForecast());

}

Here, you added one new {day} at the end of the endpoint. This is a placeholder
value, which comes from a matching function argument (in this case, day). Rerunning
the service and navigating to https://localhost:7021/weatherforecast/
weekday/8 will result in a 404 – not found status code because it is more than
the max allowed day value, which is 7:

Figure 9.5: The response to finding a weather forecast for a non-existent day of the week

Note

You can find the code used for this example at https://packt.link/SCudR.

This concludes the theoretical portion of this topic. In the following section, you will
put this into practice with an exercise.

https://packt.link/SCudR

614 | Creating API Services

Exercise 9.01: .NET Core Current Time Service

Once you have managed to run a Web API once, adding new controllers should be
trivial. Often, whether a service is running or not, it is checked using the most basic
logic; whether it is returning OK or getting the current DateTime value. In this
exercise, you will create a simple current time service returning the current time in
ISO standard. Perform the following steps to do so:

1. Create a new controller called TimeController to get the local time and
further add functions for testing purposes:

 [ApiController]

 [Route("[controller]")]

 public class TimeController : ControllerBase

 {

The controller shown here isn't just for testing; it acts as business logic too.

2. Add an endpoint for HTTP GET called GetCurrentTime that points to the
time/current route. You will use it to get the current time:

 [HttpGet("current")]

 public IActionResult GetCurrentTime()

 {

3. Return the current DateTime converted to a string in ISO format:

 return Ok(DateTime.Now.ToString("o"));

 }

 }

4. Navigate to https://localhost:7021/time/current and you should
see the following response:

2022-07-30T15:06:28.4924356+03:00

As mentioned in the Web API Project Structure section, you can use the endpoint to
determine whether a service is running or not. If it is running, then you will get the
DateTime value, which you saw in the preceding output. If it is not running, then you
would get a response with a status code of 404 – not found. If it is running but
with problems, then you would get the 500 status code.

Note

You can find the code used for this exercise at https://packt.link/OzaTd.

https://packt.link/OzaTd

ASP.NET Core Web API | 615

So far, all your focus was on a controller. It's time you shift your attention to another
crucial part of a Web API—the Program class.

Bootstrapping a Web API

The Program class wires up the whole API together. In layman's terms, you register
the implementations for all the abstractions used by controllers and add all the
necessary middleware.

Dependency Injection

In Chapter 2, Building Quality Object-Oriented Code, you explored the concept of DI.
In Chapter 7, Creating Modern Web Applications with ASP.NET, you had a look at an
example of DI for logging services. In this chapter, you will get hands-on experience
in DI and the Inversion of Control (IoC) container—a component used to wire up
and resolve all the dependencies in a central place. In .NET Core and later, the default
container is Microsoft.Extensions.DependencyInjection. You will learn
more about that a bit later.

Program.cs and Minimal API

The simplest Web API in .NET 6 looks like this:

// Inject dependencies (DI)

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddControllers();

// Add middleware

var app = builder.Build();

if (builder.Environment.IsDevelopment())

{

 app.UseDeveloperExceptionPage();

}

app.MapControllers();

app.Run();

616 | Creating API Services

This is a minimal API because it makes use of the top-level statements feature.
Prior to .NET 6, you would have two methods within a Startup class (Configure
and ConfigureService) and a Program class. Now you have a single file,
Program.cs, and no classes or methods. You can still use the old way of starting an
application. In fact, .NET 6 will generate similar classes under the hood. However, if
you are making a new app in .NET 6, then using a minimal API should be preferred.

Break down the preceding code snippet. To start the application, you first need to
build it. So, you will create a builder using the following line of code:

var builder = WebApplication.CreateBuilder(args);

builder.Services specifies which services are to be injected. In this case,
you registered the implementation of the controllers. So, here you have just one
controller calling—that is, WeatherForecastController:

builder.Services.AddControllers();

When you use builder.Build(), you can access the app object and further
configure the application by adding middleware. For example, to add controller
routing, call the following:

app.MapControllers();

Lastly, builder.Environment.IsDevelopment() checks
whether the environment is developed. If it is developed, it calls app.
UseDeveloperExceptionPage();, which adds detailed errors when
something fails.

Logging is not mentioned anywhere; yet you still use it. A common pattern
is to group all the related injections under the same extension method for
IServiceCollection. An example of an extension method for all the controller-
related functionality, including logging, is the AddControllers method.

You already saw the logging messages sent through the console logger right after you
ran the API. Under the hood, the builder.Services.AddLogging method is
called. This method clears all the logging providers:

builder.Services.AddLogging(builder =>

{

 builder.ClearProviders();

});

ASP.NET Core Web API | 617

If you run the application now, you will not see anything appear in the console
(Figure 9.6):

Figure 9.6: Running an application with no logs displayed

However, if you modify AddLogging to include Console and Debug logging in the
following way, you will see the logs as in Figure 9.7:

builder.Services.AddLogging(builder =>

{

 builder.ClearProviders();

 builder.AddConsole();

 builder.AddDebug();

});

Now, add an error logging functionality to the error endpoint of
WeatherForecastController. This will throw an exception when a rare
circumstance arises while a program is running:

[HttpGet("error")]

public IEnumerable<WeatherForecast> GetError()

{

 _logger.LogError("Whoops");

 throw new Exception("Something went wrong");

}

Restart the API with the following command:

dotnet run --urls=https://localhost:7021/

Now, call https://localhost:7021/weatherforecast/error and this will
show the logged message (compare Figure 9.6 and Figure 9.7):

Figure 9.7: The error message, Whoops, displayed on the terminal

618 | Creating API Services

The Inner Workings of the AddLogging Method

How does the AddLogging method work? The decompiled code of the
AddLogging method looks like this:

services.AddSingleton<ILoggerFactory, LoggerFactory>();

It is best practice not to initialize loggers by yourself. ILoggerFactory provides
that functionality as a single place from which you may create loggers. While
ILoggerFactory is an interface, LoggerFactory is an implementation of
that interface. AddSingleton is a method that specifies that a single instance
of LoggerFactory will be created and used whenever ILoggerFactory
is referenced.

Now the question arises: why wasn't ILoggerFactory used in a controller?
ILoggerFactory is used under the hood when resolving an implementation of a
controller. When exposing a controller dependency such as a logger, you no longer
need to care about how it gets initialized. This is a great benefit because it makes the
class holding a dependency both more simple and more flexible.

If you do want to use ILoggerFactory instead of Ilogger, you could have a
constructor accepting the factory, as follows:

public WeatherForecastController(ILoggerFactory logger)

You can then use it to create a logger, as follows:

_logger = logger.CreateLogger(typeof(WeatherForecastController).
FullName);

This latter logger functions the same as the former.

This section dealt with the AddSingleton method for managing service
dependencies in a central place. Proceed to the next section to solve dependency
complexities with DI.

The Lifetime of an Injected Component

The AddSingleton method is useful because complex applications have hundreds,
if not thousands, of dependencies often shared across different components. It would
be quite a challenge to manage the initialization of each. DI solves that problem by
providing a central place for managing dependencies and their lifetimes. Before
proceeding further, you'll need to learn more about DI lifetimes.

ASP.NET Core Web API | 619

There are three injected object lifetimes in .NET:

• Singleton: Object initialized once per application lifetime

• Scoped: Object initialized once per request

• Transient: Object initialized every time it is referenced

To better illustrate DI and different service lifetimes, the next section will refactor the
existing WeatherForecastController code.

DI Examples within a Service

A service is a holder for logic at the highest level. By itself, a controller should not do
any business logic and just delegate a request to some other object that is able to
handle it. Apply this principle and refactor the GetWeekday method using DI.

First, create an interface for the service to which you will move all the logic. This is
done to create an abstraction for which you will later provide an implementation. An
abstraction is needed because you want to move out as much logic as possible from
the controller into other components:

public interface IWeatherForecastService

{

 WeatherForecast GetWeekday(int day);

}

As you move a portion away from a controller, you would like to handle error
scenarios as well. In this case, if a provided day is not between 1 and 7, you will
return a 404 – not found error. However, at the service level, there is no concept
of HTTP status codes. Therefore, instead of returning an HTTP message, you will be
throwing an exception. For the exception to be handled properly, you will create a
custom exception called NoSuchWeekdayException:

public class NoSuchWeekdayException : Exception

{

 public NoSuchWeekdayException(int day)

 : base($"'{day}' is not a valid day of a week.") { }

}

620 | Creating API Services

Next, create a class that implements the service. You will move your code here:

public class WeatherForecastService : IWeatherForecastService

{

 public WeatherForecast GetWeekday(int day)

 {

 if (day < 1 || day > 7)

 {

 throw new NoSuchWeekdayException(day);

 }

 return new WeatherForecast();

 }

}

The only difference here as compared to the previous code is that, instead of
returning NotFound, you have used throw new NoSuchWeekdayException.

Now, inject the service into a controller:

private readonly IWeatherForecastService _weatherForecastService;

private readonly Ilogger _logger;

public WeatherForecastController(IloggerFactory logger,
IWeatherForecastService weatherForecastService)
{

 _weatherForecastService = weatherForecastService;

 _logger = logger.CreateLogger(typeof(WeatherForecastController).
FullName);
}

The cleaned-up controller method, in the Responding with Different Status Codes
section, with minimum business logic, now looks like this:

[HttpGet("weekday/{day}")]

public IActionResult GetWeekday(int day)

{

 try

 {

 var result = _weatherForecastService.GetWeekday(day);

 return Ok(result);

 }

 catch(NoSuchWeekdayException exception)

 {

ASP.NET Core Web API | 621

 return NotFound(exception.Message);

 }

}

It might still seem like the same code; however, the key point here is that the
controller no longer does any business logic. It simply maps results from the service
back to an HTTP response.

Note

In the Error Handling section, you will return to this and further remove code
from the controller, making it as light as possible.

If you run this code, you would get the following exception when calling any of the
controller's endpoints:

Unable to resolve service for type 'Chapter09.Service.Examples.
TemplateApi.Services.IweatherForecastService' while attempting
to activate 'Chapter09.Service.Examples.TemplateApi.Controllers.
WeatherForecastController'

This exception shows that there is no way that WeatherForecastController
can figure out the implementation for IWeatherForecastService. So, you need
to specify which implementation fits the needed abstraction. For example, this is
done inside the Program class as follows:

builder.Services.AddSingleton<IWeatherForecastService,
WeatherForecastService>();

The AddSingleton method reads this as for the abstraction of
IWeatherForecastService, register the WeatherForecastService
implementation. In the following paragraphs, you will learn how exactly it works.

Now that you have a service to be injected, you can explore what effect each
injection has on service calls when calling the following controller method.
For that point, you will slightly modify WeatherForecastService and
WeatherForecastController.

622 | Creating API Services

Within WeatherForecastService, do the following:

1. Inject a logger:

 private readonly ILogger<WeatherForecastService> _logger;

 public WeatherForecastService(ILogger<WeatherForecastService>
logger)
 {

 _logger = logger;

 }

2. When the service is initialized, log a random Guid that changes the constructor
to look like this:

 public WeatherForecastService(ILogger<WeatherForecastService>
logger)
 {

 _logger = logger;

 _logger.LogInformation(Guid.NewGuid().ToString());

 }

Within WeatherForecastController, do the following:

1. Inject the second instance of WeatherForecastService:

 public class WeatherForecastController : ControllerBase

 {

 private readonly IWeatherForecastService _
weatherForecastService1;
 private readonly IWeatherForecastService _
weatherForecastService2;
 private readonly ILogger _logger;

 public WeatherForecastController(ILoggerFactory
logger, IWeatherForecastService weatherForecastService1,
IWeatherForecastService weatherForecastService2)

 {

 _weatherForecastService1 = weatherForecastService1;

 _weatherForecastService2 = weatherForecastService2;

 _logger = logger.
CreateLogger(typeof(WeatherForecastController).FullName);
 }

ASP.NET Core Web API | 623

2. Call both instances when getting a weekday:

 [HttpGet("weekday/{day}")]

 public IActionResult GetWeekday(int day)

 {

 try

 {

 var result = _weatherForecastService1.
GetWeekday(day);
 result = _weatherForecastService1.GetWeekday(day);

 return Ok(result);

 }

 catch (NoSuchWeekdayException exception)

 {

 return NotFound(exception.Message);

 }

 }

The GetWeekday method is called twice because it will help illustrate DI lifetimes
better. Now it is time to explore different DI lifetimes.

Singleton

Register the service as a singleton in Program.cs in the following way:

builder.Services.AddSingleton<IWeatherForecastService,
WeatherForecastService>();

After calling the application, you will see the following logs generated while running
the code:

info: Chapter09.Service.Services.WeatherForecastService[0]

 2b0c4e0c-97ff-4472-862a-b6326992d9a6

info: Chapter09.Service.Services.WeatherForecastService[0]

 2b0c4e0c-97ff-4472-862a-b6326992d9a6

If you call the application again, you will see the same GUID logged:

info: Chapter09.Service.Services.WeatherForecastService[0]

 2b0c4e0c-97ff-4472-862a-b6326992d9a6

info: Chapter09.Service.Services.WeatherForecastService[0]

 2b0c4e0c-97ff-4472-862a-b6326992d9a6

This proves that the service was initialized only once.

624 | Creating API Services

Scoped

Register the service as scoped in Program.cs in the following way:

builder.Services.AddScoped<IWeatherForecastService,
WeatherForecastService>();

After calling the application, you will see the following logs generated while running
the code:

info: Chapter09.Service.Services.WeatherForecastService[0]

 921a29e8-8f39-4651-9ffa-2e83d2289f29

info: Chapter09.Service.Services.WeatherForecastService[0]

 921a29e8-8f39-4651-9ffa-2e83d2289f29

On calling WeatherForecastService again, you will see the following:

info: Chapter09.Service.Services.WeatherForecastService[0]

 974e082d-1ff5-4727-93dc-fde9f61d3762

info: Chapter09.Service.Services.WeatherForecastService[0]

 974e082d-1ff5-4727-93dc-fde9f61d3762

This is a different GUID that has been logged. This proves that the service was
initialized once per request, but a new instance was initialized on a new request.

Transient

Register the service as transient in Program.cs in the following way:

builder.Services.AddTransient<IWeatherForecastService,
WeatherForecastService>();

After calling the application, you should see the following in the logs generated while
running the code:

info: Chapter09.Service.Services.WeatherForecastService[0]

 6335a0aa-f565-4673-a5c4-0590a5d0aead

info: Chapter09.Service.Services.WeatherForecastService[0]

 4074f4d3-5e50-4748-9d6f-15fb6a782000

ASP.NET Core Web API | 625

That there are two different GUIDs logged proves that both services were initialized
using different instances. It is possible to use DI and IoC outside of the Web API. DI
through IoC is just another library with a few extras given by the Web API template.

Note

If you want to use IoC outside of ASP.NET Core, install the following
NuGet (or other IoC container): Microsoft.Extensions.
DependencyInjection.

TryAdd

So far, you have wired implementations to their abstractions using an
Add[Lifetime] function. However, that is not the best practice in most
cases. Usually, you'll want a single implementation to be wired for a single
abstraction. However, if you repeatedly call Add[Lifetime], for example, the
AddSingleton function, you will create a collection of implementing instances
(duplicates) underneath. This is rarely the intention and therefore you should protect
yourself against that.

The cleanest way to wire dependencies is through the TryAdd[Lifetime] method.
In the case of a duplicate dependency, it will simply not add a duplicate. To illustrate
the difference between the two versions of DIs, compare the injected service counts
using different methods. Here, you will inject two identical services as a singleton.

Here you are using the Add[Lifetime] service as a singleton:

builder.Services.AddSingleton<IWeatherForecastService,
WeatherForecastService>();
Debug.WriteLine("Services count: " + services.Count);

builder.services.AddSingleton<IWeatherForecastService,
WeatherForecastService>();
Debug.WriteLine("Services count: " + services.Count);

The command will display the following output:

Services count: 156

Services count: 157

626 | Creating API Services

Here you are using the TryAdd[Lifetime] service as a singleton:

builder.Services.TryAddSingleton<IWeatherForecastService,
WeatherForecastService>();
Debug.WriteLine("Services count: " + services.Count);

builder.Services.TryAddSingleton<IWeatherForecastService,
WeatherForecastService>();
Debug.WriteLine("Services count: " + services.Count);

The command will display the following output:

Services count: 156

Services count: 156

Observe that Add[Lifetime] added a duplicate in the output, while
TryAdd[Lifetime] did not. Since you don't want duplicate dependencies, it's
recommended that you use the TryAdd[Lifetime] version.

You can do an injection for a concrete class as well. Calling builder.
Services.AddSingleton<WeatherForecastService,
WeatherForecastService>(); is a valid C# code; however, it does not make
much sense. DI is used to inject an implementation into an abstraction. This will not
work when bootstrapping the service because the following error will be displayed:

Unable to resolve a controller

The error occurs because there is still an abstraction-implementation binding to be
provided. It would only work if a concrete implementation, rather than an abstraction,
were exposed in the constructor of the controller. In practice, this scenario is
rarely used.

You have learned that the cleanest way of wiring dependencies is through
the TryAdd[Lifetime] method. You will now create a service that accepts
primitive arguments (int and string) and see how it manages its non-primitive
dependencies in an IoC container.

Manual Injection Using an IoC Container

There are scenarios in which you will need to create an instance of a service before
injecting it. An example use case could be a service with primitive arguments in
a constructor, in other words, a weather forecast service for a specific city with
a configured interval for forecast refreshes. So, here, you cannot inject a string
or an integer, but you can create a service with an integer and a string and inject
that instead.

ASP.NET Core Web API | 627

Modify WeatherForecastService with the said features:

public class WeatherForecastServiceV2 : IWeatherForecastService

{

 private readonly string _city;

 private readonly int _refreshInterval;

 public WeatherForecastService(string city, int refreshInterval)

 {

 _city = city;

 _refreshInterval = refreshInterval;

 }

Return to the Program class and try to inject a service for New York with a refresh
interval of 5 (hours):

builder.Services.AddSingleton<IWeatherForecastService,
WeatherForecastService>(BuildWeatherForecastService);
static WeatherForecastServiceV2
BuildWeatherForecastService(IServiceProvider _)
{

 return new WeatherForecastServiceV2("New York", 5);

}

In order to inject the service, as always, you use a version of the builder.
Services.Add[Lifetime] method. However, on top of that, you provided
an argument—a delegate specifying how a service should be created. The
service provider can be accessed by calling the BuildServices method on
IServiceCollection. This delegate takes IServiceProvider as input and
uses it to build a new service.

In this case, you did not use it and thus named the argument after the discard
operator (_). The remaining contents of the function are just a simple return with
the values from the previous paragraph (for brevity, you will not add any extra logic
to use the new values). If you had a more complex service, for example, a service
that requires another service, you could call the .GetService<ServiceType>
method from IServiceProvider.

628 | Creating API Services

Build and Create are two common method names. However, they should not
be used interchangeably. Use Build when building a single dedicated object, while
Create is used when the intention is to produce many objects of diverse types.

Note

You can find the code used for this example at https://packt.link/fBFRQ.

Exercise 9.02: Displaying Current Time in a Country API Time Zone

In this exercise, you are tasked with creating a Web API that provides the date and
time at different time zones of UTC. Through a URL, you will pass a number between
-12 and +12 and return the time in that time zone.

Perform the following steps:

1. Create an interface called ICurrentTimeProvider with a method called
DateTime GetTime(string timezone):

public interface ICurrentTimeProvider

{

 DateTime GetTime(string timezoneId);

}

2. Create a class called CurrentTimeUtcProvider implementing
ICurrentTimeProvider to implement the logic required for the application:

public class CurrentTimeUtcProvider : ICurrentTimeProvider

{

3. Implement the method of converting the current DateTime to Utc and then
offsetting that based on the time zone passed:

 public DateTime GetTime(string timezoneId)

 {

 var timezoneInfo = TimeZoneInfo.
FindSystemTimeZoneById(timezoneId);
 var time = TimeZoneInfo.ConvertTimeFromUtc(DateTime.UtcNow,
timezoneInfo);

 return time;

 }

}

https://packt.link/fBFRQ

ASP.NET Core Web API | 629

4. Create a CurrentTimeProviderController controller to make sure it
accepts ICurrentTimeProvider in the constructor:

[ApiController]

[Route("[controller]")]

public class CurrentTimeController : ControllerBase

{

 private readonly ICurrentTimeProvider _currentTimeProvider;

 public CurrentTimeController(ICurrentTimeProvider
currentTimeProvider)
 {

 _currentTimeProvider = currentTimeProvider;

 }

5. Create an HttpGet endpoint called IActionResult Get(string
timezoneId), which calls the current time provider and returns the
current time:

 [HttpGet]

 public IActionResult Get(string timezoneId)

 {

 var time = _currentTimeProvider.GetTime(timezoneId);

 return Ok(time);

 }

}

Please note that {timezoneId} is not specified in the HttpGet attribute.
This is because the pattern is used for REST parts on an endpoint; however, in
this scenario, it is passed as an argument of a query string. If a string contains
whitespaces or other special characters, it should be encoded before being
passed. You can URL-encode a string using this tool: https://meyerweb.com/eric/
tools/dencoder/.

6. In the Program class, inject the service:

builder.Services.AddSingleton<ICurrentTimeProvider,
CurrentTimeUtcProvider>();

Here, you injected the service as a singleton because it is stateless.

https://meyerweb.com/eric/tools/dencoder/
https://meyerweb.com/eric/tools/dencoder/

630 | Creating API Services

7. Call the https://localhost:7021/
CurrentTime?timezone=[yourtimezone] endpoint with a timezoneid
value of your choice. For example, you can call the following endpoint:
https://localhost:7021/CurrentTime?timezoneid=Central%20
Europe%20Standard%20Time.

You will get the response showing the date and time at that time zone:

"2021-09-18T20:32:29.1619999"

Note

You can find the code used for this exercise at https://packt.link/iqGJL.

OpenAPI and Swagger

OpenAPI is a REST API description format. It is a specification of an API with the
endpoints it has, the authentication methods it supports, the arguments it accepts,
and the example requests and responses it informs. The REST API works with both
JSON and XML formats; however, JSON is chosen frequently. Swagger is a collection
of tools and libraries implementing the OpenAPI standard. Swagger generates
two things:

• A web page to make calls to your API

• Generate client code

In .NET, there are two libraries for working with Swagger:

• NSwag

• Swashbuckle

Using Swagger Swashbuckle

In this section, you will use Swashbuckle to demonstrate one of many ways to test
APIs and generate API documentation. So, install the Swashbuckle.AspNetCore
package by running the following command:

dotnet add package Swashbuckle.AspNetCore

https://packt.link/iqGJL

ASP.NET Core Web API | 631

Just before the builder.Build() call, add the following line of code in Program.
cs:

builder.Services.AddSwaggerGen();

This injects the Swagger services needed to generate the Swagger schema and the
documentation test page.

After builder.Build() in Program.cs, add the following:

app.UseSwagger();

app.UseSwaggerUI(c => { c.SwaggerEndpoint("/swagger/v1/swagger.json", "My
API V1"); });

The first line supports reaching the OpenAPI Swagger specification and the second
one allows accessing the specification on a user-friendly web page.

Now, run the program as follows:

dotnet run --urls=https://localhost:7021/

When you navigate to https://localhost:7021/swagger/, you will see the
following screen:

Figure 9.8: A user-friendly Swagger endpoint

632 | Creating API Services

Clicking on any of the endpoints will allow you to send an HTTP request to them. This
page can be configured to include common information about the project, such as
the contact information, licenses it is under, description, terms of services, and more.

The benefits of Swagger do not end here. If you had comments, you could include
them on this page as well. You could also include all the possible response types
that the endpoint produces. You can even include example requests and set them as
defaults when calling an API.

Create a new endpoint to save a weather forecast and then another one to
retrieve it. Document both the methods one by one. So, first, update the
IWeatherForecastService interface to include the two new methods,
GetWeekday and GetWeatherForecast, as follows:

 public interface IWeatherForecastService

 {

 WeatherForecast GetWeekday(int day);

 void SaveWeatherForecast(WeatherForecast forecast);

 WeatherForecast GetWeatherForecast(DateTime date);

 }

Next, add implementations of those methods to WeatherForecastService. To
save the weather forecast, you will need storage, and the simplest storage would be
IMemoryCache. Here, you will need a new field for IMemoryCache:

private readonly IMemoryCache _cache;

Now, update the constructor to inject IMemoryCache:

public WeatherForecastService(ILogger<WeatherForecastService> logger,
string city, int refreshInterval, IMemoryCache cache)
 {

 _logger = logger;

 _city = city;

 _refreshInterval = refreshInterval;

 _serviceIdentifier = Guid.NewGuid();

 _cache = cache;

 }

Then, create the SaveWeatherForecast method to save a weather forecast:

 public void SaveWeatherForecast(WeatherForecast forecast)

 {

 _cache.Set(forecast.Date.ToShortDateString(), forecast);

 }

ASP.NET Core Web API | 633

Create a GetWeatherForecast method to get a weather forecast:

 public WeatherForecast GetWeatherForecast(DateTime date)

 {

 var shortDateString = date.ToShortDateString();

 var contains = _cache.TryGetValue(shortDateString, out var
entry);
 return !contains ? null : (WeatherForecast) entry;

 }

Now, go back to WeatherForecastController and create an endpoint for each
method so that you can test it using the HTTP requests:

 [HttpGet("{date}")]

 public IActionResult GetWeatherForecast(DateTime date)

 {

 var weatherForecast = _weatherForecastService1.
GetWeatherForecast(date);
 if (weatherForecast == null) return NotFound();

 return Ok(weatherForecast);

 }

 [HttpPost]

 public IActionResult SaveWeatherForecast(WeatherForecast
weatherForecast)
 {

 _weatherForecastService1.
SaveWeatherForecast(weatherForecast);
 return CreatedAtAction("GetWeatherForecast", new { date =
weatherForecast.Date.ToShortDateString()}, weatherForecast);
 }

Please note that when creating a new weather forecast, you return a
CreatedAtAction result. This returns an HTTP status code of 201 with a URI
used to get the created resource. It was specified that, in order to get the created
forecast later, you can use GetWeatherForecast. The anonymous new { date
= weatherForecast.Date.ToShortDateString()} object specifies the
arguments needed to call that action. You passed Date.ToShortDateString()
and not just a date because a full DateTime contains more than what you need.
Here, you need only a date; therefore, you explicitly cut what you don't need.

634 | Creating API Services

Document each method by describing what it does and what status codes it can
return. You will then add this information above each endpoint:

 /// <summary>

 /// Gets weather forecast at a specified date.

 /// </summary>

 /// <param name="date">Date of a forecast.</param>

 /// <returns>

 /// A forecast at a specified date.

 /// If not found - 404.

 /// </returns>

 [HttpGet("{date}")]

 [ProducesResponseType(StatusCodes.Status404NotFound)]

 [ProducesResponseType(StatusCodes.Status200OK)]

 public IActionResult GetWeatherForecast(DateTime date)

 /// <summary>

 /// Saves a forecast at forecast date.

 /// </summary>

 /// <param name="weatherForecast">Date which identifies a
forecast. Using short date time string for identity.</param>
 /// <returns>201 with a link to an action to fetch a created
forecast.</returns>
 [HttpPost]

 [ProducesResponseType(StatusCodes.Status201Created)]

 public IActionResult SaveWeatherForecast(WeatherForecast
weatherForecast)

You have now added XML docs to the two endpoints. Using
ProducesResponseType, you specified what status codes the endpoints could
return. If you refresh the Swagger page, you will see the SaveWeatherForecast
endpoint in Swagger:

ASP.NET Core Web API | 635

Figure 9.9: SaveWeatherForecast endpoint in Swagger

If you refresh the Swagger page, you will see the GetWeatherForecast endpoint
in Swagger:

Figure 9.10: GetWeatherForecast endpoint in Swagger

636 | Creating API Services

You can see the status code addition, but where did the comments go? By default,
Swagger does not pick XML docs. You need to specify what it has to do by configuring
your project file. To do so, add the following piece of code inside <Project> below
the property group of a target framework:

 <PropertyGroup>

 <GenerateDocumentationFile>true</GenerateDocumentationFile>

 <NoWarn>$(NoWarn);1591</NoWarn>

 </PropertyGroup>

Figure 9.11: Swagger configuration to include XML docs

Lastly, go to the Program.cs file and replace service.AddSwaggerGen()
with this:

 builder.Services.AddSwaggerGen(cfg =>

 {

 var xmlFile = $"{Assembly.GetExecutingAssembly().
GetName().Name}.xml";
 var xmlPath = Path.Combine(AppContext.BaseDirectory,
xmlFile);
 cfg.IncludeXmlComments(xmlPath);

 });

ASP.NET Core Web API | 637

This is the last piece of code needed to include XML comments in the Swagger docs.
Now, refresh the page and you should see the comments included:

Figure 9.12: WeatherForecast Swagger docs with XML docs included

Note

You can find the code used for this example at https://packt.link/iQK5X.

There is a lot more that you can do with Swagger; you can include an example
request and response and give default values to parameters. You can even create
your own API specification standards and decorate a project namespace to apply
the same conventions to every controller and their endpoints, but that is beyond the
scope of this book.

The last thing to mention is the ability to generate a client out of the Swagger docs. To
do so, follow these steps:

1. In order to download the swagger.json OpenAPI documentation artifact,
navigate to https://localhost:7021/swagger/v1/swagger.json.

2. Right-click anywhere on the page and select the Save as option.

3. Then, press the Enter key.

4. Next, you will use this JSON to generate client code. So, register and log in to
https://app.swaggerhub.com/home (you can use your GitHub account).

https://packt.link/iQK5X
https://app.swaggerhub.com/home

638 | Creating API Services

5. In the new window, click the Create New button (1):

Figure 9.13: SwaggerHub and the Import API window

6. Select the Import and document API option.

7. Select the Swagger file you have just downloaded by clicking the Browse
button (2).

8. Then, hit the UPLOAD FILE button:

Note

When you select the file, the IMPORT button (3 in Figure 9.13) changes to
the UPLOAD FILE button (3 in Figure 9.14).

ASP.NET Core Web API | 639

Figure 9.14: SwaggerHub IMPORT button changed to UPLOAD FILE button

9. On the next screen, leave the name of the service and the version with
default values.

10. Next, click the IMPORT DEFINITION button:

Figure 9.15: SwaggerHub import Swagger service definition

640 | Creating API Services

11. Now that the Swagger.json API scheme is imported, you can use it
to generate a strongly typed C# client code to call the API. So, click the
Export option (1).

12. Then, click the Client SDK option (2).

13. Select the csharp option (3):

Figure 9.16: Exporting a new client in the C# client from SwaggerHub

A csharp-client-generated.zip file will be downloaded.

14. Extract the csharp-client-generated.zip file.

ASP.NET Core Web API | 641

15. Navigate the extracted folder and open the IO.Swagger.sln file. You should
see the following:

Figure 9.17: Files generated for the client using SwaggerHub

The generated client code not only has a strongly typed HTTP client but also includes
tests. It also has a README.md file on how to call the client and many more common
development scenarios.

Now, the question that arises is whether you should use Swagger when you already
have Postman. While Postman is one of the most popular tools used for testing
different kinds of Web APIs, Swagger is so much more than just a client to test
whether the API works. Primarily, Swagger is a tool for documenting the API. From a
conventional code, it allows you to generate all that you might need to:

• Test page

• Test the client code

• Test the documentation page

Till now, you have learned that Swagger is a collection of tools and libraries
implementing OpenAPI standards that are helpful for testing and documenting your
APIs. You can now proceed to grasp error handling.

642 | Creating API Services

Error Handling

You have already learned that the code within a controller should be as minimalistic
as possible due to it being the highest level in code (direct call). Specific error handling
should not be included in the controller code because it adds complexity to already-
complex code. Fortunately, there is a way to map exceptions to HTTP status codes
and set up all of them in one place—that is, via the Hellang.Middleware.
ProblemDetails package. To do so, first install the package by running
this command:

dotnet add package Hellang.Middleware.ProblemDetails

Map NoSuchWeekdayException to HTTP status code 404. In the Program.cs
file, before builder.Build(), add the following code:

 builder.Services.AddProblemDetails(opt =>

 {

 opt.MapToStatusCode<NoSuchWeekdayException>(404);

 opt.IncludeExceptionDetails = (context, exception) =>
false;
 });

This not only converts an exception to the right status code but also uses
ProblemDetails—a standard response model based on RFC 7807—to provide
faults in an HTTP response. Also, this excludes exception details in the error message.

When developing a service locally, knowing what went wrong is invaluable. However,
exposing the stack trace and other information needed to determine the error can
expose exploits of your Web API. Thus, it's better to hide it when moving toward the
release stage. By default, the Hellang library already excludes the exception details
in upper environments, so it is better that you don't include that line. For demo
purposes and a simplified response message, it was included here.

Before you build a demo, you also need to turn off the default developer exceptions
page because it overrides the exceptions in ProblemDetails. Simply remove the
following block of code from the Configure method:

 if (builder.Environment.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

ASP.NET Core Web API | 643

Since you already have a central place for handling NoSuchWeekdayException,
you can simplify the controller method for getting WeatherForecast for a
given date:

 [HttpGet("weekday/{day}")]

 public IActionResult GetWeekday(int day)

 {

 var result = _weatherForecastService.GetWeekday(day);

 return Ok(result);

 }

When calling the endpoint with an invalid day value (for example, 9), you get the
following response:

{

 "type": "/weatherforecast/weekday/9",

 "title": "Not Found",

 "status": 404,

 "traceId": "|41dee286-4c5efb72e344ee2d."

}

This centralized error handling approach allows the controllers to be rid of all the
try-catch blocks.

Note

You can find the code used for this example at https://packt.link/CntW6.

You can now map exceptions to HTTP status codes and set them all up in one
place. This next section will take a look at another addition to an API, which is
request validation.

Request Validation

Another useful addition to an API is request validation. By default, ASP.NET Core has a
request validator based on the required attributes. However, there might be complex
scenarios where a combination of properties results in an invalid request or a custom
error message for which validation is required.

https://packt.link/CntW6

644 | Creating API Services

.NET has a great NuGet package for that: FluentValidation.AspNetCore.
Perform the following steps to learn how to carry out request validation. Before you
continue, install the package by running the following command:

dotnet add package FluentValidation.AspNetCore

This package allows registering custom validators per model. It makes use of existing
ASP.NET Core middleware, so all you must do is inject a new validator. Create a
validator for WeatherForecast.

A validator should inherit the AbstractValidator class. This is not obligatory,
but it is highly recommended because it implements the common methods for
functionality and has a default implementation for generic validation:

public class WeatherForecastValidator :
AbstractValidator<WeatherForecast>

Through a generic argument, you specified that this is a validator for
WeatherForecast.

Next is the validation itself. This is done in a constructor of a validator:

 public WeatherForecastValidator()

 {

 RuleFor(p => p.Date)

 .LessThan(DateTime.Now.AddMonths(1))

 .WithMessage("Weather forecasts in more than 1 month of
future are not supported");

 RuleFor(p => p.TemperatureC)

 .InclusiveBetween(-100, 100)

 .WithMessage("A temperature must be between -100 and +100
C.");
 }

FluentValidation is a .NET library and is all about fluent API, with self-
explanatory methods. Here, you require a weather forecast date to be no more than
one month in the future. The next validation is to have the temperature between
-100 C and 100 C.

ASP.NET Core Web API | 645

If you ping your API through Swagger, the following request gets displayed:

{

 "date": "2022-09-19T19:34:34.511Z",

 "temperatureC": -111,

 "summary": "string"

}

The response will be displayed as follows:

{

 "type": "https://tools.ietf.org/html/rfc7231#section-6.5.1",

 "title": "One or more validation errors occurred.",

 "status": 400,

 "traceId": "|ade14b9-443aaaf79026feec.",

 "errors": {

 "Date": [

 "Weather forecasts in more than 1 month of future are not
supported"
],

 "TemperatureC": [

 "A temperature must be between -100 and +100 C."

]

 }

}

You don't have to use FluentValidation, especially if your API is simple and does
not have complex rules. But in an enterprise setting, it is highly recommended that
you do use it because the level of detail you can add to your validation is unlimited.

You learned about FluentValidation and the scenarios where it is useful. The
next section will touch upon the two options for reading configuration in ASP.NET.

Note

You can find the code used for this example at https://packt.link/uOGOe.

https://packt.link/uOGOe

646 | Creating API Services

Configuration

In ASP.NET Core Web API, you have two options for reading configuration:

• IConfiguration: This is a global configuration container. Even though it
allows access to all the configuration properties, injecting it directly into other
components is inefficient. This is because it is weakly typed and has a risk of you
trying to get a non-existing configuration property.

• IOptions: This is strongly typed and convenient because the configuration is
fragmented into just the pieces that a component needs.

You can choose either of the two options. It is best practice to use IOptions in ASP.
NET Core, as the configuration examples will be based on it. Whichever option you
choose, you need to store the configuration in the appsettings.json file.

Move the hardcoded configuration from a constructor (weather forecast city and
refresh interval) and move it into a configuration section in the appsettings.json
file:

 "WeatherForecastConfig": {

 "City": "New York",

 "RefreshInterval": 5

 }

Create a model representing this configuration section:

 public class WeatherForecastConfig

 {

 public string City { get; set; }

 public int RefreshInterval { get; set; }

 }

You no longer have to inject the two primitive values into the component. Instead,
you will inject IOptions<WeatherForecastConfig>:

public WeatherForecastService(Ilogger<WeatherForecastService> logger,
Ioptions<WeatherForecastConfig> config, ImemoryCache cache)

Before the JSON section is useable, you need to bind to it. This can be done by finding
the section through IConfiguration (via the builder.Configuration
property):

builder.Services.Configure<WeatherForecastConfig>(builder.Configuration.
GetSection(nameof(WeatherForecastConfig)));

ASP.NET Core Web API | 647

In this case, WeatherForecastConfig has a matching section in the configuration
file. Therefore, nameof was used. So, nameof should be preferred when using the
alternative string type. That way, if the name of a type changes, the configuration
will change consistently (or else the code won't compile).

Remember the BuildWeatherForecastService method you used previously?
The beauty of it all is that the method can be removed altogether because the service
can be created without the need for custom initialization. If you compile and run the
code, you will get the same response.

Note

You can find the code used for this example at https://packt.link/xoB0K.

ASP.NET Core Web API is just a collection of libraries on top of the .NET Core
framework. You can use appsettings.json in other types of applications as
well. It is better to use individual libraries regardless of the project type you choose.
In order to use the configuration through JSON, all you need to do is to install the
following NuGet packages:

• Microsoft.Extensions.Configuration

• Microsoft.Extensions.Configuration.EnvironmentVariables

• Microsoft.Extensions.Configuration.FileExtensions

• Microsoft.Extensions.Configuration.Json

• Microsoft.Extensions.Options

In this section, you learned how to use IConfiguration and IOptions. Your API
is now ready, and it already includes many standard components of a typical Web API.
The next section will detail how you can handle this complexity in code.

Development Environments and Configuration

Applications often need to have two environments—production and development.
You want the application development environment to have premade settings, more
detailed error messages (if possible), more detailed logging, and lastly, debugging
enabled. All of that is not needed for a production environment and you would want
to keep it clean.

https://packt.link/xoB0K

648 | Creating API Services

Other than the build configuration, you manage environments through different
configuration files. The appsettings.json file is a base configuration file and is
used across all environments. This configuration file should contain the configuration
you would like for production.

The Appsettings.development.json file is a configuration file that will be
applied when you build your application in debug mode. Here, applied doesn't
mean a complete overwrite of settings; appsettings.json will still be used with
the development settings overriding the matching sections. A common example is
described here.

Say appsettings.json has the following:

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Information",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "AllowedHosts": "*",

 "WeatherForecastConfig": {

 "City": "New York",

 "RefreshInterval": 5

 },

 "WeatherForecastProviderUrl": "https://community-open-weather-
map.p.rapidapi.com/",
 "AzureAd": {

 "Instance": "https://login.microsoftonline.com/",

 "ClientId": "2d8834d3-6a27-47c9-84f1-0c9db3eeb4bb",

 "TenantId": "ddd0fd18-f056-4b33-88cc-088c47b81f3e",

 "Audience": "api://2d8834d3-6a27-47c9-84f1-0c9db3eeb4bb"

 }

}

And appsettings.development.json has the following:

{

 "Logging": {

 "LogLevel": {

 "Default": "Trace",

 "Microsoft": "Trace",

ASP.NET Core Web API | 649

 "Microsoft.Hosting.Lifetime": "Trace"

 }

 }

}

Then, the settings used will be the merged file with override matching sections, as
shown here:

{

 "Logging": {

 "LogLevel": {

 "Default": "Trace",

 "Microsoft": "Trace",

 "Microsoft.Hosting.Lifetime": "Trace"

 }

 },

 "AllowedHosts": "*",

 "WeatherForecastConfig": {

 "City": "New York",

 "RefreshInterval": 5

 },

 "WeatherForecastProviderUrl": "https://community-open-weather-
map.p.rapidapi.com/",
 "AzureAd": {

 "Instance": "https://login.microsoftonline.com/",

 "ClientId": "2d8834d3-6a27-47c9-84f1-0c9db3eeb4bb",

 "TenantId": "ddd0fd18-f056-4b33-88cc-088c47b81f3e",

 "Audience": "api://2d8834d3-6a27-47c9-84f1-0c9db3eeb4bb"

 }

}

In the next section, you will learn how to manage DI more cleanly.

Bootstrapping

Complexity needs to be handled and the complexity referred to here is the Program
class. You'll need to break it out into smaller pieces and form a Bootstrapping
directory specifying the components the service is made of.

When breaking down code within Program.cs, it is recommended to use a fluent
API pattern. This is a pattern where you can chain multiple function calls from a
single root object. In this case, you will create several extension methods for the
IServiceCollection type and chain all the module injections one by one.

650 | Creating API Services

To reduce the complexity of the Program class, move the DI of different
logical sections into different files. Each step that follows will do just
that. So, split the controller and API baseline setup to a new file named
ControllersConfigurationSetup.cs:

 public static class ControllersConfigurationSetup

 {

 public static IserviceCollection AddControllersConfiguration(this
IserviceCollection services)
 {

 services

 .AddControllers()

 .AddFluentValidation();

 return services;

 }

 }

Now, move the code for logging to a new file named LoggingSetup.cs:

 public static class LoggingSetup

 {

 public static IServiceCollection AddLoggingConfiguration(this
IServiceCollection services)
 {

 services.AddLogging(builder =>

 {

 builder.ClearProviders();

 builder.AddConsole();

 builder.AddDebug();

 });

 return services;

 }

 }

Next, move the request validation logic to a new file named
RequestValidatorsSetup.cs:

 public static class RequestValidatorsSetup

 {

 public static IServiceCollection AddRequestValidators(this
IServiceCollection services)
 {

 services.AddTransient<Ivalidator<WeatherForecast>,
WeatherForecastValidator>();

ASP.NET Core Web API | 651

 return services;

 }

 }

Move the Swagger setup logic to a new file named SwaggerSetup.cs:

 public static class SwaggerSetup

 {

 public static IServiceCollection AddSwagger(this
IServiceCollection services)
 {

 services.AddSwaggerGen(cfg =>

 {

 var xmlFile = $"{Assembly.GetExecutingAssembly().
GetName().Name}.xml";
 var xmlPath = Path.Combine(AppContext.BaseDirectory,
xmlFile);
 cfg.IncludeXmlComments(xmlPath);

 });

 return services;

 }

 }

Move the injection of the WeatherForecast-related classes' code to a new file
named WeatherServiceSetup.cs:

 public static class WeatherServiceSetup

 {

 public static IServiceCollection AddWeatherService(this
IServiceCollection services, IConfiguration configuration)
 {

 services.AddScoped<IWeatherForecastService,
WeatherForecastService>(BuildWeatherForecastService);
 services.AddSingleton<ICurrentTimeProvider,
CurrentTimeUtcProvider>();
 services.AddSingleton<ImemoryCache, MemoryCache>();

 services.Configure<WeatherForecastConfig>(configuration.
GetSection(nameof(WeatherForecastConfig)));
 return services;

 }

 private static WeatherForecastService
BuildWeatherForecastService(IserviceProvider provider)
 {

 var logger = provider

 .GetService<IloggerFactory>()

652 | Creating API Services

 .CreateLogger<WeatherForecastService>();

 var options = provider.
GetService<Ioptions<WeatherForecastConfig>>();
 return new WeatherForecastService(logger, options, provider.
GetService<ImemoryCache>());
 }

 }

Finally, move the exception mapping of HTTP status codes to a new file named
ExceptionMappingSetup.cs:

 public static class ExceptionMappingSetup

 {

 public static IServiceCollection AddExceptionMappings(this
IServiceCollection services)
 {

 services.AddProblemDetails(opt =>

 {

 opt.MapToStatusCode<NoSuchWeekdayException>(404);

 });

 return services;

 }

 }

Now move all the new classes under /Bootstrap folder:

Figure 9.18: Bootstrap folder with the fragmented services injection

ASP.NET Core Web API | 653

Figure 9.18 displays the Bootstrap folder. This project structure itself demonstrates
what the API is made up of. So, DI becomes as simple as the following:

builder.Services

 .AddControllersConfiguration()

 .AddLoggingConfiguration()

 .AddRequestValidators()

 .AddSwagger()

 .AddWeatherService(builder.Configuration)

 .AddExceptionMappings();

In some cases, you may want to pass the configuration or environment from a builder
to other bootstrap methods or app methods multiple times. If you find yourself
repeatedly calling builder.X, then consider storing each property in a local
variable, as shown here:

var services = builder.Services;

var configuration = builder.Configuration;

var environment = builder.Environment;

With this, you will no longer repeatedly access the builder and will instead be
able to use the needed builder properties directly. This is especially useful if you
migrate from .NET Core to .NET 6. Environment and Configuration used
to be properties of a Program class, while Services would be injected into
the ConfigureServices method. In .NET 6, Services is accessed through a
builder object. However, with this approach, you can still use those properties or
arguments as they were.

From now on, when referring to services, environments, or configurations, you
will assume that you are accessing them from builder.Services, builder.
Environment, and builder.Configuration, accordingly.

Note

You can find the code used for this example at https://packt.link/iQK5X.

https://packt.link/iQK5X

654 | Creating API Services

Calling Another API

A working product is usually made of many APIs communicating with each other. To
communicate effectively, one web service often needs to call another service. For
example, a hospital may have a website (frontend) that calls a Web API (backend).
This Web API orchestrates things by making calls to a booking Web API, a billing Web
API, and a staff Web API. A staff Web API may make calls to an inventory API, holidays
API, etc.

RapidAPI

As discussed in Chapter 8, Creating and Using Web API Clients, there are various ways of
making HTTP calls to other services (though HTTP is not the only way to call another
service). This time, you will try to get weather forecasts from an existing API and
format it in your way. For doing so, you will use the RapidAPI Weather API, which can
be found at https://rapidapi.com/visual-crossing-corporation-visual-crossing-corporation-
default/api/visual-crossing-weather/.

Note

RapidAPI is a platform that supports many APIs. The site https://rapidapi.
com/visual-crossing-corporation-visual-crossing-corporation-default/api/visual-
crossing-weather/ is just one example. Many of the APIs present there are
free; however, be aware that an API that is free today might become paid
tomorrow. If that happens by the time you read this chapter, go through the
examples, and explore the Weather APIs section at https://rapidapi.com/
category/Weather. You should be able to find similar alternatives there.

This API requires a GitHub account for use. Perform the following steps to use the
RapidAPI Weather API:

1. Log in to the website https://rapidapi.com/community/api/open-weather-map/.

Note

You can navigate to https://rapidapi.com/community/api/open-weather-map/
only if you are logged in. So, signup at https://rapidapi.com/ and create
an account. This is required if you need an API key. Next login and select
Weather category and choose Open Weather link.

https://rapidapi.com/visual-crossing-corporation-visual-crossing-corporation-default/api/visual-crossing-weather/
https://rapidapi.com/visual-crossing-corporation-visual-crossing-corporation-default/api/visual-crossing-weather/
https://rapidapi.com/visual-crossing-corporation-visual-crossing-corporation-default/api/visual-crossing-weather/
https://rapidapi.com/visual-crossing-corporation-visual-crossing-corporation-default/api/visual-crossing-weather/
https://rapidapi.com/visual-crossing-corporation-visual-crossing-corporation-default/api/visual-crossing-weather/
https://rapidapi.com/category/Weather
https://rapidapi.com/category/Weather
https://rapidapi.com/community/api/open-weather-map/
https://rapidapi.com/community/api/open-weather-map/
https://rapidapi.com/

ASP.NET Core Web API | 655

After you log in to the website, you will see the following window:

Figure 9.19: Unsubscribed test page of the Visual Crossing Weather API on rapidapi.com

2. Click the Subscribe to Test button to get access (for free) to making calls
to the Web API. A new window will open.

3. Select the Basic option, which will allow you to make 500 calls a month to that
API. For educational purposes, the basic plan should be enough:

Figure 9.20: RapidAPI subscription fees with a free Basic plan highlighted

You will be redirected to the test page with the Test Endpoint button
available (instead of the Subscribe to Test button).

656 | Creating API Services

4. Now, configure the request. The first configuration asks you to enter the
intervals for getting the weather forecast. You want an hourly forecast, so enter
1 hour beside aggregateHours (1).

5. Next up is the location address (2).

In Figure 9.21, you can observe that the city, state, and country are specified.
These fields ask you to enter your address. However, typing your city name
would also work.

6. Choose the default contentType option as csv for this API (3):

Figure 9.21: GET weather forecast data request configuration

This API is interesting because it allows you to return data in different formats—
JSON, XML, and CSV. It is still a Web API and not so RESTful because the data
response type is natively CSV. If you choose JSON, it will look unnatural and
significantly more difficult to work with.

7. On the next screen, click Code Snippets (1) and then (C#) HttpClient
(2) to see the example client code generated for you.

8. Next, click Test Endpoint (3) to send a request.

ASP.NET Core Web API | 657

9. Click the Results tab (4) to view the response (in Figure 9.22, other endpoints
are collapsed):

Figure 9.22: rapidapi.com with test request page and example code
in C# for making the request

This window provides a nice API. It is also a great way to learn how to make calls
to it by giving multiple examples of creating clients using a variety of languages
and technologies.

As always, you will not initialize this client directly in a client but inject the client
somehow. In Chapter 8, Creating and Using Web API Clients, it was mentioned
that to have a static HttpClient over one constantly disposed is an efficient
practice. However, for a Web API, there is an even better alternative—
HttpClientFactory.

10. Before you do all that, you need to prepare a few things. First, update the
appsettings.json file with the inclusion of the base URL of an API:

"WeatherForecastProviderUrl": "https://visual-crossing-
weather.p.rapidapi.com/"

658 | Creating API Services

Next, you will need to create another class for fetching the weather details from
the said API. For that purpose, you will need an API key. You can find it in the
example code snippet on the API website:

Figure 9.23: RapidAPI API key in the example code snippet

11. Save the API key as an environment variable because it is a secret and storing
secrets in code is bad practice. So, name it as x-rapidapi-key.

12. Lastly, the returned weather forecast might be quite different from yours. You
can see the example response by clicking the Test Endpoint button:

Figure 9.24: RapidAPI example response from GET current weather data endpoint

13. Copy the results received after clicking the Test Endpoint button.

14. Paste the results in https://toolslick.com/generation/code/class-from-csv.

15. Give the class name as WeatherForecast and leave the rest of the settings as
the defaults.

https://toolslick.com/generation/code/class-from-csv

ASP.NET Core Web API | 659

16. Finally, press the GENERATE button:

Figure 9.25: Response content pasted to
https://toolslick.com/generation/code/class-from-csv

This will create two classes, WeatherForecast and
WeatherForecastClassMap:

Figure 9.26: Generated data model and mapping classes (simplified for brevity)

WeatherForecast represents the object to which the data from this API will
be loaded.

17. Create a file called WeatherForecast.cs under the Dtos folder (DTO will be
described in detail in the DTO and Mapping Using AutoMapper section) and paste
the class there.

https://toolslick.com/generation/code/class-from-csv

660 | Creating API Services

18. Remove the bits that do not have a connection to an already-existing
WeatherForecast model. The cleaned-up model will look as follows:

public class WeatherForecast

{

 public DateTime Datetime { get; set; }

 public string Temperature { get; set; }

 public string Conditions { get; set; }

}

You should know that WeatherForecastClassMap is a special class. It is
used by the CsvHelper library, which is used for parsing CSV files. You could
parse CSV files yourself; however, CsvHelper makes it a lot easier to parse.

19. To use CsvHelper, install its NuGet package:

dotnet add package CsvHelper

WeatherForecastCsv represents a mapping from a CSV to a C# object.

20. Now, create a file called WeatherForecastClassMap.cs under the
ClassMaps folder and paste the class there.

21. Keep only the mappings that match the WeatherForecast class that was
edited in Step 17:

public class WeatherForecastClassMap : ClassMap<WeatherForecast>

{

 public WeatherForecastClassMap()

 {

 Map(m => m.Datetime).Name("Date time");

 Map(m => m.Temperature).Name("Temperature");

 Map(m => m.Conditions).Name("Conditions");

 }

}

Note

You can find the code used for this example at https://packt.link/dV6wX and
https://packt.link/mGJMW.

https://packt.link/dV6wX
https://packt.link/mGJMW

ASP.NET Core Web API | 661

In the previous section, you learned how to get weather forecasts from an existing
API and format them your way using the RapidAPI Weather API. Now it is time to
proceed to the service client and use the models created, along with the settings,
parse the API response, and return the current time weather.

Service Client

Now you have all the ingredients that are needed to create the provider class. You
learned in Chapter 8, Creating and Using Web API Clients, that when communicating
with another API, it's best to create a separate component for it. So, here you will
start from an interface abstraction, IWeatherForecastProvider:

 public interface IWeatherForecastProvider

 {

 Task<WeatherForecast> GetCurrent(string location);

 }

Next, create an implementation of that interface—that is, a class taking HttpClient
for DI:

public class WeatherForecastProvider : IWeatherForecastProvider

 {

 private readonly HttpClient _client;

 public WeatherForecastProvider(HttpClient client)

 {

 _client = client;

 }

To implement an interface, start with writing a method definition for getting the
current weather:

public async Task<WeatherForecast> GetCurrent(string location)

{

662 | Creating API Services

Next, create a request to call HTTP GET with a relative URI for getting a forecast of the
CSV type at a given location:

var request = new HttpRequestMessage

{

 Method = HttpMethod.Get,

 RequestUri = new
Uri($"forecast?aggregateHours=1&location={location}&contentType=csv",
UriKind.Relative),

};

Now, send a request and verify that it was a success:

using var response = await _client.SendAsync(request);

response.EnsureSuccessStatusCode();

If the status code is not in the range of 200-300, the response.
EnsureSuccessStatusCode(); throws an exception. Set up a CSV reader to
prepare for deserializing weather forecasts:

var body = await response.Content.ReadAsStringAsync();

using var reader = new StringReader(body);

using var csv = new CsvReader(reader, CultureInfo.InvariantCulture);

csv.Context.RegisterClassMap<WeatherForecastClassMap>();

You are adding a using statement to StringReader and CsvReader because
both implement the IDisposable interface for disposing unmanaged resources.
This happens when you use the using statement within a function after it returns.

Lastly, deserialize the forecasts:

var forecasts = csv.GetRecords<WeatherForecast>();

This way, you request the API to return forecasts starting from today and stopping a
few days in the future with 1-hour intervals. The first returned forecast is the forecast
of the current hour—that is, the forecast that you need:

return forecasts.First();

}

Now, you will use Newtonsoft.Json for deserialization. Install the following
package to do so:

dotnet add package Microsoft.AspNetCore.Mvc.NewtonsoftJson

ASP.NET Core Web API | 663

Update the AddControllersConfiguration method by appending the
following line on the services object:

.AddNewtonsoftJson();

This line replaces the default serializer with Newtonsoft.Json. Now,
Newtonsoft.Json doesn't have to be used; however, it is a much more
popular and complete library for serialization compared to the default one.

Note

You can find the code used for this example at https://packt.link/jmSwi.

Till now, you have learned how to create a service client and make basic HTTP calls
using it. It's effective for grasping the basics; however, the classes the API uses should
be coupled with the classes of the APIs it consumes. In the next section, you will
learn how to decouple the API from third-party API models using a DTO and mapping
via AutoMapper.

DTO and Mapping Using AutoMapper

The weather forecast model from RapidAPI is a Date Transfer Object (DTO)—a
model used just for transferring data and convenient serialization. RapidAPI may
change its data model and, if that happens, the DTO will change as well. If you are
just presenting the data you had received and don't need to perform any logical
operations on it, then any change may be alright.

However, you will usually apply business logic to a data model. You already know
that references to a data model are scattered across multiple classes. With every
change to a DTO, a class may have to change as well. For example, the DTO property
that was called weather has now changed to weathers. Another example is of a
property that was previously called description will now be called a message. So,
renaming a DTO property like this will require you to make changes everywhere they
are referenced. The bigger the project, the worse of an issue this becomes.

The advice of the SOLID principles is to avoid such changes (refer to Chapter 2,
Building Quality Object-Oriented Code). One of the ways to achieve this is by having two
kinds of models—one for domain and the other for outside calls. This will require a
mapping between foreign objects (coming from outside APIs) into your own.

https://packt.link/jmSwi

664 | Creating API Services

Mapping can be done either manually or by using some popular libraries. One of the
most popular mapping libraries is AutoMapper. It allows you to map from one object
to another using property names. You can also make your own mappings. Now, you
will use this library to configure a mapping between a weather forecast DTO and a
weather forecast model.

So, first install NuGet:

dotnet add package AutoMapper.Extensions.Microsoft.DependencyInjection

This library allows you to inject AutoMapper into ServiceCollection. Here,
AutoMapper uses the Profile class to define a mapping.

A new mapping should inherit the Profile class. So, inside the constructor of the
new profile, use a CreateMap method to provide a mapping:

 public class WeatherForecastProfile : Profile

 {

 public WeatherForecastProfile()

 {

 CreateMap<Dtos.WeatherForecast, Models.WeatherForecast>()

Next, in order to map every property from the CreateMap method, call the
ForMember method and specify how to do a mapping:

 .ForMember(to => to.TemperatureC, opt => opt.MapFrom(from
=> from.main.temp));

Here, the value of TemperatureC comes from main.temp inside the DTO.

For the other property, you will concatenate all the weather descriptions into one
string and call that a summary (BuildDescription):

 private static string BuildDescription(Dtos.WeatherForecast
forecast)
 {

 return string.Join(",",

 forecast.weather.Select(w => w.description));

 }

Now, use the lambda method, ForMember, when building a weather forecast
summary mapping:

.ForMember(to => to.Summary, opt => opt.MapFrom(from =>
BuildDescription(from)))

ASP.NET Core Web API | 665

Create a MapperSetup class and inject AutoMapper from the
AddModelMappings method to provide different mapping profiles:

public static class MapperSetup

{

 public static IServiceCollection AddModelMappings(this
IServiceCollection services)
 {

 services.AddAutoMapper(cfg =>

 {

 cfg.AddProfile<WeatherForecastProfile>();

 });

 return services;

 }

}

Append .AddModelMappings() to the services object calls. With this, you can
call mapper.Map<Model.WeatherForecast>(dtoForecast);.

Note

You can find the code used for this example at https://packt.link/fEfdw and
https://packt.link/wDqK6.

The AutoMapper mapping library allows you to map from one object to another by
default mapping matching property names. The next section will detail how you can
use DI to reuse HttpClient.

HttpClient DI

Continuing with DI, you now want to get into the habit of using the
fragmented ConfigureServices approach. So, first, create a class called
HttpClientsSetup and then create a method for adding the configured
HttpClients:

 public static class HttpClientsSetup

 {

 public static IServiceCollection
AddHttpClients(IServiceCollection services)
 {

https://packt.link/fEfdw
https://packt.link/wDqK6

666 | Creating API Services

Next, for the injection itself, use the AddHttpClient method:

services.AddHttpClient<IWeatherForecastProvider,
WeatherForecastProvider>((provider, client) =>
 {

In the preceding section, it was mentioned that the keys should be hidden and stored
in environment variables. To set a default start URI of every call, set BaseAddress
(WeatherForecastProviderUrl used in Step 10 of the RapidAPI section).

To append the API key on every request, get the API key that you stored in
environment variables and assign it to default headers as x-rapidapi-key:

 client.BaseAddress = new
Uri(config["WeatherForecastProviderUrl"]);
 var apiKey = Environment.GetEnvironmentVariable("x-
rapidapi-key", EnvironmentVariableTarget.User);
 client.DefaultRequestHeaders.Add("x-rapidapi-key",
apiKey);
 });

To finish the injection-builder pattern, you need to return the services object,
as follows:

return services;

Now, go back to services in Program and append the following:

.AddHttpClients(Configuration)

To integrate the client you have just set up, go to WeatherForecastService, and
inject the mapper and provider components:

public WeatherForecastService(..., IWeatherForecastProvider provider,
IMapper mapper)

Change the GetWeatherForecast method to either get the cached forecast of this
hour or fetch a new one from the API:

 public async Task<WeatherForecast> GetWeatherForecast(DateTime
date)
 {

 const string DateFormat = "yyyy-MM-ddthh";

 var contains = _cache.TryGetValue(date.ToString(DateFormat),
out var entry);
 if(contains){return (WeatherForecast)entry;}

 var forecastDto = await _provider.GetCurrent(_city);

 var forecast = _mapper.Map<WeatherForecast>(forecastDto);

ASP.NET Core Web API | 667

 forecast.Date = DateTime.UtcNow;

 _cache.Set(DateTime.UtcNow.ToString(DateFormat), forecast);

 return forecast;

 }

This method, just like the preceding one, first tries to get a value from the cache. If the
value exists, then the method returns a value. However, if the value does not exist,
the method calls the API for the preconfigured city, maps the DTO forecast to the
model forecast, and saves it in the cache.

If you send an HTTP GET request to https://localhost:7021/
WeatherForecast/, you should see the following response:

{"date":"2021-09-21T20:17:47.410549Z","temperatureC":25,"temperatureF":76
,"summary":"clear sky"}

Calling the same endpoint results in the same response. However, the response times
are significantly faster due to the cache being used rather than repeating a call to the
forecast API.

Note

You can find the code used for this example at https://packt.link/GMFmm.

This concludes the theoretical portion of this topic. In the following section, you will
put this into practice with an exercise.

Exercise 9.03: Performing File Operations by Calling Azure Blob Storage

A common task with a Web API is to perform a variety of operations on files,
such as download, upload, or delete. In this exercise, you will reuse a portion of
FilesClient from Activity 8.04 of Chapter 8, Building Quality Object-Oriented Code, to
serve as a baseline client for calling Azure Blob storage and call its methods via REST
endpoints to do the following operations on a file:

• Download a file.

• Get a shareable link with expiration time.

• Upload a file.

• Delete a file.

https://packt.link/GMFmm

668 | Creating API Services

Perform the following steps to do so:

1. Extract an interface for FilesClient and call it IFilesService:

public interface IFilesService

 {

 Task Delete(string name);

 Task Upload(string name, Stream content);

 Task<byte[]> Download(string filename);

 Uri GetDownloadLink(string filename);

 }

The new interface is simplified as you will work on a single container. However,
as per the requirements, you have added a few new methods: Delete,
Upload, Download, and GetDownloadLink. The Download method is for
downloading a file in its raw form—that is, bytes.

2. Create a new class called Exercises/Exercise03/FilesService.cs.

3. Copy the following parts of https://packt.link/XC9qG there.

4. Rename Client to Service.

5. Also change the Exercise04 reference (used in Chapter 8, Building Quality
Object-Oriented Code) to Exercise03 (a new one to be used for this chapter):

FilesService.cs

public class FilesService : IFilesService
 {
 private readonly BlobServiceClient _blobServiceClient;
 private readonly BlobContainerClient _defaultContainerClient;

 public FilesClient()
 {
 var endpoint = "https://packtstorage2.blob.core.windows.net/";
 var account = "packtstorage2";
 var key = Environment.GetEnvironmentVariable("BlobStorageKey",
EnvironmentVariableTarget.User);
 var storageEndpoint = new Uri(endpoint);
 var storageCredentials = new StorageSharedKeyCredential(account,
key);
 _blobServiceClient = new BlobServiceClient(storageEndpoint,
storageCredentials);
 _defaultContainerClient = CreateContainerIfNotExists("Exercise03).
Result;
 }

 private async Task<BlobContainerClient>
CreateContainerIfNotExists(string container)

You can find the complete code here: https://packt.link/fNQAX.

https://packt.link/XC9qG
https://packt.link/fNQAX

ASP.NET Core Web API | 669

The constructor initializes blobServiceClient to get blobClient, which
allows you to do operations in the Exercice03 directory in the Azure Blob Storage
Account. If the folder doesn't exist, blobServiceClient will create it for you:

 {

 var lowerCaseContainer = container.ToLower();

 var containerClient = _blobServiceClient.
GetBlobContainerClient(lowerCaseContainer);
 if (!await containerClient.ExistsAsync())

 {

 containerClient = await _blobServiceClient.
CreateBlobContainerAsync(lowerCaseContainer);
 }

 return containerClient;

 }

Note

For the preceding step to work, you will need an Azure Storage
Account. So, refer to Activity 8.04 of Chapter 8, Building Quality Object-
Oriented Code.

6. Create the ValidateFileExists method to validate whether a file exists
in the storage, else throw an exception (a small helper method that did not
exist before):

private static void ValidateFileExists(BlobClient blobClient)

{

 if (!blobClient.Exists())

 {

 throw new FileNotFoundException($"File {blobClient.Name} in
default blob storage not found.");
 }

}

670 | Creating API Services

7. Now, create the Delete method to delete a file:

public Task Delete(string name)

{

 var blobClient = _defaultContainerClient.GetBlobClient(name);

 ValidateFileExists(blobClient);

 return blobClient.DeleteAsync();

}

Here, you will first get a client for the file and then check whether the file exists.
If not, then you will throw a FileNotFoundException exception. If the file
exists, then you will delete the file.

8. Create the UploadFile method to upload a file:

public Task UploadFile(string name, Stream content)

{

 var blobClient = _defaultContainerClient.GetBlobClient(name);

 return blobClient.UploadAsync(content, headers);

}

Once again, you first get a client that allows you to perform operations on a file.
Then, feed the content and headers to it to upload.

9. Create the Download method to download a file in bytes:

 public async Task<byte[]> Download(string filename)

 {

 var blobClient = _defaultContainerClient.
GetBlobClient(filename);
 var stream = new MemoryStream();

 await blobClient.DownloadToAsync(stream);

 return stream.ToArray();

 }

ASP.NET Core Web API | 671

This method creates a memory stream and downloads the file to it. Please note
that this is not going to work on large files.

Note

If you would like to learn more on how to process large files, please
refer to https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-
uploads?view=aspnetcore-6.0#upload-large-files-with-streaming.

There is a way to present raw downloaded bytes as an image or JSON, rather
than as generic downloadable content. With an HTTP request or response, you
can send a header specifying the way the content should be interpreted. This
header is called Content-Type. Each application will process this differently.
In the context of Swagger, image/png will be displayed as an image, while
application/json will be shown as JSON.

10. Create a GetUri method to get a URI of blobClient:

 private Uri GetUri(BlobClient blobClient)

 {

 var sasBuilder = new BlobSasBuilder

 {

 BlobContainerName = _defaultContainerClient.Name,

 BlobName = blobClient.Name,

 Resource = "b",

 ExpiresOn = DateTimeOffset.UtcNow.AddHours(1)

 };

 sasBuilder.SetPermissions(BlobSasPermissions.Read);

 var sasUri = blobClient.GenerateSasUri(sasBuilder);

 return sasUri;

 }

Getting a URI requires the use of BlobSasBuilder, through which you can
generate a shareable URL to a blob. Through the builder, specify the kind of
resource you are trying to share ("b" stands for blob) and the expiry time. You
need to set the permissions (to read) and pass the sasBuilder builder to the
blobClient client to generate sasUri.

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads?view=aspnetcore-6.0#upload-large-files-with-streaming
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads?view=aspnetcore-6.0#upload-large-files-with-streaming

672 | Creating API Services

11. Now, use a filename to create a file download link:

 public Uri GetDownloadLink(string filename)

 {

 var blobClient = _defaultContainerClient.
GetBlobClient(filename);
 var url = GetUri(blobClient);

 return url;

 }

12. Inside the ExceptionMappingSetup class and the
AddExceptionMappings method, add the following mapping:

opt.MapToStatusCode<FileNotFoundException>(404);

13. Create an extension method to inject a module of FileUploadService:

public static class FileUploadServiceSetup

{

 public static IServiceCollection AddFileUploadService(this
IServiceCollection services)
 {

 services.AddScoped<IFilesService, FilesService>();

 return services;

 }

}

An extension method is a simplified way of showing a new method to an
existing interface.

14. Append it to services in Program.cs to use the
FileUploadService module:

.AddFileUploadService();

15. Now, create a controller for files:

 [Route("api/[controller]")]

 [ApiController]

 public class FileController : ControllerBase

 {

Controller creation is standard on MVC architecture, and this allows users to
access FileService through HTTP requests.

ASP.NET Core Web API | 673

16. Then, inject IFilesService to provide an interface through which file-related
functionality could be accessed:

 private readonly IFilesService _filesService;

 public FileController(IFilesService filesService)

 {

 _filesService = filesService;

 }

17. Next, create an endpoint to delete a file:

 [HttpDelete("{file}")]

 public async Task<IActionResult> Delete(string file)

 {

 await _filesService.Delete(file);

 return Ok();

 }

18. Create an endpoint to download a file:

 [HttpGet("Download/{file}")]

 public async Task<IActionResult> Download(string file)

 {

 var content = await _filesService.Download(file);

 return new FileContentResult(content, "application/octet-
stream ");
 }

19. Create an endpoint for getting a shareable file download link:

 [HttpGet("Link")]

 public IActionResult GetDownloadLink(string file)

 {

 var link = _filesService.GetDownloadLink(file);

 return Ok(link);

 }

20. Create an endpoint for uploading a file:

 [HttpPost("upload")]

 public async Task<IActionResult> Upload(IFormFile file)

 {

 await _filesService.UploadFile(file.FileName, file.

674 | Creating API Services

OpenReadStream());

 return Ok();

 }

IFormFile is a common way of passing small files to a controller. However,
from IFormFile, you need file contents as a stream. You can get this using the
OpenReadStream method. Swagger allows you to use the File Explorer window
to choose the file you want to upload.

21. Now you run the API.

Your Swagger documentation will have a new section with the controller
methods. Here are the responses of each:

• Upload file request:

Figure 9.27: Upload file request in Swagger

ASP.NET Core Web API | 675

• Upload file response:

Figure 9.28: Upload file response in Swagger

• Get download link request:

Figure 9.29: Get download link request in Swagger

676 | Creating API Services

• Get download link response:

Figure 9.30: Get download link response in Swagger

• Download file request:

Figure 9.31: Download file request in Swagger

ASP.NET Core Web API | 677

• Download file response:

Figure 9.32: Download file response in Swagger

• Delete file request:

Figure 9.33: Delete file request in Swagger

678 | Creating API Services

• Delete file response:

Figure 9.34: Delete file response in Swagger

This exercise illustrated the remaining aspects of what you can do with a Web API.

Note

You can find the code used for this exercise at https://packt.link/cTa4a.

The volume of functionality you can serve through the web is immense. However,
this comes with its own big problem. How do you ensure that your API is consumed
only by the intended identities? In the next section, you will explore how to secure a
Web API.

Securing a Web API

Every now and then, you'll hear about a major security breach on the news. In this
section, you will learn how to protect a public API using AAD.

Azure Active Directory

Azure Active Directory (AAD) is Microsoft's cloud identity and access management
service that is used to sign in to well-known applications, such as Visual Studio, Office
365, and Azure, and to internal resources. AAD uses OpenID to provide user identity
through a JavaScript Web Token.

https://packt.link/cTa4a

ASP.NET Core Web API | 679

JWT

A JavaScript Web Token (JWT) is a collection of personal data encoded and sent over
as a mechanism of authentication. A single field encoded in a JWT is called a claim.

OpenID Connect

OpenID Connect (OIDC) is the protocol used for getting the ID token, which provides
user identity or an access token. It's a layer on top of OAuth 2 to get an identity.

OAuth serves as a means of getting an access token on behalf of some user. With
OIDC, you get an identity; this has a role and access comes from that role. When
a user wants to log in to a website, OpenID might require them to input their
credentials. This might sound exactly the same as OAuth; however, don't mix the two.
OpenID is all about acquiring and verifying the user's identity and granting access
coming with a role. OAuth, on the other hand, gives access to a user to do a limited
set of functionalities.

A real-life analogy would be as follows:

• OpenID: You come to an airport and present your passport (which is issued by
the government) confirming your role (passenger) and identity that way. You are
granted a passenger role and allowed to board an airplane.

• OAuth: You come to an airport and the staff asks you to take part in an
emotional state tracking event. With your consent, the staff (others) at the
airport can now track more of your personal data.

The following is a summary:

• OpenID provides authentication and verifies who you are.

• OAuth is authorization that allows others to do things on your behalf.

680 | Creating API Services

Application Registration

The first step in securing a Web API using Azure is to create an application registration
in AAD. Perform the following steps to do so:

1. Navigate to Azure Active Directory by typing active dir in the
search bar:

Figure 9.35: Azure Active Directory being searched in portal.azure

2. In the new window, click the App registrations option (1).

3. Then, click the New registration button (2):

Figure 9.36: Azure app registration

ASP.NET Core Web API | 681

4. In the new window, enter Chapter09WebApi as the name.

5. Keep the other settings as the default and click the Register button:

Figure 9.37: The new app registration named Chapter09WebApi

6. To access an API, you need at least one scope or role. In this example, you will
create a scope called access_as_user.

7. Scopes in general can be used to control which part of an API is accessible to
you. For the scope to be available for all users, you will need to select Admins
and users.

682 | Creating API Services

8. In this trivial example, given the token is valid, you will allow access to everything.
So, select the Access all as a user option. The exact values of the other
fields do not matter:

Figure 9.38: The access_as_user scope available for all users

The first step in securing a Web API using Azure was to create an application
registration in AAD. The next topic will cover how you can implement security within a
Web API in .NET.

ASP.NET Core Web API | 683

Implementing Web API Security

This section will focus on the details of how, programmatically, you can get the token
and work with it. So, first, install NuGet, which does JWT validation using the Microsoft
identity platform:

dotnet add package Microsoft.Identity.Web

In the Bootstrap folder, create the SecuritySetup class:

 public static class SecuritySetup

 {

 public static IServiceCollection AddSecurity(this
IServiceCollection services, IConfiguration configuration,
IWebHostEnvironment env)

 {

 services.
AddMicrosoftIdentityWebApiAuthentication(configuration);
 return services;

 }

 }

Then, in Program.cs, append this to services:

.AddSecurity()

The injected services are needed by the authorization middleware. So, add the
following on an app to add authorization middleware:

 app.UseAuthentication();

 app.UseAuthorization();

This will be triggered on all endpoints decorated with the [Authorize] attribute.
Make sure the preceding two lines are placed before app.MapControllers(); or
else the middleware will not be wired with your controllers.

Within appsettings.json, add the following configuration to link to your
AzureAd security configuration:

 "AzureAd": {

 "Instance": "https://login.microsoftonline.com/",

 "ClientId": "2d8834d3-6a27-47c9-84f1-0c9db3eeb4ba",

 "TenantId": "ddd0fd18-f056-4b33-88cc-088c47b81f3e",

 "Audience": "api://2d8834d3-6a27-47c9-84f1-0c9db3eeb4bb"

 }

684 | Creating API Services

Lastly, add the Authorize attribute above each controller for any kind of security
you choose:

 [Authorize]

 [ApiController]

 [RequiredScope("access_as_user")]

 [Route("[controller]")]

 public class WeatherForecastController : ControllerBase

The Authorize attribute is essential for any type of security
implementation. This attribute will perform the generic token validation, while
[RequiredScope("access_as_user")] will check whether the access_
as_user scope was included or not. What you now have is a secured API. If you try
calling the WeatherForecast endpoints, you will get a 401 – Unauthorised
error.

Note

You can find the code used for this example at https://packt.link/ruj9o.

In the next section, you will learn how to generate a token through the token
generator app and use it to securely access your API.

Token Generator App

To call the API, you need to generate a token by creating a console application. Before
you do that, however, you need to configure one more thing in your app registration.
Your console application is considered a desktop app. So, when signing in, you need
a redirect URI. This URI, returned with the code, is used to get the access token. To
achieve this, perform the following steps:

1. From the left pane in AAD, select the Authentication option (1) to view all
configurations with outside applications.

https://packt.link/ruj9o

ASP.NET Core Web API | 685

2. Next, click the Add a platform button (2) to configure a new application
(token generator):

Figure 9.39: Authentication window with options to configure a new application

3. In the Configure platforms section, select the Mobile and desktop
applications button (3) to register a console application token generator:

Figure 9.40: Selecting the Mobile and desktop applications platform for authentication

A new window will open on the screen.

4. Type your Custom redirect URIs that specify where you will return after
the successful login to AAD when requesting the token. In this case, it doesn't
matter so much. So, type any URL.

686 | Creating API Services

5. Then, click the Configure button (4):

Figure 9.41: Configuring the redirect URI

That completes the configuration of AAD. Now that you have all the infrastructure for
security, build a console application to generate an access token from AAD:

1. First, create a new project called Chapter09.TokenGenerator. It will allow
you to generate authorization tokens needed to call your API.

2. Then, make it a console app on .NET Core to keep it simple and display a
generated token.

3. Add Microsoft.Identity.Client by running the following command:

dotnet add package Microsoft.Identity.Client

This will allow you to request a token later.

4. Next, in Program.cs, create a method to initialize an AAD application client.
This will be used to prompt browser login, as if you were to log in to the
Azure portal:

static IPublicClientApplication BuildAadClientApplication()

{

 const string clientId = "2d8834d3-6a27-47c9-84f1-0c9db3eeb4bb";
// Service
 const string tenantId = "ddd0fd18-f056-4b33-88cc-088c47b81f3e";

 const string redirectUri = "http://localhost:7022/token";

 string authority = string.Concat("https://login.microsoftonline.
com/", tenantId);

 var application = PublicClientApplicationBuilder.Create(clientId)

ASP.NET Core Web API | 687

 .WithAuthority(authority)

 .WithRedirectUri(redirectUri)

 .Build();

 return application;

}

Note

The values used in the preceding code will differ, depending upon the
AAD subscription.

As you can see, the application uses the clientId and tenantId configured
in AAD.

5. Create another method to use the application that requires a user login on
Azure to get an auth token:

static async Task<string>
GetTokenUsingAzurePortalAuth(IPublicClientApplication application)
{

6. Now, define the scopes you need:

 var scopes = new[] { $"api://{clientId}/{scope}" };

Replace api://{clientId}/{scope} with your own application ID URI if
you are not using a default value.

7. Then, attempt to get a cached token:

 AuthenticationResult result;

 try

 {

 var accounts = await application.GetAccountsAsync();

 result = await application.AcquireTokenSilent(scopes,
accounts.FirstOrDefault()).ExecuteAsync();
 }

The cached token retrieval is required if the login was done earlier. If you haven't
signed in before to get a token, you will need to log in to Azure AD:

 catch (MsalUiRequiredException ex)

 {

 result = await application.

688 | Creating API Services

AcquireTokenInteractive(scopes)

 .WithClaims(ex.Claims)

 .ExecuteAsync();

 }

8. Return the access token as the result of a logged-in user so that you can use it
later to access your APIs:

 return result.AccessToken;

9. Now, call the two methods and print the result (using the minimal API):

var application = BuildAadClientApplication();

var token = await GetTokenUsingAzurePortalAuth(application);

Console.WriteLine($"Bearer {token}");

10. Finally, when you run the token app, it will ask you to sign in:

Figure 9.42: Sign-in request from Azure

A successful sign-in redirects you to a configured redirect URI with the
following message:

Authentication complete. You can return to the application. Feel free
to close this browser tab.

ASP.NET Core Web API | 689

You will see that the token will be returned in the console window:

Figure 9.43: Generated token from the app registration in the console app

Now, you can inspect the token using the https://jwt.io/ website. The following screen
is displayed, showing two parts: Encoded and Decoded. The Decoded part is
divided into the following sections:

• HEADER: This contains a type of token and the algorithm used to encrypt
the token.

• PAYLOAD: The claims encoded within the token contain information, such as
who requested the token and what access has been granted:

Figure 9.44: Encoded and decoded JWT version on the jwt.io website
using your app registration

https://jwt.io/

690 | Creating API Services

In this section, you learned how to secure an unsecured API. Security is not
limited to just an authorization token. As a professional developer, you must
be aware of the most common vulnerabilities in APIs. A list of the top 10 most
common security issues is updated every four years based on the trends in the
industry. This list is called the Open Web Application Security Project (OWASP)
and can be reached at https://owasp.org/www-project-top-ten/.

In the next section, you will apply the changes needed for Swagger to work with the
authorization token.

Configuring Swagger Auth

To pass an authorization header through Swagger, you will need to add some
configuration. Follow these steps to do so:

1. In order to render an authorization button, add the following block of
code inside the SwaggerSetup class, the AddSwagger method, and the
services.AddSwaggerGen(cfg => section:

 cfg.AddSecurityDefinition("Bearer", new
OpenApiSecurityScheme()
 {

 Name = "Authorization",

 Type = SecuritySchemeType.ApiKey,

 Scheme = "Bearer",

 BearerFormat = "JWT",

 In = ParameterLocation.Header,

 Description = $"Example: \"Bearer YOUR_TOKEN>\"",

 });

2. In order to forward the value of a bearer token with an authorization header,
add the following code snippet:

 cfg.AddSecurityRequirement(new
OpenApiSecurityRequirement
 {

 {

 new OpenApiSecurityScheme

 {

 Reference = new OpenApiReference

 {

 Type = ReferenceType.SecurityScheme,

 Id = "Bearer"

 }

https://owasp.org/www-project-top-ten/

ASP.NET Core Web API | 691

 },

 new string[] {}

 }

 });

3. When you navigate to https://localhost:7021/index.html, you will see that it now
contains the Authorize button:

Figure 9.45: Swagger docs with Authorize button

4. Click the Authorize button to allow you to input the bearer token:

Figure 9.46: Bearer token input after clicking the Authorize button

https://localhost:7021/index.html

692 | Creating API Services

5. Now, send a request:

Figure 9.47: Swagger-generated request with a status of 200 generated in response

You will see that the authorization header is added, and the ok response (HTTP
status code 200) is returned.

In this section, you added some configuration to pass an authorization header
through Swagger.

Note

You can find the code used for this example at https://packt.link/hMc2t.

https://packt.link/hMc2t

ASP.NET Core Web API | 693

If you make a mistake and your token validation fails, you will get either a 401 –
unauthorized or 403 – forbidden status code returned (often without any
details). Fixing this error might be a headache. However, it is not too difficult to get
more information on what went wrong. The next section provides more details.

Troubleshooting Token Validation Errors

To simulate this scenario, try invalidating the client-id in appsettings.json by
changing any single symbol (for example, the last letter to b). Run the request and see
how the response is displayed as 401, with nothing else appearing in the logs.

All the validations and incoming and outcoming requests can be tracked through a
pipeline. All you must do is change the default minimum logged level from info to
Trace. You can do this by replacing the appsettings.development.json file
contents with the following:

{

 "Logging": {

 "LogLevel": {

 "Default": "Trace",

 "Microsoft": "Trace",

 "Microsoft.Hosting.Lifetime": "Trace"

 }

 }

}

Do not mix appsettings.development.json with appsettings.json. The
former is used for configuration as a whole and the latter overrides the configuration
but only in certain environments—development (local) in this case.

If you run the same request again, you will now see a verbose log in the console:

Audience validation failed. Audiences: 'api://2d8834d3-6a27-47c9-84f1-
0c9db3eeb4bb'. Did not match: validationParameters.ValidAudience:
'api://2d8834d3-6a27-47c9-84f1-0c9db3eeb4bc' or validationParameters.
ValidAudiences: 'null'.

Inspecting it deeper reveals the error as the following:

Audience validation failed; Audiences: 'api://2d8834d3-6a27-
47c9-84f1-0c9db3eeb4bb'. Did not match validationParameters

694 | Creating API Services

This error indicates a mismatched audience configured in the JWT:

Figure 9.48: Token validation error with the error highlighted

Now it is time for you to learn about the SOA architecture where components of a
system are hosted as separate services.

Service-Oriented Architecture

Software architecture has come a long way—evolving from monolithic to Service-
Oriented Architecture (SOA). SOA is an architecture where major layers of
applications are hosted as separate services. For example, there would be one or
more Web APIs for data access, one or more Web APIs for business logic, and one or
more client applications consuming it all. The flow would be like this: the client app
calls the business Web API, which calls another business Web API or a data access
Web API.

However, modern software architecture goes one step further to bring a more
evolved architecture, called microservice architecture.

ASP.NET Core Web API | 695

Microservice Architecture

Microservice architecture is SOA with a single-responsibility principle applied.
This means that, instead of service-as-a-layer, you now have hosted self-contained
modules that have a single responsibility. A self-contained service has both data
access and business logic layers. Instead of many services per layer, in this approach,
you have many services per module.

The purpose of those self-contained modules is to allow multiple teams to work
on different parts of the same system simultaneously without ever stepping on
each other's toes. On top of that, parts in a system can be scaled and hosted
independently and there is no single point of failure. Also, each team is free to use
whatever technology stack they are most familiar with, as all the communication
happens through HTTP calls.

This concludes the theoretical portion of this topic. In the following section, you will
put all that you have learned into practice with an activity.

Activity 9.01: Implementing the File Upload Service Using Microservice

Architecture

A microservice should be self-contained and do just one thing. In this activity, you
will sum up the steps needed for extracting a piece of code into a microservice that
manages how you work with files through the web (delete, upload, and download).
This should serve as an overall effective checklist of what needs to be done when
creating a new microservice.

Perform the following steps to do this:

1. Create a new project. In this case, it will be a .NET Core Web API project on
the .NET 6.0 framework.

2. Name it Chapter09.Activity.9.01.

3. Now, add the commonly used NuGet packages:

• AutoMapper.Extensions.Microsoft.DependencyInjection

• FluentValidation.AspNetCore

• Hellang.Middleware.ProblemDetails

• Microsoft.AspNetCore.Mvc.NewtonsoftJson

696 | Creating API Services

• Microsoft.Identity.Web

• Swashbuckle.AspNetCore

4. Next, include the Azure Blobs Client package as Azure.Storage.Blobs.

5. Create one or more controllers for communication with the Web API. In this
case, you will move FileController to the Controllers folder.

6. In order to create one or more services for business logic, move
FilesService to the Services folder and FileServiceSetup to the
Bootstrap folder.

7. Then document API using XML docs and Swagger.

8. Update the csproj file to include XML docs.

9. Copy SwaggerSetup to the Bootstrap folder.

10. Configure Controllers. In this scenario, it will be a
plain one-line services.AddControllers() under
the ControllersConfigurationSetup class and the
AddControllersConfiguration method.

11. Configure the problem details error mappings. In this case, there are no
exceptions that you will explicitly handle. So, you will keep it as a one-liner within
the ExceptionMappingSetup class and the AddExceptionMappings and
services.AddProblemDetails() methods.

12. Secure the API.

13. Create AAD app registration for the new service. Refer to the Application
Registration subsection in the Securing the Web API section.

14. Update the configuration of the new service based on the Azure AD app
registration client, tenant, and app IDs.

15. Inject the needed services and configure the API pipeline.

16. Copy the Program class.

17. Since the ConfigureServices method contains extra services, you don't
need to remove them. Leave the Configure method as is.

18. Run the service through Swagger and upload a test file. Don't forget to generate
a bearer token first using the token generator app from the updated values
learned earlier.

ASP.NET Core Web API | 697

19. After that, try to get a test file that you just uploaded. You should see the status
code 200:

• Get download link request:

Figure 9.49: Get download link request in Swagger

• Get download link response:

Figure 9.50: Get download link response in Swagger

698 | Creating API Services

Note

The solution to this activity can be found at https://packt.link/qclbF.

All the services that have been created so far require considerations such as hosting,
scaling, and availability. In the following section, you will learn about serverless and
Azure Functions.

Azure Functions

In the preceding section, you learned that microservice architecture is a self-
contained service with both data access and business logic layers. With this approach,
you have many services per module. However, working with microservices, especially
at the start, might seem like a hassle. It might raise doubts such as the following:

• What does not big enough mean?

• Should you host on different servers or on the same machine?

• Is another cloud hosting model better?

These questions might be overwhelming. So, a simple way of calling your code
through HTTP is by using Azure Functions. Azure Functions is a serverless solution
that allows you to call your functions on the cloud. Serverless does not mean that
there is no server; you just do not need to manage it by yourself. In this section, you
will try to port CurrentTimeController from Exercise 9.02 to an Azure Function.

Note

Before proceeding with the steps, install Azure Functions Core Tools first
using the instructions here: https://docs.microsoft.com/en-us/azure/azure-
functions/functions-run-local?tabs=v3%2Cwindows%2Ccsharp%2Cportal%
2Cbash%2Ckeda#install-the-azure-functions-core-tools. Azure Functions
Core Tools also requires the Azure CLI to be installed (if you want to
publish an Azure Functions application and not on a server). Follow the
instructions here: https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-
windows?tabs=azure-cli.

https://packt.link/qclbF
https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local?tabs=v3%2Cwindows%2Ccsharp%2Cportal%2Cbash%2Ckeda#install-the-azure-functions-core-tools
https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local?tabs=v3%2Cwindows%2Ccsharp%2Cportal%2Cbash%2Ckeda#install-the-azure-functions-core-tools
https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local?tabs=v3%2Cwindows%2Ccsharp%2Cportal%2Cbash%2Ckeda#install-the-azure-functions-core-tools
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-windows?tabs=azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-windows?tabs=azure-cli

ASP.NET Core Web API | 699

Perform the following steps to do so:

1. In VS Code, click the Extenstions icon (1).

2. Then search for azure function in the search text box (2).

3. Then, install the Azure Functions extension (3):

Figure 9.51: Searching for the Azure Functions extension in VS Code

A new Azure tab will appear on the left.

4. Click the new Azure tab.

5. On the new page, click the Add button (1).

6. Select the Create Function… option (2):

Figure 9.52: The new Azure Functions extension in VS Code
with the Create Function… button

700 | Creating API Services

7. In the Create Function window, select HTTP trigger.

8. Enter the name GetCurrentTime.Get.

9. Name the project where it is held Pact.AzFunction.

10. On the last screen, select anonymous.

At this point, there is no need to go into too much detail about this configuration.
The key point to be considered here is that the function will be reachable
publicly, through HTTP requests. A new project created through these steps will
include the new Azure Function.

11. Now, navigate to the root of the new project folder to run the project.

12. Next, press F5 or click the Start debugging to update this list…
message:

Figure 9.53: Azure Extension window with the to-be-built project

You will notice that upon a successful build, the message changes to the
function name:

Figure 9.54: Azure Extension window with post-build project

ASP.NET Core Web API | 701

The terminal output window, displayed at the bottom of VS Code, shows the
following details:

Figure 9.55: The terminal output after a successful build

13. Next, in VS Code Explorer, open GetCurrentTime.cs:

14. Note that in Exercise 9.01, you worked with the GetCurrentTime code. You will
reuse the same code here:

namespace Pact.Function

{

 public static class GetCurrentTime

 {

 [Function("GetCurrentTime")]

 public static HttpResponseData
Run([HttpTrigger(AuthorizationLevel.Anonymous, "get", "post")]
HttpRequestData request,

 FunctionContext executionContext)

The template names are generated based on your configuration from
before. An Azure Function is bound to an HTTP endpoint through the
[Function("GetCurrentTime")] attribute.

Before you proceed, you might have noticed that, even though the function for
getting the current time consumed a variable for timezoneid, there is no such
variable here (yet). Unlike the previous REST APIs you created to pass parameters
to an Azure Function, here you pass it through either a request body or query
variables. The only problem here is that you will have to parse it yourself, as
there are no bindings through attributes just like with the controller methods.
The argument you need is just a simple string that can be passed as a query
argument. This line parses the URI from the request and gets a timezoneId
variable from the query string.

702 | Creating API Services

15. Use the timezoneId variable to get the current time in a specific zone:

 {

 var timezoneId = HttpUtility.ParseQueryString(request.
Url.Query).Get("timezoneId");

16. Next up is the business logic. So, use the timezoneId variable to get the
current time in a specified time zone:

var timezoneInfo = TimeZoneInfo.FindSystemTimeZoneById(timezoneId);

 var time = TimeZoneInfo.ConvertTimeFromUtc(DateTime.
UtcNow, timezoneInfo);

17. Finally, serialize the results in HTTP 200 Ok as the text/plain content type:

var response = request.CreateResponse(HttpStatusCode.OK);

 response.Headers.Add("Content-Type", "text/plain;
charset=utf-8");
 response.WriteString(time.ToString());

 return response;

}

18. Run this code and navigate to http://localhost:7071/api/
GetCurrentTime?timezoneId=Central%20European%20
Standard%20Time.

You will get the current time of that time zone, as follows:

2022-08-07 16:02:03

You have now grasped the workings of Azure Functions—a serverless solution to call
your functions on the cloud.

It has been a long path through this book, but with the conclusion of this final activity,
you have mastered all the concepts and skills required to create your own modern
C# applications.

Summary | 703

Summary
In this chapter, you learned how to build your own REST Web API using the ASP.
NET Core Web API template. You learned how to tackle the ever-growing complexity
of configuration using bootstrap classes. You were introduced to the OpenAPI
standard and Swagger, a tool used for calling an API to see whether it has successfully
rendered the documentation. You also delved into mapping exceptions to specific
HTTP status codes, along with how to map DTOs to domain objects and vice versa.
In the second half of the chapter, you practiced securing the Web API using AAD,
learned the concept of microservices, and created one yourself—both through a
new dedicated Web API and through an Azure Function.

Knowing how to create and consume Web APIs is important because that's what most
of the software development is all about. You either consume or create Web APIs at
some point. Even if you don't have to create one yourself, grasping the ins and outs of
it will help you as a professional developer.

This brings a close to The C# Workshop. Throughout this book, you have learned the
basics of programming in C#, starting with simple programs that used arithmetic
and logical operators, followed by the increasingly complex concepts of clean coding,
delegates and lambdas, multithreading, client and server Web APIs, and Razor
Pages applications.

This concludes the print copy of this book, but it is not the end of your journey. Visit
the GitHub repository at https://packt.link/sezEm for bonus chapters—Chapter 10,
Automated Testing, and Chapter 11, Production-Ready C#: From Development to
Deployment—covering such topics as different forms of testing before you take an
in-depth look at unit testing using Nunit (the most popular third-party testing library
for C#), getting acquainted with Git and using GitHub to keep a remote backup of
your code, enabling Continuous Deployment (CD) and deployment from your code to
the cloud, studying the cloud using Microsoft Azure, in addition to learning how to use
GitHub Actions to perform CI and CD to push application changes live in production.

https://packt.link/sezEm

Hey!

We are Jason Hales, Almantas Karpavicius,
and Mateus Viegas the authors of this book.
We really hope you enjoyed reading our book and
found it useful for learning C#.

It would really help us (and other potential readers!)
if you could leave a review on Amazon sharing your
thoughts on The C# Workshop.

Go to the link https://packt.link/r/1800566492.

OR

Scan the QR code to leave your review.

Your review will help us to understand what's worked
well in this book and what could be improved upon for
future editions, so it really is appreciated.

Best wishes,

Jason Hales, Almantas Karpavicius, and Mateus Viegas

Jason Hales

Almantas Karpavicius

Mateus Viegas

https://packt.link/r/1800566492

Index

A
absolute: 47, 151, 221
abstract: 47, 92-93,

96, 102, 125-126,
155, 194, 410, 413,
417, 480, 603

adapter: 221-222
addconsole: 617, 650
addedaia: 255
addfilter: 309-310
addheader: 597
addhours: 671
additive: 91
addlogging: 497,

616-618, 650
addscoped: 624,

651, 672
addswagger: 651,

653, 690
aggregate: 296, 307,

376, 391, 396, 398,
407, 463-466

algorithm: 44-45,
113, 150, 689

analytics: 535,
544-549, 565,
567, 603

approach: 88-89, 176,
201, 209, 315, 358,
381, 385, 412, 415,
421, 430, 440-442,
445-446, 456-457,
462, 473, 496,
581, 587, 643, 653,
665, 695, 698

architect: 440
arithmetic: 1, 15-16,

20, 58, 123, 703

arrays: 12, 42-43,
46-47, 75, 79

aspnetcore: 488, 503,
507-509, 516, 521,
525-527, 612, 630,
644, 662, 695-696

assembly: 125-126,
428, 636, 651

authheader: 566, 597
authorize: 570,

683-684, 691
authtoken: 573, 597
automapper: 435,

659, 663-665, 695
azfunction: 700
azuread: 648-649, 683
azure-cli: 698

B
benchmarks: 455
binding: 339, 465,

506, 511-512,
515-516, 519, 523,
532, 555, 557, 626

blobclient: 669-672
blobname: 671
boolean: 22-24, 27, 37,

43-44, 54, 160, 166,
168, 174, 236, 330

bootstrap: 3, 486,
495, 500, 528,
530, 652-653,
683, 696, 703

btn-sm: 509, 521
bubblesort: 45
buffering: 209

C
cached: 452-453,

539, 666, 687
calcpi: 391-393
card-body: 503,

508-509, 521
card-title: 503,

508-509, 521
celsius: 146, 150-152
central: 512, 615, 618,

630, 643, 702
compareto: 130,

134-135
compatible: 2,

159, 180, 188
compiler: 3-5, 8-9,

27, 33, 51, 73,
125-126, 165-166,
175-176, 193, 199,
201, 211, 227, 232,
263, 266, 333, 348,
356, 485, 491, 499

concept: 7, 13, 16,
18, 22, 42, 48, 58,
62, 78, 84, 116,
159, 164, 198,
201, 217-218, 226,
392, 436, 445,
458, 477, 488,
490, 497, 510-512,
615, 619, 703

configure: 322, 387,
422-423, 443-444,
486, 488, 490,
493-494, 497, 513,
607, 616, 642, 646,
651, 656, 664,
684-686, 696

consoleapp: 441
container: 145, 152,

486, 491, 494,
496-497, 500, 510,
513-514, 600-602,
615, 625-626,
646, 668-669

controller: 185, 241,
606, 608-610, 612,
614-616, 618-621,
626, 629, 637,
642-643, 650, 672,
674, 684, 701

countafter: 468, 471
cshtml: 499-504,

506-507, 510,
514-517, 520-523,
525, 527-528

csproj: 4, 167, 177,
186, 195, 204,
214, 485, 696

csvfiles: 220, 222
csvhelper: 660
csvreader: 662
cwindows: 698

D
database: 51, 194, 252,

274, 301, 315-316,
332, 337, 339,
350, 407, 409-418,
421-429, 433,
435-436, 440-442,
444-449, 451-454,
457, 460-465,
467-469, 471-480,
512-514, 518,
521-523, 527, 530

dayindex: 267

dayofweek: 169, 174
dbcontext: 421,

423-427, 440-442,
444-446, 450, 456,
465, 467-468,
471-473, 480,
512-513, 523, 530

decoupled: 477, 531
delimiter: 257, 288
dependency: 108,

118-121, 473, 484,
490-491, 496-498,
606, 615, 618, 625

deployment: 414,
446, 547, 703

directive: 501,
507, 523

do-loop: 326, 363,
404-405

do-while: 42, 181-182,
260, 327

E
eventargs: 200-201,

205, 207, 210, 220

F
fahrenheit: 146,

151-152
fetchloop: 365-368
fetchsales: 340-343,

346-347
fibonacci: 326-328,

401-406
fileaccess: 47-50, 52
fileinfo: 276-277
filemode: 47-50, 52
filepath: 109-110, 113

filestream: 47, 49-52
filesystem: 194,

276, 306
foreach: 46-47, 49,

51, 81, 94-97, 103,
107, 133, 149,
159-160, 165, 197,
212-213, 218-219,
227, 234-235, 237,
239, 241, 254,
258-259, 263-269,
271, 273-275,
277, 279-280, 282,
284-287, 291-292,
302-303, 343, 351,
374-375, 379, 382,
386-388, 394-395,
397-398, 427, 431,
437-438, 510,
551-552, 580

framework: 2, 174,
337, 384-385, 407,
409-410, 417-418,
483-484, 488, 490,
498, 512, 518, 530,
532, 539, 589, 606,
636, 647, 695

G
garbage: 51, 68, 469
geterror: 611, 617
getfilms: 579-580,

583, 586
getorder: 593, 599
getorthrow:

548-549, 593
getter: 71-73, 76-77,

104, 106, 139
gettoken: 573, 575

githttp: 554, 557, 566
github: 100, 141,

209, 290, 407, 411,
424-425, 541-543,
554-556, 558-565,
567-573, 575,
581, 591, 603,
637, 654, 703

groupby: 286, 289
gutenberg: 288,

290-291, 293

H
handlers: 199,

474-475,
505-506, 522

hashset: 226,
250-251, 289, 311

httpclient: 293, 358,
554, 558, 566,
576-577, 579,
581-584, 588-589,
596, 598, 603,
656-657, 661, 665

httpget: 609-612, 614,
617, 620, 623, 629,
633-634, 643, 673

httpmethod: 554,
565-566, 572-573,
579, 662

I
if-else: 24, 26, 33,

127, 129
if-then: 163, 167
init-only: 144, 178

inject: 121, 422, 436,
501, 527, 615,
620, 622, 625-627,
629, 632, 644,
646, 657, 664-666,
672-673, 696

in-memory: 416, 422,
455, 469, 471-473,
476-477, 555, 574

integer: 38, 42-44,
55, 57, 136, 257,
315, 327, 389, 462,
464, 476, 626

iqueryable: 262,
455, 458, 461

iteration: 37, 40, 44,
275, 314, 326,
366-368, 387,
389-391, 393, 405

K
kanban: 501,

503-504, 506, 512,
519, 521-523

L
lambda: 157-158,

161, 209-219, 223,
234, 265, 320, 327,
331, 333, 335,
355-356, 374, 389,
393, 431-432, 664

library: 111, 123,
166, 209, 260, 288,
384, 441, 473, 486,
497, 500, 584, 586,
625, 642, 644, 660,
663-665, 703

M
mapping: 410,

412-413, 420-421,
431, 443, 477,
578, 652, 659-660,
663-665, 672, 703

microsoft: 2, 4, 64,
68, 113, 166-167,
177, 186, 195, 204,
214, 216, 241-242,
261, 325, 338-339,
348, 381, 385, 388,
411, 417, 441, 445,
469, 471, 488,
498, 503, 507-509,
512-513, 516, 521,
525-527, 545, 612,
615, 625, 647-649,
662, 664, 671, 678,
683, 686, 693,
695-696, 698, 703

migration: 445-449,
451-452, 478,
480, 514, 530

multicast: 157,
164-165, 176, 183,
185, 191, 193-194,
196, 198, 223

N
non-async: 364, 550
npgsql: 417, 422,

441, 444

O
octokit: 542-543, 555
openapi: 630-631,

637, 641, 703
overhead: 146, 163,

252, 381, 386, 388
overload: 129-130,

132, 134, 154,
265, 295-296, 322,
389, 391, 393

P
packtpub: 241-242,

356-357
pagemodel: 501,

503-505, 512,
515-516, 521

parsed: 57, 145,
405, 573

paypal: 535, 589-597,
599, 603

pitfalls: 157, 409, 453,
461, 480, 588

platform: 488, 559,
654, 683, 685

postgres: 411-412,
414, 416, 426,
441, 444

postgresql: 407,
409-411, 414,
416-417, 422-423,
425-427, 441, 444

postman: 540-542,
554-555, 641

predicate: 160,
236-237, 262, 294,
296-297, 309, 376

provider: 383, 417,
422-423, 426,
468-469, 471-473,
489, 598, 627, 629,
651-652, 661, 666

R
razorpages: 503,

516, 521
readfile: 51-52
readkey: 35
renderbody: 500
restclient: 583-584,

597-598
restsharp: 576,

582-586, 588-589,
593, 597

reusable: 115,
498, 506-507,
511, 520-521,
524-525, 581

S
sandbox: 535,

589-593, 596, 599
scheduler: 315,

317-318, 321-322,
335-336, 360,
387, 389, 400

schema: 420, 425-426,
440-441, 443-446,
456, 472, 478,
514, 523, 631

scoped: 217, 219,
266, 498, 619, 624

security: 2, 84, 372,
413-415, 444,
480, 535, 539,

558-559, 576, 678,
682-684, 686, 690

semantics: 137, 142,
208, 235, 339, 394

simulate: 103,
204-205, 325-326,
340, 343, 350, 352,
356, 373, 381-382,
394, 396, 693

singleton: 497-498,
619, 623,
625-626, 629

sorting: 44-45,
225-226, 276,
281-282

sqlite: 414, 422, 469,
471-472, 512, 518

stacktrace: 191
stateless: 175,

497, 539, 629
struct: 19-20, 27,

30-32, 137-140,
142, 145-147,
153, 159, 199

swagger: 603,
630-632, 634-641,
645, 651, 671,
674-678, 690-692,
696-697, 703

swaggerhub: 637-641
swapwords: 214-215
switch: 33-35, 446, 599
syslib: 293, 358

T
timezoneid: 628-630,

701-702
toarray: 263, 274, 670

tostring: 20, 22, 35,
96, 133, 140, 142,
239, 292, 298-299,
353, 469, 557, 614,
622, 666-667, 702

try-catch: 364,
374, 376-378,
397, 493, 643

tryparse: 138, 144-145,
181, 327, 345, 362,
391, 398, 404

V
valuetuple: 144-146

W
webapi: 441, 606, 681
webclient: 220-222,

288, 290-291,
293, 306, 308,
356-358, 588

	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: Hello C#
	Introduction
	Running and Developing C# with the .NET CLI
	Creating Programs with the CLI and VS Code
	Basic Anatomy of a C# Program
	Exercise 1.01: Creating a Console App that Says "Hello World"
	Top-Level Statements

	Declaring Variables
	Declaring Variables Explicitly
	Declaring Variables Implicitly
	Explicit versus Implicit Declaration

	Exercise 1.02: Assigning Variables to User Inputs

	Data Types
	Strings
	Exercise 1.03: Checking String Immutability
	Comparing Strings
	Numeric Types
	Exercise 1.04: Using the Basic Arithmetic Operators

	Classes
	Dates
	Exercise 1.05: Using Date Arithmetic.
	Formatting Dates

	Logical Operators and Boolean Expressions
	Using if-else Statements
	Exercise 1.06: Branching with if-else
	The Ternary Operator
	Reference and Value Types
	Exercise 1.07: Grasping Value and Reference Equality
	Default Value Types

	Enhancing Decision Making with the switch Statement
	Exercise 1.08: Using switch to Order Food
	Iteration Statements
	while

	Exercise 1.09: Checking Whether a Number is Prime with a while Loop
	Jump Statements
	do-while
	Arrays
	for Loops

	Exercise 1.10: Ordering an Array Using Bubble Sort
	foreach Statements

	File Handling
	FileAccess
	FileMode

	Exercise 1.11: Reading Content from Text Files
	Disposable Objects

	Exercise 1.12: Writing to a Text File
	Exceptions
	Exercise 1.13: Handling Invalid User Inputs with try/catch
	Activity 1.01: Creating a Guessing Game

	Summary

	Chapter 2: Building Quality Object-Oriented Code
	Introduction
	Classes and Objects
	Constructors
	Fields and Class Members
	Exercise 2.01: Creating Classes and Objects

	Reference Types
	Properties
	Object Initialization
	Comparing Functions and Methods
	An Effective Class
	Exercise 2.02: Comparing the Area Occupied by Different Shapes

	The Four Pillars of OOP
	Encapsulation
	Inheritance
	Polymorphism
	What is the Benefit of Polymorphism?

	Abstraction
	Interfaces
	Exercise 2.03: Covering Floor in the Backyard

	SOLID Principles in OOP
	Single Responsibility Principle
	Open-Closed Principle
	Liskov Substitution
	Interface Segregation
	Dependency Inversion

	How C# Helps with Object-Oriented Design
	Static
	Sealed
	Partial
	Virtual
	Internal

	Conditional Operators
	Ternary Operators
	Overloading Operators
	Nullable Primitive Types
	Generics
	Enum
	Extension Methods

	Struct
	Record
	Init-Only Setters
	ValueTuple and Deconstruction
	Exercise 2.04: Creating a Composable Temperature Unit Converter
	Activity 2.01: Merging Two Circles

	Summary

	Chapter 3: Delegates, Events, and Lambdas
	Introduction
	Delegates
	Defining a Custom Delegate
	Exercise 3.01: Defining and Invoking Custom Delegates
	The Inbuilt Action and Func Delegates
	Assigning Delegates
	Invoking a Delegate
	Exercise 3.02: Assigning and Invoking Delegates
	Multicast Delegates
	Exercise 3.03: Invoking a Multicast Delegate
	Multicasting with a Func Delegate
	What Happens When Things Go Wrong?

	Exercise 3.04: Ensuring All Target Methods Are Invoked in a Multicast Delegate
	Events
	Defining an Event
	Exercise 3.05: Publishing and Subscribing to Events

	Events or Delegates?
	Static Events Can Cause Memory Leaks

	Lambda Expressions
	Exercise 3.06: Using a Statement Lambda to Reverse Words in a Sentence
	Captures and Closures
	Activity 3.01: Creating a Web File Downloader

	Summary

	Chapter 4: Data Structures and LINQ
	Introduction
	Data Structures
	Lists
	Exercise 4.01: Maintaining Order within a List
	Queues
	Stacks
	HashSets
	Dictionaries
	Exercise 4.02: Using a Dictionary to Count the Words in a Sentence

	LINQ
	Query Operators
	Query Expressions
	Deferred Execution
	Standard Query Operators
	Projection Operations
	Select
	Anonymous Types
	SelectMany

	Filtering Operations
	Sorting Operations
	OrderBy and OrderByDescending
	ThenBy and ThenByDescending

	Exercise 4.03: Filtering a List of Countries by Continent and Sorting by Area
	Partitioning Operations
	Grouping Operations
	Exercise 4.04: Finding the Most Commonly Used Words in a Book
	Aggregation Operations
	Quantifier Operations
	Join Operations
	Using a let Clause in Query Expressions
	Activity 4.01: Treasury Flight Data Analysis

	Summary

	Chapter 5: Concurrency: Multithreading Parallel and Async Code
	Introduction
	Running Asynchronous Code Using Tasks
	Creating a New Task
	Using Task.Factory.StartNew
	Using Task.Run

	Exercise 5.01: Using Tasks to Perform Multiple Slow-Running Calculations
	Coordinating Tasks
	Waiting for Tasks to Complete

	Exercise 5.02: Waiting for Multiple Tasks to Complete Within a Time Period
	Continuation Tasks
	Using Task.WhenAll and Task.WhenAny with Multiple Tasks

	Exercise 5.03: Waiting for All Tasks to Complete

	Asynchronous Programming
	Async Lambda Expressions
	Canceling Tasks
	Exercise 5.04: Canceling Long-Running Tasks
	Exception Handling in Async/Await Code
	Exercise 5.05: Handling Async Exceptions
	The AggregateException Class
	IAsyncEnumerable Streams
	Parallel Programming
	Data Parallelism
	Task Parallelism
	The Parallel Class
	Parallel.For and Parallel.ForEach

	Activity 5.01: Creating Images from a Fibonacci Sequence

	Summary

	Chapter 6: Entity Framework with SQL Server
	Introduction
	Creating a Demo Database Before You Start
	Modeling Databases Using EF
	Connection String and Security
	Which One to Choose—EF or EF Core?
	Model

	DbContext and DbSet
	AdventureWorks Database

	Exercise 6.01: Reading Stock Locations from AdventureWorks Database

	Querying a Database—LINQ to SQL
	Query Syntax
	The Rest of CRUD
	Exercise 6.02: Updating Products and Manufacturers Table
	Database First
	Revisiting DbContext
	Generating DbContext from an Existing Database
	Code First and Migrations

	Exercise 6.03: Managing Product Price Changes

	Pitfalls of EF
	Examples Setup
	Multiple Adds
	Equals over ==
	Using IEnumerable over IQueryable
	Lazy over Eager Loading
	Read-Only Queries

	Summary of Results
	Tools to Help You Spot Problems Early On

	Working with a Database in Enterprise
	Repository Pattern
	Exercise 6.04: Creating a Generic Repository
	Testing Data Persistence Logic Locally
	In-Memory Database Provider
	SQLite Database Provider

	A Few Words on Repository
	Query and Command Handlers Patterns
	Separating the Database Model from the Business Logic (Domain) Model

	Activity 6.01: Tracking System for Trucks Dispatched

	Summary

	Chapter 7: Creating Modern Web Applications with ASP.NET
	Introduction
	Anatomy of an ASP.NET Web App
	Program.cs and the WebApplication
	Middlewares
	Logging
	Dependency Injection
	Exercise 7.01: Creating Custom Logging Middleware
	Dependency Lifetimes
	Razor Pages
	Basic Razor Syntax
	File Structure

	Exercise 7.02: Creating a Kanban Board with Razor
	PageModel
	The Life Cycle with Page Handlers
	Rendering Reusable Static Code with Tag Helpers

	Exercise 7.03: Creating Reusable Components with Tag Helpers
	Model Binding
	Exercise 7.04: Creating a New Page to Submit Tasks
	Validation
	Dynamic Behavior with Partial Pages
	Exercise 7.05: Refactoring a Tag Helper to a Partial Page with Custom Logic
	Activity 7.01: Creating a Page to Edit an Existing Task

	View Components
	Exercise 7.06: Creating a View Component to Display Task Statistics
	Activity 7.02: Writing a View Component to Display Task Log

	Summary

	Chapter 8: Creating and Using Web API Clients
	Introduction
	Browser
	Web API
	RESTful API
	Postman
	Client
	Octokit
	API Key
	Azure Text Analytics
	Exercise 8.01: Performing Sentimental Text Analysis on Any Text

	Your Own Client
	HttpClient
	HttpClient and IDisposable

	OAuth
	Real-life Analogy
	API Analogy

	OAuth App for GitHub
	Authorization Header
	Basic Authentication
	API Key and Personal Access Token

	Third-Party Authentication—OAuth2
	Request Idempotency
	PUT, PATCH, or POST

	Exercise 8.02: HttpClient Calling a Star Wars Web API
	Activity 8.01: Reusing HttpClient for the Rapid Creation of API Clients

	RestSharp
	Activity 8.02: The Countries API Using RestSharp to List all Countries

	Refit
	Activity 8.03: The Countries API Using Refit to List all Countries

	Other Ways of Making HTTP Requests
	Exercise 8.03: A Strongly Typed HTTP Client for Testing Payments in a PayPal Sandbox
	Activity 8.04: Using an Azure Blob Storage Client to Upload and Download Files

	Summary

	Chapter 9: Creating API Services
	Introduction
	ASP.NET Core Web API
	Creating a New Project
	Web API Project Structure
	An In-Depth Look at WeatherForecastController
	Responding with Different Status Codes

	Exercise 9.01: .NET Core Current Time Service
	Bootstrapping a Web API
	Dependency Injection
	Program.cs and Minimal API

	The Inner Workings of the AddLogging Method
	The Lifetime of an Injected Component

	DI Examples within a Service
	Singleton
	Scoped
	Transient
	TryAdd
	Manual Injection Using an IoC Container

	Exercise 9.02: Displaying Current Time in a Country API Time Zone
	OpenAPI and Swagger
	Using Swagger Swashbuckle

	Error Handling
	Request Validation
	Configuration
	Development Environments and Configuration

	Bootstrapping
	Calling Another API
	RapidAPI
	Service Client
	DTO and Mapping Using AutoMapper
	HttpClient DI

	Exercise 9.03: Performing File Operations by Calling Azure Blob Storage
	Securing a Web API
	Azure Active Directory
	JWT
	OpenID Connect

	Application Registration
	Implementing Web API Security
	Token Generator App
	Configuring Swagger Auth
	Troubleshooting Token Validation Errors

	Service-Oriented Architecture
	Microservice Architecture

	Activity 9.01: Implementing the File Upload Service Using Microservice Architecture
	Azure Functions

	Summary

	Index

