

High-Performance
Programming in C#
and .NET

Understand the nuts and bolts of developing robust,
faster, and resilient applications in C# 10.0 and .NET 6

Jason Alls

BIRMINGHAM—MUMBAI

High-Performance Programming in C# and .NET
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Associate Group Product Manager: Gebin George
Publishing Product Manager: Alok Dhuri
Senior Editor: Kinnari Chohan
Technical Editor: Maran Fernandes
Copy Editor: Safis Editing
Project Coordinator: Manisha Singh
Proofreader: Safis Editing
Indexer: Subalakshmi Govindhan
Production Designer: Sinhayna Bais
Marketing Coordinator: Sonakshi Bubbar

First published: July 2022

Production reference: 1290722

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-471-8

www.packt.com

http://www.packt.com

I would like to dedicate this book to the team at Packt, who helped
me through each step of the way and were very accommodating and

understanding of the difficulties I was going through in my personal life
while working on this book. They have been a truly great team that has
encouraged me each step of the way. I could not have written this book

without their expertise and guidance.

I would also like to dedicate this book to my wonderful parents, who had
to suffer long periods without me as I spent many a long night and many

weekends on this book, but who encouraged me to keep going through
difficult times.

– Jason Alls

Contributors

About the author
Jason Alls is the author of Clean Code in C# and has been programming for over 21
years. Working with an Australasian company, he started his career developing call center
management reporting software used by global clients, including telecom providers,
banks, airlines, and the police. He then moved on to develop GIS marketing applications
and worked in the banking sector, performing data migrations between Oracle and SQL
Server. Certified as an MCAD in C# since 2005, he has been involved in the development
of various desktop, web, and mobile applications.

Currently employed by a leading software house, he develops and supports order
processing and warehouse management software written in C#.

I would like to send a warm thank you to Joy and Gianni, who reviewed
the chapters for me. Their attention to detail was excellent, and they

would often let me know when things needed improving or when I had
left something out. Because of them, the content of this book, I feel, will
be of great benefit to programmers and developers at all levels. I happily

recommend them as reviewers to any budding authors.

About the reviewers
Gianni Rosa Gallina is an Italian senior software engineer and architect who has
been focused on emerging technologies, AI, and virtual/augmented reality since 2013.
Currently, he works at Deltatre’s Innovation Lab, prototyping solutions for next-generation
sports experiences and business services. Besides that, he has more than 10 years of
certified experience as a consultant on Microsoft and .NET technologies (including
technologies such as the Internet of Things, the cloud, and desktop/mobile apps). Since
2011, he has been awarded Microsoft MVP in the Windows Development category. He
has been a Pluralsight Author since 2013 and is a speaker at national and international
conferences.

Joy Rathnayake is a solutions architect with over 19 years of industry experience and is
part of the Digital & Emerging Technology (DET) team at EY GDS, based in Colombo,
Sri Lanka. He is primarily responsible for understanding customer requirements,
identifying required products/ technologies, and defining the overall solution design/
architecture.

Before he joined EY GDS Sri Lanka, Joy worked as a solutions architect at WSO2 Inc.,
Totalamber Ltd, Virtusa Ltd, Solid Quality Mentors, IronOne Technologies, and Sri
Lankan Airlines. He was responsible for architecting, designing, and developing software
solutions primarily using Microsoft and related technologies.

Joy has been recognized as both a Microsoft Most Valuable Professional (MVP) and
a Microsoft Certified Trainer (MCT). He has contributed to developing content for
Microsoft Certifications and has worked as a Subject Matter Expert (SME) for many
Microsoft exam development projects.

He has contributed a lot to the community by presenting at various events, such as
Microsoft Tech-Ed, Southeast Asia SharePoint Conference, and SharePoint Saturday.

Joy enjoys traveling, speaking at public events/conferences, and reading.

Preface

Part 1: High-Performance Code Foundation

1
Introducing C# 10.0 and .NET 6

Technical requirements 4
Obtaining and building the latest
Roslyn compiler from the source code 5

Overview of Microsoft .NET 6 7
Moving to one unified platform 8
Garbage collection 9
Just-In-Time compiler 9
Text-based processing 10
Threading and asynchronous
operations 10
Collections and LINQ 11
Networking and Blazor 11
New performance-based APIs and
analyzers 12

Overview of C# 10.0 12
Writing top-level programs 13
Using init-only properties 14

Using records 15
Using the new pattern
matching features 21
Using new expressions with
targeted types 25
Using covariant returns 27

Native compilation 28
Performing native compilation of
.NET Core applications 29

Improving Windows
Store performance 35
Improving ASP.NET
performance 35
Summary 37
Questions and exercises 38
Further reading 38

Table of Contents

viii Table of Contents

2
Implementing C# Interoperability

Technical requirements 42
Using Platform Invocation
(P/Invoke) 43
Using unsafe and fixed code 44
Exposing static entry points using
P/Invoke 48

Interacting with Python code 56

Performing Component Object
Model (COM) interoperability 58
Reading data from an
Excel spreadsheet 59
Creating an Excel add-in 61

Safely disposing of unmanaged
code 64
Summary 68
Questions 68
Further reading 69

3
Predefined Data Types and Memory Allocations

Technical requirements 72
Understanding the predefined
.NET data types 73
Understanding the predefined value
types in C# 74
Understanding the predefined
reference types in C# 75
Understanding static types 81

Understanding the various
types of memory used in C# 83
The stack 84
The heap 85

Building a stack versus building a heap
(example project) 87
Choosing between a struct and a class 93

Passing by value and passing
by reference 94
Building a pass-by-reference
example program 94

Boxing and unboxing 97
Performing boxing 98
Performing unboxing 98

Summary 102
Questions 103
Further reading 103

Table of Contents ix

4
Memory Management

Technical requirements 106
Object generations and
avoiding memory issues 106
Understanding long and
short weak references 111
Finalization 117
Using finalization 118

Implementing the
IDisposable pattern 122

Preventing memory leaks 127
Understanding the dangers of
using Marshal.ReleaseComObject 128
How using events can be a
source of memory leaks 138

Summary 151
Questions 152
Further reading 152

5
Application Profiling and Tracing

Technical requirements 157
Understanding code metrics 158
Application metrics 158
Assembly metrics 159
Namespace metrics 160
Type metrics 161
Method metrics 162
Field metrics 162

Performing static
code analysis 163
Generating and viewing
memory dumps 167
Viewing loaded modules 169
Debugging your applications 171
Using tracing and
diagnostics tools 172
Using the Visual Studio 2022
Performance Profiler 172
Using JetBrains dotMemory 179
Using JetBrains dotTrace 181

Installing and using
dotnet-counters 183
Collecting data and saving it to a file
for post-analysis 185
Listing .NET processes that can be
monitored 187
Listing the available list of well-known
.NET counters 187
Monitoring a .NET process 188

Tracking down and
fixing a memory leak
with dotMemory 189
Finding the cause of a UI
freeze with dotTrace 198
Optimizing application
performance and memory
traffic with dotTrace 206
Summary 209
Questions 210
Further reading 210

x Table of Contents

Part 2: Writing High-Performance Code

6
The .NET Collections

Technical requirements 217
Understanding the different
collection offerings 217
The System.Collections namespace 218
The System.Collections.Generic
namespace 220
The System.Collections.Concurrent
namespace 221
The System.Collections.Specialized
namespace 222
Creating custom collections 223

Understanding Big O notation 225
Choosing the right collection 225

Setting up our sample
database 227
Deciding between interfaces
and concrete classes 229

Deciding between using
arrays or collections 234
Accessing objects using
indexers 239
Comparing IEnumerable and
IEnumerator 242
Database query performance 246
Exploring the yield keyword 253
Learning the difference
between concurrency and
parallelism 260
Learning the difference
between Equals() and == 261
Summary 265
Questions 265
Further reading 266

7
LINQ Performance

Technical requirements 268
Setting up a sample database 268
Setting up our in-memory
sample data 271
Database query performance 273
Getting the last value of
a collection 283
Avoid using the let keyword in

LINQ queries 285
Increasing Group By
performance in LINQ queries 287
Filtering lists 290
Understanding closures 295
Summary 299
Questions 299
Further reading 299

Table of Contents xi

8
File and Stream I/O

Technical requirements 302
Understanding the various
Windows file path formats 302
Removing the maximum path length
limitation using the registry 303
Removing the maximum path length
limitation using the group policy 304

Considering improved
I/O performance 305
Moving files 308
Calculating directory sizes 313

Accessing files asynchronously 315
Writing text to a file asynchronously 316

Handling I/O
operation exceptions 319
Performing memory
tasks efficiently 323
Understanding local
storage tasks 326
Summary 327
Questions 328
Further reading 329

9
Enhancing the Performance of Networked Applications

Technical requirements 333
Understanding the network
layers and protocols 334
The TCP/IP model 338
Writing an example email application
with the TCP/IP model 339

Improving web-based
network traffic 342
Recording your web-applications
performance using Microsoft Edge 343

High-performance
communication using gRPC 347
Programming a simple gRPC client/
server application 348

Programming a simple gRPC
Blazor application 358
The blank solution 359

Optimizing internet resources 365
Using pipelines for content
streaming 366
Writing and running a TCP server
console application 367
Writing and running a TCP client
console application 372

Caching resources in memory 374
Summary 378
Questions 378
Further reading 379

xii Table of Contents

10
Setting Up Our Database Project

Technical requirements 382
Setting up our database 382
Setting up our database
access project 386
Writing the Properties class 387
Writing the DatabaseSettings class 388

Writing the SecretsManager 389
Writing the Product class 391
Writing the
SqlCommandModel class 392
Writing the

SqlCommandParameterModel
class 393
Writing the AdoDotNet class 393
Writing the
EntityFrameworkCoreData
class 400
Writing the DapperDotNet
class 403
Summary 409
Further reading 410

11
Benchmarking Relational Data Access Frameworks

Technical requirements 413
Benchmarking data insertion
methods 413
Benchmarking data
selection methods 420
Benchmarking data
editing methods 427

Benchmarking data
deletion methods 432
The benchmarking results
and their analysis 437
Summary 442
Questions 443
Further reading 444

12
Responsive User Interfaces

Technical requirements 446
Building a responsive UI
with WinForms 446
Enabling DPI awareness and long file
path awareness 447

Adding a splash screen that updates
with loading progress 448
Adding the increment count button
and label 451
Adding a table with paged data 451

Table of Contents xiii

Running long-running tasks in
the background 456

Building a responsive UI
with WPF 461
Building a responsive UI
with ASP.NET 471
Implementing memory caching 472
Implementing distributed caching 475
Using AJAX to update part of the
currently displayed page 478
Implementing WebSockets 481
Implementing a real-time chat
application using SignalR 484

Building responsive UIs
with .NET MAUI 489
Layouts 489
Accessibility 490
BlazorWebView 492

Building a responsive UI
with MAUI 492
Building a responsive UI
with WinUI 3 507
Summary 510
Questions 511
Further reading 511

13
Distributed Systems

Technical requirements 514
Implementing the CQRS
design pattern 514
Implementing event sourcing 516
Event sourcing example project 519

Using Microsoft Azure for
distributed systems 528
Azure Functions 529
Durable Azure Functions 530

Containers and serverless 532

Managing your cloud
infrastructure with Pulumi 534
Performance considerations
for distributed computing 538
Summary 541
Questions 542
Further reading 543

Part 3: Threading and Concurrency

14
Multi-Threaded Programming

Technical requirements 548
Understanding threads
and threading 548
Creating threads and
using parameters 549

Pausing and interrupting
threads 552
Destroying and canceling
threads 553
Scheduling threads 556

xiv Table of Contents

Thread synchronization
and locking 558
Summary 560

Questions 561
Further reading 561

15
Parallel Programming

Technical requirements 564
Using the Task Parallel Library
(TPL) 564
Using Parallel LINQ (PLINQ) 568
Programming parallel data structures 570

Benchmarking with
BenchmarkDotNet 571
Using lambda expressions
with TPL and LINQ 576

Parallel debugging and
profiling tools 578
The Parallel Stacks window 578
The Tasks window 579
The Concurrency Visualizer 580

Summary 583
Questions 584
Further reading 584

16
Asynchronous Programming

Technical requirements 586
Understanding the TAP model 586
Naming, parameters, and
return types 587
Initiating asynchronous operations 587
Exceptions 588
Optional cancellation 588
Optional Progress Reporting 589

async, await, and Task 590

Benchmarking GetAwaiter.
GetResult(), .Result, and .Wait
for both Task and ValueTask 593
Using async, await,
and WhenAll 596
Canceling asynchronous
operations 598
Writing files asynchronously 600
Reading files asynchronously 602
Summary 604
Questions 604
Further reading 605

Table of Contents xv

Assessments

Chapter 1, Introducing C# 10.0
and .NET 6 607
Chapter 2, Implementing C#
Interoperability 608
Chapter 3, Predefined Data
Types and Memory
Allocations 608
Chapter 4, Memory
Management 609
Chapter 5, Application
Profiling and Tracing 609
Chapter 6, The .NET
Collections 610
Chapter 7, LINQ Performance 611
Chapter 8, File and Stream I/O 611

Chapter 9, Enhancing the
Performance of Networked
Applications 612
Chapter 10, Setting Up Our
Database Project 612
Chapter 11, Benchmarking
Relational Data Access
Frameworks 612
Chapter 12, Responsive User
Interfaces 613
Chapter 13, Distributed
Systems 613
Chapter 14, Multi-Threaded
Programming 614
Chapter 15, Parallel
Programming 614
Chapter 16, Asynchronous
Programming 614

Index
Other Books You May Enjoy

Preface
Writing high-performance code while building an application is crucial, and over the
years, Microsoft has focused on delivering various performance-related improvements
within the .NET ecosystem. This book will help you understand the aspects involved in
designing responsive, resilient, and high-performance applications with the new versions
of C# and .NET.

You will start by understanding the foundation of high-performance code and the latest
performance-related improvements in C# 10.0 and .NET 6. Next, you’ll learn how to
use tracing and diagnostics to track down performance issues and the cause of memory
leaks. The chapters that follow then show you how to enhance the performance of your
networked applications and various ways to improve directory tasks, file tasks, and
more. You’ll go on to improve data querying performance and write responsive user
interfaces. You’ll also discover how you can use cloud providers such as Microsoft Azure
to build scalable distributed solutions. Finally, you’ll explore various ways to process code
synchronously, asynchronously, and in parallel to reduce the time it takes to process a
series of tasks.

By the end of this C# programming book, you’ll have the confidence you need to build
highly resilient, high-performance applications that meet your customer’s demands.

Who this book is for
This book is for software engineers, professional software developers, performance
engineers, and application profilers looking to improve the speed of their code or take
their skills to the next level to gain a competitive advantage. You should be a proficient C#
programmer who can already put the language to good use and is also comfortable using
Microsoft Visual Studio 2022.

xviii Preface

What this book covers
Chapter 1, Introducing C# 10.0 and .NET 6, talks about the Common Language Runtime
(CLR). You will start by learning about what’s new in C# 10.0 and .NET 6. Then you will
learn about the .NET native runtime and CoreCLR. Next, you will learn about the unified
BCL followed by Windows Store performance. Finally, you will learn about ASP.NET 5
performance.

Chapter 2, Implementing C# Interoperability, introduces Microsoft .NET interoperability.
You will learn how to call and dispose of unsafe code. You will also learn how to migrate
legacy COM programs to .NET using COM interoperability. In this chapter, you will learn
how to create .NET libraries and components and use them in legacy COM applications.
By the end of the chapter, you will have learned how to consume COM components in
.NET and how to consume .NET applications in COM components. This will help you to
migrate COM applications over to the .NET platform.

Chapter 3, Predefined Data Types and Memory Allocations, explores C# primitive types
and C# object types. You will learn about the stack and the heap and about passing data
by reference and by value. Then you will learn about boxing and unboxing and their
implications on application performance. You will also be refreshed on the C# primitive
type, and how to build objects that perform well.

Chapter 4, Memory Management, talks about the garbage collector. You will learn how to
use tracing and diagnostics to track down performance issues and the cause of memory
leaks. Then you will learn about object generations and how the garbage collector decides
what to dispose of. You will also learn about weak references and how to correctly dispose
of objects in order to prevent memory leaks.

Chapter 5, Application Profiling and Tracing, teaches you how to profile your applications
to identify poor areas of performance. You will learn about code metrics and how to
perform static code analysis. In your drive to write code that is more performant, you will
learn to make use of memory dumps, the loaded modules viewer, debugging, tracing, and
dotnet-counters. By the time you have completed this chapter, you will have the skills and
experience you need to profile your own applications.

Chapter 6, The .NET Collections, explores the collections framework. You will learn about
the different collections and how to best use them to get maximum performance from
them. You will access the various collections in the System.Collection, System.
Collection.Concurrent, and System.Collections.Generic namespaces.
You will also create your own custom exceptions and learn how to query collections using
LINQ.

Preface xix

Chapter 7, LINQ Performance, explains how to perform LINQ queries with performance
in mind. Depending on how you use LINQ, different methods that return the same result
can behave and perform differently. And so, in this chapter, you will learn how best to
perform queries on LINQ to improve the performance of your applications.

Chapter 8, File and Stream I/O, explains how to improve file and directory performance.
You will learn ways to improve directory tasks, file tasks, memory tasks, and isolated
storage tasks. In this book, you will learn how to write to files asynchronously and read
from files asynchronously.

Chapter 9, Enhancing the Performance of Networked Applications, breaks down how to
speed up the performance of network applications. You will learn how to communicate
over a network using the TCP and UDP network protocols. Then you will learn how to
perform network tracing processes with the OSI Network Layer Reference Model and a
selection of TCP and UDP networking protocols. Cache management will also be covered
so that you can improve the efficiency of resource retrieval.

Chapter 10, Setting Up Our Database Project, sets up the Northwind database project on
SQL Server as we will be using this database in the next section to benchmark data access
methods.

Chapter 11, Benchmarking Relational Data Access Frameworks, benchmarks three
different ways to manipulate SQL Server database data. We will be performing a side-by-
side comparison of Entity Framework, ADO.NET, and Dapper.NET. After running the
benchmarks for each of these data access and object mappers, you will be able to make
an educated judgment call on the best form of data access and object mapping for your
projects.

Chapter 12, Responsive User Interfaces, explains how to write responsive user interfaces.
You will write responsive Windows Forms (WinForms), Windows Presentation
Foundation (WPF), ASP.NET, .NET MAUI, and WinUI applications. Using background
worker threads, you will see how you can update and work with the user interface in real
time by running long-running tasks in the background.

Chapter 13, Distributed Systems, describes distributed applications and explains how
to improve their performance. You will learn how to build performant distributed
applications using the Command Query Responsibility Separation (CQRS) software
design pattern, event sourcing, and microservices. You will see how to use cloud providers
such as Microsoft Azure to build scalable distributed solutions using Cosmos DB, Azure
Functions, and the open source Pulumi infrastructure tool.

xx Preface

Chapter 14, Multi-Threaded Programming, explores what threads and threading are and
discusses background and foreground threads. Then you will learn how to pass data
into threads before you run them. You will also learn how to pause, interrupt, destroy,
schedule, and cancel threads.

Chapter 15, Parallel Programming, explains how to take advantage of the multiple CPU
cores that are available in today’s modern computers. You will learn how to process your
code by distributing the work between processes concurrently.

Chapter 16, Asynchronous Programming, demystifies the Task Asynchronous
Programming (TAP) model. You will learn how to program tasks asynchronously
and access web resources using async, await, and WhenAll. You will also look at
different return types, how to extract the required results, and how to correctly cancel
asynchronous operations and perform asynchronous file reading and writing.

To get the most out of this book
You will need to be proficient in C# and know how to use Visual Studio 2022 to create,
run, and debug C# programs and install NuGet packages. You will get the most from this
book if you follow along, write the code, and use the tools specified. But if you are too
busy, follow Microsoft’s guidance for obtaining and installing the following software.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book’s GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Please try and answer the questions, read the external resources provided at the end
of each chapter, and put what you have learned into action in your own programming
and performance training exercises. This will help to reinforce what you have learned
throughout this book.

Preface xxi

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/High-Performance-Programming-in-
CSharp-and-.NET. If there’s an update to the code, it will be updated in the GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in
this book. You can download it here: https://packt.link/hQmsb.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: “The enum data type is 4 bytes (32 bits) in size, nullable, and has
a minimum value of 0. You can measure the size of a value type using sizeof(Type
type).”

A block of code is set as follows:

static void Main(string[] _)

{

Console.WriteLine(“Chapter 3: Strings are immutable”);

var greeting1 = “Hello, world!”;

var greeting2 = greeting1;

Console.WriteLine($”greeting1={greeting1}”);

Console.WriteLine($”greeting2={greeting2}”);

greeting1 += “ Isn’t life grand!”;

Console.WriteLine($”greeting1={greeting1}”);

Console.WriteLine($”greeting1={greeting2}”);

}

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET
https://github.com/PacktPublishing/
https://packt.link/hQmsb

xxii Preface

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

git clone https://github.com/dotnet/roslyn.git

Any command-line input or output is written as follows:

csc /help

csc -langversion:10.0 /out:HelloWorld.exe Program.cs

csc HelloWorld

cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: “Make sure
the project is set to Debug mode, and then step through the code.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata and fill in the
form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com

Preface xxiii

Share Your Thoughts
Now you’ve finished High-Performance Programming in C# and .NET, we’d love to hear
your thoughts! If you purchased the book from Amazon, please click here to go
straight to the Amazon review page for this book and share your feedback or
leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re
delivering excellent quality content.

https://packt.link/r/1-800-56471-6
https://packt.link/r/1-800-56471-6

Part 1:
High-Performance

Code Foundation

Part 1 covers the foundation of high-performance code. We cover what’s new in C# 10.0
and .NET 6, including performance improvements. Next, we look at the interoperability
that is available that allows the gradual porting of Python systems to C#, followed by the
garbage collector. You will learn how types can negatively impact performance, as can
manually calling the garbage collector. And finally, we look at how we can use profiling
tools to identify and address performance issues.

This part contains the following chapters:

• Chapter 1, Implementing C# 10.0 and .NET 6

• Chapter 2, Introducing C# Interoperability

• Chapter 3, Predefined Data Types and Memory Allocations

• Chapter 4, Memory Management

• Chapter 5, Application Profiling and Tracing

1
Introducing C# 10.0

and .NET 6
Microsoft .NET 6 and C# 10.0 are the latest incarnations of the .NET platform and C#
programming language. They bring many performance enhancements to the C# and .NET
programmer community. We will start this book with an overview of the new versions of
C# and .NET.

In this chapter, you will start by downloading, restoring, building, and testing the latest
version of the .NET compiler called Roslyn. Then, you will review what's new in .NET 6,
including the areas where performance has been greatly enhanced. Then, you will review
what's new in C# 10.0 by looking at some code examples that demonstrate these features.

In the Native compilation section, you will build a project and run it as an MSIL project
with multiple binaries, then compile and run it as a single native binary. Finally, you
will learn how to improve the performance of Windows Store applications and ASP.NET
websites.

4 Introducing C# 10.0 and .NET 6

In this chapter, we will cover the following topics:

• Overview of .NET 6: In this section, we will cover, at a high level, what's new in
.NET 6. You will learn about the various performance improvements that will be
part of .NET 6.

• Overview of C# 10.0: Having learned how to obtain the latest Roslyn code in the
Technical requirements section, in this section, you will learn about the various
features that will be part of C# 10.0. This will include code examples.

• Native compilation: In this section, you will learn how to compile a .NET
Core application into a single native executable. You will write a simple console
application that recursively converts audio files from one format into another.

• Improving Windows Store performance: This is a brief section that provides
standard guidelines for improving the performance of applications that target the
Windows Store.

• Improving ASP.NET performance: This is a brief section that provides some
standard guidelines for improving ASP.NET applications.

By the end of this chapter, you will have the following skills:

• You will understand what's new in Microsoft .NET 6.

• You will be able to apply the new C# 10.0 code features within your source code.

• You will be able to compile your source code to native assemblies (also known
as binaries).

• You will know what, how, and where to look for information on improving the
performance of applications that target the Windows Store.

• You will know what, how, and where to look for information on improving the
performance of ASP.NET applications.

Let's begin this chapter by looking at Microsoft .NET 6.

Technical requirements
You will need the following prerequisites to complete this chapter:

• The latest preview version of Visual Studio Community Edition or higher.

• Microsoft .NET 6 SDK.

Technical requirements 5

• This book's source code: https://github.com/PacktPublishing/High-
Performance-Programming-in-CSharp-and-.NET/tree/master/
CH01.

• Optional: The latest Roslyn compiler built from source. The source code is available
on GitHub at https://github.com/dotnet/roslyn. This should be
automatically installed when you install the latest preview versions of Visual Studio.

Note
You can find the latest complete and up-to-date C# 10.0 feature set at
https://github.com/dotnet/roslyn/blob/master/docs/
Language%20Feature%20Status.md. At the time of writing, C# 10.0
is still undergoing much development and change. So, the contents of this book
may not work as expected. If this turns out to be the case, then please refer to
the preceding URL for the most relevant information to help you start working.

Obtaining and building the latest Roslyn compiler
from the source code

Note
The build system of all .NET-related repositories has been in flux for several
years now. We will provide the instructions for compiling Roslyn here; these
were correct at the time of writing. For the latest instructions, please read
the README.md file located at https://github.com/dotnet/
roslyn.

The following instructions are for downloading and building the latest version of the
Roslyn compiler source on Windows 10:

1. In the root of the C:\ drive, clone the Roslyn source code by using the following
command in the Windows Command Prompt:

git clone https://github.com/dotnet/roslyn.git

2. Then, run the following command:

cd Roslyn

3. Restore the Roslyn dependencies by running the following command:

restore.cmd

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH01
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH01
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH01
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn

6 Introducing C# 10.0 and .NET 6

4. Build the Roslyn source code by running the following command:

build.cmd

5. Test the Roslyn build by running the following command:

test.cmd

6. Once all the tests have finished running, check the versions of C# that are accessible
to the new computer. Do this by opening a Command Prompt window and
navigating to C:\roslyn\artifacts\bin\csc\Debug\net472.

7. Then, run the following command:

csc /langversion:?

Note
I always run my Command Prompt as an administrator. Hence, the screenshots
will show Command Prompt in administrative mode. But running Command
Prompt as an administrator is not necessary for this exercise. Where Command
Prompt must be executed as an administrator, this will be made clear as
needed.

You should see something equivalent to the following:

Figure 1.1 – The versions of the C# programming language supported by the compiler

Overview of Microsoft .NET 6 7

As you can see, at the time of writing, version 10.0 of the C# language is available via the
C# compiler. C# 10.0 is set as the default. The preview is still under development. The
default version may be different on your computer.

Note
The latest version of Visual Studio 2022 should allow you to use the latest
available C# 10.0 code features. If it doesn't, then compile the latest source and
overwrite the files located at C:\Program Files (x86)\Microsoft
Visual Studio\2022\Preview\MSBuild\Current\Bin\
Roslyn.

The following three sets of instructions provide compiler help for compiling a program
that targets a specific C# version and then runs the program. These commands are for
demonstrative purposes only, and you do not have to run them now:

csc /help

csc -langversion:10.0 /out:HelloWorld.exe Program.cs

csc HelloWorld

Now that you can build C# 10.0 from the command line and from within Visual Studio
2022, let's learn what kind of new development is taking place with Microsoft .NET 6.

Overview of Microsoft .NET 6
Microsoft .NET 6 is the latest incarnation of .NET. You can access the downloads at
https://dotnet.microsoft.com/download/dotnet/6.0. The downloads are
available for Windows, macOS, and Linux users.

Note
To get the most out of .NET 6 and C# 10.0, it is best that you have Visual Studio
2022 or later installed.

The .NET 6 API documentation is available at https://docs.microsoft.com/
dotnet/api/?view=net-6.0.

https://dotnet.microsoft.com/download/dotnet/6.0
https://docs.microsoft.com/dotnet/api/?view=net-6.0
https://docs.microsoft.com/dotnet/api/?view=net-6.0

8 Introducing C# 10.0 and .NET 6

Microsoft .NET 5 and later will no longer carry the Core or Framework suffix, as per the
following article: https://redmondmag.com/articles/2019/12/31/coming-
in-2020-net-5.aspx. Microsoft's goal with version 5 and later of the .NET platform
is to create a single platform for the .NET development of WinForms, WPF, Xamarin.
Forms, ASP.NET Core, and all other forms of .NET development. Xamarin.Forms
becomes Microsoft MAUI, with the main difference between versions being that the new
Microsoft MAUI will only use a single project to target all operating systems and devices.

Moving to one unified platform
The infrastructure for .NET 6 consists of runtime components, compilers, and languages.
Microsoft .NET SDK will sit on top of this infrastructure. The tools that will be available
include the command-line interface, Visual Studio Code, Visual Studio for Mac, and, of
course, Visual Studio.

With the unified platform, you can write desktop applications using WinForms, WPF,
and UWP. Web applications can be written using ASP.NET. Cloud applications will target
Microsoft Azure. Mobile applications will be written using Microsoft MAUI. Games,
virtual reality (VR), and augmented reality (AR) applications will be developed in
Unity, using Visual Studio 2022 or higher as the C# code editor. IoT will target ARM32
and ARM64 architectures. Finally, you will be able to develop artificial intelligence (AI)
applications using ML.NET and .NET for Apache Spark.

Microsoft is planning on producing a single .NET runtime and framework that is uniform
in its developer experience and runtime behavior across applications and devices. This will
be accomplished by building a single code base that combines the best elements of.NET
Framework, .NET Core, Mono, and Xamarin.Forms.

The main features of.NET 6 are as follows:

• Unified developer experiences, regardless of the applications being developed and
the devices being targeted.

• Unified runtime experiences across all devices and platforms.

• Java interoperability will be available on all platforms. This is stated in the Redmond
Magazine article called Coming in 2020: .NET 5, The Next Phase of Microsoft's .NET
Framework: https://redmondmag.com/articles/2019/12/31/coming-
in-2020-net-5.aspx.

• Multiple operating systems will be supported for Objective-C and Swift.

• AOT will be supported by CoreFX to provide static .NET compilation, support
multiple operating systems, and produce assemblies that are smaller in size.

https://redmondmag.com/articles/2019/12/31/coming-in-2020-net-5.aspx
https://redmondmag.com/articles/2019/12/31/coming-in-2020-net-5.aspx
https://redmondmag.com/articles/2019/12/31/coming-in-2020-net-5.aspx
https://redmondmag.com/articles/2019/12/31/coming-in-2020-net-5.aspx

Overview of Microsoft .NET 6 9

Now, let's look at some of the new features of .NET 6 from a high-level viewpoint.

Garbage collection
The garbage collector's performance regarding marking and stealing has been improved.
When a thread has finished its marking allotment, it can steal outstanding marking
work from other threads. This speeds up the process of collecting items to be garbage
collected. Reduced lock contentions on computers with higher core counts, improved
de-committing, avoidance of costly memory resets, and vectorized sorting are just some of
the new garbage collection performance improvements in .NET 6.

Just-In-Time compiler
In .NET 6, the Just-In-Time (JIT) compiler has also been improved. You can apply
various optimizations to the JIT, and it has an unlimited amount of time to implement
those optimizations. Ahead-Of-Time (AOT) is just one of the various techniques
provided to the JIT so that it can compile as much code as it can before executing the
application. The JIT now sees the length of an array as unsigned, which improves the
performance of mathematical operations carried out on an array's length. There are still
many changes being made.

Suffice to say that between the JIT and the GC, the performance improvements that have
been made to JIT and GC concerning memory and compilation optimizations are just two
reasons alone to migrate to .NET 6.

The JIT also recognizes more than a thousand new hardware intrinsic methods. These
methods allow you to target various hardware instruction sets from C#. You are no longer
tied to just x86_x64 hardware instruction sets.

Several runtime helper functions are available in the JIT. These helper functions enable
the JIT compiler to manipulate the source code so that the code runs must faster. Generic
lookups are much faster now, as they no longer need to employ slower lookup tables.

10 Introducing C# 10.0 and .NET 6

Text-based processing
Performance enhancements have also been made within the text-based processing
elements of .NET 6. These include (but are not limited to) processing whitespace in the
System.Char class, which requires less branching and fewer arguments. Because this
class is used in various text-processing objects and methods within .NET 6, the speed of
processing text in .NET 6 will be generally improved. DateTime processing is also at
least 30% faster due to optimizations in extracting the date and time components from
the raw tick count. Performance improvements have also been made to string operations
due to culture-aware modifications of StartsWith and EndsWith. By utilizing stack
allocation and JIT devirtualization, the performance of data encoding, such as UTF8 and
Latin1 encoding, has also been enhanced.

Regular expression (RegEx) performance has also been improved in .NET 6. The RegEx
engine has had performance improvements that increase textual processing by up to
three to six times and even more. The CharInClass method is more intelligent in
determining if characters appear within the specified character class. Character and digit
comparisons use lookup tables and various method calls are inlined, providing improved
RegEx processing. Generated code for various expressions has been improved. Searching
for RegExes is carried out using span-based searching with vectorized methods. The
need for backtracking has been eliminated as it analyzes RegExes during the node tree
optimization phase and adds atomic groups that do not change the semantics but do
prevent backtracking. These are only some of the improvements to RegEx performance.
But there are many more.

Note
For more in-depth knowledge on .NET 5 performance improvements to
RegExes, please read the following very detailed post by Stephen Toub:
https://devblogs.microsoft.com/dotnet/regex-
performance-improvements-in-net-5/.

Threading and asynchronous operations
Threading and asynchronous operations have also received a performance boost in .NET 5
with the experimental addition of async ValueTask pooling. You can turn on pooling by
setting DOTNET_SYSTEM_THREADING_POOLASYNCVALUETASK to true or 1. Pooling
creates state machine box objects that implement the interfaces, IvalueTaskSource,
and IValueTaskSource<TResult>. The runtime adds these objects to the pool.
Volatility has also received performance improvements in ConcurrentDictionary,
with performance improving as much as 30% on some ARM architectures.

https://devblogs.microsoft.com/dotnet/regex-performance-improvements-in-net-5/
https://devblogs.microsoft.com/dotnet/regex-performance-improvements-in-net-5/

Overview of Microsoft .NET 6 11

Collections and LINQ
The collections have also seen several performance enhancements, mainly to
Dictionary<TKey, TValue>, HashSet<T>, ConcurrentDictionary<TKey,
TValue>, and System.Collections.Immutable. The HashSet<T> collection's
implementation has been rewritten and re-synchronized with Dictionary<TKey,
the TValue> implementation, and moved further down the stack. The performance
of foreach when iterating through an ImmutableArray<T> has been
improved, and the generated code has been reduced in size by the addition of the
[MethodImpl(MethodImplOptions.AggressiveInlining)] annotation to
the GetEnumerator method of ImmutableArray<T>. Other elements of the .NET
collections, such as BitArray, have also seen performance improvements.

In .NET 5, LINQ has also seen further performance improvements, including OrderBy,
Comparison<T>, Enumerable.SkipLast, and by making implementing
Enumerable.Any more consistent with Enumerable.Count. These are only a few
performance improvements that have been to the collections.

Networking and Blazor
Networking has received a lot of work on performance improvement, especially the
System.Uri class (especially in its construction). The System.Net.Sockets and
System.Net.Http namespaces have also seen performance improvements. Many
improvements have been made to how JSON is processed with JsonSerializer in the
System.Text.Json library for .NET.

As Blazor uses the .NET mono runtime and .NET 5 libraries, a linker has been added
that trims code from the assembly that is not used down to the member level. The code
to be trimmed is identified by static code analysis. User interface response times are also
improved in Blazor Web Assembly applications, as the client-side code is downloaded
before being executed, and behaves just like a desktop application – but from within the
browser.

Furthermore, general improvements that have gone into .NET 5 include faster assembly
loading, faster mathematical operations, faster encryption and decryption, faster
interoperability, faster reflection emitting, faster I/O, and various allocations in various
libraries.

12 Introducing C# 10.0 and .NET 6

New performance-based APIs and analyzers
A few new performance-focused APIs have been added to .NET 5. Internally, some of
these APIs are already being used to reduce code size and improve the performance
of .NET 5 itself. They focus on helping the programmer to concentrate on writing
performant code and removing the complexity of tasks that have been previously hard
to accomplish. These new APIs and improvements to existing APIs include Decimal,
GC, MemoryExtensions, StringSplitOptions, BinaryPrimitives,
MailAddress, MemoryMarshall, SslStream, HttpClient, and more.

The .NET 5 SDK has also seen the addition of some new performance-based analyzers.
These analyzers can detect accidental allocations as a part of range indexing and offer
ways to eliminate the allocation. Analyzers will detect the old overloads for the Stream.
Read/WriteAsync methods and will offer fixes to enable automatic switching to the
newer overload methods that prefer Memory overloads. In StringBuilder, it is more
performant to use typed overloads to append non-string values such as int and long
values. When situations are encountered by the analyzer where the programmer has called
ToString() on a type that's being appended for which a typed overload exists, the fixer
will detect these situations and automatically switch to using the correct typed overload.
With LINQ, it is now more efficient to check if (collection.Count != 0) using the
(!collection.IsEmpty) syntax. The old way will be detected by the analyzer and
fixed to use the more performant new way. Finally, when you have worked to make your
code faster, your code is made correct, as the analyzer flags cases that use loops to allocate
memory from the stack using stackalloc. This helps prevent stack overflow exceptions
from being raised.

To see the road ahead in terms of .NET's new development, you can view the .NET
Core roadmap located at https://github.com/dotnet/core/blob/master/
roadmap.md.

Now, let's look at C# 10.0.

Overview of C# 10.0
You can find the features that will become part of C# 10.0 on the Roslyn GitHub page at
https://github.com/dotnet/roslyn/blob/master/docs/Language%20
Feature%20Status.md.

Not all these features are available at the time of writing. However, we will look at some of
the available features. With that, let's start with top-level programs.

https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md

Overview of C# 10.0 13

Writing top-level programs
Before C# 9.0, the Hello, World! console application was always the starting point for
learning C#. The file that students would update was called Program.cs. In this file, you
would have something akin to the following:

using System;

namespace HelloWorld

{

class Program

{

 static void Main(string[] args)

 {

 Console.WriteLine("Hello, World!");

 }

}

}

As you can see, first, we import our System library. Then, we have a namespace
definition followed by our class definition. Then, in the class definition, we have our Main
method, in which we output the phrase "Hello, World!" to the console window.

In version 10.0 of the C# programming language, this can be simplified down to
a single line:

System.Console.WriteLine("Hello, World");

Here, we have eradicated 10 lines of code. Running the program will output the following:

Figure 1.2 – The console window showing the output "Hello World!"

14 Introducing C# 10.0 and .NET 6

If we open the generated DLL in IL DASM, we will see the following:

Figure 1.3 – ILDASM showing the internals of the hello world program

You will see from the decompilation that the compiler adds the Main method at compile
time. The next addition to C# 10.0 that we will look at is init-only properties.

Using init-only properties
Init-only properties allow you to use object initializers with immutable fields. For our little
demonstration, we will use a Book class that holds the name of a book and its author:

namespace CH01_Books

{

 internal class Book

 {

 public string Title { get; init; }

 public string Author { get; init; }

 }

}

The properties can be initialized when the book is created. But once created, they can
only be read, not updated, making the Book type immutable. Now, let's look at init-only
properties. In the Program class, replace its contents with the following:

using System;

using CH01_Books;

var bookName = new Book { Title = "Made up book name",

 Author = "Made Up Author" };

Console.WriteLine($"{bookName.Title} is written by

 {bookName.Author}. Well worth reading!");

Overview of C# 10.0 15

Here, we imported the System and CH01_Books namespaces. Then, we declared a new
immutable variable of the Book type. After that, we output the contents of that Book type
using an interpolated string. Run the program; you should see the following output:

Figure 1.4 – The output of our init-only properties example

Now that we have been introduced to init-only properties, let's look at records.

Using records
When updating data, you do not want that data to be changed by another thread. So,
in multi-threaded applications, you will want to use thread-safe objects when making
updates. Records allow complete objects to be immutable and behave as values. The
advantage of using records over structs is that they require less memory to be allocated
to them. This reduction in memory allocation is accomplished by compiling records to
reference types. They are then accessed via references and not as copies. Due to this, other
than the original record allocation, no further memory allocation is required.

Let's learn how to use records. Start a new console application.

To demonstrate the use of records, we will use the following Book example:

internal record Book

{

public string Title { get; init; }

 public string Author { get; init; }

}

16 Introducing C# 10.0 and .NET 6

The only change to the Book class is that class has been replaced with record.
Everything else remains the same. Now, let's put the record to work:

1. Replace the contents of the Program class with the following code:

using System;

using CH01_Records;

var bookOne = new Book {

 Title = "Made Up Book",

 Author = "Made Up Author

};

var bookTwo = bookOne with {

 Title = "And Another Made Up Book"

};

var bookThree = bookTwo with {

 Title = "Yet Another Made Up Book"

};

var bookFour = bookThree with {

 Title = "And Yet Another Made Up Book: Part 1",

};

var bookFive = bookFour with {

 Title = "And Yet Another Made Up Book: Part 2"

};

var bookSix = bookFive with {

 Title = "And Yet Another Made Up Book: Part 3"

};

Console.WriteLine($"Some of {bookThree.Author}'s

 books include:\n");

Console.WriteLine($"- {bookOne.Title}");

Console.WriteLine($"- {bookTwo.Title}");

Overview of C# 10.0 17

Console.WriteLine($"- {bookThree.Title}");

Console.WriteLine($"- {bookFour.Title}");

Console.WriteLine($"- {bookFive.Title}");

Console.WriteLine($"- {bookSix.Title}");

Console.WriteLine($"\nMy favourite book by {bookOne.

 Author} is {bookOne.Title}.");

2. As you can see, we are creating immutable record types. We can create new
immutable types from them and change any fields we like using the with
expression. The original record is not mutated in any way. Run the code; you will
see the following output:

Figure 1.5 – Init-only properties showing their immutability
Despite changing the title during the assignment, the original record has not been
mutated at all.

3. Records can also use inheritance. Let's add a new record that contains the
publisher's name:

 internal record Publisher

 {

 public string PublisherName { get; init; }

 }

18 Introducing C# 10.0 and .NET 6

4. Now, let's have our Book inherit this Publisher record:

 internal record Book : Publisher

 {

 public string Title { get; init; }

 public string Author { get; init; }

 }

5. Book will now include PublisherName. When we initialize a new book, we can
now set its PublisherName:

var bookOne = new Book {

 Title = "Made Up Book",

 Author = "Made Up Author",

 PublisherName = "Made Up Publisher Ltd."

};

6. Here, we have created a new Book that contains Publisher.PublisherName.
Let's print the publisher's name. Add the following line to the end of the Program
class:

Console.WriteLine($"These books were originally published

 by {bookSix.PublisherName}.");

7. Run the code; you should see the following output:

Figure 1.6 – Init-only properties using inheritance

Overview of C# 10.0 19

8. As you can see, we never set the publisher's name for bookTwo to bookSix.
However, the inheritance has followed through from when we set it for bookOne.

9. Now, let's perform object equality checking. Add the following code to the end of
the Program class:

var book = bookThree with { Title = "Made Up Book" };

var booksEqual = Object.Equals(book, bookOne) ?

 "Yes" : "No";

Console.WriteLine($"Are {book.Title} and

 {bookOne.Title} equal? {booksEqual}");

10. Here, we created a new Book from bookThree and set the title to Made Up
Book. Then, we performed an equality check and output the result to the console
window. Run the code; you will see the following output:

Figure 1.7 – Init-only properties showing the result of an equality check
It is clear to see that the equality check works with both book instances being equal.

20 Introducing C# 10.0 and .NET 6

11. Our final look at records considers positional records. Positional records set data
via the constructor and extract data via the deconstructor. The best way to
understand this is with code. Add a class called Product and replace the class with
the following:

 public record Product

 {

 readonly string Name;

 readonly string Description;

 public Product(string name, string

 description)

 => (Name, Description) = (name,

 description);

 public void Deconstruct(out string name, out

 string description)

 => (name, description) = (Name,

 Description);

 }

12. Here, we have an immutable record. The record has two private and readonly
fields. They are set in the constructor. The Deconstruct method is used to return
the data. Add the following code to the Program class:

var ide = new Product("Awesome-X", "Advanced Multi-

 Language IDE");

var (product, description) = ide;

Console.WriteLine($"The product called {product} is an

 {description}.");

Overview of C# 10.0 21

In this code, we created a new product with parameters for the name and
description. Then, we declared two fields called product and description. The
fields are set by assigning the product. Then, we output the product and description
to the console window, as shown here:

Figure 1.8 – Init-only positional records

Now that we have finished looking at records, let's look at the improved pattern matching
capabilities of C# 10.0.

Using the new pattern matching features
Now, let's look at what's new for pattern matching in C# 10.0, starting with simple
patterns. With simple pattern matching, you no longer need the discard (_) operator to
just declare the type. In our example, we will apply discounts to orders:

1. Add a new record called Product to a new file called Product.cs in a new
console application and add the following code:

 internal record Product

 {

 public string Name { get; init; }

 public string Description { get; init; }

 public decimal UnitPrice { get; init; }

 }

22 Introducing C# 10.0 and .NET 6

2. Our Product record has three init-only properties for Name, Description, and
UnitPrice. Now, add the OrderItem record that inherits from Product:

 internal record OrderItem : Product

 {

 public int QuantityOrdered { get; init; }

 }

3. Our OrderItem record inherits the Product record and adds the
QuantityOrdered init-only property. In the Program class, we will add three
variables of the OrderItem type and initialize them. Here is the first OrderItem:

var orderOne = new OrderItem {

 Name = "50-80mm Scottish Cobbles",

 Description = "These rounded stones are

 frequently used for edging paths and to add

 interest to gardens",

 QuantityOrdered = 4,

 UnitPrice = 199

};

As you can see, the quantity that's being ordered is 4.
4. Add orderTwo with the same values but with an OrderQuantity of 7.
5. Then, add orderThree with the same values, but with an OrderQuantity of

31. We will demonstrate simple pattern matching in the GetDiscount method:

static int GetDiscount(object order) =>

 order switch

 {

 OrderItem o when o.QuantityOrdered == 0 =>

 throw

 new ArgumentException("Quantity must be

 greater than zero."),

 OrderItem o when o.QuantityOrdered > 20 => 30,

 OrderItem o when o.QuantityOrdered < 5 => 10,

Overview of C# 10.0 23

 OrderItem => 20,

 _ => throw new ArgumentException("Not a known

 OrderItem!", nameof(order))

 };

6. Our GetDiscount method receives an order. QuantityOrdered is then
evaluated. Argument exceptions are thrown if the order quantity is 0 and if the
object type that's been passed in is not of the OrderItem type. Otherwise, a
discount of the int type is returned for the quantity ordered. Notice that we use the
type without using the discard operator on the line for the 20% discount.

7. Finally, we must add the following lines to the end of the Program class:

Console.WriteLine($"The discount for Order One is

 {GetDiscount(orderOne)}%.");

Console.WriteLine($"The discount for Order Two is

 {GetDiscount(orderTwo)}%.");

Console.WriteLine($"The discount for Order Three is

 {GetDiscount(orderThree)}%.");

8. These lines print the discount received for each of the orders to the console window.
Now, let's modify our code so that it uses relational pattern matching. Add the
following method to the Program class:

static int GetDiscountRelational(OrderItem orderItem)

 => orderItem.QuantityOrdered switch

 {

 < 1 => throw new ArgumentException("Quantity

 must be greater than zero."),

 > 20 => 30,

 < 5 => 10,

 _ => 20

 };

24 Introducing C# 10.0 and .NET 6

9. Using relational pattern matching, we have received the same outcome as with
simple pattern matching, but with less code. It is also very readable, which makes
it easy to maintain. Add the following three lines of code to the end of the
Program class:

Console.WriteLine($"The discount for Order One is

 {GetDiscountRelational(orderOne)}%.");

Console.WriteLine($"The discount for Order Two is

 {GetDiscountRelational(orderTwo)}%.");

Console.WriteLine($"The discount for Order Three is

 {GetDiscountRelational(orderThree)}%.");

10. In these three lines, we simply output the discount for each order to the console
window. Run the program; you will see the following output:

Figure 1.9 – Simple and relational pattern matching output showing the same results
From the preceding screenshot, you can see that the same outcome has been
received for both discount methods.

11. The logical AND, OR, and NOT methods can be used in logical pattern matching.
Let's add the following method:

static int GetDiscountLogical(OrderItem orderItem) =>

 orderItem.QuantityOrdered switch

 {

 < 1 => throw new ArgumentException("Quantity

 must be greater than zero."),

 > 0 and < 5 => 10,

 > 4 and < 21 => 20,

 > 20 => 30

 };

Overview of C# 10.0 25

12. In the GetDiscountLogical method, we employ the logical AND operator to
check whether a value falls in that range. Add the following three lines to the end of
the Program class:

Console.WriteLine($"The discount for Order One is

 {GetDiscountLogical(orderOne)}%.");

Console.WriteLine($"The discount for Order Two is

 {GetDiscountLogical(orderTwo)}%.");

Console.WriteLine($"The discount for Order Three is

 {GetDiscountLogical(orderThree)}%.");

13. In those three lines of code, we output the discount value for the order to the
console window. Run the code; you will see the following output:

Figure 1.10 – Simple, relational, and logical pattern matching showing the same results

The output for the logical pattern matching is the same as for simple and relational pattern
matching. Now, let's learn how to use new expressions with targeted types.

Using new expressions with targeted types
You can omit the type of object being instantiated. But to do so, the declared type must be
explicit and not use the var keyword. If you attempt to do this with the ternary operator,
you will be greeted with an exception:

1. Create a new console application and add the Student record:

 public record Student

 {

 private readonly string _firstName;

 private readonly string _lastName;

 public Student(string firstName, string

 lastName)

 {

26 Introducing C# 10.0 and .NET 6

 _firstName = firstName;

 _lastName = lastName;

 }

 public void Deconstruct(out string firstName,

 out string lastName)

 => (firstName, lastName) = (_firstName,

 _lastName);

 }

2. Our Student record stores the first and last name values, which have been set
via the constructor. These values are obtained via the out parameters of the
Deconstruct method. Add the following code to the Program class:

Student jenniferAlbright = new ("Jennifer",

 "Albright");

var studentList = new List<Student>

{

 new ("Jennifer", "Albright"),

 new ("Kelly", "Charmichael"),

 new ("Lydia", "Braithwait")

};

var (firstName, lastName) = jenniferAlbright;

Console.WriteLine($"Student: {lastName}, {firstName}");

(firstName, lastName) = studentList.Last();

Console.WriteLine($"Student: {lastName}, {firstName}");

3. First, we instantiate a new Student without declaring the type in the new
statement. Then, we instantiate a new List and add new students to the list while
omitting the Student type. The fields are then defined for firstName and
lastName and assigned their values through the assignment of the named student.
The student's name is then printed out on the console window. Next, we take those
fields and reassign them with the name of the last student on the list. Then, we
output the student's name to the console window. Run the program; you will
see the following output:

Overview of C# 10.0 27

Figure 1.11 – Using targeted types with new expressions

From the preceding screenshot, you can see that we have the correct student names
printed. Now, let's look at covariant returns.

Using covariant returns
With covariant returns, base class methods with less specific return types can be
overridden with methods that return more specific types. Have a look at the following
array declaration:

object[] covariantArray = new string[] { "alpha", "beta",

 "gamma", "delta" };

Here, we declared an object array. Then, we assigned a string array to it. This is
an example of covariance. The object array is the least specific array type, while the
string array is the more specific array type.

In this example, we will instantiate covariant types and pass them into a method that
accepts less and more specific types. Add the following class and interface declarations to
the Program class:

public interface ICovariant<out T> { }

public class Covariant<T> : ICovariant<T> { }

public class Person { }

public class Teacher : Person { }

public class Student : Person { }

Here, we have a covariant class that implements a covariant interface. We declared a
general type of Person that is inherited by the specific Teacher and Student types.
Add CovarianceClass, as shown here:

public class CovarianceExample

{

public void CovariantMethod(ICovariant<Person> person)

{

 Console.WriteLine($"The type of person passed in is

28 Introducing C# 10.0 and .NET 6

 of type {person.GetType()}.");

}

}

In the CovarianceExample class, we have a CovariantMethod with a parameter
that can accept objects of the ICovariant<Person> type. Now, let's put covariance to
work by adding the CovarianceAtWork method to the CovarianceExample class:

public void CovarianceAtWork()

{

ICovariant<Person> person = new Covariant<Person>();

ICovariant<Teacher> teacher = new Covariant<Teacher>();

ICovariant<Student> student = new Covariant<Student>();

CovariantMethod(person);

CovariantMethod(teacher);

CovariantMethod(student);

}

In this method, we have the general Person type and the more specific Teacher and
Student types. We must pass each into CovariantMethod. This method can take the
less specific Person type and the more specific Teacher and Student types.

To run the CovarianceAtWork method, place the following code after the using
statement and before the covariantArray example:

CovarianceExample.CovarianceAtWork();

Now, let's look at native compilation.

Native compilation
When .NET code is compiled, it is compiled into Microsoft Intermediate Language
(MSIL). MSIL gets interpreted by a JIT compiler when it is needed. The JIT compiler then
compiles the necessary MSIL code into native binary code. Subsequent calls to the same
code call the binary version of the code, not the MSIL version of the code. This means that
MSIL code is always slower than native code, as it is compiled to native on the first run.

JIT code has the advantage of being cross-platform code at the expense of longer startup
times. The code of an MSIL assembly that runs is compiled to native code by the JIT
compiler. The native code is optimized by the JIT compiler for the target hardware it is
running on.

Native compilation 29

By default, UWP applications are compiled to native code using .NET Native, while iOS
applications are compiled to native code via Xamarin/Xamarin.Forms. Microsoft .NET
Core can also be compiled into native code.

Performing native compilation of .NET Core
applications
When using dotnet to compile an assembly to native code, you will need to specify a
target framework. For a list of supported target frameworks, please refer to https://
docs.microsoft.com/en-us/dotnet/standard/frameworks. You will also
need to specify a Runtime Identifier (RID). For a list of supported RIDs, please refer to
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog.

Note
At the time of writing, native compilation against .NET 5.0 does have its issues.
So, to keep things simple, we will demonstrate native compilation into a single
executable against netcoreapp3.1 and win10-x64.

To demonstrate the compilation of Microsoft .NET Core applications into natively
compiled single executables, we will write a simple demonstration application that
traverses a directory structure and converts audio files from one format into another:

1. Start a new console application and target .NET 6.
2. Visit https://ffmpeg.org/download.html and download ffmpeg for your

operating system. Mine is Windows 10.
3. On Windows 10, extract the ffmpeg files into the C:\Tools\ffmpeg folder. Add

the following using statements to the top of the Program.cs file:

using System;

using System.Diagnostics;

using System.IO;

4. We will be batch processing audio files in a folder hierarchy on our local systems.
Here, the using statements listed will help us debug our code and perform I/O on
the filesystem. Now, at the top of the Program class, add the following three fields:

private static string _baseDirectory = string.Empty;

private static string _sourceExtension = string.Empty;

private static string _destinationExtension = string

 .Empty;

https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/standard/frameworks
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog
https://ffmpeg.org/download.html

30 Introducing C# 10.0 and .NET 6

5. The BaseDirectory member holds the starting directory that will be processed.
sourceExtension holds the extension of the file type, such as .wav, we are
after converting to, while destinationExtension holds the extension, such as
.ogg, of the file type we are after converting to. Update your Main method so that
it looks as follows:

static void Main(string[] args)

{

Console.Write("Enter Source Directory: ");

_baseDirectory = Console.ReadLine();

Console.Write("Enter Source Extension: ");

_sourceExtension = Console.ReadLine();

Console.Write("Enter Destination Extension: ");

_destinationExtension = Console.ReadLine();

new Program().BatchConvert();

}

6. In our Main method, we have requested that the user enters the source directory,
source extension, and destination extension. Then, we set out member variables and
called the BatchConvert method. Let's add our BatchConvert method:

private void BatchConvert()

{

var directory = new DirectoryInfo(_baseDirectory);

ProcessFolder(directory);

}

7. The BatchConvert method creates a new DirectoryInfo object called
directory and then passes the directory object into the ProcessFolder
method. Let's add this method now:

private void ProcessFolder(DirectoryInfo

 directoryInfo)

{

Console.WriteLine($"Processing Directory:

 {directoryInfo.FullName}");

var fileInfos = directoryInfo.EnumerateFiles();

Native compilation 31

var directorieInfos = directoryInfo.

 EnumerateDirectories();

 foreach (var fileInfo in fileInfos)

 if (fileInfo.Extension.Replace(".", "")

 == sourceExtension)

 ConvertFile(fileInfo);

foreach (var dirInfo in directorieInfos)

 ProcessFolder(dirInfo);

}

8. The ProcessFolder method outputs a message to the screen so that the user
knows what folder is being processed. Then, it obtains an enumeration of the
FileInfo and DirectoryInfo objects from the directoryInfo parameter.
After this, it converts all the files in that folder that have the required source file
extension. Once all the files have been processed, each of the DirectoryInfo
objects is processed by calling the ProcessFolder method recursively. Finally,
let's add our ConvertFile method:

private void ConvertFile(FileInfo fileInfo)

{

}

9. Our ConvertFile method takes a FileInfo parameter. This parameter
contains the file that is to undergo conversion. The remaining code will be added to
this ConvertFile method. Add the following three variables:

var timeout = 10000;

var source = $"\"{fileInfo.FullName}\"";

var destination = $"\"{fileInfo.FullName.Replace

 (_sourceExtension, _destinationExtension)}\"";

10. The timeout variable is set to 10 seconds. This gives the process 10 seconds to
process each file. The source variable contains the full name of the file to be
converted, while the destination variable contains the full path of the newly
converted file. Now, add the check to see if the converted file exists:

if (File.Exists(fileInfo.FullName.Replace

 (_sourceExtension, _destinationExtension)))

32 Introducing C# 10.0 and .NET 6

{

Console.WriteLine($"Unprocessed: {fileInfo.FullName}");

 return;

}

11. If the destination file exists, then the conversion has already taken place, so we
do not need to process the file. So, let's output a message to the user to inform them
that the file is unprocessed, and then return from the method. Let's add the code to
perform the conversion:

Console.WriteLine($"Converting file: {fileInfo.FullName}

 from {_sourceExtension} to {_destination

 Extension}.");

using var ffmpeg = new Process

{

StartInfo = {

 FileName = @"C:\Tools\ffmpeg\bin

 \ffmpeg.exe",

 Arguments = $"-i {source}

 {destination}",

 UseShellExecute = false,

 RedirectStandardOutput = true,

 RedirectStandardError = true,

 CreateNoWindow = true

}

};

ffmpeg.EnableRaisingEvents = false;

ffmpeg.OutputDataReceived += (s, e) => Debug.WriteLine

 ($"Debug: e.Data");

ffmpeg.ErrorDataReceived += (s, e) => Debug.WriteLine

 ($@"Error: {e.Data}");

ffmpeg.Start();

ffmpeg.BeginOutputReadLine();

ffmpeg.BeginErrorReadLine();

ffmpeg.WaitForExit(timeout);

Native compilation 33

12. Here, we output a message to the window informing the user of the file being
processed. Then, we instantiate a new process that executes ffmpeg.exe and
converts an audio file from one format into another, as specified by the user. The
converted file is then saved in the same directory as the original file.

13. With that, we have completed our sample project. So, let's see it running. On an
external hard disk, I have some Ghosthack audio samples that I own. The files are in
.wav file format. However, they need to be transformed into .ogg files to be used
in an Android program that I use. You can use your own audio file or music folders.

Note
If you don't have any audio files to hand to test this small program, you can
download some royalty-free sounds from https://www.bensound.
com. You can check the following page for links to various public music
domains: https://www.lifewire.com/public-domain-
music-3482603.

14. Fill out the questions and press Enter:

Figure 1.12 – Our file converter showing the directory and file conversion formats

The program will now process all files and folders under the specified parent folder and
process them.

The program is working as expected in its MSIL form. However, we can see the delay
in performing the file conversions. Let's compile our file converter into a single native
executable, and then see if it is visibly any faster:

1. Open the Visual Studio Developer Command Prompt as an administrator and
navigate to the folder that contains your solution and project file. When publishing
the file, it is worth noting that the TargetFramework property of the project
should also be updated to netcoreapp3.1; otherwise, this may not work – that is, if it
is set to net5.0. Type the following command and then press Enter:

dotnet publish --framework netcoreapp3.1 -

 p:PublishSingleFile=true --runtime win10-x64

https://www.bensound.com
https://www.bensound.com
https://www.lifewire.com/public-domain-music-3482603
https://www.lifewire.com/public-domain-music-3482603

34 Introducing C# 10.0 and .NET 6

2. When the command has finished running, your command window should
look as follows:

Figure 1.13 – The Developer Command Prompt in administrative mode showing the native
compilation output

3. If you navigate to the publish directory, you will see the following output:

Figure 1.14 – Windows Explorer displaying the output files resulting from native compilation

4. Run the CH01_NativeCompilation.exe file. You will see that .wav files are
processed into .ogg files much quicker.

In this section, we learned how to write a console app. We compile the console app to
MSIL and then compile the console app into a single native executable file. Visually, from
the user's perspective, the file processes batch audio files much quicker in native form than
in MSIL form.

Now, let's learn how to improve Windows Store applications.

Improving Windows Store performance 35

Improving Windows Store performance
Here are some basic tips for improving the performance of Windows Store applications:

• Perform the Microsoft Store app performance assessment: For information on
how to do this, visit https://docs.microsoft.com/en-us/windows-
hardware/test/assessments/microsoft-store-app-performance.

• Understand the Microsoft Store app performance assessment's Results: To help
you understand the results of the Windows Store App Performance Assessment,
visit https://docs.microsoft.com/en-us/windows-hardware/
test/assessments/results-for-the-microsoft-store-app-
performance-assessment

• Address the issues highlighted in the Microsoft Store app performance
assessment results: The main areas to focus on are any that have issues highlighted
in dark purple, followed by issues marked in medium purple. The primary metrics
will be on Launch:Warm, Launch:Cold, Post Launch, Idle, and Suspend. You also
need to pay attention to processor and storage usage, as well as processor and
storage I/O delays, registry flushes, time accounting, missing symbols, long-running
Deferred Procedure Calls (DPCs), and Interrupt Service Routines (ISRs) that can
be perceived by the end user as performance issues.

In the next section, we'll learn how to improve performance with ASP.NET.

Improving ASP.NET performance
Here are some basic tips for improving the performance of web applications and APIs:

• Perform baseline measurements: Before making changes to the performance
of your web application or API, take a baseline reading of your program's
performance. This way, you can measure any adjustments to see if they improve
performance or slow things down.

• Begin by optimizing the code with the largest impact: When you have completed
your baseline measurements, start performance tuning on the piece of code
that is the least performant and that has the biggest impact on your program's
performance. This will provide you with your biggest win.

https://docs.microsoft.com/en-us/windows-hardware/test/assessments/microsoft-store-app-performance
https://docs.microsoft.com/en-us/windows-hardware/test/assessments/microsoft-store-app-performance
https://docs.microsoft.com/en-us/windows-hardware/test/assessments/results-for-the-microsoft-store-app-performance-assessment
https://docs.microsoft.com/en-us/windows-hardware/test/assessments/results-for-the-microsoft-store-app-performance-assessment
https://docs.microsoft.com/en-us/windows-hardware/test/assessments/results-for-the-microsoft-store-app-performance-assessment

36 Introducing C# 10.0 and .NET 6

• Enable HTTP compression: To reduce the size of transmitted files over HTTP/
HTTPS and improve network performance, enable compression. There are two
types of compression. GZIP compression has been around for many years and
is the de facto compression mechanism; it can reduce a file's size by one-third.
An alternative compression mechanism is Brotli. Most major browsers have had
support for this compression mechanism since 2016/2017.

• Reduce TCP/IP connection overheads: Reducing HTTP requests seriously
improves HTTP communication performance. Each request uses network and
hardware resources. When a hardware and software-specific number of connections
is established, performance will start to show signs of degrading. This can be
mitigated by reducing the number of HTTP requests.

• Use HTTP/2 over SSL: HTTP/2 over SSL provides various performance
improvements of using HTTP. Multiplexed streams provide bi-directional
sequences of text format frames. Server push enables a server to push cacheable data
to the client in anticipation that the client may use it. Binary protocols have a lower
overhead when it comes to parsing data and they are less prone to errors. Binary
protocols offer more security and have better network utilization There are many
more optimizations that you gain when you switch to HTTP/2 over SSL.

• Employ minification: Minification is the process of eliminating whitespace and
comments in an HTML, CSS, or JavaScript web file. By making the size of the file
smaller and by enabling compression, you can seriously speed up the network
transmission of files, especially over poor Wi-Fi.

• Place CSS in the head so that it loads first: To efficiently render a web page, it is
best to load the complete CSS before rendering to prevent reflows.

• Place JavaScript at the end of HTML files: For vanilla HTML, CSS, and JavaScript
applications, the preferred location for JavaScript files is at the bottom of HTML
files, before the closing body tag. For heavy framework-based applications,
bootstrapping will be beneficial as only the JavaScript that is needed is loaded. An
alternative is isomorphic JavaScript for rendering pages on both the client and the
server. Isomorphic applications improve SEO, performance, and maintainability.

• Reduce image size: Images can vary greatly in size. Reduce the size of the images
that are used on a page. When used with minification and compression, this
technique can help fancy-looking web pages load fast.

You can find out more about other techniques for improving ASP.NET performance in the
Further reading section. Now, let's summarize what we have learned in this chapter.

Summary 37

Summary
At the start of this chapter, you downloaded the latest source for the C# programming
language. Then, you restored it, built it, and ran various tests. After that, you built a Hello,
World! program that demonstrated C# 9.0 features.

Then, you learned what's new in .NET 5. This section covered topics on garbage
collection, JIT compilation, text-based processing, threading and asynchronous
operations, collections, LINQ, networking, and Blazor. We also covered the new
performance-based APIs and analyzers. From what was covered, you now have a high-
level appreciation of the many performance improvements made by Microsoft and third
parties to the new version of the .NET programming language. These performance
improvements are a solid reason to move to .NET 5. But another compelling reason is also
the move to .NET for true cross-platform development from a single code base.

After reviewing the performance improvements and additions to .NET 5, we looked at
the new C#10.0 features. You learned how to write a program with just one line of code
using top-level statements. Then, you learned how to implement init-only properties,
records, new pattern-matching features, new expressions with targeted types, and
covariant returns. From reviewing the new additions to the C# 9.0 language, you learned
how to compile and run code in MSIL, and then compile and run native code in a single
executable file. Visually, the end user experience was shown to be better when using the
native binary over the MSIL assembly. For the example, we used a simple audio file format
converter.

You were then provided with some guidance on how to improve Windows Store app
performance. Links to the official Microsoft documentation were presented to you to
help you generate performance reports, along with how to understand the results of the
performance assessment. This guidance also highlighted the main metrics to pay attention
to. Finally, we considered some ways in which you can improve the performance of your
ASP.NET websites and APIs. In the Further reading section, you will find a link to the
official Microsoft ASP.NET documentation. This documentation will help you architect
and build quality websites.

Furthermore, in the Further reading section, you will find some links to documentation
and the GitHub repository for .NET MAUI, which is due to be released in 2021 in concert
with .NET 6. This user interface technology is an evolution of Xamarin.Forms with
evolutionary changes based on customer research. It does look rather promising.

In the next chapter, we will be looking at .NET interoperability. But before that, work
through this chapter's questions to see how well everything has sunk in.

38 Introducing C# 10.0 and .NET 6

Questions and exercises
Answer the following questions regarding this chapter:

1. What areas of .NET are being improved by .NET 6?
2. What is new to C# 10.0?
3. What tools are available for native compilation in .NET?
4. How can you improve the Windows Store app's performance?
5. How can you speed up ASP.NET?
6. Investigate the state of .NET MAUI, the future of frontend desktop and mobile

development that is still undergoing development.
7. Write some console applications and practice using the new features of .NET 6

and C# 10.0.
8. Use Benchmark.NET to benchmark one of your small applications, and then

upgrade it to use .NET 6 and C# 10.0. Measure its performance without making any
changes if possible, and then measure its performance again. See if you notice any
performance improvements by simply upgrading to C# 10.0 and .NET 6.

Note
The answers to questions 4 and 5 can be found in the external reference sources
provided in their respective sections.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the
following resources:

• Download .NET 6: https://dotnet.microsoft.com/download/
dotnet/6.0.

• Download Visual Studio Preview: https://visualstudio.microsoft.
com/vs/preview/.

• Introducing the .NET multi-platform app UI: https://devblogs.microsoft.
com/dotnet/introducing-net-multi-platform-app-ui/.

• .NET MAUI GitHub page: https://github.com/dotnet/maui.

• Learn from Microsoft how to build quality Windows 10 apps that reflect your
brand: https://docs.microsoft.com/en-us/windows-hardware/
get-started/.

https://dotnet.microsoft.com/download/dotnet/6.0
https://dotnet.microsoft.com/download/dotnet/6.0
https://visualstudio.microsoft.com/vs/preview/
https://visualstudio.microsoft.com/vs/preview/
https://devblogs.microsoft.com/dotnet/introducing-net-multi-platform-app-ui/
https://devblogs.microsoft.com/dotnet/introducing-net-multi-platform-app-ui/
https://github.com/dotnet/maui
https://docs.microsoft.com/en-us/windows-hardware/get-started/
https://docs.microsoft.com/en-us/windows-hardware/get-started/

Further reading 39

• Learn from Microsoft how to architect and build quality websites using Microsoft
technology: https://dotnet.microsoft.com/apps/aspnet.

• C#9.0 early review: https://medium.com/dev-genius/c-9-early-
review-5bcd88296c54#:~:text=Relax%20ordering%20of%20ref%20
and%20partial%20modifiers%20Currently%2C,is%20a%20ref%20
struct%2C%20ref%20must%20appear%20.

• File I/O Improvements in .NET 6: https://devblogs.microsoft.com/
dotnet/file-io-improvements-in-dotnet-6/.

https://medium.com/dev-genius/c-9-early-review-5bcd88296c54#:~:text=Relax%20ordering%20of%20ref%20and%20partial%20modifiers%20Currently%2C,is%20a%20ref%20struct%2C%20ref%20must%20appear%20
https://medium.com/dev-genius/c-9-early-review-5bcd88296c54#:~:text=Relax%20ordering%20of%20ref%20and%20partial%20modifiers%20Currently%2C,is%20a%20ref%20struct%2C%20ref%20must%20appear%20
https://medium.com/dev-genius/c-9-early-review-5bcd88296c54#:~:text=Relax%20ordering%20of%20ref%20and%20partial%20modifiers%20Currently%2C,is%20a%20ref%20struct%2C%20ref%20must%20appear%20
https://medium.com/dev-genius/c-9-early-review-5bcd88296c54#:~:text=Relax%20ordering%20of%20ref%20and%20partial%20modifiers%20Currently%2C,is%20a%20ref%20struct%2C%20ref%20must%20appear%20
https://devblogs.microsoft.com/dotnet/file-io-improvements-in-dotnet-6/
https://devblogs.microsoft.com/dotnet/file-io-improvements-in-dotnet-6/

2
Implementing C#

Interoperability
This chapter is an optional chapter for those who would like to or need to use C# to
interoperate with Excel, Python, C++, and Visual Basic 6 (VB6).

Python has become a very popular programming language in recent months and is
now a very big player in data science and machine learning. Since big data employs
various technologies that are required to work with each other under various business
scenarios, in this chapter, you will learn how to execute Python scripts and code from C#.
You can also use IronPython.NET on the .NET platform, but since this book is for C#
programmers, we will not be considering IronPython.NET in this chapter.

There are times when it is necessary to access libraries written in C++ – especially when
performance is an issue, and you need that extra performance in advanced games.

In this chapter, you will learn about Microsoft .NET interoperability. It is advantageous
to move your complete code base to a single code base that uses a familiar language
that your whole development team is comfortable with using. But sometimes, to do
this in one move is often not practical or cost-effective, or even safe. And that is where
interoperability comes in.

In this chapter, you will learn how to interact with managed and unmanaged code. You
will be looking at using unsafe code, unmanaged code with Platform Invoke (P/Invoke),
COM interoperability, and disposing of unsafe code.

42 Implementing C# Interoperability

Note
Using unmanaged code in C# does not always improve performance.
Sometimes, it degrades it. But the logic of including this chapter within this
book on high performance is to provide the knowledge and tools you will
need to gradually replace your unmanaged code base with a managed code
base. By doing so, all your developers only work with a single language and
its supporting languages (in this case, C#). Your software can use the high-
performing and highly scalable features of Azure or any other .NET cloud
provider to build world-class cloud-based systems. The other advantage of
doing this is that it makes code management and maintenance much easier.

In this chapter, we will be covering the following topics:

• Using unsafe code: C# does a good job of shielding programmers from having
to deal with pointers. But sometimes, it is necessary to use pointers to improve
performance. Due to this, in this section, we will be looking at what unsafe code is
and how to implement them.

• Exposing static entry points using Platform Invoke: P/Invoke allows you to access
code in unmanaged libraries from your managed C# code. In this section, we will
learn how to access code that hasn't been built using .NET.

• Performing COM interoperability: In this section, we will learn how to make
COM components and libraries visible for C# projects to use. We will also look at
how to make our components and libraries visible to COM components to use.

• Safely disposing of unsafe code: C# does a very good job of performing garbage
collection to free up resources when code is finished with, but when you're dealing
with unmanaged code, you are responsible for cleaning up unmanaged resources.
So, in this section, you will be shown how to do this.

After completing this chapter, you will be able to do the following:

• Understand the use of unsafe code in C#

• Call native code from managed code

• Use COM libraries and components in managed and unmanaged code

• Release unsafe resources when they're no longer needed

Technical requirements
In this chapter, some of the code includes interoperability between C# managed
assemblies and COM-based ActiveX UserControls, DLLs, and executables.

Using Platform Invocation (P/Invoke) 43

To write the code and build the projects in this chapter, you will need the following:

• Visual Studio 2022

• The latest x86 preview of .NET 6

• The latest x64 preview of .NET 6

• Optional: Visual C++

• Optional: Visual Studio Tools for Microsoft Office

• Optional: Visual Basic 6

The code files for this chapter can be found in this book's GitHub repository: https://
github.com/PacktPublishing/High-Performance-Programming-in-
CSharp-and-.NET/tree/master/CH02.

Note
Although Visual Basic 6 is obsolete and no longer supported by Microsoft, it
is still heavily used in production code within various businesses and sectors,
such as automotive software providers and the education sector. Interoping
with VB6 and .NET enables phased migrations from VB6 to .NET. By
modernizing applications built with old technology, you can make them highly
scalable across time zones using various cloud providers, such as Azure.

We will start this chapter by looking at unsafe code.

Using Platform Invocation (P/Invoke)
P/Invoke is a Common Language Infrastructure (CLI) feature that enables
native code to be called by managed applications. Native code is not managed by
the Common Language Runtime (CLR), so, the code's safety is firmly placed in the
hands of the programmer.

In managed code, the garbage collector automatically cleans up objects in memory and is
responsible for assigning generations to objects. We will cover the garbage collector in more
detail in Chapter 4, Memory Management. A new object always starts life as generation zero
when it is less than 80,000 bytes in size and will be placed on the small object heap. Objects
equal to or greater than 80,000 bytes in size are placed on the large object heap. Objects that
survive generation zero get promoted by the garbage collector to generation one. Finally,
objects that survive generation one get promoted to generation two.

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH02
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH02
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH02

44 Implementing C# Interoperability

Note
Instantiated objects equal to or greater than 80,000 bytes may start as
generation zero but be promoted, so they would not be seen as generation zero.

When an object is promoted from one generation to another by the garbage collector, its
memory address changes. This breaks any pointers that refer to that address. To prevent
the address from being modified by the garbage collector, the pointer code must be
declared using the fixed keyword.

Now, let's look at using the unsafe and fixed keywords.

Using unsafe and fixed code
To remind the programmer of their responsibility for ensuring code safety, unmanaged
code is wrapped in a code block marked as unsafe using the unsafe keyword. Unsafe
code makes use of pointers to refer to locations in memory.

Unsafe code provides programmers with access to pointer types in C#, which can be
necessary when they're working with the underlying operating system, system drivers, or
working on time-critical code that needs to be executed in the smallest amount of time.

Even though we say the code that deals with pointers is unsafe code, it is safe to work with.
Such code is marked with the unsafe keyword. Despite being called unsafe, such code is
safe to use in managed code – it is just not verified by the CLR. Therefore, it is possible to
introduce security risks and/or pointer errors. You can have an unsafe pointer_type,
value_type, or reference_type.

Note
The topic of unsafe code is deep, so if you wish to learn more, please view
the language specification that discusses unsafe code at https://docs.
microsoft.com/dotnet/csharp/language-reference/
language-specification/unsafe-code.

In this section, we will write a console application that puts the various unsafe code
mechanisms to work. You can view the project's source code at https://github.
com/PacktPublishing/C-9-and-.NET-5-High-Performance/tree/
master/CH02/CH02_UnsafeCode.

Consider the following computer program:

namespace CH02 _ UnsafeCode

{

https://github.com/PacktPublishing/C-9-and-.NET-5-High-Performance/tree/master/CH02/CH02_UnsafeCode
https://github.com/PacktPublishing/C-9-and-.NET-5-High-Performance/tree/master/CH02/CH02_UnsafeCode
https://github.com/PacktPublishing/C-9-and-.NET-5-High-Performance/tree/master/CH02/CH02_UnsafeCode

Using Platform Invocation (P/Invoke) 45

 using System;

 class Program

 {

 static void Main(string[] args)

 {

 int[] array = new int[5] { 5, 4, 3, 2, 1 };

 Console.WriteLine(array[4]);

 unsafe

 {

 int* pointer = stackalloc int[5];

 int* cpointer = pointer;

 cpointer += 50;

 Console.WriteLine(*cpointer);

 }

 }

 }

}

In the preceding code, you can see that we allocate memory space for an array of five int
values using the new keyword. We can do the same thing using unsafe code. But instead
of using the new keyword, we can use stackalloc and wrap the code in a code block
marked as unsafe.

When dealing with unsafe code such as array pointers, it is necessary to use the fixed
keyword. To understand why the fixed keyword is important, you need to understand
garbage collection.

When objects are created, they are generation-zero objects. The garbage collector will
remove any unreferenced generation one objects. If the space for allocating generation
zero objects becomes full, the garbage collector moves the generation zero objects to
generation one. Then, new objects can be added to generation zero. If the generation one
and generation two objects become full, and all the objects are in use, then the garbage
collector moves the generation one objects to generation two. This, in turn, moves the
generation zero objects to generation one.

46 Implementing C# Interoperability

New objects are then added to generation zero. At this point, if the generation two,
generation one, and generation zero storage spaces are full, which means that no new
objects can be added, then you end up with an out-of-memory exception. The following
diagram shows this:

Figure 2.1 – Garbage collection management of object generations

Since the garbage collector is moving the items from one generation to another,
the memory locations change. However, the pointers to those objects in your code
do not change. Therefore, when retrieving the information from the pointer address,
the data will be incorrect.

To prevent this from happening, we can use the fixed keyword. The fixed keyword
tells the garbage collector to leave the address space that arrayPointer is pointing
to alone. This means that we can ensure that the pointer will be pointing to the correct
address space and data. The following code shows the unsafe and fixed keywords
being used to deal with an array:

unsafe

{

 fixed (int* arrayPointer = array)

 {

 // Code omitted.

}

}

Using Platform Invocation (P/Invoke) 47

In the preceding code, because we are using unsafe code, we used an unsafe code block.
Since we don't want the array to be affected by the garbage collector, we kept the object at
its current generation by using the fixed code block.

One caveat you need to be aware of when using unsafe code is the effect of accessing an
array that's out of bounds. When you access an array that's out of bounds in managed
code, you are presented with IndexOutOfBoundsException. You do not have that
luxury with unmanaged code. You are responsible for ensuring that the correct indexes
are accessed. If you happen to access an index that is outside the bounds of the array,
then you will not have IndexOutOfBoundsException thrown. Instead, you will have
whatever is at that memory address returned to you. In that case, you may or may not end
up with some type of exception being thrown. The following code demonstrates this:

int* pointerToArray = stackalloc int[100];

Console.WriteLine(pointerToArray[99]);

Console.WriteLine(pointerToArray[100]);

Here, the array is added to the stack. The value of the array at position 99 is correct, but
the array position of 100 is out of bounds, so an incorrect value is returned. This means
that IndexOutOfBoundsException is thrown. That is why you must be careful with
unmanaged code when dealing with indexes.

Note
The reason for the unsafe keyword is to alert the programmer to their
responsibility for code safety. When dealing with pointers, runtime exceptions
aren't raised. Instead, whatever is at that memory location is returned. That's
why you must take extra care when programming unsafe code. You must also
use the fixed keyword when you can't afford for the garbage collector to
switch the generations of your objects and move them.

In C#, you can only use structs and primitives with unsafe and fixed code. Classes and
strings that access the heap are not allowed. This means that nothing that will be garbage
collected can be referenced using unsafe code. So, when using C# pointers, you can use
value types, but you cannot use reference types.

For example, the following code will not compile:

unsafe

{

 fixed (TestObject* testObject = new TestObject()) { }

48 Implementing C# Interoperability

 fixed (string* text = "Hello, World!") { }

}

The testObject variable is a reference type pointer, so the compiler throws an
exception if you build the code. This code returns the following exception:

• CS0208: Cannot take the address of, get the size of, or declare a pointer to a
managed type ('TestObject')

The text variable is a string pointer, and the compiler throws an exception if you build
the code. This code returns the following exception:

• CS0208: Cannot take the address of, get the size of, or declare a pointer to a
managed type ('string')

Note
Using fixed objects can result in memory fragmentation. So, avoid using the
fixed keyword until you need to, and only use it for as long as you need it.

Now, let's look at exposing static entry points using P/Invoke.

Exposing static entry points using P/Invoke
P/Invoke allows you to make static entry points available to other applications. If you
have ever used WinAPI, then you have accessed code in DLLs via their public static entry
points. These access points would have been made available using P/Invoke.

To use P/Invoke, you will need to import the System.Runtime.InteropServices
namespace. Then, you must make the static entry call using DllImportAttribute:

Note
To identify the static entry points of a file, you can use the dumpbin.
exe file that's located in the C:\Program Files (x86)\
Microsoft Visual Studio\2019\Preview\VC\Tools\
MSVC\14.28.29115\bin\Hostx64\x64 folder. This version of
14.28.29.115 was correct at the time of writing. When you come to execute the
following code, this version will have changed. Use the latest version that you
have installed on your computer.

Using Platform Invocation (P/Invoke) 49

Now, let's learn how to use dumpbin to see what methods and properties the
User32.dll system library exports using the command line:

1. Open the command line or developer command prompt. Then, enter the following
command (note that there might be a different version on your computer – use the
latest version number you have):

" C:\Program Files (x86)\Microsoft Visual

 Studio\2019\Preview\VC\Tools\MSVC\14.28.29304

 \bin\Hostx64\x64\dumpbin.exe /exports User32.dll

You should see something like the following:

Figure 2.2 – Command line showing the outcome from executing dumpbin on User32.dll

50 Implementing C# Interoperability

2. Let's write a C++ library and call it from C# using P/Invoke. First, we must create a
new empty C++ project, as shown in the following screenshot:

Figure 2.3 – Creating a new empty C++ project

3. Delete the Header Files, Resource File, and Source Files folders. Add
a new class called Product. Delete the header file that has the .h file extension.

4. Modify the Product.cpp file so that it contains the following code:

#include <string>

#include <iostream>

#include <comdef.h>

struct Product {

int Id;

 BSTR Name;

 void BuyProduct() {

 std::wcout << "Product.BuyProduct(" <<

 Name << ");\n";

 std::cout << "Id: " << Id;

 std::cout << "\n";

 }

Using Platform Invocation (P/Invoke) 51

};

extern "C" __ declspec(dllexport) Product

 CreateProduct() {

 Product product = Product();

 product.Id = 1;

 product.Name = SysAllocString(L"New Product");

 return product;

}

extern "C" __ declspec(dllexport) void

 BuyProduct(Product product) {

 product.BuyProduct();

}

5. Now, we must import three libraries: string, iostream, and comdef.h. Then,
we must declare a struct with Id and Name values. In C++, strings are typically
defined using std::string, but when it comes to.NET, we declare strings as the
BSTR type for OLE/automation by convention. The BSTR APIs use the CoTask*
memory allocator, which is the implied interop contract for native on Windows. On
non-Windows systems, .NET 5 uses malloc/free. We also have a void method
called BuyProduct() that prints the Id and Name values as well as a newline, to
the console's output window.

6. The next thing we must do is export two methods called CreateProduct() and
BuyProduct(Product product). Now, CreateProduct() creates a new
Product and returns it to the caller, while BuyProduct(Product product)
calls the BuyProduct() method on the passed-in Product struct.

7. Add a new class called Greeting. Delete the Greeting.h file. Update the
Greeting.cpp file so that it contains the following source code:

#include <iostream>

#include <comdef.h>

extern "C" __ declspec(dllexport) void SendGreeting();

extern "C" __ declspec(dllexport) int Add(int, int);

extern "C" __ declspec(dllexport) bool

 IsLengthGreaterThan5(const char*);

extern "C" __ declspec(dllexport) BSTR GetName();

void SendGreeting() {

 std::cout << "Dear C#, C++ says hello!\n";

52 Implementing C# Interoperability

}

int Add(int x, int y) {

 return x + y;

}

bool IsLengthGreaterThan5(const char* value) {

 return strlen(value) > 5;

}

BSTR GetName() {

 return SysAllocString(L"Packt Publishing");

}

Here, we have included iostream and comdef.h. We have four methods called
SendGreeting(), Add(int x, int y), IsLengthGreaterThan5(const
char* value), and GetName(). We expose these methods to external callers.

SendGreeting() takes no parameters and outputs a string to the standard
output window. Add(int x, int y) adds to integers passed in by the caller
and returns the result. IsLengthGreaterThan5(const char* value)
checks if the length of the string that's been passed in by the caller is greater
than 5. If it is, then true is returned. Otherwise, false is returned. GetName()
returns a string. The return type for a string must be BSTR. To return a string
in a method, you must call SysAllocString(L"the string you want
returning"). This correctly initializes the string to a wide-character array and
initializes the count.

That is all there is to our C++ library. Now, we just need to configure it. But before we
do that, we will write our C# client, which will consume the C++ library. The reason for
doing this is that once we have the build folder for our C# client, we will get our C++
library to output the DLL to the C# build folder. Follow these steps:

1. Add a new .NET Core 3.1 console application project to your solution, and then set
it as the startup project. Add a class called Product. Update the contents of the
Product.cs file, as follows:

using System.Runtime.InteropServices;

[StructLayout(LayoutKind.Sequential)]

public struct Product

{

 public int Id;

Using Platform Invocation (P/Invoke) 53

[MarshalAs(UnmanagedType.BStr)]

public string Name;

}

Here, we have created a mirror of the C++ struct in our C# client and included
the System.Runtime.InteropServices library. Our C# struct has the
same two fields as our C++ struct and they are in the same order. The struct
itself is annotated with [StructLayout(LayoutKind.Sequential)],
which states that the field order must be processed sequentially. This ensures
a match between the fields in the C++ library and the fields in the C# library.
Additionally, the Name property is a string, so it needs to be annotated with the
[MarshalAs(UnmanagedType.Bstr)] annotation. This tells the compiler
that the C# string is to be treated as a C++ BSTR.

2. Modify the Program.cs file, as follows:

namespace CH02 _ Pinvoke {

 using System;

 using System.Runtime.InteropServices;

 class Program {

 static void Main(string[] _) {

 }

 }

}

Here, we imported the System and System.Runtime.InteropServices
libraries, and then modified the Main(string[] args) method by replacing
the args parameter's name with the default operator.

3. Set the build configuration to x64.
4. Append the following line to the PropertyGroup section of your C++ project file:

<AppendTargetFrameworkToPath>false</AppendTargetFrame

 workToPath>

5. Build the project. This will produce our output folder where we will place our
compiled C++ library.

54 Implementing C# Interoperability

6. Right-click on the C++ project and select Properties. You should see the CH02_
NativeLibrary Property Pages dialog box:

Figure 2.4 – CH02_NativeLibrary Property Pages

7. Change Output Directory to your C# project's output directory. Then, change
Configuration Type to Dynamic Library (.dll). Build the C++ library.

8. Back in your C# project, add the COM library by browsing for it in your C#
build folder.

9. Add the following DLL imports to the Program class, above the Main method:

[DllImport("CH02 _ NativeLibrary.dll",

 CallingConvention = CallingConvention.StdCall

)]

[DllImport("CH02 _ NativeLibrary.dll", EntryPoint =

 "Add",CallingConvention = Calling

 Convention.StdCall

)]

public static extern int AddIntegers(int x, int y);

[DllImport("CH02 _ NativeLibrary.dll",

 CallingConvention = CallingConvention.StdCall

)]

Using Platform Invocation (P/Invoke) 55

public static extern bool IsLengthGreaterThan5(string

 value);

[DllImport("CH02 _ NativeLibrary.dll",

 CallingConvention = CallingConvention.StdCall

)]

[return: MarshalAs(UnmanagedType.BStr)]

public static extern string GetName();

[DllImport("CH02 _ NativeLibrary.dll",

 CallingConvention = CallingConvention.StdCall

)]

public static extern void BuyProduct(Product product);

[DllImport("CH02 _ NativeLibrary.dll")]

public static extern Product CreateProduct();

10. These DllImport statements make our CH02_NativeLibrary.dll methods
available to C#. Update the Main method, as follows:

static void Main(string[] _)

{

SendGreeting();

 Console.WriteLine($"1 + 2 = {AddIntegers(1, 2)}");

 var answer = IsLengthGreaterThan5("C# is

 awesome!") ? "Yes." : "No.";

 Console.WriteLine($"Is \"C# is awesome!\" > than

 5? {answer}");

 Console.WriteLine($"Publisher Name: {GetName()}");

 var product = CreateProduct();

 Console.WriteLine($"Product: {product.Name}");

 BuyProduct(product);

 Console.ReadKey();

}

Our Main method calls the methods that were imported from our CH02_
NativeLibrary.dll binary. We pass values in and receive values and structures back.

Now that you know what unsafe and fixed code is, let's learn how to interact with Python
code in C#.

56 Implementing C# Interoperability

Interacting with Python code
Python is one of the world's top programming languages and is a favorite of data
scientists and programmers working in the field of artificial intelligence and machine
learning. Automation of day-to-day mundane infrastructure tasks has been carried out by
infrastructure professionals using the Python programming language.

Python code has been designed in such a way that programmers can code tasks quicker
than they can in C#. So, the programming writing experience in Python can be quicker
than in C#. Some programmers state that Python can be more readable than C#, although
I find C# easier to read and understand when compared to Python. This means that
readability is rather subjective, but more programmers create programs in Python than
they do in C#.

C# beats Python when it comes to compiled code performance. Python can be quicker to
write but requires a lot of testing and its garbage collector and interpreter can affect the
performance of Python applications. C# uses JIT, AOT, and Ngen, which are also available
to VB.NET, C#, F#, and other .NET languages, to perform various types of compilation.
The result is that C# produces native code on the target machine, thus providing
much faster-executing code than Python. And with the advent of further performance
improvements being added to .NET 5 and C# 9.0 by Microsoft, C# will be even faster than
it was in its previous versions.

With so much good work being accomplished in the Python arena, it is good for C#
programmers to be able to capitalize on Python by using Python code from C#. At the
same time, some companies are striving to have all their code in a single code base,
so they want to move away from languages such as Java and Python and become fully
C#-oriented. Another advantage of moving the existing Python code over to C# is that the
same tasks will be much faster in C# than they are in Python. The first step in being able
to move away from Python to C# is to be able to use the existing Python code within the
C# programming language.

In this section, you will learn how to execute Python code inside C#. You will also learn
how to call and execute an external Python script. Follow these steps:

1. First, make sure you add the Python payload from within Visual Studio Installer
and add Python to your PATH environment variable.

2. Start a new .NET Core 3.1 console application. Then, add the IronPython
NuGet package. This will only work with Python 2.x code. If you require Python
3.x support, then use Python.NET, which is available at http//pythonnet.
github.io. You will need the following using statements:

using System;

using IronPython.Hosting;

http//pythonnet.github.io
http//pythonnet.github.io

Interacting with Python code 57

We need System because we will be outputting text to the console window. The
IronPython.Hosting library is needed to host and execute Python code in C#.

3. Add a file called welcome.py to the project, set it to Copy always, and add the
following code:

print("Welcome to the world of Python integration with

 C#!")

4. This Python code will print out the text to our console window. Add the following
code to the Main method:

Console.WriteLine("Enter a string to be printed from

 Python: ");

var input = Console.ReadLine();

 var python = Python.CreateEngine();

 try

{

python.Execute("print('From Python: " + input + "')");

python.ExecuteFile("welcome.py");

}

catch (Exception ex)

{

Console.WriteLine(ex.Message);

}

finally

{

Console.ReadKey();

}

Here, we are prompting the user to input some text. Then, we read the line of text the
user enters. A variable is created that can be used to execute Python code. A try/catch/
finally block is then used to execute the Python code. First, we execute pure Python
code directly from within C#. Then, we execute the code that was executed in our Python
script. Any exceptions are caught with the exception message that was written to the
console window. Finally, we wait for the user to press any key before we exit.

And that is all there is to executing Python code directly within C# and via external
Python scripts. Now, let's learn the COM interface.

58 Implementing C# Interoperability

Performing Component Object Model (COM)
interoperability
The Component Object Model (COM) is an interface standard that was introduced by
Microsoft in 1993. It enables components written in the same or different languages to
communicate with each other, and COM components can pass data between each other.
Communication is accomplished through Inter-Process Communication (IPC) and
dynamic object creation. COM is not a programming language; it provides a software
architecture that consists of binary and network standards.

Many business employees use spreadsheets because they are an easy way to combine and
manipulate data for various reasons. Spreadsheets are also the perfect tools for statistical
analysis. Many companies expand the power of spreadsheets by building useful add-ons
using C# and other languages. But spreadsheets are also useful for ingesting data into
databases for day-to-day operations and reporting purposes. In this section, you will learn
how to create and manipulate spreadsheets in C#, as well as write C# plugins for Excel.

Note
Visual Studio Tools for Office (VSTO) is only available in .NET 4.8 and
below. It will not work in C# 9 and .NET 5.0. Due to this, we will perform C#
interoperability using .NET 4.8. Microsoft has moved away from VSTO and
the COM model to focus on the cross-platform extensibility of Excel using
JavaScript. Since this book is on C#, we will focus on VSTO in .NET 4.8. To
find out more about Microsoft Office extensibility using the JavaScript API,
please read the following documentation: https://docs.microsoft.
com/office/dev/add-ins/develop/understanding-the-
javascript-api-for-office.

In this section, we will provide two demonstrations. The first demonstration will read
data from an existing spreadsheet. It is useful to know how to do this as there is often a
business need for programmers to work with spreadsheet data. After that, we will add an
Excel VSTO add-in for Excel. It can be very useful to provide add-ins to end users that
make their work more expedient and enjoyable.

https://docs.microsoft.com/office/dev/add-ins/develop/understanding-the-javascript-api-for-office
https://docs.microsoft.com/office/dev/add-ins/develop/understanding-the-javascript-api-for-office
https://docs.microsoft.com/office/dev/add-ins/develop/understanding-the-javascript-api-for-office

Performing Component Object Model (COM) interoperability 59

Reading data from an Excel spreadsheet
In this section, we are going to write a small program to read an Excel file, count the
number of lines, and then update the Excel spreadsheet with the used line count from
within C#. Follow these steps:

1. Add a folder called C:\Temp. Then, create a new spreadsheet in it called
LineCount.xlsx. Add 10 rows of text in the first column. Save and close
the spreadsheet.

2. Add a new .NET 4.8 console application. Add the following reference using the
NuGet package manager to install the latest versions:

Microsoft.Office.Interop.Excel

Microsoft.VisualStudio.Tools.Applications.Runtime

3. Add the following namespaces to the Program class:

using System;

using Microsoft.Office.Interop.Excel;

4. With that, we can interact with Excel from C#. Now, modify the Main method,
as follows:

var excel = new Application();

var workbook = excel.Workbooks.Open

 ("C:\\Temp\\LineCount.xlsx");

var worksheet = excel.ActiveSheet as Worksheet;

Range userRange = worksheet.UsedRange;

int countRecords = userRange.Rows.Count;

int add = countRecords + 1;

worksheet.Cells[add, 1] = $"Total Rows: {countRecords}";

workbook.Close(true, Type.Missing, Type.Missing);

excel.Quit();

60 Implementing C# Interoperability

The preceding code creates a new Excel application. The workbook we created and
modified earlier on is opened. At this point, we can obtain the actively used range
on the active sheet and the count of how many rows there are. The count is then
saved on a new row, after which we can close the workbook and quit Excel.

5. Run the code as many times as you like and then open the spreadsheet. You should
see something similar to the following:

Figure 2.5 – Excel showing rows added by C#

As you can see, working with Excel files is straightforward.

Tip
The most performant way to populate an Excel spreadsheet
from a database result set is to use Worksheet.Range.
CopyFromRecordset(Object, Object, Object). See the
official Microsoft documentation at https://docs.microsoft.com/
dotnet/api/microsoft.office.interop.excel.range.
copyfromrecordset?view=excel-pia.

Now, let's create an Excel add-in.

https://docs.microsoft.com/dotnet/api/microsoft.office.interop.excel.range.copyfromrecordset?view=excel-pia
https://docs.microsoft.com/dotnet/api/microsoft.office.interop.excel.range.copyfromrecordset?view=excel-pia
https://docs.microsoft.com/dotnet/api/microsoft.office.interop.excel.range.copyfromrecordset?view=excel-pia

Performing Component Object Model (COM) interoperability 61

Creating an Excel add-in
What does creating an Excel add-in have to do with.NET high performance? Well, VSTO
performance can be improved by implementing the following strategies:

• Load VSTO add-ins on demand.

• Publish Office solutions by using Windows Installer.

• Bypass Ribbon reflection.

• Perform expensive operations in a separate thread.

In this section, we are going to write an Excel add-in that will appear on the Add-ins tab
within Excel. When the button is clicked, it will read the text in the currently selected cell
and display the contents in a message box. Follow these steps:

1. Create a new Excel VSTO add-in project. This will target .NET 4.8. You cannot use
VSTO with .NET 5.0.

2. Add a new Ribbon (Visual Designer) and call it CsRibbonExtension.
3. Rename group1 to CsGroup and change the label to C# Group.
4. Add a button to CsGroup.
5. Change the button's name to GetCellValueButton and change its label to Get

Cell Value.
6. Double-click the button to generate the click event. Update the click event like so:

private void GetCellValueButton _ Click(object sender,

 RibbonControlEventArgs e)

{

CultureInfo originalLanguage = Thread.CurrentThread

 .CurrentCulture;

 Thread.CurrentThread.CurrentCulture = new

 CultureInfo("en-US");

 var activeCell = Globals.ThisAddIn.Application

 .ActiveCell;

 if (activeCell.Value2 != null)

 MessageBox.Show(activeCell.Value2

 .ToString());

 Thread.CurrentThread.CurrentCulture =

 originalLanguage;

}

62 Implementing C# Interoperability

7. In our click event, we save the current language and then change it to American
English. Then, we obtain the active cell. The Value2 property is a dynamic type.
We check if the value for the active cell is null. If the cell is not null, then we display
the active cell's value in a message box. Finally, we return the language to its
original language.

8. Build the project.
9. Then, press F5 to deploy the solution.
10. Open Excel and start a blank workbook.
11. On the ribbon, if the Add-ins tab is not visible, click on Customize Quick Access

Toolbar and then More Commands… to bring up the Excel Options dialog, as
shown in the following screenshot:

Figure 2.6 – The Excel Options dialog

12. Make sure that the Add-ins option is ticked, as shown in the preceding screenshot.

Performing Component Object Model (COM) interoperability 63

13. Click on OK to close the dialog. Type anything you like in a cell and then click on
the Add-ins tab. You should see something similar to the following:

Figure 2.7 – Excel showing the Add-ins tab

14. Make sure that your text cell is selected. Then, click on the Get Cell Value ribbon
item. You should see a message similar to the following:

Figure 2.8 – Excel message displaying the text in the active cell

Loading our VSTO add-in on demand
Now, let's add a performance improvement to our Excel add-in by only loading it when
the customer demands it instead of at startup. Follow these steps:

1. Right-click on the Excel add-in project and select Properties.
2. Then, select the Publish page.
3. On the Publish page, click on the Options button.
4. On the Publish Options dialog, select Office Settings.
5. Select the Load on Demand option and click on the OK button.

64 Implementing C# Interoperability

Bypassing Ribbon reflection
You can bypass Ribbon reflection by overriding Microsoft.Office.Core.
IRibbonExtensibility.CreateRibbonExtensibleObject(). Instead of
letting VSTO reflect what Ribbon object to load, you must use a conditional statement to
explicitly load the correct Ribbon.

Executing expensive operations in a separate thread of execution
Any time-consuming tasks such as database operations and transferring objects over a
network should be carried out in separate threads.

Note
You must execute calls to the Office object model in the main thread.

Further performance improvements
For further guidance on performance improvements that you can make to VSTO add-ins,
check out the official Microsoft documentation: https://docs.microsoft.com/
en-us/visualstudio/vsto/improving-the-performance-of-a-vsto-
add-in?view=vs-2019.

So far, we have looked at various methods of interacting with other programs and
programming languages. Now, let's learn how to safely dispose of unmanaged code.

Safely disposing of unmanaged code
When working with unmanaged resources, you must explicitly dispose of them yourself
to free up resources. If you do not, then you may end up with exceptions being raised or,
worse, your application completely crashing. You must make sure that your applications
don't continue running and supplying wrong data when exceptions are encountered.
Should exceptions be encountered where the data would become invalid if the application
were to continue, then it is better to exit the program. You must also make sure that if
your application encounters a catastrophic exception that it is unable to recover from,
either a message is displayed or some kind of logging takes place before it shuts down.

In C#, there are two ways to dispose of unmanaged resources: using the disposable pattern
and using finalizers. We will discuss both methods in this section via code examples.

https://docs.microsoft.com/en-us/visualstudio/vsto/improving-the-performance-of-a-vsto-add-in?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/vsto/improving-the-performance-of-a-vsto-add-in?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/vsto/improving-the-performance-of-a-vsto-add-in?view=vs-2019

Safely disposing of unmanaged code 65

Understanding C# finalization
A finalizer is a destructor in C# and is used to perform any necessary final cleanup that
needs to be performed manually. You can use finalizers in classes, but you cannot use
them in structs. A class can have one finalizer, but a class cannot inherit or overload
finalizers. You cannot call finalizers as they are invoked automatically when the class is
destroyed. Also, modifiers do not accept modifiers or have any parameters.

Note
You have no control over when a finalizer runs. If the GC was to run too
infrequently, then you could experience OutOfMemory exceptions. Instead
of relying on finalizers, you should implement the Dispose design pattern best
practice, which will call the finalizer as a last resort. Consider finalizer code
running as a bug when you're disposing of managed and unmanaged objects.

There are two syntactic ways to write finalizers in C#. The first is the classic method, as
shown here:

public class Third : Second

{

 ~Third() // Destructor/Finalizer

{

 // Clean-up code goes here …

}

}

The second way to write a finalizer is as follows:

public class Third : Second

{

 ~Third() => Console.WriteLine("Clean-up goes

 here …");

}

As a programmer, you must know that, despite using finalizers to clean up code, you have
no control over whether or when the garbage collector will call them.

66 Implementing C# Interoperability

Note
As a rule of thumb, most of your code is managed code. This means that there
should never be a need for you to touch finalizers. Only use them if you need to
when cleaning up unmanaged objects.

Using the disposable pattern to release managed and unmanaged
resources
When you're dealing with managed and unmanaged objects, it is necessary to implement
the disposable design pattern. The disposable pattern implements the IDisposable
interface and makes use of finalizers. This is an aspect of the disposable pattern, not
a requirement. You can write an abstract base class that implements the disposable
design pattern, and then inherit from that class and override the Dispose(bool
disposing) method, as shown in the source code for the CH02_ObjectCleanup
project on GitHub. This is what we will do in this demonstration. Follow these steps:

1. Start a new .NET console application. Then, add a class called DisposableBase,
as follows:

public abstract class DisposableBase : IDisposable

{

protected bool _ disposed = false;

}

2. Here, we declared the class abstract and implemented the IDisposable interface.
Our _disposed Boolean value will be accessed by subclasses, so we need to
declare that it is protected. Add the Dispose() method, as follows:

public void Dispose()

{

 Dispose(true);

 GC.SuppressFinalize(this);

}

3. This method calls the Dispose(bool disposing) method, which cleans up
both managed and unmanaged resources. Then, it stops the finalizer from being
executed. Let's add the finalizer:

~DisposableBase()

{

Safely disposing of unmanaged code 67

Dispose(false);

}

4. Should our finalizer run – and it is not guaranteed to run – it will call the
Dispose(bool disposing) method when the programmer fails to call the
Dispose() method. Now, let's add the final part of our DisposableBase class –
that is, the Disposable(bool disposing) method:

protected virtual void Dispose(bool disposing)

{

if (_ disposed)

 return;

if (disposing)

{

 // Free up any managed objects here.

}

// Free up any unmanaged objects here.

// Set large fields to null.

_ disposed = true;

}

5. If our class has already been disposed of, then we can exit the method. If the class
has not been disposed of, then we must free up managed resources. Once the
managed resources have been cleaned up, we can clean up the unmanaged objects
and set large fields to null. Finally, we must set the _disposed Boolean to true.

When a class inherits our abstract class, its finalizer will call Dispose(false). The
subclass will override the Dispose(bool disposing) method.

To create an object and destroy it, you can use the following code:

var objectThree = new ObjectThree();

objectThree.Dispose();

Here, the ObjectThree class is instantiated and then disposed of by calling the
Dispose() method.

That brings us to the end of this chapter on C# interoperability. Let's summarize what we
have learned.

68 Implementing C# Interoperability

Summary
In this chapter, we started by looking into P/Invoke regarding C# interoperability using
pointer code. We looked at unsafe and fixed code. Unsafe code is code that is not managed
by the .NET platform, while mixed code is objects fixed in memory that are not promoted
by the garbage collector because they are accessed using pointers.

Then, we learned how to call methods in a C++ DLL, including passing parameters and
returning structs.

Next, we learned how to interact with Python code. We learned how to install Python
and then add the IronPython NuGet package. This allows us to execute Python 2.x
code directly in a C# class and execute Python code that resides in a Python script. The
ironPython 2.7.10 library only supports Python 2.x versions.

Then, we learned how to perform COM interoperability by reading data from an Excel
spreadsheet. We also built an Excel add-in that was able to read the data of the active cell
and display a message box.

Finally, we learned how to safely dispose of managed and unmanaged objects. We built
a reusable abstract class called DisposableBase. At this point, you know to call
Disposable(false) in subclass finalizers if Dispose() is not called, as well as how
to override Disposable(bool disposing) in your base classes.

Now, it is time for you to answer some questions to reinforce your learning before moving
on to the Further reading section. In the next chapter, we will learn about primitives and
object types.

Questions
Answer the following questions to test your knowledge of this chapter:

1. What is P/Invoke short for?
2. Explain what P/Invoke is.
3. What is the unsafe keyword used for?
4. Explain object generations.
5. What is the fixed keyword used for?
6. What is the C++ type for a string?
7. What NuGet package do you have to import to work with Python code?

Questions 69

8. What pattern do you use to safely dispose of managed and unmanaged objects?
9. How do you dispose of large fields?

Further reading
To learn more about the topics that were covered in this chapter, take a look at the
following resources:

• Unsafe code language specification: https://docs.microsoft.com/en-us/
dotnet/csharp/language-reference/language-specification/
unsafe-code.

• C# tutorial for beginners: What is Unsafe Code? https://www.youtube.com/
watch?v=oIqEBMw_Syk.

• Interoperating with unmanaged code: https://docs.microsoft.com/
en-us/dotnet/framework/interop/.

• Interop Marshaling: https://docs.microsoft.com/en-us/dotnet/
framework/interop/interop-marshaling.

• Marshalling Data with Platform Invoke: https://docs.microsoft.com/
en-us/dotnet/framework/interop/marshaling-data-with-
platform-invoke.

• P/Invoke Tips: http://benbowen.blog/post/pinvoke_tips/.

• Debugging Finalizers: https://docs.microsoft.com/en-us/archive/
msdn-magazine/2007/november/net-matters-debugging-
finalizers.

• Destructors in C#: https://www.geeksforgeeks.org/destructors-in-
c-sharp/.

• .NET Memory Performance Analysis: https://github.com/Maoni0/
mem-doc/blob/master/doc/.NETMemoryPerformanceAnalysis.
md#The-effect-of-a-generational-GC.

• Improving the performance of a VSTO add-in: https://docs.microsoft.
com/en-us/visualstudio/vsto/improving-the-performance-of-
a-vsto-add-in?view=vs-2019.

• When everything you know is wrong, part one: https://ericlippert.
com/2015/05/18/when-everything-you-know-is-wrong-part-one/.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://www.youtube.com/watch?v=oIqEBMw_Syk
https://www.youtube.com/watch?v=oIqEBMw_Syk
https://docs.microsoft.com/en-us/dotnet/framework/interop/
https://docs.microsoft.com/en-us/dotnet/framework/interop/
https://docs.microsoft.com/en-us/dotnet/framework/interop/interop-marshaling
https://docs.microsoft.com/en-us/dotnet/framework/interop/interop-marshaling
https://docs.microsoft.com/en-us/dotnet/framework/interop/marshaling-data-with-platform-invoke
https://docs.microsoft.com/en-us/dotnet/framework/interop/marshaling-data-with-platform-invoke
https://docs.microsoft.com/en-us/dotnet/framework/interop/marshaling-data-with-platform-invoke
http://benbowen.blog/post/pinvoke_tips/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2007/november/net-matters-debugging-finalizers
https://docs.microsoft.com/en-us/archive/msdn-magazine/2007/november/net-matters-debugging-finalizers
https://docs.microsoft.com/en-us/archive/msdn-magazine/2007/november/net-matters-debugging-finalizers
https://www.geeksforgeeks.org/destructors-in-c-sharp/
https://www.geeksforgeeks.org/destructors-in-c-sharp/
https://github.com/Maoni0/mem-doc/blob/master/doc/.NETMemoryPerformanceAnalysis.md#The-effect-of-a-generational-GC
https://github.com/Maoni0/mem-doc/blob/master/doc/.NETMemoryPerformanceAnalysis.md#The-effect-of-a-generational-GC
https://github.com/Maoni0/mem-doc/blob/master/doc/.NETMemoryPerformanceAnalysis.md#The-effect-of-a-generational-GC
https://docs.microsoft.com/en-us/visualstudio/vsto/improving-the-performance-of-a-vsto-add-in?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/vsto/improving-the-performance-of-a-vsto-add-in?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/vsto/improving-the-performance-of-a-vsto-add-in?view=vs-2019
https://ericlippert.com/2015/05/18/when-everything-you-know-is-wrong-part-one/
https://ericlippert.com/2015/05/18/when-everything-you-know-is-wrong-part-one/

70 Implementing C# Interoperability

• .NET Memory Performance Analysis: https://github.com/Maoni0/
mem-doc/blob/master/doc/.NETMemoryPerformanceAnalysis.md.

• OLE/Automation BSTR (String Manipulation Functions): https://docs.
microsoft.com/previous-versions/windows/desktop/automat/
string-manipulation-functions

• How to pass arrays of objects from C# to C++: https://alekdavis.blogspot.
com/2012/07/how-to-pass-arrays-of-objects-from-c-to.html.

https://github.com/Maoni0/mem-doc/blob/master/doc/.NETMemoryPerformanceAnalysis.md.
https://github.com/Maoni0/mem-doc/blob/master/doc/.NETMemoryPerformanceAnalysis.md.
https://docs.microsoft.com/previous-versions/windows/desktop/automat/string-manipulation-functions
https://docs.microsoft.com/previous-versions/windows/desktop/automat/string-manipulation-functions
https://docs.microsoft.com/previous-versions/windows/desktop/automat/string-manipulation-functions
https://alekdavis.blogspot.com/2012/07/how-to-pass-arrays-of-objects-from-c-to.html
https://alekdavis.blogspot.com/2012/07/how-to-pass-arrays-of-objects-from-c-to.html

3
Predefined Data

Types and Memory
Allocations

In this chapter, you will learn about C# predefined (that is, built-in) data types and C#
object types, along with the different types of memory allocations.

The most basic requirement for improving the performance of your application is to
understand the predefined data types and their sizes. There may be times when the
memory usage of your applications is critical. Knowing the size of data types and the
values they hold can help you make accurate memory usage estimates, as do memory
profiling tools such as dotTrace and dotMemory, which are developed by JetBrains. We
will be discussing the use of dotTrace and dotMemory in the next chapter. It also makes
sense to know the different types of memory allocations and how they affect your code
performance. Here, we will be benchmarking the performance of various operations using
BenchmarkDotNet.

72 Predefined Data Types and Memory Allocations

In this chapter, we will be covering the following topics:

• Understanding the predefined .NET data types: In this section, we will perform
a review of the C# value and object types that are built into the C# programming
language. Understanding these types and their size in bytes is useful when you need
to provide memory usage estimates.

• Understanding the various types of memory used in C#: In this section, we delve
into the different types of memory used in C#, including the stack, heap, small object
heap, and large object heap. It is useful to know what data gets stored in memory
and how it gets stored. This can have a big effect on the performance of your
applications. For instance, did you know that value types do not always get stored
on the stack?

• Passing by value and passing by reference: In this section, we will cover the
differences between passing values by value and by reference, and the effects this
has on the original variables. You will also understand how passing by value and by
reference work in memory.

• Boxing and unboxing: In this section, we will discuss what happens in memory
when we box and unbox a variable, and we will explore how boxing and unboxing
negatively impact the performance of programs. You will use the disassembler to
view the intermediate language commands that perform the boxing and unboxing.

By the end of this chapter, you will have the skills to do the following:

• You will understand the different value type sizes.

• You will understand the different reference types.

• You will understand the different types of memory and how they are allocated.

• You will understand the difference between passing by values and passing by
references.

• You will understand how boxing and unboxing negatively impact performance
and why.

We will first look at the technical requirements for following along with this chapter, then,
we will move on to look at the various predefined C# data types.

Technical requirements
• Required: Microsoft Visual Studio 2022, latest version – preview

• Required: BenchmarkDotNet

Understanding the predefined .NET data types 73

The code files for this chapter can be found in this book's GitHub repository: https://
github.com/PacktPublishing/High-Performance-Programming-in-
CSharp-and-.NET/tree/master/CH03

You will need to clone the git repository and do a release build. The compiled executable
will be found under C:\Development\perfview\src\PerfView\bin\
Release\net45.

Understanding the predefined .NET data types
There are two types of predefined data types:

• Reference types

• Value types

The reference types are objects and strings. The value types consist of enumeration and
struct types. Struct types are aggregated of simple types. Simple types consist of Boolean,
char, and numeric types.

There are three main numeric types: decimal types, floating-point types, and integer types.
Floating-point types consist of decimals, doubles, and floats. The integer types consist of
bytes shorts, integers, longs, value tuples, and characters.

We are going to mention the stack and the heap in more detail later in the chapter. But
for now, we should understand that the stack is unmanaged memory, and the heap is
managed memory.

Value types live on the stack. Value types in arrays live on the heap. And reference types
live on the heap, with their pointers living on the stack.

Note
Even if arrays are not ideal for some scenarios, in most cases, arrays will often
perform faster than lists and other data structures. Array contents are placed
contiguously on the heap. The variable for the array will be placed on the stack,
and its contents on the stack will be a pointer to the memory address of the
array on the heap.

The stack and the heap are the two main types of memory in .NET, and as mentioned, we
will be covering them later in this chapter.

Now, let's look at the predefined value types in C#.

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH03
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH03
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH03
http://C:\Development\perfview\src\PerfView\bin\Release\net45
http://C:\Development\perfview\src\PerfView\bin\Release\net45

74 Predefined Data Types and Memory Allocations

Understanding the predefined value types in C#
In this section, we will describe each predefined value type and its size in bytes. This
is important for being able to choose the right data type to improve the memory
performance of your applications. For those who are new to C#, you should know that
signed data types are those data types that can have positive and negative values, whereas
unsigned data types are those that can have only positive values.

Table 3.1 describes the different value types, their memory size, whether they are
nullable, and their default, minimum, and maximum values, as well as providing notes
where applicable:

Table 3.1 – The predefined value data types in C#

Understanding the predefined .NET data types 75

Note
The enum data type is 4 bytes (that is, 32 bits) in size, nullable, and has
a minimum value of 0. You can measure the size of a value type using
sizeof(Type type). Custom structs can be measured using
Marshal.SizeOf(typeof(NameOfCustomStruct)). The
ValueTuple data type is 1 byte (8 bits) in size and grows with each type
parameter. For example, ValueTuple<double, double, double>
is 24 bytes (192 bytes) in size.

We will now look at understanding the predefined reference types in C#.

Understanding the predefined reference types in C#
A reference type is a type that is placed in managed memory called the managed heap.
The four predefined reference types in C# are the object type, string type, delegate type,
and dynamic type.

Note
Unfortunately, with reference types, you cannot use sizeof (which is of the
object type) to get the size of a reference type, and the BinaryFormatter
class has been made obsolete. That means that you cannot serialize an object
into binary, save it into a memory stream, and get its size from the memory
stream's position.

We are, however, recommended to serialize and deserialize objects using JSON.
We can then assign the JSON to a memory stream, and in doing so, the length
of the memory stream will give us the size of our object in memory.

Let's look at each of these in turn in terms of memory usage.

Describing the object reference type
The .NET System.Object type is aliased as object in C#. All types in C# either
directly or indirectly inherit from System.Object. This includes predefined and user
types (such as classes, enums, and structs), reference types, and value types. Objects can
be nullable.

To obtain the memory size of your objects programmatically, serialize them to XML or
JSON and load them into a memory stream, and the length of the memory stream will
give you your object size in bytes. Alternatively, you can profile the memory of your
application using a tool such as dotMemory to profile your application's memory usage.

76 Predefined Data Types and Memory Allocations

Describing the string reference type
A string type uses 2 bytes (16 bits) for each character. So, our famous little string,
Hello, World!, which uses 13 characters, is 13 x 2 bytes long, which equates to 26 bytes (208
bits) of memory. Strings can be nullable, and they can be empty.

Strings are immutable in .NET. But what do we mean by this?

When you create a string type, it is added to the heap. A variable is added to the stack
that has an address pointer to the string's location on the heap. If you add the string
type to another variable, that variable will be placed on the stack, and it will hold a copy
of the address of the same string on the heap. But if you append an existing string type
with another string type, a new string type is created in memory to hold the existing
string type, plus the string type to be appended. The address pointer for the string
type is updated on the stack to point to this new location.

Building an immutable string example program
We are going to write a simple .NET 6 console application that demonstrates the
immutability of strings. Start by creating a new .NET 6 console application called CH03_
StringsAreImmutable. Then, update the Main(string[] _) method as follows:

static void Main(string[] _)

{

Console.WriteLine("Chapter 3: Strings are immutable");

var greeting1 = "Hello, world!";

var greeting2 = greeting1;

Console.WriteLine($"greeting1={greeting1}");

Console.WriteLine($"greeting2={greeting2}");

greeting1 += " Isn't life grand!";

Console.WriteLine($"greeting1={greeting1}");

Console.WriteLine($"greeting1={greeting2}");

}

We output a header to the console, and then we set the greeting1 string type to
"Hello, world!". Then, we assign greeting1 to the string greeting2 type.
The contents of both string variables are output to the console window. We then amend
greeting1 by appending " Isn't life grand!" to the end of it. Next, we output
the contents of both greeting1 and greeting2. Run the program, and you should see
the following:

Understanding the predefined .NET data types 77

Figure 3.1 – The immutable strings example

As you can see, although we assigned greeting1 to greeting2 and then updated
greeting1, greeting2 remains unchanged. So, we now have two strings on the
heap. We have "Hello, world!", and we have "Hello, world! Isn't life
grand!". And so, from our little example, we can see that strings are indeed immutable.
And now, we will describe the delegate reference type.

Describing the delegate reference type
A delegate reference type points to methods with specific parameters and returns types.
Methods referred to by the delegate type must have the same signature and return
type. When you compile code that uses delegates, a private sealed class is created for the
delegate that inherits from System.MulticastDelegate.

Note
Please check section I.8.9.3 in the following link for more information
on delegates: https://www.ecma-international.org/
publications/files/ECMA-ST/ECMA-335.pdf.

We will now describe the dynamic reference type.

Describing the dynamic reference type
Type checking is performed at compile time. This ensures type safety when your
applications are executed at runtime. Type safety aims to prevent erroneous or undesirable
program behavior that is caused by discrepancies between types.

https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf

78 Predefined Data Types and Memory Allocations

Types that are defined as dynamic bypass type checking at compile time, as they and the
members are resolved at runtime. The advantage of the dynamic type is that it simplifies
our access to COM APIs (such as the Office Automation API) to dynamic APIs (such as
the IronPython libraries) and to the HTML Document Object Model (DOM).

Dynamic types are compiled as objects and exist as objects at runtime. A dynamic
type only exists at compile time and not at runtime. When a dynamic type is compiled,
it becomes an object type. Later in this section, and after we have written and built
our console application, we will use ILDASM to show the IL type of a compiled
dynamic variable.

When the object runs for the first time, it is correctly resolved by the runtime. This
resolution incurs a performance penalty that can be considerable depending upon the
type being resolved. Since dynamic is compiled into an object, boxing and unboxing take
place. And as you know, boxing costs processor cycles.

Let's demonstrate the performance difference when using different variations of var and
dynamic when we are declaring variables and assigning values to them, compared to
using the correct types and assigning them without having to use casting.

Start a new .NET 6 console application called CH03_DynamicPerformance. You will
need the following references:

using System;

using System.Diagnostics;

using System.Security.Cryptography;

using BenchmarkDotNet.Attributes;

using BenchmarkDotNet.Running;

Add a new member variable at the top of the Program class:

dynamic _dynamicType;

This variable declaration will be investigated by using ILDASM after we have run our
benchmarks. Next, update the Main(string[] _) method as follows:

static void Main(string[] _)

{

 BenchmarkRunner.Run<BenchmarkTests>();

}

Understanding the predefined .NET data types 79

We are running the benchmarking tests in a class called BenchmarkTests. Add a new
class called BenchmarkTests by using the same statements as the preceding example.
Then, add the MeasureVarUsage() method:

[Benchmark]

public void MeasureVarUsage()

{

 var x = 3.14159;

}

This method assigns a double object to the x variable of a type that will be resolved at
runtime. Next, add the MeasureVarDynamicUsage() method:

[Benchmark]

public void MeasureVarDynamicUsage()

{

 var x = (dynamic)3.14159;

}

Here, we are still assigning a number to the x variable of a type that will be resolved at
runtime. But this time, we prefix the number with the (dynamic) cast. Remember that
the dynamic keyword only exists at compile time. When compiled, dynamic types
become the object type. Now, add the MeasureTypeDynamicUsage() method:

[Benchmark]

public void MeasureTypeDynamicUsage()

{

 double x = (dynamic)3.14159;

}

This time, we declare the variable as double and cast the assigned number as (dynamic).
At runtime, this number will be boxed in an object type, and so it will need to be
unboxed. And for our final method, add the MeasureTypeTypeUsage() method:

[Benchmark]

public void MeasureTypeTypeUsage()

{

 double x = 3.14159;

}

80 Predefined Data Types and Memory Allocations

In this method, we declare a double type and assign a double type. Compile the project
in Release mode. Then, open a command line and navigate to your release folder. Type
the name of the executable and press Enter. This will cause BenchmarkDotNet to detect
the benchmarks within the project and sequentially run through them. You should see a
summary similar to the following, albeit with different mean times:

Figure 3.2 – The variable type declaration and the assignment's benchmarked mean timings

Figure 3.2 shows us that there are differences in performance when we declare variables
and assign values depending on the methods we use. The fastest combination of
declaration and assignment is var variableName = (dynamic)value.

Well, we have run our benchmark tests. So, let's view the IL code for the dynamic variable.
Open the developer command prompt, then type ildasm.exe and press Enter. This will
start the ILDASM application.

Note
.NET Core and .NET 6 applications are compiled differently from previous
versions of the .NET Framework. Previously, ILDASM would open the
compiled executable. But .NET Core and .NET 6 applications get compiled into
a dynamic-link library (DLL), and a native executable is produced to run the
code in the resulting DLL.

Understanding the predefined .NET data types 81

Open your compiled DLL. Expand the CH03_DynamicPerformance node and then
expand the CH03_DynamicPerformance.Program node. Then, locate the
_dynamicType : private object line call, as shown in Figure 3.3:

Figure 3.3 – ILDASM showing us that the compiler converts a dynamic type into an object type at
compile time

As you can see, our dynamic type gets compiled into an object type. As a little exercise,
play about with the ILDASM settings and view the code for the BenchmarkTests class
for yourself. Now, let's look at static types.

Understanding static types
In .NET versions earlier than .NET Core and .NET 5.0, when you compile and run your
applications, they run in their own application domains. If you run your applications
multiple times, each running instance of your application will have its own app domain. In
ASP.NET, you use multiple app domains for a single application. This becomes important
when using static types in ASP.NET applications. In a single app domain, there will only
be one instance of a static type. The runtime must create an instance of the static type
before it can be used.

82 Predefined Data Types and Memory Allocations

The AppDomain object has its own static heap. Static value and reference types will be
placed on the static heap and managed by the app domain. Static types are considered
by the garbage collector, but they are never collected. The reason the garbage collector
considers them is that they may have references to objects on other heaps. Static types and
variables in other app domains are isolated from each other.

In .NET Native and .NET 5.0, application domains have been discontinued as they
require expensive runtime support. Developers use application domains for various
purposes, including code isolation. It is recommended by Microsoft to replace the use of
application domains with processes and/or containers. Microsoft also recommends the
new AssemblyLoadContext class for the dynamic loading of assemblies. By processes
and/or containers, Microsoft means that you should split your single applications/
modules into separate, interacting applications/modules/processes/containers. So, you are
encouraged by Microsoft to refactor code using microservices so that you no longer need
to use application domains.

The System.Runtime.Loader.AssemblyLoadContext object represents a load
context. A load context creates a scope for loading, resolving, and unloading assemblies.
For more information on the AssemblyLoadContext class, see the official Microsoft
documentation at https://docs.microsoft.com/dotnet/api/system.
runtime.loader.assemblyloadcontext?view=net-5.0.

Static classes are instantiated only once by the runtime. You cannot instantiate a static
class yourself. Static constructors are executed at the time the class is loaded into
memory. If a non-static class has a static constructor and an instance constructor, the
static constructor will be called before the instance constructor. Static constructors are
parameterless, and there can only be one static constructor per class. Static constructors
do not have access modifiers. Memory is allocated for static variables when a class loads
and deallocated when a class is unloaded. Variables, constructors, and methods belong to
the class and not to instantiated objects. So, modifying variables will modify the variable
across all instances of a class.

On the call stack, static methods tend to be faster to call than instance methods. The
compiler emits a nonvirtual call sites static members. Nonvirtual call sites prevent runtime
checks that ensure the current object pointer is non-null. Although you may not see any
visual performance improvements, performance gains can be measured for performance-
sensitive code.

Now that we have covered the various predefined C# data types, it is time to look at C#
memory and how it works.

https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext?view=net-5.0
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext?view=net-5.0

Understanding the various types of memory used in C# 83

Understanding the various types of memory
used in C#
There are two main types of memory in C#: the stack and the heap. The heap is further
broken down into the small object heap and the large object heap. In terms of physical
memory, there is no difference between the stack or heap, as they are both stored in
physical memory. Their differences are in their implementations.

When your application starts up, it is allocated a portion of memory. A pointer will be
assigned to your application that will be your application's memory starting point. Above
the pointer will be the stack, and below the pointer will be the heap. The heap will grow
downwards, and the stack will grow upwards, as shown in Figure 3.4:

Figure 3.4 – The stack, heap, and application starting point memory address

84 Predefined Data Types and Memory Allocations

The following diagram visually represents the stack and heap for a simple program:

Figure 3.5 – The stack and heap at work

To understand the different types of memory in C#, first, we'll look at the stack and how
it operates.

The stack
The stack is used to store value types and pointers to memory locations on the heap. When
you call a method, it is added to a stack frame on the stack. Then, within that frame, the
value types are added to the stack. If there are any reference types in the method, these
are placed on the heap, and a variable is placed on the stack and assigned a pointer to a
memory address for the reference type on the heap.

Note
Even though we can state that value types are added to the stack, this is not
always true. For example, if you have an array of integers, the array – by virtue
of being a reference type – will be added to the heap, and each of the integers
that belong to the array will be added contiguously to the heap.

If a struct object has a reference type, the struct is placed on the stack, the reference
type is placed on the heap, and a pointer to the address of the reference type on the heap is
stored in the variable on the heap.

Understanding the various types of memory used in C# 85

The stack is faster than the heap. It is arranged like a stack data structure. When you
execute a method, the method is added to the stack in a stack frame. The local variables
are then added to the stack frame on top of each other. When the method has completed
execution, the memory is reclaimed immediately. The heap, however, must keep track of
memory allocations, pointers, and reference counters, whereas the stack does not have to
manage itself in this way.

Tip
With the stack, you can simply pop things on and off the stack. To increase the
performance of your applications, look for heap usage in your applications.
Measure the performance when using the stack and using the heap. If the stack
is faster, then replace heap usage with stack usage.

Keep in mind that the cost of using memory is not at the time of allocation but at the
point of deallocation. The deallocation of items on the stack is more predictable than the
deallocation of items on the heap. In some cases, the garbage collector is doing similar
pointer arithmetic when freeing memory in generation 0 or generation 1.

Memory calls are also expensive because they are placed on the stack but may also
reference the heap. Method performance is affected by code that does not execute.
Therefore, you should refactor your methods to be as small as possible and remove any
code that will not be executed, such as dead code that is no longer used. This will reduce
the number of local variables in use and thereby reduce the stack size. And so, you will
eliminate performance loss.

The heap
The heap is used to store reference types. They are called reference types because they are
reference-counted. To be reference-counted means that a count of variables referencing
the allocated reference type is being kept by the runtime. When the reference count
diminishes to zero, the reference type is deallocated by the garbage collector. For example,
if I have a product object in memory and two variables on the stack pointing to that
object, the product object has a reference count of two.

You may be surprised to learn that the allocation of objects in C# can sometimes be faster
than in C++. The price is paid in C# when it comes to garbage collection. So, instantiating
many objects does not cost us much at all, but the cleanup of those objects does. This
means that the more objects you create, the harder the garbage collector must work, which
negatively impacts your application's performance. Therefore, avoid using reference types
if alternative value types can be used. Do not create objects if you do not need to.

86 Predefined Data Types and Memory Allocations

When a new object is instantiated, it is placed on the heap. The variable is placed on the
stack and is assigned a pointer to the address of the object on the heap.

Arrays of reference types are placed on the heap. The variable that references the array
will be placed on the stack and it will be assigned to the memory address of the array on
the heap. The array itself will contain a contiguous list of memory addresses, as shown in
Figure 3.5:

Figure 3.6 – The heap displaying objects on the heap and their memory addresses within an array

These memory addresses are pointers to the memory addresses of reference type address
locations on the heap. This is because when an array is placed on the heap that contains
reference types, each of the reference types in the array is assigned to its own area of
memory. The memory addresses of the reference types are then placed inside the array.

Note
Array performance has been prioritized, followed by string performance.
Arrays are often faster than lists and other data structures. But it is best to use
benchmarks to decide which is better for your situation and choose the data
structure that performs best for you.

Understanding the various types of memory used in C# 87

When it comes to maximizing the performance of memory usage, you need to ensure that
objects on the heap are placed as close to their reference pointers as possible. The reason
for this is to reduce the required CPU cycles when locating the memory that is being
referenced by the pointer. The rule of thumb for memory performance is that the further
memory is from its pointer, the more it costs you in CPU performance. Although, it must
be said that predictive memory access reduces this greatly, and memory usage can be
dependent on the system page file setup.

Note
The order in which you instantiate arrays, instantiate objects, assign values to
objects, and assign values and objects to arrays affects the performance of your
applications. This will be down to the placement of those items within memory.
Remember that items on the heap should be close to their memory pointers,
which may be stored either on the heap or on the stack.

As already stated, object deallocation on the heap is slower than deallocation on the stack.
The more objects you add to the heap, the slower your performance will be. The reason for
this is that you give the garbage collector more work to do due to the frequent allocation and
deallocation. It is this cycle of allocation and deallocation that causes the performance issues.

There are two heaps within the main heap:

• Small object heap: When a new object is instantiated, it is placed on the small
object heap as generation 0 if it is less than 80,000 bytes in size.

• Large object heap: When a new object is instantiated that is 80,000 bytes or larger
in size, it is added to the large object heap. Large objects are always allocated in
generation 2 because they are only garbage collected during a generation 2 collection.

We will be looking at the heap in more detail when we look at garbage collection in
Chapter 4, Memory Management.

Building a stack versus building a heap (example
project)
Now, we will write a simple project that will get the number of ticks for object and struct
instantiation with and without reference type properties. Start by adding a new .NET 6
console application called CH03_StackAndHeap. Then, add the BenchmarkDotNet
nuget package. You will need to use the following using statements:

using System;

using System.Diagnostics;

88 Predefined Data Types and Memory Allocations

using System.Security.Cryptography;

using BenchmarkDotNet.Attributes;

using BenchmarkDotNet.Running;

Then, update the Main(string[] _) method as shown:

static void Main(string[] _)

{

 BenchmarkRunner.Run<BenchmarkTests>();

}

In the method, we are calling the BenchmarkTests class that contains our benchmarks.
Now, add the ClassNoReference class:

internal class ClassNoReferences

{

 public ClassNoReferences(

 int id,

 decimal price,

 DateTime purchaseDate

)

 {

 Id = id;

 Price = price;

 PurchaseDate = purchaseDate;

 }

 public int Id { get; private set; }

 public decimal Price { get; private set; }

 public DateTime PurchaseDate { get; private set; }

}

This class has three value type properties and no reference type properties. Add the
ProcessClassNoReferences() method in the BenchmarkTests class:

[Benchmark]

public void ProcessClassNoReferences()

{

 var _ = new ClassNoReferences()

 {

Understanding the various types of memory used in C# 89

 1,

 1.50M

 DateTime.Now

 };

}

The ProcessClassNoReferences() method declares a new instance of the
ClassNoReferences class. It will be used as a benchmarking method. Add the
StructNoReferences class:

internal class StructNoReferences

{

 public StructNoReferences(

 int id,

 decimal price,

 DateTime purchaseDate

)

 {

 Id = id;

 Price = price;

 PurchaseDate = purchaseDate;

 }

 public int Id { get; private set; }

 public decimal Price { get; private set; }

 public DateTime PurchaseDate { get; private set; }

}

This struct has three value type properties and no reference types. Let's add the
ProcessStructNoReferences() method to the BenchmarkTests class:

[Benchmark]

public void ProcessStructNoReferences()

{

 var _ = new StructNoReferences()

 {

 1,

 1.50M,

 DateTime.Now

90 Predefined Data Types and Memory Allocations

 };

}

The ProcessStructNoReferences() method will be used as a benchmark, and it
creates a new StructNoReferences struct. Next, add the ClassWithReferences
class:

class ClassWithReferences

{

 public ClassWithReferences(

 int id,

 string name,

 decimal price,

 DateTime purchaseDate,

 Dictionary<string, string> keyValueData

)

 {

 Id = id;

 Name = name;

 Price = price;

 PurchaseDate = purchaseDate;

 KeyValueData = keyValueData;

 }

 public int Id { get; private set; }

 public string Name { get; private set; }

 public decimal Price { get; private set; }

 public DateTime PurchaseDate { get; private set; }

 public Dictionary<string, string> KeyValueData

 { get; private set; }

}

This class has value and reference type properties. Now, we will add the
ProcessClassWithReferences() method:

[Benchmark]

public void ProcessClassWithReferences()

{

 var _ = new ClassWithReferences(

Understanding the various types of memory used in C# 91

 Id = 1,

 "The quick brown fox jumped over the lazy dog.",

 1.50M,

 DateTime.Now,

);

}

The ProcessClassWithReferences() method will be used as a benchmark,
and it creates an instance of ClassWithReferences. Next, we will add the
StructWithReferences struct:

internal struct StructWithReferences

{

 public StructWithReferences(

 int id,

 string name,

 decimal price,

 DateTime purchaseDate,

 Dictionary<string, string> keyValueData

)

 {

 Id = id;

 Name = name;

 Price = price;

 PurchaseDate = purchaseDate;

 KeyValueData = keyValueData;

 }

 public int Id { get; private set; }

 public string Name { get; private set; }

 public decimal Price { get; private set; }

 public DateTime PurchaseDate { get; private set; }

 public Dictionary<string, string> KeyValueData

 { get; private set; }

}

92 Predefined Data Types and Memory Allocations

This struct has value and reference types. And now, we will add our final method,
ProcessStructWithReferences():

[Benchmark]

public void ProcessStructWithReferences()

{

 var _ = new StructWithReferences()

 {

 Id = 1,

 Name = "Discard",

 Price = 1.50M

 };

}

The ProcessStructWithReferences() method will be used as a benchmark, and it
creates a new StructureWithReferences struct.

Compile the code in release mode. Then, run the executable. Your code will then be
benchmarked, and you will see the following benchmark report:

Figure 3.7 – The benchmark report comparing structs and classes with and without references

Understanding the various types of memory used in C# 93

The benchmark results reveal the following insights:

• Processing a class with no references is faster than processing a struct with
no references

• Processing a class with references is slower than processing a struct with references

As the benchmark results show, depending on the scenario, a struct can be faster than
a class and vice versa. This is a good reason for benchmarking code, as you could be
thinking your code is optimal when in fact it is slow.

So, how do you choose whether to use a struct or a class?

Choosing between a struct and a class
As a rule of thumb, Microsoft recommends that we define our types as classes. If a type
is embedded in other objects or if it is short-lived, then consider using a struct. When
defining a struct, it should have the following characteristics:

• Logically, the struct represents a single value.

• The struct instance size is under 16 bytes.

• The struct is immutable.

• The struct is not frequently boxed and unboxed.

A struct is a value type. Value types are allocated on the stack or inline inside containing
types. A value type will be deallocated when the stack is unwound or during the
deallocation of the containing type. Value types are not garbage collected. The allocation
and deallocation of value types on the stack are considered cheap. However, when a
value type is boxed, it is wrapped in a reference type or cast to an interface, and this
causes a performance slowdown. A performance slowdown is also experienced when a
value type is unwrapped from inside a reference type, which is known as unboxing. You
should do your best to avoid boxing and unboxing value types for performance reasons.
When you assign value types, a complete copy of the value is passed into the assignment.
The assignment of large value types can be more expensive than the assignment of large
reference types.

94 Predefined Data Types and Memory Allocations

A class is a reference type. Reference types are objects allocated on the heap with a pointer
to the memory location placed on the stack. When a reference type comes to the end of
its life, it is garbage-collected. The allocation and deallocation of reference types on the
heap are considered expensive when compared with the allocation and deallocation of
value types on the stack. Unlike value types, no boxing occurs when casting reference
types. When you assign a reference type, a copy of the reference is passed to the assigned
variable. The assignment of large reference types can be cheaper than the assignment of
large value types.

An array of reference types contains pointers to the actual types on the heap. An array
of value types contains the actual values of those reference types. The allocation and
deallocation of value type arrays are cheap, and they have better locality when compared
to arrays of reference types, as the value type values are inline.

Let's move on to look at passing by value and passing by reference.

Passing by value and passing by reference
When passing values into a method or constructor, there are two ways to do this. They are
passing by value and passing by reference:

• Passing by value: By default, all value types are passed by value into constructors
and methods using copy semantics. This means that a copy is made of the value
being passed in. The original value remains unchanged, and it is the copy that is
used with the constructor or method.

• Passing by reference: When a reference type is passed into a constructor or
method, a variable is made on the stack that points to the same object on the
heap. So, both the variable that is passed in and the copied variable used inside the
constructor or method operate on the same object in memory.

Now that we know what passing by value and passing by reference are, let's write a simple
program that demonstrates what we have learned.

Building a pass-by-reference example program
We are going to write a very simple program that demonstrates the effects of passing
by value and passing by reference. Add a new .NET 6 console application called CH03_
PassByValueAndReference. Then, modify the Main(string[] _) method
as follows:

static void Main(string[] args)

{

Passing by value and passing by reference 95

int x = 0;

Console.WriteLine("Chapter 3: Pass by value and reference");

Console.WriteLine($"=====================================");

Console.WriteLine($"int x = 0;");

AddByValue(x);

Console.WriteLine($" AddByValue(x): {x}");

AddByReference(ref x);

Console.WriteLine($"AddByReference(x): {x}");

}

Here, we have declared an integer called x and assigned it a value of 0. Some text is output
to the console window, and we call two methods and output the value of x after they
have been called. Let's add the first method that is called – the AddByValue(int x)
method:

static void AddByValue(int x)

{

 x++;

}

As you can see, it is a very simple method that increments the value for the variable passed
in. Now, let's repeat the same process, but this time, we will pass the value by reference:

static void AddByReference(ref int x)

{

 x++;

}

Run the program, and you should see the following output:

Figure 3.8 – The value of x after incrementing using pass by value and pass by reference

We can see that the original value is not updated when we pass by value. But it is
updated when we pass by reference. We will now extend the application to cover the in
parameter modifier.

96 Predefined Data Types and Memory Allocations

Arguments passed with the in keyword are passed by reference. However, in
arguments cannot be modified. Let's demonstrate this – add a new method called
InParameterModifier():

static void InParameterModifier()

{

 int argument = 13;

 InParameterModifier(argument);

 Console.WriteLine(argument);

}

In the InParameterModifier() method, we create an integer and assign to it a
value of 13. We then call a method of the same name and pass in the variable as an
argument. Then, we print out the value to the console window. Now, we will write the
InParameterModifier(in int argument) method:

static void InParameterModifier(in int argument)

{

 // Error CS8331: Cannot assign to variable 'in int'

 // because it is a readonly variable.

 // argument = 47;

}

The code is commented out because if we assign a value to the argument, we will get the
compiler warning you see in the comment. Call the method from the Main(string[]
_) object and run the program. You will see that the variable remains at 13, as the
compiler prevented us from being able to change it in the called method. Finally, in the
next part of our program, we will look at the out keyword.

An out argument does not have to be initialized before being passed in. This is different
from a ref value that must be initialized before it is passed in. All out parameters are
passed by reference. Any operation carried out on the argument inside the method
becomes available to the external code that can see the argument. An example will make
this easier to understand.

We will be adding two methods to demonstrate how the out parameter works. Add a new
method called OutParameterModifier() to the Program class:

static void OutParameterModifier()

{

Boxing and unboxing 97

 int x;

 OutParameterModifier(out x);

 Console.WriteLine($"The value of x is: {x}.");

}

In the preceding code, we declare an integer variable. Then, we call a method that
has an out parameter and we pass in our integer with its default value of 0. Next,
we print out the value of the integer once the method has returned. Now, add the
outParameter(out x) method:

static void OutParameterModifier(out int argument)

{

 argument = 123;

}

Here, we are simply setting the argument to 123 and exiting. Call the
OutParameterModifier() method from Main(string[] _). If you run the code,
you will see that our integer was updated to the value of 123 inside the method that we
called. This is shown in Figure 3.9:

Figure 3.9 – Our integer has been updated inside the method we passed it into

In the following section, we will look at boxing and unboxing.

Boxing and unboxing
Boxing and unboxing variables negatively impact the performance of your applications. To
improve your application's code, you should do your best to avoid boxing and unboxing –
especially when your code is mission-critical. In this section, we will look at what happens
when you package (that is, box) a type.

98 Predefined Data Types and Memory Allocations

Performing boxing
When a variable is boxed, you are wrapping it in an object that gets stored on the heap. As
you know, objects on the heap incur costs, as they must be managed by the runtime. On
top of this, you also increase the memory used by the variable, as well as the number of
CPU cycles needed to process the variable.

An empty class definition is 12 bytes on a 32-bit operating system and 24 bytes on a
64-bit operating system. This may not sound like a lot. But if a value type is boxed that
does not need to be boxed, you will be wasting 12 or 24 bytes of memory unnecessarily.

Now, we will look at what happens when you unbox a variable

Performing unboxing
A variable is copied to the evaluation stack that references an object on the heap. The
variable is then unboxed (that is, unpacked) and the variable is placed on the evaluation
stack. Then, whatever needs to be done with the unboxed variable can be done. Once all
the work has been done with the variable, it then must be boxed up again and placed on
the heap. This will create a new object on the heap, and the variable on the stack will be
updated with its memory location.

Building a boxing-and-unboxing example program
Now, we will write a simple .NET 6 console application that shows the time difference
between not boxing and boxing/unboxing on performance using BenchmarkDotNet.
First, start a new .NET 6 console application and call it CH03_BoxingAndUnboxing.
You will need to add the BenchmarkDotNet package and the following two namespaces:

using System;

using System.Diagnostics;

using System.Security.Cryptography;

using BenchmarkDotNet.Attributes;

using BenchmarkDotNet.Running;

We need these namespaces to perform benchmarking. In the Main(string[] _)
method, add the following line:

BenchmarkRunner.Run<BoxingAndUnboxingBenchmarkTests>();

Boxing and unboxing 99

This line of code starts the benchmarks running. Next, add a new class called
BoxingAndUnboxingBenchmarkTests:

public class BoxingAndUnboxingBenchmarkTests { }

This class will hold two benchmarking methods called NonBoxingUnboxingTest()
and BoxingUnboxingTest(). Add the NonBoxingUnboxingTest() method:

[Benchmark]

public void NonBoxingUnboxingTest()

{

 int z = 0, a = 4, b = 4;

 z = a + b;

}

In this method, we declare and assign three integers: z = 0, a = 1, and b = 6.
We then add a and b together and assign the resulting value to z. Now, add the
BoxingUnboxingTest() method:

[Benchmark]

public void BoxingUnboxingTest()

{

 object a = 4, b = 4;

 int z;

 z = (int)a + (int)b;

}

This time, we declare and assign two objects: a = 4 and b = 4. We also declare an
integer: z. Then, we cast a and b to integers, add them together, and assign the result to
the z integer variable.

100 Predefined Data Types and Memory Allocations

Perform a release build of your code. Then, open a command line and navigate to
your executable. Run your executable from the command line, and you should see the
following summary:

Figure 3.10 – The boxing-and-unboxing example project addition output

As you can see from the screenshot in Figure 3.10, unboxing does add overhead to the
performance of your applications.

If you open the Developer Command Prompt for Visual Studio (VS) 2019 and type
ILDASM, this will load the intermediate language disassembler. Open the DLL file in your
build folder, and expand the tree until you see the Main : void(string[]) line, as
shown in Figure 3.11:

Boxing and unboxing 101

Figure 3.11 – The Intermediate Language Disassembler (ILDASM)

Double-click the Main method. This will bring up the window that shows the
disassembled intermediate language for our Main(string[] _) method, as shown in
Figure 3.12:

Figure 3.12 – The disassembled intermediate language for our Main(string[] _) method

102 Predefined Data Types and Memory Allocations

Study the disassembled code. When you see the box command, the value type is being
wrapped inside of an object, which is a reference type that gets placed on the heap. And
when you see the unbox.any command, the value type is being unwrapped from the
object and assigned to an int value type that belongs on the stack.

You now understand why boxing and unboxing affect the performance of your
applications, and now we have come to the end of the chapter. In the next chapter, we
will be focusing on how the garbage collector works and what we can do to improve its
performance. But first, let's summarize what we have learned. You are then encouraged to
answer the questions that follow and further your reading on this subject.

Summary
We started the chapter by looking at the various predefined .NET data types. First, we
described the various value types, and then we moved on to the predefined reference
types. Then, we concluded our discussion of predefined .NET data types by exploring
static types.

You learned that value types live on the stack. But if they are part of an array, they are
placed on the heap with the array that happens to be a reference type. You also learned
that reference types live on the heap and that they have pointers to them in the form of
variables that live on the stack.

Next, we looked at the different types of memory used in C#. First, we looked at the stack.
Then, we looked at the heap, which consists of the small object heap and the large object
heap. After looking at the differences between the stack and the heap, we saw that the
stack performs much faster than the heap. The reason for this is that the stack memory
does not have to be managed by the runtime. It is simply popped onto the stack when it
is needed and popped off the stack when it is not needed. In contrast, the heap must be
managed by the runtime that allocates the objects – it keeps a reference count of all the
variables that reference those objects, and then it deallocates the objects when they are no
longer needed.

We then looked at passing by value and passing by reference. Values passed by value have
a copy taken of them that is passed into the constructor or method. This copy is utilized,
and the original value remains untouched. When passed by reference, a copy of a value
is made and placed on the stack, and it is assigned the memory location of the object on
the heap.

Finally, we looked at the boxing and unboxing of variables and why this negatively
impacts your application's performance.

Questions 103

With all that you have learned in this chapter, you can reduce the amount of memory
your applications use by using the right types, and you can reduce the number of ticks
per operation by avoiding boxing and unboxing. And now that you know how memory
allocations work, you can improve performance by keeping methods small and using the
stack instead of the heap when it is practical to do so.

In the next chapter, we will be learning more about garbage collection.

Questions
1. List the predefined .NET value types.
2. List the predefined reference types.
3. What does the runtime have to do before a static type can be accessed and utilized?
4. Is there a physical difference in the memory that is used that makes the stack run

faster than the heap?
5. Why is the stack faster than the heap?
6. Explain why strings are immutable.
7. What is the approximate size of objects placed on the small object heap?
8. What is the approximate size of objects placed on the large object heap?

Further reading
• The C# type system

• https://docs.microsoft.com/en-us/dotnet/csharp/
programming-guide/types/

• C# Different Types of Heap Memory

• https://vivekcek.wordpress.com/tag/stub-heap/

• Drill Into .NET Framework Internals to See How the CLR Creates Runtime Objects

• https://web.archive.org/web/20140724084944/http://msdn.
microsoft.com/en-us/magazine/cc163791.aspx

• Passing Parameters (C# Programming Guide)

• https://docs.microsoft.com/en-us/dotnet/csharp/
programming-guide/classes-and-structs/passing-parameters

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/
https://vivekcek.wordpress.com/tag/stub-heap/
https://web.archive.org/web/20140724084944/http://msdn.microsoft.com/en-us/magazine/cc163791.aspx
https://web.archive.org/web/20140724084944/http://msdn.microsoft.com/en-us/magazine/cc163791.aspx
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/passing-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/passing-parameters

104 Predefined Data Types and Memory Allocations

• Boxing and Unboxing (C# Programming Guide)

• https://docs.microsoft.com/en-us/dotnet/csharp/
programming-guide/types/boxing-and-unboxing

• The large object heap on Windows systems

• https://docs.microsoft.com/en-us/dotnet/standard/garbage-
collection/large-object-heap

• .NET Memory Allocations and Performance

• https://www.youtube.com/watch?v=aylUPfOVM90

• Replacing AppDomain in .NET Core

• https://www.michael-whelan.net/replacing-appdomain-in-
dotnet-core/

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/large-object-heap
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/large-object-heap
https://www.youtube.com/watch?v=aylUPfOVM90
https://www.michael-whelan.net/replacing-appdomain-in-dotnet-core/
https://www.michael-whelan.net/replacing-appdomain-in-dotnet-core/

4
Memory

Management
In this chapter, we will be looking at object generations and how to avoid memory issues,
followed by a discussion on strong and weak references. Then, we will look at finalization
and how we can suppress finalization by implementing the IDisposable pattern to
clean up managed and unmanaged resources. Finally, we will take a high-level look at
ways to avoid memory leaks.

In this chapter, we will be covering the following topics:

• Object generations and avoiding memory issues: In this section, we learn
about object generations and System.OutOfMemoryException. We learn
how to predict out-of-memory errors before they happen by using the System.
Runtime.MemoryFailPoint class.

• Understanding long and short weak references: In this section, we learn about
long and short weak references and how they are affected by the garbage collector.

• Finalization: In this section, we look at how to use finalizers to clean up resources,
and understand why we have no control over if and when they will run.

106 Memory Management

• Implementing the IDisposable pattern: In this section, we look at how we can
have more control over the cleanup of managed and unmanaged resources by
implementing the IDisposable pattern.

• Preventing memory leaks: In this section, we look at how the use of the
Component Object Model (COM) and managed events can be sources that
generate memory leaks and what we can do to avoid memory leaks from being
generated. We will be using Microsoft Excel and JetBrains dotMemory in this
section to see how leaks can be generated and to see how using a memory profiler
can be very useful in identifying memory leaks and their sources.

By the end of this chapter, you will have gained skills in the following areas:

• Understanding object generations

• Understanding how objects are disposed

• Understanding why it is best to avoid finalizers and implement IDisposable

• Understanding how to prevent memory leaks arising from the use of unmanaged
COM libraries and components and from using events

• Using anonymous methods, long weak references, and short weak references to
improve garbage collection

Technical requirements
To complete the steps in this chapter, there are some technical requirements, as
outlined here:

• Visual Studio 2022

• JetBrains dotMemory

• Source code: https://github.com/PacktPublishing/High-
Performance-Programming-in-CSharp-and-.NET/tree/master/
CH04

Object generations and avoiding
memory issues
There are three object generations in the .NET runtime, as follows:

• Generation 0

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH04
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH04
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH04

Object generations and avoiding memory issues 107

• Generation 1

• Generation 2

Generation 0 is the youngest generation and holds short-lived objects. Objects that are less
than 80,000 bytes are generation 0 objects that get placed on the small object heap (SOH)
when they are instantiated. Objects that are 80,000 bytes or larger are usually generation
2 objects and live on the large object heap (LOH). Generation 1 objects are those objects
that survived generation 0 garbage collection and received a promotion to generation 1.

Generation 0 is where most of the garbage collection takes place. Objects that do not
get collected when they are generation 0 will get promoted to generation 1 to make room
for more generation 0 objects to be added to the heap. If generation 0 and 1 become full,
then generation 1 objects are promoted to generation 2, and generation 0 objects are
promoted to generation 1. If generations 0, 1, and 2 become full so that no more objects
can be added to the heap, you then end up with a System.OutOfMemoryException-
type exception.

We are now going to write a very simple program that will throw a System.
OutOfMemoryException-type exception. Follow these next steps:

1. Start a new .NET 6 console application project called CH04_
OutOfMemoryExceptions. Add the following using statements to the
Program.cs file:

using System.Text.RegularExpressions;

using System;

using System.Collections.Generic;

using System.IO;

using System.Runtime;

using System.Text;

2. Add the following method calls to the Main method:

DataExportToCsv();

ReadCsvBroken();

ReadCsvPredictive();

Console.ReadKey();

108 Memory Management

3. The DataExportToCsv() method builds up a very large data file.
ReadCsvBroken() reads in the comma-separated values (CSV) file, but the
string limit is blown for the imported data file when the whole file is read at once.
This will generate a System.OutOfMemoryException-type exception. The
exception is avoided in the ReadCsvPredictive() method, as the method
instantiates the MemoryFailPoint class to ensure that the data read of the
file will not generate an exception. If the operation does generate a System.
OutOfMemory exception-type exception, then the MemoryFailPoint object
will raise an OutOfMemoryException-type exception. This saves memory, time,
central processing unit (CPU) usage, and power consumption. Finally, we wait for
the user to press any key before exiting. Add the following member variable to the
top of the Program class:

private static string _filename

= @"G:\Temp\SampleData.csv";

4. This will be the file we will write to and read from. Add the following
DataExportToCsv() method:

private static void DataExportToCsv()

{

 int row = 0;

 try

 {

 File.Delete(_filename);

 using (FileStream fs = new FileStream(_filename,

 FileMode.OpenOrCreate))

 {

 fs.Write(Encoding.Unicode.GetBytes("Id,

 Name, Description\n"));

 for (int i = 0; i <= 491616373; i++)

 {

 row = i;

 Console.WriteLine($"Writing row {row} to

 CSV data. There are {491616373-row}

 rows remaining.");

 fs.Write(Encoding.Unicode.GetBytes

 ($"{i}, Name {i}, Description {i}\n"));

 }

Object generations and avoiding memory issues 109

 }

}

catch (Exception ex)

 {

 Console.WriteLine($"DataExportToCsv:

 {ex.GetBaseException().Message}")

 }

}

5. This code writes 491,616,373 lines of data to a CSV file. Add the following
ReadCsvBroken() method:

private static void ReadCsvBroken()

{

 int row = 0;

 try

 {

 string csv = File.ReadAllText(_filename);

 }

 catch (OutOfMemoryException oomex)

 {

 Console.WriteLine($"ReadCsvBroken:

 {oomex.GetBaseException().Message}");

 }

}

6. The ReadCsvBroken() method tries to read the massive 44.2 gigabytes
(GB) CSV file all at once. However, the file produces a string that is
too big to be assigned to a string variable. This operation throws a
System.OutOfMemoryException-type exception. Add the following
ReadCsvPredictive() method:

private static void ReadCsvPredictive()

{

 int row = 0;

 try

 {

 string alphabet = "abcdefghijklmnopqrstuvwxyz";

 using (new MemoryFailPoint(alphabet.length))

110 Memory Management

 {

 string alpha = alphabet;

 }

 FileInfo fi = new FileInfo(_filename);

 Int length = unchecked((int)fi.length);

 using (new MemoryFailPoint(length))

 {

 string csv = File.ReadAllText(_filename);

 }

 }

 catch (OutOfMemoryException oomex)

 {

 Console.WriteLine($"ReadCsvPredictive:

 {oomex.GetBaseException().Message}");

 }

}

7. This code uses predictive memory checking using the MemoryFailPoint class.
We show it working for the alphabet string, and we show that it highlights
an error and fails with an OutOfMemoryException-type exception when
the length of the file contents is assigned to the length variable that is passed
into the MemoryFailPoint constructor. We use the unchecked struct since
the length of the file is a long value, and this value to too big to be assigned
to an int data type. If we used the checked struct instead, we would have an
ArithmeticOverflowException-type exception.

8. Building and running the code takes hours. I recommend you build the code in
Release mode, and then run the executable from a command window. The code
will successfully build up the CSV file and save it. When the file contents are read
all at once, they will generate an OutOfMemoryException-type exception. Then,
the program will do a precheck prior to loading the file and will fail before the file
read is attempted with a more detailed OutOfMemoryException-type exception.

Predicting memory exceptions saves time and improves application performance, as you
are not wasting CPU cycles and memory performing an operation that is ultimately going
to fail.

We have seen how easy it is for an application to run out of memory and how we can
predict and prevent memory exceptions. So, let’s now move on to discuss strong and
weak references.

Understanding long and short weak references 111

Understanding long and short weak
references
In the .NET runtime, there are two types of references: long weak references and short
weak references. These are described in more detail here:

• Long weak reference: When the Finalize() method has been called on an
object, a long weak reference is retained in memory. You specify true in the
WeakReference constructor to define a long reference. A long weak reference can
be recreated, although its state can be unpredictable. A short weak reference will
be applied when an object’s type does not have a Finalize() method. The weak
reference will only remain until its target is collected sometime after the finalizer is
run. You will need to cast the target property of a WeakReference constructor
to the type of an object if you want to create a strong weak reference that will be
reused. When the object is collected, the Target property will be null. If it is not
null, then you can continue to use the object because the application has regained
a strong reference to it.

• Short weak reference: A weak reference is a managed object that will be garbage-
collected the same as any other managed object. The parameterless constructor for
WeakReference is a short weak reference. When the garbage collector reclaims a
short weak reference, its target becomes null.

A long weak reference protects referenced objects from garbage collection, and a short
weak reference does not protect referenced objects from garbage collection. This means
that when garbage collection executes, the long weak referenced objects will not be
garbage-collected, but the short weak referenced objects will be garbage-collected. We will
demonstrate this with a code example.

Our code example will show both long and short weak references at work. Follow these
next steps:

1. Start by adding a new .NET 6 console application called CH04_WeakReferences.
Add the following class called ReferenceObject:

internal class ReferenceObject

{

public int Id { get; set; }

public string Name { get; set; }

}

112 Memory Management

This class will be our reference object that we will be adding to two different
object managers.

2. Add a new class called LongWeakReferenceObjectManager. Then, add the
following list field:

private readonly List<ReferenceObject> Objects

= new List<ReferenceObject>();

3. Our read-only Objects list will contain several ReferenceObject types. Now,
add the following method to add items to the list:

public void Add(ReferenceObject o)

{

Objects.Add(o);

}

4. This method adds a ReferenceObject object to the list of reference objects.
Then, the next task is to add a method that will print a list of stored objects to the
console, as follows:

public void ListObjects()

{

 Console.WriteLine("Long Weak Reference Objects: ");

 foreach (var reference in Objects)

 Console.WriteLine($"- {reference.Name}");

}

The ListObjects() method prints out the contents of the list to the console
window. That concludes our LongWeakReferenceObjectManager class.

5. Now, add a class called ShortWeakReferenceObjectManager. At the top of
the class, add the following list field:

private readonly List<WeakReference<ReferenceObject>>

 Objects

= new List<WeakReference<ReferenceObject>>();

Notice with the list that the ReferenceObject object is wrapped in a
WeakReference object.

Understanding long and short weak references 113

6. Now, add a method to add items to the list, as follows:

public void Add(ReferenceObject o)

{

Objects.Add(new WeakReference<ReferenceObject>(o));

}

This method wraps the passed-in ReferenceObject object in a
WeakReference object and assigns it to the list.

7. We now add the ListObjects() method, as follows:

public void ListObjects()

{

Console.WriteLine("Short Weak Reference Objects: ");

foreach (var reference in Objects)

{

 reference.TryGetTarget(

 out ReferenceObject referenceObject

);

 if (referenceObject != null)

 Console.WriteLine($"- {referenceObject.Name}");

}

}

The ListObjects() method prints out to the console window all the weak
objects that are stored in the list. Our focus now moves to the Program class.

8. Add the following two fields to the top of the Program class:

private static readonly StrongReferenceObjectManager

 StrongReferences = new StrongReferenceObjectManager();

private static readonly WeakReferenceObjectManager

 WeakReferences = new WeakReferenceObjectManager();

These are our read-only strong and weak object managers that we will use
to demonstrate strong and weak references in action, with regard to the
garbage collector.

114 Memory Management

9. Update the Main(string[] _) method by adding the following three
method calls:

TestLongWeakReferences();

TestStrongReferences();

TestShortWeakReferences();

ProcessReferences();

The TestLongWeakreferences(), TestStrongReferences(), and
TestWeakReferences() methods build up our lists of strong referenced
objects and weak referenced objects respectively.

10. Add the TestStrongReferences() method, as follows:

private static void TestStrongReferences()

{

var o1 = new ReferenceObject() {

 Id = 1, Name = "Object 1"

};

var o2 = new ReferenceObject() {

 Id = 2, Name = "Object 2"

};

var o3 = new ReferenceObject() {

 Id = 3, Name = "Object 3"

};

StrongReferences.Add(o1);

StrongReferences.Add(o2);

StrongReferences.Add(o3);

}

This method adds three ReferenceObject objects to the
StrongReferences list.

11. Next, add the TestWeakReferences() method, as follows:

private static void TestWeakReferences()

{

var o1 = new ReferenceObject() {

 Id = 1, Name = "Object 4"

};

Understanding long and short weak references 115

var o2 = new ReferenceObject() {

 Id = 2, Name = "Object 5"

};

var o3 = new ReferenceObject() {

 Id = 3, Name = "Object 6"

};

WeakReferences.Add(o1);

WeakReferences.Add(o2);

WeakReferences.Add(o3);

o1 = null;

o2 = null;

o3 = null;

}

This method adds three weak referenced objects to the WeakReferences list and
then sets the objects it instantiated to null so that they will be garbage-collected.

12. Finally, add the ProcessReferences() method, as follows:

private static void ProcessReferences()

{

int x = 0;

while(x < 10)

{

 StrongReferences.ListObjects();

 WeakReferences.ListObjects();

 Thread.Sleep(2000);

 GC.Collect();

 x++;

}

}

The ProcesseReferences() method loops 10 times. During each iteration,
the ListObjects() method is called on the StrongReferences and
WeakReferences fields. The program sleeps for 2 seconds, and then the garbage
collector is executed manually.

116 Memory Management

13. It is now time to run the program. When you run the program, you should see the
following output:

Figure 4.1 – Weak references’ project output

As you can see from Figure 4.1, on the first iteration of the loop, both strong and weak
reference objects exist, and the names of those objects are printed in the console window.
However, after garbage collection is called, the weak references are garbage-collected,
and so, from the second iteration onward, only the strongly referenced objects remain
in memory.

A weakly referenced object’s lifespan is not extended as it is for strong references.
This means that they can be garbage-collected once all strong references have gone out
of scope.

Objects that are large but cheap to rehydrate on-demand benefit from weak references.

Finalization 117

Note
To improve the performance of your applications, avoid using weak references
on many small objects as they can take up more memory space than the objects
they wrap, thus adding performance overhead. But if you are working with
many large expensive objects, using cached weak references may help improve
your application’s performance.

That concludes our look at strong and weak references. Let’s move our focus and attention
to finalization in C#.

Finalization
In C#, there is no direct way of destroying an object. The nearest thing we have is
finalization. A finalizer in C# is the C# equivalent of a destructor in C++. Except in C#,
you have no control over if and when it will run this down to the garbage collector to
make that decision.

Note
The terms finalizer and destructor are used interchangeably in C#. A finalizer is
where the user-defined finalizer code is run. After the finalizer in an object is
run, it is once again considered alive and the garbage collector will then finally
collect the object. This means an object is actually marked “collectable”
twice if it has a finalizer defined.

Finalization is used by an object to release resources and perform other housekeeping
operations prior to the object being garbage-collected. Cleanup operations to release
unmanaged resources held by an object can be performed by overriding the protected
Finalize() method.

You have to override the Finalize() method for the garbage collector to mark types
derived from Object for finalization. When you override the Finalize() method,
an entry for the instance is placed in a finalization queue. Before reclaiming memory, the
Finalize() method is called for each object instance in the finalization queue. Once
an object’s Finalize() method has been run, then its memory can be reclaimed by the
garbage collector.

The Finalize() method is not called if GC.SupressFinalize() has been called
during the disposing of the object’s resources, but the Finalize() method will be called
automatically when an object is discovered to be inaccessible, and during application
domain (AppDomain) shutdown (even if the object is accessible).

118 Memory Management

Note
AppDomains isolate applications from one another, but their usage is very
expensive. In .NET 5+, some AppDomain application programming
interface (API) surface is exposed to help ease migration from older
frameworks. Some functionality has been removed, and so will either do
nothing or throw an exception. Microsoft has no plans to add support for
adding extra AppDomains. The present advice from Microsoft to implement
code isolation is to use separate processes or containers and use the
AssemblyLoadContext class for dynamic assembly loading.

Finalize() methods only run once unless GC.SuppressFinalize() has not been
called and GC.ReRegisterForFinalize() is called; then, the Finalize() method
can be called again.

When overriding Finalize(), there are a few things to keep in mind, as follows:

• You have no control over when the Finalize() method will be called.

• To guarantee the release of managed and unmanaged resources within your
instance, implement the IDisposable.Dispose() method using the
IDisposable pattern. There is no guarantee of the order in which finalizers will
run.

• Finalizers run on an unspecified thread, and they implicitly call the Finalize()
method on the base class.

To avoid the need to override the Finalize() method and for us to ensure the
cleanup of our managed and unmanaged resources, we will look at implementing the
IDisposable pattern.

Using finalization
We are going to write a sample application that demonstrates the use of Finalize().
Then, we will modify the program to implement the IDisposable pattern and suppress
the call to Finalize(), while ensuring the deterministic release of our managed and
unmanaged resources. Follow these next steps:

1. Start a new .NET 6 console application called CH04_Finalization. Add a new
internal class called Product. Then, add the following properties:

public int Id { get; set; }

public string Name { get; set; }

public string Description { get; set; }

public decimal UnitPrice { get; set; }

Finalization 119

2. We have created four properties—Id, Name, Description, and UnitPrice.
Now, add the constructor, as follows:

public Product()

{

Console.WriteLine("Product constructor.");

}

3. Our constructor writes a message to the console window so that we know we have
entered the constructor. Next, add the finalizer, as follows:

~Product()

{

Console.WriteLine("Product finalizer.");

}

4. In our finalizer, we write a message to the console window so that we know our
finalizer has been called. For the last bit of code in our Product class, we will
override the ToString() method, as follows:

public override string ToString()

{

 return $"Id: {Id}, Name: {Name},

 Description: {Description}, Unit Price: {UnitPrice}";

}

5. Our ToString() method returns a string that outputs the values of each of the
properties of the Product class. For now, unless stated otherwise, the following
code is to be added to the Program class. Add the following variable:

private static Product _product;

6. The _product variable will be used to store an instance of our Product class.
Update the Main method, as follows:

static void Main(string[] _)

{

InstantiateObject();

PrintObjectData();

RemoveObjectReference();

RunGarbageCollector();

InstantiateLocalObject();

120 Memory Management

RunGarbageCollector();

DisplayGeneration(_product);

RemoveObjectReference();

RunGarbageCollector();

}

7. As you can see, we have several methods that instantiate the object, print
object data, remove object references, display object generations, and run
the garbage collector. We will now add each of the methods in turn. Add the
InitiateObject() method, as follows:

private static void InstantiateObject()

{

 Console.WriteLine("Instantiating Product.");

 _product = new Product()

{

 Id = 1,

 Name = "Polly Parrot",

 Description = "Cudly child's toy.",

 UnitPrice = 7.99M

};

}

8. In this method, we write a console window message, create a new product,
and assign it to the _product member variable. Now, we will add the
PrintObjectData() method, as follows:

private static void PrintObjectData()

{

Console.WriteLine(_product.ToString());

}

9. Here, we are printing the contents of the Product class to the console window.
Next, we will write the RemoveObjectReference() method, as follows:

private static void RemoveObjectReference()

{

 _product = null;

}

Finalization 121

10. We are setting the Product object to null. This removes references to the object
and makes it eligible for garbage collection. We now add a method to call the
garbage collection, as follows:

private static void RunGarbageCollector()

{

 GC.Collect();

}

11. In this method, we call the garbage collector, as follows:

private static void InstantiateLocalObject()

{

 var product = new Product()

 {

 Id = 2,

 Name = "Cute Kittie",

 Description = "Cudly child's toy.",

 UnitPrice = 5.75M

 };

 DisplayGeneration(product);

 _product = product;

 GC.Collect();

}

12. In this method, we create a local object. Then, we call the method to display the
current generation. We then assign the local product to the member product,
followed by a call to the garbage collector. Our final method, for now, is the
DisplayGeneration(Product product) method, as illustrated in the
following code snippet:

private static void DisplayGeneration(Product product)

{

 Console.WriteLine($"local product:

 generation {GC.GetGeneration(product)}");

}

122 Memory Management

13. This method prints out the generation of the product passed into it. Run the code.
You should see the following output:

Figure 4.2 – The finalization project output

As you can see, our code demonstrates construction and finalization. We have both
generation 0 and generation 2 code, and both our constructor and finalizer methods do
get called. Now, we will look at implementing IDisposable to make the cleanup of our
code more deterministic so that Finalize() does not need to be called.

Implementing the IDisposable pattern
In this section, we will implement a reusable IDisposable pattern. We will have a base
class that implements IDisposable. This base class will provide two methods that
subclasses can override. One method will be for cleaning up managed resources, and the
other method will be for disposing of unmanaged resources. For us to implement the
IDisposable pattern, proceed as follows:

1. Add a new class called DisposableBase that implements IDisposable,
as follows:

public class DisposableBase : IDisposable

{

 public void Dispose()

 {

 Dispose(true);

 }

 private void Dispose(bool disposing)

 {

 if (disposing)

 GC.SuppressFinalize(this);

 ReleaseManagedResources();

 ReleaseUnmanagedResources();

 }

Implementing the IDisposable pattern 123

protected virtual void ReleaseManagedResources(){}

protected virtual void ReleaseUnmanagedResources(){}

}

This class acts as a base class that can be inherited. It implements
the IDisposable interface and calls two virtual methods called
ReleaseManagedResources() and ReleaseUnmanagedResources() that
will be overridden in the subclass.

2. Move the code from Main into a new method called Finalization(). Then,
modify Main, as follows:

static void Main(string[] _)

{

 Finalization();

 Disposing();

}

We are calling two methods. The Finalization() method demonstrates using
finalization to clean up resources that you have no control over when finalization
will be called by the garbage collector. Disposing() demonstrates the determined
disposing of managed and unmanaged resources, with finalization being suppressed
so that it is not called by the garbage collector. Your Finalization() method
should look like this:

private static void Finalization()

{

 Console.WriteLine("--- Finalization ---");

 InstantiateObject("Finalization");

 PrintObjectData();

 RemoveObjectReference();

 RunGarbageCollector();

 InstantiateLocalObject("Finalization");

 RunGarbageCollector();

 DisplayGeneration(_product);

 RemoveObjectReference();

 RunGarbageCollector();

}

124 Memory Management

We are passing “Finalization” into the InstantiateObject(string
cleanUpMethod) and InstantiateLocalObject(string
cleanUpMethod) methods so that we know the objects being finalized were
instantiated in our Finalization() method.

3. Add a new method called Disposing(), as follows:

private static void Disposing()

{

Console.WriteLine("--- Disposing ---");

InstantiateObject("Disposing");

PrintObjectData();

DisposeOfObject();

InstantiateLocalObject("Disposing");

DisplayGeneration(_product);

DisposeOfObject();

RunGarbageCollector();

}

4. In the Disposing() method, we write a message to the console
identifying that the Disposing() method is running. We then call
InstantiateObject(“Disposing”). Next, we print the object data and
dispose of the object. Then, we instantiate a local object that will get assigned to the
member variable. The generations of the local and member variables are printed to
the console window, and then we dispose of the object and call garbage collection.

5. Add the DisposeofObject() method, as follows:

private static void DisposeOfObject()

{

 _product.Dispose();

}

6. The DisposeOfObject() method calls the Dispose() method on the _
product object to free up resources. Update the Product class, as follows:

private string _cleanUpMethod;

public Product(string cleanUpMethod)

{

 Console.WriteLine("Product constructor.");

Implementing the IDisposable pattern 125

 _cleanUpMethod = cleanUpMethod;

}

~Product()

{

 Console.WriteLine($"Product destructor: {_

 cleanUpMethod}.");

}

7. We are storing the name of the cleanup method we are using so that when the
finalizer is called, we will know the method of cleanup the object uses. Modify the
InstantiateObject() method, as follows:

private static void InstantiateObject(string

 cleanUpMethod)

{

Console.WriteLine("Instantiating Product.");

_product = new Product(cleanUpMethod)

{

 Id = 1,

 Name = "Polly Parrot",

 Description = "Cudly child's toy.",

 UnitPrice = 7.99M

};

}

8. We are assigning the method of cleanup to the Product object. Do the same with
the InstantiateLocalObject() method so that the code looks like this:

private static void InstantiateLocalObject(string

 cleanUpMethod)

{

var product = new Product(cleanUpMethod)

{

 Id = 2,

 Name = "Cute Kittie",

 Description = "Cudly child's toy.",

 UnitPrice = 5.75M

};

126 Memory Management

DisplayGeneration(product);

_product = product;

}

9. Again, we are assigning the method of cleanup to the Product object.
Update Product to inherit from DisposableBase. Then, add the
ReleaseManagedResources() method to the Product class, as follows:

protected override void ReleaseManagedResources()

{

base.ReleaseManagedResources();

Console.WriteLine("Releasing managed resources.");

}

10. This method will be used to release managed resources. Now, add the
ReleaseUnmanagedResources() method to the Product class, as follows:

protected override void ReleaseUnmanagedResources()

{

base.ReleaseUnmanagedResources();

Console.WriteLine("Releasing unmanaged resources.");

}

This method will be used for cleaning up unmanaged resources.
11. Run the code and you should see the output, as shown here:

Figure 4.3 – The output of finalization and disposing code

Preventing memory leaks 127

As you can see, the finalization code calls the finalizer, but the methods used for releasing
managed and unmanaged resources explicitly do not get called. Objects also survive the
generation 0 garbage collection. Conversely, the disposing code explicitly releases the
managed and unmanaged code, and finalization being suppressed is not called by the
garbage collector. No objects in our example survive generation 0 garbage collection.

Another way to implicitly call Dispose() on disposable classes is to use a using
statement. Here is an example, as can be seen in the Program class:

private static void UsingDispose()

{

 Console.WriteLine("--- UsingDispose() ---");

 using (var product = new Product("using")

 {

 Id = 2,

 Name = "Cute Kittie",

 Description = "Cudly child's toy.",

 UnitPrice = 5.75M

 }

)

 {

 DisplayGeneration(product);

 }

}

The using statement is used with disposable objects. When the code block completes,
the object is automatically disposed of. The object’s generation is 0. Add a call to
UsingDispose() in the Main method.

Well, you have seen how to use finalization and implement the IDisposable pattern in
relation to the garbage collector. Now, let’s look at how we can avoid memory leaks in C#.

Preventing memory leaks
In this section, we will understand the issues around COM objects and what can lead to
memory leaks using COM objects. We will look at interoping with the Excel COM library
for our example code. We will see how instances of Excel are kept alive after our code
exits. By using Windows Task Manager, we will be able to see instances of Excel being
generated. Our Excel code will be developed in such a way as to avoid memory leaks and
ensure that every Excel instance is closed when our code has completed running so that
no instances of Excel remain in memory.

128 Memory Management

We will then move on to look at how using events can be a common source of memory
leaks at runtime and how we can avoid them. Using JetBrains dotMemory, we will profile
a runtime build executable of our program code. As the code is running, we will generate
snapshots. As the profiler runs, you will see the memory usage gradually climbing.
Clicking on the snapshots will display detailed memory information for our running
profile. We will also be able to see if we have any memory leaks, and will see that we have
event-based memory leaks. In this section, we will also be looking at anonymous methods
and weak references.

The outcome of this section will be that you understand how COM and the use of events,
if not handled correctly, can introduce memory exceptions, and you will see how you can
write your code so that no memory exceptions are generated.

Understanding the dangers of using Marshal.
ReleaseComObject
The Visual Studio team ran into problems with Visual Studio 2010. Their problems arose
due to rewriting native C++ components in managed C# code. The components that were
rewritten as managed C# code were the window manager, command bars, and text editor.

With the release of Visual Studio 2010, there were two extension enablers—the existing
extension mechanism that uses COM interfaces for older extensions, and a new managed
programming model.

In order for the Common Language Runtime (CLR) to make COM objects
appear as regular managed objects, COM objects are wrapped in an object called a
RuntimeCallableWrapper or RCW. An RCW acts as a bridge between the worlds of
COM and managed code.

All COM components must, at the very minimum, implement the IUnknown interface.
When an object that implements the IUnknown interface enters the managed runtime,
it is wrapped in an RCW. An RCW is, therefore, a regular managed object that references
native code that implements the IUnknown interface.

There are two types of objects that can reference an RCW in a managed .NET computer
program: COM objects and managed objects. This is the point at which issues can start to
present themselves.

At this point, we will now consider a typical scenario that will result in memory issues
between COM objects and managed objects.

Preventing memory leaks 129

The DatabaseSearch component begins the Find operation by asking the global
service provider (GSP) for the DatabaseManager service. A valid instance of
IDatabaseManager is returned to the DatabaseSearch component. The
DatabaseManager component returned to the DatabaseSearch component is a
native COM component. Because the DatabaseManager component is a native COM
component, it is wrapped in an RCW by the runtime. The DatabaseSearch component
does not know or care whether the DatabaseManager component is a native COM
component or managed code component because all it sees is the IDatabaseManager
interface. The Find operation continues with the DatabaseSearch component
making various calls through IDatabaseManager to complete its task. Once the
Find operation is completed, it is exited. Since IDatabaseManager is an RCW, it has
the same lifetime semantics as managed objects. As a result, the IDatabaseManager
component will be cleaned up when the garbage collector runs. The garbage collector
may not run for a long time if there is not a lot of memory pressure, and there is the
possibility that it may not even run. At this point, we end up with a native and managed
memory clash because of the different ways in which they both manage system memory.
The managed DatabaseSearch component is finished with the DatabaseManager
component until it needs it again. If there are no references to the DatabaseManager
component, then this would be a good time for the garbage collector to run and remove
DatabaseManager. Any component written in native code would, as soon as the Find
method is exited, call Release on IDatabaseManager. This would indicate that the
reference to IDatabaseManager is no longer needed. Since the final Release is not
being called until the next garbage collection, it appears that there is a memory leak with
IDatabaseManager.
This is an example of non-deterministic finalization. The inability to determine when
an object should be garbage-collected is known as non-deterministic finalization. The
Finalize() method is executed on a special thread allocated by the garbage collector
whenever the object it belongs to is being garbage-collected and finalization has not been
suppressed when there are non-managed resources to be disposed of.

This scenario that we have looked at would result in expensive objects being reported as
leaked objects, and this would be during application shutdown.

The natural solution would be to call Marshal.ReleaseComObject(object). This
call would be made as soon as the expensive object is no longer needed. In our scenario,
it would be when DatabaseManager is no longer needed. This call causes the RCW
to be released, and the internal reference count is decremented by one. At this point, the
underlying COM object is usually released.

However, calling Marshal.ReleaseComObject(object) can be dangerous.

130 Memory Management

Consider that as part of a migration away from COM, DatabaseManager has been
written in managed code. The DatabaseSearch managed component requests the
DatabaseManager component via the GSP. An IDatabaseManager instance is
returned to the DatabaseSearch component. The instance returned is an RCW
that wraps a COM object. As a result, we have double wrapping that consists of an
RCW wrapped around a COM Callable Wrapper (CCW). The CLR can easily deal
with these scenarios, and so this is not a problem. It is when the Find operation
exits that problems arise. The DatabaseSearch component still calls Marshall.
ReleaseComObject(object) for the RCW of DatabaseManager when
terminating.

This results in an ArgumentException-type exception being raised. The exception
message generated is “The object’s type must be _ComObject or
derived from _ComObject.” When this happens, remove the call to Marshal.
ReleaseComObject(object). An alternative is to call Marshal.IsComObject
before ReleaseComObject is called.

Calling Marshal.IsComObject causes further problems. The DatabaseManager
RCW has been declared as being no longer needed, but the problem is that the
DatabaseManager RCW is still a valid object, meaning that it may still be reachable by
managed objects. The next time the object is accessed, if reachable from managed code,
an InvalidComObjectException-type exception will be raised by the CLR, stating:
“COM object that has been separated from its underlying RCW
cannot be used.”

If the COM components used by our DatabaseManager RCW are cached by managed
code instead of being returned to the GSP each time our DatabaseManager component
is requested, our cached COM components will be checked first. This is done to avoid
costly calls across the boundary between managed and unmanaged code. If several
components then request the same COM component, they will each receive the
same RCW.

The problem here is that the component calling the RCW that has had
ReleaseComObject called will often be blamed as the component that generated the
exception. But this is not the case—it is the component that called ReleaseComObject
that is the component at fault, which in our scenario would be the DatabaseSearch
component.

Note
It is recommended by Microsoft developers, especially those on the Visual
Studio team, that unless you are 100% certain that there are no managed
code items that have access to the RCW, you do not call Marshal.
ReleaseComObject.

Preventing memory leaks 131

We will delve deeper into what we have just been discussing by looking at an
Excel example.

Using the Microsoft Excel 16.0 Object Library in .NET 6
We are going to be looking at COM interoperability in .NET 6 in this section, by
referencing the Microsoft Excel 16.0 Object Library. This library is a COM library. You
will see how to use Excel to create a new application, modify it, and save it. When the
first example is run a few times, you will see that your code does not fail. But in Task
Manager, each time the method is run, another instance of Excel will remain open, as seen
in Windows Task Manager. Then, we will move on to see how we can correctly dispose of
COM objects so that instances of Excel are not kept open when our applications complete.
Let’s start by viewing what happens when we don’t release Excel COM objects.

Investigating what happens when Excel COM objects are not released
In this section, we will create a spreadsheet, add data to it, and then save the file. This
will reveal memory issues that arise from using Excel and not cleaning up properly after
ourselves when we have finished using Excel. We will also see how to use Excel and clean
up after ourselves so that we prevent memory issues through using Excel.

Add a COM reference to the CH04_PreventingMemoryLeaks project for the
Microsoft Excel 16.0 Object Library.

Note
If you add a COM reference to your project, you will have IntelliSense
available to you. But when you come to run your successfully compiled
program, when it attempts to create an Excel application, it will raise a
FileNotFoundException-type exception. Therefore, you need to set the
values for EmbedInteropTypes and Private to true.

Since a FileNotFoundException-type exception is the last thing we need, edit your
project file and then update the COMReference section, as follows:

<ItemGroup>

 <COMReference Include="Microsoft.Office.Excel.dll">

 <WrapperTool>tlbimp</WrapperTool>

 <VersionMinor>9</VersionMinor>

 <VersionMajor>1</VersionMajor>

 <Guid>00020813-0000-0000-c000-000000000046</Guid>

 <Lcid>0</Lcid>

132 Memory Management

 <Isolated>false</Isolated>

 <EmbedInteropTypes>True</EmbedInteropTypes>

 <Private>true</Private>

 </COMReference>

 </ItemGroup>

This will ensure that we don’t experience the FileNotFoundException-type
exception. Add a new UsingExcel class to the project, and then add the following
using statements:

using Microsoft.Office.Interop.Excel;

using System;

using System.Diagnostics;

using System.IO;

using System.Runtime.InteropServices;

using Excel = Microsoft.Office.Interop.Excel;

Now, add the RunExcelExamples() method, as follows:

public void RunExcelExamples()

{

 for (int i = 0; i < 10; i++)

 NotReleasingExcelComObjects();

 for (int i = 0; i < 10; i++)

 ReleasingExcelComObjects();

}

This method calls two methods. It calls each of these methods 10 times and then exits.
Let’s add the NotReleasingExcelComObjects() method, as follows:

private static void NotReleasingExcelComObjects()

{

 string filename = @"C:\Temp\BucketList.xlsx";

 Excel.Application application = new Excel.Application();

 application.Visible = false;

 Excel.Workbook workbook = application.Workbooks.Add();

 Excel.Sheets sheets = workbook.Sheets;

 Excel.Worksheet worksheet =(Worksheet)sheets

 .Add(sheets[1], Type.Missing, Type.Missing,

Preventing memory leaks 133

 Type.Missing);

 worksheet.Range["A1"].Value = "Bucket List";

 worksheet.Range["A2"].Value = "Visit New Zealand";

 worksheet.Range["A1"].Value = "Visit Australia";

 if (File.Exists(filename))

 File.Delete(filename);

 workbook.SaveAs(filename);

 workbook.Close();

 application.Quit();

}

This method declares a filename string. It then instantiates a new Excel application that
is not visible. It then adds a column header called “Bucket List”, and adds two items
to that bucket list column in the rows below. It then checks if the file exists. If the file does
exist, then it is deleted. The workbook is then saved and closed, and the Excel application
is exited. Comment out the following lines from the RunExcelExamples() method:

 for (int i = 0; i < 10; i++)

 ReleasingExcelComObjects();

If you then save your project and run it, you will find that once the program exits, you are
left with multiple Excel processes. Each of these processes takes up memory. The following
screenshot shows Excel processes that remain in memory after our program exits:

Figure 4.4 – Windows Task Manager displaying Excel processes no longer in use using up memory

134 Memory Management

As you can see, these Excel processes that remain in memory after our program finishes
are using up 367.6 megabytes (MB) of RAM, which is the combined sum of all Excel
processes’ RAM. If this program in its current form were to be run multiple times, you
would eventually run out of memory, as the Excel processes left running in memory
constitute a memory leak. Each time the program runs, you are using up another 367 MB
of RAM, or thereabouts. Eventually, the amount of memory available will not be enough,
and you will end up with an out-of-memory exception.

The following screenshot shows the display in Task Manager after the program has been
run once:

Figure 4.5 – Windows Task Manager after the program has been run once

Preventing memory leaks 135

From Figure 4.5, we can see that we are using 7.4 GB (793 MB), with 8.5 GB RAM
still available to us. Run the program through a number of times continually. Each
time the program is run, you will see the compressed memory rise and the available
memory fall. At no point does the memory appear to be reclaimed, as shown in the
following screenshot:

Figure 4.6 – Windows Task Manager displaying increased memory usage and diminished available
memory after multiple program runs

After multiple continuous runs of our program, we can see that our In use (Compressed)
memory has gone from 7.4 GB (793 MB) to 10.9 GB (799 MB) and our available memory
has gone from 8.5 GB to 4.9 GB. This is clearly a problem that needs to be addressed,
but how?

136 Memory Management

This is where the ReleasingExcelComObjects() method shown here comes in:

[System.Diagnostics.CodeAnalysis SuppressMessage

 ("Interoperability","CA1416:Validate platform compatibility",

 Justification = "Windows only code.")]

private static void ReleasingExcelComObjects()

{

 Excel.Application application = null;

 Excel.Workbooks workbooks = null;

 Excel.Workbook workbook = null;

 Excel.Sheets worksheets = null;

 Excel.Worksheet worksheet = null;

 Excel.Range range = null;

 Try

 {

 string filename = @"C:\Temp\BucketList.xlsx";

 application = new Excel.Application();

 application.Visible = false;

 workbooks = application.Workbooks;

 workbook = workbooks.Add();

 worksheets = workbook.Sheets;

 worksheet = (Worksheet)worksheets.Add(worksheets[1],

 Type.Missing, Type.Missing, Type.Missing);

 range = worksheet.Range["A1"];

 range.Value = "Bucket List";

 range = worksheet.Range["A2"];

 range.Value = "Visit New Zealand";

 range = worksheet.Range["A3"];

 range.Value = "Visit Australia";

 if (File.Exists(filename))

 File.Delete(filename);

 workbook.SaveAs(filename);

 workbook.Close();

 application.Quit();

 }

 Finally

 {

Preventing memory leaks 137

 if (range != null)

 Marshal.FinalReleaseComObject(range);

 if (worksheet != null)

 Marshal.FinalReleaseComObject(worksheet);

 if (worksheets != null)

 Marshal.FinalReleaseComObject(worksheets);

 if (workbook != null)

 Marshal.FinalReleaseComObject(workbook);

 if (workbooks != null)

 Marshal.FinalReleaseComObject(workbooks);

 if (application != null)

 Marshal.FinalReleaseComObject(application);

 range = null;

 worksheet = null;

 worksheets = null;

 workbook = null;

 worksheets = null;

 application = null;

 GC.Collect();

 GC.WaitForPendingFinalizers();

 Process[] processes =

 Process.GetProcessesByName("EXCEL");

 foreach (Process process in processes)

 process.Kill();

 }

}

This rather lengthy method does what we need Excel to do—it releases the Excel COM
objects, sets the managed objects to null, runs the garbage collector, and then terminates
all running Excel processes. If you uncomment the code in the RunExcelExamples()
method and then run the code once, you will see that we no longer have any Excel
processes running in memory once our code has finished running. You will also see
if you look at the Performance tab of Windows Task Manager that we have reclaimed
our memory.

We have managed to fix our memory leak by terminating COM components and setting
managed objects to null to remove managed references. Then, we killed all processes
called EXCEL.

138 Memory Management

Note
Be careful when using the process.Kill() method to kill off all
processes for a given name such as EXCEL. There may be other programs that
also use that process that could be badly impacted by such termination. You
should run such code in an isolated environment if doing batch processing on
a server, or schedule such operations for a time when you can guarantee that
other processes will not be affected by running such code.

It is now time to look at how using events can be a source of memory leaks.

How using events can be a source of memory leaks
In this section, we will look at how the use of events in your computer programs can be
a source of memory leaks. We will demonstrate this using a very simple Windows Forms
application that we will write. Then, we will analyze our memory usage using JetBrains
dotMemory. There will be two methods employed to show events in use. One method will
generate a memory leak, while the other won’t generate a memory leak.

So, how can using events generate memory leaks?

Unless you are using anonymous methods, subscribing to an event holds a reference to the
class that holds that event until such time as the event is unsubscribed from. Consider the
following class:

internal class EventSubscriber

{

 public EventSubscriber(Control control)

 {

 Control.TextChanged += OnTextChanged

 }

 private void OnTextChanged(

 object sender,

 EventArgs eventArgs

)

 {

 Text ((Control)sender).Text;

 }

}

Preventing memory leaks 139

If the control outlives the EventSubscriber class, then all instances of
EventSubscriber will not be deallocated by the garbage collector. The end result is a
memory leak. Here are some different ways to avoid event-based memory leaks:

1. Subscribe to anonymous methods.
2. Unsubscribe from events when you are finished with them.
3. Implement the weak-handler pattern.

Before we look at each of these ways of avoiding memory leaks, we will write our
Windows Forms application that demonstrates a way to avoid memory leaks and a way to
generate memory leaks. Follow these steps:

1. Start a new .NET Core Windows Forms project, and then change the target
framework from .NET Core 3.1 to .NET 5 in the project settings.

2. Rename Form1 to MainForm.
3. Add a label called InformationLabel with the text “Information”, a button

called RaiseEventsButton with the text “Raise Events”, and another label
called ProgressLabel with the text “Progress:”. You can lay the components
out and style them according to your preference.

4. Double-click on the RaiseEventsButton button. This will generate a click event
handler method.

5. Add a class to the project called EventOne. You will need the following using
statements:

using System;

using System.Threading;

6. Add the following code to the top of the EventOne class:

public event EventHandler OnEventRaised;

private static int _count;

public static int Count { get { return _count; } }

7. These elements are needed to handle the event and keep a count of how many
instances are still being kept alive. Add the constructor, as follows:

public EventOne()

{

 Interlocked.Increment(ref _count);

}

140 Memory Management

8. The constructor code increments the _count member variable in an
atomic and thread-safe manner for each instance of the class. Add the
RaiseEvent(EventArgs e) method, as follows:

public void RaiseEvent(EventArgs e)

{

 EventHandler eventHandler = OnEventRaised;

 if (eventHandler != null)

 eventHandler(this, e);

}

9. This method is called by the clients and is responsible for firing the event upon
request. Now, add the finalizer, as follows:

~EventOne()

{

 Interlocked.Decrement(ref _count);

}

10. The finalizer decrements the _count member variable in a thread-safe manner
each time an instance of the class is terminated and collected by the garbage
collector. Add a new EventTwo class to the project. You will need the following
using statements:

using System;

using System.Threading;

using System.Windows.Forms;

11. Add the following code to the top of the EventTwo class:

private static int _count;

public static int Count { get { return _count; } }

public string Text { get; private set; }

12. The code stores the count of the number of alive instances and the current text of
the subscribed control. Add the following constructor:

public EventTwo(Control control)

{

 Interlocked.Increment(ref _count);

 control.TextChanged += OnTextChanged;

}

Preventing memory leaks 141

13. The constructor takes a Windows Forms control as a parameter. It increments the
_count member variable by one in a thread-safe manner. It then subscribes to the
TextChanged event that is handled by the OnTextChanged method. Add the
OnTextChanged method, as follows:

private void OnTextChanged(object sender, EventArgs

 eventArgs)

{

 Text = ((Control)sender).Text;

}

14. This method is fired when the Text property of the subscribed control is changed.
It takes the Text content of the control and assigns it to the Text property of the
EventTwo class. Add the Finalizer() method, as follows:

~EventTwo()

{

 Interlocked.Decrement(ref _count);

}

15. The finalizer decrements the _count member variable by one in a thread-safe
manner each time an instance is garbage-collected. We now have in place the two
classes that our form will use for raising events. Switch back to the MainForm class.

16. At the top of the MainForm class, add the following member variables:

private int _eventsGeneratedCount;

private int _eventSubscriberCount;

17. These two values will store the number of events that have been generated. Add the
SetTitleText() method, as follows:

private void SetTitleText()

{

 Text = $"{_eventsGeneratedCount}/{EventOne.Count} –

 {_eventSubscriberCount}/{EventTwo.Count}";

}

142 Memory Management

18. This method sets the control’s Text property for each method that raises events.
The text displays the number of events raised and the number of events still alive for
the non-memory leak method, and the same again for the memory leak method.
Add the SetInformationLabelText() method, as follows:

private void SetInformationLabelText()

{

 StringBuilder sb = new StringBuilder();

 sb.AppendLine($"Raised Events (No Memory Leak):

 {_eventsGeneratedCount}, Alive Events:

 {EventOne.Count}");

 sb.AppendLine($"Raised Events (Memory Leak):

 {_eventSubscriberCount}, Alive Events:

 {EventTwo.Count}");

 InformationLabel.Text = sb.ToString();

}

19. The SetInformationLabelText() method updates the InformationLabel
text to display the number of events raised in each method and the number of
events remaining in memory once both methods have finished executing. Add the
RaiseEvent method, as follows:

private void RaiseEvent(object sender, EventArgs e)

{

 ProgressLabel.Text = $"Event Raised:

 {DateTime.Now}";

 ProgressLabel.Invalidate();

 ProgressLabel.Update();

}

20. The RaiseEvent method updates the ProgressLabel.Text property, but
so that it is updated in real time, it is necessary to call the Invalidate() and
Update() methods. Now, add the MemoryLeakMethod method, as follows:

private void MemoryLeakMethod(EventArgs e)

{

 int count = 10000;

 for (int x = 0; x < count; x++)

Preventing memory leaks 143

 {

 var eventTwo = new EventTwo(this);

 }

 _eventTwoCount += count;

}

21. This method declares a count of 10,000 items. It then loops through 10,000
iterations. A new EventTwo object is subscribed to with the reference to
MainForm passed in. Once the loop completes, the _eventTwoCount variable is
incremented by 10,000. Next, we will add the NoMemoryLeakedMethod method,
as follows:

private void NoMemoryLeakMethod(EventArgs e)

{

 int count = 10000;

 for (int x = 0; x < count; x++)

 {

 EventOne eventOne = new EventOne();

 eventOne.OnEventRaised += RaiseEvent;

 eventOne.RaiseEvent(e);

 }

 _eventOneCount += count;

}

22. This method declares a count of 10,000. It iterates 10,000 times. During that
10,000 times, it instantiates a new EventOne object, adds an event handler
called RaisedEvent, and then raises the event. Once, the loop has completed,
the _eventOneCount variable is incremented by 10,000. Update the click event
handler with the following code:

NoMemoryLeakMethod(e);

MemoryLeakMethod(e);

SetInformationLabelText();

SetTitleText();

23. Change the build mode to Release and build the project.

144 Memory Management

24. Open JetBrains dotMemory. Select Local | .NET Core Application, select
an executable generated by the build process, then check the Collect memory
allocation and traffic from start box. Your screen should look like this:

Figure 4.7 – The JetBrains dotMemory configuration screen

25. Click on the Run button. This will start your application and profiling session, as
shown in the next two screenshots:

Figure 4.8 – JetBrains dotMemory profiling our Windows Forms application

Preventing memory leaks 145

Figure 4.9 – Our Windows Forms application before any events have been run

26. Click on the Raise Events button a few times. Each time you click on the button, the
memory profile should change and the memory usage should increase, as shown in
the following screenshot:

Figure 4.10 – Our Windows Forms application showing 50,000 alive events,
indicating we have a memory leak

27. As you can see, we have a memory leak. Our NoMemoryLeakMethod method
does not generate a memory leak. As you can see, after 50,000 raised events, the
objects kept alive in memory is 0. But our MemoryLeakMethod method does
produce a memory leak. Out of 50,000 raised events, 50,000 objects remain alive.

146 Memory Management

28. Run the program a few more times, and pay attention to what is going on in
dotMemory. When you see a point of interest, click on the area and then click on
Get Snapshot. This will take a snapshot of that moment in time that users can
analyze to see if there are any issues. You should end up with something similar
to this:

Figure 4.11 – JetBrains dotMemory profile of our Windows Forms application
when events are raised and snapshots are taken

29. Click on any one of your snapshots. You should see an output like this:

Preventing memory leaks 147

Figure 4.12 – A memory leak has been identified with the EventTwo class

30. JetBrains dotMemory has detected a memory leak in the EventTwo class. This is
because the class subscribes to an event of another object, but never unsubscribes
from it. However, you will see that all the objects for the EventOne class have
been finalized.

You have seen how to use events in such a way that generates memory leaks and in such
a way that all objects are finalized and a memory leak is prevented. Let’s revisit the three
ways to prevent memory leaks when using events, as follows:

1. Subscribe to anonymous methods.
2. Unsubscribe from events when you are finished with them.
3. Implement the weak-handler pattern.

Let’s take a look at subscribing to anonymous methods and then unsubscribing

Using local methods
Prior to C# 7.0, you would use anonymous methods as a way of handling events such that
you avoid introducing memory leaks. As of C# 7.0, you can use local methods. In this
example, we will handle events using local methods. Follow these next steps:

1. Load the CH04_PreventingMemoryLeaks project.
2. Add a class called Website, as follows:

internal class Website

{

 public event EventHandler<EventArgs> Login;

148 Memory Management

 public event EventHandler<EventArgs> Logout;

}

3. This class has two events for logging in and logging out of a website. Add a new
class called AnonymousEventSubscription. Add the Login() method, as
follows:

public void Login()

{

 Website website = new Website();

 void LoginHandler(object sender, EventArgs args)

 {

 Debug.WriteLine("Anonymous login event handler

 using a local method.");

 website.Login -= LoginHandler;

 };

 website.Login += LoginHandler;

 LoginHandler(this, new EventArgs());

}

4. The Login() method instantiates a new Website object. It then has a local
method called LoginHandler that writes a message to the debug window and
then unsubscribes from the Website.Login event. Then, outside of the local
method, it subscribes to the Website.Login event and raises the event. Let’s add
the Logout() method, as follows:

public void Logout()

{

 Website website = new Website();

 void LogoutHandler(object sender, EventArgs args)

 {

 Debug.WriteLine("Anonymous logout event handler

 using a local method.");

 website.Logout -= LogoutHandler;

 };

 website.Logout += LogoutHandler;

 LogoutHandler(this, new EventArgs());

}

Preventing memory leaks 149

5. The Logout() method instantiates a new Website object. It then has a local
method called LogoutHandler that writes a message to the debug window and
then unsubscribes from the Website.Logout event. Then, outside of the local
method, it adds the event handler for the Website.Logout event, and then raises
the event.

6. In the Main method, comment out the RunExcelExamples() line. Then, add
the UseAnonymousEventSubscription() method call, as follows:

private static void UseAnonymousEventSubscriptions()

{

 for (int x = 0; x < 1000000; x++)

 {

 AnonymousEventSubscription aes = new

 AnonymousEventSubscription();

 aes.Login();

 aes.Logout();

 }

}

7. This code runs through 1,000,000 iterations. For each iteration, a new
AnonymousEventSubscription is instantiated, with calls to Login() and
Logout() made. These two calls will each have a subscription to an event, an event
executed via a local method, and, as the local method is executed, the event it will
be unsubscribed from.

8. If you build and run the code, you should see the following lines printed 1,000,000
times in your debug window:

Figure 4.13 – The debug window showing events firing for Login and Logout

9. If you perform a release build and run dotMemory, you will see that we have no
memory leak, considering we have just generated 2,000,000 event subscriptions and
unsubscriptions—that is, 1,000,000 for Login() and 1,000,000 for Logout().

150 Memory Management

We have seen how to effectively use anonymous events using local methods without
causing memory leaks. Now, let’s look at our final topic of the chapter—weak references.

Using weak reference events
We use the weak reference event pattern to allow an object to be garbage-collected if its
only remaining link is an event handler. We will implement the weak reference event
pattern in this section in the CH04_PreventingMemoryLeaks project. Follow these
next steps:

1. In the Package Manager Console, type the following: install-package
WeakEventListener. The System.Windows.WeakEventManager package
only works with .NET 4.8 and older, which is why we install this package.

2. Add the following SampleClass class:

internal class SampleClass

{

 public event EventHandler<EventArgs> RaiseEvent;

 public void DoSomething()

 {

 OnRaiseEvent();

 }

 protected virtual void OnRaiseEvent()

 {

 RaiseEvent?.Invoke(this, EventArgs.Empty);

 }

}

3. In this class, we declare an event called RaiseEvent. The DoSomething()
method calls the OnRaiseEvent() method. The OnRaiseEvent() method
checks if the event is null; if it is not null, then the event is invoked. Add a new
class called UsingWeakreferences. You will need the following references:

using System;

using System.Diagnostics;

using WeakEventListener;

4. Add the RaiseWeakReferenceEvents() method, as follows:

public void RaiseWeakReferenceEvents()

{

Summary 151

 bool isOnEventTriggered = false;

 bool isOnDetachTriggered = false;

 SampleClass sample = new SampleClass();

 WeakEventListener<SampleClass, object, EventArgs>

 weak = new WeakEventListener<SampleClass, object,

 EventArgs>(sample);

 weak.OnEventAction = (instance, source, eventArgs)

 => { isOnEventTriggered = true; };

 weak.OnDetachAction = (listener) =>

 {isOnDetachTriggered = true; };

 sample.Raisevent += weak.OnEvent;

 sample.DoSomething();

 Debug.Assert(isOnEventTriggered);

 weak.Detach();

 Debug.Assert(isOnDetachTriggered);

}

5. We have two variables that are true when an event has been triggered and when
it has been detached. We instantiate a new SampleClass class instance. Then
we declare a WeakEventListener package that references the SampleClass
class. Anonymous methods are used to handle the OnEventAction and
OnDetachAction methods. The WeakReferenceListener.OnEvent
method is then assigned as the handler for the SampleClass.RaiseEvent
event. We then call the DoSomething() method that raises the event. Then, we
assert that the event has been triggered, detach the event, and then assert that the
event has been detached.

6. Make sure the project is set to Debug mode, and then step through the code. It
should work as expected, with the event being correctly triggered and detached.

Let’s now summarize what we have learned in this chapter.

Summary
We looked at object generations and saw how easy it was to generate a System.
OutOfMemoryException-type exception. We saw how we can use predictive out-of-
memory exception checking to save time by preventing the running of code that will
cause this exception.

152 Memory Management

Then, we moved on to discuss long weak references and short weak references.
We learned that strong references are not garbage-collected, and weak references are
garbage-collected.

We then looked at finalization and saw how the Finalize() method will be called on
objects that are not disposed of, and that we have no control over when the Finalize()
method will run. Then, we looked at how to implement the IDisposable pattern and
suppress the need for garbage collection to call Finalize().

Finally, we looked at the various ways to prevent memory leaks, such as properly
disposing of managed resources and unmanaged resources. We also saw how to correctly
handle events so that we do not cause memory leaks.

With what you have learned in this chapter, you will be able to overcome out-of-memory
exceptions, improve memory performance, and improve garbage collection in your
applications, and you will be to correctly use events and event handlers without generating
memory leaks and will be able to effectively release COM objects and allocated memory.
This will lead to better quality and more stable programs that make good use of memory.

In the next chapter, we will be looking at application profiling.

Questions
1. How many object generations are there?
2. Which sized objects get placed on the SOH?
3. Which sized objects get placed on the LOH?
4. What is a strong reference?
5. What is a weak reference?
6. How can we clean up objects without having to rely on finalization?
7. How do we avoid memory leaks when using events?
8. Which method do we use to release COM objects?
9. How do we prevent memory leaks when allocating memory?

Further reading
• Weak references: https://www.youtube.com/watch?v=2WcDhh8lvJs

• ComWrappers class: https://docs.microsoft.com/ dotnet/api/
system.runtime.interopservices.comwrappers?view=net-5.0

https://www.youtube.com/watch?v=2WcDhh8lvJs
https://docs.microsoft.com/ dotnet/api/system.runtime.interopservices.comwrappers?view=net-5.0
https://docs.microsoft.com/ dotnet/api/system.runtime.interopservices.comwrappers?view=net-5.0

Further reading 153

• Marshal.ReleaseComObject Considered Dangerous: https://devblogs.
microsoft.com/visualstudio/marshal-releasecomobject-
considered-dangerous/

• WeakEventManager Class: https://docs.microsoft.com /dotnet/api/
system.windows.weakeventmanager?view=net-5.0

• Weak Event Patterns: https://docs.microsoft.com/en-us/dotnet/
desktop/wpf/advanced/weak-event-patterns?view=netframework
desktop-4.8

• How to properly release Excel COM objects: https://www.add-in-express.
com/creating-addins-blog/2013/11/05/release-excel-com-
objects/

• Understanding and Avoiding Memory Leaks with Event Handlers and Event
Aggregators: https://www.markheath.net/post/understanding-and-
avoiding-memory-leaks

• Why and how to avoid event handler memory leaks: https://stackoverflow.
com/questions/4526829/why-and-how-to-avoid-event-handler-
memory-leaks

• .NET Framework technologies unavailable on .NET Core and .NET 5+:
https://docs.microsoft.com/en-us/dotnet/core/porting/
net-framework-tech-unavailable

https://devblogs.microsoft.com/visualstudio/marshal-releasecomobject-considered-dangerous/
https://devblogs.microsoft.com/visualstudio/marshal-releasecomobject-considered-dangerous/
https://devblogs.microsoft.com/visualstudio/marshal-releasecomobject-considered-dangerous/
https://docs.microsoft.com /dotnet/api/system.windows.weakeventmanager?view=net-5.0
https://docs.microsoft.com /dotnet/api/system.windows.weakeventmanager?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/weak-event-patterns?view=netframeworkdesktop-4.8
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/weak-event-patterns?view=netframeworkdesktop-4.8
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/weak-event-patterns?view=netframeworkdesktop-4.8
https://www.add-in-express.com/creating-addins-blog/2013/11/05/release-excel-com-objects/
https://www.add-in-express.com/creating-addins-blog/2013/11/05/release-excel-com-objects/
https://www.add-in-express.com/creating-addins-blog/2013/11/05/release-excel-com-objects/
https://www.markheath.net/post/understanding-and-avoiding-memory-leaks
https://www.markheath.net/post/understanding-and-avoiding-memory-leaks
https://stackoverflow.com/questions/4526829/why-and-how-to-avoid-event-handler-memory-leaks
https://stackoverflow.com/questions/4526829/why-and-how-to-avoid-event-handler-memory-leaks
https://stackoverflow.com/questions/4526829/why-and-how-to-avoid-event-handler-memory-leaks
https://docs.microsoft.com/en-us/dotnet/core/porting/net-framework-tech-unavailable
https://docs.microsoft.com/en-us/dotnet/core/porting/net-framework-tech-unavailable

5
Application Profiling

and Tracing
Application profiling is the internal examination of the inner workings of a computer
program. We use application profiling to measure the performance of a program's internals.
This helps us to identify any performance bottlenecks and memory issues. Then, we can use
this information to refactor and improve the performance of the program.

Application tracing is used to monitor the internal performance of a computer program as
it is running. You can trace the execution of your computer program during development,
testing, and when released into production.

When used together, application profiling and application tracing can be very powerful
and useful in identifying why computer programs are slow.

In this chapter, you will learn how to profile your applications to identify any poor
areas of performance. You will come to understand code metrics and how to perform
static code analysis. In your drive to write more performant code, you will learn how
to make use of memory dumps, the loaded modules viewer, debugging, tracing, and
dotnet-counters. By the time you have completed this chapter, you will have the
necessary skills and experience you need to profile and trace your own applications.

156 Application Profiling and Tracing

In this chapter, we will be covering the following main topics:

• Understanding code metrics: In this section, we will be looking at what
application, assembly, namespace, type, method, and field metrics various
tools can offer us.

• Performing static code analysis: In this section, we will look at performing static
code analysis with Visual Studio 2022. And we will be generating metrics for our
software that consist of the maintainability index, cyclomatic complex, the depth of
inheritance, class coupling, units of source code, and lines of executable code.

• Generating and viewing memory dumps: In this section, we will look at how to
generate and view memory dumps when a breakpoint is hit in code or when an
application is encountered.

• Viewing loaded modules: In this section, we will display the Modules window in
Visual Studio so that we can view the modules that are loaded into memory by our
application and view information about those modules.

• Debugging your applications: This section highlights the various debugging
options that are available to us.

• Using tracing and diagnostics tools: In this section, we will introduce tools that
can help us to perform tracing and diagnostics on our software applications.
Specifically, we will consider Visual Studio 2022, JetBrains dotMemory, and
JetBrains dotTrace.

• Installing and using dotnet-counters: In this section, we will install dotnet-
counters and use them to list .NET processes that can be monitored, list the
available counters that we can use to gather performance data, monitor a .NET
process, and collect data for that process in a CSV file for post-processing analysis
in Excel.

• Tracking down and fixing a memory leak with dotMemory: In this section, we
will use dotMemory to hunt down a memory leak in a WPF application and fix it.

• Finding the cause of a UI freeze with dotTrace: In this section, we will use
dotTrace to hunt down the cause of a UI freeze in a WPF application and fix it.

• Optimizing application performance and memory traffic: In this section, we will
use dotTrace to identify opportunities to improve performance and memory traffic
for a WPF application.

Technical requirements 157

After completing this chapter, you will be skilled in the following things:

• Understanding code metrics and being able to use them to improve code quality
and performance

• Performing static code analysis to improve code quality and performance

• Using loaded modules to identify what modules your code uses

• Effectively debugging software

• Effectively tracing software

• Using dotnet-counters to perform first-level performance investigations

• Using JetBrains dotMemory to track down memory leaks and fix them

• Using JetBrains dotTrace to track down the cause of UI freezes and fix them

• Using JetBrains dotTrace to track down performance and memory traffic issues and
fix them

Note
Don't be alarmed if you are asked to access code from previous chapters for
some of the examples. Due to the page limitation for chapters, adding code
examples for those exercises would have exceeded the count limit for this
chapter.

Technical requirements
The technical requirements to follow along with this chapter are as follows:

• Visual Studio 2022 or higher

• JetBrains dotMemory

• JetBrains dotTrace

• Source code: https://github.com/PacktPublishing/High-
Performance-Programming-in-CSharp-and-.NET/tree/master/
CH05

• Optional: Microsoft Excel or some other CSV file viewer

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH05
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH05
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH05

158 Application Profiling and Tracing

Understanding code metrics
In this section, we will be looking at the code metrics that can be gathered using various
tools that are paid for, free, and open source. Source code metrics are extracted from
source code and are used to measure the quality and performance of our source code.

Note
Different tools have different metrics that they can measure and calculate. Since
each tool is different, it is a good idea for you to see what tools and metrics are
available that satisfy your own project's requirements.

In the upcoming subsections, we will learn about the different code metrics that we can
use to measure our code and improve performance.

Application metrics
Application metrics cover your application's complete source code across assemblies. They
give you the big picture regarding how many lines of code your application has, along with
how many lines are covered by tests.

In this section, we will cover, from a high level, the various metrics that certain tools
such as the ndepends tool offer. As part of your own studies, identify different application
metrics gathering tools. Then, see what metrics they offer. Choose the tool that best fits
your needs. In the next section, the generation of code metrics will be demonstrated
using Visual Studio's built-in static code analysis tool to generate the following metrics:
the maintainability index, cyclomatic complexity, the depth of inheritance, class coupling,
the lines of source code, and the lines of executing code. These and other metrics are
described next.

Although metrics are different between tool vendors, available application metrics might
include the following:

• Lines of Code (LOC): There are two types of LOC measurements. They include
logical LOC and physical LOC. A logical LOC refers to those lines of code that
can span one or more lines and are terminated by either a closing curly brace or a
semicolon. A physical LOC refers to actual lines of code including comments and
whitespace.

• Lines of comment: The number of lines used for comments.

Understanding code metrics 159

• Percentage comment: This metric identifies the percentage of code that is made up
of comments. It is calculated using this formula: 100 x Lines of Comment/(Lines of
Comment + Lines of Code).

• IL instructions: When your code compiles, it is converted into Intermediate
Language (IL) code. Depending on how you code your C# code, this can lead to the
generation of a large or small number of IL instructions. It makes sense to measure
the number of IL instructions generated by your code. That's because even if the
code is small, it could generate many IL instructions. And conversely, a method can
be large but generate smaller lines of code compared to the smaller version of the
code. The smaller number of IL instructions, the easier the method is to maintain.

Note
The company ndepend has a recommendation on their documentation code-
metrics page that states methods that produce IL instructions higher than 100
are hard to understand and maintain. Additionally, they state that unless the
methods are autogenerated by code generation tools, methods that produce
200 lines or more of IL instructions are extremely complex and should be split
into smaller methods.

• Application assemblies: The application assembly count.

• Application namespaces: The application namespace count.

• Application methods: The application method count.

• Application fields: The application field count.

• Lines of code covered: The number of lines covered by tests.

• Lines of code not covered: The number of lines not covered by tests.

Now we will cover what assembly metrics are and what types of metrics can be gathered.

Assembly metrics
Assembly metrics are more focused on measuring the quality and stability of individual
assemblies. Since an application can consist of many assemblies, problems can arise in
any one or more of those assemblies. If multiple assemblies rely on one poorly performing
assembly, then the whole application will be affected. Additionally, it is good to be able to
reuse assemblies in different projects, so coupling should be kept to an absolute minimum.

160 Application Profiling and Tracing

Gathering assembly metrics enables you to understand how your assemblies are coupled
together, and you can also see how abstract and stable or unstable they are. Additionally,
you can determine whether they are reusable in their current form based on those
metrics. The various metrics that are available to measure assembly source code include
the following:

• Afferent coupling: This is the count of classes in other assemblies that rely on
classes within the current assembly.

• Efferent coupling: This is the count of classes in the current assembly that depend
upon classes in other packages.

• Relational cohesion: The average count of internal relationships per type within an
assembly.

• Instability: The ratio of efferent coupling to total coupling.

• Abstractness: The ratio of internal abstract classes and interfaces to internal types.

• Distance from the main sequence: A number that indicates the balance between
abstractness and stability.

Now, let's look at what namespace metrics are and what kind of metrics can be gathered.

Namespace metrics
Namespaces are an important part of any professional quality API. Correctly partitioning
your code into relevantly named namespaces helps programmers understand your API
and find what they are looking for more easily. Namespace metrics help you to understand
whether you have dependency cycles and whether your assemblies are high-level,
mid-level, or low-level.

The metrics that are available concerning the code quality of namespaces include the
following:

• Afferent coupling: The count of namespaces that directly depend on the current
namespace.

• Efferent coupling: The count of different namespaces that the current namespace
depends on.

• Level: The level value of a namespace. This metric can help you identify dependency
cycles. Additionally, it helps you objectively classify your assemblies, namespaces,
methods, and types as high-level, mid-level, or low-level.

Understanding code metrics 161

It's time to look at what type metrics are and the type of metrics that can be gathered.

Type metrics
Type refers to class types, interface types, array types, value types, enumeration types, type
parameters, generic type definitions, and open or closed constructed generic types.

Types and how they are coded and used are behind all the problems we experience
as programmers and end users. Understanding how they are used in our programs is
an effective way of identifying a variety of issues with our code. When problems are
identified, they can be rectified.

Type code quality metrics include the following:

• Type rank: A computed value that is computed based on the application of a
ranking algorithm, similar to Google's PageRank algorithm, on types dependencies
graph.

• Afferent coupling: The count of types that depend upon the current type.

• Efferent coupling: The count of types that the current type directly depends on.

• Lack of cohesion methods: For the code to adhere to the single responsibility
principle (SRP), it will have only one reason to change, and no more.

• Cyclomatic complexity: The count of pathways through a method.

• IL cyclomatic complexity: The count of pathways through IL code.

• Size of instance: The size, in bytes, of the instances of the specified type.

• Interfaces implemented: The count of interfaces implemented.

• Association between classes: The count of members from other types that are
directly used in the body of the methods of the current type.

• The number of children: The count of subclasses for a class, or the count of types
that implement an interface.

• Depth of inheritance tree: The count of base classes for a class or structure.

Now we will look at what method metrics are and the types of method metrics that
can be gathered.

162 Application Profiling and Tracing

Method metrics
Normally, methods are behind most performance issues. It is the method within a class
that executes instructions that can cause any number of issues for your customers. These
problems can include runtime errors, data errors, and performance issues. Being able to
see and understand how a method interacts with other methods can be a real big help in
solving various issues including performance issues. The method metrics that are available
for analyzing the code quality of methods include the following:

• Method rank: A computed value based on the application of a ranking algorithm,
similar to Google's PageRank algorithm, on the method dependencies graph.

• Afferent coupling: The count of methods that directly depend upon the current
method.

• Efferent coupling: The count of methods that the current method directly depends
on.

• IL nesting depth: The maximum count of encapsulated scopes inside a method
body computed from the IL code.

• Parameters: The number of parameters used in the method signature.

• Variables: The method body variable count.

• Overloads: The method overload count.

• Percentage branch coverage: The percentage of branches covered by tests generated
from opcodes.

The final metrics that we will look at are field metrics.

Field metrics
The metrics available for measuring coupling at the field level is afferent coupling. This
refers to the count of methods that directly uses a variable. The higher the count, the more
unstable the software becomes. So, this metric can be useful for improving the stability of
the software.

The size of instance metric measures the size, in bytes, of the instances of a specified type.

In the next section, we will look at how to improve the architecture and code quality by
performing static code analysis.

Performing static code analysis 163

Performing static code analysis
The purpose of static code analysis is to help you improve your overall architectural
quality, code quality, and performance by doing the following:

• Visualizing software architecture and its software dependencies

• Enforcing the designated architectural rules regarding laying, subsystems, calling
rules, and more

• Identifying code that has been cloned and modified using cut, copy, and paste

• Identifying dead code that can be removed

• Calculating various software metrics

• Performing code style checks and flagging violations

Many companies employ static code analysis as part of their Continuous Integration (CI)
process. There are various stages at which problems can come to light. These stages are
listed as follows:

• When compiling source code in the IDE

• When running unit tests and end-to-end system tests

• When pushing source code to version control and issuing a pull request

• When a pull request has been issued and the code is issued to the build pipeline

Performing static code analysis during the coding phase helps to prevent issues from
being flagged further down the development and release processes.

164 Application Profiling and Tracing

In Visual Studio via the Project Properties | Code Analysis page, you can run
analyzers on the build and live analyses. You can enable .NET analyzers and set
the analysis level to preview, latest, 5.0, and none. Additionally, you can enforce
CodeStyle on build. Figure 5.1 shows the Code Analysis page:

Figure 5.1 – The Visual Studio Code Analysis page on the Project Properties tab

The Code Metrics Results window is available from the View menu by selecting View |
Other Windows – Code Metrics Results. The Code Metrics Results window is displayed
in Figure 5.2:

Figure 5.2 – The Code Metrics Results window

Right-click on the CH04_Finalization project and select Analyze and Code Cleanup
| Calculate Code Metrics from the context pop-up menu. The Code Metrics Results
window will be updated with the results of the analysis:

Performing static code analysis 165

Figure 5.3 – Visual Studio 2022 Code Metrics Results for the CH04_WeakReference project

The Code Metrics Results window provides six code metrics that have been calculated for
our project from CH04_Finalization.

Learn About the Metrics in Detail
If you want to learn more about the metrics (Maintainability Index,
Cyclomatic Complexity, Depth of Inheritance, Class Coupling, Lines
of Source Code, and Lines of Executable code), then you can find a
dedicated chapter (Chapter 12) in my other book, Clean Code in C#
(https://www.packtpub.com/product/clean-code-
in-c/9781838982973), which is published by Packt.

From the traffic-light indicators of the Maintainability Index column, you can see that
our project has green lights all the way. This means that our project is maintainable.

The cyclomatic complexity of our methods is between 1 and 2, so our individual method
code contains no risk. However, the overall cyclomatic complexity of our project is 31,
which is medium risk. This value is the summation of the overall cyclomatic complexity
of each of the classes within our project. The cyclomatic complexity of each of our classes
is the summation of the cyclomatic complexity of each of the methods. Since none of
the classes have a cyclomatic complexity of more than 13, our code is complex but only
poses a low risk to our project. Because the overall complexity of the project is 31, we
should look to see whether the code can be refactored to lower the cyclomatic complexity.
Sometimes, you will find that code is as simple as you can make it and that it is not
possible to reduce cyclomatic complexity. That is okay. Just use your common sense and
better judgment when you encounter such code.

https://www.packtpub.com/product/clean-code-in-c/9781838982973
https://www.packtpub.com/product/clean-code-in-c/9781838982973

166 Application Profiling and Tracing

The maximum depth of inheritance in our project is 2. That is because our
FreeAllocateMemory class inherits from our DisposableBase class, which
inherits from the System.Object class. If we study what the DisposableBase class
does, we can see that it will not cause us any issues.

The total number of lines of code in our project is about 200. There are 50 lines of
executable code. That's because we are making effective use of whitespace so that our code
is easy to read. Easy-to-read code is easier to understand, extend, and maintain.

Open the Error List window by selecting View | Error List. Then, right-click on the
project and select Analyze and Code Cleanup | Run Code Analysis. The Error List
window will be updated with any errors, warnings, or informational messages for us to
address. Figure 5.4 shows the results of running code analysis on CH06_Collections:

Figure 5.4 – The Visual Studio 2022 code analysis results for the CH04_Finalization project

In the preceding screenshot, we can see that we have 0 errors, 4 warnings, and 62
messages. The three informational messages inform us that three different methods do not
access instance data and can be marked as static.

In the CH04_Finalization.DisposableBase class, we implement the
IDisposable interface. In this class, code analysis raises two informational messages
for code analysis rule CA1816. This code analysis rule informs us that the Dispose
methods should call SuppressFinalize. Despite calling GC.SuppressFinalize,
we are receiving this code analysis rule as an informational message. Therefore, to remove
(suppress) the warning, we wrap the code in #pragma compiler directives. This can be
done manually or by right-clicking on the message and selecting Suppress | In Source.
Suppressing these messages updates the DisposableBase source file as follows:

#pragma warning disable CA1816

// Dispose methods should call SuppressFinalize

public void Dispose()

#pragma warning restore CA1816

// Dispose methods should call SuppressFinalize

{

Generating and viewing memory dumps 167

 Dispose(true);

}

private void Dispose(bool disposing)

{

 if (disposing)

#pragma warning disable CA1816

// Dispose methods should call SuppressFinalize

 GC.SuppressFinalize(this);

#pragma warning restore CA1816

// Dispose methods should call SuppressFinalize

ReleaseManagedResources();

ReleaseUnmanagedResources();

}

Now that the DisposableBase class has been updated with these #pragma warning
disable CA1816 statements, notice that the messages are no longer displayed in the error
list.

Well, we have had a look at how to generate code metrics and run code analysis on our
CH04_Finalization project using Visual Studio 2022. Now, let's move on to look at
how to generate memory dumps and analyze them.

Generating and viewing memory dumps
When debugging in Visual Studio, if your program has stopped on a breakpoint or an
exception, then the Save Dump As menu option becomes available in the Debug menu.

A minidump with a heap file provides a snapshot of an application's memory, shows
the process that was running, and lists the modules that were loaded at a point in time.
Dump files enable you to examine the stack, threads, and variables as they were within the
application and memory at the point in time when the dump was saved.

You would save a minidump with heap files when testing software and a crash is
encountered, and when a customer program crash cannot be replicated on your computer.

Let's go through the process of saving and loading a minidump with a heap file:

1. Using our CH04_WeakReferences project, put a breakpoint on the following
line in the program.cs file:

Console.WriteLine("Press any key to continue.");

168 Application Profiling and Tracing

2. Run the project to the breakpoint. Then, when the breakpoint is hit, select
Debug | Save Dump As. Save the dump file to where you would like to save it.
The filename will be called CH04_WeakReference.dmp. This file is a minidump
with a heap file.

3. To read the file, select File | Open | File. Then, select the file you just saved. You
should see the following window:

Figure 5.5 – A minidump with a heap file loaded in Visual Studio 2022

The preceding screenshot shows us that we can see the time at which the file was
last updated, the process name, the computer architecture, the exception code and
information, the heap information, and the error information. Then, we have the CLR and
OS versions. Finally, there is a list of modules, including their names, versions, and paths.

Viewing loaded modules 169

You have just learned how to generate and read memory dumps in Visual Studio 2022.
Now we will look at using the Modules window in Visual Studio 2022 to view what
modules have been loaded by our projects.

Viewing loaded modules
To identify what might be causing performance issues such as excessive memory load,
or that might be generating runtime errors, it can be useful to see what modules have
been loaded into memory. In this section, you will learn how to view loaded modules and
understand the items of information provided regarding those modules.

When you are debugging in Visual Studio 2022, the Debug | Windows menu contains the
menus, as shown in Figure 5.6:

Figure 5.6 – The Windows menu during a debugging session

170 Application Profiling and Tracing

From the preceding menu, as shown in Figure 5.6, you can select Modules during a
debugging session. This will load the Modules window, as shown in Figure 5.7:

Figure 5.7 – The Modules window showing the loaded modules for the current process

As Figure 5.7 shows, the CH04_WeakReferences.exe process runs in the clrhost
AppDomain, and loads the following modules:

• System.Private.CoreLib.dll

• CH04_WeakReference.dll

• System.Runtime.dll

• System.Console.dll

The list of fields that are displayed in the Modules window is as follows:

• Name: The name of the loaded assembly (loaded module)

• Path: The path to the loaded module

• Optimized: Yes/no

• User Code: Yes/no

• Symbol Status: Skipped loading symbols/symbols loaded

• Symbol File: The path and filename of the loaded symbol file

• Order: The order of assembly loading

• Version: The assembly version

• Address: The memory address of the loaded module

• Process: The process identifier and executable name responsible for causing the
modules to be loaded into memory

• AppDomain: The name of the application domain that the module is running
under. This doesn't have any meaning in .NET Core and .NET 5 or higher. It is
displayed because the debugger UI does not make the distinction between the
.NET Framework and .NET Core.

Debugging your applications 171

You can use this information to see what modules are loaded, whereabouts they reside in
memory, whether the symbols have been loaded, whether the code is system code or user
code, and whether the code is optimized or not optimized. If you find user code that has
not been optimized, then you can apply optimizations to improve performance.

In the next section, we will look at how to further debug your applications by briefly
covering the tools available to you that you should already be familiar with.

Debugging your applications
It is assumed that you know how to debug your code by running through your code,
stepping out and stepping over the code, running to the cursor, and setting breakpoints.
However, there are other useful tools available when using the debugger. These include
the following:

Figure 5.8 – The Debug | Windows menu

172 Application Profiling and Tracing

As you can see, there are a good number of different windows available to help debug
your applications. The Immediate window is very good for executing commands when
your program is paused. The Locals window is good for seeing the present state of your
variables, and the call stack is useful for finding where an exception occurred, especially
if it is in close code that is not yours! Take the time to run through your source code with
these windows open. Different windows such as XAML Binding Failures are only used
when working on the XAML-based code. But other windows, such as Immediate, Locals,
Output, Autos, and Call Stack, can be used with all project types. The best way to get
the most out of these tools is to use them for yourself and get to know them as you work
through your code. Next, we will look at using tracing and diagnostics tools.

Using tracing and diagnostics tools
In this section, we will look at some profiling tools to help you trace and diagnose any
issues with your code. By tracing and diagnosing your program, you can identify areas of
performance concern and address them. Such concerns might be the number of memory
allocations and the number of bytes they are using and identifying the number of objects
surviving garbage collection. Such information can be useful in improving memory usage
and performance and in preventing and removing memory leaks.

We will look at two offerings from JetBrains, called dotMemory and dotTrace, that are
valuable tools in this respect. But first, we will start by looking at the built-in profiler that
comes with Visual Studio 2022 called Performance Profiler.

Using the Visual Studio 2022 Performance Profiler
Now we are going to view the performance profile for our project. This will show us
the number of objects over time and the way garbage collection is being utilized in our
project, along with the number of objects that survive garbage collection. We can drill
down on this profile to the assembly and method levels. This enables us to see the number
of object allocations within a method and the total number of bytes those allocations
use up. And because of this information, we can identify the areas of our program
that generate the most memory usage. With such information, we can consider heavy
allocation code for refactoring to improve memory performance.

Using tracing and diagnostics tools 173

To access the Visual Studio 2022 Performance Profile, select Performance Profiler from
the Visual Studio 2022 Debug menu. This will bring up a tab, as shown in Figure 5.9:

Figure 5.9 – The Visual Studio 2022 Performance Profiler

Now, we will run an analysis on the CH04_Finalization project:

1. Select your startup project.
2. Then, select the tool that you want to use. In our case, we have selected

CH04_Finalization. And the tool we have selected is the tool for tracking
.NET object allocations. This enables us to see where the .NET objects are allocated
and when they are reclaimed.

174 Application Profiling and Tracing

3. Click on the Start button to start profiling the application. The profiler will run
and then stop when the code stops. You will see a report similar to the one in
Figure 5.10:

Figure 5.10 – The complete Visual Studio 2022 Performance Profiler report
showing live objects over time

The main chart area shows the number of live objects over time. There are also four
tabs that contain Allocations, Call Tree, Functions, and Collections data.

Using tracing and diagnostics tools 175

4. On the Allocations tab, you can see the types used and the number of their
allocations. Clicking on a type brings up the Backtrace for that type. You can see
the number of allocations for that type and the number of bytes allocated in your
functions, as shown in Figure 5.11:

Figure 5.11 – The Visual Studio 2022 Performance Profiler allocations of System.Sbyte[]
In Figure 5.11, we can see that in our Main method, there are 19 allocations of the
System.Sbyte[] type with an allocation size of 952 bytes.

176 Application Profiling and Tracing

5. Select the Call Tree tab. Showing just our code and the hot path with the hot path
expanded, we can see that in the DisplayGeneration(Product product)
method, there is one System.Int32 allocation that is 24 bytes in size, as shown in
Figure 5.12:

Figure 5.12 – The Visual Studio 2022 Performance Profiler Call Tree tab

Using tracing and diagnostics tools 177

6. Select the Functions tab. You will see that the Main method has a total of 347
allocations, 27 self-allocations, and is a total of 1,438 bytes in size, as shown in
Figure 5.13:

Figure 5.13 – Visual Studio 2022 Performance Profiler Functions tab showing allocations and sizes for
various methods

178 Application Profiling and Tracing

7. Click on the Collections tab. Then, click on a row. You will see two pie charts for
the top collected types and top survived types, as shown in Figure 5.14:

Figure 5.14 – Visual Studio 2022 Performance Profiler showing a breakdown of the garbage collection

Using tracing and diagnostics tools 179

In Figure 5.14, we can see the number of live objects over time along with the object delta
(% change). Additionally, we can see the top collected types and top survived types in the
two pie charts.

The Visual Studio 2022 Performance Profiler is a very useful tool that enables you to
view allocations, byte sizes, and garbage collected and survived objects. You can also see
the number of live objects over time. Now that you have been introduced to the profiler
and know what it is capable of, let's move our attention to the JetBrains tool called
dotMemory.

Using JetBrains dotMemory
We use dotMemory to profile and optimize memory and to help us identify memory
leaks and other memory-related issues. In this section, we will be discussing the JetBrains
dotMemory memory profiler.

The memory profiler will provide a chart with milliseconds on the x axis and megabytes
on the y axis, which shows your application's memory usage over time. The following list
of items is displayed on the chart:

• Total used: The total amount of memory used.

• Unmanaged memory: The total amount of memory placed on the stack.

• Heap generation 0: The amount of memory taken up by new objects. These objects
will be less than 80,000 bytes in size.

• Heap generation 1: The objects that survive generation 0 garbage collection.

• Heap generation 2: Long-lived objects that survive level 1 garbage collection.

• Large object heap (LOH): The amount of memory used by objects that are 80,000
bytes or larger in size.

• Allocated in LOH since GC: The amount of memory used on the LOH after
garbage collection has taken place.

180 Application Profiling and Tracing

Let's see the dotMemory memory profiler in action. If you have not already done so,
download and install dotMemory from JetBrains and the code for chapter 4 from the
GitHub page. Open dotMemory, and you will be presented with a screen similar to the
one shown in Figure 5.15:

Figure 5.15 – The dotMemory Memory Profiler ready to profile .NET Core Application

In Figure 5.15, we have selected to profile .NET Core Application. The application
selected for profiling is CH04_PreventingMemoryLeaks.dll. Click on the Run
button. This will enable the profiler to start running and profiling your application.
Once the application has been profiled, a report will be displayed showing the results in
graphical form, as shown in Figure 5.16:

Using tracing and diagnostics tools 181

Figure 5.16 – The profile report for CH04_PreventingMemoryLeaks.dll

As you can see from the preceding screenshot, our application uses a total of 8.16 MB of
memory. This is not that much. Most of the memory is placed on the stack, as shown by
the unmanaged memory usage at 8.06 MB. The rest of the memory is on the heap. On the
heap, 24 KB has been allocated on generation 0, 77.6 KB has been allocated on generation
1, and 1.3 KB has been allocated on generation 2. The most heap memory, 19.2 KB, was
placed on the LOH and did not remain after garbage collection.

Having seen the dotMemory tool in action, we can now turn our attention to what the
JetBrains dotTrace tool has to offer us in terms of tracing and profiling.

Using JetBrains dotTrace
In this section, we will be looking at JetBrains dotTrace. You will learn how to use the
JetBrains dotTrace tool to perform application tracing at runtime on your programs. This
will help you to identify bottlenecks and memory issues in your executable programs.

The profiler options available in dotTrace include the following:

• Sampling: An accurate measurement of call time. This is optimal for most use cases.

• Tracing: An accurate measurement of call number. This is optimal for analyzing
algorithm complexity.

182 Application Profiling and Tracing

• Line-byline: Advanced use cases only.

• Timeline: The measurement of temporal performance data. This is optimal for most
use cases, including the analysis of multithreaded applications:

Figure 5.17 – JetBrains dotTrace ready to profile our application

Figure 5.17 shows the initial state of dotTrace. We have selected CH03_
PassByValueAndReference.exe as our application to profile. And for our profiling option,
we have selected to go with the default Sampling setting. Make sure that Collect profiling
data from start is selected. Then, click on the Run button to start tracing.

When the tracing has been completed, the dotTrace Performance Viewer will
automatically open, as shown in Figure 5.18:

Figure 5.18 – JetBrains dotTrace Performance Viewer

Installing and using dotnet-counters 183

The outcome of profiling the CH03_PassByValueAndReference.exe file is shown
in the default view of Figure 5.18. If you click on the Hot spots icon and highlight the
Main line, you will see the program code. The breakdown of the Main method shows
that 19 ms (43.20%) of time was spent executing system code, 13 ms (29.56%) of time
was spent performing File I/O, and 12 ms (27.24%) of time was executing the String
subsystem, as shown in Figure 5.19:

Figure 5.19 – Breakdown of the main method

Figure 5.19 shows the Main method source code and the fact that between Main and
InParameterModifier, the Main method takes the most time to process. This
information can be helpful to identify and work with bottlenecks.

We have seen two tools for memory profiling and tracing that can be used to measure
performance and identify bottlenecks and problems. Now, let's move our attention to
installing and using dotnet-counters.

Installing and using dotnet-counters
In this section, we will install and use dotnet-counters. These counters are very
useful data-gathering tools that help us to monitor the health of our programs.

Open Developer Command Prompt for Visual Studio 2022. Then, type in the following
command and press Enter:

dotnet tool install --global dotnet-counters --version 3.1.141901

184 Application Profiling and Tracing

This will download and install dotnet-tools. A successful installation will be presented, as
shown in Figure 5.20:

Figure 5.20 – The successful installation of dotnet-tools version 3.1.141901 using
Developer Command Prompt

The purpose of using dotnet-counters is to perform health monitoring and a first-
level performance investigation of your applications. If when using this program, potential
performance problems are identified, then you can perform a more serious performance
investigation using tools such as PerfView or dotnet-trace:

• To periodically collect selected counter values and export them to a file for post-
processing, use the dotnet-counters collect command.

• The dotnet-counters list command displays a list of the counter names and
descriptions that are grouped by the provider.

• And to display a list of .NET processes that can be monitored, you can use the
dotnet-counters ps command.

• Using the dotnet-counters monitor command, you can display periodically
refreshed values for selected counters.

To get a list of the available options for each command, append -h or –help. Let's put
each of those commands to use. And before we do, add the following lines to the end of
the CH04_WeakRefereces Main method in the Program class:

Console.WriteLine("Press any key to continue.");

Console.ReadKey();

Run the program. It will pause and wait for you to press a key before it continues.

Installing and using dotnet-counters 185

Collecting data and saving it to a file for post-analysis
Now we will use dotnet-counters to save data to a file that we can analyze once our
program has finished running:

1. Remove the breakpoint of CH04_WeakReferences in the Program class.
2. Update the ProcessReferences() method in the Program class as follows:

private static void ProcessReferences()

{

int x = 0;

while(x < 10000)

{

 StrongReferences.ListObjects();

 WeakReferences.ListObjects();

 Thread.Sleep(2000);

 GC.Collect();

 x++;

}

}

3. Add a breakpoint to the while (x < 10000) loop.
4. Then, run the program. Running the program will require some time –

approximately 10,000 iterations x 2 seconds = 5.5h.
5. When the program stops on the breakpoint added in step 3, open Command

Prompt as an admin and type in dotnet-counters ps followed by Enter. If you
don't run as an admin, you will encounter counter access errors.

6. Obtain the process ID for the program.
7. Change the directory in Command Prompt to point to C:\Temp. Create the

directory if it does not exist.
8. Enter the dotnet-counters collect --process-id 1234 command

(replace 1234 with the ID of your .NET process) followed by Enter.
9. The performance data will now be collected.

186 Application Profiling and Tracing

10. Remove the breakpoint added in step 3 and continue the program. When you have
let the program run a little while, press the q key. Your Command Prompt screen
should look similar to Figure 5.21:

Figure 5.21 – The Developer Command Prompt having completed a collection

11. Open the file called C:\Temp\counter.csv in Excel. Figure 5.22 shows an
excerpt of the data contained within the spreadsheet:

Figure 5.22 – An excerpt from counter.csv

Installing and using dotnet-counters 187

As you can see, there are various items that are recorded by the dotnet-counters
collect process. These items include CPU usage, garbage collection data, heap information,
exception information, the number of loaded assemblies, and JIT compilation
information.

Listing .NET processes that can be monitored
To list .NET processes that can be monitored, open the Developer Command Prompt
screen and type in the dotnet-counters ps command. You should see an output
similar to the following:

Figure 5.23 – The list of .NET processes that can be monitored

As Figure 5.23 shows, the only process that can be monitored is process 5364. Process
5364 is the program that we are currently debugging. If more .NET programs were
running, then more would appear on this list.

Listing the available list of well-known .NET counters
To list the available .NET counters, run the following command:

dotnet-counters list

You will see a list of counters and their descriptions output to the console. For
Microsoft.AspNetCore.Hosting, the available counters are listed as follows:

• requests-per-second: The request rate

• total-requests: The total number of requests

• current-requests: The current number of requests

• failed-requests: The failed number of requests

188 Application Profiling and Tracing

The available well-known counters for System.Runtime are listed as follows:

• cpu-usage: The amount of time the process has utilized the CPU in milliseconds

• working-set: The amount of working set used by the process in megabytes

• gc-heap-size: The total heap reported by the garbage collector in megabytes

• gen-0-gc-count: The number of generation 0 garbage collections per minute

• gen-1-gc-count: The number of generation 1 garbage collections per minute

• gen-2-gc-count: The number of generation 2 garbage collections per minute

• loh size: Large object heap size

• alloc-rate: The number of bytes allocated in the managed heap per second

• assembly-count: The number of assemblies loaded

• exception-count: The number of exceptions per second

• threadpool-thread-count: The number of thread pool threads

• monitor-lock-contention-count: The number of times there were contentions
when trying to take the monitor lock per second

• threadpool-queue-length: The number of work items in the thread pool queue

• threadpool-completed-items-count: The number of completed work items in the
thread pool

• active-timer-count: The number of timers that are currently active

Monitoring a .NET process
We are going to run our CH04_WeakReferences project. Once you have the project
running, run the following command to get the process ID:

dotnet-counters ps

Then, once you have the process ID for your .NET program, run the following command:

dotnet-counters monitor –process-id 6719

For me, the process has an ID of 6719. Replace 6719 with whatever your process ID is.
The result should be that you see the .NET counters being displayed and updated in real
time, as shown in Figure 5.24:

Tracking down and fixing a memory leak with dotMemory 189

Figure 5.24 – The dotnet-counters being listed and updated in real time for our
CH04_WeakReferences project

Press q to quit. As you can see, we have 19.042% garbage collection fragmentation. There
are 19,640 bytes on the LOH, and 80,864 bytes are assigned to generation 2. We have
9 assemblies loaded and 24 bytes allocated to generation 0 and generation 1. We have
observed that memory fragmentation has occurred at 19.042%, so this can be investigated
further to see why we have fragmentation and to see whether we can avoid this.

In the next section, we are going to look at an example that tracks down a memory leak in
a WPF application.

Tracking down and fixing a memory leak with
dotMemory
In this section, we are going to run through an example of how to track down and fix
memory leaks. A memory leak occurs when objects become inaccessible and remain in
memory without being garbage collected. As the number of objects builds up, memory
runs out and you end up with an OutOfMemoryException exception being thrown by
the application.

190 Application Profiling and Tracing

Our example will be a WPF application called CH05_GameOfLife. To save time and
space, download the source code for the WPF application. This will help you to focus on
the task at hand, which is to track down the memory leak and fix it.

Note
When profiling and tracing, you are better off building your projects using
Release mode. The reason for this is that Debug builds contain compiler
instructions that might affect profiling results.

Perform the following steps:

1. Download and compile the CH05_GameOfLife project in Release mode.
2. Open dotMemory. The version used in this example is 2020.3.4
3. Under New Session, select Local. Then, under Profile Application, select .NET

Core Application. Select the CH05_GameOfLife.exe file under .NET Core
Application, and for the Profiler Options, select Collect memory allocation
and traffic data from the start. Figure 5.25 shows dotMemory prepared to profile
our application:

Figure 5.25 – dotMemory ready to profile our .NET 6.0 application CH05_GameOfLife.exe

Tracking down and fixing a memory leak with dotMemory 191

4. Click Run to start profiling our application. You will see a new Analysis tab appear
in dotMemory, as shown in Figure 5.26:

Figure 5.26 – dotMemory displaying the Analysis tab during the profiling of our app

5. When the profiler starts, it also starts our application. Click on the Start button of
our application, as shown in Figure 5.27:

Figure 5.27 – Running CH05_GameOfLife

6. After Game of Life has been running for a while, click on the Get Snapshot button
to take a memory snapshot. This will capture the application's managed heap at that
moment in time.

192 Application Profiling and Tracing

7. Close the advert.
8. Take another snapshot so that we have two snapshots. Then, close the Game of Life

application to stop the profiler. Figure 5.28 shows the dotMemory Analysis tab with
both snapshots taken:

Figure 5.28 – The dotMemory Analysis tab displaying both memory snapshots

9. The next step is for us to compare the two different snapshots. Figure 5.29 shows a
close-up of the two snapshots side by side:

Tracking down and fixing a memory leak with dotMemory 193

Figure 5.29 – dotMemory snapshots 1 and 2

10. Click on Compare to open the detailed side-by-side comparison of the two
snapshots. You should see the comparison, as shown in Figure 5.30:

Figure 5.30 – The side-by-side snapshot comparison screen

194 Application Profiling and Tracing

As you can see, this view shows the number of new objects created, the number
of objects that have been collected (dead objects) by the garbage collector, and the
number of objects that have survived garbage collection. This is a good source of
information that can be used to identify memory leaks.

11. Click on the Namespace column. Then, expand the CH05_GameOfLife namespace
and highlight the AdWindow entry, as shown in Figure 5.31:

Figure 5.31 – The analysis by Namespace with CH05_GameOfLife highlighted

12. In the Survived objects column, click on number 1 in the AdWindow row. This will
bring up the dialog, as shown in Figure 5.32:

Figure 5.32 – dotMemory dialog prompting the opening of a snapshot

13. Select the newer snapshot option.
14. Then, click on the Key Retention Paths tab. The JetBrains dotMemory view will

change to a view that is similar to Figure 5.33:

Tracking down and fixing a memory leak with dotMemory 195

Figure 3.33 – The Key Retention Paths tab

196 Application Profiling and Tracing

You can see that EventHandler is keeping AdWindow alive, and
EventHandler is referenced by the DispatcherTimer class. The
DispatcherTimer class is referenced by the Tick event.

15. Click on the DispatcherTimer box. This will take you to the Outgoing
References tab for the DispatcherTimer class, as shown in Figure 3.34:

Figure 3.34 – The Outgoing References table displaying the details of DispatcherTimeruse
This tab certainly shows that Tick EventHandler is retaining bytes, which is
leading to our DispatcherTimer object being kept alive in memory.

16. Click on the Creation Stack Trace tab. This will help us to identify the method
responsible for our EventHandler creation. The method appears at the top, as
shown in Figure 3.35:

Figure 3.35 – The Creation Stack Trace tab showing the AdWindow constructor that creates the timer

17. Locate the AdWindow constructor in the AdWindow class of the CH05_GameOfLife
project:

public AdWindow(Window owner)

Tracking down and fixing a memory leak with dotMemory 197

{

 ...

 _ adTimer = new DispatcherTimer {

 Interval = TimeSpan.FromSeconds(3)

};

 _ adTimer.Tick += ChangeAds;

 _ adTimer.Start();

}

As you can see from the preceding code snippet, we are subscribing to the Tick
event, which is handled by the ChangeAds method. But the one thing we are not
doing is unsubscribing from the event when we no longer require it. This is the
reason for the memory leak.

18. To rectify our memory leak, all we have to do is unsubscribe from the event when
we no longer need it. And to do this, we update the OnClosed method, as shown
in the following code:

protected override void OnClosed(EventArgs e)

{

 _ adTimer.Tick -= ChangeAds;

 base.OnClosed(e);

}

We have now rectified our memory leak by unsubscribing from the Tick event
when we close the AdWindow constructor. Repeat the steps to profile this memory
leak, and you will see that it has now been fixed, as shown in Figure 5.36:

Figure 5.36 – dotMemory showing that the memory leak has been fixed

198 Application Profiling and Tracing

 Note
We have effectively tracked down and fixed a memory leak with dotMemory.
The memory leak was because we did not unsubscribe from an event we
were subscribed to. This is a very common source of memory leaks in C#. To
learn more about dotMemory and how to use it in various scenarios, please
visit the official How-To documentation by JetBrains at https://www.
jetbrains.com/help/dotmemory/Examples.html.

In the next section, we will look at how to track down and fix a UI freeze using dotTrace.

Finding the cause of a UI freeze with dotTrace
In this section, we will be using dotTrace to hunt down the reason for a UI freeze
so that we can fix it. Again, to save time, we will use a project that has already been
provided for you. Obtain the book's source code from the URL specified in the
Technical requirements section. In the source code for CH05, you will find a project
called CH05_BatchFileProcessing.

This project opens a number of text files specified by the user and then reverses
each of the strings it finds. When the user clicks on the Process Files button, a
separate BackgroundWorker thread is started that runs on a separate thread. In
the left-hand corner, the progress of file processing is displayed. This changes to All files
were successfully processed when done. However, a problem exists whereby the UI
freezes while the files are being processed.

To find the source of this UI freeze and fix it, we are going to use timeline profiling, which
is available using dotTrace:

1. Build the CH05_BatchFileProcessing project in Release mode.
2. Open dotTrace.
3. Select Profile Local App | .NET Core Application | Timeline, and select the

executable you just compiled. Make sure to tick Collect profiling data from start.
Figure 5.37 shows dotTrace being configured before we start running it:

https://www.jetbrains.com/help/dotmemory/Examples.html
https://www.jetbrains.com/help/dotmemory/Examples.html

Finding the cause of a UI freeze with dotTrace 199

Figure 5.37 – dotTrace prior to us running the Timeline profiler

4. Click on the Run button to begin the timeline profiling. The profiler will be opened,
as shown in Figure 5.38:

Figure 5.38 – The dotTrace Timeline profiler

200 Application Profiling and Tracing

The profiler will start the CH05_BatchFileProcessor program, as shown in
Figure 5.39:

Figure 5.39 – The batch file processor
When the application has finished processing the files, the UI will be displayed, as
shown in Figure 5.40:

Figure 5.40 – CH05_BatchFileProcessor

5. Click on the Get Snapshot and Wait buttons on the timeline profiler. This will save
the snapshot and open it in the dotTrace Timeline Viewer application, as shown in
Figure 5.41:

Figure 5.41 – The dotTrace Timeline Viewer application with a loaded timeline snapshot

Finding the cause of a UI freeze with dotTrace 201

6. You can close the CH05_BatchFileProcessor and dotTrace profiler applications
down. But keep the dotTrace Timeline Viewer application open.

7. All filter values are calculated for all currently visible threads. We are only interested
in threads that have activity on them. So, hide all threads that have no activity on
them by selecting them, right-clicking, and selecting Hide selected threads.

8. Our BackgroundWorker thread is the .NET ThreadPoolWorker thread with an ID
of 12764, as shown in Figure 5.42:

Figure 5.42 – The dotTrace Timeline Viewer application with our
BackgroundWorker thread highlighted

9. Zoom into the timeline for the .NET ThreadPool Worker. You can see that the
timeline consists of three states. These states are Running, Waiting for CPU, and
Waiting. You can see our thread's timeline in Figure 5.43:

Figure 5.43 – Our thread's activity within the timeline trace

202 Application Profiling and Tracing

On the left-hand side of the screen, you will see the Thread State section within
the Filters panel. Select each of the states in turn, and you will see the timeline
highlighted accordingly. Have a play with all of the different filters available.
Investigate what each option provides you. This is a good way to learn. The
collapsed Filters panel is displayed in Figure 5.44:

Figure 5.44 – The collapsed dotTrace Filters panel

10. On the right-hand side of the screen, you will see the Call Stack panel and the
Source View panel. If you click anywhere on the thread's timeline, you will see the
call stack at that point in time. The call tree will be displayed for that stack trace. If
you click on an entry in the call stack, the code will be decompiled and displayed
within the Source View tab. This functionality enables you to see what code is
running at what point in time. Also, this view displays the full assembly's name,
namespace, and class name for the code you are looking at. Figure 5.45 displays the
Call Stack panel:

Figure 5.45 – The dotTrace Call Stack panel with the Backtraces tab displayed

Finding the cause of a UI freeze with dotTrace 203

Figure 5.46 displays the Source View panel:

Figure 5.46 – The dotTrace Source View screen showing decompiled C# and IL source code

Note
The colored bar that runs across the Call Stack panel, as shown in Figure 5.45,
displays the different subsystems in use; in this case, String. Depending on
what is happening at a particular point in time, this line might be multicolored
if multiple subsystems are in use. This bar is also useful for showing thread
locks, among other things.

204 Application Profiling and Tracing

11. Now we are ready to investigate why our UI is freezing. The purple lines in
Figure 5.47 represent moments in time when our UI is freezing:

Figure 5.47 – The dotTrace filtered view displaying our thread and highlighting UI freezes
The purple line that we are interested in is the last very long one.

12. In the Filters section, select Events | .NET Memory Allocation.
13. Then, select Thread State | Running.
14. Select Subsystems | User code, and deselect everything else. You should see the

following under Methods and Subsystems:

Figure 5.48 – The dotTrace Methods and Subsystems screen highlighting problematic user code

Finding the cause of a UI freeze with dotTrace 205

Looking at the preceding highlighted method called ProcessInProgress, we
are calling it 100% of the time during the time period when the UI freeze occurs.
Clicking on ProcessInProgress will display the contents of the MainWindow.
xaml.cs file. Our offending code is as follows:

private void ProcessInProgress(

object sender,

ProgressChangedEventArgs e

)

{

var upd = (ProgressUpdater)e.UserState;

lblProgress.Content = $"File {upd.CurrentFileNmb} of {upd.

 TotalFiles}: {e.ProgressPercentage}%";

}

Our code is updating the progress label with the value passed into the method,
which is of the ProgressChangedEventArgs type. So, what is calling this
method? It is the ProcessFiles method in the FileProcessor class:

...

for (var i = 0; i < FilePaths.Count; i++)

{

 ...

for (var j = 0; j < _ lines.Length; j++)

{

 var line = _ lines[j];

 var stringReverser = new StringReverser(line);

 _ lines[j] = stringReverser.Reverse();

 if (j % 5 == 0)

 {

 var p = (float)(j + 1) / _ lines.Length * 100;

 Worker.ReportProgress((int)p, _ updater);

 }

}

File.WriteAllLines(path, _ lines);

}

206 Application Profiling and Tracing

This method iterates through the files that the user has selected. Each file is read
along with each line, line by line. Each line has its text reversed. The problem is that
we are calling this method far too often. So, the solution is to change (j % 5 ==
0) to (j% 1000 == 0).

15. Make the change to the code recompile and rerun the profiler. This time, there will
be no lag. And you will see that the UI freeze has been fixed.

Now you have used dotTrace and the Timeline profile to track down and fix a UI freeze. In
the final section, we will look at using dotTrace to optimize application performance and
memory traffic.

Optimizing application performance and
memory traffic with dotTrace
In this section, we are going to continue tracing our CH05_BatchFileProcessing
project. We have fixed the UI freeze and will be running another trace to see whether we
can identify any further issues. When analyzing the trace, we will see that a lot of memory
traffic is being generated that is affecting the performance of our application. So, we will
address this issue and fix it:

1. Open dotTrace. Your previous session should be saved. Select it, and click on the
Run button to start tracing. The sample application will then be started.

2. Select the text files, and click on the Process Files button.
3. Once the files have been processed, kill the application. This will flush the data and

load our trace in the trace viewer. Then, close dotTrace.
4. Once the trace snapshot has been loaded into Timeline Viewer, click on the button

to Show Snapshot.
5. In the Filters view, select Events | .NET Memory Allocations and Thread State

| Running.
6. Hide all threads except our .NET ThreadPool Worker thread.
7. In the Call Stack view under Methods and Subsystems, click on Own to view

the percentage of memory allocations made by our code. You will see that our
method for reversing a string allocates 28.5% of the network traffic. The largest
amount of memory traffic is generated by the Concat method within the System.
String class. This will be the result of our CH05_BatchFileProcessing.
StringReverse.Reverse() call. Figure 5.49 shows the results of our trace in
which we can see our methods and the percentages of memory traffic they generate:

Optimizing application performance and memory traffic with dotTrace 207

Figure 5.49 – The dotTrace Timeline Viewer Call Stack screen showing our methods and
memory traffic percentage

The two different MB sizes are our own memory allocation in this method
excluding memory allocations in the child method calls from this method/the
amount of memory allocated by this method or any child methods called from
this method. As you can see, the memory allocation is 73 MB/252 MB for the
Reverse() method and 2.9 MB/255 MB for the ProcessFiles() method.

8. Open this class in Visual Studio. The code for the Reverse() method is as follows:

public string Reverse()

{

char[] charArray = _ original.ToCharArray();

string stringResult = null;

for (int i = charArray.Length; i > 0; i--)

{

 stringResult += charArray[i - 1];

}

return stringResult;

}

As you can see, this method reverses a string by assigning it to an array. The array
is then iterated backward, with each character assigned to a string using string
concatenation. And herein lies the problem with our application's performance.

208 Application Profiling and Tracing

It is well documented that the most performant way to build up a string is to use
the StringBuilder class. And we could do that here. However, there is another
way to improve the performance of this method. Replace the existing Reverse()
string method with the following version:

public string Reverse()

{

 char[] charArray = _ original.ToCharArray();

 Array.Reverse(charArray);

return new string(charArray);

}

In our revised code, we reverse the array and return a new string from the
reverse array.

9. Build your project in Release mode and then run a new trace. Figure 5.50
shows the results of the new trace:

Figure 5.50 – The new trace showing our improved performance

Summary 209

We can see from our trace that the memory allocation for the ProcessFiles method
went from 2.9 MB/255 MB, generating 1.2% of the memory traffic, to 3.8 MB/37 MB of
memory allocation, generating 10.1% of the memory traffic.

Plus, our Reverse() method went from allocating 73 MB/252 MB, and generating
28.5% of the memory traffic, to allocating 0 MB/19 MB of memory, generating 0% of the
memory traffic.

That is a good performance improvement!

In this chapter, we have covered various methods of measuring and analyzing code. With
the data we obtained, we have managed to fix a memory leak caused by not unsubscribing
to event handlers, fix a UI freeze caused by too frequent UI updates, and improve the
application performance and memory traffic caused by the way we were batch processing
string reversal. Now, it is time to summarize what we have learned.

Summary
We started with application profiling and tracing by looking at the various code metrics
that are available to us. Various tools have different metrics available. These metrics cover
the application, assemblies, namespaces, types, methods, and fields.

Then, we moved on to look at how we can perform static code analysis. We demonstrated
static code analysis using Visual Studio 2022's built-in code analysis tool. We saw how
to generate the following metrics: the maintainability index, cyclomatic complexity, the
depth of inheritance, class coupling, lines of source code, and lines of executable code.

The next thing we looked at was the generation of memory dumps and how to view
them from within Visual Studio 2022. We can view the dump time, the dump's location,
the name of the process, the processor architecture, any exception information, the OS
version, and the CLR version. Additionally, we can view loaded module names and their
versions and physical paths.

Next, we looked at how to open the Modules window during a debugging session. The
Modules window shows us the name and path of the module, whether the module is
optimized, whether it is user code or system code, its symbol status, order, version,
process, and AppDomain. We also saw the other options available in the Debug |
Windows menu that add to our debugging capabilities.

Then, we looked at the tracing and diagnostics tools called Visual Studio 2022, JetBrains
dotMemory, and JetBrains dotTrace. These tools provide an overall excellent debugging
experience that provides all the information we need to track down any type of bug,
including those that cause memory leakages and other memory-related issues.

210 Application Profiling and Tracing

Next, we looked at dotnet-counters and how to use this. We learned how to list the
.NET processes that can be monitored. Then, we saw how to list the available well-known
.NET counters. And our concluding section saw us collecting data and saving data to a file
for post-analysis.

Finally, we worked through three examples of using JetBrains dotMemory and JetBrains
dotTrace to fix a memory leak and UI freeze, improve performance, and reduce memory
traffic.

In the next chapter, we will be taking a detailed look at the Collections framework.
However, before then, take the time to further your reading and answer the following
questions to reinforce what you have learned.

Questions
1. What aspects of our computer programs are covered by code metrics?
2. What metrics does the Visual Studio 2022 static code analysis produce?
3. What kinds of things can we view from the Visual Studio-generated minidumps

with heap?
4. What columns are available in the Modules window?
5. What are the names of the four debugging, profiling, and tracing tools for

performing the various diagnostic operations that we mentioned earlier?
6. What operations did we carry out using .NET counters?

Further reading
• Debugging Visual Studio 2019: https://docs.microsoft.com/

en-us/visualstudio/get-started/csharp/tutorial-
debugger?view=vs-2019.

• Dump files in the Visual Studio debugger: https://docs.microsoft.com/
visualstudio/debugger/using-dump-files?view=vs-2019.

• dotnet-counters: https://docs.microsoft.com/en-us/dotnet/
core/diagnostics/dotnet-counters.

https://docs.microsoft.com/en-us/visualstudio/get-started/csharp/tutorial-debugger?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/get-started/csharp/tutorial-debugger?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/get-started/csharp/tutorial-debugger?view=vs-2019

Further reading 211

• .NET Core Counters internals: how to integrate counters in your monitoring pipeline:
https://medium.com/criteo-engineering/net-core-counters-
internals-how-to-integrate-counters-in-your-monitoring-
pipeline-5354cd61b42e#:~:text=dotnet-counters%3A%20
collect%20the%20metrics%20corresponding%20to%20some%20
performance,how%20to%20fetch%20them%20via%20the%20
EventPipe%20infrastructure.

• JetBrains dotTrace: https://www.jetbrains.com/profiler/.

• JetBrains dotMemory: https://www.jetbrains.com/dotmemory/.

• ndepend: https://www.ndepend.com/.

• Overview of .NET source code analysis: https://docs.microsoft.com/
dotnet/fundamentals/code-analysis/overview.

https://medium.com/criteo-engineering/net-core-counters-internals-how-to-integrate-counters-in-your-monitoring-pipeline-5354cd61b42e#:~:text=dotnet-counters%3A%20collect%20the%20metrics%20corresponding%20to%20some%20performance,how%20to%20fetch%20them%20v
https://medium.com/criteo-engineering/net-core-counters-internals-how-to-integrate-counters-in-your-monitoring-pipeline-5354cd61b42e#:~:text=dotnet-counters%3A%20collect%20the%20metrics%20corresponding%20to%20some%20performance,how%20to%20fetch%20them%20v
https://medium.com/criteo-engineering/net-core-counters-internals-how-to-integrate-counters-in-your-monitoring-pipeline-5354cd61b42e#:~:text=dotnet-counters%3A%20collect%20the%20metrics%20corresponding%20to%20some%20performance,how%20to%20fetch%20them%20v
https://medium.com/criteo-engineering/net-core-counters-internals-how-to-integrate-counters-in-your-monitoring-pipeline-5354cd61b42e#:~:text=dotnet-counters%3A%20collect%20the%20metrics%20corresponding%20to%20some%20performance,how%20to%20fetch%20them%20v
https://medium.com/criteo-engineering/net-core-counters-internals-how-to-integrate-counters-in-your-monitoring-pipeline-5354cd61b42e#:~:text=dotnet-counters%3A%20collect%20the%20metrics%20corresponding%20to%20some%20performance,how%20to%20fetch%20them%20v
https://medium.com/criteo-engineering/net-core-counters-internals-how-to-integrate-counters-in-your-monitoring-pipeline-5354cd61b42e#:~:text=dotnet-counters%3A%20collect%20the%20metrics%20corresponding%20to%20some%20performance,how%20to%20fetch%20them%20v
https://www.jetbrains.com/dotmemory/
https://www.ndepend.com/
https://docs.microsoft.com/dotnet/fundamentals/code-analysis/overview
https://docs.microsoft.com/dotnet/fundamentals/code-analysis/overview

Part 2:
Writing High-

Performance Code

Part 2 covers putting the framework to work by programming high-performance code.
We start by looking at collections. Then we move on to look at LINQ performance,
followed by files and streams. Next, we look at networking followed by working with data.
After that, we learn how to keep user interfaces active during long operations. Then we
finish up by looking at distributed systems that scale.

This part contains the following chapters:

• Chapter 6, The .NET Collections

• Chapter 7, LINQ Performance

• Chapter 8, File and Stream I/O

• Chapter 9, Enhancing the Performance of Networked Applications

• Chapter 10, Setting Up Our Database Project

• Chapter 11, Benchmarking Relational Data Access Frameworks

• Chapter 12, Responsive User Interfaces

• Chapter 13, Distributed Systems

6
The .NET Collections

Collections are an integral part of .NET. There are different ways to use these collections.
Microsoft .NET makes heavy use of arrays and collections when dealing with things such
as datasets, arrays, lists, dictionaries, stacks, and queues. You will be hard-pressed to write
a C# program without having to use the Collections Framework. The different ways of
using the collections and arrays differ in terms of their performance degradation and
performance improvement. Therefore, understanding when to use arrays and when to use
collections will form an important aspect of your C# and .NET programming skills.

In this chapter, you will learn how to improve the performance of your collection
operations. By using BenchmarkDotNet with different versions of the code, you will be
able to see the differences in performance and be in a position to choose the best method
that suits your needs.

We will be covering the following topics in this chapter:

• Understanding the different collection offerings: This section is purely
informational and provides an overview of the System.Collections, System.
Collections.Generic, System.Collections.Concurrent, and
System.Collections.Specialized namespaces.

• Setting up our sample database: We will be using a SQL database that highlights
the difference between IEnumerable and IQueryable. This section will show
you how to develop our sample database with sample data that will be used later in
this chapter.

216 The .NET Collections

• Deciding between interfaces and concrete classes: In this section, you will
benchmark the performance between using classes and interfaces. Then, you will be
able to decide on the method that best suits your needs.

• Deciding between using arrays or collections: There are strengths and weaknesses
between using arrays and collections. In this section, you will benchmark the
performance of arrays and collections and decide which to use based on your
performance requirements.

• Accessing objects using indexers: In this section, we will discuss accessing objects
in the same way we would access items in an array by using indexers.

• Comparing IEnumerable and IEnumerator: In this section, we will benchmark
iterations using both IEnumerable and IEnumerator. You will see that there is a
definite performance difference between these ways of enumerating.

• Database query performance: In this section, we will query a database using five
different methods, benchmarking their performance to see which method produces
the fastest performance.

• Exploring the yield keyword: In this section, you will learn about the yield
keyword and how it relates to the performance of your applications, especially when
it comes to iterating through collections and arrays.

• Learning the difference between concurrency and parallelism: In this section,
you will understand the difference between concurrency and parallelism, and learn
when to use one over the other.

• Learning the difference between Equals() and ==: In this section, you will
understand the differences between the different equality operators, and learn when
to use one over the other.

• Studying LINQ performance: LINQ is a C# query language that is heavily utilized
when it comes to processing collections, but it can be slow or fast, depending on
the way you code your queries. In this section, you will learn how to benchmark
different ways of performing the same types of queries. In doing so, you will see the
difference in performance between the different ways of writing the same queries.

By the end of this chapter, you will be able to do the following:

• Describe the different collections available and their uses

• Choose between using interfaces and collections

• Understand the trade-offs between arrays and collections

• Write indexers

Technical requirements 217

• Choose the best form of iteration for your particular needs

• Use the yield keyword

• Know which equality operator to use for different types of equality checking

• Improve LINQ query performance

Technical requirements
To follow along with this chapter, you will need access to the following tools:

• Visual Studio 2022

• SQL Server (any version) Express or higher

• SQL Server Management Studio

• This book's source code: https://github.com/PacktPublishing/High-
Performance-Programming-in-CSharp-and-.NET/tree/master/
CH06

Understanding the different collection
offerings
A collection is a group of records that can be treated as one logical unit. Examples of
logical record groups include people, countries, products, ingredients, books, authors,
and more.

There are four main types of collections, as follows:

• Index-based collections, such as an array or list. Index-based collections contain
an internal index. The index can be either numeric or string-based. An index-
based collection is more commonly accessed using a numerical index. Numerical
indexes are zero-based. This means that a collection's index will start at zero for the
first record and increase in value by the order of one for each subsequent record.
Collections that can be accessed using numerical indexes include arrays and lists.

• Key/value pair collections, such as a hash table or sorted list. Key/value pair
collections such as Hashtable and SortedList use a key to look up the value
stored in a collection. So, for example, if you have a collection of products, you can
access the product you need by using the product code that was assigned as the key
when the product was added to the key/value pair collection.

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH06
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH06
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH06
https://github.com/PacktPublishing/Mastering-High-Performance-with-C-10.0-and-.NET-6

218 The .NET Collections

• Prioritized collections, such as a stack or queue. Prioritized collections allow
you to store and extract records in a particular sequence. A queue uses the
First In First First Out (FIFO) sequence, while a stack uses the Last In First
Out (LIFO) sequence.

• Specialized collections, such as string collections and hybrid dictionaries.
Specialized collections are out-of-the-box collections for specific purposes. For
example, there is the CollectionsUtil class, which creates collections that
ignore the case in strings, and the ListDictionary class, which is recommended
for collections that contain less than 10 items. It implements IDictionary using a
singly linked list.

The .NET Collections Framework consists of the legacy System.Collections
namespaces, as well as the newer System.Collections.Generic, System.
Collections.Concurrent, and System.Collections.Specialized
namespaces. Before we delve into the performance of collections, it is a good idea
to reacquaint ourselves with the different collections that are available in each of the
aforementioned namespaces.

The System.Collections namespace
The System.Collections namespace contains various classes, structures, and
interfaces. In this section, we will briefly cover what is available. The collections in this
namespace are not thread-safe. If you require thread-safe collections, it would be better to
use the collections in the System.Collections.Concurrent namespace instead, as
advised by Microsoft!

The ICollection interface defines the size, enumerators, and synchronization
methods for all non-generic collections. To compare two objects, you can implement
the IComparer interface. You can represent non-generic key/value pair collections
using Idictionary. To enumerate a non-generic dictionary, you can use the
IDictionaryEnumerator interface. Simple iteration over non-generic collections is
provided by the IEnumerator interface, while equality between objects is implemented
via the IEqualityComparer interface. The IList interface is used to implement
non-generic collections of objects that can be individually accessed using the index.
Structural comparison of objects and structural equality comparison of objects is
implemented using the IStructuralComparable and IStructuralEquatable
interfaces, respectively.

• The ArrayList class implements the IList interface using a dynamic array that
can grow and shrink in size as required.

Understanding the different collection offerings 219

• On (0) and off (1), which are represented by the Boolean values false and true,
respectively, are managed by the BitArray class.

• To compare two objects while ignoring string casing, you
can use the CaseInsensitiveComparer class. Use
CaseInsensitiveHashCodeProvider to generate hash codes using
algorithms that ignore string casing.

• When you're building a strongly typed collection, inherit from the
CollectionBase class.

• The Comparer class is used to compare two objects for equivalence with
case-sensitive string comparison.

• Use DictionaryBase as the abstract class when developing strongly typed
collections of key/value pairs.

• A collection of key/value pairs organized by key-based hash codes is represented
by the Hashtable class.

• The Queue class provides a collection with FIFO access.

• The ReadOnlyCollectionBase abstract class is used as the base class for
strongly typed non-generic, read-only collections.

• Use the SortedList class to hold a collection of key/value pairs that are sorted
by the keys and are accessible by key or index.

• Use the Stack class if you need LIFO access for your collection.

• To compare two collection objects structurally, you can use the
StructuralComparisons class.

• The DictionaryEntry structure defines a dictionary key/value pair that can be
set or retrieved.

Note
IHashCodeProvider has now been marked obsolete and is no longer
recommended by Microsoft for new development. Microsoft recommends that
you use the IEqualityComparer and IEqualityComparer<T>
interfaces instead.

We now know what is available in the System.Collections namespace. Now, let's
look at what's available in the System.Collections.Generic namespace.

220 The .NET Collections

The System.Collections.Generic namespace
The classes and interfaces that are available in the System.Collections.Generic
namespace provide collections that are strongly typed and that perform better than the
classes within the System.Collections namespace. This namespace contains many
classes, structs, and interfaces.

The CollectionExtensions class provides extension methods for generic collections.
To compare two objects, you can use the Comparer<T> class, which implements the
IComparer<T> interface. The IComparer<T> interface defines the method types to
implement to compare two objects.

The IDictionary<TKey, TValue> interface provides methods for implementing
generic dictionaries. For a dictionary to be read-only, it must implement the
IReadOnlyDictionary<TKey, TValue> interface. A collection of keys and values
is represented by the Dictionary<TKey, TValue> class. Dictionary<TKey,
TValue>.KeyCollection cannot be inherited and represents the collection of keys
within a Dictionary<TKey, TValue> collection. Finally, Dictionary<TKey,
TValue>.ValueCollection cannot be inherited and represents the collection of
values within a Dictionary<TKey, TValue> collection.

The IEqualityComparer<T> interface defines methods that you can use to compare
objects for equality. A base class for implementations of the IEqualityComparer<T>
interface is provided called EqualityComparer<T>.

HashSet<T> represents a set of values. When a key that's been used to access
a collection cannot be found within the collection that's being searched, then a
KeyNotFoundException is raised. A key/value pair instance is generated using the
KeyValuePair class. For a doubly linked list, use the LinkedList<T> class. The
non-inheritable LinkedListNode<T> class represents a node in a collection of the
LinkedList<T> type.

IList<T> represents a collection of objects for implementing lists that can be accessed
by index. Read-only lists implement the IReadOnlyList<T> interface. When you need
a collection that is strongly typed that enables searching, sorting, and manipulating lists,
then use the List<T> class. For FIFO collections, use the Queue<T> class.

ReferenceEqualityComparere is an IEqualityComparer<T> that uses
reference equality by calling ReferenceEquals(Object, Object) instead of using
value equality by calling Equals(Object) when comparing two object instances.

Understanding the different collection offerings 221

A key/value pair collection that's sorted on the key is represented by the
SortedDictionary<TKey, TValue> class. This type of collection is
represented by SortedDictionary<TKey, TValue>.KeyCollection,
which cannot be inherited. The values that have been collected are represented by
SortedDictionary<TKey, TValue>.ValueCollection, which cannot
be inherited.

The SortedList<TKey, TValue> class represents a collection of key/value pairs that
are sorted by key based on the associated IComparer<T> implementation. A collection
of objects that has been maintained in sorted order is represented by the SortedSet<T>
class. The Stack<T> class provides LIFO manipulation for instances of the same type.

There are several structures available for the various generic collection classes that allow
you to enumerate the elements in the collection. These structures are called enumerators.

Asynchronously enumerating over values of a specific type can be done by implementing
the IAsyncEnumerable<T> interface. IAsyncEnumerator<T> provides the
necessary support to iterate over a generic collection. ICollection<T> defines the
methods needed to manipulate generic collections. Strongly typed collections that are
read-only implement the IReadOnlyCollection<T> interface. Sets implement the
ISet<T> interface, while read-only sets implement the IReadOnlySet<T> interface.

Now that we've looked at what the System.Collections.Generic namespace has to
offer, let's turn our attention to the System.Collections.Concurrent namespace.

The System.Collections.Concurrent namespace
The collections in the System.Collections.Concurrent namespace are thread-
safe. Whenever multiple threads are concurrently accessing a collection, use the
collections in this namespace over the collections in the System.Collections and
System.Collections.Generic namespaces.

Note
Extension methods and explicit interface implementations of these collections
are not guaranteed to be thread-safe. To ensure thread safety, synchronization
may be required in these instances.

IProducerConsumerCollection<T> defines methods that form the basis of thread-
safe collection manipulation in producer/consumer usage (also known as publisher/
subscriber usage). Higher-level abstractions such as the BlockingCollection<T>
class can use this collection as their underlying storage mechanism.

222 The .NET Collections

The BlockingCollection<T> class provides blocking and bounding capabilities to
thread-safe collections that implement the IProducerConsumerCollection<T>
interface.

Options to control partitioner buffering behavior are specified by the
EnumerablePartitionerOptions enum.

Arrays, lists, and enumerable partitioning strategies are provided by the Partitioner
class. The Partitioner<Tsource> class provides a particular manner of splitting a
data source into multiple partitions, while OrderablePartioner<Tsource> splits an
orderable data source into multiple partitions.

The Concurrent<T> class contains a thread-safe unordered list of objects. Thread-
safe FIFO collections use the ConcurrentQueue<T> class, while thread-safe LIFO
collections use the ConcurrentStack<T> class. To concurrently access key/value pairs
in a thread-safe manner, use the ConcurrentDictionary<Tkey, Tvalue> class.

With that, we've covered the System.Collections.Concurrent namespace. Now,
let's look at the System.Collections.Specialized namespace.

The System.Collections.Specialized namespace
The System.Collections.Specialized namespace contains specialized and
strongly typed collections. Let's see what it has to offer.

The CollectionChangedEventManager class provides a WeakEventManager
implementation. By using the WeakEventListener pattern, you can attach listeners for
the collection-changed event.

To build a collection of strings that ignores the string casing, you can use the
CollectionUtils class.

The HybrdDictionary class changes its behavior when the collection is small, and
when the collection grows in size. It does this by implementing IDictionary using
a ListDictionary when the collection is small; it uses a Hashtable when the
collection grows in size and becomes large.

For fewer than 10 items, you can use ListDictionary, which implements
IDictionary by using a singly linked list.

To hold a collection of the string keys of a collection, use
NameObjectCollectionBase.KeysCollection.

When you need to provide data for the CollectionChanged event, use the
NotifyCollectionChangedEventArgs class.

Understanding the different collection offerings 223

When you have an ordered collection of key/value pairs that you need to be accessible via
either the key or the index, use OrderedDictionary.

You can use the StringCollection class to hold a collection of strings, and
you can use the StringEnumerator class to perform a simple iteration of the
StringCollection class.

To get a hash table of keys and strongly typed string values, use the StringDictionary
class.

To store a Boolean value or small integer in 32 bits of memory, you can use the
BitVector32 structure. You can use BitVector32.Section of the vector to store
an integer number.

Indexed collections of key/value pairs are represented by the IOrderedDictionary
interface. The INotifyCollectionChanged interface is used to notify listeners of
dynamic changes to a collection, such as when items are added, modified, or removed.
The NotifyCollectionChangedAction enum describes the action that resulted in
the CollectionChanged event being fired.

Now, let's look at custom collections and write one.

Creating custom collections
To create custom collections, you must inherit from CollectionBase. The
CollectionBase class has a read-only ArrayList property called InnerList, and
it implements the IList, ICollection, and IEnumerable interfaces. Then, you can
add your own Add, Remove, Clear, and Count methods. We'll do this in our project.
We will create a very simple custom collection that inherits from CollectionBase so
that you can see how easy it is to create custom collections. Follow these steps:

1. Add a new class under the CustomCollections folder called
CustomCollections that inherits from CollectionBase.

2. Add the Add(object item) method to the class:

public void Add(object item)

{

 InnerList.Add(item);

}

This method adds an item to InnerList, which we have inherited from the
CollectionBase class.

224 The .NET Collections

3. Add the Remove(object item) method to the class:

public void Remove(object item)

{

 InnerList.Remove(item);

}

This method removes an item from the inherited InnerList.
4. Add the Clear() method:

public new void Clear()

{

InnerList.Clear();

}

This method clears all the items from InnerList.
5. Add the Count() method:

public new int Count()

{

 return InnerList.Count;

}

This method returns the count of the number of items in InnerList.
As you can see, creating custom collections does not have to be hard. Our implementation
is very simple and basic. However, such a class can be made to hold specific types instead
of the generic object type. You could also make your class generic so that it accepts classes
that implement a specific interface.

The following is a detailed article by Microsoft on implementing custom collections by
implementing ICollection: https://docs.microsoft.com/troubleshoot/
dotnet/csharp/implement-custom-collection.

As you read through this chapter, you will see different aspects of collections. You will also
measure their performance. This way, as you create custom collections, you can choose the
most performant way of doing things for the tasks at hand.

Now that we've briefly covered the different collection offerings in the .NET Collections
Framework, let's look at what Big O notation is.

https://docs.microsoft.com/troubleshoot/dotnet/csharp/implement-custom-collection
https://docs.microsoft.com/troubleshoot/dotnet/csharp/implement-custom-collection

Understanding Big O notation 225

Understanding Big O notation
Big O notation is used to determine algorithmic efficiency. It determines how time
scales concerning input. Constant time equates to a Big O notation value of O(1). Data
operations that scale linearly over time, depending on the size of the operation, have a Big
O notation value of (N), where N equals the amount of data being processed.

For example, if you were iterating over several elements in an array or collection, you
would use O(N), which is a linear time, where N is the size of the array or collection. If
an iteration contains pairs such as x and y, where you iterate over x in the iteration and
then y in the iteration, then your Big O notation would be O(N2). Another scenario would
be identifying the amount of time it takes to harvest a square plot of land. This could
be written as O(a), where a is the area of land. Alternatively, you could write the Big O
notation as O(s2), where s is the length of one size.

There are some rules to consider when using Big O notation:

• Different steps in your algorithm are added together. So, if step 1 takes O(a) time,
and step 2 takes O(b) time, then your Big O notation for the algorithm will be
O(a+b).

• Drop constants. For example, if you have two operations that are both constants in
your algorithm, you do not write O(2N). The notation remains O(N).

• If you have different inputs that are different variables, such as collection a and
collection b, then your Big O notation would be O(a*b).

• Drop non-dominant terms. So, O(n2) is equivalent to O(n + n2), which is equivalent
to (n2+n2).

Now that we understand what Big O notation is and the various collections available to us,
let's look at choosing the right collections for our work items.

Choosing the right collection
The key to performance when working with multiple items of data in memory is to
choose the correct storage mechanism that offers the fastest processing time for your
requirements. Here's the list of the different types of collections and their strengths
to help you choose the right collections for the right tasks:

• A Dictionary is an unordered collection with contiguous storage that is
directly accessible via a key. A dictionary's lookup efficiency using a key is
O(1) and its manipulation efficiency is also O(1). Dictionaries are best used
for high-performance lookups.

226 The .NET Collections

• A HashSet is unordered, has contiguous storage, and is directly accessible via a
key. It has a lookup efficiency using a key of O(1), and a manipulation efficiency of
O(1). HashSet is a unique unordered collection, called Dictionary, except the
key and the value are the same object.

• A LinkedList lets the user have complete control over how it is ordered, does
not have contiguous storage, and is not directly accessible. It has a lookup efficiency
value of O(n), and a manipulation efficiency of O(1). It's best to use lists when you
need to insert or remove items and no direct access is required.

• A List lets the user have complete control over how it is ordered, has contiguous
storage, and is directly accessible via an index. It has a lookup efficiency using
an index of O(1), and a lookup efficiency using a value of O(n). Its manipulation
efficiency is O(n). It is best to use this list when direct access is required, the list is
small, and there is no sorting.

• A Queue is ordered according to FIFO, has contiguous storage, and only has
direct access from the front of the queue. It has a lookup efficiency at the front of
the queue of O(1), and a manipulation index of O(1). It is essentially the same as
List<T>, except it is only processed using FIFO.

• A SortedDictionary is ordered, does not have contiguous storage, and
can be directly accessed using a key. It has a lookup efficiency using the key of
O(log n) with a manipulation efficiency of O(log n). This collection makes a
trade-off between speed and ordering and uses a binary search tree.

• A SortedList is ordered, has contiguous storage, and is directly accessible
via a key. It has a lookup efficiency using the key of O(log n) and a manipulation
efficiency of (O(n). The tree is implemented as an array, making lookups faster on
preloaded data, but slower on loads.

• A SortedSet is ordered, does not have contiguous storage, and is directly
accessible via a key. It has a lookup efficiency using a key of O(log n), and a
manipulation efficiency of O(log n). It's a unique sorted collection, similar to a
SortedDictionary, except the key and value are the same object.

• A Stack is ordered according to LIFO, has contiguous storage, and can only be
directly accessed from the top of the stack. It has a lookup efficiency of the top
item of O(1) and a manipulation efficiency of O(1)*. It is essentially the same as
List<T>, except it is only processed using LIFO.

Setting up our sample database 227

Note
For mission-critical code, it is advised that you avoid using classes in the
System.Collection namespace. Instead, you should be using the classes
from the System.Collections.Generic namespace. Although this
may sound like tried and tested advice, you are advised to run benchmark tests
to see which method is best for your particular scenario.

Now that you have been introduced to arrays and collections, we will set up our sample
database before we continue looking at collections from a performance perspective.

Setting up our sample database
In this chapter, we will be demonstrating the difference between how different collection
interfaces handle data. For our demonstrations, we require access to database data. To
do so, we will create a database, add a table to it, and populate it with data. We will use
SQL Server for our database engine and SQL Server Management Studio to develop our
sample database.

To add our database, follow these steps:

1. Open SQL Server Management Studio and connect to your database engine.
2. Right-click on the Databases folder in Object Explorer, as shown in the

following screenshot:

Figure 6.1 – SQL Server Management Studio – Object Explorer

228 The .NET Collections

3. Select New Database from the context menu. This will display the New Database
dialog, as shown in the following screenshot:

Figure 6.2 – SQL Server Management Studio – the New Database dialog

4. Once you have entered SampleData under Database name, click on the OK
button to create the database.

5. Locate the database by expanding the Databases folder, and then expand the
database. Right-click on the Tables folder and select New | Table. Add a new table
called Products, as shown here:

Table 6.1 – The Products table's design

Deciding between interfaces and concrete classes 229

6. Save the table, and then expand the Tables folder. Right-click on the Product table
and select Edit Top n records, where n will be the number of configured records to
edit. This is 200 by default.

7. Add the data shown in the following table to the Product table:

Table 6.2 – The Product table's row data

We now have a database with a single table filled with data that we will later use in this
chapter. Now, let's understand collections from a performance perspective. Let's start by
looking at how we decide between using arrays or collections.

Deciding between interfaces and concrete
classes
In this section, we will show that declaring a collection using an interface declaration
rather than a concrete class declaration provides better time-based performance. We will
accomplish this by benchmarking the generation of collections using an IList interface,
as well as by using a List concrete class, so that you can see the difference in the
performance of the different approaches. Follow these steps:

1. In the CH06_Collections project, add a new folder called
ConcreteVsInterface.

230 The .NET Collections

2. In the ConcreteVsInterface folder, add the ITax interface:

internal interface ITax

{

 int Id { get; set; }

 TaxType TaxType { get; set; }

 TaxRate TaxRate { get; set; }

 decimal LowerLimit { get; set; }

 decimal UpperLimit { get; set; }

 decimal Percentage { get; set; }

 decimal Calculate(decimal amount);

}

This interface defines a contract that various concrete tax classes will have to adhere
to. It enforces impact analysis since a change in this interface will be felt by all the
classes that implement it.

3. Next, add the BaseTax class:

internal abstract class BaseTax : ITax

{

 public int Id { get; set; }

 public TaxType TaxType { get; set; }

 public TaxRate TaxRate { get; set; }

 public decimal LowerLimit { get; set; }

 public decimal UpperLimit { get; set; }

 public decimal Percentage { get; set; }

 public abstract decimal Calculate(decimal amount);

}

This abstract class implements the ITax interface but marks
Calculate(decimal amount) as abstract so that its implementation is left up
to the subclasses.

4. Now, add the TaxRate enum:

using System;

[Flags]

internal enum TaxRate

{

 TaxFreePersonalAllowance,

Deciding between interfaces and concrete classes 231

 StarterRate,

 BasicRate,

 IntermediateRate,

 HigherRate,

 AdditionalRate

}

The TaxRate enum provides the different types of tax rates for UK income tax.
5. Add the TaxtType enum:

[Flags]

internal enum TaxType

{

 CorporationTax,

 ValueAddedTax,

 IncomeTax,

 NationInsuranceContributions,

 ExciseDuties,

 RoadTax,

 StampDuty

}

The TaxType interface provides the different kinds of UK taxes. Add the
BaseRate class. This class will inherit from the BaseTax class.

6. Then, add the following constructor:

public BasicRate()

{

 this.LowerLimit = 14550M;

 this.UpperLimit = 24944M;

 this.TaxType = TaxType.IncomeTax;

 this.TaxRate = TaxRate.BasicRate;

 this.Percentage = 0.2M;

}

This constructor sets the properties contained within BaseClass to the values
applicable to basic rate income tax.

232 The .NET Collections

7. Now, implement the Calculate(decimal amount) method:

public override decimal Calculate(decimal amount)

{

 if (Percentage > 1)

 throw new Exception("Invalid percentage.

 Percentage must be between 0 and 1.");

if (amount < LowerLimit & amount > UpperLimit)

 return 0;

return Percentage * amount;

}

This method checks if the percentage is less than one and throws an exception if
it is not. The lower and upper amounts a person earns that are taxed are checked.
If the amount is outside of this range, then zero is returned. The amount of tax on
earnings is then returned and the method exits.

8. Add a new class called TaxMan:

using BenchmarkDotNet.Attributes;

using BenchmarkDotNet.Engines;

using BenchmarkDotNet.Order;

using CH06 _ Collections.Linq;

using System.Collections.Generic;

using System.Threading;

[MemoryDiagnoser]

[Orderer(SummaryOrderPolicy.FastestToSlowest)]

[RankColumn]

public class TaxMan { }

Our class is now configured to perform benchmarking using BenchmarkDotNet.
9. Add the following method:

[Benchmark]

public void BasicRateInterface()

{

 IList<BasicRate> basicRate = new

 List<BasicRate>();

}

Deciding between interfaces and concrete classes 233

The BasicRateInterface() method declares a list of BasicRate objects
using the IList interface.

10. Add the BasicRateConcrete() method:

[Benchmark]

public void BasicRateConcrete()

{

 List<BasicRate> basicRate = new

 List<BasicRate>();

}

The BasicRateConcrete() method declares a list of BasicRate objects using
the concrete List class.

11. In the Program class, comment out the code in the Main method and add the
following line of code:

BenchmarkRunner.Run<TaxMan>();

This line of code will run our benchmarks. Do a release build, and then run the
executable from the command line. You should see the following output or similar:

Figure 6.3 – The BenchmarkDotNet summary report showing the time difference between assigning
IList<T> and List<T>

As we can see from the report, memory utilization is the same for both the interface
and the concrete class implementations. But the faster instantiation time is obtained by
assigning IList<T> instead of List<T>. Although the value will not be noticeable to
the naked eye, it will become more noticeable over some time if there are a large number
of assignments, such as when a large data iteration is taking place.

234 The .NET Collections

Now, let's look at array and collection performance.

Deciding between using arrays or collections
In this section, we'll discuss the pros and cons of using arrays and collections. We will also
perform various benchmarks that measure array and collection performance. Armed with
benchmark information, you can then make informed decisions as to whether arrays or
collections are best suited to your specific needs. We will start by looking at arrays.

The downsides to using arrays are as follows:

• Arrays are fixed in size, meaning that once the size of the array has been changed,
its size cannot be changed.

• Since arrays are fixed in size, they are not recommended for efficient memory usage.

• Arrays can only hold heterogeneous data types, and data types can be primitive and
object types.

• Data elements of the object type can hold different types of data elements.

• Arrays lack many useful methods.

The benefits of using arrays are as follows:

• Arrays have a small memory footprint and have undergone some serious
performance improvements in C# 9.0 and .NET 5.

• However, as arrays are fast and have undergone speed improvements, they are
recommended when performance matters.

The downside to using collections is as follows:

• When it comes to performance, they are not recommended over arrays.

The benefits of using arrays are as follows:

• Collections effectively wrap arrays; generic List<T> is a good example.

• They are growable, which means that we can shrink and grow our collections as
required. Because of this, collections are recommended over arrays when it comes
to efficient memory utilization.

• Data elements (item data) in a collection can be homogeneous and heterogeneous.

• Collection classes have ready-made method support for most operations and can
easily be extended. By this, we mean that arrays lack some useful methods that we
get for free when we use collections.

Deciding between using arrays or collections 235

Note
It is recommended that you do not use the collections in the System.
Collections namespace. Instead, you are encouraged to use the
collections in the System.Collections.Generic namespaces.

The standard collection that most programmers will be familiar with is the generic
List<T> class. In this section, we will create a new project. Then, we will build up a
uint array and a List<uint> collection and iterate through them. This process will be
benchmarked using BenchmarkDotNet.

We will be benchmarking adding items, iterating through, and retrieving items from
arrays and collections. So, let's begin:

1. Add a new class under the project root called ArraysVsCollections with the
following using statements:

using BenchmarkDotNet.Attributes;

using BenchmarkDotNet.Order;

using System;

using System.Collections;

using System.Collections.Generic;

using System.Linq;

These using statements give us what we need to work with arrays and collections
and benchmark them.

2. Add the following member variables:

private int[] array;

private List<int> collection;

The array of int and the list of int will be used to benchmark adding, getting, and
iterating arrays and collections.

3. Next, add the GlobalSetup() method:

[GlobalSetup]

public void GlobalSetup()

{

array = new int[1000];

collection = new List<int>(1000);

for (int i = 0; i < 1000; i++)

{

236 The .NET Collections

 array[i] = i;

 collection.Add(i);

}

}

The GlobalSetup() method is attributed to the [GlobalSetup] attribute.
This informs BenchmarkDotNet to run this method before all other benchmark
methods. It initializes the array and collection with a size of 1000 and adds a value
of i in the current iteration to both the array and collection.

4. Although we will not be utilizing the GlobalCleanup() method, we will add
it for completeness so that you know how to perform cleanup operations when
benchmarking:

[GlobalCleanup]

public void GlobalCleanup()

{

// Disposing logic

}

The GlobalCleanup() method is where you would provide your cleanup logic if
it were needed.

5. Now, add the ArrayAdd1000Logic() method:

[Benchmark]

public void ArrayAdd1000Logic1()

{

int[] list = new int[1000];

for (int i = 0; i < 1000; i++)

{

 list[i] = i;

}

}

The ArrayAdd1000Logic() method declares an array of 1000 int values and
later proceeds to add integer values to each element in the array.

6. Add the CollectionAdd1000Logic() method:

[Benchmark]

public void CollectionAdd1000Logic()

{

Deciding between using arrays or collections 237

Ilist<int> list = new new List<int>();

for (int i = 0; i < 1000; i++)

 list.Add(i)

}

The CollectionAdd1000Logic () method declares a list of int
elements. Then, it loops 1,000 times using a for loop and adds the current
value to the collection.

7. Add the ArrayIterationLogic() method:

[Benchmark]

public int ArrayIterationLogic()

{

int res = 0;

for (int i = 0; i < 1000; i++)

 res += array[i];

return res;

}

The ArrayIterationLogic() method declares an int variable and assigns
it a value of 0. A for loop is used to iterate 1,000 times and add the value of the
array at the index position to the res value. Once the iteration is over, the res
variable is returned.

8. Now, add the CollectionIterationLogic() method:

[Benchmark]

public int CollectionIterationLogic()

{

int res = 0;

for (int i = 0; i < 1000; i++)

 res += collection[i];

return res;

}

CollectionIterationLogic() declares an int variable and assigns it
a value of 0. A for loop is used to iterate 1,000 times and add the value of the
array at the index position to the res value. Once the iteration is over, the res
variable is returned.

238 The .NET Collections

9. Add the ArrayGetElement500Logic() method:

[Benchmark]

public int ArrayGetElement500Logic()

{

return array[500];

}

The ArrayGetElement500Logic() method returns the value of the array at
position 500.

10. Now, add the CollectionGetElement500Logic() method:

[Benchmark]

public int CollectionGetElement500Logic()

{

return collection[500];

}

The CollectionGetElement500Logic() method returns the value of the
collection at position 500.

11. Replace the code in the Main method with the following line of code:

BenchmarkRunner.Run<ArraysVsCollections>();

This call will run our benchmarks. Release build your code and run it from the
console. You should see a report with similar timings to those shown in the
following screenshot:

Figure 6.4 – The BenchmarkDotNet summary report for array and collection operations

Accessing objects using indexers 239

Looking at the performance in terms of time, adding items to an array is faster than
adding items to a collection. Iterating a collection is faster than iterating over an array
and getting an item from an array using its index is faster than getting a collection
from a collection by its index. Based on these findings, you need to decide what your
requirements are, and then choose the best type based on these requirements.

Now, let's look at indexers.

Accessing objects using indexers
Indexes enable objects in classes to be accessed in the same way you access items
in an array. An indexer will have a modifier, a return type, the this keyword to
indicate the object of the current class, and an argument list. You will always use the
this keyword when creating an indexer. Indexer is the term given to a parameterized
property. The index is created using the get and set accessors. You are not allowed
to use the ref or out keywords to modify indexer parameters. A minimum of one
parameter should be specified. An indexer cannot be static since it is an instance member.
However, the indexer properties can be static. You would implement an indexer if you
need to operate on a group of elements. The main difference between a property and an
indexer is that you identify and access a property by its name. On the other hand, with
an indexer, it is identified by its signature and accessed using indexes. Moreover, you can
overload indexers.

Now, let's write a simple indexer example. In this example, we will have a class that has a
constructor that takes a size. This size will set the size of an internal array of strings. We
will be able to get the index of a string in the array by name and get an item from the array
by index using indexers. Follow these steps:

1. Add a new class called Indexers and add a using statement to System
namespace. Then, add the following array and constructor at the top of the class:

private string[] _ items;

public Indexers(int size)

{

 _ items = new string[size];

}

The _items array will contain several strings. The size of the array is set by the
value that's passed into the constructor that initializes the array.

240 The .NET Collections

2. Add the indexer to get a string by index:

public string this[int index]

{

 get

{

 if (IsValidIndex(index))

 return _ items[index];

 else

 return string.Empty;

}

 set

{

 if (IsValidIndex(index))

 _ items[index] = value;

}

}

This indexer uses an int value to get an item from the array and set the value of the
array at the given index. Items are only set and retrieved if the index is valid.

3. We can check the index by passing it into the IsValidIndex(int index)
method, which returns a bool. Let's add the IsValidIndex(int index)
method:

private bool IsValidIndex(int index)

{

 return index > -1 && index < _ items.Length;

}

This method returns true if the index is greater than -1 and less than the length of
the array. Otherwise, it returns false.

4. Now, add the index that takes a string and returns the string's index:

public int this[string item]

{

 get

Accessing objects using indexers 241

{

 return Array.IndexOf(_ items, item);

}

}

This indexer takes a string. Then, it looks up the index for the string and returns
the index. There is no setter for this index.

5. In the Program class, add the IndexerExample() method:

public static void IndexerExample()

{

 Indexers indexers = new Indexers(1000);

 for (int i = 0; i < 1000; i++)

 indexers[i] = $"Item {i}";

Console.WriteLine($"The item at position 500 is

 \"{indexers[500]}\".");

Console.WriteLine($"The index of \"Item 500\" is

 {indexers["Item 500"]}.");

}

This method creates a new Indexer object with an internal array size of 1000.
Then, it loops 1,000 times and sets the value of each item in the array. After that, it
prints out the value of the array at position 500 and prints out the value of Item
500.

6. Comment out the code in the Main method, and then add the following line:

IndexerExample();

This statement calls the method that executes our Indexer method. You should
see the following output:

The item at position 500 is "Item 500".

The index of "Item 500" is 500.

That concludes our look at indexers. As you can see, they are pretty simple. You can use
any data item that you like for an indexer. However, it will be up to you to see how well
such indexers perform. Now, let's look at the difference between the IEnumerable and
IEnumerator interfaces.

242 The .NET Collections

Comparing IEnumerable and IEnumerator
The IEnumerable and IEnumerator interfaces can both be used for iteration but in
different ways. Let's understand each in brief.

An object of the IEnumerable type will know how to traverse the collection that it
holds, regardless of what its internal structure is like. There is one method that makes up
an enumerable: GetEnumerator(). It returns as an instance of a class that implements
the IEnumerable interface. Iteration is normally carried out using a foreach
loop. Iterations of an enumerable are carried out using a foreach loop. However, an
enumerable does not remember its location when iterating.

Objects of the Ienumerator type declare two methods: MoveNext() and Reset().
There is one property called Current that gets the current item in the list that's being
enumerated. The MoveNext() method moves to the next record in a collection and
returns a Boolean value indicating the end of the collection. Reset() will reset the
position to the first item in the collection. The Current property is called through an
object that implements the IEnumerable interface, which returns the current element
in the collection. An enumerator remembers its current location and uses a while loop
when iterating.

Let's see which method of enumeration is fastest. Will it be looping using an enumerable,
or will it be looping using an iterator?

1. Add a new class called IEnumerableVsIEnumerable with the following using
statements:

 using BenchmarkDotNet.Attributes;

 using BenchmarkDotNet.Running;

 using System;

 using System.Collections;

 using System.Collections.Generic;

 using System.Diagnostics;

These using statements provide the elements we will need to build and test the
performance between IEnumerable and IEnumerator.

2. Add the following code to the class:

private List<int> _ years;

public IEnumerableVsIEnumerator()

{

 _ years = new List<int> { 1970, 1971, 1972, 1973, 1974,

Comparing IEnumerable and IEnumerator 243

 1975, 1976, 1977, 1978, 1979 };

}

Here, we are declaring a list of int values that will hold several year values. Our
constructor then initializes the array with the years 1970 to 1979.

3. Add the IterateEnumerator1970to1975() method:

public void IterateEnumerator1970To1975()

{

 var years = _ years.GetEnumerator();

 while (years.MoveNext())

{

 Debug.WriteLine(years.Current);

 if (years.Current > 1975)

 IterateEnumberator1976To1979(years);

}

}

This method iterates over the values 1970 to 1975 and prints the values out to the
debug window.

4. If the current year is greater than 1975, then the enumerator is passed into the
IterateEnumerator1976To1979(IEnumerator<int> years) method,
which we will add now:

public void IterateEnumberator1976To1979

 (IEnumerator<int> years)

{

while (years.MoveNext())

{

 Debug.WriteLine(years.Current);

}

}

This method takes in an enumerator and iterates through it. On each iteration, it
prints the current year to the debug window.

5. Add the following line to the end of the Main method in the Program class:

IEnumerableVsIEnumeratorExample();

244 The .NET Collections

This line of code calls a method that will run our example and show how an
enumerator remembers where it is in the iteration.

6. Add the IEnumerableVsIEnumeratorExample() method to the
Program class:

private static void IEnumerableVsIEnumeratorExample()

{

 IEnumerableVsIEnumerator eve = new

 IEnumerableVsIEnumerator();

 eve.IterateEnumerator1970To1975();

}

This method runs our code. If you do a debug build and run the code, then you
should see the years 1970 to 1979 printed to the output window.

Now that you have seen an enumerator in action, we will add two methods to the
IEnumerableVsIEnumerator class.

7. Add the BenchmarkIEnumerabled() method:

[Benchmark]

public void BenchmarkIEnumerable()

{

 IEnumerable<int> enumerable = IEnumerable<int>) _ years;

 foreach (int i in enumerable)

 Debug.WriteLine(i);

}

This method uses an enumerable and a foreach loop to iterate through the years
and write them to the debug window.

8. Add the BenchmarkIEnumerator() method:

[Benchmark]

public void BenchmarkIEnumerator()

{

 IEnumerator<int> enumerator = _ years.GetEnumerator();

 while (enumerator.MoveNext())

 Debug.WriteLine(enumerator.Current);

}

Comparing IEnumerable and IEnumerator 245

This method uses an enumerator and a while loop to iterate through the years and
write them to the debug window.

9. Comment out the code in the Main method in the Program class, and then add
the following line:

BenchmarkRunner.Run<IEnumerableVsIEnumerator>();

This line of code detects our benchmarks and runs them to produce a summary
report on performance. Do a release build and run the program from the command
prompt. You should see the following output:

Figure 6.5 – The BenchmarkDotNet summary report showing that IEnumerator
is faster than IEnumerable

As we can see, even though IEnumerable and IEnumerator both perform iterations
on the same collection, they do so in different ways. And by viewing the benchmarking
summary report, we can see that the clear winner in terms of performance is the
IEnumerator interface. Now, let's look at the difference between IEnumerable,
IEnumerator, and IQueryable, and the effects these differences have on performance
when performing LINQ queries on a database.

246 The .NET Collections

Database query performance
In the previous section, we saw how IEnumerator is different from and performs
faster than IEnumerable when iterating through an in-memory collection. Now, let's
query a database and iterate through the resulting collection using various benchmarked
techniques. To do so, we'll follow these steps:

1. Add a new class called IEnumeratorVsIQueryable.
2. We will be connecting to a SQL Server database, and we will have information

we need to keep secret. Our secret.json files do not get checked into version
control. So, right-click on the project and select Manage User Secrets from the
context menu.

3. A dialog box will pop up, informing you that additional packages are required.
Click on Yes:

Figure 6.6 – A dialog box, informing you that additional packages are required to manage user secrets

4. Visual Studio will then open the secrets.json file in a new tab. This is where
you will add your user secrets.

5. Open the Package Manager Console and add the following packages:

 � Microsoft.EntityFrameworkCore

 � Microsoft.EntityFrameworkCore.SqlServer

 � Microsoft.EntityFrameworkCore.Tools

 � Microsoft.Extensions.Configuration

 � Microsoft.Extensions.Configuration.EnvironmentVariables

 � Microsoft.Extensions.Configuration.UserSecrets

 � Microsoft.Extensions.OptionsConfigurationExtensions

These packages allow you to connect to and extract data from our SQL
Server database.

Database query performance 247

6. Update your secrets.json file with the connection string to the database that
we created at the start of this chapter:

{

 "DatabaseSettings": {

 "ConnectionString": "YOUR _ CONNECTION _ STRING"

 }

}

This connection string will be used to connect to our database, perform a query
that returns some data, and allow us to iterate through that data and perform some
operations on it.

7. Add a folder called Configuration. In that folder, add a class called
SecretsManager with an empty static constructor and the following using
statements:

using Microsoft.Extensions.Configuration;

using System;

using System.IO;

We need these using statements for our file I/O and system configuration, such as
obtaining secrets from a secrets.json file.

8. Add the following line at the top of the SecretsManager class:

public static IConfigurationRoot Configuration { get;

 set; }

This line declares our static configuration property, which is used to obtain the
configuration data within our application.

9. Now, add the following code:

public static T GetSecrets<T>(string sectionName)

 where T : class

{

var devEnvironmentVariable = Environment

 .GetEnvironmentVariable("NETCORE _ ENVIRONMENT");

var isDevelopment = string.IsNullOrEmpty

 (devEnvironmentVariable) || devEnvironmentVariable

 .ToLower() == "development";

var builder = new ConfigurationBuilder()

248 The .NET Collections

 .SetBasePath(Directory.GetCurrentDirectory())

.AddJsonFile("appsettings.json", optional: true,

 reloadOnChange: true)

.AddEnvironmentVariables();

if (isDevelopment) //only add secrets in development

{

 builder.AddUserSecrets<T>();

}

Configuration = builder.Build();

return Configuration.GetSection(sectionName).Get<T>();

}

This code gets the environment variables for the .NET Core environment. Then,
it gets the code to see if it is running in a software development environment.
The configuration is built for the environment it will be running in. If we are in
development, then we must add our secrets class as defined by the T variable.
Switch to the Product class in the Models folder.

10. Add a using statement for System.ComponentModel.DataAnnotations.
Change the struct to a class, and add the [Key] attribute to the Id property. We
need these changes since we are using Entity Framework to connect to a database
and extract data.

11. Add the DatabaseSettings class to the Configuration folder:

public class DatabaseSettings

{

 public string ConnectionString { get; set; }

}

This class has a single property called ConnectionString that will hold our
connection string to our SampleData database. Notice that the name of the class
and property match the name of the JSON section and property!

12. Now, add appsettings.json to the root of your project with the
following contents:

{

 "DatabaseSettings": {

 "ConnectionString": "Set in Azure. For

 development, set in User Secrets"

 }

}

Database query performance 249

This file contains the same layout as the secrets.json file and the
DatabaseSettings class. This file is used to store our connection string.
In development, it is set in our secrets file, while in production, it is set in
Azure. Now that we have our database configuration in place, we can add our
benchmarking code.

13. Add a new class to the root of the project called DatabaseQueryAndIteration
that implements IDisposable with the following code:

using BenchmarkDotNet.Attributes;

using BenchmarkDotNet.Order;

using CH06 _ Collections.Configuration;

using CH06 _ Collections.Data;

using CH06 _ Collections.Models;

using Microsoft.Extensions.Options;

using System;

using System.Collections.Generic;

using System.Diagnostics;

using System.Linq;

[MemoryDiagnoser]

[Orderer(SummaryOrderPolicy.Declared)]

[RankColumn]

public class DatabaseQueryAndIteration : IDisposable

{

}

This code declares our class and defines the fact that it implements IDisposable.
It is also configured to be benchmarked.

14. Implement the IDisposable interface in our class:

private bool disposedValue;

protected virtual void Dispose(bool disposing)

{

 if (!disposedValue) {

 if (disposing)

 _ context.Dispose();

 disposedValue = true;

 }

}

250 The .NET Collections

public void Dispose(){

 Dispose(disposing: true);

 GC.SuppressFinalize(this);

}

This code disposes of our managed resources and suppresses the call to the class
finalizer method.

15. We have everything in place to benchmark the methods in this class, access
database resources, and clean up after ourselves. Add the following code to the class:

private DatabaseContext _ context;

[GlobalSetup]

public void GlobalSetup()

{

 var connectionString = SecretsManager.

 GetSecrets<DatabaseSettings>(nameof

 (DatabaseSettings)).ConnectionString;

_ context = new DatabaseContext(connectionString);

}

[GlobalCleanup]

public void GlobalCleanup()

{

 Dispose(true);

}

The _context variable provides us with our database access. The
GlobalSetup() method gets our connection string from our secrets file
and creates a new DatabaseContext using the safely stored connection
string. The GlobalSetup() method will run before our benchmarks. The
GlobalCleanup() method calls the Dispose(disposing) method to clean
up our managed resources after our benchmarks have finished running.

16. Next, add the QueryDb() method:

[Benchmark]

public void QueryDb()

{

 var products = (from p in _ context.Products

 where p.Id > 1 select p);

Database query performance 251

foreach (var product in products)

 Debug.WriteLine(product.Name);

}

The QueryDb() method performs a simple LINQ query on the database by
selecting products with an ID that's greater than 1. Then, it iterates each product
in the lQueryable<Product> list and writes the product name out to the
debug window.

17. Now, add the QueryDbAsList() method:

[Benchmark]

public void QueryDbAsList()

{

List<Product> products = (from p in _ context.Products

where p.Id > 1

select p).ToList<Product>();

foreach (var product in products)

Debug.WriteLine(product.Name);

}

QueryDbAsList() performs the same query as QueryDb(), except the
processed type is of the List<Product> type.

18. Add the QueryDbAsIEnumerable() method:

[Benchmark]

public void QueryDbAsIEnumerable()

{

var products = (from p in _ context.Products

 where p.Id > 1

 select p).AsEnumerable<Product>();

foreach (var product in products)

 Debug.WriteLine(product.Name);

}

The QueryDbAsIEnumerable() method performs the same query as
QueryDbAsList, but the processed type is of the Ienumerable<Product>
type instead.

252 The .NET Collections

19. Add the QueryDbAsIEnumerator() method:

[Benchmark]

public void QueryDbAsIEnumerator()

{

 var products = (from p in _ context.Products

 where p.Id > 1

 select p).GetEnumerator();

while (products.MoveNext())

 Debug.WriteLine(products.Current.Name);

}

QueryDbAsIEnumerator() does the same as the previous methods but operates
on the IEnumerator<Product> type and iterates using a while loop instead of
a foreach loop.

20. Our final method in this class is the QueryDbAsIQueryable() method:

[Benchmark]

public void QueryDbAsIQueryable()

{

var products = (from p in _ context.Products

 where p.Id > 1

 select p).AsQueryable<Product>();

foreach (var product in products)

 Debug.WriteLine(product.Name);

}

This method is the same as QueryDb but explicitly operates on the
IQueryable<Product> type.

21. Replace the code in the Main method within the Program class with the
following code:

BenchmarkRunner.Run<DatabaseQueryAndIteration>();

This code runs our benchmarks. Do a release build of the code and run the
executable from the command line. You should see a summary report similar
to the following:

Exploring the yield keyword 253

Figure 6.7 – The different times and memory allocations of various database query types using LINQ

In terms of memory usage, the worst performer is the QueryDb() method,
followed by the QueryDbAsList() method. QueryDbAsIEnumerable() and
QueryDbAsIQueryable() are both slightly better than the previous two. However,
the best performing method in terms of memory allocation out of all five methods is the
QueryDbAsIEnumerator() method.

Speedwise, the QueryDb() method was the worst again, followed by
QueryDbAsIEnumerable(), then QueryDbAsList(), and then
QueryDbAsIQueryable(). And again, the best performer in terms of speed is the
QueryDbAsIEnumerator() method.

Here, we can see that the best performing method for querying and iterating a database
in terms of both speed and memory usage is the QueryDbAsIEnumerator() method.
Now, let's look at the yield keyword.

Exploring the yield keyword
The yield keyword is contextual and is used with iterators. The following are the two ways
to use the yield keyword:

• yield return <expression>;: This returns the value of the expression.

• yield break;: This will exit from the iteration

254 The .NET Collections

When using the yield keyword, there are some restrictions to be aware of. These are
as follows:

• You cannot use the yield keyword in unsafe blocks of code.

• You cannot use the ref or out parameters for methods, operators, or accessors.

• You cannot return using the yield keyword in a try-catch block.

• You cannot use the yield keyword in anonymous methods.

• You can use yield in a try block if the try block is followed by the
finally block.

• You can use yield break in a try-catch block but not the finally block.

In this section, we are going to add a class that shows the yield keyword in action. Then,
we will benchmark two ways to return an IEnumerable<long> consisting of 1 million
items, and show the vast difference in performance between them. Let's begin:

1. Add a new class called Yield to the root of the project:

using BenchmarkDotNet.Attributes;

using BenchmarkDotNet.Order;

using System;

using System.Collections.Generic;

[MemoryDiagnoser]

[Orderer(SummaryOrderPolicy.Declared)]

[RankColumn]

public class Yield { }

This class will benchmark the use of the yield keyword.
2. Now, add the YieldSample() method:

public void YieldSample()

{

DoCountdown();

PrintMonthsOfYear();

DoBreakIteration();

}

The YieldSample() method will be called from our Program class. It will run
all three methods.

Exploring the yield keyword 255

3. Add the Countdown() method:

private IEnumerable<int> Countdown()

{

 for (int x = 10; x >= 0; x--)

 yield return x;

}

This method loops from 10 to 0. Each iteration is returned using the
yield keyword.

4. Add the DoCountdown() method:

private void DoCountdown()

{

foreach (int x in Countdown())

 Console.WriteLine(x);

}

The DoCountdown() method prints the countdown from 10 to 0 to the
console window.

5. Add a class called Month:

internal class Month

{

 public string Name { get; set; }

 public int MonthOfYear { get; set; }

}

This class holds the name of a month of the year and its number.
6. Now, add the Months class:

internal class Months

{

 public IEnumerable<Month> MonthsOfYear

 {

 get

 {

 yield return new Month { Name = "January",

 MonthOfYear = 1 };

 yield return new Month { Name = "February",

256 The .NET Collections

 MonthOfYear = 2 };

 yield return new Month { Name = "March",

 MonthOfYear = 3 };

 yield return new Month { Name = "April",

 MonthOfYear = 4 };

 yield return new Month { Name = "May",

 MonthOfYear = 5 };

 yield return new Month { Name = "June",

 MonthOfYear = 6 };

 yield return new Month { Name = "July",

 MonthOfYear = 7 };

 yield return new Month { Name = "August",

 MonthOfYear = 8 };

 yield return new Month { Name = "September",

 MonthOfYear = 9 };

 yield return new Month { Name = "October",

 MonthOfYear = 10 };

 yield return new Month { Name = "November",

 MonthOfYear = 11 };

 yield return new Month { Name = "December",

 MonthOfYear = 12 };

 }

}

}

This class returns a collection of Month objects using the yield keyword. Switch
back to the Yield class.

7. Add the PrintMonthsOfYear() method:

private void PrintMonthsOfYear()

{

foreach (Month month in new Months().MonthsOfYear)

 Console.WriteLine($"{month.Name} is month

 {month.MonthOfYear} of the year.");

}

Exploring the yield keyword 257

This method iterates through the months of the year and prints them out to the
console window.

8. Add the BreakIteration() method:

private IEnumerable<int> BreakIteration()

{

int x = 0;

while (x < 20)

{

 if (x < 15)

 yield return x;

 else

 yield break;

 x++;

}

}

This method iterates 20 times. A check is made upon each iteration. If the value is
less than 15, the result is yielded and the variable is incremented. Otherwise, the
iteration is exited.

9. Add the DoBreakIteration() method:

private void DoBreakIteration()

{

 foreach (int x in BreakIteration())

 Console.WriteLine($"Line {x}:");

}

The DoBeakIteration() method iterates through BreakIteraton() and
writes the value to the console window.

10. In the Program class, add a method called Yield(), and call it from your
Main method:

private static void Yield()

{

 var yieldToMe = new Yield();

 yieldToMe.YieldSample();

}

258 The .NET Collections

This method runs our yield keyword examples. Do a debug build and step
through the code so that you can see how it behaves. You will see that each time the
yield keyword is encountered, it returns to the calling method. Then, it continues
the iteration from where it left off.

11. Now, let's add our benchmarking to test the performance of the yield keyword.
Add the GetValues() method:

public IEnumerable<long> GetValues()

{

 List<long> list = new List<long>();

 for (long i = 0; i < 1000000; i++)

 list.Add(i);

return list;

}

This method creates a collection of long values using a generic List. It iterates
1 million items and adds them to the collection. Once complete, the collection is
returned to the caller as an IEnumerable<long> collection.

12. Add the GetValuesYield() method:

public IEnumerable<long> GetValuesYield()

{

 for (long i = 0; i < 1000000; i++)

 yield return i;

}

This method iterates through 1 million items and returns a collection of
IEnumerable<long>. The iteration uses the yield keyword, so each iteration is
returned to the caller.

13. Add the GetValuesBenchmark() method:

[Benchmark]

public void GetValuesBenchmark()

{

 var data = GetValues();

}

This method benchmarks the GetValues() method.

Exploring the yield keyword 259

14. Add the GetValuesYieldBenchmark() method:

[Benchmark]

public void GetValuesYieldBenchmark()

{

 var data = GetValuesYield();

}

This method benchmarks the GetValuesYield() method.
15. Replace the code in the Main method in the Program class with the following line

of code:

BenchmarkRunner.Run<Yield>();

This line of code runs our benchmarks. Do a release build and then run the
executable from the command line. You should see the following summary report:

Figure 6.8 – The BenchmarkDotNet summary report showing the
performance benefits of using the yield keyword

As you can see from the report, building a list of 1 million long values is much slower
compared to using the yield keyword. The yield keyword significantly speeds up how
collections are processed. That's a 13,102,611.27 ns / 14.50 ns = 903,628.26 times increase
in performance! So, you can see that the use of the yield keyword is very beneficial to
the performance of your computer programs.

In the next section, we will look at the difference between concurrency and parallelism
and the effects they have on performance.

260 The .NET Collections

Learning the difference between concurrency
and parallelism
Concurrency and parallelism are often mistaken for the same thing, but they are different.
Concurrency does many tasks at the same time using multi-threading. Multi-threading
allots time to various threads based on time/context switching. This presents the illusion
that the computer is doing multiple things at the same time. But it is, in reality, only doing
one thing. Parallelism, on the other hand, does many things all at the same time.

Concurrency is used to manage multiple computations simultaneously. It accomplishes
this using interleaving operations. The benefit of concurrency is that it increases the
amount of work that can be completed over time. It uses context switching to perform
interleaving operations. Concurrency can work with a single processor. You are already
aware of concurrency at work, as you will have had multiple applications running at the
same time. All these programs are making use of concurrency.

The main usage of concurrency is to have usable applications that are non-blocking.
For example, if you have an application that performs a long-running operation, this
operation can be run on a background thread to allow the user to still use the application
and get work done. So, concurrency is not necessarily about performance – it is more
about not blocking your users from being able to do what they intend with your
application.

Parallelism performs multiple computations at the same time in parallel to each other. To
accomplish parallelism, multiple processors are required. The benefit of using parallelism
is increased computational processing speed. Running document crawlers over a cluster
and performing parallel queries and big data are examples of using parallelism.

The main goal of parallelism is performance. In other words, the intention of using
parallelism is to complete an operation in the shortest amount of time. An example of
parallelism in use would be data-intensive number crunching for report generation.

You should never mix concurrency with performance. If you do, your design will either
be bad or over-engineered. So, if you want user interfaces to be non-blocking, use
concurrency. However, if you want non-UI tasks to complete in the shortest possible
time, use parallelism. Later in this book, we will devote whole chapters to concurrency,
parallelism, and asynchronous processing. But for now, let's turn our attention to the
difference between Equals() and ==.

Learning the difference between Equals() and == 261

Learning the difference between Equals() and
==
The == operator compares object references, known as shallow comparison, while the
Equals() method compares object content, known as deep comparison. Both the
operator and the method can be overloaded.

Note
If you overload the == operator, then you should overload the Equals()
method and vice versa.

The == operator returns true in the following situations:

• Value Type Value == Value Type Value

• Reference Type Instance == Reference Type Instance

• String == String

The Equals() method returns true in the following situations:

• ReferenceType.Equals(ReferenceType) both refer to the same
object reference

• ValueType.Equals(ValueType) are both the same type and have the
same value

Now, let's add a new class called Equality to the root of the CH06_Collections project to
demonstrate the difference in performance between the == operator and the Equals()
method. Let's get started:

1. Add the Equality class, as follows:

using BenchmarkDotNet.Attributes;

using BenchmarkDotNet.Order;

using System;

using System.Collections;

using System.Collections.Generic;

using System.Diagnostics;

using System.Linq;

[MemoryDiagnoser]

[Orderer(SummaryOrderPolicy.Declared)]

262 The .NET Collections

[RankColumn]

public class Equality { }

With that, our class has been configured to perform benchmarking.
2. Add the following code to the top of the class:

private List<string> _ listOne;

private List<string> _ listTwo;

private int _ value1;

private int _ value2;

private string _ string1;

private string _ string2;

Here, we have our value types, reference types, and string types in place that will
have their equality tested.

3. Now, add the GlobalSetup() method:

[GlobalSetup]

public void GlobalSetup()

{

 _ listOne = new List<string>

{

 "Alpha", "Beta", "Gamma", "Delta", "Eta", "Theta"

};

 _ listTwo = _ listOne;

 _ value1 = 123;

 _ value2 = _ value1;

 _ string1 = "Hello, world!";

 _ string2 = _ string1;

}

This method assigns our variables in preparation for our equality benchmarks.
4. Add the ValueOperatorValue() method:

[Benchmark]

public void ValueOperatorValue()

{

 bool value = _ value1 == _ value2;

}

Learning the difference between Equals() and == 263

The ValueOperatorValue() method benchmarks the equality checking of two
values using the equality operator.

5. Add the ValueEqualsValue() method:

[Benchmark]

public void ValueEqualsValue()

{

 bool value = _ value1.Equals(_ value2);

}

The ValueEqualsValue() method benchmarks the equality checking of two
values using the Equals(value) method.

6. Add the ReferenceOperatorReference() method:

[Benchmark]

public void ReferenceOperatorReference()

{

 bool value = _ listOne == _ listTwo;

}

The ReferenceOperatorReference() method benchmarks the equality
checking of two reference values using the equality operator.

7. Add the ReferenceEqualsReference() method:

[Benchmark]

public void ReferenceEqualsReference()

{

 bool value = _ listOne.Equals(_ listTwo);

}

The ReferenceEqualsReference() method benchmarks the equality
checking of two values using the Equals(reference) method.

8. Add the StringOperatorString() method:

[Benchmark]

public void StringOpertatorString()

{

 bool value = _ string1 == _ string2;

}

264 The .NET Collections

The StringOperatorString() method benchmarks the equality testing of two
strings using the == operator.

9. Next, add the StringEqualsString() method:

[Benchmark]

public void StringEqualsString()

{

 bool value = _ string1.Equals(_ string2);

}

The StringEqualsString() method benchmarks the equality testing of two
strings using the Equals() method.

10. Add BenchmarkRunner.Run<Equality>(); to the Main method of the
Program class, do a Release build, and then run your executable from the
command line. You should end up with the following benchmark report:

Figure 6.9 – The BenchmarkDotNet summary report for various equality checks

As we can see, it is quicker to test value type equality using the == operator, quicker to
use the == operator to test reference type equality, and quicker to use Equals(string)
when comparing strings.

With that, we have completed this chapter. But before we move on to Chapter 7, LINQ
Performance, let's summarize what we have learned in this chapter.

Summary 265

Summary
In this chapter, we learned about the different types of collections and their usage. We saw
that we should prefer using generic collections over non-generic collections. Then, we
briefly touched on Big O Notation and how to use it to determine algorithmic efficiency.
After that, we looked at choosing the right type of collection for what we needed.

After that, we set up a sample database to test the querying and iteration of data using
further on in the chapter. Then, we looked at how to choose between using interfaces
and concrete classes and choosing between arrays and collections. Next, we looked at
indexers and then moved on to look at IEnumerable<T>, IEnumerator<T>, and
IQueryable<T> and their performance.

The next topic we looked at was using the yield keyword. We touched on the differences
between concurrency and parallelism and mentioned that these will be looked at in more
depth in later chapters. Finally, we looked at the difference between the == operator and
the Equals() method in terms of performance.

In the next chapter, we will be looking at LINQ performance. But for now, see if you can
answer the following questions, and check out the Further reading section to solidify what
you have learned in this chapter.

Questions
Answer the following questions to test your knowledge of this chapter:

1. List the different namespace collections.
2. What is Big O notation used for?
3. What does algorithmic efficiency measure?
4. Is it preferable to use IList<T> or List<T> in terms of instantiation speed?
5. Should we use collections or arrays?
6. What does an indexer do?
7. Which method of iteration is fastest on an in-memory collection between

IEnumerable<T> and IEnumerator<T>?
8. In terms of memory and speed performance, what database query method

performs best?
9. When building a collection using iteration, what is the quickest way to build the

collection up and return the results?

266 The .NET Collections

Further reading
To learn more about the topics that were covered in this chapter, take a look at the
following resources:

• Indexers: https://docs.microsoft.com /dotnet/csharp/
programming-guide/indexers/.

• ConsoleSecrets: https://github.com/jasonshave/ConsoleSecrets.

• Equality Operators: https://docs.microsoft.com/dotnet/standard/
design-guidelines/equality-operators.

• Interesting Performance Implications of C# 9 Records Equality Check: https://
gmanvel.medium.com/interesting-performance-implications-
of-c-9-records-equality-check-f0d0a3612919.

• Improving Struct Equality Performance in C#: http://dontcodetired.com/
blog/post/Improving-Struct-Equality-Performance-in-C.

• String Equality and Performance in C#: https://rhale78.wordpress.
com/2011/05/16/string-equality-and-performance-in-c/.

• Performance Implications of Default Struct Equality in C#: https://devblogs.
microsoft.com/premier-developer/performance-implications-
of-default-struct-equality-in-c/.

• Performance Best Practices in C#: https://kevingosse.medium.com/
performance-best-practices-in-c-b85a47bdd93a.

• 8 Techniques to Avoid GC Pressure and Improve Performance in C# .NET: https://
michaelscodingspot.com/avoid-gc-pressure/.

https://docs.microsoft.com /dotnet/csharp/programming-guide/indexers/.
https://docs.microsoft.com /dotnet/csharp/programming-guide/indexers/.
https://github.com/jasonshave/ConsoleSecrets
https://docs.microsoft.com/dotnet/standard/design-guidelines/equality-operators
https://docs.microsoft.com/dotnet/standard/design-guidelines/equality-operators
https://gmanvel.medium.com/interesting-performance-implications-of-c-9-records-equality-check-f0d0a3612919
https://gmanvel.medium.com/interesting-performance-implications-of-c-9-records-equality-check-f0d0a3612919
https://gmanvel.medium.com/interesting-performance-implications-of-c-9-records-equality-check-f0d0a3612919
http://dontcodetired.com/blog/post/Improving-Struct-Equality-Performance-in-C
http://dontcodetired.com/blog/post/Improving-Struct-Equality-Performance-in-C
https://rhale78.wordpress.com/2011/05/16/string-equality-and-performance-in-c/
https://rhale78.wordpress.com/2011/05/16/string-equality-and-performance-in-c/
https://devblogs.microsoft.com/premier-developer/performance-implications-of-default-struct-equality-in-c/
https://devblogs.microsoft.com/premier-developer/performance-implications-of-default-struct-equality-in-c/
https://devblogs.microsoft.com/premier-developer/performance-implications-of-default-struct-equality-in-c/
https://kevingosse.medium.com/performance-best-practices-in-c-b85a47bdd93a
https://kevingosse.medium.com/performance-best-practices-in-c-b85a47bdd93a
https://michaelscodingspot.com/avoid-gc-pressure/
https://michaelscodingspot.com/avoid-gc-pressure/

7
LINQ Performance

LINQ has a reputation for being slow. But contrary to people's views, there are ways to use
LINQ that ensure optimal performance.

In this chapter, you will learn how to perform LINQ queries with performance in mind.
Depending on how you use LINQ, different methods that return the same result can
behave and perform differently. And so, in this chapter, you will learn how best to perform
queries on LINQ to improve the performance of your applications.

Here, you will benchmark different ways to determine the most performative ways to
obtain the last element of a LINQ query. You will learn about the performance penalty
of using the let keyword in LINQ statements, and why you should avoid using it.
Benchmarking different Group By methods, you will gain insight into the most
performant way to perform GroupBy queries using LINQ. When performing queries
and data manipulation using LINQ, there may be times when you need to use closures.
By writing parametrized and non-parameterized closures, you will see that parameterized
closures perform much better than non-parameterized closures.

We will be covering the following topics in this chapter:

• Setting up our sample database

• Setting up our in-memory sample data

• Querying a database using LINQ

• Getting the last value of a collection

268 LINQ Performance

• Avoid using the let keyword in LINQ queries

• Increasing Group By performance in LINQ queries

• Filtering lists

• Understanding closures

By the end of this chapter, you will have the skills to securely store secrets and query
databases and in-memory data using efficient LINQ. You will also be able to understand
the performance impact of using the let keyword in your queries and performing
efficient filtering and grouping of data using LINQ.

Technical requirements
In order to follow along with this chapter, you will need access to the following tools:

• Visual Studio 2022

• SQL Server 2019

• SQL Server Management Studio

• The book's source code: https://github.com/PacktPublishing/High-
Performance-Programming-in-CSharp-and-.NET/tree/master/
CH07

Setting up a sample database
In this chapter, we will be demonstrating the difference between how different collection
interfaces handle data, and for the demonstrations, you require access to database data.
To do so, you will create a database, add a table, and populate it with data. You will use
SQL Server for your database engine, and use SQL Server Management Studio to develop
your sample database.

Note
In the CH07_LinqPerformance.Data source code folder, you will find
a database creation script called SampleData.Product.sql that creates
the database and populates it with data. You can run this script in SQL Server
Management Studio. This will save you from having to run through setting up
the database in this section. But if you are new to SQL Server, you may want to
run through this section.

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH07
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH07
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH07

Setting up a sample database 269

To add your database, follow these steps:

1. Open SQL Server Management Studio and connect to your database engine.
2. Right-click on the Databases folder in Object Explorer as shown in Figure 7.1:

Figure 7.1: The SQL Server Management Studio Object Explorer tab

3. Select New Database from the context menu. This will display the New Database
dialog as shown in Figure 7.2:

Figure 7.2: The SQL Server Management Studio New Database dialog

270 LINQ Performance

4. Once you have entered SampleData for the database name, click on the OK
button to create the database.

5. Locate the database by expanding the Databases folder, and then expand the
database. Right-click on the Tables folder and select New | Table. Add a new table
called Products as shown in the following figure:

Table 7.1: The Products table design

6. Save the table and then expand the Tables folder. Right-click on the Products table
and select Edit Top n records where n will be the number of configured records to
edit, which is 200 by default.

7. Add the data shown in the following figure to the Product table:

Table 7.2: The Product table row data

We now have a database with a single table filled with data that we will use later in the
chapter. In the next section, we will be adding our in-memory sample data.

Setting up our in-memory sample data 271

Setting up our in-memory sample data
You will be studying LINQ performance, therefore, you are going to need a collection to
work with. You will work with a collection of Person objects. Each person will be named
from the Greek alphabet. A Person object will consist of a FirstName, LastName,
and FullName property. The FullName property will be an interpolated string that
combines the first and last name of the person.

Let us now begin coding our LINQ coding combined with benchmarking, so that we can
measure the performance of our LINQ statements:

1. Create a new .NET 6.0 console application called CH07_LinqPerformance.
2. Install the NuGet package BenchmarkDotNet.
3. Add the following Person struct:

public struct Person

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string FullName { get { return

 $"{FirstName} {LastName}"; } }

public Person(string firstName, string lastName)

{

 FirstName = firstName;

 LastName = lastName;

}

}

This structure defines the Person with their FirstName, LastName,
and computed FullName.

4. Now, add a new class called LinqPerformance with the following
using statements:

using BenchmarkDotNet.Attributes;

using BenchmarkDotNet.Order;

using System.Collections.Generic;

using System.Linq;

These using statements provide you with access to benchmarking, generic
collections, and LINQ classes.

272 LINQ Performance

5. Add the following code to the top of the class:

private List<Person> _ people = new List<Person>();

private string[] _ group1 = new string[] { "iota",

 "epsilon", "sigma", "upsilon" };

private string[] _ group2 = new string[] { "alpha",

 "omega" };

You have declared a list of people and two arrays. Both these arrays contain the
surnames of people in lowercase that belong to those groups.

6. Now, add the global setup class that will prepare your collection for benchmarking
various LINQ queries:

[GlobalSetup]

public void PrepareBenchmarks()

{

 _ people.Add(new Person("Alpha", "Beta"));

 _ people.Add(new Person("Chi", "Delta"));

 _ people.Add(new Person("Epsilon", "Phi"));

 _ people.Add(new Person("Gamma", "iota"));

 _ people.Add(new Person("Kappa", "Lambda"));

 _ people.Add(new Person("Mu", "Nu"));

 _ people.Add(new Person("Omicron", "Pi"));

 _ people.Add(new Person("Theta", "Rho"));

 _ people.Add(new Person("Sigma", "Tau"));

 _ people.Add(new Person("Upsilon", "Omega"));

 _ people.Add(new Person("Xi", "Psi"));

 _ people.Add(new Person("Zeta", "Iota"));

 _ people.Add(new Person("Alpha", "Omega"));

 _ people.Add(new Person("Omega", "Chi"));

 _ people.Add(new Person("Sigma", "Tau"));

}

You now have your sample database and in-memory sample data in place for the topics
we will be covering in this chapter. So, let us start by investigating various ways of
querying a database and their effects on LINQ query performance.

Database query performance 273

Database query performance
We saw in Chapter 6, The .NET Collection, how IEnumerator is different from
IEnumerable, and how IEnumerator performs faster than IEnumerable when
iterating through an in-memory collection. Now, we will query a database and iterate
through the resulting collection using various benchmarked techniques. To do so,
we will follow these steps:

1. Add a new class called IEnumeratorVsIQueryable.
2. You will be connecting to a SQL Server database and will have the information

you need to keep secret. Your secret.json files do not get checked into version
control. So, right-click on the project and select Manage User Secrets from the
context menu.

3. A dialog will pop up informing you that additional packages are required. Click
on Yes.

Figure 7.3: Dialog Informing you that additional packages are required to manage user secrets

4. Visual Studio will then open the secrets.json file in a new tab. This is where
you will add your user secrets.

5. Open Package Manager Console and add the following packages:

Microsoft.EntityFrameworkCore

Microsoft.EntityFrameworkCore.SqlServer

Microsoft.EntityFrameworkCore.Tools

Microsoft.Extensions.Configuration

Microsoft.Extensions.Configuration.EnvironmentVariables

Microsoft.Extensions.Configuration.UserSecrets

Microsoft.Extensions.OptionsConfigurationExtensions

These packages enable you to connect to and extract data from the SQL
Server database.

274 LINQ Performance

6. Update your secrets.json file with the connection string to the database you
created at the start of the chapter:

{

 "DatabaseSettings": {

 "ConnectionString": "YOUR _ CONNECTION _ STRING"

 }

}

This connection string will be used to connect to your database, perform a query
that returns some data, and enable you to iterate through that data and perform
operations on it.

7. Add a folder called Configuration, and in that folder, add a class called
SecretsManager with an empty static constructor and the following
using statements:

using Microsoft.Extensions.Configuration;

using System;

using System.IO;

You need these using statements for your file I/O and system configuration
such as obtaining secrets from a secrets.json file.

8. Add the following line at the top of the SecretsManager class:

public static IConfigurationRoot Configuration

 { get; set; }

This line declares your static configuration property that is used to obtain your
configuration data within your application.

9. Now add the following code:

public static T GetSecrets<T>(string sectionName)

 where T : class

{

var devEnvironmentVariable = Environment

 .GetEnvironmentVariable("NETCORE _ ENVIRONMENT");

var isDevelopment = string.IsNullOrEmpty

 (devEnvironmentVariable) || devEnvironment

 Variable.ToLower() == "development";

var builder = new ConfigurationBuilder()

Database query performance 275

 .SetBasePath(Directory.GetCurrentDirectory())

.AddJsonFile("appsettings.json", optional: true,

 reloadOnChange: true)

.AddEnvironmentVariables();

if (isDevelopment) //only add secrets in development

{

 builder.AddUserSecrets<T>();

}

Configuration = builder.Build();

return Configuration.GetSection(sectionName).Get<T>();

This code gets the environment variables for the .NET Core environment. It then gets
the code to see if it is running in a software development environment or production
environment. The configuration is then built for the environment it will be running
in. So, if we are in debug mode, the configuration will be built for the development
environment. And if we are in release mode, the configuration will be built for the
production environment. If we are in development, then we add our secrets class
as defined by the T variable.

10. Create a new folder, Models, and add the Product class using the following code:

using System.ComponentModel.DataAnnotations;

public class Product

{

 public Product() { }

 public Product(int id)

 {

 Id = id;

 Name = $"Item {Id} Name";

 Description = $"Item {Id} description.";

 }

 [Key]

 public int Id { get; private set; }

 public string Name { get; private set; }

 public string Description { get; private set; }

 public override string ToString()

 {

 return $"Id: {Id}, Name: {Name},

276 LINQ Performance

 Description: {Description}";

 }

}

Our Product class provides the model for our product data with Id, Name, and
Description properties that are set via the constructor. We also override the
ToString method to return a textual representation of the property values.

11. Add a using statement for System.ComponentModel.DataAnnotations.
Change the struct to a class, and add the [Key] attribute to the Id property.
We need these changes since we are using Entity Framework to connect to
a database and extract data.

12. In the CH07_LinqPerformance.Data folder, add the DatabaseContext class:

using Microsoft.EntityFrameworkCore;

using CH07 _ LinqPerformance.Models;

public class DatabaseContext : DbContext

{

}

We have declared our DatabaseContext class, which inherits from the
DbContext class. Now we'll need to add its internals.

13. Add the following items to the DatabaseContext class:

public DbSet<Product> Products { get; set; }

public DatabaseContext(string connectionString) :

 base(GetOptions(connectionString))

{

}

In this code, we have declared our DbSet of products property, which will hold
a collect of our Product class, and a connection string member variable that will
hold the string that connects us to our database. Our constructor is then declared,
which takes in a connection string, which we pass into the GetOptions method
that then gets passed into the base class constructor.

14. Add the GetOptions method to the DatabaseContext class:

private static DbContextOptions GetOptions(string

 connectionString)

{

 return SqlServerDbContextOptionsExtensions

Database query performance 277

 .UseSqlServer(

 new DbContextOptionsBuilder(),

 connectionString)

 .Options;

}

This method returns the DbContextOptions for our SQL Server database
connection. The connection string used is the one that is stored in our secrets.
json file in development and in appsettings.json when in production.

15. Add the OnModelCreating method:

protected override void OnModelCreating(ModelBuilder

 modelBuilder)

{

 modelBuilder.Entity<Product>(entity =>

 {

 entity.HasKey(e => e.Id);

 entity.Property(e => e.Name)

 .HasMaxLength(50);

 Entity.Property(e => e.Description)

 .HasMaxLength(255);

 });

 }

Here, we are configuring our Product class that will be used in our DbSet.
We are declaring that the Id field is our primary key and that the Name field
has a maximum length of 50 while the Description field has a maximum
length of 255.

16. Add the DatabaseSettings class to the Configuration folder:

public class DatabaseSettings

{

 public string ConnectionString { get; set; }

}

This class has a single property called ConnectionString that will hold your
connection string to our SampleData database. Notice that the name of the class
and property match the name of the JSON section and property!

278 LINQ Performance

17. Now, add appsettings.json to the root of your project with the
following contents:

{

 "DatabaseSettings": {

 "ConnectionString": "Set in Azure. For

 development, set in User Secrets"

 }

}

This file has the same layout as the secrets.json file and the
DatabaseSettings class. This file is used to store your connection string.
In development, it is set in the secrets file, and in production, it is set in Azure.
Now that you have your database configuration in place, you can add your
benchmarking code.

18. Add a new class in the root of the project called DatabaseQueryAndIteration
that implements IDisposable with the following code:

using BenchmarkDotNet.Attributes;

using BenchmarkDotNet.Order;

using CH07 _ Collections.Configuration;

using CH07 _ Collections.Data;

using CH07 _ Collections.Models;

using Microsoft.Extensions.Options;

using System;

using System.Collections.Generic;

using System.Diagnostics;

using System.Linq;

[MemoryDiagnoser]

[Orderer(SummaryOrderPolicy.Declared)]

[RankColumn]

public class DatabaseQueryAndIteration : IDisposable

{

}

This code declares our class and defines the fact that it implements IDisposable.
It is also configured to be benchmarked.

Database query performance 279

19. Implement the IDisposable interface in our class:

private bool disposedValue;

protected virtual void Dispose(bool disposing)

{

 if (!disposedValue) {

 if (disposing)

 _ context.Dispose();

 disposedValue = true;

 }

}

public void Dispose(){

 Dispose(disposing: true);

 GC.SuppressFinalize(this);

}

This code disposes of our managed resources and suppresses the call to the class
finalizer method.

20. We have everything in place to benchmark the methods in this class, access
database resources, and clean up after ourselves. Add the following code to the class:

private DatabaseContext _ context;

[GlobalSetup]

public void GlobalSetup()

{

 var connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>(nameof

 (DatabaseSettings)).ConnectionString;

 _ context = new DatabaseContext(connectionString);

}

[GlobalCleanup]

public void GlobalCleanup()

{

 Dispose(true);

}

280 LINQ Performance

The _context variable provides us with our database access. The
GlobalSetup() method gets our connection string from our secrets file,
and creates a new DatabaseContext using the safely stored connection
string. The GlobalSetup() method will run before our benchmarks. The
GlobalCleanup() method calls the Dispose(disposing) method to clean
up our managed resources after our benchmarks have finished running.

21. Next, add the QueryDb() method:

[Benchmark]

public void QueryDb()

{

 var products = (from p in _ context.Products

 where p.Id > 1select p);

foreach (var product in products)

 Debug.WriteLine(product.Name);

}

The QueryDb() method performs a simple LINQ query on the database by
selecting products with an ID of greater than 1. It then iterates each product
in the IQueryable<Product> list and writes the product name out to the
debug window.

22. Now, add the QueryDbAsList() method:

[Benchmark]

public void QueryDbAsList()

{

List<Product> products = (from p in _ context.Products

 where p.Id > 1select p).ToList<Product>();

foreach (var product in products)

Debug.WriteLine(product.Name);

}

QueryDbAsList() performs the same query as QueryDb(), except the
processed type is of type List<Product>.

Database query performance 281

23. Add the QueryDbAsIEnumerable() method:

[Benchmark]

public void QueryDbAsIEnumerable()

{

var products = (from p in _ context.Products

 where p.Id > 1

 select p).AsEnumerable<Product>();

foreach (var product in products)

 Debug.WriteLine(product.Name);

}

The QueryDbAsIEnumerable() method performs the same query as
QueryDbAsList, but processes a type of IEnumerable<Product> instead.

24. Add the QueryDbAsIEnumerator() method:

[Benchmark]

public void QueryDbAsIEnumerator()

{

 var products = (from p in _ context.Products

 where p.Id > 1

 select p).GetEnumerator();

 while (products.MoveNext())

 Debug.WriteLine(products.Current.Name);

}

QueryDbAsIEnumerator() does the same as the previous methods but operates
on a type of IEnumerator<Product> and iterates using a while loop instead of
a foreach loop.

25. The final method in this class that we need to add is the
QueryDbAsIQueryable() method:

[Benchmark]

public void QueryDbAsIQueryable()

{

var products = (from p in _ context.Products

 where p.Id > 1

 select p).AsQueryable<Product>();

foreach (var product in products)

282 LINQ Performance

 Debug.WriteLine(product.Name);

}

This method is the same as QueryDb but explicitly operates on a type of
IQueryable<Product>.

26. Replace the code in the Main method within the Program class with the following:

BenchmarkRunner.Run<DatabaseQueryAndIteration>();

This code runs your benchmarks. Do a release build of the code and run the
executable from the command line. You should see a summary report similar
to the following:

Figure 7.4: The different times and memory allocation of various database query types using LINQ

Let us summarize what we learn from the summary report after running our
query benchmarks:

• In terms of memory usage, the worst performer is the QueryDb() method
followed by the QueryDbAsList() method. QueryDbAsIEnumerable() and
QueryDbAsIQueryable() are both slightly better than the previous two. But the
best performing method in terms of memory allocation out of all five methods is
the QueryDbAsIEnumerator() method.

• Speed wise, the QueryDb() method was the worst again. Followed by
QueryDbAsIEnumerable(), then QueryDbAsList(), and then
QueryDbAsIQueryable(). And again, the best performer in terms of speed is
the QueryDbAsIEnumerator() method.

Getting the last value of a collection 283

So, we can see that the best performing method for querying and iterating a database in
both speed and memory usage terms is the QueryDbAsIEnumerator() method out of
all the methods we've chosen to investigate.

In the next section, we will be investigating which is the fastest method for obtaining the
last item in a collection.

Getting the last value of a collection
You are now going to see how the LINQ method that obtains the last element in
the collection is really slow when compared to directly accessing the item by its
index. This will be accomplished using benchmarking to measure the performance
of different methods:

1. Update the Main method as follows:

static void Main(string[] args)

{

 BenchmarkRunner.Run<LinqPerformance>();

}

2. Open the LinqPerformance class.
3. Add the GetLastPersonVersion1() method:

[Benchmark]

public void GetLastPersonVersion1()

{

 var lastPerson = _ people.Last();

}

This method gets the last person in the collection using the LINQ-provided
Last() method.

4. Add the GetLastPersonVersion2() method:

[Benchmark]

public void GetLastPersonVersion2()

{

 var lastPerson = _ people[_ people.Count - 1];

}

284 LINQ Performance

5. Here, we are using the index of the list to extract the last person in the list. At this
point, it is worth noting that the difference between the two methods is that in the
first method, this Last() method call is actually declared in System.Linq.
Enumerable. The method signature is as follows:

public static TSource Last<TSource>(this

 IEnumerable<TSource> source);

So, the Last() call in the GetLastPersonVersion1() method
performs various checks before the last value is returned. But the
GetLastPersonVersion2() method does not perform these checks,
and immediately returns the value at the last position. This explains why the
method used in GetLastPersonVersion1() is much slower than accessing
an element by its index in GetLastPersonVersion2(), as you will see in the
following screenshot:

Figure 7.5: Get Last Person example performance using the Last() method and direct index access

Looking at the summary report of the benchmarks we have just run, it is evident that
using the index for direct access is better than using the Last() method call in terms of
improved performance.

We have seen how we can quickly access the last element in a collection. Let us now
consider why we should avoid using the let keyword in LINQ queries.

Avoid using the let keyword in LINQ queries 285

Avoid using the let keyword in LINQ queries
You can use the let keyword to declare a variable and assign it a value to use in your
LINQ query if the value is to be used several times within the query. At first glance,
this may seem like you are improving performance since you only perform a single
assignment, and then use the same variable several times. But this is not actually the case.
Using the let keyword in your LINQ queries can actually decrease the performance of
your LINQ query.

Let us work through some benchmark examples. In the LinqPerformance class,
do the following:

1. Add the ReadingDataWithoutUsingLet() method:

[Benchmark]

public void ReadingDataWithoutUsingLet()

{

var result = from person in _ people

 where person.LastName.Contains("Omega")

 && person.FirstName.Equals("Upsilon")

 select person;

}

In this method, we are selecting people from the _people list with a last name
of Omega, and a first name of Upsilon using LINQ without the let keyword.

2. Now, add the ReadingDataUsingLet() method:

[Benchmark]

public void ReadingDataUsingLet()

{

 var result = from person in _ people

 let lastName = person.LastName.Contains("Omega")

 let firstName = person.FirstName.Equals("Upsilon")

 where lastName && firstName

 select person;

}

286 LINQ Performance

In this method, we are also selecting people from the _people list with a last name
of Omega and a first name of Upsilon. But this time, we use the let keyword for
both the filters and use them in the where clause.

3. Build the project and run the executable from the command line. You should see
results similar to those shown in Figure 7.6:

Figure 7.6: BenchmarkDotNet results for reading data with and without using the let keyword

As you can see from these results, the use of the let keyword in our query reduced the
performance. The processing time increased and so did the memory allocation.

Note
You will see websites that promote the use of the let keyword in LINQ
queries to improve performance and readability. But as you have seen in the
example we have worked through, using the let keyword can seriously slow
down the performance of your queries and increase memory usage. So, as
a rule of thumb, take to measuring your performance for your particular
queries and choosing the method that performs best for your query task.

In this section, we have seen how the use of the let keyword can increase the time taken
and memory used to perform a simple select query using LINQ. This performance
decrease can become a real problem when working with large volumes of data. In the
next section, we will look at several methods for grouping data and see which method
performs the best.

Increasing Group By performance in LINQ queries 287

Increasing Group By performance in LINQ
queries
In this section, we will look at three different ways of performing the same Group By
operation. Each way provides a different performance level. You will see by the end of this
section which method is best for performing fast Group By queries. The methods that
we add in this section will be added to the LinqPerformance class.

For our scenario, we want to get a list of people from a collection that all share the same
name. To extract those people, we will perform a Group By operation. Then, we will
extract all those for whom the group count is greater than one, and then add them to a list
of people.

Let us add our three methods that use the GroupBy clause to return a list of people:

1. Add the GroupByVersion1() method:

[Benchmark]

public void GroupByVersion1()

{

List<Person> People = _ people.GroupBy(x => x.LastName)

 .Where(x => x.Count() > 1)

 .SelectMany(group => group)

 .ToList();

}

As you can see, we are grouping on the person's last name. We then filter the groups
to include only those groups with a count greater than 1. Those groups are then
selected and then returned as a list of people.

2. Now, add the GroupByVersion2() method:

[Benchmark]

public void GroupByVersion2()

{

 IEnumerator<IGrouping<string, Person>> test =

 _ people.GroupBy(p => p.LastName)

 .Where(p => p.Count() > 2).GetEnumerator();

List<Person> people = new List<Person>();

while (test.MoveNext())

{

288 LINQ Performance

 IGrouping<string, Person> current = test.Current;

 foreach (Person person in current)

 {

 people.Add(person);

 }

}

}

In this method, we obtain an enumerator by grouping people by their last name and
then filtering the groups to only include those groups with a count of 2 or more.
Then we declare a new list of people. We then loop through the enumerator and
obtain the current IGrouping<string, Person>. The grouping is then iterated
through, and each person in the group is added to the list of people.

3. Add the GroupByVersion3() method:

[Benchmark]

public void GroupByVersion3()

{

 IEnumerator<IGrouping<string, Person>> test =

 _ people.ToArray().GroupBy(p => p.LastName)

 .Where(p => p.Count() > 2).GetEnumerator();

 List<Person> people = new List<Person>();

while (test.MoveNext())

 {

 var current = test.Current;

 foreach (var person in current)

 {

 people.Add(person);

 }

}

}

The GroupByVersion3() method is the same as and behaves the same as the
GroupByVersion2() method, but with one main difference. We convert the list
of people to an array before we perform the Group By.

Increasing Group By performance in LINQ queries 289

4. Add the following annotations to the top of the LinqPerformance class:

[MemoryDiagnoser]

[Orderer(SummaryOrderPolicy.FastestToSlowest)]

[RankColumn]

These annotations will expand the data contained in the summary report as you
will see shortly. Do a release build of the project and then run the project from the
command line to benchmark these three methods. You should see the following
benchmark summary report:

Figure 7.7: The BenchmarkDotNet Group By summary report

As we can see, our first attempt at performing a Group By operation takes 2.204
microseconds, our second attempt takes 2.011 microseconds, and our third and final
attempt takes 2.204 microseconds. So, we can see that converting our list to an array
before performing a Group By speeds things up. Our final version is 0.243 microseconds
faster than our original version, and that is despite the fact that more code is involved!

The section that follows will take you through the benchmarking of five different ways to
provide filtering of lists. You will see how the different methods affect the performance of
LINQ queries.

290 LINQ Performance

Filtering lists
In this section, we will look at various ways to filter a list using LINQ. We will see that the
various ways all perform differently. By the end of this section, you will know the best way
to filter a list for increased performance. You will be writing two different benchmarks that
demonstrate query performance differences when using the let keyword and not using
the let keyword. Let's begin writing our benchmarks:

1. Add the FilterGroupsVersion1() method:

[Benchmark]

public List<Person> FilterGroupsVersion1()

{

 return (from p in _ people where

 _ group1.Contains(p.LastName.ToLower())

 || _ group2.Contains(p.LastName.ToLower())

 select p).ToList(

}

The first of our benchmarks filters people that belong to _group1 and _group2.
Since the arrays are in lowercase, LastName is also converted to lowercase. The
filtered people are then returned as a list of people.

2. Add the FilterGroupsVersion2() benchmark:

[Benchmark]

public List<Person> FilterGroupsVersion2()

{

 return (from p in _ people

 let lastName = p.LastName.ToLower()

 where _ group1.Contains(lastName)

 || _ group2.Contains(lastName)

 select p).ToList();

}

Filtering lists 291

This does the same as our first benchmark. The main difference is that we introduce
the lastName variable using the let keyword, and assign it the lowercase
LastName of the person.

3. Compile the project in release mode and run it from the command line. The
benchmarks will be generated, and you should see a benchmark report similar to
the one in Figure 7.8:

Figure 7.8: Benchmark Report for LINQ with and without using the let keyword
We can see in the summary report that using the let keyword slows things
down considerably. And so, we will now investigate why the let keyword slows
things down.

4. Open ILDASM, and load in CH07_LinqPerformance.dll.
5. Expand CH07_LinqPerformance | CH07_ Linq.LinqPerformace.

LinqPerformance. You will see the two methods called
FilterGroupsVersion1 and FilterGroupsVersion2.

6. Double-click on the method FilterGroupsVersion1 to reveal the intermediate
language generated by the compiler.

7. Now, do the same with the FilterGroupsVersion2 method. When
you compare the IL for both methods, you will clearly see that the IL for
FilterGroupsVersion2 contains more lines of code than the IL for
FilterGroupsVersion1.

292 LINQ Performance

And that explains why the let version of the code performs slower than the
original code that does not use the let keyword. But can we do better than
FilterGroupsVersion1 in terms of performance? Well, it turns out that,
yes, we can.

8. Add the FilterGroupsVersion3 method:

[Benchmark]

public List<Person> FilterGroupsVersion3()

{

List<Person> people = new List<Person>();

for (int i = 0; i < _ people.Count; i++)

{

 var person = _ people[i];

 var lastName = person.LastName.ToLower();

 if (

 _ group1.Contains(lastName)

 || _ group2.Contains(lastName)

)

 people.Add(person);

}

return people;

}

As you can see, we create a new people list. We then loop through the _people
list. For each person, we get them from the _people list. We then assign the
lowercase form of their name to a local variable. Using this variable, we check to see
if either _group1 or _group2 contains the names. If they do, then the person is
added to the _people list. Once the iteration has finished, the _people collection
is returned.

Filtering lists 293

9. Build and run the code again. You should see the following report:

Figure 7.9: The BenchmarkDotNet summary report showing FilterGroupsVersion3's performance
As you can see, we have three different versions of the code that produce the same
output, and each one's execution time is different. Between these three different
methods, FilterGroupsVersion3 is by far the quickest method in achieving
the desired result.

10. We will have another go at improving the performance of our LINQ filter query.
Add the FilterGroupsVersion4 method:

[Benchmark]

public List<Person> FilterGroupsVersion4()

{

 List<Person> people = new List<Person>();

for (int i = 0; i < _ people.Count; i++)

{

 var person = _ people[i];

 var lastName = person.LastName.ToLower();

 if (

 _ group2.Contains(lastName)

 || _ group1.Contains(lastName)

)

 people.Add(person);

294 LINQ Performance

}

return people;

}

It can be seen that the only difference between FilterGroupsVersion3 and
FilterGroupsVersion4 is the ordering of the if condition check.

11. Build the project and run the benchmark tests. Figure 7.10 shows the
performance summary:

Figure 7.10: The BenchmarkDotNet summary report showing FilterGroupsVersion4's performance

It is clear from the benchmark report that version 4 of our filter is the winning method
in terms of performance. So, why is version 4 better than version 3? The _group2 array
contains fewer items than _group1. If you understand the business domain, you will
be able to order the filter checks in such a way that the arrays with fewer items will be
checked first.

You have seen how using the let keyword slows things down. But you have also seen how
the ordering of checks in a conditional statement can also have an impact on performance.
Placing the check with the least elements first within a conditional check statement will
improve performance.

In the next section, we will look at closures in LINQ statements and how they affect
query performance.

Understanding closures 295

Understanding closures
In this section, we will understand closures from a C# perspective, and apply them to
LINQ queries. Let's start with the definition of computer programming closures according
to the content on Wikipedia.

Wikipedia: "In programming languages, a closure, also lexical closure
or function closure, is a technique for implementing lexically scoped name

binding in a language with first-class functions.

Operationally, a closure is a record storing a function together with
an environment.

The environment is a mapping associating each free variable of the function
(variables that are used locally but defined in an enclosing scope) with
the value or reference to which the name was bound when the closure

was created.

Unlike a plain function, a closure allows the function to access those
captured variables through the closure's copies of their values or references,

even when the function is invoked outside their scope."
To understand what's being said here, we will begin by understanding what first-class
functions are.

A first-class function is a method that is treated by C# as a first-class data type. This means
that you can assign a method to a variable and pass it around, and you can invoke it as you
would a normal method. First-class functions can be created using anonymous methods
and lambdas.

Free variables are variables that are not parameter variables to a method, and they are
variables that are not local to that method, which, in plain English, means that they
are variables that exist outside of a method, but are being referenced within a method's
closing scope.

We are going to apply closures to a LINQ expression and benchmark them. The first one
will be using LINQ with a closure that takes parameters, and the second one will be using
LINQ with a closure that uses free variables. Follow these steps:

1. In the LinqPerformance class, comment out the current [Benchmark]
annotated methods.

296 LINQ Performance

2. Add the LinqClosureUsingParameters method:

[Benchmark]

public void LinqClosureUsingParameters()

{ Func<string, char, char, bool> Between()

 {

 Func<string, char, char, bool> IsBetween

 = delegate (

 string param1, char param2, char param3)

 {

 var character = param1[0];

 return (

 (character >= param2)

 && (character <= param3)

);

 };

 return IsBetween;

 }

 var IsBetween = Between();

 var data = (from p in _ people.ToList()

 where IsBetween(p.LastName, 'A', 'G')

 select p).ToList();

}

In the LinqClosureUsingParameters method, we declare closure using
a delegate with parameters. We declare a variable called IsBetween and assign
the Between method to it. Then we perform a LINQ query and filter the results
by calling IsBetween. The result is that we will have only those people whose last
name's first letters are between A and G.

3. We can also use free variables. So, let us now look at a different example that uses
free variables. Add the LinqClosureUsingVariables method:

[Benchmark]

public void LinqClosureUsingVariables()

{

Understanding closures 297

Func<string, bool> Between()

 {

 char first = 'A';

 char last = 'G';

 Func<string, bool> IsBetweenAG = delegate

 (string param1)

 {

 var character = param1[0];

 return ((character >= first) &&

 (character <= last));

 };

 return IsBetweenAG;

 }

 var IsBetweenAG = Between();

 var data = (from p in _ people.ToList()

 where IsBetweenAG(p.LastName)

 select p).ToList();

}

In the LinqClosureUsingVariables method, we declare our closure using
free variables to declare the first and last characters used for filtering the dataset.
We then assign the Between method to the IsBetweenAG variable. Then,
we perform a LINQ query and filter the results by passing in the last name
of each individual into the IsBetweenAG method.

4. Add a method called NonLinqFilter:

[Benchmark]

public void NonLinqFilter()

{

 var data = _ people.FindAll(

 x => x.LastName[0] >= 'A' && x.LastName[0]

 <= 'G');

}

In this method, we simply filter a list using its own FindAll method.

298 LINQ Performance

5. Make sure you are in Release mode and then run your project. You should end up
with results similar to those in the following screenshot:

Figure 7.11: Closure benchmarks with and without parameters

As we can clearly see in the benchmarks of Figure 7.11, closures with parameters are faster
and allocate less memory than closures without parameters. But it is far better to use
a list's own FindAll method for filtering as it is faster and uses less allocated memory
than LINQ and closures.

A situation when you may need to apply your own custom closures for use in LINQ
queries is when you have complex data manipulation and query generation that cannot
be dealt with easily with normal LINQ. In this case, closures would be of benefit to you.
Having performed the benchmarking of closures, you now know to use closures with
parameters for optimal performance when using LINQ. But if you don't need to use
LINQ, then using a list's own methods may be more advantageous. And if you do have to
work on lists, then it could pay to do the filtering of the dataset using non-LINQ methods
first, then perform your LINQ queries on the filtered lists.

This chapter is now complete. But before we move on to Chapter 8, File and Stream I/O,
let us summarize what we have learned in this chapter.

Summary 299

Summary
In this chapter, we studied LINQ performance by benchmarking a variety of ways to
query, group, filter, and iterate data obtained from databases and in-memory collections.
The most performant way to query a database was found to be using the IEnumerator
interface. By disassembling code, we saw that the let keyword can degrade performance
due to the extra lines of IL code produced by the compiler. We also saw how accessing the
last element in a collection using its index is faster than calling the Last() method. And
we also learned that filtering lists by filtering on objects with the least items first improves
filter performance operations. Closures provided better overall performance when passing
in parameters, compared to not passing in parameters.

In the next chapter, we will be looking at file and stream I/O performance. But for now,
see if you can answer the following questions, and check out the further reading material
to solidify what you have learned in this chapter.

Questions
1. Name some ways to improve LINQ performance.
2. What is wrong with using the let keyword in a LINQ query?
3. What is the best way to improve the performance of a Group By query?
4. What performs better, closures with parameters, or closures without parameters?

Further reading
• Console User Secrets: https://github.com/jasonshave/

ConsoleSecrets.

• Optimising LINQ: https://mattwarren.org/2016/09/29/
Optimising-LINQ/

• Five Tips to Improve LINQ to SQL Performance: https://
visualstudiomagazine.com/articles/2010/06/24/five-tips-
linq-to-sql.aspx.

• Make your C# applications faster with LINQ joins: https://
timdeschryver.dev/blog/make-your-csharp-applications-
faster-with-linq-joins.

https://github.com/jasonshave/ConsoleSecrets
https://github.com/jasonshave/ConsoleSecrets
https://mattwarren.org/2016/09/29/Optimising-LINQ/
https://mattwarren.org/2016/09/29/Optimising-LINQ/
https://visualstudiomagazine.com/articles/2010/06/24/five-tips-linq-to-sql.aspx
https://visualstudiomagazine.com/articles/2010/06/24/five-tips-linq-to-sql.aspx
https://visualstudiomagazine.com/articles/2010/06/24/five-tips-linq-to-sql.aspx
https://timdeschryver.dev/blog/make-your-csharp-applications-faster-with-linq-joins
https://timdeschryver.dev/blog/make-your-csharp-applications-faster-with-linq-joins
https://timdeschryver.dev/blog/make-your-csharp-applications-faster-with-linq-joins

300 LINQ Performance

• LINQ Stinks – code smells in your LINQ: https://markheath.net/post/
linq-stinks.

• How to get a value out of a Span<T> with Linq expression trees?: https://
stackoverflow.com/questions/52112628/how-to-get-a-value-
out-of-a-spant-with-linq-expression-trees.

• Linq ToLookup Method in C#: https://dotnettutorials.net/lesson/
linq-tolookup-operator/.

• LINQ (C#) – ToLookup Operator Example And Tutorial: https://www.
completecsharptutorial.com/linqtutorial/tolookup-operator-
example-csharp-linq-tutorial.php.

• A Simple Explanation of C# Closures: https://www.simplethread.
com/c-closures-explained/.

https://markheath.net/post/linq-stinks
https://markheath.net/post/linq-stinks
https://stackoverflow.com/questions/52112628/how-to-get-a-value-out-of-a-spant-with-linq-expression-trees
https://stackoverflow.com/questions/52112628/how-to-get-a-value-out-of-a-spant-with-linq-expression-trees
https://stackoverflow.com/questions/52112628/how-to-get-a-value-out-of-a-spant-with-linq-expression-trees
https://dotnettutorials.net/lesson/linq-tolookup-operator/
https://dotnettutorials.net/lesson/linq-tolookup-operator/
https://www.completecsharptutorial.com/linqtutorial/tolookup-operator-example-csharp-linq-tutorial.php
https://www.completecsharptutorial.com/linqtutorial/tolookup-operator-example-csharp-linq-tutorial.php
https://www.completecsharptutorial.com/linqtutorial/tolookup-operator-example-csharp-linq-tutorial.php
https://www.simplethread.com/c-closures-explained/
https://www.simplethread.com/c-closures-explained/

8
File and Stream I/O

In this chapter, you will learn how to improve directory, file, and streaming performance.
You will also learn how to efficiently enumerate directories, process small and large files,
perform asynchronous operations, use local storage, handle exceptions, and work with
memory efficiently.

We will cover the following topics in this chapter:

• Understanding the various Windows file path formats: This section provides
information on the different file path formats that you will encounter on the
Windows operating system. Also covered is the 256-character file path limit on
Windows, and techniques that cover how to remove this limitation.

• Considering improved I/O performance: In this section, we will be benchmarking
some code to see which method of coding performs fastest when it comes to
calculating directory sizes and moving files. Plus, we will look at how to read and
write files asynchronously.

• Handling I/O operation exceptions: We will cover how to handle I/O exceptions
in this section. You will learn how to handle exceptions so that performance is not
negatively impacted. You will also learn when to recover from exceptions, as well as
when to exit them to preserve data integrity when exceptions cannot be graciously
recovered from.

• Performing memory tasks efficiently: In this section, you will learn how to
efficiently use memory when processing strings and dealing with objects. We will
also discuss how to defragment the Large Object Heap.

302 File and Stream I/O

• Understanding local storage tasks: In this section, we will discuss the various
options for local file storage, some problems that can arise in networked
environments, and when users install software just for themselves when multiple
people use the same software on the same computer.

By the end of this chapter, you will be able to do the following:

• Understand the different Windows file path formats.

• Overcome the 256-character file path limit on Windows.

• Understand how hardware affects the performance of your code.

• Choose the best option for calculating directory sizes.

• Choose the best option for moving files.

• Read and write files asynchronously.

• Handle I/O and other exceptions effectively.

• Improve the performance of memory-based tasks.

• Understand what local file storage options are available to you.

• Understand the problems that can occur in networked environments, such as when
applications that should be installed for all users on a single machine are installed
only for the current user, and how to effectively resolve them.

Technical requirements
The following are the technical requirements for this chapter:

• Visual Studio 2022

• The source code for this book: https://github.com/PacktPublishing/
High-Performance-Programming-in-CSharp-and-.NET/tree/
master/CH08

Understanding the various Windows file path
formats
You probably already know that .NET provides managed code that hides interaction with
the Windows APIs from the end user. So, it will come as no surprise that the System.IO
namespace passes file path information to the Windows APIs to handle. The Windows
APIs perform the required task, and then control is handed back to .NET.

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH08
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH08
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH08

Understanding the various Windows file path formats 303

File paths in .NET can be absolute, relative, UNC paths, or DOS device paths.
Non-Windows files and directories are case-sensitive. But on Windows, files and
directories are case-insensitive. The following table provides examples of the different
Windows file path formats:

Table 7.1 – Windows path format examples

By default, Windows can only accept paths with a length of 256. As a programmer,
you have probably encountered the Destination Path Too Long warning when
backing up your files or moving them. A situation that can often lead to this warning
is developing web projects using node modules via NPM. NPM packages can have
particularly long file paths that exceed 256 characters in length, which will lead to this
exception being raised.

You can remove the maximum path length limitation by either editing the registry or
by editing the group policy. First, you will learn how to remove this limitation using the
registry. Then, you will learn how to remove this limitation using the group policy.

Removing the maximum path length limitation using
the registry

Note
Always exercise caution when making changes to the registry.

In this section, you will learn how to remove the file path limit of 260 characters by
modifying the registry.

304 File and Stream I/O

In terms of performance, the MAX_PATH issue on Windows can waste your time. Copying
many gigabytes of data can be very time-consuming. This can be made worse if a file copy
fails after 28 minutes of you moving files between locations on different disks.

So, with file management applications, for example, if a user is going to copy files between
two locations that will raise a file length exception, it is best to warn the user and provide
them with the option to restructure their files before they perform the copy, or offer to
update the registry for them. This way, you can save the end user a lot of wasted time.

 To manually remove the MAX_PATH file path limit, follow these steps:

1. Open Registry editor. You can do this by searching for regedit.
2. Once you have opened the registry editor, navigate to the following key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\

FileSystem

3. Identify the LongPathsEnabled key and set its value to 1.
4. If the key does not exist, then add it as a 32-bit DWORD with a value of 1.
5. It may not be necessary, but it is a good idea to restart your computer for the

changes to be picked up.

You should now be able to process files with paths with over 260 characters. If you
experience permission issues after performing the preceding steps, then open the registry
editor as an administrator. If you still have problems, then see your system administrator.

Now, let’s learn how to do this using the local group policy editor.

Removing the maximum path length limitation using
the group policy
You can also remove the file path limit of 260 characters by modifying the computer’s
policy. You can do this with the gpedit.msc tool. This may be unavailable on some
versions of Windows, or may not be available because of enterprise group policies that
have been put in place. If you find that to be the case, then see your system administrator.
Otherwise, follow these steps:

1. Open Local Group Policy Editor. You can do this by searching for gpedit.msc.
2. Under Computer Configuration, navigate to Administrative Templates | System

| Filesystem.

Considering improved I/O performance 305

3. There will be a setting called Enable Win32 long paths set to Not configured
by default. Edit this setting by setting it to Enabled.

4. It may not be necessary, but it is a good idea to restart your computer for the
changes to be picked up.

With that, we’ve learned how to overcome the limiting path situation on Windows by
editing the registry and local group policy.

Note
It is really important to remove the file path limitation. There have been
instances where critical backups on client and server computers have failed due
to this limitation being in place. It can also break your development project
when you’re working with third-party libraries.

We will now look at some considerations that will help boost I/O operations.

Considering improved I/O performance
There are several common I/O tasks that we do often, such as traversing directories
searching for files, adding, renaming, moving and deleting directories, adding, renaming,
moving, and deleting files, password protecting files and directories, encrypting and
decrypting files and directories, and compressing files and directories. We also transmit
and load files synchronously, asynchronously, and via streams such as file streams and
memory streams. Then, there are all the NoSQL and SQL data operations, all of which
will be happening frequently on corporate networks, and streaming data and audio/visual
content at work and home.

When working with I/O, it is quite easy to completely slow a system down to the point
that it becomes unusable while file reading and file writing is taking place. So, if you are
going to be performing heavy I/O, you must keep the system where the work is being
carried out fully operational and responsive for the end user and other processes.

If your hardware is poor, then no matter how good your software is, it will more than
likely be slow!

Note
Before you consider optimizing your software to improve the speed and
performance of I/O operations, you need to make sure that the hardware in
place is suited to the type of I/O you will be performing. Otherwise, you could
be wasting your time trying to improve your software!

306 File and Stream I/O

When you’re dealing with hardware to speed up input and output operations, things to
consider include the speed of your network card, whether or not you are using SSD disks,
the number of CPUs, and the amount of RAM in use.

You also need to consider what other software processes will be running on the
target computers. Security software that’s performing real-time scanning can often be
overlooked when it comes to application slowdowns. When this is the case, you can have
your application added as an exception to the antivirus software so that real-time scanning
no longer slows down your software.

Another issue that’s encountered in the wild is running one or more backups over the
network during critical times of operation. No matter how efficient your program is, if it
is running on a backup server, its performance can be severely impacted by the running
backup software and process. This can also be the case if your software is not on the
backup server, but requires the network to run and then send and receive files and data.
The following are things to consider:

• Change backup schedules to run at non-critical times.

• Install your software on a different server with a better overall performance.

• Check your network for bottlenecks and alleviate those bottlenecks.

• Make sure your network cards are fast enough and configured appropriately.

• Make sure your Ethernet cables are up to date. Cat-5 cables are fine for typical
internet traffic, but if you are doing a lot of file and data operations over your
network, then you will want to upgrade to Cat-6a/Cat-7 cables for increased
performance. However, with Cat-7 cables, you need to be careful not to damage the
foil shielding when you bend the cable.

With web projects, it is important to reduce file size to speed up how files are transmitted
and received over the internet. This helps reduce the overall page load time and results
in happier customers. To improve the load performance of your web applications, enable
the Windows Dynamic Content Compression feature. This will reduce the data’s size, thus
increasing the response time from the user’s perspective. The need for data compression
also applies to client/server applications, especially if the file and data sizes that are being
transmitted are huge.

Employ caching to improve network performance. Caching will store resources locally or
keep them in memory for a certain period. Should such resources be requested again, then
the locally stored resources will be checked and used instead of the network resources.
This increases the access and load times of resources, and it also reduces network traffic.
Cached resources will be updated if the resources have been updated, if the cache period
has expired, or if the user has cleared their cache.

Considering improved I/O performance 307

The two most common data transfer mechanisms are XML and JSON. These are text files
that store structured information. Parsers are required to extract information from such
files so that the extracted data can be utilized in the applications. But not all XML and
JSON parsers perform the same. It would be prudent to benchmark the performance of
various XML and JSON parsers to help you choose the most efficient and performant one
for your data processing needs.

When you’re serializing and deserializing data, your objects and their hierarchies should
match your JSON and XML formats so that processing is much faster.

Microsoft recommends that developers shouldn't use BinaryFormatter for transferring
binary data as it is unsafe and can lead to denial-of-service (DOS) attacks. .NET offers
several in-box serializers that can handle untrusted data safely:

• XmlSerializer and DataContractSerializer can serialize object
graphs into and from XML. Do not confuse DataContractSerializer with
NetDataContractSerializer.

• BinaryReader and BinaryWriter for XML and JSON.

• The System.Text.Json APIs can serialize object graphs into JSON.

Data types can vary in size as they can hold different data values, and data values can vary
in length. Both number values and string values are variable in length. The bigger the
number or string, the more bytes are saved to the file. The smaller the number or string,
the fewer bytes are saved to the file. Likewise, with data type names, the longer the name,
the more bytes are used, and the shorter the name, the fewer bytes are used.

While writing one or two files occasionally, the size of bytes may not be an issue to the end
user or your application’s performance. But when you move into the realms of batch file
processing, the more bytes that have to be written per file, the longer batch processing will
take to complete.

Depending on your OS version, drivers, disk, and networking hardware, it is possible that
copying or moving small files is more performance-heavy than moving around large files.
You can optimize file transfer at the OS level under the hood by leveraging burst copy or
similar techniques.

As an example, you can have a lot of performance issues when moving around media files
(photo/audio/video) or AI/ML datasets (usually text-based). If files are small (ranging
from a few KBs to a few MBs), you can group them in ZIP files (without compression, if
they’re media files) so that it results in bigger files that can be transferred faster.

308 File and Stream I/O

In the next section, we will be benchmarking three different methods for moving files.
We will be using File.Copy, FileInfo.MoveTo, and obtaining FileInfo from
the memory cache and using FileInfo.MoveTo. This will help us identify the quickest
method to use in our applications, especially when large numbers of files need to be moved.

Moving files
A common function in various enterprise applications is the need to move around large
numbers of files. For example, a reporting function may require the amalgamation of last
month’s sales figures from various teams to be entered into a data warehouse for report
processing purposes. Those sales figures could reside in spreadsheets in various locations.
Each spreadsheet would need to be moved to a central file storage location for further
processing. The more files that you have in any file move operation, the more processing
time will be required. So, it pays to know which method of moving a large number of files
is the most performant in C#.

With that in mind, we will write a simple application to benchmark three different ways of
moving files. Each method that we write will vary in performance. Our method of choice
will be the method that performs the fastest, and this will be identified in our benchmark
summary report once we have run our compiled executable. Let’s start writing our
benchmarks:

1. Start a new C# .NET 5 console application and name it CH08_
FileAndStreamIO.

2. Install the BenchmarkDotNet NuGet package.
3. Add a new class called MovingFiles to the root of the project:

using BenchmarkDotNet.Attributes;

using BenchmarkDotNet.Order;

using System;

using System.Collections.Generic;

using System.IO;

using System.Text;

[MemoryDiagnoser]

[Orderer(SummaryOrderPolicy.Declared)]

[RankColumn]

public class MovingFiles { }

Our class is now set up to benchmark our methods and report on memory usage.

Considering improved I/O performance 309

4. At the top of the class, add the following code (you can replace the Moonshine-
3.0.0.exe file with a file of your own choosing):

private Dictionary<string, FileInfo> _cache;

private const string SOURCE_DIRECTORY =

@"C:\Temp\Source\";

private const string DESTINATION_DIRECTORY =

@"C:\Temp\Destination\";

private const string FILENAME = "Moonshine-3.0.0.exe";

Here, we have declared a dictionary of FileInfo objects, which will act as
our in-memory cache, and three constants for our source directory, destination
directory, and filename. We will need these constants in the other methods we will
be writing.

5. We need to have a procedure in place to prepare our code so that it can be
benchmarked without exceptions being raised. If we don’t, our benchmarks will
fail to execute more than once because the file will have been moved. Each time a
benchmark runs, the moved file needs to be moved back to its original location.
So, we are going to need a [GlobalSetup] method and a [GlobalCleanup]
method. First, add the [GlobalSetup] method to the MovingFiles class. We
will call the PreloadFilesAndCacheThem() method here:

[GlobalSetup]

public void PreloadFilesAndCacheThem()

{

var files = new DirectoryInfo(SOURCE_DIRECTORY)

 .GetFileSystemInfos();

_cache = new Dictionary<string, FileInfo>();

foreach (var f in files)

{

 _cache.Add(f.FullName, f as FileInfo);

}

}

This method is getting FileSystemInfo for each file in the source directory
identified by the SOURCE_DIRECTORY string. Then, it instantiates _cache as a
dictionary of FileInfo objects. After that, the list of files is iterated through, and
the FileInfo object for the current file is added to _cache.

310 File and Stream I/O

6. Add the PreMoveCheck() [GlobalCleanup] method:

[GlobalCleanup]

public void PreMoveCheck()

{

 if (File.Exists($"{SOURCE_DIRECTORY}{FILENAME}"))

 if (

 File.Exists(

 $"{DESTINATION_DIRECTORY}{FILENAME}")

)

 {

 File.Delete(

 $"{DESTINATION_DIRECTORY}{FILENAME}");

 }

if (

 !File.Exists($"{SOURCE_DIRECTORY}{FILENAME}")

 && File.Exists(

 $"{DESTINATION_DIRECTORY}{ FILENAME}")

)

{

 FileInfo fileinfo =

 new FileInfo(

 $"{DESTINATION_DIRECTORY}{FILENAME}")

 fileinfo.MoveTo(

 $"{SOURCE_DIRECTORY}{FILENAME}");

}

}

7. The cleanup code checks whether the file already exists in SOURCE_DIRECTORY.
If it does, then DESTINATION_DIRECTORY is checked for the file. If it exists,
it is deleted. If the file does not exist in SOURCE_DIRECTORY but exists in
DESTINATION_DIRECTORY, then the file is moved from DESTINATION_
DIRECTORY back into SOURCE_DIRECTORY.

8. We need the [GlobalSetup] and [GlobalCleanup] methods because if they
are not in place doing what they are doing, the benchmarks will fail because the file
cannot be found.

9. Add the FileCopy() method to the MovingFiles class:

Considering improved I/O performance 311

[Benchmark]

public void FileCopy()

{

 PreMoveCheck();

 File.Copy(

 $"{SOURCE_DIRECTORY}{FILENAME}"

 , $"{DESTINATION_DIRECTORY}{FILENAME}"

);

}

10. The FileCopy() method performs a PreMoveCheck() so that the file is in
place, ready for the benchmark to run without failing. It then proceeds to copy the
file from SOURCE_DIRECTORY to DESTINATION_DIRECTORY.

11. Now, add the FileInfoMoveTo() method:

[Benchmark]

public void FileInfoMoveTo()

{

 PreMoveCheck();

 FileInfo fileinfo = new FileInfo(

 $"{SOURCE_DIRECTORY}{FILENAME}"

);

fileinfo.MoveTo(

 $"{DESTINATION_DIRECTORY}{FILENAME}"

);

}

12. The FileInfoMoveTo() method also performs a PreMoveCheck(), ensuring
that the file is in place, ready for the move. Then, it creates a FileInfo object for
the specified file and uses the MoveTo(string destinatation) method to
move the file from SOURCE_DIRECTORY to DESTINATION_DIRECTORY.

13. Add the FileInfoReadCacheAndMoveTo() method to the MovingFiles
class:

[Benchmark]

public void FileInfoReadCacheAndMoveTo()

{

 PreMoveCheck();

312 File and Stream I/O

 FileInfo fileInfo =

 _cache[$"{SOURCE_DIRECTORY}{FILENAME}"];

if (fileInfo.Exists)

 fileInfo.MoveTo(

 $"{DESTINATION_DIRECTORY}{FILENAME}"

);

}

14. The FileInfoReadCacheAndMoveTo() method performs a
PreMoveCheck(). Then, it creates a FileInfo object from the FileInfo
object stored in _cache. If the FileInfo object exists, it is then moved to
DESTINATION_DIRECTORY.

15. Add the following line of code to the Main method in the Program class:

BenchmarkRunner.Run<MovingFiles>();

16. Build the project in Release mode, and then run the executable from the
command line. You should see the following benchmark summary report:

Figure 7.1 – The BenchmarkDotNet summary report for various file move operations

From the timings, we can see that the File.Copy(string source, string
destination) method is the slowest method of moving files, followed by the
FileInfo.MoveTo(string destination) method.

The fastest file move operation is to extract FileInfo from the in-memory cache and
then use the FileInfo.MoveTo(string destination) method to perform the
move operation.

Considering improved I/O performance 313

In the next section, we will look at two different methods for calculating the size of all the
files in a directory. We can then use the fastest method for when we need to calculate the
size of directories, such as before doing a batch file move in an enterprise.

Calculating directory sizes
When you’re batch processing files and directories, it can pay to know how large the sum
of files is before moving them to a new location. This can help you determine the amount
of time that it will take to copy the files, as well as whether the destination has space to
store all the files.

An example of some dialog that pops up when you’re copying or moving files is the
Windows Explorer dialog. It traverses the files and directories to be moved or copied. As it
does, it logs the total amount of bytes that are being used by the files and directories. Then, it
provides a time estimate regarding how long it will take to move or copy those bytes. There
are times when this process can take a very long time and be frustrating for the end user.

Another reason to know about directory sizes is when you have critical business needs
that are time-sensitive. Prolonged file move operations can be detrimental to the business’
time plan. In this section, we will calculate directory size by benchmarking two different
methods. The method that performs the fastest is the one we would choose when
calculating a directory’s size. Let’s begin:

1. Add a new class to the project called GettingFileSizes and configure it for
benchmarking, as you did withthe MovingFiles class. Then, add the DIRECTORY
constant to the top of the class:

public const string DIRECTORY = @"C:\Windows\System32\";

2. Add the GetDirectorySizeUsingGetFileSystemInfos() method:

[Benchmark]

public int GetDirectorySizeUsingGetFileSystemInfos()

{

DirectoryInfo directoryInfo =

 new DirectoryInfo(DIRECTORY);

FileSystemInfo[] fileSystemInfos =

 directoryInfo.GetFileSystemInfos();

int directorySize = 0;

for (int i = 0; i < fileSystemInfos.Length; i++)

{

 FileInfo fileInfo =

314 File and Stream I/O

 fileSystemInfos[i] as FileInfo;

 if (fileInfo != null)

 directorySize += (int)fileInfo.Length;

}

return directorySize;

}

3. The GetDirectorySizeUsingGetFileSystemInfos() method creates a
new DirectoryInfo object based on the directory defined in the DIRECTORY
constant. Then, it gets an array of FileSystemInfo from the DirectoryInfo
variable. The FileSystemInfo array is then iterated through and the
directorySize variable is incremented. Once directorySize has been
calculated, the value is returned to the caller.

4. Add the GetDirectorySizeUsingArrayAndFileInfo() method to the
MovingFiles class:

[Benchmark]

public int GetDirectorySizeUsingArrayAndFileInfo()

{

 string[] files = Directory.GetFiles(DIRECTORY);

 int directorySize = 0;

for (int i = 0; i < files.Length; i++)

{

 directorySize +=

 (int)(new FileInfo(files[i]).Length);

}

return directorySize;

}

5. The GetDirectorySizeUsingArrayAndFileInfo() method gets a
string array of filenames for the given directory. The array is then iterated and
directorySize is incremented by the current file size. Once the iteration is
complete, directorySize is returned.

6. Add the benchmark runner method to the Main method in the Program class,
perform a Release build, and then run the executable from the command line.
You will see the following report:

Considering improved I/O performance 315

Figure 7.2 – The benchmark summary report for obtaining directory sizes

As you can see, we used two different methods to calculate the size of the System32
directory. The slowest method of calculating a directory size was our second
method. So, for performance reasons, the best method for calculating the size of a
directory is to get DirectoryInfo for the directory in question. Then, you can call
GetFileSystemInfos() and iterate through the result, summing the length of the
FileInfo objects.

In the next section, we will look at asynchronous file operations.

Accessing files asynchronously
Why should you access files asynchronously? Well, here are a few reasons that you might
consider when using asynchronous file access:

• Your user interface thread will be more responsive as the file operation won’t block
the user interaction if it takes a few seconds or longer to complete.

• An asynchronous process reduces the need for manually managed threads, making
applications more scalable. ASP.NET and server-side applications are specific
examples of applications that will benefit from asynchronous file processing.

• File access latency is also something you must consider. Computer resources such
as the type of hard disk, network upload and download speeds, and real-time
scanning by the security software, as well as file size, are all factors that can affect
file access times.

• There is only a small overhead for using asynchronous tasks over threads.

• You can run asynchronous tasks in parallel.

316 File and Stream I/O

The FileStream class gives you the most control over file access operations. You can
configure the class to execute I/O operations at the operating system level. By doing this,
you avoid blocking thread pool threads. To execute I/O operations at the operating system
level, you must specify one of the following in the constructor call:

• useAsync=true

• options=FileOptions.Asynchronous

Note
This option can only be used with the StreamReader and
StreamWriter classes when the stream that’s provided to them is one that
was opened by the FileStream class.

Now, let’s look at a very simple example of performing asynchronous file writing and
reading. Let’s start by writing some text to a text file asynchronously. Then, we will read
the text from the same file asynchronously.

Writing text to a file asynchronously
In this section, we will write some text to a text file asynchronously. There is a simpler
way to perform this task but the method we will be using provides the most control and
operates at the operating system level:

1. Add a new file to the CH08_FileAndStreamIO project called
AsyncFileAccess.

2. Add a new method called WriteTextToFileAsync(string text, string
path) to the AsyncFileAccess class:

public async Task WriteTextToFileAsync(

string text, string path

)

{

 byte[] encodeText =

 Encoding.Unicode.GetBytes(text);

 using var fileStream = new FileStream(

 path,

Considering improved I/O performance 317

 FileMode.Create,

 FileAccess.Write,

 FileShare.None,

 bufferSize: 4096,

 useAsync: true

);

await fileStream.WriteAsync(

 encodeText, 0, encodeText.Length

);

}

Here, we pass a string of text in and the name of the file to write the text to.
Then, we read all the text into a byte array. Next, we declare an asynchronous
FileStream variable with a buffer size of 4,096 bytes, write the text
asynchronously to the specified file, and wait for the operation to complete. The
reason for using 4,096 bytes is that it is a power of two number and a memory
page size. A page, memory page, or virtual page is a fixed-length contiguous block
of virtual memory that’s described by a single entry in the page table. So, when
the system chooses to swap out a page to disk, it can do so in one go without any
overhead involved.

3. Add the ReadTextFromFileAsync(string path) method to the
AsynFileAccess class:

public async Task<string> ReadTextFromFileAsync(string

 path)

{

StringBuilder sb = new StringBuilder();

byte[] buffer = new byte[0x1000];

int numberOfBytesToDecode;

using var fileStream = new FileStream(

 path,

 FileMode.Open,

 FileAccess.Read,

 FileShare.Read,

318 File and Stream I/O

 bufferSize: 4096,

 useAsync: true

);

 while (

 (numberOfBytesToDecode = await fileStream.

 ReadAsync(buffer, 0, buffer.Length)) != 0

)

 {

 sb.AppendLine(Encoding.Unicode.GetString(

 buffer, 0, numberOfBytesToDecode

));

}

 return sb.ToString();

}

In this method, we declare a StringBuilder for efficient string concatenation.
Then, we declare and initialize a new byte array that will be our buffer and declare a
numberOfBytesToDecode variable. A new FileStream object is instantiated.

The numberOfBytesToDecode variable is set by awaiting the call to the
ReadAsync method. This variable is set for each iteration of the For loop. For
each iteration of the loop, we obtain the number of bytes to be decoded. Then, we
append a line to the output, with the items taken from the buffer. Finally, we return
the resulting string.

4. Add the DemonstrateAsyncFileOps() method to the AsyncFileAccess
class:

public async Task DemonstrateAsyncFileOps()

{

await WriteTextToFileAsync(

 "Supercalifragilisticexpialidocious",

 @"C:\Temp\File\film.txt"

);

 string text = await ReadTextFromFileAsync(

 @"C:\Temp\File\film.txt"

Handling I/O operation exceptions 319

);

Console.WriteLine($"The Text written was: {text}");

}

The DemonstrateAsynFileOps() method writes some text to a file
asynchronously by calling the asynchronous write operation. Then, it reads the text
back asynchronously by calling the asynchronous read operation. The result is then
printed to the console window.

5. Modify your Program class’s Main method as follows:

static async Task Main(string[] args)

{

 AsyncFileAccess afa = new AsyncFileAccess();

 await afa.DemonstrateAsyncFileOps();

}

This code creates a new instance of our AsyncFileAccess class, and then calls
the DemonstrateAsyncFileOps() method.

6. Build and run your code. In your console window, you should see the following line
printed out:

The Text written was: Supercalifragilisticexpialidocious

As can be seen from our simple example, asynchronous file access is fairly straightforward.
In the next section, we will look at how to handle I/O exceptions.

Handling I/O operation exceptions
When working with I/O operations, you can encounter several different exceptions. The
base I/O exception is IOException. It pays to differentiate between the different I/O
exceptions and to log them as this can help expedite problem resolution.

320 File and Stream I/O

The following table provides a breakdown of the various I/O exceptions that can be raised
by your I/O operations. By trapping these specific exceptions, you can provide a more
detailed exception log entry that helps with identifying the root source of the problem
more easily:

Table 7.2 – Microsoft .NET I/O exceptions

Now that you know about the kind of I/O exceptions that can be raised, you also need to
know about the correct way to handle, log, and display such exceptions.

As programmers, we need to write code that can detect malfunctioning code. Code
that malfunctions leaves a computer program in an undefined state. This can lead to
side effects that are unexpected and unpredictable. A computer program that is in an
unpredictable state can lead to all manner of issues such as performance slowing down,
application hangs, and invalid data, leading to incorrect information. This can lead to
serious business and consumer issues, and that is not good.

Therefore, your code needs to be fault-tolerant and should be able to handle faults
appropriately. Exceptions should be handled so that data integrity remains intact. You
should also bear in mind that there are two categories of exceptions that your computer
program should be aware of:

• Expected exceptions are exceptions that your computer program can recover from.

• Unexpected exceptions are exceptions that your computer program is unable to
recover from.

Handling I/O operation exceptions 321

The expected exceptions need to be handled silently. You know what has the potential
to fail and why, so you can put defensive code in place to act against such code-raising
exceptions in the first place. This is important, as you don’t want bubbling exceptions since
this reduces application performance. In turn, a reduction in application performance
impacts the user experience.

Allowing exceptions to propagate through your computer program is expensive in terms
of performance. With this in mind, best practice stipulates that it is better to handle
exceptions at the point where they occur within your code for improved application
performance.

When you’re trapping for errors using a try/catch block, it is also a good practice to
have multiple catch blocks. The only exceptions that would form the catch blocks are
those that can be thrown by the current method. You would put the exception catch
blocks in an order where the most specific exception is at the top, and then reduce to
the least specific, which would be your bottom catch block. This helps make your code
more readable to fellow programmers, and it also makes debugging your code for specific
exceptions much easier.

You can use exception filters to handle an exception when a specific condition is present.
If the exception filter returns true, then the exception is handled. But if it returns false, the
search for an exception handler continues. It is preferable to use exception filters instead
of catching and rethrowing because filters leave the stack unharmed. If a later handler
dumps the stack, you can see where the exception originally came from, rather than just
the last place it was rethrown.

When an unexpected exception occurs, it must be thrown because it can have a seriously
detrimental effect on the predictability of your computer program. When unexpected
exceptions occur, you should log the exception and exit to protect the integrity of your data.

This is why using System.Exception is a bad idea in that it swallows all exceptions.
Your methods should only trap for the exceptions that they expect to be raised. All
unexpected exceptions should be handled by the application in such a way that the
exception is logged and the program is exited. It is in the main application’s try/catch
block that you would have your System.Exception catch block to catch unexpected
exceptions. This block would handle all unexpected exceptions that are allowed to bubble
up back to the main application code.

When unexpected exceptions propagate back to the main application code’s exception
catch block, you can extract the underlying base exception by calling Exception.
GetBaseException(). This will get the original exception that was raised, causing any
subsequent exceptions to also be raised.

322 File and Stream I/O

In my experience, I have found that IT professionals will often neglect to review the event
log and application logs when troubleshooting. However, when they have drawn blanks and
have asked for my help, this has usually been my first port of call. It may be that nothing
gets logged in Event Viewer, and nothing gets logged by the application. But there are times
when valuable information does get logged, and it can be a time-saver in terms of problem-
solving and getting the application working again in a more stable manner.

There are essentially three different locations where an exception can be logged:

• Application log files: When an exception is encountered, it will be logged by the
application to a text file, JSON file, or XML file.

• Event Viewer: When an expected exception is encountered, this will be logged
by the application to a named event log. When an unexpected exception is
encountered such as an application hang, the system will log this exception in either
the Windows Application Log or the Windows System Log.

• The database: When an application is encountered, the application will log the
exception to a database table.

Whichever mechanism or mechanisms you choose is down to you and your application
needs. However, you must make sure that the logs are well-formatted and that the data that’s
provided is meaningful. Logs are no good if they are hard to read and contain lots of noise!

Note
Use a best practice that dictates managed and unmanaged resources should be
correctly disposed of, especially if an application does crash. When providing
tech support, I have often come across situations where applications have
crashed and locked resources, and where resources have been kept alive in
memory. This leads to bad user experiences and can lead to files, directories,
and other resources not being accessible, and the application itself not being
able to start up. Often, in these cases, the only options are to kill the application
using Task Manager or restart the computer.

Performing memory tasks efficiently 323

Performing memory tasks efficiently
When benchmarking C# programs, you will see that sometimes, the objects that allocate
the most memory will be faster than the methods that allocate fewer objects. A case in
point is strings. Using formatted strings can allocate fewer memory interpolated strings.
However, formatted strings can be slower than using interpolated strings. We are going to
demonstrate this with a really simple piece of code:

1. Add a class to the CH08_FileAndStreamIO project called Memory and configure it
for using BenchmarkDotNet.

2. Add the ReturnFormattedString() method:

[Benchmark]

public string ReturnFormattedString()

{

return string.Format("{0} {1} {2} {3} {4} {5} {6}

 {7} {8} {9}", "The", "quick", "brown", "fox",

 "jumped", "over", "the", "lazy", "dog", "."

);

}

This method returns a formatted string. It is essentially one line and contains no
named variables.

3. Add the ReturnInterpolatedString() method to the Memory class:

[Benchmark]

public string ReturnInterpolatedString()

{

 string thep = "The";

 string quick = "quick";

 string brown = "brown";

 string fox = "fox";

 string jumped = "jumped";

 string over = "over";

 string thel = "the";

 string lazy = "lazy";

 string dog = "dog";

324 File and Stream I/O

 string period = ".";

return $"{thep} { quick } { brown } { fox }

{jumped} {over} {thel} {lazy} {dog} {period}";

}

This method declares several strings and assigns values to them. It then returns
the interpolated string. This method covers multiple lines and looks like it will be
slower and use the most memory. However, the only way to know for sure is to run
the benchmarks.

4. Add the BenchmarkRunner.Run<Memory>(); call to your Main method, do a
Release build, and then run the executable from the command line. The following
screenshot shows the memory that was allocated and the time it took to perform
each method:

Figure 7.3 – The Benchmark summary report comparing String.Format against interoperable strings

As you can see, even though we can declare multiple variables and allocate the most
memory using our string interoperability method, it is much faster than doing the same
thing with String.Format. If you have a lot of string processing to do, such as in batch
report generation or document processing, then you can almost halve the time it takes to
perform your string manipulations using string interoperability. The memory also never
reaches generation 1, so it is dealt with efficiently by the garbage collector.

Also, you need to reduce the amount of boxing and unboxing that you do. Every time
you convert a value type into a reference type, it will be stored on the heap. And every
time you convert a reference type into a value type, you place it on the stack. So, what are
the performance implications for doing this? Boxing and unboxing are computationally
expensive processes. The more computations that are required to perform a function, the
slower the process will be. So, by eliminating unnecessary computations caused by boxing
and unboxing, you speed up your application and can end up using less memory. So,
when you can, try and use value types on the stack instead of reference types on the heap.

Performing memory tasks efficiently 325

Avoid code duplication in your objects. If you have multiple constructor overrides, then
place the common code in the common constructor and do the same with your methods.
A class with duplicate code will use more memory than the same class correctly coded to
have no duplication. You should always look for ways to refactor your objects to reduce
code bloat, and removing code duplication and reusing code is an easy way to do this.

Memory fragmentation can be a major cause of performance issues for C# programs.
Memory fragmentation occurs when objects are added to the heap, garbage is collected,
and then other objects fill the available space. If you end up with free space between the
objects in memory, then your memory has become fragmented. The GC will perform a
compacting collection when it is most efficient to do so. Doing this manually should only
be done after carefully investigating the scenario in question.

In C#, you can defragment the Large Object Heap (LOH) using the garbage collection
settings that are available, as follows:

GCSettings.LargeObjectHeapCompactionMode =

GCLargeObjectHeapCompactionMode.CompactOnce;

GC.Collect();

This code ensures that the objects on the LOH occupy a contiguous area of memory. All
the free space that is located between objects in memory is removed and placed at the end
of the allocated memory.

You should also consider not using finalizers. An object will remain in memory longer if
it uses finalizers. This will cause a build-up of memory usage. And a build-up of memory
usage will lead to reduced performance by your applications.

It is a best practice to dispose of objects and resources when you have finished with them.
This helps prevent objects remaining in memory that are not being used, and also releases
locks on resources such as files and directories.

When utilizing disposable objects, you should always try and use the using statement.
This is because when the block of code finishes, the object will automatically be disposed
of. When you write a class that uses various disposable resources, even if it does not own
those disposable resources, you should implement the disposable pattern.

So far, we have looked at file and memory operations and how performance can be
impacted. Now, let’s turn our attention to local storage tasks.

326 File and Stream I/O

Understanding local storage tasks
On Windows 10, there are several locations that you can use to store data locally. These
are as follows:

• Local: Located in the user’s AppData folder, this folder can contain settings, files,
and folders. This folder is used for data that is not that easy to recreate or download.
If you have backup applications that can back up a user’s AppData folder, then
anything stored in the Local folder will be backed up.

• Local Cache: Only files created using the ApplicationData.
LocalCacheFolder property can be stored in the local cache. Items stored using
the local cache will be persisted across sessions.

• Roaming: Roaming profiles can be used by network users to store their local data
on the server. This has the advantage that prudent network managers will ensure
profiles are backed up regularly, so users will always have a restore point if they
happen to lose data.

• Temporary: Use the AppData\Temp folder for temporary data. It is a good
idea to clean data in the Temp folder when you have finished with it. Application
initialization and shutdown are good points to perform system housekeeping.

• C:\ProgramData: This location is a best practice location for storing application
data. However, this location does not always get backed up. So, it is always a good
idea to provide an in-application way to ensure data is regularly backed up and
stored in a safe location in case your computer dies, which does happen!

It’s down to you regarding how and where you store your data. From my extensive
experience providing IT support to schools, they can have some extremely complicated
and very hardened systems security-wise. You cannot assume your application will
be installed on the C:\ drive, and you cannot assume you will have access to the C:\
ProgramData folder.

Many business and assessment hours have been lost by schools trying to install and run
educational vendor software on such complicated systems. Often, this leads to remote
technical support sessions.

Another problem that can often arise is the use of the Microsoft VirtualStore. When a user
installs software and they are presented with the question, Install for anyone who
uses this computer or Install for Just Me, they tend to select the latter. On
Windows 10 computers, Install for Just Me puts the stored data for the installed
application into the user’s virtual store. But selecting Install for anyone who
uses this computer will normally store application data in the C:\ProgramData\
YOUR_APPLICATION folder.

Summary 327

A telltale sign that a user has installed the software for only themselves to use is when
multiple people log onto an office computer, and each person has a copy of the data. When
this happens, multiple copies of the data exist. These copies can be found in each person’s
virtual store.

This is exactly what happened to me and my colleagues. We develop educational software
that comes in standalone, network, and online formats. For our standalone customers,
we offer a single-user license. The data for the application is stored in a Microsoft Access
database. Originally a problem on Windows 7, which remains a potential problem
on Windows 10, is users being given the prompt to install for just them or all users.
When they install for all users, the Microsoft Access database can be found under C:\
ProgramData\CompanyName\ProductName. All users who log onto the computer
to use our software will see the same datasets. But should a user select to install only for
themselves, then our software’s data will be stored under the user profile's VirtualStore

The location of the Virtual Store is C:\Users\%USERNAME%\AppData\Local\
VirtualStore. This is useful to know because it reduces your time locating the
data for the various users under their profiles. The difficulty arises when the customer
demands that the data be merged and stored in a central location. When this situation
arises, uninstall the software and reinstall it, making sure that you select the option to
Install for all users. Then, request the users stop using the software until you
have provided them with the merged data. Information such as this may not increase the
performance of your C# and .NET programs, but it certainly improves your performance
when you’re providing technical support. And that can be a feather in your cap, as I have
found to my benefit! And as programmers/technical support staff/software developers, we
all go through personal performance reviews to see how well we are doing in our roles.

Now that we have concluded the material for this chapter, let’s summarize what we
have learned.

Summary
In this chapter, we started by looking at various file paths. There are four different types of
file paths – absolute paths, relative paths, UNC paths, and DOS device paths.

After discussing the various types of paths, we learned that, by default, Windows and
Windows Server are limited to a complete file path length of 256 characters. In today’s
world of open source and web-based software working across platforms, this maximum
standard length on Windows computers can be very limiting. This can cause backup
issues when you’re performing disk-to-disk backups, and deeply nested projects can blow
the maximum file path length. To overcome this limitation, we learned how to remove the
limit by accessing and modifying the registry.

328 File and Stream I/O

The next thing we looked at was the various considerations for improving disk I/O. We
started looking at I/O performance considerations by considering the different hardware
devices that can affect performance. Then, we benchmarked some code to find the most
efficient ways of calculating directory sizes, moving files, and performing asynchronous
file manipulation.

The next thing we looked at was exception handling. We came to understand that
bubbling up exceptions unnecessarily affects performance and that they should be caught
and dealt with at the source. We also came to understand that we should not swallow
exceptions by catching generic exceptions. Generic exceptions should only be a last
resource for logging purposes before you close the application down due to encountering
a non-recoverable exception.

We then looked at memory tasks. After benchmarking string.Format and
interpolated strings, where we learned how using interpolated strings almost doubled
our performane.Next, we considered memory fragmentation, which can occur when
we’re adding and removing objects of various sizes. We also learned how to compact
fragmented memory to make it run more efficiently.

Finally, we looked at local storage tasks. We discussed the various types of local storage
available and their uses. Plus, we discussed the end user installation of our products,
which can result in different logged-on users having their own sets of data. This problem
arises when users choose to install for themselves instead of all users. Thus, each user has
their copy of the application data stored against the profile in C:\Users\%USERNAME%\
AppData\Local\VirtualStore.

In the next chapter, we will look at networking. But before we do, see if you can answer the
following questions. Then, improve your knowledge on the topic of I/O performance by
looking at the Further reading section.

Questions
Answer the following questions to test your knowledge of this chapter:

1. What are the various Windows file path formats that you need to be aware of?
2. How do you remove the 256-character limit for Windows file paths?
3. Which method is the most efficient for calculating directory sizes?
4. Which method is the most efficient for moving files?
5. When should you catch exceptions using the Exception class?
6. What is the base I/O Exception class?

Further reading 329

7. What file location options do you have for local storage?
8. What is one of the potential pitfalls that may be encountered when users install

your software?
9. What is the Microsoft Virtual Store?
10. Where is the Microsoft Virtual Store located?

Further reading
For more information regarding the topics that were covered in this chapter, take a look at
the following resources:

• File and Stream I/O: https://docs.microsoft.com/dotnet/standard/
io/.

• Pipes: https://docs.microsoft.com/dotnet/standard/io/pipe-
operations.

• Faster file move method other than File.Move: https://stackoverflow.com/
questions/18968830/faster-file-move-method-other-than-
file-move.

• C# GetFileSystemInfos can get file sizes quickly: https://thedeveloperblog.
com/getfilesysteminfos.

• Performance of writing to a file in C#: https://stackoverflow.com/
questions/9437265/performance-of-writing-to-file-c-sharp.

• Asynchronous File Processing: https://docs.microsoft.com/dotnet/
csharp/programming-guide/concepts/async/using-async-for-
file-access#:~:text=%20Asynchronous%20file%20access%20
(C#)%20%201%20Use,writing%2010%20text%20files.%20For%20
each...%20More.

• How to iterate file directories with PLINQ: https://docs.microsoft.com/
bs-cyrl-ba/dotnet/standard/parallel-programming/how-to-
iterate-file-directories-with-plinq?view=dynamics-usd-3.

• Handling I/O exceptions in .NET: https://docs.microsoft.com/dotnet/
standard/io/handling-io-errors.

• Calling Windows 10 APIs from a desktop application: https://blogs.windows.
com/windowsdeveloper/2017/01/25/calling-windows-10-apis-
desktop-application/#vZiZ96PlZUqTduts.97.

https://docs.microsoft.com/dotnet/standard/io/
https://docs.microsoft.com/dotnet/standard/io/
https://docs.microsoft.com/dotnet/standard/io/pipe-operations
https://docs.microsoft.com/dotnet/standard/io/pipe-operations
https://stackoverflow.com/questions/18968830/faster-file-move-method-other-than-file-move
https://stackoverflow.com/questions/18968830/faster-file-move-method-other-than-file-move
https://stackoverflow.com/questions/18968830/faster-file-move-method-other-than-file-move
https://thedeveloperblog.com/getfilesysteminfos
https://thedeveloperblog.com/getfilesysteminfos
https://stackoverflow.com/questions/9437265/performance-of-writing-to-file-c-sharp
https://stackoverflow.com/questions/9437265/performance-of-writing-to-file-c-sharp
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/async/using-async-for-file-access#:~:text=%20Asynchronous%20file%20access%20(C#)%20%201%20Use,writing%2010%20text%20files.%20For%20each...%20More
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/async/using-async-for-file-access#:~:text=%20Asynchronous%20file%20access%20(C#)%20%201%20Use,writing%2010%20text%20files.%20For%20each...%20More
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/async/using-async-for-file-access#:~:text=%20Asynchronous%20file%20access%20(C#)%20%201%20Use,writing%2010%20text%20files.%20For%20each...%20More
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/async/using-async-for-file-access#:~:text=%20Asynchronous%20file%20access%20(C#)%20%201%20Use,writing%2010%20text%20files.%20For%20each...%20More
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/async/using-async-for-file-access#:~:text=%20Asynchronous%20file%20access%20(C#)%20%201%20Use,writing%2010%20text%20files.%20For%20each...%20More
https://docs.microsoft.com/bs-cyrl-ba/dotnet/standard/parallel-programming/how-to-iterate-file-directories-with-plinq?view=dynamics-usd-3
https://docs.microsoft.com/bs-cyrl-ba/dotnet/standard/parallel-programming/how-to-iterate-file-directories-with-plinq?view=dynamics-usd-3
https://docs.microsoft.com/bs-cyrl-ba/dotnet/standard/parallel-programming/how-to-iterate-file-directories-with-plinq?view=dynamics-usd-3
https://docs.microsoft.com/dotnet/standard/io/handling-io-errors
https://docs.microsoft.com/dotnet/standard/io/handling-io-errors

330 File and Stream I/O

• Performance Improvements in .NET 6: https://devblogs.microsoft.com/
dotnet/performance-improvements-in-net-6/.

• Page (Computer Memory): https://en.wikipedia.org/wiki/Page_
(computer_memory).

https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-6/
https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-6/
https://en.wikipedia.org/wiki/Page_(computer_memory)
https://en.wikipedia.org/wiki/Page_(computer_memory)

9
Enhancing the

Performance
of Networked

Applications
You will be very hard pressed when you turn your computer on to not have a single
application using some kind of network application. Your operating system connects to a
network to download and install Windows updates. Installed applications will poll (check
at regular intervals) application servers over the internet to see if there are newer versions
available for download.

Browsers download audio and visual data over the internet, and websites allow you to
upload and download files. Business applications communicate with database servers.
Communication applications send large volumes of textual, audio, and visual data over
networks – often with multiple people from various parts of the world involved in online
video meetings and training sessions. Your fintech applications communicate with your
financial providers over the internet. This is only just scratching the surface.

332 Enhancing the Performance of Networked Applications

Our world is very interconnected via technology, and it is networks that make all this
possible. I am sure that you have felt some frustration as a user of a website or application
when it experiences a slowdown, an application hang, or the application temporarily
freezes while some other tasks block the UI until they have been completed, preventing
you from doing any work.

Due to this, having applications that are highly performant over a network is crucial in
today’s fast-paced world. And that is why Microsoft is busy working to always improve the
efficiency and speed of their software. One such piece of software that is relatively new on
the scene is Google Remote Procedural Calls (gRPCs). A software framework for making
Remote Procedural Calls (RPCs), gRPC/gRPC-Web has received a performance boost.

In this chapter, you will learn how to speed up the performance of network applications.
You will also learn how to communicate over a network using the Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP) network protocols. Then, you will
learn how to perform network tracing processes with the OSI network layer reference
model and a selection of TCP and UDP networking protocols. Cache management will
also be covered so that you can improve the efficiency of resource retrieval. Then, you will
learn how to make requests and handle responses over the internet, as well as how to use
System.IO.Pipelines to provide performant streaming capabilities.

The following topics will be covered in this chapter:

• Understanding the network layers and protocols: To produce working network
software, you don’t necessarily need to know anything about networks and how they
work – that is, unless you are writing low-level software to improve the network
performance of networked applications. In this section, we will start looking at
improving the network performance of software by looking at the different layers of
a network and the protocols that live in those layers.

• Improving web-based network traffic: Many of us use the internet daily during
our work, family, education, and leisure time. The internet works over a web-based
network that covers the globe. This network is made up of very slow copper wire
networks to ultra-fast fiber-optic networks, and many computers with varying
degrees of processing power. In this section, we will learn how to improve traffic
over the internet to improve internet resource transfer. You will also learn how to
monitor web application performance using Microsoft Edge.

• High-performance communication using gRPC: In this section, we will learn
how to perform high-speed network inter-process communication using gRPC and
gRPC-Web. When it comes to gRPC-Web, we will be using Blazor Server for the
server-side code and Blazor WebAssembly for the client-side code.

Technical requirements 333

• Optimizing internet resources: To improve resource upload and download times,
it pays for you to spend time performing the right kinds of resource optimization.
In this section, we will learn how to optimize images, text characters, and data
transmission.

• Using pipelines for content streaming: In this section, you will learn how to break
down the data processing, data transmission, and data reception phases into several
atomic tasks that work together using pipelines.

• Caching resources in memory: In this section, you will learn how to cache
resources in memory to reduce page transfer and display times. This can help
reduce network load for other users and prevent bottlenecks and throttling.

Upon completing this chapter, you will be able to do the following:

• Understand and apply UDP-based and TCP-based network protocols

• Monitor and identify problems with network traffic

• Improve the network retrieval performance of resources using caching

• Issue web requests and process responses securely

• Efficiently stream content over a network such as the internet using pipelines

Note
As with all performance-sensitive work, all the techniques and examples in this
chapter, as well as throughout this book, should be measured in the context of
your application. The overhead of certain techniques mentioned may not be
necessary, depending on the scale your networking applications need to handle.

Technical requirements
To follow along with the contents of this chapter, you will need the following:

• Visual Studio 2022 or later

• Microsoft Edge

• This book’s source code: https://github.com/PacktPublishing/High-
Performance-Programming-in-CSharp-and-.NET/tree/master/
CH09

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH09
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH09
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH09

334 Enhancing the Performance of Networked Applications

Understanding the network layers and
protocols
When writing applications that interact with networks, it is very useful to know what
network protocols are used. A network protocol is a defined set of rules that defines how
data is formatted, transmitted, and received between different devices and applications
over a network. Different network protocols are used for different tasks. Some protocols
are secure by nature, while some protocols are insecure by nature. The OSI network
layer reference model is a good place to start in understanding the layers of a device’s
networking capabilities and the associated protocols for those layers.

OSI stands for Open Standards Institute. The OSI network layer reference model is a
conceptual model that defines and standardizes the communication between computers
and telecommunication devices. It is independent of the technology that underpins such
communication, so it is a technology-agnostic representation of the layers and protocols
of a device’s network layers:

Table 9.1 – The OSI network layer reference model

As you can see, a network has seven layers of operation. These layers are as follows:

• Application layer: The application layer provides a user interface that allows users
to send and receive data over a network. This layer contains all the applications you
use and that operate behind the scenes to interact with the presentation level. For
example, your internet browser employs the HTTP, HTTPS, and FTP protocols
for transmitting and receiving files over the internet, while email clients use POP3,
SMTP, and IMAP for sending and receiving email data.

• Presentation layer: The presentation layer encrypts, formats, and compresses the
data ready for network transmission. The protocols that are employed in this layer
include POP/SMTP, Usenet, HTTP, FTP, Telnet, DNS, SNMP, and NFS.

Understanding the network layers and protocols 335

• Session layer: The session layer initiates and terminates sessions with remote
systems. This is the layer where ports are assigned for network communication.
Examples include port 25 for POP/SMTP, port 532 for Usenet, port 80 for HTTP,
port 443 for HTTPS, ports 20 and 21 for FTP, port 23 for Telnet, port 53 for DNS,
ports 161 and 162 for SNMP, and the use of an RPC Portmapper for NFS.

• Transport layer: The transport layer breaks down data streams into smaller data
delivery segments using either TCP or UDP.

• Network layer: The network layer provides logical addressing using either the
original IPv4 or the newer IPv6.

• Data Link layer: The data link layer prepares the data for transmission. This layer
translates information from the network layer into a format that can be easily
transmitted over the required network type using the SLIP, PPP, 802.2 SNAP, and
Ethernet II protocols.

• Physical layer: The physical layer is responsible for moving data between
device locations. The types of physical network connections that this layer can
make available include RS-X, CAT1 to CAT8, ISDN, ADSL, ATM, FDDI, and
Coaxial Cable.

The following protocols are used in these various levels:

• Domain Name Service (DNS): The purpose of the DNS protocol is to translate
host names into IP addresses and vice versa using what is known as domain name
resolution. Port 53 is the default port for DNS.

• Dynamic Host Configuration Protocol (DHCP): The purpose of DHCP is to
assign IP address-related information dynamically to networked devices. Ports 67
and 68 are the default ports for DHCP.

• Hypertext Transfer Protocol (HTTP): The purpose of HTTP is to enable the
transfer of web pages and supporting material over the internet. Port 80 is the
default port for the HTTP protocol.

• Hypertext Transfer Protocol Secure (HTTPS): The purpose of HTTPS is to enable
the safe transfer of web pages and their supporting material securely over the
internet. Port 443 is the default port for HTTPS.

• Secure Shell (SSH): The purpose of the SSH protocol is to securely connect to
a remote computer and move files around and execute various commands. The
default port for SSH is port 22.

336 Enhancing the Performance of Networked Applications

• Secure Socket Layer (SSL): The purpose of the SSL protocol is to secure the data
that is transferred between a server and a web browser. Port 443 is the default port
for SSL.

• File Transfer Protocol (FTP): The purpose of FTP is to transfer files over the
internet. Ports 20 and 21 are the default ports for FTP.

• Telnet: Telnet provides insecure two-way interactive text-based communication
between two computers using virtual terminal connections. Port 23 is the default
port for Telnet.

• Trivial File Transfer Protocol (TFTP): The default port for TFTP is port 69.

• Simple Mail Transfer Protocol (SMTP): The purpose of SMTP is to ensure the
safe transmission of emails over the network. Port 25 is the default for the SMTP
protocol.

• Post Office Protocol version 3 (POP3): The purpose of POP3 is to download and
read emails from email servers. Port 110 is the default port for POP3.

• Internet Message Access Protocol 4 (IMAP4): The purpose of IMAP is to access
emails on a remote email server without the need to download them. Port 143 is the
default port for IMAP.

• Remote Desktop Protocol (RDP): The purpose of RDP is to establish a remote
connection to a computer and take control of it. Port 3389 is the default for RDP.

• Transmission Control Protocol (TCP): The purpose of TCP is to provide
trustworthy assurance that transmitted data will be received. TCP enables data
sending and receiving. Different protocols come under the banner of TCP and each
TCP protocol has a default port number.

• User Datagram Protocol (UDP): The purpose of UDP is to provide untrusted data
transmission without the assurance that the data will be received. UDP only allows
data to be transmitted. Different protocols come under the banner of UDP and each
UDP protocol has a default port number.

• Internet Protocol (IP): The purpose of the IP is to address how data packets are
routed between host computers on a TCP/IP network.

• Ethernet: The purpose of the Ethernet protocol is to provide control over how data
is transmitted over a LAN per the IEEE 802.3 protocol.

• Point-to-Point (PPP): The purpose of the PPP protocol is to establish a data link
connection between two routers using authentication, transmission encryption, and
data compression.

Understanding the network layers and protocols 337

• Network Time Protocol (NTP): The purpose of NTP is to provide clock
synchronization between computer systems over packet-switched data networks
with variable latency.

• Network News Transport Protocol (NNTP): The purpose of NNTP is to transport
Usenet articles (netnews) between news servers. It is also used by end user client
applications to read and post articles.

These are only a small subset of the various network protocols that are used in today’s
world. You are encouraged to further research the various protocols in use if you do a lot
of programming that requires network access. You can find some useful articles to assist
your advancement in the Further reading section.

Once you understand what network protocols are used for, you can select the protocol
that best suits your need. This helps reduce overhead. For example, if you only want to
transmit data and do not wish to receive it or care whether it is received or not, then you
would use the UDP network protocol. However, if you must guarantee that data is sent
and received, then you must use TCP instead.

The Internet Engineering Task Force (IETF) has defined two Request For Comments
(RFCs) network transport protocols that have become internet standards. RFC 768 (UDP)
defines UDP, whereas RFC 793 (TCP) defines TCP. Here are the official links for these
RFCs for you to look at:

• RFC 768 (UDP): https://tools.ietf.org/html/rfc768

• RFC 793 (TCP): https://tools.ietf.org/html/rfc793

TCP is a connection-oriented protocol responsible for ensuring that data is transferred
reliably across networks via sessions. The sender and receiver agree on what data will be
transferred. Packet error checking is performed on the received data. If there are errors,
then a request is submitted to re-transmit the packet that failed. TCP is often used with
IP. Packets are made aware of where to go and how to get there by IP. The combination of
the TCP and IP protocols, when they work together, is defined as TCP/IP.

UDP differs from TCP as it is connectionless. UDP receivers listen for UDP packets with
sessions being established. No error checking is performed with UDP. Therefore, packets
may be lost with the receiver being unaware of the loss of those packets. UDP does not
acknowledge the sender when data is received or when packets are lost.

https://tools.ietf.org/html/rfc768.
https://tools.ietf.org/html/rfc793

338 Enhancing the Performance of Networked Applications

With TCP establishing connections for communication sessions and performing error
checking and resubmitting lost or corrupted packets, it is generally considered slower
than UDP. UPD is faster than TCP because it does not establish connections for sessions
or perform error checking. Therefore, TCP is the best option when data must be received
without errors, such as with financial transactions. However, UDP is the best option when
it comes to streaming live images, such as when you are watching a movie. That’s why
movies can sometimes appear a bit grainy at times.

In the real world, the OSI model does not exist in all practicality. Instead, the universally
accepted network model that is tangible in a practical way is the TCP/IP model.

The TCP/IP model
The TCP/IP model differs from the OSI model in that there are only four layers that make
up the TCP/IP model. These layers are as follows:

• Application layer

• Transport layer

• Internet layer

• Network interface layer

So, how do the layers of the TCP/IP model map to the OSI model? The following table
presents both models and their layers side by side for comparison:

Table 9.2 – Comparison between the TCP/IP model and the OSI model

Understanding the network layers and protocols 339

Let’s describe each layer in the TCP/IP model:

• The Application layer enables users to initiate communication between applications
and systems over a network. This can be sending an email, opening a web page,
running an application over a network, accessing application information from a
database, and performing file transfers over a network.

• The Transport layer resolves host-to-host communication.

• The Internet layer connects different networks.

• The Network Interface layer is the physical hardware that enables network
communication between a server and its hosts.

Now that we have learned about the TCP/IP model, in the next section, we will write a
simple email application and discuss how it relates to the TCP/IP model.

Writing an example email application with the TCP/IP
model
In this section, we are going to write a simple console application that sends an email
using SMTP. Then, we will discuss how this email is sent through the TCP/IP model. To
write a simple console application, follow these steps:

1. Start a new .NET 6.0 Console Application and call it CH09_
OsiReferenceModel.

2. Add a new class called EmailServer with the following using statements:

using System;

using System.Net.Mail;

We need these two namespaces for handling exceptions and sending emails.
3. Add the following method:

public static void SendEmail(

string from, string to, string title, string message

)

{

 try

 {

 MailMessage mailMessage = new MailMessage();

 mailMessage.From = new MailAddress(from);

340 Enhancing the Performance of Networked Applications

 mailMessage.To.Add(to);

 mailMessage.Subject = title;

 mailMessage.Body = message;

 SmtpClient smtpServer = new SmtpClient();

 smtpServer.DeliveryMethod =

 SmtpDeliveryMethod.Network;

 smtpServer.Host = “smtp-mail.outlook.com”;

 smtpServer.Port = 587;

 smtpServer.UseDefaultCredentials = false;

 smtpServer.Credentials = new

 System.Net.NetworkCredential(“EMAIL_ADDRESS”,

 “PASSWORD”);

 smtpServer.EnableSsl = true;

 smtpServer.Send(mailMessage);

}

catch (Exception ex)

{

 throw ex.GetBaseException();

}

}

The preceding code takes the necessary parameters for sending our email
programmatically. A MailMessage is built up from those parameters. Then, we
initialize and configure a SmtpClient to connect to a networked-host email
server that sends our email.

4. Update the Program class, as follows:

using CH09_OsiReferenceModel;

Console.WriteLine(“Hello World!”);

SendMail();

Console.WriteLine(“Email has been sent.”);

Here, we are writing a greeting to the console window. Then, we are calling
SendMail() to send our email, and then finishing with a message.

Understanding the network layers and protocols 341

5. Now, add the SendMail() method:

static void SendMail()

{

EmailServer.SendEmail(

 “FROM_EMAIL”

 , “TO_EMAIL”

 , “Test Message”

 , “Test Body. You can delete!”

);

}

Replace the email addresses with valid ones. This method calls the SendMail
method in the EmailServer class.

Run the program; you should have an email in your email account.

With your project working, it is time to discuss how your project links in with the TCP/IP
network model. Let’s start by looking at the following diagram:

Figure 9.1 – Sending and receiving an email over a network via SMTP using the TCP/IP protocol

342 Enhancing the Performance of Networked Applications

First, start with your email client putting together an email, and the user clicking Send.
When the data hits the Application layer, this is where the SMTP protocol comes into
play. In this layer, the recipient is contacted, and the data is formatted and prefixed with an
SMTP header.

The email is then passed to the Transport layer. TCP is employed in this layer and is used
to break down messages into smaller packets prefixed with a TCP header.

From the transport layer, the email is passed to the Internet layer. IP formats the email
packets so that they’re ready to be transmitted over the internet and prefixes them with an
IP header. These formatted TCP/IP packets are then passed to the Network interface layer.

At the network interface layer, the sender and receiver IP addresses are added to the
header that is prefixed to the email. The email is then sent to the receiver.

When the email packet reaches the receiver, it first hits the network layer. The header for
the network layer is removed, and the email packet is passed to the Internet layer. The IP
header is removed, and the email packet is passed to the transport layer.

At the transport layer, the email packets are then reassembled. Once all the packets have
been assembled with the TCP headers removed, they are passed to the application layer,
where the SMTP protocol removes the SMTP header, passes the pure email data to the
client, and closes the session.

With that, we have covered the conceptual OSI model and the practical four-layer TCP/IP
model. Sending an email was the example we used to discuss the journey from the sender
to the receiver over the four-layer TCP/IP layer.

Now that you understand the different layers that make up a network and some of the
different network protocols and their uses, let’s look at network tracing.

Improving web-based network traffic
It is a good idea to keep an eye on the performance of your web applications. This helps
you see how well your application transmits and receives information from the network
we all know as the internet or, as it is increasingly being referred to, the cloud. You can
even track down those calls that are taking a long time to complete, enabling you to
improve the responsive performance of your application.

There are various ways that you can accomplish this task. But we will only focus on one
way, and that way is to record your application’s performance in the web browser using the
in-built development tools performance analyzer. Specifically, we will be looking at using
Microsoft Edge’s development tools. This will be the topic of the next section.

Improving web-based network traffic 343

Recording your web-applications performance using
Microsoft Edge
In this section, you will be using the Microsoft Edge web browser to analyze the
performance of your web applications. Internet is the name given to the Wide Area
Network (WAN) that we use every day to browse the web. Sometimes, web applications
can be slow, and they are often much slower than their desktop counterparts. That is
where the developer tools provided by various browsers come in.

With the browser developer tools, you have some powerful capabilities for seeing what
your application is doing behind the scenes. The main features that are provided by
various browsers are as follows:

• The ability to navigate the elements of the currently loaded website to view the
HTML structure, styles employed, computed styles, layout, event listeners, DOM
breakpoints, properties, and accessibility.

• You can view console messages, including any error messages raised.

• You can view all the resources that make up a page with sources, synchronize
changes with the local filesystem, override page assets with files from a local folder,
view content scripts served by extensions, and create and save code snippets for
later reuse.

• You can record and view the network traffic generated by a page, including
information such as name, status, type, initiator, size, time, and waterfall with the
Network tab.

• You can record a process. This information can be extremely detailed and you can
save screenshots, record memory usage, and view the web vitals for the page with
the Performance tab.

• You can profile memory usage and have the option to record a heap snapshot,
allocate instrumentation on time, and allocate a sample.

• You can see and debug the background services for your applications on the
Application tab, including their storage and caches.

• Security, which enables you to view the main origin and secure origins of your
application, along with its security information, such as whether it has a valid
SSL certificate.

344 Enhancing the Performance of Networked Applications

Each browser from various vendors works in subtly different ways. Developers each have
their preferences as to which browser and set of developer tools they like to use. In this
section, we will be using the Microsoft Edge Network and Performance tabs to analyze
the performance of a web page. To do so, follow these steps:

1. Open Microsoft Edge and press F12 to open the developer tools. The following
screen should appear:

Figure 9.2 – Microsoft Edge developer tools displaying the default tab

2. Click on the Network tab.
3. In the address box, type docs.microsoft.com.

The website will now load. As it does, you will see the network traffic being
generated and logged. The following screenshot shows a portion of the data that’s
been ordered by the resources that took the longest time to process:

Improving web-based network traffic 345

Figure 9.3 – The Microsoft Edge developer tools' Network tab displaying network traffic data

As you can see, the Network tab is useful for seeing what resource has been requested
(name), the status and type values of the request, what initiated the request (initiator),
the request size and time to process, and its visual representation on the Waterfall chart.
This information can be applied to your pages and their resources to reduce the overall
size of a complete request and reduce the time it takes to complete the request.

Now that we’ve seen the Network tab in action, let’s look at the Performance tab in action.
To do so, follow these steps:

4. Click on the Performance tab, and then click on the record button.
5. Type docs.microsoft.com into the address bar and press Enter.
6. Once the page has fully loaded, stop the recording by clicking on the popup dialog’s

Stop button.

The profile that has just been captured will now be loaded and presented to you. How long
this process will take varies based on how long you were recording and how much traffic
was generated.

346 Enhancing the Performance of Networked Applications

Once the profile has finished loading, you should be presented with the following screen:

Figure 9.4 – The Microsoft Edge performance profile for docs.microsoft.com

You may be unable to read the contents of the preceding screenshot. That’s okay – this
screenshot just represents the amount of data that you can glean using the performance
profiler. You have screenshots, a Waterfall chart, a breakdown of all the methods and
properties that were utilized to load the URL, and a summary of the types of traffic by
time, such as loading time, scripting time, rendering time, painting time, system time, and
idle time.

You can use this information to find where most of the time is being taken up for a request
and identify the method where the time is being consumed. This will help you identify the
areas of your web projects that may be candidates for performance improvement.

High-performance communication using gRPC 347

There is a wealth of information that can be gathered regarding the performance of
your application using browser tools. And not all that information has been covered
here. For instance, we have not even touched on the memory profiling tab in Microsoft
Edge Developer Tools due to this chapter’s page length restrictions. However, you are
actively encouraged to try out all the different features available in the web browser’s
development tools for yourself to help you profile and improve the performance of your
web applications and their network utilization.

Now that we have learned how to use browser development tools to profile the internet
traffic that’s produced by our application requests and responses, let’s look at the
performance-enhanced gRPC Remote Procedural Call (gRPC) framework for high-
speed network data transfer and communication.

High-performance communication using gRPC
What is gRPC? It is an open source RPC framework. Applications use RPC to talk to each
other. gRPC is built upon the modern technologies of HTTP/2 for the transport protocol
layer and protocol buffers (Protobuf) for serializing technology for messages. Protobuf
also provides a language-neutral contract language.

gRPC has been designed with modern high-performance and cross-platform applications
in mind. There are implementations for all manner of programming languages.
This enables applications developed on different operating systems and in different
programming languages to talk to each other.

gRPC is in an opinionated contract-first framework with the contract being defined in a
proto file. This proto file contains your API definitions and the messages they will send
and receive. Code generation is then used to generate strongly typed clients and messages
for your language and platforms, which in our case will be C# and .NET. The language
of gRPC is binary and designed for computers. This makes gRPC perform better than
text-based HTTP APIs. The complexity of remoting is hidden from the programmer
in the gRPC framework. Much of the work you would normally have to do by hand as
a programmer is done for you by code generation tools. And so, all you must do is call
methods on your clients and await the results. For increased developer productivity and
application performance, you are better off using gRPC over HTTP APIs.

348 Enhancing the Performance of Networked Applications

HTTP APIs are content-first and consider the shape of URLs, HTTP methods, JSON and
XML, and more. REST APIs are code-first. Normally, you would write your code and
then generate Swagger or RAML contracts afterward. REST APIs are human-readable as
they are text-based. This makes them easy to debug with the right tools, but these APIs
perform slower than gRPC. REST APIs deal with low-level HTTP, so you have more to
think about in terms of HTTP requests, responses, and routing. This is more complicated
than using gRPC, but you do end up with a high degree of control. So, even though HTTP
APIs are not big on performance, they will appeal to the widest developer audience. They
can be easier to get started with. However, they can become incredibly complex and deep-
routed when you’re working on complicated enterprise software.

Now that you know about gRPC and HTTP, you will appreciate that the fastest network
and inter-application communication will be carried out by gRPC and not HTTP. And
since this book is about performance, we will now demonstrate gRPC at work with a
simple demonstration.

Programming a simple gRPC client/server application
In this section, we will be building a gRPC service that returns a single message. Then, we
will write a client to call the gRPC service and update our client and server so that we can
stream messages. Let’s begin by writing our gRPC service.

Building a gRPC service
In this section, we are going to build a gRPC service in Visual Studio. Later in this
chapter, we will consume this service. To build a gRPC service in Visual Studio, follow
these steps:

1. Open Visual Studio and select Start a new project.
2. Search for and select the ASP.NET Core gRPC Service template and click Next.
3. On the Configure your new project page, change the location to where you would

like, name the project CH09_GrpcService, and click Create.
4. You will then be presented with the Additional information page. Ensure the

latest version of .NET Framework is selected from the drop-down; this should be
.NET 6.0.

5. Click on the Create button. An ASP.NET project will be scaffolded. The proto files
for your service will be placed in the Protos folder, and your services will be placed
in the Services folder. Configuration settings will be stored in the appsettings.
json file.

High-performance communication using gRPC 349

6. Make sure the project is set as the startup project, and then run it. You should be
presented with a Trust ASP.NET Core SSL Certificate dialog. Click on Yes.

7. You will now be presented with a security dialog, informing you that you are about
to install a security certificate. Click Yes to install it. Once the certificate has been
installed, your service should be running. The gRPC service URLs are http://
localhost:5000 and https://localhost:5001.

Note
Ports 5000 and 5001 may be different on your system if they are already in use.

8. Enter https://localhost:5001 in a browser; you should get the following
message: Communication with gRPC endpoints must be made through a gRPC
client. To learn how to create a client, visit https://go.microsoft.com/
fwlink/?linkid=2086909. This message informs us that the next step is for us
to write a client that will be able to communicate with the service.

And that is how easy it is to get started with a gRPC service. Open the greet.proto file
in the Proto folder and enter the following code:

syntax = “proto3”;

option csharp_namespace = “CH09_GrpcService”;

package greet;

// The greeting service definition.

service Greeter {

 // Sends a greeting

 rpc SayHello (HelloRequest) returns (HelloReply);

}

// The request message containing the user’s name.

message HelloRequest {

 string name = 1;

}

// The response message containing the greetings.

message HelloReply {

 string message = 1;

}

http://localhost:5000
http://localhost:5000
http://localhost:5000
https://localhost:5001
https://go.microsoft.com/fwlink/?linkid=2086909
https://go.microsoft.com/fwlink/?linkid=2086909

350 Enhancing the Performance of Networked Applications

As you can see, the proto language is straightforward. In this file, we stated the language’s
syntax, assembly namespace, and the name of the package. We then provided a service
definition, which defines the RPC request and response, followed by the request and
response messages.

Note
There is a lot of code generation that goes on under the hood. So, in case you
are wondering where certain files are located, you will find them hiding away in
your Obj\Debug\net6.0\Protos folder.

Since we are using gRPC for our service, we need a client. So, in the next section, we will
build our client.

Building a gRPC client
In this section, we are going to add a gRPC client project that will consume our gRPC
service. Also, for our client project, we will write a simple console application. To add a
client project, follow these steps:

1. Start a new .NET 6.0 Console Application project named CH09_
GrpcServiceClient and change the target framework to .NET 6.0.

2. Right-click on the project’s Service dependences node in the Solution Explorer
and select the Add Connected Service menu option. This will present you with the
following tab:

Figure 9.5 – The Connected Services tab in Visual Studio

High-performance communication using gRPC 351

3. Click on the Add button under the Service References (OpenAPI, gRPC) section.
This will bring up the Add service reference dialog, as shown in the following
screenshot:

Figure 9.6 – The Add service reference dialog in Visual Studio

4. Click on the gRPC option and then click on the Next button. The wizard dialog
presented in the preceding screenshot will move to the Add a new gRPC service
reference page, as shown here:

Figure 9.7 – The Add a new gRPC service reference page of the Add service reference dialog

352 Enhancing the Performance of Networked Applications

5. Click on the Browse button, navigate to the greet.proto file in your gRPC
service project, and select it. Ensure the client option is selected from the dropdown
list. Then, click Finish.

6. The dialog will change to Service reference configuration progress. When you get
a message stating Successfully added service reference(s), click the Close button.
Your gRPC connected service will now appear in the Service References section of
the Connected Services tab, as shown here:

Figure 9.8 – The Connected Services tab displaying our connected gRPC service

With that, you have added a client project to your gRPC service. With the client projected
added, we can now write the console applications. Follow these steps:

7. Open the CH09_GrpcServiceClient.csproj file by selecting it in the
Solution Explorer. You should see the following XML:

<Project Sdk=”Microsoft.NET.Sdk”>

<PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net6.0</TargetFramework>

</PropertyGroup>

High-performance communication using gRPC 353

<ItemGroup>

 <PackageReference Include=”Google.Protobuf”

 Version=”3.13.0” />

 <PackageReference Include=”Grpc.Net.ClientFactory”

 Version=”2.32.0” />

 <PackageReference Include=”Grpc.Tools”

 Version=”2.32.0”>

 <PrivateAssets>all</PrivateAssets>

 <IncludeAssets>runtime; build; native;

 contentfiles; analyzers;

 buildtransitive</IncludeAssets>

 </PackageReference>

</ItemGroup>

<ItemGroup>

 <Protobuf

 Include=”..\CH09_GrpcService\Protos\greet.proto”

 GrpcServices=”Client”>

 <Link>Protos\greet.proto</Link>

 </Protobuf>

</ItemGroup>

</Project>

In the preceding XML code, you can see the references to Google’s Protobuf library
and the gRPC libraries. You will also see a Protobuf link to your proto file in the gRPC
service, which indicates that your project is taking on the role of the client.

8. Open the Program class in your client project.
9. Update the Main(string[] args) method, as follows:

static async void Main(string[] args)

{

 await ExecuteGrpcClient();}

In our entry point method, we call the asynchronous ExecuteGrpClient()
method. However, because we cannot mark our main method as async, we have to
call Wait() on the ExecuteGrpcClient() method:

tatic async Task ExecuteGrpcClient()

{

354 Enhancing the Performance of Networked Applications

GrpcChannel grpcChannel =

 GrpcChannel.ForAddress(“https://localhost:5001”);

Greeter.GreeterClient greeterClient =

 new Greeter.GreeterClient(grpcChannel);

HelloReply helloReply =

 await greeterClient.SayHelloAsync(new HelloRequest

 {

 Name = “gRPC Demonstration!”

 });

Console.WriteLine(

 $”Message From gRPC Server: {helloReply.Message}”);

}

Because we will be awaiting an asynchronous call, we must make the
ExecuteGrpcClient() method asynchronous with the async modifier. This
method does not return anything. However, it cannot be declared void, so we
must provide Task as the return type. Then, we must declare our gRPC channel
by pointing it to our gRPC HTTPS address. Then, we must declare our client by
passing in the gRPC channel we have just declared and initialized. Next, we must
obtain a reply by awaiting our asynchronous call to our server method and passing
in a message request where we set the properties as necessary. Finally, we must print
the response from the server to the console window.

10. Open the server project in the terminal and type dotnet run. The server will be
running locally on port 5001.

11. Then, open the client project in the terminal window and type dotnet run. It will
print the following message in the console window:

Message From gRPC Server: Hello gRPC Demonstration!

With that, you have successfully written a gRPC server and consumed its message by
writing and running a gRPC client. So what? What does this mean for you? It means that
you now have a cross-platform way of communication between different applications
using a common protocol. And what is the big deal in this regard? Well, say that you have
several legacy applications written in various languages and you want to migrate them all
to a common platform and programming language such as .NET or C# – you now have a
straightforward way to accomplish this.

High-performance communication using gRPC 355

By using gRPC, you can provide a phased migration from legacy platforms to the .NET 5
and higher platforms and C# 9 and higher programming language. You would accomplish
this by writing gRPC clients for your .NET clients and legacy clients. This would enable you
to start using .NET and C# as you incrementally replace older systems. Then, gradually, as
the older systems are replaced by one modern system, you can fully utilize .NET and C#
and benefit from all the performance improvements the Microsoft teams have made to the
language and framework. Plus, you can leverage all the business and performance benefits of
using the Microsoft ecosystem, which includes the Microsoft Azure Cloud services that have
been built with security, scalability, and performance in mind.

At this point, it is worth noting the various languages that are officially supported by
gRPC. The officially supported languages, operating systems, compilers, and SDKs are
shown in the following table:

Table 9.3 – Officially supported languages by gRPC

As we can see, gRPC is well supported across languages, operating systems, SDKs, and
compilers. So, gRPC is the perfect networking technology to bring disparate systems
together using one harmonious messaging framework.

356 Enhancing the Performance of Networked Applications

So far, you have consumed a unary request and know that gRPC can be used with various
operating systems and programming languages. But what if you need to handle a whole
batch of gRPC requests? How do we do that? Good question. We’ll learn how to do this in
the next section.

Streaming multiple gRPC requests
In this section, we will be modifying our client and server gRPC projects to send and
process message streams. By the end of this project, you will be sending 10 messages from
the server to the client. On the client, you will process each message as it comes in and
write it to the console window. To do so, follow these steps:

1. Update the greet.proto file in the CH09_GrpcService project, as follows:

// The greeting service definition.

service Greeter {

// Sends a greeting

rpc SayHello (HelloRequest) returns (HelloReply);

rpc SayHelloStream(HelloRequest)

 returns (stream HelloReply);

}

You will see that you have added a new message stream to our service definition.
Instead of returning a single HelloReply message, the message stream returns a
stream of messages of the HelloReply type.

2. In the GreeterService class of the CH09_GrpcServer project, add the
following method:

public override async Task SayHelloStream(HelloRequest

 request, IServerStreamWriter<HelloReply>

 responseStream, ServerCallContext context)

{

 for (int i = 0; i < 10; i++)

 {

 await responseStream.WriteAsync(new HelloReply

 {

 Message = $”Response Stream Message: {i}”

 });

High-performance communication using gRPC 357

 await Task.Delay(TimeSpan.FromSeconds(1));

}

}

In this method, you are iterating 10 times. For each iteration, you await the
responseStream.WriteAsync(HelloReply) method. In this asynchronous
call, you set the message on the HelloReply object. With each iteration taking
only milliseconds, you will purposefully slow down the processing of the task for
human eyes to see each method being written one after the other. This delay slows
down your task by 10 seconds – a second for each iteration. In a normal application,
you would normally not have such a delay in place.

3. Now that you have updated your server project, rebuild both projects to see the
changes and move to your CH09_GrpcServiceClient project.

4. In the Program class, move the code inside the ExecuteGrpcClient() method
into its own method called SingleGrpcMessageClient(). Then, add the
following two lines of code to the ExecuteGrpcClient() method:

await SingleGrpcMessageResponse();

await GrpcMessageResponseStream();

The preceding code contains two asynchronous calls: one for a single message, and
one for streaming multiple messages.

5. Add the GrpcMessageResponseStream() method:

static async Task GrpcMessageResponseStream()

{

 GrpcChannel grpcChannel =

 GrpcChannel.ForAddress(“https://localhost:5001”);

 Greeter.GreeterClient greeterClient =

 new Greeter.GreeterClient(grpcChannel);

 AsyncServerStreamingCall<HelloReply> helloReply =

 greeterClient.SayHelloStream(new HelloRequest

 {

 Name = “gRPC Streaming Demonstration!”

 });

 await foreach (HelloReply item in

 helloReply.ResponseStream.ReadAllAsync())

358 Enhancing the Performance of Networked Applications

 {

 Console.WriteLine(item.Message);

 }

}

GrpcMessageResponseStream() creates a GrpcChannel and assigns it to a
new client. A call is then made to a gRPC stream. This iterates through all the items
in the stream that have been sent back to the client from the server, and then prints
the message for each item to the console window.

6. Open each of the projects in their own terminals and type the dotnet run
command. This will start the server and run the client. You should see the following
console window output:

Message From gRPC Server: Hello gRPC Demonstration!

Response Stream Message: 0

Response Stream Message: 1

Response Stream Message: 2

Response Stream Message: 3

Response Stream Message: 4

Response Stream Message: 5

Response Stream Message: 6

Response Stream Message: 7

Response Stream Message: 8

Response Stream Message: 9

You now know how to use gRPC with desktop applications. In the next section, you will
learn how to use gRPC with Blazor.

Programming a simple gRPC Blazor application
Blazor is a web programming model. With Blazor, you can have server-side Blazor
projects that you would write when you have sensitive information that you need to keep
secret. You can have client-side Blazor projects when application performance is of the
utmost importance. As part of an organization’s enterprise application, you have many
different Blazor server-side and client-side applications working together as one.

High-performance communication using gRPC 359

For gRPC to work with web projects, a wrapper called gRPC-Web has been developed.
This enables you to have both gRPC-Web services and gRPC-Web clients. With
gRPC-Web, it is possible to build end-to-end pipelines that are compatible with the
HTTP/1.1 and HTTP/2 protocols. This provides a competitive edge over browser APIs
that are unable to call gRPC HTTP/2, especially when you consider that not all .NET
platforms have support for HTTP/2 via the HttpClient class. Another benefit of
gRPC-Web is that you don’t have to use just TCP for Inter-Process Communication
(IPC). For IPC, you can also use named pipes (UDP) and Unix domain sockets (UDS).

Note
The default template app for Blazor has a fetch data page that uses JSON
for its data backend. The data size for this JSON file is 627 bytes. But when
JSON is replaced with gRPC, the size of the data is reduced to 309 bytes. This
example shows that data transfer is quicker using gRPC-Web than it is using
JSON, as there is not so much data to transmit and receive over the network.
The reduced size of the data transmission using gRPC-Web means that more
requests can be made over the network before the requests need to be throttled.

In .NET 6.0, applications are made smaller via aggressive trimming. You can aggressively
trim gRPC-based applications to reduce their size and increase their performance,
especially when it comes to sending data over networks. This is because of the in-built
code generation that is part of gRPC.

In web projects, gRPC cannot be directly accessed. Therefore, a proxy project known as
gRPC-Web was introduced to enable the use of gRPC with web projects.

In the following sections, we will be writing a Blazor client and Server gRPC application
consisting of a Blazor Server Application and a Blazor WebAssembly Application.
Let’s begin.

The blank solution
We need to start with a blank solution:

1. Open Visual Studio and search for Blank Solution.
2. Create the blank solution and name it CH09_BlazorGrpc.

This will provide a blank solution to which we can add our client and server Blazor
applications. Next, we will work on our client project.

360 Enhancing the Performance of Networked Applications

The Blazor client project
In this section, we will build our Blazor client gRPC application. Follow these steps:

1. Add a new Blazor WebAssembly app called CH09_BlazorGrpc.Client.
2. Add the following NuGet packages:

A. Google.Protobuf
B. Grpc.Net.Client
C. Grpc.Net.Client.Web
D. Grpc.Tools

3. Add a folder called Protos and a file to that folder called person.proto.
4. Open the person.proto file and add the following code:

syntax = “proto3”;

option csharp_namespace = “CH09_BlazorGrpc.Client”;

package grpcpeople;

service Person {

 rpc GetPeople (PeopleRequest) returns (PeopleResponse);

}

message PeopleRequest {

}

message PeopleResponse{

 repeated PersonResponse people = 1;

}

message PersonResponse {

 string name = 1;

}

Our proto file defines the proto definition version as proto3. So, the proto3 syntax
will be used. The namespace for our service definition is CH09_BlazorGrpc.
Client. The name that’s been given to our package is grpcpeople. There
are three messages called PeopleRequest, PeopleResponse, and
PersonResponse. Finally, we define our service as Person with an RPC called
GetPeople that takes a PeopleRequest and returns a PeopleResponse.

High-performance communication using gRPC 361

5. Add the following imports to the _Imports.razor file:

@using CH09_BlazorGrpc.Client

@using CH09_BlazorGrpc.Client.Shared

@using Grpc.Net.Client;

@using Grpc.Net.Client.Web;

These imports will be available to all our files.
6. Locate the Pages/Index.razor page and replace its contents with the following

code:

@page “/”

@using CH09_BlazorGrpc.Client

<PageTitle>Index</PageTitle>

<h1>People from Grpc Service</h1>

@foreach(var person in model.People)

{

 <p>Name : @person.Name</p>

}

@code{

 private PeopleResponse model = new PeopleResponse();

 protected override async Task OnInitializedAsync()

 {

 using var channel = GrpcChannel.ForAddress

 (“https://localhost:7272/”, new

 GrpcChannelOptions

 {

 HttpHandler = new GrpcWebHandler(new

 HttpClientHandler())

 });

 var client = new Person.PersonClient

 (channel);

 model = await client.GetPeopleAsync(

 new PeopleRequest { });

 }

}

362 Enhancing the Performance of Networked Applications

The preceding code will call the gRPC service that has been located by the service
app and list the people that have been returned.

That’s our client application completed. Now, let’s write our server application.

The Blazor server project
In this section, we will write our server application, which will contain our service
responsible for returning the requested data to the client. Let’s begin:

1. Add a new Blazor Server app called CH09_BlazorGrpc.Server.
2. Add the Grpc.AspNetCore and Grpc.AspNetCore.Web NuGet packages.
3. Copy the Protos folder and its contents from the client project and paste it into

the server project.
4. Add the PeopleService class to the root of the server project.
5. Replace the contents of the PeopleService class with the following code:

namespace CH09_BlazorGrpc.Server;

using Grpc.Core;

using CH09_BlazorGrpc.Client;

public class PeopleService : Person.PersonBase

{

 public override async Task<PeopleResponse>

 GetPeople(PeopleRequest request,

 ServerCallContext context)

 {

 PeopleResponse response = new PeopleResponse();

 response.People.Add(new PersonResponse { Name =

 “Person One” });

 response.People.Add(new PersonResponse { Name =

 “Person Two” });

 response.People.Add(new PersonResponse { Name =

 “Person Three” });

 return response;

 }

}

High-performance communication using gRPC 363

This service has a single method that returns a list of people.
6. Replace the code in the Program.cs file with the following:

using CH09_BlazorGrpc.Server;

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddGrpc(options =>

{

 options.EnableDetailedErrors = true;

 options.MaxReceiveMessageSize = 2 * 1024 * 1024;

 // 2 MB

 options.MaxSendMessageSize = 5 * 1024 * 1024; // 5 MB

});

builder.Services.AddCors(setupAction =>

{

 setupAction.AddDefaultPolicy(policy =>

 {

 policy.AllowAnyHeader().AllowAnyOrigin()

 .AllowAnyMethod()

 .WithExposedHeaders(“Grpc-Status”,

 “Grpc-Message”, “Grpc-Encoding”,

 “Grpc-Accept-Encoding”);

 });

});

var app = builder.Build();

app.UseCors();

app.UseRouting();

app.UseGrpcWeb(new GrpcWebOptions { DefaultEnabled =

 true });

app.UseEndpoints(endpoints =>

{

 endpoints.MapGrpcService<PeopleService>();

});

app.Run();

364 Enhancing the Performance of Networked Applications

The preceding code configures our Blazor application to use gRPC and sets up our
PeopleService class so that our client application can use it. We also configured
Cors so that our gRPC requests and responses don’t get blocked.

7. Right-click on the solution and select Properties.
8. Under Startup Project, select Multiple startup projects and change Action to Start

for both the client and the server projects.
9. Click on OK to close the property dialog.

Run the project. Two browser and two console windows should open. If all goes well, then
you should see the following browser window:

Figure 9.9 – The client Blazor application showing the response from the gRPC service in the server app

Note
The port numbers depend on the ports that are available on a system. So,
alternative ports will be used if ports 5000 and 5001 are already in use. This has
happened here, in which port 7272 is being used for the server app and port
7108 is being used for the client app.

With that, you have learned about desktop and web-based network data transmission
and communication using gRPC and gRPC-Web, both of which have received several
performance enhancements along with C# and .NET Framework. You have also used the
Blazor server and Blazor WebAssembly to perform web data transmissions and receive data.

Optimizing internet resources 365

You can use this information to replace your code that uses the JSON data format with
the binary format of gRPC. This should cut down the size of your data transmissions and
reduce the time it takes for the data to be transmitted and received, thus improving the
performance of your networked applications – especially those applications that deal with
huge volumes of data.

Optimizing internet resources
The best web page is a web page that does the minimum it needs to present the necessary
data that you want your users to view. Noisy web pages take longer to load and can be a
source of irritation to your end users.

When you use advert services and analytical and health monitoring services, these can
produce unnecessary network traffic and an increase in page load time. So, you need to be
concise in what data you gather regarding the page that is loading. You also need to reduce
the number of resources that your page is downloading. Some of these resources will be
explained here.

Images
Images are one of the resources that can significantly increase the time it takes to load a
page. Therefore, it is important to use the right image format and compression for your
images. It is often necessary to reduce the file size of images. Images usually come in
three file formats: JPEG/JPG, PNG, and GIF/animated GIF. When it comes to image
optimization, you are best off experimenting based on your website requirements. This
is because you will need to factor in the tradeoff between image quality and image size,
depending on your specific requirements.

An example of a tool that you can use for PNG optimization is PNGGauntlet by Ben
Hollis: https://pnggauntlet.com/. This tool creates small PBGs by combining
PNGOUT, OptiPNG, and DeflOpt with no loss of image quality. It can also convert the
JPG, GIF, TIFF, and BMP file formats into PNG. You can configure the tool to your liking.

Text characters
When transmitting text over the internet, the more characters you have, the larger the
file you will have. As a page grows, the time to load that page increases. You can reduce
the size of each request and response by enabling deflate or gzip compression. Most, if
not all, web servers provide web compression. You will have to look at how to enable web
compression in the web server that you are using.

https://pnggauntlet.com/

366 Enhancing the Performance of Networked Applications

You can also reduce the size of your HTML, CSS, and JavaScript files in production by
using minification. During development, when you have reached the stage where you
are ready to deploy your application, you can employ tools such as webpack that will
condense your files by removing unnecessary whitespace, comments, and unused code.
Tools such as webpack can drastically reduce the size of your files.

This size reduction results in less data being transmitted over a network, meaning that the
files a user has requested get downloaded on their device much faster. The quicker that
requested files are downloaded to a user’s device, the quicker the requested page will be
rendered for them to view.

Data transmission
Transmitting data over a network takes time. That time can vary based on several different
factors, such as the amount of network traffic and the route taken. Not all networks use
fiber optic, and there are still locations over the internet that are still on slow copper wire
connections.

One way to reduce network traffic and load time for networked resources is to cache them
on the user’s computer that requested the resource. When a network resource is requested,
the application will check if it exists in the cache. If it does, then the item will be retrieved
from the cache on the user’s computer. But if the item is not in the cache, it will be
downloaded over the network and stored in the user’s cache. When an item is being
retrieved from the cache, the expiration date and time will be checked for the resource. If
the expiry date and time have been reached, then the resource will be downloaded from
over the network.

Also, when working with large volumes of data, it is best to filter the data on the server
and only return the subset of the data that you require. If the amount of data that you
require is quite large, then employ data paging, whereby the data is divided into pages.
Then, you only need to download a page as it is requested. This reduces the time it takes to
receive the data once the request has been made.

Using pipelines for content streaming
System.IO.Pipelines is a high-performance I/O .NET library that was first shipped
with .NET Core 2.1 and was born from performance work carried out by the Kestrel team.
The purpose behind pipelines is to reduce the complexity of correctly parsing stream and
socket data.

Using pipelines for content streaming 367

In this section, we will learn how to use pipelines with sockets. We will write to small
console applications. The first console application will listen for incoming requests on port
7000 and output the contents to the console window. The second console application will
listen for the newline key. When it is detected, it will send the contents of the command
line to the server on port 7000. By completing this project, you will see how easy it is to
write a network communication application with a minimal number of lines of code using
pipes and sockets.

Let’s start by writing our server console app.

Writing and running a TCP server console application
In this section, we will use sockets and pipelines to write a console application that listens
for incoming data on port 7000. When data is received, it is processed and output to the
console window. To write a TCP server console application, follow these steps:

1. Start a new .NET 6.0 Console Application called CH09_TcpServer.
2. Add the System.IO.Pipelines NuGet package.
3. Add a new class called SocketExtensions:

using System;

using System.Net.Sockets;

using System.Runtime.InteropServices;

using System.Text;

using System.Threading.Tasks;

internal static class SocketExtensions

{

}

This is our SocketExtensions class, which we will build up with extension
methods to simplify our socket code.

4. Add the ReceiveAsync extension method:

public static Task<int> ReceiveAsync(this Socket socket,

 Memory<byte> memory, SocketFlags socketFlags)

{

 ArraySegment<byte> arraySegment = GetArray(memory);

return SocketTaskExtensions.ReceiveAsync(socket,

 arraySegment, socketFlags);

}

368 Enhancing the Performance of Networked Applications

This method extends a socket to delimit a section of a one-dimensional array.
It receives data from a connected socket and returns a Task that represents the
asynchronous receive operation.

5. Add the GetString extension method:

public static string GetString(this Encoding encoding,

 ReadOnlyMemory<byte> memory)

{

 ArraySegment<byte> arraySegment = GetArray(memory);

 return encoding.GetString(arraySegment.Array,

 arraySegment.Offset, arraySegment.Count);

}

This method extends a socket to delimit a section of a one-dimensional array. Then,
it decodes a sequence of bytes into a string and returns the decoded string.

6. Add the GetArray method:

private static ArraySegment<byte> GetArray(Memory<byte>

 memory)

{

return GetArray((ReadOnlyMemory<byte>)memory);

}

This method gets contiguous memory and returns a delimited section of a
one-dimensional array.

7. Add the final extension method – that is, GetArray:

private static ArraySegment<byte> GetArray

 (ReadOnlyMemory<byte> memory)

{

if (!MemoryMarshal.TryGetArray(memory, out var result))

{

 throw new InvalidOperationException(“Buffer backed by

 array was expected”);

}

return result;

}

Using pipelines for content streaming 369

This method tries to get a segment from the underlying memory buffer. The
return value indicates the success of the operation. A delimited segment of a
one-dimensional array is returned.

8. Switch to the Program class.
9. Replace the Program.cs file’s source code with the following code:

using CH09_TcpServer;

using System;

using System.Buffers;

using System.IO.Pipelines;

using System.Net;

using System.Net.Sockets;

using System.Text;

using System.Threading.tasks;

Socket listenSocket = new Socket(SocketType.Stream,

 ProtocolType.Tcp);

listenSocket.Bind(new IPEndPoint(IPAddress.Loopback,

 7000));

Console.WriteLine(“Listening on port 7000”);

listenSocket.Listen(120);

while (true)

{

 Socket socket = await listenSocket.AcceptAsync();

 _ = ProcessLinesAsync(socket);

}

Our top-level code creates a socket on port 7000. Then, it listens for incoming data
on port 7000 and processes the data.

10. Add the ProcessLinesAsync method:

tatic async Task ProcessLinesAsync(Socket socket)

{

Console.WriteLine($”[{socket.RemoteEndPoint}]:

 connected”);

NetworkStream stream = new NetworkStream(socket);

PipeReader reader = PipeReader.Create(stream);

370 Enhancing the Performance of Networked Applications

while (true)

{

 ReadResult result = await reader.ReadAsync();

 ReadOnlySequence<byte> buffer = result.Buffer;

 while (TryReadLine(ref buffer, out

 ReadOnlySequence<byte> line))

 ProcessLine(line); reader.AdvanceTo

 (buffer.Start, buffer.End);

 if (result.IsCompleted)

 break;

}

 await reader.CompleteAsync();

 Console.WriteLine($”[{socket.RemoteEndPoint}]:

 disconnected”);

}

With this method, we pass in a socket. The socket is assigned to a new
NetworkStream object. Then, the new NetworkStream object is passed into a
new PipeReader object. While there is data to be read, we read and process each
line in the stream in turn. Once the stream has been completely read from start to
finish, we mark the reader as complete so that no more data will be read from it.

11. Now, add the TryReadLine method:

static bool TryReadLine(ref ReadOnlySequence<byte>

 buffer, out ReadOnlySequence<byte> line)

{

SequencePosition? position = buffer.PositionOf

 ((byte)’\n’);

if (position == null)

{

 line = default;

 return false;

}

 line = buffer.Slice(0, position.Value);

 buffer = buffer.Slice(buffer.GetPosition

 (1, position.Value));

Using pipelines for content streaming 371

 return true;

 }

This method attempts to read a line of a ReadOnlySequence of bytes. If is
unable to, it will return false. But if it can, it will set the line it can read as a
ReadOnlySequence of bytes and return true.

12. Add our final method for our TCP Server called ProcessLine:

static void ProcessLine(in ReadOnlySequence<byte> buffer)

{

foreach (ReadOnlyMemory<byte> segment in buffer)

{

 Console.Write(Encoding.UTF8.GetString(segment.Span));

}

Console.WriteLine();

}

All we are doing here is printing the contents of the stream to the console window
line by line.

13. Run the program. You should see something similar to the following:

Figure 9.10 – The TCP Server in a running state ready to receive connections on port 7000

You now have your TCP Server project up and running. The next step in developing
your understanding of pipelines is to write our TCP Client project. We will do this in
the next section.

372 Enhancing the Performance of Networked Applications

Writing and running a TCP client console application
In this section, we will continue looking at pipelines by writing the TCP client console
application that will be sending console input to the TCP Server. The data received by the
TCP Server from our TCP client will be displayed in the TCP Server’s window:

1. Start a new .NET 6.0 Console Application called CH09_TcpClient.
2. In the Program.cs file, you will need to include the following namespaces:

using System;

using System.IO;

using System.IO.Pipelines;

using System.Net;

using System.Net.Sockets;

using System.Threading.Tasks;

We will need these namespaces for our TCP Client to read the console input and
send it to the TCP Server for processing.

3. Add the following top-level statements:

Socket clientSocket = new Socket(SocketType.Stream,

 ProtocolType.Tcp);

Console.WriteLine(“Connecting to port 7000”);

clientSocket.Connect(new IPEndPoint(IPAddress.Loopback,

 7000));

NetworkStream networkStream = new NetworkStream

 (clientSocket);

await Console.OpenStandardInput().CopyToAsync

 (networkStream);

For our TCP Client, we simply open a new TCP socket on port 7000 and connect
using the IPAddress.Loopback address. Then, we pass the socket into a new
NetworkStream. Finally, we listen for input from the console window’s standard
input and copy that input to the network stream that transmits the data to our TCP
Server for processing.

Using pipelines for content streaming 373

4. Run the program. You should see the following:

Figure 9.11 – The TCP Client listening on port 7000

5. Type Hello, World! and press Enter. Your TCP Client console application
should look as follows:

Figure 9.12 – The TCP Client console window displaying user input

6. Observe the TCP Server console window. You will see that the message Hello,
World! has appeared since you typed the same message in the TCP Client window
and pressed Enter, as shown here:

Figure 9.13 – The TCP Server console window displaying the response from the TCP Client

With that, you have finished writing and running the TCP client and server console
applications, and you have seen just how simple it is to write a console application with
sockets and pipelines. The code is very minimal and you can chain multiple pipelines
together. For example, on the client end, a chained pipeline could be the serialization of
an object followed by its encryption. Then, at the server end, the data could be decrypted
and deserialized, and the resulting object could then be passed to LINQ, which would save
the data contained in the object to a database. We can use sockets and pipelines with most
C# project types, and you are encouraged to experiment with your own little projects to
further your knowledge.

374 Enhancing the Performance of Networked Applications

Caching resources in memory
Caching items in memory requires RAM to be allocated so that they can be stored and
retrieved efficiently. Storing frequently accessed resources in memory greatly improves the
performance of applications.

A typical application that benefits from caching is a website. A traditional website will
consist of HTML pages that define the structure of the visual web page that’s displayed to
end users, CSS, which styles the page and makes it look nice, and JavaScript, which makes
websites dynamic and interactive.

Many pages of a website can use the same resources, such as data, images, sounds, files,
and objects. Caching – temporarily storing some item so that it can be retrieved efficiently
– can be done with a database, filesystem, or memory.

In this section, we will learn how to store items in memory. Microsoft recommends the
use of their Microsoft.Extensions.Caching.Memory NuGet package for caching
items in memory. Therefore, we will follow their guidance and use this library in our
example project.

We will be creating a very simple ASP.NET Core website that displays the current time
and the cached time. When the cached time has expired, we will reset the cache. Each
time the home view is called, we will output some text to the immediate window that
displays the current time, the cached time, and the time difference in seconds.

After each specified period has elapsed, you will see that the cache is reset, along with the
time that’s output to the screen after the page refresh. To write our ASP.NET Core MVC
web application, follow these steps:

1. Start a new empty ASP.NET Core MVC Web Application, ensuring that your target
framework is net6.0 and called CH09_AspNetCoreCaching.

2. Add the Microsoft.Extensions.Caching.Memory NuGet package, and
then add the using statement for this package to the HomeController class.

3. Add an IMemoryCache member variable and update the HomeController
constructor, as follows:

private IMemoryCache _memoryCache;

public HomeController(ILogger<HomeController> logger,

 IMemoryCache memoryCache)

{

 _logger = logger;

 _memoryCache = memoryCache;

}

Caching resources in memory 375

Our _memoryCache variable will hold our cache in memory. The object
that’s being used as our memory cache is injected into the HomeController
constructor as a parameter and assigned to our variable.

4. Next, add the SetCache method:

private void SetCache(string key, object value)

{

 var cachedEntryOptions =

 new MemoryCacheEntryOptions()

 .SetSlidingExpiration(TimeSpan.FromSeconds(20));

 _memoryCache.Set(key, value, cachedEntryOptions);

}

This method accepts a key and a value. We set our MemoryCacheEntryOptions
with a sliding expiration of 20 seconds and then set the cached entry’s value, which
will expire in 20 seconds.

5. The next thing we need to do is update the HomeController constructor’s
Index method, as shown here:

public IActionResult Index()

{

 DateTime whenCached;

 bool exists = _memoryCache.TryGetValue(“WhenCached”,

 out whenCached);

 if (!exists)

 {

 Debug.WriteLine(“Creating cached entry...”);

 whenCached = DateTime.Now;

 SetCache(“WhenCached”, whenCached);

 }

 else

 {

 DateTime now = DateTime.Now;

 double differenceInSeconds =

 now.Subtract(whenCached).TotalSeconds;

 if (differenceInSeconds < 20)

 {

 Debug.WriteLine($”Now: {now}, When Cached:

376 Enhancing the Performance of Networked Applications

 {whenCached}, Time Difference (Seconds):

 {differenceInSeconds}”);

 return View(whenCached);

 }

 else

 {

 Debug.WriteLine(“Resetting cache...”);

 whenCached = DateTime.Now;

 SetCache(“WhenCached”, whenCached);

 }

 }

 return View(whenCached);

}

The preceding code declares a DateTime variable called whenCached. It checks
if the value exists. If it does, its value will be set to the time when the variable was
cached. If the variable does not exist, then it will be added to the cache. If it does
exist, then the difference in time between now and when the variable was cached is
calculated, and the results will be output to the debug window if the cache has not
expired. If the cache has expired, then the cached variable will be updated with the
current time.

6. Now, we need to update our Home view’s HTML code, as follows:

@model DateTime?

@{

 ViewData[“Title”] = “Index”;

}

<h1>Index</h1>

<div class=”row”>

 When Cached: @Model.Value.ToString();

 Current Time: @DateTime.Now.ToString();

</div>

Caching resources in memory 377

The preceding code defines our model for the Razor page. The title of our page is set
to Index. Our main page title is Index. Finally, we have a row that defines when
the variable was cached and the current time.

7. Now, we need to update our Program.cs file to inform our website to use
memory caching:

builder.Services.AddControllersWithViews();

builder.Services.AddMemoryCache();

With that, our services have been configured to use the memory cache.
With that, we have configured our MVC application to use memory caching with sliding
expiration. This means that we are now ready to run our project. Run the project and
refresh a few times within 20 seconds, and then watch what happens. You will see that the
cached and current times start the same. Then, when you refresh the page, you will see
that the cached time remains the same, but the current time is ahead of the cached time.
Then, when 20 seconds is over, the cached time will be updated in sync with the current
time, as shown here:

Figure 9.14 – ASP.NET Core MVC memory caching example in action

As you can see from the preceding screenshot and by running the code, we now have a
way of storing items in a computer’s memory cache, and we can determine when its cache
value expires and has to be updated. This is a really simple way to improve a networked
application’s network performance. It also reduces the amount of data that is transmitted
over a network. This, in turn, helps reduce bandwidth problems and reduces transaction
and network traffic costs for cloud-hosted operations.

That concludes this chapter. Now, let’s summarize what we have learned from working
through this chapter.

378 Enhancing the Performance of Networked Applications

Summary
In this chapter, you studied the OSI reference model to understand the different layers
of a network and the various protocols available for each layer. You also learned that the
various protocols can be grouped into two main groups: TCP and UDP.

Then, you learned about web browser development tools, which allow you to monitor
your website’s activities, such as memory usage and network traffic. You also saw the
errors it raises via the console window. This can help identify problems and resolve them.

From there, you learned how to add gRPC for desktop clients and servers, and gRPC-Web
for web-based clients and servers. You learned that gRPC helps reduce the size of data
compared to the JSON data format, thus reducing page load time.

After that, you learned how to optimize internet resources. This includes using the correct
file format and reducing the size of images, caching items to reduce network traffic and
load times, reducing the number of background services that are running, and limiting
the number of resources that your page loads. You also considered filtering data on the
server and dividing it into pages that are returned as requested.

Finally, you learned how to write and run TCP client and server console applications
before looking at memory caching, in which you can use ASP.NET Core MVC as your
host project.

In the next chapter, we will be working with data by benchmarking different methods for
inserting, updating, and deleting data efficiently. This will help us choose the best method
for data operations based on our benchmark results. But before we do that, take some
time to go through the Further reading section to further your knowledge on improving
network performance. Also, try your hand at the questions to see how much knowledge
you have retained.

Questions
Answer the following questions to test your knowledge of this chapter:

1. Name the seven layers of the OSI reference model.
2. Name some network protocols.
3. What is the difference between TCP/IP and UDP?
4. How can you see what errors are produced by your web page, what network traffic it

produces, and how much memory it uses?
5. What are gRPC and gRPC-Web?
6. How you can optimize internet resources?

Further reading 379

Further reading
To learn more about the topics that were covered in this chapter, take a look at the
following resources:

• OSI seven layers model explained with examples: https://www.
computernetworkingnotes.com/ccna-study-guide/osi-seven-
layers-model-explained-with-examples.html#:~:text=The%20
OSI%20(Open%20System%20Interconnection)%20Reference%20
Model%20is,and%20software%20applications%20which%20work%20
in%20dissimilar%20environments

• TCP/IP model: https://ipcisco.com/lesson/tcp-ip-model/

• Overview of common TCP and UDP default ports: https://www.
examcollection.com/certification-training/network-
plus-overview-of-common-tcp-and-udp-default-ports.
html#:~:text=%20Overview%20of%20common%20TCP%20and%20
UDP%20default,FTP%20is%20to%20transfer%20files%20
over...%20More

• List of TCP and UDP port numbers: https://en.wikipedia.org/wiki/
List_of_TCP_and_UDP_port_numbers

• Internet protocol suite: https://en.wikipedia.org/wiki/Internet_
protocol_suite

• .NET network tracing: https://www.shanebart.com/dotnet-network-
tracing/

• dotnet-trace instructions: https://github.com/dotnet/diagnostics/
blob/master/documentation/dotnet-trace-instructions.md

• How to view and kill processes using the Terminal in Mac OS X: https://www.
chriswrites.com/how-to-view-and-kill-processes-using-the-
terminal-in-mac-os-x/

• How to find a process name using a PID number in Linux: https://www.
tecmint.com/find-process-name-pid-number-linux/

• High-performance services with gRPC – what’s new in .NET 5: https://www.
youtube.com/watch?v=EJ8M2Em5Zzc

• gRPC-Web with .NET: https://www.youtube.com/watch?v=UV-
VnlcpDhU

https://www.computernetworkingnotes.com/ccna-study-guide/osi-seven-layers-model-explained-with-examples.html#:~:text=The%20OSI%20(Open%20System%20Interconnection)%20Reference%20Model%20is,and%20software%20applications%20which%20work%20in%20dissimilar%20en
https://www.computernetworkingnotes.com/ccna-study-guide/osi-seven-layers-model-explained-with-examples.html#:~:text=The%20OSI%20(Open%20System%20Interconnection)%20Reference%20Model%20is,and%20software%20applications%20which%20work%20in%20dissimilar%20en
https://www.computernetworkingnotes.com/ccna-study-guide/osi-seven-layers-model-explained-with-examples.html#:~:text=The%20OSI%20(Open%20System%20Interconnection)%20Reference%20Model%20is,and%20software%20applications%20which%20work%20in%20dissimilar%20en
https://www.computernetworkingnotes.com/ccna-study-guide/osi-seven-layers-model-explained-with-examples.html#:~:text=The%20OSI%20(Open%20System%20Interconnection)%20Reference%20Model%20is,and%20software%20applications%20which%20work%20in%20dissimilar%20en
https://www.computernetworkingnotes.com/ccna-study-guide/osi-seven-layers-model-explained-with-examples.html#:~:text=The%20OSI%20(Open%20System%20Interconnection)%20Reference%20Model%20is,and%20software%20applications%20which%20work%20in%20dissimilar%20en
https://www.computernetworkingnotes.com/ccna-study-guide/osi-seven-layers-model-explained-with-examples.html#:~:text=The%20OSI%20(Open%20System%20Interconnection)%20Reference%20Model%20is,and%20software%20applications%20which%20work%20in%20dissimilar%20en
https://ipcisco.com/lesson/tcp-ip-model/
https://www.examcollection.com/certification-training/network-plus-overview-of-common-tcp-and-udp-default-ports.html#:~:text=%20Overview%20of%20common%20TCP%20and%20UDP%20default,FTP%20is%20to%20transfer%20files%20over...%20More
https://www.examcollection.com/certification-training/network-plus-overview-of-common-tcp-and-udp-default-ports.html#:~:text=%20Overview%20of%20common%20TCP%20and%20UDP%20default,FTP%20is%20to%20transfer%20files%20over...%20More
https://www.examcollection.com/certification-training/network-plus-overview-of-common-tcp-and-udp-default-ports.html#:~:text=%20Overview%20of%20common%20TCP%20and%20UDP%20default,FTP%20is%20to%20transfer%20files%20over...%20More
https://www.examcollection.com/certification-training/network-plus-overview-of-common-tcp-and-udp-default-ports.html#:~:text=%20Overview%20of%20common%20TCP%20and%20UDP%20default,FTP%20is%20to%20transfer%20files%20over...%20More
https://www.examcollection.com/certification-training/network-plus-overview-of-common-tcp-and-udp-default-ports.html#:~:text=%20Overview%20of%20common%20TCP%20and%20UDP%20default,FTP%20is%20to%20transfer%20files%20over...%20More
https://www.examcollection.com/certification-training/network-plus-overview-of-common-tcp-and-udp-default-ports.html#:~:text=%20Overview%20of%20common%20TCP%20and%20UDP%20default,FTP%20is%20to%20transfer%20files%20over...%20More
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://www.shanebart.com/dotnet-network-tracing/
https://www.shanebart.com/dotnet-network-tracing/
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://github.com/dotnet/diagnostics/blob/master/documentation/dotnet-trace-instructions.md
https://www.chriswrites.com/how-to-view-and-kill-processes-using-the-terminal-in-mac-os-x/
https://www.chriswrites.com/how-to-view-and-kill-processes-using-the-terminal-in-mac-os-x/
https://www.chriswrites.com/how-to-view-and-kill-processes-using-the-terminal-in-mac-os-x/
https://www.tecmint.com/find-process-name-pid-number-linux/
https://www.tecmint.com/find-process-name-pid-number-linux/
https://www.youtube.com/watch?v=EJ8M2Em5Zzc
https://www.youtube.com/watch?v=EJ8M2Em5Zzc
https://www.youtube.com/watch?v=UV-VnlcpDhU
https://www.youtube.com/watch?v=UV-VnlcpDhU

380 Enhancing the Performance of Networked Applications

• .NET Conf 2021 new Blazor WebAssembly capabilities
in .NET 6: https://www.youtube.com/
watch?v=kesUNeBZ1Os&list=PLdo4fOcmZ0oVFtp9MDEBNb
A2sSqYvXSXO&index=20

• .NET Conf 2021 high-performance services with gRPC – what’s
new in .NET 6: https://www.youtube.com/watch?v=CXH_
jEa8dUw&list=PLdo4fOcmZ0oVFtp9MDEBNbA2sSqYvXSXO&index=31

• Everything about Blazor: https://codewithmukesh.com/blog/
category/dotnet/blazor/

https://www.youtube.com/watch?v=kesUNeBZ1Os&list=PLdo4fOcmZ0oVFtp9MDEBNb A2sSqYvXSXO&index=20
https://www.youtube.com/watch?v=kesUNeBZ1Os&list=PLdo4fOcmZ0oVFtp9MDEBNb A2sSqYvXSXO&index=20
https://www.youtube.com/watch?v=kesUNeBZ1Os&list=PLdo4fOcmZ0oVFtp9MDEBNb A2sSqYvXSXO&index=20
https://www.youtube.com/watch?v=CXH_jEa8dUw&list=PLdo4fOcmZ0oVFtp9MDEBNbA2sSqYvXSXO&index=31
https://www.youtube.com/watch?v=CXH_jEa8dUw&list=PLdo4fOcmZ0oVFtp9MDEBNbA2sSqYvXSXO&index=31
https://codewithmukesh.com/blog/category/dotnet/blazor/
https://codewithmukesh.com/blog/category/dotnet/blazor/

10
Setting Up Our

Database Project
In this and the following two chapters, we will be improving the performance of your
database-based applications. In this chapter, we will be setting up our relational database
and the code to access that database. In the next chapter, we will write benchmarks to test
the performance of the different frameworks, which consist of Entity Framework, Dapper,
and ADO.NET. Finally, in Chapter 12, Responsive User Interfaces, we will learn how to
improve the performance of SQL Server and Cosmos DB.

Data is extensively used in all aspects of our daily lives. In today's world of big data, the
volume of data being collected and stored for all kinds of analysis is phenomenal. When
working with data, performance can slow down exponentially as the size of your data
grows. And depending on how much data you have to process, time is often critical.

In this chapter, we will create a database and populate it, and we will write the code to
access the database and perform insert, update, select, and delete operations. Our
database access code will consist of Entity Framework, Dapper.NET, and ADO.NET.

Note
No code performance improvements will be discussed in this chapter. We are
only concerned with setting up our database and source code in preparation for
the benchmarking that we will be doing in the next chapter.

382 Setting Up Our Database Project

In this chapter, we will cover the following topics:

• Creating and populating a SQL Server database
• Writing code to access the database using Entity Framework
• Writing code to access the database using Dapper.NET
• Writing code to access the database using ADO.NET

After completing this chapter, you will be able to do the following:

• Log on to SQL Server Management Studio and execute database creation and
seeding scripts

• Store secrets in secrets.json when developing so that secrets don't get stored in
version control

• Access SQL Server databases and perform Create/Insert, Read/Select, Update, and
Delete (CRUD) operations using Entity Framework

• Access SQL Server databases and perform CRUD operations using Dapper.NET
• Access SQL Server databases and perform CRUD operations using ADO.NET

Technical requirements
To follow along with this chapter, you will need to ensure that you have the following:

• SQL Server 2019 Express Edition or higher

• SQL Server Management Studio

• Visual Studio 2022

• This book's source code: https://github.com/PacktPublishing/High-
Performance-Programming-in-CSharp-and-.NET/tree/master/
CH10

Setting up our database
In this section, we will set up our database and get our project ready for benchmarking.
We will be benchmarking different methods of inserting, updating, selecting, and deleting
data. Let's start with setting up our database:

1. Visit https://github.com/Microsoft/sql-server-samples/tree/
master/samples/databases/northwind-pubs.

2. Download the instnwnd.sql file.

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH10
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH10
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH10
https://github.com/PacktPublishing/Mastering-High-Performance-with-C-10.0-and-.NET-6
https://github.com/Microsoft/sql-server-samples/tree/master/samples/databases/northwind-pubs
https://github.com/Microsoft/sql-server-samples/tree/master/samples/databases/northwind-pubs

Setting up our database 383

3. Once the file has been downloaded, open it in SQL Server Management Studio.
4. Execute the file. This will install the database.
5. Open a new query window and enter the following SQL code:

USE [Northwind]

GO

SET ANSI _ NULLS ON

GO

SET QUOTED _ IDENTIFIER ON

GO

CREATE PROCEDURE [dbo].[InsertProduct]

 @ProductName NVARCHAR(40),

 @CategoryID INT,

 @SupplierID INT,

 @Discontinued BIT

AS

BEGIN

SET NOCOUNT ON;

INSERT INTO

 Products (

 ProductName,

 CategoryID,

 SupplierID,

 Discontinued,

 QuantityPerUnit

)

 VALUES (

 @ProductName,

 @CategoryID,

 @SupplierID,

 @Discontinued,

 '1'

)

END

GO

384 Setting Up Our Database Project

Once the code has been entered, execute the script. This code generates the
InsertProduct stored procedure. This stored procedure inserts a product into
the Products table of the Northwind database.

6. Replace the existing SQL with the following SQL:

USE [Northwind]

GO

SET ANSI _ NULLS ON

GO

SET QUOTED _ IDENTIFIER ON

GO

CREATE PROCEDURE [dbo].[GetProductName]

 @ProductName NVARCHAR(40)

AS

BEGIN

 SET NOCOUNT ON;

 SELECT

 Top 1 ProductName

 FROM

 Products

 WHERE

 ProductName LIKE @ProductName

END

GO

Execute the SQL to generate the GetProductName stored procedure. A product
name can have different variations. This stored procedure gets the top 1 name for
the given product.

7. Replace the existing SQL code with the following SQL:

USE [Northwind]

GO

SET ANSI _ NULLS ON

GO

SET QUOTED _ IDENTIFIER ON

GO

CREATE PROCEDURE [dbo].[FilterProducts]

 @ProductName NVARCHAR(40)

Setting up our database 385

AS

BEGIN

 SET NOCOUNT ON;

 SELECT

 *

 FROM

 Products

 WHERE

 ProductName LIKE @ProductName

END

GO

Execute the SQL to generate the FilterProducts stored procedure. The stored
procedure returns all the products whose names contain the search term.

8. Now, replace the existing SQL with this SQL:

USE [Northwind]

GO

SET ANSI _ NULLS ON

GO

SET QUOTED _ IDENTIFIER ON

GO

CREATE PROCEDURE [dbo].[UpdateProductName]

 @OldProductName NVARCHAR(40),

 @NewProductName NVARCHAR(40)

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE

 Products

 SET

 ProductName = @NewProductName

 WHERE

 ProductName = @OldProductName

END

GO

386 Setting Up Our Database Project

Execute this SQL to generate the UpdateProductName stored procedure. This
procedure updates a product name from its current name to a new name.

9. Replace the existing SQL with the following:

USE [Northwind]

GO

SET ANSI _ NULLS ON

GO

SET QUOTED _ IDENTIFIER ON

GO

CREATE PROCEDURE [dbo].[DeleteProduct]

 @ProductName NVARCHAR(40)

AS

BEGIN

 SET NOCOUNT ON;

 DELETE FROM

 Products

 WHERE

 ProductName = @ProductName

END

GO

Execute this code to generate the DeleteProduct stored procedure. This deletes
products from the database that match the given product name.

10. Once the database has been installed and all the procedures have been written and
executed, you can close SQL Server Management Studio.

Now that we have set up our database, we will set up our database access project.

Setting up our database access project
In this section, we will be creating our database access project and classes. In the next
chapter, we will be writing some benchmarks that reference the classes that we will write
in this chapter. Create the project as follows:

1. Open Visual Studio and create a new .NET 6.0 console application called CH10_
DataAccessBenchmarks.

2. Add the latest version of the Microsoft.EntityFrameworkCore.
SqlServer NuGet package.

Setting up our database access project 387

3. Add the latest version of the Dapper NuGet package.
4. Add the latest version of the System.Data.SqlClient NuGet package.
5. Add a new folder called Configuration, and add two classes called

DatabaseSettings and SecretsManager.
6. Add a folder called Data, and add three classes called AdoDotNetData,

DapperDotNet, and EntityFrameworkCoreData.
7. Add a folder called Models, and add three classes called Product,

SqlCommandModel, and SqlCommandParameterModel.
8. Add a folder called Reflection, and add a class called Properties.
9. On the main root, add a class called BenchmarkTests.
10. Save the project.

With that, we have created and updated our database with the stored procedures we will
be calling, and we have also put in place the project, folders, and class files that we will
be using to benchmark the various types of data operations we normally perform on a
database from code. Let's start by writing the Properties class.

Writing the Properties class
As part of our benchmarking, we need to obtain the FieldCount value of a
DbDataRecord. But the property is not readily accessible without using reflection.
Therefore, to make our lives easier, we will write a class called Properties that helps us
get the values of properties using reflection easily. Follow these steps:

1. Open the Properties class and add the following using statements:

using System.Data.Common;

using System.Reflection;

internal class Properties

{

}

We need both these namespaces to be imported as we are using reflection and need
access to the DbDataRecord class.

2. Add the GetProperty method:

public static PropertyInfo GetProperty<T>(string name)

{

 return typeof(T).GetProperty(name);

}

388 Setting Up Our Database Project

This method takes a generic type and a property name. Then, it obtains the property
and returns it as a PropertyInfo instance.

3. Now, add the GetValue method:

public static T GetValue<T, U>(U source, string name)

{

 return (T)GetProperty<U>(name).GetValue(source);

}

This method takes a generic object type, return type, and property name. Then, it
calls the GetProperty method by passing in the generic object type and property
name. The GetValue method is then called, passing in the source object. The
result is cast to the generic return type and returned to the caller.

4. Add the GetFieldCount method:

 public static int GetFieldCount(DbDataRecord

 record)

 {

 return GetValue<int, DbDataRecord>(

 record, "FieldCount"

);

}

This method accepts a DbDataRecord object. It calls our GetValue method
by passing in the return type, our DbDataRecord, and our FieldCount
property name. An integer is returned that contains the number of fields that our
DbDataRecord object has.

With that, we have created our Properties class. As part of our benchmarking, we will
be inserting, reading, editing, and deleting data from a SQL Server database. And so, in
the next section, we will update our DatabaseSettings class.

Writing the DatabaseSettings class
Our DatabaseSettings class is really simple: it contains a single property. Open the
database and add the following property:

public string ConnectionString { get; set; }

Writing the SecretsManager 389

This property holds our connection string for the SQL Server database. We will be
setting this property in each of our benchmark methods. Then, it will be passed to the
constructors of our data access classes.

Because database connection strings are a sensitive form of data that should be kept very
private, we will be storing our database connection strings in a secrets.json file
during the development process. But in production, we will obtain the connection string
from an appsettings.json file. And so, in the next section, we will be writing a
SecretsManager class.

Writing the SecretsManager
In this section, we are going to update our SecretsManager class so that we can safely
obtain secrets.

Note
Our development environment will use a secrets.json file. This is very
serious as private credentials have been found and accessed on source code
hosting sites such as GitHub before now, and we don't want to be the ones
responsible for checking in code that contains secrets that should be kept
private.

Follow these steps:

1. Add the following NuGet packages:

Microsoft.Extensions.Configuration

Microsoft.Extensions.Configuration.JsonFile

Microsoft.Extensions.Configuration.EnvironmentVariables

Microsoft.Extensions.Configuration.UserSecrets

We need these packages so that we can configure the project for user secrets and
appsettings.json.

2. Open the SecretsManager class and add the following using statements:

using Microsoft.Extensions.Configuration;

using System;

using System.IO;

390 Setting Up Our Database Project

We need these using statements for our property, filesystem, and environment
variable access, and for access to the Microsoft IConfiguration interface.

3. Add the Configuration property:

public static IConfiguration Configuration

{

 get; private set;

}

This property will hold the correct configuration object, which depends on whether
we are in development or production mode.

4. Now, add the GetSecrets method:

public static string GetSecrets<T>(string sectionName)

where T : class

{

var devEnvironmentVariable =

 Environment

 .GetEnvironmentVariable("NETCORE _ ENVIRONMENT");

var isDevelopment =

 string.IsNullOrEmpty(devEnvironmentVariable)

 || devEnvironmentVariable.ToLower() == "development";

var builder = new ConfigurationBuilder()

 .SetBasePath(Directory.GetCurrentDirectory())

 .AddJsonFile(

 "appsettings.json",

 optional: true,

 reloadOnChange: true

)

 .AddEnvironmentVariables();

//only add secrets in development

if (isDevelopment)

{

 builder.AddUserSecrets<T>();

}

Configuration = builder.Build();

Writing the Product class 391

return Configuration.GetSection($"{typeof(T).Name}

 :{sectionName}").Value;

}

This method determines whether we are in development or non-development
mode. If we are in development mode, then we use the secrets configuration mode.
Otherwise, we obtain secrets from the appsettings.json file. The method
accepts a section name, which is the name of the secret we want to retrieve, and it
returns the value of that secret.

With that, we have finished writing our secrets class. For our data manipulation
benchmarks, we will be focusing on a single table – the Products table of the
Northwind database. We will need a class that will act as a model for the data. So, in the
next section, we'll write the Product class.

Writing the Product class
In this section, we will update our Product class. It is a simple object that is used for data
manipulation benchmarks and contains properties that match the Products table in the
Northwind database. Follow these steps:

1. Open the Product class and update it as follows:

using System;

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

[Table("Products")]

public class Product

{

}

Here, we annotated our class with the Table annotation, passing the name of the
table in the Northwind database that this class maps to into the annotation.

2. Add the following properties and annotations:

[Key]

public int ProductID { get; set; }

public string ProductName { get; set; }

[ForeignKey("Suppliers")]

public int SupplierID { get; set; }

392 Setting Up Our Database Project

[ForeignKey("Categories")]

public int CategoryID { get; set; }

public string QuantityPerUnit { get; set; } = "1"

public decimal UnitPrice { get; set; }

public Int16 UnitsInStock { get; set; }

public Int16 UnitsOnOrder { get; set; }

public Int16 ReorderLevel { get; set; }

public bool Discontinued { get; set; }

These properties match the columns of the Product table in the Northwind
database. The [Key] annotation identifies the ProductID property as the table's
primary key. Two foreign keys are identified by the [ForeignKey] annotation.
We pass the name of the table into this annotation, which contains the primary key.

And that's it – we've finished writing our Product class. We will be using several commands
and parameters when accessing data. To make life easy, we will have a SqlCommandModel
class for defining our commands, and a SqlCommandParameterModel class for
defining our command parameters. Let's begin by writing the SqlCommandModel class.

Writing the SqlCommandModel class
In this section, we write a simple class that models a SQL command. Follow these steps:

1. Open the SqlCommandModel class, define the class as public, and add the
System.Data namespace.

2. Now, add the following three properties:

public string CommandText { get; set; }

public CommandType CommandType { get; set; }

public SqlCommandParameterModel[] CommandParameters {

 get; set; }

The CommandText property holds our SQL command. This may be the name of
a stored procedure or a SQL statement. The CommandType property determines
whether the command is a Text command or a StoredProcedure command,
while the CommandParameters property contains an array of SQL command
parameters.

Now that we have written SqlCommandModel, let's write the
SqlCommandParameterModel class.

Writing the SqlCommandParameterModel class 393

Writing the SqlCommandParameterModel
class
In this section, we'll write our SqlCommandParameterModel class. This class is simply
a SQL parameter definition model.

Open the SqlCommandParameterModel class, make the class public, and add the
System.Data namespace.

Now, add the following three parameters:

public string ParameterName { get; set; }

public DbType DataType { get; set; }

public dynamic Value { get; set; }

This class models a standard parameter that consists of the name of the parameter, its
database type, and its value.

With that, we have created the core functionality that we need in place for our data access
classes. In the following sections, we will be writing data access classes to access data using
Entity Framework, Dapper, and ADO.NET.

The reason behind choosing SQL Server for the database server is that it is one of the
most common database servers and is used in many business scenarios the world over. In
professional environments where SQL Server is employed, the three most common data
access methods are Entity Framework, Dapper, and ADO.NET. That is why we will be
benchmarking them in this chapter. Let's start by writing our ADO.NET data access class.

Writing the AdoDotNet class
In this section, we will be writing our data insertion methods. However, we will not be
running our benchmarks, which will be performed in the next chapter as we analyze our
results. Follow these steps:

1. Update the AdoDotNetData class, as follows:

using CH10 _ DataAccessBenchmarks.Models;

using CH10 _ DataAccessBenchmarks.Reflection;

using System;

using System.Collections;

using System.Collections.Generic;

using System.Data.Common;

394 Setting Up Our Database Project

using System.Data.SqlClient;

using System.Reflection;

internal class AdoDotNetData : IDisposable

{

private readonly SqlConnection _ sqlConnection;

private bool _ isDisposed;

public AdoDotNetData(string connectionString)

{

 _ sqlConnection =

 new SqlConnection(connectionString);

}

public void Dispose()

{

 Dispose(_ isDisposed);

}

public void Dispose(bool disposing)

{

 if (disposing)

 {

 _ sqlConnection.Dispose();

 _ isDisposed = true;

 }

}

}

In the preceding code, we implemented the IDisposable pattern. When we have
finished with our class, we dispose of our class, which also disposes of disposable
objects that it holds in memory.

2. Add the ExecuteNonQuery method:

 internal void ExecuteNonQuery(SqlCommandModel

 model)

 {

 SqlCommand sqlCommand

 = new (model.CommandText, _ sqlConnection);

 sqlCommand.CommandType = model.CommandType;

 foreach (SqlCommandParameterModel parameter in

Writing the AdoDotNet class 395

 model.CommandParameters)

 sqlCommand.Parameters.Add(new SqlParameter()

 {

 ParameterName = parameter.ParameterName,

 DbType = parameter.DataType,

 Value = parameter.Value

 });

 _ sqlConnection.Open();

 sqlCommand.ExecuteNonQuery();

 _ sqlConnection.Close();

}

This method takes a SqlCommandModel object. A new instance of the
SqlCommand object is created. We pass the SQL command and SQL connection
into the constructor during instantiation. Then, we loop through the command
parameters, instantiating and adding a SqlParameter for each model.
CommandParameter to the sqlCommand object. Next, we open a connection to
the database, execute the query, and close the connection.

3. Add the following code:

internal int ExecuteNonQuery(string sql)

{

try

{

_ sqlConnection.Open();

return new SqlCommand(sql, _ sqlConnection)

 .ExecuteNonQuery();

}

finally

{

_ sqlConnection.Close();

}

}

The preceding code executes the non-query SQL code that's been passed in via the
sql string.

396 Setting Up Our Database Project

4. Add the following generic scalar method:

internal T ExecuteScalar<T>(string sql)

{

 try

 {

 _ sqlConnection.Open();

 return (T)new SqlCommand(sql, _ sqlConnection)

 .ExecuteScalar();

}

 finally

 {

 _ sqlConnection.Close();

}

}

This method takes a SQL command as a string. A connection to the database is
opened, and a new SqlCommand is instantiated. The ExecuteScalar command
is executed, which returns a single value from the database. Before the value is
returned, it is cast to the generic type specified by the caller and returned as that
type. The connection is then closed.

5. Add the following scalar method:

internal T ExecuteScalar<T>(SqlCommandModel model)

{

SqlCommand sqlCommand = new(

 model.CommandText, _ sqlConnection);

sqlCommand.CommandType = model.CommandType;

 foreach (SqlCommandParameterModel parameter in

 model.CommandParameters)

 sqlCommand.Parameters.Add(new SqlParameter()

 {

 ParameterName = parameter.ParameterName,

 DbType = parameter.DataType,

 Value = parameter.Value

 });

 _ sqlConnection.Open();

 T data = (T)sqlCommand.ExecuteScalar();

Writing the AdoDotNet class 397

 _ sqlConnection.Close();

 return data;

}

This method takes a SqlCommandModel and uses it to build up a SqlCommand.
The SqlCommand class is executed by calling the ExecuteScalar method and is
cast to the generic type before being returned.

6. Add the following reader method:

internal IEnumerator<T> ExecuteReader<T>(string sql)

{

 Type TypeT = typeof(T);

 ConstructorInfo ctor =

 TypeT.GetConstructor(Type.EmptyTypes);

if (ctor == null)

 {

throw new InvalidOperationException($"Type

 {TypeT.Name} does not have a default

 constructor.");

}

 _ sqlConnection.Open();

IEnumerator data = new SqlCommand(sql, _ sqlConnection)

 .ExecuteReader().GetEnumerator();

while (data.MoveNext())

 {

 T newInst = (T)ctor.Invoke(null);

 DbDataRecord record = (DbDataRecord)

 data.Current;

 int fieldCount = Properties

 .GetFieldCount((DbDataRecord)

 data.Current);

 for (int i = 0; i < fieldCount; i++)

 {

 string propertyName = record.GetName(i);

 PropertyInfo propertyInfo = TypeT

 .GetProperty(propertyName);

 if (propertyInfo != null)

398 Setting Up Our Database Project

 {

 object value = record[i];

 if (value == DBNull.Value)

 propertyInfo

 .SetValue(newInst, null);

 else

 propertyInfo

 .SetValue(newInst, value);

 }

 }

 yield return newInst;

}

}

This method takes a SQL statement and executes it by calling the ExecuteReader
method. Once the method has been executed, we obtain the reader's enumerator.
Then, we iterate through the enumerator and build up an object for the current
iteration and yield the result.

7. Add the following reader method:

internal IEnumerator<T> ExecuteReader<T>

 (SqlCommandModel model) {

Type TypeT = typeof(T);

ConstructorInfo ctor

 = TypeT.GetConstructor(Type.EmptyTypes);

if (ctor == null) {

throw new InvalidOperationException($"Type

 {TypeT.Name} does not have a default

 constructor.");

}

SqlCommand sqlCommand

 = new(model.CommandText, _ sqlConnection);

sqlCommand.CommandType = model.CommandType;

foreach (SqlCommandParameterModel parameter in

Writing the AdoDotNet class 399

 model.CommandParameters)

sqlCommand.Parameters.Add(new SqlParameter() {

ParameterName = parameter.ParameterName,

DbType = parameter.DataType, Value =

 parameter.Value});

_ sqlConnection.Open();

SqlDataReader reader = sqlCommand.ExecuteReader();

if (reader.HasRows) {

while (reader.Read()) {

T newInst = (T)ctor.Invoke(null);

for (int i = 0; i < reader.FieldCount; i++) {

 string propertyName = reader.GetName(i);

 PropertyInfo propertyInfo

 = TypeT.GetProperty(propertyName);

 if (propertyInfo != null) {

 object value = reader[i];

 if (value == DBNull.Value)

 propertyInfo.SetValue(newInst, null);

 else

 propertyInfo.SetValue(newInst, value);

 }

}

 yield return newInst;

}

}

 _ sqlConnection.Close();

}

This reader method takes a SqlCommandModel and builds up a SqlCommand.
It executes the reader and obtains SqlDataReader. It iterates through the reader
and builds up an instance of the generic type that is then yielded to the user.

That's our ADO.NET data access class completed. Now, let's learn how to write the Entity
Framework data access class.

400 Setting Up Our Database Project

Writing the EntityFrameworkCoreData class
In this section, we will be writing the methods for our Entity Framework data
access class. The code we will write in this section will be executed in the next chapter.
Follow these steps:

1. Open the EntityFrameworkCoreData class and edit it as follows:

using CH10 _ DataAccessBenchmarks.Models;

using Microsoft.EntityFrameworkCore;

using System.Collections.Generic;

using Microsoft.Data.SqlClient;

using System.Linq;

using Microsoft.EntityFrameworkCore.SqlServer

 .Infrastructure.Internal;

public class EntityFrameworkCoreData : DbContext

{

 private string _ connectionString = string.Empty;

 public DbSet<Product> Products { get; set; }

 public EntityFrameworkCoreData(string

 connectionString) : base(GetOptions

 (connectionString))

 {

 _ connectionString = connectionString;

 }

 private static DbContextOptions GetOptions(string

 connectionString)

 {

 return SqlServerDbContextOptionsExtensions

 .UseSqlServer(new DbContextOptionsBuilder(),

 connectionString).Options;

 }

Our class inherits from the DbContext class of the Microsoft.
EntityFrameworkCore library. We declare a variable to hold our database
connection string, and a variable to hold a collection of Products. In our
constructor, we set the connection string and call the base constructor.

Writing the EntityFrameworkCoreData class 401

2. Add the OnConfiguring method:

protected override void OnConfiguring

 (DbContextOptionsBuilder optionsBuilder)

{

 optionsBuilder.UseSqlServer(_ connectionString);

}

This method determines that we will be using SQL Server and passes in the SQL
Server connection string that we will be using.

3. Add the following method, which executes raw SQL:

public int ExecuteSQL(string sql)

 {

 return Database.ExecuteSqlRaw(sql, null);

}

This method takes a SQL statement and executes it against the database as raw
SQL. The returned value is the number of records affected by the execution of
the statement.

4. Add the following method for executing a stored procedure as a non-query:

public int ExecuteNonQuerySP(SqlCommandModel model)

 {

 SqlParameter[] parameters

 = new SqlParameter[model.CommandParameters

 .Length];

 for (int i = 0; i < parameters.Length; i++)

 {

 parameters[i] = new SqlParameter(

 model.CommandParameters[i].ParameterName,

 model.CommandParameters[i].Value

);

 }

 if (parameters.Length == 4)

 return Database.ExecuteSqlRaw(

 model.CommandText, parameters[0],

 parameters[1], parameters[2],

 parameters[3]

402 Setting Up Our Database Project

);

 else if (parameters.Length == 2)

 return Database.ExecuteSqlRaw(

 model.CommandText, parameters[0],

 parameters[1]

);

 else

 return Database.ExecuteSqlRaw(

 model.CommandText, parameters[0]

);

}

In this method, we build up a SqlParameter array from our
SqlCommandModel. Then, we execute raw SQL by passing in each of the
parameters to the stored procedure. This execution is a non-query and returns the
number of rows affected by running the procedure.

5. The following method will execute and return a scalar value of the string type:

public string ExecuteScalarSP(string productName)

 {

 return Products.FromSqlRaw(

 "EXEC FilterProducts @ProductName={0}",

 new SqlParameter() {

 ParameterName = "@ProductName", Value =

 productName })

 .AsEnumerable().FirstOrDefault()

 .ProductName;

 }

This method executes a stored procedure with a single parameter. We obtain
the enumerable return object and filter it to get the first record. The name of the
product is then returned as a string.

6. Add the final method to our class, which returns an enumerator:

public IEnumerator<Product> ExecuteReaderSP(string

 productName)

Writing the DapperDotNet class 403

{

return Products.FromSqlRaw(

 "EXEC FilterProducts @ProductName={0}",

 new SqlParameter() {

 ParameterName = "@ProductName",

 Value = productName

 }

).GetEnumerator();

}

This executes a stored procedure with a single parameter and returns an enumerator
full of filtered products.

With that, we have written all our Entity Framework classes. Now, it's time to write our
Dapper.NET methods.

Writing the DapperDotNet class
In this section, we'll write our Dapper.NET methods. This is the last section before we
write our benchmarking methods. We will run the code we write in this section in the
next chapter. Follow these steps:

1. Open the DapperDotNet class, add the SimpleCRUD package, and modify it
as follows:

public class DapperDotNet : IDisposable

{

 private bool isDisposed = false;

 private IDbConnection _ dbConnection;

 public DapperDotNet(string connection)

 {

 SimpleCRUD

 .SetDialect(SimpleCRUD.Dialect.SQLServer);

 _ dbConnection = new SqlConnection

 (connection);

 }

 public void Dispose()

 {

 Dispose(true);

404 Setting Up Our Database Project

 GC.SuppressFinalize(this);

 }

 protected virtual void Dispose(bool disposing)

 {

 if (isDisposed)

 return;

 if (disposing)

 _ dbConnection.Dispose();

 isDisposed = true;

}

}

We implement the IDisposable pattern in this class and set the SQL dialect to
the SQL Server.

2. Add the following non-query method:

 public int ExecuteNonQuery(string sql)

 {

 try

 {

 _ dbConnection.Open();

 return _ dbConnection.Execute(sql);

 }

 finally

 {

 _ dbConnection.Close();

 }

 }

This method executes raw SQL and returns the number of records affected by the
SQL statement.

3. Add the following method to execute a non-query:

public void ExecuteNonQuery(SqlCommandModel model)

 {

 try

 {

 _ dbConnection.Open();

Writing the DapperDotNet class 405

 var parameters = new DynamicParameters();

 foreach (

 SqlCommandParameterModel parameter in

 model.CommandParameters

)

 parameters.Add(

 parameter.ParameterName,

 parameter.Value

);

 _ dbConnection.Query(

 model.CommandText,

 parameters,

 commandType: CommandType.StoredProcedure

);

 }

 finally

 {

 _ dbConnection.Close();

 }

}

This method takes a SqlCommandModel instance and builds up a
DynamicParameter bag. Then, it executes a stored procedure defined by the
model's CommandText.

4. Add the following generic scalar method:

 public T ExecuteScalar<T>(string sql)

 {

 try

 {

 _ dbConnection.Open();

 return _ dbConnection.ExecuteScalar

 <T>(sql);

 }

 finally

 {

 if (_ dbConnection != null

406 Setting Up Our Database Project

 && _ dbConnection.State

 == ConnectionState.Open)

 _ dbConnection.Close();

 }

}

This method takes a SQL statement and executes it, returning a single value of the
required type.

5. Add the following method, which executes a stored procedure and returns a string:

public string ExecuteScalarSP(SqlCommandModel model)

{

 try

 {

 _ dbConnection.Open();

 var parameters = new DynamicParameters();

 parameters.Add(

 model.CommandParameters[0]

 .ParameterName,

 model.CommandParameters[0].Value

);

 return _ dbConnection.Query<Product>(

 model.CommandText,

 parameters,

 commandType: CommandType.StoredProcedure

).First().ProductName;

 }

 finally

 {

 if (

 _ dbConnection != null

 && _ dbConnection.State

 == ConnectionState.Open)

 _ dbConnection.Close();

 }

}

Writing the DapperDotNet class 407

This method takes a SqlCommandModel instance and uses it to execute
a stored procedure. Remember to add the missing using statements for
SqlCommandModel to the class. The stored procedure execution returns
a type of IEnumerable<Product>. So, we obtain the first product in the
list and return its ProductName.

6. Add the following method, which executes raw SQL and returns a type of
IEnumerator<T>:

public IEnumerator<T> ExecuteReader<T>(string sql)

 where T : class

{

 try

 {

 _ dbConnection.Open();

 return _ dbConnection.Query<T>(sql)

 .GetEnumerator();

 }

 finally

 {

 if (_ dbConnection != null

 && _ dbConnection.State

 == ConnectionState.Open)

 _ dbConnection.Close();

 }

}

This method executes a raw SQL string and returns a type of IEnumerable<T>.
7. Add the following method, which executes a stored procedure and returns a type of

IEnumerator<Product>:

 public IEnumerator<Product> ExecuteReaderSP

 <Product>(

 SqlCommandModel model

)

 {

 try

408 Setting Up Our Database Project

 {

 _ dbConnection.Open();

 var parameters = new DynamicParameters();

 foreach (SqlCommandParameterModel

 parameter in model.CommandParameters)

 parameters.Add(

 parameter.ParameterName,

 parameter.Value

);

 return _ dbConnection.Query<Product>(

 model.CommandText,

 parameters,

 commandType: CommandType.StoredProcedure

).GetEnumerator();

 }

 finally

 {

 if (_ dbConnection != null

 && _ dbConnection.State

 == ConnectionState.Open)

 _ dbConnection.Close();

 }

}

This method takes a SqlCommandModel instance and builds up a parameterized
stored procedure that is executed. A type of IEnumerator<Product> is returned.

8. Add our final dapper method, which will obtain the first product name that matches
the productName parameter:

public string GetProductNameSP(string productName)

 {

 try

 {

 _ dbConnection.Open();

 var parameters = new DynamicParameters();

Summary 409

 parameters.Add("@ProductName",

 productName);

 return _ dbConnection.Query<Product>(

 $"GetProductName", parameters,

 commandType: CommandType.StoredProcedure

).First().ProductName;

 }

 finally

 {

 if (_ dbConnection != null

 && _ dbConnection.State

 == ConnectionState.Open)

 _ dbConnection.Close();

 }

}

This method takes a product name and executes the GetProductName stored
procedure. The stored procedure matches all the products in the database whose
product names are like the product name argument. Then, it gets the first product
in the returned list and returns its product name.

That concludes our database and data access project setup in preparation for the
benchmarking work we will be doing in the next chapter. Let's review what we have
accomplished in this chapter.

Summary
In this chapter, we downloaded the Northwind SQL Server database script. Then,
we added some stored procedures to insert, update, select, and delete data from the
Products table.

After making sure that we have our database in place with the required stored
procedures, we started a .NET 6.0 console application. We added our model class
and data access classes for performing data access operations in Entity Framework,
Dapper, and ADO.NET.

In the next chapter, we will be benchmarking the data access methods for each of these
frameworks. In the Further reading section, you can further your knowledge of Entity
Framework, Dapper, and ADO.NET using the links provided.

410 Setting Up Our Database Project

Further reading
To learn more about the topics that were covered in this chapter, take a look at the
following resources:

• Entity Framework Core: https://docs.microsoft.com/ef/core/

• Dapper: https://dapper-tutorial.net/dapper

• ADO.NET: https://dotnettutorials.net/course/ado-net-
tutorial-for-beginners-and-professionals/

https://docs.microsoft.com/ef/core/
https://dapper-tutorial.net/dapper
https://dotnettutorials.net/course/ado-net-tutorial-for-beginners-and-professionals/
https://dotnettutorials.net/course/ado-net-tutorial-for-beginners-and-professionals/

11
Benchmarking

Relational Data
Access Frameworks

Data is extensively used in all aspects of our daily lives. In today's world of big data,
the volumes of data being collected and stored for all kinds of analysis are phenomenal.
When working with data, performance can slow down exponentially as the size of
your data grows. Depending upon how much data you have to process, the time factor
is often critical.

In a professional development environment, computer programmers don't always have
access to the database server. Database server access is usually restricted for use by
database developers and database administrators. With that in mind, this chapter is about
benchmarking what code performs a database insert, update, read, and delete in the
shortest possible time. In the Further reading section, there are links to documentation on
database server performance that will help you to further improve the performance that
you gain from working through this chapter.

412 Benchmarking Relational Data Access Frameworks

In this chapter, we will be benchmarking three different ways of manipulating SQL Server
database data. We will be performing a side-by-side comparison of Entity Framework,
ADO.NET, and Dapper. After running the benchmarks for each of these data access and
object mappers, you will be able to make an educated judgment call on the best form of
data access and object mapping for your projects.

In this chapter, we will be covering the following topics:

• Benchmarking data insertion methods: In this section, we write the benchmarks
for inserting data with ADO.NET, Entity Framework Core, and Dapper.NET with
and without using stored procedures.

• Benchmarking data selection methods: In this section, we write the benchmarks
for selecting data with ADO.NET, Entity Framework Core, and Dapper.NET with
and without using stored procedures.

• Benchmarking data editing methods: In this section, we write the benchmarks for
applying updates to data with ADO.NET, Entity Framework Core, and Dapper.NET
with and without using stored procedures.

• Benchmarking data deletion methods: In this section, we write the benchmarks
for deleting data with ADO.NET, Entity Framework Core, and Dapper.NET with
and without using stored procedures.

• The benchmarking results and their analysis: In this section, we run the
benchmarks that we wrote in the previous sections. We then analyze the results of
our benchmark results to conclude the best way to perform various efficient data
access and manipulation tasks.

After working through this chapter, you will have the skills needed to access and
manipulate data with ADO.NET, Entity Framework, and Dapper.NET. You'll also be able
to form your own judgment on which method of data access to use for your own projects.

Note
This chapter mainly involves you following along with writing a lot of code
in preparation for running our data access benchmark methods in the last
section. If you don't want to bother writing the code and just want to see the
results, then jump to the last section of this chapter on the benchmarking
results and their analysis. You can then jump to the areas of this chapter that
are of most interest to you in helping you form your own opinions on the
best data access methods for your needs. The source code is also available on
GitHub to study for yourself.

Technical requirements 413

Technical requirements
To master the skills presented in this chapter, it will be useful to have access to
the following:

• Visual Studio 2022 or higher

• SQL Server 2019 or higher

• SQL Server Management Student 2019 or higher

• The book's source code: https://github.com/PacktPublishing/High-
Performance-Programming-in-CSharp-and-.NET/tree/master/
CH10

Benchmarking data insertion methods
In this section, we will be following on from the work we did in Chapter 10, Setting Up
Our Database Project, by writing methods that will benchmark the performance of insert
methods using ADO.NET, Entity Framework Core, and Dapper.NET. So, if you have not
read Chapter 10, or looked at the source code, now would be a good time to
do that.

The benchmarks written in this chapter will be run and the results will be analyzed
in the last section. To save space due to chapter and page constraints, I will be leaving
out references to using statements. Therefore, you will need to use Visual Studio's quick
tips for adding missing using statements. Follow these steps to write our insertion
method benchmarks:

1. Add the BenchmarkDotNet NuGet package.
2. Open the BenchmarkTests class and modify it as follows:

[MemoryDiagnoser]

[Orderer(SummaryOrderPolicy.Declared)]

[RankColumn]

public class BenchmarkTests

{

 [GlobalSetup]

 public void GlobalSetup()

 {

 InsertProductADNSP();

 InsertProductEFSP();

 InsertProductDDN();

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH10
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH10
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH10
https://github.com/PacktPublishing/Mastering-High-Performance-with-C-10.0-and-.NET-6

414 Benchmarking Relational Data Access Frameworks

}

}

We have set our class up to execute benchmarks and summarize them in the order
that they are declared, as well as diagnosing the memory usage and providing
a performance ranking of the benchmarking methods. Then, we provided
GlobalSetup, which is run before the benchmarks. This is to provide our
benchmarks with data to select, update, and delete.

3. Add the InsertProductADN method:

[Benchmark]

public void InsertProductADN()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 AdoDotNetData adnData = new(connectionString);

 adnData.ExecuteNonQuery("INSERT INTO Products

 (ProductName, CategoryID, SupplierId,

 Discontinued) VALUES('ADO.NET Product', 1, 1,

 0)");

 adnData.Dispose();

}

This method obtains the connection string from the secrets file and creates a new
AdoDotNetData instance by passing the connection string into its constructor.
It then calls the ExecuteNonQuery method, passing into the method a raw SQL
insert method. Once the query is run, the instance is disposed of.

4. Add the InsertProductADNSP method:

[Benchmark]

public void InsertProductADNSP()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

Benchmarking data insertion methods 415

 AdoDotNetData aaa = new(connectionString);

 SqlCommandModel model = new()

 {

 CommandText = "InsertProduct",

 CommandType = CommandType.StoredProcedure,

 CommandParameters =

 new SqlCommandParameterModel[] {

 new SqlCommandParameterModel() {

 ParameterName = "@ProductName",

 DataType = DbType.String,

 Value = "Dapper Product Edited"

 },

 new SqlCommandParameterModel() {

 ParameterName = "@CategoryID",

 DataType = DbType.Int32,

 Value = 1

 }

 , new SqlCommandParameterModel() {

 ParameterName = "@SupplierID",

 DataType = DbType.Int32,

 Value = 1

 }, new SqlCommandParameterModel() {

 ParameterName = "@Discontinued",

 DataType = DbType.Boolean,

 Value = false

 }

 }

 };

 aaa.ExecuteNonQuery(model);

 aaa.Dispose();

}

416 Benchmarking Relational Data Access Frameworks

This method obtains the connection string from the secrets file and passes the
string into the constructor of the AdoDotNetData class. It then creates a new
SqlCommandModel that builds the properties for a stored procedure insert
operation on the products table. It then calls the ExecuteNonQuery method,
passing in the model that will be used to generate and execute the stored procedure
call. The AdoDotNetData class is then disposed of.

5. Add the InsertProductEF method:
6. Add the InsertProductEF method:

[Benchmark]

public void InsertProductEF()

{

string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

EntityFrameworkCoreData efData

 = new(connectionString);

 Product product = new() {

 ProductName = "EF Product",

 CategoryID = 1,

 SupplierID = 1,

 Discontinued = false,

 QuantityPerUnit = "1"

 };

 efData.Products.Add(product);

 efData.SaveChanges();

 efData.Dispose();

}

This method obtains the connection string from the secrets file and passes it into
the constructor of the EntityFrameworkCoreData class. It then creates a new
product and adds that product to the Products collection. The changes are then
saved, and the EntityFrameworkCoreData class is disposed of.

7. Now, add the InsertProductEFSP method:

[Benchmark]

public void InsertProductEFSP()

{

Benchmarking data insertion methods 417

 string connectionString = SecretsManager.

 GetSecrets<DatabaseSettings>

 ("ConnectionString");

 EntityFrameworkCoreData efData

 = new(connectionString);

 SqlCommandModel model = new()

 {

 CommandText = "EXEC InsertProduct

 @ProductName = {0}, @CategoryID = {1},

 @SupplierID = {2}, @Discontinued = {3}",

 CommandType = CommandType.StoredProcedure,

 CommandParameters

 = new SqlCommandParameterModel[] {

 new SqlCommandParameterModel() {

 ParameterName = "@ProductName",

 DataType = DbType.String,

 Value = "EF Product Edited"

 }

 , new SqlCommandParameterModel() {

 ParameterName = "@CategoryID",

 DataType = DbType.Int32,

 Value = 1

 }

 , new SqlCommandParameterModel() {

 ParameterName = "@SupplierID",

 DataType = DbType.Int32,

 Value = 1

 }

 , new SqlCommandParameterModel() {

 ParameterName = "@Discontinued",

 DataType = DbType.Boolean,

 Value = false

 }

 }

 };

 efData.ExecuteNonQuerySP(model);

418 Benchmarking Relational Data Access Frameworks

 efData.Dispose();

}

This method obtains the connection string from the secrets file and creates
a new instance of the EntityFrameworkCoreData class. It then builds up
the properties needed for the stored procedure insert via SqlCommandModel.
Then, it executes the ExecuteNonQuerySP model, passing in the
model that executes the insert stored procedure, and then disposes of the
EntityFrameworkCoreData class.

8. Add the InsertProductDDN method:

[Benchmark]

public void InsertProductDDN()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 DapperDotNet ddnData = new(connectionString);

 int recordsAffected = ddnData

 .ExecuteNonQuery("INSERT INTO Products

 (ProductName, CategoryID, SupplierId,

 Discontinued) VALUES('Dapper.NET

 Product', 1, 1, 0)");

 ddnData.Dispose();

}

This method obtains the connection string from the secrets file, creates a
new instance of the DapperDotNet class, and executes a raw SQL insert
statement by calling the ExecuteNonQuery method. It then disposes of the
DapperDotNet class.

9. Add the InsertProductDDNSP method:

[Benchmark]

public void InsertProductDDNSP()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

Benchmarking data insertion methods 419

 DapperDotNet ddnData = new(connectionString);

 SqlCommandModel model = new() {

 CommandText = "InsertProduct",

 CommandType = CommandType.StoredProcedure,

 CommandParameters

 = new SqlCommandParameterModel[] {

 new SqlCommandParameterModel() {

 ParameterName = "@ProductName",

 DataType = DbType.String,

 Value = "Dapper Product" }

 , new SqlCommandParameterModel() {

 ParameterName = "@CategoryID",

 DataType = DbType.Int32,

 Value = 1 }

 , new SqlCommandParameterModel() {

 ParameterName = "@SupplierID",

 DataType = DbType.Int32,

 Value = 1 }

 , new SqlCommandParameterModel() {

 ParameterName = "@Discontinued",

 DataType = DbType.Boolean,

 Value = false }

 }

 };

 ddnData.ExecuteNonQuery(model);

 ddnData.Dispose();

}

This method gets the connection string from the secrets file and creates a new
DapperDotNet class. It then builds the SqlCommandModel properties
required to execute the product insert stored procedure. Then, it calls the
ExecuteNonQuery procedure, passing in the model that will execute the stored
procedure. It then disposes of the DapperDotNet class.

That concludes our look at insert benchmarking methods. Now, we will start writing our
selection benchmarking methods.

420 Benchmarking Relational Data Access Frameworks

Benchmarking data selection methods
In this section, we will be writing our benchmarking methods that will test the
performance of various data selection methods. These benchmarks will be run and
analyzed in the last section of this chapter:

1. Add the ReadScalarProductADN method:

[Benchmark]

public void ReadScalarProductADN()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 AdoDotNetData adnData = new(connectionString);

 string productName = adnData

 .ExecuteScalar<string>("SELECT TOP 1

 ProductName FROM Products WHERE Product

 Name LIKE 'ADO.NET Product%'");

 adnData.Dispose();

}

This method obtains the connection from the secrets file, creates a new
AdoDotNetData class, and executes the ExecuteScalar method, passing in a
raw SQL statement that returns a string. It then disposes of the AdoDotNet class.

2. Add the ReadScalarADNSP method:

[Benchmark]

public void ReadScalarProductADNSP()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 AdoDotNetData aaa = new(connectionString);

 SqlCommandModel model = new SqlCommandModel() {

 CommandText = "GetProductName",

 CommandType = CommandType.StoredProcedure,

 CommandParameters

 = new SqlCommandParameterModel[] {

Benchmarking data selection methods 421

 new SqlCommandParameterModel() {

 ParameterName = "@ProductName",

 DataType = DbType.String,

 Value = "ADO.NET Product" }

 }

 };

 string productName

 = aaa.ExecuteScalar<string>(model);

 aaa.Dispose();

}

This method obtains the connection string from the secrets file and creates a
new instance of the AdoDotNetData class. It then builds SqlCommandModel
up that contains the necessary properties to execute the scalar stored procedure.
Then, it calls the ExecuteScalar method, passing in the model that executes
the stored procedure, and returns the product name. It then disposes of the
AdoDotNetData class.

3. Add the ReadFilteredProductADN method:

[Benchmark]

public void ReadFilteredProductADN()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 AdoDotNetData adnData = new(connectionString);

 IEnumerator<Product> data

 = adnData.ExecuteReader<Product>("SELECT *

 FROM Products WHERE ProductName LIKE

 'ADO.NET Product'");

 adnData.Dispose();

}

This method gets the connection string from the secrets file and creates a new
instance of the AdoDotNetData class. It then executes the ExecuteReader
method, which takes a raw SQL statement and returns an enumerator of the
Product type, and then disposes of the AdoDotNetData class.

422 Benchmarking Relational Data Access Frameworks

4. Add the ReadFilteredProductADNSP method:

[Benchmark]

public void ReadFilteredProductADNSP()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 AdoDotNetData aaa = new(connectionString);

 SqlCommandModel model = new SqlCommandModel() {

 CommandText = "FilterProducts",

 CommandType = CommandType.StoredProcedure,

 CommandParameters

 = new SqlCommandParameterModel[] {

 new SqlCommandParameterModel() {

 ParameterName = "@ProductName",

 DataType = DbType.String,

 Value = "ADO.NET Product" }

 }

 };

 var data = aaa.ExecuteReader<dynamic>(model);

 aaa.Dispose();

}

This method gets the connection string from the secrets file and creates a new
instance of the AdoDotNetData class. It then builds up SqlCommandModel that
contains the properties that are required to execute the read stored procedure. Then,
it executes the ExecuteReader method, which returns an enumerator, and then
disposes of the AdoDotNetData class.

5. Add the ReadScalarProductEF method:

[Benchmark]

public void ReadScalarProductEF()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 EntityFrameworkCoreData efData

Benchmarking data selection methods 423

 = new(connectionString);

 string productName

 = efData.Products.FirstOrDefault(

 p => p.ProductName

 .Contains("EF Product")

).ProductName;

 efData.Dispose();

}

This method gets the connection string from the secrets file and creates a new
instance of the EntityFrameworkCore method. It then gets the first item in the
Product collection that matches the filter and assigns ProductName. Then, it
disposes of the EntityFrameworkCore class.

6. Add ReadScalarProductEFSP:

[Benchmark]

public void ReadScalarProductEFSP()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 EntityFrameworkCoreData efData

 = new(connectionString);

 string productName = efData

 .ExecuteScalarSP("EF Product");

 efData.Dispose();

}

This method gets the connection string from the secrets file and then creates
a new instance of the EntityFrameworkCoreData class. Then, it calls
the ExecuteScalarSP method, passing in the name of the filter, returning
the first ProductName that matches the filter, and then disposes of the
EntityFrameworkCoreData class.

7. Add the ReadFilteredProductsEF method:

[Benchmark]

public void ReadFilteredProductsEF()

{

424 Benchmarking Relational Data Access Frameworks

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 EntityFrameworkCoreData efData

 = new(connectionString);

 IEnumerator<Product> products = efData.Products

 .Where(p => p.ProductName

 .Contains("EF Product")).GetEnumerator();

 efData.Dispose();

 products.Dispose();

}

This method gets the connection string from the secrets file and then creates an
instance of the EntityFrameworkCoreData class. It then filters the products
and returns an enumerator of products. Then, the method disposes of the
EntityFrameworkCoreData class and the enumerator.

8. Add the ReadFilteredProductsEFSP method:

[Benchmark]

public void ReadFilteredProductsEFSP()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 EntityFrameworkCoreData efData

 = new(connectionString);

 IEnumerator<Product> products = efData

 .ExecuteReaderSP("EF Product");

 efData.Dispose();

 products.Dispose();

}

This method gets the secret from the secrets file and creates a new instance of
the EntityFrameworkCoreData class. It then calls the ExecuteReaderSP
method, which executes a stored procedure that returns an enumerator of the
Products type. Then, the method disposes of the EntityFrameworkCoreData
class and the enumerator.

Benchmarking data selection methods 425

9. Add the ReadScalarProductDDN method:

[Benchmark]

public void ReadScalarProductDDN()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 DapperDotNet ddnData = new(connectionString);

 string productName = ddnData

 .ExecuteScalar<string>("SELECT TOP 1

 ProductName FROM Products WHERE Product

 Name LIKE 'Dapper.NET Product%'");

 ddnData.Dispose();

}

This method gets the connection string from the secrets file and creates a new
instance of the DapperDotNet class. It then executes the ExecuteScalar
method, passing in a raw SQL statement that returns the top ProductName that
matches the filter. Then, it disposes of the DapperDotNet class.

10. Add the ReadScalarProductDDNSP method:

[Benchmark]

public void ReadScalarProductDDNSP()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 DapperDotNet ddnData = new(connectionString);

 SqlCommandModel model = new() {

 CommandText = "GetProductName",

 CommandType = CommandType.StoredProcedure,

 CommandParameters

 = new SqlCommandParameterModel[] {

 new SqlCommandParameterModel() {

 ParameterName = "@ProductName",

 DataType = DbType.String,

 Value = "Dapper Product" }

426 Benchmarking Relational Data Access Frameworks

 }

 };

 string productName

 = ddnData.ExecuteScalarSP(model);

 ddnData.Dispose();

}

This method gets the connection string from the secrets file and creates a new
instance of the DapperDotNet class. Then, the method builds SqlCommandModel
that contains the properties necessary to execute a stored procedure. It then calls the
ExecuteScalarSP method, passing in the model. The ProductName of the first
matching product is returned. The method then disposes of the DapperDotNet
class.

11. Add the ReadFilteredProductsDDN class:

[Benchmark]

public void ReadFilteredProductsDDN()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 DapperDotNet ddnData = new(connectionString);

 IEnumerator<Product> data

 = ddnData.ExecuteReader<Product>("SELECT *

 FROM Products WHERE ProductName LIKE

 'Dapper.NET Product%'");

 ddnData.Dispose();

 data.Dispose();

}

This method gets the connection string from the secrets file and then creates
a new instance of the DapperDotNet class. It then calls the ExecuteReader
method, passing in a raw SQL statement. An enumerator of the Product type is
returned. DapperDotNet and the enumerator are then disposed of.

12. Add the ReadFilteredProductsDDNSP method:

[Benchmark]

public void ReadFilteredProductsDDNSP()

{

Benchmarking data editing methods 427

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 DapperDotNet ddnData = new(connectionString);

 SqlCommandModel model = new() {

 CommandText = "GetProductName",

 CommandType = CommandType.StoredProcedure,

 CommandParameters

 = new SqlCommandParameterModel[] {

 new SqlCommandParameterModel() {

 ParameterName = "@ProductName",

 DataType = DbType.String,

 Value = "Dapper.NET Product" }

 }

 };

 IEnumerator<Product> products

 = ddnData.ExecuteReaderSP<Product>(model);

 ddnData.Dispose();

}

This method gets the connection string from the secrets file and then creates an
instance of the DapperDotNet class. It then builds up a SqlCommandModel
that has the properties needed to execute a stored procedure. It then calls
ExcuteReaderSP, passing in the model that returns an enumerator of the
Product type.

We have now finished writing our selection benchmarks. Now, we'll move on to writing
our update benchmarks.

Benchmarking data editing methods
In this section, we will be writing our benchmarks that test the performance of
various update statements. These benchmarks will be run and analyzed in the final
section of this chapter:

1. Add the UpdateProductADN method:

[Benchmark]

public void UpdateProductADN()

428 Benchmarking Relational Data Access Frameworks

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 AdoDotNetData adnData = new(connectionString);

 int recordsAffected

 = adnData.ExecuteNonQuery("UPDATE Products

 SET ProductName = 'ADO.NET Product -

 Edited' WHERE ProductName =

 'ADO.NET Product'");

 adnData.Dispose();

}

This method obtains the connection string from the secrets file and
then creates a new instance of the AdoDotNetData class. It then calls the
ExecuteNonQuery product, passing in a raw SQL statement, then returns the
number of records affected and disposes of the AdoDotNetData class.

2. Add the UpdateProductADNSP method:

[Benchmark]

public void UpdateProductADNSP()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 AdoDotNetData aaa = new(connectionString);

 SqlCommandModel model = new() {

 CommandText = "UpdateProductName",

 CommandType = CommandType.StoredProcedure,

 CommandParameters

 = new SqlCommandParameterModel[] {

 new SqlCommandParameterModel() {

 ParameterName = "@OldProductName",

 DataType = DbType.String,

 Value = "ADO.NET Product" }

Benchmarking data editing methods 429

 , new SqlCommandParameterModel() {

 ParameterName = "@NewProductName",

 DataType = DbType.String,

 Value = "ADO.NET Product - Edited"}

 }

 };

 aaa.ExecuteNonQuery(model);

 aaa.Dispose();

}

This method gets the connection string from the secrets file and creates a new
instance of the AdoDotNetData class. SqlCommandModel is then built up with
the properties needed to execute the update stored procedure. ExecuteNonQuery
is then called with the model being passed in, and the stored procedure that
performs the update is executed. The AdoDotNetData class is then disposed of.

3. Add the UpdateProductEF method:

[Benchmark]

public void UpdateProductEF()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 EntityFrameworkCoreData efData

 = new EntityFrameworkCoreData(connectionString);

 IQueryable<Product> products = efData.Products

 .Where(p => p.ProductName.Contains("EF

 Product"));

 foreach (Product product in products)

 product.ProductName = "EF Product Edited";

 efData.Products.UpdateRange(products);

 int recordsAffected = efData.SaveChanges();

 efData.Dispose();

}

430 Benchmarking Relational Data Access Frameworks

This method gets the connection string from the secrets file and creates a new
instance of the EntityFrameworkCoreData class. It then declares and assigns
a queryable collection of products. This collection is then iterated with the name of
each product updated. The UpdateRange method is then called on the Products
collection, and the updated collection is passed in. The modifications are then
saved, and the EntityFrameworkCoreData class is disposed of.

4. Add the UpdateProductEFSP method:

[Benchmark]

public void UpdateProductEFSP()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 EntityFrameworkCoreData efData =

 new(connectionString);

 SqlCommandModel model = new() {

 CommandText = "EXEC UpdateProductName

 @OldProductName = {0}, @NewProductName =

 {1}",

 CommandType = CommandType.StoredProcedure,

 CommandParameters

 = new SqlCommandParameterModel[] {

 new SqlCommandParameterModel() {

 ParameterName = "@OldProductName",

 DataType = DbType.String,

 Value = "EF Product" }

 , new SqlCommandParameterModel() {

 ParameterName = "@NewProductName",

 DataType = DbType.String,

 Value = "EF Product - Edited" }

 }

 };

 efData.ExecuteNonQuerySP(model);

 efData.Dispose();

}

Benchmarking data editing methods 431

This method gets the connection string from the secrets file and creates an
instance of the EntityFrameworkCoreData class. It then builds up the
SqlCommandModel that contains the properties needed to generate the call to
the update stored procedure. The method then calls the ExecuteNonQuerySP
procedure, which executes the stored procedure, passing in the model, and then
disposes of the EntityFrameworkCoreData method.

5. Add the UpdateProductDDN method:

[Benchmark]

public void UpdateProductDDN()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 DapperDotNet ddnData = new(connectionString);

 int recordsAffected

 = ddnData.ExecuteNonQuery("UPDATE Products

 SET ProductName = 'Dapper.NET Product -

 Edited' WHERE ProductName = 'Dapper.NET

 Product'");

 ddnData.Dispose();

}

This method gets the connection string from the secrets file and creates a new
instance of the DapperDotNet class. It then calls the ExecuteNonQuery
method, passing in a raw SQL update statement. The number of records affected is
returned, and the DapperDotNet class is disposed of.

6. Add the UpdateProductDDNSP method:

[Benchmark]

public void UpdateProductDDNSP()

{

string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>("ConnectionString");

DapperDotNet ddnData = new(connectionString);

SqlCommandModel model = new()

{

 CommandText = "UpdateProductName",

432 Benchmarking Relational Data Access Frameworks

 CommandType = CommandType.StoredProcedure,

 CommandParameters = new SqlCommand

 ParameterModel[]{

 new SqlCommandParameterModel() {

 ParameterName = "@OldProductName",

 DataType = DbType.String,

 Value = "Dapper.NET Product - Edited" }

 , new SqlCommandParameterModel() {

 ParameterName = "@NewProductName",

 DataType = DbType.String,

 Value = "Dapper.NET Product" }

 }

};

ddnData.ExecuteNonQuery(model);

ddnData.Dispose();

}

This method gets the connection string from the secrets file and creates a new
instance of the DapperDotNet class. It then builds an SQLCommandModel in
preparation for executing a stored procedure. It calls the ExecuteNonQuery
method, passing in the model. The stored procedure is executed, and the method
disposes of the DapperDotNet class.

This is the end of our look at the update benchmarks. Now for our final set of benchmark
methods. In the next section, we will write our deletion benchmarks.

Benchmarking data deletion methods
In this section, we write our benchmarks for measuring the performance of our deletion
methods. These benchmarks will be run and analyzed in the next section:

1. Add the DeleteProductADN method:

[Benchmark]

public void DeleteProductADN()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

Benchmarking data deletion methods 433

 AdoDotNetData adnData = new(connectionString);

 int recordsAffected

 = adnData.ExecuteNonQuery("DELETE FROM

 Products WHERE ProductName LIKE 'ADO.NET

 Product%'");

 adnData.Dispose();

}

This method gets the connection string from the secrets file. It then creates
an instance of the AdoDotNetData class. Then, the method calls the
ExecuteNonQuery method, passing into it a raw SQL delete statement. It then
disposes of the AdoDotNetData class.

2. Add the DeleteProductADNSP method:

[Benchmark]

public void DeleteProductADNSP()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 AdoDotNetData aaa = new(connectionString);

 SqlCommandModel model = new()

 {

 CommandText = "DeleteProduct",

 CommandType = CommandType.StoredProcedure,

 CommandParameters

 = new SqlCommandParameterModel[] {

 new SqlCommandParameterModel() {

 ParameterName = "@ProductName",

 DataType = DbType.String,

 Value = "ADO.NET Product - Edited"}

 }

 };

 aaa.ExecuteNonQuery(model);

 aaa.Dispose();

}

434 Benchmarking Relational Data Access Frameworks

This method gets the connection string from the secrets file, and then it creates an
instance of the AdoDotNetData class. SqlCommandModel is built up with the
properties required for the delete stored procedure execution. The model is then
passed into the ExecuteNonQuery model, which executes the stored procedure,
and the AdoDotNetData class is then disposed of.

3. Add the DeleteProductEF method:

[Benchmark]

public void DeleteProductEF()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 EntityFrameworkCoreData efData

 = new EntityFrameworkCoreData(connectionString);

 IQueryable<Product> products = efData.Products

 .Where(p => p.ProductName.Contains("EF Product"));

 efData.Products.RemoveRange(products);

 int recordsAffected = efData.SaveChanges();

 efData.Dispose();

}

This method gets the connection string from the secrets file and then creates an
instance of the EntityFrameworkCoreData class. A queryable collection of
products is then returned, matching the deletion criteria. This collection is then
passed into the RemoveRange method of the Products collection, and the
modification is saved with those items removed from the database. The method
then disposes of the EntityFrameworkCoreData class.

4. Add the DeleteProductEFSP method:

[Benchmark]

public void DeleteProductEFSP()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 EntityFrameworkCoreData efData

 = new(connectionString);

Benchmarking data deletion methods 435

 SqlCommandModel model = new() {

 CommandText = "EXEC DeleteProduct @ProductName

 = {0}",

 CommandType = CommandType.StoredProcedure,

 CommandParameters

 = new SqlCommandParameterModel[] {

 new SqlCommandParameterModel() {

 ParameterName = "@NewProductName",

 DataType = DbType.String,

 Value = "EF Product - Edited" }

 }

 };

 efData.ExecuteNonQuerySP(model);

 efData.Dispose();

}

This method gets the connection string from the secrets file and creates an
instance of the EntityFrameworkCoreData class. It then builds up a
SqlCommandModel that contains the properties of the deletion stored procedure.
The ExecuteNonQuerySP method is called with the model that is passed in, the
deletion stored procedure is executed, and the EntityFrameworkCoreData
class is disposed of.

5. Add the DeleteProductDDN method:

[Benchmark]

public void DeleteProductDDN()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 DapperDotNet ddnData = new(connectionString);

 int recordsAffected

 = ddnData.ExecuteNonQuery("DELETE FROM

 Products WHERE ProductName LIKE

 'Dapper.NET Product%'");

 ddnData.Dispose();

}

436 Benchmarking Relational Data Access Frameworks

This method gets the connection string from the secrets file and creates an instance
of the DapperDotNet class. It then calls the ExecuteNonQuery method,
passing into that method a raw SQL delete statement. The deletion is carried out
and the number of records affected is returned. The DapperDotNet class is then
disposed of.

6. Add the DeleteProductDDNSP method:

[Benchmark]

public void DeleteProductDDNSP()

{

 string connectionString = SecretsManager

 .GetSecrets<DatabaseSettings>

 ("ConnectionString");

 DapperDotNet ddnData = new(connectionString);

 SqlCommandModel model = new() {

 CommandText = "DeleteProduct",

 CommandType = CommandType.StoredProcedure,

 CommandParameters

 = new SqlCommandParameterModel[] {

 new SqlCommandParameterModel() {

 ParameterName = "@ProductName",

 DataType = DbType.String,

 Value = "Dapper.NET Product - Edited" }

 }

 };

 ddnData.ExecuteNonQuery(model);

 ddnData.Dispose();

}

The benchmarking results and their analysis 437

This method gets the connection string from the secrets file and creates an
instance of the DapperDotNet class. It then builds up the SqlCommandModel,
containing stored procedure properties. This model is then passed into the
ExecuteNonQuery method, which executes the stored procedure, and the
DapperDotNet class is disposed of.

That was the last of our benchmarking methods. There is just one more job to do before
we are able to run our benchmarks. Update the Program class as follows:

using BenchmarkDotNet.Running;

class Program

{

static void Main(string[] args)

 {

 BenchmarkRunner.Run<BenchmarkTests>();

}

}

The Main method executes the BenchmarkTests class. You can now do a release build
to run the benchmarks. The program will take a while to execute, so you will need to be
patient. In the next section, we will analyze the results of our various benchmarks to find
out the most performant ways of performing inserts, selections, updates, and deletions.

The benchmarking results and their analysis
Before we analyze the results, it is worth noting some big data statistics from 2020.
Google gets more than 40,000 queries per second. This equates to 3,456,000,000
queries per day. There are 65,000,000,000 WhatsApp business app messages sent per day.
In the course of 24 hours, there are 1,440 minutes, which is 86,400 seconds, which is
86,400,000 milliseconds.

438 Benchmarking Relational Data Access Frameworks

Here is our benchmark summary report:

Figure 11.1 – Data access benchmark summary

Let's discuss the insert statements first. The results are as follows:

• InsertProductDDNSP = 1.841 ms

• InsertProductADNSP = 1.894 ms

• InsertProductDDN = 2.058 ms

• InsertProductADN = 2.092 ms

• InsertProductEF = 2.196 ms

• InsertProductEFSP = 396.509 ms

The benchmarking results and their analysis 439

From the summary, we can see that the best-performing insert statement is the Dapper.
NET stored procedure insert, taking approximately 1.841 ms to execute, followed by
InsertProductADNSP, which takes approximately 1.894 ms to execute. By far the
worst performer is the InsertProductEFSP method, which takes 396.509 ms to
execute. As we can see from these methods, even though we have six different ways of
inserting data, they all perform at different speeds. When performance is a serious issue,
your best option is to use Dapper.NET stored procedure execution or ADO.NET stored
procedure execution when inserting data.

We will now look at scalar operations, starting with an ordered list of method
performance:

• ReadScalarProductDDN = 1.403 ms

• ReadScalarProductADN = 1.407 ms

• ReadScalarProductADNSP = 1.433 ms

• ReadScalarProductDDNSP = 1.514 ms

• ReadScalarProductEFSP = 53.235 ms

• ReadScalarProductEF = 396.509 ms

Looking at these results, the Dapper.NET raw SQL execution takes approximately
1.403 ms, followed by the ADO.NET raw SQL execution at 1.407 ms. Both the Entity
Framework Core methods perform much more slowly. So, when performance matters,
you are best off using Dapper.NET or ADO.NET raw SQL queries to obtain scalar values.

Next are the filtered list queries. Here is an ordered list of the results:

• ReadFilteredProductsADNSP = 1.078 ms

• ReadFilteredProductsADN = 1.084 ms

• ReadFilteredProductsEFSP = 1.187 ms

• ReadFilteredProductsEF = 1.305 ms

• ReadFilteredProductsDDNSP = 1.529 ms

• ReadFilteredProductsDDN = 199.910 ms

As we can see from these results, ADO.NET raw SQL and stored procedure access
perform the best at 1.078 ms and 1.084 ms, respectively. Surprisingly, this time it is
Dapper.NET that performs the worst when it comes to raw SQL and stored procedure
access. So, when performance matters for performing queries that return multiple records,
you are best off using ADO.NET.

440 Benchmarking Relational Data Access Frameworks

Now, we turn our attention to performing updates. Here is an ordered list of our results:

• UpdateProductADNSP = 1.562 ms

• UpdateProductEFSP = 1.964 ms

• UpdateProductDDNSP = 1.891 ms

• UpdateProductDDN = 2.297 ms

• UpdateProductADN = 3.583 ms

• UpdateProductEF = 5,304.279 ms

From these results, the clear winner is the ADO.NET stored procedure access at
1.562 ms. The worst performer is the Entity Framework Core update method. When
performance matters, use ADO.NET stored procedures to update database records.

Finally, we'll look at our deletion benchmarks. Here is an ordered list of our results:

• DeleteProductADNSP = 1.760 ms

• DeleteProductDDNSP = 1.863 ms

• DeleteProductEFSP = 2.012 ms

• DeleteProductDDN = 2.522 ms

• DeleteProductADN = 6.263 ms

• DeleteProductEF = 386.716 ms

It can be seen that the worst performer is the Entity Framework Core method, taking
about 386.716 ms to execute. On the other hand, the best performer is the ADO.NET
stored procedure method, which takes only 1.760 ms, with the Dapper.NET stored
procedure next, taking 1.863 ms. So, when performance matters, your best deletion
strategy is to use ADO.NET stored procedures.

What can we summarize from these results?

Dapper.NET and ADO.NET come out on top when performing insert, read, update,
and delete operations. The performance varies between raw SQL and stored procedure
execution. When performance is critical, it would seem that the best strategy is rather
than choosing just one framework and using only that one for all your data operations, to
use a hybrid approach.

The benchmarking results and their analysis 441

With a hybrid approach to data access, you will use a combination of data access
frameworks. From each framework, you will decide on the best performer and use
that for your data operation. In the case of our benchmarks, we would use two
frameworks. The frameworks chosen are ADO.NET and Dapper.NET. This way,
we could find the best performance possible for each type of data operation.

But given that these times only have millisecond differences, why does such
performance matter?

Well, remember at the beginning of this section how we mentioned the big data statistics
for 2020? The following table shows the performance of these methods when put into the
context of big data search queries and app message storage:

Table 10.1 – Big data operation durations if SQL Server were used to store and read data

These benchmarks were run on an HP laptop with an Intel Core i5-6300U CPU 2.40 GHz
(Skylake) processor. This is one CPU with four logical cores and two physical cores. I have
8 GB of RAM and a 256 GB SSD.

If the SQL Server on my laptop were used and I had the space available (which I don't) to
store the WhatsApp business app message data, depending upon which method I used to
insert the data, it would take between 1,385.01157 and 298,299.595 processing days on my
laptop. If my laptop were used to retrieve Google search results from my SQL Server, then
it would take between 43.12 and 7,996.4 processing days to retrieve those results.

This real-life application of the benchmarks to actual big data volumes based on the big
data statistics of 2020 shows the importance of computer infrastructure and the type
of investment that would be needed to make these searches and message sending and
receiving instantaneous. It was important to have peak performance when working with
such large datasets.

442 Benchmarking Relational Data Access Frameworks

Tweaking large datasets through code can only go so far. That is why server computers
have many more processors and disks, along with more memory, than your normal
day-to-day workstations and home computers.

The key thing to take away from this chapter is that whenever you are deciding on a way
forward to maximize performance, experiment and benchmark. Along with that, take the
time to choose your physical infrastructure carefully.

Another thing to bear in mind when using a cloud host is the cost per data execution and
cost per hour when running virtual machines. Then, there is the cost of data throughput
and data storage saving and retrieval. With figures of apps such as Google and WhatsApp
being in the billions, if you were to be that successful, could you imagine the running costs
involved? That is why performance in today's competitive market is also so important. The
quicker a piece of code executes in the cloud, the cheaper the price. The longer a piece of
code takes to run, the more expensive it becomes.

As an example, if you have an Azure function that performs your data operations that are
located in the West US region on the Consumption tier using a memory size of 128 with
an execution time of 1.078 ms and 65,000,000,000 executions per month, then your bill
for the month would be US$13,133.54. But if your execution time was 396.509 ms, then
your bill for the month would be US$64,539.57. So, doing the same code action can mean
a difference of 64,539.57 – 12,133.54 = US$52,406.03 per month on cloud expenditure
operations. I am sure you would not want to spend that much money on such outgoings,
and that does not even include the cost of the SQL Server instances!

That concludes this rather long chapter, and so we will now summarize what we
have learned.

Summary
In this chapter, we learned how to perform inserts, selections, updates, and deletes in
SQL Server. We learned how to perform these operations in different ways using pure
ADO.NET, Entity Framework Core, and Dapper.NET. The different data operations were
performed using raw SQL and stored procedures.

To understand the performance of each of these data access methods of the different data
access frameworks, in this chapter, we benchmarked their runtime performance using
BenchmarkDotNet. We saw that both Dapper.NET and ADO.NET performed better
than Entity Framework Core in most cases and that even with these two frameworks, the
performance varied considerably.

Questions 443

We concluded that rather than just adopting a single data access technology, in some
situations where performance really matters, it could be beneficial to employ a hybrid
approach to data access. With a hybrid approach, you use the best framework and method
within that framework for the data access task in question. That way, you maximize your
overall performance. This can also be critical in terms of keeping your infrastructure
expenses down, especially when the infrastructure you are employing is a third-party
cloud provider with your monthly bill being in the thousands of dollars.

But apart from computer code performance enhancements, we also studied big data
volumes and calculated the number of processing days it would take to perform query and
data insert operations when the volumes involved are in the billions. So, apart from code
performance, we also came to understand that it is necessary to choose the right kind of
infrastructure, which also comes at a price when using cloud services.

Note
Whatever you are doing, whenever performance is a critical business
requirement, you are strongly advised to experiment and provide your own
benchmarks. Based on your results, you can then choose your own methods of
data access that you feel are most beneficial for your needs.

In the next chapter, we will be looking at improving the performance of SQL Server and
Cosmos DB. But before we do, have a go at the following questions to see how well you
have retained the information contained in this chapter. Also, there are very useful articles
in the Further reading section that expand upon what has been covered in this chapter.
This chapter purely focused on identifying the best data access methods in code using
three different frameworks. But in the Further reading section, you will find topics that are
specific to improving database performance that are well worth reading about.

Questions
1. Which data access method was fastest when inserting data?
2. Which data access method was fastest when selecting a scalar value?
3. Which data access method was fastest when selecting multiple records?
4. Which data access method was fastest when updating data?
5. Which data access method was fastest when deleting data?
6. Should you use one framework for all data access operations and why?

444 Benchmarking Relational Data Access Frameworks

Further reading
• Dapper vs Entity Framework vs ADO.NET Performance Benchmarking: https://

www.exceptionnotfound.net/dapper-vs-entity-framework-vs-
ado-net-performance-benchmarking/

• Dapper tutorial: https://dapper-tutorial.net/dapper

• ADO.NET Tutorial for Beginners and Professionals: https://
dotnettutorials.net/course/ado-net-tutorial-for-beginners-
and-professionals/

• SQL Server Database Performance Tuning: https://www.brentozar.com/
sql/sql-server-performance-tuning/

• Book – High Performance SQL Server: Consistent Response for Mission-Critical
Applications by Benjamin Nevarez: https://amzn.to/3gnUbe7

• Performance tips for Azure Cosmos DB and .NET: https://docs.microsoft.
com/azure/cosmos-db/performance-tips-dotnet-sdk-v3-sql

• A technique for building high-performance databases with EF Core: https://www.
thereformedprogrammer.net/a-technique-for-building-high-
performance-databases-with-ef-core/

• How to improve SQL Server query performance in .NET: https://www.
red-gate.com/products/dotnet-development/ants-performance-
profiler/resources/how-to-improve-sql-server-query-
performance-in-net

• Using Dapper and SQLKata in .NET Core for High-Performance Application:
https://medium.com/geekculture/using-dapper-and-sqlkata-
in-net-core-for-high-performance-application-716d5fd43210

• What are the best databases for a small .NET application?: https://www.slant.
co/topics/274/~best-databases-for-a-small-net-application

Point to Remember
Reading about performance in a book is all very good. But you should always
do your own experimentation and benchmarking if performance is very
important to you. Different hardware architecture and different programming
styles will yield very different results, and this point is well worth remembering.
Network usage, security software, and data volumes, along with file input and
output, can all have an effect on the performance of your application.

https://www.exceptionnotfound.net/dapper-vs-entity-framework-vs-ado-net-performance-benchmarking/
https://www.exceptionnotfound.net/dapper-vs-entity-framework-vs-ado-net-performance-benchmarking/
https://www.exceptionnotfound.net/dapper-vs-entity-framework-vs-ado-net-performance-benchmarking/
https://dapper-tutorial.net/dapper
https://dotnettutorials.net/course/ado-net-tutorial-for-beginners-and-professionals/
https://dotnettutorials.net/course/ado-net-tutorial-for-beginners-and-professionals/
https://dotnettutorials.net/course/ado-net-tutorial-for-beginners-and-professionals/
https://www.brentozar.com/sql/sql-server-performance-tuning/
https://www.brentozar.com/sql/sql-server-performance-tuning/
https://amzn.to/3gnUbe7
https://docs.microsoft.com/azure/cosmos-db/performance-tips-dotnet-sdk-v3-sql
https://docs.microsoft.com/azure/cosmos-db/performance-tips-dotnet-sdk-v3-sql
https://www.thereformedprogrammer.net/a-technique-for-building-high-performance-databases-with-ef-core/
https://www.thereformedprogrammer.net/a-technique-for-building-high-performance-databases-with-ef-core/
https://www.thereformedprogrammer.net/a-technique-for-building-high-performance-databases-with-ef-core/
https://www.red-gate.com/products/dotnet-development/ants-performance-profiler/resources/how-to-improve-sql-server-query-performance-in-net
https://www.red-gate.com/products/dotnet-development/ants-performance-profiler/resources/how-to-improve-sql-server-query-performance-in-net
https://www.red-gate.com/products/dotnet-development/ants-performance-profiler/resources/how-to-improve-sql-server-query-performance-in-net
https://www.red-gate.com/products/dotnet-development/ants-performance-profiler/resources/how-to-improve-sql-server-query-performance-in-net
https://medium.com/geekculture/using-dapper-and-sqlkata-in-net-core-for-high-performance-application-716d5fd43210
https://medium.com/geekculture/using-dapper-and-sqlkata-in-net-core-for-high-performance-application-716d5fd43210
https://www.slant.co/topics/274/~best-databases-for-a-small-net-application
https://www.slant.co/topics/274/~best-databases-for-a-small-net-application

12
Responsive User

Interfaces
In this chapter, you will learn to write responsive user interfaces. You will write responsive
Windows Forms (WinForms), Windows Presentation Foundation (WPF), ASP.NET,
.NET MAUI, and WinUI applications. Using background worker threads, you will see how
you can update and work with the User Interface (UI) in real time by running long-running
tasks in the background.

In this chapter, we will be working through the following topics:

• Building a responsive UI with WinForms: In this section, you will write a simple
WinForms application that remains responsive to user interaction while performing
multiple tasks.

• Building a responsive UI with WPF: In this section, you will be writing a simple
WPF application that remains responsive to user interaction while performing
multiple tasks.

• Building a responsive UI with ASP.NET: In this section, you will be writing a
simple ASP.NET application that remains responsive to user interaction while
performing multiple tasks.

446 Responsive User Interfaces

• Building a responsive UI with .NET MAUI: In this section, you will be writing a
simple Xamarin.Forms application that remains responsive to user interaction while
performing multiple tasks. You will then migrate the projects from Xamarin.Forms
to .NET MAUI by updating the library references.

• Building a responsive UI with WinUI: In this section, you will be writing a simple
WinUI application that remains responsive to user interaction while performing
multiple tasks.

By working through this chapter, you will gain the skills to do the following:

• Use background worker threads to keep UIs responsive

• Use wait screens to provide updates when users are required to wait

• Use AJAX, WebSockets, SignalR, and gRPC/gRPC-Web to send and receive data
and transfer assets

• Write responsive desktop, web, and mobile UIs

Note
For clarification, when speaking about responsive UIs in this chapter, we are
not talking about the layout of the UI adapting to the device size or screen real
estate. Instead, we are focused on making busy UIs responsive to user input
instead of blocking the user from working during task execution.

Technical requirements
• Visual Studio 2022 or later.

• This chapter source code is available at https://github.com/
PacktPublishing/High-Performance-Programming-in-CSharp-
and-.NET/tree/master/CH12.

Building a responsive UI with WinForms
In this section, we will be building a very simple WinForms application that is Dots
Per Inch (DPI)-aware and enables the user to continue working during long-running
operations. The application has a splash screen with a progress bar and an updated label that
provides visual feedback to the user that the application is busy loading. Once the loading
progress has been completed, the splash screen closes, and the main window is displayed.

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH12
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH12
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH12

Building a responsive UI with WinForms 447

On the main window, there is a label that gets updated every time you click on the
increment count button, a paged table that you can navigate through using the buttons
provided, and a progress indicator for a long-running task that also has a cancel button.

While the long-running task is executing, you can move the window around, increment
the label by clicking the increment count button, and you can page through the data. If
you choose to, you can also cancel the long-running task.

When the long-running task is completed, canceled, or encounters an error, the task
progress panel is hidden.

Enabling DPI awareness and long file path awareness
In this section, we will configure a WinForms application so that it looks good on high-
DPI screens and normal-DPI large screens. We also configure it to be aware of long file
paths. Follow these steps:

1. Start a new .NET 6 WinForms application and call it CH12_
ResponsiveWinForms.

2. Add a new application manifest file.
3. Open the app.manifest file and update the compatibility section as follows:

<compatibility xmlns=”urn:schemas-microsoft-

 com:compatibility.v1”>

 <application>

 <supportedOS

 Id=”{e2011457-1546-43c5-a5fe-008deee3d3f0}” />

 <supportedOS

 Id=”{35138b9a-5d96-4fbd-8e2d-a2440225f93a}” />

 <supportedOS

 Id=”{4a2f28e3-53b9-4441-ba9c-d69d4a4a6e38}” />

 <supportedOS

 Id=”{1f676c76-80e1-4239-95bb-83d0f6d0da78}” />

 <supportedOS

 Id=”{8e0f7a12-bfb3-4fe8-b9a5-48fd50a15a9a}” />

 </application>

 </compatibility>

This XML code enables DPI awareness in WinForms applications from Windows
Vista upward.

448 Responsive User Interfaces

4. Uncomment the following application section:

<application xmlns=”urn:schemas-microsoft-com:asm.v3”>

 <windowsSettings>

 <dpiAware xmlns=””>

 True

 </dpiAware>

 <longPathAware xmlns=””>

 True

 </longPathAware>

 </windowsSettings>

</application>

This code informs the compiler that the application is aware of long paths and DPI
settings. With these settings in place, the application will now scale for different
screen DPI settings and will be able to handle long paths that are 256 characters
long.

In the next section, we will add a splash screen with loading progress feedback.

Adding a splash screen that updates with loading
progress
Applications can load very quickly, or they can load quite slowly. When they are loading,
the user is unaware of what the application is doing. You may choose to display a splash
screen as part of your application branding. If your application loads fast, then you may
need to add a delay for a short period such as 3 seconds to enable the user to see the
splash screen. Otherwise, all the user may see is a quick screen flicker.

If the application has some heavy loading operations that take time to process, the user
can think there is an issue and that the program has crashed. So, it is good practice to
provide a splash screen that provides visual feedback to the user. This way, the user knows
that the application is busy processing and has not crashed. When users see such feedback,
they are more patient and will wait until the application has loaded.

In this section, we add a splash screen with visual feedback. The main window simulates
several loading operations with a delay to the UI. Then, the splash screen is closed and the
main window is displayed. We will now start adding the necessary code:

1. Add a new form called SplashScreenForm, and change its FormBorderStyle
property to None and its StartPosition property to CentreScreen. Change the
BackColor property to ActiveCaptionText.

Building a responsive UI with WinForms 449

2. Add a ProgressBar component called LoadingProgressBar to the form and
dock it to the bottom of the form.

3. Add a label to SplashScreenForm called LoadingProgressLabel and dock it
to the bottom of the form so that it appears just above the progress bar. Set the Text
property to Loading. Please wait… and Font | Size to 12. Change the ForeColor
property to HighlightWhite. Set Margin | All and Padding | All to 8.

4. Add another label to SplashScreenForm called TitleLabel with the Text
property set to Responsive WinForms Example, ForeColor set to HighlightText,
Font | Size set to 32, and Location set to 29, 126.

5. Rename Form1 MainForm and open the form. Double-click on WindowsForm.
This will open the code window.

6. Add the following using statements to the MainForm class:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Threading;

using System.Windows.Forms;

These using statements provide all that we need for our splash screen’s code
to function.

7. Add the following member variables to the MainForm class:

private int _clickCounter;

 private int _operationNumber;

 private int _offset = 0;

 private int _pageSize = 10;

 private int _currentPage = 1;

These member variables will be referenced by the various methods in our
MainForm class to provide paging, in-memory data storage, and store the click
count and operation number of the operation being processed.

8. Update the MainForm_Load method as follows:

private void MainForm_Load(object sender, EventArgs e)

{

 SplashScreenForm splashScreen = new

 SplashScreenForm();

 splashScreen.Show(this);

450 Responsive User Interfaces

 for (int x = 1; x <= 100; x++)

 {

 Thread.Sleep(500);

 splashScreen.UpdateProgress(x, $”Progress

 Update: Performing load operation {x}

 of 100...”);

 Application.DoEvents();

 }

 splashScreen.Close();

}

This code creates our splash screen and then iterates 100 times, simulating many
loading operations. Each iteration causes the UI thread to sleep for half a second,
updates the splash screen progress, and releases the thread so that other threads can
do their work by calling Application.DoEvents().

9. Open SplashScreenForm and view its code. Add the following method:

public void UpdateProgress(int value, string message)

{

 LoadingProgressBar.Value = value;

 LoadingProgressLabel.Text = message;

 Invalidate();

}

This code takes input from the MainForm class and updates the splash screen’s label
and progress bar, providing feedback to the user that the application is loading and
making progress.

We have now completed the progress bar. If you run the code, you will see the
following splash screen:

Figure 12.1 – The WinForms splash screen

Building a responsive UI with WinForms 451

Now that our splash screen is working, let’s add our label and button that displays an
incremental count of button clicks.

Adding the increment count button and label
To demonstrate non-blocking of the UI when a long operation is executing, we will have
a label that is updated with text every time a user clicks a button. We will need to perform
the following tasks in our code:

1. Add a label called ClickCounterLabel to MainForm and dock it to the top.
Set its text to an empty string and its text properties to Segoe UI and 36pt, with
TextAlign set to MiddleCenter.

2. Add a button called IncrementCountButton to the form and dock it to the top
of the form. Set its text to &Increment Text.

3. Double-click on the button to generate its click event. Update the code of the click
event with the following code:

private void IncrementCountButton_Click(object sender,

 EventArgs e)

 {

 _clickCounter++;

 ClickCounterLabel.Text = $”You have clicked

 the button {_clickCounter} times.”;

}

Each time the user clicks the button, the _clickCounter variable is incremented
by one. The ClickCounterLabel text is then updated, informing the user of how
many times they have clicked the button.

The next thing we will be doing is adding a table with paged navigation. We shall be doing
that in the following section.

Adding a table with paged data
In this section, we will be adding a table with paged navigation. This will demonstrate
that the user can still interact with the page through data in a WinForms application, even
when long operations are running in the background. Let’s begin:

1. Add DataGridView to the MainForm design window, call it DataTable, and set
its Dock property to Fill.

452 Responsive User Interfaces

2. Add FlowLayoutPanel underneath DataGridView called DataPagingPanel,
with its Dock property set to Bottom.

3. Add a button to FlowLayoutPanel called FirstButton, with the text set to |<<.
Double-click the button to generate the click event. Then, return to the design window.

4. Add a button to FlowLayoutPanel called PreviousButton with the text set to
<<. Double-click the button to generate the click event. Then, return to the design
window.

5. Add a textbox called PageTextBox to FlowLayoutPanel.
6. Add a button called NextButton to FlowLayoutPanel, with the text set to >>.

Double-click the button to generate its click event. Then, return to the design
window.

7. Add a button called LastButton to FlowLayoutPanel, with the text set to >>|.
Double-click the button to generate its click event. This time, stay in the code view,
as we have completed what we need to do on the UI for this section.

8. Add the BuildCollection method:

private void BuildCollection()

{

 _products = new();

 for (int x = 1; x <= 100; x++)

 {

 _products.Add(new Product { Id = x, Name =

 $”Product {x}” });

}

}

This method builds a collection of 100 products.
9. Add the call to the BuildCollection method to the MainForm_Load method

before the SplashScreenForm instantiation line.
10. After the line that closes the splash screen, add the following two lines of code:

DataTable.DataSource = PagedProducts();

PageTextBox.Text = $”Page {_currentPage} of

 {PageCount()}”;

This code sets the data source for our DataGridView control to a page of the dataset
via the call to the PagedProducts method.

Building a responsive UI with WinForms 453

11. Add the PagedProducts method:

private List<Product> PagedProducts()

 {

 return _products.GetRange(_offset, _pageSize);

}

This method returns a range from the _products collection. The _offset
variable stores the index value that forms the starting point of the returned
collection, and the _pageSize variable stores the number of records to be
returned for a page.

12. Add the PageCount method:

private int PageCount()

 {

 return _products.Count / _pageSize;

}

This method obtains the number of products contained within the _products
collection, divides that number by the _pageSize variable, and then returns the
result. The result is the number of data pages that we can navigate through.

13. Update the FirstButton_Click method as follows:

private void FirstButton_Click(object sender,

 EventArgs e)

 {

 if (_currentPage > 1)

 {

 _offset = 0;

 _currentPage = 1;

 PageTextBox.Text = $”Page {_currentPage}

 of {PageCount()}”;

 DataTable.DataSource = PagedProducts();

 }

}

This code moves to the first page in the dataset and updates the UI accordingly.

454 Responsive User Interfaces

14. Update the PreviousButton_Click method with the following code:

 private void PreviousButton_Click(object sender,

 EventArgs e)

 {

 if (_currentPage > 1)

 {

 _offset -= _pageSize;

 _currentPage--;

 PageTextBox.Text = $”Page {_currentPage}

 of {PageCount()}”;

 DataTable.DataSource = PagedProducts();

 }

}

This code moves to the previous page in the dataset and updates the UI accordingly.
15. Add the NextButton_Click method code:

private void NextButton_Click(object sender,

 EventArgs e)

 {

 if (_currentPage < PageCount())

 {

 _offset += _pageSize;

 _currentPage++;

 PageTextBox.Text = $”Page {_currentPage}

 of {PageCount()}”;

 DataTable.DataSource = PagedProducts();

 }

}

This code moves to the next page of the dataset and updates the UI accordingly.
16. Add the LastButton_Click method code:

private void LastButton_Click(object sender,

 EventArgs e)

Building a responsive UI with WinForms 455

 {

 if (_currentPage < PageCount())

 {

 _offset = _products.Count - _pageSize;

 _currentPage = PageCount();

 PageTextBox.Text = $”Page {_currentPage}

 of {PageCount()}”;

 DataTable.DataSource = PagedProducts();

 }

}

This method moves to the last page of the dataset and updates the UI accordingly.
17. Finally, add the Product class:

internal class Product

{

 public int Id { get; set; }

 public string Name { get; set; }

 public string Description { get; set; } = “It is a

 long established fact that a reader will be

 distracted by the readable content of a page

 when looking at its layout.”;

 public float Price { get; set; } = 9.99F;

 public int Units { get; set; } = 100;

}

This class is the Product class that our MainForm uses to build its list of products
within its BuildCollection method.

We have now built our paged data table, and we have our increment button and label in
place. The final thing to do with our form is to add our long-running task, to show that
user interactions are still possible without being blocked by long-running tasks. This will
be the topic of our next section.

456 Responsive User Interfaces

Running long-running tasks in the background
In this section, we are going to upgrade our UI to show the progress of a long-running
task that is running in the background. The user will be able to cancel the long-running
task at any time. When the task is completed, whatever state it is in, the long-running task
update progress controls will be hidden from the user. Let’s start adding the code:

1. Add a CommandButton component called
LongRunningOperationCancelButton and set its text to &Cancel long
running operation.

2. Add a StatusStrip component and call it StatusBar.
3. Add a ToolStripProgressBar component called TaskProgressBar.
4. Add a ToolStripLabel component called StatusLabel and make sure its text

property is empty.
5. Add a BackgroundWorker component called

CollectionBuilderBackgroundWorker.
6. Add a BackgroundWorker component called

LongRunningProcessBackgroundWorker.
7. In the MainForm class, add the following three lines to the constructor:

LongRunningProcessBackgroundWorker.DoWork +=

 LongRunningProcessBackgroundWorker_DoWork;

LongRunningProcessBackgroundWorker.ProgressChanged +=

 LongRunningProcessBackgroundWorker_ProgressChanged;

LongRunningProcessBackgroundWorker

 .RunWorkerCompleted += LongRunning

 ProcessBackgroundWorker_RunWorkerCompleted;

This code adds the handlers for our BackgroundWorker, which will be
responsible for executing the long-running task.

8. Add the following method call to the last line of the MainForm_Load method
before the closing brace: LongRunningProcess();.

9. Add the following LongRunningProcess method:

private void LongRunningProcess()

 {

 if (LongRunningProcessBackgroundWorker.IsBusy

Building a responsive UI with WinForms 457

 != true)

 {

 LongRunningProcessBackgroundWorker

 .RunWorkerAsync();

 }

 }

If LongRunningProcessBackgroundWorker is not busy, then the
RunWorkerAsync method called LongRunningProcessBackground
Worker_DoWork is run.

10. Add LongRunningProcessBackgroundWorker_DoWork to the MainForm
class:

private void LongRunningProcessBackgroundWorker_DoWork

 (object sender, DoWorkEventArgs e)

 {

 BackgroundWorker worker = sender as

 BackgroundWorker;

 for (int i = 1; i <= 100; i++)

 {

 if (worker.CancellationPending == true)

 {

 e.Cancel = true;

 break;

 }

 else

 {

 _operationNumber = i;

 System.Threading.Thread.Sleep(100);

 worker.ReportProgress((i / 100)

 * 100);

 }

 }

}

458 Responsive User Interfaces

We are casting the sender as BackgroundWorker and assigning it to our local
worker variable. Then, we iterate 100 times. Each time we iterate, we set the
_operationNumber variable to the loop count variable value, sleep for 100
milliseconds, and then call the ReportProgress method of the worker passing in
the percentage of work done.

11. Add the LongRunningProcessBackgroundWorker_ProgressChanged
method to the MainForm class:

private void LongRunningProcessBackgroundWorker

 _ProgressChanged(object sender, ProgressChanged

 EventArgs e)

 {

 StatusLabel.Text

 = ($”Progress: {_operationNumber}%”);

 TaskProgressBar.Value = _operationNumber;

 if (_operationNumber == 100)

 {

 Thread.Sleep(100);

 LongRunningOperationCancelButton

 .Visible = false;

 StatusBar.Visible = false;

 }

}

This code updates the UI with the progress of the long-running task. If all the
operations have been completed, the task cancel button and status bar are hidden
from the user.

12. Add the LongRunningProcessBackgroundWorker_
RunWorkerCompleted method to the MainForm class:

private void LongRunningProcessBackgroundWorker

 _RunWorkerCompleted(object sender,

 RunWorkerCompletedEventArgs e)

Building a responsive UI with WinForms 459

 {

 if (e.Cancelled == true)

 StatusLabel.Text = “Canceled!”;

 else if (e.Error != null)

 StatusLabel.Text = “Error: “ +

 e.Error.Message;

 else

 StatusLabel.Text = “Done!”;

}

When the long-running task is completed, this method executes StatusLabel.
Text to the outcome of the method, with the outcomes being either Cancelled,
Error, or Done.

13. Our final piece of code to write before we complete and run our WinForms
application is to add code to the LongRunningOperationButton_Click
method to MainClass, as follows:

private void LongRunningOperationCancelButton

 _Click(object sender, EventArgs e)

{

 if (LongRunningProcessBackgroundWorker

 .WorkerSupportsCancellation == true)

{

 LongRunningProcessBackgroundWorker

 .CancelAsync();

 LongRunningOperationCancelButton.Visible =

 false;

 StatusBar.Visible = false;

 }

}

This code checks to see whether the task supports cancellation. If it does, then the
task is canceled, and the cancel button and status bar are hidden from the user.

460 Responsive User Interfaces

14. Run the code. You should see the splash screen shown in Figure 12.1. Then, you
should see the main window resembling what is shown in Figure 12.2. Move the
window about and click on the increment count button. Also, click the paging
buttons to move between data pages of the dataset, and cancel the task. You should
see that the window is completely responsive to your input, as follows:

Figure 12.2 – The Windows Forms main application window

As you can see, we have written a WinForms application that has a lot going on. We have
a splash screen that provides visual feedback to the user so that they do not think that the
application has crashed in any way, and we have a UI that remains responsive to user input
during a long-running task.

Now that we have a working WinForms application, let’s turn our attention to WPF. In
the next section, we will apply what we have learned with our WinForms application to a
WPF application.

Building a responsive UI with WPF 461

Building a responsive UI with WPF
In this section, we are going to build the same kind of interface as we did for the WinForms
application, but this time, it will be using WPF. We will now start writing our code:

1. Create a new WPF application called CH12_ResponsiveWPF and make sure to
select .NET 6.0 as the target framework.

2. Add the Product class to the project. It is the same code that we used in our
WinForms application.

3. Add a new Window called SplashWindow.
4. Modify the SplashWindow XAML as follows:

<Window x:Class=”CH12_ResponsiveWPF.SplashWindow”

 xmlns=””

 xmlns:x=””

 xmlns:d=””

 xmlns:mc=””

 xmlns:local=”clr-namespace:CH12_ResponsiveWPF”

 mc:Ignorable=”d”

 Background=”White”

 Foreground=”White”

 WindowStyle=”None”

 WindowStartupLocation=”CenterScreen”

 Title=”SplashWindow” Height=”450” Width=”800”>

 <StackPanel HorizontalAlignment=”Center”

 VerticalAlignment=”Center”>

 <Label TextBlock.FontSize=”32”

 Content=”Responsive WPF Example” />

 <Label x:Name=”LoadingProgressLabel”

 TextBlock.FontSize=”12”

 Content=”Loading...” />

 <ProgressBar x:Name=”LoadingProgressBar”

 Minimum=”0” Maximum=”100” />

 </StackPanel>

</Window>

462 Responsive User Interfaces

The XAML we have just updated declares a stack panel with two labels and a
progress bar. The first label displays the title, and the second label displays loading
progress along with the progress bar.

5. Add the following method to the SplashWindow class:

public void UpdateProgress(int value, string message)

{

 LoadingProgressBar.Value = value;

 LoadingProgressLabel.Content = message;

 InvalidateVisual();

}

This code will be called by the MainWindow class and is responsible for updating
the progress indicators on SplashWindow.

6. Open the MainWindow.xaml file and replace the existing XAML with the
following:

<StackPanel HorizontalAlignment=”Stretch”

 VerticalAlignment=”Stretch” Background=”Red”>

 <Label x:Name=”CounterLabel” FontSize=”32”

 Foreground=”Yellow” Margin=”8” Padding=”8” />

 <Button x:Name=”IncrementCounterButton”

 Content=”Increment Counter”

 Click=”IncrementCounterButton_Click”

 HorizontalAlignment=”Center” Padding=”8”

 Margin=”0, 0, 0 , 8” />

 <DataGrid x:Name=”DataTable” />

 <StackPanel Orientation=”Horizontal”

 HorizontalAlignment=”Center” Margin=”0, 4,

 0, 4”>

 <Button x:Name=”FirstButton”

 Content=”|<<”

 Click=”FirstButton_Click” Margin=”4”

 Padding=”8” />

 <Button x:Name=”PreviousButton”

 Content=”<<”

 Click=”PreviousButton_Click” Margin=”4”

 Padding=”8” />

Building a responsive UI with WPF 463

 <Label x:Name=”PageLabel”

 Background=”White” Foreground=”Black”

 Width=”110” Height=”32”

 VerticalContentAlignment=”Center” />

 <Button x:Name=”NextButton”

 Content=”>>”

 Click=”NextButton_Click” Margin=”4”

 Padding=”8” />

 <Button x:Name=”LastButton”

 Content=”>>|”

 Click=”LastButton_Click” Margin=”4”

 Padding=”8” />

 </StackPanel>

 <StackPanel x:Name=”StatusPanel”

 VerticalAlignment=”Bottom”

 Orientation=”Horizontal” Background=”Yellow”>

 <Label x:Name=”StatusLabel”

 Content=”Progress Update: ...” />

 <ProgressBar x:Name=”TaskProgressBar”

 Minimum=”0” Maximum=”100” Width=”500” />

 <Button x:Name=”CancelTaskButton”

 Content=”Cancel Task”

 Click=”CancelTaskButton_Click” />

 </StackPanel>

 </StackPanel>

This XAML provides a status panel that will show the progress of any background
tasks, an increment label and an increment button, a data grid, and a navigation
panel for paging through different pages of data.

7. Add the following using statements to the MainWindow.xaml.cs file:

using System;

using System.Collections;

using System.Collections.Generic;

using System.ComponentModel;

using System.Threading;

464 Responsive User Interfaces

using System.Windows;

using System.Windows.Threading;

These using statements are needed for our WPF window to function without error.
8. Add the following member variables to the MainWindow class:

private int _clickCounter;

private int _operationNumber;

private List<Product> _products;

private int _offset = 0;

private int _pageSize = 10;

private int _currentPage = 1;

BackgroundWorker _worker;

Here, we have the same variables that we had with our WinForms application,
except we also declare a background worker.

9. Update the MainWindow constructor with the following code:

public MainWindow()

{

 InitializeComponent();

 BuildCollection();

 SplashWindow splashWindow = new SplashWindow();

 splashWindow.Show();

 for (int x = 1; x <= 100; x++)

 {

 Thread.Sleep(100);

 splashWindow.UpdateProgress(x, $”Progress

 Update: Performing load operation {x} of

 100...”);

 DoEvents();

}

 splashWindow.Close();

 DataTable.ItemsSource = PagedData();

 PageLabel.Content = $”Page {_currentPage} of

 {PageCount()}”;

Building a responsive UI with WPF 465

 _worker = new BackgroundWorker();

 _worker.WorkerReportsProgress = true;

 _worker.WorkerSupportsCancellation = true;

 _worker.DoWork += Worker_DoWork;

 _worker.ProgressChanged += Worker_ProgressChanged;

 _worker.RunWorkerCompleted +=

 Worker_RunWorkerCompleted;

 _worker.RunWorkerAsync();

}

This code is pretty much the same as our WinForms load method. The only real
difference is that all our initialization code is in the constructor.

10. Add the Worker_DoWork method:

private void Worker_DoWork(object sender,

 DoWorkEventArgs e)

{

 BackgroundWorker worker = sender as

 BackgroundWorker;

for (int i = 1; i <= 100; i++)

 {

 if (worker.CancellationPending == true)

 {

 e.Cancel = true;

 break;

 }

 else

 {

 _operationNumber = i;

 System.Threading.Thread.Sleep(100);

 worker.ReportProgress((i / 100) * 100);

 }

 }

}

This code simulates the work of 100 operations with a small delay for each operation.

466 Responsive User Interfaces

11. Add the Worker_ProgressChanged method code:

private void Worker_ProgressChanged(object sender,

 ProgressChangedEventArgs e)

{

 StatusLabel.Content = ($”Progress:

 {_operationNumber}%”);

 TaskProgressBar.Value = _operationNumber;

}

This code updates the progress indicators for the long-running task.
12. Add the Worker_RunWorkerCompleted method:

private void Worker_RunWorkerCompleted(object sender,

 RunWorkerCompletedEventArgs e)

{

 if (e.Cancelled == true)

 StatusLabel.Content = “Cancelled!”;

 else if (e.Error != null)

 StatusLabel.Content = “Error: “ + e.Error.

 Message;

 else

 StatusLabel.Content = “Done!”;

Thread.Sleep(1500);

 StatusPanel.Visibility = Visibility.Collapsed;

}

This method reports the result of the long-running task and then hides the status
panel from the end user.

13. Add the PagedData method:

private IEnumerable PagedData()

{

 return _products.GetRange(_offset, _pageSize);

}

This method returns a page of data whose index starts at _offset, with the
number of returned rows defined by _pageSize.

Building a responsive UI with WPF 467

14. Add the DoEvents method:

public static void DoEvents()

{

 Application.Current.Dispatcher

 .Invoke(DispatcherPriority.Render,

 new Action(delegate {

 // Your operation goes here.

 }));

}

This code performs like the WinForms Application.DoEvents() code. You
can place your non-UI blocking code here, and update the UI.

15. Add the BuildCollection method:

private void BuildCollection()

{

 _products = new();

 for (int x = 1; x <= 100; x++)

 {

 _products.Add(new Product { Id = x, Name =

 $”Product {x}” });

 }

}

The BuildCollection method builds our dataset of 100 products.
16. Add the PageCount method:

private int PageCount()

{

 return _products.Count / _pageSize;

}

The PageCount method works out how many pages of data there are based on the
dataset size, divided by the page size, and then returns the result.

17. Add the FirstButton_Click method:

private void FirstButton_Click(object sender,

 RoutedEventArgs e)

468 Responsive User Interfaces

{

 if (_currentPage > 1)

 {

 _offset = 0;

 _currentPage = 1;

 PageLabel.Content = $”Page {_currentPage} of

 {PageCount()}”;

 DataTable.ItemsSource = PagedData();

 }

}

When executed, this method navigates to the first record in our dataset and
upgrades the UI accordingly.

18. Add the PreviousButton_Click method:

private void PreviousButton_Click(object sender,

 RoutedEventArgs e)

{

 if (_currentPage > 1)

 {

 _offset -= _pageSize;

 _currentPage--;

 PageLabel.Content = $”Page {_currentPage} of

 {PageCount()}”;

 DataTable.ItemsSource = PagedData();

}

}

This method will move to the previous page of the dataset and update the UI
accordingly.

19. Add the NextButton_Click code:

private void NextButton_Click(object sender,

 RoutedEventArgs e)

{

 if (_currentPage < PageCount())

 {

Building a responsive UI with WPF 469

 _offset += _pageSize;

 _currentPage++;

 PageLabel.Content = $”Page {_currentPage} of

 {PageCount()}”;

 DataTable.ItemsSource = PagedData();

 }

}

This method moves to the next page of the dataset and updates the UI accordingly.
20. Add the LastButton_Click method:

private void LastButton_Click(object sender,

 RoutedEventArgs e)

{

 if (_currentPage < PageCount())

 {

 _offset = _products.Count - _pageSize;

 _currentPage = PageCount();

 PageLabel.Content = $”Page {_currentPage} of

 {PageCount()}”;

 DataTable.ItemsSource = PagedData();

}

}

This method moves to the last dataset page and updates the UI accordingly.
21. Add the IncrementCounterButton_Click method:

private void IncrementCounterButton_Click(object

 sender, RoutedEventArgs e)

{

 _clickCounter++;

 CounterLabel.Content = $”You have clicked the

 button {_clickCounter} times.”;

}

Each time you click IncrementCounterButton, this method will increment
the _clickCounter variable and report on the screen how many times you have
clicked the button.

470 Responsive User Interfaces

22. Add the final WPF method called CancelTaskButton_Click:

private void CancelTaskButton_Click(object sender,

 RoutedEventArgs e)

{

 if (_worker.WorkerSupportsCancellation == true)

 _worker.CancelAsync();

}

This method cancels the long-running task if it supports cancellation.
23. Run the WPF application. You will find that you are presented with the splash

screen showing the loading progress, as displayed here:

Figure 12.3 – The WPF application’s splash screen
When the loading completes, the splash screen closes and you are presented with
the main window. While a long-running task is in progress, you can move the
window about, click on the increment counter button, navigate through the paged
data, and cancel the long-running task.

As you can see from the following screenshot, we have everything in place that
provides visual feedback of progress to end users and a UI that remains responsive
to user input during a long-running task:

Building a responsive UI with ASP.NET 471

Figure 12.4 – The WPF application’s main window

In the next section, we will look at how to keep ASP.NET UI responsive to user input.

Building a responsive UI with ASP.NET
In this section, we will be looking at ways to assist ASP.NET applications in being quick
and responsive. We will start by looking at memory and distributed caching. Then, we will
look at how you can update a section of a page using AJAX. Next, we will move on to write
a real-time chat application with SignalR. We will then take a look at using WebSockets in
our ASP.NET applications.

Note
We will not be covering gRPC-Web in this chapter, as we have already covered
that topic with example code in Chapter 9, Enhancing the Performance of
Networked Applications, in which we looked at gRPC for non-web applications
and gRPC-Web for web applications. In this chapter, we also implemented
a simple Blazor web application using gRPC-Web, so you can refer to this
chapter for gRPC/gRPC-Web.

472 Responsive User Interfaces

Let’s begin looking at a responsive ASP.NET application by focusing on caching. There are
two kinds of caching we will be looking at. These are memory caching and distributed
caching. In the next section, we will implement memory caching.

Implementing memory caching
Web applications load resources over the network we all know as the internet. Accessing,
downloading, and rendering resources from the internet takes varying degrees of time.
Time can vary due to network traffic, the quality of the network, and computer system
resources. Is there a way in which we can speed this process up? Well, yes. We can
implement caching. But what exactly is caching?

Caching is the local storage of frequently accessed resources for faster access and processing.

In this section, you will see how we can easily implement in-memory caching in ASP.NET.
To implement in-memory caching, follow these steps:

1. Start a new ASP.NET Core web app (Model-View-Controller) project and call
it CH12_ResponsiveASPNET.

2. Add the Microsoft.Extensions.Caching.Memory NuGet package. If
Visual Studio cannot install it, run the following command in the Package Manager:

Install-Package Microsoft.Extensions.Caching.Memory -

 Version 6.0.0-preview.7.21377.19

3. In the HomeController class, add the statement using Microsoft.
Extensions.Caching.Memory.

4. Add the following member variables:

private readonly ILogger<HomeController> _logger;

private IMemoryCache _memoryCache;

This code declares the variables that will store our logger and memory cache
objects.

5. Update the HomeController constructor, as shown next:

public HomeController(ILogger<HomeController> logger,

 IMemoryCache memoryCache)

{

 _logger = logger;

Building a responsive UI with ASP.NET 473

 _memoryCache = memoryCache;

}

In this code, the logger and memory cache objects that we will be using are injected
into our class, and we pass in variables to set our member variables.

6. Add the GetMemoryCacheTime method:

private DateTime GetMemoryCacheTime()

{

 DateTime currentTime;

 bool alreadyExists = _memoryCache.TryGetValue

 (“CachedTime”, out currentTime);

 if (!alreadyExists)

 {

 currentTime = DateTime.UtcNow.ToLocalTime();

 _memoryCache.Set(

 “CachedTime”,

 currentTime, MemoryCacheEntryExtensions

 .SetSlidingExpiration(

 new MemoryCacheEntryOptions() {

 SlidingExpiration

 = TimeSpan.FromMinutes(5) },

 TimeSpan.FromMinutes(5)

));

 }

 return currentTime;

}

Here, we are checking whether our CachedTime variable exists in the memory
cache. If it does exist, then the out variable called currentTime is set and the
cached time is returned. Otherwise, we get the current time and store it in the
memory cache with a sliding expiration value, and then we return the cached time.

7. Update the Index method with this code:

[HttpGet]

public string Index()

474 Responsive User Interfaces

{

DateTime memoryCacheTime = GetMemoryCacheTime();

return $”Current Time: {DateTime.UtcNow.ToLocalTime()}

 \nMemory Cache Time: {memoryCacheTime}”;

}

The Index controller method returns a string. This string that is returned is the
cached time.

8. Run the project and navigate to https://localhost:5001/Home. You should
see something like the following output:

Current Time: 12/07/221 20:18:25

Memory Cache Time: 12/07/2021 20:18:25

As you can see, the time did not exist in the cache, and so was added to the cache
before it was returned.

Note
The setting of port numbers is dependent on the availability of ports. Whatever
port you choose, it will not work if it is in use by another program.

9. Now, refresh the page, and you should see different values for the current time and
the memory cache time:

Current Time: 12/07/2021 20:21:21

Memory Cache Time: 12/07/2021 20:18:25

You can clearly see that the memory cache time is older than the current time.
This shows that we have stored the time in the in-memory cache and retrieved it
successfully.

Implementing in-memory caching is really easy in ASP.NET, and you can enhance the page
load and render time by storing and retrieving data from the in-memory cache. Now that we
have looked at the in-memory cache, we will turn our attention to distributed cache.

Building a responsive UI with ASP.NET 475

Implementing distributed caching
In this section, we will be using the same ASP.NET web project and controller to
implement distributed caching. What do we mean by distributed caching? Distributed
caching extends the concept of local caching to include caching over several computers.
Such caching enables the scaling of transactional data. You would mainly use distributed
caching to store application data that resides in a database, and data related to web
sessions. In this section, we use Redis for our caching. Redis is an in-memory data
structure store, used as a distributed, in-memory key-value database, cache, and message
broker, with optional durability. To implement distributed caching, perform the following:

1. Add the Microsoft.Extensions.Caching.Redis NuGet package to the
web package. You can use the following command:

Install-Package Microsoft.Extensions.Caching.Redis -

 Version 2.2.0

2. In the HomeController class, add the using Microsoft.Extensions.
Caching.Distributed statement.

3. Add the following member variable:

private IDistributedCache _distributedCache;

This variable will hold our distributed cache object that gets injected via the
constructor.

4. Now, update the constructor code:

public HomeController(ILogger<HomeController> logger,

 IMemoryCache memoryCache, IDistributedCache

 distributedCache)

{

 _logger = logger;

 _memoryCache = memoryCache;

 _distributedCache = distributedCache;

}

We are injecting the distributed cache object and setting our member variable.

476 Responsive User Interfaces

5. To use our distributed cache, we will need to encode and decode Base64 strings.
Add the following two methods:

private static string Base64Encode(string text)

{

 byte[] bytes = Encoding.UTF8.GetBytes(text);

 return Convert.ToBase64String(bytes);

}

public static string Base64Decode(string text)

{

 byte[] bytes = Convert.FromBase64String(text);

 return Encoding.UTF8.GetString(bytes);

}

In these two methods, we are encoding a string as a Base64 encoded string, and we
are also decoding strings from Base64 to UTF8.

6. Add the GetDistriutedCacheString method:

private string GetDistributedCacheString()

{

 string data = _distributedCache.GetString

 (“StringValue”);

 if (data == null)

 {

 data = Base64Encode($”Hello, World!

 {DateTime.UtcNow.ToLocalTime()}”);

 _distributedCache.Set(“StringValue”,

 Convert.FromBase64String(data),

 new DistributedCacheEntryOptions()

 {

 AbsoluteExpiration

 = DateTime.UtcNow.AddMinutes(10),

 });

 data = Base64Decode(data);

 }

return data;

}

Building a responsive UI with ASP.NET 477

In this code, we obtain string data from the cache. If it exists, then we return it. If it
does not exist, then we save the Base64 encoded version of the string to the cache
with an absolute expiry being set and then return the Base64 decoded version of the
string as a UTF encoded string.

7. Update the HomeController.Index method, as shown here:

[HttpGet]

public string Index()

{

DateTime memoryCacheTime = GetMemoryCacheTime();

string data = GetDistributedCacheString();

return $”Current Time: {DateTime.UtcNow.ToLocalTime()}

 \nMemory Cache Time: {memoryCacheTime}

 \nDistributed Cache String: {data}”;

}

This code obtains in-memory cache and distributed cache stored data and outputs
it to the user, showing the current time, the in-memory cached time, and the data
stored in the distributed cache.

8. Run the program and navigate to https://localhost:5001. You should see
the following output:

Current Time: 12/07/2021 21:05:59

Memory Cache Time: 12/07/2021 21:05:59

Distributed Cache String: Hello, World! 12/07/2021

21:05:59

We can see that the memory cached time and distributed cache string have both just
been added to the cache because they are the same as the current time. Now, refresh
your browser. You should see that both cached values are older than the current
time as shown:

Current Time: 12/07/2021 21:08:13

Memory Cache Time: 12/07/2021 21:05:59

Distributed Cache String: Hello, World! 12/07/2021

21:05:59

It is plain to see that both cached values already

existed in the cache, since they are older than the

current time.

478 Responsive User Interfaces

In this and the previous section, you have seen how easy it is to add in-memory and
distributed caching to our application. Both forms of caching can be really useful in
improving the performance of your ASP.NET web applications. In the next section, we
will look at how to update a small section of the currently displayed page using AJAX.

Using AJAX to update part of the currently displayed
page
In this section, we will use AJAX to update a part of a page that is currently being
displayed. This saves us from having to load the whole page. Let’s start writing our
AJAX example:

1. Right-click on the Controllers folder. From the context menu, select Add |
Controller…. Then, select MVC Controller – Empty.

2. Call the new controller AjaxController and open the class.
3. Update the controller by adding the following method:

[Route(“Ajax/Demo”)]

public IActionResult AjaxDemo()

{

 return new JsonResult(“Ajax Demo Result”);

}

This method when called will return a JSON result, which in our case is a simple
string.

4. Right-click on the Index method and select Add View. This will create a view for
the Ajax controller called index.cshtml.

5. Update the Views/Ajax/index.cshtml file with the following HTML and
JavaScript code:

<!DOCTYPE html>

<html>

 <head>

 <meta name=”viewport” content=”width=device-

 width” />

 <title>Ajax Example</title>

 </head>

 <body>

 <fieldset>

Building a responsive UI with ASP.NET 479

 <legend>Ajax Demonstration</legend>

 <form>

 <input type=”button” value=”Ajax

 Demonstration” id=”ajaxDemonstration

 Button” />

 </form>

 </fieldset>

 <script

 src=”https://code.jquery.com/jquery-

 3.6.0.slim.min.js”

 integrity=”sha256-u7e5khyithlIdTpu22P

 HhENmPcRdFiHRjhAuHcs05RI=”

 crossorigin=”anonymous”

 >

 </script>

 <script>

 $(document).ready(function() {

 $(‘#ajaxDemonstrationButton’)

 .click(function() {

 $.ajax({

 type: ‘GET’,

 url: ‘/Ajax/Demo’,

 success: function (result) {

 $(‘#ajaxDemoResult’)

 .html(result);

 }

 });

 });

 });

 </script>

 </body>

</html>

480 Responsive User Interfaces

We have an HTML form. That form has a button that, when pressed, will execute
JavaScript that will retrieve AJAX data by executing our AjaxDemo action method.
This will result in our JSON string being displayed on the page.

6. Run the project and navigate to http://localhost:5001/Ajax. You should
see the following:

Figure 12.5 – The AJAX demo before AJAX is retrieved
As you can see, our page is loaded without our JSON string. Now, click the Ajax
Demonstration button. You now see the following:

Figure 12.6 – The AJAX demo displaying the JSON string retrieved using AJAX
After clicking the button, we can see that the AJAX action retrieved our JSON string
and displayed it on the page without a complete page load.

We have seen how to update a portion of a page using AJAX, and before that, we saw how
to implement in-memory and distributed caching. In the next section, we will look at how
to implement WebSockets.

Building a responsive UI with ASP.NET 481

Implementing WebSockets
In this section, we will be implementing WebSockets. You may have heard of
WebSockets, but what are they? A WebSocket is a full-duplex communication protocol
for communication over a single TCP connection. To find out more about the WebSocket
specification, you can look up the IETF RFC 6455 from 2011 (https://www.
rfc-editor.org/rfc/rfc6455.txt).

What do we use WebSockets for? Well, we can use them to open a single two-way
interactive session between browsers and servers. That way, we can negate server polling,
send messages to a server, and receive responses via events. Thus, making our applications
event-driven.

In our WebSockets demonstration, we will click a button. It will open a WebSocket, send a
message, receive a response, and then close the connection. The communication between
our browser and the server will be output to our web page. So, let’s get started with writing
our WebSocket example:

1. Add a new controller called WebSocketsController.
2. Right-click the Index method and select Add View.
3. Update the Views/WebSockets/Index.cshtml file as follows:

<script type = “text/javascript”>

 function WebSocketExample (){

 var socket = new WebSocket(“wss://

 javascript.info/article/websocket/

 demo/hello”);

 var messages = document.getElementById

 (‘messages’)

 var innerHTML = messages.innerHTML;

 socket.onopen = function(e) {

 innerHTML += ‘<p>[open] Connection

 established</p>’;

 messages.innerHTML += innerHTML;

 innerHTML += ‘<p>Sending to server</p>’;

 messages.innerHTML += innerHTML;

 socket.send(‘WebSocket message!’);

 };

https://www.rfc-editor.org/rfc/rfc6455.txt
https://www.rfc-editor.org/rfc/rfc6455.txt

482 Responsive User Interfaces

 socket.onmessage = function(event) {

 innerHTML += `<p>[message] Data received

 from server: ${event.data}</p>`;

 };

 socket.onclose = function(event) {

 if (event.wasClean) {

 innerHTML += `<p>[close] Connection

 closed cleanly, code=${event.code}

 reason=${event.reason}</p>`;

 messages.innerHTML = innerHTML;

 } else {

 // e.g. server process killed or network down

 // event.code is usually 1006 in this case

 innerHTML += ‘<p>[close] Connection died</p>’;

 messages.innerHTML = innerHTML;

 }

 };

 socket.onerror = function(error) {

 innerHTML += `<p>[error]

 ${error.message}</p>`;

 messages.innerHTML = innerHTML;

 };

 }

</script>

<p>Click the following button to see the function in

 action</p>

<input type = “button” onclick = “WebSocketExample()”

 value = “Display”>

<p id=”messages” onload=”WebSocketExample()”></p>

Building a responsive UI with ASP.NET 483

When a WebSocket is opened via the button click, the messages paragraph is
updated with messages, and then a message is sent to the server. When the server
responds, the messages paragraph is then updated to inform the user that the server
has responded. If an error occurs, then a message is displayed to the user. The
WebSocket is then closed and a message is displayed on the page.

4. Run the code and navigate to http://localhost:5001/WebSockets. Click
on the button, and you should end up with the following:

Figure 12.7 – The end result of clicking on the button and executing our WebSocket example

There is not that much code to WebSockets. In this example, we have sent a simple
message and received a response. All our code to do this exists in the CSHTML file of our
view. In the next section, we will look at writing a real-time chat program using SignalR.

484 Responsive User Interfaces

Implementing a real-time chat application using
SignalR
In this section, we will learn how to write real-time functionality in an ASP.NET web
application using SignalR. We will demonstrate SignalR in action by writing a simple chat
application. We will now begin writing the application:

1. Right-click the project and select Add | Client-Side Library from the context menu,
and fill in the details as shown in Figure 12.8. Then, click the Install button:

Figure 12.8 – The Add Client-Side Library configured to install SignalR

2. Copy the wwwroot/lib/microsoft/signalr library and paste it into the
wwwroot/js folder.

3. Add a new controller called SignalRController.
4. Add a folder called Hubs under the main project root.
5. Add a class to the Hubs folder called ChatHub. Then, update the ChatHub class,

as shown here:

public class ChatHub : Hub

{

 public async Task SendMessage(

Building a responsive UI with ASP.NET 485

 string user, string message

)

 {

 await Clients.All

 .SendAsync(

 “ReceiveMessage”, user, message

);

 }

}

We have our SignalR hub class in place, and our SendMessage method sends a
message to the specified user asynchronously.

6. Right-click on the Index method in the SignalRController class and select
Add View from the context menu.

7. In the Views/SignalR/Index.cshtml file, replace the existing contents with
the following code:

@page

<div class=”container”>

<div class=”row”> </div>

 <div class=”row”>

 <div class=”col-2”>User</div>

 <div class=”col-4”>

 <input type=”text”

 id=”userInput” />

 </div>

 </div>

 <div class=”row”>

 <div class=”col-2”>Message</div>

 <div class=”col-4”>

 <input type=”text”

 id=”messageInput” />

 </div>

 </div>

 <div class=”row”> </div>

 <div class=”row”>

 <div class=”col-6”>

486 Responsive User Interfaces

 <input type=”button”

 id=”sendButton” value=”Send Message” />

 </div>

 </div>

</div>

<div class=”row”>

<div class=”col-12”>

 <hr />

 </div>

</div>

<div class=”row”>

<div class=”col-6”>

 <ul id=”messagesList”>

 </div>

</div>

<script src=”~/js/signalr/dist/browser/signalr.js”>

 </script>

<script src=”~/js/chat.js”></script>

We have put together a chat UI. The script uses SignalR. All we need to do now is
add our JavaScript that makes our UI interactive.

8. In the wwwroot/js folder, add a file called chat.js with the following code:

“use strict”;

var connection = new signalR.HubConnectionBuilder()

 .withUrl(“/chatHub”).build();

document.getElementById(“sendButton”).disabled = true;

connection.on(“ReceiveMessage”, function (user,

 message) {

 var li = document.createElement(“li”);

 document.getElementById(“messagesList”)

 .appendChild(li);

 li.textContent = `${user} says ${message}`;

});

connection.start().then(function () {

 document.getElementById(“sendButton”)

 .disabled = false;

Building a responsive UI with ASP.NET 487

}).catch(function (err) {

 return console.error(err.toString());

});

document.getElementById(“sendButton”)

 .addEventListener(“click”, function (event) {

 var user = document

 .getElementById(“userInput”).value;

 var message = document

 .getElementById(“messageInput”).value;

 connection.invoke(

 “SendMessage”, user, message

).catch(function (err) {

 return console.error(err.toString());

 });

 event.preventDefault();

 });

We have added JavaScript that makes our UI interactive. This code manages the
sending of chat messages between users.

9. In the Program class, add the following services:

services.AddRazorPages();

services.AddSignalR();

This code adds SignalR to our available services so that we can pass SignalR requests
to SignalR.

Note
If using the new minimal template, the code is builder.Services.
AddRazorPages(); builder.Services.AddSignalR();.

10. Update the Program class to include the mapped route to our ChatHub:

app.MapHub<ChatHub>(“/chatHub”);

We have included the route to our ChatHub so that our chat application knows
how to handle incoming requests.

488 Responsive User Interfaces

11. Run the code and navigate to https://localhost:5001/SignalR. You will
need two browser instances side by side. Enter usernames and messages in each
browser and click on the Send Message button. Each time you enter text, it will
appear on the receiver’s chat page, as you can see here:

Figure 12.9 – Our SignalR application in action

Building responsive UIs with .NET MAUI 489

It was fairly straightforward setting up and running our SignalR. As you can see, SignalR
is an excellent choice for real-time communication, and I am sure you will be able to take
this knowledge further in the web applications you write. That concludes our work on
ASP.NET in this chapter. So, let’s now move on to look at .NET MAUI in the next section.

Building responsive UIs with .NET MAUI
Microsoft .NET MAUI is the new version of Xamarin.Forms. There have been some
significant changes between Xamarin.Forms version 5.0 and .NET MAUI (Xamarin.
Forms version 6.0). The biggest change in MAUI has been to combine the Android, iOS,
and macOS projects into a main project. While the code specific to Windows still resides
in its own project, Microsoft is working to include the Windows code in the main project.
This will lead to us having one single project for writing cross-platform applications using
C# and XAML. Let’s have a look at some of the other improvements to building cross-
platform applications using .NET MAUI.

Note
If you are using an early version of MAUI, to run the Windows project, you will
need to set the Windows project as the startup project and deploy the project.
Once the project is deployed, you can run the application from the Windows
start menu.

Layouts
Another significant change made in .NET MAUI is that the original layouts used
by Xamarin.Forms projects have been moved to Microsoft.Maui.Controls.
Compatibility namespace. By default, MAUI will use new layouts. These layouts are
based on a new LayoutManager that has been written for performance, consistency,
and maintainability. The new layouts are Grid, FlexLayout, and StackLayout
(HorizontalStackLayout and VerticalStackLayout). Microsoft encourages
you to select the stack layout that best suits your needs. You are also encouraged to replace
legacy layouts with new layouts.

The default spacing values for the new layouts have been standardized to the value of 0.
Having these values as 0 sets the expectation that you will set your own preferred values
to meet your design requirements. It is best to set these values in your global styles as
follows:

<ResourceDictionary>

 <Style TargetType=”StackLayout”>

490 Responsive User Interfaces

 <Setter Property=”Spacing” Value=”8”/>

 </Style>

 <Style TargetType=”Grid”>

 <Setter Property=”ColumnSpacing” Value=”8”/>

 <Setter Property=”RowSpacing” Value=”8”/>

 </Style>

</ResourceDictionary>

Let’s move on to look at accessibility improvements.

Accessibility
Microsoft regularly meets with developers who are heavily invested in making applications
that meet the highest accessibility rating. This led Microsoft to remove the TabIndex and
IsTabStop properties, as they ended up being confusing and not meeting accessibility
needs. For better accessibility, you can improve a screen reader’s ability to know the order
of reading a UI by implementing a thoughtful design. If you need to take control over the
order of UI components, Microsoft recommends that you use the SemanticOrderView
component.

SetSemanticFocus and Announce
Screen readers are an essential part of an application that is accessible and friendly. To aid
these applications’ performance in being able to read the correct components, there is a
new SemanticExtensions class. As part of this class, there is a new method called
SetSematicFocus. This method enables the setting of a screen reader’s focus to a
specific element.

Note
At the time of writing, SetSemanticFocus and Announce are only
available for iOS, Android, and Mac Catalyst.

Here is a XAML example of setting semantic focus:

<VerticalStackLayout>

 <Label

 Text=”SemanticExtensions:”

 TextColor=”Black”

 FontAttributes=”Bold”

Building responsive UIs with .NET MAUI 491

 FontSize=”14”

 Margin=”0,8”/>

 <Button

 Text=”Semantic focus is applied to the label that

 follows upon the button being pressed.”

 FontSize=”12”

 Clicked=”LabelFocusButton_Clicked”/>

 <Label

 x:Name=”SomeLabel”

 Text=”Hello, I am able to receive semantic focus!”

 FontSize=”12”/>

</VerticalStackLayout>

In this XAML, we have an instruction label and a button for the user to press. When the
button is pressed, the click event will set the semantic focus to semanticFocusLabel.
Here is the click event code:

private void LabelFocusButton_Clicked(object sender,

 EventArgs e)

{

 SomeLabel.SetSemanticFocus();

}

The following code enables the screen reader to make an announcement:

SemanticScreenReader.Announce(

 “Make your applications accessible to MAUI users!”

);

Another accessibility addition is automatic font scaling.

Font scaling
By default, all components now have automatic font scaling, and it is enabled by
default. That means that when your users change their text scaling on the various
platforms, your application’s text will scale to their chosen settings automatically.
You can turn automatic font scaling off for control with the following markup:
FontAutoScalingEnabled=”False”. Changing the attribute to True or removing
it will turn font auto-scaling back on.

492 Responsive User Interfaces

BlazorWebView
Using BlazorWebView, you can host Blazor websites in your Microsoft MAUI
applications. This enables your Blazor website to make use of native platform functionality
and various user controls. You can add BlazorWebView to a XAML page and point it to
the root of your Blazor application:

<BlazorWebView HostPage=”wwwroot/index.html”

 Services=”{StaticResource Services}”>

 <BlazorWebView.RootComponent>

 <RootComponent Selector=”#app”

 ComponentType=”{x:Type local:Main}” />

 </BlazorWebView.RootComponent>

</BlazorWebView>

As you can see from the XAML, the root of our Blazor application is wwwroot/index.
html. In the next section, we will take a look at WinUI 3.

Note
As of June 20, 2022, MAUI is generally available, but to develop MAUI
applications, you will need to install a .NET 2022 preview.

Building a responsive UI with MAUI
In this section, we will build a simple responsive UI using MAUI. Until MAUI is included
with Visual Studio 2022, you will need to ensure you use Visual Studio 2022 Preview:

1. Start a new .NET MAUI app and call it CH12_ResponsiveMAUI.
2. Add a new folder called Api.
3. In the Api folder, add a class called PropertyChangedNotifier and replace

its contents with the following code:

namespace CH12_ResponsiveMAUI.Api

{

 using System.ComponentModel;

 using System.Runtime.CompilerServices;

 public class PropertyChangeNotifier :

 INotifyPropertyChanged

Building a responsive UI with MAUI 493

 {

 public event PropertyChangedEventHandler

 PropertyChanged;

 protected void OnPropertyChanged

 ([CallerMemberName] string propertyName =

 null)

 {

 PropertyChanged?.Invoke(this, new

 PropertyChangedEventArgs

 (propertyName));

 }

 }

}

This code is a base class that implements the INotifyPropertyChanged
interface.

4. Add a new folder called Data.
5. Add a new class to the Data folder called BaseEntity with the following

properties:

public int Id { get; set; }

public DateTime CreatedDate { get; set; }

public DateTime ModifiedDate { get; set; }

These are base properties for our entities that will inherit this class.
6. Add a new interface to the Data folder called IRepository and replace the

class with the following code:

public interface IRepository<T> where T : BaseEntity

{

 T GetById(int id);

 T FirstOrDefault(Func<T, bool> query);

 void Add(T entity);

 void Update(T entity);

 void Remove(T entity);

 List<T> GetAll();

 List<T> Filter(Func<T, bool> query);

494 Responsive User Interfaces

 int Count();

 int FilteredCount(Func<T, bool> query);

}

This interface will be implemented by all our repositories.
7. Add a class called BaseRepository to the Data folder and update the class

with the following code:

public class BaseRepository<T> : IRepository<T> where

 T : BaseEntity

{

 protected ICollection<T> Context;

 public BaseRepository(ICollection<T> context)

 {

 if (context == null)

 throw new ArgumentNullException

 (“context”);

 Context = context;

 }

}

This class is a generic base repository that implements the IRepository interface.
The context for storing data is of type ICollection, and we set Context to the
collection passed in as a parameter.

8. Add the Add method:

public void Add(T entity)

{

Context.Add(entity);

}

This code adds an entity to our collection.
9. Add the Count method:

public int Count()

{

if (Context != null)

 return Context.Count;

return 0;

Building a responsive UI with MAUI 495

}

This code returns the count of all the entities in our collection.
10. Add the Filter method:

 public List<T> Filter(Func<T, bool> query)

{

return Context.Where(query).ToList();

}

This code takes a query and returns a filtered list of items.
11. Add the FilteredCount method:

public int FilteredCount(Func<T, bool> query)

{

 return Context.Where(query).Count();

}

This code returns the items in our filtered list.
12. Add the FirstOrDefault method:

public T FirstOrDefault(Func<T, bool> query)

{

 return Context.Where(query).FirstOrDefault();

}

This method returns the first record to match our query. If there is no match, then
the default value is returned instead.

13. Add the GetAll method:

public List<T> GetAll()

{

return Context.ToList();

}

The method returns all the items in our list.
14. Add the GetById method:

public T GetById(int id)

{

return Context.Where(t => t.Id == id)

496 Responsive User Interfaces

 .FirstOrDefault();

}

This method gets an item from the list, as identified by its ID number.
15. Add the Remove method:

public void Remove(T entity)

{

Context.Remove(entity);

}

This method removes an entity from the collection.
16. Add the Update method:

public void Update(T entity)

{

T item = Context.FirstOrDefault(t => t.Id ==

 entity.Id);

int index = Context.ToList().IndexOf(item);

if (index != -1)

 Context.ToList()[index] = entity;

}

This method updates an entity in the collection.
17. Add a new class to the Data folder and call it PeopleRepository. Then,

update the class definition as follows:

internal class PeopleRepository : BaseRepository

 <Person>

{

public PeopleRepository(ICollection<Person> context) :

 base(context)

{

}

}

This class creates a new repository of type Person.

Building a responsive UI with MAUI 497

18. Add a new folder with a class called Person. Then, update the class as follows:

public class Person : BaseEntity

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

 }

This class inherits our BaseEntity class and adds the properties FirstName and
LastName.

19. Add a new folder called ViewModels and a new class called ViewModelBase.
Update the class definition as shown:

public class ViewModelBase<T> : PropertyChangeNotifier

{

bool _isRefreshing;

public ObservableCollection<T> Entities { get; private

 set; } = new ObservableCollection<T>();

public bool IsRefreshing

{

 get { return _isRefreshing; }

 set

 {

 _isRefreshing = value;

 OnPropertyChanged();

 }

 }

}

This class is the base view model class for all our view models. It can be cast to any
type, and it implements PropertyChangeNotifer.

20. Add PeopleViewModel:

 public class PeopleViewModel :

 ViewModelBase<Person>

 {

 public PeopleViewModel()

498 Responsive User Interfaces

 {

 SeedPeopleRepository();

 }

 private void SeedPeopleRepository()

 {

 Entities.Add(new Person { Id = 1,

 FirstName = “Person”, LastName = “One”,

 CreatedDate = DateTime.Now, ModifiedDate =

 DateTime.Now });

 Entities.Add(new Person { Id = 2,

 FirstName = “Person”, LastName = “Two”,

 CreatedDate = DateTime.Now, ModifiedDate =

 DateTime.Now });

 Entities.Add(new Person { Id = 3,

 FirstName = “Person”, LastName = “Three”,

 CreatedDate = DateTime.Now, ModifiedDate =

 DateTime.Now });

 Entities.Add(new Person { Id = 4,

 FirstName = “Person”, LastName = “Four”,

 CreatedDate = DateTime.Now, ModifiedDate =

 DateTime.Now });

 Entities.Add(new Person { Id = 5,

 FirstName = “Person”, LastName = “Five”,

 CreatedDate = DateTime.Now, ModifiedDate =

 DateTime.Now });

 Entities.Add(new Person { Id = 6,

 FirstName = “Person”, LastName = “Six”,

 CreatedDate = DateTime.Now, ModifiedDate =

 DateTime.Now });

 Entities.Add(new Person { Id = 7,

 FirstName = “Person”, LastName = “Seven”,

 CreatedDate = DateTime.Now, ModifiedDate =

 DateTime.Now });

 Entities.Add(new Person { Id = 8,

 FirstName = “Person”, LastName = “Eight”,

Building a responsive UI with MAUI 499

 CreatedDate = DateTime.Now, ModifiedDate =

 DateTime.Now });

 Entities.Add(new Person { Id = 9,

 FirstName = “Person”, LastName = “Nine”,

 CreatedDate = DateTime.Now, ModifiedDate =

 DateTime.Now });

 Entities.Add(new Person { Id = 10,

 FirstName = “Person”, LastName = “Ten”,

 CreatedDate = DateTime.Now, ModifiedDate =

 DateTime.Now });

 Entities.Add(new Person { Id = 11,

 FirstName = “Person”, LastName = “Eleven”,

 CreatedDate = DateTime.Now, ModifiedDate =

 DateTime.Now });

 Entities.Add(new Person { Id = 12,

 FirstName = “Person”, LastName = “Twelve”,

 CreatedDate = DateTime.Now, ModifiedDate =

 DateTime.Now });

 Entities.Add(new Person { Id = 13,

 FirstName = “Person”, LastName =

 “Thirteen”, CreatedDate = DateTime.Now,

 ModifiedDate = DateTime.Now });

 Entities.Add(new Person { Id = 14,

 FirstName = “Person”, LastName =

 “Fourteen”, CreatedDate = DateTime.Now,

 ModifiedDate = DateTime.Now });

 Entities.Add(new Person { Id = 15,

 FirstName = “Person”, LastName =

 “Fifteen”, CreatedDate = DateTime.Now,

 ModifiedDate = DateTime.Now });

 Entities.Add(new Person { Id = 16,

 FirstName = “Person”, LastName =

 “Sixteen”, CreatedDate = DateTime.Now,

 ModifiedDate = DateTime.Now });

 Entities.Add(new Person { Id = 17,

 FirstName = “Person”, LastName =

500 Responsive User Interfaces

 “Seventeen”, CreatedDate = DateTime.Now,

 ModifiedDate = DateTime.Now });

 Entities.Add(new Person { Id = 18,

 FirstName = “Person”, LastName =

 “Eighteen”, CreatedDate = DateTime.Now,

 ModifiedDate = DateTime.Now });

 Entities.Add(new Person { Id = 19,

 FirstName = “Person”, LastName =

 “Ninetenn”, CreatedDate = DateTime.Now,

 ModifiedDate = DateTime.Now });

 Entities.Add(new Person { Id = 20,

 FirstName = “Person”, LastName = “Twenty”,

 CreatedDate = DateTime.Now, ModifiedDate =

 DateTime.Now });

 }

 }

This code seeds our collection with people.
21. Add a new page to the root of the project called SplashPage:

public partial class SplashPage : ContentPage,

 INotifyPropertyChanged

{

 Timer _timer;

 double _progress;

 public event PropertyChangedEventHandler

 PropertyChanged;

 public SplashPage()

 {

 InitializeComponent();

 _timer = new Timer(new TimerCallback((s) =>

 ReportProgress()), null, TimeSpan.Zero,

 TimeSpan.FromSeconds(3));

 }

 ~SplashPage() => _timer.Dispose();

}

Building a responsive UI with MAUI 501

Our SplashPage is a loading page that will display progress to the user in the
form of a progress bar and label. The class inherits from the Content page and
implements the INotifyPropertyChanged event. We have a timer whose
callback is a method for reporting loading progress.

22. Add the ReportProgress method:

 private void ReportProgress()

 {

 _timer.Dispose();

 Task.Run(() =>

 {

 // Run code here

 for (int i = 0; i <= 100; i++)

 {

 Thread.Sleep(250);

 _progress = (double)i / 100;

 SafeInvokeInMainThread

 (UpdateProgress);

 }

 SafeInvokeInMainThread(LoadMainPage);

 });

 }

This method stops the timer and runs the code to update the application loading
progress status. It uses a safe invoke method that will update the splash screen.

23. Add the LoadMainPage method:

private void LoadMainPage()

{

Application.Current.MainPage = new AppShell(new

 BaseEntity() { Id = 1, CreatedDate = DateTime.Now,

 ModifiedDate = DateTime.Now });

Shell.Current.GoToAsync(“//main”);

}

502 Responsive User Interfaces

This method sets the application’s MainPage to AppShell and passes in a
parameter of type BaseEntity.

24. Add the SaveInvokeInMaInThread method:

private void SafeInvokeInMainThread(Action action)

{

 if (DeviceInfo.Platform ==

 DevicePlatform.WinUI)

 {

 Application.Current.Dispatcher

 .Dispatch(action);

 }

 else

 {

 MainThread.BeginInvokeOnMainThread

 (action);

 }

}

This code performs a safe invocation on the main thread to update the UI. The
method checks the device the application is running on before calling the correct
method for the device.

25. Add the UpdateProgress method:

private void UpdateProgress()

 {

 LoadingProgressBar.ProgressTo(_progress, 500,

 Easing.Linear);

 LoadingProgressLabel.Text = $”Progress Update:

 Performing load operation {(int)

 (_progress * 100)} of 100...”;

}

This method updates the progress bar and the label.
26. Update the SplashPage XAML, as shown here:

<?xml version=”1.0” encoding=”utf-8” ?>

<ContentPage xmlns=”

 http://schemas.microsoft.com/dotnet/2021/maui”

Building a responsive UI with MAUI 503

 xmlns:x=”http://schemas.microsoft.com/winfx/

 2009/xaml”

 x:Class=”CH12_ResponsiveMAUI.SplashPage”

 Title=”SplashPage”>

 <VerticalStackLayout VerticalOptions=”Center”>

 <StackLayout HorizontalOptions=”Center”

 VerticalOptions=”Center”>

 <Label FontSize=”32” Text=”Responsive

 MAUI Example” />

 <Label x:Name=”LoadingProgressLabel”

 FontSize=”12” Text=”Loading...” />

 <ProgressBar x:Name=”LoadingProgressBar”

 Progress=”0” />

 </StackLayout>

 </VerticalStackLayout>

</ContentPage>

This markup contains our UI definition that will be updated by the code when it
runs.

27. Update MainPage by replacing the current XAML with the following XAML:

<?xml version=”1.0” encoding=”utf-8” ?>

<ContentPage xmlns=

 “http://schemas.microsoft.com/dotnet/2021/maui”

 xmlns:x=”http://schemas.microsoft.com/winfx/

 2009/xaml”

 x:Class=”CH12_ResponsiveMAUI.MainPage”>

 <ScrollView>

 <HorizontalStackLayout

 Spacing=”25”

 Padding=”30,0”

 VerticalOptions=”Center”>

 <StackLayout Margin=”20”

 HorizontalOptions=”Start”>

 <CollectionView x:Name=

504 Responsive User Interfaces

 “collectionView” ItemsSource=”{Binding

 Entities}”>

 <CollectionView.ItemTemplate>

 <DataTemplate>

 <Grid Padding=”10”>

 <Grid.RowDefinitions>

 <RowDefinition

 Height=”Auto” />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition

 Width=”Auto” />

 <ColumnDefinition

 Width=”Auto” />

 <ColumnDefinition

 Width=”Auto” />

 <ColumnDefinition

 Width=”Auto” />

 <ColumnDefinition

 Width=”Auto” />

 </Grid.ColumnDefinitions>

 <Label Grid.Column=”1”

 Text=”{Binding Id}”

 FontAttributes=”Bold” />

 <Label Grid.Column=”2”

 Text=”{Binding

 FirstName}”

 FontAttributes=”Bold” />

 <Label Grid.Column=”3”

 Text=”{Binding LastName}”

 FontAttributes=”Bold” />

 <Label Grid.Column=”4”

 Text=”{Binding

 CreatedDate}”

 FontAttributes=”Bold” />

 <Label Grid.Column=”5”

Building a responsive UI with MAUI 505

 Text=”{Binding

 ModifiedDate}”

 FontAttributes=”Bold” />

 </Grid>

 </DataTemplate>

 </CollectionView.ItemTemplate>

 </CollectionView>

 </StackLayout>

 <StackLayout HorizontalOptions=”End”>

 <Image

 Source=”dotnet_bot.png”

 SemanticProperties.Description=”Cute

 dot net bot waving hi to you!”

 HeightRequest=”200”

 HorizontalOptions=”Center” />

 <Label

 Text=”Hello, World!”

 SemanticProperties.HeadingLevel=

 “Level1”

 FontSize=”32”

 HorizontalOptions=”Center” />

 <Label

 Text=”Welcome to .NET Multi-platform

 App UI”

 SemanticProperties.HeadingLevel=

 “Level2”

 SemanticProperties.Description=

 “Welcome to dot net Multi platform

 App U I”

 FontSize=”18”

 HorizontalOptions=”Center” />

 <Button

506 Responsive User Interfaces

 x:Name=”CounterBtn”

 Text=”Click me”

 SemanticProperties.Hint=”Counts the

 number of times you click”

 Clicked=”OnCounterClicked”

 HorizontalOptions=”Center” />

 </StackLayout>

 </HorizontalStackLayout>

 </ScrollView>

</ContentPage>

This code updates the original source by adding a table of people.
28. Add a PeopleRepository class variable and update the constructor of the

MainPage class, as shown here:

 PeopleRepository _peopleRepository;

 public MainPage()

 {

 InitializeComponent();

 BindingContext = new PeopleViewModel();

}

This code modifies our MainPage by setting its BindingContext to
PeopleViewModel.

29. Run the code, and you should see the following screen:

Figure 12.10 – The splash page

Building a responsive UI with WinUI 3 507

The following screen is what you’ll see next:

Figure 12.11 – The main form with a table in a scroll view with a button that responds to clicks

We have managed to build a responsive splash screen that also populates a table and
responds to button clicks. That concludes our look at MAUI. We will now move on to
WinUI 3.

Building a responsive UI with WinUI 3
In this section, we will look at how to provide user feedback using the ProgressRing
component while performing a long-running operation in WinUI 3 applications. When
your users trigger a long-running operation that holds up the UI, it is a good idea to
provide user feedback until the operation completes. Let’s write a simple application that
simulates a long-running operation using the following steps:

1. Start a new WinUI3 application and call it CH12_ResponsiveWinUI3.
2. Open MainWindow.xaml and replace the existing XAML between the Window

tags with the following XAML:

<StackPanel VerticalAlignment=”Center”

 HorizontalAlignment=”Center”>

 <ProgressRing x:Name=”ProgressRingIndicator1”

 IsActive=”{x:Bind IsWorking, Mode=OneWay}”

 Visibility=”{x:Bind IsWorking, Mode=OneWay}”

 />

 <Button x:Name=”DoWorkButton” Content=”Do Work”

 Click=”DoWorkButton_Click” />

508 Responsive User Interfaces

 <TextBlock x:Name=”MessageTextBlock” />

</StackPanel>

We have used OneWay binding to bind our the ProgressRing class' IsActive
and Visibility properties to the IsWorking property.

3. In the code behind the class, implement the INotifyPropertyChanged
interface.

4. Add the following members to the class:

private DispatcherTimer _dispatcherTimer;

public event PropertyChangedEventHandler

 PropertyChanged;

private bool _isWorking;

_dispatcherTimer will be used to simulate a long-running operation. The
PropertyChanged event will be used to notify ProgressRing that the
IsWorking property has changed, and the _isWorking variable will be updated
to let ProgressRing know to either show or hide itself.

5. Add a method to raise the PropertyChanged event if it is not null:

private void NotifyPropertyChanged(string property)

{

if (PropertyChanged != null)

{

PropertyChanged(this,

 new PropertyChangedEventArgs(property));

}

}

When we set the IsWorking property, we call this method so that the
PropertyChanged event is raised.

6. Add the following three lines to the constructor:

_dispatcherTimer = new DispatcherTimer();

_dispatcherTimer.Interval = TimeSpan.FromSeconds(10);

_dispatcherTimer.Tick += DispatcherTimer_Tick;

These three lines instantiate our DispatcherTimer, set its interval to 10 seconds,
and add the Tick event handler.

Building a responsive UI with WinUI 3 509

7. We will now add the DispatcherTimer_Tick event handler:

private void DispatcherTimer_Tick(object sender,

 object e)

{

_dispatcherTimer.Stop();

_dispatcherTimer.Tick -= DispatcherTimer_Tick;

IsWorking = false;

MessageTextBlock.Text = “Work completed.”;

}

We stop the timer and remove the event handler to stop it from firing again and
being held in memory. Then, we set the IsWorking property to false, which
results in ProgressRing being hidden and made inactive. Then, we add a
message to MessageTextBlock.

8. Now, add the IsWorking property:

public bool IsWorking

{

get { return _isWorking; }

set

 {

 _isWorking = value;

 NotifyPropertyChanged(“IsWorking”);

}

}

9. When setting our property, we call the NotifyPropertyChanged method
that raises the PropertyChanged event to let ProgressRing know that the
property has changed.

10. Now, add the code for the button click:

private void DoWorkButton_Click(object sender,

 RoutedEventArgs e)

{

DoWorkButton.Visibility = Visibility.Collapsed;

510 Responsive User Interfaces

IsWorking = true;

_dispatcherTimer.Start();

}

We collapse our button, as it is no longer needed. Set the IsWorking property to
true, and start our DispatcherTimer.

11. Run the code. You should see a single button that says Do Work. Click on the
button. The button should disappear and be replaced by ProgressRing for 10
seconds. Then, ProgressRing should disappear and be replaced with the text
Work completed.

Now that we have concluded our look at responsive UIs, let’s summarize what we have
learned.

Summary
In this chapter, you learned how to work with various UI frameworks to make UIs
responsive. First, we looked at WinForms. With WinForms, we enabled DPI and long file
path awareness. We also ensured that despite running long background tasks, we could
page through data in a table and perform other UI operations, and we also added a splash
screen that updates with the loading progress.

With WPF, we managed to produce a window that has a long-running task that can be
canceled with progress indication. It also has a paged data table and button that, when
clicked, updates the click count label.

Then, we looked at memory caching and distributed caching in ASP.NET. We also used
AJAX to update part of the currently displayed page and looked at WebSockets and
SignalR. We implemented a real-time ASP.NET chat application using SignalR.

We then went on to look at MAUI. In particular, we looked at layouts, accessibility, and
BlazorWebView. Finally, we looked at WinUI 3 and how to provide user feedback when
a long-running process is taking place.

In the next chapter, we will be looking at distributed systems. But first, try answering
the questions in the next section, and then do some further reading to enhance your
knowledge of responsive UIs.

Questions 511

Questions
1. How can you make a WinForms application scale properly on high-DPI screens or

normal-DPI large screens?
2. How do you cope with long file paths on Windows?
3. How can you keep users engaged when your application takes a long time to start?
4. How can you keep an application responsive to user input when you have a long-

running process in operation?
5. What caching methods can you use to speed up access to resources?
6. How can you load only part of a web page?
7. Name two frameworks for performing network data transfer and real-time

networked communication?
8. Name three accessibility methods available in MAUI.
9. How do you include an existing Blazor web application in an MAUI project?
10. When your application is already loaded, and a user kicks off a long-running

operation, what controls can you use to provide user feedback so that users don’t
think your WinUI 3 application has crashed?

Further reading
• Which is best? WebSockets or SignalR: https://dotnetplaybook.com/

which-is-best-websockets-or-signalr/

• Why is SignalR/messagepack 2 times faster than gRPC/protobuf?: https://
github.com/grpc/grpc-dotnet/issues/812

• Tutorial: Get started with ASP.NET Core SignalR: https://docs.microsoft.
com/aspnet/core/tutorials/signalr?view=aspnetcore-
5.0&tabs=visual-studio

• WebSocket: https://javascript.info/websocket

• Migrate your app from Xamarin.Forms: https://docs.microsoft.com/
dotnet/maui/get-started/migrate

• Xamarin.Forms Made Easy: https://winstongubantes.blogspot.
com/2018/09/backgrounding-with-xamarinforms-easy-way.html

https://dotnetplaybook.com/which-is-best-websockets-or-signalr/
https://dotnetplaybook.com/which-is-best-websockets-or-signalr/
https://github.com/grpc/grpc-dotnet/issues/812
https://github.com/grpc/grpc-dotnet/issues/812
https://docs.microsoft.com/aspnet/core/tutorials/signalr?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/aspnet/core/tutorials/signalr?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/aspnet/core/tutorials/signalr?view=aspnetcore-5.0&tabs=visual-studio
https://javascript.info/websocket
https://winstongubantes.blogspot.com/2018/09/backgrounding-with-xamarinforms-easy-way.html
https://winstongubantes.blogspot.com/2018/09/backgrounding-with-xamarinforms-easy-way.html

512 Responsive User Interfaces

• Xamarin – Working with threads: https://lukealderton.com/blog/
posts/2016/october/xamarin-forms-working-with-threads/

• Creating Android emulators on Windows: https://docs.microsoft.com/
xamarin/android/get-started/installation/android-emulator/
device-manager?tabs=windows&pivots=windows

• Installing the Microsoft OpenJDK: https://docs.microsoft.com/
xamarin/android/get-started/installation/openjdk

• Single-project MSIX Packaging Tools for VS 2022: https://marketplace.
visualstudio.com/items?itemName=ProjectReunion.
MicrosoftSingleProjectMSIXPackagingToolsDev17

• Improving rendering performance with Blazor component virtualization:
https://www.daveabrock.com/2020/10/20/blazor-
component-virtualization/#:~:text=Improve%20
rendering%20performance%20with%20Blazor%20component%20
virtualization%20Use,the%20entire%20HTML%20tree%20loads%20
from%20the%20server.

• How to Reuse Xamarin.Forms Custom Renderers in .NET MAUI: https://www.
syncfusion.com/blogs/post/how-to-reuse-xamarin-forms-
custom-renderers-in-net-maui.aspx

• Announcing .NET MAUI Preview 7: https://devblogs.microsoft.com/
dotnet/announcing-net-maui-preview-7/

• .NET Multi-platform App UI: https://dotnet.microsoft.com/en-us/
apps/maui

https://lukealderton.com/blog/posts/2016/october/xamarin-forms-working-with-threads/
https://lukealderton.com/blog/posts/2016/october/xamarin-forms-working-with-threads/
https://docs.microsoft.com/xamarin/android/get-started/installation/android-emulator/device-manager?tabs=windows&pivots=windows
https://docs.microsoft.com/xamarin/android/get-started/installation/android-emulator/device-manager?tabs=windows&pivots=windows
https://docs.microsoft.com/xamarin/android/get-started/installation/android-emulator/device-manager?tabs=windows&pivots=windows
https://docs.microsoft.com/xamarin/android/get-started/installation/openjdk
https://docs.microsoft.com/xamarin/android/get-started/installation/openjdk
https://www.daveabrock.com/2020/10/20/blazor-component-virtualization/#:~:text=Improve%20rendering%20performance%20with%20Blazor%20component%20virtualization%20Use,the%20entire%20HTML%20tree%20loads%20from%20the%20server
https://www.daveabrock.com/2020/10/20/blazor-component-virtualization/#:~:text=Improve%20rendering%20performance%20with%20Blazor%20component%20virtualization%20Use,the%20entire%20HTML%20tree%20loads%20from%20the%20server
https://www.daveabrock.com/2020/10/20/blazor-component-virtualization/#:~:text=Improve%20rendering%20performance%20with%20Blazor%20component%20virtualization%20Use,the%20entire%20HTML%20tree%20loads%20from%20the%20server
https://www.daveabrock.com/2020/10/20/blazor-component-virtualization/#:~:text=Improve%20rendering%20performance%20with%20Blazor%20component%20virtualization%20Use,the%20entire%20HTML%20tree%20loads%20from%20the%20server
https://www.daveabrock.com/2020/10/20/blazor-component-virtualization/#:~:text=Improve%20rendering%20performance%20with%20Blazor%20component%20virtualization%20Use,the%20entire%20HTML%20tree%20loads%20from%20the%20server
https://www.syncfusion.com/blogs/post/how-to-reuse-xamarin-forms-custom-renderers-in-net-maui.aspx
https://www.syncfusion.com/blogs/post/how-to-reuse-xamarin-forms-custom-renderers-in-net-maui.aspx
https://www.syncfusion.com/blogs/post/how-to-reuse-xamarin-forms-custom-renderers-in-net-maui.aspx
https://devblogs.microsoft.com/dotnet/announcing-net-maui-preview-7/
https://devblogs.microsoft.com/dotnet/announcing-net-maui-preview-7/
https://dotnet.microsoft.com/en-us/apps/maui
https://dotnet.microsoft.com/en-us/apps/maui

13
Distributed Systems

In this chapter, you will learn about distributed applications and how you can improve
their performance. You will understand how to build performant applications using the
Command Query Responsibility Separation (CQRS) software design pattern, event
sourcing, and microservices. You will learn how to use cloud providers such as Microsoft
Azure to build scalable distributed solutions using Cosmos DB, Azure Functions, and the
open source Pulumi infrastructure tool.

In this chapter, we will cover the following topics:

• Implementing the CQRS design pattern: In this section, we will implement the
CQRS design pattern with a sample project that demonstrates the separation of
commands and queries.

• Implementing event sourcing: Many resources always show event sourcing
with CQRS. But in this section, we will write a sample project that demonstrates
pure event sourcing without CQRS. By doing this, you will know how to
implement CQRS and event sourcing individually and be able to combine them
to work together.

• Using Microsoft Azure for distributed systems: In this section, we will provide
a high-level overview of Azure Functions – specifically Durable Azure Functions
– for providing robust, secure, and scalable serverless code that performs well in
a distributed environment. We will also look at the difference between containers
and serverless, and when to use one over the other.

514 Distributed Systems

• Managing your cloud infrastructure with Pulumi: Managing Azure resources
can become unwieldy, especially when the number of microservices you deploy
increases. So, in this section, we will look at how Pulumi allows you to manage your
cloud infrastructure and resources using pure C# that you can include in your build,
test, and deploy pipelines.

By completing this chapter, you will gain the following skills:

• You will be able to separate commands and queries into different services.

• You will be able to persist state changes as sequences of state-changing events.

• You will be able to understand the difference between containers and serverless,
and you will be able to know when to use one over the other.

• You will understand the different types of Durable Azure Function types and
design patterns so that you can use them to build serverless functions.

• You will be able to manage your cloud using Pulumi.

Technical requirements
You’ll need the following components to follow along with this chapter and perform the
necessary programming tasks:

• Visual Studio 2022 or later

• This book’s source code: https://github.com/PacktPublishing/High-
Performance-Programming-in-CSharp-and-.NET/tree/master/
CH13

• Optional: A Microsoft Azure account

• Optional: A Pulumi subscription

Implementing the CQRS design pattern
In this section, we will look at the Command Query Responsibility Separation (CQRS)
design pattern. In simple terms, a command is a method that performs an action, while
a query is a method that returns data. Commands do not perform queries, and queries do
not perform commands. Commands can have separate models for queries. Now, let’s write
a simple console application that demonstrates how easy it is to implement this pattern,
which is used extensively in microservice development:

1. Start a new console application called CH13_CQRSPattern.

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH13
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH13
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH13

Implementing the CQRS design pattern 515

2. Add a new class called CQRSBasedClass.
3. Add the SleepCommand method:

public void SleepCommand(int milliseconds)

{

 Thread.Sleep(milliseconds);

}

Our SleepCommand method is an example of a command. It takes in a parameter
that is several milliseconds in length. A command is then executed that causes the
current thread to sleep for the number of milliseconds specified by the caller. This
particular command does not return a value.

4. Add the DateTimeQuery method:

public DateTime DateTimeQuery()

{

 return DateTime.Now;

}

Our DateTimeQuery method is an example of a query. It is a parameterless query,
although queries can have parameters. The query does not perform any commands.
It simply returns the current date and time to the caller.

5. In the Program class, add the ExecuteCommand method:

private static void ExecuteCommand()

{

 new CQRSBasedClass().SleepCommand(1000);

}

The ExecuteCommand method executes SleepCommand in our
CQRSBasedClass, which causes the current thread to sleep for 1 second.

6. Add the ExecuteQuery method:

private static DateTime ExecuteQuery()

{

 return new CQRSBasedClass().DateTimeQuery();

}

The ExecuteQuery method executes DateTimeQuery in our
CQRSBasedClass, which queries the current date and time and returns the value.

516 Distributed Systems

7. Update the Program.cs file, as follows:

 Console.WriteLine("Hello, World! This is the most

 simple example of CQRS in action.");

 ExecuteCommand();

 Console.WriteLine($"The current date and time is:

 {ExecuteQuery()}.");

We start our program by writing a message to the console. Then, we call
ExecuteCommand. Finally, we write a message to the console that includes the
current date and time that is returned by the call to ExecuteQuery.

As you can see, in its most basic form, the CQRS pattern is really simple. A command
performs an action and nothing else, while a query performs a query and nothing else.
We can shift commands into their own command class so that the only purpose of the
class is to execute commands. We can do the same with queries by placing them in their
own query class so that all the query class does is returns queries.

If you study this book’s source code, you will see that we have done this. We have a
CommandClass with a command called Sleep. We also have a QueryClass with
a query called Now. CQRS is the enabling pattern that’s used in microservice development.
It is often used in conjunction with message brokers, message buses, message sending
and receiving, domain modeling, domain events, event sourcing, eventual consistency,
separate read and write models, and domain-driven design (DDD). This is where people
tend to become lost. But even though the CQRS pattern is used alongside all these, the
pattern itself is very simple, and it enables these other patterns and technologies to gel
nicely together.

In terms of database operations, you can think of the add, edit, delete, and update
operations as commands, and you can think of select operations as queries.

Now that we have a simple understanding of the CQRS pattern, in the next section,
we will turn our attention to understanding and implementing event sourcing.

Implementing event sourcing
When you consider documents in a document store and records in a database, these are
normally a business’s point of truth. Their state is the source of truth.

Event sourcing record events become your source of truth rather than the state of data in
tables, or the state of documents in document stores.

So, instead of using the state as a point of truth, we can use recorded events as a source
of truth.

Implementing event sourcing 517

In the old days of programming, this was known as an audit trail. I remember working
on a database several years ago. It had an audit table. In that table, there was a record of
all the actions that were carried out on the database and by whom. We could tell when
data operations took place, what those data operations were, and who or what process
was carried out those data operations. Then, if anything went wrong with the database,
we could analyze that table and know which operation caused the resulting problems. To
store this information, we would use database triggers that fired on every add, update,
delete, and read operation. These triggers were events that fired upon a data operation
that recorded what data modifications had taken place, who made those modifications,
why they made the changes, and at what date and time those modifications took place.

In this section, we will look at event sourcing, which records events that become your
source of truth. Events allow you to understand how you arrived at a particular state at
a particular point in time.

An easy way to understand the benefits of event sourcing is to have a look at your bank
statement. When you receive your bank statement, you start with the balance that was
carried over from the previous month. Then, you see a list of transactions that took
place during the period covered by the statement, which consists of money entering
your account and money leaving your account. Each of these transactions is an event.
These events can be money transfer in, money transfer out, direct debit payment, interest
payment, standing order payment, bank charge payment, payment of goods, salary/wages
being paid in, and so forth.

When you consider this scenario, your bank statement shows how you came to have the
money come in and leave your account. But from a database point of view, just by looking
at the data, this is not so easy. When you look at the data, you usually have to write
a query that joins multiple tables in a relational database together to reveal the facts of
how the state of your account changed. But you don’t necessarily know the context that led
to those changes being made.

However, in the same scenario, when you store events, you are storing facts. These facts
are based on true events that happened in the past, and that is why they can be trusted.

As for transactional logs, they inform you of what state changes took place. However,
they don’t necessarily tell you why those state changes were made. On the other hand,
when you store events, they inform you of what state changes were made, and the reason
why those state changes were made.

518 Distributed Systems

Events are stored as aggregates in an append-only form. An aggregate is a consistency
guard. You can see the state changes and the context that led to those changes. This means
that you can revert the state to the last known consistent state at a particular point in time
by replaying events forward or backward. You can use the event log to provide an audit
trail. Information such as why and when can be very useful to various business functions,
such as senior management, marketing, finance, and resource planning, since event logs
are full of very valuable business information.

Going back to our example scenario, an event represents a fact that took place in our
banking domain. Each event in our banking system is a source of truth from which our
bank account’s current state is derived. Such facts are immutable business facts.

Our banking events will follow the normal methodology of providing state information,
metadata that provides contextual information, the date and time when it happened,
and other information that is necessary and appropriate.

Let’s look at an example of how we can aggregate events so that they arrive at a specific
state for our bank account:

• Events:

 � A dividend of £39 was issued by the investment firm to the customer at 12:43 A.M.
on June 12, 2021.

 � A dividend of £39 was paid into the customer’s bank account by the investment
firm at 12:45 A.M. on June 12, 2021.

• Events

 � A salary of £2,300 paid was into the customer’s bank account by the employer at
12:00 A.M. on July 25, 2021, using BACS.

 � A standing order of £230 was transferred from the customer’s bank account
into their savings account to build up an emergency stash at 09:11 A.M. on
July 26, 2021.

 � A direct debit of £432 was paid to the local authority for rent from the customer’s
bank account at 07:00 P.M. on July 25, 2021, using the relevant Android
banking app.

 � A direct debit of £103 was paid to the local authority for council tax at 08:29 P.M.
on July 26, 2021, using online banking.

 � £23.79 was paid for groceries to the merchant by the customer using contactless
payment at 09:35 P.M. on July 27, 2021.

Implementing event sourcing 519

As you can see from our banking scenario, when we use events as our fact-based points
of truth, we see the full context of where the money is coming from, where the money is
going, and by which method, what the amount is, and the precise date and time when it
takes place.

These events ensure the data is in a consistent state, that there is an audit trail, and that
valuable information is provided that allows business decisions to be made based on
trustworthy facts.

Continuing with our banking scenario, each bank account would have a stream and
unique identifier. All events that occur against that bank account will be recorded via
its stream. So, we end up with one stream per aggregate. In our banking scenario, our
aggregate is the group of events that take place against a specific bank account.

Event sourcing example project
In this section, we will write a simple event sourcing application that also provides
examples of usage. To implement the project, follow these steps:

1. Start a new .NET 6.0 console application and call it CH13_EventSourcing.
2. Add a public interface called IEvent with an empty method body. This is

a convenient interface for marking any object an event.
3. Add a new public interface called IRegisterable and add the following method:

void RegisterWithEventAggregator(IEventAggregator

 eventAggregator);

This method allows registerable objects to register themselves with an
event aggregator.

4. Add a new public interface called IEventAggregator and add the
following methods:

void Register(IRegisterable registerable);

void Register<T>(EventHandler<T> eventhandler) where

 T : IEvent;

void RaiseEvent(IEvent evt);

The Register method is used for registering objects of the IRegisterable
type with the event aggregator. The Register<T> method registers an event
handler of the T type for the specified object type. Finally, the RaiseEvent
executes the event that was passed in as a parameter.

520 Distributed Systems

5. Add a new class called EventHandler and replace its contents with the
following code:

namespace CH13_EventSourcing;

public delegate void EventHandler<T>(T evt) where T :

 IEvent;

This delegate defines our event handler, which is of the T type, for events of the
IEvent type.

6. Add a new class called SingleThreadedEventAggregator that implements
the IEventAggregator interface.

7. Add the following dictionary field to hold our event handlers:

IDictionary<Type, IList<EventHandler<IEvent>>>

 _eventHandlers;

This dictionary defines a list of event handlers of the IEvent type for objects
of a specified type.

8. Add the following constructor:

public SingleThreadedEventAggregator()

{

 _eventHandlers = new Dictionary<Type,

 IList<EventHandler<IEvent>>>();

}

Here, we instantiate our dictionary of event handlers.
9. Update the Register method, as shown here:

public void Register(IRegisterable registerable)

{

 registerable.RegisterWithEventAggregator(this);

}

This method registers our event aggregator with the registerable type that
was passed in.

10. Update the Register<T> method, as shown here:

public void Register<T>(EventHandler<T> eventHandler)

 where T : IEvent

{

Implementing event sourcing 521

 if (!_eventHandlers.ContainsKey(typeof(T)))

 {

 _eventHandlers[typeof(T)] = new

 List<EventHandler<IEvent>>();

 }

 var eventHandlerList = _eventHandlers[typeof(T)];

 eventHandlerList.Add(evt => eventHandler

 ((T)evt));

}

This method checks our dictionary to see if it contains a key of the specified type; if
it doesn’t, it adds one. Then, it creates a new event handler list of the specified type
and adds the event handler.

11. Update the RaiseEvent method:

public void RaiseEvent(IEvent evt)

{

 IList<EventHandler<IEvent>> eventHandlerList;

 if (_eventHandlers.TryGetValue(evt.GetType(),

 out eventHandlerList))

 {

 foreach (EventHandler<IEvent> eventHandler in

 eventHandlerList)

 {

 eventHandler.Invoke(evt);

 }

 }

}

This method gets a list of event handlers for the event that was passed in and loops
through them, invoking them.

12. Add a new class called MultiThreadedEventAggregator that implements the
IEventAggregator interface.

13. Add the following dictionary to the class:

IDictionary<Type, IList<EventHandler<IEvent>>>

 _eventHandlers;

This dictionary will hold a list of event handlers and their events.

522 Distributed Systems

14. Add the following constructor:

public MultiThreadedEventAggregator()

{

 _eventHandlers = new ConcurrentDictionary<Type,

 IList<EventHandler<IEvent>>>();

}

Our constructor initializes our list of event handlers. Notice that we are using
a concurrent dictionary to handle multi-threaded scenarios.

15. Add the following method:

public void Register(IRegisterable registerable)

{

 registerable.RegisterWithEventAggregator(this);

}

This method registers the event handlers of the registerable object with the
multi-threaded event aggregator.

16. Add the following Register method:

public void Register<T>(EventHandler<T> eventHandler)

 where T : IEvent

{

 if (!_eventHandlers.ContainsKey(typeof(T)))

 {

 _eventHandlers[typeof(T)] = new

 List<EventHandler<IEvent>>();

 }

 var eventHandlerList = _eventHandlers[typeof(T)];

 eventHandlerList.Add(evt => eventHandler((T)evt));

}

This method checks our dictionary to see if it contains a key of the specified type;
if it doesn’t, it adds one. Then, it creates a new event handler list of the specified type
and adds the event handler.

Implementing event sourcing 523

17. Add the RaiseEvent method:

public void RaiseEvent(IEvent evt)

{

 IList<EventHandler<IEvent>> eventHandlerList;

 if (_eventHandlers.TryGetValue(evt.GetType(), out

 eventHandlerList))

 {

 Parallel.ForEach(eventHandlerList,

 eventHandler =>

 {

 eventHandler.Invoke(evt);

 });

 }

}

This method loops through all our event handlers stored in the event handler list
and invokes them for the specified event that was passed in as an argument.

This is the completed base project. Now, let’s look at an example of using our event
sourcing code.

18. Add a folder called BankApp.
19. Add the following DividendPayment class to the BankApp folder:

internal class DividendPayment : IEvent

{

 public string From { get; set; }

 public string To { get; set; }

 public DateTime PaymentDate { get; set; }

 public Decimal Amount { get; set; }

}

This class defines our dividend payment event. This event provides information on
a dividend payment regarding who sent the payment, to whom the payment was
made, the date of the payment, and the amount of the payment.

524 Distributed Systems

20. Add the InvalidDateException class to the BankApp folder:

internal sealed class InvalidDateException : Exception

{

 public InvalidDateException() : base()

 {

 }

 public InvalidDateException(string? message)

 : base(message)

 {

 }

 public InvalidDateException(string? message,

 Exception? innerException) : base(message,

 innerException)

 {

 }

}

This class implements the System.Exception class and will be used to inform
others that an exception occurred due to an incorrect date.

21. Add the StandingOrderPayment class to the BankApp folder:

internal class StandingOrderPayment : IEvent

{

 public string From { get; set; }

 public string To { get; set; }

 public DateOnly StartDate { get; set; }

 public decimal Amount { get; set; }

}

This class defines our standing order payment event, which informs us of who
pays the standing order and to whom, the start date of the standing order, and the
amount to be paid.

22. Add the EventHandlers class to the BankApp folder, and update it as follows:

internal class EventHandlers : IRegisterable

{

}

Implementing event sourcing 525

Our class implements the IRegisterable interface and will be used to register
our events with the event aggregator that was used for those events.

23. Add the following property and constructor:

public string Name { get; }

public EventHandlers(string name)

{

 Name = name;

}

This property is set in the constructor to label the EventHandlers class for easy
human reference.

24. Add the following registration code:

public void RegisterWithEventAggregator

 (IEventAggregator eventAggregator)

{

 eventAggregator.Register<DividendPayment>

 (OnDividendPayment);

 eventAggregator.Register<StandingOrderPayment>

 (OnStandingOrderPayment);

}

This method registers the events and the event handlers for the dividend payments
and standing orders with the event aggregator.

25. Add the following handler method for dividend payments:

private void OnDividendPayment(DividendPayment evt)

{

 Console.WriteLine($"Dividend paid by {evt.From} to

 {evt.To} on {evt.PaymentDate} of

 £{evt.Amount}.");

}

Every time a dividend payment is made, this event handler is called, and the
properties of the dividend payment event are logged to the console window.

26. Add the following handler method for standing order payments:

private void OnStandingOrderPayment

 (StandingOrderPayment evt)

526 Distributed Systems

{

 try

 {

 Console.WriteLine($"Standing order paid by

 {evt.From} to {evt.To} on {GetStanding

 OrderDate(evt.StartDate)} of

 £{evt.Amount}.");

 }

 catch (InvalidDateException idex)

 {

 Console.WriteLine(idex.Message);

 }

}

Every time a standing order payment is paid, this event handler is called. The
properties of the standing order payment event are written out on the console.
During this process, the payment date is checked to see if it is valid; if it’s not, then
an InvalidDateException is raised.

27. Add the GetStandingOrderDate method:

private static DateTime GetStandingOrderDate(DateOnly

 startDate)

{

 if (DateTime.UtcNow.Ticks < startDate.ToDateTime

 (TimeOnly.FromTimeSpan(TimeSpan.Zero)).Ticks)

 throw new InvalidDateException("Invalid

 Date: Payment date cannot be before

 standing order start date!");

 if (DateTime.Now.Day < startDate.Day)

 throw new InvalidDateException("InvalidDate:

 Payment cannot be made before the standing

 order month pay day.");

 return DateTime.Now;

}

Implementing event sourcing 527

This method takes the start date of the standing order and checks the date against
the current date. An exception is thrown if the date is before the standing order start
date or is not on or after the payment date for the month. Otherwise, the current
date and time are returned.

28. Replace the text in the Program.cs class with the following:

using CH13_EventSourcing;

using CH13_EventSourcing.BankApp;

using EventHandlers = CH13_EventSourcing.BankApp

 .EventHandlers;

SingleThreadedEventAggregator eventAggregator = new();

EventHandlers eventHandlers = new("Payment Event

 Handlers");

DividendPayment dividendPayment = new DividendPayment

 { From = "Company Name", To = "Customer Name",

 PaymentDate = DateTime.Now, Amount = 23.45M };

StandingOrderPayment standingOrderPayment = new

 StandingOrderPayment { From = "Customer Name", To

 = "Company One", StartDate = DateOnly.Parse

 ("25/02/2022") };

eventAggregator.Register(eventHandlers);

eventAggregator.RaiseEvent(dividendPayment);

eventAggregator.RaiseEvent(standingOrderPayment);

This is our application entry point. We create an event aggregator that is single-
threaded. Then, we create an instance of the EventHandlers class and pass it in
the text that shows these event handlers are used to handle payment events. Next,
we create two events – one for dividend payments and the other being for standing
order payments. The instance of the EventHandlers class is then passed into the
event aggregator so that the event handlers can be registered. Finally, the events for
the dividend payment and standing order are raised.

528 Distributed Systems

29. Run the program. You should see something similar to the following output:

Figure 13.1 – The output of our event source application

With that, you have coded and run an event sourcing application. Before that, you did
the same with a CQRS application. By writing these two applications, you have seen
pure CQRS and pure event sourcing at work. With this knowledge, you can now write
applications that use these patterns individually or that combine them so that they work
together. In the next section, we will provide a high-level overview of Microsoft Azure in
terms of writing distributed systems.

Using Microsoft Azure for distributed systems
In this section, we will learn how to use Azure to implement durable microservices using
serverless features, namely Azure Functions.

What is Azure? As I am sure you are aware by now, Microsoft Azure is Microsoft’s cloud
offering for hosting your databases, APIs, and data resources. It also has many other forms
of cloud offerings. Microsoft Azure consists of paid services, free for 1-year services, and
always free services. You are advised to review their different cloud services and compare
them with other providers to suit your needs. Pay particular attention to which services
are free, along with their usage limits, and which services you will have to pay for.

Let's name some good reasons to host your applications and databases in the cloud instead
of on-premises. Well, you don’t have to pay for hardware or electricity costs for a start.
Then, there is the aspect of scaling up and scaling out when your existing infrastructure
meets the maximum capacity. Hardware can become obsolete very quickly as the
complexity of the needs of software and its users grows. So, there are many reasons to use
the cloud that you will need to carefully consider, and with those reasons, there will be
both pros and cons. Therefore, when deciding to use the cloud, make sure you research,
document, and price everything so that you start on the right footing. This will make
system management, maintenance, and business growth much easier in the long run. If
you get things right from the start of your endeavors, then you will save yourself potential
headaches further down the line!

Using Microsoft Azure for distributed systems 529

A microservice is normally a simple web service that receives a request and sends
a response. Many kinds of microservices exist, such as film and music streaming
services and document upload and retrieval services. In the DDD of microservices, the
microservice will normally have a data source. On Azure, this could be a file held in blob
storage, data stored in an Azure SQL Server relational database, or even data stored in an
Azure Cosmos DB NoSQL database.

Modern microservice implementations are relying less on containerization that uses
tools such as Docker and Kubernetes and more on pure serverless options such as
Azure Functions. The beauty of an Azure Function is that it is only active for the period
of the call. Once the function has done what it is required to do, it simply goes to
sleep. An Azure Function also uses fewer computing resources and power compared
to containerized solutions. The only downside is that you must manage many Azure
Functions. And so, just like with containerization, you will need some way to orchestrate
all your Azure Functions in an easy-to-maintain, extended, and useful way.

Azure Functions
An Azure Function is a unit of work. When you implement Azure Functions, you do not
have to concern yourself with provisioning and managing infrastructure, since Azure
Functions is one of Microsoft’s serverless computing offerings.

Serverless computing is managed by the serverless provider. This means that the
serverless computing provider is responsible for investing heavily into provisioning and
managing the infrastructure that hosts your serverless computing services, such as Azure
Functions. This means you get to save money on hardware and electricity costs, and can
fully concentrate your efforts on developing, testing, deploying, and maintaining your
serverless projects.

Microsoft’s investment into serverless computing provides your Azure Functions with
networking, service discovery, routing, and events to facilitate high-performance
communication between your functions and other aspects of your software
system architecture.

An Azure Function normally consists of one or more inputs that you can bind and trigger,
and outputs that you can bind to, with your custom code sitting between the inputs and
outputs, as shown in the following diagram:

Figure 13.2 – High-level Microsoft Azure Functions concept diagram

530 Distributed Systems

Azure Functions are excellent tools to use when developing distributed systems. But the
complexity of using Azure Functions begins to materialize when the number of Azure
Functions in your projects starts to grow. Managing large numbers of Azure Functions
requires a form of orchestration. Orchestration makes managing many Azure Functions
more straightforward for the infrastructure team. The orchestration to employ for Azure
Functions is Durable Azure Function.

Durable Azure Functions
You can execute Azure Functions with stateful orchestration using durable functions.
Azure Functions provide an extension known as Durable Functions. Durable function
applications consist of multiple Azure Functions. Each function in a durable function
orchestration can perform a different role and/or function. The different types of durable
functions are activity, orchestrator, entity, and client. Let’s take a brief look at each type of
durable function.

Durable function type – activity
A basic unit of work is defined as an activity function within the orchestration of a durable
function. This means that when an orchestrated function performs multiple tasks, such as
data validation, reading data, and updating data, each of these tasks will be executed by
a durable activity function. Once a durable activity function has been completed, it may
return data to the function that orchestrated the activity.

Activity functions are defined by activity triggers. DurableActivityContext is
passed in as a parameter. Event triggers can be bound to JSON-serializable objects that
can be used to pass input data into functions. Since an activity function can only have
single values passed to them, you can overcome this limitation by using arrays, complex
types, and tuples.

Note
Activity functions can only be triggered from an orchestrator function
and are only guaranteed to run at least once by the Durable Task Framework.
Because we don’t know how many times an activity might be called,
Microsoft recommends that you make durable activity functions idempotent
whenever possible.

Durable function type – orchestrator
Use the orchestrator function type when you need to control what actions are executed,
and the order that you need to execute them.

Using Microsoft Azure for distributed systems 531

Durable function type – entity
A durable entity can be invoked by client and orchestrator functions and is triggered by an
entity trigger. A durable entity function is used to read and update an object’s state.

Durable function type – client
A durable client function is defined using a durable client output binding. Client functions
are used to start orchestrator and entity functions since, on the Azure portal, these
functions cannot be triggered by button clicks.

Durable function patterns
There are several patterns that you can use to manage your durable functions. These
include the following:

• Aggregator (stateful entities)

• Async HTTP APIs

• Fan-out/fan-in

• Function chaining

• Human interaction

• Monitoring

The aggregator (stateful entities) pattern
In this pattern, a single addressable entity is used to aggregate event data that takes place
over a certain period. The data that’s passed into an aggregator can come from multiple
sources. Data may be spread over time and can be delivered in batches. You can process
data upon arrival and make the aggregated data available for querying by external clients.

In the aggregator pattern, the aggregator function should be run in a single process
or VM. The main reason is due to the complexity of concurrency control when it’s used
with normal functions that are stateless.

Async HTTP APIs
Factors that affect the time it takes for an API call to complete include volume and latency,
as well as other factors beyond your control. Durable functions have a built-in mechanism
for working with the execution of long-running functions, and the durable function’s
runtime is also responsible for managing the state.

532 Distributed Systems

Fan-out/fan-in
Durable functions allow you to execute functions in parallel and on the results of tasks.

Function chaining
When using ordinary functions with service bus queues, you have more complexity when
it comes to error handling, and it can be hard to visualize the relationship between
a function and a queue.

However, when you use a durable function, you have one location where you can set
the order of your functions, storage queues are automatically managed by the durable
function, and if errors occur in any of the activities, they get propagated back to the
orchestration function.

Human interaction
Durable functions can be used to escalate processes that have not received human
interaction within an agreed timeline.

Monitoring (actors)
When you need to perform a recurring task, such as releasing system resources, durable
functions provide a flexible way for you to manage recurrence intervals, use a single
orchestration to manage multiple monitor processes, and manage the lifetime of a task.

Containers and serverless
Container and serverless technologies all have a valid place in the microservice ecosystem.
The primary thought process is to know their strengths and weaknesses to help you
choose the best option for your needs.

Containers
Containers are a good option for you if you have legacy code that you want to migrate
to a more modern platform and code base. You do not have to rewrite your legacy code
base, such as web services and batch processes, immediately. You can place them within
a container and deploy them to the cloud. Then, when time, money, and resources become
available, you can plan for and implement the rewriting of your legacy projects.

When you rely on third-party dependencies, cost and PaaS availability can be an issue.
Sites such as Docker Hub provide access to many readily available containers for various
third-party dependencies that you can pull and deploy.

Using Microsoft Azure for distributed systems 533

Local development of multiple microservices can be simplified with Docker Compose
files. You can add as many services as you need to a Docker Compose file and start them
all up when they are required.

Using Kubernetes clusters, an ingress controller is used to expose only those services you
want to be exposed to. This allows you to provide secure code with a limited footprint that
makes life hard for hackers.

Some downsides to containers are that they can encourage the use of older development
techniques that are more heavyweight and require more computing power. This can lead
to an increase in computing costs. Containers also need a core number of cluster nodes
that are always running, adding to your costs.

Serverless
External services can be integrated with serverless technology such as Azure Functions.
Rapid application development is promoted by the simplified programming model of
serverless computing.

When programming serverless code, you are encouraged to use an event-driven approach
to your functions. Such code is easily scalable and can be easily rewritten or discarded as
your business evolves.

Serverless code supports scale to zero as functions only ever run when they are needed
and do not run when they are not needed. This helps reduce running costs as resource
consumption is very minimal compared to services such as cluster nodes, which are
always running.

Rapid scale-out of serverless code is another advantage of such technologies, as you only
ever pay for the running time of the function.

Serverless functions can pose a security risk, so you must take steps to ensure your
functions are safe and secure.

Now that you know about the strengths and weaknesses of containers and serverless
functions, and you have reviewed the various types of durable functions available in
Microsoft Azure, as well as some durable function patterns, let’s look at managing our
cloud infrastructures in C# with Pulumi.

534 Distributed Systems

Managing your cloud infrastructure with
Pulumi
In this section, you will learn how to manage your cloud infrastructure using Pulumi.
With cloud infrastructure, it is important to be consistent. One way to achieve this is to
remove the human element, which is prone to error, and automate as much as you can.
An important aspect of the cloud that can be readily automated is infrastructure
provisioning tasks. And that’s where Pulumi comes in.

With Pulumi, you can code Infrastructure as Code (IaC) solutions. Code and
configuration files are used to manage and provision the infrastructure that your software
will run on.

Pulumi projects can be written in various programming languages such as Python,
VB.NET, F#, and C#. We are interested in using C# for our Pulumi projects. You can use
Pulumi to do the following:

• Specify your infrastructure.

• Automate how cloud resources are created, updated, and deleted.

• Use IDEs and code editors such as Visual Studio and Visual Studio Code.

• Catch mistakes during compilation.

• Enforce security, compliance, and best practices.

• Use existing NuGet libraries as well as code your own libraries.

• Use Kubernetes, Docker containers, Azure Functions, and Cosmos DB to build
applications that are easy to scale.

Note
To follow along, you will need to have Chocolatey installed since it will be
used as the package manager for installing Pulumi. You will also need to have
a Microsoft Azure account to deploy your IaC. On Windows, when using the
command line, make sure you are using PowerShell and that you are running
it as an Administrator.

Now, let’s look at a very simple example of provisioning blob storage, adding files to blob
storage, and destroying our provisioned resources. The following steps will provision, use,
and delete Azure blob storage:

1. Install Pulumi with the following command:

> choco install pulumi

Managing your cloud infrastructure with Pulumi 535

2. Ensure that you have .NET 6 SDK or higher installed.
3. Configure Pulumi’s access to your Microsoft Azure account by typing the

following command:

az login

Note
Your credentials will never be sent to pulumi.com, and they will only
be used by Pulumi for authentication purposes when managing and
provisioning resources.

4. At this point, you are ready to start using Pulumi. If the az term is not recognized,
try the following command:

Invoke-WebRequest -Uri https://aka.ms/

installazurecliwindows -OutFile .\AzureCLI.msi; Start-

Process msiexec.exe -Wait -ArgumentList '/I

AzureCLI.msi /quiet'; rm .\AzureCLI.msi

5. Create a new project using the following commands:

> Mkdir CH13_Pulumi

> cd CH13_Pulumi

> pulumi new azure-csharp

You will be asked to enter your token, or you can simply press Enter to log into
Pulumi and have Pulumi obtain your token for you. If you don’t have one, you can
create one quite easily at this stage. Once you are logged in, you will be asked
a series of questions in PowerShell. You can simply accept all the defaults.

6. Open the project in Visual Studio. Let’s review the project files:

A. Pulumi.yaml is used to define the project.
B. Pulumi.dev.yaml is used to store configuration values for your stack.
C. Program.cs is the entry point for your project.
D. MyStack.cs is used to define your stack resources.

This class creates an Azure resource group and a storage account. The primary key
for the storage account is then exported. You will find the location for the resource
group in the Pulumi.dev.yaml file with the azure-native:location
property name.

536 Distributed Systems

7. Now, deploy your stack with the following command:

Pulumi up

When prompted, select Yes to deploy your stack to Azure.
8. At this stage, you should be able to log into your Azure account and see the newly

created resource, and that it is a storage account.
9. Add an HTML file to your project called index.html and edit the file by adding

some HTML content and saving it. Here is some sample content:

<html><head><title>Sample

 HTML</title></head><body><h1>Hello, World!</h1>

<hr /><p>This is a sample paragraph.</p></body></html>

10. Add the following code to the MyStack.cs class immediately after the code block
that creates the Azure storage account resource:

// Enable static website support

var staticWebsite = new StorageAccountStaticWebsite(

 "staticWebsite",

 new StorageAccountStaticWebsiteArgs

{

 AccountName = storageAccount.Name,

 ResourceGroupName = resourceGroup.Name,

 IndexDocument = "index.html",

});

With that, we have created a new static website resource that utilizes the storage
account we’ve just created.

11. Next, add the following code after the code shown in Step 10:

// Upload the file

var index_html = new Blob("index.html", new BlobArgs

{

ResourceGroupName = resourceGroup.Name,

AccountName = storageAccount.Name,

ContainerName = staticWebsite.ContainerName,

Source = new FileAsset("index.html"),

ContentType = "text/html",

});

Managing your cloud infrastructure with Pulumi 537

Here, we used our cloud resources and a local FileAsset to upload our index.
html file to blob storage.

12. At the end of the constructor, add the following code:

// Web endpoint to the website

this.StaticEndpoint = storageAccount

 .PrimaryEndpoints.Apply(

 primaryEndpoints => primaryEndpoints.Web

);

This code configures the web endpoint to our static website.
13. Add the following property just above the constructor:

[Output]

public Output<string> StaticEndpoint { get; set; }

This property provides our static website endpoint.
14. Now, it’s time to deploy our changes by typing the following command:

pulumi up

This will upload the index.html file to blob storage and make our static website
available to the public. You should see a URL that you can use to view the web page
that you created and uploaded. The file should be visible in your blob storage, which
you can view via the Azure portal or Azure Storage Explorer.

15. Once you are satisfied that the preceding code has worked for you, it is time to
destroy the resources. Type the following command:

pulumi destroy

If you want to destroy the entire stack, type the following command:
pulumi stack rm dev

With that, the stack has been completely removed from Pulumi.
In this section, you learned how to manage your Azure stack with Pulumi. By using Visual
Studio and the PowerShell command line, you created an Azure resource account and
assigned blob storage to it. Then, you created a static website resource and used the cloud
resources and local FileAsset to upload the static website, which consisted of a single
file called index.html. You were able to view the file in blob storage and view the web
page in your browser.

538 Distributed Systems

In the next section, we will look at some performance considerations for
distributed systems.

Performance considerations for distributed
computing
We now know how to develop distributed systems. But what about their performance?
What kinds of things should we be aware of in terms of the performance of
distributed systems?

The first consideration is the network connection between clients and servers. TCP
collisions can result in lost packets of information. This can corrupt communication
between multiple devices and cause connections to time out. The most common reason
for TCP collisions is when two or more computers share the same IP address.

No computer on the same network should have the same address as another computer on
the same network. This results in unpredictable network behavior that is detrimental to
the performance and stability of a networked application. If you experience this situation,
simply change the IP address of one of the computers to a different IP address.

Another problem that can result in slow network communication is Domain Name
Resolution (DNS). If DNS is not correctly set, then accessing a network resource such as
a web page or web service may take longer than expected and cause a connection
or request to time out. It is worth noting that there is usually more than one DNS on
a distributed network. You have the DNS server of the external network and your router,
which has a DNS for your local network. Either of these could be responsible for slow
DNS resolution. Some steps you can take to resolve DNS issues are as follows:

1. Check your network connectivity.
2. Check that your DNS addresses are correct and in the right order.
3. Ping the computer name, IP address, or base URL, such as google.co.uk, that you

are trying to access to see if it responds or times out.
4. Identify the nameservers in use using nslookup.
5. Check the DNS suffix.
6. Check that the DNS settings have been configured to pull the DNS IP address from

the DHCP server.

Performance considerations for distributed computing 539

7. Use ipconfig to release and renew the DHCP address and DNS information.
8. Check the DNS server to see if any services need to be restarted or if the server

needs to be rebooted.
9. Sometimes, the information on the router becomes stale, so a quick solution is to

reboot the router.
10. Every so often, an ISP will run into problems of their own that affect you. In these

cases, you will need to communicate with them to understand the problem and get
some indication of when things will be back to normal.

Distributed firewalls may be employed to protect business networks. Misconfiguration
of firewalls can result in resource access being denied or invisible. If machines are unable
to access distributed resources, then the distributed firewall is a good place to start. If the
distributed firewall is configured correctly, then check client and server firewalls to see
if they are enabled or disabled and whether they are correctly configured or not.

For example, I have dealt with a lot of SQL Server problems. Some have been DNS and
DHCP issues, but the most common issues are SQL Server configuration and firewall
configurations. SQL Server uses dynamic ports. But sometimes, these can clash, as can
fixed ports. Also, I have found that for SQL Server to work on many networks, the Named
Pipes and TCP protocols must be enabled. Once these protocols have been changed
within SQL Server Configuration Manager, you need to restart the instance of SQL Server
they apply to, followed by the SQL Server Browser service. If you have firewalls in place,
then the SQL Server executable for the instance will need to be added to the firewall as an
application exception. If you need to use specific ports, then you would need to add port
exceptions. Standard port exceptions for SQL Server are 1433 for TCP and 1434
for UDP.

Sometimes, even after the aforementioned SQL Server troubleshooting has been
completed, networked applications can still not see the SQL Server instance. When this
happens, a workaround is to recreate the database connection string with the following
format: IP_ADDRESS,PORT_NUMBER\INSTANCE_NAME.

Another problem that can affect SQL Server connectivity in a distributed setting is the
SQL Server driver that is installed and used. If you use specific versions of a SQL Server
native client, then you will need to ensure that that particular version of the native client
is installed on all computers for them to be able to connect to SQL Server. The way
around this is to realize that the SQL Server driver is installed by default on all Windows
computers, both server and client. If you use this driver, then you do not have to worry
about rolling out SQL Server Native Clients to various computers that are part of your
distributed system.

540 Distributed Systems

Another area of performance is the database querying aspect. The same query to obtain
a set of results can be written in so many different ways to obtain the required results.
This is especially true with larger result sets that have more joins. Dynamic SQL can also
perform slowly. Therefore, speeding up queries can improve a database-driven distributed
application significantly. You can use SQL Server Profile and review SQL Server Execution
Plans to identify bottlenecks and rewrite SQL so that it’s more performant. You can also
add missing indexes, correct incorrect indexing, and use pre-compiled stored procedures
for performance enhancement purposes.

SQL Server can become corrupt and fail for many reasons, so it must be regularly
updated with security patches. Here, you can use Always-On and failover clusters to keep
connections alive and switch between SQL Servers when a server is down or needs to be
taken offline for maintenance.

The number of connections to a resource can also overload a distributed system to the
point that clients cannot connect. To overcome this, you can employ load balancing so
that when a resource server reaches a certain peak, clients are sent to an alternative server
for those resources.

Another common oversight when sharing networked resources is network permissions.
Sometimes, a folder may not be shared that should be shared. A really nasty problem can
be that of a permissions hierarchy that is enforced via group policy that overrides even
a network domain administrator’s ability to do their job.

It is important to fully document your group policy and permissions structure for current
and future staff. With a clear document that diagrammatically shows the permission
groups and hierarchies, as well as provides a list of resources and their permission sets,
if someone or an app is having trouble accessing resources, such documents can ease the
pain of troubleshooting such problems.

It is also worth noting that sometimes, System and TrustedInstaller take control of
certain resources and prevent you from being able to access resources locally and across
a network. This can result in you having to override the ownership of that network
or local location and file resource.

Computer security software can also significantly slow down network traffic and even stop
programs from working. The usual culprits are the firewall, as we mentioned previously,
and antivirus software. If your software is not code-signed with an authority-approved
code signing certificate, then DLLs and executables can be quarantined and identified as
harmful software. This is what is known as being identified as a false positive. You can
either sign your software, add your software as an application or folder exception,
or pass your software to security firms to assess your software and update their software
to prevent this from happening in the future.

Summary 541

Antivirus software can also slow applications down when all network traffic and even local
files are real-time scanned. An example of this is educational software that pulls audio files
across the network during assessments. A characteristic that identifies this being the case
is when the audio files are backed up and fired together. To overcome this problem, you
can update the antivirus software by adding the application, its folders, and its resources as
folder and or application/file exceptions.

The size of resources also affects network performance. The larger the size, the longer the
time to request and receive a resource. Here, you can reduce the size of resources such
as images, video, and audio files using various compression techniques. You can also zip
resources up and transmit them before they need to be accessed, such as at application
startup. You can store resources in the local cache once they have been requested
and received.

When the workload increases to the point that your current system cannot handle it,
you have two options: scale up vertically or scale out horizontally. Scaling up involves
increasing the physical computing capacity to cope with the increased workload. Scaling
out is when you add more servers to cope with the increased workload. At the time
of writing, the way forward for many companies is to use server VMs and containers
and have containers running in container management software such as Docker and
Kubernetes on cloud platforms such as Azure, AWS, Google Cloud, and others.

Large libraries and executables can be made smaller by moving code into microservices
such as Azure Functions. Azure Functions is an event-driven, compute-on-demand
experience that extends the existing Azure application platform with capabilities to
implement code triggered by events occurring in Azure or third-party services, as well
as on-premises systems. These online services can then scale up and down and run only
when they are required to do so. This has the added advantage of providing cost savings,
such as electricity and equipment costs.

You can also use tools such as the browser developer tools and Postman to monitor
application and network performance.

Now, let’s summarize what we have learned.

Summary
In this chapter, we started by looking at the implementation of the CQRS design pattern.
Then, we looked at an implementation of event sourcing. You can use both these patterns
by themselves, though they can also be combined to provide very powerful and
functional microservices.

542 Distributed Systems

Then, we took a high-level look at using Microsoft Azure for writing distributed systems.
The benefits and negative aspects of containers and serverless functions were covered to
help you understand when to use each technology.

In terms of Microsoft Azure, we focused mainly on Azure Functions. Specifically,
we looked at Durable Azure Functions. We identified the various types of durable
functions and various durable function patterns.

Now, take some time to answer this chapter’s questions to see how much you have
retained from this chapter. Please review the Further reading section to build upon
what you have learned in this chapter.

In the next chapter, we will be looking at multithreaded programming in C#.

Questions
Answer the following questions to test your knowledge of this chapter:

1. What does CQRS stand for?
2. Why do we use the CQRS pattern when developing microservices?
3. What is event sourcing?
4. Why do we use event sourcing?
5. What are containers?
6. Why would we use containers?
7. What are serverless functions?
8. Why should we use serverless functions?
9. What are durable functions?
10. What are the different types of durable functions?
11. What types of durable function patterns are there?
12. What is Pulumi?
13. Why would we use Pulumi?

Further reading 543

Further reading
To learn more about the topics that were covered in this chapter, take a look at the
following resources:

• Getting started with Pulumi on Azure: https://www.pulumi.com/docs/
get-started/azure/

• Building Modern Cloud Applications using Pulumi and .NET Core: https://
devblogs.microsoft.com/dotnet/building-modern-cloud-
applications-using-pulumi-and-net-core/

• Orchestration Using Durable Azure Functions: https://blog.kiprosh.com/
orchestration-using-durable-azure-function/

• Durable Functions Orchestrations: https://docs.microsoft.com/
en-us/azure/azure-functions/durable/durable-functions-
orchestrations?tabs=csharp

• Best Practices for Durable Functions Patterns: https://www.serverless360.
com/blog/azure-durable-functions-patterns-best-practices

• Chapters 9 and 10 of Clean Code in C# by Jason Alls: https://www.amazon.
co.uk/Clean-Code-application-performance-practices-ebook/
dp/B08614MS6S

• 10 Ways to Troubleshoot DNS Resolution Issues: https://techgenix.com/10-
Ways-Troubleshoot-DNS-Resolution-Issues/

https://www.pulumi.com/docs/get-started/azure/
https://www.pulumi.com/docs/get-started/azure/
https://devblogs.microsoft.com/dotnet/building-modern-cloud-applications-using-pulumi-and-net-core/
https://devblogs.microsoft.com/dotnet/building-modern-cloud-applications-using-pulumi-and-net-core/
https://devblogs.microsoft.com/dotnet/building-modern-cloud-applications-using-pulumi-and-net-core/
https://blog.kiprosh.com/orchestration-using-durable-azure-function/
https://blog.kiprosh.com/orchestration-using-durable-azure-function/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-orchestrations?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-orchestrations?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-orchestrations?tabs=csharp
https://www.serverless360.com/blog/azure-durable-functions-patterns-best-practices
https://www.serverless360.com/blog/azure-durable-functions-patterns-best-practices
https://www.amazon.co.uk/Clean-Code-application-performance-practices-ebook/dp/B08614MS6S
https://www.amazon.co.uk/Clean-Code-application-performance-practices-ebook/dp/B08614MS6S
https://www.amazon.co.uk/Clean-Code-application-performance-practices-ebook/dp/B08614MS6S
https://techgenix.com/10-Ways-Troubleshoot-DNS-Resolution-Issues/
https://techgenix.com/10-Ways-Troubleshoot-DNS-Resolution-Issues/

Part 3:
Threading and

Concurrency

Part 3 covers threading, parallel processing, and asynchronous processing. We discuss
various ways to process code synchronously, asynchronously, and in parallel. In doing so,
we learn how to reduce the time it takes to process a series of tasks, and how we can utilize
the number of CPUs and cores.

This part contains the following chapters:

• Chapter 14, Multi-Threaded Programming

• Chapter 15, Parallel Programming

• Chapter 16, Asynchronous Programming

14
Multi-Threaded

Programming
In this chapter, you will learn about multi-threaded programming. You will learn what
threads are and about background and foreground threads. Then, you will learn how to
pass data into threads before you run them. You will also learn how to pause, interrupt,
destroy, schedule, and cancel threads.

In this chapter, we will be covering the following topics:

• Understanding threads and threading: This section covers the life cycle of threads.

• Creating threads with and without parameters: This section provides examples of
thread creation with and without parameters.

• Pausing and interrupting threads: This section covers how to pause and
interrupt threads.

• Destroying and canceling threads: This section covers destroying and canceling
threads.

• Scheduling threads: This section covers how to schedule threads.

• Thread synchronization and locks: This section covers how to synchronize threads,
protect resources, and prevent deadlocks and race conditions.

548 Multi-Threaded Programming

By the end of this chapter, you will have gained the following skills:

• You will understand threads and threading.

• You will be able to create threads with and without parameters.

• You will be able to pause and interrupt threads.

• You will be able to destroy and cancel threads.

• You will be able to schedule threads.

Technical requirements
To ensure that you benefit from this chapter, you should have the following requirements:

• Visual Studio 2022

• The book’s source code from the following link: https://github.com/
PacktPublishing/High-Performance-Programming-in-CSharp-
and-.NET/tree/master/CH14.

Understanding threads and threading
In this section, we will understand the life cycle of threads. Threads in C# have a life cycle
as follows:

Figure 14.1 – The thread life cycle

When started, threads enter the running state. When running a thread, there is a
possibility it will enter a wait, sleep, join, stop, or suspended state. A thread is suspended
by calling the Suspend method, and calling the Resume method resumes a thread.

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH14
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH14
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH14

Creating threads and using parameters 549

When the Monitor.Wait(object obj) method is called, the thread enters the
wait state. A waiting thread will continue when the Monitor.Pulse(object obj)
method is called, and you can make threads sleep by calling the Thread.Sleep(int
millisecondsTimeout) method.

When you call the Thread.Join() method, it causes the thread to enter the wait
state. The waiting thread will then continue once the dependent threads have completed
running. If any dependent threads are canceled, the thread is aborted and enters the stop
state. Once a thread has been completed or canceled, you cannot restart it.

Note
The SYSLIB0006 compile-time warning will be raised by projects that
target .NET 5 or higher if they call any of the Thread.Abort APIs.
Microsoft recommends that you abort the running unit of work using
CancellationToken instead. The Thread.Abort APIs are now
obsolete.

In the next section, we will look at creating background and foreground threads with and
without parameters.

Creating threads and using parameters
In this section, we look at the creation of threads. First, we will see how to create
parameterless threads in the foreground and the background. Let’s define both foreground
and background threads as follows:

• Foreground threads: By default, threads run in the foreground. A process will
continue to run if, at least, one foreground thread is running. Should the Main
method be complete and the foreground thread is still running, the process will
remain active until the foreground thread terminates.

• Background threads: Background threads are created in the same way as
foreground threads. The main difference is that you must explicitly set the thread to
run in the background.

The following code shows how to create and run a foreground thread:

var foregroundThread = new Thread(methodName);

foregroundThread.Start();

550 Multi-Threaded Programming

To create and run a background thread, you run the following code:

var backgroundThread = new Thread(methodName);

backgroundThread.IsBackground = true;

backgroundThread.Start();

Both versions of the code that generates foreground and background threads, that you
have just seen, create threads without using parameters. The following code shows you
how to create a thread using parameters:

static void ThreadCreationWithParameters()

{

 int result = 0;

 Thread thread = new Thread(() => { result = Add(1, 2););

 thread.Start();

 thread.Join();

 Console.WriteLine($"The addition of 1 plus 2 is

 {result}." + $"");

}

static int Add(int a, int b)

{

 return a + b;

}

As you can see in the preceding code, the thread is used to sum two numbers and return
the result. The thread calls the Add method and passes the two integers to be added. Both
the method call and the result are placed within an anonymous function passed into the
thread’s constructor.

Creating multiple threads can be costly on performance. The performance of multiple-
thread creation can be improved by using thread pools. Thread pools improve
performance in multi-threaded applications by limiting the number of threads that should
be created and managed.

When a new thread is created using a thread pool, it is kept there until it is needed. When
required, the thread will run and complete its task. Once the task is completed, the thread
will return to the thread pool for later reuse.

Creating threads and using parameters 551

You can create a thread in a thread pool as follows:

ThreadPool

 .QueueUserWorkItem(

 new WaitCallback(ThreadPoolWorkerMethod)

);

The thing to note when using a thread pool is that when first used, they have no history,
but over time, they tune themselves to improve thread pool performance. For applications
that use a large number of threads and put a heavy load on the CPU, it is possible that they
will encounter a high startup cost. Threads have to be created and made available to the
thread pool. This can cause the thread pool to have to wait until those threads are made
available. A performance tweak you can make at startup is to set the minimum number of
threads. The following code shows how to set the minimum number of threads:

const int WorkerThreads = 12;

const int CompletionPortThreads = 12;

ThreadPool.SetMinThreads(WorkerThreads,

 CompletionPortThreads);

The WorkerThreads value is the minimum number of worker threads created on
demand by the ThreadPool. The CompletionPortThreads value is the number of
asynchronous I/O threads created on demand by the ThreadPool.

In addition to setting the minimum number of threads, you can set the maximum number
of threads as follows:

const int WorkerThreads = 12;

const int CompletionPortThreads = 12;

ThreadPool.SetMaxThreads(WorkerThreads, CompletionPortThreads);

In order for these settings to help with application performance, you need to set them
correctly. Otherwise, you can end up creating too many threads and overscheduling tasks.
This will reduce performance by increasing context switching, which will put more load
on the CPU. The ThreadPool is intelligent enough to switch to an algorithm that will
reduce the amount of work the CPU has to do once it gathers a history.

552 Multi-Threaded Programming

Before settings these values, it is a good idea to use performance monitoring to monitor
the thread usage and context switching of your application. You can use performance
counters tracing using the Contextual Visualizer, which is discussed in the following
chapter. You can also use the ThreadPool.GetMaxThreads and ThreadPool.
GetMinThreads methods to help you analyze the optimal values for setting the
minimum and maximum numbers of worker threads and completion port threads.

You can also set a thread’s priority. However, you have to be very careful about setting a
thread priority as it can have a negative impact on other threads and other applications.
Setting threads to a higher priority can starve lower priority threads, resulting in them
rarely running.

Only when a fast response is required for an event, such as an exception, should you
consider changing thread priority to a high value. When race conditions are encountered,
you can legitimately lower a thread’s priority. Threads that do not run for a while because
of their lower priority will run at some point. This is because the dynamic priority of a
thread is increased by Windows the longer it goes without running.

If you do change the priority of a thread, its priority will be reset on entry back into the
pool. However, a thread may be used for several tasks. In this case, the thread will not
return to the pool until these tasks are completed. If the priority is set incorrectly, then
this can degrade both application performance and system-wide performance.

We now understand how to create and run threads. Let’s turn our attention to pausing and
interrupting threads.

Pausing and interrupting threads
In this section, we will look at pausing and interrupting threads. An example of why you
would need to pause or interrupt a thread is if the code running is a debugger. If a thread
is executing and it hits a breakpoint, it would need to be paused.

The most common way to pause/delay a thread is to call Thread.
Sleep(millisecondsDuration), but this may freeze the main thread and your
users may think your program has stopped working, leading them to terminate it.

A better way to delay a thread is to let Task.Delay(TimeSpan) run in the
background. This will allow the thread to work in the background and prevent the delayed
thread from stopping the main thread from doing its work.

Destroying and canceling threads 553

The following code shows how to delay a thread:

static void Main(string[] args)

{

 Console.WriteLine($"Current Time: {DateTime.Now}");

 var delay = Task.Delay(TimeSpan.FromSeconds(5));

 var duration = 0;

 while (!delay.IsCompleted)

 {

 duration++;

 Thread.Sleep(TimeSpan.FromSeconds(5));

 Console.WriteLine($"Slept for {seconds} seconds");

 }

 Console.WriteLine($"Delay End:{DateTime.Now} after

 {duration} seconds");

 }

}

We create the task with a time delay of five seconds. The loop keeps running until the time
delay has been completed.

The Interrupt method is called to interrupt a thread that is in a blocked state of wait,
sleep, or join. When the method is called, ThreadInterruptedException is
raised. This exception is not raised when calling the Interrupt method on a thread not
in a blocked state.

Destroying and canceling threads
Aborting threads is not a good idea as you don’t always know the state of a thread. It can
be made worse if the thread is part of a static constructor. Using Thread.Abort to abort
a thread is one of the main reasons for application crashes. The Thread.Abort APIs
are now obsolete. So, you are encouraged to use the cooperative cancellation pattern to
periodically check for cancellations using CancellationToken.

Under normal circumstances, when a thread is aborted, it is destroyed. The cancellation of a
thread also destroys the thread. Let’s write some sample code that demonstrates the usage of
CancellationToken to cancel a synchronous operation when it times out, as follows:

1. Start a new .NET 6 console application and call it CH14_Multithreading.

554 Multi-Threaded Programming

2. In the Program.cs file of the CH14_Multithreading project, add the following method:

static bool TryCallWithTimeout<TResult>(

 Func<CancellationToken, TResult> function,

 TimeSpan timeout,

 out TResult result

)

{

 var cancellationTokentSource =

 new CancellationTokenSource(timeout);

 try

 {

 result =

 function(cancellationTokentSource.Token);

 return true;

 }

 catch (TaskCanceledException)

 {

 }

 finally

 {

 cancellationTokentSource.Dispose();

 }

 result = default;

 return false;

}

This method receives a method to execute over a specified timeout period
and returns a result. SleepyMethod is executed, but if it exceeds the
timeout value, then TaskCanceledException is raised and then
CancellationTokenSource is disposed of.

3. Add the SleepyMethod code as follows:

static int SleepyMethod(CancellationToken ct)

{

 for (var i = 0; i < 10; i++)

 {

 Thread.Sleep(TimeSpan.FromMilliseconds(500));

Destroying and canceling threads 555

 if (ct.IsCancellationRequested) { throw new

 TaskCanceledException(); }

 }

 return 1234567890;

}

The SleepMethod accepts CancellationToken as a parameter. It then loops
ten times. During each iteration, it sleeps for half a second. Then, it checks to see
whether cancellation has been requested. If cancellation has been requested, then
TaskCanceledException is raised. Otherwise, the value of the method is
returned.

4. Add the SynchronousThreadCancelation method as follows:

static void SyncrhonousThreadCancelation()

{

 TimeSpan timeoutTimeSpan = TimeSpan

 .FromMilliseconds(750);

 bool callResult = TryCallWithTimeout(

 SleepyMethod,

 timeoutTimeSpan,

 out int result

);

 Console.WriteLine($"SleepyMethod() {

 (callResult ? "Executed" : "Cancelled")

 }");

}

This method creates a timeout value of three-quarters of a second. It then calls the
TryCallWithTimeout method, which returns a Boolean value. The parameters
passed into the TryCallWithTimeout method are the following:

 � SleepyMethod: The name of the method to be executed

 � timoutTimeSpan: The duration the method is to run for before it times out

 � result: Contains the result of CancellationToken

Once the call has been made, the name of the called method and its call result are
sent to the console. In this code, we are not writing the result to the console window,
but you can modify the code to do so.

556 Multi-Threaded Programming

5. At the top of the class, update the code as follows:

SyncrhonousThreadCancelation();

The preceding code calls our method and is an example of the cancellation of a
synchronous operation.

6. Run the preceding code and the result should look something like the following:

Figure 14.2 – Console output for our program showing that the thread was canceled

This concludes the topic of canceling and destroying threads. Let’s now look at
scheduling threads.

Scheduling threads
The Thread.Start method schedules a Thread to start. You can overload this method
with different parameters. We will look at two examples in this section. The first example
will call the Thread.Start() method without passing any parameters, and the second
will call Thread.Start(object).

We will now write the code as follows:

1. Add a class called Job as follows:

internal class Job

{

 public void Execute()

 {

 Console.WriteLine(

 "Execute() method execute.");

 }

 public void PrintMessage(object message)

Scheduling threads 557

 {

 Console.WriteLine($"Message: {message}");

 }

}

This class provides two methods that will be used in our Thread scheduling
examples. The Execute method is used with the parameterless Thread.Start
method, and the PrintMessage function is used with the Thread.Start
method that takes parameters.

2. In the Program.cs class, add the SheduleThreadWithoutParameters
method as follows:

static void ScheduleThreadWithoutParameters()

{

 Job job = new();

 Thread thread =

 new Thread(new ThreadStart(job.Execute));

 thread.Start();

}

In the preceding code, we create a new instance of the Job class. Then, we create a
new Thread passing a new ThreadStart instance into its constructor. Into the
ThreadStart constructor, we pass object.method that we wish to execute,
and then we start the thread.

3. Add the ScheduleThreadWithParameters method as follows:

static void ScheduleThreadWithParameters()

{

 Job job = new();

 var thread1 = new Thread(

 new ParameterizedThreadStart(

 job.PrintMessage

)

);

 var thread2 = new Thread(

 new ParameterizedThreadStart(

 job.PrintMessage

)

);

558 Multi-Threaded Programming

 thread1.Start("Hello, world!");

 thread2.Start("Goodbye, world!");

}

In the preceding code, we created a new Job instance and two threads by calling the
ParameterizedThreadStart class for each thread to execute a parameterized
method on an object. We then start each of the threads.

4. Add a call to each of the methods at the top of the class and then run the preceding
code. Your console should look like the following:

14.3 – Our parameterized thread output

Thread synchronization and locking
When using multiple threads in an application, you have to consider thread
synchronization and locking. If you don’t, you can end up with race conditions and
deadlocks. There are several ways to synchronize threads. You can use interlocked
methods and synchronization objects, such as Monitor, Semaphore, and
ManualResetEvent.

Note
In Chapter 8, Threading and Concurrency, in the Clean Code in C# book, we
provide a detailed discussion on threads covering using threads, thread safety,
parallel threads using semaphores, thread synchronization and preventing
deadlocks, and race conditions.

To synchronize your code, you can use a lock object as follows:

internal class LockMutexExample

{

public object _ lockObject = new();

public void UsingLockObject()

{

Thread synchronization and locking 559

lock(_ lockObject)

{

// Perform your unsafe code here.

}

}

}

When the locked code is entered, all of the other threads are barred from accessing the
locked code. The only downside to this is that you can end up with a deadlock. This can be
overcome by using a mutex as follows:

internal class LockMutextExample

{

 private static readonly Mutex _ mutex = new();

 public void UsingMutext()

 {

 try

 {

 _ mutex.WaitOne();

 // ... Do work here ...

 }

 finally

 {

 _ mutex.ReleaseMutex();

 }

 }

}

The preceding code declares a Mutex class-level variable. The code that needs
protecting is then wrapped in a try/catch block. The current thread is blocked by
the WaitOne() method until the wait handle receives a signal. True is then returned
from the WaitOne() method upon a Mutex being signaled. The Mutex is then owned
by the calling thread that can access protected resources. Once the protected resources
are finished, the Mutex is released by calling ReleaseMutext(). Always call the
ReleaseMutext() method in the final block to prevent resources from remaining
locked if an exception is encountered.

560 Multi-Threaded Programming

Race conditions happen when the same resource is accessed by multiple threads that
produce different outcomes based on their timings. A race condition can be avoided by
using code such as the following:

Task

 .Run(() => Method1())

 .ContinueWith(task => Method2())

 .Wait();

The Task runs Method1() and then continues with Method2(). We then Wait() for
the Task to complete its execution of Method1() and Method2() before continuing.

That concludes our look at multi-threaded programming. As you can see, there is not
much to scheduling threads. Let’s summarize what we have learned in this chapter.

Summary
In this chapter, we have come to an understanding of threads and the thread life cycle. We
built some sample code that shows how to create threads with and without parameters.
We also looked at running threads in the foreground and background.

Next, we looked at pausing and interrupting threads. Then, we moved on to destroying
and canceling threads. You no longer use Thread.Abort in your code. Thread.Abort
has been responsible for applications crashing at runtime. Instead, you use cancellation
tokens. Canceling threads also destroys them.

We looked at scheduling threads with and without parameters. In the next chapter, we will
be looking at parallel programming.

Finally, we looked at thread synchronization and locking using lock objects and mutexes
and learned how to avoid deadlocks and race conditions.

It is now time to answer some questions to see how well you have retained the knowledge
in this chapter. Once you have completed the questions, the Further reading section
provides some external sources to further your knowledge on threads and multi-threaded
programming.

Questions 561

Questions
1. What states can a thread be in?
2. Which part of the Thread.Abort API do you use to terminate a thread?
3. Which two locations can a thread be executed in?
4. What is the correct way to terminate a thread?
5. What method is used to schedule a thread?

Further reading
• Managing and implementing multi-threading: https://subscription.

packtpub.com/book/programming/9781789536577/6/
ch06lvl1sec52/understanding-threads-and-the-threading-
process

• Pausing and interrupting threads: https://docs.microsoft.com/en-us/
dotnet/standard/threading/pausing-and-resuming-threads

• How to terminate a thread in C#: https://www.geeksforgeeks.org/
how-to-terminate-a-thread-in-c-sharp/

• How to destroy threads in C#: https://www.tutorialspoint.com/
How-to-destroy-threads-in-Chash

• How to schedule threads in C#: https://www.geeksforgeeks.
org/how-to-schedule-a-thread-for-execution-in-c-
sharp/#:~:text=%20How%20to%20schedule%20a%20thread%20
for%20execution,1%20Start%20%28%29%202%20Start%2-
0%28Object%29%20More%20

• Understanding threads and the threading process: https://subscription.
packtpub.com/book/programming/9781789536577/6/
ch06lvl1sec52/understanding-threads-and-the-threading-
process

• How to pause code execution in C#: https://csharpsage.com/c-delay/

• Pausing and interrupting threads: https://docs.microsoft.com/en-us/
dotnet/standard/threading/pausing-and-resuming-threads

https://subscription.packtpub.com/book/programming/9781789536577/6/ch06lvl1sec52/understanding-threads-and-the-threading-process
https://subscription.packtpub.com/book/programming/9781789536577/6/ch06lvl1sec52/understanding-threads-and-the-threading-process
https://subscription.packtpub.com/book/programming/9781789536577/6/ch06lvl1sec52/understanding-threads-and-the-threading-process
https://subscription.packtpub.com/book/programming/9781789536577/6/ch06lvl1sec52/understanding-threads-and-the-threading-process
https://docs.microsoft.com/en-us/dotnet/standard/threading/pausing-and-resuming-threads
https://docs.microsoft.com/en-us/dotnet/standard/threading/pausing-and-resuming-threads
https://www.geeksforgeeks.org/how-to-terminate-a-thread-in-c-sharp/
https://www.geeksforgeeks.org/how-to-terminate-a-thread-in-c-sharp/
https://www.tutorialspoint.com/How-to-destroy-threads-in-Chash
https://www.tutorialspoint.com/How-to-destroy-threads-in-Chash
https://www.geeksforgeeks.org/how-to-schedule-a-thread-for-execution-in-c-sharp/#:~:text=%20How%20to%20schedule%20a%20thread%20for%20execution,1%20Start%20%28%29%202%20Start%20%28Object%29%20More%20
https://www.geeksforgeeks.org/how-to-schedule-a-thread-for-execution-in-c-sharp/#:~:text=%20How%20to%20schedule%20a%20thread%20for%20execution,1%20Start%20%28%29%202%20Start%20%28Object%29%20More%20
https://www.geeksforgeeks.org/how-to-schedule-a-thread-for-execution-in-c-sharp/#:~:text=%20How%20to%20schedule%20a%20thread%20for%20execution,1%20Start%20%28%29%202%20Start%20%28Object%29%20More%20
https://www.geeksforgeeks.org/how-to-schedule-a-thread-for-execution-in-c-sharp/#:~:text=%20How%20to%20schedule%20a%20thread%20for%20execution,1%20Start%20%28%29%202%20Start%20%28Object%29%20More%20
https://www.geeksforgeeks.org/how-to-schedule-a-thread-for-execution-in-c-sharp/#:~:text=%20How%20to%20schedule%20a%20thread%20for%20execution,1%20Start%20%28%29%202%20Start%20%28Object%29%20More%20
https://subscription.packtpub.com/book/programming/9781789536577/6/ch06lvl1sec52/understanding-threads-and-the-threading-process
https://subscription.packtpub.com/book/programming/9781789536577/6/ch06lvl1sec52/understanding-threads-and-the-threading-process
https://subscription.packtpub.com/book/programming/9781789536577/6/ch06lvl1sec52/understanding-threads-and-the-threading-process
https://subscription.packtpub.com/book/programming/9781789536577/6/ch06lvl1sec52/understanding-threads-and-the-threading-process
https://csharpsage.com/c-delay/
https://docs.microsoft.com/en-us/dotnet/standard/threading/pausing-and-resuming-threads
https://docs.microsoft.com/en-us/dotnet/standard/threading/pausing-and-resuming-threads

15
Parallel

Programming
In this chapter, you will learn how to take advantage of the multiple CPU cores that
are available in today’s modern computers. You will learn how to process your code
by distributing the work between processes concurrently, as well as how to use the
Task Parallel Library (TPL) and Parallel LINQ (PLINQ) to run code in parallel.
Throughout this book, you will learn how to use parallel data structures and use the
Visual Studio debugger to diagnose tasks and parallel stacks. You will also learn about
the Concurrency Visualizer.

In this chapter, we will cover the following topics:

• Using the Task Parallel Library (TPL): In this section, we will compare parallel and
non-parallel code and its effect on CPU core utilization using perfmon.

• Using Parallel LINQ (PLINQ): In this section, we will look at PLINQ and how it
can be used to execute LINQ statements with varying degrees of parallelism.

• Programming parallel data structures: In this section, we will review some of the
thread-safe collections you can use for programming parallel data structures.

• Benchmarking with BenchmarkDotNet: In this section, we will look at
benchmarking our parallel code and find that, in some instances, it can be faster
than non-parallel code, and at other times, it can be slower.

564 Parallel Programming

• Using lambda expressions with TPL and LINQ: In this section, we will
review a piece of code that uses lambda expressions to express the Func and
Action delegates.

By the end of this chapter, you will be able to do the following:

• Use TPL and PLINQ for parallel programming tasks.

• Program parallel data structures.

• Diagnose issues with tasks and parallel data structures.

• Use lambda expressions in TPL and PLINQ queries.

Technical requirements
For this chapter, you will need the following:

• Visual Studio 2022

• This book’s source code: https://github.com/PacktPublishing/High-
Performance-Programming-in-CSharp-and-.NET/tree/master/
CH15

• Concurrency Visualizer for Visual Studio 2022: https://marketplace.
visualstudio.com/items?itemName=Diagnostics.
DiagnosticsConcurrencyVisualizer2022#overview

Using the Task Parallel Library (TPL)
In this chapter, we will be working with TPL to enhance the performance of our programs
by making use of the available processor power on a machine.

We learned how to write threads and execute them in Chapter 14, Multi-Threaded
Programming. When multiple threads are running on a single processor, providing the
illusion that they are running in parallel, they are running concurrently.

When threads run concurrently, the processor uses a scheduling algorithm and/
or interrupts to determine the switching and prioritization between threads. Parallel
programming, however, runs different threads on different processors so that threads
execute in parallel to each other with a reduced need for switching and thread interrupts.

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH15
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH15
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH15
https://marketplace.visualstudio.com/items?itemName=Diagnostics.DiagnosticsConcurrencyVisualizer2022#overview
https://marketplace.visualstudio.com/items?itemName=Diagnostics.DiagnosticsConcurrencyVisualizer2022#overview
https://marketplace.visualstudio.com/items?itemName=Diagnostics.DiagnosticsConcurrencyVisualizer2022#overview

Using the Task Parallel Library (TPL) 565

As its name suggests, TPL is used to run tasks in parallel. Tasks are run in parallel by
running each task against a separate core of the computer’s processor. So, for example, say
your computer has four cores and you have four tasks. Each task would run on a separate
core, and each task would be run parallel to the other three. This helps improve the overall
performance of the code as you can have as many tasks executing in parallel as you have
processor cores.

Also, if you have a big dataset that needs to process many records and store them in
a variable, you can partition the task so that the records are split into different threads
running on different processors. These are then synced backed together and stored in
a variable.

Note
Code that cannot be parallelized will slow down parallel tasks, as will code that
must be partitioned and scheduled by the task scheduler. It is always a good
idea to profile your code to see if the methods you are employing will speed up
or slow things down.

A good way to see the value in parallel programming is to compare a thread running on
a single processor against the same code split between different processors. Let’s write
some code for this comparison:

1. Start a new console application and call it CH15_ParallelProgramming. Then,
check the checkbox that says do not use top-level statements.

2. Add the following using statement:

using System.Threading.Tasks;

This using statement gives us access to TPL.
3. Update the Main method in the Program class, as follows:

static void Main(string[] _)

{

 RunSingleProcessorExample();

}

This method calls the RunSingleProcessorExample method.

566 Parallel Programming

4. Add the RunSingleProcessorExample method:

static void RunSingleProcessorExample()

{

 Thread thread = new(SingleProcessorExample);

 thread.Start();

}

This method creates a new thread and assigns it the SingleProcessorExample
method, which it will invoke. The method is then invoked using the Start method.

5. Now, add SingleProcessorMethod:

static void SingleProcessorExample()

{

string output = “Index: “;

 for (int index = 0; index < 1000000; index++)

{

 Console.WriteLine($”{output}{index}”);

}

 Console.ReadKey();

}

This method writes the value of the for loop index to the console window 1 million
times and then pauses until it receives a user keypress.

6. Type Performance Monitor into your task bar’s search area and open it. Then,
remove the existing counter, and then add a counter to view the processor time for
all the processors on your computer. If you need to, you can change the thickness of
the lines.

Using the Task Parallel Library (TPL) 567

7. Clear out the Performance Monitor screen and then run the console app. You
should see something similar to the following:

Figure 15.1 – Performance Monitor with our console application running
As you can see, processor instance 1 is the most utilized processor. What we need to
do is modify the program to utilize all available processors.

8. Comment out the method call in the Main method and add the following code after
the commented-out method:

Parallel.For(

 0, 1000000, x => MultipleProcessorExample(x)

);

This code uses a parallel for loop to process the MultipleProcessorExample
method 1 million times.

568 Parallel Programming

9. Run the code again. You should see the following in Performance Monitor:

Figure 15.2 – Performance Monitor showing all our processors being used by our modified program

As you can see, with very minimal code, you can go from utilizing a single processor
to utilizing all the processors using TPL. In previous chapters, you learned how to use
BenchmarkDotNET to benchmark the performance of different variations of the same
code. When deciding whether to turn your single processor code into multiple processor
code, it’s a good idea to benchmark. There is an overhead to using parallel code, so you
need to ensure that parallel code will improve your program.

Now, let’s learn how to use PLINQ.

Using Parallel LINQ (PLINQ)
In this section, you will learn how to convert your sequential LINQ queries into parallel
LINQ using PLINQ. Take a look at the following code:

var productNames = GetProductNames();

var names = from name in productNames

Using Parallel LINQ (PLINQ) 569

 where name.Length > 8

 select name;

The preceding code calls the GetProductNames method and stores the results in the
productNames variable. A LINQ statement is then performed on the productNames
list to extract a list of all product names greater than eight characters in length. The result
of this LINQ statement is then stored in the names variable.

The following code is identical to the preceding code, except we have modified it so that
it operates in parallel across multiple processors:

var productNames = GetProductNames();

var names = from name in productNames.AsParallel()

 where name.Length > 8

 select name;

Here, we can see that the only change to the LINQ statement to get it to execute as parallel
LINQ is to add the AsParallel() method call. The rest of the code stays the same.

If you want the data to be returned from the PLINQ statement, then suffix the
AsParallel() call with the AsOrdered() call:

var productNames = GetProductNames();

var names = from name in productNames

 .AsParallel().AsOrdered()

 where name.Length > 8

 select name;

The preceding code will return a list of product names whose lengths are greater than 8 in
alphabetical order.

PLINQ utilizes all the processors on the executing computer. However, you can limit the
number of processors that are used by PLINQ using the WithDegreeOfParallelism
call, passing in the number of processors you want to limit PLINQ being executed on:

var productNames = GetProductNames();

var names = from name in productNames

 .AsParallel()

 .WithDegreeOfParallelism(2)

 where name.Length > 8

 select name;

570 Parallel Programming

The preceding code has been limited to running on only two processors.

The following are some performance considerations when using PLINQ:

• Don’t use PLINQ on single-core computers. This would result in slower
performance than using standard LINQ.

• AsOrdered() will slow PLINQ down. Only use it if you need to. Benchmark
alternative ordering techniques to see which is quickest, and then implement the
quickest method.

• Employ production-sized datasets when developing and testing your PLINQ code.
This will reveal performance issues sooner rather than later!

• Avoid using PLINQ on small collections since this could provide less performance.
This is because PLINQ has been optimized for large datasets.

In the next section, we will consider some data structures that are suitable for
parallel programming.

Programming parallel data structures
When we do parallel programming, we should always consider that we are using threads.
Therefore, we should use data structures that are thread-safe.

For types that implement the IProducerConsumerCollection<T> interface, you
should use the generic BlockingCollection<T> class, which provides bounding and
blocking functionality. Use the ConcurrentDictionary<TKey, TValue> class for
thread-safe dictionaries. For thread-safe FIFO queues, use the ConcurrentQueue<T>
class. Use the ConcurrentStack<T> class for LIFO stacks. For a thread-
safe implementation of a collection of elements, use the ConcurrentBag<T>
class. Finally, for types to be used in a BlockingCollection, implement the
IProducerConsumerCollection<T> class.

You can read more about thread-safe collections on the Microsoft Docs website:
https://docs.microsoft.com/en-us/dotnet/standard/collections/
thread-safe/.

Next, we’ll look at benchmarking loops, LINQ, and PLINQ.

https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/

Benchmarking with BenchmarkDotNet 571

Benchmarking with BenchmarkDotNet
In this section, we will benchmark some methods to determine which method gives us
the best performance. Keep in mind that there is some initial expense when running code
in parallel. So, sometimes, parallel code may not be the best option for improving code
performance. Let’s get started:

1. Comment out the code in the Main method and add the following line:

BenchmarkRunner.Run<Benchmarks>();

2. Add a class called Benchmarks.
3. Add the following NuGet packages:

I. BenchmarkDotNet

II. LinqOptimizer.Csharp

4. Add the using statements for each of the NuGet packages to the Benchmarks
class.

5. Add the following code to set up our benchmarks:

private short[] data;

[GlobalSetup]

public void GlobalSetup()

{

 integers = new Int16[Int16.MaxValue];

 for (short x = 1; x <= integers.Length - 1; x++)

 {

 integers[x] = x;

 }

}

Here, we are declaring an array that’s a short data type. The array is then initialized
and filled with values. This array will be used by two of the following six methods.

6. Add the StandardForLoopExample method:

[Benchmark]

public void StandardForEachLoopExample()

{

 foreach (int x in integers)

572 Parallel Programming

 Console.WriteLine($”Item {x}: {x}”);

}

The preceding code uses a standard foreach loop to loop through the values
in the data array and then writes the value of the array at the given index to the
console window.

7. Add the ParallelForLoopExample method:

[Benchmark]

public void ParallelForEachLoopExample()

{

 Parallel.ForEach(integers, x => {

 Console.WriteLine($”Item {x}: {x}”);

 });

}

The preceding code does the same as the preceding code but executes the code
using PLINQ.

8. Add the UrlDownloader1 method:

 public List<string> DownloadWebsites1()

 {

 List<string> websitesContent = new();

 HttpClient httpClient = new();

 string[]? websites = new[]

 {

 “https://docs.microsoft.com”,

 “https://ownCloud.com”,

 “https://www.oanda.com/uk-en/”,

 “https://azure.microsoft.com/en-gb/”

 };

 foreach (string? website in websites)

 {

 Console.WriteLine($”Downloading of

 {website} content has started.”);

 string websiteContent =

Benchmarking with BenchmarkDotNet 573

 httpClient.GetStringAsync(website)

 .GetAwaiter().GetResult();

 websitesContent.Add(websiteContent);

 Console.WriteLine($”Downloading of

 {website} content has finished.”);

 }

 httpClient.Dispose();

 return websitesContent;

 }

The preceding code creates an array of URLs and downloads their content using
a foreach loop.

9. Add the UrlDownloader2 method:

 [Benchmark]

 public List<string> DownloadWebsites2()

 {

 List<string> websitesContent = new();

 string[]? websites = new[]

 {

 "https://docs.microsoft.com",

 "https://ownCloud.com",

 "https://www.oanda.com/uk-en/",

 "https://azure.microsoft.com/en-gb/"

 };

 Task[]? downloadJobs = websites

 .Select(jobs => Task.Factory.StartNew(

 state =>

 {

 using HttpClient? httpClient = new

 HttpClient();

 string? website = state == null ?

 String.Empty : (string)state;

574 Parallel Programming

 Console.WriteLine($"Downloading of

 {website} content has started.");

 string result =

 httpClient.GetStringAsync(website)

 .GetAwaiter().GetResult();

 websitesContent.Add(result);

 Console.WriteLine($"Downloading of

 {website} content has finished.");

 }, jobs)

)

 .ToArray();

 Task.WaitAll(downloadJobs);

 return websitesContent;

 }

The preceding code creates an array of URLs and downloads them as a set of tasks.
The code waits for all the tasks to complete before the content is returned.

10. Add the Urldownloader3 method:

 [Benchmark]

 public List<string> DownloadWebsites3()

 {

 List<string> websitesContent = new();

 HttpClient httpClient = new();

 List<string> websites = new()

 {

 "https://docs.microsoft.com",

 "https://ownCloud.com",

 "https://www.oanda.com/uk-en/",

 "https://azure.microsoft.com/en-gb/"

 };

 websites.ForEach(website =>

 {

 Console.WriteLine($"Downloading of

Benchmarking with BenchmarkDotNet 575

 {website} content has started.");

 string result =

 httpClient.GetStringAsync(website)

 .GetAwaiter().GetResult();

 websitesContent.Add(result);

 Console.WriteLine($"Downloading of

 {website} content has finished.");

 });

 httpClient.Dispose();

 return websitesContent;

 }

The preceding code uses a Parallel.ForeEach loop to download the contents
of URLs stored in an array.

11. Make sure that your project is set to Release mode, and then run your program.
The program will take some time to execute. However, once it has finished
executing, you should see something similar to the following:

Figure 15.3 – BenchmarkDotNet results

576 Parallel Programming

Looking at the ForEachLoop examples, we can see that the standard foreach loop
executed faster than our Parallel.ForEach loop. And so, in this example, using
parallel code was slightly slower than using non-parallel code. But if the dataset was much
larger and the data type was more complex, then the results could show that parallel code
performs faster.

When looking at our UrlDownloader methods, UrlDownloader4 uses the
Parallel.ForEach loop, which is much faster than the two methods that use the
foreach loop and foreach with lambda methods. However, the method that creates
an array of tasks and waits for them all to complete is slightly faster than the Parallel.
ForEach loop.

From these test results, we can see that we have different ways to perform the same
actions, and each method’s processing speed is different. In some cases, we have seen that
parallel code is slower than non-parallel code, while in others, we have seen that parallel
code is faster than non-parallel code.

When performance is an issue, you can use BenchmarkDotNet to test the efficiency of
different approaches to the same task. Then, you can choose the most efficient option for
the problem that you are trying to solve.

In the next section, we will learn how to use lambda expressions with TPL and LINQ.

Using lambda expressions with TPL and LINQ
There are several methods in TPL that take a System.Func<TResult> or System.
Action delegate as an input parameter. These can be used to pass custom logic into
a task, query, or parallel loop. Inline blocks can be used when creating delegates.

Use Func delegates to encapsulate methods that return a value and use Action delegates
to encapsulate methods that do not return values. Let’s review the following example:

 static void FuncAction()

 {

 int[] numbers = { 15, 10, 12, 17, 11, 13, 16,

 14, 18 };

 int additionResult = 0;

 try

 {

 Parallel.ForEach(

 numbers,

Using lambda expressions with TPL and LINQ 577

 () => 0,

 (number, currentState, addition) =>

 {

 addition += number;

 Console.WriteLine($"Thread:

 {Thread.CurrentThread.

 ManagedThreadId}, Number:

 {number}, Addition: {addition}");

 return addition;

 },

 (addition) => Interlocked.Add(ref

 additionResult, addition)

);

 Console.WriteLine($"Addition Result:

 {additionResult}");

 }

 catch (AggregateException e)

 {

 Console.WriteLine($"Aggregate Exception:

 FuncAction.\n{e.Message}");

 }

 }

The preceding code shows how to use the Parallel.ForEach method and
a thread-local state. We expect the code to execute in parallel and sum up all the values
stored in the int array. Each thread of the Parallel.For loop maintains a local
addition variable. This addition variable is set to 0 when each thread is initialized. With
each iteration, the addition is incremented with the number value. Once the thread has
completed its task, the local sum for that thread is safely added to the global sum. The
global sum is then printed out once the loop is complete.

The preceding code also demonstrates how to use lambda expressions to express both
Func and Action delegates:

]Parallel.ForEach<TSource,TLocal>(IEnumerable<TSource>,

 Func<TLocal>, Func<TSource,ParallelLoopState,Tlocal

 ,TLocal>, Action<TLocal>).

In the next section, we will look at some parallel debugging tools.

578 Parallel Programming

Parallel debugging and profiling tools
In this section, we will look at three parallel application debugging and profiling tools. These
are the Parallel Stacks window, the Tasks pane, and the Concurrency Visualizer. You will
need to open the CH15_ParallelProgrammingDebuggingAndProfilingSample
project for this. We will be using this project as we work through the next three sections.

The Parallel Stacks window
Run the program until it is paused by the debugger. Then, from the Visual Studio menu,
select Debug | Windows | Parallel Tasks. This will display the Parallel Tasks window.
You should see the following:

Figure 15.4 – The Parallel Stacks thread view

As you can see, our main thread is initiated via our Program.Main method. We can see
that the debugger is paused in Program.MethodC. There are four threads – one each for
methods A, B, and C, and a fourth in external code. There are also five threads running –
these are external code threads.

If you hover over the methods, you will see the following popup:

Figure 15.5 – The Parallel Stacks thread view with the Thread and Stack Frame view displayed

Parallel debugging and profiling tools 579

By hovering over each method group, you get to see a table of threads and their stack
frames. These stack frames provide the method name and line number. The active stack
frame of the current thread is identified by the yellow arrow. If you right-click while
hovering over the stack frame, you can select what details to show, including parameter
values, as shown here:

Figure 15.6 – The Thread and Stack Frame view

Here, we can see the values of each of the parameters of our thread methods. Next, we will
look at the Tasks window.

The Tasks window
To view the Tasks window, from the Parallel Tasks tab, select Tasks from the dropdown.
You should see the following:

Figure 15.7 – The Tasks view

580 Parallel Programming

The preceding screenshot shows the async logical stacks. If you hover over each method,
you will see the following window pop up, as you did with the threads view:

Figure 15.8 – The Thread and Stack Frame view

From the Visual Studio menu, select Debug | Windows | Tasks. You should see the
following pane:

Figure 15.9 – The Tasks pane

This view shows you the various tasks and their states, along with other information.
You can right-click on the columns to customize what columns you want to see. Clicking
on a line should take you to the source location for you to view the code.

In the next section, we will look at the Concurrency Visualizer.

The Concurrency Visualizer
The Concurrency Visualizer is a command-line utility that allows you to collect traces
from the command line. These can be viewed in the Concurrency Visualizer for Visual
Studio 2022, which can be used on computers that don’t have Visual Studio installed.
Web projects are not supported by the Concurrency Visualizer; it relies on Windows
event tracing.

By default, CVCollectionCmd.exe is installed in C:\Program Files\Microsoft
Visual Studio\2022\Preview\Common7\IDE\Extensions\rf2nfg00.o0t
and/or C:\Program Files\Microsoft Visual Studio\2022\Community\
Common7\IDE\Extensions\rf2nfg00.o0t.

Parallel debugging and profiling tools 581

To begin collecting a trace, you can use a command such as the following:

C:\Program Files\Microsoft Visual

Studio\2022\Preview\Common7\IDE\Extensions\rf2nfg00.o0t\CVC

ollectionCmd.exe" /launch D:\dev\CH15_ParallelProgrammingDe

buggingAndProfilingSample\CH15_ParallelProgrammingDebugging

AndProfilingSample\bin\Debug\net6.0\CH15_ParallelProgrammin

gDebuggingAndProfilingSample.exe /outdir D:\Debugging

 \TraceData

This will start our application and log trace data to the location specified by the /outdir
command-line argument. Several files will be generated by the tool. They will have .etl
and .cvtrace file extensions.

From the Visual Studio menu, select Analyze | Concurrency Visualizer | Open Trace to
view the generated trace file. You should see something similar to the following:

Figure 15.10 – The Contextual Visualizer Utilization tab

582 Parallel Programming

This screen shows the number of logical cores that are being utilized by the program you
have traced. As you can see, my computer has 16 logical cores. Out of those 16, only 12 are
being utilized. Clicking on the Threads tab gives you the following view:

Figure 15.11 – The Contextual Visualizer Threads tab

This screen gives us a good, detailed breakdown of the threads that were used, their
functionality, and the time they took to execute. Clicking on the Cores tab will display the
following view:

Figure 15.12 – The Contextual Visualizer Cores tab

Summary 583

This view shows the logical cores and their usage by the main thread and worker thread.
You will see the thread ID, its name, the number of cross-core context switches, total
context switches, and the percent of context switches.

Note
Microsoft provides a more detailed look into the Concurrency Visualizer.
I have just provided you with a brief overview of the tool and how to use
it. If you would like to learn more about how to use this tool, then you can
view Microsoft’s documentation at https://docs.microsoft.
com/en-us/visualstudio/profiling/concurrency-
visualizer?view=vs-2022.

With that, we’ve reached the end of this chapter. Now, let’s summarize what we’ve learned.

Summary
In this chapter, we looked at how to use TPL and PLINQ to execute code in parallel. At
this point, we understand that the main difference between TPL and PLINQ is that TPL
does not efficiently utilize all the cores on a computer, whereas PLINQ does.

We also saw how we can view the computer’s CPU utilization. Using PLINQ enables us
to utilize all the cores of a CPU efficiently to improve code performance. However, when
benchmarking parallel code, we saw that it is sometimes faster than non-parallel code,
while other times, it is faster. Therefore, it pays to benchmark your code to see what
method works best for you.

We also reviewed a piece of code that demonstrates the use of lambda expressions for
expressing both Func and Action delegates.

Finally, we looked at debugging parallel applications with a code sample that employed the
Parallel Tasks window, the Tasks pane, and the Concurrency Visualizer.

In the next chapter, we will look at asynchronous programming. But before we do, try and
answer the questions to see how well you have retained what you have read. Then, check
out the Further reading section to enhance your knowledge.

https://docs.microsoft.com/en-us/visualstudio/profiling/concurrency-visualizer?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/profiling/concurrency-visualizer?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/profiling/concurrency-visualizer?view=vs-2022

584 Parallel Programming

Questions
Answer the following questions to test your knowledge of this chapter:

1. What does TPL stand for?
2. What does PLINQ stand for?
3. What Windows program can you use to view CPU core usage?
4. Is parallel code always faster than non-parallel code?
5. How can you measure the code performance of parallel methods?

Further reading
To learn more about the topics that were covered in this chapter, take a look at the
following resources:

• Lambda Expressions in PLINQ and TPL: https://docs.microsoft.
com/en-us/dotnet/standard/parallel-programming/lambda-
expressions-in-plinq-and-tpl

• Task Parallel Library (TPL): https://docs.microsoft.com/en-us/
dotnet/standard/parallel-programming/task-parallel-
library-tpl

• Introduction to PLINQ: https://docs.microsoft.com/en-us/dotnet/
standard/parallel-programming/introduction-to-plinq

• Parallel Diagnostic Tools: https://docs.microsoft.com/en-us/dotnet/
standard/parallel-programming/parallel-diagnostic-tools

• Debugging Async Code: Parallel Stacks for Tasks: https://devblogs.
microsoft.com/visualstudio/debugging-async-code-parallel-
stacks-for-tasks/

• Walkthrough: Debugging a Parallel Application in Visual Studio (C#,
Visual Basic, C++): https://docs.microsoft.com/en-us/
visualstudio/debugger/walkthrough-debugging-a-parallel-
application?view=vs-2022&tabs=csharp#main

https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/lambda-expressions-in-plinq-and-tpl
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/lambda-expressions-in-plinq-and-tpl
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/lambda-expressions-in-plinq-and-tpl
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/introduction-to-plinq
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/introduction-to-plinq
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/parallel-diagnostic-tools
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/parallel-diagnostic-tools
https://devblogs.microsoft.com/visualstudio/debugging-async-code-parallel-stacks-for-tasks/
https://devblogs.microsoft.com/visualstudio/debugging-async-code-parallel-stacks-for-tasks/
https://devblogs.microsoft.com/visualstudio/debugging-async-code-parallel-stacks-for-tasks/
https://docs.microsoft.com/en-us/visualstudio/debugger/walkthrough-debugging-a-parallel-application?view=vs-2022&tabs=csharp#main
https://docs.microsoft.com/en-us/visualstudio/debugger/walkthrough-debugging-a-parallel-application?view=vs-2022&tabs=csharp#main
https://docs.microsoft.com/en-us/visualstudio/debugger/walkthrough-debugging-a-parallel-application?view=vs-2022&tabs=csharp#main

16
Asynchronous
Programming

In this chapter, you will learn about the Task-based Asynchronous Pattern (TAP). You
will learn how to program tasks asynchronously and how to access web resources using
async, await, and WhenAll. You will also learn about different return types and
extract the required results. Plus, you will learn how to correctly cancel asynchronous
operations and perform asynchronous file reading and writing.

In this chapter, we will be covering the following topics:

• Understanding the TAP model: In this section, we provide a high-level overview
of the TAP model.

• Using async, await, and Task: In this section, we will benchmark the performance
of a method run synchronously (using Task.Run) and asynchronously.

• Benchmarking GetAwaiter.GetResult(), .Result, and .Wait for both Task and
ValueTask: In this section, we benchmark the performance of an asynchronous
operation using GetAwaiter.GetResult(), .Result, and .Wait for both
Task and ValueTask.

• Canceling asynchronous operations: In this section, we write code that
demonstrates asynchronous task cancellation.

586 Asynchronous Programming

• Writing files asynchronously: In this section, we write text to a file asynchronously.

• Reading files asynchronously: In this section, we read text from a file
asynchronously.

After completing this chapter, you will be skilled in the following areas:

• Understanding the TAP model

• Processing web resources asynchronously

• Writing files asynchronously

• Reading files asynchronously

Technical requirements
You'll need Visual Studio to work on the code presented in this chapter.

All code from this chapter is placed on GitHub at https://github.com/
PacktPublishing/High-Performance-Programming-in-CSharp-and-.
NET/tree/master/CH16.

Understanding the TAP model
Before we begin, it is worth noting that there are three different models for dealing with
asynchronous programming. These are as follows:

• The Asynchronous Programming Model (APM)

• The Event-Based Asynchronous Pattern (EAP) model

• The Task Parallelism Library (TPL)

APM uses BeginMethod to start the asynchronous process and EndMethod to
complete the asynchronous process. EAP uses MethodAsync to start an asynchronous
process, CancelAsync to handle the cancellation of an asynchronous operation, and a
completed event handler to handle the completed asynchronous operation. Both these
ways of performing asynchronous operations were replaced by TPL in C# 4.5.

TPL uses the async and await pattern. Asynchronous method names are suffixed with
async. An asynchronous method usually returns an awaitable Task or Task<Result>.
From .NET 4.5 onwards, you are advised to use TPL instead of using APM and EAP.

https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH16
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH16
https://github.com/PacktPublishing/High-Performance-Programming-in-CSharp-and-.NET/tree/master/CH16

Understanding the TAP model 587

TAP's foundation types are the System.Thread.Tasks namespace, and the Task and
Task<Tresult> classes via asynchronous operations. Microsoft advises that you should
use TAP when starting new projects.

Naming, parameters, and return types
An asynchronous method using the TAP model prefixes the method signature with
async Task for void methods, or async Task<Tresult>, async ValueTask,
or async ValueTask<Tresult> for methods that return a value. The name of an
asynchronous method that does not return a value should begin with a verb such as
Begin or Process.

TAP method parameters should match and be in the same order as the parameters
of synchronous counterpart methods. You should avoid entirely using out and ref
parameters that are exempt from this rule. If you need to return data, use Tresult
returned by Task<Tresult>. Use data structures to accommodate multiple return
types. It is also worth considering adding cancellation tokens to TAP methods as
parameters even if synchronous method counterparts don't have such tokens.

Combinator methods that work with multiple tasks where the intent is clear do not
have to follow this naming pattern. WhenAll and WhenAny are examples of
combinator methods.

Initiating asynchronous operations
You may wish to perform some synchronous tasks, such as validation and preparing
the asynchronous operation for execution, at the start of an asynchronous method. If
so, you are advised to keep these tasks to the minimum, and the time they take should
be minimal. The reason is that such methods may be invoked from User Interface (UI)
threads, and you don't want to cause your applications to hang or freeze momentarily.

Another reason for keeping synchronous operations to the minimum and for spending
minimal time within asynchronous operations is that when you run concurrent
asynchronous methods, long-running synchronous operations can and do decrease the
benefits of concurrency.

Sometimes, it can take longer to prepare and launch an asynchronous operation than it
can take to complete the same operation synchronously. In these situations, you can run
the method synchronously and return a task.

588 Asynchronous Programming

Exceptions
Usage errors, such as passing null arguments, are the only errors that should be raised in
asynchronous methods. You can prevent asynchronous methods from raising usage errors
by modifying the calling code to ensure that erroneous arguments are not passed into the
asynchronous methods. All other types of exceptions and errors should be assigned to the
task being returned. Normally, one exception is returned by one task. But when there are
multiple operations represented by a single task, multiple exceptions may be returned by
a single task.

Optional cancellation
Cancellation of asynchronous method implementers and consumers is optional. An
asynchronous method that can be canceled, exposes an overload method that accepts
a CancellationToken that is named cancellationToken by convention.

Cancellation requests are monitored by the asynchronous operation. When a cancellation
request is received, it may be honored. If cancellation results in unfinished work, a task in
the Canceled state is returned with no available result and no exceptions.

The Canceled state is a completed task state, as are RanToCompletion and Faulted.
When a task's state is either Canceled, RanToCompletion, or Faulted, the
IsCompleted property returns true.

Continuations will continue to be scheduled and executed when a task is canceled unless
the NotOnCancelled continuation option is specified. If this option is specified, then
continuations will not be scheduled or executed when a task is canceled.

Asynchronous code waiting for canceled tasks via language features will continue to run
but will receive an OperationCanceledException or one of its derivatives. And
code that is blocked synchronously waiting on tasks through methods like Wait and
WaitAll will continue to run with an exception.

TAP methods should return a Canceled task when a cancellation token has requested
cancellation before the TAP method that accepts the token has been called. During the
execution of an asynchronous operation, cancellation requests can be ignored. When
returning a task, you will normally return the task with one of three states:

• Canceled: The operation has ended as a result of a cancellation request.

• RanToCompletion: A cancellation was requested but the operation was
completed and produced a result.

• Faulted: A cancellation was requested that resulted in the generation of
an exception.

Understanding the TAP model 589

If you are coding an asynchronous method and want to enable the operation to be
canceled first and foremost, then there is no need to produce an overload method
devoid of a CancellationToken. If you are coding an asynchronous method that
cannot be canceled, then you do not have to provide an overload method that accepts
a CancellationToken. These guidelines help the caller to know whether or not the
target method can be canceled. When a method that accepts a CancellationToken is
called by a consumer that has no desire to cancel the method call, None can be passed in
for the CancellationToken argument, as this is functionally equivalent to the default
CancellationToken.

Optional Progress Reporting
When asynchronous operations are running as part of a UI procedure, it can be
beneficial to provide progress updates. This helps the end user to know that the program
is still working.

The IProgress<T> interface is used to handle progress and is passed into an
asynchronous method as a parameter that is conventionally called progress. Passing
this interface into an asynchronous method can help prevent race conditions that can
occur when event handlers are incorrectly registered once the operation has started, which
can lead to missed updates. Another reason for passing in an interface is that consuming
code can support various progress implementations. Only provide an IProgress<T>
interface when progress notifications are supported by the TAP implementation.

An example that fits well with progress updates is the FindFilesAsync method, which
returns a list of files meeting a particular search pattern. In this scenario, you could
provide the percentage of work completed along with the current set of partial results. The
information would be provided by some data type that is specific to your API. Such data
types are conventionally suffixed with ProgressInfo.

TAP methods that provide a progress parameter should allow no progress reporting
by allowing the progress parameter to be null. Progress should be reported to the
Progress<T> object that implements the IProgress<T> interface synchronously.
This enables the asynchronous method to quickly provide progress. Consumers can
then determine how and where they want to handle the information provided by the
progress update.

The ProgressChanged event is exposed by instances of the Progress<T> class. This
event is raised every time a progress update is reported by the asynchronous operation.
When a Progress<T> object is instantiated, the ProgressChanged event is raised
on the captured SynchronizationContext object. A default context that targets the
thread pool is used when there is no synchronization context available.

590 Asynchronous Programming

You can either register handlers for this event as you would any other event, and you can
also provide the Progress<T> constructor with a single handler, for convenience. The
single handler behaves the same as an event handler for the ProgressChanged event.
During the execution of event handlers, delays to asynchronous operations are avoided by
raising progress updates asynchronously.

Now that we have a high-level understanding of the task-based asynchronous pattern, in
the next section, we will look at async, await, and Task.

async, await, and Task
In this section, we will be looking at the performance differences between running
methods synchronously, using Task.Run, and asynchronously. An asynchronous
method is identified by the async keyword.

The await keyword informs the runtime to wait at the specified line until the current
task has been completed. It can only be used with a method that is prefixed with the
async keyword.

The Task Parallel Library (TPL) can be found in the System.Threading.Tasks
namespace. A task encapsulates threading in order to maximize the use of multiple cores
on computer hardware.

Let's write a simple project to benchmark three different ways of calling a method.
We will call the method synchronously using Task.Run, and asynchronously using
async/await. We will be using BenchmarkDotNet to see how each method call type
performs. We aim to show the performance advantage of using asynchronous calls over
synchronous and Task.Run calls.

We perform the following steps to write our little program:

1. Start a new .NET 6.0 console application and call it CH16_
AsynchronousProgramming.

2. Add the BenchmarkDotNet NuGet package.
3. Add a new class called Benchmarks, and in that class add the following method:

public static void LengthyTask()

{

 int y = 0;

 for (int x = 0; x < 10; x++)

 y++;

}

async, await, and Task 591

This method is our worker method. All it does is increment the y variable by one
for ten iterations.

4. Add the SynchronousMethod to the class:

[Benchmark]

public void SychronousMethod()

{

 LengthyTask();

}

This method calls the LengthyTask method synchronously and is a benchmark.
5. Add the TaskMethod to the class:

[Benchmark]

public void TaskMethod()

{

 Task.Run(new Action(LengthyTask));

}

This method runs the LengthyTask method as a new Action, which is queued
to run on the ThreadPool. A Task or Task<Tresult> handle is returned for
that method.

6. Add the AsynchronousTaskMethod to the class:

[Benchmark]

public void AsynchronousTaskMethod()

{

 var data = async () => await Task.Run(new

 Action(LengthyTask));

}

This method runs the LengthyTask method as an action using Task.Run
asynchronously, and await the completion of the method before it continues.

592 Asynchronous Programming

7. Our benchmark class is now complete. So, in the Program.cs file, replace the
code with the following:

using BenchmarkDotNet.Running;

using CH16_AsynchronousProgramming;

Console.WriteLine("CH16 - Asynchronous Programming");

var summary = BenchmarkRunner.Run<Benchmarks>();

Console.ReadLine();

This code will run our benchmarks and produce a report for us.
8. Make sure that the project is set to Release build.
9. Build the project.
10. Open a command window and execute the compiled executable file called CH16_

AsynchronousProgramming.exe in the bin\Release\net6.0 folder.
11. The benchmarks should start running, and once complete, you should see a report

like the one shown in Figure 16.1:

Figure 16.1 – The BenchmarkDotNet report for our CH16_AsynchronusProgramming Project

Benchmarking GetAwaiter.GetResult(), .Result, and .Wait for both Task and ValueTask 593

As you can see in Figure 16.1, running the LengthyTask method synchronously took
7.3220 ns to complete. Using Task.Run took the longest time to run at 112.4494
ns. And the fastest way to run the code was asynchronously, which only took 0.9982ns
to complete.

We can clearly see from those times that there is a clear performance benefit to running
our code asynchronously, as it takes less overall time for our code to complete.

In the next section, we will compare the performance of await with GetAwaiter.
GetResult(), .Result, and .Wait. We will cover both Task and ValueTask.

Benchmarking GetAwaiter.GetResult(),
.Result, and .Wait for both Task and ValueTask
In this section, we will be writing some code to benchmark the GetAwaiter.
GetResult(), .Result, and .Wait methods to see which method is best for
obtaining the return value for both a Task and a ValueTask.

At https://github.com/dotnet/BenchmarkDotNet/issues/236, the
BenchmarkDotNet maintainer called adamsitnik wrote in reply to @i3arnon:

"@i3arnon Thanks for the hint! I have measured .Result vs .Wait vs GetAwaiter.
GetResult() and it seems that for Tasks the GetAwaiter.GetResult() is also the
fastest way to go. On the other hand, for ValueTask it was much more slower so I stayed
with .Result for VT."

And so, from the code that we will be writing, we should see that .Result should
provide us with the best performance when working with a ValueTask. And
GetAwaiter.GetResult() should give us the best performance when working with
a Task.

We will now start writing our code. Please complete the following tasks in the
CH16_AsynchronousProgramming project that we started in the previous section:

1. Open the CH16_AsynchronousProgramming project.
2. Open the Benchmarks class.
3. Add the following method that returns an int:

public static int LengthyTaskReturnsInt()

{

 int y = 0;

 for (int x = 0; x < 10; x++)

https://github.com/dotnet/BenchmarkDotNet/issues/236

594 Asynchronous Programming

 y++;

 return y;

}

In this code, we are incrementing the y variable and returning the result.
4. Add the GetAwaiterGetResult method:

[Benchmark]

public void GetAwaiterGetResult()

{

 int value = Task.Run(() =>

 LengthyTaskReturnsInt()).GetAwaiter()

 .GetResult();

}

This method benchmarks the time taken to return an int from a method using
GetAwaiter().GetResult().

5. Add the Result method:

[Benchmark]

public async Task Result()

{

 int value = await Task.Run(() =>

 LengthyTaskReturnsInt()).ConfigureAwait(false);

}

This method benchmarks the time taken to await the return of int from a method.
6. Add the Wait method:

[Benchmark]

public void Wait()

{

 Task.Run(() => LengthyTask()).Wait();

}

Benchmarking GetAwaiter.GetResult(), .Result, and .Wait for both Task and ValueTask 595

This method runs a lengthy task and waits for it to finish before continuing.
7. Add the GetAwaiter method:

[Benchmark]

public void GetAwaiter()

{

 Task.Run(() => LengthyTask()).GetAwaiter();

}

This method gets an awaiter used to await the task completion.
8. Build the project and run the executable via the command line. You should see a

summary report like the one shown in Figure 16.2:

Figure 16.2 – The BenchmarkDotNet summary report for this section's methods

As we can see from these results, when returning a value from a Task, the
GetAwaiterGetResult method operates much faster than the Result method. And
when executing a long-running Task, the GetAwaiter method operates much more
quickly than the Wait method.

In the next section, we will look at how we can speed up our code asynchronously when
awaiting multiple tasks by using WhenAll.

596 Asynchronous Programming

Using async, await, and WhenAll
In this section, we will write some example code that demonstrates the use of async,
await, and WhenAll and the effect on execution time.

If you have multiple tasks that are being executed in a method and you await each task,
your code will work asynchronously, and the execution time will be expensive. You can
circumvent this time expense with improved performance by using WhenAll to await
all completed tasks before continuing. In the code we will be writing, you will see how
WhenAll reduces the time taken to execute two asynchronous methods within a function
when compared to awaiting each task in turn.

Let's work our way through the following tasks:

1. In the Benchmarks class still, add the following asynchronous method, which
waits 300 milliseconds before returning an int:

private async Task<int> TaskOne()

{

 await Task.Delay(300);

 return 100;

}

The TaskOne method is the first of our methods that will be run by our
benchmarks.

2. Add the second of our asynchronous methods:

private async Task<string> TaskTwo()

{

 await Task.Delay(300);

 return "TaskTwo";

}

The TaskTwo method waits for 300 milliseconds and then returns a string.
3. Firstly, we will benchmark running asynchronous tasks synchronously:

[Benchmark]

public async Task SynchronousAwait()

{

 int intValue = await TaskOne();

 string stringValue = await TaskTwo();

}

Using async, await, and WhenAll 597

Here, we have two tasks and we await them both to complete before continuing.
4. Now, we'll add our method that will utilize WhenAll:

[Benchmark]

public async Task AsynchynchronousWhenAll()

{

 var taskOne = TaskOne();

 var taskTwo = TaskTwo();

 await Task.WhenAll(taskOne, taskTwo);

}

In this method, we create our two tasks, then we pass them into the WhenAll
method as parameters. We do not continue until all tasks are complete.

5. Build and run your executable via the command line. You should see something like
Figure 16.3:

Figure 16.3 – The results of synchronous and asynchronous execution of multiple asynchronous calls

As you can see from the results of our benchmarking, using WhenAll executes multiple
asynchronous tasks much faster than when you await them in turn. In the next section, we
will look at canceling asynchronous tasks.

598 Asynchronous Programming

Canceling asynchronous operations
In this section, we will look at how we can cancel long-running asynchronous operations.
Sometimes a task will take longer than it should do. A good example of this is fetching
data from a website when it goes down. Asynchronous operations can take a long time
before they are reset by the server due to something like Error 404, Error 401, or
Error 500 for example. And so, it pays to have the ability to cancel an asynchronous
operation after a set period to prevent wasting an end user's time.

The code we will write will return the text from a website URL. We will assign a very short
timeout. This timeout will cancel the task that is responsible for returning the website text.
Follow these steps:

1. Open the CH16_AsynchronousProgramming project, and add a new class
called TaskCancellation.

2. Add the using System.Text; statement.
3. Add the following two member variables:

private const string _website =

 "https://docs.microsoft.com";

private static readonly CancellationTokenSource

 _cancellationTokenSource = new();

The _website variable holds the URL of the website whose page text we will be
returning. And the CancellationTokenSource will be used to signal to a
CancellationToken that it should be cancelled.

4. Add the following method:

private static readonly HttpClient HttpClient = new()

{

 MaxResponseContentBufferSize = 1000000

};

Here, we declare a method that returns a HttpClient for our HTTP request. The
MaxResponseContentBufferSize sets the number of bytes to buffer when
reading the response content.

5. Now add the ReturnWebsiteTextAsync method:

private static async Task<string>

 ReturnWebsiteTextAsync()

{

Canceling asynchronous operations 599

 HttpResponseMessage response = await HttpClient

 .GetAsync(

 _website,

 _cancellationTokenSource.Token)

 .ConfigureAwait(false);

 byte[] contentAsByteArray = await response

 .Content

 .ReadAsByteArrayAsync(

 _cancellationTokenSource.Token)

 .ConfigureAwait(false);

 return Encoding.ASCII.GetString(

 contentAsByteArray

);

}

In this method, we declare HttpResponseMessage, which awaits an
asynchronous task that returns the contents of a web page. The response is then read
and converted into a byte array. This byte array is then transformed into an ASCII
string and returned.

6. Now add the Start method:

public static async Task Start()

{

 Console.WriteLine("Task started.");

 try {

 _cancellationTokenSource.CancelAfter(3000);

 await ReturnWebsiteTextAsync()

 .ConfigureAwait(false);

 }

 catch (OperationCanceledException) {

 Console.WriteLine(

 "\nThe task has timed out and been cancelled.

 \n");

 }

 finally {

 _cancellationTokenSource.Dispose();

600 Asynchronous Programming

 }

 Console.WriteLine("Task completed.");

}

In the Start method, we write a console message that states the task has
started. We then set the cancellation time of cancellationTokenSource
to 30 seconds, which is 3000 milliseconds. Then we await the call to the
ReturnWebsiteTextAsync. If the process times out after the set timeout
period, an OperationCanceledException is raised, which outputs a message
to the console. Finally, cancellationTokenSource is disposed of and a console
message is an output stating that the task is finished.

7. Comment out the benchmark running code in the Program.cs file, and add the
following line:

TaskCancellation.Start().GetAwaiter();

8. Run the project and try it several times with different timeout periods to test the
code completing successfully and returning text, and to test the operation timing
out and raising an exception.

Running this code through a couple of times with timeouts of 3000 and 30000 will
present an operation timeout exception and display the web page text, respectively. As you
can see if you run the code yourself, it is very easy to write asynchronous tasks that are
canceled after a set period.

In the next section, we will be writing code that shows how to write files asynchronously.

Writing files asynchronously
In this section, we will write text to a file asynchronously. Scenarios where asynchronous
file writing can be useful include writing large volumes of text and data to files that will
not be read immediately.

Use the following steps to write our code:

1. On your C:\ drive, add a folder called Temp if one does not already exist.
2. Open the CH16_AsynchronousProgramming project.
3. Add a class called FileReadWriteAsync.

Writing files asynchronously 601

4. Add the following method:

public static async Task WriteTextAsync()

{

string filePath = @"C:\Temp\Greetings.txt";

string text = "Hello, World!";

byte[] encodedText =

 Encoding.Unicode.GetBytes(text);

using (FileStream fileStream = new FileStream(

 filePath,

 FileMode.Append,

 FileAccess.Write,

 FileShare.None,

 bufferSize: 4096,

 useAsync: true

)

)

{

 await fileStream.WriteAsync(

 encodedText, 0, encodedText.Length);

};

}

In the WriteTextAsync method, we declare a file path for a text file and a
variable that contains the text to be written to the file. The text to be written gets
converted into a byte array. A writable asynchronous file stream is then opened in
append mode. Then we write the text to the file stream and close it.

In the next section, we continue in this class as we add our asynchronous read method
that shows how to read a file asynchronously.

602 Asynchronous Programming

Reading files asynchronously
In this section, we will read text from a file asynchronously. We will be building upon the
code from the previous section that writes the text to a file asynchronously.

The following steps will add our asynchronous read method and update the Program.cs
file to run our asynchronous code:

1. In the FileReadWriteAsync class, add the following method:

public static async Task<string> ReadTextAsync()

{

 string filePath = @"C:\Temp\Greetings.txt";

 using (FileStream fileStream = new FileStream(

 filePath,

 FileMode.Open,

 FileAccess.Read,

 FileShare.Read,

 bufferSize: 4096,

 useAsync: true

)

)

 {

 StringBuilder sb = new StringBuilder();

 byte[] buffer = new byte[0x1000];

 int numRead;

 while ((numRead = await fileStream

 .ReadAsync(buffer, 0, buffer.Length)) != 0

)

 {

 string text = Encoding.Unicode

 .GetString(buffer, 0, numRead);

 sb.Append(text);

 }

 return sb.ToString();

 }

}

Reading files asynchronously 603

Here, we define the path of the file that we need to read. Then we open a file stream
in read mode with read access. Next, we define StringBuilder and byte array
that will act as our buffer to store read data. We then read the stream until the read
has been completed. During each iteration of the read, we read the text from the file,
encode it into Unicode, and then append it to StringBuilder. Then, once the
loop has finished and exits, we return the string from the method.

2. Open the Program.cs class.
3. Comment out the following lines:

//var summary = BenchmarkRunner.Run<Benchmarks>();

// TaskCancellation.Start().GetAwaiter();

We won't be needing these lines when we run our code.
4. Add the following lines of code:

FileReadWriteAsync.WriteTextAsync().GetAwaiter();

string data = FileReadWriteAsync.ReadTextAsync()

 .GetAwaiter().GetResult();

Console.WriteLine(data);

In this code, we call our methods that write text to a file asynchronously, read the
text asynchronously into a variable, and then print the contents of the variable to
the console.

5. Run the code, and you should see something like Figure 16.3:

Figure 16.4 – The result of our asynchronous write and read code
As you can see from the screenshot, we have successfully written text
asynchronously to a file, asynchronously read it from that file, and printed the
contents to the console window.

In the next section, we will summarize what we have learned in this chapter.

604 Asynchronous Programming

Summary
In this chapter, we began with a high-level overview of the task-based asynchronous
pattern. Things we covered were naming, parameters, return types, initializing
asynchronous operations, exceptions, and optionally providing ways to report progress
updates and cancel operations. We saw that we can have asynchronous operations that
allow cancellation, and those that don't allow cancellation. Plus, we learned that when
a cancellation has been requested, the cancellation will either go ahead or be ignored.
Completed tasks can have a completed state of Canceled, RanToCompletion,
or Faulted.

We then benchmarked three different ways of calling a method synchronously, using
Task.Run, and asynchronously. Using Task.Run took the longest time, followed by
running the method synchronously, and running the method asynchronously was by
far the quickest way to run the method.

Then we benchmarked GetAwaiter.GetResult(), Result, and Wait for
both Task and TaskValue. We saw that when returning a value from a Task, the
GetAwaiterGetResult method operates much faster than the Result method.
And when executing a long-running Task, the GetAwaiter method operates much
more quickly than the Wait method.

Next, we looked at cancelling asynchronous operations. We coded an example that
obtains the text from a website and outputs the text to the console. If the operation fails
to complete within a set period of time, then it is cancelled.

In the final two sections, we wrote some code to demonstrate the writing and reading
of text and data asynchronously.

To complete this chapter, there are some questions for you to answer to see how well
you have retained what you have read and some further reading on asynchronous
programming.

Thank you for purchasing this book. I hope you have enjoyed reading it, and that you
have learned plenty of ways to improve your own code. Happy coding!

Questions
1. What does TAP stand for?
2. What parameter type identifies that an asynchronous operation can be canceled?
3. What parameter type is passed into an asynchronous task to provide

progress updates?

Further reading 605

4. Explain async, await, and Task.
5. How do you cancel an asynchronous operation?
6. How do you report on an asynchronous operation's progress?

Further reading
• Asynchronous programming; APM vs EAP: https://stackoverflow.com/

questions/11276314/asynchronous-programming-apm-vs-eap

• Asynchronous programming: https://docs.microsoft.com/en-us/
dotnet/csharp/async

• Introduction to async programming in C#: https://auth0.com/blog/
introduction-to-async-programming-in-csharp/

• The performance characteristics of async methods in C#: https://devblogs.
microsoft.com/premier-developer/the-performance-
characteristics-of-async-methods/

• Exception Handling (Task Parallel Library): https://docs.microsoft.
com/en-us/dotnet/standard/parallel-programming/exception-
handling-task-parallel-library

https://stackoverflow.com/questions/11276314/asynchronous-programming-apm-vs-eap
https://stackoverflow.com/questions/11276314/asynchronous-programming-apm-vs-eap
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://docs.microsoft.com/en-us/dotnet/csharp/async
https://auth0.com/blog/introduction-to-async-programming-in-csharp/
https://auth0.com/blog/introduction-to-async-programming-in-csharp/
https://devblogs.microsoft.com/premier-developer/the-performance-characteristics-of-async-methods/
https://devblogs.microsoft.com/premier-developer/the-performance-characteristics-of-async-methods/
https://devblogs.microsoft.com/premier-developer/the-performance-characteristics-of-async-methods/
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/exception-handling-task-parallel-library
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/exception-handling-task-parallel-library
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/exception-handling-task-parallel-library

Assessments
This section is for answers to questions from all chapters.

Chapter 1, Introducing C# 10.0 and .NET 6
1. Performance improvements in the garbage collector and JIT compiler, improved

performance of text-based processing, faster regular expression processing, and
performance of threading and asynchronous operations has been boosted. There
have also been performance improvements to collections, LINQ, networking, and
Blazor; plus, there are additional performance-based APIs and analyzers that are
new to .NET 6.

2. You can now write top-level programs and use init-only properties and records.
There are new pattern matching features and new expressions with targeted types.
You can use covariant returns and perform native compilation.

3. dotnet and ngen.
4. Run the Microsoft Store app performance assessment. Follow Microsoft’s advice

based on the assessment to improve your app’s performance, and address each of the
highlighted issues found with your app.

5. Perform baseline measurements, begin optimizations by performing the refactoring
with the largest overall impact, enable HTTP compression, reduce TCP/IP
connection overheads, and use HTTP/2 over SSL.

6. Reading tasks to be completed by the reader at their discretion.
7. Coding tasks to be completed by the reader at their discretion.
8. Benchmarking tasks to be completed by the reader at their discretion.

608 Assessments

Chapter 2, Implementing C# Interoperability
1. Platform invocation.
2. Explain what P/Invoke is.
3. It reminds the programmer that they are responsible for the safety of their code,

since it is not managed by the .NET Framework.
4. There are three generations of objects: zero, one, and two. Normally, objects are

added to generation zero and garbage is collected. But if they survive generation
zero, they are promoted to generation one. Objects that survive generation one are
promoted to generation two. If generations zero, one, and two are completely full
and new objects are added, then you end up with OutOfMemoryException, and
your application will crash.

5. The fixed keyword is used to ensure that objects referenced by pointers are not
promoted by the garbage collector. Otherwise, the pointers would point to the
wrong thing, causing bugs in the software.

6. BSTR.
7. IronPython, although other packages also exist.
8. Implement the disposable design pattern.
9. Set large fields to null when the object is being disposed of. This makes

them unreachable, and they are released faster than if they were reclaimed
non-deterministically. You will do this outside of the conditional block. See
https://docs.microsoft.com/en-us/dotnet/standard/garbage-
collection/implementing-dispose.

Chapter 3, Predefined Data Types and Memory
Allocations

1. bool, byte, char, DateTime, decimal, double, enum, float, int, long,
sbyte, short, struct, value tuple, uint, and ulong.

2. object, string, delegate, and dynamic.
3. Create an instance of the static type.
4. No. The same physical memory is used for both the stack and the heap.

https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/implementing-dispose
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/implementing-dispose

Chapter 4, Memory Management 609

5. Items are simply popped onto the stack when they are in use and immediately
popped off the stack when they are no longer needed. Objects added to the heap
need to be managed and object reference counters maintained. Items placed on the
stack use both the stack and the heap, as items on the heap have pointer variables on
the stack. So, there is more overhead to using the heap compared to the stack.

6. A string is placed on the heap. A variable is placed on the stack with the string’s
memory address. When another variable is assigned the same string, it is given the
address of the string. So, multiple items on the stack will be pointing to the same
string. However, if you append anything to the string, a new string is then created
on the heap with a new memory address. The variable that is assigned the new
string will have the memory address that points to the new string on the heap, so
the original string is never updated.

7. Less than 80,000 bytes.
8. 80,000 bytes or higher.

Chapter 4, Memory Management
1. Three: generation 0, generation 1, and generation 2.
2. Objects less than 80,000 bytes are placed on the SOH.
3. Objects 80,000 bytes or more are placed on the LOH.
4. A strong reference is a reference that does not get garbage-collected.
5. A weak reference is a reference that does get garbage-collected.
6. Implement the IDisposable pattern.
7. Unsubscribe event listeners when they are no longer used. Dispose of event

publishers or set them to null when they are no longer used.
8. Marshal.ReleaseComObject(object).
9. Make sure that any allocated memory is deallocated. Use the IDisposable

pattern to ensure that memory is cleaned up when the object is disposed of.

Chapter 5, Application Profiling and Tracing
1. Applications, assemblies, namespaces, types, methods, and fields.
2. Maintainability index, cyclomatic complexity, depth of inheritance, class coupling,

lines of source code, and lines of executable code.

610 Assessments

3. Dump location and time, the name of the process, processor architecture, exception
information, OS and CLR version, and the names, versions, and physical paths of
the loaded modules.

4. The name, path, optimized user code, symbol status, O (order), version, process,
and AppDomain.

5. Microsoft Visual Studio 2022, and JetBrains dotTrace, dotMemory, and dotnet-
counters.

6. We were able to list the .NET processes that can be monitored and counters that can
be used to collect data. We obtained the .NET process identifiers and monitored
them, and we collected, saved, and viewed data that we collected from the running
.NET processes.

Chapter 6, The .NET Collections
1. System.Collections, System.Collections.Generic, System.

Collections.Concurrent, and System.Collections.Specialized.
2. Big O notation is used to determine algorithmic efficiency.
3. Algorithmic efficiency determines how time scales with respect to input.
4. Benchmarking showed that using IList<T> was faster than using List<T>, and

so using IList<T> is preferred over using List<T>.
5. You can use either. What you choose depends upon your performance requirements

and what you are trying to achieve. There are trade-offs between using collections
and arrays. Understanding these trade-offs will help you choose which option you
should apply to your code.

6. Indexers enable objects in classes to be accessed in the same way as you access items
in an array.

7. IEnumerator<T> is faster at iterating through in-memory collections than
IEnumerable<T>.

8. In terms of memory and speed performance, querying the database and obtaining
the enumerator is the fastest way to query a database and iterate through the results
according to the benchmarks.

9. Use the yield keyword.

Chapter 7, LINQ Performance 611

Chapter 7, LINQ Performance
1. Use the index rather than the Last() call for direct access to the last element in a

collection. Avoid using the let keyword in your LINQ queries. Convert a list to an
array to perform group by, and then return an enumerator.

2. The compiler generates more lines of code that take longer to run, and more
memory is allocated at runtime than when the let keyword is not used.

3. Filter items starting with objects that have the least number of items, followed by
the objects with an increasing number of items. Also, avoid using the let keyword.

4. Closures with parameters perform better than closures without parameters.

Chapter 8, File and Stream I/O
1. Absolute, relative, UNC, and DOS device.
2. In the registry editor, set HKEY_LOCAL_MACHINE\SYSTEM\

CurrentControlSet\Control\FileSystem\LongPathsEnabled to 1.
3. The most efficient way to calculate the size of a directory is to get DirectoryInfo

for the directory, followed by the call to GetFileSystemInfos(). You then
iterate through the result, adding the length of each FileInfo object to get the
directory’s size.

4. The most efficient method of moving files is to obtain FileInfo objects
from the in-memory cache and then use the FileInfo.MoveTo(string
destination) method to move the file.

5. When you encounter a non-recoverable exception before you exit the application.
6. IOException.
7. Local, Local Cache, Roaming, Temporary, and C:\ProgramData.
8. Users may only install the software for themselves when prompted. This will result

in each logged-on person using the software having their own copy of the data, with
the data located in the Microsoft VirtualStore under their logged-on account.

9. When multiple users log onto the same computer, and an application has been
installed for just one user rather than all users, instead of the application data being
stored under the centralized location of C:\ProgramData, it will be stored under
Microsoft Virtual Store.

10. C:\Users\%USERNAME%\AppData\Local\VirtualStore.

612 Assessments

Chapter 9, Enhancing the Performance of
Networked Applications

1. Application layer, presentation layer, session layer, transport layer, network layer,
data link layer, and physical layer.

2. HTTP, HTTPS, SSH, SSL, DHCP, DNS, FTP, TFTP, Telnet, SMTP, IMAP4, POP3,
TCP, IP, UDP, Ethernet, and PPP.

3. TCP enables the transmitting and receiving of data that is guaranteed to be received.
UDP only allows the transmission of data that is not guaranteed to be received.

4. Use the developer tools that are built into your browser.
5. gRPC is a cross-platform, cross-language, and cross-device framework for making

remote procedure calls between applications. gRPC-Web is a proxy for browser-
based RCP calls, as browser applications are unable to use gRPC directly.

6. Reduce the number of things the page is doing and the number of services the
page calls. Reduce the size of images. Use file compression to reduce the size of files
transmitted over a network. Cache network resources. Filter data on the server,
divide it into pages, and return only the requested page of data.

Chapter 10, Setting Up Our Database Project
N/A.

Chapter 11, Benchmarking Relational Data
Access Frameworks

1. Executing a stored procedure with Dapper.NET.
2. Executing a raw SQL statement with Dapper.NET.
3. Executing a stored procedure with ADO.NET.
4. Executing a stored procedure with ADO.NET.
5. Executing a stored procedure with ADO.NET.
6. Not necessarily. A hybrid approach may be better because you can maximize your

data access performance for the data operations in question by using the most
performant method from the frameworks you have selected to work with.

Chapter 12, Responsive User Interfaces 613

Chapter 12, Responsive User Interfaces
1. Configure the application for high-DPI awareness.
2. Configure the application to be long file path-aware.
3. Add a splash screen to the start of your application.
4. Run the long-running task as a background task.
5. Memory caching and distributed caching.
6. Use AJAX.
7. WebSockets and SignalR.
8. SetSemanticFocus, Announce, and Font scaling.
9. Add the BlazorWebView component to a page and point it to the root of your

Blazor application.
10. ProgressRing and ProgressBar.

Chapter 13, Distributed Systems
1. Command query responsibility separation.
2. We may want to use one model for commands and another model for queries.
3. Event-driven programming.
4. We use events to trigger the execution of a serverless function, such as an Azure

Durable Function.
5. A piece of software that is used to package an application and its dependencies that

can be deployed to and executed in the cloud or on-premises.
6. To deploy third-party dependencies and legacy code.
7. Microservices in the form of functions that only run when they are required and

that usually run in response to an event trigger.
8. Serverless functions can scale rapidly, and you only pay for the time the functions

run. This can save money when compared to containers that need to be running
most of the time.

9. Extensions to Azure Functions that enable the writing of stateful functions in a
serverless environment. We can also use them to define workflows.

10. Activity, Orchestrator, Entity, and Client.

614 Assessments

11. Aggregator (stateful entities), fan-out/fan-in, function chaining, human interaction,
and monitoring (actors).

12. An infrastructure-as-code platform for managing microservices.
13. You can manage your microservices and their resources using C#, from creation to

running, stopping, and deleting them.

Chapter 14, Multi-Threaded Programming
1. Running, suspended, wait, sleep, join, and stop.
2. You don’t – this API is now obsolete.
3. Foreground and background.
4. Use CancellationToken to raise TaskCanceledException when a

CancellationTokenSource operation times out.
5. Thread.Start() or Thread.Start(object).

Chapter 15, Parallel Programming
1. Task Parallel Library.
2. Parallel LINQ Library.
3. Performance Monitor aka perfmon.
4. No.
5. Use BenchmarkDotNet to test the performance of various methods.

Chapter 16, Asynchronous Programming
1. Task-based asynchronous pattern.
2. CancellationToken.
3. IProgress<T>.
4. An asynchronous method is declared, with the async keyword preceding the

method name. The await keyword precedes an asynchronous operation and
prevents the continuation of any further code until the asynchronous operation
is complete. Task is what an asynchronous method returns. For void methods,
the return type is Task, and for methods that return a value, the return type is
Task<T>.

Chapter 16, Asynchronous Programming 615

5. Create a new CancelationTokenSource and then set the method of
cancelation, such as CancelAfter(3000).

6. Pass an IProgress<T> type into an asynchronous method as a parameter and
add event handlers for the ProgressChanged event. Alternatively, you can pass a
single handler into the Progress<T> constructor.

Index

Symbols
== operator

about 261
versus Equals() method 261-264

.NET 5 performance improvement
reference link 10

.NET 6 API
reference link 7

.NET 6 applications 80

.NET Core application 80

.NET Core roadmap
reference link 12

.NET Framework 80

.NET MAUI
accessibility improvements 490
BlazorWebView 492
layouts 489, 490
used, for building responsive UIs 489

.NET Native 82

.Result method
benchmarking, for Task and

ValueTask 593-595
.Wait method

benchmarking, for Task and
ValueTask 593-595

A
AdoDotNet class

writing 393-399
Ahead-Of-Time (AOT) 9
AJAX

using, to update part of currently
displayed page 478-480

Announce 490, 491
application domain (AppDomain) 117
application layer 334
application metrics

about 158
application assemblies 159
application fields 159
application methods 159
application namespaces 159
Intermediate Language (IL)

instructions 159
lines of code covered 159
Lines of Code (LOC) 158
lines of code not covered 159
lines of comment 158
percentage comment 159

application performance
optimizing, with dotTrace 206-209

application profiling 155

618 Index

application programming
interface (API) 118

applications
debugging 171, 172

application tracing 155
arrays

usage, benefits 234
usage, downsides 234

arrays, and collections usage
deciding, between 234-239

artificial intelligence (AI) 8
ASP.NET

about 81
used, for building responsive

UI 471, 472
ASP.NET performance

improving 35, 36
assembly metrics

about 160
abstractness 160
afferent coupling 160
distance from main sequence 160
efferent coupling 160
instability 160
relational cohesion 160

asynchronous files
accessing 315, 316

asynchronous operations
about 10
canceling 598-600

async keyword
about 590
using 596, 597

audit trail 517
augmented reality (AR) 8
automatic font scaling 491

await keyword
about 590-593
using 596, 597

Azure Function 529

B
background threads 549
BenchmarkDotNet

benchmarking with 571-576
benchmarking 271
benchmark results

analyzing 437
benchmark summary report

analyzing 438-442
Big O notation

about 225
rules 225

blank solution
about 359
Blazor client project 360-362
Blazor server project 362-364

Blazor 11, 358
BlazorWebView 492
boxing

about 97
example program, building 98-102
performing 98

C
C#

finalizers 65
predefined reference types 75
predefined value types 74, 75

C++ 85

Index 619

C# 10.0
covariant returns, using 27, 28
expressions, using with

targeted types 25, 26
Hello, World! program, writing 13
init-only properties, using 14, 15
overview 12
pattern matching features, using 21-25
records, using 15-21

caching 472
class 94
closures

applying, to LINQ queries 295-298
cloud infrastructure

managing, with Pulumi 534-537
code metrics

about 158
application metrics 158
assembly metrics 159
field metrics 162
method metrics 162
namespace metrics 160
type metrics 161

collection
about 11, 217
Dictionary 225
HashSet 226
LinkedList 226
List 226
Queue 226
selecting 225, 226
SortedDictionary 226
SortedList 226
SortedSet 226
Stack 226
System.Collections.Concurrent

namespace 221

System.Collections.Generic
namespace 220, 221

System.Collections namespace 218, 219
System.Collections.Specialized

namespace 222, 223
usage, downside 234

collection types
index-based 217
key/value pair 217
prioritized 218
specialized 218

COM Callable Wrapper (CCW) 130
COM interoperability

data, reading from Excel
spreadsheet 59, 60

Excel add-in, creating 61-63
performing 58

Common Language Infrastructure
(CLI) 43

Common Language Runtime
(CLR) 43, 128

Component Object Model (COM) 58
concurrency

about 260
versus parallelism 260

Concurrency Visualizer
about 580-583
reference link 583

containers 532
content streaming

pipelines, using 366, 367
Continuous Integration (CI) 163
CQRS design pattern

implementing 514-516
custom collections

creating 223, 224

620 Index

D
DapperDotNet class

writing 403-409
database

effects, on LINQ query
performance 276-282

querying 273-277
setting up 382-386

database access project
Properties class, writing 387, 388
setting up 386, 387

database query performance 246-253
DatabaseSettings class

writing 388
data deletion methods

benchmarking 432-437
data editing methods

benchmarking 427-432
data insertion methods

benchmarking 413-419
data link layer 335
data selection methods

benchmarking 420-427
deep comparison 261
Deferred Procedure Calls (DPCs) 35
delegate reference type 77
delegates

reference link 77
denial-of-service (DOS) attacks 307
destructor 117
Developer Command Prompt 100
directory 30
directory sizes

calculating 313-315

disposable pattern
about 66
used, for releasing managed and

unmanaged resources 66, 67
distributed caching

about 475
implementing 475-478

distributed systems
Microsoft Azure, using 528
performance considerations 538-541

Document Object Model (DOM) 78
domain-driven design (DDD) 516
Domain Name Resolution (DNS) 538
Domain Name Service (DNS) 335
dotMemory

about 172, 179
used, for fixing memory leak 189-197
used, for tracking memory leak 189-197

dotnet-counters
.NET counters, listing 187
.NET processes, listing 187
.NET processes, monitoring 188, 189
about 183
data, collecting 185
data, saving 185-187
installing 183, 184
using 184

Dots Per Inch (DPI) 446
dotTrace

about 172
used, for application performance

optimization 206-209
used, for finding cause of

UI freeze 198-206
used, for memory traffic

optimization 206-209

Index 621

DPI awareness
enabling 447

durable function patterns
about 531
aggregator (stateful entities) 531
async HTTP APIs 531
fan-out/fan-in 532
function chaining 532
human interaction 532
monitoring 532

durable functions 530
durable function type

activity 530
client 531
entity 531
orchestrator 530

Dynamic Host Configuration
Protocol (DHCP) 335

dynamic-link library (DLL) 80
dynamic reference type 77-81

E
email application

writing, with TCP/IP model 339-342
EntityFrameworkCoreData class

writing 400-403
enumerators 221
Equals() method

about 261
versus == operator 261-264

Ethernet protocol 336
events

using, as source of memory
leaks 138-147

event sourcing
example project 519-528
implementing 516-518

Excel add-in
creating 61-63
operations, executing in separate

thread of execution 64
performance improvements 64
Ribbon reflection, bypassing 64
VSTO add-in, loading on demand 63

Excel COM objects
issues, investigating 131-137

Excel spreadsheet
data, reading from 59, 60

expected exceptions 320

F
false positive 540
field metrics

about 162
afferent coupling 162

files
moving, methods 308-312
reading asynchronously 602, 603
writing asynchronously 600, 601

File Transfer Protocol (FTP) protocol 336
finalization

about 117
using 118-122

finalizer
about 65
writing, in C# 65

First In First First Out (FIFO) 218
fixed code

about 45, 46
using 45, 47

foreground threads 549

622 Index

G
garbage collection 9
GetAwaiter.GetResult() method

benchmarking, for Task and
ValueTask 593-595

GIF/animated GIF format 365
global service provider (GSP) 129
Group By performance

increasing, in LINQ queries 287-289
group policy editor

used, for removing path length
limitation 304, 305

gRPC Blazor application
programming 358, 359

gRPC client
building 350-356

gRPC Remote Procedural Call (gRPC)
about 347
used, for high-performance

communication 347, 348
gRPC service

building, in Visual Studio 348-350

H
heap

about 85-87
types 87
versus stack 87-93

high-performance communication
with gRPC 347, 348

HTTP APIs 348
Hypertext Transfer Protocol (HTTP) 335
Hypertext Transfer Protocol

Secure (HTTPS) 335

I
IDisposable pattern

implementing 122-127
IEnumerable interface

versus IEnumerator interface 242-245
immutable string example program

building 76, 77
increment count button

adding 451
index-based collections 217
indexers

used, for accessing objects 239-241
Infrastructure as Code (IaC) solutions 534
in-memory sample data

setting up 271, 272
interfaces, and concrete classes

deciding, between 229-233
Internet Message Access Protocol

4 (IMAP4) 336
Internet Protocol (IP) 336
internet resources

data transmission 366
images 365
optimizing 365
text characters 365, 366

Inter-Process Communication
(IPC) 58, 359

Interrupt Service Routines (ISRs) 35
I/O operation exceptions

handling 319-322
I/O operations

text, writing to asynchronous file 319
I/O performance

asynchronous files, accessing 315, 316
considering 305-307

Index 623

directory sizes, calculating 313-315
files, moving 308-312
text, writing to asynchronous

file 316-319
IronPython libraries 78

J
JetBrains

reference link 198
JetBrains dotMemory

using 179-181
JetBrains dotTrace

using 181-183
JPEG/JPG format 365
JSON

using 75
Just-In-Time (JIT) compiler 9

K
key/value pair collections 217

L
label

adding 451
lambda expressions

using, with LINQ 576, 577
using, with Task Parallel

Library (TPL) 576, 577
Large Object Heap (LOH) 107, 325
Last In First Out (LIFO) 218
last value, collection

obtaining 283, 284
layouts 489
let keyword

avoiding, in LINQ queries 285, 286

LINQ
about 11
lambda expressions, using with 576, 577

LINQ queries
Group By performance,

increasing 287-289
let keyword, usage avoiding 285, 286

lists
filtering 290-294

load context 82
loaded modules

viewing 169-171
loading progress feedback

used, for adding splash screen 448-450
local methods

used, for handling events 147-149
local storage tasks 326, 327
long file path awareness

enabling 447
long-running tasks

running, in background 456-460
long weak references 111-117

M
managed heap 75
Marshal.ReleaseComObject

using, dangers 128-130
MAUI

used, for building responsive
UI 492-507

memory
resources, caching 374-377

memory caching
implementing 472-474

memory dumps
generating 167, 168
viewing 167, 168

624 Index

memory fragmentation 325
memory in C#, types

about 83, 84
heap 85-87
heap building, versus stack

building 87-93
selecting, between struct and class 93, 94
stack 84, 85

memory issues
avoiding 106-110

memory leak
about 189
events, using as 138-147
fixing, with dotMemory 190-197
preventing 127
tracking, with dotMemory 189-197

memory tasks
performing, efficiently 323-325

memory traffic
optimizing, with dotTrace 206-209

method metrics
about 162
afferent coupling 162
IL nesting depth 162
method rank 162
overloads 162
parameters 162
percentage branch coverage 162
variables 162

Microsoft Azure
using, for distributed systems 528

Microsoft Edge
used, for recording web-applications

performance 343-347
Microsoft Excel 16.0 Object Library

using, in .NET 6 131

Microsoft Intermediate
Language (MSIL) 28

Microsoft .NET 6
asynchronous operations 10
Blazor 11
collections 11
features 8
garbage collection 9
Just-In-Time (JIT) compiler 9
LINQ 11
Microsoft Excel 16.0 Object

Library, using 131
networking 11
overview 7
performance-based analyzers 12
performance-based APIs 12
reference link 7
text-based processing 10
threading operations 10
unified platform 8

minidump 167
multiple gRPC requests

streaming 356-358

N
namespace metrics

about 160
afferent coupling 160
level 160

native compilation 28
native compilation, of .NET

Core applications
performing 29-34

networking 11

Index 625

network layers
about 335
application layer 334
data link layer 335
physical layer 335
presentation layer 334
session layer 335
transport layer 335

Network News Transport
Protocol (NNTP) 337

network protocols 334
Network Time Protocol (NTP) 337
non-deterministic finalization 129

O
object generations 106-110
object reference type 75
objects

accessing, with indexers 239-241
Office Automation API 78
OSI model

about 334
versus TCP/IP model 338

P
paged navigation

used, for adding table 451-455
parallel data structures

programming 570
parallel debugging tools 578
parallelism

about 260
versus concurrency 260

Parallel LINQ (PLINQ)
performance considerations 570
using 568, 569

parallel profiling tools 578
Parallel Stacks window 578
parameters

threads, creating with 549-552
threads, creating without 549-552

passing by reference
about 94
example program, building 94-97

passing by value 94
path length limitation

removing, with group policy
editor 304, 305

removing, with registry 303, 304
performance-based analyzers 12
performance-based APIs 12
physical layer 335
pipelines

using, for content streaming 366, 367
Platform Invocation (P/Invoke)

fixed code, using 45-47
static entry points, exposing with 48-55
unsafe code, using 44-47
using 43, 44

PNG format 365
PNGGauntlet

URL 365
Point-to-Point (PPP) protocol 336
Post Office Protocol version 3 (POP3) 336
predefined .NET data types

about 73
types 73

predefined reference types
in C# 75

predefined value types
in C# 74, 75

presentation layer 334

626 Index

prioritized collections 218
process.Kill() method 138
producer/consumer usage 221
Product class

writing 391, 392
profiling tools

JetBrains dotMemory 179-181
JetBrains dotTrace 181-183
used, for tracing and diagnosing 172
Visual Studio 2022 Performance

Profiler 172-179
Properties class

writing 387, 388
protocol buffers (Protobuf) 347
proto file 347
publisher/subscriber usage 221
Pulumi

used, for managing cloud
infrastructure 534-537

Python 56
Python code

executing 56, 57
interacting with 56

Python.NET
URL 56

R
real-time chat application

implementing, with SignalR 484-489
registry

used, for removing path length
limitation 303, 304

Regular expression (RegEx) 10
Remote Desktop Protocol (RDP) 336

Request For Comments (RFCs) 337
resources

caching, in memory 374-377
responsive ASP.NET application

AJAX, using to update part of
currently displayed page 478-480

distributed caching,
implementing 475-478

memory caching,
implementing 472-474

real-time chat application, implementing
with SignalR 484-489

WebSockets, implementing 481-483
responsive UI

building, with ASP.NET 471, 472
building, with MAUI 492-507
building, with .NET MAUI 489
building, with WinForms 446, 447
building, with WinUI 3 507-510
building, with WPF application 461-471

RFC 768 (UDP)
about 337
reference link 337

RFC 793 (TCP)
about 337
reference link 337

Roslyn 3
Roslyn compiler

building, from source code 5-7
obtaining, from source code 5-7

RuntimeCallableWrapper (RCW) 128
Runtime Identifier (RID)

reference link 29

Index 627

S
sample database

setting up 227-270
SecretsManager class

writing 389-391
Secure Shell (SSH) 335
Secure Socket Layer (SSL) 336
serverless technology 533
session layer 335
SetSemanticFocus 490, 491
shallow comparison 261
short weak references 111-117
SignalR

used, for implementing real-time
chat application 484-489

Simple Mail Transfer Protocol
(SMTP) 336

single responsibility principle (SRP) 161
small object heap (SOH) 107
specialized collections 218
splash screen

adding, with loading progress
feedback 448-450

SqlCommandModel class
writing 392

SqlCommandParameterModel class
writing 393

stack
about 84, 85
versus heap 87-93

static code analysis
performing 163-167

static entry points
exposing, with P/Invoke 48-55

static types 81, 82
string reference type 76
struct 93
struct and class

selecting, between 93, 94
System.Collections.Concurrent

namespace 221
System.Collections.Generic

namespace 220, 221
System.Collections namespace 218, 219
System.Collections.Specialized

namespace 222, 223
System.Runtime

counters 188

T
table

adding, with paged navigation 451-455
TAP model

about 586
asynchronous operations, initiating 587
exceptions 588
naming 587
optional cancellation 588, 589
Optional Progress Reporting 589
parameters 587
return types 587

target frameworks
reference link 29

Task Parallel Library (TPL)
about 590
lambda expressions, using with 576, 577
using 564-568

628 Index

Task.Run
about 591
using 590-593

Tasks window 579, 580
TCP client console application

running 372, 373
writing 372, 373

TCP/IP model
about 338, 339
Application layer 339
Internet layer 339
layers 338
Network Interface layer 339
Transport layer 339
used, for writing email

application 339-342
versus OSI model 338

TCP protocol 337
TCP server console application

running 367-371
writing 367-371

Telnet 336
text

writing, to text file
asynchronously 316-319

text-based processing 10
The Internet Engineering Task

Force (IETF) 337
threading operations 10
threads

about 548, 549
canceling 554-556
creating, without parameters 549-552
creating, with parameters 549-552
destroying 553-556
interrupting 552, 553
life cycle 548

locking 558-560
pausing 552, 553
running state 548
scheduling 556-558
synchronization 558-560

thread-safe collections
reference link 570

Transmission Control Protocol (TCP) 336
transport layer 335
transport protocol layer 347
Trivial File Transfer Protocol (TFTP) 336
type metrics

about 161
afferent coupling 161
association between classes 161
cyclomatic complexity 161
depth of inheritance tree 161
efferent coupling 161
IL cyclomatic complexity 161
interfaces implemented 161
lack of cohesion methods 161
number of children 161
size of instance 161
type rank 161

U
UI freeze

cause, finding with dotTrace 198-206
unboxing

about 93, 97
example program, building 98-102
performing 98

unexpected exceptions 320
Unix domain sockets (UDS) 359

Index 629

unmanaged code
disposing 64
disposing, with C# finalizers 65
disposing, with disposable pattern 66, 67

unsafe code
about 44
using 44-48

User Datagram Protocol (UDP) 336, 337

V
virtual reality (VR) 8
Visual C#, using to implement

custom collections
reference link 224

Visual Studio
gRPC service, building 348-350

Visual Studio 2022 Performance Profiler
using 172-179

Visual Studio Tools for Office (VSTO) 58
Visual Studio (VS) 2019 100

W
weak reference events

using 150, 151
web-applications performance

recording, with Microsoft Edge 343-347
web-based network traffic

improving 342
WebSockets

about 481
implementing 481-483

WhenAll
using 596, 597

Wide Area Network (WAN) 343

Windows file path formats
about 302, 303
examples 303
path length limitation, removing with

group policy editor 304, 305
path length limitation, removing

with registry 303, 304
Windows Store performance

improving 35
WinForms application

DPI awareness, enabling 447, 448
increment count button, adding 451
label, adding 451
long file path awareness,

enabling 447, 448
long-running tasks, running in

background 456-460
splash screen, adding with loading

progress feedback 448-450
table, adding with paged

navigation 451-455
used, for building responsive

UI 446, 447
WinUI 3

used, for building responsive
UI 507-510

WPF application
used, for building responsive

UI 461-471

Y
yield keyword

exploring 253-259

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

632 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

C# 10 and .NET 6 – Modern Cross-Platform Development - Sixth Edition
Mark J. Price
ISBN: 9781801077361

• Build rich web experiences using Blazor, Razor Pages, the Model-View-Controller
(MVC) pattern, and other features of ASP.NET Core

• Build your own types with object-oriented programming
• Write, test, and debug functions
• Query and manipulate data using LINQ
• Integrate and update databases in your apps using Entity Framework Core,
• Microsoft SQL Server, and SQLite
• Build and consume powerful services using the latest technologies, including gRPC

and GraphQL
• Build cross-platform apps using XAML

https://packt.link/9781801077361

Other Books You May Enjoy 633

Software Architecture with C# 10 and .NET 6 - Third Edition
Gabriel Baptista, Francesco Abbruzzese
ISBN: 9781803235257

• Use proven techniques to overcome real-world architectural challenges
• Apply architectural approaches such as layered architecture
• Leverage tools such as containers to manage microservices effectively
• Get up to speed with Azure features for delivering global solutions
• Program and maintain Azure Functions using C# 10
• Understand when it is best to use test-driven development (TDD)
• Implement microservices with ASP.NET Core in modern architectures
• Enrich your application with Artificial Intelligence
• Get the best of DevOps principles to enable CI/CD environments

https://packt.link/9781803235257

634 Other Books You May Enjoy

Enterprise Application Development with C# 10 and .NET 6 - Second Edition

Ravindra Akella, Arun Kumar Tamirisa, Suneel Kumar Kunani, Bhupesh Guptha
Muthiyalu

ISBN: 9781803232973

• Design enterprise apps by making the most of the latest features of .NET 6
• Discover different layers of an app, such as the data layer, API layer, and web layer
• Explore end-to-end architecture by implementing an enterprise web app using

.NET and C# 10 and deploying it on Azure
• Focus on the core concepts of web application development and implement them in

.NET 6
• Integrate the new .NET 6 health and performance check APIs into your app
• Explore MAUI and build an application targeting multiple platforms - Android,

iOS, and Windows

https://packt.link/9781803232973

635

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished High-Performance Programming in C# and .NET, we’d love to hear
your thoughts! If you purchased the book from Amazon, please click here to go
straight to the Amazon review page for this book and share your feedback or
leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-800-56471-6
https://packt.link/r/1-800-56471-6

	Cover
	Title
	Copyright and Credits
	Table of Contents
	Part 1:
High-Performance Code Foundation
	Chapter 1: Introducing C# 10.0 and .NET 6
	Technical requirements
	Obtaining and building the latest Roslyn compiler from the source code

	Overview of Microsoft .NET 6
	Moving to one unified platform
	Garbage collection
	Just-In-Time compiler
	Text-based processing
	Threading and asynchronous operations
	Collections and LINQ
	Networking and Blazor
	New performance-based APIs and analyzers

	Overview of C# 10.0
	Writing top-level programs
	Using init-only properties
	Using records
	Using the new pattern matching features
	Using new expressions with targeted types
	Using covariant returns

	Native compilation
	Performing native compilation of .NET Core applications

	Improving Windows Store performance
	Improving ASP.NET performance
	Summary
	Questions and exercises
	Further reading

	Chapter 2: Implementing C# Interoperability
	Technical requirements
	Using Platform Invocation (P/Invoke)
	Using unsafe and fixed code
	Exposing static entry points using P/Invoke

	Interacting with Python code
	Performing Component Object Model (COM) interoperability
	Reading data from an Excel spreadsheet
	Creating an Excel add-in

	Safely disposing of unmanaged code
	Summary
	Questions
	Further reading

	Chapter 3: Predefined Data Types and Memory Allocations
	Technical requirements
	Understanding the predefined .NET data types
	Understanding the predefined value types in C#
	Understanding the predefined reference types in C#
	Understanding static types

	Understanding the various types of memory used in C#
	The stack
	The heap
	Building a stack versus building a heap (example project)
	Choosing between a struct and a class

	Passing by value and passing by reference
	Building a pass-by-reference example program

	Boxing and unboxing
	Performing boxing
	Performing unboxing

	Summary
	Questions
	Further reading

	Chapter 4: Memory Management
	Technical requirements
	Object generations and avoiding
memory issues
	Understanding long and short weak references
	Finalization
	Using finalization

	Implementing the IDisposable pattern
	Preventing memory leaks
	Understanding the dangers of using Marshal.ReleaseComObject
	How using events can be a source of memory leaks

	Summary
	Questions
	Further reading

	Chapter 5: Application Profiling and Tracing
	Technical requirements
	Understanding code metrics
	Application metrics
	Assembly metrics
	Namespace metrics
	Type metrics
	Method metrics
	Field metrics

	Performing static code analysis
	Generating and viewing memory dumps
	Viewing loaded modules
	Debugging your applications
	Using tracing and diagnostics tools
	Using the Visual Studio 2022 Performance Profiler
	Using JetBrains dotMemory
	Using JetBrains dotTrace

	Installing and using dotnet-counters
	Collecting data and saving it to a file for post-analysis
	Listing .NET processes that can be monitored
	Listing the available list of well-known .NET counters
	Monitoring a .NET process

	Tracking down and fixing a memory leak with dotMemory
	Finding the cause of a UI freeze with dotTrace
	Optimizing application performance and memory traffic with dotTrace
	Summary
	Questions
	Further reading

	Part 2:
Writing High-Performance Code
	Chapter 6: .NET Collections
	Technical requirements
	Understanding the different collection offerings
	The System.Collections namespace
	The System.Collections.Generic namespace
	The System.Collections.Concurrent namespace
	The System.Collections.Specialized namespace
	Creating custom collections

	Understanding Big O notation
	Choosing the right collection

	Setting up our sample database
	Deciding between interfaces and concrete classes
	Deciding between using arrays or collections
	Accessing objects using indexers
	Comparing IEnumerable and IEnumerator
	Database query performance
	Exploring the yield keyword
	Learning the difference between concurrency and parallelism
	Learning the difference between Equals() and ==
	Summary
	Questions
	Further reading

	Chapter 7: LINQ Performance
	Technical requirements
	Setting up a sample database
	Setting up our in-memory sample data
	Database query performance
	Getting the last value of a collection
	Avoid using the let keyword in LINQ queries
	Increasing Group By performance in LINQ queries
	Filtering lists
	Understanding closures
	Summary
	Questions
	Further reading

	Chapter 8: File and Stream I/O
	Technical requirements
	Understanding the various Windows file path formats
	Removing the maximum path length limitation using the registry
	Removing the maximum path length limitation using the group policy

	Considering improved I/O performance
	Moving files
	Calculating directory sizes
	Accessing files asynchronously
	Writing text to a file asynchronously

	Handling I/O operation exceptions
	Performing memory tasks efficiently
	Understanding local storage tasks
	Summary
	Questions
	Further reading

	Chapter 9: Enhancing the Performance of Networked Applications
	Technical requirements
	Understanding the network layers and protocols
	The TCP/IP model
	Writing an example email application with the TCP/IP model

	Improving web-based network traffic
	Recording your web-applications performance using Microsoft Edge

	High-performance communication using gRPC
	Programming a simple gRPC client/server application
	Programming a simple gRPC Blazor application
	The blank solution

	Optimizing internet resources
	Using pipelines for content streaming
	Writing and running a TCP server console application
	Writing and running a TCP client console application

	Caching resources in memory
	Summary
	Questions
	Further reading

	Chapter 10: Setting Up Our Database Project
	Technical requirements
	Setting up our database
	Setting up our database access project
	Writing the Properties class
	Writing the DatabaseSettings class

	Writing the SecretsManager
	Writing the Product class
	Writing the SqlCommandModel class
	Writing the SqlCommandParameterModel class
	Writing the AdoDotNet class
	Writing the EntityFrameworkCoreData class
	Writing the DapperDotNet class
	Summary
	Further reading

	Chapter 11: Benchmarking Relational Data Access Frameworks
	Technical requirements
	Benchmarking data insertion methods
	Benchmarking data selection methods
	Benchmarking data editing methods
	Benchmarking data deletion methods
	The benchmarking results and their analysis
	Summary
	Questions
	Further reading

	Chapter 12: Responsive User Interfaces
	Technical requirements
	Building a responsive UI with WinForms
	Enabling DPI awareness and long file path awareness
	Adding a splash screen that updates with loading progress
	Adding the increment count button and label
	Adding a table with paged data
	Running long-running tasks in the background

	Building a responsive UI with WPF
	Building a responsive UI with ASP.NET
	Implementing memory caching
	Implementing distributed caching
	Using AJAX to update part of the currently displayed page
	Implementing WebSockets
	Implementing a real-time chat application using SignalR

	Building responsive UIs with .NET MAUI
	Layouts
	Accessibility
	BlazorWebView

	Building a responsive UI with MAUI
	Building a responsive UI with WinUI 3
	Summary
	Questions
	Further reading

	Chapter 13: Distributed Systems
	Technical requirements
	Implementing the CQRS design pattern
	Implementing event sourcing
	Event sourcing example project

	Using Microsoft Azure for distributed systems
	Azure Functions
	Durable Azure Functions
	Containers and serverless

	Managing your cloud infrastructure with Pulumi
	Performance considerations for distributed computing
	Summary
	Questions
	Further reading

	Part 3:
Threading and Concurrency
	Chapter 14: Multi-Threaded Programming
	Technical requirements
	Understanding threads and threading
	Creating threads and using parameters
	Pausing and interrupting threads
	Destroying and canceling threads
	Scheduling threads
	Thread synchronization and locking
	Summary
	Questions
	Further reading

	Chapter 15: Parallel Programming
	Technical requirements
	Using the Task Parallel Library (TPL)
	Using Parallel LINQ (PLINQ)
	Programming parallel data structures

	Benchmarking with BenchmarkDotNet
	Using lambda expressions with TPL and LINQ
	Parallel debugging and profiling tools
	The Parallel Stacks window
	The Tasks window
	The Concurrency Visualizer

	Summary
	Questions
	Further reading

	Chapter 16: Asynchronous Programming
	Technical requirements
	Understanding the TAP model
	Naming, parameters, and return types
	Initiating asynchronous operations
	Exceptions
	Optional cancellation
	Optional Progress Reporting

	async, await, and Task
	Benchmarking GetAwaiter.GetResult(), .Result, and .Wait for both Task and ValueTask
	Using async, await, and WhenAll
	Canceling asynchronous operations
	Writing files asynchronously
	Reading files asynchronously
	Summary
	Questions
	Further reading

	Assessments
	Chapter 1, Introducing C# 10.0 and .NET 6
	Chapter 2, Implementing C# Interoperability
	Chapter 3, Predefined Data Types and Memory Allocations
	Chapter 4, Memory Management
	Chapter 5, Application Profiling and Tracing
	Chapter 6, The .NET Collections
	Chapter 7, LINQ Performance
	Chapter 8, File and Stream I/O
	Chapter 9, Enhancing the Performance of Networked Applications
	Chapter 10, Setting Up Our Database Project
	Chapter 11, Benchmarking Relational Data Access Frameworks
	Chapter 12, Responsive User Interfaces
	Chapter 13, Distributed Systems
	Chapter 14, Multi-Threaded Programming
	Chapter 15, Parallel Programming
	Chapter 16, Asynchronous Programming

	Index

