
 1

 2

By

Jan Van der Haegen

Foreword by Daniel Jebaraj

 3

Copyright © 2012 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration

form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal, educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

dited by

This publication was edited by Praveen Ramesh, director of development, Syncfusion, Inc.

I

E

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

 4

Table of Contents
About the Author ... 8

Introduction ... 9

Preface ... 10

Chapter 1: Where Do I Get Visual Studio LightSwitch 2012? 12

Chapter 2: Hello World .. 13

Create a new project .. 13

Always start with data .. 13

Add some screens ... 15

Press F5 to blend it all together ... 16

Chapter 3: The Entity Designer .. 18

Creating a Task entity with simple and computed properties 18

Creating a Person entity with clever reuse of existing business types 23

Taking full control ... 24

Don’t forget to design the relationships .. 25

Data-in ... 29

To OData or not to OData .. 30

Data-out ... 33

Blending data-in and data-out .. 34

Chapter 4: The Query Editor .. 36

Finding the tasks that matter .. 36

Adding filter criteria .. 37

Adding some logical sorting ... 38

Add a screen directly to this query ... 39

Finding the important tasks per user .. 40

Query inheritance ... 40

Adding parameters to a query .. 41

Chapter 5: The Screen Editor ... 43

Creating a Search Data Screen for our query .. 43

 5

The Model and ViewModel part of the Screen Editor ... 43

Turning a Screen Property into a required Screen Parameter 44

Validation on Screen Properties ... 45

Initializing Screen Properties.. 46

Where did the screen go? .. 47

Adding a new command to a screen .. 47

Opening a screen from code .. 49

The run-time Screen Editor .. 51

Hiding the TaskAssignedPerson controls .. 52

Creating new item templates .. 53

Modifying an entire group of controls at once .. 55

Chapter 6: Application Editor ... 57

Extending LightSwitch applications .. 57

Installing an extension in Visual Studio .. 57

Activating an extension in your application .. 58

The General Properties tab .. 60

Screen Navigation .. 61

The Access Control tab .. 63

The Application Type tab ... 65

Publishing time… ... 66

Chapter 7: Moving On ... 67

Is Visual Studio LightSwitch the right tool? .. 67

Learning more about Visual Studio LightSwitch ... 67

 6

The Story behind the Succinctly Series of
Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

S

 7

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://www.facebook.com/Syncfusion

 8

About the Author

Jan Van der Haegen is a green geek who turns coffee into software. He’s a loving husband,
proud to be part of an international team at Centric—one of the top 5 IT suppliers in Belgium—
and so addicted to learning about any .NET technology—Visual Studio LightSwitch in
particular—that he maintains a blog on his coding experiments, writes a monthly LightSwitch
column for MSDN magazine, and recently founded switchtory, a LightSwitch-oriented software
development and consultancy start-up. You can find his latest adventures at
http://www.switchtory.com/janvan.

http://www.switchtory.com/janvan

 9

Introduction: Exploring Visual Studio

LightSwitch 2012 (RC)

Time for a Little Productivity…

In mid-2011, Microsoft introduced Visual Studio LightSwitch as “the easiest way to build data-
centric applications for the desktop or the cloud.” As appealing as this slogan might sound, a
significant majority of IT-minded people still either don’t know about it, don’t know where to start,
or have prejudiciously categorized it as “a tool for Microsoft Office users.”

However, you are likely aware of the fact that choosing the right tool for each challenge is
getting half of the job done already. Whether you have never written a software application
yourself before, or you are a professional software engineer, with this e-book, Syncfusion is
offering you the opportunity to take a small amount of time to get to know Visual Studio
LightSwitch 2012 (RC) and find out if and how this product could fit in your tool belt. Instead of a
complete “getting started” tutorial, this e-book takes you for a sight-seeing tour throughout the
LightSwitch development environment to teach you as much about the product in as little time
possible. This walk shouldn’t take much more than an hour to complete, and if LightSwitch turns
out to be a tool suitable for your needs, you’ll win back that hour and many more before the
working day is over, you have my personal guarantee.

 10

Preface: Why Would Exploring LightSwitch be

Worth this Hour of My Time?

Small minorities of us design realistic 3-D games, or are on Google’s Project Glass team. Most
of us in the IT industry create very specific line-of-business software that we’ll never be using
ourselves. Although the purpose and specifics might change from industry to industry, software
we write for maintaining medical appointments, accounting for businesses, keeping track of
college students, or managing real estate property, all fall in the same type of boring software
called “information systems.” Information systems are data-centric applications that have
several things in common: One or multiple databases, loads of business rules that define how
that data can be modified, one or more different graphical user interfaces, and lots of different
reports.

However unchallenging these information systems might be, the opposite is true of the people
who create them. Having spent months or even years to fully get to know the coding language,
technologies, and patterns, and often armed with a computer science degree, we are analytical-
minded artists always looking for challenge.

Michael A. Jackson identified this paradox in 1975 in his book Principles of Program Design:
“Programmers […] often take refuge in an understandable, but disastrous inclination toward
complexity and ingenuity in their work. Forbidden to design anything larger than a program, they
respond by making that program intricate enough to challenge their professional skill.” This still
holds true, 37 years later, and as a direct result software is still ridiculously expensive, almost
never delivered on time, full of known issues, and ironically enough, although created to aid
specific users in a specific business case, often needs a 500-page manual or a couple of days
of training to teach users how the software will help in their own business process.

The most successful software engineers or software companies are the ones that understand
how writing software should be boring. They’re the ones that understand there’s an ever-
evolving, revolutionary wealth of technological choices that could be made, but that these
choices aren’t the core of their business. They are the true rock stars that can deliver software
before deadlines and under budget that does exactly what the business needs. There are really
only a handful of rules to adhere to in order to follow in their footsteps toward success:

 Learn the business. It’s preposterous to believe you can create software to solve

someone’s problem, or make someone’s life easier, if you do not know who that

someone is, and what his or her problem is. Before starting development, ask the end

user to take you through his or her day. With every move, ask “Why?” “How?” and most

importantly, “How does that make you feel?” Don’t expect the end user to be able to

provide you a list of requirements—the fish are the last to discover the ocean, as the

Chinese proverb goes. Be an insider to the business, but enough of an outsider to

identify what the actual needs are.

 Serve only the business. There are 24 hours in a day, more than enough to learn new,

challenging technologies and architectural designs or code patterns, but do that in your

leisure time, not on the job. Spending time on something that doesn’t directly add value

for the business is considered waste. Expensive waste as well. If the users need

 11

software to manage their appointments, then that’s what they should get—not a “generic

plugin-based macro recorder,” or whatever you tricked yourself into believing will add

true enlightenment to their jobs.

 Code only the business. Tedium is inescapable; no auto-mapper or code generator

can negate the fact that screens, entities, and validation have to be defined. However,

define it once. If the overwhelming majority of your hand-written code isn’t domain

specific, or if you are implementing changes in several layers throughout your

application, you are doing it wrong. More specifically, you are using the wrong tool.

If you read this preface, and you agree, or maybe have even been nodding or smiling, then
Visual Studio LightSwitch is a tool you’ll definitely want in your tool belt. Designed for citizen
developers and professional software engineers alike, if you are facing an information system, if
you know your business and are ready to serve the business, then Visual Studio LightSwitch will
allow you to code only the business and become the coding rock star you deserve to be.

 12

Chapter 1 Where Do I Get Visual Studio

LightSwitch 2012?

Acquiring LightSwitch 2012 (RC) is the easy part. At the time of writing this book, it is available
only as a first-class citizen in Visual Studio 2012, which is still in Release Candidate phase and
can be downloaded for free. When the RC period of Visual Studio is over, the RTM version will
integrate LightSwitch as well, so you’re safe if you have an MSDN subscription or otherwise
intend to purchase a license for Visual Studio Professional or above.

LightSwitch 1.0, called LightSwitch 2011 at the time, was initially released as an out-of-band
release. Because of this, it was also made available as a separate purchase mainly targeting
non-professional developers, costing about $199 per developer. In this stand-alone version, the
Visual Studio shell is installed and some of the more advanced LightSwitch extensibility features
are unavailable. According to the announced road map, this option will not be repeated for
Visual Studio LightSwitch 2012.

http://www.microsoft.com/visualstudio/11/en-us/downloads#professional

 13

Chapter 2 Hello World

If you’re anything like me, you have some things you’d like to do, a lot of projects you have to
do, and tons of tasks you should have already done. As part of this tutorial, we’ll be writing a
simple LightSwitch application to help you organize people, tasks, and projects. After all, time is
money.

Create a new project

Once Visual Studio 2012 RC is installed, start it up and from its File menu, select New Project.
In the installed templates, choose the option to create a new LightSwitch Application (Visual
C#). You could opt to create your application using VB.NET as the coding language as well.
Give your project a suitable name and click OK.

Figure 1: Creating a new LightSwitch project

Always start with data

The LightSwitch home page is shown, which suggests to start with data—an obvious suggestion
given the data-centric nature of the applications you’ll find that LightSwitch is a good fit for.
Create a new entity by clicking the Create New Table link. This brings up the Entity Designer.

 14

Figure 2: LightSwitch home screen

We’ll explain everything that goes on in the Entity Designer throughout the book. First, let’s
make a working “hello world” application by renaming the entity to Project and adding one
string property called Name.

To rename the entity, double-click on it in the Entity Designer or fill out the Properties window
on the right.

Figure 3: Renaming the entity

 15

Figure 4: Adding the Name string property

Add some screens

Just above the Entity Designer, you’ll find some possible things to add to, or do with this entity.
The Write Code button in the top right (as shown in Figure 5) is one that you’ll encounter in
almost every designer you use in LightSwitch, and is probably what makes LightSwitch so
powerful. LightSwitch is not a black box; you can take control of every part using plain old .NET
code—VB.NET or C#—using these well-defined extension points.

Click the Screen… button to add a new screen as highlighted in the following figure.

Figure 5: Toolbar in the Entity Designer

A pop-up will appear offering you several screen templates. Personally, I almost always start
with the List and Details Screen template.

 16

Figure 6: Add New Screen wizard

Provide a suitable screen name—AllProjects, for example—and select our project entities as the
screen data to use. Make sure you select the Additional Data to Include: Project Details
check box before clicking OK. LightSwitch then automatically uses the first string property as
the summary for the entity and shows the value of all the properties in the details view.

Press F5 to blend it all together

Press F5 or select Debug > Start Debugging from the menu to build and launch your
application. Building a LightSwitch application can take quite some time, but after this small
delay your application will start and be ready for use.

 17

Figure 7: Hello World application

At this point, we have a working application in which we can add, edit, or delete projects.
Although we haven’t written any code because there is no domain logic (the only code you’ll
have to write) yet, the application has a ton of functional and nonfunctional features: collapsible
menus, data paging, sorting, searching, exporting data to Excel, validation, concurrency
management, and more.

 18

Chapter 3 The Entity Designer

Creating a Task entity with simple and computed

properties

In the Solution Explorer, right-click on Application Data and select Add New Table.

Our second entity will be called Task, and it will have a couple of properties.

Figure 8: Task entity in the Entity Designer

For each of the properties, the Entity Designer shows three columns: the name of the property,
the type, and a check box that indicates if a value is required.

When you select a particular property, additional extended properties can be edited in the
Properties window where you can take more fine-grained control over how the entity or its
properties are visualized, stored, validated, etc.

For example, I removed the maximum length of the Description property as shown in the
following figure.

Figure 9: Clearing the maximum length

 19

Specifying the Maximum Length for Description field here is a great example of the “Don’t
Repeat Yourself” (DRY) principle that I implicitly referred to in the preface. In the entire
application, there is only one source of truth that controls how long the Description property
can be. This information will be used to create the actual database fields correctly, but also to
implement validation on the server and the client.

Figure 10: Length validation is still active for the Name property

Similarly, I limited the values of the PercentageComplete property to fall between 0 and 100
(inclusive).

Figure 11: Limiting the range of the PercentageComplete property

Besides validation, these extended properties can also be used to control how this property will
be visualized in the client by default. The Priority property is stored as an integer, but visualized
to the user in a more textual way by clicking on the Choice List… option in the Properties
window.

Figure 12: Click the Choice List… link in the extended properties panel

This opens a pop-up where you can define the available choices and their display names.

 20

Figure 13: Limiting the allowed choices for the Priority property

You might notice that some properties have an icon next to their name. The icon that looks like
a key is straightforward: it indicates a field that will be used as a primary key column in the
database. The icon that looks like a calculator however, warrants some extra explanation.

LightSwitch supports computed properties. These are properties that are not stored in the
database but instead calculated at run time on the tier (client or server) where they are
accessed. Turning a simple property into a computed property is done by selecting it, and then
selecting the Is Computed check box in the Properties window.

Figure 14: Making the State and Summary properties computed properties

Click on the Edit Method link to access a code editor where you can implement the business
logic for how to calculate this property. In the following code sample, I fill the blank
State_Compute method that LightSwitch created for me with the desired business logic.

namespace LightSwitchApplication

{
 public partial class Task
 {
 partial void State_Compute(ref string result)
 {

 21

 if(this.PercentageComplete == 100){
 result = "Complete";
 }
 else
 if (this.DueDate > DateTime.Today) {
 if (this.PercentageComplete == 0){
 result = "Pending...";
 }
 else {
 result = "Started";
 }
 }
 else {
 result = "Overdue!";
 }
 }

 partial void Summary_Compute(ref string result)
 {
 result = this.Name + "(" + this.State + ")";
 }
 }
}

The State property is a simple label based on the PercentageComplete and DueDate
properties. For tasks, I decided to compute a Summary property as well to help represent the
entity as a string. By default, if an entity needs to be represented as a single line, LightSwitch
shows the value of the first string property. Overriding this convention can be done by

selecting the entity itself and choosing the desired entity property for the Summary Property
option in the Properties window.

 22

Figure 15: For each entity, you can select the Summary property

At first glance, the Entity Designer looks like a database designer, but you should really try to
think of it as a domain object designer, since the choices made here will have effects throughout
the application, not just in the database tier. This becomes even more apparent in our third
entity: Person.

 23

Creating a Person entity with clever reuse of

existing business types

Figure 16: Entity Designer for a Person Entity

In this entity, we’ll stray away from the simple property types used before (Boolean, Date,
DateTime, Decimal, Double, Guid, Integer, Long Integer, Short Integer, and String) and
encounter some properties of types that you would not normally find in the normal database
lingo (e.g., Phone, Email, and Avatar). In the LightSwitch Entity Designer, one property type is
a business type. Besides the simple property types already listed, LightSwitch understands
percentages, email addresses, phone numbers, the concept of money, what an image is, and
how web addresses work. Business types come with specific validation rules, and often tailored
controls are used by default to visualize this property.

 24

Figure 17: LightSwitch already understands some special business types

If there’s a business type that your business needs but is not included in Visual Studio
LightSwitch, you can easily create custom business types using the Extensibility Toolkit.

Taking full control

Also, remember that by using the Write Code button, you can take control of any part of the
application. This extension point allows you to quickly add logic that controls how particular
properties are computed as shown before, allows you to implement your business rules, custom
validation, screen-level or application-level visualizations, and much more. I will later refer back
to this as level-one extensibility.

One example of this extensibility we can add to our application is to add a fresh task each time
a Project is created. The code for this is added by clicking on the Write Code button in the
Entity Designer for the Project entity, and simply adding the following code:

namespace LightSwitchApplication
{
 public partial class Project
 {
 partial void Project_Created()
 {
 var firstTask = this.Tasks.AddNew();
 firstTask.Description = "A first task for every project!";
 //Fill in other required properties here.
 }
 }
}

 25

This code will execute when end users create a new Project, no matter if they are using the
client from the UI, the code behind, or even if they are connecting to the server directly with
another client. We’ll discuss that last scenario later.

Don’t forget to design the relationships

Before finishing this brief introduction to the Entity Designer and exploring the application we’ve
just built, we’ll need to define the relationships between Projects, Tasks, and People. This is
done by clicking on the Add Relationship… button in the Entity Designer toolbar.

Figure 18: Using the Entity Designer toolbar to define relationships

In the Add New Relationships dialog that opens, you can define a new relationship between
the selected entity and any other entity. We are now using the Entity Designer to model our
own entities, for which tables will be generated. However, as will be described in a bit, you can
also model LightSwitch entities over databases or other data sources that already exist. These
might be legacy databases that do not have correct relationships defined and are not under your
control to modify. By using the LightSwitch relationship designer, you can still design the
relationships between these entities, or even between related entities from different data
sources!

Create a new relationship between Person and Task such that one person can have many
tasks, but a task can only be assigned to a single person. The following figure shows how this
relationship can be defined.

 26

Figure 19: Defining a relationship between Task and Person

Similarly, let us create a new relationship between Task and Project. Because some tasks are
grouped together and others are just small to-dos, the relationship between Task and Project is
defined as a “zero-or-one to many” relationship.

 27

Figure 20: Defining a relationship between Task and Project

While defining relationships, you will notice that some relationship types like “zero-or-one to
zero-or-one”, “one to one” and “many to many” are not directly supported in LightSwitch, but
they can often be accomplished through the use of a link table and by making use of level-one
extensibility.

To play around with the application we have designed so far (I intentionally use the term
“designed” and not “coded”), add two List and Details screens called AllPeople and AllTasks
for the respective entities by following the instructions on creating screens in Chapter 2.

 28

Figure 21: Application with three entities and corresponding screens

Congratulations, you now have a fully working application to help you take back control of your
time! As you can see in the following figure, I have added two tasks to my application: Create
some entities and Do the dishes. Feel free to create your own test data and tasks.

Figure 22: Our first application

Before moving on, I want to emphasize that the Entity Designer should be considered a
business entity (domain model) designer, not a database designer.

 29

The business entities designed in the Entity Designer, their properties, the business types of
their properties, and the extended properties thereof, including the validation, are used by
LightSwitch throughout the application in the data tier, on the server, and on the client.

Data-in

It’s a common scenario that the data from one application has to be accessible in another
application. LightSwitch applications are far from isolated data silos, and the IDE has out-of-the-
box support for both data-in and data-out scenarios.

To explore the former, remember that we conveniently clicked on the Create New Table link on
the LightSwitch home screen and started designing our first entity.

These entities will be stored in an intrinsic data source called ApplicationData by default.

Figure 23: There can be many data sources in a LightSwitch project

If you want to use LightSwitch to work with existing data, use the second link on the LightSwitch
home screen—Attach to an external Data Source. This will start a wizard to help you connect
to one of the following sources:

 An existing database.

 A SharePoint site.

 An OData endpoint.

 A WCF RIA service.

 30

Figure 24: The Data Source wizard helps you connect to external data sources

The Attach Data Source Wizard will add a non-intrinsic data source to your application and
allow you to design your business entities over the data with some validation limitations (options
like “is the property required”, “maximum length”, and the compatible Business Type of the
properties are limited depending on the source data type).

To OData or not to OData

The option to connect to an OData service in LightSwitch 1.0 has been kept for Visual Studio
LightSwitch 2012.

Figure 25: Open Data Protocol

OData, short for Open Data Protocol, is an industry standard that has been emerging fast over
the last couple of years and is now widely adopted as a standard way to exchange data over the
web. More technically, it’s a protocol defined by Microsoft that defines a REST implementation.
On the OData webpage you can find an ever-growing list of OData producers, including SSRS

http://www.odata.org/ecosystem#liveservices

 31

(SQL Server Reporting Services), Microsoft Dynamics CRM 2011, Windows Azure table
storage, and the famous Northwind database.

If you want to test this data-in scenario, select the OData Service option in the Attach Data
Source Wizard and then click Next.

In the Connection Information, use the following OData endpoint as your OData Source
Address: http://services.odata.org/Northwind/Northwind.svc/. This endpoint requires no
authentication, so select None as the selected Login Information, and then click Next.

Figure 26: Connecting to an external OData service

Once a successful connection has been made, LightSwitch investigates the metadata of your
data source and allows you to import one or more data entities as business entities.

http://services.odata.org/Northwind/Northwind.svc/

 32

Figure 27: Defining which entities to import

Select the Suppliers check box; Products will also be imported automatically because of the
relationship between the two, and then click Next to finish the wizard.

Notice that although the data type of the Supplier entity’s Phone property is String, you can
use the Entity Designer to remap it to the Phone Number business type.

 33

Figure 28: Remapping data types to business types

Data-out

Another out-of-the-box feature is the supported data-out scenario. For each of your data
sources, intrinsic or not, LightSwitch will generate and host an OData endpoint that exposes
your business entities.

The endpoint can be found at http://<UrlToTheApplication>/<DataSourceName>.svc.

Figure 29: Browsing to the OData endpoint

 34

If the generated Silverlight application doesn’t fit your business needs, you can reach these
OData endpoints in numerous other client technologies, including (but not limited to):

 Excel PowerPivot: Creating and Consuming LightSwitch OData Services

 Windows 8: Using LightSwitch OData Services in a Windows 8 Metro Style Application

 Windows Phone: Consume a LightSwitch OData Service from a Windows Phone
Application

 HTML/JavaScript: A Full CRUD Data.js and Knockout.Js LightSwitch Example Using
Only an HTML Page

 jQuery Mobile: A Full CRUD LightSwitch jQuery Mobile Application

 Android: Communicating with LightSwitch Using Android App Inventor

 Unity 3D: Using Visual Studio LightSwitch to Orchestrate a Unity 3D Game

One important thing to note about these OData endpoints is that they do not simply expose your
data, but expose your business entities with respect to their business logic, security settings,
and default or coded validation rules.

Blending data-in and data-out

One powerful way to use LightSwitch is to use it in combination with other technologies,
combining both data-in and data-out scenarios. Because of the choice to use OData in the
LightSwitch middle-tier, LightSwitch can be used not only to create simple CRUD applications,
but to accomplish complex data ecosystems.

http://blogs.msdn.com/b/bethmassi/archive/2012/03/09/creating-and-consuming-lightswitch-odata-services.aspx
http://blogs.msdn.com/b/lightswitch/archive/2012/03/13/using-lightswitch-odata-services-in-a-windows-8-metro-style-application-elizabeth-maher.aspx
http://msdn.microsoft.com/en-us/magazine/hh875176.aspx
http://msdn.microsoft.com/en-us/magazine/hh875176.aspx
http://lightswitchhelpwebsite.com/Blog/tabid/61/EntryId/128/A-Full-CRUD-DataJs-and-KnockoutJs-LightSwitch-Example-Using-Only-An-Html-Page.aspx
http://lightswitchhelpwebsite.com/Blog/tabid/61/EntryId/128/A-Full-CRUD-DataJs-and-KnockoutJs-LightSwitch-Example-Using-Only-An-Html-Page.aspx
http://lightswitchhelpwebsite.com/Blog/tabid/61/EntryId/126/A-Full-CRUD-LightSwitch-JQuery-Mobile-Application.aspx
http://lightswitchhelpwebsite.com/Blog/tabid/61/EntryId/125/Communicating-With-LightSwitch-Using-Android-App-Inventor.aspx
http://lightswitchhelpwebsite.com/Blog/tabid/61/EntryId/134/Using-Visual-Studio-LightSwitch-To-Orchestrate-A-Unity-3D-Game.aspx

 35

Figure 30: LightSwitch mash-ups between data-in and data-out scenarios

Another powerful way to use LightSwitch is to use it solely for its data-in and data-out
functionality. This makes it easy to convert an older WCF RIA service or SQL database to an
OData service, or offer a limited view on your internal SharePoint site to an external party.

Both the image above and the links were gathered by Beth Massi (see Chapter 7).

 36

Chapter 4 The Query Editor

Finding the tasks that matter

Because our three screens show all available entities, it’s easy to imagine that the screens in
their current state will become useless pretty fast as they are filled with hundreds of old and
already completed tasks. Most of the time, we will not be interested in all tasks, but only in the
ones that have to be completed next.

For any entity, LightSwitch automatically generates a Select all and a Select by ID query, but
to filter out the old and unimportant tasks successfully, one has to create a custom query. Like
most things in LightSwitch, this will only take a couple of seconds once you get used to the
Query Editor.

In the Solution Editor, right-click on the Tasks entity and select Add Query.

Figure 31: Adding a query for an entity from the Solution Explorer

The first thing you’ll want to do is to rename the query as something more meaningful,
UrgentTasks for example. This can be done in the Properties Window.

 37

Figure 32: A query has extended properties too

Adding filter criteria

The first thing we’ll want to do is to add a new Single filter.

Figure 33: Add a new Single filter

 38

In this query, we do not want to see any tasks that are in the distant future. The first filter criteria
should be that the DueDate is less than the end of the month.

Figure 34: Filtering based on DueDate

We’ll also want to filter out any tasks that have been completed and any tasks with a priority
less than 4. You might remember that the business type of the Priority property is an integer
even though we represent it to the user as a choice list with “Low,” “Medium,” “High,” and “Very
High” labels.

Figure 35: Filtering based on DueDate, PercentageComplete, and Priority

Adding some logical sorting

While we’re in the Query Designer, finish the query by adding a default sort for our urgent tasks
based on Priority, and then by DueDate.

 39

Figure 36: Adding a default sort to the query

Add a screen directly to this query

To test your query, you can create a fourth List and Details screen called AllUrgentTasks.
Because the query is the default global query, you can select it as the Screen Data to use.
(LightSwitch also allows queries to be defined at screen level, called local queries.)

Figure 37: Adding a screen directly on a global query

 40

With my test data, it seems to work correctly. Out of my two tasks, Do the dishes has a low
priority, so it is not included in the All Urgent Tasks screen.

Figure 38: The new screen only shows the urgent tasks

Finding the important tasks per user

The query in Figure 38, however, displays all urgent tasks. This screen is great for me, as a
manager of my own personal life, and the only user of this application so far. But if you were to
use this application to manage several people, tasks, and projects simultaneously, you may be
interested in an urgent-tasks-per-user query rather than the screen in Figure 38.

Create a second query by right-clicking your Tasks in the Solution Explorer, and selecting
Add New Query.

Rename the query as MyUrgentTasks.

Query inheritance

Note that this query uses the complete Tasks list as the source, but we already have a query to
separate the important tasks from the trivial ones. As an avid fan of avoiding repetition, I am
thrilled that LightSwitch offers the possibility to base one query on the results of another. To do
so, change the Source from Tasks to UrgentTasks at the top of the Query Editor.

 41

Figure 39: Inheriting a query from a previously made query

By doing so, this query will inherit the UrgentTasks’ filtering and sorting criteria, allowing us to
not worry about sorting or filtering out only the important tasks anymore. Our only concern then
is finding the tasks assigned to a particular Person.

Adding parameters to a query

To do so, we’ll add a new filter.

Figure 40: Filtering based on the person to which the task is assigned

Then select Parameter from the drop-down as shown in Figure 40, and add a new query
parameter as shown in Figure 41.

 42

Figure 41: Picking a source for the assignment

Figure 42: Setting the source to a new parameter

Rename the parameter as AssignedPerson.

To allow even more detailed control over which Tasks will be included, I added two additional
filters and matching parameters: MinimumPercentageComplete and
MaximumPercentageComplete. For these two however, I checked the Is Optional check box
in the Properties window.

Figure 43: An overview of the query

To view this data, we’ll have to add a new screen. This time the default screen generated by the
List and Details Screen Template, which we’ve used three times now, won’t be sufficient. It’s
time to have a closer look at the Screen Editor.

 43

Chapter 5 The Screen Editor

Creating a Search Data Screen for our query

In the Add New Screen wizard, select the Search Data Screen template. Name the screen
MyUrgentTasks, and select MyUrgentTasks as the Screen Data.

Figure 44: Creating a Search Data Screen

The Model and ViewModel part of the Screen Editor

In the left-hand side of the Screen Editor, LightSwitch added the two query parameters, but it
added each parameter twice. The left side is considered the ViewModel and Model layer of the
screen in the LightSwitch MVVM implementation. The first time you recognize these
parameters, they actually represent the query parameters and are thus part of the Model, and
the second time they are listed represents the screen properties as part of the ViewModel.

 44

Figure 45: Left-hand side of the Screen Designer shows the ViewModel and Model layer

As shown in Figure 45, an arrow is displayed between the corresponding query parameters and
the local screen properties to reveal that they are data-bound. This can also be observed in the
Properties window by selecting one of the query parameters.

Figure 46: Binding properties

Turning a Screen Property into a required Screen

Parameter

Select the TaskAssignedPerson screen property and in the Properties window, make sure
both the Is Parameter and Is Required check boxes are selected.

 45

Figure 47: Turning a screen property into a required screen parameter

Also verify that both check boxes are cleared for the TaskMinimumPercentageComplete and
TaskMaximumPercentageComplete local screen properties.

Validation on Screen Properties

The Screen Properties window allows you to set up some validation logic too. Change the
number of Percent Decimal Places to 0, and set the Minimum Value and Maximum Value to
0 and 100 respectively for the two percentage complete properties.

Figure 48: Screen properties can have validation too

 46

You’ll notice that there are some similarities between how these local screen properties work
and how the Entity Designer works. With the TaskMaximumPercentageComplete local
screen property still selected, click on the Custom Validation link in the Properties window.

We’ll use this to write some simple code that checks if the entered minimum value is less than
the entered maximum value.

 public partial class MyUrgentTasks
 {
 partial void
TaskMaximumPercentageComplete_Validate(ScreenValidationResultsBuilder
results)
 {
 if (this.TaskMinimumPercentageComplete >
this.TaskMaximumPercentageComplete) {
 results.AddPropertyError("Minimum cannot exceed the
maximum");
 }
 }
 }

Initializing Screen Properties

By the way, while we’re writing code, it might be a good idea to initialize our local screen
properties. To do so, locate the Write Code button at the top of the Screen Designer, and click
on the drop-down arrow. Click on the link MyUrgentTasks_Created—this will take you to the
code extensibility point that runs on the client once the screen is created.

Figure 49: Finding the level-one extensibility point to initialize the screen properties

 47

The code to initialize the two local screen properties isn’t very surprising:

 partial void MyUrgentTasks_Created()
 {
 this.TaskMinimumPercentageComplete = 0;
 this.TaskMaximumPercentageComplete = 1;
 }

Where did the screen go?

If you press F5 to debug your application, you’ll notice that the navigation menu doesn’t include
our new screen.

Figure 50: The new screen doesn’t seem to be included in the navigation menu

The reason for this is that our new screen has one local screen property,
TaskAssignedPerson, for which we selected both the Is Required and the Is Parameter
extended properties. This means the code that opens this screen must pass an integer
parameter (TaskAssignedPerson), and the navigation menu has no idea how to resolve a
value for it.

We’ll have to add our new screen manually, which will only be the fifth time we’ve had to code in
this tutorial—not bad for how much functionality we have already built in this application.

Adding a new command to a screen

One suitable place to open this screen with urgent tasks from a particular person is the All
People screen. Open the All People screen in the Screen Editor and locate the Screen
Command Bar element near the top of the Screen Visual Tree, the center part of the Screen
Editor.

Figure 51: Adding a new button to the screen

 48

Choose the New Button… option. In the pop-up that appears, select the New Method option
and name it ShowUrgentTasks.

Figure 52: Creating a new command on the screen

A new command will be added, and like almost any element of your LightSwitch application, you
can use the designer to set several extended properties. One property we’ll definitely want to
set is the image that is used. Personally, I’ve really become a fan of Syncfusion’s free custom
icon tool, Metro Studio (http://www.syncfusion.com/downloads/metrostudio). I use the icons
almost exclusively for LightSwitch commands because of the great fit they are with the
LightSwitch Cosmopolitan theme (see Chapter 6).

Figure 53: Adding an image to the command

After this is done, right-click on your button in the Visual Tree editor, and select the Edit
Execute Code option from the context menu.

http://www.syncfusion.com/downloads/metrostudio

 49

Figure 54: Editing the code behind the command

Opening a screen from code

LightSwitch generates several classes that you can use to code against if you choose to do so.
For example, LightSwitch generates a method called Show<ScreenName> on the Application

class for each screen. In our case, this makes the code that opens the screen as simple as:

 public partial class AllPeople
 {
 partial void ShowUrgentTasks_Execute()
 {
 Application.ShowMyUrgentTasks(this.People.SelectedItem.Id);
 }
 }

This time, press F5 to pick the fruit of our labor. The All People screen now has an extra
command as shown in the following figure.

 50

Figure 55: The Show Urgent Tasks command is now visible in the application

When the Show Urgent Tasks command is clicked, our new search screen called My Urgent
Tasks opens.

Figure 56: My Urgent Tasks screen

 51

The run-time Screen Editor

Although our new screen is useful, you’ll probably want to make some graphical modifications to
it, like hide the Task Assigned Person label and text box. One of the most jaw-dropping
features of Visual Studio LightSwitch is that you do not have to write custom XAML to make
modifications to the UI if you do not want to or are not familiar with Silverlight XAML. Even
better, you do not even have to stop running your application and recompile it if you want to
change the layout or controls on your screens.

If you launch a LightSwitch application from the Visual Studio IDE (i.e. with the debugger
attached), the application will have a command called Design Screen, which enables you to do
these modifications and persist them back to your Visual Studio solution at run time! Quite
honestly, it could be a personal lack of experience, but I do not know of any other technology
that allows you to do this, and I’m loving it. Designing the graphical parts of your application
while it’s running without having to build to test each modification, and to be able to design with
actual test data instead of “Neque porro quisquam est qui dolorem ipsum quia dolor sit amet,
consectetur, adipisci velit”—This feature is an absolute time saver!

Figure 57: The Design Screen command

Click the Design Screen command in the application’s command bar. This will open a run-time
variant of the Screen Editor.

 52

Figure 58: Using the Screen Designer at run time

Hiding the TaskAssignedPerson controls

In the Visual Tree editor on the left, select the Task Assigned Person element, and make sure
the Is Visible check box is cleared.

Figure 59: Designing the screen at run time

Once you click the Save button in the top right of your screen, the screen will be updated and
your changes will be persisted back to the Visual Studio solution.

 53

Figure 60: After editing the search data screen at run time

Creating new item templates

This run-time version of the Screen Designer can do more than set properties on existing
visual elements. It can add new elements to your screen or replace existing elements with a
completely different one. For example, in the run-time Screen Designer of the All People
screen, select the Person visual element.

The control that is currently used is the Summary Viewer, which results in the following
representation.

 54

Figure 61: The current All People screen

By clicking on the down arrow, you can select an entirely different layout for this list’s item data
template.

Change the control used to represent a Person to Picture and Text by selecting it from the
drop-down menu.

Figure 62: Changing the item template at run time

In this Picture and Text editor, use the Avatar property as the Picture and the Full Name
computed property as the Title.

 55

Modifying an entire group of controls at once

The run-time Screen Editor can also change properties for an entire group as well. Select the
Details Column—it is the second Rows Layout visual element in the Visual Tree.

Figure 63: Designing an entire part of the screen at once

In the Properties Window, select the Use Read-only Controls check box as shown in the
following figure, and then click Save.

Figure 64: Setting the read-only status of an entire collection of controls at run time

 56

The changes are persisted back to the Visual Studio solution, and the screen is refreshed and
now looks somewhat more graphically appealing.

Figure 65: All People screen after designing it at run time

Just as you can write custom code to respond to a lot of predefined events in the application,
you can also take full control of the UI and write custom Silverlight XAML for any element in the
Visual Tree Designer.

However, because this requires rebuilding to compile the XAML, it cannot be done from the run-
time version of the Screen Designer.

 57

Chapter 6 Application Editor

Extending LightSwitch applications

Writing custom code or custom user controls is sometimes referred to as level-one
extensibility. LightSwitch allows you to extend your application beyond what comes out of the
box, and does not require you to have Visual Studio completely installed. Level-one extensibility
is available in the stand-alone version of LightSwitch as well.

As this suggests, there are higher levels of extensibility as well. Level-two extensibility adds
capabilities to a LightSwitch application that can be reused in different applications. They are
distributed via Visual Studio Extensions (.vsix) and can be purchased directly from a vendor or
downloaded from the Visual Studio Gallery
(http://visualstudiogallery.msdn.microsoft.com/site/search?query=LightSwitch&f%5B0%5D.Valu
e=LightSwitch&f%5B0%5D.Type=SearchText&ac=8).

Traditionally, these extensions will add one or more of the following capabilities to your Visual
Studio LightSwitch IDE or application:

 Reusable WCF services

 Reusable Business Types

 Reusable Controls

 Reusable Screen Templates

 Reusable Shells

 Reusable Themes

The final two, themes and shells, provide an easy way to change the entire look and feel
(respectively) of your application with just a couple of clicks.

Installing an extension in Visual Studio

Close your LightSwitch application, and from the Tools menu in Visual Studio, select the
Extension Manager.

http://visualstudiogallery.msdn.microsoft.com/site/search?query=LightSwitch&f%5B0%5D.Value=LightSwitch&f%5B0%5D.Type=SearchText&ac=8
http://visualstudiogallery.msdn.microsoft.com/site/search?query=LightSwitch&f%5B0%5D.Value=LightSwitch&f%5B0%5D.Type=SearchText&ac=8

 58

Figure 66: Opening the Extension Manager

In the Extension Manager, search the Online Extensions for a LightSwitch theme, shell, or
both. Click the Install button, and then close the Extension Manager.

Activating an extension in your application

To activate your chosen shell or theme, select the LightSwitch project in the Solution Explorer
and press Alt+Enter, or right-click on it and select Properties from the context menu.

 59

Figure 67: Opening the Application Designer

This opens up the fourth and final LightSwitch-specific designer, the Application Designer.

Navigate to the Extensions tab.

 60

Figure 68: Activating an extension

In this tab in the Application Designer, you get an overview of all LightSwitch-specific
extensions that you have available on your machine. Select the check box next to the extension
that you have downloaded to activate it in this application.

In the previous figure, you can see I downloaded the LightSwitch Cosmopolitan Shell and
Theme, which is now included in Visual Studio LightSwitch 2012 RC as the new default shell
and theme.

The General Properties tab

Once activated, the level-two extensibility capabilities—the shell and the theme—can be used in
this LightSwitch application. Selecting which shell or theme is used is done from the General
Properties tab.

 61

Figure 69: The Application Designer’s General Properties tab

Change the selected Shell to the now available shell, and/or the selected Theme to the theme
that you downloaded.

Figure 70: Selecting a shell or a theme to use in the LightSwitch client application

The other properties on the General Properties tab are worth a quick review as well:

 Application name: The name of the application, I changed it to My time, my money

 Logo: The logo to use if the shell supports it (which the LightSwitch Cosmopolitan

Shell does).

 Icon: The icon of the application.

 Version: The application’s major and minor release version. A third number, the revision

number, is appended each time you publish the application with the same major and

minor release version.

 Culture: The culture of the application. This is used for globalization and translations

throughout the application. At the moment, LightSwitch only supports one culture at a

time.

Press F5 to build and debug the application, and see how the entire look and feel of your
application has changed.

Screen Navigation

The Screen Navigation tab allows you to take control of the navigation menu of your
application. Screens can be grouped in different groups, and the order and labels can be
changed with this editor.

 62

Figure 71: Exploring the Screen Navigation tab

You might have noticed that there’s an Administration group, which wasn’t visible at run time.

Figure 72: The LightSwitch application does not have an Administration group like the
Navigation Tab suggested

The reason is twofold: We haven’t activated a User Authentication Mode yet, and we do not
have the correct permission to access these screens yet. Both can be changed from the
Access Control tab.

 63

The Access Control tab

The fourth Application Editor tab provides control over the authentication mode, allows you to
define permissions, and allows you to force a secure connection for your OData endpoints (see
Chapter 3).

The three supported authentication modes are:

 Windows authentication: Automatically log in using your Windows credentials. Advised

for applications that run within a company.

 Forms authentication: Start the application with a login screen where users have to

supply their username and password. Advised for applications that have users from

different companies.

 None: Start the application and require no authentication. This authentication mode is

never advised unless you’re the only user and are running the application on your local

machine.

Figure 73: The Application Designer’s Access Control tab

For this application, change the Authentication mode to Use Forms authentication. When
the application is run from Visual Studio, i.e. with the debugger attached, LightSwitch will
automatically skip the login screen and log in with a user called Test User.

When it comes to authorization, LightSwitch implements a permission-based system. These
permissions are defined in this tab of the Application Designer, and later checked anywhere

 64

you need to via custom code. This can be done on a screen level, entity level, or even operation
level.

By checking the Granted for debug check box (see Figure 73) next to the only predefined
permission, called SecurityAdministration, you are adding this permission to the Test User
that will be used when debugging. Press F5 to build and start debugging, and notice the
difference.

Figure 74: After setting the access control properties, the Administration menu is visible

For those of you who do not like “find the 7 differences” games, notice the CurrentUserControl
is now visible at the top right to show that LightSwitch has indeed logged in a Test User
automatically—another great time saver.

This Test User also has the SecurityAdministration permission, which is required to see the
Administration group in the navigation menu. This group contains two screens where a
security administrator can manage the users and their permissions. Note that your test data is
not deployed when you deploy your application, including these users and their permissions, so
changes made via these screens during development will not be reflected in your deployment.
These screens will really only become useful after deploying your application.

Speaking of which…

 65

The Application Type tab

Time for the final jaw-dropper, the pièce de résistance, the climax of our symphony. We started
this e-book by referring to Visual Studio LightSwitch as “the easiest way to build data-centric
applications for the desktop or the cloud,” however throughout the tutorial, with the exception of
mentioning the public OData endpoints of the server in Chapter 3, we haven’t really stated
anything about the architecture or target platform of the application. So what did we build? A
single-tier desktop application, a multi-tier one, or a web application that can be hosted in the
cloud?

Because of the metadata-driven implementation of LightSwitch, the final tab of the Application
Designer, called the Application Type tab, allows you to make these decisions at the latest
possible stage of development. This offers more application flexibility than the traditional
development cycle in which you have to decide your application deployment environment at the
very start. LightSwitch’s flexibility also allows you to change the application type without having
to rework entire parts of your application.

Figure 75: Application Designer’s Application Type tab

Think about the latest large data-centric application you worked on. Consider that the
application was originally written as a desktop application that directly accessed the database
(single tier), and after some time a decision was made to refactor it to a web application that
called web services (multi-tier). How long would it have taken to refactor the application?

Here comes the LightSwitch version of that story.

With one click, change the Client type to Web. This automatically disables the choice to run the
Application Server on the same tier as the client. Press F5 to build and start debugging.

During the build process, LightSwitch will take the metadata that you have designed in the
Entity Designer, along with any that you have designed in the Query Designer, the Screen
Designer, and all the choices you have made in the Application Designer, to generate a multi-
tier web application.

 66

Figure 76: Changing a single-tier desktop application to a multi-tier web application with one
simple click

Publishing time…

If you are satisfied with the result, click the Publish… button in the bottom right of the
Application Tab in the Application Designer, and start dreaming about a lucrative
subscription model for your freshly created application.

 67

Chapter 7 Moving On

Is Visual Studio LightSwitch the right tool?

During the past year, I spent quite some time doing research on the LightSwitch product and my
journey in its metadata-driven implementation has been a life-altering experience. LightSwitch
2012 RC uses a newer version of Silverlight on the client tier and an entirely different
technology on the server tier (which also opens up the application to create clients in any other
technology) than its predecessor, and the fact that my LightSwitch 1.0 applications can be
converted without any modifications, a refactoring battle that would normally take years to
complete, proves to me that LightSwitch does something in application development more
“right” than I could ever dream of.

In one IDE, citizen developers, professional developers, and expert developers come together
to create the best data-centric applications in the shortest amount of time.

Citizen developers, traditionally people with limited technical knowledge or coding skills but who
know and understand business problems like no others, can use simple yet powerful editors to
design an application without ever suffering from hitting a brick wall, something most rapid
application development IDEs suffer from, thanks to the numerous level-one extensibility points.

Professional developers can stray away from the tasks they find boring because they feel it
doesn’t challenge them, and focus on what they do best: delivering reusable capabilities in the
form of level-two extensions: reusable control suites, business types, shells, themes, etc.

The Microsoft LightSwitch teams, as expert developers, make sure the characteristics of citizen
and professional developers blend together in powerful line-of-business applications that follow
the best and industry-accepted technologies and architectural trends.

If the software challenge at hand has anything to do with data, and that’s the biggest “if” when
considering whether LightSwitch is a suitable tool, I’ll always be eager to use LightSwitch to
solve it. And not just because of the blazingly fast results you can get with the product, but for
the enjoyable development experience as well.

Learning more about Visual Studio LightSwitch

If this e-book has even slightly convinced you to learn more about Visual Studio LightSwitch,
there are a couple of great places to get started.

 Microsoft’s official LightSwitch Developer Center (http://msdn.microsoft.com/en-

us/lightswitch/default) is a great place to get started. Beth Massi (www.BethMassi.com),

nicknamed “the LightSwitch goddess” by the community, is the most publicly visible

senior LightSwitch program manager and has created numerous “getting started” videos

and tutorials. New content of both introductory-level and expert-level topics is added at

least on a weekly basis. A great monthly community content “rollup” is posted that has

links to MSDN forums where LightSwitch team members will help you with any question

or problem you might have if other community members haven’t already beat them to it.

http://msdn.microsoft.com/en-us/lightswitch/default
http://msdn.microsoft.com/en-us/lightswitch/default
http://www.bethmassi.com/

 68

 Michael Washington, one of the LightSwitch community’s greatest rock stars, hosts the

LightSwitch help website (http://www.LightSwitchHelpWebsite.com). This unofficial

community portal offers a lot of great links, a forum where the community members help

each other out, and a marketplace where anyone can sell his or her services and

extensions. Michael frequently treats visitors to new innovative articles intended more for

experts than novices.

 You’ll find many interesting, privately held blogs by other rock stars in the LightSwitch

community scattered throughout the Internet. Representing the different backgrounds of

the authors, these blogs often discuss very different aspects of LightSwitch, or approach

it from a very different angle. My personal blog, for example

(http://janvanderhaegen.wordpress.com), focuses solely on the internals of the

framework, whereas Paul Patterson’s blog (http://www.paulspatterson.com/) shows

some amazing craftsmanship that even citizen developers could pull off. The image in

the introduction of this book shows a LightSwitch application called A Little Productivity

which he created and deployed to Azure in less than one week—an experience that he

has blogged about in depth.

 I also created a bot that monitors different official and unofficial sources, including the

blogs of some of the most experienced community members like Yann Duran, Jan

D’hondt, The SD Times, Dan Beall, Paul Van Bladel, Keith Craigo, Kostas

Christodoulou, Stu (stuxstu), Regan Ashworth, Allesandro del Sole, Michael

Washington, Bala (Tek Freak), Tim Leung, Paul Patterson, Jewel Lambert, and Rashmi

Ranjan Panigrahi. Whenever any interesting LightSwitch material pops up on the web,

the bot tweets under the @LightSwitchNews account. If you feel anyone is missing from

this list, I must apologize as it is a sign of ignorance on my account. Feel free to let me

know and I’ll gladly make the bot up to date.

http://www.lightswitchhelpwebsite.com/
http://janvanderhaegen.wordpress.com/
http://www.paulspatterson.com/
https://twitter.com/#!/lightswitchnews

	The Story behind the Succinctly Series of Books
	About the Author
	Introduction: Exploring Visual Studio LightSwitch 2012 (RC)
	Preface: Why Would Exploring LightSwitch be Worth this Hour of My Time?
	Chapter 1 Where Do I Get Visual Studio LightSwitch 2012?
	Chapter 2 Hello World
	Create a new project
	Always start with data
	Add some screens
	Press F5 to blend it all together

	Chapter 3 The Entity Designer
	Creating a Task entity with simple and computed properties
	Creating a Person entity with clever reuse of existing business types
	Taking full control
	Don t forget to design the relationships
	Data-in
	To OData or not to OData
	Data-out
	Blending data-in and data-out

	Chapter 4 The Query Editor
	Finding the tasks that matter
	Adding filter criteria
	Adding some logical sorting
	Add a screen directly to this query
	Finding the important tasks per user
	Query inheritance
	Adding parameters to a query

	Chapter 5 The Screen Editor
	Creating a Search Data Screen for our query
	The Model and ViewModel part of the Screen Editor
	Turning a Screen Property into a required Screen Parameter
	Validation on Screen Properties
	Initializing Screen Properties
	Where did the screen go?
	Adding a new command to a screen
	Opening a screen from code
	The run-time Screen Editor
	Hiding the TaskAssignedPerson controls
	Creating new item templates
	Modifying an entire group of controls at once

	Chapter 6 Application Editor
	Extending LightSwitch applications
	Installing an extension in Visual Studio
	Activating an extension in your application
	The General Properties tab
	Screen Navigation
	The Access Control tab
	The Application Type tab
	Publishing time&

	Chapter 7 Moving On
	Is Visual Studio LightSwitch the right tool?
	Learning more about Visual Studio LightSwitch

