

Learn PHP in One Day and Learn It Well
PHP for Beginners with Hands-on Project

The only book you need to start coding in PHP
immediately

By Jamie Chan
https://www.learncodingfast.com/php

Copyright © 2020

All rights reserved. No part of this publication may be reproduced,
distributed, or transmitted in any form or by any means, including
photocopying, recording, or other electronic or mechanical methods,
without the prior written permission of the publisher, except in the case
of brief quotations embodied in critical reviews and certain other
noncommercial uses permitted by copyright law.

Preface
This book is designed to help you learn PHP fast and learn it well.
While the book is suitable for absolute beginners in PHP, you do need
to be familiar with HTML and SQL (for Chapter 11).

The book covers a wide range of topics in PHP, carefully selected to
give you broad exposure to the language. If you are an absolute
beginner in PHP, you'll find that this book explains complex concepts
in an easy to understand and concise manner.

At the end of the book, you'll be guided through a project that gives
you a chance to put everything you've learned to use and see how it
all ties together.

You can download the source code for the examples and project at
https://www.learncodingfast.com/php

Any errata can be found at
https://www.learncodingfast.com/errata

Contact Information
I would love to hear from you.

https://www.learncodingfast.com/php
https://www.learncodingfast.com/php
https://www.learncodingfast.com/errata

For feedback or queries, you can contact me at
jamie@learncodingfast.com.

More Books by Jamie

Learn SQL (using MySQL) in One Day and Learn It Well

Learn CSS (with HTML 5) in One Day and Learn It Well

mailto:jamie@learncodingfast.com
https://www.amazon.com/dp/B07K374J19
https://www.amazon.com/dp/B07K374J19
https://www.amazon.com/dp/B00UI2QHQG
https://www.amazon.com/dp/B00UI2QHQG

Learn Python in One Day and Learn It Well (2nd Edition)

Learn Python in One Day and Learn It Well (Workbook)

https://www.amazon.com/dp/B071Z2Q6TQ
https://www.amazon.com/dp/B071Z2Q6TQ
https://www.amazon.com/dp/B07WH99L1J
https://www.amazon.com/dp/B07WH99L1J

Learn C# in One Day and Learn It Well

Learn Java in One Day and Learn It Well

https://www.amazon.com/dp/B016Z18MLG
https://www.amazon.com/dp/B016Z18MLG
https://www.amazon.com/dp/B01LZOCVN9
https://www.amazon.com/dp/B01LZOCVN9

Contents

Chapter 1: Introduction to PHP
1.1 What is PHP?
1.2 Why Learn PHP?

Chapter 2: Installing XAMPP
2.1 Configuring php.ini
2.2 Important Links
2.3 Coding our first Web Page

Chapter 3: Basic PHP Tasks
3.1 Displaying Outputs

3.1.1 echo
3.1.2 print
3.1.3 Escaping Characters

3.2 Duplicating Code
3.2.1 include
3.2.2 require
3.2.3 include_once, require_once

3.3 Redirecting Users
Chapter 4: Constants, Variables, Data Types and Operators in PHP

4.1 Constants
4.2 Variables
4.3 Basic Data Types in PHP
4.4 Type Casting
4.5 Operators in PHP

4.5.1 The Assignment Operator

4.5.2 Arithmetic operators
4.5.3 Combined Assignment Operators
4.5.4 Increment/Decrement operators

Chapter 5: More Data Types in PHP
5.1 Strings

5.1.1 Commonly used String Functions in PHP
5.2 Using Strings to Represent Dates

5.2.1 The strtotime() function
5.2.2 The date() function
5.2.3 Setting the timezone

5.3 Arrays
5.3.1 Creating an Array
5.3.2 Displaying the Content of Arrays
5.3.3 Adding Elements to Arrays
5.3.4 Deleting Elements from Arrays
5.3.5 Commonly used Array Functions in PHP

Chapter 6: Control Structures in PHP
6.1 Comparison operators
6.2 Logical Operators
6.3 Control Structures

6.3.1 If Statement
6.3.2 Ternary Operator
6.3.3 Switch Statement
6.3.4 For Loop
6.3.5 Foreach Loop
6.3.6 While Loop
6.3.7 Do-while Loop

6.4 Other Topics in Flow Control
6.4.1 Booleans
6.4.2 Break, Continue
6.4.3 Alternative Syntax
6.4.4 Displaying HTML code

Chapter 7: Functions
7.1 Defining our own Functions
7.2 Type Declaration

Chapter 8: PHP Superglobals
8.1 PHP Form Handling

8.1.1 The isset() function
8.1.2 get and $_GET
8.1.3 post and $_POST
8.1.4 Keeping The Values in The Form
8.1.5 Filtering User Input
8.1.6 Cross-Site Scripting

8.2 $_SESSION
8.3 $_COOKIE

Chapter 9: Object-Oriented Programming
9.1 What is OOP?
9.2 Writing our own class
9.3 Creating an Object
9.4 Accessing Class Members
9.5 Access Modifiers
9.6 Getter and Setter
9.7 Printing a String Representation of the Object

Chapter 10: Inheritance

10.1 Writing the Child Classes
10.2 Creating a Child Class Object
10.3 Access Modifiers Revisited
10.4 Overriding

Chapter 11: Interacting with a Database
11.1 The PDO library
11.2 Connecting to the Database
11.3 SQL Injection
11.4 Prepared Statements
11.5 Putting it all Together

Chapter 12: Managing Errors and Exceptions
12.1 Handling Exceptions

12.1.1 What is an exception?
12.1.2 try-catch-finally
12.1.3 Throwing Exceptions
12.1.4 Exception Handler

12.2 Handling Errors
12.2.1 What are errors?
12.2.2 Error Reporting Settings in PHP
12.2.3 Error Handler and Shutdown Function

12.3 Putting it All Together
Chapter 13: Project

13.1 About the Project
13.2 Acknowledgements and Requirements
13.3 Structure of the Project
13.4 Creating Database, User Account and Tables
13.5 Editing The classes Folder

13.5.1 Helper.php
13.5.2 Database.php
13.5.3 BlogReader.php
13.5.4 BlogMember.php
13.5.5 Admin.php

13.6 Editing The process Folder
13.6.1 p-index.php
13.6.2 p-admin.php
13.6.3 p-signup.php
13.6.4 p-write.php
13.6.5 p-read.php
13.6.6 messagecard.php

13.7 The includes Folder
13.8 Editing The phpproject Folder

13.8.1 UI_include.php
13.8.2 User Interface Files

13.9 Running the Code

Chapter 1: Introduction to PHP
Thank you for picking up this book. I’m so glad you chose this book,
and I sincerely hope the book can help you master PHP and introduce
you to the world of dynamic web programming.

In this book, we’ll be covering most of the major topics in PHP. These
topics are carefully chosen to give you a broad exposure to PHP while
not overwhelming you with unnecessary details. We’ll also be building
a dynamic website together at the end of the book.

Excited?

Before we dive into PHP proper, note that this book requires you to
have a basic understanding of HTML and MySQL.

If you are not familiar with these languages, you are encouraged to
refer to my books “Learn CSS (with HTML 5) in One Day and Learn It
Well” and “Learn SQL (using MySQL) in One Day and Learn it Well”.

If you are familiar, let’s move on.

1.1 What is PHP?
PHP is a general-purpose programming language used mostly for web
development. Created by Rasmus Lerdorf in 1994, it allows
developers to create dynamic web pages with ease.

For instance, developers can create a form in HTML and process it
using PHP. Depending on the inputs entered into the form, developers
can use PHP to display different outputs to users.

Most of the time, PHP is used as a server-side language. This means
that PHP code is not processed on the user’s computer (also known
as a client).

In other words, when you access a PHP page on your browser, the
code is not processed on your computer. Instead, your browser sends
a request to a web server, which then processes the code and returns
the result to the browser in the form of a web page.

https://www.amazon.com/dp/B00UI2QHQG
https://www.amazon.com/dp/B07K374J19

More often than not, this web server is a remote computer where the
PHP files are stored. For the web server to process PHP code, a
special software known as the PHP interpreter needs to be installed.

We’ll learn to set up our web server and install the PHP interpreter
using a free software called XAMPP in the next chapter.

1.2 Why Learn PHP?
There are many reasons for learning PHP.

Firstly, PHP is one of the most widely used web programming
languages and is used in many popular content management systems
such as Wordpress, Drupal and Joomla. As such, the demand for
PHP programmers is high. If you plan on working as a freelance
developer, PHP is an essential skill to have.

Next, PHP is designed to be beginner-friendly and easy to learn. In
addition, due to the popularity of the language, if you run into any
issues with your PHP code, you can find help easily. A simple search
on the internet will likely help you resolve most of the problems you
face.

Last but not least, the syntax of PHP is very similar to other
programming languages such as Java or C. Once you are familiar with
PHP, you’ll find it much easier to master other languages.

Ready to get started? Let’s do it!

Chapter 2: Installing XAMPP
As mentioned in the previous chapter, we’ll learn to set up our web
server and install the PHP interpreter in this chapter. In addition, as
we’ll be using PHP to interact with a database later in this book, we
need to set up our database server too.

To set up our web and database servers, we need to install three
software: the Apache web server, the PHP interpreter and the
MarieDB database server.

Installing all three software can be tedious if we do them one by one.
Fortunately, some kind folks at Apache Friends created a free
package that contains all the software we need. This package is
known as XAMPP, which stands for Cross-platform (X), Apache web
server (A), MarieDB database server (M), PHP (P) and Perl (P).

The MarieDB database server is a community-developed fork of the
MySQL server. Although M in XAMPP officially stands for MarieDB,
you’ll see that XAMPP labels the database server as MySQL in the
software. We’ll follow this label and refer to the database server as
MySQL in our book.

For detailed instructions on installing XAMPP and using it to set up our
servers, check out https://learncodingfast.com/how-to-install-xampp-
and-brackets.

Instructions are available on the accompanying site of this book so
that whenever there are any changes to XAMPP, you can find the
updated instructions on the site. This will ensure that you’ll always get
the latest installation instructions.

Besides installing XAMPP, you are strongly encouraged to install an
advanced text editor to do your coding in. While you can definitely
code in a basic text editor (such as Notepad), an advanced text editor
offers features like syntax highlighting that makes your code easier to
read and debug.

A recommended free editor is Brackets. For instructions on installing

https://learncodingfast.com/how-to-install-xampp-and-brackets

Brackets, head over to https://learncodingfast.com/how-to-install-
xampp-and-brackets as well.

2.1 Configuring php.ini
After you have installed XAMPP and Brackets on your computer, you
are ready to start creating your dynamic website.

However, before we do that, we need to make some changes to the
error settings on our PHP server. This ensures that whenever there’s
any mistake in our code, an error message will be displayed on the
browser.

To configure these settings, the most direct way is to modify a file
called php.ini. The instructions below are valid at the time of writing. If
there are any changes to the instructions, you can find the updated
instructions at https://learncodingfast.com/php.

To modify php.ini, we need to locate the file first.

To do that on Windows, launch XAMPP and click on the “Config“
button for Apache. Next, select php.ini. The file will be opened in
Notepad.

https://learncodingfast.com/how-to-install-xampp-and-brackets
https://learncodingfast.com/php

On Mac, launch XAMPP and click on the “Start” button in the
“General” tab. Wait for the status to turn green. Next, select the
“Volumes” tab and click on the “Mount” button. Finally, click on
“Explore” and look for the “etc” folder. You’ll find php.ini inside this
folder. Open it using Brackets.

Once php.ini is open, scroll to the bottom of the page and add the
following lines to it:
error_reporting=E_ALL
display_errors=On

These lines are added to the bottom of the page so that if the settings
have been set previously (in earlier parts of the php.ini file), the new
lines will override the previous settings. We’ll discuss these two
settings in Chapter 12 later.

Next, save the file and restart Apache. On Windows, just stop the
Apache server (if it is currently running) and start it again. On Mac,
select the “Services” tab and click on “Apache”. If Apache is currently
running, click on the “Restart” button. Else, click on the “Start” button.
Wait for Apache to restart and your settings will be updated.

You’ll now get an error message whenever there’s an error in your
code. Depending on the PHP version you are using, some of the
errors you encounter when testing the code in this book may differ
from what is described. Don’t worry about that. We’ll discuss errors in
depth in Chapter 12.

2.2 Important Links
Before proceeding to code our first web page, I would like to bring
your attention to two important links.

The first is https://learncodingfast.com/php. This book uses lots of
examples to illustrate different concepts. While you are encouraged to
type out these examples in Brackets yourself, if you prefer not to, you
can download the source code at the link above. The project files and
any additional notes or updates to the book can also be found there.

Next, we have the errata page. While every effort has been made to
ensure that there are no errors in the book and all source code has
been tested extensively on multiple machines, if there are any errors
we missed, you can find the errata at
https://learncodingfast.com/errata.

2.3 Coding our first Web Page
Great! We are now ready to start coding. First, ensure that you have
started Apache in XAMPP.

Note: If you have any problems starting Apache, it is likely due to a
port conflict. Follow the instructions at
https://learncodingfast.com/how-to-install-xampp-and-brackets to
resolve the conflict.

Next, create a new file in Brackets and add the following code to it:
<!DOCTYPE html>
<html>
<head>

<title>My first PHP page</title>
</head>
<body>
<h1>My first PHP page</h1>
<?php

#Simple hello world page
echo "Hello World!";

?>

https://learncodingfast.com/php
https://learncodingfast.com/errata
https://learncodingfast.com/how-to-install-xampp-and-brackets

</body>
</html>

If you are using an ebook reader, some lines above may wrap to the
next line due to the limited width of the reader. If that occurs, try
changing your device to the landscape mode or using a smaller font
size. The same applies to all the other examples in this book.

Save the file above as hello.php to your htdocs folder. Any file that
contains PHP code must be saved with a .php extension. A file that
ends with a .php extension is also known as a PHP script.

You can find the htdocs folder inside the XAMPP (Windows) or
LAMPP (Mac) folder.

htdocs is the root directory of your local web server. On Windows, to
load the files stored in htdocs, you simply type
http://localhost/<filename> into your browser’s address bar. For
instance, to load hello.php, type http://locahost/hello.php.

On Mac, the easiest way to load files stored in htdocs is to enable
port forwarding. This can be done under the “Network” tab in XAMPP.
Suppose you have enabled “localhost:8080->80(Over SSH)” in
XAMPP, to load hello.php, type http://locahost:8080/hello.php into
your browser’s address bar.

Got it? You can refer to https://learncodingfast.com/how-to-install-
xampp-and-brackets for more detailed instructions.

For ease of reference, from this point forward, I will use http://localhost
to refer to your localhost. If you are using Mac, remember to add the
port number to the URL (i.e., http://localhost:8080).

Let’s analyze the code in hello.php now. Most of the code should look
familiar to you except the following:
<?php

#Simple hello world page
echo "Hello World!";

?>

The <?php … ?> tags above are known as PHP tags; they tell the

http://locahost/hello.php
http://locahost:8080/hello.php
https://learncodingfast.com/how-to-install-xampp-and-brackets
http://localhost
http://localhost:8080

server that code enclosed within should be treated as PHP code.

In our example, we have two simple lines of PHP code. The first line
#Simple hello world page

is known as a comment. Comments are written by programmers to
explain their code to other programmers; these comments are ignored
by the PHP interpreter.

To add a single line comment to our code, we precede the comment
with # or //.

For instance,
This is a comment
// This is also a comment

To add multiple lines comment, we enclose the comment in /*...*/.

For instance,
/*This is an example of a
multi-line comment. */

After the comment, we use the statement
echo "Hello World!";

to display the words “Hello World!” on the browser. This is known as
an echo statement; we’ll learn more about it in the next chapter.

Notice that we end the echo statement with a semicolon (;)? All
statements in PHP must end with a semicolon. This is similar to how
we end sentences with a period (.) in English.

If you load hello.php now, you’ll get

as the output.

That’s it. We have just coded our first PHP web page. Simple? Great!
Let’s move on.

Chapter 3: Basic PHP Tasks
In the previous chapter, we installed XAMPP and Brackets and coded
our first PHP script.

In this chapter, we’re going to learn to perform three very fundamental
tasks in PHP - displaying outputs to users, duplicating code across
multiple pages and redirecting users.

3.1 Displaying Outputs
Before we learn to display outputs, let’s create a PHP file to serve as a
template for us to test the PHP statements in this section.

Create a file in Brackets and save it as output.php to your htdocs
folder. Add the following code to output.php:
<?php

//Add code here

Whenever you want to test any PHP statement in this section, you can
add the statement to output.php (after the <?php opening tag) and
load it in your browser to check the output.

Notice that we did not add a closing tag (?>) to output.php? This is
because output.php only contains PHP code.

According to the standard recommended by the PHP Framework
Interop Group, any PHP script that only contains PHP code should not
end with a closing tag. This is to prevent unwanted whitespaces at the
end of the file, which can cause issues such as an “Headers already
sent” warning when modifying response headers.

Do not worry if the statement above does not make any sense; we’ll
learn about the “Headers already sent” warning later. For now, let’s
move on to learn how to display outputs in PHP.

3.1.1 echo
The easiest way to display outputs in PHP is to use an echo

statement. To do that, we enclose the text that we want to display in a
pair of matching quotation marks after the echo keyword. The echo
keyword is not case sensitive. Hence, echo, Echo or ECHO will all
work.

Using an echo statement is straightforward. We did that in Chapter 2
when we used it to display the words “Hello World!”.

In addition to using echo statements to display simple text messages,
we can use them to display text with HTML markup. For instance, we
can write
echo 'PHP is fun
and easy!';

This gives us
PHP is fun
and easy!

as the output; the text “and easy!” is displayed on the second line due
to the
 tag.

We can also combine multiple messages in a single echo statement.
To do that, we separate the messages with commas. For instance,
echo "ABCD", "EFGH";

gives us
ABCDEFGH

as the output. Combining messages is useful when our message is
more complex, such as when the message includes variables and
functions. We’ll learn about variables and functions in later parts of the
book.

Last but not least, we can use an echo statement with or without
parentheses. You may have seen some code that does the following:
echo ("ABCD");

This is fine in most cases. However, if you use parentheses, you are
not allowed to combine multiple messages in a single echo statement.

For instance,
echo ("ABCD", "EFGH");

will give us an error. In most cases, you are better off using echo
statements without parentheses.

3.1.2 print
Besides using echo statements to display outputs, we can use print
statements.

print statements are VERY similar to echo statements. Let’s look at
an example:
print "My name is Brody.";

gives us
My name is Brody.

as the output. As you can see, the print statement works just like an
echo statement. While there are some differences between them, in
most cases, there is no need to use the print statement.

In PHP, it is fairly common that there is more than one way to perform
a certain task. This is one of the main complaints developers have
about PHP, as it complicates things unnecessarily. In most cases, the
different ways are very similar to each other. In order not to
overwhelm you with too many options, I'll stick with one option in this
book and briefly mention other options if necessary. In this book, I’ll be
using echo statements to display outputs.

3.1.3 Escaping Characters
Next, let’s learn to escape characters in PHP.

In the previous sections, we learned to enclose text in quotation marks
when we use an echo (or print) statement. What happens if we
want to display an apostrophe?

For instance, suppose we have the following statement:

echo '
Today is Friday, we're going to the zoo.';

We’ll get an error when we try to run the statement above as PHP
does not differentiate between an apostrophe and a quotation mark by
default. Hence, it treats the apostrophe in the word “we’re” as a
closing quotation mark. In other words, it sees the statement as
echo '
Today is Friday, we'

and expects a semicolon or comma after the apostrophe. When that
does not happen, PHP gets confused and gives us an error.

There are two ways to deal with the error above. The first is to use
double quotation marks to enclose the text and rewrite the statement
as
echo "
Today is Friday, we're going to the zoo.";

As PHP uses a double quotation mark to close another double
quotation mark, the apostrophe in “we’re” is not mistakenly interpreted
as a closing quotation mark.

Alternatively, we can escape the apostrophe in the original statement
by preceding it with a backslash character (\).

Escaping a character alters the meaning of the character. Without the
backslash character, the apostrophe is interpreted as a closing single
quote. With it, it is treated as an apostrophe meant to be displayed on
the browser.

For instance, to display the apostrophe in the previous example, we
can use the statement below:
echo '
Today is Friday, we\'re going to the
zoo.';

This gives us the following output:
Today is Friday, we're going to the zoo.

Other common uses of the backslash character include:

Using it to display a double quotation mark

echo """;

gives us an error, while
echo "\"";

gives us
"

Using it to display the backslash character itself
echo "\";

gives us an error, while
echo "\\";

gives us
\

3.2 Duplicating Code
Next, let’s move on to learn how to duplicate code in our PHP scripts.

In PHP, generally speaking, scripts are independent of one another.
Hence, code written in one PHP script (say, index.php) is not available
once users navigate to another page.

If we want multiple pages on our website to have the same HTML or
PHP code, we need to use the include statement.

3.2.1 include
Suppose you want multiple pages on your website to have the same
<h1> heading, you do not need to copy and paste the code into all the
pages manually. Instead, you can use the include statement.

Let’s try that out. Create a file called heading.html (in htdocs) and
add the following code to it:
<h1>Welcome to PHP</h1>

Next, create another file called includedemo.php and save it to

htdocs too. Add the following code to includedemo.php:
<!DOCTYPE html>
<html>
<body>

<?php

include 'heading.html';
?>

</body>
</html>

Notice the statement
include 'heading.html';

in includedemo.php?

When PHP sees this statement, it goes to heading.html, “copies” the
code inside, and “pastes” it into includedemo.php for us
automatically. This saves us the trouble of having to copy and paste
the code ourselves.

If you launch includedemo.php now, you’ll see the words “Welcome
to PHP” displayed as a <h1> heading. This is due to the code in
heading.html. Got it?

To use an include statement, we need to give PHP the path of the
file we want it to include. This is similar to what we do in HTML when
we link CSS or other external files to our webpages. In our example
above, as heading.html is stored in the same folder as
includedemo.php, we simply give it the filename.

If heading.html is stored in another folder (say in a folder called
“includes” inside htdocs), we need to use the statement below:
include 'includes/heading.html';

3.2.2 require
Besides the include statement, PHP also has the require
statement. The difference between the two is that require produces

a fatal error and stops the script if PHP fails to find the file required.

include, on the other hand, will only produce a warning without
stopping the script.

If the content you want PHP to “copy and paste” into your file is crucial
to the correct execution of the page, you should use the require
statement. Otherwise, you can use the include statement.

3.2.3 include_once, require_once
Both the include and require statements come with a _once
version.

As the names suggest, the include_once and require_once
statements only “copy and paste” the code into the file once. These
statements are useful in cases where the same file may be included
more than once accidentally (for instance, when the script is so long
you have lost track of whether you have included the file previously).

If you add another
include 'heading.html';

statement to includedemo.php (before the ?> tag) and load the page,
you’ll get “Welcome to PHP” displayed as a <h1> heading twice.

On the other hand, if you change the include statements to

include_once 'heading.html';
include_once 'heading.html';

you’ll only get the <h1> heading displayed once.

3.3 Redirecting Users
Great! We’ve come to the last section of this chapter. In this section,
we’ll learn to redirect users using PHP.

In HTML, we know that we can use a <meta> tag to redirect users to
another page. In PHP, we use a built-in function called header().

First off, what is a function?

A function is a block of code that performs a certain task. For an
analogy, think of the functions in MS Excel. If we want to add the
values of some cells in a spreadsheet, we can use a built-in function
called sum(). This function is pre-written by other programmers and
comes included with Excel.

Similar to the pre-written functions in Excel, PHP comes with many
built-in functions. Most functions require us to provide certain
information for them to perform their tasks. In PHP, we provide this
information by enclosing them inside a pair of parentheses (in a pre-
defined order) after the function name. The information that we pass
to the function is known as arguments.

To use the header() function, we need to pass the word “Location”,
followed by a colon and the redirect URL to the function. Using a
function is also known as calling the function.

To call the header() function, add the following code to the start of
includedemo.php (before the <!DOCTYPE html> tag):

<?php
header('Location: http://example.com');

?>

If you load includedemo.php now, you’ll be redirected to
http://example.com. Got it?

When you use the header() function, note that it must be called
before your script generates any output to the browser, either by
normal HTML tags, blank lines, or from PHP. If there’s any output
before the function is called, the function will not work. For instance, it
will not work in the following two examples:

Example 1
<?php

echo 'Hello';
header('Location: http://example.com');

?>

Example 2

http://example.com

<p>This is some text.</p>

<?php
header('Location: http://example.com');

?>

In the first example, output is generated by the echo statement (echo
'Hello';) before the header() function is called.

In the second example, output is generated by the two lines of code
before the <?php tag. These two lines generate an HTML paragraph
and an empty line before the header() function is called.

If your script generates any output before the header() function is
called, you’ll get the “Headers already sent” warning mentioned
previously in Chapter 3.1 and users will not be redirected. The code
may work when you are working on your local computer. However,
when you upload it to your hosting company’s server, it will fail to
work. Got it?

Chapter 4: Constants, Variables, Data Types
and Operators in PHP
Cool! We’ve come to Chapter 4. In this chapter, we are going to learn
about constants and variables. In addition, we’ll talk about the data
that variables store and the different operations we can perform on
them.

Before we proceed, you may want to create a new PHP script called
chap4.php and use it to test the examples in this chapter.

Done? Great! Let’s move on. We’ll start with constants.

4.1 Constants
Constants in PHP are similar to constants in Mathematics. Recall the
number 3.14159 (rounded to 5 decimal places) we learned in
Mathematics? This number is called Pi (π), and its value never
changes.

Much like Pi in Mathematics, we can define our own constants in PHP
and give them names for easy reference. To do that, we use a built-in
function called define(). Once we define a constant, we are not
allowed to change its value.

To use the define() function, we need to pass two arguments
(separated by a comma) to the function - the name of the constant
(passed with quotation marks) and the value.

The name of a constant is case-sensitive by default and can consist of
letters, numbers, or underscores. However, it must start with a letter or
an underscore. It is a convention to use all uppercase when naming
constants.

Let’s look at an example.
define("BASIC_MEMBER", 1112020);
echo BASIC_MEMBER;
echo '
';

define("BASIC_MEMBER", 16932);
echo BASIC_MEMBER;

Here, we define a constant called BASIC_MEMBER and specify its
value as 1112020. Next, we reference it using its name and use an
echo statement to echo its value.

After echoing its value, we try to redefine BASIC_MEMBER and change
its value to 16932. Finally, we echo its value again. If you run the
code above, you’ll get the following output:
1112020

Notice: Constant BASIC_MEMBER already defined in ...
1112020

If you study the output carefully, you’ll see that we did not manage to
change the value of BASIC_MEMBER after defining it the first time.
Hence, its value remains as 1112020 when we echo it a second time.
Got it? Good!

In the example above, note that we did not enclose BASIC_MEMBER in
quotation marks when we echo its value. If we use quotation marks
(e.g., echo 'BASIC_MEMBER';), we’ll get

BASIC_MEMBER

as the output instead, which is not what we want. We enclose the
names of constants in quotation marks only when we define them (i.e.,
when we call the define() function).

4.2 Variables
Next, let’s move on to variables.

Variables are used to store data in our programs. They have names,
and their values can be changed when necessary.

Like constants, the names of variables need to follow certain naming
rules.

Firstly, a variable name must start with the $ symbol. After this

symbol, the name cannot start with a number and can only contain
alpha-numeric characters and underscores (A-z, 0-9, and _).

Names like $userName, $age1 and $user_email are fine while
names like $4ever (starts with a number), $unit+NY (includes the +
sign) and $var 1 (includes a space) are not.

Next, variable names are case sensitive; $userName is not the same
as $username.

Finally, variable names should be meaningful. Using variables like $x,
$y and $z to store the name, age and password of your user will
make your code confusing and less intuitive. While not mandatory,
you should definitely use more meaningful names such as $name,
$age and $password to make your code more readable.

There are two commonly used styles when naming a variable in PHP.
We can use either camel case or underscores. Camel case is the
practice of writing compound words in mixed case, beginning each
word (except the first) with an uppercase (e.g., $thisIsAVariable).
Another common style is to use underscores (_) to separate the words
(e.g., $this_is_a_variable).

Choosing one style over the other is a matter of personal preference.
What is more important is to be consistent throughout your code. In
this book, we’ll be using camelCase for variables.

To declare a variable in PHP, we write something like:
$x = 7;

Here, we declare a variable called $x and give it the value 7. Giving a
value to a variable is known as assigning a value to it.

Assigning an initial value to a variable when declaring it is known as
initializing the variable. This is not mandatory in PHP. However, it is
considered bad practice not to do so as it can lead to unexpected
behavior in the script.

When we declare and initialize a variable, PHP allocates a certain
area on the server's storage space to store this data. You can

subsequently access and modify the data by referring to it by its
name. For instance, to display the value of $x, we write

echo $x;

This gives us 7 as the output. If we want to change the value of $x,
we simply assign a new value to it. For instance,
$x = 5;
echo $x;

updates the value of $x and gives us 5 as the new output.

In the examples above, note that we did not enclose $x in quotation
marks when we use the echo statement.

In general, we do not enclose the names of constants, variables or
functions in quotation marks when we use the echo statement. This is
because the echo statement treats anything enclosed in quotation
marks as text or HTML code and echoes it literally. For instance, if we
write
echo '$x';

we’ll get
$x

as the output. The only exception is when it comes to variable names
enclosed in double quotation marks.

If we enclose a variable name in double quotation marks, the echo
statement does not echo the variable name literally. Instead, it
replaces the name with the value of that variable and echoes the
value. For instance, if we write
echo 'The value is $x.';
echo '
';
echo "The value is $x.";

we’ll get
The value is $x.

The value is 5.

as the output. When we use single quotation marks, the echo
statement outputs the text literally. In contrast, when we use double
quotation marks, it replaces $x with its value. Got it?

4.3 Basic Data Types in PHP
Next, let’s talk about data types in PHP.

Variables in PHP can be used to store different types of data. The
type of data a variable stores is known as its data type. In this section,
we’ll discuss three basic data types - int, float and bool.

int

int refers to integers, which are numbers with no decimal parts (such
as -5, 0, 4 and 7).

This data type has an upper and lower boundary, both of which are
platform-dependent. In other words, it can only store numbers within a
certain range. Integers that exceed these bounds (i.e., very large or
very small numbers) will be interpreted as floats.

float

float refers to floating-point numbers, which are numbers with
decimal parts or numbers in exponential form.

Examples include 5.79, -3.56 and 7E11 (i.e., 7x1011).

bool

bool refers to boolean and is a special data type that can only store
one of two values - true or false.

These two values are not case-sensitive. In other words, true, TRUE
and True all refer to the same value. Similarly, false, FALSE and
False refer to the same value.

The bool data type may seem redundant at the moment. Its
significance will be apparent when we discuss comparison operators
and condition statements in Chapter 6.

PHP is considered to be a loosely typed language. When we declare a
variable, we do not need to state its data type.

To declare a variable that stores integers, we simply assign an integer
to it. To declare one that stores floats or booleans, we assign a float or
boolean to it respectively.

If we have the following variables
$x = 5;
$y = 2.1;
$z = true;

$x is an integer, $y is a float, and $z is a boolean.

To verify the data type of a variable, we can use a built-in function
called var_dump(). This function requires us to provide the variable
name and gives us the data type and value of the variable. The
following statements
var_dump($x);

var_dump($y);

var_dump($z);

give us
int(5) float(2.1) bool(true)

as the output.

4.4 Type Casting
In the previous section, we learned about three basic data types in
PHP - int, float and bool. We can easily convert one data type to
another. This is known as type casting.

To cast a value/variable to an integer, we add (int) or (integer)
in front of the original value/variable.
To cast to a boolean, we add (bool) or (boolean).
To cast to a float, we add (float) or (double).

Let’s look at an example:
$p = (int)4.6;
var_dump($p);

Here, we declare a variable called $p and assign (int)4.6 to it.
Next, we use the var_dump() function to display the data type and
value of $p.

If we run the code above, we’ll get
int(4)

as the output. The value of $p is 4 as PHP casts a float (4.6) to an
integer by truncating the decimal part of the float.

Besides casting values or variables to integers, floats or booleans, we
can also cast them to strings, arrays or objects. We do that by adding
(string), (array) and (object) in front of the values
respectively. We’ll discuss these advanced data types in subsequent
chapters.

4.5 Operators in PHP
PHP comes with many operators that we can use with variables. Let’s
discuss the assignment operator first.

4.5.1 The Assignment Operator
Previously, we learned to assign values to variables using the = sign.
This sign is known as an assignment operator and is different from the
equals sign we learned in Mathematics.

In PHP (and most programming languages), an assignment works
from right to left. In other words, we assign the value (or variable) on
the right side of the assignment operator to the variable on the left.
Hence,
$x = 7;

is not the same as
7 = $x;

While both statements are acceptable in Mathematics, the second
statement is not acceptable in PHP.

In the first statement, we assign 7 to $x. This is all right and will not
give us any error. On the other hand, in the second statement, we
assign $x to 7 (from right to left). This does not make any sense (as 7
is a constant) and will give us an error.

Always remember that assignment works from right to left.

4.5.2 Arithmetic operators
Next, let’s talk about arithmetic operators.

These operators are for performing basic arithmetic operations. They
include operators for addition (+), subtraction (-), multiplication (*),
division (/), modulo (%) and exponentiation (**).

Suppose you have
$x = 5;
$y = 2;

$x + $y gives us 7,
$x - $y gives us 3,
$x*$y gives us 10,
$x/$y gives us 2.5,

$x%$y
gives us 1 because the modulo operator gives us the remainder when
5 is divided by 2, and

$x**$y
gives us 25 because the exponentiation operator gives us the value of
5 raised to the power of 2.

4.5.3 Combined Assignment Operators
Besides the set of arithmetic operators mentioned above, we have a
set of operators that combines arithmetic operations with assignment.
Suppose you have

$x = 5;

and you want to add 3 to $x, you can do it as follows:

$x = $x + 3;

An assignment always happens from right to left. Hence, the
expression on the right ($x + 3) is evaluated first to give us 5+3.
This value is then assigned back to $x, which is the variable on the
left. In other words, the value of $x becomes 8.

In addition to writing
$x = $x + 3;

we can use the += operator. This operator is a shorthand that
combines the assignment operator with the addition operator. If you
write
$x = 5;
$x += 3;
echo $x;

you’ll get 8 as the output.

$x += 3 simply means $x = $x + 3.

Besides the += operator, we have the -= operator, which combines
the - operator with the assignment operator. The same applies to all
the arithmetic operators mentioned in the previous section.

Hence, $x -= 4 is the same as $x = $x - 4, $x *= 2 is the
same as $x = $x*2, etc.

4.5.4 Increment/Decrement operators
Last but not least, let’s talk about the increment (++) and decrement (-
-) operators. These operators increase or decrease the value of a
variable by 1 and return the new value.

Let’s try some code (line numbers are added for reference).
1 $q = 3;

2 echo "
$q
";
3 echo ++$q;

If you run the code above, you’ll get the following output:
3
4

Line 2 uses the echo statement to output the original value of $q. Line
3 does the following:

1. Increment the value of $q by 1
2. Echo the new value of $q

Hence, we get 4 as the output.

The ++ operator is known as the increment operator. It can be placed
in front of (known as pre-increment) or behind (post-increment) the
variable name. Try changing line 3 above to
echo $q++;

and rerun the code, you’ll get
3
3

as the output this time. Surprised? This is because line 3 does the
following now:

1. Echo the original value of $q.
2. Increment the value of $q by 1

In other words, the order of execution of the two tasks (increment and
echo) is reversed. The increment is done after the echo statement is
executed (hence the name post-increment). To prove that $q is
indeed incremented, you can echo its value once more after line 3.
You’ll get 4 as the output this time. Got it?

In addition to the increment operator, we have the decrement operator
(--). This operator consists of two minus signs and decreases the

value of a variable by 1. It can also be used as a pre-decrement or
post-decrement operator.

Chapter 5: More Data Types in PHP
In the previous chapter, we looked at some of the basic data types in
PHP. In this chapter, we’ll discuss two more data types - strings and
arrays. You can create a new file named chap5.php to test the
examples in this chapter.

5.1 Strings
A string refers to a piece of text. In PHP, strings must be enclosed in
single or double quotation marks. For instance, if we write
$msg = 'Hello';
$greeting = "Good Morning";
$emptyStr = "";

$msg and $greeting store the strings 'Hello' and "Good
Morning" respectively.

$emptyStr, on the other hand, stores a special string known as an
empty string. This is because there is no text enclosed within the pair
of double quotation marks we assign to it.

In PHP, you can combine multiple strings using the concatenate
operator (.). Let’s look at an example:
$areacode = "(208)";
$contact = '+1' . $areacode . '1234567';
echo $contact;

Here, we use the concatenate operator twice to concatenate the string
'+1', the variable $areacode and the string '1234567' to form a
new string. I’ve added spaces before and after the concatenate
operators so that you can see the three components more clearly; you
do not need to add these spaces.

After concatenating, we assign the new string to a variable called
$contact and use the echo statement to echo its value.

If you run the code above, you’ll get

+1(208)1234567

as the output.

5.1.1 Commonly used String Functions in PHP
Next, let’s discuss some of the commonly used string functions in
PHP. PHP comes with a large number of built-in functions for working
with strings. Most functions return a result after performing their tasks.
We can assign the result to a variable or use the echo statement to
display the result directly.

A function may have different variations as some functions allow us to
provide optional arguments to modify the function’s behavior. The
examples below discuss the most common and useful approach to
using each function.

strlen()
The strlen() function gives us the length of a string.

Example:
$str1 = 'Good Day!';
echo strlen($str1);

Output:
9

Here, we declare a variable called $str1 and assign the string 'Good
Day!' to it. Next, we pass $str1 to strlen() and use the echo
statement to display the function's result directly.

We get 9 as the output because 4 ('Good') + 1 (' ') + 3 ('Day') +
1 ('!') = 9.

strtolower(), strtoupper()
The strtolower() and strtoupper() functions convert a string to
lowercase and uppercase respectively and return the new string. The
original string is not changed.

Example:
$str2 = 'Hello World';
$str3 = strtolower($str2);
$str4 = strtoupper($str2);
echo '
'.$str2;
echo '
'.$str3;
echo '
'.$str4;

Here, we declare a variable called $str2 and assign the string
'Hello World' to it. Next, we pass $str2 to strtolower() and
strtoupper() and assign the results to $str3 and $str4
respectively.

Finally, we use three echo statements to echo the values of $str2,
$str3 and $str4. In each case, we concatenate '
' with the
variable so that the output will start on a new line.

If you run the code above, you’ll get
Hello World
hello world
HELLO WORLD

as the output.

trim()
The trim() function removes whitespaces from the front and end of
a string by default and returns the new string. You can specify other
characters for it to remove by passing a second optional argument to
the function.

Example 1:
$str5 = ' is ';
echo 'PHP'.$str5.'Fun
';
echo 'PHP'.trim($str5).'Fun
';

Output:
PHP is Fun
PHPisFun

Here, we first concatenate $str5 with the strings 'PHP' and
'Fun
' and use an echo statement to echo the resulting string
directly. We get “PHP is Fun” as the output.

Next, we use the trim() function to remove whitespaces from $str5
and concatenate it with 'PHP' and 'Fun
' again. We get
“PHPisFun” as the output this time.

Example 2:
$str6 = '**Hello**World***';
echo trim($str6, '*');

Output:
Hello**World

Here, we pass '*' to the trim() function as the second argument.
As a result, asterisks (instead of whitespaces) are removed from the
front and back of $str6 and we get “Hello**World” as the output.

substr()
The substr() function returns a substring. To use this function, we
need to pass two arguments to it - the string to extract the substring
from and the position to start extracting it. We can also pass a third
argument to specify the length of the substring to extract. If we do not
provide this argument, the function extracts the substring starting from
the specified starting position to the end of the string.

Positions in strings start from 0, not 1. For instance, if we have a string
'ABCDEF', 'A' is at position 0, 'B' is at position 1 and so on.

Positions can also be negative. If it is negative, it is counted from the
back of the string. In 'ABCDEF', 'F' is at position -1, 'E' is at
position -2 etc.

Example:
$str7 = 'ABCDEF';
echo substr($str7, 2).'
';
echo substr($str7, -3).'
';

echo substr($str7, 2, 1);

Output:
CDEF
DEF
C

Here, we declare a variable called $str7 and assign the string
'ABCDEF' to it. Next, we pass $str7 to substr() thrice to extract
different substrings from it.

In the first two examples, the substr() function extracts substrings
starting from (and including) positions 2 and -3 respectively. Hence,
we get “CDEF” and “DEF” as the outputs.
In the third example, we specify the desired length of the substring by
passing a third optional argument to substr(). As we specify the
desired length to be 1, we get “C” as the output. Got it?

We’ve covered several string functions in PHP. For a full list of all the
string functions available, you can check out the page
https://www.php.net/manual/en/ref.strings.php.

5.2 Using Strings to Represent Dates
Next, let’s learn to use strings to represent dates. To do that, we use a
built-in function called strtotime().

5.2.1 The strtotime() function
As the name suggests, the strtotime() function converts a string to
time. It accepts a string describing a specific date (and time) and tries
to convert that to a timestamp.

If you pass a string to the function that it is unable to convert, it returns
false. On the other hand, if you pass a string that it is able to
convert, it parses the string and returns the UNIX timestamp.

A UNIX timestamp is an integer that gives us the number of seconds
that have elapsed since January 1 1970 00:00:00 UTC.

For instance, if you run the statement

https://www.php.net/manual/en/ref.strings.php

echo strtotime("next Monday");

you’ll get something similar to
1587340800

This gives the UNIX timestamp for next Monday (at the time of
writing).

The strtotime() function is quite smart and is able to convert
various English textual datetime descriptions into UNIX timestamps.
For instance, it has no problem converting strings like "now",
"tomorrow", "next Monday", "15 Nov 2019" or "+1 week".

However, while the function is easy to use, you’ll probably agree that
the timestamp it returns is not very useful in most cases. If you want to
get a more meaningful format for a date or time, you can use another
built-in function called date().

5.2.2 The date() function
The date() function accepts an optional timestamp and formats the
timestamp into a more readable string. If the timestamp is not
provided, it formats the current timestamp.

Suppose we want to format a timestamp that is 10 hours from the
current time, we can use the statement below:
echo date('d-M-Y', strtotime("+ 10 hours"));

Here, we pass two arguments to the function.

The first argument specifies how we want the timestamp to be
formatted. To do that, we use a string consisting of punctuation marks
and predefined characters (as defined on
https://www.php.net/manual/en/function.date.php).

In our example, we use the string 'd-M-Y'.

The character ‘d’ indicates that we want the day to be represented as
a two-digit number, using a leading zero if necessary (e.g., 3 is output
as 03). The characters ‘M’ and ‘Y’ indicate that we want the month and
year to be represented as a three-letter text (e.g., Jan) and a four-digit

https://www.php.net/manual/en/function.date.php

number respectively. Last but not least, the punctuation mark ‘-’
indicates that we want the day, month and year to be separated by
hyphens.

After specifying the desired format, we pass a second argument
(strtotime("+ 10 hours")) to the date() function. This
argument is optional and specifies the date we want the function to
format.

If you run the echo statement above, you’ll get an output similar to

03-Apr-2020

This gives the date 10 hours from now (at the point of writing). Got it?

5.2.3 Setting the timezone
The sections above discussed two of the many built-in date/time
functions in PHP. While most of these functions are easy to use, do
note that their results are affected by the timezone set in our PHP
server.

For instance, while
echo date('d-M-Y', strtotime("+ 10 hours"));

gives us 03-Apr-2020 in one timezone, it may give us 04-Apr-
2020 in another.

To avoid any discrepancy in results, it is strongly recommended that
you manually set the timezone in your PHP server if you want to use
any date/time function in PHP.

To do that, you need to modify the date.timezone setting in
php.ini. Refer to Chapter 2 for instructions on locating this file.

Once you have located the file, open it, and scroll to the bottom of the
page.

Next, head over to https://www.php.net/manual/en/timezones.php for
a list of valid timezone identifiers. Say you want PHP to use the New
York timezone, you need to add the line

https://www.php.net/manual/en/timezones.php

date.timezone=America/New_York

to the bottom of php.ini. Once that is done, save the file, restart
Apache, and the setting will be updated. Got it?

If you do not have permission to update the php.ini file, you can use
the date_default_timezone_set() function. This function takes
a timezone identifier and sets the default timezone used by all
date/time functions in a PHP script.

For instance, to set the default timezone to the New York timezone,
simply add
date_default_timezone_set('America/New_York');

to the start of your PHP script. This affects the timezone for that
particular PHP script. If you want another PHP script to use the same
timezone, you have to set it in that script too.

5.3 Arrays
Great! Now that we are familiar with strings and dates, let’s move on
to another commonly used data type in PHP - arrays.

An array is a special data type that allows us to store related values
together as a single variable.

For instance, suppose you want to store the test scores of 5 students.
Instead of storing them as $marks1, $marks2, $marks3, $marks4
and $marks5, you can store them as an array.

5.3.1 Creating an Array
There are a few ways to create an array in PHP; the most common
way is to use the array() function.

Example 1
$firstArr = array();

This creates an empty array.

Example 2

$secondArr = array(11, 16, 4, 9, 12);

This creates an array with 5 elements (i.e. 5 values).

The array created is known as an indexed array, as each element in
the array has an index.

Indexes start from 0. In other words, the first element (11) has an
index of 0, the second (16) has an index of 1, and so on.

To access the individual elements in the array, we use its index and a
pair of square brackets. For instance, if you write
echo $secondArr[3];

you are accessing the 4th element; you’ll get 9 as the output. You can
also use the index to update the value of an element.
$secondArr[3] = 20;

updates the 4th element to 20.

$secondArr becomes (11, 16, 4, 20, 12).

Example 3
In addition to storing numbers, arrays can be used to store other data
types. In the example below, $fruitsArr is used to store strings.

$fruitsArr = array('Apple', 'Banana', 'Coconut');

Example 4
Besides indexed arrays, we can create associative arrays. An
associative array is one where each value in the array is associated
with a key. For instance, in the example below, the value 16 is
associated with 'Jane' (known as its key).

$assocArr = array(
'Peter' => 11,
'Jane' => 16,
'Paul' => 12

);

To access the values in an associative array, we use its key. If we
write
echo $assocArr['Paul'];

we’ll get 12 as the output.

Example 5
Next, arrays can be used to store arrays. This is known as a
multidimensional array.
$simpleMDArr = array(

array(1, 2, 1, 4, 5),
array(0, 5, 1, 3, 4),
array(4, 1, 7, 8, 9)

);

In the example above,

$simpleMDArr[0] stores the array (1, 2, 1, 4, 5),
$simpleMDArr[1] stores (0, 5, 1, 3, 4), and
$simpleMDArr[2] stores (4, 1, 7, 8, 9).

If you want to access the elements in the “inner” arrays, you use two
pairs of square brackets. For instance,
echo $simpleMDArr[2][3];

gives us the 4th (3+1) element in $simpleMDArr[2]. We’ll get 8 as
the output.

Example 6
Associative arrays can also be used to store arrays. In the example
below, $assocMDArr is an associative array used to store three
indexed arrays.
$assocMDArr = array(

"first array" => array(1, 2, 6, 1, 3),
"second array" => array(3, 5, 1, 8, 9),
"third array" => array(1, 0, 9, 4, 7)

);

$assocMDArr["first array"] stores the array (1, 2, 6, 1,
3).

If we write
echo $assocMDArr["first array"][2];

we’ll get the 3rd element in $assocMDArr["first array"]. In
other words, we’ll get 6 as the output.

Example 7
Last but not least, we can use an associative array to store
associative arrays.
$anotherAssocMDArr = array(

"first player" => array("name" => 'John', "age"
=> 25),

"second player" => array("name" => 'Tim', "age"
=> 35)
);

In the example above, $anotherAssocMDArr["first player"]
stores the array ("name" => 'John', "age" => 25).

If we write
echo $anotherAssocMDArr["first player"]["age"];

we’ll get 25 as the output.

5.3.2 Displaying the Content of Arrays
Next, let’s learn two convenient ways to display the content of arrays.

One way is to use the var_dump() function covered in the previous
chapter. This function displays the data type and value of a variable. If
we write
$myArray = array(2, 5.1, 'PHP', 105);
var_dump($myArray);

we’ll get

array(4) { [0]=> int(2) [1]=> float(5.1) [2]=>
string(3) "PHP" [3]=> int(105) }

as the output.

“array(4)” indicates that $myArray is an array with 4 elements.

The text inside the pair of braces that follows indicates the data type
and value of each element. For instance, “[0] => int(2)” tells us that the
element at index 0 is an integer of value 2, “[1] => float(5.1)” tells us
that the element at index 1 is a float of value 5.1 and so on.

Next, we have the print_r() function.

This function is similar to the var_dump() function. However, its
output is more concise as it does not give us the data type of each
element. For instance,
print_r($myArray);

gives us the following output:
Array ([0] => 2 [1] => 5.1 [2] => PHP [3] => 105)

5.3.3 Adding Elements to Arrays
After creating an array, we can add new elements to it. There are a
few ways to do it. The easiest is to use the square bracket notation.
This notation allows us to add one element at a time to an array.

Example 1
$addDemo = array(1, 5, 3, 9);
$addDemo[] = 7;

In the example above, we add 7 to $addDemo. The array becomes
(1, 5, 3, 9, 7).

Example 2
$addDemoAssoc = array('Peter'=>20, 'Jane'=>15);
$addDemoAssoc['James'] = 17;

Here, we add 'James'=>17 to $addDemoAssoc. The array becomes

('Peter'=>20, 'Jane'=>15, 'James'=>17).

5.3.4 Deleting Elements from Arrays
Besides adding elements to arrays, we can delete elements from
them. One way is to use the array_splice() function.

To use this function, we need to pass two arguments to it - the array to
remove elements from and the position to start removing them.

We can also pass a third argument to specify the number of elements
to remove. If we do not provide this argument, the function removes all
elements from the specified starting position to the end of the array.

Let’s look at some examples.

Example 1
$colors = array("red", "black", "pink", "white");
array_splice($colors, 2);

Here, we indicate that we want array_splice() to remove all
elements from $colors, starting from (and including) the element at
position 2.

$colors becomes ("red", "black").

Example 2
$awardwinners = array("Gold"=>"Max",
"Silver"=>"Boots", "Bronze"=>"Dora");
array_splice($awardwinners, 1);

Here, we want array_splice() to remove all elements from
$awardwinners, starting from (and including) position 1.

$awardwinners becomes ("Gold"=>"Max").

Example 3
$pets = array("corgi", "poodle", "golden retriever",
"jack russell");
array_splice($pets, 1, 2);

Here, we want to remove 2 elements from $pets, starting from (and
including) position 1.

$pets becomes ("corgi", "jack russell").

5.3.5 Commonly used Array Functions in PHP
We’ve covered several array concepts in the previous sections. Before
we end this chapter, let’s look at some commonly used array functions
in PHP.

count()
The first is the count() function. This function accepts an array and
returns the number of elements in the array.

Example:
$countDemo = array(1, 4, 5, 1, 2);
echo count($countDemo);

Output:
5

array_search()
Next, we have the array_search() function. This function searches
for a particular value in an array. If the value is found, the function
returns its corresponding index or key. Else, it returns false. If more
than one instance of the value is found, the index or key of the first
matching value is returned.

Example:
$indexArrDemo = array(11, 4, 5, 1, 2, 5, 6);
$assocArrDemo = array('A'=>12, 'B'=>5, 'C'=>20);

echo array_search(5, $indexArrDemo).'
';
echo array_search(20, $assocArrDemo).'
';
var_dump(array_search('B', $assocArrDemo));

Output:

2
C
bool(false)

In the first echo statement above, we use the array_search()
function to search for 5 in $indexArrDemo. Although there are two
values of 5 in the array, only the index of the first matching value is
returned.

In the second echo statement above, we use array_search() to
search for 20 in $assocArrDemo. We get “C” as the output.

In the last echo statement, we use array_search() to search for
'B' in $assocArrDemo. We get false as 'B' is a key in the array,
not a value.

in_array()
The in_array() function is similar to the array_search()
function. However, instead of returning the key or index, it returns
true if the stated value is found in the array. Else, it returns false.

With reference to $indexArrDemo and $assocArrDemo defined
above,
var_dump(in_array(5, $indexArrDemo));
var_dump(in_array(20, $assocArrDemo));
var_dump(in_array('B', $assocArrDemo));

give us
bool(true) bool(true) bool(false)

as the output.

array_merge()
Finally, we have the array_merge() function. This function merges
two or more arrays and returns the merged array.

Example 1:
$num1 = array(100, 111, 120);

$num2 = array(100, 3, 5);
$num3 = array(1, 10);

$newArray1 = array_merge($num1, $num2, $num3);

$newArray1 becomes (100, 111, 120, 100, 3, 5, 1, 10).

Example 2:
$names1 = array(5 => "Peter", 24 => "Aaron");
$names2 = array(5 => "Zac", 4 => "Alfred", 7 =>
"Avi");
$newArray2 = array_merge($names1, $names2);

Keys are renumbered in the merged array if any of the arrays passed
to the array_merge() function is an associative array with integer
keys.

In the example above, $newArray2 becomes (0 => "Peter", 1
=> "Aaron", 2 => "Zac", 3 => "Alfred", 4 => "Avi").

The key for "Peter" is renumbered from 5 to 0. The same applies to
all the other keys.

Example 3:
$str1 = array('A'=> 12, 'B' => 5, 'C' => 8);
$str2 = array('A' => 15, 'D' => 10);
$newArray3 = array_merge($str1, $str2);

If two or more array elements have the same string keys, the last one
overrides the earlier ones.

In the example above, $newArray3 becomes ('A'=> 15, 'B' =>
5, 'C' => 8, 'D' => 10).

'A'=> 12 is replaced by 'A'=> 15.

We’ve covered some of the commonly used array functions in PHP.
For a complete list of all the built-in array functions, check out
https://www.php.net/manual/en/ref.array.php.

https://www.php.net/manual/en/ref.array.php

Chapter 6: Control Structures in PHP
Congratulations on making it to Chapter 6; this is where the fun
begins!

In this chapter, we are going to look at various control structures in
PHP, such as the if statement, for loop and while loop. These
structures allow us to control the flow of our programs.

However, before we do that, we need to discuss two sets of operators
- the comparison and logical operators. Controlling the flow of our
programs involves evaluating the results of these operators and
proceeding accordingly.

6.1 Comparison operators
Let’s look at comparison operators first. These operators compare two
values and return true or false based on the result of the
comparison. They include:

Equal (==)
Returns true if the values on both sides are equal

(e.g., 5 == 5, 'Hello' == 'Hello' and 5 == 5.0 all return
true)

Identical (===)

Returns true if the values on both sides are equal and of the same
date type

(e.g., 5 === 5 returns true while 5 === 5.0 returns false)

Not equal (!= or <>)

Returns true if the values on both sides are not equal

(e.g., 5 != 7 and 5 <> 7 both return true)

Not identical (!==)

Returns true if the values on both sides are not equal or not of the
same data type

(e.g., 5 !== 5.0 returns true as 5 and 5.0 are of different data
types)

Greater than (>)

Returns true if the value on the left is greater than the value on the
right

(e.g., 7 > 2 returns true)

Greater than or equal to (>=)

Returns true if the value on the left is greater than or equal to the
value on the right

(e.g., 8 >= 5 and 6 >= 6 both return true)

Less than (<)

Returns true if the value on the left is less than the value on the right

(e.g., 9 < 12 returns true)

Less than or equal to (<=)

Returns true if the value on the left is less than or equal to the value
on the right

(e.g., 10 <= 14 and 13 <= 13 both return true)

Spaceship (<=>)
Introduced in PHP 7.
Returns 0 if the values on both sides are equal (not necessarily
identical)
Returns 1 if the value on the left is greater
Returns -1 if the value on the left is smaller

(e.g., 5 <=> 7 returns -1 while 5 <=> 5.0 returns 0)

6.2 Logical Operators

Next, we have the set of logical operators. The commonly used ones
include:

NOT

The NOT (!) operator returns true when it precedes an expression
that is false.

For instance, !(5 > 10) returns true as 5 > 10 is false (i.e., 5 is
not greater than 10).

AND

The AND operator allows us to combine two comparisons and returns
true when both comparisons return true. We can use either the and
keyword (case-insensitive) or the && symbol. The two are similar but
have different precedence.

Let’s look at some examples:

Example 1:
$a = 5 > 3 and 4 < 10;
$b = 5 > 3 && 4 < 10;
$c = 5 > 1 && 13 < 5;

var_dump($a);
var_dump($b);
var_dump($c);

Output:
bool(true) bool(true) bool(false)

In the example above, $a and $b are true as both comparisons (5 >
3 and 4 < 10) are true. In contrast, $c is false as the second
comparison (13 < 5) is false.

Example 2:
$d = 3 > 2 && 3 < 1;
$e = 3 > 2 and 3 < 1;
var_dump($d);

var_dump($e);

Output:
bool(false) bool(true)

This example illustrates the difference in precedence between the and
keyword and the && symbol.

&& has higher precedence than the assignment (=) operator. Hence,
the statement
$d = 3 > 2 && 3 < 1;

is evaluated as
$d = (3 > 2 && 3 < 1);

$d is false as 3 < 1 is false.

In contrast, the and keyword has lower precedence than the
assignment operator. Hence, the statement
$e = 3 > 2 and 3 < 1;

is evaluated as
($e = 3 > 2) and 3 < 1;

$e is true as only the result of the first comparison (3 > 2) is
assigned to it.

In most cases, using && is preferred due to its higher precedence.

OR

Next, we have the OR operator. This operator returns true when at
least one comparison returns true. We can use either the or
keyword or the || symbol. However, I encourage you to use || as it
has higher precedence.

Example
$f = 4 < 7 || 10 > 3;
$g = 3 < 2 || 3 > 1;

$h = 10 > 15 || 12 < 1;

var_dump($f);
var_dump($g);
var_dump($h);

Output
bool(true) bool(true) bool(false)

$f is true as both comparisons are true.

$g is true even though the first comparison (3 < 2) is false. This
is because || only requires at least one comparison to be true.

$h is false as none of the comparisons are true.

6.3 Control Structures
Now that we are familiar with comparisons, we are ready to discuss
the various control structures in PHP.

6.3.1 If Statement
The first is the if statement. This statement allows the program to
evaluate if a certain condition is met and perform an appropriate
action based on the result of the evaluation.

The syntax of an if statement is as follows:

if (condition 1 is met)
{

//Do task A
}elseif (condition 2 is met)
{

//Do task B
}elseif (condition 3 is met)
{

//Do task C
}else
{

//Do task D

}

Let’s look at an actual example (line numbers are added for reference
and are not part of the actual code).
1 $a = 7;
2
3 if ($a < 0)
4 {
5 echo 'if block
';
6 echo '$a is smaller than 0';
7 }
8 elseif ($a < 5)
9 echo 'First elseif block';
10 elseif ($a < 10)
11 echo 'Second elseif block';
12 else
13 echo 'Else block';

Here, we first declare a variable called $a and assign the value 7 to it.

Next, from lines 3 to 7, we have the if block.

This block tests if the condition $a < 0 (on line 3) is true. If it is, the
program executes everything inside the pair of curly braces that
follows (i.e., lines 4 to 7), skipping the rest of the if statement (from
lines 8 to 13).

On the other hand, if $a < 0 is not true, the program skips lines 4 to
7 and moves on to test the first elseif condition ($a < 5) on line 8.

If this condition is true, it executes the statement on line 9, skipping
the rest of the if statement. Notice that we did not enclose line 9 in
curly braces? This is because curly braces are optional if there is only
one statement to execute.

If the condition $a < 5 is not true, the program moves on to test the
next elseif condition ($a < 10) on line 10. If this condition is also
not true, it proceeds to the else block and executes line 13.

There can be as many elseif blocks as you want in an if

statement. We have two elseif blocks in the example above.

In addition, elseif and else blocks are optional. If we omit them,
the if statement will just do nothing if the if condition is not met. If
you run the code above, you’ll get the following output:
Second elseif block

As $a equals 7, it fails the if condition ($a < 0) and the first elseif
condition ($a < 5). However, it passes the second elseif condition
($a < 10). Hence, line 11 is executed. Try changing $a to other
values on line 1 and rerun the code to fully appreciate how it works.
The output for some possible values of $a is shown below:

If $a equals -2, we’ll get

if block
$a is smaller than 0

If it equals 3, we’ll get

First elseif block

If it equals 11, we’ll get

Else block

6.3.2 Ternary Operator
Next, let’s move on to talk about the ternary operator. In the previous
example, we have a relatively complex if statement with two elseif
blocks.

If you only want to do a simple if-else test (without any elseif
blocks), you can use the ternary operator (?). The syntax is as follows:

Condition ? Task A : Task B

The ternary operator first checks the condition on its left. If it is true,
it performs task A. Else, it performs task B.

Let’s look at an example:
$a = (7 == 7 ? 'Yes' : 'No');
echo $a;

Here, the condition to test is 7 == 7.

As this condition is true, the ternary operator performs the first task
and returns the string 'Yes'. We then assign this string to $a and use
the echo statement to display its value on the next line.

If we run the code above, we’ll get “Yes” as the output. In contrast, if
we change the ternary statement to
$a = (7 > 10 ? 'Yes' : 'No');

we’ll get “No” as the output as 7 > 10 is false.

6.3.3 Switch Statement
Next, we have the switch statement. This statement is similar to an
if statement and can be faster if you have many conditions to test. It
is typically used when the condition involves comparing a variable
against a single value (instead of a range of values).

The syntax is as follows:
switch (variable used for switching) {

case firstCase:
Task A;
break;

case secondCase:
Task B;
break;

...
default:

Default task;
}

Let’s look at an example (line numbers are added for reference):
1 $b = 20;

2
3 switch ($b)
4 {
5 case 10:
6 echo 'Chocolate
';
7 break;
8 case 20:
9 echo 'Lemon
';
10 case 25:
11 echo 'Strawberry
';
12 break;
13 default:
14 echo 'None of the above
';
15 }

In the example above, we first declare a variable called $b and assign
20 to it.

Next, we have a switch statement from lines 3 to 15.

On line 3, the switch statement uses the value of $b to decide which
case to execute. When a certain case is satisfied, everything starting
from the next line is executed until a break statement is reached.

If $b is 10, case 10 is satisfied. The program executes everything
after line 5 until it reaches the break statement on line 7. In other
words, it executes line 6 and gives us “Chocolate” as output.

On the other hand, if $b is 20, case 20 is satisfied. However, this case
does not have a break statement. Hence, the program executes
everything starting from line 9, until it reaches a break statement on
line 12. In other words, it executes cases 20 and 25 and gives us
“Lemon”, followed by “Strawberry” as output.

Next, if $b is 25, case 25 is satisfied. The program executes line 11
and gives us “Strawberry” as output.

Finally, if $b is not 10, 20 or 25, the default case is executed and
we’ll get “None of the above” as output.

The default case is optional. In addition, we can have as many
cases as we want in a switch statement. In our example, we have
three cases.

If you run the switch statement above, you’ll get

Lemon
Strawberry

as output. Try changing $b to other values on line 1 and run the code
again to fully appreciate how the switch statement works.

6.3.4 For Loop
Next, let’s move on to the for loop. This control structure executes a
block of code repeatedly until the test condition is no longer valid.

The syntax is as follows:
for (initial value; test condition; modification to
value)
{

//Do Some Task
}

Let’s look at an example:
for ($c = 1; $c < 5; ++$c){

echo 'The value of $c is '.$c.'
';
}

The main focus of a for loop is the first line. There are three parts to
this line, each separated by a semicolon. In our example, we have the
line
for ($c = 1; $c < 5; ++$c)

The first part declares a variable $c and initializes it to 1.

The second part tests if $c is smaller than 5. If it is, the statement(s)
inside the curly braces that follow will be executed. In our example,
the curly braces are optional as there is only one statement to

execute.

After executing the statement(s) in the curly braces, the program
returns to the third part (++$c). This part modifies the value of the
variable used for testing. In our example, we increase the value of $c
by 1 using the increment operator. As a result, $c becomes 2.

After the increment, the program tests if the new value of $c is still
smaller than 5. If it is, it executes the code in the curly braces again.

This process of testing and updating the value of $c is repeated until
the condition $c < 5 is no longer true. At this point, the program exits
the for loop and continues to execute other statements after the for
loop.

If you run the code above, you’ll get
The value of $c is 1
The value of $c is 2
The value of $c is 3
The value of $c is 4

as the output.

6.3.5 Foreach Loop
Next, we have the foreach loop. This loop is similar to the for loop
but is used to loop over arrays. There are two syntaxes:
foreach ($array as $value) {
//code to be executed;

}

foreach ($array as $key=>$value) {
//code to be executed;

}

The names $array, $value and $key in the syntaxes above are
chosen by us; we can use other names if we want.

Let’s look at an example. This example uses the first syntax:

$arr1 = array(11, 12, 13, 14, 15);

foreach ($arr1 as $num){
echo 'The number is '.$num.'
';

}

Here, we declare an array called $arr1 with values 11, 12, 13, 14
and 15.

Next, we have the foreach loop. This loop loops through the
elements in $arr1 one by one and assigns each element to a
variable called $num.

The first time the loop runs, the first element in $arr1 is assigned to
$num. In other words, 11 is assigned to $num.

After assigning 11 to $num, the program executes the code in the pair
of curly braces that follows. This gives us “The number is 11” as the
output.

Once that is done, the foreach loop moves on to the second element
and assigns it to $num.

$num becomes 12 and the echo statement is executed again to give
us “The number is 12” as output.

This keeps repeating until all the elements in $arr1 have been
accounted for. If you run the code above, you’ll get
The number is 11
The number is 12
The number is 13
The number is 14
The number is 15

as the output.

Next, let’s look at a foreach loop that uses the second syntax. This
syntax gives us both the values and keys of the elements in an array
and is very useful when working with associative arrays. Suppose we
have

$arr2 = array('Aaron'=>12, 'Ben'=>23, 'Carol'=>35);

To get the keys and values of the elements in $arr2, we can use the
foreach loop below:

foreach ($arr2 as $name=>$age){
echo $name.' is '.$age.' years old.
';

}

This gives us
Aaron is 12 years old.
Ben is 23 years old.
Carol is 35 years old.

as the output.

6.3.6 While Loop
Next up is the while loop. This loop performs a task repeatedly while
a specific condition remains valid. The syntax is as follows:
while (condition is true)
{

//do A
}

As usual, let’s look at an example:
1 $d = 1;
2
3 while ($d < 5)
4 {
5 echo 'The value of $d is '.$d.'
';
6 $d++;
7 }

Here, we first declare a variable called $d and assign the value 1 to it.

Next, we have the while loop from lines 3 to 7.

On line 3, the while loop checks if the condition $d < 5 is true. If it
is, it executes the statements inside the curly braces that follow. In

other words, it executes the echo statement on line 5 and increments
$d by 1 on line 6. As a result, $d becomes 2.

Next, the while loop returns to line 3 to check if $d is still smaller
than 5. If it is, it executes the code inside the curly braces again. This
process of checking and updating the value of $d continues until $d is
no longer smaller than 5. If you run the code above, you’ll get the
following output:
The value of $d is 1
The value of $d is 2
The value of $d is 3
The value of $d is 4

At this point, you may notice that the while loop is very similar to the
for loop. Indeed, in most cases, both of them serve the same
purpose.

However, when using a while loop, one important difference is that
we must remember to update the variable used for looping ($d in this
example). If we forget to do that, the while loop will run indefinitely,
resulting in an infinite loop.

For instance, in our example, if we omit line 6 ($d++;), the while
loop will never end as the value of $d will always be 1, which is
smaller than 5. Got it? Good!

6.3.7 Do-while Loop
Last but not least, let’s move on to the do-while loop. This loop is
very similar to the while loop except that the test condition is placed
at the end of the loop. This means that the code within the curly
braces of the loop will always be executed at least once.

The syntax of a do-while loop is

do {
//some tasks

} while (condition is true);

Note that a semicolon (;) is required after the test condition. Here’s an

example of how the loop works.

1 $e = 100;
2
3 do {
4 echo 'The value is '.$e;
5 $e++;
6 } while ($e<0);

On line 1, we first declare and initialize a variable $e with the value
100.

Next, we have the do-while loop from lines 3 to 6. Within the loop,
the program executes the echo statement on line 4 and increments
the value of $e to 101 on line 5.

Finally, it reaches the test condition on line 6.

As the value of $e is not smaller than 0, the test fails. The program
exits the do-while loop and does not repeat the tasks in the loop. If
you run the code above, you will get
The value is 100

as the output. Although the original value of $e does not meet the test
condition ($e < 0), the code inside the curly braces is executed once
as the test condition comes after the closing curly brace.

6.4 Other Topics in Flow Control
Great! We’ve covered all the main control structures in PHP. Before
we end this chapter, I would like to cover a few more miscellaneous
topics related to flow control in PHP.

6.4.1 Booleans
First, let’s talk about the bool data type. We encountered this data
type in Chapter 4.3 and learned that it can only store one of two
values – true or false.

In PHP, most values can be converted to true or false (i.e.,

converted to the bool data type).

Values that convert to false include:
- numbers that represent zero (such as 0 and 0.0)
- the empty string (such as '', which is made up of two single

quotes with no text enclosed)
- the string "0"
- an array with zero elements, and
- a special value called NULL.

On the other hand, most other values (such as 1, 3.4 and "Hello")
convert to true.

We’ve seen how control structures decide whether to execute a
certain block of code depending on whether a condition evaluates to
true or false. Suppose we have the following if statement:

if ("hello")
echo 'if block';

else
echo 'else block';

If we run the statement above, we’ll get
if block

as the output.

This is because the string "hello" is converted to true. For any
control structure, as long as a condition evaluates to true, regardless
of whether it is the result of a comparison (e.g., $a < 5) or a value
converted to true, the corresponding block of code will be executed.

In the if statement above, the if block is executed as the if
condition ("hello") evaluates to true. Got it? Good!

6.4.2 Break, Continue
Next, let’s discuss break and continue statements. These
statements can be used to modify the behavior of our control

structures.

We’ve already encountered the break statement when we talked
about the switch statement previously. When a particular switch
case is satisfied, the switch statement executes everything that
follows until it encounters a break statement.

Besides using it in a switch statement, we can use the break
statement in a loop. A break statement ends the execution of the
loop it is in. Let’s look at an example:
for ($i = 0; $i < 50; ++$i)
{

echo "$i
";
if ($i == 4)

break;
}

Here, we have an if statement inside a for loop. It is fairly common
for us to nest one control structure inside another in programming.

Within the for loop, we first echo the value of $i. Next, we check if
$i equals 4. If it equals, we want the program to break out of the for
loop. If you run the code above, you’ll get the following output:
0
1
2
3
4

If we do not have the break statement, the for loop should run 50
times, from $i = 0 to $i = 49.

However, as we have the break statement, this loop only runs from
$i = 0 to $i = 4. This is because when $i equals 4, the if
condition ($i == 4) evaluates to true. The break statement that
follows then causes the program to break out of the for loop, skipping
the rest of the iterations (from $i = 5 to $i = 49). Got it?

Next, we have the continue statement. This statement does not

cause a loop to end prematurely. Instead, it causes the rest of the loop
to be skipped for that particular iteration. Let’s look at an example:
for ($i = 0; $i < 6; ++$i)
{

echo '$i = '.$i.', ';

if ($i == 4)
continue;

echo 'First.';

echo 'Second.
';
}

If you run the code above, you’ll get the following output:
$i = 0, First.Second.
$i = 1, First.Second.
$i = 2, First.Second.
$i = 3, First.Second.
$i = 4, $i = 5, First.Second.

Notice that when $i equals 4, the text “First.Second.” does not
appear? This is because when $i equals 4, the continue statement
caused the program to skip the statements

echo 'First.';

echo 'Second.
';

for that iteration. Other than that, the code runs as per normal. Clear?

6.4.3 Alternative Syntax
Next, let’s move on to talk about an alternative syntax for control
structures in PHP.

PHP offers an alternative syntax for some of its control structures,
specifically the if, while, for, foreach, and switch structures.

This syntax involves changing opening braces to colons (:) and the

last closing brace to endif;, endwhile;, endfor;, endforeach;,
or endswitch; respectively.

Let’s use an if statement to illustrate this. Suppose we want to
display different outputs based on the value of $a, we can use the
following if statement:

$a = 5;

if ($a == 5){
echo '
The value of $a is
';
echo $a;

}else{
echo 'Not five';

}

Alternatively, we can do it as follows:
$a = 5;

if ($a == 5):
echo '
The value of $a is
';
echo $a;

else:
echo 'Not five';

endif;

Compare the two if statements carefully. Notice that in the second
if statement above, we replaced both opening braces with a colon?
In addition, we replaced the last closing brace with an endif;
statement.

If you run the code above, you’ll get
The value of $a is
5

as the output for both syntaxes.

6.4.4 Displaying HTML code
Last but not least, let’s discuss a neat trick for outputting HTML code

in control structures. So far, we have been using echo statements to
output HTML code (such as the
 tag) in our control structures.

This technique is easy to use and works well with simple HTML code.
However, it can get cumbersome if we have more complicated HTML
code to output, especially if the code uses lots of single and double
quotation marks. For instance, if we want to output the following HTML
code
The names are
'Aaron', 'Peter', 'James', 'Max', 'Jenny' and 'Don'.

<img src="names.jpg" alt="Names" height="42"
width="42">

using an echo statement, we need to escape a lot of quotation marks.
In cases like that, we can use a neat trick to switch between PHP and
HTML code.

For demonstration purposes, let’s suppose we want to use a for loop
to output the HTML code <h1>Hello</h1> three times, the code
below shows how we can do it (using the alternative syntax mentioned
in the previous section):
1 <?php
2 for ($i = 0; $i < 3; ++$i):
3 echo '<h1>Hello</h1>';
4 endfor;
5 ?>

This loop uses an echo statement to output the HTML code.
Alternatively, if we do not want to use echo statements, we can do it
as follows:
1 <?php
2 for ($i = 0; $i < 3; ++$i): ?>
3 <h1>Hello</h1>
4 <?php endfor;
5 ?>

Study the two loops carefully, what differences do you notice?

First, notice that we added ?> to the end of line 2 in the second loop?
This ?> tag closes the <?php opening tag on line 1.

When that happens, any code after line 2 in the second loop is no
longer interpreted as PHP code. Instead, it is interpreted as HTML
code. This explains why we do not need to use an echo statement to
output <h1>Hello</h1> on line 3.

Next, on line 4, we open the PHP tag again. When PHP sees this
opening tag, it knows that what follows is PHP code.

When it encounters the endfor; statement, it realizes that this is a
for loop and searches for the condition to evaluate. When it finds it
on line 2, it increments $i by 1 and runs line 3 again. This keeps
repeating until the condition $i < 3 is no longer valid. Got it?

If you run the loops above, you’ll get “Hello” displayed as a <h1>
heading three times in both cases.

Study the two loops carefully to appreciate how this technique works.
It can be a bit confusing in the beginning. The main idea is to close the
PHP tag before switching to HTML code and open it again after the
HTML code. This makes it much more convenient to insert HTML
code without having to use echo statements.

Chapter 7: Functions
In this chapter, let’s move on to talk about functions.

We have already encountered functions in previous chapters. For
instance, in Chapter 5, we learned to use various PHP functions to
work with strings and arrays. In this chapter, we’ll learn to define our
own functions.

7.1 Defining our own Functions
To define our own functions, we use the syntax below:
function functionName(list of parameters) {

//code to be executed;
//return statements, if any

}

All function declarations must start with the function keyword.

Next, we have the function name. Function names in PHP are not
case-sensitive and can contain letters, numbers, or underscores.
However, they must start with a letter or an underscore. Similar to
variable names, we commonly use camelCase or underscores when
naming functions. In this book, we’ll use camelCase.

After the function name, we enclose the list of parameters (if any) that
the function needs in a pair of parentheses. Parameters are variables
used for storing values that we pass to the function; the values that we
pass are known as arguments.

After declaring the function, we use curly braces to enclose the code
that we want the function to perform. If the function returns a result,
we use the return keyword. Got it?

Let’s look at some examples.

Example 1
function displayGreetings(){

echo 'Hello';
}

Here, we declare a function called displayGreetings() that has
no parameters (as indicated by the pair of empty parentheses after the
function name). This function simply echoes the word “Hello”. To call
the function, we use its name followed by a pair of parentheses:
displayGreetings();

This gives us
Hello

as the output.

Example 2
function displayGreetings2($name, $message){

echo "Hello $name, $message";
}

Here, we declare a function called displayGreetings2() that has
two parameters - $name and $message.

If we call the function using the following statement
displayGreetings2('Jamie', 'good morning');

the arguments 'Jamie' and 'good morning' will be assigned to
the parameters $name and $message respectively. When we run the
code above, we’ll get
Hello Jamie, good morning

as the output.

Example 3
We can provide default values for parameter(s) when we declare our
functions.
function displayGreetings3($name, $message = 'have a
good day'){

echo "Hello $name, $message";

}

In the example above, we declare 'have a good day' as the
default value for the parameter $message (refer to the underlined
code). To call the function, we can use the statements below:
displayGreetings3('Jamie');
echo '
';
displayGreetings3('Jamie', 'how are you?');

In the first function call, we omitted the second argument. When we do
that, the function uses the default value 'have a good day' as the
value for $message.

If we run the code above, we’ll get
Hello Jamie, have a good day
Hello Jamie, how are you?

as the output.

When we declare functions with default values for parameters, note
that parameters with default values must come after parameters
without default values. If we declare a function as
function redundantDefault($a = 1, $b){

//some code
}

the default value for $a will not work as it comes before $b (which
does not have a default value); we’ll still need to provide two
arguments when calling the function.

Example 4
Last but not least, functions can return a result after they complete
their tasks.
function addNumbers($num1, $num2, $num3){

return $num1 + $num2 + $num3;
echo 'Hello';

}

The function above returns the sum of $num1, $num2 and $num3
using a return statement. Once a return statement is executed,
the function exits, and any statement after the return statement is
not executed.

We can assign the result returned by the function to a variable or use
the echo statement to display the result directly.

If we call the function above using the following statement:
echo addNumbers(9, 6, 1);

we’ll get
16

as the output. The statement
echo 'Hello';

is not executed as it comes after the return statement.

7.2 Type Declaration
The examples in the previous section illustrate the main points we
need to know when defining our own functions. Before we move on to
the next chapter, I would like to discuss type declaration (also known
as type hinting) in this section.

Type declaration is a feature added to newer versions of PHP. This
feature is optional but good to implement if you are certain your code
will only run on PHP 5 (preferably PHP 7) and above.

First, what is type declaration?

As mentioned previously, PHP is a loosely typed language. In the
examples above, when we declared the parameters of our functions,
we did not indicate their data types. If the arguments that we pass to
the function are of invalid data types, PHP will try its best to execute
the function.

For instance, with reference to Example 4 in the previous section, if
we try to run the following statement

echo addNumbers('9', '6', '1');

we won’t get any errors.

Although we pass three strings to the addNumbers() function, PHP
converts them to integers for us automatically and executes the
function. Hence, we’ll get 16 as the output.

Such flexibility makes PHP a very easy language to program in.
However, depending on the requirements of the site you are building,
you may not want the function to run when the data type is incorrect.
In cases like that, you can use type declaration.

Type declaration allows us to state the data types of a function’s
parameters when we declare it.

This feature is available from PHP 5 onwards. However, in PHP 5,
type declaration does not work for scalar data types. Scalar data types
refer to data types that store a single value, such as int, float,
bool and string. Type declaration only works for data types like
arrays.

To use type declaration with scalar data types, we need PHP 7 and
above. In addition, we need to add a strict_types declaration to
our script and set strict_types to 1.

To illustrate how this works, let’s look at an example. This example
works in PHP 7.

Create a new file in Brackets and name it typedec.php. Add the
following code to it.
<?php

declare(strict_types=1);

function addNumbersStrict(int $num1, int $num2,
int $num3){

return $num1 + $num2 + $num3;
}

echo addNumbersStrict('9', '6', '1');

Here, we set strict_types to 1 using a built-in function called
declare(). This statement must be the first statement in our script.

Next, we declare a function called addNumbersStrict() with three
parameters $num1, $num2 and $num3. We indicate that these
parameters must be of int type by adding int in front of their names.
Finally, we call the function by passing '9', '6' and '1' to it.

If you run the code above, you’ll get an output similar to what is shown
below:
Fatal error: Uncaught TypeError: Argument 1 passed
to addNumbersStrict() must be of the type int,
string given...

Next, change the echo statement to

echo addNumbersStrict(9, 6, 1);

and rerun the code. As 9, 6 and 1 are of int type, we won’t get any
errors now. Instead, we’ll get 16 as the output. Got it?

Besides doing type declaration for parameters, we can do it for the
return type if we are using PHP 7 and above. To do that, we indicate
the return type using a colon after the parentheses in the function
declaration.

Add the following code to typedec.php:
function addTwoNums($a, $b): int {

return $a + $b;
}

echo '
'.addTwoNums(3, 1);

Here, we indicate that the return value of addTwoNums() should be of
int type. Next, we call the function using 3 and 1 as the arguments.

If you run the code above, you’ll get 4 as the output. Next, change the
last line to
echo '
'.addTwoNums(3.9, 1);

and run the page again. You’ll get the following output:
Fatal error: Uncaught TypeError: Return value of
addTwoNums() must be of the type int, float
returned...

This is because 3.9 + 1 gives us 4.9, which is not of int type.

Chapter 8: PHP Superglobals
We’ve covered a lot in the preceding chapters. Most of the topics
covered so far are fundamental concepts common to other
programming languages. In this chapter, we are going to learn
something specific to PHP - PHP superglobals.

We’ll learn to use these superglobals to interact with HTML forms and
pass information from one PHP script to another.

8.1 PHP Form Handling
First and foremost, this topic requires you to have a basic
understanding of HTML form elements. If you are not familiar,
https://www.w3schools.com/html/html_form_elements.asp provides a
quick reference that you can refer to.

If you are familiar, let’s start by creating a simple HTML form to work
with later.

Open Brackets and create a new file called form.php in your htdocs
folder. Add the following code to it:
<!DOCTYPE html>
<html>
<head><title>PHP Form Handling</title></head>
<body>
<form action = "" method = "get">

Enter Name

<input type = "text" name = "studentname" value =

"Your Name">

Favorite Subject(s)

<input type = "checkbox" name = "subj[]" value =

"EL">English
<input type = "checkbox" name = "subj[]" value =

"MA">Math
<input type = "checkbox" name = "subj[]" value =

https://www.w3schools.com/html/html_form_elements.asp

"PG">Programming

Gender

<input type = "radio" name = "gender" value =

"M">Male
<input type = "radio" name = "gender" value =

"F">Female

<input type = "submit" name="sm" value = "Submit

Form">
</form>
</body>
</html>

Study the code above carefully. Notice that we use the following
<form> tag to create a HTML form?

<form action = "" method = "get">

This tag has two attributes - action and method.

The action attribute specifies the file that we want to use to process
the HTML form. In our example, we assign an empty string to it. This
means that we want to use the current file (i.e., form.php) to process
the form.

If we want to use a different file to process the form, we need to
assign the path of that file to the action attribute. For instance,
suppose we want to use process.php and process.php is in the
same folder as form.php, we need to write
<form action = "process.php" method = "get">

Next, we have the method attribute. This attribute specifies the
method that we want to use to send the form data. There are two
methods available: get and post. If we do not specify any method,
the default is get. In our example, we specify that we want to use the
get method. We’ll discuss both methods later.

Next, let’s look at the <input> tags in our form; these tags are used
to create various form elements.

Notice that all <input> tags have a name attribute? This attribute is
used to name the respective form elements. For instance, the first
form element (which is a text box) is named “studentname”, as shown
in the code below:
<input type = "text" name = "studentname" value =
"Your Name">

It is mandatory for us to name form elements if we want to use PHP to
process those elements. Similar to how variables in PHP have names,
all form elements must have a name so that we can reference them in
our code later.

Next, notice that all checkboxes (type = "checkbox") in our form
are named “subj” and both radio buttons (type = "radio") are
named “gender”?

Both radio buttons have the same name as they belong to the same
group (i.e., they are both options for “Gender”).

Similarly, the three checkboxes have the same name as they are all
options for “Favorite Subject(s)”. As users can choose more than one
option for checkboxes, we need to add a pair of square brackets to
indicate that the option(s) selected will be stored as an array.

Last but not least, notice that all <input> tags have a value
attribute? This attribute behaves differently depending on the form
element. For text boxes, it specifies the initial value displayed in the
box. For “submit” buttons, it specifies the text on the button.

For checkboxes, radio buttons and drop down lists, it specifies the
value that will be submitted for each selected option. For instance, if
the following checkbox is selected
<input type = "checkbox" name = "subj[]" value =
"EL">English

the string "EL" will be submitted to the PHP server, as we assigned
"EL" to its value attribute.

Got it? Great! Let’s move on to discuss the isset() function.

8.1.1 The isset() function
The isset() function is an important function that is commonly used
in PHP form handling. This function checks if a variable has been
declared and is not NULL.

NULL is a special value that, ironically, is used to indicate that a
variable has no value.

Suppose we have two variables $a and $b as shown below:

$a = 5;
$b = NULL;

The following statements
var_dump(isset($a));
var_dump(isset($b));
var_dump(isset($c));

give us
bool(true) bool(false) bool(false)

as the output.

$a is considered set (i.e., isset($a) returns true) as it has been
declared and has a non NULL value. In contrast, $b and $c are both
considered unset (i.e., isset($b) and isset($c) return false) as
$b has a NULL value and $c has not been declared.

The isset() function is commonly used to determine if a button has
been clicked. We’ll learn to do that later.

Next, let’s talk about the get and post methods.

8.1.2 get and $_GET
Both the get and post methods can be used to send form data to the
PHP server for processing. The main difference is that when the get
method is used, form data is appended to the URL. In addition, there
is a limit to the amount of data that can be transmitted using the get

method.

The form in form.php currently uses the get method. Suppose we fill
in the form with the following data:

When we click on the “Submit Form” button, the URL changes to
http://localhost/form.php?
studentname=Alex&subj%5B%5D=EL&subj%5B%5D=MA&gender=M&sm=Submit+Form

Notice the question mark (?) in the URL? This question mark is used
as a separator; what follows the question mark in the URL is known as
a query string.

The query string contains the form data that we submitted, with each
data presented as a name=value pair, separated by ampersands (&).

For instance, as we entered the string “Alex” into the text field named
“studentname”, the pair
studentname=Alex

gets appended to the URL.

Next, we selected the options “English” and “Math” for “Favorite
Subject(s)”. Hence, the pairs
subj%5B%5D=EL&subj%5B%5D=MA

get appended to the URL. These pairs use URL encoding to encode
special characters that cannot be displayed in an URL. %5B encodes
the character “[” while %5D encodes “]”.

If you decode
subj%5B%5D=EL&subj%5B%5D=MA

you’ll get
subj[]=EL&subj[]=MA

This indicates that we submitted the values “EL” and “MA” for the
“subj” form element.

Now, suppose we want to use the information stored in the query
string in our PHP scripts, how do we do that?

Simple. We use the $_GET superglobal. $_GET is a superglobal that
stores the query string as an associative array.

To view all data in $_GET, we can use the print_r() function. To
see how that works, add the following lines of code to form.php,
between the </form> and </body> tags:

<?php
if (isset($_GET['sm']))

print_r($_GET);
?>

Here, we use the isset() function to check if $_GET['sm'] is set.
Before we click on the “Submit Form” button (named “sm”),
$_GET['sm'] is considered to be unset.

When we click on the button, PHP assigns the string 'Submit
Form' to $_GET['sm'] and the variable becomes set.

When that happens, isset($_GET['sm']) returns true and the if
block is executed.

Reload form.php (without the query string) and enter the same data
we entered previously into the form. Next, click on the “Submit Form”
button; you’ll see the following line appended to the bottom of the

page:
Array ([studentname] => Alex [subj] => Array ([0]
=> EL [1] => MA) [gender] => M [sm] => Submit Form
)

This gives us the content of the $_GET[] array.

In other words, $_GET['studentname'] = 'Alex',
$_GET['subj'] = array('EL', 'MA'), $_GET['gender'] =
'M' and $_GET['sm'] = 'Submit Form'.

Got it? Great! Let’s move on to the post method now.

8.1.3 post and $_POST
The post method is similar to the get method, except that form data
is not appended to the URL. This makes the post method suitable for
sending sensitive information to the server, as information will not be
visible in the URL.

Let’s look at an example. Change the line
<form action = "" method = "get">

in form.php to
<form action = "" method = "post">

Next, change the PHP code to
if (isset($_POST['sm']))

print_r($_POST);

Finally, load form.php again without any query string and enter the
same data we entered previously into the form. Click on the ‘Submit
Form’ button.

You should see the URL in your address bar remains unchanged.
Other than that, everything else is the same. In other words, you’ll get
the same output appended to the bottom of the form.

Processing a form using the get vs post method is very similar. The

main difference is one appends a query string to the URL while the
other doesn’t. In addition, with the get method, we use the $_GET
superglobal. With the post method, we use the $_POST superglobal.
Clear?

8.1.4 Keeping The Values in The Form
In the previous sections, we learned to process HTML forms using the
get and post methods.

Regardless of which method we use, notice that whenever we click on
the “Submit Form” button, the form refreshes itself and data entered is
not shown on the form anymore?

This is all right if the form is processed successfully. However, if the
form is not processed successfully and we need users to resubmit the
form, this can be very troublesome as users need to fill out all the
fields again. If we do not want that to happen, we can use echo
statements.

For text boxes, we use echo statements to modify the value
attribute. This attribute allows us to prefill a text box with text. In
form.php, we prefilled the text box with the text “Your Name”.
Alternatively, we can use PHP to prefill the text box with user-entered
data. To do that,

Change
<input type = "text" name = "studentname" value =
"Your Name">

to
<input type = "text" name = "studentname" value = "
<?php

if (isset($_POST['studentname']))
echo $_POST['studentname'];

?>">

If you analyze the code above carefully, you’ll notice that we replaced
the text “Your Name” with the following block of PHP code:

<?php
if (isset($_POST['studentname']))

echo $_POST['studentname'];
?>

This code first checks if $_POST['studentname'] is set.

If it is (i.e., the user has submitted data for this text field previously),
we use an echo statement to prefill the text box with the information
submitted. Got it?

It is relatively straightforward to prefill a text box with user-entered
data. Things get a bit more complicated when we want to prefill
elements like checkboxes, radio buttons and drop down lists. To prefill
these elements, we need to know which option has been selected and
use PHP to select these options dynamically. Let’s look at an example
using checkboxes.

A checkbox is selected when you add the word “checked” (without
quotes) to its tag. For instance,
<input name = "subj[]" type = "checkbox" value =
"EL" checked>English

results in the checkbox labelled “English” being selected. If we want
PHP to dynamically select this checkbox, we need to replace the code
above with:
<input type = "checkbox" name = "subj[]" value =
"EL"
<?php

if (isset($_POST['subj']) && in_array('EL',
$_POST['subj']))

echo 'checked';
?>
>English

Here, we use PHP to check if $_POST['subj'] is set and if the
current option is selected. If it is, the string 'EL' should be found in
the $_POST['subj'] array. In other words, in_array('EL',
$_POST['subj']) should return true.

If that’s the case, we echo 'checked' to select this checkbox. This
dynamically selects the checkbox labelled “English”. Got it?

Great! We’ll be writing a function to prefill forms in our project later.

8.1.5 Filtering User Input
Next, let’s move on to discuss how we can filter user inputs in our
forms. Filtering refers to the sanitization and validation of user inputs.

Sanitization is the process of removing invalid characters from the
input. For instance, sanitizing an integer involves removing all
characters except digits, plus and minus signs from the input.

Validation, on the other hand, is the process of checking if the input
satisfies certain criteria. For instance, if the input is supposed to be an
email address, we can use the validation process to check if it is
indeed an email address (such as whether it contains the “@”
character).

To filter user inputs, we use a built-in function called filter_var().
When using this function, we need to specify how we want to filter our
inputs. We do that using one of the predefined filters found at
https://www.php.net/manual/en/filter.filters.php. Depending on the filter
used, this function will either return the filtered data or return false.

For instance, if we want to remove invalid characters from an integer,
we can use the FILTER_SANITIZE_NUMBER_INT filter as shown
below:
$num = '12.5abc';
echo filter_var($num, FILTER_SANITIZE_NUMBER_INT);

If you run the code above, you’ll get
125

as the output.

If we want to validate whether an email address is valid, we can use
the FILTER_VALIDATE_EMAIL filter. If we pass a valid email address
to the function, it returns the email address. Else, it returns false. For

https://www.php.net/manual/en/filter.filters.php

instance,

$email = 'abc@gmail';
var_dump(filter_var($email, FILTER_VALIDATE_EMAIL));

gives us
bool(false)

as “abc@gmail” is not a valid email address (“.com” is missing).

8.1.6 Cross-Site Scripting
Great! We’ve covered most of the form handling concepts in PHP.
Last but not least, let’s move on to cross-site scripting. For this, I need
to do a little demonstration.

Change the PHP code in form.php (between the </form> and
</body> tags) to the following:

if (isset($_POST['studentname']))
echo 'You entered '.$_POST['studentname'].' into

the text field';

and reload the page. Type

<script>alert('Hacked');</script>

into the text field and click on the “Submit Form” button. What do you
get?

You get an alert box that says “Hacked” right?

Surprised?

This example demonstrates a critical security concept in PHP - cross-

site scripting (also known as XSS).

Cross-site scripting occurs when a user enters undesirable scripting
code into our PHP form and submits the code. If our site then stores
this code (for instance, in a database) and displays it to another user,
the malicious code will be executed in the other user’s browser.

In our example, we created a harmless alert box using Javascript.
However, users with malicious intent can definitely use this same
technique to run harmful scripting code on the victim’s browser.

To prevent this from happening, we need to be careful whenever we
display information entered by users. There are a few ways to do it.
The easiest is to use a built-in function called
htmlspecialchars(). This function converts special characters
into HTML entities.

Special characters refer to characters that have special significance in
HTML, such as the < and > characters. If you do not want < and > to
represent the start and end of an HTML tag, you need to encode them
using the htmlspecialchars() function. This function converts <
and > to < and > respectively.

<script> will thus be converted to <script> and no longer
interpreted as an HTML tag. To see how this works, change the PHP
code above to
if (isset($_POST['studentname']))

echo 'You entered
'.htmlspecialchars($_POST['studentname']).' into the
text field';

For demonstration purposes, we only encode the text field. In actual
coding, you have to encode every form element where users are
allowed to enter information themselves.

If you load the page and enter

<script>alert('Hacked');</script>

into the text field now, you’ll see that the alert box no longer pops out
when you submit the form. Instead, you get the following output below

the form:
You entered <script>alert('Hacked');</script> into
the text field.

<script> and </script> are treated as normal text with no HTML
significance.

If you right-click on your webpage and select “View Page Source”,
you’ll see the line
You entered
<script>alert('Hacked');</script> into
the text field.

below the </form> tag. This shows the encoding of the < and >
characters.

8.2 $_SESSION
We’ve covered quite a bit in this chapter so far. In the previous section
on PHP form handling, you learned about the $_GET and $_POST
superglobals. In this section, we are going to discuss another
superglobal - $_SESSION.

In PHP, a session is a way of storing information that can be accessed
across multiple pages; this information is stored in the $_SESSION
superglobal.

Like the $_GET and $_POST superglobals, the $_SESSION
superglobal is an associative array. This array is stored on the server
and is available to all pages on the site during the duration of the
session.

To demonstrate the use of sessions, we need to create two pages,
session.php and session2.php. Let’s do that now.

First, create a new file called session.php in htdocs and add the
following code to it (line numbers are added for reference).
1 <?php
2 session_start();

3
4 $_SESSION['myFavFood'] = 'Pizza';
5 $_SESSION['myFavDrink'] = 'Cola';
6 $_SESSION['myFavColor'] = 'Orange';
7
8 #updating a session variable
9 $_SESSION['myFavDrink'] = 'Beer';
10
11 #deleting a session variable
12 unset($_SESSION['myFavColor']);

Here, we use a built-in function called session_start() to start a
new session on line 2. This function creates a new session if one has
not already been created or resumes the current one if it exists. Each
session created is associated with an automatically generated unique
session ID.

After creating the session, we store the strings 'Pizza', 'Cola' and
'Orange' into the $_SESSION superglobal, using 'myFavFood',
'myFavDrink' and 'myFavColor' as the keys respectively.

Next, we update the value of $_SESSION['myFavDrink'] by
assigning a new string to it on line 9.

Finally, on line 12, we use another built-in function called unset() to
destroy an element in the $_SESSION superglobal. To use this
function, we pass the name of the element that we want to destroy to
the function. After the element is destroyed, we will no longer be able
to access it.

Next, let’s create another file called session2.php (in htdocs) and
add the following code to it:
<?php

session_start();
echo '
Food: '.$_SESSION['myFavFood'];
echo '
Drink: '.$_SESSION['myFavDrink'];
echo 'Color: '.$_SESSION['myFavColor'];

Here, we start by calling the session_start() function to resume

the current session. We need to call this function whenever we want to
access the $_SESSION superglobal.

Next, we use three echo statements to output the values stored in
$_SESSION.

Now, we are ready to demonstrate how sessions work.

To do that, load session.php in your browser first. When you do that,
session.php starts a new session and stores data into the
$_SESSION superglobal.

Next, load session2.php in your browser. What do you get?
Depending on the error setting on your PHP server, you will get an
output similar to what is shown below:
Food: Pizza

Drink: Beer

Notice: Undefined index: myFavColor in …session2.php
on line 6

Color:

Notice that we get an undefined index notice for “myFavColor”? This is
because $_SESSION['myFavColor'] was destroyed using the
unset() function in session.php.

Other than that, we have successfully retrieved the values of
$_SESSION['myFavFood'] and $_SESSION['myFavDrink'].
These two values were stored in the $_SESSION superglobal in
session.php and retrieved in session2.php.

This demonstrates how we can use the $_SESSION superglobal to
store and retrieve data across different PHP pages. Got it?

Besides creating and storing data in a session, we can destroy a
session. We commonly do that when users log out of our site. To
destroy a session, we use another built-in function called
session_destroy().

To see how this function works, create a new file called session3.php

in htdocs and add the following code to it:
<?php

session_start();
session_destroy();

As shown in the code above, we need to call the session_start()
function to resume an existing session before destroying it.

Next, load session3.php in your browser; this destroys the current
session.

Finally, load session2.php in your browser again. You’ll get an output
that says indexes “myFavFood”, “myFavDrink” and “myFavColor” are
all undefined. This indicates that the session no longer exists.

8.3 $_COOKIE
Cool! We’ve come to the final topic in this chapter - cookies.

A cookie is another way of storing information that can be accessed
across multiple pages on the site. It is essentially a small text file that
stores data on the user's computer (as opposed to a session that
stores data on the server).

As cookies are stored on the user’s computer, you should not use
cookies to store sensitive data, as a malicious user could potentially
manipulate it. Also, cookies may be disabled on the user’s browser.
Hence, if the information to be stored is crucial or sensitive, you
should use sessions instead.

To create a cookie, we use the set_cookie() function.

Similar to the header() function covered in Chapter 3.3, the
set_cookie() function must be called before your script generates
any output. If you fail to do that, you’ll get a “Cannot modify header
information - headers already sent” warning and the cookie will not be
set. Your code may work when you are working on your local
computer, but when you upload it to your hosting company’s server, it
will fail to work.

The set_cookie() function accepts up to seven arguments; only the

first is mandatory. We commonly provide the first three arguments to
the function, namely the name of the cookie, the value of the cookie
and the expiry date in UNIX timestamp format.

Let’s look at an example. Create a file called cookie.php in htdocs
and add the following code to it:
<?php

setcookie('userName', 'Joy', time() + 120);

#modifying a cookie
setcookie('userAge', 25, time() + 3600);
setcookie('userAge', 26, time() + 3600);

#deleting a cookie
setcookie('userLevel', 3, time() + 3600);
setcookie('userLevel', 3, time() - 3600);

Here, we set three cookies - userName, userAge and userLevel.

For the first cookie (userName), its value and expiry date are 'Joy'
and time() + 120 respectively.

time() is a built-in function that gives us the current Unix timestamp;
time() + 120 means the cookie will expire 120 seconds (i.e. 2
minutes) after it is set.

Next, we have the userAge cookie. This cookie is set twice. When a
cookie is set more than once, the newest cookie overwrites the
previous ones. Hence, the value of userAge is updated from 25 to
26.

Finally, we have the userLevel cookie. This cookie is set with an
initial expiry of time() + 3600. However, it is subsequently updated
to an expiry of time() - 3600. When a cookie has an expiry in the
past, it gets deleted.

Let’s look at how we can access each of these cookies now. We do
that using the $_COOKIE superglobal. Create another file called
cookie2.php in htdocs and add the following code to it:
<?php

echo 'User Name is '.$_COOKIE['userName'];
echo '
User Age is '.$_COOKIE['userAge'];
echo 'User Level is '.$_COOKIE['userLevel'];

We are now ready to test our scripts. First, launch cookie.php in your
browser. When you do that, the three cookies (userName, userAge
and userLevel) get created.

Next, launch cookie2.php. Depending on the error setting on your
PHP server, you’ll get an output similar to what is shown below:
User Name is Joy
User Age is 26
Notice: Undefined index: userLevel in ...cookie2.php
on line 4
User Level is

The userLevel cookie does not exist as it has been deleted. Wait 2
minutes and reload cookie2.php. You’ll get an output similar to the
following:
Notice: Undefined index: userName in ...cookie2.php
on line 2
User Name is
User Age is 26
Notice: Undefined index: userLevel in ...cookie2.php
on line 4
User Level is

The userName cookie is also non-existent now as it has expired.

Chapter 9: Object-Oriented Programming
In the next two chapters, we are going to cover another important
concept in PHP - the concept of object-oriented programming (OOP).

OOP is a major topic. Hence, a full discussion of it is beyond the
scope of this book. In this chapter, we’ll cover the core concepts in
OOP. In the next, we’ll talk about inheritance.

Ready? Let’s get started.

9.1 What is OOP?
First off, what is OOP?

OOP is an approach to programming where we organize our code by
grouping related variables, constants and functions into a class. This
class serves as a template from which we can create what is known
as objects. Objects can then be used to store data and access
functions defined inside the class.

Confused? No worries. The best way to understand OOP is to look at
an example. Let’s write our own class now.

9.2 Writing our own class
To write our own class, we use the class keyword, followed by the
name of the class.

The name of the class is not case-sensitive and can contain letters,
numbers, or underscores. However, it cannot be a PHP reserved word
(i.e., a word that has a predefined meaning in PHP, such as echo,
switch, break, etc.) and cannot start with a number.

It is a convention to use pascal case when naming our classes. Pascal
case refers to the practice of capitalizing the first letter of each word,
including the first word (e.g., ClassName).

To create our class, let’s first create a file in Brackets and save it as
Movie.php to our htdocs folder. Next, add the following code to

Movie.php.
<?php

class Movie{
//Add class members here

}

Here, we use the class keyword to declare a class called Movie.

Within the Movie class (inside the pair of braces {}), we are going to
add variables, constants and functions. Variables and functions
declared inside a class are known as properties and methods
respectively. Collectively, these properties, constants and methods
are known as class members.

We’ll add properties to our Movie class first. To do that, add the
following code to Movie.php (inside the pair of braces):
private $id;
public $title;
public $rentalPrice;

Here, we declare three properties: $id, $title and $rentalPrice.
Notice that we did not initialize them in the code above? This is
because we’ll be initializing them in a special method known as the
constructor later. Also, note that we preceded the property
declarations with the words public or private. Don't worry about
these keywords at the moment; we’ll come back to them later.

Next, let’s add a constant to our Movie class. To do that, add the
following code to Movie.php (inside the pair of braces):
const DISCOUNT = 10;

Here, we define a constant called DISCOUNT and assign the value 10
to it. Notice that we define a constant differently here (compared to
what we learned in Chapter 4.1)? Indeed, to define a constant inside a
class, we do not use the define() function. Instead, we use the
const keyword as shown above.

Finally, let’s add some methods to our class. As mentioned previously,

a method is a function that is defined inside a class. We’ll start with
the constructor.

A constructor is a magic method in PHP. Magic methods are methods
that have special functionalities in PHP; their names are predefined
and always start with two underscores.

The constructor is named __construct() and is the first method to
be called whenever we create an object from the class. We typically
use this method to initialize the properties in the class.

Add the following code to the Movie class after the constant (but
before the closing brace of the Movie class):

public function __construct($pId, $pTitle,
$pRentalPrice){

$this->id = $pId;
$this->title = $pTitle;
$this->rentalPrice = $pRentalPrice;

}

Here, we define a constructor with three parameters: $pId, $pTitle
and $pRentalPrice.

Inside the constructor, we initialize $id, $title and $rentalPrice
with the values of $pId, $pTitle and $pRentalPrice respectively.

Notice a new keyword $this in the code above? We’ll explain this
keyword later when we learn to create objects in the next section. For
now, just know that whenever we want to access the properties and
methods of a class inside the class, we need to use the $this
keyword, followed by the -> operator.

Next, let’s add a regular (i.e., non-magic) method to our Movie class.
Add the following method after the __construct() method (but
before the closing brace of the Movie class):

public function conversion($country){

$rate = 1;
switch($country){

case 'UK':
$rate = 0.76;
break;

case 'Japan':
$rate = 110;
break;

}

return round($rate*$this->rentalPrice, 2);
}

Here, we define a method called conversion(). This method has
one parameter - $country - and converts USD to pounds or yen
depending on the value of $country.

Within the method, we declare and initialize a variable called $rate
and use a switch statement to update its value based on the value of
$country.

Next, we multiply $rate with the $rentalPrice property
($rate*$this->rentalPrice) and pass the product as an
argument to a built-in function called round(). This function accepts
two arguments and rounds the first argument off to the precision
indicated by the second. In our method, we round the product off to 2
decimal places.

Finally, we use the return keyword to return the result of the
round() function.

Within the method, notice that we did not use the $this keyword to
access $country and $rate?

This is because $country is a parameter while $rate is a local
variable (i.e., a variable declared inside the method). In other words,
they are not class properties. We use the $this keyword only when
accessing class properties and methods. For instance, we use the
$this keyword to access the $rentalPrice property.

Got it? Once you have added the conversion() method to the
Movie class, our class is complete. We are now ready to make use of

this class. To do that, we need to create an object from it.

9.3 Creating an Object
To create an object, we use the new keyword. An object is also known
as an instance of the class, and the process of creating an object is
known as instantiating the class.

Create a new file in Bracket and save it as chap9.php to your htdocs
folder. Add the following code to chap9.php:
<?php

include 'Movie.php';
$mov1 = new Movie('N0001', 'Lusso', 4.99);

Here, we first use the include statement to include Movie.php
(which contains the code for the Movie class).

Next, we use the new keyword to create a Movie object called $mov1,
passing 'N0001', 'Lusso'and 4.99 as arguments to the
__construct() method.

As __construct() is a magic method, we do not call it using its
name.

Instead, when we create a new Movie object, PHP looks for the
__construct() method and executes it for us automatically.

Remember the $this keyword in our Movie class constructor?
$this refers to the current object. When we use the statement

$mov1 = new Movie('N0001', 'Lusso', 4.99);

to create $mov1, $this refers to $mov1. In other words, when PHP
executes the constructor, the statement
$this->id = $pId;

in the constructor becomes
$mov1->id = 'N0001';

As a result, the value 'N0001' gets assigned to the $id property of

$mov1. The same applies to the other two assignment statements in
the constructor. Hence, the values 'Lusso' and 4.99 get assigned
to the $title and $rentalPrice properties of $mov1 respectively.

Next, let’s create a second Movie object called $mov2 using the
statement below:
$mov2 = new Movie('P0002', 'Junior', 5.99);

When PHP creates $mov2 and calls the constructor, $this refers to
$mov2. Hence, the statement

$this->id = $pId;

in the constructor becomes
$mov2->id = 'P0002';

The same applies to the other two assignment statements in the
constructor. As a result, the values 'P0002', 'Junior' and 5.99
get assigned to the $id, $title and $rentalPrice properties of
$mov2 respectively.

Got it? Good! Let’s move on.

9.4 Accessing Class Members
After creating an object, we can use the object name and the ->
operator to access its properties and methods.

For instance, to access the properties and methods of $mov1 in
chap9.php, we use the code below:
echo $mov1->title.'
';
echo $mov1->conversion('Japan').'
';

Here, we first use the -> operator to access the $title property of
$mov1. Next, we use the -> operator to call the conversion()
method, passing 'Japan' as an argument to the method.

Add the code above to chap9.php (after the instantiation statements)
and load the page, you’ll get

Lusso
548.9

as the output. Pretty straightforward, right?

Now, suppose we want to access the DISCOUNT constant defined in
the Movie class, how do we do that?

To access a class constant, we do not use the -> operator. Instead,
we use the :: operator.

This is because class constants are different from class properties;
they are allocated once per class, not once for each object. This
means that all objects of the same class ($mov1 and $mov2 in our
example) share the same constants. In other words, even if there are
100 Movie objects, there is only one memory location allocated to
store the DISCOUNT constant.

To access the DISCOUNT constant in the Movie class, add the
following code to chap9.php:
echo Movie::DISCOUNT.'
';
echo $mov1::DISCOUNT.'
';
echo $mov2::DISCOUNT.'
';

If you run the code above, you’ll get
10

displayed three times. This shows that we can use either the class
name (Movie) or the object name ($mov1 or $mov2) to access a
class constant. All three give us the same value as they are accessing
the same memory location.

9.5 Access Modifiers
Now that we know how to create objects and access class members
using these objects, let’s discuss a concept we skipped previously -
the public and private keywords.

These two keywords are known as access modifiers; they serve as
gatekeepers controlling where we can access a particular class

member.

public class members can be assessed everywhere while private
class members can only be accessed within the class in which they
are declared.

In our Movie class, we have two public properties ($title and
$rentalPrice) and one private property ($id).

Previously, we learned to access the $title property of $mov1 in
chap9.php. As $title is a public class property, we had no
problems accessing it in chap9.php. Now, let’s try accessing the $id
property. Add the line
echo $mov1->id.'
';

to chap9.php and load the page again. What do you get? You get
Fatal error: Uncaught Error: Cannot access private
property Movie::$id...

added to the output, right? This is because $id is a private
property. As private class members can only be assessed within
the class in which they are declared, we are not allowed to access the
$id property in chap9.php, which is outside the Movie class.

This is the gist of how access modifiers work; they basically control
whether we can access a particular class member outside the class in
which it is declared. Got it?

In PHP, access modifiers are mandatory for properties but optional for
methods. If we fail to declare the modifier for a property, we’ll get an
error message. If we do not declare the modifier for methods, the
default modifier is public. As of PHP 7.1.0, we can also add access
modifiers for class constants. If we do not declare the modifier for
constants, the default is public.

Besides public and private members, PHP also has protected
members. These members can be accessed inside the class in which
they are declared and any subclass that inherits from that class. We’ll
discuss protected members and inheritance in the next chapter.

At this point, some of you may be wondering why we want class
members to be private. For instance, why bother declaring the $id
property if we cannot access it?

The reason is that while private members cannot be accessed
outside the class in which they are declared, they can be accessed
inside it. For instance, we can write a function inside the Movie class
to display the page heading based on the $id property. To see how
that works, add the code below to Movie.php (after the
conversion() method but before the closing brace of the Movie
class):
public function displayHeading($tag){

if (substr($this->id, 0, 1) == 'N')
return "<$tag>Movies</$tag>";

else
return "<$tag>Award Winning Movies</$tag>";

}

This method checks if $id starts with 'N' using the built-in
substr() function. If it does, it returns an HTML element (as defined
by the parameter $tag) with the word “Movies” enclosed. Else, it
returns an element with the words “Award Winning Movies” enclosed.

Next, replace the line
echo $mov1->id.'
';

in chap9.php with
echo $mov1->displayHeading('H1');

As displayHeading() is a public method, we have no problems
accessing it outside the class. If you run the code now, you’ll get
“Movies” displayed as an <h1> element. Got it?

9.6 Getter and Setter
In the previous section, we talked about the difference between
public and private class members.

Whenever possible, we should declare class members as private if
code outside the class does not need to access them. This act of
preventing code outside from accessing class members unnecessarily
is known as encapsulation.

Encapsulation makes it easy for us to make changes to class
members without affecting code outside the class. For instance, if we
want to change the name of the $id property in our Movie class to
$movieID, we only need to make changes within the Movie class,
any code outside the class is not affected. This is one of the
advantages of declaring a class property as private.

Another advantage of declaring class properties as private is that it
helps prevent unauthorized modifications to our object properties. To
see why this is so, add the following code to chap9.php:
$mov1->rentalPrice = -20;
echo $mov1->rentalPrice.'
';

Here, we first assign -20 to the $rentalPrice property of $mov1.
Next, we use an echo statement to echo its value. If you run the code
above, you’ll get -20 as the output.

As you can see, we manage to change the $rentalPrice property
of $mov1 to -20. This is because $rentalPrice is a public
property. Hence, we can access it outside the Movie class and
change it to any value we like. This is definitely not desirable as rental
price should not be negative.

To prevent such modifications from happening, we should not declare
the $rentalPrice property as public. Instead, we should declare
it as private. Try changing the $rentalPrice property to
private in Movie.php and run chap9.php again, what do you get?

You get something similar to the output below, right?
Fatal error: Uncaught Error: Cannot access private
property Movie::$rentalPrice in…

We are no longer allowed to access and modify the $rentalPrice
property of $mov1 as it is now a private property.

Whenever possible, we should always declare our class properties as
private; this helps to prevent any unauthorized access or
modifications to them. However, if we declare all our class properties
as private, what happens if code outside the class needs to access
or modify those properties?

In cases like these, we can use getters and setters. These are magic
methods that allow us to provide limited and controlled access to our
private and protected properties.

To see how this works, add the following methods to Movie.php (after
the displayHeading() method but before the closing brace of the
Movie class):

public function __get($propertyRequested){
if ($propertyRequested == 'id')

return 'You do not have permission to access
id.
';

else
return $this->$propertyRequested;

}

public function __set($propertyToModify, $value){
if ($propertyToModify == 'rentalPrice' && $value

> $this->rentalPrice)
$this->rentalPrice = $value;

else
echo 'Failed to modify

'.$propertyToModify.'
';
}

The first method (__get()) is known as a getter; it controls which
property can be accessed outside the class and has one parameter
called $propertyRequested. This parameter stores the name of the
property we want to access.

Within the __get() method, we use an if-else statement to check
If $propertyRequested equals 'id'. If it equals, the __get()
method returns a string informing us that we do not have permission
to access the $id property. Else, it returns the property requested.

For instance, if $propertyRequested equals 'rentalPrice', it
returns $this->rentalPrice.

Next, we have the __set() method, which is known as a setter. This
method controls which property can be modified. It has two
parameters; the first stores the name of the property we want to
modify ($propertyToModify), and the second stores the new value
($value) to assign to this property.

Within our __set() method, we use an if-else statement to check
if $propertyToModify equals 'rentalPrice' and if $value is
greater than the current $rentalPrice value. If both conditions are
met, it allows us to modify the $rentalPrice property. Else, it
echoes a string informing us that it is unable to modify the property.
Got it? Good!

Now, let’s look at how we can use the __get() and __set()
methods. To do that, we simply use the -> operator, followed by the
property name. Behind the scene, as long as we have defined our
__get() and __set() methods, PHP will call these magic methods
automatically.

First, let’s change the access modifiers of all the properties in our
Movie class to private.

Next, load chap9.php again. Recall that previously, we tried to
change the $rentalPrice property of $mov1 to -20 and got a fatal
error? If you load chap9.php now, you’ll no longer get an error.
Instead, you’ll get the following output:
Failed to modify rentalPrice
4.99

This is because we have defined our __get() and __set()
methods.

When we try to modify the value of the $rentalPrice property, PHP
calls the __set() method for us automatically. As -20 is smaller than
the current $rentalPrice value (which is 4.99), our __set()
method prevented us from changing the $rentalPrice value. When

we use an echo statement to echo the $rentalPrice value, the
__get() method gives us 4.99 as the output.

Next, add the following code to chap9.php and run the page again:
$mov1->id = 'A12387';
echo $mov1->id;

You’ll get
Failed to modify id
You do not have permission to access id.

added to the output. Here, the __set() method prevented us from
modifying the $id property. Similarly, the __get() method prevented
us from accessing the $id property.

Last but not least, add the following code to chap9.php and run the
page:

$mov1->rentalPrice = 5.99;
echo $mov1->rentalPrice;

You’ll get
5.99

added to the output. Here, we try to change the $rentalPrice value
to 5.99. As 5.99 is greater than the current $rentalPrice value,
the __set() method allowed us to make the change. When we use
an echo statement to echo the value of $rentalPrice again, the
__get() method gives us 5.99 as the output.

Got it? Great!

9.7 Printing a String Representation of the
Object
Besides the __set() and __get() methods, another commonly
defined magic method in PHP is the __toString() method. Let’s
add one to our Movie class.

Add the following code to Movie.php (after the __set() method but
before the closing brace of the Movie class):

public function __toString(){
return

'Discount = '.self::DISCOUNT.'%'.
'
Id = '.$this->id.
'
Title = '.$this->title.
'
Rental Price (USD) = '.$this->rentalPrice;

}

This method simply returns a string containing information about the
Movie class. Notice a new keyword, self, in the method above? This
keyword is used to access the DISCOUNT constant defined earlier in
the class.

Previously, we learned that to access a class constant outside the
class in which it is defined, we can use either the class name or the
object name. For instance, in chap9.php, we used
$mov1::DISCOUNT, $mov2::DISCOUNT and Movie::DISCOUNT to
access the DISCOUNT constant.

What if we want to access this constant inside the Movie class itself
(i.e., inside the class in which it is defined)? To do that, we can use
either the class name or the self keyword.

In the __toString() method above, we used the self keyword.
Alternatively, we could have used the class name
(Movie::DISCOUNT) as well.

After declaring the __toString() method, we can use it to print a
string representation of our Movie class objects. To do that, we
simply use the echo statement.

To see how this works, add the following lines to chap9.php and run
the page again:
echo '
';
echo $mov1;

you’ll get

Discount = 10%
Id = N0001
Title = Lusso
Rental Price (USD) = 5.99

added to the output.

Chapter 10: Inheritance
In the previous chapter, we covered the fundamentals of OOP. Some
of the concepts in OOP can be confusing for beginners. If this is the
first time you are exposed to OOP, you may want to read through the
previous chapter more than once to fully grasp the concepts.

Once you are comfortable with the topics covered in Chapter 9, we
are ready to proceed to a more advanced, but equally important,
concept in OOP - inheritance.

As the name suggests, inheritance has to do with the relationship
between two or more classes. With inheritance, classes can be
declared such that one class is a child class (also known as a
subclass) of another (known as the parent class or base class). This
enables us to group related classes together.

The easiest way to explain inheritance is to look at an example.

10.1 Writing the Child Classes
We’ll use the Movie class in Chapter 9 as a parent class to illustrate.
Open Brackets and create a new file called
AwardWinningMovie.php. Save this file to your htdocs folder.

Add the following code to AwardWinningMovie.php:
<?php

include "Movie.php";

class AwardWinningMovie extends Movie{

private $award;

public function __construct($pId, $pTitle,
$pRentalPrice, $pAward){

parent::__construct($pId, $pTitle,
$pRentalPrice);

$this->award = $pAward;

}

}

In the code above, we first use the include statement to include the
code for the Movie class. Next, we create a class called
AwardWinningMovie.

Notice a new keyword extends in the AwardWinningMovie class
declaration? This keyword indicates that AwardWinningMovie is a
child class of Movie.

When one class is a child class of another, it inherits all the public
and protected members of the parent class. In other words, it can
access and use those members directly, as if they are part of its own
code. We’ll illustrate what this means later.

Within the AwardWinningMovie class, we declare a private
property called $award. Next, we declare a constructor with 4
parameters, $pId, $pTitle, $pRentalPrice and $pAward.

Within the constructor, notice a new keyword, parent?

As you may have guessed, this keyword is used to call the parent
class constructor. As the child class has its own constructor, we need
to use the parent keyword and the :: operator when we want to
access the parent class constructor. When we call the parent class
constructor, we do not create a new object. Instead, we use the name
of the constructor (__construct()).

In our example, we pass the values of $pId, $pTitle and
$pRentalPrice as arguments to the parent class constructor. These
values will be used to initialize the $id, $title and $rentalPrice
properties declared in the parent class respectively.

As these properties were declared as private in the parent class, we
are not allowed to access them directly in the child class. Instead, we
can only initialize them using the parent class constructor, which is a
public method.

Next, we have the statement

$this->award = $pAward;

This statement is used to initialize the $award property declared in
the child class.

With that, the child class constructor is complete.

Now, let’s add another method to the child class. Add the code below
to the AwardWinningMovie class, after the __construct()
method but before the closing brace of the class:
public function recommend($country){

switch ($this->award){
case 'Best Picture':

$others = 'The Rail';
break;

case 'Best Actor':
$others = '1729';
break;

default:
$others = 'And so it begins';

}

return
'You might also like:
'.
'
Movie Title = '.$others.
'
Rental Price = '.$this-

>conversion($country);
}

Here, we declare a method called recommend() that has one
parameter - $country. Within the method, we use a switch
statement to assign different values to the local variable $others,
depending on the value of $this->award.

Next, we return a string recommending a new movie to users. This
string should be quite self-explanatory, except for the last part where
we use the $this keyword to call the conversion() method (refer
to the underlined code above) .

Recall that we do not have a conversion() method in the
AwardWinningMovie class? Will we get an error when we try to call
this method?

The answer is no. This is because the AwardWinningMovie class is
a subclass of the Movie class. Hence, it can access all the public
and protected members of the parent class directly, as if they are
part of its own code.

As the parent class - Movie - has a public method called
conversion(), the child class can access this method simply by
using the $this keyword. Got it?

This is one of the main reasons for using inheritance; it allows us to
reuse existing code. In our example, the AwardWinningMovie class
can use the conversion() method directly without having to code it
itself.

10.2 Creating a Child Class Object
We are now ready to create a child class object. To do that, create a
new file in Brackets and save it as chap10.php to the htdocs folder.

Add the following code to it:
<?php

include 'AwardWinningMovie.php';
$awm = new AwardWinningMovie('A12324', 'Max',

6.99, 'Best Picture');

echo $awm->recommend('Japan');

Here, we first use the include statement to include the
AwardWinningMovie class.

Next, we use the new keyword to create an AwardWinningMovie
object, passing 'A12324', 'Max', 6.99 and 'Best Picture' as
arguments to the constructor.

Finally, after creating the $awm object, we use it to call the
recommend() method. If you run the code above, you’ll get

You might also like:

Movie Title = The Rail
Rental Price = 768.9

as the output. Straightforward?

10.3 Access Modifiers Revisited
Good! Let’s revisit the concept of access modifiers now.

Previously, we mentioned that when one class extends another, it
inherits all the public and protected class members of the class it
extends. What this means is that it can access those members directly
without any restrictions. However, the same does not apply to
private class members. Child classes are not allowed to access
private members of the parent class directly.

To understand what this means, try changing the conversion()
method in the Movie class to a private method. In other words,
change the line
public function conversion($country)

in Movie.php to
private function conversion($country)

Next, load chap10.php again. What do you get? You get an error
message similar to the output below, right?
Fatal error: Uncaught Error: Call to private method
Movie::conversion() from context
'AwardWinningMovie'...

This is because when conversion() is a private method, we are
not allowed to access it directly outside the class in which it is defined
(i.e., outside the Movie class). Hence, the recommend() method in
the AwardWinningMovie class is not allowed to access it.

Next, change conversion() to a protected method and load
chap10.php again. Everything works now, right? This is because child

classes are allowed to access protected members in their parent
class directly. Hence, the recommend() method in the
AwardWinningMovie class is now allowed to access the
conversion() method in the Movie class. Got it? Great!

After changing conversion() to a protected method, note that we
are only allowed to access it directly inside the class in which it is
declared and any subclass that inherits from that class. In other
words, we can only access it directly inside the Movie and
AwardWinningMovie classes.

Recall that previously, we accessed the method in chap9.php? This
was all right when conversion() was a public method. Now that it
is a protected method, you’ll get an error if you load chap9.php
again. If you want to access the conversion() method in
chap9.php directly, you have to change it back to a public method.

10.4 Overriding
Now that you are familiar with child classes and inheritance, let’s
move on to discuss the concept of overriding. Overriding occurs when
a child class modifies the methods it inherits from its parent class.

To illustrate what this means, add the following line to chap10.php
and load the page.
echo $awm->displayHeading('H1');

You’ll get the text “Award Winning Movies” displayed as a <H1>
heading.

Here, we are calling the displayHeading() method declared in the
parent class. This method is a public method inherited by the child
class. Hence, we can access it using an AwardWinningMovie
object.

Next, let’s see what happens if we code a new version of the
displayHeading() method inside the child class itself. To do that,
add the following method to the AwardWinningMovie class, after the
recommend() method but before the closing brace of the class:

public function displayHeading($tag){
$baseMsg = parent::displayHeading($tag);
return $baseMsg.$this->award;

}

Here, we declare a method with the same name (displayHeading)
and parameter list ($tag) as the method in the parent class. When
that happens, we say that the child class method overrides the parent
class method.

Within the child class method, we use the parent keyword to call the
parent class displayHeading() method. Whenever a child class
overrides a parent class method, we need to use the parent keyword
(instead of the $this keyword) if we want to access the parent class
method inside the child class.

Next, we assign the result returned by the parent class method to a
variable called $baseMsg. Finally, we concatenate $baseMsg with
the $award property in the child class and return the result.

If you load chap10.php again, you’ll see the text “Award Winning
Movies” displayed as a <H1> heading, followed by a line that says
“Best Picture”. This additional line illustrates that we are now
accessing the displayHeading() method in the child class.

As displayHeading() has been overridden in the child class, the
child class method is called when we access it using a child class
object ($awm).

If we want to access the displayHeading() method in the parent
class, we have to use a parent class object. For instance, we can do it
as follows:
$mv = new Movie('A3244', 'Golden Rose', 3.99);
echo $mv->displayHeading('H1');

If you add the code above to chap10.php and load the page, you’ll
only get “Award Winning Movies” (without “Best Picture”) added to the
output. This illustrates that $mv is accessing the displayHeading()
method in the parent class.

Chapter 11: Interacting with a Database
In this chapter, let’s move on to talk about databases. Whenever we
work with websites, it is highly likely that we need to store information
(such as data entered by users) in a database.

This chapter assumes that you are familiar with MySQL. If you are not,
I strongly recommend that you check out my other book, “Learn SQL
(using MySQL) in One Day and Learn it Well” before proceeding.

If you are familiar with MySQL, let’s proceed.

11.1 The PDO library
To use a database in our PHP programs, we can use one of two built-
in libraries.

A library is a collection of code that other developers have written and
made available for us to use in our own programs. The two libraries
available for connecting to a database in PHP are the MySQLi and
PDO libraries.

Both essentially do the same job, connecting to the database and
sending queries to it. However, there are some key differences
between the two.

The main difference is that we can use the PDO library to connect to
12 different types of database servers - such as a MySQL server, an
Oracle server, or a Microsoft SQL Server. In contrast, the MySQLi
library only works with MySQL database servers.

For this reason, we’ll use the PDO library in this book.

11.2 Connecting to the Database
To send queries to our database using PDO, we need to connect to it
first.

To do that, we need four pieces of information - the hostname of the
server, the name of the database, the username of the account

https://www.amazon.com/dp/B07K374J19

authorized to access that database and the password.

In most cases, the hostname is simply “localhost”. To get the other
three pieces of information, you need to contact your database
administrator. For the examples in this book, we’ll be our own
database administrator and create a database and user account using
phpMyAdmin in XAMPP later.

For now, let’s suppose you have a database called “pawszone” and a
user account with username “pz_admin” and password “ABCD”.

In the following sections, we’ll first cover various concepts you need to
know to work with PDO. After covering the concepts, we’ll get some
hands-on practice with a PHP script that shows how the concepts can
be applied. Ready?

Let’s learn to connect to our database first.

PDO uses an object-oriented approach. To connect to our database,
we create a PDO object. For instance, to connect to the “pawszone”
database, we use the code below:
$pdo = new
PDO("mysql:host=localhost;dbname=pawszone",
"pz_admin", "ABCD");

$pdo->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);

On the first line, we create a PDO object by passing three arguments to
the PDO constructor.

The first argument is a string indicating the type of database we are
using (mysql: in our case), the hostname of the server
(host=localhost), and the name of the database
(dbname=pawszone).

The second argument is the username ("pz_admin") and the third is
the password ("ABCD").

After creating this object, we assign it to a variable called $pdo and
use $pdo to call the setAttribute() method on the next line.

The setAttribute() method allows us to set the attributes of a PDO
object. Here, we are trying to set the error mode.

By default, after establishing a successful connection, PDO does not
inform us of anything that goes wrong subsequently. For instance, if
we try to select data from a table that does not exist, PDO will not
inform us that there’s no such table. Instead, we’ll get a page with no
results. This is very frustrating if we are trying to figure out what is
wrong.

To get PDO to inform us of any issues, we need to use the
setAttribute() method to configure the error mode. To do that,
we pass two predefined constants to the method.

The first constant tells PDO the attribute we want to set, and the
second tells PDO the value we want to set it to. You can find the list of
all predefined PDO constants at
https://www.php.net/manual/en/pdo.constants.php.

In our example, we want to set the error mode attribute
(PDO::ATTR_ERRMODE) to PDO::ERRMODE_EXCEPTION.

In this mode, PDO throws an exception when something goes wrong.
We’ll learn more about exceptions in the next chapter. For now, just
know that we can use the information in this exception to figure out
what went wrong.

That’s it! That’s all that’s needed to connect to a database. After
connecting to our database, we are ready to send queries to it.

11.3 SQL Injection
There are two main types of queries in MySQL - ones that return data
from the database (e.g., SELECT) and ones that don’t (e.g., CREATE,
INSERT, UPDATE and DELETE).

The easiest way to send queries that do not return data is to use the
exec() method, while the easiest way to send queries that do is to
use the query() method.

However, both methods put us at risk of a form of attack known as an

https://www.php.net/manual/en/pdo.constants.php

SQL injection.

Recall that we talked about cross-site scripting in Chapter 8.1.6? SQL
injection is similar to that in that hackers can input data into our
website and use it to hack our database.

Suppose we have a text field called “ownerName” and we want to
select rows from a table called “pets” in our database, we can use the
code below:
$owner = $_POST['ownerName'];

$sql = "SELECT * FROM pets WHERE owner = '$owner'";
$stmt = $pdo->query($sql);

Don’t worry if the code above does not make much sense yet. We’ll
discuss a better method to query the database later. For now, just
know that in the code above, we use the user input
$_POST['ownerName'] in our SQL SELECT statement and use the
query() method to execute the statement.

If our user enters

Jamie

into the “ownerName” text field, the SELECT statement becomes

SELECT * FROM pets WHERE owner = 'Jamie'

and everything works as expected. However, suppose the user enters

Jamie' OR owner != 'Jamie

into the text field instead, the SELECT statement becomes

SELECT * FROM pets WHERE owner = 'Jamie' OR owner !=
'Jamie'

When we use the query() method to execute this statement, PHP
interprets the word “OR” in the user input as the SQL operator OR.
Hence, it returns ALL rows from the “pets” table, since owner =
'Jamie' OR owner != 'Jamie' covers all possible values for the
“owner” column. This is definitely not desirable.

Instead of using the query() or exec() method to execute SQL
statements, a better way is to use prepared statements.

11.4 Prepared Statements
There are a few steps involved when using prepared statements:

1) Create the SQL statement using placeholders
2) Prepare the statement
3) Bind variables or values to the placeholders
4) Execute the statement
5) Fetch any data returned if necessary

Step 1: Creating the SQL statement using placeholders
When using prepared statements, we need to use placeholders to
replace any variables that contain user inputs in our SQL statements.
These placeholders can either be named or unnamed.

An unnamed placeholder is represented by a question mark. For
instance, if we want to select information from the “pets” table using
user inputs for two columns named “owner” and “petname”, we can
use the SQL statement below:
$sqlUnnamed = "SELECT * FROM pets WHERE owner = ?
AND petname = ?";

Here, we use question marks (?) to replace user inputs in our SQL
statement and assign the statement to a variable called
$sqlUnnamed. Alternatively, we can use named placeholders as
shown below:
$sqlNamed = "SELECT * FROM pets WHERE owner = :owner
AND petname = :pname";

Here, we use :owner and :pname to replace user inputs and assign
the statement to a variable called $sqlNamed.

Step 2: Prepare the statement
After creating the statement, we need to prepare it. Preparing a
statement means sending the statement to your database server in

advance, giving the server a chance to analyze, compile, and optimize
its plan for executing the query. The actual execution does not happen
at this step.

To prepare the statements, we use the prepare() method. This is a
built-in method in the PDO class that prepares a SQL statement for
execution and returns a PDOStatement object.

Suppose we have a PDO object called $pdo, to prepare the
$sqlUnnamed statement, we write:

$preparedUnnamed = $pdo->prepare($sqlUnnamed);

Here, we use $pdo to call the prepare() method and assign the
object returned to a variable called $preparedUnnamed.

To prepare the $sqlNamed statement, we write

$preparedNamed = $pdo->prepare($sqlNamed);

Here, we assign the object returned to a variable called
$preparedNamed.

After preparing the statements, we won’t be using the $pdo object
anymore. Instead, we’ll be using the PDOStatement objects (i.e.,
$preparedUnnamed and $preparedNamed) in subsequent steps.

Step 3: Binding values to the placeholders
In step 3, we need to bind values to the placeholders in our SQL
statements. This tells the database server what values to replace the
placeholders with when executing the statements.

We can use either the bindValue() or bindParam() method to
bind values to placeholders. Both methods are similar, but
bindValue() tends to be more versatile. We’ll be using the
bindValue() method in the examples that follow.

To bind values to unnamed placeholders, we typically provide two
pieces of information to the bindValue() method - the position of
the placeholder and the value to bind. The positions of placeholders
start from 1.

Recall that we have a SELECT statement named $sqlUnnamed
defined and prepared as follows?
$sqlUnnamed = "SELECT * FROM pets WHERE owner = ?
AND petname = ?";
$preparedUnnamed = $pdo->prepare($sqlUnnamed);

Suppose we want to bind a user input called $myPet to the second
question mark in $sqlUnnamed, this is how we can do it:

$preparedUnnamed->bindValue(2, $myPet);

Here, we use $preparedUnnamed to call the bindValue() method.

The first argument (2) indicates that we are binding a value to the
second placeholder (i.e., the placeholder for the “petname” column)
while the second argument ($myPet) indicates the value to bind.

To bind values to named placeholders, we replace the first argument
with the name of the placeholder, enclosed in quotation marks. For
instance, if we want to bind $myPet to the :pname placeholder in
$sqlNamed, we do it as follows:

$preparedNamed->bindValue(':pname', $myPet);

The first argument (':pname') indicates that we are binding a value
to the :pname placeholder while the second ($myPet) indicates the
value to bind.

At this point, some of you may wonder if $myPet (which stores a user
input) puts us at risk of an SQL injection attack.

The answer is no. This is because PDO knows that we’re sending it the
value for a placeholder; hence, it’ll not interpret any part of the string
stored in $myPet as SQL code.

For instance, even if $myPet stores the string

Max' OR petname != 'Max

the word “OR”, the quotation marks and the != operator will not be
interpreted as SQL code. Instead, PDO considers the entire string to
be the value for the “petname” column and simply searches for pets

with that weird name. Got it?

Step 4: Execute the statement
After binding values to our placeholders, we need to use the
PDOStatement object to call the execute() method. To execute
$preparedUnnamed, we write:

$preparedUnnamed->execute();

To execute $preparedNamed, we write

$preparedNamed->execute();

Step 5: Fetch the data returned, if any
After executing the statement, we can use either the fetch() or
fetchAll() method to fetch any data returned (if the statement is a
SELECT statement).

The fetch() method fetches the rows one by one while the
fetchAll() method fetches all rows at once. Both methods return
false on failure.

When using either method, we can specify the style we want the
method to use when fetching the rows. Commonly used styles include
the FETCH_ASSOC and FETCH_NUM styles.

The FETCH_ASSOC style fetches the rows as an associative array
(using column names in the table as keys) while the FETCH_NUM style
fetches them as an indexed array (based on the order of the columns
returned by the SELECT statement).
For instance, to fetch the rows for $sqlUnnamed, we can use the
following while loop:

while($row = $preparedUnnamed-
>fetch(PDO::FETCH_NUM)){

echo 'Pet = '.$row[1].'
';
echo '
Owner = '.$row[0].'
';

}

This loop uses the assignment statement
$row = $preparedUnnamed->fetch(PDO::FETCH_NUM)

as the condition for looping. This is permissible and is a common
approach when working with the PDO fetch() method.

The assignment statement uses $preparedUnnamed (which is the
prepared statement for $sqlUnnamed) to call the fetch() method,
specifying the fetch style as PDO::FETCH_NUM.

Next, it assigns the result returned to a variable called $row.

This variable controls when the while loop ends. The loop keeps
looping as long as $row is not false. Within the while loop, we use
two echo statements to display the values of the array returned by the
fetch() method.

row[0] gives us the first column (i.e., the “owner” column) in
$sqlUnnamed while row[1] gives us the second column (i.e., the
“petname” column).

When we reach the end of the result set and the fetch() method is
unable to fetch any more rows, it returns false. The while loop then
stops looping as $row is now false.

Besides using the FETCH_NUM style, we can use the FETCH_ASSOC
style to fetch our data. This is how we do it:
while($row = $preparedUnnamed-
>fetch(PDO::FETCH_ASSOC))
{

echo 'Pet = '.$row['petname'].'
';
echo '
Owner = '.$row['owner'].'
';

}

Both loops give us the same output; we’ll have a chance to run them
and see the results later.

In addition to using the fetch() method, we can use the
fetchAll() method to fetch all rows from the database at once.
We’ll do that in the project at the end of the book.

That’s it. We’ve covered the gist of how prepared statements work.
We are now ready to try the different SQL concepts covered above.

11.5 Putting it all Together
To do that, we need to create a database and user account first.

First, ensure that you have started XAMPP and the Apache and
MySQL servers.

If you have problems starting the MySQL server, it is likely due to a
port conflict. Check out https://learncodingfast.com/how-to-install-
xampp-and-brackets for instructions on how you can resolve the
issue.

Next, launch http://localhost/phpmyadmin/.

Click on “New” on the left and enter “pawszone” (without quotes) into
the text field on the right.

Click “Create” to create the database. You’ll be directed to the
“pawszone” database. You can verify that by checking the gray bar at
the top.

https://learncodingfast.com/how-to-install-xampp-and-brackets
http://localhost/phpmyadmin/

Next, click on “Privileges” and you’ll be directed to the page for
creating a new user. At the bottom of the page, you’ll see a link that
says “Add user account”. Click on it and enter the information shown
in the screenshot below (leave other fields unchanged). Enter “ABCD”
(without quotes) into the two password fields.

Scroll to the bottom of the page and click “Go” to create the user.

Once you are done, you’ll see a message that says “You have added
a new user”. You are now ready to connect to the database you have
just created.

Create a new file in Brackets and save it as sql_cud.php.

Add the following code to it (you can download the code at
https://learncodingfast.com/php).
<?php

//SECTION A - CONNECT TO DATABASE

$pdo = new PDO("mysql:host=localhost;dbname=pawszone", "pz_admin",

https://learncodingfast.com/php

"ABCD");
$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

//SECTION B - CREATE TABLE

$sql = "CREATE TABLE IF NOT EXISTS pets (owner VARCHAR(255) NOT
NULL, petname VARCHAR(255) NOT NULL , breed VARCHAR(255) NOT NULL,
microchip VARCHAR(20), PRIMARY KEY(owner, petname))";

$stmt = $pdo->prepare($sql);

$stmt->execute();

//SECTION C - INSERT DATA

$sql = "INSERT INTO pets (owner, petname, breed)
VALUES (:owner, :petname, :breed)";

$stmt = $pdo->prepare($sql);

$owner = array('Ted', 'Jamie', 'En', 'En');
$pname = array('Angel', 'Max', 'Boots', 'Dora');
$breed = array('Labradoodle', 'Domestic Shorthair', 'Domestic
Shorthair', 'Munchkin');

for ($i = 0; $i < 4; ++$i)
{

$stmt->bindValue(':owner', $owner[$i]);
$stmt->bindValue(':petname', $pname[$i]);
$stmt->bindValue(':breed', $breed[$i]);

$stmt->execute();
}

//SECTION D - UPDATE DATA

$sql = "UPDATE pets SET microchip = :micro WHERE owner = :owner AND
petname = :petname";

$stmt = $pdo->prepare($sql);

$stmt->bindValue(':micro', '121342345');
$stmt->bindValue(':owner', 'Jamie');
$stmt->bindValue(':petname', 'Max');

$stmt->execute();

//SECTION E - DELETE DATA

$sql = "DELETE FROM pets WHERE owner = :owner AND petname =
:petname";

$stmt = $pdo->prepare($sql);

$stmt->bindValue(':owner', 'Ted');
$stmt->bindValue(':petname', 'Angel');

$stmt->execute();

In the code above, we first connect to the “pawszone” database in
Section A.

Next, in Section B, we use a SQL CREATE statement to create a table
called “pets” in our database. As this SQL statement does not have
any placeholder, we do not need to call the bindValue() method.
Instead, we simply prepare the statement and execute it.

In Section C, we have an INSERT statement for inserting data into the
“pets” table. We first use the prepare() method to prepare this
statement. Although we’ll be executing the INSERT statement four
times using a for loop later, note that we only need to prepare the
statement once. This is another advantage of using prepared
statements as it can result in faster execution, especially if the query is
complex or needs to be run many times.

After preparing the statement, we declare three arrays - $owner,
$pname and $breed - and assign the data to be inserted to these
arrays. Next, we use a for loop to loop through the arrays.

Each time the loop runs, we bind one value in each array to the
relevant placeholder. After binding the data, we call the execute()
method to execute the INSERT statement.

After inserting the data in Section C, we update a row (where owner =
“Jamie” and petname = “Max”) in Sections D and delete another
(where owner = “Ted” and petname = “Angel”) in Section E. These two
sections should be quite self-explanatory.

Read through the code above carefully and fully understand it before
proceeding. Once you are clear on how prepared statements work,
load the page sql_cud.php in your browser to run the code.

Next, head over to http://localhost/phpmyadmin/ and select the
“pawszone” database on the left. You should see the “pets” table
listed on the right. Click on “Browse” and you’ll get the following table:

http://localhost/phpmyadmin/

As you can see, the “pets” table has been successfully created and
data has been added to it. Got it?

Next, let’s learn to select data from this table and display it on our web
page using PHP. To do that, create a new file called sql_select.php
and add the following code to it.
<?php

//Section A - Connecting to the database

$pdo = new PDO("mysql:host=localhost;dbname=pawszone", "pz_admin",
"ABCD");
$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

//Section B - SELECT all rows from pets

$sql = "SELECT petname, owner FROM pets";
$stmt = $pdo->prepare($sql);

$stmt->execute();

while ($row = $stmt->fetch(PDO::FETCH_ASSOC)){

echo '
Owner = '.$row['owner'].'
';
echo 'Pet Name = '.$row['petname'].'
';

}

$stmt->execute();

while ($row = $stmt->fetch(PDO::FETCH_NUM)){
echo '
Owner = '.$row[1].'
';
echo 'Pet Name = '.$row[0].'
';

}

Here, as before, we first connect to the “pawszone” database in
Section A. Next, in Section B, we use a SELECT statement to select
the “petname” and “owner” columns from the “pets” table.

After executing the statement, we use a while loop to fetch the rows
one by one, using the FETCH_ASSOC style. Finally, we use echo
statements inside the while loop to display the data fetched.

Next, we execute the SELECT statement again and use another
while loop to fetch the rows using the FETCH_NUM style.

If you load sql_select.php in your browser, you’ll get the following
output displayed twice:
Owner = En

Pet Name = Boots

Owner = En

Pet Name = Dora

Owner = Jamie

Pet Name = Max

Chapter 12: Managing Errors and Exceptions
We’ve come to the last chapter before our project. In this chapter, we
are going to learn to manage errors and exceptions in our PHP
scripts.

Frankly speaking, this is one of the messiest areas in PHP as PHP
differentiates between an exception and an error. When something
goes wrong, we’ll get either an exception or an error.

Internal PHP functions mainly give us errors when something goes
wrong. Modern object-oriented extensions (such as the PDO extension
we learned in the previous chapter), on the other hand, are more likely
to use exceptions.

In this chapter, we’ll first discuss exceptions and errors separately
before consolidating everything into a single file in the last section.

Ready? Let’s look at exceptions first.

12.1 Handling Exceptions
12.1.1 What is an exception?
An exception is a predefined object in PHP that allows us to alter the
flow of our scripts when something undesirable happens.

For instance, if we try to connect to a database and the connection
fails, we can use an exception to help us handle the situation. To see
what an exception is, create a file called connect.php in htdocs and
add the following code to it:
<?php

$pdo = new
PDO("mysql:host=localhost;dbname=pawszone",
"wrongadmin", "ABCD");
$pdo->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);

Here, we try to connect to the “pawszone” database using an invalid
username (“wrongadmin”).

Next, create a new file called exceptionHandling.php in htdocs and
add the following code to it:
<?php

include "connect.php";
echo '
Welcome to Pawszone';

Here, we use an include statement to include the connect.php file
(which contains the invalid code) and use an echo statement to echo
the text “Welcome to Pawszone” after the include statement.

After creating the two files, try loading exceptionHandling.php in
your browser (with Apache and MySQL running), what do you get?

You get a message similar to what is shown below, right? I’ve
formatted and underlined parts of the message to make it more
readable.
Fatal error: Uncaught PDOException: SQLSTATE[HY000]
[1045] Access denied for user
'wrongadmin'@'localhost' (using password: YES) in
/opt/lampp/htdocs/connect.php:3

Stack trace:

#0 /opt/lampp/htdocs/connect.php(3): PDO-
>__construct('mysql:host=loca...', 'wrongadmin',
'ABCD')

#1 /opt/lampp/htdocs/exceptionHandling.php(2):
include('/opt/lampp/htdo...')

#2 {main} thrown in /opt/lampp/htdocs/connect.php on
line 3

This message informs us that a PDO exception (PDOException) has
occurred and is not caught (i.e., not handled). This exception occurs
because of the invalid username we used when connecting to the

“pawszone” database.

When an exception occurs and is not caught, PHP displays a
message similar to the one shown above. This output includes a stack
trace listing all the files linked to the exception. The trace above tells
us that the current exception is linked to line 3 in connect.php and
line 2 in exceptionHandling.php. In addition, the database password,
“ABCD”, is revealed in the trace.

Notice that the second statement (echo '
Welcome to
Pawszone';) in exceptionHandling.php is not executed? This is
because any exception that is not caught results in a fatal error; the
script is terminated immediately before the echo statement can be
executed.

If we do not want script termination to happen (or the message above
to be displayed) when an exception occurs, we need to catch the
exception.

12.1.2 try-catch-finally
To catch exceptions, we use the try, catch and finally blocks.
The syntax is as follows:
try {

//do something
}
catch (type of exception)
{

//do something else when an exception occurs
}
finally {

//do this regardless of whether the try or catch
block is executed
}

The try block first tries to perform a task.

If the task fails, an exception will be thrown. Throwing an exception
simply means PHP will create an object using one of the predefined

classes for dealing with exceptions.

These classes include the Exception, PDOException,
DOMException and OutOfBoundsException class.

When an exception occurs, PHP creates an object of the relevant
exception class. This object contains information about the exception
and can be used to call various methods defined in the class.

These methods include the getMessage(), getFile(),
getLine() and getTraceAsString() methods, which give us the
message, file name, line number and stack trace of the exception
respectively.

After an exception is thrown (i.e., after PHP creates the exception
object), we need to catch it using a catch block. We can define
multiple catch blocks to deal with different types of exceptions.

After the catch block(s), we have the finally block. This block is
optional and always executed regardless of whether the try block
succeeds or fails.

To illustrate how the try, catch and finally blocks work, replace
the original code in exceptionHandling.php with the following code:
<?php

try{
include "connect.php";

}catch(PDOException $e){
echo '
Unable to connect '.$e->getMessage();

}catch(Exception $e){
echo '
Something else happened'.$e-

>getMessage();
}finally{

echo '

The finally block is always
executed';
}

echo '
After connecting';

Here, we first try to connect to the “pawszone” database inside the
try block.

If we are unable to connect, PHP throws an exception and one of the
catch blocks will be executed.

In our example, we have two catch blocks. The first catch block
catches a PDO exception (PDOException) while the second catches
a general exception (Exception).

PDOException is a predefined class that deals with exceptions when
PDO is unable to perform its task. Exception, on the other hand, is
the parent class of all exception classes and deals with general
exceptions.

$e represents an object of the respective exception class. Inside our
catch blocks, we use $e to call the built-in getMessage() method
and use an echo statement to echo the error message.

If we run the code above, we’ll get the following output:
Unable to connect SQLSTATE[HY000] [1045] Access
denied for user 'wrongadmin'@'localhost' (using
password: YES)

The finally block is always executed
After connecting

The first line of output is from the catch(PDOException $e) block.
As PHP is unable to connect to the database in connect.php, it
throws a PDO exception.

The second line is from the finally block. This block is executed
regardless of whether the code in the try block succeeds or fails.

Finally, the last line is from the echo statement after the try-catch-
finally blocks. This line illustrates that when an exception occurs
and is caught successfully, the script continues executing.
Straightforward? Good!

12.1.3 Throwing Exceptions

Next, let’s learn to throw our own exceptions.

In the section above, we learn to catch exceptions thrown by PHP.
Besides relying on PHP to throw exceptions for us, we can throw our
own exceptions. We do that using the throw keyword.

Let’s look at an example. Add the function below to the end of
exceptionHandling.php (i.e., after the echo '
After
connecting'; statement):

function displayUserInput($userInput){
if ($userInput > 100)
{

throw new OutOfRangeException('
User input
is too big');

}else
{

echo '
'.$userInput;
}

}

Here, we define a function called displayUserInput() that has
one parameter - $userInput.

If $userInput is greater than 100, we throw an
OutOfRangeException exception using the throw keyword.
OutOfRangeException is a predefined class in PHP extended from
the Exception class. Throwing an OutOfRangeException
exception involves creating a new object of the class.

When creating a new OutOfRangeException object, we can pass a
few optional arguments to the constructor. We commonly pass an
error message. In our example, we pass the string '
User
input is too big' to the constructor.

If we call the displayUserInput() function using the try-catch
blocks below:
try
{

displayUserInput(105);
}catch (OutOfRangeException $e)
{

echo $e->getMessage();
}

an OutOfRangeException exception will be thrown in the try block
as $userInput is greater than 100. This gets caught by the catch
block. Inside the catch block, we use the getMessage() method to
get the error message.

If we run the code above, we’ll get
User input is too big

as the output. If we change the function call to
displayUserInput(16);

no exception will be thrown and we’ll get 16 as the output. Got it?
Great!

12.1.4 Exception Handler
In the previous sections, we learned to throw and catch exceptions.
Some exceptions, such as a PDO exception, are easy to pre-empt.
Others may be harder. In most cases, despite our best efforts, there
are bound to be exceptions we fail to anticipate.

In cases like these, PHP allows us to specify a custom exception
handler that gets called whenever there are exceptions we fail to
catch. We can use this custom handler to display a custom message
to users. However, after the exception handler is called, the PHP
script will be terminated.

To see how an exception handler works, add the following code to the
end of exceptionHandling.php:
function myExceptionHandler($e)
{

echo '
Oppsss... An uncaught exception
occurred.
'.$e->getMessage();

}

set_exception_handler('myExceptionHandler');

Here, we define a function called myExceptionHandler() to serve
as the exception handler. For a function to qualify as an exception
handler, it needs to have one parameter for storing the uncaught
exception object. This parameter is $e in our example.

Within the function, we use $e to call the getMessage() method and
use an echo statement to echo the message.

After coding the function, we need to use a built-in function called
set_exception_handler() to set myExceptionHandler() as
the exception handler. To do that, we write
set_exception_handler('myExceptionHandler');

To test our exception handler, add the following lines to the end of
exceptionHandling.php:
$pdo = new PDO("some invalid database");
echo 'This will not be executed';

Here, we try to create a PDO object using an invalid argument. This
results in a PDO exception, which is not caught by any catch block.

If you run the code above, you’ll get
Oppsss... An uncaught exception occurred.

invalid data source name

added to the output. The exception handler (myExceptionHandler)
has successfully handled the exception. However, notice that the
echo statement after the PDO instantiation statement is not executed?
This is because the PHP script got terminated after the exception
handler is called. Got it?

12.2 Handling Errors
12.2.1 What are errors?

Great! Now that you are familiar with exceptions, let’s move on to
discuss errors. As mentioned previously, when something goes wrong
in PHP, you will get either an exception or an error.

One major difference between errors and exceptions is that
exceptions can be caught while errors, by default, cannot. This is
especially true prior to PHP 7. From PHP 7 onwards, PHP throws an
Error exception when some errors occur; this exception can then be
caught.

There are four main types of errors defined in PHP - notices,
warnings, syntax errors and fatal errors. Each error type is further
divided into subtypes and each subtype is represented by a constant
and an error code.

Warnings and notices are minor errors that do not lead to script
termination. Common causes include trying to divide by zero (which
generates a warning) and trying to access an undefined variable
(which generates a notice).

Syntax errors, on the other hand, lead to script termination. They are
caused by programmers making a mistake in the syntax of their code.
Examples include forgetting to close a parenthesis or missing a
semicolon.

Last but not least, we have fatal errors, which also lead to script
termination. Common causes include trying to call a non-existent
function.

Do not worry about the distinction between the different types of
errors. When an error occurs, PHP has an excellent reporting system.
For instance, if you try to access a non-existent variable using the
statement
echo $some_undefined_variable;

you’ll get an output similar to what is shown below:
Notice: Undefined variable: some_undefined_variable
in ...mycode.php on line 6

This output informs us that the error is a notice and gives us the

reason for the error. It also gives us the file name of the error and the
line number where it occurred.

As you can see, an error message is very informative. Such
messages make it very easy for us to debug our code. However, they
can reveal too much information to end users.

Therefore, it is a common practice for us to display these messages
only during the development stage of our site. When our site goes live,
it is strongly recommended that we do not display such messages to
end users.

To adjust whether error messages are displayed, we need to update
the error settings in our PHP server.

12.2.2 Error Reporting Settings in PHP
There are two relevant settings here - error_reporting and
display_errors.

The error_reporting setting affects the type of errors that PHP
will report. There are several predefined constants that we can assign
to this setting.

If we want PHP to only report fatal errors (and not report warnings and
notices etc.), we assign the E_ERROR constant to this setting. On the
other hand, if we want PHP to report all errors, we assign E_ALL to it.

Besides E_ERROR and E_ALL, we can assign other constants to the
error_reporting setting. You can find the list of all error constants
and codes at https://www.php.net/manual/en/errorfunc.constants.php.

Next, we have the display_errors setting. This affects whether
errors reported by PHP will be displayed on the browser. During the
development stage, we want errors to be displayed. To do that, we set
display_errors to On.

On a live site, we do not want any errors to be displayed. To do that,
we set display_errors to Off.

When display_errors is off, we typically log the errors reported by

https://www.php.net/manual/en/errorfunc.constants.php

PHP to a log file. We’ll learn to do that later.

To configure the error settings mentioned above, the most direct way
is to modify the php.ini file. We’ve already done that in Chapter 2,
where we set error_reporting to E_ALL and display_errors
to On.

If you do not have permission to edit php.ini, you can use two built-in
functions - error_reporting() and ini_set() - to modify the
settings. To do that, add the following statements to all your PHP
scripts.
error_reporting(E_ALL);
ini_set('display_errors', '1');

In the first statement above, we use the error_reporting()
function to set error_reporting to E_ALL. Next, we use the
ini_set() function to set display_errors to '1' when the site is
in the development stage.

After the site goes live, you should change the display_errors
setting to '0' using the following statement:

ini_set('display_errors', '0');

Changing the display_errors setting using ini_set() has its
limitations. If there is any syntax error in your script, the ini_set()
function will not work.

For instance, if you have the following line in your script
echo 'Hello;

The display_errors setting will not be set as the statement above
has a syntax error (the closing quotation mark is missing). The page
will simply fail to load without any indication of what’s causing it.
Hence, whenever possible, it is strongly recommended that you
update the php.ini file instead.

If you do not have access to php.ini, you can try modifying the error
settings using httpd.conf or .htaccess. These files allow you to
modify the Apache web server settings, which in turn can be used to

modify the PHP settings. Depending on your hosting company, you
may also be allowed to add a custom php.ini file to your directory and
use it to configure the PHP settings.

Check with your hosting company if you have permission to do any of
the above and if yes, how to go about doing it. Instruction on using
these techniques is beyond the scope of this book.

12.2.3 Error Handler and Shutdown Function
In the previous section, we learned to adjust the display_errors
setting. On a live site, you are encouraged to turn display_errors
off.

However, sometimes, not displaying any error message may not be
the best approach. For instance, if a fatal error occurs on our site, the
site will just fail to load without any information. This can be frustrating
for the user.

Instead of leaving users entirely in the dark when something goes
wrong, we can provide them with a “user-friendly” error message.

To do that, we need to create a custom error handler. A custom error
handler allows us to handle the PHP errors ourselves, instead of
relying on the default error handler in PHP. We can use this custom
handler to display a custom message to users when something goes
wrong.

To see how this works, create a new file in Brackets and save it as
errorHandling.php to the htdocs folder. Add the following code to it:
<?php

function myErrorHandler($errno, $errstr, $errfile,
$errline)
{

echo '
Oppsss... An error occurred.

'.$errstr;
}

set_error_handler('myErrorHandler');

In the code above, we first create a function called
myErrorHandler() that has four parameters - $errno, $errstr,
$errfile and $errline. The first two parameters are mandatory
for a function to “qualify” as a custom error handler, the last two are
optional.

These four parameters are used to store the error code, error
message, file name in which the error occurred and the line number
respectively. All four pieces of information are provided by PHP when
an error occurs.

Within the function, we use an echo statement to echo a custom error
message to users.

After coding the function, we use a built-in function called
set_error_handler() to set myErrorHandler() as the custom
error handler. Got it?

At this point, you’ll probably notice that this custom error handler is
very similar to the custom exception handler we coded in Chapter
12.1.4. Indeed, the two are similar.

However, while a custom exception handler handles uncaught
exceptions, a custom error handler handles errors. In addition, a
custom error handler does not result in script termination.

To test the error handler above, add the following code to the end of
errorHandling.php:
echo $a;
echo '
Script is not terminated';

If you run errorHandling.php now, you’ll get the following output:
Oppsss... An error occurred.
Undefined variable: a
Script is not terminated

The custom error handler is first executed to give us a custom error
message when we try to access an undefined variable. After that, the
script continues and the second echo statement is executed.

The custom error handler replaces the default PHP error handler and
gives us a convenient way to modify error messages displayed to
users.

However, it is unable to handle all errors. For instance, it is unable to
handle fatal errors. These errors lead to script termination.

To handle these errors, we need another built-in function called
register_shutdown_function(). This function tells PHP which
function to run when a script is about to be terminated.

To see how this works, add the following code to the end of
errorHandling.php:
function myShutDownHandler(){

$lastError = error_get_last();

if (isset($lastError)) {
echo '
Oppsss... Script terminated.
';

}
}

register_shutdown_function('myShutDownHandler');

Here, we declare a function called myShutDownHandler(). Within
the function, we need to determine whether the script termination is
due to an error. To do that, we use the error_get_last() function.

This function returns NULL if no error has occurred (for instance, if
script termination is due to the user navigating to another page).

On the other hand, if an error has occurred, it returns the last error as
an associative array. The array contains four keys: type (which gives
the error type), message (which gives the error message), file
(which gives the file where the error occurred) and line (which gives
the line where the error occurred).

After calling the error_get_last() function, we use an if
statement to check if an error has occurred. If it has, we echo a
custom error message to users.

After coding the myShutDownHandler() function, we use another
built-in function called register_shutdown_function() to
register it as the shutdown function.

To test our shutdown function, add the following code to the end of
errorHandling.php:
hello();

Here, we try to call a non-existent function. If you load
errorHandling.php now, you’ll get the error message below:
Fatal error: Uncaught Error: Call to undefined
function hello() in ...errorHandling.php:27 Stack
trace: #0 {main} thrown in ...errorHandling.php on
line 27

Oppsss... Script terminated.

The “Fatal error” message is displayed only when display_errors
is set to On (or '1'). If you turn display_errors to Off (or '0'),
only the last line is displayed. This line is generated by our shutdown
function. Got it?

12.3 Putting it All Together
In the previous sections, we talked about exceptions and errors and
how to handle them separately. In this section, let’s consolidate
everything into a single file.

To do that, create a file called debugging.php in your htdocs folder.

Inside this file, we need to first create a function called
myDebugger(); this function serves as the main function for handling
any uncaught exception or error later.

To create the function, add the following code to debugging.php:
function myDebugger($msg, $file, $line, $trace = '')
{

$message = $trace.'

'.$msg.' found on <u>line
'.$line.'</u> in file <u>'.$file.'</u>';

if (ini_get('display_errors')) {
echo $message;

} else {
error_log($message);
header('Location: error.html');

}

}

Here, we define a function called myDebugger() with four
parameters - $msg, $file, $line and $trace. The first three
parameters are for storing the message, file name and line number of
an error or exception respectively. The last parameter is for storing the
stack trace of an exception. All four pieces of information will be
provided by PHP when an error or exception occurs.

Within the function, we concatenate the four parameters and format
the resulting string using HTML, before assigning it to a variable called
$message.

Next, we use an if statement to determine what gets displayed on
our browser. To do that, we use a built-in function called ini_get()
to get the setting for 'display_errors'.

When 'display_errors' is set to On (or '1'), the if condition
evaluates to true and we use an echo statement to display the error
message on our browser. Else, we use another built-in function called
error_log() to log $message to our error log file.

The error log file is a text file that contains all the messages we write
to it using the error_log() function. You can find where the error
log file is located on your system by searching for “error_log” (without
quotes) in the PHP information page, which can be found at
http://localhost/dashboard/phpinfo.php.

http://localhost/dashboard/phpinfo.php

If you are using Windows, the log file should be stored in the
C:\xampp\php\logs folder. However, weirdly, this folder may not exist
and you may have to create it yourself. To do that, simply navigate to
C:\xampp\php and create a logs folder. When an error occurs, PHP
will automatically create the log file when the error_log() function
is called.

After logging our error message, we use the header() function to
redirect users to another page called error.html (which we need to
create separately). With that, the myDebugger() function is
complete.

Next, we need to create an exception handler, an error handler and a
shutdown function. Inside all three functions, we need to call the
myDebugger() function.

To do that, add the following code to debugging.php:
function myExceptionHandler ($e)
{

myDebugger($e->getMessage(), $e->getFile(), $e-
>getLine(), $e->getTraceAsString());
}

function myErrorHandler($errno, $errstr, $errfile,
$errline)
{

myDebugger($errstr, $errfile, $errline);
}

function myShutDownHandler(){

$lastError = error_get_last();

if (isset($lastError)) {
myDebugger($lastError['message'],

$lastError['file'], $lastError['line']);
}

}

The first function - myExceptionHandler() - has a parameter

called $e that is used to store an uncaught exception object. Inside
the function, we use $e to call the built-in getMessage(),
getFile(), getLine() and getTraceAsString() methods and
pass the results as arguments to the myDebugger() function.

Next, we have the myErrorHandler() function. This function has
four parameters - $errno, $errstr, $errfile and $errline.
Inside the function, we pass $errstr, $errfile and $errline as
arguments to the myDebugger() function.

Last but not least, we have the myShutDownHandler() function.
Inside this function, we check if the shutdown is due to an error. If it is,
we pass the elements in the associative array returned by
error_get_last() as arguments to the myDebugger() function.

After coding these three functions, we need to set them as our custom
handlers and shutdown function. To do that, add the following lines to
debugging.php:
set_exception_handler('myExceptionHandler');
set_error_handler('myErrorHandler');
register_shutdown_function('myShutDownHandler');

With that, the debugging.php file is complete; we’ll be using it in our
project later.

In PHP, there are many different approaches to dealing with
exceptions and errors, debugging.php demonstrates one of the many
techniques available.

Regardless of whether an error or an uncaught exception occurs on
our site, this file uses one of the custom handlers or the shutdown
function to call the myDebugger() function. This function displays an
error message on the browser when display_errors is set to On or
'1'. Else, it logs the error message and redirects users to a custom
error page called error.html. Got it?

Chapter 13: Project
Congratulations on making it to the end of the book! We’ve covered a
lot in the preceding chapters.

The best way to learn programming is to work on an actual project. In
this chapter, we’re going to work through a project together. This
project covers numerous concepts you’ve learned in the previous
chapters and allows you to see how everything works together. We’ll
also be covering some new miscellaneous concepts in this project.
Excited? Let’s do it!

13.1 About the Project
This project involves creating a website that works like a mini blog,
where users with an admin account can log in to post. When posting
to the blog, the admin user can choose whether to make the post
available to non-members or members.

Admin and members need to be logged in while non-members do not.
Admin can read and write posts, members can read “Members only”
posts after they log in, and non-members can only read “Public” posts.

When a member or admin logs in to the site, the website retrieves the
last post he/she has read and notifies him/her which posts are new.

To see a demonstration of how the site works, go to
https://learncodingfast.com/php.

13.2 Acknowledgements and Requirements
This project uses HTML, CSS, Javascript, PHP and MySQL. An
understanding of HTML (especially HTML forms) and SQL is essential
for the project. This chapter only covers PHP and will guide you
through all the PHP code used.

All HTML, CSS, Javascript and SQL code will be provided for you.
You can download them at https://learncodingfast.com/php.

However, as the project uses Bootstrap (https://getbootstrap.com/) for

https://learncodingfast.com/php
https://learncodingfast.com/php
https://getbootstrap.com/

the user interface and CKEditor (https://ckeditor.com/ckeditor-4/) for
the text editor, their code will not be provided. Instead, links will be
provided in the <head> element to include these files from their
respective content delivery networks (CDN). This means that you
need an internet connection when running the code in the project.

Certain instructions (such as creating a database and user account)
provided here are specifically for XAMPP. If you are not using
XAMPP, you’ll have to refer to the software’s documentation for
specific instructions.

Last but not least, this project uses PHP 5.5 and above. If you have
just downloaded XAMPP, the PHP interpreter bundled with it is at
least PHP 7.

13.3 Structure of the Project
The main folder of the project is phpproject.
Inside this main folder, we have eight files: admin.php, error.html,
index.php, logout.php, read.php, signup.php, UI_include.php and
write.php. These files are responsible for the user interface of the
blog.

Besides the eight files, we have a sub-folder called includes.

Inside includes, we have three files: loadclasses.php, header.html
and debugging.php.

We also have three sub-folders: process (contains files used for
processing HTML forms), classes (contains files where we define our
classes) and css (contains files with CSS code).

13.4 Creating Database, User Account and
Tables
Before we begin working on the PHP code, we need to create the
database, tables and user account.

First, ensure that you have started XAMPP and the Apache and
MySQL servers. Next, proceed to

https://ckeditor.com/ckeditor-4/

http://localhost/phpmyadmin/index.php and follow the instructions in
Chapter 11.5 to create a database called “project”.
Next, create a user with the following information for the “project”
database:

User Name: project_admin

Host Name: localhost

Choose your own desired password for the user and click “Go” to
create the user.

Once that is done, click on the SQL tab at the top of the page and
copy the following SQL code into the editor. This code can be
downloaded at https://learncodingfast.com/php.
USE project;

CREATE TABLE IF NOT EXISTS members (
username VARCHAR(100) PRIMARY KEY,
password VARCHAR(255) NOT NULL,
is_admin BOOLEAN DEFAULT false,
last_viewed int DEFAULT 0

);

CREATE TABLE IF NOT EXISTS posts(
id INT AUTO_INCREMENT PRIMARY KEY,
post_date TIMESTAMP DEFAULT NOW() NOT NULL,
username VARCHAR(100) NOT NULL,
title VARCHAR(255) NOT NULL,
post TEXT NOT NULL,
audience INT NOT NULL,
CONSTRAINT FOREIGN KEY (username) REFERENCES

members(username) ON DELETE CASCADE
);

The code above creates two tables, “members” and “posts”, for the
“project” database. Click on “Go” to execute the code. Once that is
done, we are ready to work on the PHP code.

http://localhost/phpmyadmin/index.php
https://learncodingfast.com/php

13.5 Editing The classes Folder
First, navigate to your htdocs folder and paste the unzipped
phpproject folder into it. Next, launch
http://localhost/phpproject/index.php in your browser. If you see the
page below, all is good.

Close your browser and navigate to the
htdocs\phpproject\includes\classes folder on your computer. You
should see five PHP files inside.

13.5.1 Helper.php
We’ll start with Helper.php. Open this file in Brackets; you’ll see that
we’ve created a class called Helper.

This class has no properties and constructor. Inside the class, our job
is to implement five public methods - passwordsMatch(),
isValidLength(), isEmpty(), isSecure() and
keepValues().

http://localhost/phpproject/index.php

Let’s start with the passwordsMatch() method. This method has
two parameters, $pw1 and $pw2. In this project, to keep our code
compatible with older versions of PHP, we will not be using type
declaration for functions and methods. With this in mind, try declaring
the passwordsMatch() method yourself.

Next, within the method, we need to check if the values of the two
parameters are equal. If they are, we return true. Else, we return
false. Try doing this yourself. Hint: You need to use an if-else
statement. Once you are done with the if-else statement, the
passwordsMatch() method is complete.

Next, let’s move on to the isValidLength() method. This method
has three parameters - $str, $min and $max.

$min has a default value of 8, while $max has a default value of 20.
You can refer to Chapter 7.1 if you are not familiar with default values
for functions (and methods).

Within the method, we need to check if the length of $str is smaller
than $min or greater than $max. If it is, we return false. Else, we
return true.

Try coding the method yourself. Hint: You can use the built-in function
strlen() to get the length of $str.

After the isValidLength() method, we have the isEmpty()
method. This method has one parameter, $postValues, which
stores an array. The method checks if any of the elements in the array
is an empty string.

Inside the method, we need to use a foreach loop to loop through
each element in $postValues and use an if statement to check if
the element equals an empty string. If it equals, we return true.

After looping through all the elements, if no empty string is found, we
return false. In other words, we return false outside the foreach
loop.

Try coding this method yourself. You can refer to Chapter 6.3.5 for

help on using foreach loops.

Next, we have the isSecure() method. This method has one
parameter - $pw - and checks if $pw contains at least one lowercase
character, one uppercase character and one digit. To do so, we need
to use regular expressions. A regular expression allows us to translate
the requirements above (written in English) into an expression that
PHP can understand.

All regular expressions must start and end with a delimiter. This
delimiter can be any non-alphanumeric, non-backslash and non-
whitespace character. Often used delimiters include forward slashes
(/), hash signs (#) and tildes (~). We’ll use tildes in our code.

The regular expression for “at least one lowercase character” is ~[a-
z]+~, where ~ is the delimiter, [a-z] represents the set of lowercase
characters and + represents “at least one”.

The regular expression for “at least one uppercase character” is ~[A-
Z]+~ and that for “at least one digit” is ~[0-9]+~.

To check if $pw satisfies the regular expressions above, we need to
use a built-in function called preg_match(). This function accepts
two arguments - the regular expression and the string that we want to
check. The regular expression is passed as a string to the function.

To check if $pw contains at least one lowercase character, we write

preg_match("~[a-z]+~", $pw)

This returns true if $pw contains at least one lowercase character.
Else, it returns false.

Our isSecure() method needs to apply the preg_match()
function three times to check if all three requirements are met. If all
three are met, it returns true. Else, it returns false. Try doing this
yourself.

Done?

Last but not least, let’s move on to the most complicated method in
the Helper class. This method is used to preserve user input in a

form when the form is not processed successfully (you can refer to
Chapter 8.1.4 for more details). To do that, we need to prefill the form
with the user’s previous input when the form reloads.

To prefill textboxes, we use the value attribute. For instance,

<input type="text" value = "Hello">

prefills a textbox with “Hello”.

To prefill textareas, we enclose the text between the <textarea>
opening and closing tags. For instance,
<textarea>Hello</textarea>

prefills a textarea with “Hello”.

To preselect drop-down lists, we add the word “selected” to the
selected option. For instance,
<select>

<option value = 'P'>Public</option>
<option value = 'M' selected>Members

Only</option>
</select>

preselects the “Members Only” option.

Our job now is to write a method to prefill/preselect user input for us.
This method is called keepValues() and has three parameters -
$val, $type and $attr.

$val represents the value submitted by the user. For textboxes and
textareas, the value submitted is the text entered into the respective
form elements. For drop-down lists, the value submitted is the string
assigned to the value attribute of the selected option. For instance, in
the drop-down list above, if the second option is selected, the value
submitted is 'M' (not “Members Only”).

$type represents the type of form element.

$attr is only applicable for drop-down lists and has a default value
of '' (an empty string). It represents the string assigned to the value

attribute of a drop-down list’s option. For instance, for the drop-down
list above, $attr is 'P' for the first option and 'M' for the second.

Try declaring this method yourself.

Next, inside the method, we have the following switch statement:

switch ($type){
case 'textbox':

echo "value = '$val'";
break;

case 'textarea':
//Add code here

case 'select':
//Add code here

default:
echo '';

}

This statement uses the value of $type to determine what string to
echo. The first case has been completed for you. Based on the
description above, try completing the other two cases yourself by
echoing a suitable string for the respective form elements.

Hint: Refer to the underlined text for each HTML form element in the
description above.

For the 'select' case, you need to use an if statement to compare
the value of $val (which is the value submitted by the user) with
$attr (which is the string assigned to the value attribute of an
option) to decide whether to echo anything for a particular option. Got
it?

You may need to read through this section more than once to
complete this switch statement.

Once you are done with the switch statement, the keepValues()
method is complete and so is the Helper class. Remember to close
the braces for the switch statement, the keepValues() method
and the class itself.

13.5.2 Database.php
Next, let’s move on to the Database.php file. Inside this file, we’ve
created a class called Database with three constants
(SELECTSINGLE, SELECTALL and EXECUTE) and one private
property ($pdo). In addition, we have a constructor that is used to
create a new PDO object.

You need to modify two things in the constructor. First, on line 13, you
need to change “Your Password” to your actual password.

Next, notice that $pdo is a property of the Database class? We
learned in Chapter 9.2 that to access any property of a class, you
need to use the $this keyword inside the class.

Hence, on line 13, you need to change
$pdo = …

to
$this->pdo = …

The same applies to line 14. Try doing this yourself. Once that is
done, the constructor is complete.

Next, we need to add a public method called queryDB() to the
Database class. To code this method, you need to be familiar with
using prepared statements in PHP. You can refer to Chapter 11.4 for
reference if you are not familiar.

The queryDB() method has three parameters, $sql, $mode and
$values.

$sql represents the SQL statement to be executed, $mode indicates
whether the method needs to fetch any row(s) from the database and
$values, which has a default value of array() (i.e., an empty
array), is used for binding variables to the placeholders in $sql.

Try declaring the method yourself.

Inside the method, we need to use the $pdo property (reminder: you

access it using $this->pdo) to prepare the SQL statement ($sql)
and assign the result to a variable called $stmt. Try doing this
yourself.

Next, we need to bind values to the placeholders in the SQL
statement. The placeholders and values for binding are passed as a
two-dimensional array ($values) to the method. Refer to Chapter
5.3.1 if you are not familiar with multidimensional arrays.

Suppose the placeholders are :username and :password and the
variables to bind are $uname and $pwd respectively, users need to
pass the following array to the queryDB() method:

$values = array(
array(':username', $uname),
array(':password', $pwd)

);

To process this array, we use the foreach loop below:

foreach($values as $valueToBind){
$stmt->bindValue($valueToBind[0],

$valueToBind[1]);

}

When this loop runs for the first time, the array (':username',
$uname) gets assigned to $valueToBind. Inside the loop, we use
the bindValue() method to bind $uname ($valueToBind[1]) to
':username' ($valueToBind[0]).

When the loop runs for the second time, we use the bindValue()
method to bind $pwd to ':password'. Got it?

Copy the foreach loop above into the queryDB() method and make
sure you understand it before proceeding.

After binding values to placeholders, we need to use $stmt to call the
execute() method. Try doing this yourself.

Finally, we need to determine if there are any values to be fetched.

We do that using the second parameter - $mode.

$mode can take one of three constants - SELECTSINGLE,
SELECTALL or EXECUTE. These three constants were defined in the
class previously. We use an if statement to determine whether we
should fetch any results. The if statement works similar to the
pseudocode below:
if ($mode is not equal to SELECTSINGLE, SELECTALL
and EXECUTE){

throw an Exception

using 'Invalid Mode' as the error message
}else if ($mode equals SELECTSINGLE){

use $stmt to call the fetch(PDO::FETCH_ASSOC)
method

and return the result using the return keyword
}else if ($mode equals SELECTALL){

use $stmt to call the fetchAll(PDO::FETCH_ASSOC)
method

and return the result using the return keyword

}

First, we check if the value of $mode is valid (i.e., it must be either
SELECTSINGLE, SELECTALL or EXECUTE).

Next, we check if $mode is SELECTSINGLE or SELECTALL and use
the $stmt variable to call the fetch(PDO::FETCH_ASSOC) or
fetchAll(PDO::FETCH_ASSOC) method respectively. We then use
the return keyword to return the results fetched.

Try converting the pseudocode to PHP code yourself.

Hint:

To access the constants defined in the Database class, you need to
use the self keyword or the class name followed by the :: operator.
For instance, to access EXECUTE, you can write

Database::EXECUTE. Refer to Chapter 9.7 for reference on using
constants in classes.

To throw an exception, you create a new Exception object and pass
the error message to the constructor. Refer to Chapter 12.1.3 for
reference on throwing exceptions.

Once you are done with the if statement, the queryDB() method is
complete and so is the Database class.

13.5.3 BlogReader.php
Now, let’s proceed to the BlogReader class. This class has two
constants, READER and MEMBER, with values 1 and 2 respectively. In
addition, it has two protected properties $db and $type. The
constructor of the class has been coded for you.
public function __construct(){

$this->db = new Database();
$this->type = BlogReader::READER;

}

This constructor initializes the values of $db and $type.

Now, we need to add a method called getPostsFromDB() to the
class. This method is public and has no parameter; try declaring it
yourself.

A blog reader refers to readers of the blog who are not logged in.
Readers who are not logged in can only read posts from the “posts”
table where the “audience” column has a value smaller than or equal
to 1. Hence, inside the getPostsFromDB() method, we need to use
the following statement to query the “posts” table:
$sql = "SELECT id, unix_timestamp(post_date) as
`post_date`, username, title, post, audience FROM
posts WHERE audience <= :audience ORDER BY id DESC";

Add the statement above to the getPostsFromDB() method; we’ll
use the queryDB() method to execute it later.

This statement has one placeholder :audience.

Based on what we mentioned when we coded the Database class,
we need to declare a two-dimensional array and use it to bind a value
to the placeholder. This is done with the following statement:
$values = array(

array(':audience', $this->type)
);

Here, we declare a two dimensional array called $values with one
inner array - (':audience', $this->type).

We use this inner array to bind the $type property to the :audience
placeholder. As we’ve previously assigned BlogReader::READER
(which equals 1) to the $type property in the constructor, we are
essentially binding the value 1 to the :audience placeholder. Got it?

Add the $values array above to the getPostsFromDB() method.
Next, we need to use the Database object ($db) to call the
queryDB() method in the Database class. To do that, we use the
statement below:
$result = $this->db->queryDB($sql,
Database::SELECTALL, $values);

Here, we use $this->db to access $db as it is a class property.
After accessing $db, we use it to call the queryDB() method,
passing the SQL statement ($sql), the mode
(Database::SELECTALL) and the $values array to the method.

The mode is Database::SELECTALL as we are retrieving more than
one row from the “posts” table. Next, we assign the result returned to
a variable called $result.

Add the statement above to the getPostsFromDB() method.

Finally, we need to check if there are any rows returned by the
queryDB() method. To do that, we check if there are any elements in
$result. If there aren’t, we return false. Else, we return the
$result array. Try writing this if statement yourself.

Hint: You can use the count() function to get the number of
elements in $result.

Once that is done, the getPostsFromDB() method is complete and
so is the BlogReader class. Read through the getPostsFromDB()
method carefully and make sure you understand it before proceeding;
we’ll be coding many methods similar to it later.

13.5.4 BlogMember.php
Now, let’s write a class that extends the BlogReader class.

Open BlogMember.php and create a new class called BlogMember.
This class extends the BlogReader class and has a private
property called $username.

Try declaring the class yourself.

Inside the class, we have a constructor that has one parameter -
$pUsername.

Inside the constructor, we need to call the parent class constructor to
initialize the inherited property $db. Next, we need to assign
$pUsername to the $username property and
BlogMember::MEMBER (this constant is inherited from the
BlogReader class) to the inherited property $type.

Try implementing the constructor yourself. Hint: You need to use the
parent keyword, followed by the :: operator, to call the parent class
constructor.

Got it? Good! After you have implemented the constructor, you need
to implement six more methods. The methods are:
public function isDuplicateID()
public function insertIntoMemberDB($pPassword)
public function isValidLogin($pPassword)
private function getLatestPostID()
public function updateLastViewedPost()
public function getLastViewedPost()

Let’s start with the isDuplicateID() method. This method is
public and has no parameter. It is called whenever a new user signs
up and returns true if the username selected by the new user already
exists in the “members” table. Try declaring the method yourself.

Inside the method, we need to execute the following SQL statement:
SELECT count(username) AS num FROM members WHERE
username = :username

This statement returns 0 if the username bound to :username is not
found.

Try using the queryDB() method in the Database class to execute
this SQL statement. You need to bind the $username property to
:username and use the Database::SELECTSINGLE mode (as we
are only selecting one row from the database) to call the queryDB()
method.

Try doing this yourself. You can refer to the getPostsFromDB()
method in the BlogReader class for reference on using the
queryDB() method. Got it?

Once that is done, assign the result returned by queryDB() to a
variable called $result.

Next, use an if statement to check if $result['num'] is equal to
zero. If it is, return false. Else, return true.

Try coding this method yourself.

Once you have completed the isDuplicateID() method, we can
move on to the insertIntoMemberDB() method.

This method is public and has one parameter - $pPassword. It is
used to insert a new row into the “members” table when a new user
signs up.

$pPassword stores the password entered by the user when he/she
submits the sign-up form.

Inside the method, we need to use the queryDB() method with the

Database::EXECUTE mode (as we are not fetching any data from
the database) to execute the following SQL statement:
INSERT INTO members (username, password) VALUES
(:username, :password)

To execute this statement, we need to bind $username (the class
property) to :username and $pPassword (the parameter) to
:password.

However, as $pPassword stores the password selected by our user,
we should not store it in the database in its original form. Instead, we
should hash it first. Hashing is similar to encrypting and can be done
using a built-in function in PHP called password_hash(). This
function is available from PHP 5.5 onwards and accepts two
arguments - the string to hash and the algorithm to use.

The algorithm to use can be any of the predefined constants found at
https://www.php.net/manual/en/password.constants.php.

In our project, we’ll use PASSWORD_DEFAULT as the constant. This
constant indicates that we’ll use the default algorithm in PHP. To hash
$pPassword, we use the code below:

password_hash($pPassword, PASSWORD_DEFAULT)

Hence, to bind values to the :username and :password
placeholders in our SQL statement, we use the $values array below:

$values = array(
array(':username', $this->username),
array(':password', password_hash($pPassword,

PASSWORD_DEFAULT))
);

Try using this array, the Database::EXECUTE constant and the SQL
INSERT statement above to call the queryDB() method. Once that is
done, the insertIntoMemberDB() method is complete.

There is no need to return any result for this method as the
queryDB() method does not return any result when the mode is

https://www.php.net/manual/en/password.constants.php

Database::EXECUTE.

Done? Great!

Let’s move on to the isValidLogin() method. This method is
public and has one parameter - $pPassword. It checks if the
username and password entered by the user are valid when he/she
tries to log in.

Inside the method, we need to use the queryDB() method to execute
the following SQL statement:
SELECT password FROM members WHERE username =
:username

To do that, you need to bind the $username property to :username
and use the Database::SELECTSINGLE mode (as we are only
selecting one row from the database) to call the queryDB() method.

Once that is done, assign the result to a variable called $result.

Try doing this yourself.

Next, we need to check if $result['password'] is set.

$result['password'] is set only if the fetch() method in
queryDB() manages to fetch the password. If there is no user with
the username stated in the SQL query, $result['password'] will
not be set.

Besides checking if $result['password'] is set, we also need to
check if the password entered by the user matches the password
fetched from the database.

Recall that the password stored in the database is hashed and no
longer in its original form?

To check if the hashed password matches the password entered by
the user, we need to use another built-in function called
password_verify(). This function accepts two arguments and
returns true if the first argument matches the second. The second
argument has to be a password hashed using the password_hash()

function.

In our isValidLogin() method, to determine if the two passwords
match, we use the following if statement:

if (isset($result['password']) &&
password_verify($pPassword, $result['password']))

return true;
else

return false;

Add the statement above to the isValidLogin() method and the
method is complete.

Great! Let’s proceed to the getLatestPostID() method. This is a
private method with no parameters and will be used in the
updateLastViewedPost() method later. Try declaring it yourself.

Inside the method, we need to use the queryDB() method to execute
the following SQL statement:
SELECT max(id) AS max FROM posts

Decide on the appropriate mode to use for this SQL statement and try
calling the queryDB() method yourself. Note that for this SQL
statement, there is no need to pass any array to the queryDB()
method as the statement does not contain any placeholder.

Once you have executed the queryDB() method, assign the result to
a variable called $result.

The SQL statement above returns NULL if there is no post in the
“posts” table.

Hence, we need to first check if $result['max'] is set. If it is, we
return its value. Else, we return 0. Try doing this yourself. Once this is
done, the getLatestPostID() method is complete and we can
move on to the updateLastViewedPost() method.

The updateLastViewedPost() method is public and has no
parameters. Try declaring it yourself.

Inside the method, we need to update the “last_viewed” column of the
“members” table to reflect the latest post viewed by a member.
Whenever a member logs into our website, the “last_viewed” value of
that member will be updated to the id of the latest post in the “posts”
table.

This id is given by the getLatestPostID() method we coded
earlier. To use this method, add the following line to the
updateLastViewedPost() method:

$max = $this->getLatestPostID();

Here, we use the $this keyword to call the getLastestPostID()
method and assign its result to $max. Next, we need to use the
queryDB() method to execute the following SQL statement:

UPDATE members SET last_viewed = :max WHERE username
= :username

To execute this statement, we need to bind the $username property
to :username and the variable $max to :max. In addition, we need to
decide on the appropriate mode to use when calling queryDB().

Try doing this yourself. Once this is done, the method is complete.

Finally, we move on to the getLastViewedPost() method. This
method is public and has no parameters. It uses the queryDB()
method to execute the following SQL statement:
SELECT last_viewed FROM members WHERE username =
:username

To execute this statement, we need to bind the $username property
to :username and decide on the appropriate mode to use when
calling the queryDB() method. Try doing this yourself and assign the
result to a variable called $result.

Next, we need to check if $result['last_viewed'] is set. If there
is no user with the username stated in the SQL query,
$result['last_viewed'] will not be set.

If $result['last_viewed'] is set, we return its value. Else, we

return 0.

Try doing this yourself. Once this is done, the
getLastViewedPost() method is complete and so is the
BlogMember class.

13.5.5 Admin.php
We are left with one more class to code - the Admin class.

The Admin class has two private properties - $db and $username.

Inside the class, we have a constructor with one parameter -
$pUsername. This constructor initializes $username with
$pUsername and $db with a new Database object. Try declaring the
class and properties and implement the constructor yourself.

Next, we have a public method called isValidLogin() that has
one parameter - $pPassword. This method is very similar to the
isValidLogin() method in the BlogMember class except that it
executes the following SQL statement:
SELECT password FROM members WHERE username =
:username AND is_admin = true

Try coding this method yourself.

Once that is done, we can move on to the final method -
insertIntoPostDB().

This method is public and has three parameters - $title, $post
and $audience.

Inside the method, we use the queryDB() method to execute the
following SQL statement:
INSERT INTO posts (username, title, post, audience)
VALUES (:username, :title, :post, :audience)

You need to bind the $username property to :username and the
parameters $title, $post and $audience to :title, :post and
:audience respectively. In addition, you need to choose the correct

mode for queryDB().

Try coding this method yourself.

Done? Great! All our classes are now complete. We are ready to
move on to the process folder.

13.6 Editing The process Folder
The files in the process folder are for processing HTML forms.

13.6.1 p-index.php
We’ll start with p-index.php. This file is for processing index.php,
which contains a form for members to log in to read “Members Only”
posts.

index.php has two input boxes named “username” and “password”
and one button named “submit”. If an error occurs when processing
index.php, the page echoes an error message stored in a variable
called $msg.

If you open p-index.php (inside the process folder), you’ll see that
the code has already been completed for you. This is done so that you
can refer to this file when working on other processing files later. Let’s
run through the code together.

First, we declare a variable called $h and assign a new Helper object
to it. Next, we declare two variables $msg and $username and assign
an empty string to each of them.

After declaring and initializing the variables, we are ready to process
the form in index.php. We use the following if statement to check if
the “submit” button has been clicked.
if (isset($_POST['submit']))
{
}

Inside the if block, we first assign $_POST['username'] to
$username. We need to do this as we’ll be using $username in
index.php later.

Next, we use an if-else statement to check if users have entered
data into both the “username” and “password” input boxes.

To do that, we use $h to call the isEmpty() method in the Helper
class. This method accepts an array that contains all the variables we
want to check. We pass the following array to the method:
array($username, $_POST['password'])

If any of the elements in the array is an empty string, the isEmpty()
method returns true. When that happens, the if block is executed
and the string 'All fields are required' is assigned to $msg.

On the other hand, if none of the elements are empty, the else block
is executed.

Inside the else block, we create a BlogMember object called
$member. Next, we have another if-else statement. This inner if-
else statement uses the $member object to call the
isValidLogin() method in the BlogMember class.

If the method returns false, the condition

!$member->isValidLogin($_POST['password'])

evaluates to true (as !false equals true) and the if block is
executed. The string 'Invalid Username or Password' will
then be assigned to $msg.

On the other hand, if the method returns true, the else block is
executed. Within this else block, we assign $username to a session
variable called $_SESSION['username'] and use the header()
function to redirect users to read.php. Once that is done, the p-
index.php page is complete.

Go through p-index.php carefully and make sure you understand it
before proceeding. Got it? Great!

13.6.2 p-admin.php

Let’s move on to the p-admin.php file now. This file is for processing
admin.php, which contains a form for admin to log in.

admin.php has two input boxes named “username” and “password”
and one button named “submit”. If an error occurs when processing
admin.php, the page echoes an error message stored in a variable
called $msg.

As you may have guessed, p-admin.php is very similar to p-
index.php. Here’s what we need to do in p-admin.php:

First, declare and initialize $h, $msg and $username (similar to what
was done in p-index.php).

Next, check if the “submit” button has been clicked. If it has, assign
$_POST['username'] to $username.

Next, ensure that all input boxes are not empty.

If any of the boxes are empty, assign an appropriate error message to
$msg. Else, create an Admin object and use it to call the
isValidLogin() method. (Refer to the Admin class to find out what
needs to be passed to the constructor and the isValidLogin()
method when calling them.)

If isValidLogin() returns false, assign an appropriate error
message to $msg to inform users that the login credentials are invalid.
Else, assign $username to $_SESSION['username']. In addition,
declare a session variable called $_SESSION['is_admin'] and
assign true to it. Finally, redirect users to write.php using the
header() function.

Got it? Try coding p-admin.php yourself. You can refer to p-
index.php for reference.

Once you are done, we are ready to move on to p-signup.php.

13.6.3 p-signup.php
p-signup.php is for processing signup.php, which contains a form for
members to sign up.

To keep this project short, we’ll only create a sign-up form for blog
members, not for admin. We’ll learn to convert a blog member to an
admin later using phpMyAdmin.

The sign-up form for blog members (signup.php) has three input
boxes named “username”, “password” and “confirm_password” and
one button named “submit”. If an error occurs when processing
signup.php, the page echoes an error message stored in a variable
called $msg.

Here’s what we need to do in p-signup.php:

First, declare and initialize three variables $h, $msg and $username
(similar to what was done in p-index.php).

Next, check if the “submit” button has been clicked. If it has, we first
assign $_POST['username'] to $username. Next, we need to
ensure the following:

1. All input boxes in signup.php have been filled out
2. $username has a length of between 6 and 100 characters

(inclusive)
3. $_POST['password'] has a length of between 8 and 20

characters (inclusive)
4. $_POST['password'] contains at least one lowercase

character, one uppercase character and one digit.
5. $_POST['password'] and

$_POST['confirm_password'] match

If any of the cases above are not met, we assign an appropriate error
message to $msg. Else, we do the following:

Create a BlogMember object and use it to call the
isDuplicateID() method.

If the method returns true, assign an appropriate error message to
$msg, informing users that the username is already in use. Else, use
the BlogMember object to call the insertIntoMemberDB() method
and use the header() function to redirect users to index.php.

Append the query string new=1 to index.php.

Got it? Try coding p-signup.php yourself.

Hint: Refer to p-index.php for help on processing forms. If you are not
familiar with query strings, you can refer to Chapter 8.1.2.

To check the five cases listed above, you can use the isEmpty(),
isValidLength(), isSecure() and passwordsMatch()
methods in the Helper class.

Refer to Helper.php and BlogMember.php to figure out what needs
to be passed to the various methods in the Helper and BlogMember
classes when calling them.

Once you are done with p-signup.php, we can move on to p-
write.php. This file is for processing write.php, which contains a form
for admin to write their posts.

13.6.4 p-write.php
write.php has an input box named “title”, a textarea named “post”, a
drop-down list named “audience” and a button named “submit”. If an
error occurs when processing write.php, the page echoes an error
message stored in a variable called $msg.

If you analyze the code in write.php, you’ll notice that we added a
<script> element after the textarea. This is for replacing the
textarea with a more advanced text editor known as the CKEDITOR
(available for free at https://ckeditor.com/ckeditor-4/). We won’t go into
details on how to use CKEDITOR as it only affects the user interface.
Using CKEDITOR does not affect our PHP code in any way.

Here’s what we need to do in p-write.php:

First, we need to retrieve two session variables -
$_SESSION['username'] and $_SESSION['is_admin'] - and
check if they are set. If either of the session variables is not set, we
know that the user is trying to access write.php without logging in with
an admin account.

https://ckeditor.com/ckeditor-4/

If that’s the case, we use the header() function to redirect them to
admin.php. Else, we do the following:

First, declare and initialize a Helper object called $h. Next, declare
four variables $title, $post, $audience and $msg and assign an
empty string to each of them.

After that, check if the “submit” button has been clicked.

If it has, assign $_POST['title'], $_POST['post'] and
$_POST['audience'] to $title, $post and $audience
respectively.

Next, check that all fields in write.php have been filled out. If there is
an empty field, assign an appropriate error message to $msg.

Else, create an Admin object using $_SESSION['username'] as
the argument. Use this object to call the insertIntoPostDB()
method. (Refer to the Admin class to decide what arguments to pass
to the method.) Once that is done, assign the string 'Message
saved successfully' to $msg.

Clear? Try coding p-write.php yourself. Once you are done, we are
ready to move on to the most complex processing file - p-read.php.

13.6.5 p-read.php
This file is for processing read.php, which is used for displaying posts
to readers. We need to implement two essential features in p-
read.php:

First, depending on whether the user is logged in, we need to display
different posts. If the user is logged in, we display all posts. Else, we
only display “Public” posts. Next, if the user is logged in, we need to
display a “New” icon for posts posted to the database after the user’s
last login.

To achieve the above, open p-read.php and do the following:

First, declare a variable called $h and assign a Helper object to it.
Next, declare a variable called $update and assign false to it.

Last but not least, declare a variable called $is_member and assign
isset($_SESSION['username']) to it.

Here, we use the isset() function to check if the session variable
$_SESSION['username'] is set. If it is (i.e., isset() returns
true), we know that the reader accessing read.php is logged in.

Try doing the above yourself.

Next, we need to use a couple of if-else statements in p-read.php.
The structure is shown below:
if ($is_member){

//Create a BlogMember object and use it to call
the getLastViewedPost() method
}else{

//Create a BlogReader object
}

// Call getPostsFromDB() method

if ($posts == false){
//include the blankcard.html file

}else{
//use a foreach loop to process the elements in

$posts
//include the messagecard.php file

}

if ($is_member)
{

//include the logout.html file

if ($update)
//use the BlogMember object to call the

updateLastViewedPost() method
}

In the first if-else statement, we check if the user is logged in. If the
user is logged in (i.e., $is_member is true), we initialize a
BlogMember object and assign it to a variable called $reader. We

then use $reader to call the getLastViewedPost() method in the
BlogMember class and assign the result to a variable called
$lastPost.

On the other hand, if the user is not logged in, we initialize a
BlogReader object and assign it to $reader.

Try coding this if-else statement yourself. Refer to the respective
classes to find out what needs to be passed to the various methods
when calling them.

Once the if-else statement is complete, we need to use the
$reader object to call the getPostsFromDB() method; this method
is defined in the BlogReader class.

Recall that BlogMember is a subclass of BlogReader? Hence,
regardless of whether $reader is a BlogMember or BlogReader
object, it can access the getPostsFromDB() method. Try calling this
method yourself and assign the result to a variable called $posts.

Next, we need to use a second if-else statement to check if
getPostsFromDB() returned any results.

If there are no results (i.e., $post is false), we want to display the
HTML code in blankcard.html (located in the output_code folder).
To include this file, we use the following statement:
include "output_code/blankcard.html";

Next, inside the else block (if there are results), we use a foreach
loop to loop through $posts.

$posts is a two-dimensional array fetched using the
getPostsFromDB() method in the BlogReader class. This method
uses the queryDB() method in the Database class, which in turn
uses the built-in fetchAll() method in the PDO class. The
fetchAll() method fetches data from a table as a two-dimensional
array, where each element in the array is an array representing a row
from the table.

In our p-read.php file, we assign the data fetched from the “posts”

table to $posts. To process $posts, we can loop through it using the
following foreach loop.

foreach($posts as $result)
{

$msgid = $result['id'];
$title = htmlspecialchars($result['title']);
$post = strip_tags($result['post'], "

<p><a>");
$username =

htmlspecialchars($result['username']);
$postdate =

htmlspecialchars($result['post_date']);

include "output_code/messagecard.php";
}

For each iteration, we assign the array in $posts to $result. Next,
inside the loop, we assign the elements in $result to various
variables.

For instance, we assign $result['title'] to $title. However,
before we do that, we apply the htmlspecialchars() function to
$result['title'] first. The same applies to
$result['username'] and $result['post_date'].

The reason for this is we’ll be displaying the values of these elements
in read.php later. Hence, we have to convert any special characters in
these elements to HTML entities to prevent cross-site scripting. Refer
to Chapter 8.1.6 if you have forgotten what cross-site scripting is.

However, notice that we did not apply the htmlspecialchars()
function to $result['post']?

This is because we want to allow certain HTML tags in
$result['post']. Specifically, we want to allow the ,
, <p>, , , and <a> tags.

To do that, we need to use another built-in function called

strip_tags(). This function strips a string of all HTML tags except
those passed as a second argument to the function. Hence,
strip_tags($result['post'], "<p>
<a>");

strips $result['post'] of all HTML tags except the ones we want.
Got it?

Good! After assigning all the elements in $result to their respective
variables, we use an include statement to include the
messagecard.php file. messagecard.php is stored in the
output_code folder and contains code for displaying the values of
those variables above.

Once that is done, the foreach loop is complete. Based on the code
and description given above, try completing the second if-else
statement yourself.

Once you are done, we can move on to the last if statement. This
statement checks if $is_member is true. If it is, we use an include
statement to include the logout.html file. This file is stored in the
output_code folder and contains HTML code with a logout link. In
addition, we use an inner if statement to check if $update is true.
If it is, we use the $reader object to call the
updateLastViewedPost() method in the BlogMember class.

Try completing this if statement yourself. Once that is done, the p-
read.php file is complete.

Great! You have completed the hardest file in this project; we just
need to tie up some loose ends now.

13.6.6 messagecard.php
First, we need to add some code to the messagecard.php file. This
file is found inside the output_code folder. As mentioned above, this
file contains code for displaying posts retrieved from the “posts” table.

When a user is logged in to our blog, we need to display a “New” icon
in read.php for posts that were posted after the user’s last login.

As posts are displayed using the messagecard.php file, we need to
make some modifications to this file.

To do that, replace the comment (//add PHP code here) in
messagecard.php with the following if statement:

<?php
if ($is_member and $lastPost < $msgid)
{

echo 'NEW';
$update = true;

}
?>

Here, we use an if statement to check if the user is logged in. In
addition, we check if $lastPost is smaller than $msgid.

$lastPost stores the id of the last post viewed by the user. We got
that by calling the getLastViewedPost() method in the first if-
else statement in p-read.php.

$msgid stores the id of the current post in the foreach loop.

If $lastPost is smaller than the id of the current post, we know that
this is a new post. Hence, we use an echo statement to echo a
 tag with the word “NEW”. In addition, we set the value of
$update to true.

$update is used to indicate whether we need to call the
updateLastViewedPost() method (in the last if statement in p-
read.php). If $update is true, we call the method to update the
value of the “last_viewed” column in the “members” table to the latest
post id in the “posts” table.

Got it? Refer to the BlogMember class (BlogMember.php) if you are
not sure how the updateLastViewedPost() method works.

After inserting the if statement, we need to replace some text in
messagecard.php with PHP code. Specifically, we need to replace
“post_title”, “user_name”, “post_date” and “post_text” with the values
of $title, $username, $postdate and $post respectively.

We do that using echo statements. For instance, to replace
“post_title”, we write
<?php echo $title; ?>

Try replacing “user_name”, “post_date” and “post_text” yourself.
However, before replacing “post_date”, you need to convert
$postdate to a string. This is because $postdate currently stores a
UNIX timestamp.

To display $postdate in a more human-readable format, you need to
use the date() function to convert the timestamp to a datetime string.
Try doing this yourself, using 'd-M-Y g:i a' as the first argument
to the function. Refer to Chapter 5.2.2 if you need help with the
date() function.

Once you have updated messagecard.php, the process folder is
complete.

13.7 The includes Folder
We are now ready to discuss the three remaining files in the includes
folder. These three files are header.html, debugging.php and
loadclasses.php.

header.html contains HTML code for the <head> element and has
already been completed for you.

debugging.php contains code for handling errors and exceptions.
This file was explained in detail in Chapter 12.3. Hence, we won’t be
going through it here.

However, in this project, note that we did not try to catch any
exceptions. Instead, we use debugging.php to handle all exceptions.
This is because it is pointless for the site to proceed when an
exception occurs. For instance, if we fail to connect to the database,
the rest of the site will not work. Therefore, it makes sense to simply
use debugging.php to handle the exception.

If an exception or error occurs, debugging.php displays a detailed
message on the browser when display_errors is set to '1' (i.e.

when we are developing the site). When display_errors is set to
'0' (i.e. on a live site), it logs the message and redirects users to
error.html (which is stored in the main phpproject folder).

Last but not least, we have the loadclasses.php file. As the name
suggests, this file is for autoloading classes. Did you notice that in all
the previous files we coded, I asked you to create objects without
asking you to include the relevant class files? For instance, in p-
admin.php, I asked you to create a Helper object without asking you
to include Helper.php.

This will typically lead to a fatal error as each PHP script is unaware of
code written in another PHP script. Hence, p-admin.php is unaware
of the class defined in Helper.php. To prevent that error, we need to
include Helper.php before we create a Helper object.

However, instead of including this file ourselves, PHP provides us with
a convenient alternative known as an autoloader. If we define an
autoloader in our PHP script, whenever we create an object in that
script, the autoloader includes the file for us automatically.

To use an autoloader, we need to ensure that the file name matches
the class name. For instance, if the file name is MyClass.php, the
class defined inside has to be called MyClass.

Besides that, using an autoloader is straightforward. If you open
loadclasses.php, you’ll see that we’ve defined a function called
myAutoloader() that has one parameter - $class. Inside this
function, we use an include_once statement to include the relevant
class file.

INC_DIR is a constant that gives us a direct path to the includes
folder in our project; we’ll talk more about this constant in the next
section.

Inside our myAutoloader() function, we concatenate INC_DIR with
the string 'classes/', the variable $class and the string '.php'
to get a direct path to the respective class files.

For instance, if $class equals 'Helper', the concatenation gives us

the string
INC_DIR.'classes/Helper.php';

which is a direct path to the Helper.php file. We then use the
include_once statement to help us include this file. Got it?

After we code myAutoloader(), we need to use a built-in function
called spl_autoload_register() to register it as the autoloader.

Once this is done, we simply need to include loadclasses.php in all
our PHP scripts and PHP will autoload classes for us whenever we
create an object.

That’s it! We are now ready to go back to the main phpproject folder.

13.8 Editing The phpproject Folder
Inside this folder, we have eight files, seven of which are user
interface files. The seven files are signup.php, admin.php,
write.php, index.php, read.php, logout.php and error.html.
Besides these user interface files, we have a file called
UI_include.php.

13.8.1 UI_include.php
We’ll start with the UI_include.php file. If you open this file, you’ll see
that it has already been completed for you. Let’s go through the code.

Inside the file, we first define a constant called INC_DIR and assign
the string
$_SERVER["DOCUMENT_ROOT"]. "/phpproject/includes/"

to it. $_SERVER['DOCUMENT_ROOT'] is a predefined variable that
stores the document root directory under which the current script is
executing. If you are using XAMPP, this root directory refers to the
htdocs folder.

When we concatenate $_SERVER['DOCUMENT_ROOT'] and
"/phpproject/includes/", we get a direct path to the includes
folder.

If you rename the phpproject folder, you have to edit the path
assigned to INC_DIR accordingly. For instance, if you rename the
folder to myproject, you have to assign
$_SERVER["DOCUMENT_ROOT"]. "/myproject/includes/"

to INC_DIR instead.

Next, we have two include statements for including
loadclasses.php and debugging.php. As mentioned previously, we
use loadclasses.php to autoload our classes and debugging.php to
handle all errors and exceptions. These two files have to be included
in most of our user interface files later.

With that, the UI_include.php file is complete and we are ready to
move on to the user interface files.

13.8.2 User Interface Files
The first is the error.html file. This file contains HTML code for
displaying a custom message to users when an error or exception
occurs on our site. It has already been completed for you.

Next, we have five very similar files - admin.php, write.php,
index.php, signup.php and read.php.

Inside each file, we need to add PHP code to do the following: start a
new session and include the UI_include.php and header.html files.

In addition, each of the files contains a HTML form that is processed
by the file itself. To process the form, we need to use an include
statement to add the relevant processing file to the user interface file.
For instance, to process the form in admin.php, we need to include
the p-admin.php file.

The above has already been done for you in admin.php.

With reference to the code in admin.php, try doing the same for
write.php, index.php, signup.php and read.php. In each case, note
that the UI_include.php file must be included before the other two
files (as we need INC_DIR to be defined before using it). In addition,
you need to change the processing file accordingly. Got it?

Great! Once you are done with the above, we need to make some
modifications.

For signup.php, there is no need to start a new session as p-
signup.php does not use any session variable. Hence, we should
remove the session_start(); statement from signup.php.

Next, for read.php, as p-read.php includes code for displaying output,
we should not include it at the start of the file. Instead, we should
include it between the <body>...</body> tags.

Last but not least, for signup.php, admin.php, index.php and
write.php, we need to replace the text “Error Message Here” (without
quotes) in the HTML code with the actual error message stored in a
variable called $msg. To do that, we use the PHP code below:

<?php echo $msg; ?>

Try doing all the modifications above yourself.

Now, we need to make one more modification to index.php. If you
refer to p-signup.php, you’ll notice that we added the query string
new=1 when directing users to index.php after a successful sign-up,
we want to make use of this query string inside index.php.

To do that, add the following code to index.php after the line <div
class="form">:

<div class = "new">
<?php

if (isset($_GET['new']))
echo 'ACCOUNT CREATED SUCCESSFULLY';

?>
</div>

Here, we use the query string to check if users are directed to
index.php after a successful sign-up. If yes, we echo the string
'ACCOUNT CREATED SUCCESSFULLY'.

Got it? Great. Let’s move on to the last user interface file -
logout.php. As the code for logging out is very straightforward, we did
not create a separate file for processing logout.php. Instead, we’ll

add the processing code to logout.php directly.

To do that, we need to do a few things in logout.php. First, we need
to resume the existing session (using session_start()) and
destroy all variables in that session (using session_destroy()).
Next, we need to include the UI_include.php and header.html files.

Try doing the above yourself. Once that is done, load the page
http://localhost/phpproject/logout.php in your browser; you’ll notice two
identical links that say, “Click here to log in again”.

This is not a mistake. The first link points to admin.php while the
second points to index.php.

If you refer back to write.php and study the code carefully, you’ll
notice that we added a query string (admin=1) to the logout URL near
the end of the page. This query string tells us that the person logging
out is an admin user.

When that happens, we want to display the first logout link in
logout.php. On the other hand, if the person is not an admin user
(i.e., there is no query string), we want to display the second logout
link. Try using an if-else statement in logout.php to achieve the
above. You can refer to index.php for help on using query strings.

Once that is done, the logout.php file is complete.

The project is almost complete at this point. In fact, if you have done
everything correctly, you can load
http://localhost/phpproject/signup.php and everything will work.

Try entering your desired username into the first input box and click
“Submit”. What do you notice? You should get an error message that
says “All fields are required”. Notice that the username you entered
into the first input box is gone?

The last part of our project involves adding PHP code to your user
interface files to ensure that values entered into forms are maintained
if there’s an error processing the form.

Recall that we wrote a method called keepValues() inside the
Helper class for this purpose? Suppose we have a Helper object

http://localhost/phpproject/logout.php
http://localhost/phpproject/signup.php

called $h, here’s how we use the method:

If we have a form with a textbox named “tb” and we store the value
submitted for “tb” as $tb, we write

<input type="text" name="tb" <?php $h-
>keepValues($tb, 'textbox');?> >

If we have a textarea named “ta” and we store the value submitted for
“ta” as $ta, we write

<textarea name = "ta"><?php $h->keepValues($ta,
'textarea'); ?></textarea>

Finally, if we have a dropdrop list named “sl” with two value attributes
“1” and “2”, and we store the value submitted for “sl” as $sl, we write

<select name = "sl">
<option value = '1' <?php $h->keepValues($sl,

'select', '1'); ?>>1</option>
<option value = '2' <?php $h->keepValues($sl,

'select', '2'); ?>>2</option>
</select>

In our project, the names of the variables used to store each input
correspond to the names of the input fields. For instance, $username
stores the input for the textbox named “username”.

Based on the description above, modify index.php, signup.php,
admin.php and write.php so that all values entered, except
passwords, are maintained if there’s an error processing the form. Got
it?

Once the above is done, we need to make some additional changes to
write.php. For most pages, if there’s no error processing the form, the
website automatically loads another page based on the URL we
passed to the header() function.

However, this does not happen for write.php. For this page, after the

admin clicks on the “submit” button, he/she will stay on the same page
regardless of whether data is submitted to the database successfully
or not.

We want to modify write.php so that if data is inserted into the
database successfully, we’ll clear the form so that the admin can write
a new post. In other words, if data is inserted successfully, we do not
want to call the keepValues() method.

To do that, we need to use the variable $msg declared in p-write.php.
Recall that after data is inserted into the database, we assign the
string 'Message saved successfully' to $msg? We can use
this string to decide whether we need to call the keepValues()
method.

The example below shows how it can be done for the first input field
(“title”). The underlined code shows the if condition to use.

<input id = "txttitle" type="text" name="title"
placeholder="Enter Title" autofocus <?php if ($msg
!= 'Message saved successfully') $h-
>keepValues($title, 'textbox'); ?>>

Try doing this for the other input fields.

Once that is done, we’ve completed the project. Congratulations! You
are now ready to test your code to see if everything works as
expected.

13.9 Running the Code
Before running the code, we need to make some changes to php.ini.
Follow the instructions in Chapter 2.1 to locate php.ini and open it in
Brackets. Scroll to the bottom of the page and add the following lines
to it (if you have yet to do so in previous chapters):
error_reporting=E_ALL
display_errors=On
date.timezone=America/New_York

Next, we want to add one more line to php.ini. Specifically, we want to

add a line to prepend debugging.php. Prepending a file means
specifying that we want PHP to process this file before it processes
any other PHP script.

Previously, we used the include statement in UI_include.php to
add debugging.php to our PHP scripts. This works for most errors.
However, it will not work if the file that debugging.php is included in
has syntax errors. If you want debugging.php to work even when
there are syntax errors, you need to prepend the file. To do that, add
the line
auto_prepend_file="
<DOCUMENT_ROOT>/phpproject/includes/debugging.php"

to php.ini, where <DOCUMENT_ROOT> refers to the actual path of your
htdocs folder.

To find this path, load http://localhost/dashboard/phpinfo.php in your
browser and search for “DOCUMENT_ROOT” (without quotes). You’ll
see the path listed beside. You need to replace <DOCUMENT_ROOT>
with the path listed. For instance, if the path is /opt/lampp/htdocs,
the line should be
auto_prepend_file="/opt/lampp/htdocs/phpproject/includes/debugging.php"

The code above may appear as two lines in this book due to the
limited width of the book. Do not break it into two lines, it should be
written as a single line in php.ini. After prepending debugging.php, if
you are using PHP 7.2 and above, you should also turn
track_errors off.

track_errors is a built-in feature in PHP that has been deprecated
since PHP 7.2. However, this feature is set to “On” by default. Leaving
it on may lead to a warning that says “Directive ‘track_errors’ is
deprecated found on line 0 in file Unknown” on some servers. To turn
it off, simply add
track_errors=Off

to the bottom of php.ini. That’s it. You can now save the file and
restart Apache.

http://localhost/dashboard/phpinfo.php

Next, go to UI_include.php and comment out the include statement
for debugging.php. As we have already prepended the file, we
should not include it again.

Next, launch http://localhost/phpproject/signup.php in your browser
and sign up for two new accounts.

Everything works? If yes, congratulations! Give yourself a pat on the
back.

If no, it’s all right. Figuring out what went wrong is a large part of
programming. This, to me, is where the most learning takes place. If
something fails to work, you will likely get an error message. Try to
use the line number and file name given in the error message to figure
out what is wrong.

Alternatively, you can use echo statements to determine which part of
your code works. For instance, if you add an echo statement to line
10 of your code and you don’t see the output, you know that
something has likely gone wrong before line 10. Similarly, if you add
an echo statement to an if block and don’t see the output, you know
that the if block is not executed.

Try finding the error yourself. If you really can’t figure out the issue,
you can check the suggested solution in the phpproject-complete
folder and compare the code with your code. Copy and paste the
functions that you suspect may be causing the error from the
suggested solution to your solution and rerun your code to see if it
works. Study the suggested solution carefully to really understand how
it works. Got it?

Once you manage to find the bug and are able to sign up for two
accounts successfully, you can proceed to convert one of them to an
admin account. To do that, go to http://localhost/phpmyadmin/ and
click on the “project” database. Click on the SQL tab and run the
following SQL statement, replacing YOUR_ADMIN_USERNAME with the
username you want to convert to an admin user:
UPDATE members SET is_admin = 1 WHERE username =
'YOUR_ADMIN_USERNAME';

http://localhost/phpproject/signup.php
http://localhost/phpmyadmin/

Once that is done, you can use the admin account to post to the blog.
To do that, go to http://localhost/phpproject/admin.php to log in as an
admin. Try adding some posts to the blog. Does everything work?

After posting, you can go to http://localhost/phpproject/index.php to log
in as a member (using either account) to read the posts.

Alternatively, you can go to http://localhost/phpproject/read.php
directly to read “Public” posts without logging in.

Play around with the site to see if everything works as expected. If
something does not work, try debugging it. With perseverance, you
can definitely find the error and learn a lot in the process. Have fun!

http://localhost/phpproject/admin.php
http://localhost/phpproject/index.php
http://localhost/phpproject/read.php

	Chapter 1: Introduction to PHP
	1.1 What is PHP?
	1.2 Why Learn PHP?

	Chapter 2: Installing XAMPP
	2.1 Configuring php.ini
	2.2 Important Links
	2.3 Coding our first Web Page

	Chapter 3: Basic PHP Tasks
	3.1 Displaying Outputs
	3.1.1 echo
	3.1.2 print
	3.1.3 Escaping Characters

	3.2 Duplicating Code
	3.2.1 include
	3.2.2 require
	3.2.3 include_once, require_once

	3.3 Redirecting Users

	Chapter 4: Constants, Variables, Data Types and Operators in PHP
	4.1 Constants
	4.2 Variables
	4.3 Basic Data Types in PHP
	4.4 Type Casting
	4.5 Operators in PHP
	4.5.1 The Assignment Operator
	4.5.2 Arithmetic operators
	4.5.3 Combined Assignment Operators
	4.5.4 Increment/Decrement operators

	Chapter 5: More Data Types in PHP
	5.1 Strings
	5.1.1 Commonly used String Functions in PHP

	5.2 Using Strings to Represent Dates
	5.2.1 The strtotime() function
	5.2.2 The date() function
	5.2.3 Setting the timezone

	5.3 Arrays
	5.3.1 Creating an Array
	5.3.2 Displaying the Content of Arrays
	5.3.3 Adding Elements to Arrays
	5.3.4 Deleting Elements from Arrays
	5.3.5 Commonly used Array Functions in PHP

	Chapter 6: Control Structures in PHP
	6.1 Comparison operators
	6.2 Logical Operators
	6.3 Control Structures
	6.3.1 If Statement
	6.3.2 Ternary Operator
	6.3.3 Switch Statement
	6.3.4 For Loop
	6.3.5 Foreach Loop
	6.3.6 While Loop
	6.3.7 Do-while Loop

	6.4 Other Topics in Flow Control
	6.4.1 Booleans
	6.4.2 Break, Continue
	6.4.3 Alternative Syntax
	6.4.4 Displaying HTML code

	Chapter 7: Functions
	7.1 Defining our own Functions
	7.2 Type Declaration

	Chapter 8: PHP Superglobals
	8.1 PHP Form Handling
	8.1.1 The isset() function
	8.1.2 get and $_GET
	8.1.3 post and $_POST
	8.1.4 Keeping The Values in The Form
	8.1.5 Filtering User Input
	8.1.6 Cross-Site Scripting

	8.2 $_SESSION
	8.3 $_COOKIE

	Chapter 9: Object-Oriented Programming
	9.1 What is OOP?
	9.2 Writing our own class
	9.3 Creating an Object
	9.4 Accessing Class Members
	9.5 Access Modifiers
	9.6 Getter and Setter
	9.7 Printing a String Representation of the Object

	Chapter 10: Inheritance
	10.1 Writing the Child Classes
	10.2 Creating a Child Class Object
	10.3 Access Modifiers Revisited
	10.4 Overriding

	Chapter 11: Interacting with a Database
	11.1 The PDO library
	11.2 Connecting to the Database
	11.3 SQL Injection
	11.4 Prepared Statements
	11.5 Putting it all Together

	Chapter 12: Managing Errors and Exceptions
	12.1 Handling Exceptions
	12.1.1 What is an exception?
	12.1.2 try-catch-finally
	12.1.3 Throwing Exceptions
	12.1.4 Exception Handler

	12.2 Handling Errors
	12.2.1 What are errors?
	12.2.2 Error Reporting Settings in PHP
	12.2.3 Error Handler and Shutdown Function

	12.3 Putting it All Together

	Chapter 13: Project
	13.1 About the Project
	13.2 Acknowledgements and Requirements
	13.3 Structure of the Project
	13.4 Creating Database, User Account and Tables
	13.5 Editing The classes Folder
	13.5.1 Helper.php
	13.5.2 Database.php
	13.5.3 BlogReader.php
	13.5.4 BlogMember.php
	13.5.5 Admin.php

	13.6 Editing The process Folder
	13.6.1 p-index.php
	13.6.2 p-admin.php
	13.6.3 p-signup.php
	13.6.4 p-write.php
	13.6.5 p-read.php
	13.6.6 messagecard.php

	13.7 The includes Folder
	13.8 Editing The phpproject Folder
	13.8.1 UI_include.php
	13.8.2 User Interface Files

	13.9 Running the Code

