
Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Using Python 2.6 and Python 3.1

Beginning

Python®

James Payne

Beginning

Payne

 $39.99 USA
 $47.99 CANSoftware Development / General

Python
®

Create a robust, reliable, and
reusable Python application

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

As an open source, object-oriented programming language, Python is
easy to understand, extendable, and user-friendly. This book covers
every aspect of Python so that you can get started writing your own
programs with Python today. Author James Payne begins with the most
basic concepts of the Python language—placing a special focus on the
2.6 and 3.1 versions—and he offers an in-depth look at existing Python
programs so you can learn by example. Topics progress from strings,
lists, and dictionaries to classes, objects, and modules. With this book,
you will learn how to quickly and confidently create a robust, reliable,
and reusable Python application.

Beginning Python:

• Introduces the concepts of variables for storing and manipulating data

• Examines files and input/output for reading or writing data

• Reviews examples of often-overlooked features of Python

• Delves into writing tests for modules and programs

• Addresses programming with a graphical user interface in Python

• Places special focus on XML, HTML, XSL, and related technologies

• Explains how to extend Python

• Shares numerical programming techniques

• Offers an inside look at Jython, a version of Python written in Java

James Payne is Editor in Chief of www.developershed.com, a network of high-
technology sites that serves millions of unique visitors every month who are
seeking tutorials, advice, answers, or articles.

Wrox Beginning guides are crafted to make learning programming languages
and technologies easier than you think, providing a structured, tutorial format
that will guide you through all the techniques involved.

Using
Python 2.6

and
Python 3.1

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Related Wrox Books

Python: Create - Modify - Reuse
ISBN: 978-0-470-25932-0
This hands-on book shows how you can efficiently use Python to create robust, real-world applications. You will jump right into
practical Python development so that you can create useful, streamlined scripts that are easy to maintain and enhance, and that
you can immediately put to use in the real world. Each chapter features a complete project that you can use as it currently
exists or modify to suit your particular purposes.

Professional Python Frameworks: Web 2.0 Programming with Django and Turbogears
ISBN: 978-0-470-13809-0
As two of the leading MVC web frameworks for Python, Django and TurboGears allow you to develop and launch sites in a fraction
of the time compared to traditional techniques, and they provide greater stability, scalability, and management than alternatives.
Packed with examples, this book will help you discover a new methodology for designing, coding, testing, and deploying rich web
applications. For both frameworks, you’ll create useful applications that exemplify common Web 2.0 design paradigms and their
solutions. Ultimately, you’ll leverage your Python skills using Django and TurboGears and go from novice to RIA expert.

Beginning Python®: Using Python 2.6 and Python 3.1

Introduction .xxvii

Part I: Dipping Your Toe into Python

Chapter 1: Programming Basics and Strings . 3

Chapter 2: Numbers and Operators . 15

Chapter 3: Variables — Names for Values . 31

Part II: Python Language and the Standard Library

Chapter 4: Making Decisions ... 51

Chapter 5: Functions ... 71

Chapter 6: Classes and Objects ... 93

Chapter 7: Organizing Programs ... 111

Chapter 8: Files and Directories ... 127

Chapter 9: Other Features of the Language .. 143

Chapter 10: Building a Module ... 157

Chapter 11: Text Processing .. 189

Part III: Putting Python to Work

Chapter 12: Testing ... 207

Chapter 13: Writing a GUI with Python ... 227

Chapter 14: Accessing Databases.. 239

Chapter 15: Using Python for XML ... 265

Chapter 16: Network Programming .. 287

Continues

ffirs.indd iffirs.indd i 12/22/09 5:23:49 PM12/22/09 5:23:49 PM

Chapter 17: Extension Programming with C .. 337

Chapter 18: Numerical Programming .. 367

Chapter 19: An Introduction to Django ... 387

Chapter 20: Web Applications and Web Services .. 407

Chapter 21: Integrating Java with Python ... 481

Part IV: Appendices

Appendix A: Answers to the Exercises .. 515

Appendix B: Online Resources.. 549

Appendix C: What’s New in Python 3.1 ... 553

Appendix D: Glossary ... 559

Index .. 569

ffirs.indd iiffirs.indd ii 12/22/09 5:23:49 PM12/22/09 5:23:49 PM

Beginning

Python®

ffirs.indd iiiffirs.indd iii 12/22/09 5:23:50 PM12/22/09 5:23:50 PM

ffirs.indd ivffirs.indd iv 12/22/09 5:23:50 PM12/22/09 5:23:50 PM

Beginning

Python®

Using Python 2.6 and Python 3.1

James Payne

Wiley Publishing, Inc.

ffirs.indd vffirs.indd v 12/22/09 5:23:50 PM12/22/09 5:23:50 PM

Beginning Python®: Using Python 2.6 and Python 3.1
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-41463-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services of a
competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising here from. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Control Number: 2009936814

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without written permission. Python is a registered trademark
of Python Software Foundation. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc. is not associated with any product or vendor mentioned in this book.

ffirs.indd viffirs.indd vi 12/22/09 5:23:50 PM12/22/09 5:23:50 PM

www.wiley.com
www.wiley.com/go/permissions

To my patient and loving wife, Whitney, who believed in me before I did. And to my parents,
Ronnie and Sharon Payne, who raised me to believe I could do anything I put my mind to, even

when I told them I wanted to be Santa Claus. For my brother, Ron, who read my work even when
it was bad, Dorjan, Eric, Clem, and Nick because they know things about me and

will tell them if I don’t include them.

ffirs.indd viiffirs.indd vii 12/22/09 5:23:50 PM12/22/09 5:23:50 PM

ffirs.indd viiiffirs.indd viii 12/22/09 5:23:51 PM12/22/09 5:23:51 PM

About the Author
James Payne (Margate, FL) is Editor-in-Chief of Developer Shed, Inc. and has been writing and
programming since the age of seven years old. Proficient in many languages, he has written over
400 articles covering practically every major programming language. As a contractor, he develops
proprietary software for the financial industry using Python and likes to dabble in Django in his
spare time.

ffirs.indd ixffirs.indd ix 12/22/09 5:23:51 PM12/22/09 5:23:51 PM

ffirs.indd xffirs.indd x 12/22/09 5:23:51 PM12/22/09 5:23:51 PM

Credits
Executive Editor
Carol Long

Project Editor
Ed Connor

Technical Editor
Chris McAvoy

Production Editors
Amy Weintraub and Tim Tate

Copy Editor
Kim Cofer

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Marketing Manager
David Mayhew

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreaders
Scott Klemp and Kristy Eldredge, Word One

Indexer
Ron Strauss

Cover Image
© istockphoto.com/Frank_U

ffirs.indd xiffirs.indd xi 12/22/09 5:23:51 PM12/22/09 5:23:51 PM

ffirs.indd xiiffirs.indd xii 12/22/09 5:23:51 PM12/22/09 5:23:51 PM

Acknowledgments

I would like to acknowledge the gang at Developer Shed: Jack and Jay Kim, whose constant hatred is an
inspiration, Charles Fagundes, who made me an editor and not just a writer, Keith Lee, who provided
coding support, and a special thanks to Jenny Ruggieri, who got me the job that got me this book. Lastly,
I’d like to thank all of the people that worked on the previous editions of this book for laying the
groundwork, and the Editors Carol Long, Jenny Watson, Ed Connor, and Chris McAvoy who helped me
meet deadlines no matter how much I didn’t want to.

I would also like to acknowledge Guido Von Rossum, without whom there would be no language to
write about.

ffirs.indd xiiiffirs.indd xiii 12/22/09 5:23:51 PM12/22/09 5:23:51 PM

ffirs.indd xivffirs.indd xiv 12/22/09 5:23:51 PM12/22/09 5:23:51 PM

Contents

Introduction xxvii

Part I: Dipping Your Toe into Python 1

Chapter 1: Programming Basics and Strings 3

How Programming is Different from Using a Computer 3
Programming is Consistency 4
Programming is Control 4
Programming Copes with Change 5
What All That Means Together 5

The First Steps 5
Installing Python 3.1 on Non-Windows Systems 6
Using the Python Shell 6

Beginning to Use Python — Strings 7
What is a String? 7
Why the Quotes? 7
Why Three Types of Quotes? 8
Using the print() Function 8
Understanding Different Quotes 9

Putting Two Strings Together 11
Joining Strings with the Print() Function 12

Putting Strings Together in Different Ways 12
Summary 13
Exercises 14

Chapter 2: Numbers and Operators 15

Different Kinds of Numbers 15
Numbers in Python 16

Program Files 18
Using the Different Types 19
Basic Math 21
Some Surprises 23

Using Numbers 24
Order of Evaluation 24
Number Formats 25

ftoc.indd xvftoc.indd xv 12/22/09 5:25:31 PM12/22/09 5:25:31 PM

Contents

xvi

Mistakes Will Happen 26
Some Unusual Cases 27

Summary 28
Exercises 29

Chapter 3: Variables — Names for Values 31

Referring to Data — Using Names for Data 31
Changing Data Through Names 33
Copying Data 33
Names You Can’t Use and Some Rules 34

Using More Built-in Types 34
Tuples — Unchanging Sequences of Data 34
Lists — Changeable Sequences of Data 37
Dictionaries — Groupings of Data Indexed by Name 39
Treating a String Like a List 41
Special Types 42

Other Common Sequence Properties 43
Referencing the Last Elements 43
Ranges of Sequences 44
Growing Lists by Appending Sequences 45
Using Lists to Temporarily Store Data 45
Working with Sets 46

Summary 47
Exercises 48

Part II: Python Language and the Standard Library 49

Chapter 4: Making Decisions 51

Comparing Values — Are They the Same? 51
Doing the Opposite — Not Equal 53
Comparing Values — Which One Is More? 54

More Than or Equal, Less Than or Equal 55
Reversing True and False 56
Looking for the Results of More Than One Comparison 56

How to Get Decisions Made 57
Repetition 60

How to Do Something — Again and Again 60
Stopping the Repetition 62

Handling Errors 65
Trying Things Out 65

ftoc.indd xviftoc.indd xvi 12/22/09 5:25:31 PM12/22/09 5:25:31 PM

Contents

xvii

Summary 67
Exercises 69

Chapter 5: Functions 71

Putting Your Program into Its Own File 71
Functions: Grouping Code under a Name 73

Choosing a Name 75
Describing a Function in the Function 75
The Same Name in Two Different Places 76
Making Notes to Yourself 78
Asking a Function to Use a Value You Provide 79
Checking Your Parameters 81
Setting a Default Value for a Parameter—Just in Case 83
Calling Functions from within Other Functions 84
Functions Inside of Functions 86
Flagging an Error on Your Own Terms 87

Layers of Functions 88
How to Read Deeper Errors 88

Summary 89
Exercises 90

Chapter 6: Classes and Objects 93

Thinking About Programming 93
What is an Object? 93
Objects You Already Know 94
Looking Ahead: How You Want to Use Objects 95

Defining a Class 96
How Code Can Be Made into an Object 96
Objects and Their Scope 104

Summary 107
Exercises 108

Chapter 7: Organizing Programs 111

Modules 112
Importing a Module So That You Can Use It 112
Making a Module from Pre-existing Code 113
Using Modules — Starting with the Command Line 115
Changing How Import Works — Bringing in More 118

Packages 118

ftoc.indd xviiftoc.indd xvii 12/22/09 5:25:31 PM12/22/09 5:25:31 PM

Contents

xviii

Modules and Packages 120
Bringing Everything into the Current Scope 120
Re-importing Modules and Packages 121

Basics of Testing Your Modules and Packages 124
Summary 124
Exercises 125

Chapter 8: Files and Directories 127

File Objects 127
Writing Text Files 128
Appending Text to a File 129
Reading Text Files 130
File Exceptions 131

Paths and Directories 131
Exceptions in os 132

Paths 132
Directory Contents 135
Obtaining Information about Files 136
Renaming, Moving, Copying, and Removing Files 137
Example: Rotating Files 138
Creating and Removing Directories 140
Globbing 140

Summary 142
Exercises 142

Chapter 9: Other Features of the Language 143

Lambda and Filter: Short Anonymous Functions 143
Map: Short-Circuiting Loops 144
Decisions within Lists — List Comprehension 145
Generating Iterators for Loops 146
Special String Substitution Using Dictionaries 148
Featured Modules 149

Getopt — Getting Options from the Command Line 149
Using More Than One Process 152
Threads — Doing Many Things in the Same Process 154

Summary 156
Exercises 156

ftoc.indd xviiiftoc.indd xviii 12/22/09 5:25:32 PM12/22/09 5:25:32 PM

Contents

xix

Chapter 10: Building a Module 157

Exploring Modules 157
Importing Modules 159
Finding Modules 159
Digging through Modules 160

Creating Modules and Packages 162
Working with Classes 163

Defining Object-Oriented Programming 163
Creating Classes 163
Extending Existing Classes 165

Finishing Your Modules 166
Defining Module-Specific Errors 166
Choosing What to Export 167
Documenting Your Modules 168
Testing Your Module 176
Running a Module as a Program 178

Creating a Whole Module 179
Installing Your Modules 183
Summary 187
Exercises 188

Chapter 11: Text Processing 189

Why Text Processing Is So Useful 189
Searching for Files 190
Clipping Logs 191
Sifting through Mail 192

Navigating the File System with the os Module 192
Working with Regular Expressions and the re Module 199
Summary 203
Exercises 204

Part III: Putting Python to Work 205

Chapter 12: Testing 207

Assertions 208
Test Cases and Test Suites 209
Test Fixtures 213
Putting It All Together with Extreme Programming 216

ftoc.indd xixftoc.indd xix 12/22/09 5:25:32 PM12/22/09 5:25:32 PM

Contents

xx

Implementing a Search Utility in Python 216
A More Powerful Python Search 222

Formal Testing in the Software Life Cycle 224
Summary 225

Chapter 13: Writing a GUI with Python 227

GUI Programming Toolkits for Python 228
Tkinter Introduction 229
Creating GUI Widgets with Tkinter 229

Resizing the Widget 230
Configuring Widget Options 231
Putting the Widgets to Work 231
Creating Layouts 232
Packing Order 233
Controlling Widget Appearances 233
Radio Buttons and Checkboxes 235
Dialog Boxes 236
Other Widget Types 237

Summary 238
Exercises 238

Chapter 14: Accessing Databases 239

Working with DBM Persistent Dictionaries 240
Choosing a DBM Module 240
Creating Persistent Dictionaries 241
Accessing Persistent Dictionaries 243
Deciding When to Use DBM and When to Use a Relational Database 245

Working with Relational Databases 245
Writing SQL Statements 247
Defining Tables 249
Setting Up a Database 250

Using the Python Database APIs 252
Downloading Modules 252
Creating Connections 253
Working with Cursors 253
Working with Transactions and Committing the Results 260
Examining Module Capabilities and Metadata 261
Handling Errors 261

Summary 262
Exercises 263

ftoc.indd xxftoc.indd xx 12/22/09 5:25:32 PM12/22/09 5:25:32 PM

Contents

xxi

Chapter 15: Using Python for XML 265

What Is XML? 265
A Hierarchical Markup Language 265
A Family of Standards 267

What Is a Schema/DTD? 268
What Are Document Models For? 268
Do You Need One? 268

Document Type Definitions 268
An Example DTD 268
DTDs Aren’t Exactly XML 270
Limitations of DTDs 270

Schemas 270
An Example Schema 270
Schemas Are Pure XML 271
Schemas Are Hierarchical 271
Other Advantages of Schemas 271

XPath 272
HTML as a Subset of XML 272

The HTML DTDs 273
HTMLParser 273

XML Libraries Available for Python 274
What Is SAX? 274

Stream-based 275
Event-driven 275
What Is DOM? 275
In-memory Access 275

Why Use SAX or DOM 275
Capability Trade-Offs 276
Memory Considerations 276
Speed Considerations 276

SAX and DOM Parsers Available for Python 276
xml.sax 276
xml.dom.minidom 277

Intro to XSLT 280
XSLT Is XML 280
Transformation and Formatting Language 280
Functional, Template-Driven 280

What Is lxml? 280
Element Classes 281

Adding Text to Elements 282

ftoc.indd xxiftoc.indd xxi 12/22/09 5:25:32 PM12/22/09 5:25:32 PM

Contents

xxii

Parsing with lxml 283
Parsing Files 284

Summary 285
Exercises 285

Chapter 16: Network Programming 287

Understanding Protocols 289
Comparing Protocols and Programming Languages 289
The Internet Protocol Stack 290
A Little Bit About the Internet Protocol 292

Sending Internet E-mail 293
The E-mail File Format 294
MIME Messages 295
Sending Mail with SMTP and smtplib 303

Retrieving Internet E-mail 305
Parsing a Local Mail Spool with mailbox 305
Fetching Mail from a POP3 Server with poplib 307
Fetching Mail from an IMAP Server with imaplib 309
Secure POP3 and IMAP 313
Webmail Applications Are Not E-mail Applications 313

Socket Programming 314
Introduction to Sockets 314
Binding to an External Hostname 316
The Mirror Server 317
The Mirror Client 318
SocketServer 320
Multithreaded Servers 321
The Python Chat Server 322
Design of the Python Chat Server 323
The Python Chat Server Protocol 323
The Python Chat Client 329
Single-Threaded Multitasking with select 331

Other Topics 332
Miscellaneous Considerations for Protocol Design 333
The Peer-to-Peer Architecture 333

Summary 334
Exercises 335

Chapter 17: Extension Programming with C 337

Extension Module Outline 338
Building and Installing Extension Modules 340

ftoc.indd xxiiftoc.indd xxii 12/22/09 5:25:32 PM12/22/09 5:25:32 PM

Contents

xxiii

Passing Parameters from Python to C 342
Returning Values from C to Python 345
The LAME Project 346
The LAME Extension Module 350
Using Python Objects from C Code 363
Summary 366
Exercises 366

Chapter 18: Numerical Programming 367

Numbers in Python 368
Integers 368
Long Integers 369
Floating-point Numbers 369
Formatting Numbers 370
Characters as Numbers 373

Mathematics 374
Arithmetic 374
Built-in Math Functions 375

Complex Numbers 378
Arrays 380

The array Module 382
Summary 384
Exercises 384

Chapter 19: An Introduction to Django 387

What Are Frameworks and Why Would I Use One? 388
Other Features of Web Frameworks 388
Django — How It All Began 389

Installing Django 389
Understanding Django’s Architecture 390

Initial Project Setup 391
Creating a View 394

Working with Templates 396
Using Templates and Views 398

Models 401
Creating a Model: First Steps — Configure the Database Settings 401

Creating a Model: Creating an Application 403
Working with Models: Installation 404

Summary 405
Exercises 406

ftoc.indd xxiiiftoc.indd xxiii 12/22/09 5:25:33 PM12/22/09 5:25:33 PM

Contents

xxiv

Chapter 20: Web Applications and Web Services 407

REST: The Architecture of the Web 408
Characteristics of REST 409
REST Operations 410

HTTP: Real-World REST 411
The Visible Web Server 412
The HTTP Request 415
The HTTP Response 416

CGI: Turning Scripts into Web Applications 417
The Web Server Makes a Deal with the CGI Script 419
CGI’s Special Environment Variables 420
Accepting User Input through HTML Forms 422

HTML Forms’ Limited Vocabulary 422
The cgi Module: Parsing HTML Forms 423

Safety When Accessing Form Values 423
Building a Wiki 428

The BittyWiki Core Library 429
The BittyWiki Web Interface 432

Web Services 441
How Web Services Work 442

REST Web Services 442
REST Quick Start: Finding Bargains on Amazon.com 443
Introducing WishListBargainFinder 445
Giving BittyWiki a REST API 448
Wiki Search-and-Replace Using the REST Web Service 451

XML-RPC 456
The XML-RPC Request 457
The XML-RPC Response 459
If Something Goes Wrong 459
Exposing the BittyWiki API through XML-RPC 460
Wiki Search-and-Replace Using the XML-RPC Web Service 463

SOAP 465
SOAP Quick Start 466
The SOAP Request 466
The SOAP Response 467
If Something Goes Wrong 468
Exposing a SOAP Interface to BittyWiki 468
Wiki Search-and-Replace Using the SOAP Web Service 470

Documenting Your Web Service API 472
Human-Readable API Documentation 473
The XML-RPC Introspection API 474
WSDL 475

ftoc.indd xxivftoc.indd xxiv 12/22/09 5:25:33 PM12/22/09 5:25:33 PM

Contents

xxv

Choosing a Web Service Standard 478
Web Service Etiquette 479

For Consumers of Web Services 479
For Producers of Web Services 479
Using Web Applications as Web Services 480

Summary 480
Exercises 480

Chapter 21: Integrating Java with Python 481

Scripting within Java Applications 482
Comparing Python Implementations 483
Installing Jython 483
Running Jython 484

Running Jython Interactively 484
Running Jython Scripts 485
Controlling the jython Script 486
Making Executable Commands 487

Running Jython on Your Own 488
Packaging Jython-Based Applications 488
Integrating Java and Jython 489

Using Java Classes in Jython 489
Accessing Databases from Jython 494
Writing Java EE Servlets in Jython 500
Choosing Tools for Jython 506

Testing from Jython 506
Embedding the Jython Interpreter 507

Calling Jython Scripts from Java 508
Handling Differences between C-Python and Jython 510
Summary 511
Exercises 512

Part IV: Appendices 513

Appendix A: Answers to the Exercises 515

Appendix B: Online Resources 549

Appendix C: What’s New in Python 3.1 553

Appendix D: Glossary 559

Index 569

ftoc.indd xxvftoc.indd xxv 12/22/09 5:25:33 PM12/22/09 5:25:33 PM

flast.indd xxviflast.indd xxvi 12/22/09 11:06:35 AM12/22/09 11:06:35 AM

Introduction

Welcome to Python 3.1!

I’ve been working with Python for about ten years now, and every new version has caused me to fall in
love with the language all over again. Version 3.1 is no different. If you are new to Python, rest easy —
I’ll guide you every step of the way. If, on the other hand, you are an old Python hand exploring the new
version, the book is structured so that you can learn the new information you need, without wasting
time on already-known information.

I wanted to write this book because I love Python. I love it! And I want to share my love with you. And,
maybe you’ll grow to love it as I do.

Who This Book Is For
If you’re computer-literate, and want to learn a fun programming language to better control your
computer, this book is for you.

If you are a system administrator who wants to learn a great language to help you better manage and
configure systems and networks, this book is for you.

If you already know Python, but are wondering what cool new features are available in version 3.1, this
book is for you.

In summary, this book is for anyone interested in exploring Python programming with the newest and
most full-featured, easy-to-use version, 3.1.

What This Book Covers
This book is designed to cover Python 3.1. Python 3.1, released in 2009, is the latest major revision of the
Python programming language. Since Python is a cross-platform language, the content and examples in
the book are applicable in any platform (unless specified otherwise). When there is a choice to be made
as to platform independence, the examples will be as cross-platform as possible.

In addition, since Python 3.1 is relatively new, not all supporting libraries have been updated to work in
Python 3.x. In those instances where this is the case and it is felt that the theory still needs to be
expounded upon, Python 2.6 will be used in lieu of version 3.1.

flast.indd xxviiflast.indd xxvii 12/22/09 11:06:36 AM12/22/09 11:06:36 AM

xxviii

IntroductionIntroduction

How This Book Is Structured
As might be expected from a “Beginning” book, the book begins with an introduction to the language.
From there, you’ll move through the core of the language, then move on to more advanced and
specialized topics. The book is divided up into four parts.

Part I — Dipping Your Toe into Python
The first part will allow you to, as the title suggests, dip your toe in.

Programming Basics and Strings
First you’ll be introduced to Python. This chapter will explore what Python is, and why it is so useful
and powerful. Also explored will be Python’s history from its early development to the newest version,
which is the focus of this book. You’ll also learn about the scope of Python’s reach, and all the different
areas of application development in which Python plays a part. Finally, you’ll learn to work with your
first data type — strings.

Numbers and Operators
This chapter will guide you through the basics of working with numbers and operators. You will learn
the different types of numbers, how to perform simple — and complex — equations, and work with the
various operators. You will also learn about order of precedence and formatting numbers.

 Variables — Names for Values
Ultimately, programming languages help you to manage different types of information — in other
words, data. An understanding of data types and how they are represented in Python is essential to
programming in Python. This chapter will help you to understand the best ways to represent different
data types in Python.

Part II — Python Language and the Standard Library
Of course, the core piece of knowledge you need to use a language is to know the language itself, and
 familiarize yourself with its syntax and modules. This part will start small, with data types and
variables, and gradually introduce additional concepts until you have all the information you need to
develop fully functional Python programs.

You’ll want to read through these chapters sequentially –– each chapter builds on the information
 presented in the previous chapter.

Making Decisions
Ultimately, there will come a point when your program must make a decision — do I take this path or
that path? And what happens when I take that path? In this chapter, you will learn how to compare data,
such as deciding if one value is greater than another, and use repetition to repeat repetitive tasks.

flast.indd xxviiiflast.indd xxviii 12/22/09 11:06:36 AM12/22/09 11:06:36 AM

Introduction

xxix

Functions
This chapter will help you to expand on your Python knowledge by introducing you to functional
programming. Functions allow you to take advantage of powerful concepts like parameter passing and
code reuse. You’ll learn how to use functions to make your code more efficient and flexible.

Classes and Objects
Here you will be shown what objects are and learn to create classes. You will learn how to define them,
create objects in your classes, write methods, and discuss the scope of your objects.

Organizing Programs
When your programs get larger, you’ll want to divide them up into separate components. This chapter
will discuss Python modules. You’ll also explore packages, which are nothing but collections of modules.

Files and Directories
An important part of everyday programming is learning to work with files and directories. This chapter
focuses on creating, modifying, and working with files in general. In addition, you will learn how to
obtain data from files and how to interact with the various directories.

Other Features of the Language
Here you will learn about some of the other features the language has to offer, including how to make
decisions with lists, string substitutions with dictionaries, and some of the featured modules.

Building a Module
Modules help you save time by allowing you to reuse snippets of code. It also ensures fewer errors, as
the module you use will have been tested and used many times before. Here, we will learn to create our
own modules, as well as import and work with pre-existing modules –– something that makes Python
particularly powerful.

Text Processing
There are so many things you can do with text in programming and in essence, text is the key to
effectively communicating with your user. After all, without it, the only thing you are left with is images.
In this chapter you learn to process text in a variety of ways, including: working with regular
expressions, searching for files, and searching for files of a particular type.

Part III — Putting Python to Work
So, now that you know what Python is, and how to work with the language, what’s next, you ask? This
final part explores many of the programming topics you’ll likely encounter or want to explore. These can
be looked at sequentially, or in any order you like . . . these chapters are independent of each other.

Testing
There is only one way to ensure your program works before it is in the hands of the user, and that is by
testing your program. Here, you will learn not only the concepts behind properly testing your programs,
but the tools and frameworks available to you.

flast.indd xxixflast.indd xxix 12/22/09 11:06:36 AM12/22/09 11:06:36 AM

xxx

Introduction

Writing a GUI with Python
Thus far in the book, all the programs work through the command line. In this chapter, you’ll be
introduced to the concept of GUI programming. You’ll also walk through creating a few GUI programs
with Tkinter, the most popular GUI toolkit used by Python programmers.

Accessing Databases
Databases store information that your program can use for an infinite amount of reasons. It also acts as a
place for you to store information, and later retrieve that information for a given task. In this chapter you
learn about the different types of databases and how to work with them.

Using Python for XML
XML is a powerful tool for processing data on the Internet. Here, you will learn the basics of XML
including the difference between schema and DTD, basic syntax, how to create and validate your own
XML, and more advanced topics such as using lxml.

Network Programming
Now that the Internet has wormed its way into our everyday lives, and has become more of a necessity
than a privilege, learning to programmatically send e-mails and allow users to communicate across the
web is essential. In this chapter, you will learn how to do just that.

Extension Programming with C
This chapter delves into programming with the C language, including working with C frameworks
and modules, the basics of C, and passing parameters from Python to C, and then returning value back
to Python.

Numerical Programming
Numbers were touched on briefly in the beginning of this book; now it is time to delve more deeply
below the surface. Here you will learn all there is to know about integers and floating point numbers, as
well as complex numbers, arrays, and working with built-in math functions and modules.

An Introduction to Django
Django is a web application framework written in Python, which utilizes the model-view-architecture
pattern. Originally created for managing news websites, Django has become popular for its ease of use,
allowing programmers to create complex websites in a simple fashion, including database-focused sites.
Here we will learn the basics of Django.

Web Applications and Web Services
Here you will learn the foundations of working with web applications and web services. You will learn
about the REST architecture, as well as how to work with HTTP Requests and Responses.

flast.indd xxxflast.indd xxx 12/22/09 11:06:37 AM12/22/09 11:06:37 AM

Introduction

xxxi

Integrating Java with Python
In this chapter you learn the basics of Java, building a strong foundation before you delve blending the
two languages together. You will learn the various modules that allow you to work with Java in Python
and how to create simple, yet effective applications.

Part IV: Appendices
In the back of the book, there are some useful appendices to further your knowledge and fun with
Python:

❑ Answers to the Exercises

❑ Online Resources –– where do you go from here?

❑ What’s New in Python 3.1

❑ Glossary of terms

What You Need to Use This Book
There are some minimal requirements to use the material in this book. The following are
recommendations, as Python itself runs on many different platforms. However, the first chapters assume
that you have access to a GUI such as is available in Windows, Mac OS X, or the X Window system on
UNIX and Linux. Naturally, some chapters, such as the GUI chapter, require the GUI as well, and
chapters involving networking will make much more sense if a network connection is in place.

Following are the suggested minimum requirements:

❑ A PC running Linux, a BSD UNIX, or Windows running at 500MHz or faster, or a G3 or later
Macintosh running Mac OS X version 10.2 or later

❑ 256MB of memory (at a minimum)

❑ A graphical user interface native to the platform you are on

❑ Necessary access to the computer you are on so that you may install required software

❑ Network access to a TCP/IP network such as the Internet or a campus network

❑ Internet access to download required software

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

flast.indd xxxiflast.indd xxxi 12/22/09 11:06:37 AM12/22/09 11:06:37 AM

xxxii

Introduction

Examples that you can download and try out for yourself generally appear in a box like this:

Example title
This section gives a brief overview of the example.

Source
This section includes the source code:

Source code
Source code
Source code

Output
This section lists the output:

Example output
Example output
Example output

The Try It Out is an exercise you should work through, following the text in the book.

1. They usually consist of a set of steps.

2. Each step has a number.

3. Follow the steps through with your copy of the database.

How It Works
After each Try It Out, the code you’ve typed will be explained in detail.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight new terms and important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl+A.

Try It Out

flast.indd xxxiiflast.indd xxxii 12/22/09 11:06:37 AM12/22/09 11:06:37 AM

Introduction

xxxiii

❑ We show file names, URLs, and code within the text like so: persistence.properties.

❑ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold highlighting to emphasize code that’s particularly important
in the present context.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either
by using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-41463-7.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download.
aspx to see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Errata link. On this page you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Errata page, go to www.wrox.com/contact/techsupport.shtml
and complete the form there to send us the error you have found. We’ll check the information and, if
appropriate, post a message to the book’s errata page and fix the problem in subsequent editions of
the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

flast.indd xxxiiiflast.indd xxxiii 12/22/09 11:06:37 AM12/22/09 11:06:37 AM

www.wrox.com
www.wrox.com

xxxiv

Introduction

At p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxxivflast.indd xxxiv 12/22/09 11:06:38 AM12/22/09 11:06:38 AM

Part I

 Dipping Your Toe
into Python

 Chapter 1: Programming Basics and Strings

Chapter 2: Numbers and Operators

Chapter 3: Variables — Names for Values

c01.indd 1c01.indd 1 12/22/09 10:37:58 AM12/22/09 10:37:58 AM

c01.indd 2c01.indd 2 12/22/09 10:37:59 AM12/22/09 10:37:59 AM

 1
Programming Basics

and Strings

 This chapter is a gentle introduction to the practice of programming in Python. Python is a very
rich language with many features, so it is important to learn to walk before you learn to run.
Chapters 1 through 3 provide a basic introduction to common programming ideas, explained in
easily digestible paragraphs with simple examples.

 If you are already an experienced programmer interested in Python, you may want to read this
chapter quickly and take note of the examples, but until Chapter 3 you will be reading material
with which you ’ ve probably already gained some familiarity in another language.

 If you are a novice programmer, by the end of this chapter you will learn the following:

 Some guiding principles for programming

 Directions for your first interactions with a programming language — Python.

The exercises at the end of the chapter provide hands - on experience with the basic information
that you have learned.

 How Programming is Different
from Using a Computer

 The first thing you need to understand about computers when you ’ re programming is that you
control the computer. Sometimes the computer doesn ’ t do what you expect, but even when it
doesn ’ t do what you want the first time, it should do the same thing the second and third
time — until you take charge and change the program.

 The trend in personal computers has been away from reliability and toward software being built
on top of other, unreliable, software. The results that you live with might have you believing that
computers are malicious and arbitrary beasts, existing to taunt you with unbearable amounts of

❑

❑

c01.indd 3c01.indd 3 12/22/09 10:37:59 AM12/22/09 10:37:59 AM

4

Part I: Dipping Your Toe into Python

extra work and various harassments while you ’ re already trying to accomplish something. However,
after you ’ ve learned how to program, you gain an understanding of how this situation has come to
pass, and perhaps you ’ ll find that you can do better than some of the programmers whose software
you ’ ve used.

 Note that programming in a language like Python, an interpreted language, means that you are not going
to need to know a whole lot about computer hardware, memory, or long sequences of 0s and 1s. You are
going to write in text form like you are used to reading and writing but in a different and simpler
language. Python is the language, and like English or any other language(s) you speak, it makes sense to
other people who already speak the language. Learning a programming language can be even easier,
however, because programming languages aren ’ t intended for discussions, debates, phone calls, plays,
movies, or any kind of casual interaction. They ’ re intended for giving instructions and ensuring that
those instructions are followed. Computers have been fashioned into incredibly flexible tools that have
found a use in almost every business and task that people have found themselves doing, but they are
still built from fundamentally understandable and controllable pieces.

 Programming is Consistency
 In spite of the complexity involved in covering all of the disciplines into which computers have crept, the
basic computer is still relatively simple in principle. The internal mechanisms that define how a
computer works haven ’ t changed a lot since the 1950s when transistors were first used in computers.

 In all that time, this core simplicity has meant that computers can, and should, be held to a high standard
of consistency. What this means to you, as the programmer, is that anytime you tell a computer to
metaphorically jump, you must tell it how high and where to land, and it will perform that jump — over
and over again for as long as you specify. The program should not arbitrarily stop working or change
how it works without you facilitating the change.

 Programming is Control
 Programming a computer is very different from creating a program, as the word applies to people in real
life. In real life, you ask people to do things, and sometimes you have to struggle mightily to ensure that
your wishes are carried out — for example, if you plan a party for 30 people and assign two of them to
bring the chips and dip and they bring the drinks instead, it is out of your control.

 With computers that problem doesn ’ t exist. The computer does exactly what you tell it to do. As you can
imagine, this means that you must pay some attention to detail to ensure that the computer does just
what you want it to do.

 One of the goals of Python is to program in blocks that enable you to think about larger and larger
projects by building each project as pieces that behave in well - understood ways. This is a key goal of a
programming style known as object - oriented programming . The guiding principle of this style is that you
can create reliable pieces that still work when you piece them together, that are understandable, and that
are useful. This gives you, the programmer, control over how the parts of your programs run, while
enabling you to extend your program as the problems you ’ re solving evolve.

c01.indd 4c01.indd 4 12/22/09 10:37:59 AM12/22/09 10:37:59 AM

Chapter 1: Programming Basics and Strings

5

 Programming Copes with Change
 Programs are run on computers that handle real - world problems; and in the real world, plans and
circumstances frequently change. Because of these shifting circumstances, programmers rarely get the
opportunity to create perfectly crafted, useful, and flexible programs. Usually, you can achieve only two
of these goals. The changes that you will have to deal with should give you some perspective and lead
you to program cautiously. With sufficient caution, you can create programs that know when they ’ re
being asked to exceed their capabilities, and they can fail gracefully by notifying their users that they ’ ve
stopped. In the best cases, you can create programs that explain what failed and why. Python offers
especially useful features that enable you to describe what conditions may have occurred that prevented
your program from working.

 What All That Means Together
 Taken together, these beginning principles mean that you ’ re going to be introduced to programming as a
way of telling a computer what tasks you want it to do, in an environment where you are in control. You
will be aware that sometimes accidents can happen and that these mistakes can be accommodated
through mechanisms that offer you some discretion regarding how these conditions will be handled,
including recovering from problems and continuing to work.

 The First Steps
 The absolute first step you need to take before you can begin programming in Python is to download
and install Python version 3.1. Navigate to www.python.org/download and choose the newest version
of Python. You will be taken to a page with instructions on how to download the appropriate version for
your computer. For instance, if you are running Windows, it may say Windows x86 MSI Installer (3.0).

Programs are written in a form called source code . Source code contains the instruc-
tions that the language follows, and when the source code is read and processed, the
instructions that you ’ ve put in there become the actions that the computer takes.

 Just as authors and editors have specialized tools for writing for magazines, books, or online
publications, programmers also need specialized tools. As a starting Python programmer, the right tool
for the job is the Python IDLE GUI (graphical user interface).

 Once the download is finished, double - click it to run the program. Your best bet is to accept the default
prompts Python offers you. This process may take a few minutes, depending on your system.

 After setup is complete, you will want to test to make sure it is installed properly. Click the Windows
Start menu and go to All Programs. You will see Python 3.0 in the menu. Choose IDLE (Python GUI) and
wait for the program to load.

c01.indd 5c01.indd 5 12/22/09 10:38:00 AM12/22/09 10:38:00 AM

6

Part I: Dipping Your Toe into Python

 Once IDLE launches, type in “ Test, test, testing ” and press the Enter key. If Python is running correctly, it
should return the value

‘Test, test, testing’

in blue letters and with single quotes (I ’ ll get more into this soon). Congratulations — you have
successfully installed Python and are well on your way to becoming a programming guru.

 Installing Python 3.1 on Non - Windows Systems
 If you are the proud owner of a Mac and are running Mac OS X, you are in luck; it comes with Python
installed. Unfortunately, it may not be the most up - to - date version. For security and compatibility
purposes, I would suggest logging on to www.python.org/download/mac . Check to see that your Mac
OS X version is the right version for the Python you are installing.

 If you have a Linux computer, you may also already have Python installed, but again, it may be an
earlier version. I would once more suggest you go to the Python website to find the latest version (and of
course, the one appropriate to your system). The website www.python.org/download should have
instructions on how to download the right version for your computer.

 Using the Python Shell
 Before starting to write programs, you ’ ll need to learn how to experiment with the Python shell. For
now, you can think of the Python shell as a way to peer within running Python code. It places you inside
of a running instance of Python, into which you can feed programming code; at the same time, Python
will do what you have asked it to do and will show you a little bit about how it responds to its
environment. Because running programs often have a context — things that you as the programmer have
tailored to your needs — it is an advantage to have the shell because it lets you experiment with the
context you have created.

 Now that you have installed Python version 3.1, you can begin to experiment with the shell ’ s basic
behavior. For starters, type in some text:

 > > > ”Hello World. You will never see this.”

 Note that typing the previous sentence into the shell didn ’ t actually do anything; nothing was changed
in the Python environment. Instead, the sentence was evaluated by Python, to determine what, if
anything, you wanted Python to do. In this case, you merely wanted it to read the text.

 Although Python didn ’ t technically do anything with your words, it did give some indication that it read
them. Python indicated this by displaying the text you entered (known as a string) in quotes. A string is a
data type, and each data type is displayed differently by Python. As you progress through this book, you
will see the different ways Python displays each one.

c01.indd 6c01.indd 6 12/22/09 10:38:00 AM12/22/09 10:38:00 AM

Chapter 1: Programming Basics and Strings

7

 Beginning to Use Python — Strings
 At this point, you should feel free to experiment with using the shell ’ s basic behavior. Type some text, in
quotes; for starters, you could type the following:

 > > > “This text really won’t do anything”
“This text really won’t do anything”

 You should notice one thing immediately: After you entered a quote ("), the Python shell changed the
color of everything up to the quote that completed the sentence. Of course, the preceding text is
absolutely true. It did nothing: It didn ’ t change your Python environment; it was merely evaluated by
the running Python instance, in case it did determine that in fact you ’ d told it to do something. In this
case, you ’ ve asked it only to read the text you wrote, but doing this doesn ’ t constitute a change to
the environment.

 However, you can see that Python indicated that it saw what you entered. It showed you the text you
entered, and it displayed it in the manner it will always display a string — in quotes. As you learn about
other data types , you ’ ll find that Python has a way of displaying each one differently.

 What is a String?
 A string is one of several data types that exist within the Python language. A data type, as the name
implies, is a category that a particular type of data fits into. Every type of data you enter into a computer
is segregated into one of these data types, whether they be numbers or letters, as is the case in this
scenario. Giving data a type allows the computer to determine how to handle the data. For instance, if
you want the program to show the mathematical equation 1+1 on a screen, you have to tell it that it is
text. Otherwise, the program will interpret the data as a mathematical equation and evaluate it
accordingly.

 You ’ ll get more into the different data types and how important it is to define them in a later chapter. For
now however, know that a string is a data type that consists of any character, be it a letter, number,
symbol, or punctuation mark. Therefore, the following are all examples of strings:

 “ Hello, how are you? ”

 “ 1+1 ”

 “ I ate 4 bananas ”

 “ !@#$%^ & *() ”

 Why the Quotes?
 When you type a string into Python, you do so by preceding it with quotes. Whether these quotes are
single ('), double(''), or triple(" " ") depends on what you are trying to accomplish. For the most part, you
will use single quotes, because it requires less effort (you do not need to hold down the Shift key to
create them). Note, however, that they are interchangeable with the double and even triple quotes.

 Try typing in some strings. After you type in each sentence, press the Enter key to allow Python to
evaluate your statement.

c01.indd 7c01.indd 7 12/22/09 10:38:00 AM12/22/09 10:38:00 AM

8

Part I: Dipping Your Toe into Python

 Try It Out Entering Strings with Different Quotes

 Enter the following strings, keeping in mind the type of quotes (single or double) and the ends of lines
(use the Enter key when you see that the end of a line has been reached):

 > > > “This is a string using a double quote”
‘This a string using a double quote’
 > > > ‘This is a string with a single quote’
‘This is a string with a single quote’
 > > > “””This string has three quotes
look at what it can do!”””
‘This string has three quotes\nlook at what it can do!’
 > > >

 In the preceding examples, although the sentences may look different to the human eye, the computer
is interpreting them all the same way: that is, as a string. There is a true purpose to having three
different quoting methods, which is described next.

 Why Three Types of Quotes?
 The reasoning behind having three types of quotes is fairly simple. Let ’ s say that you want to use a
contraction in your sentence, as I have just done. If you type a sentence such as “ I can ’ t believe it ’ s not
butter ” into the shell, nothing much happens, but when you actually try to get the program to use that
string in any way, you will get an error message. To show you what I mean, the following section
introduces you to the print() function.

 Using the print() Function
 A function in Python (and every other programming language) is a tool developers use to save time and
make their programs more efficient. Instead of writing the same code over and over again, they store it
in a function, and then call upon that function when they need it. Don ’ t worry too much about functions
at the moment; they are covered in greater detail later on. For now, it is enough to know what the term
means and how it relates to programming.

 The print() function is used whenever you want to print text to the screen. Try the following example
in your Python shell:

 > > > print(“Hello World!”)

 When you press Enter, you should see the following:

 Hello World!

 You will want to note several things here. First, as you were entering in the print() function, a pop - up
as shown in Figure 1 - 1 appeared, showing you the various options available to you within the function:

c01.indd 8c01.indd 8 12/22/09 10:38:01 AM12/22/09 10:38:01 AM

Chapter 1: Programming Basics and Strings

9

 Second, the text once more appeared in blue on the next line, but this time without quotation marks
around it. This is because unlike in the previous examples, Python actually did something with the data.

 Congratulations, you just wrote your first program!

 Understanding Different Quotes
 Now that you know how to use the print() function, you can begin to work with the different types of
quotes discussed earlier in this chapter. Try the examples from earlier:

 > > > print(‘This is a string using a single quote!’)
This is a string using a single quote!
 > > > print(“This is a string using a double quote!”)
This is a string using a double quote!
 > > > print(“””This string has three quotes!
Look at what it can do!”””)
This string has three quotes
Look at what it can do!

 In this example, you see that the single quote (') and double quote (") are interchangeable in those
instances. However, when you want to work with a contraction, such as don ’ t , or if you want to quote
someone quoting something, observe what happens:

 > > > print(“I said, “Don’t do it”)

Figure 1-1

c01.indd 9c01.indd 9 12/22/09 10:38:01 AM12/22/09 10:38:01 AM

10

Part I: Dipping Your Toe into Python

 When you press Enter to execute the function, you will get the error message: SyntaxError: invalid
syntax (< pyshell#10 > , line 1). I know what you are thinking — “ What happened? I thought
double and single quotes are interchangeable. ” Well, they are for the most part. However, when you try
to mix them, it can often end up in a syntax error, meaning that your code has been entered incorrectly,
and Python doesn ’ t know what the heck you are trying to say.

 What really happens here is that Python sees your first double quote and interprets that as the beginning
of your string. When it encounters the double quote before the word Don ’ t , it sees it as the end of
the string. Therefore, the letters on make no sense to Python, because they are not part of the string. The
string doesn ’ t begin again until you get to the single quote before the t .

 There is a simple solution to this, known as an escape. Retry the preceding code, adding an escape
character to this string:

 > > > print(“I said, \”Don’t do it”)
I said, “Don’t do it

 This time, your code worked. When Python saw the backslash (\), or escape character, it knew to treat
the double quote as a character, and not as a data type indicator. As you may have noticed, however,
there is still one last problem with this line of code. See the missing double quote at the end of your
results? To get Python to print the double quote at the end of the sentence, you simply add another
escape character and a second double quote, like so:

 > > > print(“I said, \”Don’t do it\””)
I said, “Don’t do it”

 Finally, let ’ s take a moment to discuss the triple quote. You briefly saw its usage earlier. In that example,
you saw that the triple quote allows you to write some text on multiple lines, without being processed
until you close it with another triple quote. This technique is useful if you have a large amount of data
that you do not wish to print on one line, or if you want to create line breaks within your code. Here, in
the next example, you write a poem using this method:

 > > > print(“””Roses are red
Violets are blue
I just printed multiples lines
And you did too!”””)
Roses are red
Violets are blue
I just printed multiple lines
And you did too!

 There is another way to print text on multiple lines using the newline (\n) escape character, which is the
most common of all the escape characters. I ’ ll show it to you here briefly, and come back to discuss it in
more depth in a later chapter. Try this code out:

 > > > print(“Roses are red \n Violets are blue \n
I just printed multiple
lines \n And you did too!”)
Roses are red
Violets are blue
I just printed multiple lines
And you did too!

c01.indd 10c01.indd 10 12/22/09 10:38:01 AM12/22/09 10:38:01 AM

Chapter 1: Programming Basics and Strings

11

 As you can see, the results are the same. Which you use is up to you, but the newline escape is probably
more efficient and easier to read.

 Putting Two Strings Together
 There comes a time in every programmer ’ s life when they have to combine two or more strings together.
This is known as concatenation . For example, let ’ s say that you have a database consisting of employees ’
first and last names. You may, at some point, wish to print these out as one whole record, instead of as
two. In Python, each of these items can be treated as one, as shown here:

 > > > ”John”
‘John’
 > > > ”Everyman”
‘Everyman’

 Try It Out Using + to Combine Strings

 You can use several different methods to join distinct strings together. The first is by using the
mathematical approach:

 > > > “John” + “Everyman”
‘JohnEveryman’

 You could also just skip the + symbol altogether and do it this way:

 > > > ”John” “Everyman”
JohnEveryman

 As you can see from these examples, both strings were combined; however, Python read the statement
literally, and as such, there is no space between the two strings (remember: Python now views them as
one string, not two!). So how do you fix this? You can fix it in two simple ways. The first involves
adding a space after the first string, in this manner:

 > > > ”John “ “Everyman”
John Everyman

 I do not recommend this approach, however, because it can be difficult to ascertain that you added a
space to the end of John if you ever need to read the code later in the future, say, when you are bleary -
 eyed and its four in the morning. The other approach is to simply use a separator, like so:

 > > > ”John” + “ “ + “Everyman”
John Everyman

 Other reasons exist why you should use this method instead of simply typing in a space that have
to do with database storage, but that is covered Chapter 14. Note that you can make any separator
you like:

 > > > ”John” + “.” + “Everyman”
John.Everyman

c01.indd 11c01.indd 11 12/22/09 10:38:02 AM12/22/09 10:38:02 AM

12

Part I: Dipping Your Toe into Python

 Joining Strings with the Print() Function
 By default, the print() function is a considerate fellow that inserts the space for you when you print
more than one string in a sentence. As you will see, there is no need to use a space separator. Instead,
you just separate every string with a comma (,):

 > > > Print(“John” , “Everyman”)
John Everyman

 Putting Strings Together in Different Ways
 Another way to specify strings is to use a format specifier . It works by putting in a special sequence of
characters that Python will interpret as a placeholder for a value that will be provided by you. This may
initially seem like it ’ s too complex to be useful, but format specifiers also enable you to control what the
displayed information looks like, as well as a number of other useful tricks.

Try It Out Using a Format Specifi er to Populate a String

 In the simplest case, you can do the same thing with your friend, John Q.:

 > > > “John Q. %s” % (“Public”)
‘John Q. Public’

 How It Works
 The %s is known as a format specifier, specifically for strings. As the discussion on data types
continues throughout this book, you take a look at several more, each specific to its given data type.
Every specifier acts as a placeholder for that type in the string; and after the string, the % sign outside
of the string indicates that after it, all of the values to be inserted into the format specifier will be
presented there to be used in the string.

 You may notice the parentheses. This tells the string that it should expect to see a sequence that
contains the values to be used by the string to populate its format specifiers.

 A simpler way to think of it is to imagine that the %s is a storage bin that holds the value in the
parentheses. If you want to do more than one value, you would simply add another format specifier,
in this manner:

 > > > ”John %s%s” % (“Every” , “Man”)
John Everyman

 These sequences are an integral part of programming in Python, and as such, they are covered in
greater detail later in this book. For now, just know that every format specification in a string has to
have an element that matches it in the sequence that is provided to it. Each item in the sequence are
strings that must be separated by commas.

So why do they call it a format specifier if you store data in it? The reason is that it has multiple
functions; being a container is only one of them. The following example shows you how to not only
store data with the format specifier, but specify how that data will be displayed as well.

c01.indd 12c01.indd 12 12/22/09 10:38:02 AM12/22/09 10:38:02 AM

Chapter 1: Programming Basics and Strings

13

 Try It Out More String Formatting

 In this example, you tell the format specifier how many characters to expect. Try the following code
and watch what happens:

 > > > “%s %s %10s” % (“John” , “Every”, “Man”)
‘John Every Man’
 > > > “%-5s %s %10s” % (“John” , “Every”, “Man”)
John Every Man

 How It Works
 In the first line of code, the word Man appears far away from the other words; this is because in your
last format specifier, you added a 10, so it is expecting a string with ten characters. When it does not
find ten (it only finds three . . . M - a - n) it pads space in between with seven spaces.

In the second line of code you entered, you will notice that the word Every is spaced differently. This
occurs for the same reason as before — only this time, it occurred to the left, instead of the right.
Whenever you right a negative (–) in your format specifier, the format occurs to the left of the word. If
there is just a number with no negative, it occurs to the right.

 Summary
 In this chapter you learned how to install Python, and how to work with the Python GUI (IDLE), which
is a program written in Python for the express purpose of editing Python programs. In addition to
editing files, this “ shell ” allows you to experiment with simple programming statements in the Python
language.

 Among the things you learned to do within the shell are the basics of handling strings, including string
concatenation, as well as how to format strings with format specifiers, and even storing strings within
that same %s format specifier. In addition, you learned to work with multiple styles of quotes, including
the single, double, and triple, and found out what the \n newline escape character was for.

 Finally, you learned your very first function, print() , and wrote your first program, the Hello World
standby, which is a time - honored tradition among programmers; it ’ s similar to learning “ Smoke on the
Water ” if you play guitar — it ’ s the first thing you ’ ll ever learn.

 The key things to take away from this chapter are:

 Programming is consistency. All programs are created with a specific use in mind, and your user
will expect the program not only to live up to that usage, but to work in exactly the same
manner each and every time. If the user clicks a button and a print dialog box pops up, this
button should always work in this manner.

 Programming is control. As a programmer, you control the actions your application can and
cannot take. Even aspects of the program that seem random to the casual observer are, in fact,
controlled by the parameters that you create.

❑

❑

c01.indd 13c01.indd 13 12/22/09 10:38:02 AM12/22/09 10:38:02 AM

14

Part I: Dipping Your Toe into Python

 Programming copes with changes. Through repeated tests, you can ensure that your program
responds appropriately to the user, even when they ask the program to do something you did
not develop it to do.

 Strings are a data type, or simply put, a category of data. These strings allow you to interact
with the user in a plethora of ways, such as printing text to the window, accepting text from the
user, and so forth. A string can consist of any letter, number, or special character.

 The print() function allows you to print text to the user’s screen. It follows the syntax:
print(“ Here is some text ”).

 Exercises
 1. In the Python shell, type the string, “ Rock a by baby,\n\ton the tree top,\t\when the

wind blows\n\t\t\t the cradle will drop. ” Feel free to experiment with the number of
 \n and \t escape sequences to see how this affects what gets displayed on your screen. You can
even try changing their placement. What do you think you are likely to see?

 2. In the Python shell, use the same string indicated in Exercise 1, but this time, display it using the
 print() function. Once more, try differing the number of \n and \t escape sequences. How do
you think it will differ?

❑

❑

❑

c01.indd 14c01.indd 14 12/22/09 10:38:02 AM12/22/09 10:38:02 AM

 2
Numbers and Operators

 From our first breath of air, we are raised to use numbers. As a baby, we use them for estimating
distance as we begin to crawl and, eventually, stand. As time progresses, we branch out and use
them on a more conscious level, such as when we purchase a beverage or calculate our monthly
budget. Whether you are one year old or 90, to some degree you are familiar with numbers.
Indeed, numbers are such a familiar concept that you probably don ’ t notice the many different
ways in which you use them depending on their context.

 In this chapter, you are re - introduced to numbers and some of the ways in which Python works
with them, including basic arithmetic and special string format specifiers for its different types of
numbers.

 In this chapter you learn:

 To be familiar with the different basic categories of numbers that Python uses .

 To be familiar with the methods for using those numbers .

 The displaying and mixing the various number types.

 Different Kinds of Numbers
 If you have ever used a spreadsheet, you ’ ve noticed that the spreadsheet doesn ’ t just look at
numbers as numbers but as different kinds of numbers. Depending on how you ’ ve formatted a cell,
the spreadsheet will have different ways of displaying the numbers. For instance, when you deal
with money, your spreadsheet will show one dollar as 1.00 . However, if you ’ re keeping track of
the miles you ’ ve traveled in your car, you ’ d probably only record the miles you ’ ve traveled in
tenths of a mile, such as 10.2. When you name a price you ’ re willing to pay for a new house you
probably only think to the nearest thousand dollars. At the large end of numbers, your electricity
bills are sent to you with meter readings that come in at kilowatt hours, which are each one
thousand watts per hour.

❑

❑

❑

c02.indd 15c02.indd 15 12/22/09 10:38:26 AM12/22/09 10:38:26 AM

16

Part I: Dipping Your Toe into Python

 What this means in terms of Python is that, when you want to use numbers, you sometimes need to be
aware that not all numbers relate to each other (as you see with imaginary numbers in this chapter), and
sometimes you ’ ll have to be careful about what kind of number you have and what you ’ re trying to do
with it. However, in general, you will use numbers in two ways: The first way will be to tell Python to
repeat a certain action, and the second way will be to represent things that exist in the real world (that is, in
your program, which is trying to model something in the real world). You will rarely have to think of
numbers as anything besides simple numbers when you are counting things inside of Python. However,
when you move on to trying to solve problems that exist in the real world — things that deal with money,
science, cars, electricity, or anything else — you ’ ll find yourself more aware about how you use numbers .

 Numbers in Python
 Python offers three different kinds of numbers with which you can work: integers , floating - point numbers
(or floats), and imaginary numbers .

 In previous versions of the language, Python had a different way of handling larger numbers. If a
number ranged from – 2,147,483,648 to +2,147,483,647, it was deemed an integer. Anything larger was
promoted to a long. All that has changed, and the two types have now merged. Now, integers are
described as a whole number, either positive or negative.

 To determine the class of a number, you can use a special function that is built into Python, called type .
When you use type , Python will tell you what kind of data you ’ re looking at. Let ’ s try this with a few
examples.

 Try It Out Using Type with Different Numbers

 In the Python shell, you can enter different numbers and see what type tells you about how Python
sees them:

 > > > type(1)
 < class ‘int’ >
 > > > type(2000)
 < class ‘int’ >
 > > > type(999999999999)
 < class ‘int’ >
 > > > type(1.0)
 < class ‘float’ >

 How It Works
 Although in everyday life 1.0 is the same number as 1, Python will automatically perceive 1.0 as
being a float; without the .0, the number 1 would be dealt with as the integer number one (which you
probably learned as a whole number in grade school), which is a different kind of number.

In essence, the special distinction between a float and an integer is that a float has a component that is a
fraction of 1. Numbers such as 1.01, 2.34, 0.02324, and any other number that contains a fractional
component is treated as a floating - point number (except for imaginary numbers, which have rules of their
own). This is the type that you would want to use for dealing with money or with things dealt with in
partial quantities, like gasoline or pairs of socks. (There ’ s always a stray single sock in the drawers, right?)

c02.indd 16c02.indd 16 12/22/09 10:38:27 AM12/22/09 10:38:27 AM

Chapter 2: Numbers and Operators

17

A Word to the Wise: Numbers can be Tricky
 Experts in engineering, financial, and other fields who deal with very large and
very small numbers (small with a lot of decimal places) need even more
accuracy and consistency than what built - in types like floats offer. If you ’ re
going to explore these disciplines within programming, you should use the
available modules , a concept introduced in Chapter 7, which are written to
handle the types of issues pertinent to the field in which you ’ re interested. At
the very least, using modules that are written to handle high - precision floating -
 point values in a manner that is specifically different than the default behavior
is worth investigating if you have the need for them.

 The last type of number that Python offers is oriented toward engineers and mathematicians. It ’ s the
 imaginary number , and you may remember it from school; it ’ s defined as the square root of – 1. Despite
being named imaginary, it does have a lot of practical uses in modeling real - world engineering
situations, as well as in other disciplines like physics and pure math. The imaginary number is built into
Python so that it ’ s easily usable by user communities who frequently need to solve their problems with
computers. Having this built - in type enables Python to help them do that. If you happen to be one of
those people, you will be happy to learn that you ’ re not alone, and Python is there for you.

Try It Out Creating an Imaginary Number

 The imaginary number behaves very much like a float, except that it cannot be mixed with a float.
When you see an imaginary number, it will have the letter j trailing it:

 > > > 12j
12j

 How It Works
 When you use the letter j next to a number and outside the context of a string (that is, not enclosed in
quotes), Python knows that you ’ ve asked it to treat the number you ’ ve just entered as an imaginary
number. When any letter appears outside of a string, it has to have a special meaning, such as this
modifier, which specifies the type of number, or a named variables (which you see in Chapter 3), or
another special name. Otherwise, the appearance of a letter by itself will cause an error!

 You can combine imaginary and nonimaginary numbers to create complex numbers:

 > > > 12j + 1
(1+12j)
 > > > 12j + 1.01
(1.01+12j)
 > > > type (12j + 1)
 < class ‘complex’ >

c02.indd 17c02.indd 17 12/22/09 10:38:28 AM12/22/09 10:38:28 AM

18

Part I: Dipping Your Toe into Python

You can see that when you try to mix imaginary numbers and other numbers, they are not added (or
subtracted, multiplied, or divided); they ’ re kept separate, in a way that creates a complex number.
Complex numbers have a real part and an imaginary part, but an explanation of how they are used
is beyond the scope of this chapter, although if you ’ re someone who needs to use them, the complex
number module (that word again!) is something that you can explore once you ’ ve gotten through
Chapter 6. The module ’ s name is cmath , for complex math. Complex numbers are discussed further
in Chapter 19.

 Program Files
 By now you should be fairly comfortable using the Python shell and writing different lines of code
within it. You ’ ve used it for all of the examples thus far, but now you are going to use it in a different
manner. Instead of simply typing in single lines of code that disappear once you close the GUI, you are
now going to create and save actual files that you can open and use again.

 For the remainder of this chapter, you are encouraged to use the Python shell along with Notepad to
create your very own files.

 Try It Out By Typing the Following Text in Notepad

 Enter the following into Notepad:

print(“This is a basic string”)
print(“We learned to join two strings using “ + “the plus operation”)

 Now that you have added some code to your editor, try and save it. First, go to File, then Save As
(see Figure 2 - 1).

Figure 2-1

 A pop - up menu appears, prompting you for a name and directory in which to save your file. Python
files use the extension .py , so always be sure to add it to the end of your file name, otherwise Notepad
will save it as its default type, .txt . Give it the name Test.py . Next, navigate to the directory where
Python is installed. Normally, this will be something along the lines of C:/Python31/. Click the Save
button and you are all set.

 After you ’ ve selected a file name and saved the file, you can reopen it. To run the Test.py program,
choose File ➪ Open from the Python shell, and choose the file you want to run (in this case, Test.py).

c02.indd 18c02.indd 18 12/22/09 10:38:28 AM12/22/09 10:38:28 AM

Chapter 2: Numbers and Operators

19

The Python editor will now open. Click Run, choose Run Module (see Figure 2 - 2), and watch in
amazement as your first program runs!

Figure 2-2

 You will notice a few things. First, when you initially opened the Test.py file, Python took the liberty
of highlighting your code in different colors. This makes functions and data types (and many other
programming tidbits) easier to recognize. For instance, the print() function is in purple, whereas the
string that comprises its value is green.

 When you run this module, you no longer see the code, but its result instead, written out in blue text
on your screen:

This is a basic string
We learned to join two strings using the plus operator

 Do this a few more times with different strings, saving them in different files. Each one of these
sessions is now available for you, and you can refer to them later.

 Using the Different Types
 Except for the basic integer, the other number types can grow to an unwieldy number of digits to look at
and make sense of. Therefore, very often when these numbers are generated, you will see them in a
format that is similar to scientific notation. Python will let you input numbers in this format as well, so
it ’ s a two - way street. There are many snags to using very large integers and floats. The topic is quite
detailed and not necessarily pertinent to learning Python. If you want to know more about floating - point
numbers in general, and what they really mean to a computer, the paper at http://docs.sun.com/
source/806-3568/ncg_goldberg.html is a very good reference, although the explanation will only
make sense to someone with prior experience with computers and numbers. Don ’ t let that stop you from
looking, though. It may be something you want to know about at some point in the future.

 More commonly, you will be using integers and floats. It wouldn ’ t be unusual to acquire a number from
somewhere such as the date, the time, or information about someone ’ s age or the time of day. After that
data, in the form of a number, is acquired, you ’ ll have to display it.

 The usual method of doing this is to incorporate numbers into strings . You can use the format specifier
method that was used in Chapter 1. It may make intuitive sense to you that you should also be able to
use the + method for including a number in a string, but in fact this does not work, because deep down

c02.indd 19c02.indd 19 12/22/09 10:38:28 AM12/22/09 10:38:28 AM

20

Part I: Dipping Your Toe into Python

they are different types, and the + operator is intended for use only with two things of the same type:
two strings, two numbers, or two other objects and types that you will encounter later. The definite
exceptions are that floats and integers can be added together. Otherwise, you should expect that different
types won ’ t be combined with the + operation.

 You are likely wondering why a string format specifier can be used to include a number, when a + can ’ t.
The reason is that the + operation relies on information contained in the actual items being added.
Almost everything you use in Python can be thought of as an object with properties, and all of the
properties combined define the object. One important property of every object is its type, and for now
the important thing to understand about a type is that certain naturally understood things like the +
operation work only when you perform them with two objects of compatible types. In most cases,
besides numbers, compatible types should be thought of as the same type.

 If you do want to use the + operation with numbers and strings (and doing this is usually a matter of
style that you can decide for yourself), you can use a built - in function called str that will transform, if
possible, numbers into a string. It enables you to do things such as add strings and numbers into a
single string. You can use str with most objects because most objects have a way of displaying
themselves as strings. However, for the sake of consistency, you ’ ll use string format specifiers for now.

Try It Out Including Different Numbers in Strings

 When you combined two strings in the first chapter by using a format specifier, you used the format
specifier %s , which means “ a string. ” Because numbers and strings have different types, you will use a
different specifier that will enable your numbers to be included in a string:

 > > > “Including an integer works with %%d like this: %d” % 10
‘Including an integer works with %d like this: 10’
 > > > “An integer converted to a float with %%f: %f” % 5
‘An integer converted to a float with %f: 5.000000’
 > > > “A normal float with %%f: %f” % 1.2345
‘A normal float with %f: 1.234500’
 > > > “A really large number with %%E: %E” % 6.789E10
‘A really large number with %E: 6.789000E+10’
 > > > “Controlling the number of decimal places shown: %.02f” % 25.101010101
‘Controlling the number of decimal places shown: 25.10’

 If you ’ re wondering where you can use format specifiers, note that the last example looks very similar
to the way we print monetary values, and, in fact, any program that deals with dollars and cents will
need to have at least this much capability to deal with numbers and strings.

 How It Works
 Anytime you are providing a format specifier to a string, there may be options that you can use to
control how that specifier displays the value associated with it. You ’ ve already seen this with the %s
specifier in Chapter 1, where you could control how many characters were displayed. With numeric
specifiers are also conventions regarding how the numbers of a particular type should be displayed.
These conventions result in what you see when you use any of the numeric format specifiers.

c02.indd 20c02.indd 20 12/22/09 10:38:29 AM12/22/09 10:38:29 AM

Chapter 2: Numbers and Operators

21

 Try It Out Escaping the % Sign in Strings

 One other trick was shown before. If you want to print the literal string %d in your program, you
achieve that in Python strings by using two % signs together. This is needed only when you also have
valid format specifiers that you want Python to substitute for you in the same string:

 > > > print(“The %% behaves differently when combined with other letters, like
this: %%d %%s %%f %d” % 10)
The % behaves differently when combined with other letters, like this: %d %s
%f 10

 How It Works
Note that Python pays attention to the combinations of letters and will behave correctly in a string that
has both format specifiers as well as a double percent sign.

 Basic Math
 It ’ s more common than not that you ’ ll have to use the numbers in your program in basic arithmetic.
Addition, subtraction, division, and multiplication are all built in. Addition and subtraction are
performed by the + and – symbols.

 Try It Out Doing Basic Math

 You can enter basic arithmetic at the Python shell prompt and use it like a calculator. Like a calculator,
Python will accept a set of operations, and when you press the Enter key, it will evaluate everything
you ’ ve typed and give you your answer:

 > > > 5 + 300
305
 > > > 399 + 3020 + 1 + 3456
6876
 > > > 300 - 59994 + 20
-59674
 > > > 4023 - 22.46
4000.54

 How It Works
 Simple math looks about how you ’ d expect it to look. In addition to + and – , multiplication is
performed by the asterisk, *, and division is performed by the forward slash, /. Multiplication and
division may not be as straightforward as you ’ d expect in Python, because of the distinction between
floating - point numbers and whole numbers.
 In previous versions of Python, as numbers became larger, they would be promoted from int to long.
However, in Python 3.1, these two types have merged and there is no longer a need for such

c02.indd 21c02.indd 21 12/22/09 10:38:29 AM12/22/09 10:38:29 AM

22

Part I: Dipping Your Toe into Python

promotion. Observe the following numbers and how Python promotes numbers once they become a
certain size:

 > > > 2000403030 * 392381727
784921595607432810
 > > > 2000403030 * 3923817273929
7849215963933911604870
 > > > 2e304 * 3923817273929
inf
 > > > 2e34 * 3923817273929
7.8476345478579995e+46

 Note that although Python can deal with some very large numbers, the results of some operations will
exceed what Python can accommodate. The shorthand for infinity, inf , is what Python will return
when a result is larger than what it can handle.

 Before Python 3.1, division was a bit more interesting. Without help, Python would not coax one kind of
number into another through division. Only when you had at least one number that was a floating - point
component — that is, a period followed by a number — would floating - point answers be displayed. If
two numbers that were normal integers or longs (in either case, lacking a component that specifies a
value less than one, even if that is .0) were divided, the remainder would be discarded. This has since
been fixed, and now Python will still display the decimals, unless told otherwise. Observe the following:

 > > > 44 / 11
4.0
 > > > 5.0/2.5
2.0
 > > > 324/101
3.2079207920792081
 > > > 324.5/102.9
3.1535471331389697

 As you can see, if you divide an integer by another integer, it still shows as a floating point, even if
there is no remainder. Likewise, dividing an integer by a floating point returns a floating - point
number. Note, however, that even though the integer is displayed as a float in the preceding examples
of 4.0 and 2.0, it is still, for all intents and purposes, an integer. However, the result of 324/101 is
converted to a float.

 Try It Out Using the Modulus Operation

 There is one other basic operation of Python that you should be aware of: the remainder, or modulus
operation. A new addition to Python is the ability to view the entire result of a piece of division (as
you saw in the equation 324/101). Previously, if you wanted to know the remainder you had to use
the modulus operator, because Python would show only the whole number portion of the answer. For
324/101, Python would have displayed 3. In some instances, believe it or not, you still need only the
remainder portion of a division result. To find this part of the answer, you have to use the modulus
operator, which is the % . Don ’ t let this confuse you! The % means modulus only when it is used on
numbers. When you are using strings, it retains its meaning as the format specifier. When something
has different meanings in different contexts, it is called overloading , and it is very useful; but don ’ t get
caught by surprise when something behaves differently by design.

c02.indd 22c02.indd 22 12/22/09 10:38:29 AM12/22/09 10:38:29 AM

Chapter 2: Numbers and Operators

23

 > > > 5 / 3
1.6666666666666667
 > > > 5 % 3
2

 How It Works
The preceding code indicates that 5 divided by 3 is 1.6666666666666667, and in the second example
you learn that when you divide 5/3, you have a remainder of 2. One very useful task the modulus
operator is used for is to discover whether one thing can be evenly divided by another, such as
determining whether the items in one sequence will fit into another evenly (you learn more about
sequences in Chapter 3). Here are some more examples that you can try out:

 > > > 123 % 44
35
 > > > 334 % 13
9
 > > > 652 % 4
0

 Some Surprises
 You need to be careful when you are dealing with common floating - point values, such as money. Some
things in Python are puzzling. For one thing, if you manipulate certain numbers with seemingly
straightforward math, you may still receive answers that have extra values trailing them, such as the
following:

 > > > 4023 - 22.4
4000.5999999999999

 The trailing nines could worry you, but they merely reflect the very high precision that Python offers.
However, when you print or perform math, this special feature actually results in precise answers.

 Try It Out Printing the Results

 Try actually printing the results, so that the preceding math with the unusual - looking results has its
results displayed to a user, as it would from inside of a program:

 > > > print(“%f” % (4023 - 22.4))
4000.600000

 How It Works
 You may remember the earlier discussion regarding floating - point division, and how in Python 3.0,
the entire equation is written out. Before, when you did the equation 5/3, you got the result
1.6666666666666667. But you might not want to display such a long string to the user. To truncate the
answer, you can do so with the %f format specifier.

c02.indd 23c02.indd 23 12/22/09 10:38:30 AM12/22/09 10:38:30 AM

24

Part I: Dipping Your Toe into Python

 Try It Out %f Format Specifi er

 Try out the following code and observe the different ways Python handles floating - point mathematics
and then how you can manipulate the results with formatting:

 > > > print(“%f” % (5/3))
1.666667
 > > > print(“%.2f” % (5/3))
1.67
 > > > print(“%f” % (415 * 20.2))
8383.000000
 > > > print(“%0.f” % (415 * 20.2))
8383

Floating - point numbers can be confusing. A complete discussion of floating - point numbers is beyond
the scope of this book, but if you are experienced with computers and numbers and want to know
more about floating - point numbers, read the paper at http://docs.sun.com/source/806-3568/
ncg_goldberg.html . The explanation offered there should help round out this discussion.

 Using Numbers
 As you can see from the previous example, you can display numbers with the print() function by
including the numbers into strings, for instance by using a format specifier. The important point is that
you must determine how to display your numbers so that they mean what you intend them to mean,
and that depends on knowing your application.

 Order of Evaluation
 When doing math, you may find yourself looking at an expression like 4*3+1/4 – 12. The puzzle you ’ re
confronted with is determining how you ’ re going to evaluate this sort of expression and whether the way
 you would evaluate it is the same way that Python would evaluate it. The safest way to do this is to
always enclose your mathematical expressions in parentheses, which will make it clear which math
operations will be evaluated first.

 Python evaluates these basic arithmetic operations as follows: Multiplication and division operations
happen before addition and subtraction, but even this can become confusing.

 Try It Out Using Math Operations

 When you ’ re thinking about a particular set of mathematical operations, it can seem straightforward
when you write it down (or type it in). When you look at it later, however, it can become confusing.
Try these examples, and imagine them without the parentheses:

 > > > (24 * 8)
192
 > > > (24 * (8 + 3))

c02.indd 24c02.indd 24 12/22/09 10:38:30 AM12/22/09 10:38:30 AM

Chapter 2: Numbers and Operators

25

264
 > > > (24 * (8 + 3 + 7.0))
432.0
 > > > (24 * (8 + 3 + 7.0 + 9))
648.0
 > > > (24 * (8 + 3 + 7.0 + 9))/19
34.10526315789474
 > > > (24 * (8 + 3 + 7 + 9))/19
34.10526315789474
 > > > (24 * (8 + 3 + 7 + 9))%19
2

 Notice in the examples here how the presence of any floating - point numbers changes the entire
equation to using floating - point numbers, and how removing any floating - point numbers causes
Python to evaluate everything as integers, unless the result is a float.

 How It Works
 The examples are grouped in something that resembles the normal order of evaluation, but the
parentheses ensure that you can be certain which groups of arithmetic operations will be evaluated
first. The innermost (the most contained) are evaluated first, and the outermost last. Within a set of
parentheses, the normal order takes place.

 Number Formats
 When you prepare strings to contain a number, you have a lot of flexibility. The following Try It Out
shows some examples.

 For displaying money, use a format specifier indicating that you want to limit the number of decimal
places to two.

 Try It Out Using Number Formats

 Try this, for example. Here, you print a number as though you were printing a dollar amount:

 > > > print(“$%.02f” % 30.0)
$30.00

 You can use a similar format to express values less than a cent, such as when small items are listed for
sale individually. When you have more digits than you will print, notice what Python does:

 > > > print(“$%.03f” % 30.00123)
$30.001
 > > > print(“$%.03f” % 30.00163)
$30.002
 > > > print(“%.03f” % 30.1777)
30.178
 > > > print(“%.03f” % 30.1113)
30.111

c02.indd 25c02.indd 25 12/22/09 10:38:30 AM12/22/09 10:38:30 AM

26

Part I: Dipping Your Toe into Python

 How It Works
 As you can see, when you specify a format requiring more accuracy than you have asked Python to
display, it will not just cut off the number. It will do the mathematically proper rounding for you
as well.

 Mistakes Will Happen
 While you are entering these examples, you may make a mistake. Obviously, there is nothing that
Python can do to help you if you enter a different number; you will get a different answer than the one
in this book. However, for mistakes such as entering a letter as a format specifier that doesn ’ t mean
anything to Python or not providing enough numbers in a sequence you ’ re providing to a string ’ s
format specifiers, Python tries to give you as much information as possible to indicate what ’ s happened
so that you can fix it.

 Try It Out Making Mistakes

 To understand what ’ s going on when a mistake happens, here are some examples you can try. Their
full meanings are covered later, starting in Chapter 4, but in the meantime, you should know this:

 > > > print(“%.03f” % (30.1113, 12))
Traceback (most recent call last):
 File “ < input > ”, line 1, in ?
TypeError: not all arguments converted during string formatting

 How It Works
 In the preceding code, there are more elements in the sequence (three in all) than there are format
specifiers in the string (just two), so Python helps you out with a message. What ’ s less than helpful is
that this mistake would cause a running program to stop running, so this is normally an error condition,
or an exception . The term arguments here refers to the format specifiers but is generally used to mean
parameters that are required in order for some object to work. When you call a function that expects a
certain number of values to be specified, each one of those anticipated values is called an argument.

 This is something that programmers take for granted; this specialized technical language may not
make sense immediately, but it will begin to feel right when you get used to it. Through the first ten
chapters of this book, arguments will be referred to as parameters to make them less puzzling, because
no one is arguing, just setting the conditions that are being used at a particular point in time. When
you are programming, though, the terms are interchangeable.

 Here is another potential mistake:

 > > > print(“%.03f, %f %d” % (30.1113, 12))
Traceback (most recent call last):
 File “ < input > ”, line 1, in ?
TypeError: not enough arguments for format string

 Now that you know what Python means by an argument, it makes sense. You have a format specifier
and you don ’ t have a value in the accompanying sequence that matches it; thus, there aren ’ t enough
parameters.

c02.indd 26c02.indd 26 12/22/09 10:38:31 AM12/22/09 10:38:31 AM

Chapter 2: Numbers and Operators

27

 If you try to perform addition with a string and a number, you will also get an error:

 > > > ”This is a string” + 4
Traceback (most recent call last):
 File “ < pyshell#13 > ”, line 1, in < module >
TypeError: Can’t convert ‘int’ object to str implicitly

 This should make sense because you ’ ve already read about how you can and can ’ t do this. However,
here is definite proof: Python is telling you clearly that it can ’ t do what it has been asked to do, so now
it ’ s up to you to resolve the situation. (Hint: You can use the str function.)

 > > > ”This is a string””” + str(4)
‘This is a string4’

 Some Unusual Cases
 Python offers one other feature with its numbers that is worth knowing about so that you understand it
when you encounter it. The normal counting system that we use is called base 10 , or radix 10 . It includes
numbers from 0 to 9. Numbers above that just involve combining 0 through 9. However, computers
commonly represent the binary numbers they actually deal with in base 8 , called octal , and base 16 , also
called hexadecimal . These systems are often used to give programmers an easier way to understand bytes
of data, which often come in one and two chunks of 8 bits.

 In addition, neither octal nor hexadecimal can be displayed as negative numbers. Numbers described in
this way are said to be unsigned , as opposed to being signed . The sign that is different is the + or – sign.
Normally, numbers are assumed to be positive, but if a number is a signed type , it can be negative as well.
If a number is unsigned, it has to be positive; and if you ask for the display of a negative number but in a
signed format string, you ’ ll get unusual answers.

Try It Out Formatting Numbers as Octal and Hexadecimal
 > > > print(‘Octal uses the letter “o” lowercase. %d %o’ % (10,10))
Octal uses the letter “o” lowercase. 10 12

 It may seem like a mistake that the second number printed is 12 when you ’ ve provided the string with
a 10. However, octal only has 8 numbers (0 to 7), so from 0 to 10 in octal is 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11.

 > > > print(‘Hex uses the letter “x” or “X”. %d %x %X’ % (10, 10, 10))
Hex uses the letter “x” or “X”. 10 a A

 Here is another case that needs explaining. Hexadecimal uses numbers from 0 to 15, but because you
run out of numbers at 9, hex utilizes the letters a – f; and the letters are lowercase if you used the format
specifier %x and are capitalized if you used %X . Therefore, the numbers 0 to 20 in decimal are as
follows in hex: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, 10, 11, 12, 13.

c02.indd 27c02.indd 27 12/22/09 10:38:31 AM12/22/09 10:38:31 AM

28

Part I: Dipping Your Toe into Python

 Summary
 This chapter introduced you to numbers in Python, although it doesn ’ t cover everything available.
You ’ ve seen and used three kinds of built - in numbers that Python knows about: integers, floats, and
imaginary numbers. You have learned how to use string format specifiers to allow you to include
numbers in your strings, and you ’ ve formatted those numbers in strings with different styles.

 An important thing to remember is that the format, or how the number is displayed in a string,
doesn ’ t change the value of the number. Floats remain floats even when they are printed as integers,
and vice versa.

 You ’ ve performed the major built - in arithmetic operations: addition, subtraction, multiplication,
division, and modulus. You have learned that if integers are mixed with a float, the result is a float, or if
two integers are divided, they may also return a float, where appropriate. If arithmetic is done with an
integer or a float combined with an imaginary number, the result will be a complex number that separates
the real component and the imaginary component. You ’ ve also learned about the type function, which
enables you to determine what type of number you actually have.

 Lastly, you generally use numbers in base 10, or radix 10. Computers in general, and Python in
particular, can easily translate numbers to base 8, or octal, and base 16, or hexadecimal.

 The key things to take away from this chapter are:

 There are three types of numbers in Python. Those are: integers, which are whole numbers (both
negative and positive; floating - point numbers, which are any number with a decimal value; and
imaginary number, which is the square - root of 1, and is used in the world of engineering and
physics.

 The + operator, when used on strings, concatenates two or more strings together. For instance,
 if you write print (“ Hello, ” + “ how are you ?”), the result will be one sentence: “ Hello, how
are you? ”

 To convert a number to a string, you can use the str function.

 Dividing two integers can sometimes result in a floating - point number (i.e.; 3/2). Dividing an
integer by a floating - point decimal will always result in a floating - point number.

 The modulus operator (%) is used to return the remainder in a division. For instance, 5 % 2
will return 1.

 Using parentheses in your calculations helps to ensure the proper order of evaluation.

❑

❑

❑

❑

❑

❑

c02.indd 28c02.indd 28 12/22/09 10:38:31 AM12/22/09 10:38:31 AM

Chapter 2: Numbers and Operators

29

 Exercises
 Do the following first three exercises in Notepad and save the results in a file called ch2_exercises.py .
You can run it from within Python by opening the file and choosing Run Module.

 1. In the Python shell, multiply 5 and 10. Try this with other numbers as well.

 2. Print every number from 6 through 14 in base 8.

 3. Print every number from 9 through 19 in base 16.

 4. Try to elicit other errors from the Python interpreter — for instance, by deliberately misspelling
 print as pinrt . Notice how as you work on a file in the Python shell, it will display print
 differently than it does pinrt .

c02.indd 29c02.indd 29 12/22/09 10:38:32 AM12/22/09 10:38:32 AM

c02.indd 30c02.indd 30 12/22/09 10:38:32 AM12/22/09 10:38:32 AM

 3
Variables — Names

for Values

 In the previous two chapters, you learned how Python views strings, integers, floats, and
imaginary numbers and how they can be created and displayed. This chapter presents more
examples that demonstrate how these data types can be used.

 In this chapter you learn:

 To use names to store the types you already know as well as other basic types to which
you will be introduced.

 How to work with different types of objects that you haven ’ t learned about yet. Variables
and new, different types — specifically, you will become better acquainted with lists ,
 tuples , and dictionaries .

 What a reference is and have some experience in using references.

 To get the most out of this chapter, you should type the examples yourself and alter them
to see what happens.

 Referring to Data — Using
Names for Data

 It ’ s difficult to always write strings and numbers explicitly throughout a program because it forces
you to remember everything. The exacting memory that computers have enable them to remember
far more details than people can, and taking advantage of that capability is a huge part of
programming. However, to make using data more flexible and easy, you want to give the data
names that can be used to refer to them.

❑

❑

❑

❑

c03.indd 31c03.indd 31 12/22/09 10:42:05 AM12/22/09 10:42:05 AM

32

Part I: Dipping Your Toe into Python

 Try It Out Assigning Values to Names

 These names are commonly called variables , which indicates that the data to which they refer can vary
(it can be changed), while the name remains the same. You ’ ll see them referred to as names as well,
because that is what you are presented with by Python.

 > > > first_string = “This is a string”
 > > > second_string = “This is another string”
 > > > first_number = 4
 > > > second_number = 5
 > > > print (“The first variables are %s, %s, %d, %d” % (first_string,
second_string, first_number, second_number))
The first variables are This is a string, This is another string, 4, 5

 How It Works
 You can see that you can associate a name with a value — either a string or an integer — by using the
equals (=) sign. The name that you use doesn ’ t relate to the data to which it points in any direct sense
(that is, if you name it “ number, ” that doesn ’ t actually have to mean that it holds a number).

 > > > first_string = 245
 > > > second_number = “This isn’t a number”
 > > > print(first_string)
245
 > > > print(second_number)
“This isn’t a number”

 Notice that you did not need to use quotations when you just wanted to print out the value inside of a
variable. Had you put quotations around the variable inside the print() function, it would have
printed out the name of the variable, instead of its contents, seeing it as a string and not an actual
variable. The benefit of being able to name your data is that you can decide to give it a name that
means something. It is always worthwhile to give your data a name that reminds you of what it
contains or how you will use it in your program. If you were to inventory the lightbulbs in your home,
you might want a piece of your program to contain a count of the lightbulbs in your closets and
another piece to contain a count of those actually in use:

 > > > lightbulbs_in_closet = 10
 > > > lightbulbs_in_lamps = 12

 As lightbulbs are used, they can be moved from the closet into the lamps, and a name can be given to
the number of lightbulbs that have been thrown out this year, so that at the end of the year you have
an idea of what ‘ you ’ ve bought, what you have, and what ‘ you ’ ve used; and when you want to know
what you still have, you have only to refer to lightbulbs_in_closet or lightbulbs_in_lamps .

 When you have names that relate to the value stored in them, ‘ you ’ ve created an informal index that
enables you to look up and remember where you put the information that you want so that it can be
easily used in your program.

c03.indd 32c03.indd 32 12/22/09 10:42:06 AM12/22/09 10:42:06 AM

Chapter 3: Variables — Names for Values

33

 Changing Data Through Names
 If your data is a number or a string, you can change it by using the operations you already know you can
do with them.

 Try It Out Altering Named Values

 Every operation you ’ ve learned for numbers and strings can be used with a variable name so that you
can treat them exactly as if they were the numbers they referenced:

 > > > proverb = “A penny saved”
 > > > proverb = proverb + “ is a penny earned”
 > > > print(proverb)
A penny saved is a penny earned
 > > > pennies_saved = 0
 > > > pennies_saved = pennies_saved + 1
 > > > print(pennies_saved)
1
print(pennies_saved + 1)
2

 How It Works
 Whenever you combine named values on the right - hand side of an equals sign, the names will be
operated on as though you had presented Python with the values referenced by the names, even if the
same name is on the left - hand side of the equals sign. When Python encounters a situation like that, it
will first evaluate and find the result of the operations on the right side and then assign the result
to the name on the left side. That way, there ’ s no confusion about how the name can exist on both
sides — Python will do the right thing.

 Copying Data
 The name that you give data is only a name. It ’ s how you refer to the data that you ’ re trying to access.
This means that more than one name can refer to the same data:

 > > > pennies_saved=1
 > > > pennies_earned = pennies_saved
 > > > print(pennies_earned)
1

 When you use the = sign again, you are referring your name to a new value that you ’ ve created, and the
old value will still be pointed to by the other name:

 > > > pennies_saved = pennies_saved + 1
 > > > print(pennies_saved)
2
 > > > print(pennies_earned)
1

c03.indd 33c03.indd 33 12/22/09 10:42:06 AM12/22/09 10:42:06 AM

34

Part I: Dipping Your Toe into Python

 Names You Can ’ t Use and Some Rules
 Python uses a few names as special built - in words that it reserves for special use to prevent ambiguity.
The following words are reserved by Python and can ’ t be used as the names for data:

and, as, assert, break, class, continue, def, del, elif, else,
except, exec,False, finally, for, from, global, if, import, in,
is, lambda, not, None, or, pass, print, raise, return, try, True,
while, with, yield

 In addition, the names for data cannot begin with numbers or most non - alphabet characters (such as
commas, plus or minus signs, slashes, and so on), with the exception of the underscore character. The
underscore is allowed and even has a special meaning in some cases (specifically with classes and
modules, which you see in Chapter 6 and later).

 You will see a number of these special reserved words in the remaining discussion in this chapter.
They ’ re important when you are using Python to do various tasks.

 Using More Built - in Types
 Beside strings and numbers, Python provides four other important basic types: tuples, lists, sets, and
dictionaries. These four types have a lot in common because they all allow you to group more than one
item of data together under one name. Each one also gives you the capability to search through them
because of that grouping. These groupings are indicated by the presence of enclosing parentheses (),
square brackets [], and curly braces {}.

 When you write a program, or read someone else ’ s program, it is important to pay
attention to the type of enclosing braces when you see groupings of elements. The
differences among {}, [], and () are important.

 Tuples — Unchanging Sequences of Data
 In Chapters 1 and 2, you saw tuples (rhymes with supple) being used when you wanted to assign values
to match more than one format specifier in a string. Tuples are a sequence of values, each one accessible
individually, and a tuple is a basic type in Python. You can recognize tuples when they are created
because they ’ re surrounded by parentheses:

 > > > print(“A %s %s %s %s” % (“string”, “filled”, “by a”, “tuple”))
A string filled by a tuple

c03.indd 34c03.indd 34 12/22/09 10:42:07 AM12/22/09 10:42:07 AM

Chapter 3: Variables — Names for Values

35

 Try It Out Creating and Using a Tuple

 Tuples contain references to data such as strings and numbers. However, even though they refer to
data, they can be given names just like any other kind of data:

 > > > filler = (“string”, “filled”, “by a”, “tuple”)
 > > > print(“A %s %s %s %s” % (“string”, “filled”, “by a”, “tuple”))
A string filled by a tuple

 Note that you can also print out the values in the tuple by simply calling upon it in the print()
function. Try the following code and observe the results:

 > > > filler = (“string”, “filled”, “by a”, “tuple”)
 > > > print(filler)
(‘string’, ‘filled’, ‘by a ‘, ‘tuple’)

 As you can see, the four parts that made up the tuple were returned. This technique is useful if you
ever want to see the individual parts that make up your tuple.

 How It Works
 You can see in the example that filler is treated exactly as though its data — the tuple with
strings — were present and being used by the string to fill in its format specifiers because the tuple
was treated exactly as though you had typed in a sequence to satisfy the format specification.

 You can access a single value inside of a tuple. The value referred to by each element can be accessed
directly by using the dereference feature of the language. With tuples, you dereference the value by
placing square brackets after the name of the tuple, counting from zero to the element that you ’ re
accessing. Therefore, the first element is 0, the second element is 1, the third element is 2, and so on
until you reach the last element in the tuple:

 > > > a = (“first”, “second”, “third”)
 > > > print(“The first element of the tuple is %s” % a[0])
The first element of the tuple is first
 > > > print(“The second element of the tuple is %s” % a[1])
The second element of the tuple is second
 > > > print(“The third element of the tuple is %s” % a[2])
The third element of the tuple is third

 A tuple keeps track of how many elements it contains, and it can tell you when you ask it by using the
built - in function len :

 > > > print(“%d” % len(a))
3

 This returns the number of elements in the tuple (in this case 3), so you need to remember that the len
function starts counting at 1, but when you access your tuple, because tuples are counted starting from
zero, you must stop accessing at one less than the number returned by len :

 > > > print(a[len(a) - 1])
Third

c03.indd 35c03.indd 35 12/22/09 10:42:07 AM12/22/09 10:42:07 AM

36

Part I: Dipping Your Toe into Python

 You can also have one element of a tuple refer to an entirely different tuple. In other words, you can
create layers of tuples:

 > > > b = (a, “b’s second element”)
 > > > print(b)
((‘first’, ‘second’, ‘third’), “b’s second element”)

 Now you can access the elements of the tuple a by adding another set of brackets after the first one,
and the method for accessing the second element is no different from accessing the first — you just
add another set of square brackets.

 Try It Out Accessing a Tuple Through Another Tuple

 Re - create the a and b tuples so that you can look at how this works. When you have these layers of
sequences, they are sometimes referred to as multidimensional because there are two layers that can be
visualized as going down and across, like a two - dimensional grid for graph paper or a spreadsheet.
Adding another one can be thought of as being three - dimensional, like a stack of blocks. Beyond that,
though, visualizing this can give you a headache, and it ’ s better to look at it as layers of data.

 > > > a = (“first”, “second”, “third”)
 > > > b = (a, “b’s second element”)
 > > > print(“%s” %b[1])
b’s second element
 > > > print(“%s” % b[0][0])
first
 > > > print(“%s” % b[0][1])
second
 > > > print(“%s” % b[0][2])
third

 How It Works
 In each case, the code works exactly as though you had followed the reference in the first element of
the tuple named b and then followed the references for each value in the second layer tuple (what
originally came from the tuple a). It ’ s as though you had done the following:

 > > > a = (“first”, “second”, “third”)
 > > > b = (a, “b’s second element”)
 > > > layer2 = b[0]
 > > > print(layer2[0])
‘first’
 > > > print(layer2[1])
‘second’
 > > > print(layer2[2])
‘third’

 Note that tuples have one oddity when they are created. To create a tuple with one element, you
absolutely have to follow that one element with a comma:

 > > > single_element_tuple = (“the sole element”,)

c03.indd 36c03.indd 36 12/22/09 10:42:07 AM12/22/09 10:42:07 AM

Chapter 3: Variables — Names for Values

37

 Doing otherwise will result in the creation of a string, and that could be confusing when you try to
access it later.

 A tuple can have any kind of data in it, but after you ’ ve created one it can ’ t be changed. It is immutable ,
and in Python this is true for a few types (for instance, strings are immutable after they are created; and
operations on them that look like they change them actually create new strings).

 Tuples are immutable because they are supposed to be used for ordered groups of things that will not
be changed while you ’ re using them. Trying to change anything in them will cause Python to
complain with an error, similar to the errors you were shown at the end of Chapter 2:

 > > > a[1] = 3
Traceback (most recent call last):
 File “ < stdin > ”, line 1, in ?
TypeError: object does not support item assignment
 > > > print(“%s” % a[1])
second

 You can see that the error Python returns when you try to assign a value to an element in the tuple is a
 TypeError, which means that this type doesn ’ t support the operation you asked it to do (that ’ s what the
equals sign does — it asks the tuple to perform an action). In this case, you were trying to get the
second element in a to refer to an integer, the number 3, but that ’ s not going to happen. Instead, a
remains unchanged.

 An unrelated error will happen if you try to refer to an element in a tuple that doesn ’ t exist. If you try
to refer to the fourth element in a , you will get an error (remember that because tuples start counting
their elements at zero, the fourth element would be referenced using the number three):

 > > > a[3]
Traceback (most recent call last):
 File “ < pyshell#27 > ”, line 1, in < module >
 a[3]
IndexError: tuple index out of range

 Note that this is an IndexError and that the explanation of the error is provided (although it doesn ’ t tell
you the index value that was out of range, you do know that you tried to access an element using an
index value that doesn ’ t exist in the tuple). To fix this in a program, you would have to find out what
value you were trying to access and how many elements were in the tuple. Python makes finding
these errors relatively simple compared to many other languages that will fail silently.

 Lists — Changeable Sequences of Data
 Lists , like tuples, are sequences that contain elements referenced starting at zero. Lists are created by
using square brackets:

 > > > breakfast = [“coffee”, “tea”, “toast”, “egg”]

c03.indd 37c03.indd 37 12/22/09 10:42:08 AM12/22/09 10:42:08 AM

38

Part I: Dipping Your Toe into Python

 Try It Out Viewing the Elements of a List

 The individual elements of a list can be accessed in the same way as tuples. Like tuples, the elements
in a list are referenced starting at 0 and are accessed in the same order from 0 until the end:

 > > > count = 0
 > > > print(“Today’s breakfast is %s” % breakfast[count])
Today’s breakfast is coffee
 > > > count = 1
 > > > print(“Today’s breakfast is %s” % breakfast[count])
Today’s breakfast is tea
 > > > count = 2
 > > > print(“Today’s breakfast is %s” % breakfast[count])
Today’s breakfast is toast
 > > > count = 3
 > > > print(“Today’s breakfast is %s” % breakfast[count])
Today’s breakfast is egg

 How It Works
 When you are accessing more than one element of a list, one after the other, it is essential to use a
name to hold the value of the numbered position where you are in the list. In simple examples like
this, you should do it to get used to the practice, but in practice, you will always do this. Most often,
this is done in a loop to view every element in a sequence (see Chapter 4 for more about loops).

 Here, you ’ re manually doing the work of increasing the value referred to by count to go through
each element in the breakfast list to pull out the special for four days of the week. Because you ’ re
increasing the count, whatever number is referred to by count is the element number in the breakfast
list that is accessed.

 The primary difference in using a list versus using a tuple is that a list can be modified after it has
been created. The list can be changed at any time:

 > > > breakfast[count] = “sausages”
 > > > print(“Today’s breakfast is %s” % breakfast[count])
Today’s breakfast is sausages

 You don ’ t just have to change elements that already exist in the list, you can also add elements to the
list as you need them. You can add elements at the end by using the append method that is built in to
the list type. Using append enables you to append exactly one item to the end of a list:

 > > > breakfast.append(“waffles”)
 > > > count = 4
 > > > print (“Today’s breakfast is %s” % breakfast[count])
Today’s breakfast is waffles

 If you want to add more than one item to the end of a list — for instance, the contents of a tuple or of
another list — you can use the extend method to append the contents of a list all at once. The list isn ’ t
included as one item in one slot; each element is copied from one list to the other:

 > > > breakfast.extend([“juice”, “decaf”, “oatmeal”])
 > > > print(breakfast)
[‘coffee’, ‘tea’, ‘toast’, ‘egg’, ‘waffle’, ‘juice’, ‘decaf’, ‘oatmeal’]

c03.indd 38c03.indd 38 12/22/09 10:42:08 AM12/22/09 10:42:08 AM

Chapter 3: Variables — Names for Values

39

 As with tuples, you can ’ t ask for an element beyond the end of a list, but the error message is slightly
different from a tuple because the error will tell you that it ’ s a list index that ’ s out of range, instead of
a tuple index that ’ s out of range:

 > > > count = 8
 > > > print(“Today’s breakfast is %s” % breakfast[count])
Traceback (most recent call last):
 File “ < pyshell#18 > ”, line 1, in < module >
 print(“Today’s breakfast is %s” % breakfast[count])
IndexError: list index out of range

 The length of an array can also be determined by using the len function. Just like tuples, lengths start
at one, whereas the first element of a list starts at zero. It ’ s important to always remember this.

 Dictionaries — Groupings of Data Indexed by Name
 A dictionary is similar to lists and tuples. It ’ s another type of container for a group of data. However,
whereas tuples and lists are indexed by their numeric order, dictionaries are indexed by names that you
choose. These names can be letters, numbers, strings, or symbols — whatever suits you.

Try It Out Making a Dictionary

 Dictionaries are created using the curly braces. To start with, you can create the simplest dictionary,
which is an empty dictionary, and populate it using names and values that you specify one per line:

 > > > menus_specials = {}
 > > > menus_specials[“breakfast”] = “Canadian ham”
 > > > menus_specials[“lunch”] = “tuna surprise”
 > > > menus_specials[“dinner”] = “Cheeseburger Deluxe”

 How It Works
 When you first assign to menus_specials , you ’ re creating an empty dictionary with the curly braces.
Once the dictionary is defined and referenced by the name, you may start to use this style of
specifying the name that you want to be the index as the value inside of the square brackets, and the
values that will be referenced through that index are on the right side of the equals sign. Because
they ’ re indexed by names that you choose, you can use this form to assign indexes and values to the
contents of any dictionary that ’ s already been defined.

 When you ’ re using dictionaries, the indexes and values have special names. Index names in
dictionaries are called keys, and the values are called, well, values . To create a fully specified
(or you can think of it as a completely formed) dictionary — one with keys and values assigned at the
outset — you have to specify each key and its corresponding value, separated by a colon, between the
curly braces. For example, a different day ’ s specials could be defined all at once:

 > > > menu_specials = {“breakfast” : “sausage and eggs”,
... “lunch” : “split pea soup and garlic bread”,
... “dinner”: “2 hot dogs and onion rings”}

c03.indd 39c03.indd 39 12/22/09 10:42:08 AM12/22/09 10:42:08 AM

40

Part I: Dipping Your Toe into Python

 To print out all of the keys and values in a dictionary, simply place the name of the dictionary in the
parameters of the print() function, as shown in the following code. To access any of the values, you
use square brackets with the name of the key enclosed in the brackets. If the key is a string, the key has
to be enclosed in quotes. If the key is a number (you can use numbers, too, making a dictionary look a
lot like a list or a tuple), you need only the bare number.

 > > > print(menu_specials)
{‘lunch’: ‘split pea soup and garlic bread’, ‘breakfast’: ‘sausage and eggs’,
‘dinner’: ‘2 hot dogs and onion rings’}
 > > > print(“%s” % menu_specials[“breakfast”])
sausage and eggs
 > > > print(“%s” % menu_specials[“lunch”])
split pea soup and garlic bread
 > > > print(“%s” % menu_specials[“dinner”])
2 hot dogs and onion rings

 If a key that is a string is accidentally not enclosed in quotes when you try to use it within square
brackets, Python will try to treat it as a name that should be dereferenced to find the key. In most
cases, this will raise an exception — a NameError — unless it happens to find a name that is the same
as the string, in which case you will probably get an IndexError from the dictionary instead!

 Try It Out Getting the Keys from a Dictionary

 Dictionaries can tell you what all of their keys are, or what all of their values are, if you know how to
ask them. The keys method will ask the dictionary to return all of its keys to you as a view so that you
can examine them for the key (or keys) you are looking for, and the values method will return all of
the values as a view.

 > > > hungry=menu_specials.keys()
 > > > print(list(hungry))
lunch
breakfast
dinner
 > > > starving=menu_specials.value()
 > > > print(list(starving))
split pea soup and garlic bread
sausage and eggs
2 hot dogs and onion rings

 How It Works
 Both the keys and values methods return views, which you can assign and use like any normal view.
When you have the items in a view from the keys method, you can use the items in the view, which
are keys, to get their matching values from that dictionary. Note that while a particular key will lead
you to a value, you cannot start with a value and reliably find the key associated with it. You try to
find the key when you know only a value; you need to exhaustively test all the possible keys to find a
matching value, and even then, two different keys can have the same values associated with them.

 In addition, the way that dictionaries work is that each key is different (you can ’ t have two keys that
are exactly the same), but you can have multiple duplicate values:

c03.indd 40c03.indd 40 12/22/09 10:42:08 AM12/22/09 10:42:08 AM

Chapter 3: Variables — Names for Values

41

 > > > menu={“breakfast” : “spam”, “lunch” : “spam”, “dinner”: “Spam with a side
of Spam”}
 > > > print(menu)
{‘lunch’: ‘spam’, ‘breakfast’: ‘spam’, ‘dinner’: ‘Spam with a side of Spam’}
 > > > menu.get(“lunch”)
‘spam’
 > > > menu.get(“breakfast”)
‘spam’

 As you can see, Python has no problem allowing you to see multiple values in different keys.
However, watch what happens when you try the following code, whose purpose is to try and create
 keys with the same name:

 > > > menu2 = {“breakfast” : “spam”, “breakfast” : “ham”, “dinner”: “Spam with
a side of Spam:”}
 > > > menu2.get(“breakfast”)
‘ham’

What happened here? Although you did not get an error, there is still a mistake in your code. When
you typed in the second key named “ breakfast ” , Python replaced the value in the first key with the
same name, and replaced the value of the second key with the same name.

 Treating a String Like a List
 Python offers an interesting feature of strings. Sometimes, it is useful to be able to treat a string as though
it were a list of individual characters. It ’ s not uncommon to have extraneous characters at the end of a
string. People may not recognize these, but computers will get hung up on them. It ’ s also common to
only need to look at the first character of a string to know what you want to do with it. For instance, if
you had a list of last names and first names, you could view the first letter of each by using the same
syntax that you would for a list. This method of looking at strings is called slicing and is one of the fun
things about Python:

 > > > last_names = [“Douglass”, “Jefferson”, “Williams”, “Frank”, “Thomas”]
 > > > print(“%s” % last_names[0])
Douglass
 > > > print(“%s” % last_names[0][0])
D
 > > > print(“%s” % last_names[1])
Jefferson
 > > > print(“%s” % last_names[1][0])
J
 > > > print(“%s” % last_names[2])
Williams
 > > > print(“%s” % last_names[2][0])
W

(continued)

c03.indd 41c03.indd 41 12/22/09 10:42:09 AM12/22/09 10:42:09 AM

42

Part I: Dipping Your Toe into Python

 > > > print(“%s” % last_names[3])
Frank
 > > > print(“%s” % last_names[3][0])
F
 > > > print(“%s” % last_names[4])
Thomas
 > > > print(“%s” % last_names[4][0])
T

 For example, you can use the letter positioning of strings to arrange them into groups in a dictionary
based on the first letter of the last name. You don ’ t need to do anything complicated; you can just check
to see which letter the string containing the name starts with and file it under that:

 > > > by_letter = {}
 > > > by_letter[last_names[0][0]] = last_names[0]
 > > > by_letter[last_names[1][0]] = last_names[1]
 > > > by_letter[last_names[2][0]] = last_names[2]
 > > > by_letter[last_names[3][0]] = last_names[3]
 > > > by_letter[last_names[4][0]] = last_names[4]

 The by_letter dictionary will, thanks to string slicing, only contain the first letter from each of the last
names. Therefore, by_letter is a dictionary indexed by the first letter of each last name. You could
also make each key in by_letter reference a list instead and use the append method of that list to create
a list of names beginning with that letter (if, of course, you wanted to have a dictionary that indexed a
larger group of names, where each one did not begin with a different letter).

 Remember that, like tuples, strings are immutable . When you are slicing strings, you are actually creating
new strings that are copies of sections of the original string.

String Slicing is Very Useful
If you ’ re new to programming, string slicing may seem like an unusual feature at
first. Programmers who have used a lower - level language like C or C++ would
have learned how to program viewing strings as special lists (and in Python you
can also slice lists, as you ’ ll see later), so for them this is natural. For you, it will
be a very convenient tool once you ’ ve learned how to control repetition over lists
in Chapter 4.

 Special Types
 Python has a handful of special types. You ’ ve seen them all, but they bear mentioning on their own:
 None , True , and False are all special built - in values that are useful at different times.

 None is special because there is only one None . It ’ s a name that no matter how many times you use it, it
doesn ’ t match any other object, just itself. When you use functions that don ’ t have anything to return to
you — that is, when the function doesn ’ t have anything to respond with — it will return None .

(continued)

c03.indd 42c03.indd 42 12/22/09 10:42:09 AM12/22/09 10:42:09 AM

Chapter 3: Variables — Names for Values

43

 True and False are special representations of the numbers 1 and 0. This prevents a lot of the confusion
that is common in other programming languages where the truth value of a statement is arbitrary. For
instance, in a UNIX shell (shell is both how you interact with the system, as well as a programming
language), 0 is true and anything else is false. With C and Perl, 0 is false and anything else is true.
However, in all of these cases, there are no built - in names to distinguish these values. Python makes this
easier by explicitly naming the values. The names True and False can be used in elementary comparisons,
which you ’ ll see a lot; and in Chapter 4, you learn how these comparisons can dramatically affect your
programs — in fact, they enable you to make decisions within your program.

 > > > True
True
 > > > False
False
 > > > True == 1
True
 > > > True == 0
False
 > > > False == 1
False
 > > > False == 0
True
 > > > False > 0
False
 > > > False < 1
True

 Other Common Sequence Properties
 The two types of sequences are tuples and lists; and as you ’ ve seen, in some cases strings can be accessed
as though they were sequences as well. Strings make sense because you can view the letters in a string as
a sequence.

 Even though dictionaries represent a group of data, they are not sequences, because they do not have a
specific ordering from beginning to end, which is a feature of sequences.

 Referencing the Last Elements
 All of the sequence types provide you with some shortcuts to make their use more convenient. You often
need to know the contents of the final element of a sequence, and you can get that information in two
ways. One way is to get the number of elements in the list and then use that number to directly access
the value there:

 > > > last_names = [“Douglass”, “Jefferson”, “Williams”, “Frank”, “Thomas”]
 > > > len(last_names)
5
 > > > last_element = len(last_names) - 1
 > > > print(“%s” % last_names[last_element])
Thomas

c03.indd 43c03.indd 43 12/22/09 10:42:09 AM12/22/09 10:42:09 AM

44

Part I: Dipping Your Toe into Python

 However, that method takes two steps; and as a programmer, typing it repeatedly in a program can be
time - consuming. Fortunately, Python provides a shortcut that enables you to access the last element of a
sequence by using the number – 1, and the next - to - last element with – 2, letting you reverse the order of
the list by using negative numbers from – 1 to the number that is the negative length of the list (– 5 in the
case of the last_names list).

 > > > print(“%s” % last_names[-1])
Thomas
 > > > print(“%s” % last_names[-2])
Frank
 > > > print(“%s” % last_names[-3])
Williams

 Ranges of Sequences
 You can take sections of a sequence and extract a piece from it, making a copy that you can use
separately. The term for creating these groupings is called slicing (the same term used for this practice
when you did it with strings). Whenever a slice is created from a list or a tuple, the resulting slice is the
same type as the type from which it was created, and you ’ ve already seen this with strings. For example,
a slice that you make from a list is a list , a slice you make from a tuple is a tuple , and the slice from a
string is a string.

Try It Out Slicing Sequences

 You ’ ve already sliced strings, so try using the same idea to slice tuples, lists, and strings and see what
the results are side - by - side:

 > > > slice_me = (“The”, “next”, “time”, “we”, “meet”, “drinks”, “are”, “on”, “me”)
 > > > sliced_tuple = slice_me[5:9]
 > > > print(sliced_tuple)
(‘drinks’, ‘are’, ‘on’, ‘me’)
 > > > slice_this_list = [“The”, “next”, “time”, “we”, “meet”, “drinks”,
“are”, “on”, “me”]
 > > > sliced_list = slice_this_list[5:9]
 > > > print(sliced_list)
[‘drinks’, ‘are’, ‘on’, ‘me’]
 > > > slice_this_string = “The next time we meet, drinks are on me”
 > > > sliced_string = slice_this_string[5:9]
 > > > print(sliced_string)
‘ext ‘

 How It Works
In each case, using the colon to specify a slice of the sequence instructs Python to create a new
sequence that contains just those elements.

c03.indd 44c03.indd 44 12/22/09 10:42:10 AM12/22/09 10:42:10 AM

Chapter 3: Variables — Names for Values

45

 Growing Lists by Appending Sequences
 Suppose you have two lists that you want to join together. You haven ’ t been shown a purposely built
way to do that yet. You can ’ t use append to take one sequence and add it to another. Instead, you will
find that you have layered a sequence into your list:

 > > > living_room = (“rug”, “table”, “chair”, “TV”, “dustbin”, “shelf”)
 > > > apartment = []
 > > > apartment.append(living_room)
 > > > apartment
[(‘rug’, ‘table’, ‘chair’, ‘TV’, ‘dustbin’, ‘shelf’)]

 This is probably not what you want if you were intending to create a list from the contents of the tuple
 living_room that could be used to create a list of all the items in the apartment .

 To copy all of the elements of a sequence, instead of using append , you can use the extend method of
lists and tuples, which takes each element of the sequence you give it and inserts those elements into the
list from which it is called:

 > > > apartment = []
 > > > apartment.extend(living_room)
 > > > apartment
[‘rug’, ‘table’, ‘chair’, ‘TV’, ‘dustbin’, ‘shelf’]

 Using Lists to Temporarily Store Data
 You ’ ll often want to acquire data from another source, such as a user entering data or another computer
whose information you need. To do that, it is best to put this data in a list so that it can be processed later
in the same order in which it arrived.

 However, after you ’ ve processed the data, you no longer need it to be in the list, because you won ’ t need
it again. Temporal (time - specific) information such as stock tickers, weather reports, or news headlines
would be in this category.

 To keep your lists from becoming unwieldy, a method called pop enables you to remove a specific
reference to data from the list after you ’ re done with it. When you ’ ve removed the reference, the position
it occupied will be filled with whatever the next element was, and the list will be reduced by as many
elements as you ’ ve popped.

 Try It Out Popping Elements from a List

 You need to tell pop which element it is acting on. If you tell it to work on element 0, it will pop the
first item in its list, passing pop a parameter of 1 will tell it to use the item at position 1 (the second
element in the list), and so on. The element pop acts on is the same number that you ’ d use to access
the list ’ s elements using square brackets (remember that the first value in a list is 0):

 > > > todays_temperatures = [23, 32, 33, 31]
 > > > todays_temperatures.append(29)
 > > > todays_temperatures
[23, 32, 33, 31, 29]

c03.indd 45c03.indd 45 12/22/09 10:42:10 AM12/22/09 10:42:10 AM

46

Part I: Dipping Your Toe into Python

 > > > morning = todays_temperatures.pop(0)
 > > > print(“This mornings temperature was %.02f” % morning)
This mornings temperature was 23.00
 > > > late_morning = todays_temperatures.pop(0)
 > > > print(“Todays late morning temperature was %.02f” % late_morning)
Todays late morning temperature was 32.00
 > > > noon = todays_temperatures.pop(0)
 > > > print(“Todays noon temperature was %.02f” % noon)
Todays noon temperature was 33.00
 > > > todays_temperatures
[31, 29]

 How It Works
 When a value is popped, if the action is on the right - hand side of an equals sign, you can assign the
element that was removed to a value on the left - hand side, or just use that value in cases where it
would be appropriate. If you don ’ t assign the popped value or otherwise use it, it will be discarded
from the list.

 You can also avoid the use of an intermediate name, by just using pop to populate, say, a string
format, because pop will return the specified element in the list, which can be used just as though
you ’ d specified a number or a name that referenced a number:

 > > > print(“Afternoon temperature was %.02f” % todays_temperatures.pop(0))
Afternoon temperature was 31.00
 > > > todays_temperatures
[29]

If you don ’ t tell pop to use a specific element (0 in the examples) from the list it ’ s invoked from, it will
remove the last element of the list, not the first as shown here.

 Working with Sets
 Sets are similar to dictionaries in Python, except that they consist of only keys with no associated values.
Essentially, they are a collection of data with no duplicates. They are very useful when it comes to
removing duplicate data from data collections.

 Sets come in two types: mutable and immutable frozensets. The difference between the two is that with a
mutable set, you can add, remove, or change its elements, while the elements of an immutable frozenset
cannot be changed after they have been initially set.

 Try It Out Removing Duplicates

 Here, you assign some values and remove the duplicates by assigning them to a set:

 > > > alphabet = [‘a’,’b’, ‘b’, ‘c’, ‘a’, ‘d’, ‘e’]
 > > > print(alphabet)
[‘a’, ‘b’, ‘b’, ‘c’, ‘a’, ‘d’, ‘e’]
 > > > alph2 = set(alphabet)
{‘a’, ‘c’, ‘b’, ‘e’, ‘d’}

c03.indd 46c03.indd 46 12/22/09 10:42:10 AM12/22/09 10:42:10 AM

Chapter 3: Variables — Names for Values

47

 How It Works
 The example works by taking the data collection, alphabet , and converting it to a set. Because sets do
not allow duplicate values, the extra ‘ b ’ and ‘ a ’ characters are removed. It was then assigned to
 alph2 , and printed to show the results.

 Summary
 In this chapter, you learned how to manipulate many core types that Python offers. These types are
 tuples , lists , dictionaries , sets , and three special types: None, True, and False. You ’ ve also learned a special
way that strings can be treated like a sequence. The other sequence types are tuples and lists.

 A tuple is a sequence of data that ’ s indexed in a fixed numeric order, starting at zero. The references in
the tuple can ’ t be changed after the tuple is created, nor can it have elements added or deleted. However,
if a tuple contains a data type that has changeable elements, such as a list, the elements of that data type
are not prevented from changing. Tuples are useful when the data in the sequence is better off not
changing, such as when you want to explicitly prevent data from being accidentally changed.

 A list is another type of sequence, which is similar to a tuple except that its elements can be modified.
The length of the list can be modified to accommodate elements being added using the append method,
and the length can be reduced by using the pop method. If you have a sequence whose data you want to
append to a list, you can append it all at once with the extend method of a list.

 Dictionaries are yet another kind of indexed grouping of data. However, whereas lists and tuples are
indexed by numbers, dictionaries are indexed by values that you choose. To explore the indexes, which
are called keys , you can invoke the keys method. To explore the data that is referred to, called the values ,
you can use the values method. Both of these methods return lists.

 Sets are a collection of items (0 or more), that contain no duplicates. In theory, they are similar to
dictionaries, except that they only have keys, and no values associated with those keys. One use for sets
is to remove any duplicates from a collection of data. They are also good at mimicking finite
mathematical sets.

 Other data types are True , False , and None . True and False are a special way of looking at 1 and 0, but
when you want to test whether something is true or false, explicitly using the names True and False is
always the right thing to do. None is a special value that is built into Python that only equals itself, and it
is what you receive from functions that otherwise would not return any value (such as True , False , a
string, or other values).

 The key things to take away from this chapter are:

 Variables are names for data that let you refer to the data.

 You create a variable by using the syntax: variablename = “ Some value ” .

 You can copy the value in one variable by assigning it to another: variablename
= copyofvariablename .

❑

❑

❑

c03.indd 47c03.indd 47 12/22/09 10:42:10 AM12/22/09 10:42:10 AM

48

Part I: Dipping Your Toe into Python

 Tuples store more than piece of data and are unchangeable.

 Lists are also sequences of data, yet unlike tuples, you can change their value.

 A dictionary is similar to lists and tuples. It ’ s another type of container for a group of data.
However, whereas tuples and lists are indexed by their numeric order, dictionaries are indexed
by names that you choose. These names can be letters, numbers, strings, or symbols — whatever
suits you.

 Exercises
 Perform all of the following in the Python shell:

 1. Create a list called dairy_section with four elements from the dairy section of a supermarket.

 2. Print a string with the first and last elements of the dairy_section list.

 3. Create a tuple called milk_expiration with three elements: the month, day, and year of the
expiration date on the nearest carton of milk.

 4. Print the values in the milk_expiration tuple in a string that reads “ This milk carton will
expire on 12/10/2009. ”

 5. Create an empty dictionary called milk_carton . Add the following key/value pairs. You can
make up the values or use a real milk carton:

❑ expiration_date : Set it to the milk_expiration tuple.

❑ fl_oz : Set it to the size of the milk carton on which you are basing this.

❑ Cost : Set this to the cost of the carton of milk.

❑ brand_name : Set this to the name of the brand of milk you ’ re using.

 6. Print out the values of all of the elements of the milk_carton using the values in the dictionary,
and not, for instance, using the data in the milk_expiration tuple.

 7. Show how to calculate the cost of six cartons of milk based on the cost of milk_carton .

 8. Create a list called cheeses. List all of the cheeses you can think of. Append this list to the
 dairy_section list, and look at the contents of dairy_section . Then remove the list of
cheeses from the array.

 9. How do you count the number of cheeses in the cheese list?

 10. Print out the first five letters of the name of your first cheese.

❑

❑

❑

c03.indd 48c03.indd 48 12/22/09 10:42:11 AM12/22/09 10:42:11 AM

Part II

Python Language and
the Standard Library

 Chapter 4: Making Decisions

Chapter 5: Functions

Chapter 6: Classes and Objects

Chapter 7: Organizing Programs

Chapter 8: Files and Directories

Chapter 9: Other Features of the Language

Chapter 10: Building a Module

Chapter 11: Text Processing

c04.indd 49c04.indd 49 12/22/09 10:42:34 AM12/22/09 10:42:34 AM

c04.indd 50c04.indd 50 12/22/09 10:42:35 AM12/22/09 10:42:35 AM

 4
Making Decisions

 So far, you have only seen how to manipulate data directly or through names to which the data is
bound. Now that you have the basic understanding of how those data types can be manipulated
manually, you can begin to exercise your knowledge of data types and use your data to make
decisions.

 In this chapter, you learn about how Python makes decisions using True and False and how to
make more complex decisions based on whether a condition is True or False .

In this chapter you learn:

 How to create situations in which you can repeat the same actions using loops that give
you the capability to automate stepping through lists, tuples, and dictionaries.

 How to use lists or tuples with dictionaries cooperatively to explore the contents of a
dictionary.

 How to use exception handling to write your programs to cope with problematic
situations that you can handle within the program.

 Comparing Values — Are They the Same?
 You saw True and False in Chapter 3, but you weren ’ t introduced to how they can be used. True
and False are the results of comparing values, asking questions, and performing other actions.
However, anything that can be given a value and a name can be compared with the set of
comparison operations that return True and False .

❑

❑

❑

c04.indd 51c04.indd 51 12/22/09 10:42:35 AM12/22/09 10:42:35 AM

Part II: Python Language and the Standard Library

52

Try It Out Comparing Values for Sameness

 Testing for equality is done with two equal signs — remember that the single equal sign will bind
data to a name, which is different from what you want to do here, which is elicit a True or False :

 > > > 1 == 1
True
 > > > 1 == 2
False

 How It Works
 When you use the equality comparison, Python compares the values on both sides. If the numbers are
different, False will be the result. If the numbers are the same, True will be the result.

 If you have different types of numbers, Python will still be able to compare them and give you the
correct answer:

 > > > 1.23 == 1
False
 > > > 1.0 == 1
True

 You can also use the double equals to test whether strings have the same contents, and you can even
restrict this test to ranges within the strings (remember from the last chapter that slices create copies of
the part of the strings they reference, so you ’ re really comparing two strings that represent just the
range that a slice covers):

 > > > a = “Mackintosh apples”
 > > > b = “Black Berries”
 > > > c = “Golden Delicious apples”
 > > > a == b
False
 > > > b == c
False
 > > > a[-len(“apples”):-1] == c[-len(“apples”):-1]
True

 Sequences can be compared in Python with the double equals as well. Python considers two
sequences to be equal when every element in the same position is the same in each list. Therefore, if
you have three items each in two sequences and they contain the same data but in a different order,
they are not equal:

 > > > apples = [“Mackintosh”, “Golden Delicious”, “Fuji”, “Mitsu”]
 > > > apple_trees = [“Golden Delicious”, “Fuji”, “Mitsu”, “Mackintosh”]
 > > > apples == apple_trees
False
 > > > apple_trees = [“Mackintosh”, “Golden Delicious”, “Fuji”, “Mitsu”]
 > > > apples == apple_trees
True

c04.indd 52c04.indd 52 12/22/09 10:42:35 AM12/22/09 10:42:35 AM

Chapter 4: Making Decisions

53

In addition, dictionaries can be compared. Like lists, every key and value (paired, together) in one
dictionary has to have a key and value in the other dictionary in which the key in the first is equal to
the key in the second, and the value in the first is equal to the value in the second:

 > > > tuesday_breakfast_sold = {“pancakes”:10, “french toast”: 4, “bagels”:32,
“omelets”:12, “eggs and sausages”:13}
 > > > wednesday_breakfast_sold = {“pancakes”:8, “french toast”: 5, “bagels”:22,
“omelets”:16, “eggs and sausages”:22}
 > > > tuesday_breakfast_sold == wednesday_breakfast_sold
False
 > > > thursday_breakfast_sold = {“pancakes”:10, “french toast”: 4, “bagels”:32,
“omelets”:12, “eggs and sausages”:13}
 > > > tuesday_breakfast_sold == thursday_breakfast_sold
True

 Doing the Opposite — Not Equal
 There is an opposite operation to the equality comparison. If you use the exclamation and equals
together, you are asking Python for a comparison between any two values that are not equal (by the
same set of rules of equality that you saw for the double equal signs) to result in a True value.

 Try It Out Comparing Values for Difference

Try out the following examples to see how Python evaluates these comparisons:

 > > > 3 == 3
True
 > > > 3 != 3
False
 > > > 5 != 4
True

 How It Works
 Every pair of numbers that would generate a True result when they ’ re compared using the == will
now generate a False , and any two numbers that would have generated a False when compared
using == will now result in True .

 These rules hold true for all of the more complex types, like sequences and dictionaries:

 > > > tuesday_breakfast_sold != wednesday_breakfast_sold
True
 > > > tuesday_breakfast_sold != thursday_breakfast_sold
False

 Like numbers, any situation that would be True with == will be False with != with these types.

c04.indd 53c04.indd 53 12/22/09 10:42:35 AM12/22/09 10:42:35 AM

Part II: Python Language and the Standard Library

54

 Comparing Values — Which One Is More?
 Equality isn ’ t the only way to find out what you want to know. Sometimes you will want to know
whether a quantity of something is greater than that of another, or whether a value is less than
some other value. Python has greater than and less than operations that can be invoked with the >
and < characters, respectively. These are the same symbols you are familiar with from math books, and
the question is always asking whether the value on the left is greater than (>) or less than (<) the value
on the right .

 Try It Out Comparing Greater Than and Less Than

 > > > 5 < 3
False
 > > > 10 > 2
True

 How It Works
 The number on the left is compared to the number on the right. You can compare letters, too. A few
conditions exist where this might not do what you expect, such as trying to compare letters to
numbers. (The question just doesn ’ t come up in many cases, so what you expect and what Python
expects is probably not the same.) The values of the letters in the alphabet run roughly this way: A
capital “ A ” is the lowest letter. “ B ” is the next, followed by “ C ” and so on until “ Z ” . This is followed
by the lowercase letters, with “ a ” being the lowest lowercase letter and “ z ” the highest. However, “ a ”
is higher than “ Z ” :

 > > > “a” > “b”
False
 > > > “A” > “b”
False
 > > > “A” > “a”
False
 > > > “b” > “A”
True
 > > > “Z” > “a”
False

 If you want to compare two strings that are longer than a single character, Python will look at each
letter until it finds one that ’ s different. When that happens, the outcome will depend on that one
difference. If the strings are completely different, the first letter will decide the outcome:

 > > > “Zebra” > “aardvark”
False
 > > > “Zebra” > “Zebrb”
False
 > > > “Zebra” < “Zebrb”
True

 You can avoid the problem of trying to compare two words that are similar but have differences in
capitalization by using a special method of strings called lower , which acts on its string and returns a
new string with all lowercase letters. There is also a corresponding upper method. These are available
for every string in Python:

c04.indd 54c04.indd 54 12/22/09 10:42:36 AM12/22/09 10:42:36 AM

Chapter 4: Making Decisions

55

 > > > “Pumpkin” == “pumpkin”
False
 > > > “Pumpkin”.lower() == “pumpkin”.lower()
True
 > > > “Pumpkin”.lower()
‘pumpkin’
 > > > “Pumpkin”.upper() == “pumpkin”.upper()
True
 > > > “pumpkin”.upper()
‘PUMPKIN’

 Note that you could have also written the preceding code in the following manner:

 > > > “Pumpkin”.lower() == “pumpkin”
True

 Because “ pumpkin ” is already lowercase, there is no real need to change it, though doing so may be
safer. For instance, if someone types in a string incorrectly, capitalizing one of the letters in one of the
strings, converting them both would solve any errors. Observe the following:

 > > > “Pumpkin”.lower() == “puMpkin”
False
 > > > “Pumpkin”.lower() == “puMpkin”.lower()
True

 When you have a string referenced by a name, you can still access all of the methods that strings
normally have:

 > > > gourd = “Calabash”
 > > > gourd
‘Calabash’
 > > > gourd.lower()
‘calabash’
 > > > gourd.upper()
‘CALABASH’

 More Than or Equal, Less Than or Equal
 There is a useful variation on greater than and less than . It ’ s common to think of things in terms of greater
than or equal to or less than or equal to . You can use a simple shorthand to do that. Join the two symbols in
a way that makes sense when you look at it:

 > > > 1 > 1
False
 > > > 1 > = 2
False
 > > > 10 < 10
False
 > > > 10 < = 10
True

c04.indd 55c04.indd 55 12/22/09 10:42:36 AM12/22/09 10:42:36 AM

Part II: Python Language and the Standard Library

56

 Reversing True and False
 When you are creating situations and comparing their outcomes, sometimes you want to know whether
something is true, and sometimes you want to know whether something is not true. Sensibly enough,
Python has an operation to create the opposite situation — the word not provides the opposite of the
truth value that follows it.

 Try It Out Reversing the Outcome of a Test

 > > > not True
False
 > > > not 5
False
 > > > not 0
True
 > > > Not True
SyntaxError: invalid syntax (< pyshell#30 > , line 1)

 Note the error in the last line of code. Be sure not to capitalize the not operator, or you will receive an
error message similar to the one shown here.

 How It Works
 The not operation applies to any test that results in a True or False . However, remember from
Chapter 3 that anything that ’ s not zero will be seen as True , so you can use not in many situations
where you wouldn ’ t expect it or where it doesn ’ t necessarily make sense:

 > > > not 5 > 2
False
 > > > not “A” < 3
True
 > > > not “A” < “z”
False

 Looking for the Results of More
Than One Comparison

 You can also combine the results of more than one operation, which enables your programs to make
more complex decisions by evaluating the truth values of more than one operation.

 One kind of combination is the and operation, which says “ if the operation, value, or object on my left
evaluates to being True , move to my right and evaluate that. If it doesn ’ t evaluate to True , just stop and
say False — don ’ t do any more. ”

c04.indd 56c04.indd 56 12/22/09 10:42:36 AM12/22/09 10:42:36 AM

Chapter 4: Making Decisions

57

 > > > True and True
True
 > > > False and True
False
 > > > True and False
False
 > > > False and False
False

 The other kind of combining operation is the or operator. Using the or tells Python to evaluate the
expression on the left , and if it is False , Python will evaluate the expression on the right. If it is True ,
Python will stop evaluation of any more expressions:

 > > > True or True
True
 > > > True or False
True
 > > > False or True
True
 > > > False or False
False

 You may also want to place sequences of these together based on actions you want to happen. In these
cases, evaluation starts with the leftmost and or or and continues following the previous rules — in
other words, until a False value is evaluated for and , or until a True value is evaluated for or .

 How to Get Decisions Made
 Python has a very simple way of letting you make decisions. The reserved word for decision making is
 if , and it is followed by a test for the truth of a condition, and the test is ended with a colon, so you ’ ll
see it referred to here as if ... : . It can be used with anything that evaluates to True or False to say
 “ if something is true, do what follows ” :

 > > > if 1 > 2:
... print(“No it is not!”)
...
 > > > if 2 > 1:
... print(“Yes it is!”)
...
Yes, it is!

 Only when the statements to be evaluated between the if and the colon evaluate to True will the
indented statements below be visited by Python to be evaluated. The indentation indicates that
the code that follows it is a part of the program but is executed only if the right conditions occur. For the
 if ... : statement, the proper condition is when the comparison being made evaluates to True .

c04.indd 57c04.indd 57 12/22/09 10:42:37 AM12/22/09 10:42:37 AM

Part II: Python Language and the Standard Library

58

You have just seen one of the most distinctive visual aspects of Python and the one
that most people remark on when they encounter Python.

 When you see the colon in Python programs, it ’ s an indication that Python is enter-
ing a part of its program that is partially isolated from the rest of the program. At
this point, indentation becomes important. The indentation is how Python knows
that a particular block of code is separate from the code around it. The number of
spaces used is important, and a Python - oriented programming editor will always
carefully help you maintain the proper indentation for the code that is being written.
The number of spaces is relevant, so it is important to use the editor to determine
your indentation and not change the number of spaces manually.

 You will see more keywords paired with the colon; and in all cases, you need to pay
attention to the indentation. Python will warn you with an error if your program has
changes in indentation that it doesn ’ t understand.

 You can place if ... : statements within the indentation of other if ... : statements to perform
more complex decisions than what can be achieved with and and or because using if ... : enables
you to perform any series of statements that you may need before evaluating the indented if ... :
statement.

 Try It Out Placing Tests within Tests

 Try the following example, in which one if ...: appears within another:

 > > > omelet_ingredients = {“egg”:2, “mushroom”:5, “pepper”:1, “cheese”:1,
“milk”:1}
 > > > fridge_contents = {“egg”:10, “mushroom”:20, “pepper”:3, “cheese”:2,
“tomato”:4, “milk”:15}
 > > > have_ingredients = [False]
 > > > if fridge_contents[“egg”] > omelet_ingredients[“egg”]:
... have_ingredients[0] = True
... have_ingredients.append(“egg”)
...
 > > > print(have_ingredients)
[True, ‘egg’]
 > > > if fridge_contents[“mushroom”] > omelet_ingredients[“mushroom”]:
... if have_ingredients[0] == False:
... have_ingredients[0] = True
... have_ingredients.append(“mushroom”)
...
 > > > print(have_ingredients)
[True, ‘egg’, ‘mushroom’]

c04.indd 58c04.indd 58 12/22/09 10:42:37 AM12/22/09 10:42:37 AM

Chapter 4: Making Decisions

59

 How It Works
 After a condition is tested with an if ...: and there is an additional level of indentation, Python will
continue to evaluate the rest of the code that you ’ ve placed in the indentation. If the first if ...: isn ’ t
true, none of the code below it will be evaluated — it would be skipped entirely.

 However, if the first if ...: statement is true, the second one at the same level will be evaluated. The
outcome of a comparison only determines whether the indented code beneath it will be run. Code at
the same level, or above, won ’ t be stopped without something special happening, such as an error or
another condition that would prevent the program from continuing to run.

 As you can see from the print() functions, when Python checked to see if you had more eggs and
mushrooms in your fridge than the omelet recipe called for, it appended those two items to your
 have_ingredients variable.

 To complete the example, you could enter the rest of this (if you want to make a computer
representation of an omelet):

 > > > if fridge_contents[“pepper”] > omelet_ingredients[“pepper”]:
... if have_ingredients[0] == True:
... have_ingredients[0] = False
... have_ingredients.append(“pepper”)
...
 > > > if fridge_contents[“cheese”] > omelet_ingredients[“cheese”]:
... if have_ingredients[0] == False:
... have_ingredients[0] = True
... have_ingredients.append(“cheese”)
...
 > > > if fridge_contents[“milk”] > omelet_ingredients[“milk”]:
... if have_ingredients[0] == True:
... have_ingredients[0] = False
... have_ingredients.append(“milk”)
...
 > > > if have_ingredients[0] == True :
... print(“I have the ingredients to make an omelet!”)
...
I have the ingredients to make an omelet!

 You can create a chain of tests beginning with if ... : using elif ... : . elif ... : enables a
variety of conditions to be tested for but only if a prior condition wasn ’ t met. If you use a series of if
... : statements they will all be executed. If you use an if ... : followed by an elif ... : , the
 elif ... : will be evaluated only if the if ... : results in a False value:

 > > > milk_price = 1.50
 > > > if milk_price < 1.25:
... print(“Buy two cartons of milk, they’re on sale”)
... elif milk_price < 2.00:
... print(“Buy one carton of milk, prices are normal”)
... elif milk_price > 2.00:
... print(“Go somewhere else! Milk costs too much here”)
...
Buy one carton of milk, prices are normal

c04.indd 59c04.indd 59 12/22/09 10:42:37 AM12/22/09 10:42:37 AM

Part II: Python Language and the Standard Library

60

 There is also a fall - through statement that you can insert to handle those cases where none of the prior
tests resulted in a True value: the else: statement. If none of the if ... : or elif ... :
statements have test conditions that evaluate to True , the else: clause is invoked:

 > > > OJ_price = 2.50
 > > > if OJ_price < 1.25:
... print(“Get one, I’m thirsty.”)
... elif OJ_price < = 2.00:
... print(“Ummm... sure, but I’ll drink it slowly.”)
... else:
... print(“I don’t have enough money. Never mind.”)
...
I don’t have enough money. Never mind.

 Repetition
 You have seen how many times every element in a sequence, or every element in a dictionary, needs to
be examined and compared. Doing this manually is impossibly boring and error prone for a person,
even a fast touch - typist. In addition, if you enter these things in manually, you ’ ll be caught off guard
when the inevitable typo happens, or when something that you ’ re evaluating is changed elsewhere, and
your manually entered code can ’ t easily accommodate that change.

 To perform repetitive tasks, Python offers two kinds of repetition operations. Both are similar — in fact,
they ’ re almost identical — but each one lets you think about what you ’ re doing differently so each one
should have its place in your skill set.

 How to Do Something — Again and Again
 The two operations that enable you to initiate and control repetitive tasks are the while and for
operations. The while operation tests for one truth condition, so it will be referred to as while ... : .
The for operation uses each value from within a list, so it will be referred to as for ... in ... : .

 The while ... : operation will first check for its test condition (the ... between the while and the :)
and if it ’ s True , it will evaluate the statements in its indented block a first time. After it reaches the end
of its indented block, which can include other indented blocks, it will once again evaluate its test
condition to see whether it is still True . If it is, it will repeat its actions again; however, if it is False ,
Python leaves the indented section and continues to evaluate the rest of the program after the while
...: section. If names are used in the test condition, then between the first repetition and the next (and
the next, and so on), the value referred to by the name could have changed and on and on until there is
some reason to stop.

c04.indd 60c04.indd 60 12/22/09 10:42:38 AM12/22/09 10:42:38 AM

Chapter 4: Making Decisions

61

 Try It Out Using a while Loop

 > > > i = 10
 > > > while i > 0:
print(“Lift off in:”)
print(i)
i=i - 1

Lift off in:
10
Lift off in:
9
Lift off in:
8
Lift off in:
7
Lift off in:
6
Lift off in:
5
Lift off in:
4
Lift off in:
3
Lift off in:
2
Lift off in:
1

 How It Works
 In the preceding code, you create a variable named i and assign it the value of 10 (note that the
variable could have any legal name). Next, you create a while loop that states “ While the value of i is
greater than 0, do this. ” You then have Python print the sentence Lift off in: followed by the
current value of i . Finally, you deduct – 1 from i each time through the loop, causing the sequence to
occur over and over until the value of i is equal to 0.

 Doing this the other way, with the for ... in ... : form of repetition, is, as shown before, very
similar to the while ... : form, but it saves you a couple of steps. In the first part, the for ... , you
once more assign a variable name (again you use i , a common practice, because it is short for index).
In the second part, the in ... : part, you provide a sequence, such as a list, tuple, or in this course, a
 range , which takes each element and assigns the value of the element to the name you provided in the
first part:

 > > > for i in range(10, 0, -1):
print(“T-minus: “)
print(i)
...
T-minus:
10
T-minus:
9
T-minus:
8

c04.indd 61c04.indd 61 12/22/09 10:42:38 AM12/22/09 10:42:38 AM

Part II: Python Language and the Standard Library

62

T-minus:
7
T-minus:
6
T-minus:
5
T-minus:
4
T-minus:
3
T-minus:
2
T-minus:
1

 As you can see, this works in a very similar method to your while loop, giving you just about the
same results (it would have returned the same exact results had I not changed the text to be printed).
This version of the for loop is a bit more complicated. For an easier version, try this code:

 > > > for i in range(10):
print(i)
...
1
2
3
4
5
6
7
8
9

Here, you simply tell the for loop to iterate or repeat the process until i is equal to ten. Because you
are working with range, it automatically adds one to your variable, causing the program to run once
and loop nine more times.

 Stopping the Repetition
 The common term infinite loop refers to a sequence of code that will repeat forever. A simple example just
sets up a while ... : statement that tests against something that is always going to result in True . For
instance, just using True will always work. You should not type in the following code, because it ’ s the
kind of thing that ’ s better to see than to have to do yourself:

 > > > while True:
... print (“You’re going to get bored with this quickly”)
...
You’re going to get bored with this quickly
You’re going to get bored with this quickly
You’re going to get bored with this quickly
You’re going to get bored with this quickly
You’re going to get bored with this quickly

c04.indd 62c04.indd 62 12/22/09 10:42:39 AM12/22/09 10:42:39 AM

Chapter 4: Making Decisions

63

 The preceding code continues forever, or until you break out of it. Inconvenient as it seems at first
glance to have something that repeats forever, sometimes you may want this — for instance, repeating
code is useful in a program that waits for the user to type something in, and when the user is done,
returns to waiting.

 However, sometimes you will want to know that if certain conditions are met, such as the right time of
day, when the water has run out, when there are no more eggs to be made into omelets, and so on, that
the repetition can be broken out of even when there is no explicit test in the top of the while ... : or
when the list that ’ s being used in the for ... in ... : doesn ’ t have an end.

 Infinite loops can be exited by using the break statement. When you try this out, make sure your
indentation matches what ’ s on the page:

 > > > age=0
 > > > while True:
how_old=input(“Enter your age: “)
if how_old==”No”:
 print(“Don’t be ashamed of your age!”)
 break
num=int(how_old)
age=age+num
print(“Your age is :”)
print(age)
print(“That is old!”)
...
Enter your age: 1
Your age is :
1
That is old!
Enter your age: 2
Your age is :
3
That is old!
Enter your age: -3
Your age is :
0
That is old!
Enter your age: 50
Your age is :
50
That is old!
Enter your age: No
Don’t be ashamed of your age!
 > > >

 In the preceding program, While , as you may recall, is always equal to True ; therefore, the statement
 while True will always loop if left to its own devices. To solve this, you prompt the user for some info;
in this case, their age. So long as they enter in a number, the program will add it to their age, giving them
a total age and making it appear that they are getting older (unless they are savvy and enter in a negative
number, in which case they will get younger!). If they enter only numbers, the program will run forever.
However, if they ever enter in the string, No , the program will print Don ’ t be ashamed of your age!
and break out of the loop.

c04.indd 63c04.indd 63 12/22/09 10:42:39 AM12/22/09 10:42:39 AM

Part II: Python Language and the Standard Library

64

 Note the position of the print statement and the break; if you place the print after the break instead of
before, it will execute every time the program loops, instead of just when you break out of the loop. So
be careful where you place your statements!

 If you use break , it will only take you out of the most recent loop — if you have a while ... : loop
that contains a for ... in ... : loop indented within it, a break within the for ... in ... : will
not break out of the while ... : .

 Both while ... : and for ... in ... : loops can have an else: statement at the end of the loop,
but it will be run only if the loop doesn ’ t end due to a break statement. In this case, else: could be
better named something like done or on_completion , but else: is a convenient name because you ’ ve
already seen it, and it ’ s not hard to remember.

 Try It Out Using else While Repeating

 > > > for food in (“pate”, “cheese”, “crackers”, “yogurt”):
... if food == “yogurt”:
... break
... else:
... print(“There is no yogurt!”)
...
 > > > for food in (“pate”, “cheese”, “crackers”):
... if food == “yogurt”:
... break
... else:
... print(“There is no yogurt!”)
...
There is no yogurt!

 How It Works
 In each example, there is a test to determine whether there is any yogurt. If there is, the while ... :
is terminated by using a break . However, in the second loop, there is no yogurt in the list, so when
the loop terminates after reaching the end of the list, the else: condition is invoked.

 There is one other commonly used feature for loops: the continue statement. When continue is
used, you ’ re telling Python that you do not want the loop to be terminated, but that you want to skip
the rest of the current repetition of the loop, and if you ’ re in a for ... in ...: loop, re - evaluate the
conditions and the list for the next round.

 Try It Out Using continue to Keep Repeating

 > > > for food in (“pate”, “cheese”, “rotten apples”, “crackers”, “whip cream”,
“tomato soup”):
... if food[0:6] == “rotten”:
... continue
... print(“Hey you can %s” % food)
...

c04.indd 64c04.indd 64 12/22/09 10:42:39 AM12/22/09 10:42:39 AM

Chapter 4: Making Decisions

65

Hey, you can eat pate
Hey, you can eat cheese
Hey, you can eat crackers
Hey, you can eat whip cream
Hey, you can eat tomato soup

 How It Works
Because you ’ ve used an if ... : test to determine whether the first part of each item in the food list
contains the string “ rotten ” , the “ rotten apples ” element will be skipped by the continue ,
whereas everything else is printed as safe to eat.

 Handling Errors
 You have seen examples of how Python reports errors in Chapter 2 and Chapter 3. Those errors usually
contain a lot of information pertaining to what failed and how:

 > > > fridge_contents = {“egg”:8, “mushroom”:20, “pepper”:3, “cheese”:2,
“tomato”:4, “milk”:13}
 > > > if fridge_contents[“orange juice”] > 3:
... print(“Sure, let’s have some juice!”)
...
Traceback (most recent call last):
 File “ < pyshell#3 > ”, line 1, in < module >
 if fridge_contents[“orange juice”] > 3:
KeyError: ‘orange juice’

 Oops. There is no orange juice in the fridge right now, but it would be nice to be able to learn this
without having to crash out of the program.

 You have already learned one way to find out about the keys that are present in a dictionary, by using
the keys method of the dictionary and then searching through the list of keys to determine whether the
key you want is present. However, there ’ s no reason not to take a shortcut. The last line of the error
shown in the preceding code is:

KeyError: ‘orange juice’

 This says that the error Python encountered was an error with the key in the fridge_contents
dictionary. You can use the error that Python has told you about to brace the program against that
particular class of error. You do this with the special word try: telling Python to prepare for an error.

 Trying Things Out
 A try: statement sets up a situation in which an except: statement can follow it. Each except:
statement handles the error, which is formally named an exception that was just raised when Python
evaluated the code within the try: statement instead of failing. To start with, use except: to handle
one type of error — for instance, the KeyError that you get when trying to check the fridge.

c04.indd 65c04.indd 65 12/22/09 10:42:40 AM12/22/09 10:42:40 AM

Part II: Python Language and the Standard Library

66

Multiple kinds of exceptions exist, and each one ’ s name reflects the problem that ’ s
occurred and, when possible, the condition under which it can happen. Because
dictionaries have keys and values, the KeyError indicates that the key that was
requested from a dictionary isn ’ t present. Similarly, a TypeError indicates that
while Python was expecting one type of data (such as a string or an integer), another
type was provided that can ’ t do what ’ s needed.

 In addition, when an exception occurs, the message that you would have otherwise
seen when the program stops (when you run interactively) can be accessed.

When you ’ ve learned more, you ’ ll be able to define your own types of exceptions for
conditions that require it.

 You have only one line in which to handle the error, which may seem restrictive, but in Chapter 5 you
learn how to write your own functions so you can handle errors with more flexibility.

 > > > fridge_contents = {“egg”:8, “mushroom”:20, “pepper”:3, “cheese”:2,
“tomato”:4, “milk”:13}
 > > > try:
... if fridge_contents[“orange juice”] > 3:
... print(“Sure, let’s have some juice!”)
... except KeyError:
... print(“Awww, there is no juice. Let’s go shopping!”)
...
Aww, there’s no juice. Lets go shopping

 You may find that you need to print more information about the error itself, and this is the information
that you have access to.

 Try It Out Creating an Exception with Its Explanation

 > > > fridge_contents = {“egg”:8, “mushroom”:20, “pepper”:3, “cheese”:2,
“tomato”:4, “milk”:13}
 > > > try:
... if fridge_contents[“orange juice”] > 3:
... print(“Sure, let’s have some juice”)
... except (KeyError)as error:
... print(“Woah! There is no %s” % error)
...
Woah! There is no ‘orange juice’

 How It Works
 Because there is no key in the fridge_contents dictionary for “ orange juice ” , a KeyError is
raised by Python to let you know that no such key is available. In addition, you specified the name
 error, which Python will use to reference a string that contains any information about the error that
Python can offer. We achieve this by using the as keyword to assign the value of the KeyError to error.
In this case, the string relates to the key that was requested but not present in the fridge_contents
dictionary (which is, again, “ orange juice ”).

c04.indd 66c04.indd 66 12/22/09 10:42:40 AM12/22/09 10:42:40 AM

Chapter 4: Making Decisions

67

 There may be times when you handle more than one type of error in exactly the same way; and in
those cases, you can use a tuple with all of those exception types described:

 > > > fridge_contents = {“egg”:8, “mushroom”:20, “pepper”:3, “cheese”:2,
“tomato”:4, “milk”:13}
 > > > try:
... if fridge_contents[“orange juice”] > 3:
... print(“Sure, let’s have some juice”)
... except (KeyError, TypeError)as error:
... print(“Woah! There is no %s” % error)
...
Woah! There is no ‘orange juice’

 If you have an exception that you need to handle, but you want to handle it by not doing anything (for
cases in which failure isn ’ t actually a big deal), Python will let you skip that case by using the special
word pass :

 > > > fridge_contents = {“egg”:8, “mushroom”:20, “pepper”:3, “cheese”:2,
“tomato”:4, “milk”:13}
 > > > try:
... if fridge_contents[“orange juice”] > 3:
... print(“Sure, let’s have some juice”)
... except (KeyError) as error:
... print(“Woah! There is no %s” % error)
... except (TypeError):
... pass
...
Woah! There is no ‘orange juice’

 There is also an else: clause that can be put at the end of the try: block of code. This will only be
run when there are no errors to be caught. Like before, else may not be the obvious choice for a name
that could better be described as “ in case it all works ” or “ all_clear ” or something like that. By now,
however, you can see how else: has become a flexible catch - all that means “ in case something
happens ” although it ’ s not consistent. In any case, it ’ s there for you to use.

 Summary
 In this chapter, you learned about the methods for making decisions that Python offers. Any operation
that results in True or False can be used by if ... : statements to determine whether a program will
evaluate an indented block of code.

 You have seen for the first time the important role that indentation plays in Python programs. Even in
the interactive Python shell the number of spaces in the indentation matters.

 You now have the knowledge to use sequence and dictionary elements in repetition loops. By using
repetitions, you can perform operations on every element in a list and make decisions about the values
of each list element.

c04.indd 67c04.indd 67 12/22/09 10:42:40 AM12/22/09 10:42:40 AM

Part II: Python Language and the Standard Library

68

 The two types of repeating loops that Python offers you are the while ... : loop and the for ... in
... : loop. They perform similar jobs, continuing until a condition causes them to finish. The difference
between the two lies in the conditions that will permit them to evaluate their indented block of code. The
 while ... : loop only tests for True or False in its test case, while the for ... in ... : loop will
take a sequence you provide in the in ... : section, and each element from first to last in the sequence
will be assigned to the value provided in the for ... section.

 Both types of repeating loops can be exited before their test conditions are met by using the break
operation. The break operation will cause the loop that is being evaluated to stop without further
evaluations of any more code in the loop ’ s code block. However, if a break operation is performed,
the optional else: condition for a loop will not be run. In addition to break is the continue operation,
which will skip the rest of the current loop but return to the top of the loop and evaluate the next
test case.

 You also learned about one other kind of decision making, which is handling the exceptions that Python
uses to report errors. These exceptions are how any error is reported. If they are not accommodated,
these errors will result in your program stopping at the point at which the error occurred. However, if
you enclose code that may cause an error in a code block indented beneath a try: you can specify how
to prevent the program from exiting, even going so far as handling the error and continuing with the
program. The errors that you anticipate encountering will be specified in the except ... : clause,
where the first value provided defines the type of the error (or types if a tuple of error types is provided);
and, optionally, the word as followed by a name used to refer to data containing information about the
error, can be provided.

 The key things to take away from this chapter are:

 You can test for equality using two equal signs (==). If the answer is True , True will be
returned. If False , False will be returned. Double equals can also be used to determine if two
variables hold the same data.

 If you need to know if two values are not equal, you can use the not equal operator (!=). In this
instance, True means that the values compared are not equal and False means that the
compared values are equal.

 To compare if a value is greater or less than another value, you can use the greater than (>) and
less than (<) operators, respectively. If you need to know if a value is equal to or greater/lesser
than, you would use the greater - than - or - equal - to operator (>=) or the less - than - or - equal - to
operator (< =).

 If you need a program to make a decision based on if a value is true or false, you can use the if
statement, which simply states, if this is true, do that. To have your program do something if
one value is true, and something else if it is not, you can use if...elif .

 Sometimes you will need to loop through a certain action a number of times. Using the while
loop, you can repeat or iterate the action for as long as the while condition equals true, or
literally speaking, while this is true, do this.

 If you need to loop through an action a set number of times, you can do so using the for loop,
which uses a loop counter to tell how many times to repeat a given action.

 A try: statement sets up a situation in which an except: statement can follow it. Each except:
statement handles the error, which is formally named an exception that was just raised when
Python evaluated the code within the try: statement instead of failing.

❑

❑

❑

❑

❑

❑

❑

c04.indd 68c04.indd 68 12/22/09 10:42:41 AM12/22/09 10:42:41 AM

Chapter 4: Making Decisions

69

 Exercises
 Perform all of the following in the codeEditor Python shell:

 1. Using a series of if ... : statements, evaluate whether the numbers from 0 through 4 are
True or False by creating five separate tests.

 2. Create a test using a single if ... : statement that will tell you whether a value is between 0
and 9 inclusively (that is, the number can be 0 or 9 as well as all of the numbers in between, not
just 1 – 8) and print a message if it ’ s a success. Test it.

 3. Using if ... : , elif , ...: and else: , create a test for whether a value referred to by a name
is in the first two elements of a sequence. Use the if ... : to test for the first element of the
list; use elif ... : to test the second value referenced in the sequence; and use the else:
clause to print a message indicating whether the element being searched for is not in the list.

 4. Create a dictionary containing foods in an imaginary refrigerator, using the name fridge . The
name of the food will be the key, and the corresponding value of each food item should be a
string that describes the food. Then create a name that refers to a string containing the name of a
food. Call the name food_sought . Modify the test from Exercise 3 to be a simple if ... : test
(no elif ... : or else: will be needed here) for each key and value in the refrigerator using a
 for ... in ... : loop to test every key contained in the fridge. If a match is found, print a
message that contains the key and the value and then use break to leave the loop. Use an else
... : statement at the end of the for loop to print a message for cases in which the element
wasn ’ t found.

 5. Modify Exercise 3 to use a while ... : loop by creating a separate list called fridge_list
that will contain the values given by fridge.keys . As well, use a variable named, current_
key that will refer to the value of the current element in the loop that will be obtained by the
method fridge_list.pop . Remember to place fridge_list.pop as the last line of the while
... : loop so that the repetition will end normally. Use the same else: statement at the end of
the while loop as the one used at the end of Exercise 3.

 6. Query the fridge dictionary created in Exercise 3 for a key that is not present, and elicit an error.
In cases like this, the KeyError can be used as a shortcut to determining whether or not the
value you want is in the list. Modify the solution to Exercise 3 so that instead of using a for ...
in ... : a try: block is used.

c04.indd 69c04.indd 69 12/22/09 10:42:41 AM12/22/09 10:42:41 AM

c04.indd 70c04.indd 70 12/22/09 10:42:41 AM12/22/09 10:42:41 AM

 5
Functions

 Up until this point, any time you wanted to accomplish a task, you needed to type out entire
programs to do the job. If you needed to do the same work again, you could type the entire
program again or place it in a loop. However, loops are most useful when you are repeating the
same thing, but writing the same loop repeatedly in different parts of your program with slightly
modified values in each one is not a sane way to live your life.

 Python has functions that enable you to gather sections of code into more convenient groupings
that can be called on when you have a need for them.

 In this chapter you learn:

 How to create and use your own functions.

 You are given guidelines to help facilitate your thinking about how to create and structure
your programs to use functions.

 How to write your functions so that you can later interrogate them for information about
how they behave and what you intend for them to do.

 Putting Your Program into Its Own File
 As the examples in this book get longer, typing the entire code block begins to be a burden. A single
mistake causes you to retype in the entire block of code you are working on. Long before you ’ ve
gotten to the point where you hav e more than, say, 40 lines of code to type, you are unlikely to want
to have to do it more than once.

 You are probably already aware that programmers write programs that are saved as source code
into files that can be opened, edited, and run without a great deal of work.

 To reach this far more convenient state of affairs, from here on out you should type the programs you
are using into Python Code Editor, and save the examples from the book into a single folder from
which you can reference them and run them. One suggestion for naming the folder could be “ Learning
Python, ” and then you could name the programs according to the chapters in which they appear.

❑

❑

❑

c05.indd 71c05.indd 71 12/22/09 10:43:06 AM12/22/09 10:43:06 AM

72

Part II: Python Language and the Standard Library

 You can do two things to make your programs easy to run. The first line of all of your Python files
should look like this:

#!/usr/bin/env python 3. 1

 This enables UNIX and Linux systems to run the script if you follow the instructions in the appendix at
the end of the book. A second important thing to do is to name all of your Python files with names that
end in .py . On Windows systems, this will provide the operating system with the information that it
needs to launch the file as a Python file and to not just treat it as a text file. For instance, if you put all of
the examples from the chapters you ’ ve read so far into their own files, you may have a folder with the
following files:

chapter_1.py
chapter_2.py
chapter_3.py
chapter_4.py
chapter_5.py

 After you save your first program into a file, you ’ ll notice that codeEditor has begun to emphasize
certain parts of the file by displaying them in a few different colors and styles. You ’ ll notice a pattern —
some of the built - in functions and reserved words are treated one way, whereas strings get a different
treatment and a few keywords are treated yet another way. However, most of the text in your files will
still be plain black and white, as shown in Figure 5 - 1.

 Figure 5 - 1

c05.indd 72c05.indd 72 12/22/09 10:43:07 AM12/22/09 10:43:07 AM

Chapter 5: Functions

73

 Using these files enables you to type any example only once. After an example has been typed in and
saved, you can run it with python - i < filename > . The - i tells python to read your program file, and
then lets you continue to interact with Python, instead of exiting immediately, which is what it normally
would do. Within codeEditor, you can do this automatically by selecting Run with Interpreter from the
File menu.

Try It Out Run a Program with Python - i

 To show how you can take advantage of running python - i or Run with Interpreter, enter the following
code into a file called ch5 - demo.py :

#!/usr/bin/env python 3.1
 a = 10
b = 20

print(“A added to B is %d” % (a + b))

 Now when you invoke Python with the - i option, you will be in a Python interactive session that looks
like the following:

A added to B is 30
 > > >

 How It Works
The code you entered into your ch5 - demo.py file has all been evaluated now, and you can continue to
interact with the values of a and b , as well as expand upon it, just as though ‘ you ’ d entered them by
hand. This will save you time as the examples get longer. Now that you know all of this, some things are
demonstrated in the shell first, but that you can save yourself to be run later. Other things are shown as
code within a file that needs to be saved and run. You ’ ll be seeing programs in files because either the
material being covered doesn ’ t demonstrate an idea that is best shown off by forcing you to do the extra
work of typing in the same thing over and over, or of having you interact with it. Or it ’ s simply too long
to subject you to entering over and over each time you want to test it.

 Functions: Grouping Code under a Name
 Most modern programming languages provide you with the capability to group code together under a
name; and whenever you use that name, all of the code that was grouped together is invoked and
evaluated without having to be retyped every time.

 To create a named function that will contain your code, you use the word def , which you can think of as
 defining a functional block of code.

c05.indd 73c05.indd 73 12/22/09 10:43:07 AM12/22/09 10:43:07 AM

74

Part II: Python Language and the Standard Library

 Try It Out Defi ning a Function

 Try saving the following in your file for Chapter 5, ch5.py.def in_fridge() :

 try:
 count = fridge[wanted_food]
 except KeyError:
 count = 0
 return count

 How It Works
 When you invoke ch5.py (press F5 while in Code Editor) with just the in_fridge function defined,
you won ’ t see any output. However, the function will be defined, and it can be invoked from the
interactive Python session that you ’ ve created.

 To take advantage of the in_fridge function, though, you have to ensure that there is a dictionary
called fridge with food names in it. In addition, you have to have a string in the name wanted_food . This
string is how you can ask, using in_fridge , whether that food is available. Therefore, from the
interactive session, you can do this to use the function:

 > > > fridge = {‘apples’:10, ‘oranges’:3, ‘milk’:2}
 > > > wanted_food = ‘apples’
 > > > in_fridge()
10
 > > > wanted_food = ‘oranges’
 > > > in_fridge()
3
 > > > wanted_food = ‘milk’
 > > > in_fridge()
2

 This is more than just useful — it makes sense and it saves you work. This grouping of blocks of code
under the cover of a single name means that you can now simplify your code, which in turn enables you
to get more done more quickly. You can type less and worry less about making a mistake as well.

 Functions are a core part of any modern programming language, and they are a key part of getting
problems solved using Python.

 Functions can be thought of as a question and answer process when you write them. When they are
invoked, a question is often being asked of them: “ How many?” “What time?” “Does this exist?” “ Can
this be changed? ” and more. In response, functions will often return an answer — a value that will
contain an answer, such as True , a sequence, a dictionary, or another type of data. In the absence of any
of these, the answer returned is the special value None .

 Even when a function is mainly being asked to just get something simple done, there is usually an
implied question that you should know to look for. When a function has completed its task, the
questions “ Did it work? ” or “ How did it work out? ” are usually part of how you invoke the function.

c05.indd 74c05.indd 74 12/22/09 10:43:07 AM12/22/09 10:43:07 AM

Chapter 5: Functions

75

 Choosing a Name
 One of the first guidelines to writing functions well is that you should name your functions to reflect
their purpose. They should indicate what you want them to do. Examples of this that come with Python
that you have seen are print , type , and len .

 When you decide on a name, you should think about how it will be invoked in the program. It is always
good to name a function so that when it ’ s called, it will be read naturally by yourself and others later. It
is very common to forget the specifics of what you put into a function within a couple of weeks, so the
name becomes the touchstone that you use to recall what it ’ s doing when you return to use it again later.

 Describing a Function in the Function
 After you ’ ve chosen a name for your function, you should also add a description of the function. Python
enables you to do this in a way that is simple and makes sense.

 If you place a string as the first thing in a function, without referencing a name to the string, Python will
store it in the function so you can reference it later. This is commonly called a docstring , which is short for
 documentation string .

 Documentation in the context of a function is anything written that describes the part of the program
(the function, in this case) that you ’ re looking at. It ’ s famously rare to find computer software that is well
documented. However, the simplicity of the docstring feature in Python makes it so that, generally,
much more information is available inside Python programs than in programs written in other
languages that lack this friendly and helpful convention.

 The text inside the docstring doesn ’ t necessarily have to obey the indentation rules that the rest of the
source code does, because it ’ s only a string. Even though it may visually interrupt the indentation, it ’ s
important to remember that, when you ’ ve finished typing in your docstring, the remainder of your
functions must still be correctly indented.

def in_fridge ():
 “””This is a function to see if the fridge has a food.
fridge has to be a dictionary defined outside of the function.
the food to be searched for is in the string wanted_food”””
 try:
 count = fridge[wanted_food]
 except KeyError:
 count = 0
 return count

 The docstring is referenced through a name that is part of the function, almost as though the function
were a dictionary. This name is __doc__ , and it ’ s found by following the function name with a period
and the name __doc__ . Note that there are two underscores (_) preceding and following doc.

c05.indd 75c05.indd 75 12/22/09 10:43:08 AM12/22/09 10:43:08 AM

76

Part II: Python Language and the Standard Library

 Try It Out Displaying __doc__

 You should now exit the interactive session that you entered in the last example and re - invoke ch5.py ,
because it now has the docstring added to in_fridge . After you ’ ve done that, you can do the following:

 > > > print(“%s” % in_fridge.__doc__)
This is a function to see if the fridge has a food.
fridge has to be a dictionary defined outside of the function.
the food to be searched for is in the string wanted_food

 How It Works
 Functions, like other types you ’ ve seen, have properties that can be used by following the name of the
function with a period and the name of the property. __doc__ is a string like any other and can be easily
printed for your reference while you ’ re in an interactive session.

 The function has other information too (a set of information that it maintains that can be viewed with the
built - in function dir).

 dir shows you all of the properties of the object in which you ’ re interested, such as a function, including
things that Python uses internally:

 > > > dir()
[‘__annotations__’, ‘__call__’, ‘__class__’, ‘__closure__’, ‘__code__’,
‘__defaults__’, ‘__delattr__’, ‘__dict__’, ‘__doc__’, ‘__eq__’, ‘__format__’,
‘__ge__’, ‘__get__’, ‘__getattribute__’, ‘__globals__’, ‘__gt__’, ‘__hash__’,
‘__init__’, ‘__kwdefaults__’, ‘__le__’, ‘__lt__’, ‘__module__’, ‘__name__’,
‘__ne__’, ‘__new__’, ‘__reduce__’, ‘__reduce_ex__’, ‘__repr__’,
__setattr__’,’__sizeof__’, ‘__str__’, ‘__subclasshook__’]

 Any of these properties can be accessed using the same notation that you used for getting the data
referenced by in_fridge.__doc__ , but normally you don ’ t need to use most of these attributes directly,
although it is a good exercise to explore these elements with the type built - in function to see how
Python describes them.

 The Same Name in Two Different Places
 One special property of a function is that it ’ s the first example you ’ ve seen of how the names that refer to
values can be compartmentalized. What this means is that if you have a name outside of a function, that
name refers to a particular value — whether it ’ s a string, a number, a dictionary, a sequence, or a
function. All of these share the same space.

 For example, if you create a name for a string and then on the next line create a dictionary and reference
it to the same name, the string would no longer be referenced by that name, only the dictionary:

c05.indd 76c05.indd 76 12/22/09 10:43:08 AM12/22/09 10:43:08 AM

Chapter 5: Functions

77

 > > > fridge = “Chilly Ice Makers”
 > > > print(fridge)
Chilly Ice Makers
 > > > fridge = {‘apples’:10, ‘oranges’:3, ‘milk’:2}
 > > > print(“%s” % fridge)
{‘apples’: 10, ‘oranges’: 3, ‘milk’: 2}

 This makes sense; however, this changes within a function when it ’ s being used. The function creates a
new space in which names can be reused and re - created without affecting the same names if they exist in
other spaces in your program. This enables you to write functions without worrying about having to
micromanage whether somewhere, in another function, a name that you are using is already being used.

 Therefore, when you are writing a function, your function has its names, and another function has its
own names, and they are separate. Even when a name in both functions contains all of the same letters,
because they ’ re each in separate functions they are completely separate entities that will reference
separate values.

 At the same time, if a function is going to be used in a known situation, where you have ensured that a
name it needs to use will be defined and have the right data already referenced, it is able to access this
 global data by using that already - defined name. Python ’ s ability to do this comes from separating the
visibility of a name into separate conceptual areas. Each one of these areas is called a scope .

 Scope defines how available any name is to another part of the program. The scope of a name that ’ s used
inside of a function can be thought of as being on a vertical scale. The names that are visible everywhere
are at the top level and they are referred to in Python as being global . Names in any particular function
are a level below that — a scope that is local to each function. Functions do not share these with other
functions at the same level; they each have their own scope.

 Any name in the top - level scope can be reused in a lower - level scope without affecting the data referred
to by the top - level name:

 > > > special_sauce = [‘ketchup’, ‘mayonnaise’, ‘french dressing’]
 > > > def make_new_sauce():
... “””This function makes a new special sauce all its own”””
... special_sauce = [“mustard”, “yogurt”]
... return special_sauce
...

 At this point, there is a special sauce in the top - level scope, and another that is used in the function
 make_new_sauce . When they are run, you can see that the name in the global scope is not changed:

 > > > print(“%s” % special_sauce)
[‘ketchup’, ‘mayonnaise’, ‘french dressing’]
 > > > new_sauce = make_new_sauce()
 > > > print(special_sauce)
[‘ketchup’, ‘mayonnaise’, ‘french dressing’]
 > > > print(new_sauce)
[‘mustard’, ‘yogurt’]

c05.indd 77c05.indd 77 12/22/09 10:43:08 AM12/22/09 10:43:08 AM

78

Part II: Python Language and the Standard Library

 Remember that different functions can easily use the same name for a variable defined inside the
function — a name that will make sense in both functions, but reference different values, without
conflicting with each other.

 Making Notes to Yourself
 Python has an additional feature of the language to help you to keep track of your program. Everything
that you type into a program, even if it doesn ’ t change how the program behaves (like docstrings) up to
this point, has been processed by Python. Even unused strings will cause Python to create the string just
in case you were going to use it.

 In addition to unneeded strings, every programming language gives you the capability to place
comments within your code that don ’ t have any effect whatsoever on the program. They are not there
for Python to read but for you to read.

 If at any point a line has the # character and it ’ s not in a string, Python will ignore everything that
follows it. It will only begin to evaluate statements by continuing on the next line and reading the
remainder of the program from there.

 Try It Out Experimenting with Comments

 If you test out comments interactively you can see how they ’ re different from strings when Python
reads them:

 > > > “This is a string”
‘This is a string’
 > > > # This is a comment
 > > >
 > > > “This is a string” # with a comment at the end
‘This is a string’
 > > > print(“# Here is a pound sign within a string, being treated as a
string!”)
 # Here is a pound sign within a string, being treated as a string!

 How It Works
 When a comment appears by itself, Python ignores it and returns with the prompt asking for your next
request, trying to prompt you to enter a statement that it can evaluate. When a comment appears on a
line with something that can be evaluated, even just a string, Python knows that you have already given
your instructions to it.

 Normally, comments will appear in program files. It ’ s unlikely you ’ ll ever bother entering comments as
annotations in your interactive sessions, but that ’ s how you ’ ll want to use them in your program files.

 In addition, when you want to test changes in a program, it ’ s very useful to use comments to disable a
line (or more than one line) of code that is causing problems by placing a comment in front of it. Be
careful, though. A comment does affect the indentation that Python pays strict attention to. You need to
be careful to place comments that are within functions at the proper indentation level, because if you
don ’ t, Python will treat the comment as though it has closed out that function, if ...: block, or other
cause of indentation, and that ’ s almost certainly not what you want!

c05.indd 78c05.indd 78 12/22/09 10:43:09 AM12/22/09 10:43:09 AM

Chapter 5: Functions

79

 Keeping comments at the same indentation level also makes reading the comment much easier because
it is obvious to which part of the code the comment applies.

 Asking a Function to Use a Value You Provide
 In the in_fridge example, the values used by the function were in the global scope. The function
 in_fridge only operated on already defined values whose names were already visible to the whole
program. This works only when you have a very small program.

 When you move to larger programs consisting of hundreds, thousands, or more lines of code (the length
of a program is often measured in terms of the numbers of lines it contains), you usually can ’ t count on
the global availability of a particular name — it may be changed, based on decisions made by other
people and without your involvement! Instead, you can specify that a function will, every time it is
invoked, require that it be given the values that you want it to work with.

 These values are the specifications or parameters that the function will use to do its job. When the
function is invoked, these parameters can be names that reference data, or they can be static data such as
a number like 5 or a string. In all cases, the actual data will enter the scope of the called function instead
of being global.

 With many of the examples in the book, those that progress by offering different and
improved versions of themselves can be added to the same file unless you are
instructed to explicitly change the function you are working on.

 You don ’ t always need to remove the prior revision of a function, because the next
version will simply “ bump ” it. This gives you the opportunity to look at the changes
that are being made to the function by comparing the old to the new.

 As long as the most recent version is at the bottom of the file when you load it, that
version will be used.

This can be a useful practice when you ’ re writing your own programs as well.
There ’ s little as painful as fiddling with a piece of code that was working and then
not remembering how to return it to a working state.

 Notice that, in the following code, def — the definition of the function — has now changed so that it
specifies that the function will expect two parameters by naming them in the tuple that follows the
function name. Those parameters will enter and remain in the scope of the in_fridge function, and
they ’ ll be seen as the names some_fridge and desired_item .

c05.indd 79c05.indd 79 12/22/09 10:43:09 AM12/22/09 10:43:09 AM

80

Part II: Python Language and the Standard Library

def in_fridge(some_fridge, desired_item):
 “””This is a function to see if the fridge has a food.
fridge has to be a dictionary defined outside of the function.
the food to be searched for is in the string wanted_food”””
 try:
 count = some_fridge[desired_item]
 except KeyError:
 count = 0
 return count

 When you invoke a function with parameters, you specify the values for the parameters by placing the
values or the names you want to use between the parentheses in the invocation of the in_fridge
function, separated by commas. You ’ ve already done this with functions like len .

 Try It Out Invoking a Function with Parameters

 Once again, you should re - invoke an interactive Python session by running python - i ch5.py
or use Run with Interpreter so that you will have an interactive session with the new in_fridge
function defined:

 > > > fridge = {‘apples’:10, ‘oranges’:3, ‘milk’:2}
 > > > wanted_food = “oranges”
 > > > in_fridge(fridge, wanted_food)
3

 How It Works
 The fridge dictionary and the wanted_food string are given as parameters to the new in_fridge
function. After the scope of the function is entered, the dictionary referenced by fridge is now
referenced by the name some_fridge . At the same time, the string “ oranges ” , referenced by wanted_
food , is associated with the name desired_item upon entering the scope of the in_fridge function.
After this setup is done, the function has the information it needs to do its job.

 To further demonstrate how this works, you can use unnamed values — data that isn ’ t referenced
from names:

 > > > in_fridge({‘cookies’:10, ‘broccoli’:3, ‘milk’:2}, “cookies”)
10

 These values are brought into the scope of the in_fridge function and assigned by the definition of the
function to the names that are used inside of the functions. The proof of this is that there is no longer a
global top - level name to be referenced from within the function.

c05.indd 80c05.indd 80 12/22/09 10:43:09 AM12/22/09 10:43:09 AM

Chapter 5: Functions

81

 Checking Your Parameters
 The parameters that you intend to be used could be expecting different types than what they are given
when the function is called. For example, you could write a function that expects to be given a dictionary
but by accident is instead given a list, and your function will run until an operation unique to a
dictionary is accessed. Then the program will exit because an exception will be generated. This is
different from some other languages, which try to ensure that the type of each parameter is known, and
can be checked to be correct.

 Python does not check to see what kind of data it ’ s associating to the names in a function. In most cases
this isn ’ t a problem because an operation on the provided data will be specific to a type, and then fail to
work properly if the type of data that the name references is not correct.

 For instance, if in_fridge is given a number instead of a dictionary, Python, when trying to access the
number as though it were a dictionary, will raise an error that the except: will not catch. A TypeError
will be generated indicating that the type Python tried to operate on isn ’ t capable of doing what Python
expected:

 > > > in_fridge(4, “cookies”)
Traceback (most recent call last):
 File “ < stdin > ”, line 1, in ?
 File “ < stdin > ”, line 7, in in_fridge
TypeError: unsubscriptable object

 In this case, you ’ ve been shown a number being given to a function where you know that the function
expects to operate on a dictionary. No matter what, a number does not have a property where a name
can be used as the key to find a value. A number doesn ’ t have keys and it doesn ’ t have values. The idea
is that in any context, finding 4(“ cookies ”) can ’ t be done in Python, and so an exception is raised.

 The term unsubscriptable is how Python indicates that it can ’ t find a way to follow a key to a value the
way it needs to with a dictionary. Subscripting is the term for describing when you access an element in a
list or a tuple as well as a dictionary, so you can encounter this error in any of those contexts.

 This behavior — not requiring you to specifically define what type you expect, and allowing you to
flexibly decide how you want to treat it — can be used to your advantage. It enables you to write a single
function that handles any kind of input that you want. You can write a single function that can take more
than one type as its parameter and then decide how the function should behave based on the type it is
given. Which approach you take depends on what you need to do in your own program.

 To determine the type of some data, remember that you can use the type built - in function, which was
introduced in Chapter 2. Using the output of this, you can verify the type of variable in the beginning of
your functions:

def make_omelet(omelet_type):
 “””This will make an omelet. You can either pass in a dictionary
 that contains all of the ingredients for your omelet, or provide
 a string to select a type of omelet this function already knows
 about”””
 if type(omelet_type) == type({}):
 print(“omelet_type is a dictionary with ingredients”)
 return make_food(omelet_type, “omelet”)

c05.indd 81c05.indd 81 12/22/09 10:43:10 AM12/22/09 10:43:10 AM

82

Part II: Python Language and the Standard Library

 elif type(omelet_type) == type(“”):
 omelet_ingredients = get_omelet_ingredients(omelet_type)
 return make_food(omelet_ingredients, omelet_type)
 else:
 print(“I don’t think I can make this kind of omelet: %s” %
omelet_type)

 By itself, this definition of make_omelet won ’ t work because it relies on a few functions that you
haven ’ t written yet. You will sometimes do this as you program — create names for functions that need
to be written later. You ’ ll see these functions later in this chapter, at which point this code will become
fully usable.

 Try It Out Determining More Types with the type Function

 The following should be entered after loading your ch5.py file with python - i or the Run with
Interpreter command:

 > > > fridge = {‘apples’:10, ‘oranges’:3, ‘milk’:2}
 > > > type(fridge)
 < class ‘dict’ >
 > > > type({})
 < class ‘dict’ >
 > > > type(“Omelet”)
 < class ‘str’ >
 > > > type(“”)
 < class ‘str’ >

 How It Works
 The first thing to note here is that the type function returns the class of an object. You can use this class
object in tests — it can be compared to another class object. Note that in Python, classes and types are
just different words for the same thing — that is, they define the data type of variables and values.

Try It Out Using Strings to Compare Types

 There is one other feature you can use here. You have seen that for the print function, many objects in
Python can be represented as strings. This is because many objects have a built - in capability to convert
themselves into strings for the times when that ’ s needed.

 For example, an alternative way of writing the preceding comparison could be as follows:

 > > > fridge = {‘apples’:10, ‘oranges’:3, ‘milk’:2}
 > > > str(type(fridge))
“ < class ‘dict’ > ”
 > > > if str(type(fridge))==” < class ‘dict’ > ”:
... print(“They match!”)
...
They match!

c05.indd 82c05.indd 82 12/22/09 10:43:10 AM12/22/09 10:43:10 AM

Chapter 5: Functions

83

 How It Works
Because you can find out ahead of time what the string representation of a type object looks like, you can
use that string to compare to a type object that has been rendered into a string by the str function.

 Setting a Default Value for a Parameter — Just in Case
 There is one more trick available to you to ensure that your functions will be easier to use.
Every parameter to a function needs to have a value. If values aren ’ t assigned to the names of all of
the required parameters, a function will raise an error — or worse, it could somehow return data
that is wrong.

 To avoid this condition, Python enables you to create functions with default values that will be assigned
to the parameter ’ s name if the function is invoked without that parameter being explicitly provided in
its invocation. You ’ ve already seen this behavior — for instance, with the pop method of lists, which can
either be told to work on a particular element in a list, or if no value is given, will automatically use the
last element.

 You can do this in your own functions by using the assignment operator (the = sign) in the parameter list
when you define them. For instance, if you wanted a variation on make_omelet that will make a cheese
omelet by default, you have only to change its definition and nothing else.

 Try It Out Setting a Default Parameter

 Cut and paste the entire make_omelet function. Then, by changing only the definition in your new copy
of the function to the following, you ’ ll get the behavior of having a cheese omelet by default:

def make_omelet2(omelet_type = “cheese”):

 How It Works
 This definition doesn ’ t change the way that any of the remaining code in the function behaves. It sets up
 omelet_type only if it hasn ’ t been defined when the make_omelet2 function is invoked.

 This still enables you to specify an omelet by using a dictionary or a different kind of omelet! However, if
 make_omelet is defined this way, you can call it without any particular kind of omelet being specified;
and instead of bailing out on you; the function will make you a cheese omelet.

 Doing this same thing to make_omelet is the first step toward writing a make_omelet function that will
be able to behave in a friendly and obvious way. Remember, though, that you still need to write other
functions! The goal is to have output like the following:

 > > > make_omelet()
Adding 2 of eggs to make a cheese
Adding 2 of cheddar to make a cheese
Adding 1 of milk to make a cheese
Made cheese
‘cheese’

c05.indd 83c05.indd 83 12/22/09 10:43:11 AM12/22/09 10:43:11 AM

84

Part II: Python Language and the Standard Library

 > > > make_omelet(“western”)
Adding 1 of pepper to make a western
Adding 1 of ham to make a western
Adding 1 of onion to make a western
Adding 2 of eggs to make a western
Adding 2 of jack_cheese to make a western
Adding 1 of milk to make a western
Made western
‘western’

If you write a function with more than one parameter and you want to have both required and optional
parameters, you have to place the optionals at the end of your list of parameters. This is because once
you ’ ve specified that a parameter is optional; it may or may not be there. From the first optional
parameter, Python can ’ t guarantee the presence of the remaining parameters — those to the right of your
optional parameters. In other words, every parameter after the first default parameter becomes optional.
This happens automatically, so be careful and be aware of this when you use this feature.

 Calling Functions from within Other Functions
 Functions declared within the top level, or global scope, can be used from within other functions and
from within the functions inside of other functions. The names in the global scope can be used from
everywhere, because the most useful functions need to be available for use within other functions.

 In order to have a make_omelet function work the way you saw earlier, it should rely on other functions
to be available, so they can be used by make_omelet .

 This is how it should work: First, a function acts like sort of a cookbook. It will be given a string that
names a type of omelet and return a dictionary that contains all of the ingredients and their quantities.
This function will be called get_omelet_ingredients , and it needs one parameter — the name
of the omelet:

def get_omelet_ingredients(omelet_name):
 “””This contains a dictionary of omelet names that can be produced,
and their ingredients”””
 # All of our omelets need eggs and milk
 ingredients = {“eggs”:2, “milk”:1}
 if omelet_name == “cheese”:
 ingredients[“cheddar”] = 2
 elif omelet_name == “western”:
 ingredients[“jack_cheese”] = 2
 ingredients[“ham”] = 1
 ingredients[“pepper”] = 1
 ingredients[“onion”] = 1
 elif omelet_name == “greek”:

c05.indd 84c05.indd 84 12/22/09 10:43:11 AM12/22/09 10:43:11 AM

Chapter 5: Functions

85

 ingredients[“feta_cheese”] = 2
 ingredients[“spinach”] = 2
 else:
 print(“That’s not on the menu, sorry!”)
 return None
 return ingredients

 The second function you need to make omelets is a function called make_food that takes two
parameters. The first is a list of ingredients needed — exactly what came from the get_omelet_
ingredients function. The second is the name of the food, which should be the type of omelet:

def make_food(ingredients_needed, food_name):
 “””make_food(ingredients_needed, food_name)
 Takes the ingredients from ingredients_needed and makes food_name”””
 for ingredient in ingredients_needed.keys():
 print(“Adding %d of %s to make a %s” %
(ingredients_needed[ingredient], ingredient, food_name))
 print(“Made %s” % food_name)
 return food_name

 At this point, all of the pieces are in place to use the make_omelet function. It needs to call on the get_
omelet_ingredients and the make_food functions to do its job. Each function provides some part of
the process of making an omelet. The get_omelet_ingredients function provides the specific
instructions for specific kinds of omelets, and the make_food function provides the information needed
to know that any kind of food can, if you look at it one way (a very simplistic way for the sake
of demonstration!), be represented as the result of just mixing the right quantities of a number of
ingredients.

 Try It Out Invoking the Completed Function

 Now that you have all of the functions in place for make_omelet to work, invoke your ch5.py file with
 python - i or the Run with Interpreter command, and then try out the following code in the shell:

 > > > omelet_type = make_omelet(“cheese”)
Adding 2 of eggs to make a cheese
Adding 2 of cheddar to make a cheese
Adding 1 of milk to make a cheese
Made cheese
 > > > print omelet_type
cheese
 > > > omelet_type = make_omelet({“eggs”:2, “jack_cheese”:2, “milk”:1,
“mushrooms”:2})
omelet_type is a dictionary with ingredients
Adding 2 of jack_cheese to make a omelet
Adding 2 of mushrooms to make a omelet
Adding 2 of eggs to make a omelet
Adding 1 of milk to make a omelet
Made omelet
 > > > print omelet_type
Omelet

c05.indd 85c05.indd 85 12/22/09 10:43:11 AM12/22/09 10:43:11 AM

86

Part II: Python Language and the Standard Library

 How It Works
Now that all of the functions are in place and can be called, one from another, make_omelet can be used
by only specifying the name of the omelet that you want to make.

 Functions Inside of Functions
 While it ’ s unlikely that you ’ ll be modeling any omelet - making in your professional or amateur career,
the same process of designing partial simulations of real - world situations is likely, so this section
provides some ideas about how you could refine the solution you already have.

 You may decide that a particular function ’ s work is too much to define in one place and want to break it
down into smaller, distinct pieces. To do this, you can place functions inside of other functions and
have them invoked from within that function. This allows for more sense to be made of the complex
function. For instance, get_omelet_ingredients could be contained entirely inside the make_
omelet function and not be available to the rest of the program.

 Limiting the visibility of this function would make sense, because the usefulness of the function is
limited to making omelets. If you were writing a program that had instructions for making other kinds
of food as well, the ingredients for omelets wouldn ’ t be of any use for making these other types of food,
even similar foods like scrambled eggs or souffl é s. Each new food would need its own functions to do
the same thing, with one function for each type of food. However, the make_food function would still
make sense on its own and could be used for any kind of food.

 Defining a function within another function looks exactly like defining it at the top level. The only
difference is that it is indented at the same level as the other code in the function in which it ’ s contained.
In this case, all of the code looks exactly the same:

def make_omelet(omelet_type):
 “””This will make an omelet. You can either pass in a dictionary
 that contains all of the ingredients for your omelet, or provide
 a string to select a type of omelet this function already knows
 about”””
 def get_omelet_ingredients(omelet_name):
 “””This contains a dictionary of omelet names that can be produced,
and their ingredients”””
 ingredients = {“eggs”:2, “milk”:1}
 if omelet_name == “cheese”:
 ingredients[“cheddar”] = 2
 elif omelet_name == “western”:
 ingredients[“jack_cheese”] = 2

 ingredients[“ham”] = 1
 ingredients[“pepper”] = 1
 ingredients[“onion”] = 1
 elif omelet_name == “greek”:
 ingredients[“feta_cheese”] = 2
 else:
 print(“That’s not on the menu, sorry!”)

c05.indd 86c05.indd 86 12/22/09 10:43:11 AM12/22/09 10:43:11 AM

Chapter 5: Functions

87

 return None
 return ingredients
 if type(omelet_type) == type({}):
 print(“omelet_type is a dictionary with ingredients”)
 return make_food(omelet_type, “omelet”)
 elif type(omelet_type) == type(“”):
 omelet_ingredients = get_omelet_ingredients(omelet_type)
 return make_food(omelet_ingredients, omelet_type)
 else:
 print(“I don’t think I can make this kind of omelet: %s” %
omelet_type)

 It is important to define a function before it is used. If an attempt is made to invoke a function before it ’ s
defined, Python won ’ t be aware of its existence at the point in the program where you ’ re trying to
invoke it, and so it can ’ t be used! Of course, this will result in an error and an exception being raised. So,
define your functions at the beginning of your files so you can use them toward the end.

 Flagging an Error on Your Own Terms
 If you need to indicate that a particular error has occurred, you may want to use one of the errors you ’ ve
already encountered to indicate, through the function that ’ s being called, what has gone wrong.

 There is a counterpart to the try: and except: special words: the raise ... command. A good time
to use the raise ... command might be when you ’ ve written a function that expects multiple
parameters but one is of the wrong type.

 You can check the parameters that are passed in and use raise ... to indicate that the wrong type was
given. When you use raise ... , you provide a message that an except ... : clause can capture for
display — an explanation of the error.

 The following code changes the end of the make_omelet function by replacing a printed error, which is
suitable for being read by a person running the program, with a raise ... statement that makes it
possible for a problem to be either handled by functions or printed so that a user can read it:

 if type(omelet_type) == type({}):
 print(“omelet_type is a dictionary with ingredients”)
 return make_food(omelet_type, “omelet”)
 elif type(omelet_type) == type(“”):
 omelet_ingredients = get_omelet_ingredients(omelet_type)
 return make_food(omelet_ingredients, omelet_type)
 else:
 raise TypeError(“No such omelet type: %s” % omelet_type)

 After making this change, make_omelet can give you precise information about this kind of error when
it ’ s encountered, and it still provides information for a user.

c05.indd 87c05.indd 87 12/22/09 10:43:12 AM12/22/09 10:43:12 AM

88

Part II: Python Language and the Standard Library

 Layers of Functions
 Now that you ’ ve an idea of what functions are and how they work, it ’ s useful to think about them in
terms of how they are called and how Python keeps track of these layers of invocations.

 When your program calls a function, or a function calls a function, Python creates a list inside of itself
that is called the stack or sometimes the call stack . When you invoke a function (or call on, which is why it
can be called a call stack), Python will stop for a moment, take note of where it is when the function was
called, and then stash that information in its internal list. It ’ ll then enter the function and execute it, as
you ’ ve seen. For example, the following code illustrates how Python keeps track of how it enters and
leaves functions:

[{‘top_level’: ‘line 1’}, {‘make_omelet’: ‘line 64’}, {‘make food’: ‘line
120’}]

 At the top, Python keeps track starting at line 1. Then, as the function make_omelet is called at line 64, it
keeps track of that. Then, from inside of make_omelet , make_food is called. When the make_food
function finishes, Python determines that it was on line 64, and it returns to line 64 to continue. The line
numbers in the example are made up, but you get the idea.

 The list is called a stack because of the way in which a function is entered. You can think of a function as
being on the top of a stack until it is exited, when it is taken off, and the stack is shortened by one.

 How to Read Deeper Errors
 When an error does happen in a program and an uncaught error is raised, you might find yourself
looking at a more complex error than what you ’ ve seen before. For example, imagine that you ’ ve passed
a dictionary that contains a list instead of a number. This will cause an error that looks like the following:

 > > > make_omelet({“a”:1, “b”:2, “j”:[“c”, “d”, “e”]})
omelet_type is a dictionary with ingredients
Adding 1 of a to make a omelet
Adding 2 of b to make a omelet
Traceback (most recent call last):
 File “ < stdin > ”, line 1, in ?
 File “ch5.py”, line 96, in make_omelet
 return make_food(omelet_type, “omelet”)
 File “ch5.py”, line 45, in make_food
 Print(“Adding %d of %s to make a %s” % (ingredients_needed[ingredient],
ingredient, food_name))
TypeError: int argument required

 After you ’ ve entered a function from a file, Python will do its best to show you where in the stack you
are (which means how many layers there are when the error occurs and at what line in the file each layer
in the stack was called from) so that you can open the problem file to determine what happened.

 As you create deeper stacks (which you can think of as longer lists) by calling more functions or using
functions that call other functions, you gain experience in using the stack trace . (This is the common name
for the output that Python gives you when you raise an error or when an exception is otherwise raised.)

c05.indd 88c05.indd 88 12/22/09 10:43:12 AM12/22/09 10:43:12 AM

Chapter 5: Functions

89

 With the preceding stack trace, which is three levels deep, you can see that in line 45, when make_food is
called, there was a problem with the type of an argument. You could now go back and fix this.

 If you thought that this problem would happen a lot, you could compensate for it by enclosing calls to
 make_food in a try ...: block so that TypeErrors can always be prevented from stopping the
program. However, it ’ s even better if you handle them in the function where they will occur.

 In the case of something like a blatantly incorrect type or member of a dictionary, it ’ s usually not
necessary to do any more than what Python does on its own, which is to raise a TypeError. How you
want to handle any specific situation is up to you, however.

 The stack trace is the readable form of the stack, which you can examine to see where the problem
happened. It shows everything that is known at the point in time when a problem occurred, and it is
produced by Python whenever an exception has been raised.

 Summary
 This chapter introduced you to functions. Functions are a way of grouping a number of statements in
Python into a single name that can be invoked any time that it ’ s needed. When a function is defined, it
can be created so that when it ’ s invoked it will be given parameters to specify the values on which it
should operate.

 The names of the parameters for a function are defined along with the function by enclosing them in
parentheses after the function is named. When no parameters are used, the parentheses are still present,
but they will be empty.

 As functions are invoked, they each create a scope of their own whereby they have access to all of the
names that are present in the global scope of the program, as well as names that have been assigned and
created inside of the function. If a name that is present in the global scope is assigned in the scope of a
particular function, it will not change value when referenced by the global name but will instead only be
changed within the function.

 If a function is defined within another function, it can access all of the names of the function in which it
was defined, as well as names that are in the global scope. Remember that this visibility depends on
where the function is defined and not where it was called.

 Functions can be called from within other functions. Doing this can make understanding programs
easier. Functions enable you to reduce repetitive typing by making common tasks achievable with a
brief name.

 Functions that are defined with parameters are invoked with values — each value provided will be
assigned, in the function, to the name inside the function ’ s parameter list. The first parameter passed
to a function will be assigned to the first name, the second to the second, and so on. When functions are
passed parameters, each one can be either mandatory or optional. Optional parameters must be placed
after mandatory parameters when the function is defined, and they can be given a default value.

c05.indd 89c05.indd 89 12/22/09 10:43:12 AM12/22/09 10:43:12 AM

90

Part II: Python Language and the Standard Library

 You can use the raise ... : feature to signal errors that can be received and handled by
except ... : . This enables you to provide feedback from your functions by providing both the
type of error and a string that describes the error so it can be handled.

 You have also learned about the stack . When an error condition is raised with raise ... : , or by
another error in the program, the location of the error is described not just by naming the function where
the error occurred, but also by naming any and all intervening functions that were invoked and
specifying on what line in which file that invocation happened. Therefore, if the same function is useful
enough that you use it in different places and it only has problems in one of them, you can narrow the
source of the problem by following the stack trace that is produced.

 The key things to take away from this chapter are:

 You can run a program with Python - i (or Run with Interpreter), allowing you to create longer
programs instead of writing them directly into the Shell.

 You can save time by saving snippets of code as a function, making them reuseable in your
current – – and future – – programs.

 Documentation strings begin with three quotes (“ “ “) and allow you to define the purpose of
your functions, and leave comments for yourself and future programmers.

 You can display the documentation in your function by using __doc__ .

 By using dir() you can see every property in an object.

 Comments are added to your code with a # symbol. Python ignores everything following this
sign on the same line. Comments allow you to leave notes regarding your code in the event that
you need to revisit it again several months later, or in the event that another programmer needs
to read – – and quickly understand – – your code.

 The type() function tells you the class of an object.

 Exercises
 1. Write a function called do_plus that accepts two parameters and adds them together with

the “ + ” operation.

 2. Add type checking to confirm that the type of the parameters is either an integer or a string.
If the parameters aren ’ t good, raise a TypeError.

 3. This one is a lot of work, so feel free to take it in pieces. In Chapter 4, a loop was written to make
an omelet. It did everything from looking up ingredients to removing them from the fridge and
making the omelet. Using this loop as a model, alter the make_omelet function by making a
function called make_omelet_q3 . It should change make_omelet in the following ways to get it
to more closely resemble a real kitchen:

 a. The fridge should be passed into the new make_omelet as its first parameter. The
fridge ’ s type should be checked to ensure it is a dictionary.

 b. Add a function to check the fridge and subtract the ingredients to be used. Call this
function remove_from_fridge . This function should first check to see if enough
ingredients are in the fridge to make the omelet, and only after it has checked that

❑

❑

❑

❑

❑

❑

❑

c05.indd 90c05.indd 90 12/22/09 10:43:13 AM12/22/09 10:43:13 AM

Chapter 5: Functions

91

should it remove those items to make the omelet. Use the error type LookupError as the
type of error to raise.

 c. The items removed from the fridge should be placed into a dictionary and returned by
the remove_from_fridge function to be assigned to a name that will be passed to
 make_food . After all, you don ’ t want to remove food if it ’ s not going to be used.

 d. Rather than a cheese omelet, choose a different default omelet to make. Add the ingredi-
ents for this omelet to the get_omelet_ingredients function.

 4. Alter make_omelet to raise a TypeError error in the get_omelet_ingredients function
if a salmonella omelet is ordered. Try ordering a salmonella omelet and follow the resulting
stack trace.

c05.indd 91c05.indd 91 12/22/09 10:43:13 AM12/22/09 10:43:13 AM

c05.indd 92c05.indd 92 12/22/09 10:43:13 AM12/22/09 10:43:13 AM

6
 Classes and Objects

 So far, you have been introduced to most of the building blocks of programming. You have used
data; you have referenced that data to names (the names are more commonly called variables when
programmers talk); and you have used that data in loops and functions. The use of these three
elements is the foundation of programming and problem - solving with computers. Named
variables enable you to store values, reference them, and manipulate them. Repeating loops enable
you to evaluate every possible element in a list, or every other element, or every third element, and
so on. Finally, functions enable you to combine bunches of code into a name that you can invoke
whenever and wherever you need it.

 In this chapter you learn:

 How Python combines functions and data so that they are accessed using a single
 object ’ s name.

 How and why classes and objects are used and how they make programs easier to write
and use in a variety of circumstances.

 Thinking About Programming
 At this point, you ’ ve only been given a rudimentary introduction to Python. To create a description
of an object in Python right now, you have just enough knowledge to achieve two views. One is of
the data, which comes and goes as needed, except for parts that live in the top level, or global
scope. The other view is of functions, which have no persistent data of their own. They interact
only with data that you give them.

 What is an Object?
 In Python, every piece of data you see or come into contact with is represented by an object. Each
of these objects has three components: an identity, a type, and a value. The identity represents the
location of the object being held in your memory (and therefore is unchangeable), while its type

❑

❑

c06.indd 93c06.indd 93 12/22/09 10:43:34 AM12/22/09 10:43:34 AM

Part II: Python Language and the Standard Library

94

tells us what types of data and values it can have. The value, meanwhile, can be changed in an object,
but only if it is set as a mutable type; if it is set as immutable, then it may not change.

 A simpler explanation might be to consider some of the things we have already seen (and will see soon).
Integers, strings, lists, and so forth are all nothing more than objects. Now, it is all well and good to have
all of these floating around within your program, but wouldn ’ t it make more sense to have the ones that
work closely together in one spot? That is where classes come in. A class allows you to define and
encapsulate a group of objects into one convenient space.

 Objects You Already Know
 The next tool you learn will enable you to think of entire objects that contain both data and functions.
You ’ ve already seen these when you used strings . A string is not just the text that it contains. As you ’ ve
learned, methods are associated with strings, which enable them to be more than just the text, offering
such features as allowing you to make the entire string uppercase or lowercase. To recap what you ’ ve
already learned, a string is mainly the text that you ’ ve input:

 > > > omelet_type = “Cheese”

 In addition to the data that you ’ ve worked with the most, the text “ Cheese ” , the string is an object that
has methods , or behaviors that are well known. Examples of methods that every string has are lower ,
which will return the string it contains as all lowercase, and upper , which will return the string as an
entirely uppercase string:

 > > > omelet_type.lower()
‘cheese’
 > > > omelet_type.upper()
‘CHEESE’

 Also available are methods built into tuple , list , and dictionary objects, like the keys method of
dictionaries, which you ’ ve already used:

 > > > fridge = {“cheese”:1, “tomato”:2, “milk”:4}
 > > > for x in fridge.keys():
 print(x)
 [‘tomato’, ‘cheese’, ‘milk’]

 When you want to find out more about what is available in an object, Python exposes everything that
exists in an object when you use the dir function:

dir(fridge)
[‘__class__’, ‘__contains__’, ‘__delattr__’, ‘__delitem__’, ‘__doc__’,
‘__eq__’, ‘__format__’, ‘__ge__’, ‘__getattribute__’, ‘__getitem__’,
‘__gt__’, ‘__hash__’, ‘__init__’, ‘__iter__’, ‘__le__’, ‘__len__’,
‘__lt__’, ‘__ne__’, ‘__new__’, ‘__reduce__’, ‘__reduce_ex__’, ‘__repr__’
‘__setattr__’, ‘__setitem__’, ‘__sizeof__’, ‘__str__’, ‘__subclasshook__’,
‘clear’, ‘copy’, ‘fromkeys’, ‘get’, ‘items’, ‘keys’, ‘pop’, ‘popitem’,
‘setdefault’, ‘update’, ‘values’]

c06.indd 94c06.indd 94 12/22/09 10:43:35 AM12/22/09 10:43:35 AM

Chapter 6: Classes and Objects

95

 Every bit of data, every method, and, in short, every name in a string or any other object in Python can be
exposed with the dir function. dir lists all of the available names in the object it is examining in
alphabetical order, which tends to group those names beginning with underscores first. By convention,
these names refer to items considered to be internal pieces of the object and should be treated as though
they are invisible. In other words, you shouldn ’ t use them, but Python leaves that decision up to
you — there ’ s no reason not to look at these items interactively to learn from them:

 > > > type(omelet_type.__len__)
 < class ‘method-wrapper’

 This is interesting. Because this is a method, it can be invoked to see what it does:

 > > > omelet_type.__len__()
6

 This returns the same value as the len built - in function. When a function is built into an object, it ’ s called
a method of that object.

 In fact, the method __len__ is how the len function works: It asks an object how long it is by asking
this built - in method. This enables the designer of an object to define how the length is determined and to
have the built - in function len behave correctly for any object that defines a __len__ method.

 The other names beginning with an underscore also have special meanings. You can explore these in the
Python shell. The Python shell will help you explore the normal methods of a string object, or any other
method, by displaying possible names within the object that you are trying to call on, but it will not
display internal names that begin with an underscore. You can determine those with the dir function
yourself if you decide to do this.

 Looking Ahead: How You Want to Use Objects
 When you have an object, you want to be able to use it naturally. For instance, once you ’ ve defined
it, the Omelet class could produce objects that behave in a way that would feel natural when you read
the source code. You ’ re going to try to make something that can do this (you see how to do this in the
next section):

 > > > o1 = Omelet()
 > > > o1.show_kind()
‘cheese’

 You ’ d also want to have a refrigerator that can be used as an object instead of just as a dictionary. It may
be nice for you to do things like be able to think of using it like a real fridge, whereby you can add food,
remove food, check for foods, add or remove more than one thing at a time, and so on.

 In other words, when you create an object that models something from the real world, you can form
your program ’ s objects and classes so they help the pieces of the program work in a way that someone
familiar with the real - life object will recognize and be able to understand.

c06.indd 95c06.indd 95 12/22/09 10:43:35 AM12/22/09 10:43:35 AM

Part II: Python Language and the Standard Library

96

 Defining a Class
 When you are considering how even small programs of a few hundred lines of Python code is working,
you will often realize that the programs are keeping track of data in groups — when one thing is
accessed, it affects other things that need to go along with it. Almost as often, you ’ ll realize that you have
whole lists of this interdependent data — lists in which the first element in list1 is matched to the first
element in list2 and list3, and so on. Sometimes this can and should be solved by combining the lists
creatively. Python employs the concept of creating an entire class of code that acts as a placeholder. When
a class is invoked, it creates an object bound to a name.

 How Code Can Be Made into an Object
 After you have an object bound to a name, using that name provides you with access to all of the data
and functions you ’ ve defined. When you are writing code for a class, you start by declaring that class.
You do this with the class keyword.

Try It Out Defi ning a Class

 The definition of a class is simple and mainly involves the use of the special word class along with a
name. The style is similar to the definition of a function, except that you do not follow a simple class
definition with a tuple containing terms. (Doing that defines a class to inherit from, which you see in
Chapter 10.)

class Fridge:
 “””This class implements a fridge where ingredients can be
 added and removed individually, or in groups.”””

 How It Works
From here on out, everything indented will be available through the objects created inside of this class.
You’ve already seen this with functions in Chapter 5, and similar rules apply to classes. Note that you
have the option for the built-in docstring with classes, as you do with functions. They behave the same
way and are very useful for providing an easy way to get information about the class.

You should try creating the Fridge class as shown in the preceding example. Note that a capital “F”
was used for this. It’s a common convention for Python programmers to begin their class names with
a capital letter; and when a class name has more than one word, it’s also a common convention to run
the words together, but to have each word begin with a capital letter to make it easier to read. For
instance, a class that is modeling a fridge and a freezer together could be called FridgeAndFreezer.

 Try It Out Creating an Object from Your Class

 Try typing the Fridge class into your ch6.py file (or a similar file for the examples here) and then
invoke that file with python - i or the Run with Interpreter command, as you did in Chapter 5.

 You can create a single object that is a Fridge by invoking it with the open and close parentheses:

 > > > f = Fridge()

c06.indd 96c06.indd 96 12/22/09 10:43:36 AM12/22/09 10:43:36 AM

Chapter 6: Classes and Objects

97

 How It Works
 At this point, you don ’ t have anything complicated defined yet. Fridge is basically empty, so this is
your starting point. However, even without anything else, you should notice that you created an
empty class that is usable. It does almost nothing, but in some situations you need very little. For
instance, you can now treat this nearly empty object you ’ ve created like a special kind of dictionary.
You can do this by adding names to your class interactively while you ’ re testing. This can help you
develop an idea of how you ’ d like it to work:

 > > > f.items = {}
 > > > f.items[“mystery meat”] = 1

 In addition, as you see demonstrated in Chapter 10, exceptions are actually classes, and sometimes all
you need is an empty class to make an effective exception. You should only use this sort of direct
access to a class when you have a simple, undefined class like this. When you have a more developed
class, accessing the names inside of its scope can interfere with how the class was written, so it can
cause a lot of trouble.

 The best way to start writing a class is to decide what you want it to do. For this, a Python - based
model of refrigerator behaviors, Fridge , is the first thing, and it should be basic. While you ’ re
thinking about it, focus on what you will need a particular Fridge object to do for your own
purposes. You want enough behaviors available that this object can be used to make food, yet you
don ’ t want to worry about aspects of real - life refrigerators that won ’ t be included in a simplified
example, such as temperature, the freezer, defrosting, and electricity — all of these are unnecessary
details that would only complicate your purpose here. For now, just add to the docstring for the
 Fridge class to define the behaviors that you will be building soon.

 First, you will want to have a way of stocking your Fridge . You ’ re going to do this in a couple of
ways: adding one type of a single item at a time and adding an entire dictionary at the same time so
that it ’ s easy to initialize. Or simulating occasions when a refrigerator is filled, such as after you ’ ve
come back from a shopping trip.

 Second, you ’ ll want to have a way to take things out of the Fridge . You want to have the capability to
do all of the same things when removing items as you do when you add: get a single item or get a
whole bunch of things out of the Fridge .

 You ’ ll want to write a couple of other things into this object to make this selective model of a
Fridge: a function that will determine whether a particular item is available in the Fridge and
another one that will check an entire dictionary worth of ingredients. These enable you to prepare to
begin cooking.

 These are all of the things that you would need to have in order to use a Fridge to store ingredients
and to get them out when you want to cook but only for this limited purpose of modeling, of
course. In other words, these will work as a model of this specific situation, while glossing over every
possible scenario.

 The methods that an object makes available for use are called its interface because these methods are
how the program outside of the object makes use of the object. They ’ re what make the object usable.

 The interface is everything you make available from the object. With Python, this usually means that
all of the methods and any other names that don ’ t begin with one or more underscores are your

c06.indd 97c06.indd 97 12/22/09 10:43:36 AM12/22/09 10:43:36 AM

Part II: Python Language and the Standard Library

98

interfaces; however, it ’ s a good practice to distinguish which functions you expect to have called by
explicitly stating what methods can be used, and how they ’ re used, in the class ’ s docstring:

class Fridge:
 “””This class implements a fridge where ingredients can be
 added and removed individually, or in groups.
 The fridge will retain a count of every ingredient added or removed,
 and will raise an error if a sufficient quantity of an ingredient
 isn’t present.
 Methods:
 has(food_name [, quantity]) - checks if the string food_name is in the
fridge. Quantity will be set to 1 if you don’t specify a number.
 has_various(foods) - checks if enough of every food in the dictionary is in
the fridge
 add_one(food_name) - adds a single food_name to the fridge
 add_many(food_dict) - adds a whole dictionary filled with food
 get_one(food_name) - takes out a single food_name from the fridge
 get_many(food_dict) - takes out a whole dictionary worth of food.
 get_ingredients(food) - If passed an object that has the __ingredients__
 method, get_many will invoke this to get the list of ingredients.
 “””

 def __init__(self, items={}):
 “””Optionally pass in an initial dictionary of items”””
 if type(items) != type({}):
 raise TypeError(“Fridge requires a dictionary but was given %s” %
type(items))
 self.items = items
 return

Take a moment to look at the __init__ and (self) part of the code above. These are two very important
features of classes. When Python creates your object, the __init__ method is what passes the object its
first parameter. The (self) portion is actually a variable used to represent the instance of the object.

 In addition, documenting the methods you expect to be used is a good practice when you sit down to
write a class — in effect, it is your outline for what you need to do to consider the class complete, and
this can go hand - in - hand with testing your program as you write it. (See Chapter 12 for more about
how to do this.)

 When you write your interface methods, you ’ ll notice that, a lot of the time, simpler methods will
share a lot of common features, like “ get one thing ” or “ get two things ” or “ get some large number of
things, ” but to make them simple to call, you ’ ll want to keep all of these variations. At first, this will
seem as though it means that you need to duplicate a lot of the source code for each of these functions.
However, instead of retyping the common components of your interface methods, you can save a lot
of work by writing methods that are for internal use only.

 These private methods can perform actions common to some or all of your interface methods. You ’ d
want to do this when the private methods are more complex, or contain details that a user may not
need to know in order to use them. By doing this, you can prevent confusion when your class is called,
while making it easier for you to write. At its best, this is a clear win - win situation.

 For the Fridge class, and in many classes you ’ ll write, it ’ s common to have a method that can operate
on a group of data, and another method that works with just a single element. Whenever you have
this situation, you can save your effort by making the method that works on a single item simply

c06.indd 98c06.indd 98 12/22/09 10:43:36 AM12/22/09 10:43:36 AM

Chapter 6: Classes and Objects

99

invoke the method that works on any number of items. In fact, sometimes it ’ s useful to have this
method be considered private , or not a part of the interface. This way it can be used or not used and
changed without affecting how the class is used, because any changes you make will not be seen
 outside an object, only inside .

 For your Fridge class, you can minimize your work by creating an internal method called __add_multi
that will take two parameters — the name of the item and the quantity of items — and have it add
those to the items dictionary that each object has.

 Try It Out Writing an Internal Method

 When you add this to your file for this chapter, remember to ensure that you have the right indentation
for this to appear under your Fridge class, not alone at the top level. The class declaration is shown
here to make this clear:

class Fridge:
 # the docstring and intervening portions of the class would be here, and
 # __add_multi should go afterwards.
 def __add_multi(self, food_name, quantity):
 “””
 __add_multi(food_name, quantity) - adds more than one of a
 food item. Returns the number of items added

 This should only be used internally, after the type checking has been
 done
 “””
 if (not food_name in self.items):
 self.items[food_name] = 0

 self.items[food_name] = self.items[food_name] + quantity

 How It Works
 Now you have a way of adding any number of single food items to a Fridge object. However,
this is an internal method that doesn ’ t confirm whether the type that it is being given — either for
 food_name or quantity — is valid. You should use your interface functions to do this checking
because, being a conscientious programmer, you will always ensure that you only pass the right
values into your private methods. OK, just kidding. It ’ s always a good idea to check everywhere
you can. For this example, you ’ re not going to check here, though, because you ’ re only going to
use __add_multi in a foolproof way.

 Now that you have the generally useful method __add_multi for your Fridge class, the add_one
and the add_many methods can both be written to use it instead of you having to write similar
functions two times. This will save you work.

c06.indd 99c06.indd 99 12/22/09 10:43:37 AM12/22/09 10:43:37 AM

Part II: Python Language and the Standard Library

100

 Try It Out Writing Interface Methods

 To make this faster, you can avoid typing in the docstrings for now. They are here so that you
understand better what the actual code is doing in case you have any questions.

 Like before, these need to be indented beneath the Fridge class definition. Anything that seems to
begin at the start of a line is actually a continuation from the line before and should all be entered on
one line:

 def add_one(self, food_name):
 “””
 add_one(food_name) - adds a single food_name to the fridge
 returns True
 Raises a TypeError if food_name is not a string.
 “””
 if type(food_name) != type(“”):
 raise TypeError, “add_one requires a string, given a %s” % type
(food_name)
 else:
 self.__add_multi(food_name, 1)

 return True

 def add_many(self, food_dict):
 “””
 add_many(food_dict) - adds a whole dictionary filled with food as
keys and
 quantities as values.
 returns a dictionary with the removed food.
 raises a TypeError if food_dict is not a dictionary
 returns False if there is not enough food in the fridge.
 “””

 if type(food_dict) != type({}):
 raise TypeError(“add_many requires a dictionary, got a %s” %
food_dict)

 for item in food_dict.keys():
 self.__add_multi(item, food_dict[item])
 return

 How It Works
 add_one and add_many each serve similar purposes, and each one has the code to ensure that it is
being used appropriately. At the same time, they both use __add_multi to actually do the heavy
lifting. Now, if anything changes regarding how your class works inside of __add_multi , you will
save time because it will change how both of these methods behave.

 Now that you ’ ve written all of this, you have enough code written to put items into a Fridge object,
but no way of taking items out. You can just directly access the object.items dictionary, but that is
never a good idea except when testing. Of course, you ’ re testing now, so why not do that?

c06.indd 100c06.indd 100 12/22/09 10:43:37 AM12/22/09 10:43:37 AM

Chapter 6: Classes and Objects

101

 > > > f = Fridge({“eggs”:6, “milk”:4, “cheese”:3})
 > > > f.items
{‘cheese’: 3, ‘eggs’: 6, ‘milk’: 4}
 > > > f.add_one(“grape”)
True
 > > > f.items
{‘cheese’: 3, ‘eggs’: 6, ‘grape’: 1, ‘milk’: 4}
 > > > f.add_many({“mushroom”:5, “tomato”:3})
 > > > f.items
{‘tomato’: 3, ‘cheese’: 3, ‘grape’: 1, ‘mushroom’: 5, ‘eggs’: 6, ‘milk’: 4}
 > > >

 So far, everything works! This is the simple part. The second thing you ’ ll want to add are the methods
that enable you to determine whether something is in the Fridge .

 It is important to write code that gives you a way to confirm that something is present because it can
be used by the methods that remove items, get_one and get_many and get_ingredients , so that
they ensure that they can check if enough of the items wanted are present. That ’ s exactly what the has
and has_various methods are for:

 def has(self, food_name, quantity=1):
 “””
 has(food_name, [quantity]) - checks if the string food_name is in the
fridge. Quantity defaults to 1
 Returns True if there is enough, False otherwise.
 “””

 return self.has_various({food_name:quantity})

 def has_various(self, foods):
 “””
 has_various(foods) determines if the dictionary food_name
 has enough of every element to satisfy a request.
 returns True if there’s enough, False if there’s not or if an element
does
 not exist.
 “””

 try:
 for food in foods.keys():
 if self.items[food] < foods[food]:
 return False
 return True
 except KeyError:
 return False

 After has and has_various are in place, you can use a Fridge object in tests, and when you read the
code, it will almost make sense when you read your code out loud.

c06.indd 101c06.indd 101 12/22/09 10:43:37 AM12/22/09 10:43:37 AM

Part II: Python Language and the Standard Library

102

 Try It Out Using More Methods

 You can now invoke your ch6.py file with python - i or the Run with Interpreter command so that you
can use everything you ’ ve added to the Fridge class. If you get errors instead of the > > > prompt, pay
attention to the exception raised and try to fix any indentation, spelling, or other basic errors identified.

 The class should be usable like this now:

 > > > f = Fridge({“eggs”:6, “milk”:4, “cheese”:3})
 > > > if f.has(“cheese”, 2):
... print(“It’s time to make an omelet!”)
...
It’s time to make an omelet!

 How It Works
 Now that you ’ ve defined new methods, the f object can use them. When you re - created f with the
eggs, milk, and cheese you made the object out of the new Fridge class, so it has the new methods
you ’ ve added available to it.

 Finally, it ’ s time for the methods to get items from the Fridge . Here you can do the same thing you
did for the methods to add to the Fridge , focusing on a single method that will take care of the hard
stuff and letting the interface methods rely on this hard - working guy:

 def __get_multi(self, food_name, quantity):
 “””
 _get_multi(food_name, quantity) - removes more than one of a
 food item. Returns the number of items removed
 returns False if there isn’t enough food_name in the fridge.
 This should only be used internally, after the type checking has been
 done
 “””

 try:
 if (self.items[food_name] is None):
 return False;

 if (quantity > self.items[food_name]):
 return False;
 self.items[food_name] = self.items[food_name] - quantity
 except KeyError:
 return False
 return quantity

 After this has been defined, you can create the remaining methods that the Fridge class ’ s docstring
has specified. They each use __get_multi so that they can remove items from the Fridge with a
minimal amount of extra coding on your part:

 def get_one(self, food_name):
 “””
 get_one(food_name) - takes out a single food_name from the fridge
 returns a dictionary with the food:1 as a result, or False if there
wasn’t
 enough in the fridge.
 “””

c06.indd 102c06.indd 102 12/22/09 10:43:38 AM12/22/09 10:43:38 AM

Chapter 6: Classes and Objects

103

 if type(food_name) != type(“”):
 raise TypeError(“get_one requires a string, given a %s” %
type(food_name))
 else:
 result = self.__get_multi(food_name, 1)
 return result

 def get_many(self, food_dict):
 “””
 get_many(food_dict) - takes out a whole dictionary worth of food.
 returns a dictionary with all of the ingredients
 returns False if there are not enough ingredients or if a dictionary
 isn’t provided.
 “””

 if self.has_various(food_dict):
 foods_removed = {}
 for item in food_dict.keys():
 foods_removed[item] = self.__get_multi(item, food_dict[item])
 return foods_removed

 def get_ingredients(self, food):
 “””
 get_ingredients(food) - If passed an object that has the __ingredients__
 method, get_many will invoke this to get the list of ingredients.
 “””
 try:
 ingredients = self.get_many(food.__ingredients__())
 except AttributeError:
 return False

 if ingredients != False:
 return ingredients

 You ’ ve now written a completely usable class for a refrigerator. Remember that there are many directions
in which you can take this. Although you may be making omelets that use the Fridge class now, you
can also use it for other projects — to model the product flow of a business, for example, such as a deli
that has ten refrigerators with different products in each one.

 When you do find an opportunity to repurpose a class that you ’ ve written (or a class that you ’ ve used),
you can take advantage of the opportunity that is presented by adding features to support new needs
without sacrificing what it already does.

 For instance, an application that needs to take into account several refrigerators may result in a need for
each Fridge object to have extra attributes, such as a name for it (like “ dairy fridge ”), its position in the
store, its preferred temperature setting, and its dimensions. You can add these to the class, along with
methods to get and set these values, while still keeping it completely usable for the omelet examples in
this book. This is how interfaces help you. As long as the interfaces to the Fridge class you ’ ve already
written here aren ’ t changed, or at least as long as they behave the same, you can otherwise modify
anything. This capability to keep interfaces behaving the same is called their stability .

c06.indd 103c06.indd 103 12/22/09 10:43:38 AM12/22/09 10:43:38 AM

Part II: Python Language and the Standard Library

104

 Objects and Their Scope
 As you saw in Chapter 5, functions create their own space, a scope, for the names that they use. While
the function is being invoked, the name and value are present, and any changes made to the name
persist for as long as the function is in use. However, after the function has finished running and is
invoked again, any work that was done in any prior invocations is lost, and the function has to
start again.

 With objects, the values inside of them can be stored and attached to self on the inside of the object (self in
this case is a name that refers to the object itself, and it ’ s also the same as what is referenced by a name
on the outside of the object, such as f). As long as the object is referenced by a name that is still active, all
of the values contained in it will be available as well. If an object is created in a function and isn ’ t
returned by that function to be referenced to a name in a longer - lived scope, it will be available for as
long as the single invocation of the function in which it was called, in the same way as any other data in
the function.

 Multiple objects are often created in tandem so that they can be used together. For instance, now that
you ’ ve implemented all of the features you need to have a workable Fridge in your program, you need
to have an Omelet object that works with it.

 Try It Out Creating Another Class

 You ’ ve already created a class — a Fridge . Using the same format, create an Omelet class that you
can use:

class Omelet:
 “””This class creates an omelet object. An omelet can be in one of
 two states: ingredients, or cooked.
 An omelet object has the following interfaces:
 get_kind() - returns a string with the type of omelet
 set_kind(kind) - sets the omelet to be the type named
 set_new_kind(kind, ingredients) - lets you create an omelet
 mix() - gets called after all the ingredients are gathered from the fridge
 cook() - cooks the omelet
 “””
 def __init__(self, kind=”cheese”):
 “”” __init__(self, kind=”cheese”)
 This initializes the Omelet class to default to a cheese omelet.
 Other methods
 “””
 self.set_kind(kind)
 return

 How It Works
 You now have a class whose intent is clearly spelled out. You ’ ve seen most of these behaviors in
functions that you saw in Chapter 5, but now you have a structure within which you can combine all
of these behaviors.

c06.indd 104c06.indd 104 12/22/09 10:43:38 AM12/22/09 10:43:38 AM

Chapter 6: Classes and Objects

105

 This class will have interface methods that enable the omelet to use a Fridge object cooperatively,
and it will still offer the capability to create customized omelets as it could in Chapter 5.

Remember that all of the following code has to be indented one level beneath the Omelet class to
be used:

 def __ingredients__(self):
 “””Internal method to be called on by a fridge or other objects
 that need to act on ingredients.
 “””
 return self.needed_ingredients

 def get_kind(self):
 return self.kind

 def set_kind(self, kind):
 possible_ingredients = self.__known_kinds(kind)
 if possible_ingredients == False:
 return False
 else:
 self.kind = kind
 self.needed_ingredients = possible_ingredients

 def set_new_kind(self, name, ingredients):
 self.kind = name
 self.needed_ingredients = ingredients
 return

 def __known_kinds(self, kind):
 if kind == “cheese”:
 return {“eggs”:2, “milk”:1, “cheese”:1}
 elif kind == “mushroom”:
 return {“eggs”:2, “milk”:1, “cheese”:1, “mushroom”:2}
 elif kind == “onion”:
 return {“eggs”:2, “milk”:1, “cheese”:1, “onion”:1}
 else:
 return False

 def get_ingredients(self, fridge):
 self.from_fridge = fridge.get_ingredients(self)

 def mix(self):
 for ingredient in self.from_fridge.keys():
 print(“Mixing %d %s for the %s omelet” %
self.from_fridge[ingredient], ingredient, self.kind))
 self.mixed = True

 def make(self):
 if self.mixed == True:
 print(“Cooking the %s omelet!” % self.kind)
 self.cooked = True

 Now you have an Omelet class that can create Omelet objects. The Omelet class has the same features
as the process for making omelets in Chapters 4 and 5, but using it is much easier because everything
is combined and the presentation of the Omelet is confined to a few purposefully simpler interfaces.

c06.indd 105c06.indd 105 12/22/09 10:43:38 AM12/22/09 10:43:38 AM

Part II: Python Language and the Standard Library

106

 Now that you have your two classes, you can make an omelet after loading everything with python -i
or the Run with Interpreter command:

 > > > o = Omelet(“cheese”)
 > > > f = Fridge({“cheese”:5, “milk”:4, “eggs”:12})
 > > > o.get_ingredients(f)
 > > > o.mix()
Mixing 1 cheese for the cheese omelet
Mixing 2 eggs for the cheese omelet
Mixing 1 milk for the cheese omelet
 > > > o.make()
Cooking the cheese omelet!

This isn ’ t any easier or harder to use than making a single omelet in Chapter 5 was. However,
the benefit of using objects becomes obvious when you have many things to work with at the same
time — for instance, many omelets being made at the same time:

 > > > f = Fridge({“cheese”:5, “milk”:4, “eggs”:12, “mushroom”:6, “onion”:6})
 > > > o = Omelet(“cheese”)
 > > > m = Omelet(“mushroom”)
 > > > c = Omelet(“onion”)
 > > > o.get_ingredients(f)
 > > > o.mix()
Mixing 1 cheese for the cheese omelet
Mixing 2 eggs for the cheese omelet
Mixing 1 milk for the cheese omelet
 > > > m.get_ingredients(f)
 > > > m.mix()
Mixing 1 cheese for the mushroom omelet
Mixing 2 eggs for the mushroom omelet
Mixing 1 milk for the mushroom omelet
Mixing 2 mushroom for the mushroom omelet
 > > > c.get_ingredients(f)
 > > > c.mix()
Mixing 1 cheese for the onion omelet
Mixing 2 eggs for the onion omelet
Mixing 1 milk for the onion omelet
Mixing 1 onion for the onion omelet
 > > > o.make()
Cooking the cheese omelet!
 > > > m.make()
Cooking the mushroom omelet!
 > > > c.make()
Cooking the onion omelet!

 Take a moment to compare this to how you ’ d do the same thing using the functions from Chapter 5, and
you ’ ll realize why so much programming is done in this style — and why this kind of programming,
called object - oriented programming , is used to make larger systems.

c06.indd 106c06.indd 106 12/22/09 10:43:39 AM12/22/09 10:43:39 AM

Chapter 6: Classes and Objects

107

 As long as the Fridge has the ingredients needed, making different kinds of omelets is very, very easy
now — it involves only invoking the class to create a new object and then just calling three methods for
each Omelet object. Of course, you could reduce it to one. That will be an exercise question.

 Summary
 In this chapter, you ’ ve been introduced to how Python provides you with the tools to program with
 classes and objects . These are the basic concepts behind what is called object - oriented programming .

 When they are used inside a class , functions are referred to as methods because now every one has a
special name called self that, when that method is invoked as part of an object, contains all of the data
and methods of the object.

 A class is invoked to create an object by using the class ’ s name followed by parentheses, (). Initial
parameters can be given at this time and whether or not parameters are given, the newly created object
will invoke the method __init__ . Like normal functions, methods in classes (including __init__) can
accept parameters, including optional and default parameters.

 The process of creating a class includes deciding what methods should be created to provide all of the
functionality that you want in your class. Two general kinds of methods were described: public interfaces
that should be invoked on the outside of the objects and private methods that should be called only by
methods inside of the object. The interfaces should be made to change as little as possible, whereas the
 internal methods may change without affecting how the class can be used. This is especially important to
remember when using a class written by someone else. Python expects any name within the scope of an
object beginning with two underscores to be private , so this convention should be used by you as well.
Other names are generally considered public.

 The key points to take away from this chapter are:

 To specify how you expect the class to be used you should create a docstring for the class by
entering a string on the first line after the class ’ s definition. In that docstring, it is best to always
provide the names of the methods that you expect to be used, and their purpose. It ’ s not a bad
idea to include an explanation of the class as a whole, too.

 All of the names that are defined in a class (both data and methods) are distinct in each object
that is created. When a method is invoked in one object and that changes data in that object,
other types of the same object are not affected. Examples of this that are built into Python are
 strings , which are objects that include special methods that help with common tasks when you
are using text.

 To make objects easier to use, it ’ s common to provide multiple interfaces that behave similarly.
This can save you a lot of work by finding ways for these interfaces to call a single internal
method that is more complex or accepts more parameters than the interfaces. This gives you two
distinct advantages. First, it makes the code that calls on these methods easier to read because
the names of the parameters don ’ t need to be remembered by the programmer — the name
of the method provides needed information to the programmer. Second, if you need to change
the internal method that its related interfaces call on, you can change how all of them behave by

❑

❑

❑

c06.indd 107c06.indd 107 12/22/09 10:43:39 AM12/22/09 10:43:39 AM

Part II: Python Language and the Standard Library

108

just changing the internal method. This is especially useful when fixing problems because a
single fix will correct how all of the interfaces work as well. In addition, the method that
provides this support to other methods can itself be a public interface. There ’ s no strict rule
about whether or not a hard - working method like this should be private and internal. It ’ s really
up to you.

 One goal of writing objects is to duplicate as little code as possible, while providing as many
features as possible. Creating a class that can use objects can save a lot of code writing because
they are usually manipulated more conveniently than when functions and data are kept
separated, because methods within the same class can count on the methods and data that they
use being present. Groups of classes can be written so that they have interdependent behaviors,
enabling you to model groups of things that work together. You learn how to structure these
interdependent and cooperative classes in Chapter 7.

 Last, you ’ ve seen how codeEditor ’ s Python shell helps you explore your objects by showing you
all of the interface names once you type a period. This is much easier than typing dir to get the
same information because of the more convenient and easier - to - use manner in which codeEditor
displays the information.

 Exercises
 Each of the following exercises builds on the exercises that preceded it:

 1. Add an option to the Omelet class ’ s mix method to turn off the creation messages by adding a
parameter that defaults to True, indicating that the “ mixing . . . ” messages should be printed.

 2. Create a method in class Omelet that uses the new mix method from Exercise 1. Called
 quick_cook , it should take three parameters: the kind of omelet, the quantity wanted, and the
 Fridge that they ’ ll come from. The quick_cook method should do everything required instead
of requiring three method calls, but it should use all of the existing methods to accomplish this,
including the modified mix method with the mix messages turned off.

 3. For each of the methods in the Omelet class that do not have a docstring, create one. In each
docstring, make sure you include the name of the method, the parameters that the method
takes, what the method does, what value or values it returns upon success, and what it returns
when it encounters an error (or what exceptions it raises, if any).

 4. View the docstrings that you ’ ve created by creating an Omelet object.

 5. Create a Recipe class that can be called by the Omelet class to get ingredients. The Recipe class
should have the ingredient lists of the same omelets that are already included in the Omelet
class. You can include other foods if you like. The Recipe class should include methods to
retrieve a recipe, get(recipe_name) , a method to add a recipe as well as name it, and
 create (recipe_name, ingredients) , where the ingredients are a dictionary with the
same format as the one already used in the Fridge and Omelet classes.

❑

❑

c06.indd 108c06.indd 108 12/22/09 10:43:39 AM12/22/09 10:43:39 AM

Chapter 6: Classes and Objects

109

 6. Alter the __init__ method of Omelet so that it accepts a Recipe class. To do this, you can do
the following:

 a. Create a name, self.recipe , that each Omelet object will have.

 b. The only part of the Omelet class that stores recipes is the internal method __known_kinds .
Alter __known_kinds to use the recipes by calling self.recipe.get() with the kind of
omelet that ’ s desired.

 c. Alter the set_new_kind method so that it places the new recipe into self.recipe and
then calls set_kind to set the current omelet to the kind just added to the recipe.

 d. In addition, modify __known_kinds to use the recipe method ’ s get method to find out the
ingredients of an omelet.

 7. Try using all of the new classes and methods to determine whether you understand them.

c06.indd 109c06.indd 109 12/22/09 10:43:40 AM12/22/09 10:43:40 AM

c06.indd 110c06.indd 110 12/22/09 10:43:40 AM12/22/09 10:43:40 AM

 7
Organizing Programs

 In Chapter 6, you began using Python ’ s features to create separate classes that can be used to create
entirely self - contained objects . Classes and the objects that are created from them are tools that
enable you to gather data and functions into a contained space so that they can be viewed as part
of a larger entity.

 So far, the definitions of classes have all been in a single file and were not run in the way you
normally think of programs being run. Instead, they were invoked interactively so that you could
use them as you would from within another program. However, if you wanted to use the classes
you ’ ve written with what you know so far, you would make the same file that defined the classes
the program. That means putting all of the classes at the beginning of the file, and the important
decision - making code at the end. The end is where it takes the most time to find the code that
you ’ re going to want to find the most often.

 Another cautionary note needs to be sounded. Classes are very useful, but not all problems should
be solved by creating a class. Sometimes the work of designing them is overkill, and other times
what you really need are functions that don ’ t require the long life span that data and methods can
have in objects.

 To make Python more useful, therefore, it offers you the great feature of enabling you to create
 modules that create a named scope for functions and data, but which are simpler than classes and
objects. Modules give you a tool to separate your program into distinctly named pieces, without
using classes to do it. In fact, classes can be defined within a module.

 As an extension of this, you can also divide these modules into different files; Python calls this
feature a package . Packages enable you to divide your programs among several files and even into
separate directories to help you organize your programs.

c07.indd 111c07.indd 111 12/22/09 10:44:04 AM12/22/09 10:44:04 AM

112

Part II: Python Language and the Standard Library

 So far, you have only been introduced to intrinsic pieces of the Python language — things that deal with
how Python itself works. Python is also very flexible, and though it comes with a small core set of
features, these are expanded in a variety of modules. To extend Python to use features provided by the
operating system, there is a module called os . To extend Python to have networking features, Python
provides modules that offer both low - level networking (such as sockets) and higher - level protocols (such
as http, ftp, and so on). Many modules come with Python, but because it is very easy to write modules, a
variety of additional modules are available from third parties, both commercial and free.

 In this chapter you learn:

 How to write simple modules for your own use or to share.

 Some of the bundled Python modules.

 The concept of importing modules.

 How to use packages to contain useful functions and names, separately from the global scope.

 You also find out more about how scope can be used to your advantage for tasks such as testing
your packages.

 Modules
 Modules present a whole group of functions, methods, or data that should relate to a common theme.
Such a theme might be networking components (see Chapter 16), performing more complicated work
with strings and text (see Chapter 12), dealing with graphical user interfaces (see Chapter 13), and other
services.

 After you ’ ve learned how to program in a language, you often find that you need to work with
components that the language doesn ’ t initially bundle. Python, by itself, is no different. At its core, it is a
very small and simple language that doesn ’ t offer many special features. However, because of its
simplicity, it is easy to use as a platform that can be extended with additional functions and objects that
can be used by anyone.

 Importing a Module So That You Can Use It
 To make a module usable, two things need to be available. First, the module itself has to be installed on
the system. For the most part, you ’ ll find that a lot of the basic things you want to do, such as reading
and writing files (more on this in Chapter 8) and other fundamental important things that differ between
platforms, are available as bundled modules with Python — that is, they are free and universally
available with the language.

 The simplest way to begin using a module is with the import keyword:

import sys

❑

❑

❑

❑

❑

c07.indd 112c07.indd 112 12/22/09 10:44:05 AM12/22/09 10:44:05 AM

Chapter 7: Organizing Programs

113

 This will import the module named sys that contains services Python offers that mostly involve
system - specific items. This means that it relates to things that involve how the system works, how a
particular installation of Python is installed, or how the program you ’ ve written was invoked from the
command line.

 To start looking at modules, you ’ re also going to begin to write in a style that facilitates running the file
you ’ re working on by itself, as a standalone program. To that end, create a file called ch7.py and type
the following:

#!/usr/bin/env python3.1
Chapter 7 module demonstration
import sys

 The first line is for users of Linux and other UNIX systems (or Python under a UNIX - based environment
like Cygwin). This is a way to get the python3.1 binary to run in case other Python interpreters are on
the system. See the website for this book for more information on running Python. For Windows and
Macintosh systems, the file extension should provide information that the operating system needs to
launch the Python interpreter, whether it ’ s python , python3.1 , or some other name when it ’ s installed
on your system (although some configuration may be needed). See the website for more information
on this, too.

 Making a Module from Pre - existing Code
 To create a module, all you need to do is choose a name for your module and open a file with that name
and the extension . py in your editor. For example, to create a Foods module, you only have to create a
file called Foods.py . When that ’ s finished, you can import it using the name “ Foods ” without the .py at
the end. That ’ s it! You ’ ve imported a simple module.

 Try It Out Creating a Module

 Take your file with all of the source code from Chapter 6 and copy it to a file called Foods.py . When
you ’ ve done this, open the Python shell so you can import the Foods module:

 > > > import Foods
 > > > dir(Foods)
[‘Fridge’, ‘Omelet’, ‘Recipe’, ‘__builtins__’, ‘__doc__’, ‘__file__’, ‘__
name__’]
 > > >

 How It Works
 You now have access to the Fridge class, the Omelet class and, from the previous exercises, the Recipe
class. Together, you have a file that is a module that contains all of these classes, and they ’ ll be able to
work together. However, you ’ ll now access them through the name Foods.Fridge , Foods.Omelet , and
 Foods.Recipe , and they remain fully usable, albeit with some new rules.

c07.indd 113c07.indd 113 12/22/09 10:44:05 AM12/22/09 10:44:05 AM

114

Part II: Python Language and the Standard Library

 Be aware that this is the first time you ’ re getting the examples in the book to be run directly with your
computer! By default, Python keeps a list of directories in which it will look for modules to load. This
list contains several directories, though the exact locations of all of them will depend on how your
running Python interpreter was installed. Therefore, if you ’ re trying to import the Foods module but
the shell has started itself in a directory other than the one in which you ’ ve saved the Foods.py file,
you ’ re going to receive an error (but you can fix this by changing to the right directory).

 This path, or list of directories that Python should search through, is stored in the sys module, in a
variable named path . To access this name, you will need to import the sys module. Until you do that,
the sys.path won ’ t be available to you:

 > > > import sys
 > > > print(sys.path)
‘C:/Python31/Chapter 6’, ‘C:\\Python30\\Lib\\idlelib’,
‘C:\\Windows\\system32\\python31.zip’, ‘C:\\Python31\\DLLs’,
‘C:\\Python31\\lib’, ‘C:\\Python31\\lib\\plat-win’,
‘C:\\Python31’, ‘C:\\Python31\\lib\\site-packages’]

 You can see that sys.path is a normal list, and if you want to add directories that will be checked for
your modules, because you want them somewhere that isn ’ t already in sys.path , you can alter it by
using the usual methods — either the append method to add one directory, or the extend method to
add any number of directories.

 When you ’ ve imported the Foods module, you can use Code Editor ’ s feature of interactively helping
you by popping up a list of all of the names in the scope of the module while you ’ re typing in a name.
Every time you come to a period, if the name you ’ ve just typed in has names associated with you,
Code Editor will allow you to select from the interfaces that the name provides. This will help you
explore the module you ’ ve just created but is even more useful with larger, more complex modules!

 You can now run through examples from the prior chapters, but now you access your classes through
the Foods module. For instance, you can invoke Foods.Fridge , but not just Fridge by itself. If you
want to access Fridge alone, you ’ ll see how to do this soon.

 Try It Out Exploring Your New Module

 Code Editor provides you with a special feature in the Python shell that will interact with you as you
type. You may have noticed already that when you finish typing the name of something such as a class
or a module, when you type a period at the end of the name, within the shell a menu of names that exist
in the scope of the module or object is shown to you. Figure 7 - 1 shows what this looks like, so you can
do the same for yourself.

c07.indd 114c07.indd 114 12/22/09 10:44:05 AM12/22/09 10:44:05 AM

Chapter 7: Organizing Programs

115

Figure 7-1

 How It Works
 As you type in Code Editor ’ s Python shell, it evaluates what you are typing as you type. When it notices
that you ’ ve typed certain characters, it takes actions on them. You notice this when strings take on a
different color once you type in any kind of quote, or when words that are special to Python are given
colors. Whenever the shell sees that you ’ re typing a period, it knows that what you ’ re typing will be
looking inside a module or an object, so it queries that object behind the scenes and shows you the
results so you can work with it.

 Using Modules — Starting with the Command Line
 So far, you ’ ve started by using import with a module name by itself. When a module is imported this
way, all of the names it contains are put into a scope that is named for the module — that is, the name
that was used in the import statement.

c07.indd 115c07.indd 115 12/22/09 10:44:06 AM12/22/09 10:44:06 AM

116

Part II: Python Language and the Standard Library

 For example, in the case of sys , everything available is referred to by using the name sys , followed by a
period, and then the name inside of sys , such as sys.path or sys.copyright , which, as it suggests,
specifies the copyright on Python (programmers love to be clever like that). Now that you know how
modules are structured, you can interactively explore the sys module with the Code Editor Python shell,
or with the dir function, as you saw in Chapter 6. (dir will show you even more than the helpful dialog
box in the Code Editor shell, because it shows private names that aren ’ t part of the interface of the
module. These concepts, which you ’ ve seen in classes and objects, still apply to modules!) You can also
explore the docstrings that are present in the module and in the functions and classes provided by it.

 On UNIX and UNIX - like environments, it ’ s common to ask users to provide command - line parameters
that will determine how a program as a whole will behave. This is conceptually very similar to how
functions use parameters in Python. These command - line parameters show up in Python programs as a
special name inside the sys module. That name is argv . This name may not make much sense at first,
but it ’ s an important term to know because it is common across most languages and platforms.

 argv is an abbreviation for the term argument vector . In computer programming lingo, argument is
another word for what you ’ ve seen called a parameter . This term is used with functions and when you
run a program with parameters on the command line (another word for parameters and arguments on
the command line is flags). A vector is another word for a list of options. In some languages, it has a very
specific and different meaning, but Python doesn ’ t make the same distinction, so you don ’ t have to
worry about it.

 If you translate argv back through those definitions, you ’ ll see that it simply means the parameters that
were on the command line, accessible as a list! It ’ s hard to convert that information into a short and
comprehensible word that makes sense in English (or any other nonprogramming language that the
author has heard of), so the term argv persists.

 To print out the parameters from the command line, you just have to use sys.argv as you would with
any other list:

 > > > import sys
 > > > print(“This was given the command line parameters: %s” % sys.argv)

 To make running this the same procedure on any platform, you can launch this from Code Editor. Select
File Run Options and then put anything you want in the Other argv field. You ’ ve used this facility
before, starting in Chapter 5, but taking advantage of the Run Options dialog box ’ s capability to let you
set the command line that your program will start with is something new.

 For testing programs that are changing and that aren ’ t meant to be used interactively, you are generally
better off using python - i or Run with Interpreter; this way, you can try running your program
repeatedly, starting the program from the beginning each time. Figure 7 - 2 shows a pop - up showing
optional command-line options.

c07.indd 116c07.indd 116 12/22/09 10:44:06 AM12/22/09 10:44:06 AM

Chapter 7: Organizing Programs

117

 Try It Out Printing sys.argv

 Now, anytime you run this program using the Run with Interpreter option from your File menu, you
will get a printed representation of the list that becomes the sys.argv . For example, if the command -
 line arguments provided in the Other argv field were “ test 123 test, ” your program will print something
like the following (which was run on Windows; a UNIX shell would have a very different looking sys.
path):

This was given the command line parameters: [‘D:\\Documents\\Chapter7.py’,
‘test’, ‘123’, ‘test’]

 How It Works
 The first element of the sys.argv list will always be the name of the program, and anything else will
become the elements of the sys.argv list, starting at the number one in the list.

 Classes that live within a module are accessed in the same way as any other name. For modules that
provide classes that you use, the invocation is what you ’ d expect — just the addition of the
parentheses to the fully spelled out path, such as calling Foods.Recipe() .

Figure 7-2

c07.indd 117c07.indd 117 12/22/09 10:44:07 AM12/22/09 10:44:07 AM

118

Part II: Python Language and the Standard Library

 Changing How Import Works — Bringing in More
 Import can be used alone; when it ’ s used that way, it creates a named scope from which everything in
the module can be referenced. Sometimes it can be useful to have specific parts of the module brought
into your program ’ s top - level global scope, though. Eliminating the need to type the name of the module
before the function or class you have to access reduces a lot of typing and makes your code a lot more
straightforward. With your Foods module, you have to do the following to get an onion Omelet:

import Foods
r = Foods.Recipe()
onion_ingredients = Foods.Omelet(r, “onion”)

 You can see by this example that when you want to invoke or access something inside of a module, it
means spelling out the entire path. You can quickly tire of doing this. However, you can change this
behavior by bringing the names you want closer into your code by using the from modifier to the
 import command:

from Foods import Omelet
from Foods import Recipe
r = Recipe()
onion_ingredients = Omelet(r, “onion”)

 If you have to descend more levels, such as to (the made up food) Foods.Recipes.Breads.Muffins.
Bran and you want to bring the names from Bran into the current scope, you ’ d write something similar.
It would look like you ’ d expect:

from Foods.Recipes.Breads.Muffins import Bran

 Packages
 After you have a module built and in its own file, it ’ s not uncommon to find that a single file runs
headlong into organizational issues. Mainly, the issue is that an individual class becomes more useful on
its own and may gain far more code than all of the rest of the classes in the module. This would be a
good reason to move it to its own file, but that would break code that already uses the module! However,
there is a solution.

 To provide a structure for doing this, Python provides the organizational idea of packages . Packages
use the structure of the directories (another name for folders) that every operating system uses to
give you a methodology for making many files in the same directory look like a single module when
they ’ re used together.

 You can start by simply making the directory. Let ’ s break up the Foods module. First, you need to use a
new name — Foods.py already exists, and it would be confusing to keep working with the module by
calling it “ Foods. ” Therefore, to work around that, start working on a new package, and call this new
one the Kitchen package (this name is also general enough to leave you a lot of room for your
imagination to work with later if you ’ d like to).

c07.indd 118c07.indd 118 12/22/09 10:44:07 AM12/22/09 10:44:07 AM

Chapter 7: Organizing Programs

119

 Simply enough, create a Kitchen directory. Then create a file in Kitchen called __init__.py (this
name has to be the same name as the method in a class that you ’ ve seen already, and note that it has two
underscores before and after the name). This file is the hint that tells Python that this is a package
directory, and not just a directory with Python files in it. This is important because it ensures that you
know you ’ re responsible for maintaining this and controlling its behavior. This file has a lot of control
over how the package is going to be used, because unlike a module, when a package is imported, every
file in the directory isn ’ t immediately imported and evaluated. Instead, the __init__.py file is
evaluated, and here you can specify which files are used and how they ’ re used!

 Try It Out Making the Files in the Kitchen Class

 To make your three already written classes a part of the Kitchen package, create four files underneath
the Kitchen directory and place the appropriate classes into each of the files named after a class name.
Remember that under all versions of Windows, anywhere you see a forward slash (/) you should use a
backslash (\) because that ’ s what Windows uses to separate directories. In other words, create the
 Kitchen/Fridge.py file inside the Kitchen directory, and you ’ ll put only the Fridge class in it.

 Make one file for each of the classes, as well as making for the __init__.py file:

❑ Kitchen/Fridge.py — All of the code and comments for the Fridge class should go in here, start-
ing from where your ch6.py says class Fridge: .

❑ Kitchen/Omelet.py — All of the code and comments for the Omelet class should go here. Use the
revision of the Omelet class that you have as the solution to the exercises from Chapter 6.

❑ Kitchen/Recipe.py — All of the code and comments for the Recipe class should go here.

❑ Kitchen/__init__.py (remember to use two underscores before and after the filename) — Noth-
ing has to go in this file.

 How It Works
 You have a class in each file and __init__.py created, so you can now import the Kitchen package.
However, when you import Kitchen , Python evaluates only __init__.py . This is a very important
detail, because without putting some further code in __init__.py , you ’ ll never get to see your code.
Currently, nothing is actually imported if you do what you ’ d assume you should do by default, which is
 import Kitchen !

 To make all of your classes available when you ’ ve imported Kitchen , you need to put explicit import
statements in __init__.py :

from Fridge import Fridge
from Recipe import Recipe
from Omelet import Omelet

c07.indd 119c07.indd 119 12/22/09 10:44:08 AM12/22/09 10:44:08 AM

120

Part II: Python Language and the Standard Library

 After you ’ ve added these lines to __init__.py , you have all of these classes available when you ’ ve
imported the Kitchen package:

 > > > import Kitchen
 > > > r = Kitchen.Recipe()
 > > > r.recipes
{‘cheese’: {‘cheese’: 1, ‘eggs’: 2, ‘milk’: 1}, ‘onion’:
{‘cheese’: 1, ‘eggs’: 2, ‘milk’: 1, ‘onion’: 1}, ‘mushroom’:
{‘cheese’: 1, ‘eggs’: 2, ‘milk’: 1, ‘mushroom’: 2}}

By itself, this doesn ’ t buy you much yet because this is only a very small project, but for any project
that begins to grow, this facility is very important and can make development among multiple
developers far easier by letting the natural assignment of functions and classes be divided into files,
enabling each programmer to work on his or her own group of files in the package.

 Modules and Packages
 Now that modules and packages have been defined, you will continue to see how to use them — mostly
interchangeably. You ’ ll generally have your attention drawn to where packages behave differently
from a single module. Because the module has been named Foods and the package has been named
 Kitchen , you won ’ t be confused when you ’ re shown something that deals with a package instead of a
module. Just remember: Kitchen references are highlighting packages; Foods references are
highlighting modules.

 Bringing Everything into the Current Scope
 Note a special feature of modules: Sometimes you may want to have the entire contents of a module
available without having to explicitly specify each name that is available from it. To do this, Python
provides a special character, the asterisk, which can be used with the from ... import ... statement.
It ’ s important to understand that you can only import using the * when you are importing into
the global scope:

from Foods import *

 This would bring Omelet into your current scope, as well as everything else at the top of the recipe
module. In other words, now you no longer have type Foods.Omelet() , just Omelet() , and you need
to do this only once, instead of one time for each name you want to make local.

 Packages can be made to work in a similar fashion, but underneath, they actually work differently. For
packages, you need to specify the names you want to be provided when from ... import * , and
these need to be stated explicitly. You can make the three modules in the Kitchen package available by
using the __all__ list in __init__.py . Any names that appear in the __all__ list will be exported by
the * but only those names.

 The elements that are present in the __all__ list are the names of functions, classes, or data that will be
automatically imported into the global scope of the program that is asked to import * .

c07.indd 120c07.indd 120 12/22/09 10:44:08 AM12/22/09 10:44:08 AM

Chapter 7: Organizing Programs

121

 You can expect users of modules and packages you write to automatically use the from ... import *
syntax within their programs. To work with packages, you must specify a list of names that will be
exported! However, if you have a large module, you can also create an __all__ list at the top of your
module file, and it will also have the effect of restricting the names in the module in the same way as it
would in a package.

 Try It Out Exporting Modules from a Package

 The __all__ list exists because using from ... import * is common. You will use (at first) and write
(later) packages that have many layers, functions, data names, and individual modules that a user
shouldn ’ t see — they ’ re not part of your public interface. Because you need to be careful about
overwhelming users with a lot of things they don ’ t need, the __all__ list enforces your interface
decisions.

__all__ = [‘Fridge’, ‘Recipe’, ‘Omelet’]

 How It Works
 Now these names will come into the global space of your program when you invoke them with from
Kitchen import * . It ’ s important to know that if your __init__.py looked like this:

from Fridge import Fridge
from Omelet import Omelet
__all__ = [‘Omelet’, ‘Recipe’, ‘Fridge’]

 With the from Recipe import Recipe statement eliminated, you would have to invoke Recipe.
Recipe() to create a new recipe object after calling from Kitchen import * .

 Re - importing Modules and Packages
 Programming involves a lot of trial and error. You will often realize that you ’ ve made a mistake in the
work you ’ ve done in your module while you ’ re in the shell interactively. Because you may have done a
lot of typing to get your shell set up perfectly for your test before your problem module was loaded,
you ’ d like to be able to fix your module and have Python re - load it so that you can save yourself the
work of having to set up your session again. So far, you haven ’ t been shown how to do this, but you can.

 The first thing you need to know to do this is that it ’ s normal for a common module to be required
by multiple other modules and effectively be called up multiple times in the same program. When this
happens, instead of going through the extra time it would take to re - load, re - evaluate, and re - compile the
module each time (see the sidebar Compiling and .pyc Files), Python stashes away the name of the
module, and where it came from, in a special dictionary of all the modules that have been imported so
far, called sys.modules . In fact, when you use the Python shell from within Code Editor, it ’ s already
loaded sys and many other modules for you, so any time you ’ ve called it in your own, you ’ ve had
this happen!

c07.indd 121c07.indd 121 12/22/09 10:44:08 AM12/22/09 10:44:08 AM

122

Part II: Python Language and the Standard Library

Compiling and .pyc Files
If you ’ ve looked at your ch5.py , ch6.py , or any other Python files that you ’ ve
worked on so far, you ’ ll notice that after you run them, a file with almost the
same name appears — the difference is that it ends in . pyc . This is a special file
that Python writes out that contains a form of your program that can be loaded
and run faster than the plaintext source code. If you make changes to the . py file,
the next time it is invoked (that is, by double - clicking it, running python - i , or
using the Run or Run with Interpreter menu options in Code Editor), Python will
re - create the . pyc file from the newer, changed source code that you ’ ve updated.

 Try It Out Examining sys.modules

 If you look at the list returned by sys.modules.keys , you ’ ll see the name of every module that ’ s
loaded. Even if you start a Python shell outside of Code Editor, you ’ ll find that after you ’ ve imported
 sys and can look at sys.modules , many modules are loaded by the system without your knowledge.
Each operating system and installation will have slight variations on the exact contents of the dictionary,
but it will usually look something like this:

 > > > list(sys.modules.keys())
[‘heapq’, ‘tkinter.filedialog’, ‘functools’, ‘random’, ‘_bisect’,
‘idlelib.macosxSupport’, ‘ctypes._endian’, ‘builtins’, ‘struct’,
‘tempfile’, ‘imp’, ‘collections’, ‘idlelib.MultiCall’,
‘tkinter.simpledialog’, ‘zipimport’, ‘string’, ‘encodings.utf_8’,
‘_bytesio’, ‘tkinter.constants’, ‘bisect’, ‘signal’,
‘idlelib.IOBinding’, ‘pydoc’, ‘threading’, ‘token’, ‘tkinter._fix’,
‘dis’, ‘locale’, ‘idlelib.TreeWidget’, ‘idlelib.rpc’, ‘encodings’,
‘idlelib.RemoteDebugger’, ‘abc’, ‘_thread’, ‘_tkinter’, ‘bdb’, ‘re’,
‘idlelib.RemoteObjectBrowser’, ‘ntpath’, ‘math’, ‘idlelib.Debugger’,
‘inspect’, ‘_ctypes’, ‘ctypes’, ‘codecs’, ‘_functools’, ‘_locale’,
‘idlelib.AutoComplete’, ‘tkinter’, ‘socket’, ‘traceback’, ‘_stringio’,
‘queue’, ‘itertools’, ‘opcode’, ‘_pickle’, ‘idlelib.StackViewer’,
‘idlelib.CallTipWindow’, ‘os’, ‘marshal’, ‘__future__’,
‘idlelib.AutoCompleteWindow’, ‘_collections’, ‘_sre’, ‘operator’,
‘array’, ‘select’, ‘_heapq’, ‘idlelib.ZoomHeight’, ‘pkgutil’,
‘errno’, ‘_socket’, ‘binascii’, ‘sre_constants’, ‘encodings.latin_1’,
‘os.path’, ‘tokenize’, ‘_warnings’, ‘idlelib.HyperParser’,
‘encodings.cp1252’, ‘_struct’, ‘unicodedata’, ‘keyword’,
‘tkinter.commondialog’, ‘tkinter.messagebox’, ‘stringprep’,
‘encodings.aliases’, ‘fnmatch’, ‘sre_parse’, ‘pickle’, ‘_fileio’,
‘reprlib’, ‘sre_compile’, ‘socketserver’, ‘_random’, ‘site’, ‘io’,
‘__main__’, ‘copyreg’, ‘configparser’, ‘_weakrefset’, ‘_abcoll’,
‘_codecs’, ‘nt’, ‘idlelib.PyParse’, ‘genericpath’, ‘stat’, ‘warnings’,
‘sys’, ‘idlelib.CallTips’, ‘idlelib.configHandler’, ‘types’,
‘idlelib.ScrolledList’, ‘_weakref’, ‘idlelib.ObjectBrowser’,
‘idlelib’, ‘tkinter.dialog’, ‘linecache’, ‘encodings.idna’,
‘time’, ‘idlelib.WindowList’, ‘idlelib.run’]

c07.indd 122c07.indd 122 12/22/09 10:44:09 AM12/22/09 10:44:09 AM

Chapter 7: Organizing Programs

123

 How It Works
 Depending on the operating system and when you call it, the sys.modules dictionary shows you all of
the modules that have been called. For modules that you haven ’ t explicitly imported, you can assume
that they are automatically called in by Python to handle things like the operating system or other
mechanisms that Python doesn ’ t force you to deal with directly. The preceding sample is from a Linux
system, and certain things are obviously OS - related — posix and posixpath , for example, if you have
worked with UNIX — whereas some other things are not.

 You can take this opportunity to look at the values associated with any keys that interest you. You ’ ll
see that some modules are listed as built - in and some are listed as being from a file, and when this is
the case, the entire path to the module file is listed in the information that the module provides to you.
Don ’ t worry if the list of modules that comes up in your Python shell looks very different from the
preceding example. After you ’ ve loaded the Foods module, it will be present in the sys.modules
dictionary, and when it ’ s there, Python will not re - evaluate the Foods.py module, even if you ’ ve
changed it! To fix this in an interactive session, you can simply remove the record of the Foods
module from the sys.modules dictionary and then import the module again. Because Python no
longer has a record in sys.modules it will do as you ask instead of trying to save effort as it did
before you removed the reference:

 > > > import Kitchen
 > > > ‘kitchen’ in sys.modules
True
 > > > sys.modules[‘Kitchen’]
 < module ‘Kitchen’ from ‘Kitchen__init__.py’ >
 > > > sys.modules.pop(‘Kitchen’)
 < module ‘Kitchen’ from ‘Kitchen__init__.py’ >
 > > > sys.modules[‘Kitchen’]
Traceback (most recent call last):
 File “ < input > ”, line 1, in ?
KeyError: ‘Kitchen’

 However, now that you know how this works under the hood, you also need to know that you have a
simplified way of doing the same thing. Python provides a built - in function called reload that
reloads the module you specified as though you ’ d done the manual labor you ’ ve just seen:

import Kitchen
reload(Kitchen)
 < module ‘Kitchen’ from ‘Kitchen__init__.pyc’ >

Note that this doesn ’ t change any objects that already exist. They ’ re still potentially tied to the old
definition, which you could have changed in the module you ’ ve just reloaded! If you altered the
 Recipe and the Omelet classes, you ’ d need to re - invoke the classes and use them to re - create new
versions of all objects of these types, but you already know how to initialize objects:

 > > > r = Omelet.Recipe()
 > > > o = Omelet.Omelet(r, ‘onion’)

c07.indd 123c07.indd 123 12/22/09 10:44:09 AM12/22/09 10:44:09 AM

124

Part II: Python Language and the Standard Library

 Basics of Testing Your Modules
and Packages

 There is a very interesting side effect of the scope that is created for modules. Within your program is
always a special name, __name__ , that tells you what the scope you ’ re running in is called. For instance,
if the value of __name__ were checked from within the Foods module, it would return the string
 ‘ Foods ’ .

 One special reserved name, the name of the top - level global scope, is __main__ . If you have a module
that ’ s normally never used directly, you can stick some code at the end that has one purpose in life —
 verifying that your module works! This is a great opportunity to make your testing easy.

 You ’ ll have many occasions when you see a module with the following code at the end:

if __name__ == ‘__main__’:

 You can use this statement at the end of your modules; and from this point on, you can have tests that
will ensure that classes are made, that functions will return the values that you expect, or any other tests
you can think of. It ’ s very common as you program to have situations in which something that once
worked suddenly breaks. It ’ s always a great idea to place tests for these situations in your packages so
that you never forget that they can happen, and you can be ahead of the game! There is a lot more
information about testing in Chapter 12.

 Summary
 In the previous chapters, you learned how to write code at the interactive Python shell, as well as put
code into individual files that can be run. In this chapter, you ’ ve been shown ways of organizing your
programs into modules and packages.

 Modules are distinct names that Python uses to keep a scope for local names. Within a module, a name
can be used directly; however, from outside of a particular module (for instance, in the global top - level
scope whose name is actually __main__), the names within a module can be accessed by first specifying
the name of the module where the name you want to use is defined, followed by a period, followed by
the name you ’ re looking for. An example of this is sys.path . This enables you to use the same name in
different modules for different purposes, without being confusing.

 To use a module, it must be brought into your program with the import statement. Import will find a
file with the name of the module you want to use, with the extension . py , and make it available. It does
this by examining each of the directories in the list sys.path until it finds the file.

 You will often want specific parts of a module to be available with less typing than the entire specification
would require — the long form would be the name of the module, any intermediate modules (separated
with periods), and then the name you actually want. In such cases, you can use the construct from ...
import ... to just import names that you will be frequently using. When a module is imported, it is
evaluated, and any code that is not inside of a function or a class will be evaluated.

c07.indd 124c07.indd 124 12/22/09 10:44:09 AM12/22/09 10:44:09 AM

Chapter 7: Organizing Programs

125

 When you have a lot of code to write, you can use a package to group your code into a structure that is
provided by the underlying file system of your operation system. This structure begins with a directory
(the same thing as a folder), which will be the name of the package when it is imported into your
program. What makes a directory into a package is the presence of a file called __init__.py . This file
will be read and parsed, and it can contain any code that could be useful to the entire package, such as
data that should be available to all parts of the package, like version information, locations of important
files, and so on, as well as import statements that could be required to bring in modules that will be
needed in order for other parts of the package to work correctly.

 When you have a package, the files in that package will not be automatically exported when a
programmer requests it by using from ... import * , even if those files are modules that have been
imported inside of __init__.py . With a package, the names that will be exported by default to this
request have to be specified in a list called __all__ .

 The key things to take away from this chapter are:

You can import modules using the import keyword.

 Argv is short for argument vector and refers to parameters that are on the command line. These
parameters are accessible as a list by using sys.argv.

 Packages use the structure of the directories (another name for folders) that every operating
system uses to give you a methodology for making many files in the same directory look like a
single module when they ’ re used together.

 To make the entire contents of a module available, use from modulename import *.

 Exercises
 Moving code to modules and packages is straightforward and doesn ’ t necessarily require any changes to
the code to work, which is part of the ease of using Python.

 In these exercises, the focus is on testing your modules, because testing is essentially writing small
programs for an automated task.

 1. Write a test for the Foods.Recipe module that creates a recipe object with a list of foods, and
then verifies that the keys and values provided are all present and match up. Write the test so
that it is run only when Recipe.py is called directly, and not when it is imported.

 2. Write a test for the Foods.Fridge module that will add items to the Fridge , and exercise all of
its interfaces except get_ingredients , which requires an Omelet object.

 3. Experiment with these tests. Run them directly from the command line. If you ’ ve typed
them correctly, no errors should come up. Try introducing errors to elicit error messages from
your tests.

❑

❑

❑

❑

c07.indd 125c07.indd 125 12/22/09 10:44:10 AM12/22/09 10:44:10 AM

c07.indd 126c07.indd 126 12/22/09 10:44:10 AM12/22/09 10:44:10 AM

 8
Files and Directories

 In this chapter, you ’ ll get to know some of the types and functions that Python provides for
writing and reading files and accessing the contents of directories. These functions are important,
because almost all nontrivial programs use files to read input or store output.

 Python provides a rich collection of input/output functions; this chapter covers those that are most
widely used. First, you ’ ll use file objects, the most basic implementation of input/output in
Python. Then you ’ ll learn about functions for manipulating paths, retrieving information about
files, and accessing directory contents.

 In this chapter you learn:

 Some of the types and functions that Python provides for writing and reading files and
accessing the contents of directories. These functions are important, because almost all
nontrivial programs use files to read input or store output.

 About Python ’ s rich collection of input/output functions; this chapter covers those that
are most widely used.

 To use file objects, the most basic implementation of input/output in Python.

 About functions for manipulating paths, retrieving information about files, and accessing
directory contents.

 File Objects
 In this chapter, most of the examples use Windows path names. If you are working on a different
platform, replace the example paths with paths appropriate for your system.

 If you do use Windows, however, remember that a backslash is a special character in a Python
string, so you must escape (that is, double up) any backslash in a path. For instance, the path
 C:\Windows\Temp is represented by the Python string “ C:\\Windows\\Temp ” . If you prefer, you

❑

❑

❑

❑

c08.indd 127c08.indd 127 12/22/09 10:44:39 AM12/22/09 10:44:39 AM

128

Part II: Python Language and the Standard Library

can instead disable special treatment of backslashes in a string by placing an r before the opening
quotes, so this same path may be written r “ C:\Windows\Temp ” .

 You ’ ll use a string object to hold the path name for a sample file you create and access. If you ’ re using
Windows, enter the following (you can choose another path if you want):

 > > > path = “C:\\sample.txt”

 If you ’ re using Linux, enter the following (or choose a path of your own):

 > > > path = “/tmp/sample.txt”

 Writing Text Files
 Start by creating a file with some simple text. To create a new file on your system, create a file object,
and tell Python you want to write to it. A file object represents a connection to a file, not the file itself,
but if you open a file for writing that doesn ’ t exist, Python creates the file automatically. Enter the
following:

 > > > def make_text_file():
 a=open(‘test.txt’,”w”)
 a.write(“This is how you create a new text file”)
 a.close()

 You start off by creating a new function called make_text_file() . You then tell Python to open a file
named test.txt . Because Python does not find this file, it creates it for you. (Note: if the file did exist,
Python would have deleted it and created a new one, so be careful when using this technique! In a
moment, you learn to check to see if a file exists prior to creating one.) The “ w ” argument tells Python
that you intend to write to the file; without it, Python would assume you intend to read from the file and
would raise an exception when it found that the file didn ’ t exist. Next, you add a line of text to the file,
namely: “ This is how you create a new text file ” .

 Take a moment to navigate to your Python directory, which should be located somewhere such as
 C://Python31 . You will notice that a new file named test.txt has been created. If you double - click
it, you will see the text you added in the preceding example. Congratulations, you have created your
first file!

 Now that you have created a file with the preceding technique, create a program that first checks to see if
the file name exists; if so, it will give you an error message; if not, it will create the file. Type in the
following code:

 > > > import os
 > > > def make_another_file():
 if os.path.isfile(‘test.txt’):
 print(“You are trying to create a file that already exists!”)
 else:
 f=open(‘test.txt’,”w”)
 f.write(“This is how you create a new text file”)
 ...
 > > > make_another_file()
”You are trying to create a file that already exists! ”

c08.indd 128c08.indd 128 12/22/09 10:44:40 AM12/22/09 10:44:40 AM

Chapter 8: Files and Directories

129

 When opening a file, and with all the other file - manipulation functions discussed in this chapter, you
can specify either a relative path (a path relative to the current directory, the directory in which your
program or Python was run) or an absolute path (a path starting at the root of the drive or file system).
For example, /tmp/sample.txt is an absolute path, whereas just sample.txt , without the
specification of what directory is above it, is a relative path.

 Appending Text to a File
 Appending text to a file is a pretty simple to do. Instead of using the write method (“ w ”), you use
append instead (“ a ”). By doing so, you ensure that the data in the existing file is not overwritten,
but instead, any new text is appended to the end of the file. Try out the following code:

Try It Out Appending Text to a File

 > > > def add_some_text():
 a=open(‘test.txt’,”a”)
 a.write(“Here is some additional text!”)
 ...
 > > > add_some_text()

 How It Works
 In the example, you created a function called add_some_text() . You then used the open method to
open your file, test.txt , telling Python you wanted to append to your file (this is the “ a ” argument).
Next, you write some new text to the file. When you call the function later on, it adds the line “ Here is
some additional text! ”

 To see the results, go to the directory where Python is installed and open up the test.txt file. You
should see the new text appended to the end of the file.

 Note that write doesn ’ t add line breaks automatically; you must add one yourself with the escape
sequence \n wherever you want a line break in the file. The same goes for spaces. If you do not add a
space, tab, or line break, the next time you add some text to the file; it will be crammed up against the
previous text.

 If you use write again, the text is appended to what you wrote before. If the string you pass is more
than one line long, more than one line is added to the file:

 > > > def even_more_text():
a=open(‘test.txt’,”a”)
a.write(“””
here is
more
text”””)
 ...
 > > > even_more_text()

 You ’ ve used a multi - line, triple - quoted string here. Until you close the triple quotes, Python prompts
you to continue the string with “ ... ” . In a multi - line string, Python adds line breaks between lines.
Go ahead and open the test.txt file again and see the changes first hand.

c08.indd 129c08.indd 129 12/22/09 10:44:40 AM12/22/09 10:44:40 AM

130

Part II: Python Language and the Standard Library

 Reading Text Files
 Reading from a file is similar. First, open the file by creating a file object. This time, use “ r ” to tell
Python you intend to read from the file. It ’ s the default, so you can omit the second argument altogether
if you want.

a=open(“test.txt”,”r”)

 Make sure you use the path to the file you created earlier, or use the path to some other file you want to
read. If the file doesn ’ t exist, Python will raise an exception.

 You can read a line from the file using the readline method. The first time you call this method on a
 file object, it will return the first line of text in the file:

 > > > a.readline()
‘This is how you create a new text file\n’

 Notice that readline includes the newline character at the end of the string it returns. To read the
contents of the file one line at a time, call readline repeatedly.

 You can also read the rest of the file all at once with the read method. This method returns any text in
the file that you haven ’ t read yet. (If you call read as soon as you open a file, it will return the entire
contents of the file, as one long string.)

 > > > f=open(“test.txt”,”r”)
 > > > text=a.read()
 > > > print(text)
This is how you create a new text file
Here is some additional text
here is
more
text

 Because you ’ ve used print to print the text, Python shows newline characters as actual line breaks,
instead of as \n .

 When you ’ re done reading the file, close the file by deleting the file object and closing the file:

 > > > del a
 > > > a.close()

 It ’ s convenient to have Python break a text file into lines, but it ’ s nice to be able to get all the lines at one
time — for instance, to use in a loop. The readlines method does exactly that: It returns the remaining
lines in the file as a list of strings. Suppose, for instance, that you want to print out the length of each line
in a file. This function will do that:

def print_line_lengths():
 a=open(“test.txt”,”r”)
 text=a.readlines()
 for line in text:
 print(len(line))

c08.indd 130c08.indd 130 12/22/09 10:44:41 AM12/22/09 10:44:41 AM

Chapter 8: Files and Directories

131

Try It Out Printing the Lengths of Lines in the Sample File

 Using the function print_line_lengths , you can examine the file you just created, displaying the
length of each line:

 > > > print_line_lengths()
38
28
7
4
4

 How It Works
 Each line is read as a string. Each line, as it ’ s read, has its length displayed by using the string as an
argument to the len function. Remember that the newline character is included in each line, so what
looks like an empty line has a length of one.

 File Exceptions
 Because your Python program does not have exclusive control of the computer ’ s file system, it must be
prepared to handle unexpected errors when accessing files. When Python encounters a problem
performing a file operation, it raises an IOError exception. (Exceptions are described in Chapter 4.)
The string representation of the exception will describe the problem.

 Many circumstances exist in which you can get an IOError , including the following:

 If you attempt to open a file for reading that does not exist

 If you attempt to create a file in a directory that does not exist

 If you attempt to open a file for which you do not have read access

 If you attempt to create a file in a directory for which you do not have write access

 If your computer encounters a disk error (or network error, if you are accessing a file on a
network disk)

 If you want your program to react gracefully when errors occur, you must handle these exceptions. What
to do when you receive an exception depends on what your program does. In some cases, you may want
to try a different file, perhaps after printing a warning message. In other cases, you may have to ask the
user what to do next or simply exit if recovery is not possible.

 Paths and Directories
 The file systems on Windows, Linux, UNIX, and Mac OS/X have a lot in common but differ in some of
their rules, conventions, and capabilities. For example, Windows uses a backslash to separate directory
names in a path, whereas Linux and UNIX (and Mac OS/X is a type of UNIX) use a forward slash.
In addition, Windows uses drive letters, whereas the others don ’ t. These differences can be a major

❑

❑

❑

❑

❑

c08.indd 131c08.indd 131 12/22/09 10:44:41 AM12/22/09 10:44:41 AM

132

Part II: Python Language and the Standard Library

irritation if you are writing a program that will run on different platforms. Python makes your life easier
by hiding some of the annoying details of path and directory manipulation in the os module. Using os
will not solve all of your portability problems, however; some functions in os are not available on all
platforms. This section describes only those functions that are.

 Even if you intend to use your programs only on a single platform and anticipate being able to avoid
most of these issues, if your program is useful you never know if someone will try to run it on another
platform someday. So it ’ s better to tap the os module, because it provides many useful services. Don ’ t
forget to import os first so you can use it.

 Exceptions in os
 The functions in the os module raise OSError exceptions on failure. If you want your program to
behave nicely when things go wrong, you must handle this exception. As with IOError , the string
representation of the exception will provide a description of the problem.

 Paths
 The os module contains another module, os.path , which provides functions for manipulating paths.
Because paths are strings, you could use ordinary string manipulation to assemble and disassemble file
paths. Your code would not be as easily portable, however, and would probably not handle special cases
that os.path knows about. Use os.path to manipulate paths, and your programs will be better for it.

 To assemble directory names into a path, use os.path.join . Python uses the path separator
appropriate for your operating system. Don ’ t forget to import the os.path module before you use it.
For example, on Windows, enter the following:

 > > > import os.path
 > > > os.path.join(“snakes”, “Python”)
‘snakes\\Python’

 On Linux, however, using the same parameters to os.path.join gives you the following, different,
result:

 > > > import os.path
 > > > os.path.join(“snakes”, “Python”)
‘snakes/Python’

 You can specify more than two components as well.

 The inverse function is os.path.split , which splits off the last component of a path. It returns a tuple
of two items: the path of the parent directory and the last path component. Here ’ s an example:

 > > > os.path.split(“C:\\Program Files\\Python30\\Lib”)
(‘C:\\Program Files\\Python30’, ‘Lib’)

c08.indd 132c08.indd 132 12/22/09 10:44:41 AM12/22/09 10:44:41 AM

Chapter 8: Files and Directories

133

 On UNIX or Linux, it would look like this:

 > > > os.path.split(“/usr/bin/python”)
(‘/usr/bin’, ‘python’)

 Automatic unpacking of sequences comes in handy here. What happens is that when os.path.split
returns a tuple, the tuple can be broken up into the elements on the left - hand side of the equals sign:

 > > > parent_path, name = os.path.split(“C:\\Program Files\\Python30\\Lib”)
 > > > print(parent_path)
C:\Program Files\Python30
 > > > print(name)
Lib

 Although os.path.split only splits off the last path component, sometimes you might want to split a
path completely into directory names. Writing a function to do this is not difficult; what you want to do
is call os.path.split on the path, and then call os.path.split on the parent directory path, and so
forth, until you get all the way to the root directory. An elegant way to do this is with a recursive function ,
which is a function that calls itself. It might look like this:

def split_fully(path):
 parent_path, name = os.path.split(path)
 if name == “”:
 return (parent_path,)
 else:
 return split_fully(parent_path) + (name,)

 The key line is the last line, where the function calls itself to split the parent path into components.
The last component of the path, name , is then attached to the end of the fully split parent path. The lines
in the middle of split_fully prevent the function from calling itself infinitely. When os.path.split
can ’ t split a path any further, it returns an empty string for the second component; split_fully notices
this and returns the parent path without calling itself again.

 A function can call itself safely because Python keeps track of the arguments and local variables in each
running instance of the function, even if one is called from another. In this case, when split_fully calls
itself, the outer (first) instance doesn ’ t lose its value of name even though the inner (second) instance
assigns a different value to it, because each has its own copy of the variable name . When the inner
instance returns, the outer instance continues with the same variable values it had when it made the
recursive call.

 When you write a recursive function, make sure that it never calls itself infinitely, which would be bad
because it would never return. (Actually, Python would run out of space in which to keep track of all the
calls, and would raise an exception.) The function split_fully won ’ t call itself infinitely, because
eventually path is short enough that name is an empty string, and the function returns without calling
itself again.

 Notice in this function the two uses of single - element tuples, which must include a comma in the parentheses.
Without the comma, Python would interpret the parentheses as ordinary grouping parentheses, as in a
mathematical expression: (name,) is a tuple with one element; (name) is the same as name .

c08.indd 133c08.indd 133 12/22/09 10:44:41 AM12/22/09 10:44:41 AM

134

Part II: Python Language and the Standard Library

 Here ’ s the function in action:

 > > > split_fully(“C:\\Program Files\\Python31\\Lib”)
(‘C:\\’, ‘Program Files’, ‘Python31’, ‘Lib’)

 After you have the name of a file, you can split off its extension with os.path.splitext :

 > > > os.path.splitext(“image.jpg”)
(‘image’, ‘.jpg’)

 The call to splitext returns a two - element tuple, so you can extract just the extension as shown here:

 > > > parts = os.path.splitext(“image.jpg”)
 > > > extension = parts[1]

 You don ’ t actually need the variable parts at all. You can extract the second component, the extension ,
directly from the return value of splitext :

 > > > extension = os.path.splitext(“image.jpg”)[1]

 Also handy is os.path.normpath , which normalizes or “ cleans up ” a path:

 > > > print(os.path.normpath(r”C:\\Program Files\Perl\..\Python30”))
C:\Program Files\Python30

 Notice how the “ .. ” was eliminated by backing up one directory component, and the double separator
was fixed. Similar to this is os.path.abspath , which converts a relative path (a path relative to the
current directory) to an absolute path (a path starting at the root of the drive or file system):

 > > > print(os.path.abspath(“other_stuff”))
C:\Program Files\Python30\other_stuff

 Your output will depend on your current directory when you call abspath . As you may have noticed,
this works even though you don ’ t have an actual file or directory named other_stuff in your Python
directory. None of the path manipulation functions in os.path check whether the path you are
manipulating actually exists.

 If you want to know whether a path actually does exist, use os.path.exists . It simply returns True
or False :

 > > > os.path.exists(“C:\\Windows”)
True
 > > > os.path.exists(“C:\\Windows\\reptiles”)
False

 Of course, if you ’ re not using Windows, or your Windows is installed in another directory (like
 C:\WinNT), both of these will return False !

c08.indd 134c08.indd 134 12/22/09 10:44:42 AM12/22/09 10:44:42 AM

Chapter 8: Files and Directories

135

 Directory Contents
 Now you know how to construct arbitrary paths and take them apart. But how can you find out what ’ s
actually on your disk? The os.listdir module tells you, by returning a list of the name entries in a
directory — the files, subdirectories, and so on that it contains.

Try It Out Getting the Contents of a Directory

 The following code gets a list of entries in a directory. In Windows, you can list the contents of your
Python installation directory:

 > > > os.listdir(“C:\\Python31”)
[‘Chapter 5’, ‘Chapter 6’, ‘Chapter 7’, ‘DLLs’, ‘Doc’, ‘ham’, ‘include’,
‘Lib’, ‘libs’, ‘LICENSE.txt’, ‘maybe’, ‘NEWS.txt’, ‘python.exe’, ‘pythonw.exe’,
‘README.txt’, ‘tcl’, ‘Test’, ‘Test.py’, ‘test.txt’, ‘test2.txt’, ‘test6.txt’,
‘tester.py’, ‘test.txt’, ‘Tools’, ‘w9xpopen.exe’]

 Note that your results may differ, depending upon the files in your directory.

 In other operating systems, or if you installed Python in a different directory, substitute some other
path. You can use “ . ” to list your current directory. Of course, you will get back a different list of
names if you list a different directory.

 In any case, you should note a few important things here. First, the results are names of directory
entries, not full paths. If you need the full path to an entry, you must construct it yourself, with
os.path.join . Second, names of files and directories are mixed together, and there is no way to
distinguish the two from the result of os.listdir . Finally, notice that the results do not include ‘ . ’
and ‘ .. ’ , the two special directory names that represent the same directory and its parent.

 Write a function that lists the contents of a directory but prints full paths instead of just file and
directory names, and prints only one entry per line:

def print_dir(dir_path):
 for name in os.listdir(dir_path):
 print(os.path.join(dir_path, name))

 This function loops over the list returned by os.listdir and calls os.path.join on each entry to
construct the full path before printing it. Try it like this:

 > > > print_dir(“C:\\Python30”)
C:\Python31\DLLs
C:\Python31\Doc
C:\Python31\ham
C:\Python31\include
C:\Python31\Lib
C:\Python31\libs
C:\Python31\LICENSE.txt...

c08.indd 135c08.indd 135 12/22/09 10:44:42 AM12/22/09 10:44:42 AM

136

Part II: Python Language and the Standard Library

 There is no guarantee that the list of entries returned by os.listdir will be sorted in any particular
way: The order can be anything. You may prefer to have the entries in some specific order to suit your
application. Because it ’ s just a list of strings, you can sort it yourself using the sorted function.
By default, this produces a case - sensitive alphabetical sort:

 > > > sorted(os.listdir(“C:\\Python31”))
[‘DLLs’, ‘Doc’, ‘LICENSE.txt’, ‘Lib’, ‘NEWS.txt’, ‘README.txt’,
‘Removepywin32.exe’, ‘Scripts’, ‘Tools’, ‘include’, ‘libs’, ‘py.ico’,
‘pyc.ico’, ‘python.exe’, ‘pythonw.exe’, ‘pywin32-wininst.log’, ‘tcl’,
‘w9xpopen.exe’]

 Try It Out Listing the Contents of Your Desktop or Home Directory

 Use print_dir_by_ext to list the contents of your desktop or home directory. On Windows, your
desktop is a folder, whose path is typically C:\\Documents and Settings\\username\\Desktop ,
where username is your account name. On GNU/Linux or UNIX, your home directory ’ s path is
typically /home/username . Is the output what you expected?

 Obtaining Information about Files
 You can easily determine whether a path refers to a file or to a directory. If it ’ s a file, os.path.isfile
will return True ; if it ’ s a directory, os.path.isdir will return True . Both return False if the path does
not exist at all:

 > > > os.path.isfile(“C:\\Windows”)
False
 > > > os.path.isdir(“C:\\Windows”)
True

 Other Types of Directory Entries
 On some platforms, a directory may contain additional types of entries, such as
symbolic links, sockets, and devices. The semantics of these are specific to the
platform and too complicated to cover here. Nonetheless, the os module provides
some support for examining these; consult the module documentation for details for
your platform.

 Recursive Directory Listings
 You can combine os.path.isdir with os.listdir to do something very useful: process subdirectories
recursively. For instance, you can list the contents of a directory, its subdirectories, their subdirectories,
and so on. To do this, it ’ s again useful to write a recursive function. This time, when the function finds
a subdirectory, it calls itself to list the contents of that subdirectory:

c08.indd 136c08.indd 136 12/22/09 10:44:42 AM12/22/09 10:44:42 AM

Chapter 8: Files and Directories

137

def print_tree(dir_path):
 for name in os.listdir(dir_path):
 full_path = os.path.join(dir_path, name)
 print(full_path)
 if os.path.isdir(full_path):
 print_tree(full_path)

 You ’ ll notice the similarity to the function print_dir you wrote previously. This function, however,
constructs the full path to each entry as full_path , because it ’ s needed both for printing out and
for consideration as a subdirectory. The last two lines check whether it is a subdirectory, and if so,
the function calls itself to list the subdirectory ’ s contents before continuing. If you try this function,
make sure that you don ’ t call it for a large directory tree; otherwise, you ’ ll have to wait a while as it
prints out the full path of every single subdirectory and file in the tree.

 Other functions in os.path provide information about a file. For instance, os.path.getsize returns the
size, in bytes, of a file without having to open and scan it. Use os.path.getmtime to obtain the time when
the file was last modified. The return value is the number of seconds between the start of the year 1970 and
when the file was last modified — not a format users prefer for dates! You have to call another function,
 time.ctime , to convert the result to an easily understood format (don ’ t forget to import the time module
first). Here ’ s an example that outputs when your Python installation directory was last modified, which is
probably the date and time you installed Python on your computer:

 > > > import time
 > > > mod_time = os.path.getmtime(“C:\\Python30”)
 > > > print(time.ctime(mod_time))
Thu Mar 15 01:36:26 2009

 Now you know how to modify print_dir to print the contents of a directory, including the size and
modification time of each file. In the interest of brevity, the version that follows prints only the names of
entries, not their full paths:

def print_dir_info(dir_path):
 for name in os.listdir(dir_path):
 full_path = os.path.join(dir_path, name)
 file_size = os.path.getsize(full_path)
 mod_time = time.ctime(os.path.getmtime(full_path))
 print(“%-32s: %8d bytes, modified %s” % (name, file_size, mod_time))

 The last statement uses Python ’ s built - in string formatting that you saw in Chapters 1 and 2 to produce
neatly aligned output. If there ’ s other file information you would like to print, browse the
documentation for the os.path module to learn how to obtain it.

 Renaming, Moving, Copying, and Removing Files
 The shutil module contains functions for operating on files. You can use the function shutil.move to
rename a file:

 > > > import shutil
 > > > shutil.move(“server.log”, “server.log.backup”)

c08.indd 137c08.indd 137 12/22/09 10:44:43 AM12/22/09 10:44:43 AM

138

Part II: Python Language and the Standard Library

 Alternatively, you can use it to move a file to another directory:

 > > > shutil.move(“old mail.txt”, “C:\\data\\archive\\”)

 You might have noticed that os also contains a function for renaming or moving files, os.rename . You
should generally use shutil.move instead, because with os.rename , you may not specify a directory
name as the destination and on some systems os.rename cannot move a file to another disk or file system.

 The shutil module also provides the copy function to copy a file to a new name or directory. You can
simply use the following:

 > > > shutil.copy(“important.dat”, “C:\\backups”)

 Deleting a file is easiest of all. Just call os.remove :

 > > > os.remove(“junk.dat”)

 If you ’ re an old - school UNIX hacker (or want to pass yourself off as one), you may prefer os.unlink ,
which does the same thing.

 File Permissions
 File permissions work differently on different platforms, and explaining them is
beyond the scope of this book. However, if you need to change the permissions of a
file or directory, you can use the os.chmod function. It works in the same way as
the UNIX or Linux chmod system call. See the documentation for the os module
for details.

 Example: Rotating Files
 In this example, you tackle a more difficult real - world file management task. Suppose that you need to
keep old versions of a file around. For instance, system administrators will keep old versions of system
log files. Often, older versions of a file are named with a numerical suffix — for instance, web.log.1 ,
 web.log.2 , and so on — in which a larger number indicates an older version. To make room for a new
version of the file, the old versions are rotated : The current version of web.log becomes version
web.log.1 , web.log.1 becomes web.log.2 , and so on.

 This is clearly tedious to do by hand, but Python can make quick work of it. You have a few tricky points
to consider, however. First, the current version of the file is named differently than old versions; whereas
old versions have a numerical suffix, the current version does not. One way to get around this is to treat
the current version as version zero. A short function, make_version_path , constructs the right path for
both current and old versions.

 The other subtle point is that you must make sure to rename the oldest version first . For instance, if you
rename web.log.1 to web.log.2 before renaming web.log.2 , the latter will be overwritten and its

c08.indd 138c08.indd 138 12/22/09 10:44:43 AM12/22/09 10:44:43 AM

Chapter 8: Files and Directories

139

contents lost before you get to it, which isn ’ t what you want. Once again, a recursive function will save
you. The function can call itself to rotate the next - older version of the log file before it gets overwritten:

import os
import shutil

def make_version_path(path, version):
 if version == 0:
 # No suffix for version 0, the current version.
 return path
 else:
 # Append a suffix to indicate the older version.
 return path + “.” + str(version)

def rotate(path, version=0):
 # Construct the name of the version we’re rotating.
 old_path = make_version_path(path, version)
 if not os.path.exists(old_path):
 # It doesn’t exist, so complain.
 raise IOError(“’%s’ doesn’t exist” % path)
 # Construct the new version name for this file.
 new_path = make_version_path(path, version + 1)
 # Is there already a version with this name?
 if os.path.exists(new_path):
 # Yes. Rotate it out of the way first!
 rotate(path, version + 1)
 # Now we can rename the version safely.
 shutil.move(old_path, new_path)

 Take a few minutes to study this code and the comments. The rotate function uses a technique common
in recursive functions: a second argument for handing recursive cases — in this case, the version number
of the file being rotated. The argument has a default value, zero, which indicates the current version of
the file. When you call the function (as opposed to when the function is calling itself) you don ’ t specify
a value for this argument. For example, you can just call rotate(“ web.log “) .

 You may have noticed that the function checks to make sure that the file being rotated actually exists and
raises an exception if it doesn ’ t. But suppose you want to rotate a system log file that may or may not
exist. One way to handle this is to create an empty log file whenever it ’ s missing. Remember that when
you open a file that doesn ’ t exist for writing, Python creates the file automatically. If you don ’ t actually
write anything to the new file, it will be empty. Here ’ s a function that rotates a log file that may or may
not exist, creating it first if it doesn ’ t. It uses the rotate function you wrote previously.

def rotate_log_file(path):
 if not os.path.exists(path):
 # The file is missing, so create it.
 new_file = file(path, “w”)
 # Close the new file immediately, which leaves it empty.
 del new_file
 # Now rotate it.
 rotate(path)

c08.indd 139c08.indd 139 12/22/09 10:44:44 AM12/22/09 10:44:44 AM

140

Part II: Python Language and the Standard Library

 Creating and Removing Directories
 Creating an empty directory is even easier than creating a file. Just call os.mkdir . The parent directory
must exist, however. The following will raise an exception if the parent directory C:\photos\zoo does
not exist:

 > > > os.mkdir(“C:\\photos\\zoo\\snakes”)

 You can create the parent directory itself using os.mkdir , but the easy way out is instead to use
os.makedirs , which creates missing parent directories. For example, the following will create
C:\photos and C:\photos\zoo , if necessary:

 > > > os.makedirs(“C:\\photos\\zoo\\snakes”)

 Remove a directory with os.rmdir . This works only for empty directories; if the directory is not empty,
you ’ ll have to remove its contents first:

 > > > os.rmdir(“C:\\photos\\zoo\\snakes”)

 This removes only the snakes subdirectory.

 There is a way to remove a directory even when it contains other files and subdirectories. The function
 shutil.rmtree does this. Be careful, however; if you make a programming or typing mistake and pass
the wrong path to this function, you could delete a whole bunch of files before you even know what ’ s
going on! For instance, this will delete your entire photo collection — zoo, snakes, and all:

 > > > shutil.rmtree(“C:\\photos”)

 Globbing
 If you have used the command prompt on Windows, or a shell command line on GNU/Linux, UNIX,
or Mac OS X, you probably have encountered wildcard patterns before. These are the special
characters, such as * and ? , which you use to match many files with similar names. For example,
you may have used the pattern P* to match all files that start with P , or *.txt to match all files with
the extension .txt .

 Globbing is hackers ’ jargon for expanding wildcards in file name patterns. Python provides a
function glob , in the module also named glob , which implements globbing of directory contents.
The glob.glob function takes a glob pattern and returns a list of matching file names or paths,
similar to os.listdir .

 Globbing and Case - sensitivity
 On Windows, the pattern M* matches file names that begin with both M and m , because
file names and, therefore, file name globbing, are case - insensitive. On most other
operating systems, globbing is case - sensitive.

c08.indd 140c08.indd 140 12/22/09 10:44:44 AM12/22/09 10:44:44 AM

Chapter 8: Files and Directories

141

 For example, try the following command to list entries in your C:\Program Files directory that start
with M :

 > > > import glob
 > > > glob.glob(“C:\\Program Files\\M*”)
[‘C:\\Program Files\\Messenger’, ‘C:\\Program Files\\Microsoft Office’,
‘C:\\Program Files\\Mozilla Firefox’]

 Your computer ’ s output will vary depending on what software you have installed. Observe that
glob.glob returns paths containing drive letters and directory names if the pattern includes them,
unlike os.listdir , which only returns the names in the specified directory.

 The following table lists the wildcards you can use in glob patterns. These wildcards are not
necessarily the same as those available in the command shell of your operating system, but Python ’ s
 glob module uses the same syntax on all platforms. Note that the syntax for glob patterns resembles
but is not the same as the syntax for regular expressions.

 Wildcard Matches Example

 * Any zero or more characters *.m* matches names whose extensions
begin with m.

 ? Any one character ??? matches names exactly three
characters long.

 [...] Any one character listed in the brackets [AEIOU]* matches names that begin
with capital vowels.

 [!...] Any one character not listed in the
brackets

 *[!s] matches names that don ’ t end
with an s.

 You can also use a range of characters in square brackets. For example, [m - p] matches any one of the
letters m , n , o , or p , and [!0 - 9] matches any character other than a digit.

 Globbing is a handy way of selecting a group of similar files for a file operation. For instance, deleting
all backup files with the extension .bak in the directory C:\source\ is as easy as these two lines:

 > > > for path in glob.glob(“C:\\source*.bak”):
... os.remove(path)

 Globbing is considerably more powerful than os.listdir , because you can specify wildcards in
directory and subdirectory names. For patterns like this, glob.glob can return paths in more than one
directory. For instance, the following code returns all files with the extension .txt in subdirectories of
the current directory:

 > > > glob.glob(“**.txt”)

c08.indd 141c08.indd 141 12/22/09 10:44:44 AM12/22/09 10:44:44 AM

142

Part II: Python Language and the Standard Library

 Summary
 In this chapter, you learned how to write data to and read data from files on your disk. Using a file
object, you can now write strings to a file, and read back the contents of a file, line - by - line or all at once.
You can use these techniques to read input into your program, to generate output files, or to store
intermediate results.

 You also learned about paths, which specify the location of a file on your disk, and how to manipulate
them. Using os.listdir or glob , you can find out what ’ s on your disk.

 The key points to take away from this chapter are:

 A file object represents a connection to a file, not the file itself, but if you open a file for writing
that doesn ’ t exist, Python creates the file automatically.

 To append to a file, use append instead of write. This ensures that the data in the file is not
overwritten.

 To read from a file, use “ r ” , as in the following: a=open(“ test.txt ” , “ r ”)

 The readline method returns the first line of text in a file.

 When you are finished reading a file, be sure to delete the file object and explicitly close the file.

 The os.path module, located in the os module, provides functions for manipulating paths.

 The os.listdir module tells you the files, subdirectories, and contents in a directory.

 Globbing is hackers ’ jargon for expanding wildcards in filename patterns. Python provides a
function glob, in the module also named glob, which implements globbing of directory contents.
The glob.glob function takes a glob pattern and returns a list of matching filenames or paths,
similar to os.listdir .

 Exercises
 1. Create another version of the (nonrecursive) print_dir function that lists all subdirectory

names first, followed by names of files in the directory. Names of subdirectories should be
 alphabetized, as should file names. (For extra credit, write your function in such a way that
it calls os.listdir only one time. Python can manipulate strings faster than it can execute
 os.listdir .)

 2. Modify the rotate function to keep only a fixed number of old versions of the file. The number
of versions should be specified in an additional parameter. Excess old versions above this
 number should be deleted.

❑

❑

❑

❑

❑

❑

❑

❑

c08.indd 142c08.indd 142 12/22/09 10:44:45 AM12/22/09 10:44:45 AM

 9
Other Features of

the Language

 In this chapter you are introduced to some other aspects of Python that are less frequently used, as
well as modules that are very commonly used. Each section describes at least one way that the
feature is typically used and then offers example code.

 In previous chapters you looked at some common functions, and even learned to create your own.
Part of the charm of Python is its breadth of built - in functions and modules that cater to both
broad and obscure problems. Before learning to build your own module, you look at some of the
ones Python offers to get a better understanding of their usage.

In this chapter you learn:

 To work with the lambda and filter functions .

 To use map to avoid loops .

 To string substitutions .

 The getopt module .

 Lambda and Filter : Short
Anonymous Functions

 Sometimes you need a very simple function invocation — something that is not generally useful or
that is so specific that its use needs to be completely different if it is invoked in another location in
your code. For these occasions, there is a special operation: lambda . Lambda is not a function itself
but a special word that tells Python to create a function and use it in place, rather than reference it
from a name.

 To demonstrate lambda being used, the following example uses filter , which is a function that
enables you to take a list and remove elements based on criteria you define within a function you

❑

❑

❑

❑

c09.indd 143c09.indd 143 12/22/09 10:45:05 AM12/22/09 10:45:05 AM

144

Part II: Python Language and the Standard Library

write. Normal functions can be used, but in simple cases, such as where you want only odd numbers (or
odd - numbered elements, or strings beginning with something, and so on), a fully defined function could
be overkill.

use lambda with filter
filter_me = [1, 2, 3, 4, 6,7 ,8, 11, 12, 14, 15, 19, 22]
This will only return true for even numbers (because x%2 is 0, or False,
for odd numbers)
result = filter(lambda x: x%2 == 0, filter_me)
print(*result)

 The functions that lambda creates are called anonymous functions because of their lack of a name.
However, you can use the result of the lambda statement to bind the name to a function yourself. That
name will be available only in the scope in which the name was created, like any other name:

use lambda with filter, but bind it to a name
filter_me = [1, 2, 3, 4, 6,7 ,8, 11, 12, 14, 15, 19, 22]
This will only return true for even numbers (because x%2 is 0, or False,
for odd numbers)
func = lambda x: x%2 == 0
result = filter(func, filter_me)
print(*result)

 Lambda can only be a simple function, and it can ’ t contain statements, such as creating a name for a
variable. Inside a lambda , you can only perform a limited set of operations, such as testing for equality,
multiplying numbers, or using other already existing functions in a specific manner. You can ’ t do things
like use if ... : elsif ... : else: constructs or even create new names for variables! You can
only use the parameters passed into the lambda function. You can, however, do slightly more than
perform simple declarative statements by using the and and or operations. However, you should still
keep in mind that lambda is for very limited uses.

 The main use for lambda is with the built - in functions map and filter . Used with lambda , these
functions provide compact ways to perform some great operations while avoiding the need for loops.
You ’ ve already seen filter in action, which could be a difficult loop to write.

 Map: Short - Circuiting Loops
 One common place to use anonymous functions is when the map function is called. Map is a special
function for cases when you need to do a specific action on every element of a list. It enables you to
accomplish this without having to write the loop.

 Try It Out Using Map

 Try this basic test:

Now map gets to be run in the simple case
map_me = [‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’]
result = map(lambda x: “The letter is %s” % x, map_me)
print(*result)

c09.indd 144c09.indd 144 12/22/09 10:45:06 AM12/22/09 10:45:06 AM

Chapter 9: Other Features of the Language

145

 How It Works
 Just like being in a loop, every element in the list will be visited. In the previous version of Python, a
list would also be returned; however, in Python 3.1 an iterator is now returned instead. This is how it
will look:

 > > > print(*result)
The letter is a The letter is b The letter is c The letter is d
The letter is e The letter is f The letter is g

 Some special things are worth knowing about map . If you pass in a list of lists (or tuples — any kind of
sequence can be given to map), your function needs to expect that list. Each sequence in the main list
should have the same number of elements:

use map with a list of lists, to re-order the output.
map_me_again = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
result = map(lambda list: [list[1], list[0], list[2]], map_me_again)
print(*result)

 This results in a list of lists, where everything has been shuffled around:

 > > > print(*result)
[2, 1, 3] [5, 4, 6] [8, 7, 9]

 You can see that map always returns an iterator. Map can be given the name of a non - anonymous
function if you like, and it operates in the same way.

 Decisions within Lists — List Comprehension
 The oddly named list comprehension feature entered the language in Python 2.0. It enables you to write
miniature loops and decisions within the list dereferencing operators (the square brackets) to define
parameters that will be used to restrict the range of elements being accessed.

 For instance, to create a list that prints just the positive numbers in a list, you can use list comprehension:

First, just print even numbers
everything = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
print([x for x in everything if x%2 == 0])

 This can be a nice and compact way of providing a portion of a list to a loop — but with only the
pertinent parts of the list, based on what you want in your program at the moment, being presented to
your loop.

 List comprehension provides you with the same functionality as filter or map combined with lambda ,
but it is a form that gives you more decision - making power because it can include loops and
conditionals, whereas lambda only enables you to perform one simple expression.

 In most cases, list comprehension will also run faster than the alternative.

c09.indd 145c09.indd 145 12/22/09 10:45:07 AM12/22/09 10:45:07 AM

146

Part II: Python Language and the Standard Library

 Generating Iterators for Loops
 Python has a special feature that enables you to create iterators — the range function:

f = range (10, 20)
print(*f)

 This code produces an obvious - looking result:

 > > > print(*f)
10 11 12 13 14 15 16 17 18 19

 By itself, this doesn ’ t seem profound, but it is essential for situations when you need to use a for loop
that will continue for a specific number of iterations, and that isn ’ t based on an existing list; and this
number may not be determined at the time when the program was written, but it becomes known only
when the program is already running.

 If range is given only a single number, it will count from zero to that number. The number can be
positive or negative:

for number in range(10):
 print(“Number is now %d” % number)

 This produces the obvious output, which is what you want:

Number is now 0
Number is now 1
Number is now 2
Number is now 3
Number is now 4
Number is now 5
Number is now 6
Number is now 7
Number is now 8
Number is now 9

 In addition, if you only want, for example, every other number or every third number, you can use an
even more optional third parameter, called the step , that describes what the interval will be between
each number that range creates:

for number in range(5, 55, 4):
 print(“Number from 5 to 55, by fours: %d” % number)

 This results in the selective list of numbers that you specified:

Number from 5 to 55, by fours: 5
Number from 5 to 55, by fours: 9
Number from 5 to 55, by fours: 13
Number from 5 to 55, by fours: 17
Number from 5 to 55, by fours: 21
Number from 5 to 55, by fours: 25
Number from 5 to 55, by fours: 29

c09.indd 146c09.indd 146 12/22/09 10:45:07 AM12/22/09 10:45:07 AM

Chapter 9: Other Features of the Language

147

Number from 5 to 55, by fours: 33
Number from 5 to 55, by fours: 37
Number from 5 to 55, by fours: 41
Number from 5 to 55, by fours: 45
Number from 5 to 55, by fours: 49
Number from 5 to 55, by fours: 53

 In previous versions of Python, a program could be handling huge numbers of elements — perhaps
hundreds of thousands, or even millions, in which case range would create an array with every element
that you ’ ve asked for — example, from zero to the number of all the possible systems on the Internet.
When this many things need to be examined, each element uses a bit of computer memory, which can
eventually take up all of the memory on a system. To avoid any problems with this sort of a really large
list, Python had a special built - in class called xrange that created fewer elements in memory. In Python
3.1, range was changed so that it no longer created a list, but instead an iterator, essentially making it
perform in the exact manner that xrange behaved. Xrange has since been removed from the language.

 Try It Out Examining a range Iterator

 Interestingly, note that range returns an iterator object that behaves like a list. Note that this object has
no public interfaces — just private methods that look like a subset of what most lists and tuples have:

 > > > xr = range(0,10)
 > > > dir(xr)
[‘__class__’, ‘__delattr__’, ‘__doc__’, ‘__eq__’, ‘__format__’, ‘__ge__’,
‘__getattribute__’, ‘__getitem__’, ‘__gt__’, ‘__hash__’, ‘__init__’, ‘__iter_
_’,
‘__le__’, ‘__len__’, ‘__lt__’, ‘__ne__’, ‘__new__’, ‘__reduce__’, ‘__reduce_
ex__’,
‘__repr__’, ‘__reversed__’, ‘__setattr__’, ‘__sizeof__’, ‘__str__’,
 ‘__subclasshook__’]

 Tying to call it directly doesn ’ t result in a list; it results in a representation of how it was called:

 > > > xr
range(0, 10)

 You can, however, still access it by using the same dereferencing operation (the square brackets) that
you can with lists, sequences, and dictionaries:

 > > > xr[0]
0
 > > > xr[1]
1

 How It Works
 Range produces an object that doesn ’ t have any public methods. The only methods it has are built - in
methods that enable it to act as a very simple sequence. Internally, when you use the square brackets
to access a list, tuple, or a dictionary, you are telling python to invoke the __getitem__ method
of that list, tuple, or dictionary. A range object has this private method, so it can act as a sequence and
be dereferenced this way.

c09.indd 147c09.indd 147 12/22/09 10:45:07 AM12/22/09 10:45:07 AM

148

Part II: Python Language and the Standard Library

 When you call a range object, it doesn ’ t produce a list. Instead it tells you how it was created so you
know what the parameters were, in case you wanted to know about the numbers it is generating.

The point is that even though it behaves like a sequence, it is different; and that ’ s kind of cool.

 Special String Substitution
Using Dictionaries

 One syntax you haven ’ t been shown yet is a special syntax for using dictionaries to populate string
substitutions. This can come up when you want a configurable way to print out strings — such as a
formatted report or something similar.

 Try It Out String Formatting with Dictionaries

 When you are doing this, you want to take individual named elements from a known set of elements,
such as what you have in a dictionary, and print them out in the order that you have specified, which
can be defined outside of the program itself:

person = {“name”: “James”, “camera”: “nikon”, “handedness”: “lefty”,
“baseball_team”: “angels”, “instrument”: “guitar”}

print(“%(name)s, %(camera)s, %(baseball_team)s” % person)

 The output of this code looks like this:

 > > > print(“%(name)s, %(camera)s, %(baseball_team)s” % person)
James, nikon, angels

 How It Works
 Note that the information in the parentheses is the name of the key whose value will be substituted
from the dictionary into the string. However, to use this properly, you still need to specify the type of
the data being inserted after the closing parenthesis so that the string substitution knows what to do.
Here, all the types were strings, but you could use the i for int , j for imaginary, l for long, and all the
other format specifiers you ’ ve learned. To see different formats being used with this new format, try
the following example. Notice that person should appear on the same line as the print statement —
 it ’ s not on the next line; it ’ s just the end of a long line:

person[“height”] = 1.6
person[“weight”] = 80
print(“%(name)s, %(camera)s, %(baseball_team)s, %(height)2.2f,
%(weight)2.2f” % person)

c09.indd 148c09.indd 148 12/22/09 10:45:07 AM12/22/09 10:45:07 AM

Chapter 9: Other Features of the Language

149

 This gives you the following terse output:

 > > > print(“%(name)s, %(camera)s, %(baseball_team)s, %(height)2.2f,
%(weight)2.2f” % person)
James, nikon, angels, 1.60, 80.00

 These examples work with almost the same syntax that you learned in the first three chapters.

 Added back in Python 2.4, another form of string substitution is located within the String module,
which uses a new syntax for substitution grammar. This form was created to enable you to give users —
 for example, of a program you ’ ve written — a format that may make more sense to them at first
glance:

import string
person = {“name”: “James”, “camera”: “nikon”, “handedness”: “lefty”,
“baseball_team”: “angels”, “instrument”: “guitar”}
person[“height”] = 1.6
person[“weight”] = 80
t = string.Template(“$name is $height m high and $weight kilos”)
print(t.substitute(person))

 This produces output that ’ s no better or worse than the first way, except that you can ’ t control the
format information anymore:

print t.substitute(person)
James is 1.6 m high and 80 kilos

 Think about using this feature when you are asking users to describe what information they want
from a set of data. This can be used as an easily supported way for someone else to specify the data
they want without saddling you with the need to rewrite your program. You just need to ask them to
specify the template , and you can supply the string they ’ ve given you to the string.Template class
to create a template object that will perform the desired substitution.

 Featured Modules
 Starting in Chapter 7, you saw modules used to add functionality to Python. In Chapter 8, you learned
how interaction with the operating system and its files is achieved through modules that provide
interfaces to how the system works with the os module.

 In this section, you see examples of some other common modules that will help you to start building
your own programs.

 Getopt — Getting Options from the Command Line
 On UNIX systems, the most common way to specify the behavior of a program when it runs is to add
parameters to the command line of a program. Even when a program is not run from the command line
but is instead run using fork and exec (more on this later in this chapter), a command line is constructed
when it is invoked. This makes it a universal way of controlling the behavior of your programs.

c09.indd 149c09.indd 149 12/22/09 10:45:08 AM12/22/09 10:45:08 AM

150

Part II: Python Language and the Standard Library

 You may have seen, for instance, that many programs can be run so that they provide you with some
basic information about how they should be run. Python enables you to do this with - h :

$ python -h
usage: python30 [option] ... [-c cmd | -m mod | file | -] [arg] ...
Options and arguments (and corresponding environment variables):
-c cmd : program passed in as string (terminates option list)
-d : debug output from parser (also PYTHONDEBUG=x)
-E : ignore environment variables (such as PYTHONPATH)
[etc.]

 In the past, different conventions were available on different UNIX platforms to specify these options,
but this has largely resulted in two forms of options being used by most projects: the short form, such as
the help - message producing option to Python, and a long form, such as - - help for help.

 To accept these sorts of options makes sense. Ideally, you ’ d like to offer a short and a long form of
commands that are common, and allow each one to optionally take a specification. So if you wanted to
write a program that had a configuration file that the user could specify, you may want one option like
- c short for experienced users, but provide a longer option too, like - - config - file . In either case,
you ’ d want them to be the same function in your program to save you time, but you ’ d like to give users
the freedom to use these options however they want to use them.

 The getopt module provides two functions to make this standard convention easy to use: getopt
.getopt and getopt.gnu_getopt . They are both basically the same. The basic getopt only works
until the first non - option is encountered — nothing else is checked.

 For getopt to be useful, you have to know what options you want to be useful. Normally, it ’ s
considered the least you can do for your users to write programs that provide them with information
about how to run the program, such as how Python prints information with the - h option.

 In addition, it ’ s often very useful to have a configuration file. Using these ideas as a starting point, you
could start your new programs so that - h and - - help both produce a minimal message about how your
program is used, and using - c or - - config - file=file would enable you to specify a configuration
file that is different from the default configuration:

import sys
import getopt
Remember, the first thing in the sys.argv list is the name of the command
You don’t need that.
cmdline_params = sys.argv[1:]

opts, args = getopt.getopt(cmdline_params, ‘hc:’, [‘help’, ‘config=’])

for option, parameter in opts:

 if option == ‘-h’ or option == ‘--help’:
 print(“This program can be run with either -h or --help for this
message,”)
 print(“or with -c or --config= < file > to specify a different
configuration file”)

c09.indd 150c09.indd 150 12/22/09 10:45:08 AM12/22/09 10:45:08 AM

Chapter 9: Other Features of the Language

151

 if option in (‘-c’, ‘--config’): # this means the same as the above
 print(“Using configuration file %s” % parameter)

 When long options are used and require a parameter (like - - config in the preceding example), the
equal sign must connect the option and the value of the parameter. However, when short options are
used, one or more space or tab characters can separate the option from its corresponding value. This
distinction is to duplicate the behavior of the options on older UNIX machines that persist to the modern
day. They persist because so many people expect that behavior. What can you do?

 The preceding code snippet, if run in a program with the parameters - c test - h
- - config=secondtest , produces the following output:

[(‘-c’, ‘test’), (‘-h’, ‘’), (‘--config’, ‘secondtest’)] []
Using configuration file test
This program can be run with either -h or --help for this message,
or with -c or --config= < file > to specify a different configuration file

Using configuration file secondtest

 Note how the second instance of the configuration file is accepted silently; and when it is reached, the
same code that sets the config file is revisited so that the second instance is used.

 The second list, the args data, is an empty list because all of the options provided to the program on the
command line were valid options, or valid parameters to options. If you inserted other strings in the
middle of your options, the normal getopt would behave differently. If the parameters used were
instead - c test useless_information_here - h - - config=secondtest , the output would say a
lot less, and the args array would have a lot more in it.

 [(‘-c’, ‘test’)] [‘useless_information_here’, ‘-h’, ‘--config=secondtest’]
Using configuration file test

 The gnu_getopt lets you mix and match on the command line so that non - options can appear anywhere
in the midst of the options, with more options parsed afterward instead of stopping there:

opts, args = getopt.gnu_getopt(cmdline_params, ‘hc:’, [‘help’, ‘config=’])

for option, parameter in opts:

 if option == ‘-h’ or option == ‘--help’:
 print(“This program can be run with either -h or --help for this
message,”)
 print(“or with -c or --config= < file > to specify a different
configuration file”)

 if option in (‘-c’, ‘--config’): # this means the same as the above
 print(“Using configuration file %s” % parameter)

c09.indd 151c09.indd 151 12/22/09 10:45:08 AM12/22/09 10:45:08 AM

152

Part II: Python Language and the Standard Library

 The important point to note is that if you use something that doesn ’ t meet the criteria for an option (by
beginning with a – or a + , or following an option that takes a parameter), the two behave differently.
Using the options - c test useless_information_here - h - - config=secondtest , the
gnu_getopt function provides the following output, with the odd duck being the only part of the
command line left in the args array:

[(‘-c’, ‘test’), (‘-h’, ‘’), (‘--config’, ‘secondtest’)]
[‘useless_information_here’]
Using configuration file test
This program can be run with either -h or --help for this message,
or with -c or --config= < file > to specify a different configuration file

Using configuration file secondtest

 Using More Than One Process
 In UNIX and UNIX - like operating systems, the main way of performing certain kinds of subtasks is to
create a new process running a new program. On UNIX systems, this is done using a system call that is
available in Python by using os.fork . This actually tells the computer to copy everything about the
currently running program into a newly created program that is separate, but almost entirely identical.
The only difference is that the return value for os.fork is zero in the newly created process (the child),
and is the process ID (PID) of the newly created process in the original process (the parent). This can be
difficult to understand, and the only way to really get it is to use it a few times and to read some other
material on fork and exec that ’ s available online. (Or talk to your nearest UNIX guru.)

 Based on the one critical difference, a parent and child can perform different functions. The parent can
wait for an event while the child processes, or vice versa. The code to do this is simple and common, but
it works only on UNIX and UNIX - like systems:

import os
pid = os.fork()
if pid == 0: # This is the child
 print(“this is the child”)
else:
 print(“the child is pid %d” % pid)

 One of the most common things to do after an os.fork call is to call os.execl immediately afterward
to run another program. os.execl is an instruction to replace the running program with a new
program, so the calling program goes away, and a new program appears in its place (in case you didn ’ t
already know this, UNIX systems use the fork and exec method to run all programs):

import os
pid = os.fork()
fork and exec together
print(“second test”)
if pid == 0: # This is the child
 print(“this is the child”)
 print(“I’m going to exec another program now”)
 os.execl(‘/bin/cat’, ‘cat’, ‘/etc/motd’)
else:
 print(“the child is pid %d” % pid)
 os.wait()

c09.indd 152c09.indd 152 12/22/09 10:45:09 AM12/22/09 10:45:09 AM

Chapter 9: Other Features of the Language

153

 The os.wait function instructs Python that you want the parent to not do anything until the child
process returns. It is very useful to know how this works because it works well only under UNIX and
UNIX - like platforms such as Linux. Windows also has a mechanism for starting up new processes.

 To make the common task of starting a new program easier, Python offers a single family of functions
that combines os.fork and os.exec on UNIX - like systems, and enables you to do something similar on
Windows platforms. When you want to just start up a new program, you can use the os.spawn family of
functions. They are a family because they are named similarly, but each one has slightly different
behaviors.

 On UNIX - like systems, the os.spawn family contains spawnl , spawnle , spawnlp , spawnlpe , spawnv ,
 spawnve , spawnvp , and spawnvpe . On Windows systems, the spawn family contains only spawnl ,
 spawnle , spawnv , and spawnve .

 In each case, the letters after the word spawn mean something specific. The v means that a list (a vector is
what the v actually stands for) will be passed in as the parameters. This allows a command to be run
with very different commands from one instance to the next without needing to alter the program at all.
The l variation just requires a simple list of parameters.

 The e occurrences require that a dictionary containing names and values that will be used as the
 environment for the newly created program will be passed in instead of using the current environment.

 The p occurrence uses the value of the PATH key in the environment dictionary to find the program. The
 p variants are available only on UNIX - like platforms. The least of what this means is that on Windows
your programs must have a completely qualified path to be usable by the os.spawn calls, or you have to
search the path yourself:

import os, sys
if sys.platform == ‘win32’:
 print(“Running on a windows platform”)
 command = “C:\\winnt\\system32\\cmd.exe”
 params = []

if sys.platform == ‘linux2’:
 print(“Running on a Linux system, identified by %s” % sys.platform)
 command = ‘/bin/uname’
 params = [‘uname’, ‘-a’]

print(“Running %s” % command)
os.spawnv(os.P_WAIT, command, params)

 Of course, this example will only work on a limited range of systems. You can use the contents of
sys.platform on your own computer and for something besides linux2 in case you are on another
UNIX system such as Solaris, Mac OS X, AIX, or others.

 When you do this, you can either wait for the process to return (that is, until it finishes and exits) or you
can tell Python that you ’ d prefer to allow the program to run on its own, and that you will confirm that
it completed successfully later. This is done with the os.P_ family of values. Depending on which one
you set, you will be given a different behavior when an os.spawn function returns.

c09.indd 153c09.indd 153 12/22/09 10:45:09 AM12/22/09 10:45:09 AM

154

Part II: Python Language and the Standard Library

 If you need only the most basic invocation of a new command, sometimes the easiest way to do this is to
use the os.system function. If you are running a program and just want to wait for it to finish, you can
use this function very simply:

Now system
if sys.platform == ‘win32’:
 print(“Running on a windows platform”)
 command = “cmd.exe”

if sys.platform == ‘linux2’:
 print(“Running Linux”)
 command = “uname -a”

os.system(command)

 This can be much simpler because it uses the facilities that the operating system provides, and that users
expect normally, to search for the program you want to run, and it defaults to waiting for the child
process to finish.

 Threads — Doing Many Things in the Same Process
 Creating a new process using fork or spawn can sometimes be too much effort and not provide enough
benefit. Specifically, regarding the too much effort, when a program grows to be large, fork has to copy
everything in the program to the new program and the system must have enough resources to handle
that. Another downside for fork is that sometimes when you need your program to do many things at
the same time, some things may need to wait while others need to proceed. When this happens, you
want to have all of the different components communicating their needs to other parts of the program.

 Using multiple processes, this becomes very difficult. These processes share many things because the
child was originally created using the data in the parent. However, they are separate entities —
 completely separate. Because of this, it can be very tricky to make two processes work together
cooperatively.

 So, to make some complex situations where subprocesses are not appropriate workable, the concept of
threads is available.

 Many cooperative threads of program execution are able to exist at the same time in the same program.
Each one has potentially different objects, with different state, but they can all communicate, while also
being able to run semi - independently of one another.

 This means that in many situations, using threads is much more convenient than using a separate
process. Note that the following example uses subclassing , which is covered in Chapter 10. To see how
this works, try running it with a fairly large parameter, say two million (2000000):

import math
from threading import Thread
import time

class SquareRootCalculator:

c09.indd 154c09.indd 154 12/22/09 10:45:09 AM12/22/09 10:45:09 AM

Chapter 9: Other Features of the Language

155

 “””This class spawns a separate thread to calculate a bunch of square
 roots, and checks in it once a second until it finishes.”””

 def __init__(self, target):
 “””Turn on the calculator thread and, while waiting for it to
 finish, periodically monitor its progress.”””
 self.results = []
 counter = self.CalculatorThread(self, target)
 print(“Turning on the calculator thread...”)
 counter.start()
 while len(self.results) < target:
 print(“%d square roots calculated so far.” % len(self.results))
 time.sleep(1)
 print(“Calculated %s square root(s); the last one is sqrt(%d)=%f” %
 (target, len(self.results), self.results[-1]))

 class CalculatorThread(Thread):
 “””A separate thread which actually does the calculations.”””

 def __init__(self, controller, target):
 “””Set up this thread, including making it a daemon thread
 so that the script can end without waiting for this thread to
 finish.”””
 Thread.__init__(self)
 self.controller = controller
 self.target = target
 self.setDaemon(True)

 def run(self):
 “””Calculate square roots for all numbers between 1 and the
target,
 inclusive.”””
 for i in range(1, self.target+1):
 self.controller.results.append(math.sqrt(i))

if __name__ == ‘__main__’:
 import sys
 limit = None
 if len(sys.argv) > 1:
 limit = sys.argv[1]
 try:
 limit = int(limit)
 except ValueError:
 print(“Usage: %s [number of square roots to calculate]”
 % sys.argv[0])
 SquareRootCalculator(limit)

 For many situations, such as network servers (see Chapter 16) or graphical user interfaces (see Chapter
13), threads make much more sense because they require less work from you as the programmer, and
fewer resources from the system.

 Note how separate threads can access each other ’ s names and data easily. This makes it very easy to
keep track of what different threads are doing, which is an important convenience.

c09.indd 155c09.indd 155 12/22/09 10:45:10 AM12/22/09 10:45:10 AM

156

Part II: Python Language and the Standard Library

 Summary
 In this chapter, you were introduced to some of the many available functions and modules that Python
offers. These features build on the material you ’ ve already learned and most of them are expanded on in
the remaining chapters in the book.

 You learned how to use some basic features that enable what is usually called a functional style of
programming, which in Python is offered through the functions lambda and map . Lambda enables you to
write a simple function without having to declare it elsewhere. These functions are called anonymous
because they can be written and run without ever having to be bound to a name. Map operates on lists, and
when used on a simple list will run a function on each element from beginning to end. It has some more
complex behaviors, too, which occur when lists within lists, or more than one list, is provided to map .

 The key things to take away from this chapter are:

 List comprehension is the capability to run a limited amount of code — a simple loop, for
instance — within the square brackets that dereference a sequence, so that only those elements
that meet the criteria within the brackets will be returned. This enables you to easily and quickly
access specific members of a sequence.

 The range operation enables you to generate iterators that are commonly used in for loops
because they can provide you with numeric lists starting at any number, and ending at any
number.

 In addition to simple string substitution, you can provide a string with format specifiers that
reference the name of keys in dictionaries by using a special syntax. This form enables you to
continue to use the format specifier options, such as how many spaces you want reserved for the
substitution or how many decimal points should be used.

 An alternative form for simple key - name - based string formatting is provided in the
string.Template module that was added to Python 2.4. It provides a slightly simpler format
that is more appropriate (or at least easier to explain) when you allow your users to specify
templates. Generating form letters is one example of how this could be used.

 Getopt enables you to specify options on the command line that lets you offer your users
options that determine the behavior of your programs when they ’ re run.

 You now know how to create more processes when needed, and how to create threads for use in
more complex programs that need to do many things in parallel. You learn more about using
threads in Chapters 13 and 16.

 The features and modules presented here give you an idea of the different directions in which
Python can be extended and used, and how easy it is to use these extensions. In Chapter 10, you
see most of the concepts you ’ ve used already tied into an example working program.

 Exercises
 Chapter 9 is a grab - bag of different features. At this point, the best exercise is to test all of the sample
code, looking at the output produced and trying to picture how the various ideas introduced here could
be used to solve problems that you ’ d like to solve or would have liked to solve in the past.

❑

❑

❑

❑

❑

❑

❑

c09.indd 156c09.indd 156 12/22/09 10:45:10 AM12/22/09 10:45:10 AM

 10
Building a Module

 As you saw in Chapter 7, modules provide a convenient way to share Python code between
applications. A module is a very simple construct, and in Python, a module is merely a file of
Python statements. The module might define functions and classes, and it can contain simple
executable code that ’ s not inside a function or class. And, best yet, a module might contain
documentation about how to use the code in the module.

 Python comes with a library of hundreds of modules that you can call in your scripts. You can also
create your own modules to share code among your scripts. This chapter shows you how to create
a module, step by step. This includes the following:

 Exploring the internals of modules

 Creating a module that contains only functions

 Defining classes in a module

 Extending classes with subclasses

 Defining exceptions to report error conditions

 Documenting your modules

 Testing your modules

 Running modules as programs

 Installing modules

 The first step is to examine what modules really are and how they work.

 Exploring Modules
 A module is just a Python source file. The module can contain variables, classes, functions, and any
other element available in your Python scripts.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c10.indd 157c10.indd 157 12/22/09 10:45:31 AM12/22/09 10:45:31 AM

158

Part II: Python Language and the Standard Library

 You can get a better understanding of modules by using the dir function. Pass the name of some
Python element, such as a module, and dir will tell you all of the attributes of that element. For
example, to see the attributes of __builtins__ , which contain built - in functions, classes, and variables,
use the following:

dir(__builtins__)

 For example:

 > > > dir(__builtins__)
[‘ArithmeticError’, ‘AssertionError’, ‘AttributeError’, ‘BaseException’,
‘BufferError’, ‘BytesWarning’, ‘DeprecationWarning’, ‘EOFError’,
‘Ellipsis’, ‘EnvironmentError’, ‘Exception’, ‘False’, ‘FloatingPointError’,
‘FutureWarning’, ‘GeneratorExit’, ‘IOError’, ‘ImportError’, ‘ImportWarning’,
‘IndentationError’, ‘IndexError’, ‘KeyError’,
‘KeyboardInterrupt’,’LookupError’, ‘MemoryError’,
‘NameError’, ‘None’, ‘NotImplemented’, ‘NotImplementedError’,
‘OSError’, ‘OverflowError’,’PendingDeprecationWarning’,
‘ReferenceError’, ‘RuntimeError’, ‘RuntimeWarning’, ‘StopIteration’,
‘SyntaxError’, ‘SyntaxWarning’,’SystemError’, ‘SystemExit’,
‘TabError’, ‘True’, ‘TypeError’, ‘UnboundLocalError’,
‘UnicodeDecodeError’, ‘UnicodeEncodeError’, ‘UnicodeError’,
‘UnicodeTranslateError’, ‘UnicodeWarning’, ‘UserWarning’,
‘ValueError’, ‘Warning’, ‘WindowsError’, ‘ZeroDivisionError’,
‘__build_class__’, ‘__debug__’, ‘__doc__’, ‘__import__’,
‘__name__’, ‘__package__’, ‘abs’, ‘all’, ‘any’, ‘ascii’, ‘bin’,
‘bool’, ‘bytearray’, ‘bytes’, ‘chr’, ‘classmethod’, ‘compile’,
‘complex’, ‘copyright’, ‘credits’, ‘delattr’, ‘dict’, ‘dir’, ‘divmod’,
‘enumerate’, ‘eval’, ‘exec’, ‘exit’, ‘filter’, ‘float’, ‘format’,
‘frozenset’, ‘getattr’, ‘globals’, ‘hasattr’, ‘hash’, ‘help’, ‘hex’,
‘id’, ‘input’, ‘int’, ‘isinstance’, ‘issubclass’, ‘iter’,
‘len’, ‘license’, ‘list’, ‘locals’, ‘map’, ‘max’, ‘memoryview’, ‘min’,
‘next’, ‘object’, ‘oct’, ‘open’, ‘ord’, ‘pow’, ‘print’, ‘property’, ‘quit’,
‘range’, ‘repr’, ‘reversed’, ‘round’, ‘set’, ‘setattr’, ‘slice’, ‘sorted’,
‘staticmethod’, ‘str’, ‘sum’, ‘super’, ‘tuple’, ‘type’,
‘vars’, ‘zip’]

 For a language with as many features as Python, it has surprisingly few built - in elements. You can run
the dir function on modules you import as well. For example:

 > > > import sys
 > > > dir(sys)
[‘__displayhook__’, ‘__doc__’, ‘__excepthook__’, ‘__name__’, ‘__package__’,
‘__stderr__’, ‘__stdin__’, ‘__stdout__’, ‘_clear_type_cache’,
‘_current_frames’, ‘_getframe’, ‘api_version’, ‘argv’,
‘builtin_module_names’, ‘byteorder’, ‘call_tracing’, ‘callstats’,
‘copyright’, ‘displayhook’,’dllhandle’, ‘dont_write_bytecode’,
‘exc_info’, ‘excepthook’, ‘exec_prefix’, ‘executable’,’exit’, ‘flags’,
‘float_info’, ‘getcheckinterval’,’getdefaultencoding’,
‘getfilesystemencoding’, ‘getprofile’, ‘getrecursionlimit’, ‘getrefcount’,
‘getsizeof’, ‘gettrace’, ‘getwindowsversion’, ‘hexversion’,
‘intern’, ‘maxsize’, ‘maxunicode’, ‘meta_path’, ‘modules’, ‘path’,
‘path_hooks’, ‘path_importer_cache’, ‘platform’, ‘prefix’,
‘setcheckinterval’,’setfilesystemencoding’, ‘setprofile’,

c10.indd 158c10.indd 158 12/22/09 10:45:32 AM12/22/09 10:45:32 AM

Chapter 10: Building a Module

159

‘setrecursionlimit’,’settrace’, ‘stderr’, ‘stdin’, ‘stdout’,
‘subversion’,
‘version’, ‘version_info’, ‘warnoptions’, ‘winver’]

 Use dir to help examine modules, including the modules you create.

 Importing Modules
 Before using a module, you need to import it. The standard syntax for importing follows:

import module

 You can use this syntax with modules that come with Python or with modules you create. You can also
use the following alternative syntax:

from module import item

 The alternative syntax enables you to specifically import just a class or function if that is all you need.

 If a module has changed, you can reload the new definition of the module using the imp.reload
function. The syntax is as follows:

import module
import imp
imp.reload(module)

 Replace module with the module you want to reload.

 With imp.reload , always use parentheses. With import , do not use parentheses.

 Finding Modules
 To import a module, the Python interpreter needs to find the module. With a module, the Python
interpreter first looks for a file named module.py, where module is the name of the module you pass to
the import statement. On finding a module, the Python interpreter will compile the module into a .pyc
file. When you next import the module, the Python interpreter can load the pre - compiled module,
speeding your Python scripts.

 When you place an import statement in your scripts, the Python interpreter has to be able to find the
module. The key point is that the Python interpreter only looks in a certain number of directories for
your module. If you enter a name the Python interpreter cannot find, it will display an error, as shown in
the following example:

 > > > import foo
Traceback (most recent call last):
 File “ < pyshell#12 > ”, line 1, in < module >
 import foo
ImportError: No module named foo

c10.indd 159c10.indd 159 12/22/09 10:45:32 AM12/22/09 10:45:32 AM

160

Part II: Python Language and the Standard Library

 The Python interpreter looks in the directories that are part of the module search path. These directories
are listed in the sys.path variable from the sys module.

 To list where the Python interpreter looks for modules, print out the value of the sys.path variable in
the Python interpreter. For example:

 > > > import sys
 > > > print(sys.path)
[‘C:\\Python31\\Lib\\idlelib’, ‘C:\\Windows\\system32\\python3`.zip’,
‘C:\\Python31\\DLLs’, ‘C:\\Python31\\lib’,
‘C:\\Python31\\lib\\plat-win’, ‘C:\\Python31’,
‘C:\\Python31\\lib\\site-packages’]

 Digging through Modules
 Because Python is an open - source package, you can get the source code to the Python interpreter as well
as all modules. In fact, even with a binary distribution of Python, you ’ ll find the source code for modules
written in Python.

 Start by looking in all the directories listed in the sys.path variable for files with names ending in .py .
These are Python modules. Some modules contain functions, and others contain classes and functions.
For example, the following module, Parser , defines a class in the Python 3.0 distribution:

“””A parser of RFC 2822 and MIME email messages.”””
__all__ = [‘Parser’, ‘HeaderParser’]
import warnings
from io import StringIO
from email.feedparser import FeedParser
from email.message import Message
class Parser:
 def __init__(self, *args, **kws):
 “””Parser of RFC 2822 and MIME email messages.
 Creates an in-memory object tree representing the email message, which
 can then be manipulated and turned over to a Generator to return the
 textual representation of the message.
 The string must be formatted as a block of RFC 2822 headers and header
 continuation lines, optionally preceded by a `Unix-from’ header. The
 header block is terminated either by the end of the string or by a
 blank line.
 _class is the class to instantiate for new message objects when they
 must be created. This class must have a constructor that can take
 zero arguments. Default is Message.Message.
 “””
 if len(args) > = 1:
 if ‘_class’ in kws:
 raise TypeError(“Multiple values for keyword arg ‘_class’”)
 kws[‘_class’] = args[0]
 if len(args) == 2:
 if ‘strict’ in kws:
 raise TypeError(“Multiple values for keyword arg ‘strict’”)

c10.indd 160c10.indd 160 12/22/09 10:45:33 AM12/22/09 10:45:33 AM

Chapter 10: Building a Module

161

 kws[‘strict’] = args[1]
 if len(args) > 2:
 raise TypeError(‘Too many arguments’)
 if ‘_class’ in kws:
 self._class = kws[‘_class’]
 del kws[‘_class’]
 else:
 self._class = Message
 if ‘strict’ in kws:
 warnings.warn(“’strict’ argument is deprecated (and ignored)”,
 DeprecationWarning, 2)
 del kws[‘strict’]
 if kws:
 raise TypeError(‘Unexpected keyword arguments’)
 def parse(self, fp, headersonly=False):
 “””Create a message structure from the data in a file.
 Reads all the data from the file and returns the root of the message
 structure. Optional headersonly is a flag specifying whether to stop
 parsing after reading the headers or not. The default is False,
 meaning it parses the entire contents of the file.
 “””
 feedparser = FeedParser(self._class)
 if headersonly:
 feedparser._set_headersonly()
 while True:
 data = fp.read(8192)
 if not data:
 break
 feedparser.feed(data)
 return feedparser.close()

 def parsestr(self, text, headersonly=False):
 “””Create a message structure from a string.

 Returns the root of the message structure. Optional headersonly is a
 flag specifying whether to stop parsing after reading the headers or
 not. The default is False, meaning it parses the entire contents of
 the file.
 “””
 return self.parse(StringIO(text), headersonly=headersonly)
class HeaderParser(Parser):
 def parse(self, fp, headersonly=True):
 return Parser.parse(self, fp, True)

 def parsestr(self, text, headersonly=True):
 return Parser.parsestr(self, text, True)

 The majority of this small module is made up of documentation that instructs users how to use the
module. Documentation is important.

 When you look through the standard Python modules, you can get a feel for how modules are put
together. It also helps when you want to create your own modules.

c10.indd 161c10.indd 161 12/22/09 10:45:33 AM12/22/09 10:45:33 AM

162

Part II: Python Language and the Standard Library

 Creating Modules and Packages
 Creating modules is easier than you might think. A module is merely a Python source file. In fact, any
time you ’ ve created a Python file, you have already been creating modules without even knowing it.

 The following example will help you get started creating modules.

 Try It Out Creating a Module with Functions

 Enter the following Python code and name the file food.py :

def favoriteFood():
 print(“the only food worth eating is an omelet.”)

 This is your module. You then can import the module using the Python interpreter. For example:

 > > > import food
 > > > dir(food)
[‘__builtins__’, ‘__doc__’, ‘__file__’, ‘__name__’, ‘__package__’,
‘favoriteFood’]

 How It Works
 Python uses a very simple definition for a module. You can use any Python source file as a module, as
shown in this short example. The dir function lists the items defined in the module, including the
function favoriteFood .

 Once imported, you can execute the code in the module with a command like the following:

 > > > food.favoriteFood()
The only food worth eating is an omelet.

 If you don ’ t use the module name prefix, food in this case, you will get an error, as shown in the
following example:

 > > > favoriteFood()
Traceback (most recent call last):
 File “ < pyshell#22 > ”, line 1, in < module >
 favoriteFood()
NameError: name ‘favoriteFood’ is not defined

 Using the alternative syntax for imports can eliminate this problem:

 > > > from food import favoriteFood
 > > > favoriteFood()
The only food worth eating is an omelet.
 > > >

 Congratulations! You are now a certified module creator.

c10.indd 162c10.indd 162 12/22/09 10:45:33 AM12/22/09 10:45:33 AM

Chapter 10: Building a Module

163

 Working with Classes
 Most modules define a set of related functions or classes. A class, as introduced in Chapter 6, holds data
as well as the methods that operate on that data. Python is a little looser than most programming
languages, such as Java, C++, or C#, in that Python lets you break rules enforced in other languages. For
example, Python, by default, lets you access data inside a class. This does violate some of the concepts of
object - oriented programming but with good reason: Python aims first and foremost to be practical.

 Defining Object - Oriented Programming
 Computer geeks argue endlessly over what is truly object - oriented programming (OOP). Most experts,
however, agree on the following three concepts:

 Encapsulation

 Inheritance

 Polymorphism

 Encapsulation is the idea that a class can hide the internal details and data necessary to perform a certain
task. A class holds the necessary data, and you are not supposed to see that data under normal
circumstances. Furthermore, a class provides a number of methods to operate on that data. These
methods can hide the internal details, such as network protocols, disk access, and so on. Encapsulation is
a technique to simplify your programs. At each step in creating your program, you can write code that
concentrates on a single task. Encapsulation hides the complexity.

 Inheritance means that a class can inherit, or gain access to, data and methods defined in a parent class.
This just follows common sense in classifying a problem domain. For example, a rectangle and a circle
are both shapes. In this case, the base class would be Shapes . The Rectangle class would then inherit
from Shapes , as would the Circle class. Inheritance enables you to treat objects of both the Rectangle
and Circle classes as children and members of the Shape class, meaning you can write more generic
code in the base class, and become more specific in the children. (The terms children and child class , and
 membership in a class , are similar and can be used interchangeably here.) For the most part, the base class
should be general and the subclasses specialized. Inheritance is often called specialization .

 Polymorphism means that subclasses can override methods for more specialized behavior. For example, a
rectangle and a circle are both shapes. You may define a set of common operations, such as move and
 draw , that should apply to all shapes. However, the draw method for a Circle will obviously be
different than the draw method for a Rectangle . Polymorphism enables you to name both methods
 draw and then call these methods as if the Circle and the Rectangle were both Shapes , which they
are, at least in this example.

 Creating Classes
 As described in Chapter 6, creating classes is easy. (In fact, most things in Python are pleasantly easy.)
The following example shows a simple class that represents a meal.

❑

❑

❑

c10.indd 163c10.indd 163 12/22/09 10:45:34 AM12/22/09 10:45:34 AM

164

Part II: Python Language and the Standard Library

 Try It Out Creating a Meal Class

 The following code defines the Meal class. The full source file appears in the section “ Creating a
Whole Module. ”

class Meal:
 ‘’’Holds the food and drink used in a meal.
 In true object-oriented tradition, this class
 includes setter methods for the food and drink.

 Call printIt to pretty-print the values.
 ‘’’

 def __init__(self, food=’omelet’, drink=’coffee’):
 ‘’’Initialize to default values.’’’
 self.name = ‘generic meal’
 self.food = food
 self.drink = drink

 def printIt(self, prefix=’’):
 ‘’’Print the data nicely.’’’
 print(prefix,’A fine’,self.name,’with’,self.food,’and’,self.drink)

 # Setter for the food.
 def setFood(self, food=’omelet’):
 self.food = food

 # Setter for the drink.
 def setDrink(self, drink=’coffee’):
 self.drink = drink

 # Setter for the name.
 def setName(self, name=’’):
 self.name = name

 How It Works
 Each instance of the Meal class holds three data values: the name of the meal, the food, and the drink.
By default, the Meal class sets the name to generic meal , the drink to coffee , and the food to
an omelet .

 As with gin and tonics, omelets are not just for breakfast anymore.

 The __init__ method initializes the data for the Meal . The printIt method prints out the internal
data in a friendly manner. Finally, to support developers used to stricter programming languages, the
 Meal class defines a set of methods called setters . These setter methods, such as setFood and
 setDrink , set data into the class.

 These methods are not necessary in Python, because you can set the data directly.

 See Chapter 6 for more information about classes.

c10.indd 164c10.indd 164 12/22/09 10:45:34 AM12/22/09 10:45:34 AM

Chapter 10: Building a Module

165

 Extending Existing Classes
 After you have defined a class, you can extend it by defining subclasses. For example, you can create a
 Breakfast class that represents the first meal of the day:

class Breakfast(Meal):
 ‘’’Holds the food and drink for breakfast.’’’

 def __init__(self):
 ‘’’Initialize with an omelet and coffee.’’’
 Meal.__init__(self, ‘omelet’, ‘coffee’)
 self.setName(‘breakfast’)

 The Breakfast class extends the Meal class as shown by the class definition:

class Breakfast(Meal):

 Another subclass would naturally be Lunch :

class Lunch(Meal):
 ‘’’Holds the food and drink for lunch.’’’

 def __init__(self):
 ‘’’Initialize with a sandwich and a gin and tonic.’’’
 Meal.__init__(self, ‘sandwich’, ‘gin and tonic’)
 self.setName(‘midday meal’)

 # Override setFood().
 def setFood(self, food=’sandwich’):
 if food != ‘sandwich’ and food != ‘omelet’:
 raise AngryChefException
 Meal.setFood(self, food)

 With the Lunch class, you can see some use for the setter methods. In the Lunch class, the setFood
method allows only two values for the food: a sandwich and an omelet . Nothing else is allowed or you
will make the chef angry.

 The Dinner class also overrides a method — in this case, the printIt method:

class Dinner(Meal):
 ‘’’Holds the food and drink for dinner.’’’

 def __init__(self):
 ‘’’Initialize with steak and merlot.’’’
 Meal.__init__(self, ‘steak’, ‘merlot’)
 self.setName(‘dinner’)

 def printIt(self, prefix=’’):
 ‘’’Print even more nicely.’’’
 print(prefix,’A gourmet’,self.name,’with’,self.food,’and’,self.drink)

c10.indd 165c10.indd 165 12/22/09 10:45:34 AM12/22/09 10:45:34 AM

166

Part II: Python Language and the Standard Library

 Normally, you would place all these classes into a module. See the section “ Creating a Whole Module ”
for an example of a complete module.

 Finishing Your Modules
 After defining the classes and functions that you want for your module, the next step is to finish the
module to make it better fit into the conventions expected by Python users and the Python interpreter.

 Finishing your module can include a lot of things, but at the very least you need to do the following:

 Define the errors and exceptions that apply to your module.

 Define which items in the module you want to export. This defines the public API for
the module.

 Document your module.

 Test your module.

 Provide a fallback function in case your module is executed as a program.

 The following sections describe how to finish up your modules.

 Defining Module - Specific Errors
 Python defines a few standard exception classes, such as IOError and NotImplementedError . If those
classes apply, by all means use them. Otherwise, you may need to define exceptions for specific issues
that may arise when using your module. For example, a networking module may need to define a set of
exceptions relating to network errors.

 For the food - related theme used in the example module, you can define an AngryChefException . To
make this more generic, and perhaps allow reuse in other modules, the AngryChefException is defined
as a subclass of the more general SensitiveArtistException , representing issues raised by touchy
artsy types.

 In most cases, your exception classes will not need to define any methods or initialize any data. The base
 Exception class provides enough. For most exceptions, the mere presence of the exception indicates
the problem.

 This is not always true. For example, an XML - parsing exception should probably contain the line
number where the error occurred, as well as a description of the problem.

❑

❑

❑

❑

❑

c10.indd 166c10.indd 166 12/22/09 10:45:35 AM12/22/09 10:45:35 AM

Chapter 10: Building a Module

167

 You can define the exceptions for the meal module as follows:

class SensitiveArtistException(Exception):
 pass

class AngryChefException(SensitiveArtistException):
 pass

 This is just an example, of course. In your modules, define exception classes as needed. In addition to
exceptions, you should carefully decide what to export from your module.

 Choosing What to Export
 When you use the from form of importing a module, you can specify which items in the module to
import. For example, the following statement imports the AngryChefException from the module meal :

from meal import AngryChefException

 To import all public items from a module, you can use the following format:

from module_name import *

 For example:

from meal import *

 The asterisk, or star (*), tells the Python interpreter to import all public items from the module. What
exactly is public? You, as the module designer, can choose to define whichever items you want to be
exported as public.

 The Python interpreter uses two methods to determine what should be considered public:

 If you have defined the variable __all__ in your module, the interpreter uses __all__ to
determine what should be public.

 If you have not defined the variable __all__ , the interpreter imports everything except items
with names that begin with an underscore, _ , so printIt would be considered public, but
 _printIt would not.

 See Chapter 7 for more information about modules and the import statement.

 As a best practice, always define __all__ in your modules. This provides you with explicit control over
what other Python scripts can import. To do this, simply create a sequence of text strings with the names
of each item you want to export from your module. For example, in the meal module, you can define
__all__ in the following manner:

__all__ = [‘Meal’, ‘AngryChefException’, ‘makeBreakfast’,
 ‘makeLunch’, ‘makeDinner’, ‘Breakfast’, ‘Lunch’, ‘Dinner’]

 Each name in this sequence names a class or function to export from the module.

❑

❑

c10.indd 167c10.indd 167 12/22/09 10:45:35 AM12/22/09 10:45:35 AM

168

Part II: Python Language and the Standard Library

 Choosing what to export is important. When you create a module, you are creating an API to perform
some presumably useful function. The API you export from a module then defines what users of your
module can do. You want to export enough for users of the module to get their work done, but you don ’ t
have to export everything. You may want to exclude items for a number of reasons, including the
following:

 Items you are likely to change should remain private until you have settled on the API for those
items. This gives you the freedom to make changes inside the module without impacting users
of the module.

 Modules can oftentimes hide, on purpose, complicated code. For example, an e - mail module can
hide the gory details of SMTP, POP3, and IMAP network e - mail protocols. Your e - mail module
could present an API that enables users to send messages, see which messages are available,
download messages, and so on.

 Hiding the gory details of how your code is implemented is called encapsulation. Impress your friends
with lines like “ making the change you are asking for would violate the rules of encapsulation . . . ”

 Always define, explicitly, what you want to export from a module. You should also always document
your modules.

 Documenting Your Modules
 It is vitally important that you document your modules. If not, no one, not even you, will know what
your modules do. Think ahead six months. Will you remember everything that went into your modules?
Probably not. The solution is simple: document your modules.

 Python defines a few easy conventions for documenting your modules. Follow these conventions and
your modules will enable users to view the documentation in the standard way. At its most basic, for
each item you want to document, write a text string that describes the item. Enclose this text string in
three quotes, and place it immediately inside the item.

 For example, to document a method or function, use the following code as a guide:

def makeLunch():
 ‘’’ Creates a Breakfast object.’’’
 return Lunch()

 The line in triple quotes shows the documentation. The documentation that appears right after the
function is defined with the def statement.

 Document a class similarly:

class Meal:
 ‘’’Holds the food and drink used in a meal.
 In true object-oriented tradition, this class
 includes setter methods for the food and drink.

 Call printIt to pretty-print the values.
 ‘’’

❑

❑

c10.indd 168c10.indd 168 12/22/09 10:45:35 AM12/22/09 10:45:35 AM

Chapter 10: Building a Module

169

 Place the documentation on the line after the class statement.

 Exceptions are classes, too. Document them as well:

class SensitiveArtistException(Exception):
 ‘’’Exception raised by an overly-sensitive artist.

 Base class for artistic types.’’’
 Pass

 Note that even though this class adds no new functionality, you should describe the purpose of each
exception or class.

 In addition, document the module itself. Start your module with the special three - quoted text string,
as shown here:

“””
Module for making meals in Python.

Import this module and then call
makeBreakfast(), makeDinner() or makeLunch().

“””

 Place this documentation on the first line of the text file that contains the module. For modules, start
with one line that summarizes the purpose of the module. Separate this line from the remaining lines of
the documentation, using a blank line as shown previously. The Python help function will extract the
one - line summary and treat it specially. (See the following Try It Out example for more details about
how to call the help function.)

 Usually, one or two lines per class, method, or function should suffice. In general, your documentation
should tell the user the following:

 How to call the function or method, including what parameters are necessary and what type of
data will be returned. Describe default values for parameters.

 What a given class was designed for, or its purpose. Include how to use objects of the class.

 Any conditions that must exist prior to calling a function or method.

 Any side effects or other parts of the system that will change as a result of the class. For
example, a method to erase all of the files on a disk should be documented as to what it does.

 Exceptions that may be raised and under what reasons these exceptions will be raised.

 Note that some people go way overboard in writing documentation. Too much documentation doesn ’ t
help, but don ’ t use this as an excuse to do nothing. Too much documentation is far better than none
at all.

❑

❑

❑

❑

❑

c10.indd 169c10.indd 169 12/22/09 10:45:35 AM12/22/09 10:45:35 AM

170

Part II: Python Language and the Standard Library

 A good rule of thumb comes from enlightened self - interest. Ask yourself what you would like to see in
someone else ’ s module and document to that standard.

 You can view the documentation you write using the help function, as shown in the following example.

 Try It Out Viewing Module Documentation

Launch the Python interpreter in interactive mode and then run the import and help commands as
shown in the following code:

 > > > import meal
 > > > help(meal)
Help on module meal:
NAME
 meal - Module for making meals in Python.
FILE
 c:\python30\meal.py
DESCRIPTION
 Import this module and then call
 makeBreakfast(), makeDinner() or makeLunch().
CLASSES
 builtins.object
 Meal
 Breakfast
 Dinner
 Lunch
 SensitiveArtistException(builtins.Exception)
 AngryChefException

 class AngryChefException(SensitiveArtistException)
 | Exception that indicates the chef is unhappy.
 |
 | Method resolution order:
 | AngryChefException
 | SensitiveArtistException
 | builtins.Exception
 | builtins.BaseException
 | builtins.object
 |
 | Data descriptors inherited from SensitiveArtistException:
 |
 | __weakref__
 | list of weak references to the object (if defined)
 |
 | --
 | Methods inherited from builtins.Exception:
 |
 | __init__(...)
 | x.__init__(...) initializes x; see x.__class__.__doc__ for signature
 |
 | --

c10.indd 170c10.indd 170 12/22/09 10:45:36 AM12/22/09 10:45:36 AM

Chapter 10: Building a Module

171

 | Data and other attributes inherited from builtins.Exception:
 |
 | __new__ = < built-in method __new__ of type object at 0x1E1BCCC8 >
 | T.__new__(S, ...) - > a new object with type S, a subtype of T
 |
 | --
 | Methods inherited from builtins.BaseException:
 |
 | __delattr__(...)
 | x.__delattr__(‘name’) < == > del x.name
 |
 | __getattribute__(...)
 | x.__getattribute__(‘name’) < == > x.name
 |
 | __reduce__(...)
 |
 | __repr__(...)
 | x.__repr__() < == > repr(x)
 |
 | __setattr__(...)
 | x.__setattr__(‘name’, value) < == > x.name = value
 |
 | __setstate__(...)
 |
 | __str__(...)
 | x.__str__() < == > str(x)
 |
 | with_traceback(...)
 | Exception.with_traceback(tb) --
 | set self.__traceback__ to tb and return self.
 |
 | --
 | Data descriptors inherited from builtins.BaseException:
 |
 | __cause__
 | exception cause
 |
 | __context__
 | exception context
 |
 | __dict__
 |
 | __traceback__
 |
 | args

 class Breakfast(Meal)
 | Holds the food and drink for breakfast.
 |

c10.indd 171c10.indd 171 12/22/09 10:45:36 AM12/22/09 10:45:36 AM

172

Part II: Python Language and the Standard Library

 | Method resolution order:
 | Breakfast
 | Meal
 | builtins.object
 |
 | Methods defined here:
 |
 | __init__(self)
 | Initialize with an omelet and coffee.
 |
 | --
 | Methods inherited from Meal:
 |
 | printIt(self, prefix=’’)
 | Print the data nicely.
 |
 | setDrink(self, drink=’coffee’)
 | # Setter for the drink.
 |
 | setFood(self, food=’omelet’)
 | # Setter for the food.
 |
 | setName(self, name=’’)
 | # Setter for the name.
 |
 | --
 | Data descriptors inherited from Meal:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)

 class Dinner(Meal)
 | Holds the food and drink for dinner.
 |
 | Method resolution order:
 | Dinner
 | Meal
 | builtins.object
 |
 | Methods defined here:
 |
 | __init__(self)
 | Initialize with steak and merlot.
 |
 | printIt(self, prefix=’’)
 | Print even more nicely.
 |
 | --
 | Methods inherited from Meal:
 |

c10.indd 172c10.indd 172 12/22/09 10:45:36 AM12/22/09 10:45:36 AM

Chapter 10: Building a Module

173

 | setDrink(self, drink=’coffee’)
 | # Setter for the drink.
 |
 | setFood(self, food=’omelet’)
 | # Setter for the food.
 |
 | setName(self, name=’’)
 | # Setter for the name.
 |
 | --
 | Data descriptors inherited from Meal:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)

 class Lunch(Meal)
 | Holds the food and drink for lunch.
 |
 | Method resolution order:
 | Lunch
 | Meal
 | builtins.object
 |
 | Methods defined here:
 |
 | __init__(self)
 | Initialize with a sandwich and a gin and tonic.
 |
 | setFood(self, food=’sandwich’)
 | # Override setFood().
 |
 | --
 | Methods inherited from Meal:
 |
 | printIt(self, prefix=’’)
 | Print the data nicely.
 |
 | setDrink(self, drink=’coffee’)
 | # Setter for the drink.
 |
 | setName(self, name=’’)
 | # Setter for the name.
 |
 | --
 | Data descriptors inherited from Meal:
 |

c10.indd 173c10.indd 173 12/22/09 10:45:37 AM12/22/09 10:45:37 AM

174

Part II: Python Language and the Standard Library

 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)

 class Meal(builtins.object)
 | Holds the food and drink used in a meal.
 | In true object-oriented tradition, this class
 | includes setter methods for the food and drink.
 |
 | Call printIt to pretty-print the values.
 |
 | Methods defined here:
 |
 | __init__(self, food=’omelet’, drink=’coffee’)
 | Initialize to default values.
 |
 | printIt(self, prefix=’’)
 | Print the data nicely.
 |
 | setDrink(self, drink=’coffee’)
 | # Setter for the drink.
 |
 | setFood(self, food=’omelet’)
 | # Setter for the food.
 |
 | setName(self, name=’’)
 | # Setter for the name.
 |
 | --
 | Data descriptors defined here:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)
FUNCTIONS
 makeBreakfast()
 Creates a Breakfast object.

 makeDinner()
 Creates a Breakfast object.
 makeLunch()
 Creates a Breakfast object.
DATA
 __all__ = [‘Meal’, ‘AngryChefException’, ‘makeBreakfast’, ‘makeLunch’,...

 How It Works
 The help function is your friend. It can show you the documentation for your modules, as well as the
documentation on any Python module.

 You must import a module prior to calling the help function to read the module ’ s documentation.

c10.indd 174c10.indd 174 12/22/09 10:45:37 AM12/22/09 10:45:37 AM

Chapter 10: Building a Module

175

 The help function first prints the documentation for the module:

Help on module meal:

NAME
 meal - Module for making meals in Python.

FILE
 c:\python30\meal.py

DESCRIPTION
 Import this module and then call
 makeBreakfast(), makeDinner() or makeLunch().

 Note how the help function separates the first summary line of the module documentation from the
rest of the documentation. The following shows the original string that documents this module:

“””
Module for making meals in Python.

Import this module and then call
makeBreakfast(), makeDinner() or makeLunch().

“””

 The help function pulls out the first line for the NAME section of the documentation and the rest for the
 DESCRIPTION section.

 The help function summarizes the classes next and then shows the documentation for each class:

CLASSES
 exceptions.Exception
 AngryChefException
 SensitiveArtistException
 Meal
 Breakfast
 Dinner
 Lunch

 Each class is shown indented based on inheritance. In this example, the summary shows that the
 Breakfast class inherits from the Meal class.

 For each function and method, the help function prints out the documentation:

 | printIt(self, prefix=’’)
 | Print the data nicely.

 However, if you just have comments near a function or method definition, the help function will try
to associate a comment with the function or method. This doesn ’ t always work, however, because the
 help function alphabetizes the methods and functions. For example:

 |
 | setDrink(self, drink=’coffee’)
 | # Setter for the name.
 |
 | setFood(self, food=’omelet’)

c10.indd 175c10.indd 175 12/22/09 10:45:37 AM12/22/09 10:45:37 AM

176

Part II: Python Language and the Standard Library

 | # Setter for the drink.
 |
 | setName(self, name=’’)
 | # Setter for the name.

 Note how the comments are associated with the wrong methods. Here is the original code:

 # Setter for the food.
 def setFood(self, food=’omelet’):
 self.food = food

 # Setter for the drink.
 def setDrink(self, drink=’coffee’):
 self.drink = drink

 # Setter for the name.
 def setName(self, name=’’):
 self.name = name

 The lesson here is to follow the Python conventions for documenting methods. To fix this error, change
the comments that appear above each method into a Python documentation string. Move the Python
documentation string down to the line immediately following the corresponding def command.

 As you develop your module, you can call the help function repeatedly to see how changes in the
code change the documentation. If you have changed the Python source file for your module,
however, you need to reload the module prior to calling help. The reload function takes a module, as
does help . The syntax follows:

import imp
imp.reload(module)
help(module)

 For example, to reload the module meal , use the following code:

 > > > import imp
 > > > imp.reload(meal)
 < module ‘meal’ from ‘C:\Python30\meal.py’ >

 Just as documentation is important, so is testing. The more you can test your modules, the better your
modules will fit into Python applications. You ’ ll know that the functionality of the modules works
prior to using those modules in a program.

 Testing Your Module
 Testing is hard. Testing is yucky. That ’ s why testing is often skipped. Even so, testing your module can
verify that it works. More important, creating tests enables you to make changes to your module and
then verify that the functionality still works.

c10.indd 176c10.indd 176 12/22/09 10:45:37 AM12/22/09 10:45:37 AM

Chapter 10: Building a Module

177

 Any self - respecting module should include a test function that exercises the functionality in the module.
Your tests should create instances of the classes defined in the module, and call methods on those
instances.

 For example, the following method provides a test of the meal module: (Note that this will not work if
you run it yet; you ’ ll need to add the Dinner class, which is defined later in this chapter.)

def test():
 ‘’’Test function.’’’

 print(‘Module meal test.’)

 # Generic no arguments.
 print(‘Testing Meal class.’)
 m = Meal()

 m.printIt(“\t”)

 m = Meal(‘green eggs and ham’, ‘tea’)
 m.printIt(“\t”)

 # Test breakfast
 print(‘Testing Breakfast class.’)
 b = Breakfast()
 b.printIt(“\t”)

 b.setName(‘breaking of the fast’)
 b.printIt(“\t”)

 # Test dinner
 print(‘Testing Dinner class.’)
 d = Dinner()
 d.printIt(“\t”)

 # Test lunch
 print(‘Testing Lunch class.’)
 l = Lunch()
 l.printIt(“\t”)

 print(‘Calling Lunch.setFood().’)
 try:
 l.setFood(‘hotdog’)
 except AngryChefException:
 print(“\t”,’The chef is angry. Pick an omelet.’)

 Make your test functions part of your modules, so the tests are always available. You learn more about
testing in Python in Chapter 12.

 Testing is never finished. You can always add more tests. Just do what you can.

c10.indd 177c10.indd 177 12/22/09 10:45:38 AM12/22/09 10:45:38 AM

178

Part II: Python Language and the Standard Library

 Running a Module as a Program
 Normally, modules aren ’ t intended to be run on their own. Instead, other Python scripts import items
from a module and then use those items. However, because a module can be any file of Python code, you
can indeed run a module.

 Because modules aren ’ t meant to be run on their own, Python defines a convention for modules. When a
module is run on its own, it should execute the module tests. This provides a simple means to test your
modules: Just run the module as a Python script.

 To help with this convention, Python provides a handy idiom to detect whether your module is run as a
program. Using the test function shown previously, you can use the following code to execute your
module tests:

if __name__ == ‘__main__’:
 test()

 If you look at the source code for the standard Python modules, you ’ ll find this idiom used repeatedly.

 The next example runs the meal module, created in the section “ Creating a Whole Module. ”

 Try It Out Running a Module

 You can run a module, such as the meal module, as a program by using a command like the following:

$ python meal.py
Module meal test.
Testing Meal class.
 A fine generic meal with omelet and coffee
 A fine generic meal with green eggs and ham and tea
Testing Breakfast class.
 A fine breakfast with omelet and coffee
 A fine breaking of the fast with omelet and coffee
Testing Dinner class.
 A gourmet dinner with steak and merlot
Testing Lunch class.
 A fine midday meal with sandwich and gin and tonic
Calling Lunch.setFood().
 The chef is angry. Pick an omelet.

 How It Works
 This example runs a module as a Python program. Using the idiom to detect this situation, the module
merely runs the test function. The output you see is the output of the tests.

 Note how the output runs an instance of each class defined in the module, as well as tests the raising
of the AngryChefException .

 If you follow all of the guidelines in this section, your modules will meet the expectations of other
Python developers. Moreover, your modules will work better in your scripts. You can see all of this in
action in the next section, which shows a complete Python module.

c10.indd 178c10.indd 178 12/22/09 10:45:38 AM12/22/09 10:45:38 AM

Chapter 10: Building a Module

179

 Creating a Whole Module
 The sections in this chapter so far show the elements you need to include in the modules you create. The
following example shows a complete module using the techniques described so far.

 The meal module doesn ’ t do much. It supposedly models a domain that includes food and drink over
three daily meals.

 Obviously, this module doesn ’ t support Hobbits, who require more than three meals a day.

 The code in this module is purposely short. The intent is not to perform a useful task but instead to show
how to put together a module.

 Try It Out Finishing a Module

 Enter the following code and name the file meal.py :

“””
Module for making meals in Python.
Import this module and then call
makeBreakfast(), makeDinner() or makeLunch().
“””
__all__ = [‘Meal’,’AngryChefException’, ‘makeBreakfast’,
 ‘makeLunch’, ‘makeDinner’, ‘Breakfast’, ‘Lunch’, ‘Dinner’]
Helper functions.
def makeBreakfast():
 ‘’’ Creates a Breakfast object.’’’
 return Breakfast()
def makeLunch():
 ‘’’ Creates a Breakfast object.’’’
 return Lunch()
def makeDinner():
 ‘’’ Creates a Breakfast object.’’’
 return Dinner()
Exception classes.
class SensitiveArtistException(Exception):
 ‘’’Exception raised by an overly-sensitive artist.
 Base class for artistic types.’’’
 pass
class AngryChefException(SensitiveArtistException):
 ‘’’Exception that indicates the chef is unhappy.’’’
 pass
class Meal:
 ‘’’Holds the food and drink used in a meal.
 In true object-oriented tradition, this class
 includes setter methods for the food and drink.

 Call printIt to pretty-print the values.
 ‘’’
 def __init__(self, food=’omelet’, drink=’coffee’):
 ‘’’Initialize to default values.’’’
 self.name = ‘generic meal’

c10.indd 179c10.indd 179 12/22/09 10:45:38 AM12/22/09 10:45:38 AM

180

Part II: Python Language and the Standard Library

 self.food = food
 self.drink = drink
 def printIt(self, prefix=’’):
 ‘’’Print the data nicely.’’’
 print(prefix,’A fine’,self.name,’with’,self.food,’and’,self.drink)
 # Setter for the food.
 def setFood(self, food=’omelet’):
 self.food = food
 # Setter for the drink.
 def setDrink(self, drink=’coffee’):
 self.drink = drink
 # Setter for the name.
 def setName(self, name=’’):
 self.name = name
class Breakfast(Meal):
 ‘’’Holds the food and drink for breakfast.’’’
 def __init__(self):
 ‘’’Initialize with an omelet and coffee.’’’
 Meal.__init__(self, ‘omelet’, ‘coffee’)
 self.setName(‘breakfast’)
class Lunch(Meal):
 ‘’’Holds the food and drink for lunch.’’’
 def __init__(self):
 ‘’’Initialize with a sandwich and a gin and tonic.’’’
 Meal.__init__(self, ‘sandwich’, ‘gin and tonic’)
 self.setName(‘midday meal’)
 # Override setFood().
 def setFood(self, food=’sandwich’):
 if food != ‘sandwich’ and food != ‘omelet’:
 raise AngryChefException
 Meal.setFood(self, food)
class Dinner(Meal):
 ‘’’Holds the food and drink for dinner.’’’
 def __init__(self):
 ‘’’Initialize with steak and merlot.’’’
 Meal.__init__(self, ‘steak’, ‘merlot’)
 self.setName(‘dinner’)
 def printIt(self, prefix=’’):
 ‘’’Print even more nicely.’’’
 print(prefix,’A gourmet’,self.name,’with’,self.food,’and’,self.drink)
def test():
 ‘’’Test function.’’’
 print(‘Module meal test.’)
 # Generic no arguments.
 print(‘Testing Meal class.’)
 m = Meal()
 m.printIt(“\t”)
 m = Meal(‘green eggs and ham’, ‘tea’)
 m.printIt(“\t”)
 # Test breakfast
 print(‘Testing Breakfast class.’)
 b = Breakfast()
 b.printIt(“\t”)

 b.setName(‘breaking of the fast’)

c10.indd 180c10.indd 180 12/22/09 10:45:38 AM12/22/09 10:45:38 AM

Chapter 10: Building a Module

181

 b.printIt(“\t”)
 # Test dinner
 print(‘Testing Dinner class.’)
 d = Dinner()
 d.printIt(“\t”)
 # Test lunch
 print(‘Testing Lunch class.’)
 l = Lunch()
 l.printIt(“\t”)
 print(‘Calling Lunch.setFood().’)
 try:
 l.setFood(‘hotdog’)
 except AngryChefException:
 print(“\t”,’The chef is angry. Pick an omelet.’)
Run test if this module is run as a program.
if __name__ == ‘__main__’:
 test()

 How It Works
 The meal module follows the techniques shown in this chapter for creating a complete module, with
testing, documentation, exceptions, classes, and functions. Note how the tests are about as long as the
rest of the code. You ’ ll commonly find this to be the case.

 After you ’ ve built a module, you can import the module into other Python scripts. For example, the
following script calls on classes and functions in the meal module:

import meal

print(‘Making a Breakfast’)
breakfast = meal.makeBreakfast()

breakfast.printIt(“\t”)

print(‘Making a Lunch’)
lunch = meal.makeLunch()

try:
 lunch.setFood(‘pancakes’)
except meal.AngryChefException:
 print(“\t”,’Cannot make a lunch of pancakes.’)
 print(“\t”,’The chef is angry. Pick an omelet.’)

 This example uses the normal form for importing a module:

import meal

 When you run this script, you ’ ll see output like the following:

Making a Breakfast
 A fine breakfast with omelet and coffee
Making a Lunch
 Cannot make a lunch of pancakes.
 The chef is angry. Pick an omelet.

c10.indd 181c10.indd 181 12/22/09 10:45:39 AM12/22/09 10:45:39 AM

182

Part II: Python Language and the Standard Library

 The next script shows an alternate means to import the module:

from meal import *

 The full script follows:

from meal import *

print(‘Making a Breakfast’)
breakfast = makeBreakfast()

breakfast.printIt(“\t”)

print(‘Making a Lunch’)
lunch = makeLunch()

try:
 lunch.setFood(‘pancakes’)
except AngryChefException:
 print(“\t”,’Cannot make a lunch of pancakes.’)
 print(“\t”,’The chef is angry. Pick an omelet.’)

 Note how with this import form, you can call the makeLunch and makeBreakfast functions without
using the module name, meal , as a prefix on the call.

 The output of this script should look familiar.

Making a Breakfast
 A fine breakfast with omelet and coffee
Making a Lunch
 Cannot make a lunch of pancakes.
 The chef is angry. Pick an omelet.

 Be very careful with the names you use for variables. The example module has a name of meal . This
means you don ’ t want to use that name in any other context, such as for a variable. If you do, you will
effectively overwrite the definition of meal as a module. The following example shows the pitfall to
this approach.

 Try It Out Smashing Imports

 Enter the following script and name the file mealproblem.py :

import meal

print(‘Making a Breakfast’)
meal = meal.makeBreakfast()

meal.printIt(“\t”)

print(‘Making a Lunch’)
lunch = meal.makeLunch()

c10.indd 182c10.indd 182 12/22/09 10:45:39 AM12/22/09 10:45:39 AM

Chapter 10: Building a Module

183

try:
 lunch.setFood(‘pancakes’)
except meal.AngryChefException:
 print(“\t”,’Cannot make a lunch of pancakes.’)
 print(“\t”,’The chef is angry. Pick an omelet.’)

 When you run this script, you ’ ll see the following error:

Making a Breakfast
 A fine breakfast with omelet and coffee
Making a Lunch
Traceback (most recent call last):
 File “C:\Python30\mealproblem.py”, line 9, in < module >
 lunch = meal.makeLunch()
AttributeError: ‘Breakfast’ object has no attribute ‘makeLunch’

 How It Works
 This script uses meal as a module as well as meal as an instance of the class Breakfast . The
following lines are the culprit:

import meal
meal = meal.makeBreakfast()

 When you run this code, the name meal is now a variable, an instance of the class Breakfast . This
changes the interpretation of the following line:

lunch = meal.makeLunch()

 The intent of this line is to call the function makeLunch in the module meal . However, because meal is
now an object, the Python interpreter tries to call the makeLunch method on the object, an instance of
the Breakfast class. Because the Breakfast class has no method named makeLunch , the Python
interpreter raises an error.

 The syntax for using modules and calling functions in modules looks very much like the syntax for
calling methods on an object. Be careful.

 After building your module and testing it, the next step is to install it.

 Installing Your Modules
 The Python interpreter looks for modules in the directories listed in the sys.path variable. The sys.
path variable includes the current directory, so you can always use modules available locally. If you
want to use a module you ’ ve written in multiple scripts, or on multiple systems, however, you need to
install it into one of the directories listed in the sys.path variable.

c10.indd 183c10.indd 183 12/22/09 10:45:39 AM12/22/09 10:45:39 AM

184

Part II: Python Language and the Standard Library

 In most cases, you ’ ll want to place your Python modules in the site - packages directory. Look in the
 sys.path listing and find a directory name ending in site - packages . This is a directory for packages
installed at a site that are not part of the Python standard library of packages.

 In addition to modules, you can create packages of modules, a set of related modules that install into
the same directory structure. See the Python documentation at http://docs.python.org for more
on this subject.

 You can install your modules using one of three mechanisms:

 You can do everything by hand and manually create an installation script or program.

 You can create an installer specific to your operating system, such as MSI files on Windows, an
RPM file on Linux, or a DMG file on Mac OS X.

 You can use the handy Python distutils package, short for distribution utilities, to create a
Python - based installer.

 To use the Python distutils , you need to create a setup script, named setup.py . A minimal setup
script can include the following:

from distutils.core import setup

setup(name=’NameOfModule’,
 version=’1.0’,
 py_modules=[‘NameOfModule’],
)

 You need to include the name of the module twice. Replace NameOfModule with the name of your
module, such as meal in the examples in this chapter.

 Name the script setup.py .

 After you have created the setup.py script, you can create a distribution of your module using the
following command:

python setup.py sdist

 The argument sdist is short for software distribution. You can try this out with the following example.

Try It Out Creating an Installable Package

 Enter the following script and name the file setup.py :

from distutils.core import setup

setup(name=’meal’,
 version=’1.0’,
 py_modules=[‘meal’],
)
Run the following command to create a Python module distribution:

❑

❑

❑

c10.indd 184c10.indd 184 12/22/09 10:45:40 AM12/22/09 10:45:40 AM

Chapter 10: Building a Module

185

$ python setup.py sdist
running sdist
warning: sdist: missing required meta-data: url
warning: sdist: missing meta-data: either (author and author_email) or
(maintainer and maintainer_email) must be supplied
warning: sdist: manifest template ‘MANIFEST.in’ does not exist (using default
file list)
warning: sdist: standard file not found: should have one of README, README.txt
writing manifest file ‘MANIFEST’
creating meal-1.0
making hard links in meal-1.0...
hard linking meal.py - > meal-1.0
hard linking setup.py - > meal-1.0
creating dist
tar -cf dist/meal-1.0.tar meal-1.0
gzip -f9 dist/meal-1.0.tar
removing ‘meal-1.0’ (and everything under it)

 How It Works
 Notice all the complaints. The setup.py script was clearly not complete. It included enough to create
the distribution, but not enough to satisfy the Python conventions. When the setup.py script
completes, you should see the following files in the current directory:

$ ls
MANIFEST dist/ meal.py setup.py

 The setup.py script created the dist directory and the MANIFEST file. The dist directory contains
one file, a compressed version of your module:

$ ls dist
meal-1.0.tar.gz

 You now have a one - file distribution of your module, which is kind of silly because the module itself
was just one file. The advantage of distutils is that your module will be properly installed.

 You can then take the meal - 1.0.tar.gz file to another system and install the module. First,
uncompress and expand the bundle. On Linux, UNIX, and Mac OS X, use the following commands:

$ gunzip meal-1.0.tar.gz
$ tar xvf meal-1.0.tar
meal-1.0/
meal-1.0/meal.py
meal-1.0/PKG-INFO
meal-1.0/setup.py

 On Windows, use a compression program such as WinZip, which can handle the .tar.gz files.

 You can install the module after it is expanded with the following command:

python setup.py install

c10.indd 185c10.indd 185 12/22/09 10:45:40 AM12/22/09 10:45:40 AM

186

Part II: Python Language and the Standard Library

 For example:

$ python setup.py install
running install
running build
running build_py
creating build
creating build/lib
copying meal.py - > build/lib
running install_lib
copying build/lib/meal.py - > /System/Library/Frameworks/Python.framework/
Versions/30/lib/python30/site-packages
byte-compiling /System/Library/Frameworks/Python.framework/Versions/30/lib/
python30/site-packages/meal.py to meal.pyc

 The neat thing about the distutils is that it works for just about any Python module. The
installation command is the same, so you just need to know one command to install Python modules
on any system.

Another neat thing is that the installation creates documentation on your module that is viewable
with the pydoc command. For example, the following shows the first page of documentation on the
 meal module:

$ pydoc meal
Help on module meal:

NAME
 meal - Module for making meals in Python.

FILE
 /Users/ericfj/writing/python/inst2/meal-1.0/meal.py

DESCRIPTION
 Import this module and then call
 makeBreakfast(), makeDinner() or makeLunch().

CLASSES
 exceptions.Exception
 SensitiveArtistException
 AngryChefException
 Meal
 Breakfast
 Dinner
 Lunch

 class AngryChefException(SensitiveArtistException)
 | Exception that indicates the chef is unhappy.

c10.indd 186c10.indd 186 12/22/09 10:45:40 AM12/22/09 10:45:40 AM

Chapter 10: Building a Module

187

 Summary
 This chapter pulls together concepts from the earlier chapters to delve into how to create modules by
example. If you follow the techniques described in this chapter, your modules will fit in with other
modules and follow the import Python conventions.

 A module is simply a Python source file that you choose to treat as a module. Simple as that sounds, you
need to follow a few conventions when creating a module:

 Document the module and all classes, methods, and functions in the module.

 Test the module and include at least one test function.

 Define which items in the module to export — which classes, functions, and so on.

 Create any exception classes you need for the issues that can arise when using the module.

 Handle the situation in which the module itself is executed as a Python script.

 Inside your modules, you ’ ll likely define classes, which Python makes exceedingly easy.

 While developing your module, you can use the help and reload functions to display documentation
on your module (or any other module for that matter) and reload the changed module, respectively.

 After you have created a module, you can create a distributable bundle of the module using the
 distutils . To do this, you need to create a setup.py script.

 Chapter 11 describes regular expressions, an important concept used for finding relevant information in
a sea of data.

 The key things to take away from this chapter are:

 Modules are Python source files. Like functions, modules are pieces of code that are reusable
and save programmers coding time. They also make your programs less error prone, as modules
are typically used over and over and have been thoroughly tested.

 You can use the dir() function to view attributes of modules, such as functions, classes,
and variables.

 To use a module in a program, you must import it using import. You can also import a class or
function from a module by using the code from module import item.

 Python looks for module files in specific places. To see where Python searches, import sys and
use the print(sys.path) function to view the directories.

 Object - oriented programming consists of encapsulation, inheritance, and polymorphism.

 Use triple quotes (‘’’) to document objects in your modules. The first set of triple quotes begins
the comment; the second set ends the comment.

 To print the documentation in a module, you can use the help() function (i.e.,
help(modulename)) .

 You should always make test functions in your module in case you need them at a later date.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c10.indd 187c10.indd 187 12/22/09 10:45:41 AM12/22/09 10:45:41 AM

188

Part II: Python Language and the Standard Library

 Exercises
 1. How can you get access to the functionality provided by a module?

 2. How can you control which items from your modules are considered public? (Public items are
available to other Python scripts.)

 3. How can you view documentation on a module?

 4. How can you find out what modules are installed on a system?

 5. What kind of Python commands can you place in a module?

c10.indd 188c10.indd 188 12/22/09 10:45:41 AM12/22/09 10:45:41 AM

 11
Text Processing

 There is a whole range of applications for which scripting languages like Python are perfectly
suited; and in fact scripting languages were arguably invented specifically for these applications,
which involve the simple search and processing of various files in the directory tree. Taken
together, these applications are often called text processing . Python is a great scripting tool for both
writing quick text processing scripts and then scaling them up into more generally useful code
later, using its clean object - oriented coding style.

 In this chapter you learn:

 Some of the typical reasons you need text processing scripts

 A few simple scripts for quick system administration tasks

 How to navigate around in the directory structure in a platform - independent way, so your
scripts will work fine on Linux, Windows, or even the Mac

 How to create regular expressions to compare the files found by the os and os.path
modules

 How to use successive refinement to keep enhancing your Python scripts to winnow
through the data found

 Text processing scripts are one of the most useful tools in the toolbox of anybody who seriously
works with computer systems, and Python is a great way to do text processing. You ’ re going to
like this chapter.

 Why Text Processing Is So Useful
 In general, the whole idea behind text processing is simply finding things . There are, of course,
situations in which data are organized in a structured way; these are called databases and that ’ s
not what this chapter is about. Databases carefully index and store data in such a way that if you
know what you ’ re looking for, you can retrieve it quickly. However, in some data sources, the
information is not at all orderly and neat, such as directory structures with hundreds or thousands

❑

❑

❑

❑

❑

c11.indd 189c11.indd 189 12/22/09 10:46:02 AM12/22/09 10:46:02 AM

190

Part II: Python Language and the Standard Library

of files, or logs of events from system processes consisting of thousands or hundreds of thousands of
lines, or even e - mail archives with months of exchanges between people.

 When data of that nature needs to be searched for something, or processed in some way, text processing
is in its element. Of course, there ’ s no reason not to combine text processing with other data - access
methods; you might find yourself writing scripts rather often that run through thousands of lines of log
output and do occasional RDBMS lookups (Relational DataBase Management Systems — you learn
about these in Chapter 14) on some of the data they run across. This is a natural way to work.

 Ultimately, this kind of script can very often get used for years as part of a back - end data processing
system. If the script is written in a language like Perl, it can sometimes be quite opaque when some poor
soul is assigned five years later to “ fix it. ” Fortunately, this is a book about Python programming, and so
the scripts written here can easily be turned into reusable object classes — later, you look at an
illustrative example.

 The two main tools in your text processing belt are directory navigation, and an arcane technology called
 regular expressions . Directory navigation is one area in which different operating systems can really wreak
havoc on simple programs, because the three major operating system families (UNIX, Windows, and the
Mac) all organize their directories differently; and, most painfully, they use different characters to
separate subdirectory names. Python is ready for this, though — a series of cross - platform tools are
available for the manipulation of directories and paths that, when used consistently, can eliminate this
hassle entirely. You saw these in Chapter 8, and you see more uses of these tools here.

 A regular expression is a way of specifying a very simple text parser, which then can be applied
relatively inexpensively (which means that it will be fast) to any number of lines of text. Regular
expressions crop up in a lot of places, and you ’ ve likely seen them before. If this is your first exposure to
them, however, you ’ ll be pretty pleased with what they can do. In the scope of this chapter, you ’ re just
going to scratch the surface of full - scale regular expression power, but even this will give your scripts a
lot of functionality.

 You first look at some of the reasons you might want to write text processing scripts, and then you do
some experimentation with your new knowledge. The most common reasons to use regular expressions
include the following:

 Searching for files

 Extracting useful data from program logs, such as a web server log

 Searching through your e - mail

 The following sections introduce these uses.

 Searching for Files
 Searching for files, or doing something with some files, is a mainstay of text processing. For example,
suppose that you spent a few months ripping your entire CD collection to MP3 files, without really
paying attention to how you were organizing the hundreds of files you were tossing into some
arbitrarily made - up set of directories. This wouldn ’ t be a problem if you didn ’ t wait a couple of months
before thinking about organizing your files into directories according to artist — and only then realized
that the directory structure you ended up with was hopelessly confused.

❑

❑

❑

c11.indd 190c11.indd 190 12/22/09 10:46:02 AM12/22/09 10:46:02 AM

Chapter 11: Text Processing

191

 Text processing to the rescue! Write a Python script that scans the hopelessly nonsensical directory
structure and then divide each file name into parts that might be an artist ’ s name. Then take that
potential name and try to look it up in a music database. The result is that you could rearrange hundreds
of files into directories by, if not the name of the artist, certainly some pretty good guesses, which will get
you close to having a sensible structure. From there, you would be able to explore manually and end up
actually having an organized music library.

 This is a one - time use of a text processing script, but you can easily imagine other scenarios in which you
might use a similarly useful script on a regular basis, such as when you are handling data from a client
or from a data source that you don ’ t control. Of course, if you need to do this kind of sorting often, you
can easily use Python to come up with some organized tool classes that perform these tasks to avoid
having to duplicate your effort each time.

 Whenever you face a task like this, a task that requires a lot of manual work manipulating data on your
computer, think Python. Writing a script or two could save you hours and hours of tedious work.

 A second but similar situation results as a fallout of today ’ s large hard disks. Many users store files
willy - nilly on their hard disk, but never seem to have the time to organize them. A worse situation
occurs when you face a hard disk full of files and you need to extract some information you know is
there on your computer, but you ’ re not sure where exactly. You are not alone. Apple, Google, Microsoft,
and others all have desktop search techniques that help you search through the data in the files you have
collected to help you to extract useful information.

 Think of Python as a desktop search on steroids, because you can create scripts with a much finer control
over the search, as well as perform operations on the files found.

 Clipping Logs
 Another common text - processing task that comes up in system administration is the need to sift through
log files for various information. Scripts that filter logs can be spur - of - the - moment affairs meant to
answer specific questions (such as “ When did that e - mail get sent? ” or “ When was the last time my
program log one specific message? ”), or they might be permanent parts of a data processing system that
evolves over time to manage ongoing tasks. These could be a part of a system administration and
performance - monitoring system, for instance. Scripts that regularly filter logs for particular subsets of
the information are often said to be clipping logs — the idea being that, just as you clip polygons to fit
on the screen, you can also clip logs to fit into whatever view of the system you need.

 However you decide to use them, after you gain some basic familiarity with the techniques used, these
scripts become almost second nature. This is an application where regular expressions are used a lot, for
two reasons: First, it ’ s very common to use a UNIX shell command like grep to do first - level log
clipping; second, if you do it in Python, you ’ ll probably be using regular expressions to split the line
into usable fields before doing more work with it. In any one clipping task, you may very well be using
both techniques.

 After a short introduction to traversing the file system and creating regular expressions, you look at a
couple of scripts for text processing in the following sections.

c11.indd 191c11.indd 191 12/22/09 10:46:03 AM12/22/09 10:46:03 AM

192

Part II: Python Language and the Standard Library

 Sifting through Mail
 The final text processing task is one that you ’ ve probably found useful (or if you haven ’ t, you ’ ve badly
wanted it): the processing of mailbox files to find something that can ’ t be found by your normal Inbox
search feature. The most common reason you need something more powerful for this is that the mailbox
file is either archived, so that you can access the file, but not read it with your mail reader easily, or it has
been saved on a server where you ’ ve got no working mail client installed. Rather than go through the
hassle of moving it into your Inbox tree and treating it like an active folder, you might find it simpler just
to write a script to scan it for whatever you need.

 However, you can also easily imagine a situation in which your search script might want to get data
from an outside source, such as a web page or perhaps some other data source, like a database (see
Chapter 14 for more about databases), to cross - reference your data, or do some other task during the
search that can ’ t be done with a plain vanilla mail client. In that case, text processing combined with
any other technique can be an incredibly useful way to find information that may not be easy to
find any other way.

 Navigating the File System
with the os Module

 The os module and its submodule os.path are one of the most helpful things about using Python for a
lot of day - to - day tasks that you have to perform on a lot of different systems. If you often need to write
scripts and programs on either Windows or UNIX that would still work on the other operating system,
you know from Chapter 8 that Python takes care of much of the work of hiding the differences between
how things work on Windows and UNIX.

 In this chapter, we ’ re going to completely ignore a lot of what the os module can do (ranging from
process control to getting system information) and just focus on some of the functions useful for working
with files and directories. Some things you ’ ve been introduced to already, and others are new.

 One of the difficult and annoying points about writing cross - platform scripts is the fact that directory
names are separated by backslashes (\) under Windows, but forward slashes (/) under UNIX. Even
breaking a full path down into its components is irritatingly complicated if you want your code to work
under both operating systems.

 Furthermore, Python, like many other programming languages, makes special use of the backslash
character to indicate special text, such as \n for a newline. This complicates your scripts that create file
paths on Windows.

 With Python ’ s os.path module, however, you get some handy functions that will split and join path
names for you automatically with the right characters, and they ’ ll work correctly on any OS that Python
is running on (including the Mac.) You can call a single function to iterate through the directory structure
and call another function of your choosing on each file it finds in the hierarchy. You see a lot of that
function in the examples that follow, but first look at an overview of some of the useful functions in the
 os and os.path modules that you ’ ll be using.

c11.indd 192c11.indd 192 12/22/09 10:46:03 AM12/22/09 10:46:03 AM

Chapter 11: Text Processing

193

 Function Name, as Called Description

 os.getcwd() Returns the current directory. You can think of
this function as the basic coordinate of
directory functions in whatever language.

 os.listdir(directory) Returns a list of the names of files and
subdirectories stored in the named directory .
You can then run os.stat() on the individual
files — for example, to determine which are
files and which are subdirectories.

 os.stat(path) Returns a tuple of numbers, which give you
everything you could possibly need to know
about a file (or directory). These numbers are
taken from the structure returned by the ANSI
C function of the same name, and they have
the following meanings (some are dummy
values under Windows, but they ’ re in the same
places!):

 st_mode: permissions on the file

 st_ino: inode number (UNIX)

 st_dev: device number

 st_nlink: link number (UNIX)

 st_uid: userid of owner

 st_gid: groupid of owner

 st_size: size of the file

 st_atime: time of last access

 st_mtime: time of last modification

 st_ctime: time of creation

 os.path.split(path) Splits the path into its component names
appropriately for the current operating system.
Returns a tuple, not a list. This always
surprises me.

 os.path.join(components) Joins name components into a path
appropriate to the current operating system .

c11.indd 193c11.indd 193 12/22/09 10:46:03 AM12/22/09 10:46:03 AM

194

Part II: Python Language and the Standard Library

 Function Name, as Called Description

 os.path.normcase(path) Normalizes the case of a path. Under UNIX,
this has no effect because file names are case -
 sensitive; but under Windows, where the OS
will silently ignore case when comparing file
names, it ’ s useful to run normcase on a path
before comparing it to another path so that if
one has capital letters, but the other doesn ’ t,
Python will be able to compare the two the
same way that the operation system would —
 that is, they ’ d be the same regardless of
capitalizations in the path names, as long as
that ’ s the only difference. Under Windows, the
function returns a path in all lowercase and
converts any forward slashes into backslashes.

 os.walk(top, topdown=True,
onerror=None, followlinks=False)

 This is a brilliant function that iterates down
through a directory tree from top - down or
bottom - up. For each directory, it creates a
3 - tuple consisting of dirpath, dirnames, and
filenames. The dirpath portion is a string that
holds the path of your directory. Dirnames is a
list of subdirectories from dirpath, which
exclude ‘ . ’ and ‘ .. ’ . Lastly, filenames is a listing
of every non - directory file in dirpath.

 There are more functions where those came from, but these are the ones used in the example code that
follows. You will likely use these functions far more than any others in these modules. You can find
many other useful functions in the Python module documentation for os and os.path .

 Try It Out Listing Files and Playing with Paths

 The best way to get to know functions in Python is to try them out in the interpreter. Try some of the
preceding functions to see what the responses will look like.

 1. From the Python interpreter, import the os and os.path modules:

 > > > import os, os.path

 2. First, see where you are in the file system. This example is being done under Windows, so
your mileage will vary:

 > > > os.getcwd()
‘C:\\Python31’

 3. If you want to do something with this programmatically, you ’ ll probably want to break it
down into the directory path, as a tuple (use join to put the pieces back together):

c11.indd 194c11.indd 194 12/22/09 10:46:04 AM12/22/09 10:46:04 AM

Chapter 11: Text Processing

195

 > > > os.path.split (os.getcwd())
(‘C:\\’, ‘Python31’)

 4. To find out some interesting things about the directory, or any file, use os.stat :

 > > > os.stat(‘.’)
nt.stat_result(st_mode=16895, st_ino=0, st_dev=0, st_nlink=0,
st_uid=0, st_gid=0, st_size=8192, st_atime=1239767131,
st_mtime=1239767131, st_ctime=1234912369)

 Note that the directory named ‘ . ’ is shorthand for the current directory.

 5. If you actually want to list the files in the directory, do this:

 > > > os.listdir(‘.’)
[‘.javaws’, ‘.limewire’, ‘Application Data’, ‘Cookies’,
‘Desktop’, ‘Favorites’, ‘gsview32.ini’, ‘Local Settings’,
‘My Documents’, ‘myfile.txt’, ‘NetHood’, ‘NTUSER.DAT’,
‘ntuser.dat.LOG’, ‘ntuser.ini’, ‘PrintHood’, ‘PUTTY.RND’,
‘Recent’, ‘SendTo’, ‘Start Menu’, ‘Templates’, ‘UserData’, ‘WINDOWS’]

 How It Works
 Most of that was perfectly straightforward and easy to understand, but let ’ s look at a couple of points
before going on and writing a complete script or two.

 First, you can easily see how you might construct an iterating script using listdir , split , and
stat — but you don ’ t have to, because os.path provides the walk function to do just that, as you see
later. The walk function not only saves you the time and effort of writing and debugging an iterative
algorithm where you search everything in your own way, but it also runs a bit faster because it ’ s a
built into Python, but written in C, which can make things easier in cases like this. You probably will
seldom want to write iterators in Python when you ’ ve already got something built in that does the
same job.

 Second, note that the output of the stat call, which comes from a system call, is pretty opaque. The
tuple it returns corresponds to the structure returned from the POSIX C library function of the same
name, and its component values are described in the preceding table; and, of course, in the Python
documentation. The stat function really does tell you nearly anything you might want to know about
a file or directory, so it ’ s a valuable function to understand for when you ’ ll need it, even though it ’ s a
bit daunting at first glance.

 Try It Out Searching for Files of a Particular Type

 If you have worked with any other programming languages, you ’ ll like how easy searching for files is
with Python. Whether or not you ’ ve done this before in another language, you ’ ll notice how the
example script is extremely short for this type of work. The following example uses the os and os.
path modules to search for PDF files in the directory — which means the current directory —
 wherever you are when you call the function. On a UNIX or Linux system, you could use the
command line and, for example, the UNIX find command. However, if you don ’ t do this too often

c11.indd 195c11.indd 195 12/22/09 10:46:04 AM12/22/09 10:46:04 AM

196

Part II: Python Language and the Standard Library

that would mean that each time you wanted to look for files, you ’ d need to figure out the command -
 line syntax for find yet again. (Because of how much find does, that can be difficult — and that
difficulty is compounded by how it expects you to be familiar already with how it works!) Also,
another advantage to doing this in Python is that by using Python to search for files you can refine
your script to do special things based on what you find, and as you discover new uses for your
program, you can add new features to it to find files in ways that you find you need. For instance, as
you search for files you may see far too many results to look at. You can refine your Python script to
further winnow the results to find just what you need.

 This is a great opportunity to show off the nifty os.walk function, so that ’ s the basis of this script. This
function is great because it will do all the heavy lifting of file system iteration for you, leaving you to
write a simple function to do something with whatever it finds along the way:

 1. Using your favorite text editor, open a script called scan_pdf.py in the directory you want to
scan for PDFs and enter the following code:

import os, os.path
import re

def print_pdf (root, dirs, files):
 for file in files:
 path = os.path.join (root, file)
 path = os.path.normcase (path)
 if re.search (r”.*\.pdf”, path):
 print(path)

for root, dirs, files in os.walk(‘.’):

 2. Run it. Obviously, the following output will not match yours. For the best results, add a bunch
of files that end in .pdf to this directory!

$ python scan_pdf.py
.\95-04.pdf
.\non-disclosure agreement 051702.pdf
.\word pro - dokument in lotus word pro 9 dokument45.pdf
.\101translations\2003121803\2003121803.pdf
.\101translations\2004101810\scan.pdf
.\bluemangos\purchase order - michael roberts smb-pt134.pdf
.\bluemangos\smb_pt134.pdf
.\businessteam.hu\aok.pdf
.\businessteam.hu\chn14300-2.pdf
.\businessteam.hu\diplom_bardelmeier.pdf
.\businessteam.hu\doktor_bardelmeier.pdf
.\businessteam.hu\finanzamt_1.pdf
.\businessteam.hu\zollbescheinigung.pdf
.\businessteam.hu\monday\s3.pdf
.\businessteam.hu\monday\s4.pdf
.\businessteam.hu\monday\s5.pdf
.\gerard\done\tg82-20nc-md-04.07.pdf

c11.indd 196c11.indd 196 12/22/09 10:46:04 AM12/22/09 10:46:04 AM

Chapter 11: Text Processing

197

.\gerard\polytronic\iau-reglement_2005.pdf

.\gerard\polytronic\tg82-20bes user manual\tg82-20bes-md-27.05.pdf

.\glossa\neumag\de_993_ba_s5.pdf

.\glossa\pepperl+fuchs\5626eng3con\vocab - 3522a_recom_flsd.pdf

.\glossa\pepperl+fuchs\5769eng4\5769eng4 - td4726_8400 d-e - 16.02.04.pdf

 How It Works
 This is a nice little script, isn ’ t it? Python does all the work, and you get a list of the PDFs in your
directories, including their location and their full names — even with spaces, which can be difficult to
deal with under UNIX and Linux.

 A little extra work with the paths has been done so that it ’ s easier to see what ’ s where: a call to os.
path.join builds the full (relative) path name of each PDF from the starting directory and a call to
 os.path.normcase makes sure that all the file names are lowercase under Windows. Under UNIX,
 normcase would have no effect, because case is significant under UNIX, so you don ’ t want to change
the capitalization (and it doesn ’ t change it), but under Windows, it makes it easier to see whether the
file name ends in .pdf if you have them all appear in lowercase.

 Note the use of a very simple regular expression to check the ending of the file name. You could also
have used os.path.splitext to get a tuple with the file ’ s base name and its extension, and
compared that to pdf , which arguably would have been cleaner. However, because this script is
effectively laid out as a filter, starting it out with a regular expression, also called regexp , comparison
from the beginning makes sense. Doing it this way means that if you decide later to restrict the output
in some way, like adding more filters based on needs you find you have, you can just add more regexp
comparisons and have nice, easy - to - understand code in the text expression. This is more a question of
taste than anything else. (It was also a good excuse to work in a first look at regular expressions and to
demonstrate that they ’ re really not too hard to understand.)

If you haven ’ t seen it before, the form r “ < string constant > ” simply tells Python that the string
constant should suppress all special processing for backslash values. Thus, whereas “ \n ” is a string
one character in length containing a newline, r “ \n ” is a string two characters in length, containing a
backslash character followed by the letter ‘ n ’ . Because regular expressions tend to contain a lot of
backslashes, it ’ s very convenient to be able to suppress their special meaning with this switch.

 Try It Out Refi ning a Search

 As it turned out, there were few enough PDF files (about 100) in the example search results that you
should be able to find the files you were looking for simply by looking through the list; but very often
when doing a search of this kind you first look at the results you get on the first pass and then use that
knowledge to zero in on what you ultimately need. The process of zeroing in involves trying out the
script, and then as you see that it could be returning better results, making successive changes to your
scripts to better find the information you want.

 To get a flavor of that kind of successive or iterative programming, assume that instead of just
showing all the PDFs, you also want to exclude all PDFs with a space in the name. For example,
because the files you were looking for were downloaded from websites, they in fact wouldn ’ t have
spaces, whereas many of the files you received in e - mail messages were attachments from someone ’ s

c11.indd 197c11.indd 197 12/22/09 10:46:05 AM12/22/09 10:46:05 AM

198

Part II: Python Language and the Standard Library

file system and therefore often did. Therefore, this refinement is a very likely one that you ’ ll have an
opportunity to use:

 1. Using your favorite text editor again, open scan_pdf.py and change it to look like the
following (the changed portions are in italics; or, if you skipped the last example, just
enter the entire code as follows):

import os, os.path
import re

def print_pdf (arg, dir, files):
 for file in files:
 path = os.path.join (dir, file)
 path = os.path.normcase (path)
 if not re.search (r”.*\.pdf”, path): continue
 if re.search (r” “, path): continue

 print(path)

for root, dirs, files in os.walk(‘.’):

 2. Now run the modified script — and again, this output will not match yours:

$ python scan_pdf.py
.\95-04.pdf
.\101translations\2003121803\2003121803.pdf
.\101translations\2004101810\scan.pdf
.\bluemangos\smb_pt134.pdf
.\businessteam.hu\aok.pdf
.\businessteam.hu\chn14300-2.pdf
.\businessteam.hu\diplom_bardelmeier.pdf
.\businessteam.hu\doktor_bardelmeier.pdf
.\businessteam.hu\finanzamt_1.pdf
.\businessteam.hu\zollbescheinigung.pdf
.\businessteam.hu\monday\s3.pdf
.\businessteam.hu\monday\s4.pdf
.\businessteam.hu\monday\s5.pdf
.\gerard\done\tg82-20nc-md-04.07.pdf
.\gerard\polytronic\iau-reglement_2005.pdf
.\glossa\neumag\de_993_ba_s5.pdf

 How It Works
There ’ s a stylistic change in this code — one that works well when doing these quick text - processing -
 oriented filter scripts. Look at the print_pdf function in the code — first build and normalize the
path name and then run tests on it to ensure that it ’ s the one you want. After a test fails, it will use
 continue to skip to the next file in the list. This technique enables a whole series of tests to be
performed one after another, while keeping the code easy to read.

c11.indd 198c11.indd 198 12/22/09 10:46:05 AM12/22/09 10:46:05 AM

Chapter 11: Text Processing

199

 Working with Regular Expressions
and the re Module

 Perhaps the most powerful tool in the text processing toolbox is the regular expression . Though matching
on simple strings or substrings is useful, they ’ re limited. Regular expressions pack a lot of punch into a
few characters, but they ’ re so powerful that it really pays to get to know them. The basic regular
expression syntax is used identically in several programming languages, and you can find at least one
book written solely on their use and thousands of pages in other books (like this one).

 As mentioned previously, a regular expression defines a simple parser that matches strings within a text.
Regular expressions work essentially in the same way as wildcards when you use them to specify
multiple files on a command line, in that the wildcard enables you to define a string that matches many
different possible file names. In case you didn ’ t know what they were, characters like * and ? are
wildcards that, when you use them with commands such as dir on Windows or ls on UNIX, will let
you select more than one file, but possiblly fewer files than every file (as does dir win* , which will
print only files in your directory on Windows that start with the letters w, i, and n and are followed by
anything — that ’ s why the * is called a wildcard). Two major differences exist between a regular
expression and a simple wildcard:

 A regular expression can match multiple times anywhere in a longer string.

 Regular expressions are much, much more complicated and much richer than simple wildcards,
as you will see.

 The main thing to note when starting to learn about regular expressions is this: A string always matches
itself. Therefore, for instance, the pattern ‘ xxx ’ will always match itself in ‘ abcxxxabc ’ . Everything
else is just icing on the cake; the core of what we ’ re doing is just finding strings in other strings.

 You can add special characters to make the patterns match more interesting things. The most commonly
used one is the general wildcard ‘ . ’ (a period or dot). The dot matches any one character in a string; so,
for instance, ‘ x.x ’ will match the strings ‘ xxx ’ or ‘ xyx ’ or even ‘ x.x ’ .

 The last example raises a fundamental point in dealing with regular expressions. What if you really only
want to find something with a dot in it, like ‘ x.x ’ ? Actually, specifying ‘ x.x ’ as a pattern won ’ t work;
it will also match ‘ x!x ’ and ‘ xqx ’ . Instead, regular expressions enable you to escape special characters
by adding a backslash in front of them. Therefore, to match ‘ x.x ’ and only ‘ x.x ’ , you would use the
pattern ‘ x\.x ’ , which takes away the special meaning of the period as with an escaped character.

 However, here you run into a problem with Python ’ s normal processing of strings. Python also uses the
backslash for escape sequences, because ‘ \n ’ specifies a carriage return and ‘ \t ’ is a tab character. To
avoid running afoul of this normal processing, regular expressions are usually specified as raw strings ,
which as you ’ ve seen is a fancy way of saying that you tack an ‘ r ’ onto the front of the string constant,
and then Python treats them specially.

 So after all that verbiage, how do you really match ‘ x.x ’ ? Simple: You specify the pattern r “ x\.x ” .
Fortunately, if you ’ ve gotten this far, you ’ ve already made it through the hardest part of coming to grips
with regular expressions in Python. The rest is easy.

❑

❑

c11.indd 199c11.indd 199 12/22/09 10:46:05 AM12/22/09 10:46:05 AM

200

Part II: Python Language and the Standard Library

 Before you get too far into specifying the many special characters used by regular expressions, first look
at the function used to match strings, and then do some learning by example, by typing a few regular
expressions right into the interpreter.

 Try It Out Fun with Regular Expressions

 This exercise uses some functional programming tools that you may have seen before but perhaps
not had an opportunity to use yet. The idea is to be able to apply a regular expression to a bunch of
different strings to determine which ones it matches and which ones it doesn ’ t. To do this in one line
of typing, you can use the filter function, but because filter applies a function of one argument to
each member of its input list, and re.match and re.search take two arguments, you ’ re forced to use
either a function definition or an anonymous lambda form (as in this example). Don ’ t think too hard
about it (you can return to Chapter 9 to see how this works again), because it will be obvious what
it ’ s doing:

 1. Start the Python interpreter and import the re module:

$ python
 > > > import re

 2. Now define a list of interesting - looking strings to filter with various regular expressions:

 > > > s = (‘xxx’, ‘abcxxxabc’, ‘xyx’, ‘abc’, ‘x.x’, ‘axa’, ‘axxxxa’, ‘axxya’)

 3. Do the simplest of all regular expressions first:

 > > > a=filter ((lambda s: re.match(r”xxx”, s)), s)
 > > > print(*a)
xxx

 4. Hey, wait! Why didn ’ t that find ‘ axxxxa ’ , too? Even though you normally talk about matches
inside the string, in Python the re.match function looks for matches only at the start of its
input. To find strings anywhere in the input, use re.search (which spells the word research,
so it ’ s cooler and easy to remember anyway):

 > > > b=filter ((lambda s: re.search(r”xxx”, s)), s)
 > > > print(*b)
xxx, abcxxxabc, axxxxa

 5. OK, look for that period:

 > > > c=filter ((lambda s: re.search(r”x.x”, s)), s)
 > > > print(*c)
xxx, abcxxxabc, xyx, x.x, axxxxa

 6. Here ’ s how you match only the period (by escaping the special character):

 > > > d=filter ((lambda s: re.search(r”x\.x”, s)), s)
 > > > print(*d)
x.x

c11.indd 200c11.indd 200 12/22/09 10:46:06 AM12/22/09 10:46:06 AM

Chapter 11: Text Processing

201

 7. You also can search for any number of x ’ s by using the asterisk, which can match a series of
whatever character is in front of it:

 > > > e=filter ((lambda s: re.search(r”x.*x”, s)), s)
 > > > print(*e)
xxx, abcxxxabc, xyx, x.x, axxxxa, axxya

 8. Wait a minute! How did ‘ x.*x ’ match ‘ axxya ’ if there was nothing between the two x ’ s? The
secret is that the asterisk is tricky — it matches zero or more occurrences of a character between
two x ’ s. If you really want to make sure something is between the x ’ s, use a plus instead,
which matches one or more characters:

 > > > f=filter ((lambda s: re.search(r”x.+x”, s)), s)
 > > > print(*f)
xxx, abcxxxabc, xyx, x.x, axxxxa

 9. Now you know how to match anything with, say, a ‘ c ’ in it:

 > > > g=filter ((lambda s: re.search(r”c+”, s)), s)
 > > > print(*g)
abcxxxabc, abc

 10. Here ’ s where things get really interesting: How would you match anything without a ‘ c ’ ?
Regular expressions use square brackets to denote special sets of characters to match, and if
there ’ s a caret at the beginning of the list, it means all characters that don ’ t appear in the set,
so your first idea might be to try this:

 > > > h=filter ((lambda s: re.search(r”[^c]*”, s)), s)
 > > > print(*h)
xxx, abcxxxabc, xyx, abc, x.x, axa, axxxxa, axxya

 11. That matched the whole list. Why? Because it matches anything that has a character that
isn ’ t a ‘ c ’ , you negated the wrong thing. To make this clearer, you can filter a list with more
 c ’ s in it:

 > > > h=filter ((lambda s: re.search(r”[^c]*”, s)), (‘c’, ‘cc’, ‘ccx’))
 > > > print(*h)
c, cc, ccx

 Note that older versions of Python may return a different tuple, (‘ ccx ’ ,) .

 12. To really match anything without a ‘ c ’ in it, you have to use the ̂ and $ special characters to
refer to the beginning and end of the string and then tell re that you want strings composed
only of non - c characters from beginning to end:

 > > > i=filter ((lambda s: re.search(r”^[^c]*$”, s)), s)
 > > > print(*i)
xxx, xyx, x.x, axa, axxxxa, axxya

c11.indd 201c11.indd 201 12/22/09 10:46:06 AM12/22/09 10:46:06 AM

202

Part II: Python Language and the Standard Library

 As you can see from the last example, getting re to understand what you mean can sometimes require
a little effort. It ’ s often best to try out new regular expressions on a bunch of data you understand and
then check the results carefully to ensure that you ’ re getting what you intended; otherwise, you can
get some real surprises later!

 Use the techniques shown here in the following example. You can usually run the Python interpreter
in interactive mode, and test your regular expression with sample data until it matches what
you want.

 Try It Out Adding Tests

 The example scan_pdf.py scripts shown so far provide a nicely formatted framework for testing
files. As mentioned previously, the os.walk function provides the heavy lifting. The print_pdf
function you write performs the tests — in this case, looking for PDF files.

 Clocking in at less than 20 lines of code, these examples show the true power of Python. Following the
structure of the print_pdf function, you can easily add tests to refine the search, as shown in the
following example:

 1. Using your favorite text editor again, open scan_pdf.py and change it to look like the
following. The changed portions are in italics (or, if you skipped the last example, just enter
the entire code that follows):

import os, os.path
import re

def print_pdf (arg, dir, files):
 for file in files:
 path = os.path.join (dir, file)
 path = os.path.normcase (path)
 if not re.search (r”.*\.pdf”, path): continue
 if re.search (r”.\.hu”, path): continue

 print(path)

for root, dirs, files in os.walk(‘.’):

 2. Now run the modified script — and again, this output will not match yours:

C:\projects\translation > python scan_pdf.py

.\businessteam.hu\aok.pdf
.\businessteam.hu\chn14300-2.pdf
.\businessteam.hu\diplom_bardelmeier.pdf
.\businessteam.hu\doktor_bardelmeier.pdf
.\businessteam.hu\finanzamt_1.pdf

c11.indd 202c11.indd 202 12/22/09 10:46:06 AM12/22/09 10:46:06 AM

Chapter 11: Text Processing

203

.\businessteam.hu\zollbescheinigung.pdf

.\businessteam.hu\monday\s3.pdf

.\businessteam.hu\monday\s4.pdf

.\businessteam.hu\monday\s5.pdf

...

 How It Works
 This example follows the structure set up in the previous examples and adds another test. You can add
test after test to create the script that best meets your needs.

 In this example, the test looks only for file names (which include the full paths) with an . hu in the
name. The assumption here is that files with an . hu in the name (or in a directory with . hu in the name)
are translations from Hungarian (hu is the two - letter country code for Hungary). Therefore, this
example shows how to narrow the search to files translated from Hungarian. (In real life, you will
obviously require different search criteria. Just add the tests you need.)

 You can continue refining your script to create a generalized search utility in Python. Chapter 12 goes
into this in more depth.

 Summary
 Text processing scripts are generally short, useful, reusable programs, which are either written for one -
 time and occasional use, or used as components of a larger data - processing system. The chief tools for
the text processing programmer are directory structure navigation and regular expressions, both of
which were examined in brief in this chapter.

 Python is handy for this style of programming because it offers a balance where it is easy to use for
simple, one - time tasks, and it ’ s also structured enough to ease the maintenance of code that gets reused
over time.

 The specific techniques shown in this chapter include the following:

 Use the os.walk function to traverse the file system.

 Place the search criteria in the function you write and pass it to the os.walk function.

 Regular expressions work well to perform the tests on each file found by the os.walk function.

 Try out regular expressions in the Python interpreter interactively to ensure they work.

 Chapter 12 covers an important concept: testing. Testing enables you not only to ensure that your scripts
work, but that the scripts still work when you make a change.

❑

❑

❑

❑

c11.indd 203c11.indd 203 12/22/09 10:46:07 AM12/22/09 10:46:07 AM

204

Part II: Python Language and the Standard Library

 Exercises
 1. Modify the scan_pdf.py script to start at the root, or topmost, directory. On Windows,

this should be the topmost directory of the current disk (C:, D:, and so on). Doing this on a
network share can be slow, so don ’ t be surprised if your G: drive takes a lot more time when
it comes from a file server). On UNIX and Linux, this should be the topmost directory
(the root directory, /).

 2. Modify the scan_pdy.py script to match only PDF files with the text boobah in the file name.

 3. Modify the scan_pdf.py script to exclude all files with the text boobah in the file name.

c11.indd 204c11.indd 204 12/22/09 10:46:07 AM12/22/09 10:46:07 AM

Part III

 Putting Python
to Work

 Chapter 12: Testing

Chapter 13: Writing a GUI with Python

Chapter 14: Accessing Databases

Chapter 15: Using Python for XML

Chapter 16: Network Programming

Chapter 17: Extension Programming with C

Chapter 18: Numerical Programming

Chapter 19: An Introduction to Django

Chapter 20: Web Applications and Web Services

Chapter 21: Integrating Java with Python

c12.indd 205c12.indd 205 12/22/09 10:46:30 AM12/22/09 10:46:30 AM

c12.indd 206c12.indd 206 12/22/09 10:46:31 AM12/22/09 10:46:31 AM

 12
Testing

 Like visits to the dentist, thorough testing of any program is something that you should be doing if
you want to avoid the pain of having to trace a problem that you thought you ’ d taken care of. This
lesson is one that normally takes a programmer many years to learn, and to be honest, you ’ re still
going to be working on it for many years. However, the one thing that is of the utmost importance
is that testing must be organized; and to be the most effective, you must start writing your
programs knowing that it will be tested as you go along, and plan around having the time to write
and confirm your test cases.

 Fortunately, Python offers an excellent facility for organizing your testing called PyUnit . It is a
Python port of the Java JUnit package, so if you ’ ve worked with JUnit you ’ re already on firm
ground when testing in Python — but if not, don ’ t worry.

In this chapter you learn:

 The concept and use of assertions

 The basic concepts of unit testing and test suites

 A few simple example tests to show you how to organize a test suite

 Thorough testing of the search utility from Chapter 11

 The beauty of PyUnit is that you can set up testing early in the software development life cycle,
and you can run it as often as needed while you ’ re working. By doing this, you can catch errors
early on, before they ’ re painful to rework — let alone before anybody else sees them. You can also
set up test cases before you write code, so that as you write, you can be sure that your results
match what you expect! Define your test cases before you even start coding, and you ’ ll never find
yourself fixing a bug only to discover that your changes have spiraled out of control and cost you
days of work.

 Note that PyUnit is not the only framework available for testing your Python programs. There are
literally dozens of others out there. At the time of this writing, the vast majority of those have not
been updated to work with Python 3.1, but they are definitely worth a look once they get updated.

❑

❑

❑

❑

c12.indd 207c12.indd 207 12/22/09 10:46:31 AM12/22/09 10:46:31 AM

Part III: Putting Python to Work

208

 Assertions
 An assertion in Python is in practice similar to an assertion in day - to - day language. When you speak and
you make an assertion, you have said something that isn ’ t necessarily proven but that you believe to be
true. Of course, if you are trying to make a point, and the assertion you made is incorrect, your entire
argument falls apart.

 In Python, an assertion is a similar concept. Assertions are statements that can be made within the code
while you are developing it that you can use to test the validity of your code, but if the statement doesn ’ t
turn out to be true, an AssertionError is raised, and the program will be stopped if the error isn ’ t
caught (in general, they shouldn ’ t be caught, because AssertionError s should be taken as a warning
that you didn ’ t think something through correctly!)

 Assertions enable you to think of your code in a series of testable cases. That way, you can make sure
that while you develop, you can make tests along the lines of “ this value is not None ” or “ this object is a
String ” or “ this number is greater than zero. ” All of these statements are useful while developing to
catch errors in terms of how you think about the program.

Try It Out Using Assert

 Creating a set of simple cases, you can see how the assert language feature works:

Demonstrate the use of assert()
large = 1000
string = “This is a string”
float = 1.0
broken_int = “This should have been an int”

assert large > 500
assert type(string) == type(“”)
assert type(float) != type(1)
assert type(broken_int) == type(4)

 Try running the preceding with python - i .

 How It Works
 The output from this simple test case looks like this:

Traceback (most recent call last):
 File “ < pyshell#8 > ”, line 1, in < module >
 assert type(broken_init)==type(4)
NameError: name ‘broken_init’ is not defined

 You can see from this stack trace that this simply raises the error. assert is implemented very simply.
If a special internal variable called __debug__ is True , assertions are checked; and if any assertion
doesn ’ t succeed, an AssertionError is raised. Because assert is actually a combination of an if
statement that, when there ’ s a problem, will raise an exception, you are allowed to specify a custom
message, just as you would with raise . You should experiment by replacing the last assertion with this
code and running it:

c12.indd 208c12.indd 208 12/22/09 10:46:31 AM12/22/09 10:46:31 AM

Chapter 12: Testing

209

try:
assert type(broken_int)==type(4),”broken_int is broken”
except AssertionError: print(“Handle the error here.)

 The variable __debug__ , which activates assert , is special; it ’ s immutable after Python has started
up, so in order to turn it off you need to specify the - O (a dash, followed by the capital letter O)
parameter to Python. - O tells Python to optimize code, which among other things for Python means
that it removes assert tests, because it knows that they ’ ll cause the program to slow down (not a lot,
but optimization like this is concerned with getting every little bit of performance). - O is intended to
be used when a program is deployed, so it removes assertions that are considered to be development -
 time features.

As you can see, assertions are useful. If you even think that you may have made a mistake and want
to catch it later in your development cycle, you can put in an assertion to catch yourself, and move on
and get other work done until that code is tested. When your code is tested, it can tell you what ’ s
going wrong if an assertion fails instead of leaving you to wonder what happened. Moreover, when
you deploy and use the - O flag, your assertion won ’ t slow down the program.

 Assert lacks a couple of things by itself. First, assert doesn ’ t provide you with a structure in which to
run your tests. You have to create a structure, and that means that until you learn what you want from
tests, you ’ re liable to make tests that do more to get in your way than confirm that your code is correct.

 Second, assertions just stop the program and they provide only an exception. It would be more useful to
have a system that would give you summaries, so you can name your tests, add tests, remove tests, and
compile many tests into a package that let you summarize whether or not your program tests out. These
ideas and more make up the concepts of unit tests and test suites .

 Test Cases and Test Suites
 Unit testing revolves around the test case , which is the smallest building block of testable code for any
circumstances that you ’ re testing. When you ’ re using PyUnit, a test case is a simple object with at least
one test method that runs code; and when it ’ s done, it then compares the results of the test against
various assertions that you ’ ve made about the results.

PyUnit is the name of the package as named by its authors, but the module you
import is called the more generic - sounding name unittest .

 Each test case is subclassed from the TestCase class, which is a good, memorable name for it. The
simplest test cases you can write just override the runTest method of TestCase and enable you to
define a basic test, but you can also define several different test methods within a single test case
class, which can enable you to define things that are common to a number of tests, such as setup and
cleanup procedures.

c12.indd 209c12.indd 209 12/22/09 10:46:32 AM12/22/09 10:46:32 AM

Part III: Putting Python to Work

210

 A series of test cases run together for a particular project is called a test suite . You can find some simple
tools for organizing test suites, but they all share the concept of running a bunch of test cases together
and recording what passed, what failed, and how, so you can know where you stand.

 Because the simplest possible test suite consists of exactly one test case, and you ’ ve already had the
simplest possible test case described to you, in the following Try It Out you write a quick testing
example so you can see how all this fits together. In addition, just so you really don ’ t have anything to
distract you, you test arithmetic, which has no external requirements on the system, the file system, or,
really, anything.

 Try It Out Testing Addition

 1. Use your favorite editor to create a file named test1.py in a directory named ch12 . Using
your programming editor, edit your file to have the following code:

import unittest

class ArithTest (unittest.TestCase):
 def runTest (self):
 “”” Test addition and succeed. “””
 self.failUnless (1+1==2, ‘one plus one fails!’)
 self.failIf (1+1 != 2, ‘one plus one fails again!’)
 self.failUnlessEqual (1+1, 2, ‘more trouble with one plus one!’)

def suite():
 suite = unittest.TestSuite()
 suite.addTest (ArithTest())
 return suite

if __name__ == ‘__main__’:
 runner = unittest.TextTestRunner()
 test_suite = suite()
 runner.run (test_suite)

 2. Now run the code using python :

.
--
Ran 1 tests in 0.026s

 How It Works
 In step 1, after you ’ ve imported unittest (the module that contains the PyUnit framework), you
define the class ArithTest , which is a subclass of the class from unittest, TestCase . ArithTest has
only defined the runTest method, which performs the actual testing. Note how the runTest method
has its docstring defined. It is at least as important to document your tests as it is to document your
code. Lastly, a series of three assertions takes place in runTest .

c12.indd 210c12.indd 210 12/22/09 10:46:32 AM12/22/09 10:46:32 AM

Chapter 12: Testing

211

 TestCase classes beginning with fail , such as failUnless , failIf , and failUnlessEqual , come in
additional varieties to simplify setting up the conditions for your tests. When you ’ re programming,
you ’ ll likely find yourself resistant to writing tests (they can be very distracting; sometimes they are
boring; and they are rarely something other people notice, which makes it harder to motivate yourself to
write them). PyUnit tries to make things as easy as possible for you.

 After the unit test is defined in ArithTest , you may like to define the suite itself in a callable function,
as recommended by the PyUnit developer, Steve Purcell, in the modules documentation. This enables
you to simply define what you ’ re doing (testing) and where (in the function you name). Therefore, after
the definition of ArithTest , you have created the suite function, which simply instantiates a vanilla,
unmodified test suite. It adds your single unit test to it and returns it. Keep in mind that the suite
function only invokes the TestCase class in order to make an object that can be returned. The actual test
is performed by the returned TestCase object.

 As you learned in Chapter 6, only when this is being run as the main program will Python invoke the
 TextTestRunner class to create the runner object. The runner object has a method called run that
expects to have an object of the unittests.TestSuite class. The suite function creates one such
object, so test_suite is assigned a reference to the TestSuite object. When that ’ s finished, the
 runner.run method is called, which uses the suite in test_suite to test the unit tests defined in
 test_suite .

 The actual output in this case is dull, but in that good way you ’ ll learn to appreciate because it means
everything has succeeded. The single period tells you that it has successfully run one unit test. If, instead
of the period, you see an F , it means that a test has failed. In either case, PyUnit finishes off a run with a
report. Note that arithmetic is run very, very fast.

 Now, see what failure looks like.

 Try It Out Testing Faulty Addition

 1. Use your favorite text editor to add a second set of tests to test1.py . These will be based on
the first example. Add the following to your file:

class ArithTestFail (unittest.TestCase):
 def runTest (self):
 “”” Test addition and fail. “””
 self.failUnless (1+1==2, ‘one plus one fails!’)
 self.failIf (1+1 != 2, ‘one plus one fails again!’)
 self.failUnlessEqual (1+1, 2, ‘more trouble with one plus one!’)
 self.failIfEqual (1+1, 2, ‘expected failure here’)
 self.failIfEqual (1+1, 2, ‘second failure’)

def suite_2():
 suite = unittest.TestSuite()
 suite.addTest (ArithTest())
 suite.addTest (ArithTestFail())
 return suite

c12.indd 211c12.indd 211 12/22/09 10:46:32 AM12/22/09 10:46:32 AM

Part III: Putting Python to Work

212

 You also need to change the if statement that sets off the tests, and you need to make sure that it
appears at the end of your file so that it can see both classes:

if __name__ == ‘__main__’:
 runner = unittest.TextTestRunner()
 test_suite = suite_2()
 runner.run (test_suite)

 2. Now run the newly modified file (after you ’ ve saved it). You ’ ll get a very different result with the
second set of tests. In fact, it ’ ll be very different from the prior test:

.F
==
FAIL: Test addition and fail.
--
Traceback (most recent call last):
 File “C:\Python30\ch12\test1.py”, line 22, in runTest
 self.failIfEqual(1+1,2, ‘expected failure here’)
AssertionError: expected failure here

--
Ran 2 tests in 0.062s

FAILED (failures=1)
 > > >

 How It Works
 Here, you ’ ve kept your successful test from the first example and added a second test that you know
will fail. The result is that you now have a period from the first test, followed by an “ F ” for “ Failed ”
from the second test, all in the first line of output from the test run.

 After the tests are run, the results report is printed out so you can examine exactly what happened.
The successful test still produces no output at all in the report, which makes sense: Imagine you have
a hundred tests but only two fail — you would have to slog through a lot more output to find the
failures than you do this way. It may seem like looking on the negative side of things, but you ’ ll
get used to it.

 Because there was a failed test, the stack trace from the failed test is displayed. In addition, a couple of
different messages result from the runTest method. The first thing you should look at is the FAIL
message. It actually uses the docstring from your runTest method and prints it at the top, so you can
reference the test that failed. Therefore, the first lesson to take away from this is that you should
document your tests in the docstring! Second, you ’ ll notice that the message you specified in the
 runTest for the specific test that failed is displayed along with the exception that PyUnit generated.

The report wraps up by listing the number of test cases actually run and a count of the failed
test cases.

c12.indd 212c12.indd 212 12/22/09 10:46:33 AM12/22/09 10:46:33 AM

Chapter 12: Testing

213

 Test Fixtures
 Well, this is all well and good, but real - world tests usually involve some work to set up your tests before
they ’ re run (creating files, creating an appropriate directory structure, generally making sure everything
is in shape, and other things that may need to be done to ensure that the right things are being tested). In
addition, cleanup also often needs to be done at the end of your tests.

 In PyUnit, the environment in which a test case runs is called the test fixture , and the base TestCase class
defines two methods: setUp , which is called before a test is run, and tearDown , which is called after
the test case has completed. These are present to deal with anything involved in creating or cleaning
up the test fixture.

 You should know that if setUp fails, tearDown isn ’ t called. However, tearDown is
called even if the test case itself fails.

 Remember that when you set up tests, the initial state of each test shouldn ’ t rely on a prior test having
succeeded or failed. Each test case should create a pristine test fixture for itself. If you don ’ t ensure this,
you ’ re going to get inconsistent test results that will only make your life more difficult.

 To save time when you run similar tests repeatedly on an identically configured test fixture, subclass the
 TestCase class to define the setup and cleanup methods. This will give you a single class that you can
use as a starting point. Once you ’ ve done that, subclass your class to define each test case. You can
alternatively define several test case methods within your unit case class, and then instantiate test case
objects for each method. Both of these are demonstrated in the next example.

 Try It Out Working with Test

 1. Use your favorite text editor to add a new file test2.py . Make it look like the following
example. Note that this example builds on the previous examples.

import unittest
class ArithTestSuper (unittest.TestCase):
 def setUp (self):
 print(“Setting up ArithTest cases”)
 def tearDown (self):
 print(“Cleaning up ArithTest cases”)
class ArithTest (ArithTestSuper):
 def runTest (self):
 “”” Test addition and succeed. “””
 print(“Running ArithTest”)
 self.failUnless (1+1==2, ‘one plus one fails!’)
 self.failIf (1+1 != 2, ‘one plus one fails again!’)
 self.failUnlessEqual (1+1, 2, ‘more trouble with one plus one!’)

class ArithTestFail (ArithTestSuper):
 def runTest (self):

c12.indd 213c12.indd 213 12/22/09 10:46:33 AM12/22/09 10:46:33 AM

Part III: Putting Python to Work

214

 “”” Test addition and fail. “””
 print(“Running ArithTestFail”)
 self.failUnless (1+1==2, ‘one plus one fails!’)
 self.failIf (1+1 != 2, ‘one plus one fails again!’)
 self.failUnlessEqual (1+1, 2, ‘more trouble with one plus one!’)
 self.failIfEqual (1+1, 2, ‘expected failure here’)
 self.failIfEqual (1+1, 2, ‘second failure’)

class ArithTest2 (unittest.TestCase):
 def setUp (self):
 print(“Setting up ArithTest2 cases”)
 def tearDown (self):
 print(“Cleaning up ArithTest2 cases”)
 def runArithTest (self):
 “”” Test addition and succeed, in one class. “””
 print(“Running ArithTest in ArithTest2”)
 self.failUnless (1+1==2, ‘one plus one fails!’)
 self.failIf (1+1 != 2, ‘one plus one fails again!’)
 self.failUnlessEqual (1+1, 2, ‘more trouble with one plus one!’)

 def runArithTestFail (self):
 “”” Test addition and fail, in one class. “””
 print(“Running ArithTestFail in ArithTest2”)
 self.failUnless (1+1==2, ‘one plus one fails!’)
 self.failIf (1+1 != 2, ‘one plus one fails again!’)
 self.failUnlessEqual (1+1, 2, ‘more trouble with one plus one!’)
 self.failIfEqual (1+1, 2, ‘expected failure here’)
 self.failIfEqual (1+1, 2, ‘second failure’)

def suite():
 suite = unittest.TestSuite()
 # First style:
 suite.addTest (ArithTest())
 suite.addTest (ArithTestFail())
 # Second style:
 suite.addTest (ArithTest2(“runArithTest”))
 suite.addTest (ArithTest2(“runArithTestFail”))

 return suite
if __name__ == ‘__main__’:
 runner = unittest.TextTestRunner()
 test_suite = suite()
 runner.run (test_suite)

 2. Run the code:

Setting up ArithTest cases
Running ArithTest
Cleaning up ArithTest cases
.Setting up ArithTest cases

c12.indd 214c12.indd 214 12/22/09 10:46:33 AM12/22/09 10:46:33 AM

Chapter 12: Testing

215

Running ArithTestFail
FCleaning up ArithTest cases
Setting up ArithTest2 cases
Running ArithTest in ArithTest2
Cleaning up ArithTest2 cases
.Setting up ArithTest2 cases
Running ArithTestFail in ArithTest2
FCleaning up ArithTest2 cases

==
FAIL: Test addition and fail.
--
Traceback (most recent call last):
 File “C:/Python31/test2.py”, line 25, in runTest
 self.failIfEqual (1+1, 2, ‘expected failure here’)
AssertionError: expected failure here

==
FAIL: Test addition and fail, in one class.
--
Traceback (most recent call last):
 File “C:/Python31/test2.py”, line 48, in runArithTestFail
 self.failIfEqual (1+1, 2, ‘expected failure here’)
AssertionError: expected failure here

--
Ran 4 tests in 0.396s

FAILED (failures=2)
 > > >

 How It Works
 Take a look at this code before moving along. The first thing to note about this is that you ’ re doing
the same tests as before. One test is made to succeed and the other one is made to fail, but you ’ re
doing two sets, each of which implements multiple unit test cases with a test fixture, but in two
different styles.

 Which style you use is completely up to you; it really depends on what you consider readable and
maintainable.

 The first set of classes in the code (ArithTestSuper , ArithTest , and ArithTestFail) are
essentially the same tests as shown in the second set of examples in test1.py , but this time a class
has been created called ArithTestSuper . ArithTestSuper implements a setUp and tearDown
method. They don ’ t do much but they do demonstrate where you ’ d put in your own conditions. Each
of the unit test classes are subclassed from your new ArithTestSuper class, so now they will perform
the same setup of the test fixture. If you needed to make a change to the test fixture, you can now
modify it in ArithTestSuper ’ s classes, and have it take effect in all of its subclasses.

 The actual test cases, ArithTest and ArithTestFail , are the same as in the previous example,
except that you ’ ve added print calls to them as well.

c12.indd 215c12.indd 215 12/22/09 10:46:34 AM12/22/09 10:46:34 AM

Part III: Putting Python to Work

216

 The final test case class, ArithTest2 , does exactly the same thing as the prior three classes that you ’ ve
already defined. The only difference is that it combines the test fixture methods with the test case
methods, and it doesn ’ t override runTest . Instead ArithTest2 defines two test case methods:
 runArithTest and runArithTestFail . These are then invoked explicitly when you created test case
instances during the test run, as you can see from the changed definition of suite .

Once this is actually run, you can see one change immediately: Because your setup, test, and cleanup
functions all write to stdout , you can see the order in which everything is called. Note that the
cleanup functions are indeed called even after a failed test. Finally, note that the tracebacks for the
failed tests have been gathered up and displayed together at the end of the report.

 Putting It All Together with
Extreme Programming

A good way to see how all of this fits together is to use a test suite during the development of an
extended coding project. This strategy underlies the XP (Extreme Programming) methodology, which is
a popular trend in programming: First, you plan the code; then you write the test cases as a framework;
and only then do you write the actual code. Whenever you finish a coding task, you rerun the test suite
to see how closely you approach the design goals as embodied in the test suite. (Of course, you are also
debugging the test suite at the same time, and that ’ s fine!) This technique is a great way to find your
programming errors early in the process, so that bugs in low - level code can be fixed and the code made
stable before you even start on higher - level work, and it ’ s extremely easy to set up in Python using
PyUnit, as you see in the next example.

 This example includes a realistic use of text fixtures as well, creating a test directory with a few files in it
and then cleaning up the test directory after the test case is finished. It also demonstrates the convention
of naming all test case methods with test followed by the name, such as testMyFunction , to enable
the unittest.main procedure to recognize and run them automatically.

 Implementing a Search Utility in Python
 The first step in this programming methodology, as with any, is to define your objectives — in this case, a
general - purpose, reusable search function that you can use in your own work. Obviously, it would be a
waste of time to anticipate all possible text - processing functionality in a single search utility program,
but certain search tasks tend to recur a lot. Therefore, if you wanted to implement a general - purpose
search utility, how would you go about it? The UNIX find command is a good place to look for useful
functionality — it enables you not only to iterate through the directory tree and perform actions on each
file found, but also to specify certain directories to skip, to specify rather complex logic combinations on
the command line, and a number of other things, such as searching by file modification date and size.

 On the other hand, the find command doesn ’ t include any searching on the content of files (the
standard way to do this under UNIX is to call grep from within find) and it has a lot of features
involving the invocation of post - processing programs that we don ’ t really need for a general - purpose
Python search utility.

c12.indd 216c12.indd 216 12/22/09 10:46:34 AM12/22/09 10:46:34 AM

Chapter 12: Testing

217

 What you might need when searching for files in Python could include the following:

 Return values you can use easily in Python: A tuple including the full path, the file name, the
extension, and the size of the file is a good start.

 Specification of a regular expression for the file name to search for and a regular expression for
the content (if no content search is specified, the files shouldn ’ t be opened, to save overhead).

 Optional specifications of additional search terms: The size of the file, its age, last modification,
and so on are all useful.

 A truly general search utility might include a function to be called with the parameters of the file, so
that more advanced logic can be specified. The UNIX find command enables very general logic
combinations on the command line, but frankly, let ’ s face it — complex logic on the command line is
hard to understand. This is the kind of thing that really works better in a real programming language
like Python, so you could include an optional logic function for narrowing searches as well.

 In general, it ’ s a good idea to approach this kind of task by focusing first on the core functionality,
adding more capability after the initial code is already in good shape. That ’ s how the following example
is structured — first you start with a basic search framework that encapsulates the functionality you
covered in the examples for the os and re modules, and then you add more functionality once that
first part is complete. This kind of incremental approach to software development can help keep you
from getting bogged down in details before you have anything at all to work with, and the functionality
of something like this general - purpose utility is complicated enough that it would be easy to lose
the thread.

 Because this is an illustration of the XP methodology as well, you ’ ll follow that methodology and first
write the code to call the find utility, build that code into a test suite, and only then will you write the
 find utility. Here, of course, you ’ re cheating a little. Ordinarily, you would be changing the test suite as
you go, but in this case, the test suite is already guaranteed to work with the final version of the tested
code. Nonetheless, you can use this example for yourself.

 Try It Out Writing a Test Suite

 1. Use your favorite text editor to create the file test_find.py . Enter the following code:

import unittest
import find
import os, os.path

def filename(ret):
 return ret[1]

class FindTest (unittest.TestCase):
 def setUp (self):
 os.mkdir (“_test”)
 os.mkdir (os.path.join(“_test”, “subdir”))
 f = open (os.path.join(“_test”, “file1.txt”), “w”)
 f.write (“””first line
second line
third line

❑

❑

❑

c12.indd 217c12.indd 217 12/22/09 10:46:34 AM12/22/09 10:46:34 AM

Part III: Putting Python to Work

218

fourth line”””)
 f.close()

 f = open (os.path.join(“_test”, “file2.py”), “w”)
 f.write (“””This is a test file.
It has many words in it.
This is the final line.”””)
 f.close()

 def tearDown (self):
 os.unlink (os.path.join (“_test”, “file1.txt”))
 os.unlink (os.path.join (“_test”, “file2.py”))
 os.rmdir (os.path.join (“_test”, “subdir”))
 os.rmdir (“_test”)

 def test_01_SearchAll (self):
 “”” 1: Test searching for all files. “””
 res = find.find (r”.*”, start=”_test”)
 self.failUnless (map(filename,res) == [‘file1.txt’, ‘file2.py’],
 ‘wrong results’)

 def test_02_SearchFileName (self):
 “”” 2: Test searching for specific file by regexp. “””
 res = find.find (r”file”, start=”_test”)
 self.failUnless (map(filename,res) == [‘file1.txt’, ‘file2.py’],
 ‘wrong results’)
 res = find.find (r”py$”, start=”_test”)
 self.failUnless (map(filename,res) == [‘file2.py’],
 ‘Python file search incorrect’)

 def test_03_SearchByContent (self):
 “”” 3: Test searching by content. “””
 res = find.find (start=”_test”, content=”first”)
 self.failUnless (map(filename,res) == [‘file1.txt’],
 “didn’t find file1.txt”)
 res = find.find (where=”py$”, start=”_test”, content=”line”)
 self.failUnless (map(filename,res) == [‘file2.py’],
 “didn’t find file2.py”)
 res = find.find (where=”py$”, start=”_test”, content=”second”)
 self.failUnless (len(res) == 0,
 “found something that didn’t exist”)

 def test_04_SearchByExtension (self):
 “”” 4: Test searching by file extension. “””
 res = find.find (start=”_test”, ext=’py’)
 self.failUnless (map(filename,res) == [‘file2.py’],
 “didn’t find file2.py”)
 res = find.find (start=”_test”, ext=’txt’)
 self.failUnless (map(filename,res) == [‘file1.txt’],
 “didn’t find file1.txt”)

 def test_05_SearchByLogic (self):
 “”” 5: Test searching using a logical combination callback. “””
 res = find.find (start=”_test”, logic=lambda x: (x[‘size’] < 50))

c12.indd 218c12.indd 218 12/22/09 10:46:35 AM12/22/09 10:46:35 AM

Chapter 12: Testing

219

 self.failUnless (map(filename,res) == [‘file1.txt’],
 “failed to find by size”)

if __name__ == ‘__main__’:
 unittest.main()

 2. Now create another code file named find.py — note that this is only the skeleton of the
actual find utility and will fail miserably. That ’ s okay; in testing and in extreme
programming, failure is good because it tells you what you still need to do:

import os, os.path
import re
from stat import *

def find (where=’.*’, content=None, start=’.’, ext=None, logic=None):
 return ([])

 3. Run the test_find.py test suite from the command line. An excerpt is shown here:

C:\projects\articles\python_book\ch12_testing > python test_find.py
FFFFF
==
FAIL: 1: Test searching for all files.
--

[a lot more information]

Ran 5 tests in 0.421s

FAILED (failures=5)

 How It Works
 The first three lines of the testing suite import the PyUnit module, the find module to be tested
(which hasn ’ t actually been written yet), and the os and os.path modules for file and directory
manipulation when setting up and tearing down the test fixtures. Following this, there ’ s a simple
helper function to extract the file name from the search results, to make it simpler to check the results
for correctness.

 After that, the test suite itself starts. All test cases in this example are instances of the base class
 FindTest . The FindTest class starts out with setUp and tearDown methods to define the test
fixtures used in the test cases, followed by five test cases.

 The test fixture in all test cases consists of a testing directory; a subdirectory under that main directory
to ensure that subdirectories aren ’ t treated as files when scanning; and two test files with .txt and
 .py extensions. The contents of the test files are pretty arbitrary, but they contain different words so
that the test suite can include tests to distinguish between them using a content search.

 The test cases themselves are named with both a sequential number and a descriptive name, and each
starts with the characters “ test. ” This allows the unittest.main function to autodetect them when
running the test suite. The sequential numbers ensure that the tests will be run in the proper order
defined, because a simple character sort is used to order them when testing. Each docstring then cites
the test number, followed by a simple description of the type of test. All of this enables the results of
failed tests to be understood quickly and easily, so that you can trace exactly where the error occurred.

c12.indd 219c12.indd 219 12/22/09 10:46:35 AM12/22/09 10:46:35 AM

Part III: Putting Python to Work

220

 Finally, after the test cases are defined, there are exactly two lines of code to detect that the script is
being run directly instead of being called as a module, and if it is being run, to create a default test
runner using unittest.main in that case. The unittest.main call then finds all of the test cases,
sorts them by the sequential number, and runs them in order.

The second file is the skeleton of the find utility itself. Beyond determining what it has to do and how
it ’ s called, you haven ’ t done anything at all yet to write the code itself, so that ’ s your next task.

 Try It Out A General - Purpose Search Framework

 1. Using your favorite text editor, open find.py and change it to look like this:

import os, os.path
import re
from stat import *

def find (where=’.*’, content=None, start=’.’, ext=None, logic=None):
 context = {}
 context[‘where’] = where
 context[‘content’] = content
 context[‘return’] = []

 os.walk (start, find_file, context)

 return context[‘return’]

def find_file (context, dir, files):
 for file in files:
 # Find out things about this file.
 path = os.path.join (dir, file)
 path = os.path.normcase (path)
 try:
 ext = os.path.splitext (file)[1][1:]
 except:
 ext = ‘’
 stat = os.stat(path)
 size = stat[ST_SIZE]

 # Don’t treat directories like files
 if S_ISDIR(stat[ST_MODE]): continue

 # Do filtration based on the original parameters of find()
 if not re.search (context[‘where’], file): continue

 # Do content filtration last, to avoid it as much as possible
 if context[‘content’]:
 f = open (path, ‘r’)
 match = 0
 for l in f.readlines():
 if re.search(context[‘content’], l):

c12.indd 220c12.indd 220 12/22/09 10:46:35 AM12/22/09 10:46:35 AM

Chapter 12: Testing

221

 match = 1
 break
 f.close()
 if not match: continue

 # Build the return value for any files that passed the filtration tests.
 file_return = (path, file, ext, size)
 context[‘return’].append (file_return)

 2. Now, for example, to find Python files containing “ find, ” you can start Python and do the
following:

 > > > import find
 > > > find.find(r”py$”, content=’find’)
[(‘.\\find.py’, ‘find.py’, ‘py’, 1297), (‘.\\test_find.py’,
‘test_find.py’, ‘py’, 1696)]

 How It Works
 This example is really doing the same thing as the first example in the last chapter on text processing,
except that instead of a task - specific print_pdf function, there is a more general find_file function
to scan the files in each directory. Because this code is more complex than the other example scripts,
you can see that having a testing framework available in advance will help you immensely in
debugging the initial versions. This first version satisfies the first three test cases of the test suite.

 Because the find_file function is doing most of the filtration work, it obviously needs access to the
search parameters. In addition, because it also needs a place to keep the list of hits it is building during
the search, a dictionary structure is a good choice for its argument, because a dictionary is mutable
and can contain any number of named values. Therefore, the first thing the main find function does is
to build that dictionary and put the search parameters into it. It then calls os.walk to do the work of
iterating through the directory structure, just as in the PDF search code example at the beginning of
this chapter. Once the walk is done, it returns the return value (the list of files found and information
about them), which was built during the search.

 During the search, os.walk calls find_file on each directory it finds, passing the dictionary
argument built at the start of the search, the name of the current directory, and a list of all the files in
the directory. The first thing the find_file function does, then, is to scan that list of files and
determine some basic information for each one by running os.stat on it. If the “ file ” is actually a
subdirectory, the function moves on; because all of the search parameters apply to file names, not to
points in the directory tree (and because the content search will result in an error unless a file is being
opened!), the function skips the subdirectories using the information gleaned from the os.stat call.

 When that ’ s finished, the function applies the search parameters stored in the dictionary argument to
eliminate whatever files it can. If a content parameter is specified, it opens and reads each file, but
otherwise no manipulation of the file itself is done.

If a file has passed all the search parameter tests (there are only two in this initial version), an entry is
built for it and appended to the hit list; this entry consists of the full path name of the file relative to
the starting point of the search, the file name itself, its extension, and its size. Naturally, you could
return any set of values for files you find useful, but these are a good basic set that you could use to
build a directory - like listing of hits, or use to perform some sort of task on the files.

c12.indd 221c12.indd 221 12/22/09 10:46:35 AM12/22/09 10:46:35 AM

Part III: Putting Python to Work

222

 A More Powerful Python Search
 Remember that this is an illustration of an incremental programming approach, so the first example was
a good place to stop and give an explanation, but there are plenty of other search parameters it would be
nice to include in this general search utility, and of course there are still two unit cases to go in the test
suite you wrote at the outset. Because Python gives you a keyword parameter mechanism, it ’ s very
simple to add new named parameters to your function definition and toss them into the search context
dictionary, and then use them in find_file as needed, without making individual calls to the find
function unwieldy.

 The next example shows you how easy it is to add a search parameter for the file ’ s extension, and throws
in a logic combination callback just for good measure. You can add more search parameters at your
leisure; the following code just shows you how to get started on your own extensions (one of the
exercises for the chapter asks you to add search parameters for the date on which the file was last
modified, for instance).

 Though the file extension parameter, as a single simple value, is easy to conceive and implement — it ’ s
really just a matter of adding the parameter to the search context and adding a filter test in find_file
— planning a logic combination callback parameter requires a little thought. The usual strategy for
specification of a callback is to define a set of parameters — say, the file name, size, and modification
date — and then pass those values in on each call to the callback. If you add a new search parameter,
you ’ re faced with a choice — you can arbitrarily specify that the new parameter can ’ t be included in
logical combinations, you can change the callback specification and invalidate all existing callbacks for
use with the new code, or you can define multiple categories of logic callbacks, each with a different set
of parameters. None of these alternatives is terribly satisfying, and yet they ’ re decisions that have to be
made all the time.

 In Python, however, the dictionary structure provides you with a convenient way to circumvent this
problem. If you define a dictionary parameter that passes named values for use in logic combinations,
unused parameters are simply ignored. Thus, older callbacks can still be used with newer code that
defines more search parameters, without any changes to code you ’ ve already got being necessary. In the
updated search code found in the next Try It Out, the callback function is defined to be a function that
takes a dictionary and returns a flag — a true filter function. You can see how it ’ s used in the example
section and in the next chapter, in test case 5 in the search test suite.

 Adding a logical combination callback also makes it simple to work with numerical parameters such as
the file size or the modification date. It ’ s unlikely that a caller will search on the exact size of a file;
instead, one usually searches for files larger or smaller than a given value, or in a given size range — in
other words, most searches on numerical values are already logical combinations. Therefore, the logical
combination callback should also get the size and dates for the file, so that a filter function can already be
written to search on them. Fortunately, this is simple — the results of os.stat are already available to
copy into the dictionary.

c12.indd 222c12.indd 222 12/22/09 10:46:36 AM12/22/09 10:46:36 AM

Chapter 12: Testing

223

 Try It Out Extending the Search Framework

 1. Again using your favorite text editor, open the file find.py from the last example and modify
it so that it matches the following code:

import os, os.path
import re
from stat import *

def find (where=’.*’, content=None, start=’.’, ext=None, logic=None):
 context = {}
 context[‘where’] = where
 context[‘content’] = content
 context[‘return’] = []
 context[‘ext’] = ext
 context[‘logic’] = logic

 for root, dirs, files in os.walk(start):
 find_file(context, root, files)

 return context[‘return’]

def find_file (context, dir, files):
 for file in files:
 # Find out things about this file.
 path = os.path.join (dir, file)
 path = os.path.normcase (path)
 stat = os.stat(path)
 size = stat[ST_SIZE]
 try:
 ext = os.path.splitext (file)[1][1:]
 except:
 ext = ‘’

 # Don’t treat directories like files
 if S_ISDIR(stat[ST_MODE]): continue

 # Do filtration based on passed logic
 if context[‘logic’] and not context[‘logic’](locals()): continue

 # Do filtration based on extension
 if context[‘ext’] and ext != context[‘ext’]: continue

 # Do filtration based on the original parameters of find()
 if not re.search (context[‘where’], file): continue

 # Do content filtration last, to avoid it as much as possible
 if context[‘content’]:
 f = open (path, ‘r’)
 match = 0
 for l in f.readlines():
 if re.search(context[‘content’], l):
 match = 1
 break

c12.indd 223c12.indd 223 12/22/09 10:46:36 AM12/22/09 10:46:36 AM

Part III: Putting Python to Work

224

 f.close()
 if not match: continue

 # Build the return value for any files that passed the filtration tests.
 file_return = (path, file, ext, size)
 context[‘return’].append (file_return)

 2. Now to find files larger than 1,000 bytes and older than yesterday:

 > > > import find
 > > > find.find(r”py$”, content=’find’)
[(‘.\\find.py’, ‘find.py’, ‘py’, 1297), (‘.\\test_find.py’,
‘test_find.py’, ‘py’, 1696)]

 3. You can also run the test_find.py test suite from the command line:

C:\projects\python_book\ch11_regexp > python test_find.py
.....
--
Ran 5 tests in 0.370s

During development, this run was not quite so smooth!

 Formal Testing in the Software Life Cycle
 The result of the test suite shown in the preceding example is clean and stable code in a somewhat
involved programming example, and well - defined test cases that are documented as working correctly.
This is a quick and easy process in the case of a software “ product ” that is some 30 lines long, although it
can be astounding how many programming errors can be made in only 30 lines!

 In a real - life software life cycle, of course, you will have thousands of lines of code. In projects of realistic
magnitude like this, nobody can hope to define all possible test cases before releasing the code. It ’ s true
that formal testing during the development phase will dramatically improve both your code and your
confidence in it, but there will still be errors in it when it goes out the door.

 During the maintenance phase of the software life cycle, bug reports are filed after the target code is
placed in production. If you ’ re taking an integrated testing approach to your development process, you
can see that it ’ s logical to think of bug reports as highlighting errors in your test cases as well as errors in
the code itself. Therefore, the first thing you should do with a bug report is to use it to modify an existing
test case, or to define a new test case from scratch, and only then should you start to modify the target
code itself.

 By doing this, you accomplish several things. First, you ’ re giving the reported bugs a formal definition.
This enables you to agree with other people regarding what bugs are actually being fixed, and it enables
further discussion to take place as to whether the bugs have really been understood correctly. Second, by

c12.indd 224c12.indd 224 12/22/09 10:46:36 AM12/22/09 10:46:36 AM

Chapter 12: Testing

225

defining test fixtures and test cases, you are ensuring that the bugs can be duplicated at will. As I ’ m sure
you know if you ’ ve ever need to reproduce elusive bugs, this alone can save you a lot of lost sleep.
Finally, the third result of this approach might be the most significant: If you never make a change to
code that isn ’ t covered by a test case, you will always know that later changes aren ’ t going to break fixes
already in place. The result is happier users and a more relaxed you. And you ’ ll owe it all to unit testing.

 Summary
 Testing is a discipline best addressed at the very outset of the development life cycle. In general, you will
know that you ’ ve got a firm grip on the problem you ’ re solving when you understand it enough to write
tests for it.

 The most basic kind of test is an assertion. Assertions are conditions that you ’ ve placed inside of your
program confirming that conditions that should exist do in fact exist. They are for use while you ’ re
developing a program to ensure that conditions you expect are met.

 Assertions will be turned off if Python is run with the - O option. The - O indicates that you want Python
to run in a higher performance mode, which would usually also be the normal way to run a program in
production. This means that using assert is not something that you should rely on to catch errors in a
running system.

 PyUnit is the default way of doing comprehensive testing in Python, and it makes it very easy to manage
the testing process. PyUnit is implemented in the unittest module.

 When you use PyUnit to create your own tests, PyUnit provides you with functions and methods to test
for specific conditions based on questions such as “ is value A greater than value B, ” giving you a number
of methods in the TestCase class that fail when the conditions reflected by their names fail. The names
of these methods all begin with “ fail ” and can be used to set up most of the conditions for which you
will ever need to test.

 The TestCase class should be subclassed — it ’ s the run method that is called on to run the tests, and
this method needs to be customized to your tests. In addition, the test fixture, or the environment in
which the tests should be run, can be set up before each test if the TestCase ’ s setUp and tearDown
methods are overridden, and code is specified for them.

 You ’ ve seen two approaches to setting up a test framework for yourself. One subclasses a customized
class, and another uses separate functions to implement the same features but without the need to
subclass. You should use both and find out which ones work for your way of doing things. These tests
do not have to live in the same file as your modules or programs; they should be kept separate so they
don ’ t bloat your code.

 As you go through the remainder of this book, try to think about writing tests for the functions and
classes that you see, and perhaps write tests as you go along. It ’ s good exercise; better than having
exercises here.

c12.indd 225c12.indd 225 12/22/09 10:46:37 AM12/22/09 10:46:37 AM

Part III: Putting Python to Work

226

 The key things to take away from this chapter are:

 Assertions are statements made within your code that allow you to test the validity of the code.
If the test fails, an AssertionError is raised. You can use assert to create your tests.

 PyUnit is the name of the package as named by its authors, but the module you import is called
the more generic - sounding name unittest.

 A test suite is a series of test cases run together for a particular project.

 In PyUnit, the environment in which a test case runs is called the test fixture, and the base
TestCase class defines two methods: setUp, which is called before a test is run; and tearDown,
which is called after the test case has completed. These are present to deal with anything
involved in creating or cleaning up the test fixture.

 In the following chapter, we will discuss GUI (graphical user interface) programming, and learn to make
simple, interactive programs.

❑

❑

❑

❑

c12.indd 226c12.indd 226 12/22/09 10:46:37 AM12/22/09 10:46:37 AM

 13
Writing a GUI with Python

 Python plays a big role behind the scenes in some of the world ’ s largest and most important
server - side applications, but Python has also made a big impact on end - user applications. Writing
a GUI is an expensive and painful project in C, C++, or even Java or C#, but it can be done quickly
and easily in Python. Even if you only write simple Python scripts, being able to whip up a GUI
can be a force multiplier that makes your script usable by less technical people, compounding its
value. Python, being cross - platform and truly object oriented, has advantages that Visual Basic
programmers would love to have in their rapid application development toolbox.

 Python enables you to lay out GUIs one component at a time, like other programming languages.
However, these days, no real programmer is writing GUI code by hand. If that ’ s what you ’ re used
to, get ready to embrace all the rapid application development magic of Delphi with the power
of a real language in Python. Of course, this kind of power is also available in other stacks,
such as C#.

 In this chapter you learn the basics of GUI programming in Python. A comprehensive guide to
creating GUI applications would easily fill another book; what is contained herein merely scratches
the surface. However, it should be enough to get you well on your way to writing elegant,
interactive, and user - friendly applications.

 In this chapter you learn to:

 Create widgets such as labels and command, radio, and checkbox buttons

 Lay out your graphical user interface

 Modify the look of your widgets and customize their appearance

 Create custom dialog boxes

 Understand packing order

 Insert functions in your widgets

❑

❑

❑

❑

❑

❑

c13.indd 227c13.indd 227 12/22/09 10:47:31 AM12/22/09 10:47:31 AM

228

Part III: Putting Python to Work

 GUI Programming Toolkits for Python
 There is wide support for writing GUIs with Python with many different toolkits: You can find a dozen
options at www.python.org/moin/GuiProgramming to try out. These toolkits, binary modules for
Python that interface with native GUI code written in C/C++, all have different APIs and offer different
feature sets. Only one comes with Python by default, the venerable TK GUI toolkit. It ’ s always possible
that if you ’ re just using Windows, you ’ ll install win32all and use the Win32 API directly. The truly brave
will write their entire GUI in pyGame and add sound to every slider.

 Other options are wxPython, PyQT, and pyGTK. These differ in many ways, but one important way is
the license. The PyQT web page shows this problem of how it could restrict the decisions you can make
if you are trying to create certain classes of applications or libraries. You can see this in the following
paragraph:

 “ PyQt is licensed under the GNU GPL (for UNIX/Linux and MacOS/X), under the
QT Non - commercial License (for use with the QT v2.3.0 non - commercial version for
Windows), under the QT Educational License (for use with the educational edition of
QT for Windows), and under a commercial license (for Windows, UNIX/Linux and
MacOS/X) ”

 They go on to state:

 “ When deploying commercial PyQt applications it is necessary to discourage users
from accessing the underlying PyQt modules for themselves. A user that used the
modules shipped with your application to develop new applications would them-
selves be considered a developer and would need their own commercial QT and
PyQt licenses. ”

 “ One solution to this problem is the VendorID package. This enables you to build
Python extension modules that can only be imported by a digitally signed custom
interpreter. The package enables you to create such an interpreter with your
 application embedded within it. The result is an interpreter that can only run
your application, and PyQt modules that can only be imported by that interpreter.
You can use the package to similarly restrict access to any extension module. ”

 As you can see, unless there is a very good reason, you ’ ll probably want to skip the whole QT toolset for
this section of the license alone. No one in their right mind wants to deal with that kind of confusing
licensing landscape. The QT people would claim that the advantages of their toolkit overwhelm the cost
of licensing for the few people who use Windows. If you agree, tread warily into their licensing
minefield. Most people simply discount it.

c13.indd 228c13.indd 228 12/22/09 10:47:31 AM12/22/09 10:47:31 AM

Chapter 13: Writing a GUI with Python

229

 One open - source option is wxPython. WxPython is based on wxWidgets, a portable (Windows, Linux,
Mac OS X) graphics toolkit with a long history and a tradition of looking and running just like native
code. You can find the best information on wxPython on the really nice wiki at http://wiki
.wxpython.org/index.cgi/FrontPage .

 Beginners to GUI creation may feel overwhelmed by wxPython. Although there is good user support in
mailing lists and professional organizations, the wxPython library is intimidating. Nevertheless, it ’ s a
good option for people willing to climb the learning curve. At the time of this writing, not all of these
programs support 3.1, though most promise to.

 With this in mind, for the rest of this chapter you will be working with Tkinter. Tkinter is Python ’ s
standard GUI package and comes installed with Python. It is perhaps the most used GUI Programming
kit and is portable across virtually every platform. For more information on this venerable standby, feel
free to visit http://tkinter.unpythonic.net/wiki/ . You can also visit its home page at
http://wiki.python.org/moin/TkInter .

 Tkinter Introduction
 GUIs are not as simple as they look. Once you ’ ve understood the basic concepts, however, you ’ ll find
them understandable, and proper program design will help you navigate around the major roadblocks.

 Not all Tkinter applications have to be complex. Your application may be a simple dialog box that you ’ ve
written to automate a business process you often do. The same things that made large applications like
CANVAS, Dashboard, and PythonCAD quick and easy to write make simple applications nearly trivial.
Tkinter itself has been used to make many popular programs, including most famously, IDLE itself.

 Creating GUI Widgets with Tkinter
 The first thing to understand is that most GUI frameworks, including Tkinter, are based on a widget
model. A widget is a component of a GUI — buttons, labels, and text boxes are all widgets. Most widgets
have graphical representations on screen, but some widgets, such as tables and boxes, exist only to
contain other widgets and arrange them on the screen. A GUI is constructed out of an arrangement of
widgets. In the following section, you create a simple GUI by defining some widgets and placing them
inside each other.

Try It Out Writing a Simple Tkinter Program

 With Tkinter already in place, you ’ re ready to write a real GUI application. This script, MyFirstGUI ,
creates a GUI of a simple window and a label. The label on the window displays a message:

import tkinter
from tkinter import *
widget = Label(None, text=’This is my first Gui!!’) # create a label
widget.pack()
widget.mainloop()

c13.indd 229c13.indd 229 12/22/09 10:47:32 AM12/22/09 10:47:32 AM

230

Part III: Putting Python to Work

 Run this program and you ’ ll see the “ This is my first Gui!! ” label in the window, as shown
in Figure 13 - 1.

Figure 13-1

 How It Works
 The first thing to do is to import the Tkinter module. Next, you could either import Label from
Tkinter, or simply import all (*) from Tkinter, as you did in the example. After that, you create an
object for each widget (in this case, Label). The Label is then arranged in the parent window. Finally,
the widget is displayed.

One problem with this script is that unlike most GUI applications, this one doesn ’ t actually do
anything. The reason for this is simple: The script as it is doesn ’ t handle any GUI events. Don ’ t worry;
you fix this later in the chapter.

 Resizing the Widget
 You may or may not have noticed a few things about the window you created. For starters, it had a built -
 in minimize and maximize button, along with an “ X ” button to close the window. In addition, the user
could stretch out the window. Go ahead and grab the right side of the window and pull it to the right a
few inches. You will note that the label stays in the center near the top. This is a good thing.

 Now, grab the bottom of the window and stretch it out. See the problem? No matter how far down you
stretch the window, the label stays at the top. Ideally, when the user changes the size or shape of a
window, you want the widget(s) inside to behave appropriately. With this in mind, modify your code so
that the label centers when the window is resized:

import tkinter
from tkinter import *
Label(text=’My first GUI!’).pack(expand=YES, fill=BOTH)
mainloop()

 When you run this program, try resizing the window; you ’ ll see the “ My first GUI! ” label stay centered
no matter what the window looks like, as shown in Figure 13 - 2.

Figure 13-2

c13.indd 230c13.indd 230 12/22/09 10:47:32 AM12/22/09 10:47:32 AM

Chapter 13: Writing a GUI with Python

231

 In this example, you imported all from Tkinter once more, and then created a label with some text. Next,
you assign the values Yes to expand, and Both to fill. This tells Python to expand the widget when the
parent window is expanded. By default, this option is turned off.

 Configuring Widget Options
 You ’ ve seen one method to assign not only text to your label, but also how to configure some of the
widget ’ s options, such as expand and fill. Though the method you used was convenient in this instance,
you may find yourself wanting to create your widgets first, and then configuring their options later on.

Try It Out Confi guring Your Widget

 In this example you create the same parent window and the same label. However, instead of setting
your options at the same time you create them, you are going to wait and do them after they have
already been created:

import tkinter
from tkinter import *
root = Tk()

widget = Label(root)
widget.config(text=’My first GUI!’)
widget.pack(side=TOP, expand=YES, fill=BOTH)
root.mainloop()

 In this example, you called upon the configure method to achieve the same result as the previous
example. If you wanted to, you could change the appearance of the widget later in the program. For
instance, maybe the user wishes to change the way the window looks. You could insert a button that
would trigger the configure method, which in turn would change your widget ’ s options.

 Putting the Widgets to Work
 So far you ’ ve seen how to make a basic label, and how to format your widgets. But for a program to be
successful, it not only has to look good; it has to actually do something. The next few examples not only
teach you how to add more than one widget to your GUI, but teach you to apply actions to those
widgets. Even more importantly, you learn to make the program respond to the user ’ s actions.

 You have learned how to create one type of widget so far — the label. In this example, you learn to create
a button. Try typing the following code into a file called MyFirstButton.py :

import sys
from tkinter import *
widget = Button(None, text=’Click Me’, command=sys.exit)
widget.pack()
widget.mainloop()

c13.indd 231c13.indd 231 12/22/09 10:47:33 AM12/22/09 10:47:33 AM

232

Part III: Putting Python to Work

 This code is short and sweet and you may have noticed it looks very similar to the previous code.
However, you will want to note that in addition to changing the widget type, you also added a new
option, command . The value you added to command — sys.exit — tells Python to literally exit the
system when the user clicks the button widget.

 But what if you want to offer the user some option other than simply exiting the program? To do that,
you have to add a second widget to your window. Create a new file and call it MultipleWidget.py :

from tkinter import *

def result():
 print(‘The sum of 2+2 is ‘,2+2)

win = Frame()
win.pack()
Label(win, text=’Click Add to get the sum or Quit to Exit’).pack(side=TOP)
Button(win, text=’Add’, command=result).pack(side=LEFT)
Button(win, text=’Quit’, command=win.quit).pack(side=RIGHT)

win.mainloop()

 This code introduces several new concepts we have yet to cover. First, you create a user - defined
function, result() , and assign it the task of printing some text and returning the sum of 2+2. Next, you
create three widgets. The first, a Label, holds some text, and has been giving the side=TOP option. Next,
you create a button to call your user - defined function, which you place on the left side of the window.
Lastly, you create a right - sided button and assign win.quit to command .

 If the user clicks the Add button, it prints the text, “ The sum of 2+2 is 4 ” to stdout. If the user clicks the
Quit button, it closes the window.

 One other thing to notice here is that for the first time we have introduced the use of the frame widget.

 Creating Layouts
 When creating a GUI, it is important to consider the hierarchy of your widgets. This hierarchy is
commonly referred to as parent - child. In the preceding example, you created a number of widgets. The
first widget is the top - level window, which acts as a parent. Next, you have a widget called win, which
has a child of its own — a frame widget. The win widget, at this point, is a child of the top - level window.

 Next, you have a label and two buttons, all of which are children of your frame widget. A frame widget
is a widget whose purpose is to hold other widgets, and thus allow the programmer the flexibility to
create a layout determining where on the window each widget should appear. As you get further into
GUI programming, you will work with many different frame widgets, each occupying a specific spot on
the top - level window, with each frame having its on set of widgets. These widgets that belong to each
frame, being children of their respective frame, will be limited to the space provided them by their
parent frame.

 For example, if you have two frames of the same size, each taking up half of the window, and assign a
button widget to each frame, the button assigned to the left frame will only be able to be placed within
the left - hand side of the window. Likewise, the button assigned to the frame on the right side will be

c13.indd 232c13.indd 232 12/22/09 10:47:33 AM12/22/09 10:47:33 AM

Chapter 13: Writing a GUI with Python

233

constrained to that section. If you were to pack the button in the left frame to the right, it would appear
to the user to be in the center of the top - level window.

 Packing Order
 Another important aspect of layout is known as packing order. When you create each widget, and pack
them, they are given all of the space for their region. For instance, if you pack a button on the LEFT , it
will occupy all of the left - hand space. When you create a second widget and pack it to the left as well,
the initial button is shrunk, but still holds the left - most space. This process continues, with each button
shrinking to provide room for the other widgets. However, the buttons never move from their original
space. The first button packed to the left will always be the left - most; likewise, the second button packed
to the left will always be the second closest to the left.

 Though this may sound confusing, simply rearranging your previous code should shed some light on
the matter:

from tkinter import *

def result():
 print(‘The sum of 2+2 is ‘,2+2)

win = Frame()
win.pack()
Button(win, text=’Add’, command=result).pack(side=LEFT)
Label(win, text=’Click Add to get the sum or Quit to Exit’).pack(side=TOP)
Button(win, text=’Quit’, command=win.quit).pack(side=RIGHT)

win.mainloop()

 Figure 13 - 3 shows how the program originally looked, before you modified your code.

Figure 13-3

 And Figure 13 - 4 is how it looks with the modified code.

Figure 13-4

 Controlling Widget Appearances
 Form and function are key to creating a well - rounded GUI. Thus far, you have learned to add some
code to your interfaces, and learned the basics of layout (there is much more to learn, but it is beyond
the scope of this chapter). In this section, you take your program one step further and learn to control the
actual appearance of your widgets.

c13.indd 233c13.indd 233 12/22/09 10:47:33 AM12/22/09 10:47:33 AM

234

Part III: Putting Python to Work

 Try It Out Confi guring Your Widget

 Up to this point, you have used the default look for your widgets, which is pretty drab. To keep your
user ’ s attention and create programs that are visually appealing, you have to tweak the look of your
widgets. Try out the following code:

import tkinter
from tkinter import *
root = Tk()
labelfont = (‘times’, 24, ‘italic’) # setting the family, size, and
 style
widget = Label(root, text=’Eat At JOES’) # setting label text
widget.config(bg=’black’, fg=’red’) # setting the back and foreground
 colors
widget.pack(expand=YES, fill=BOTH)
root.mainloop()

Run this application and observe the result. Though the program does not actually do anything, the
design does draw the eye ’ s attention.

 The following table is a list of the different ways that you can customize a widget:

 Attribute Description

 Border, relief Border sets the border width (for example: bd=1).

 Relief is used to determine the border style (for example: relief=raised).

 Color bg sets the background color, and fg sets the foreground. You can use
simple color names or use hex form color codes.

 Cursor Sets the type of cursor that appears when the widget is hovered over.
(for example: cursor=cross).

 Font Allows you to set the font family, size, and style (for example: Times,
24, italic bold underline).

 Padding Allows you to set extra space around a widget.

 Pack expand and fill As shown in previous examples.

 State Sets the state of the object (for example: state=DISABLED).

 Size Height and width settings control the size of the widget, allowing you
to make it larger than the Tkinter Geometry Manager sets it to.

c13.indd 234c13.indd 234 12/22/09 10:47:34 AM12/22/09 10:47:34 AM

Chapter 13: Writing a GUI with Python

235

 Radio Buttons and Checkboxes
 So far you have worked with the following widgets: the top - level window, frames, labels, and buttons.
These are all powerful widgets, but sometimes you may want to give your users more options. That is
where radio buttons and checkboxes come into play.

 Aside from appearance, radio buttons and checkboxes differ in one significant way: radio buttons offer
users a list of options, but allow them to select only one; checkboxes offer users many options, and lets
them choose as many as they want.

Try It Out Creating Radio Buttons

 Create a new file called MyRadio.py and include the following code in it:

import tkinter
from tkinter import *
state = ‘’
buttons = []

def choose(i):
 global state
 state = i
 for btn in buttons:
 btn.deselect()
 buttons[i].select()

root = Tk()
for i in range(4):
 radio = Radiobutton(root, text=str(i),
 value=str(i), command=(lambda i=i: choose(i)))
 radio.pack(side=BOTTOM)
 buttons.append(radio)
root.mainloop()
print(“You chose the following number: “,state)

This program creates a series of buttons ranging from 0 – 3 (four total), with the number 1, 2, and 3
highlighted by default. The user can then choose any of the buttons. Once a button is chosen, any
other button ’ s state becomes False, meaning that it is no longer selected. When the users close out of
the program, they are given a statement showing which number they chose.

 You can do something similar with checkboxes. In this instance however, you simply return whether the
value of each checkbox is true or false:

from tkinter import *
states = []
def check(i):
 states[i] = not states[i]

root = Tk()

c13.indd 235c13.indd 235 12/22/09 10:47:34 AM12/22/09 10:47:34 AM

236

Part III: Putting Python to Work

for i in range(4):
 test = Checkbutton(root, text=str(i), command=(lambda i=i: check(i)))
 test.pack(side=TOP)
 states.append(0)
root.mainloop()
print(states)

 If you run this program and check off boxes 2 and 3, then close the window, your result should be:

 > > >
[0, True, True, 0]

 Dialog Boxes
 Sometimes you want to give the user a piece of additional information. You are no doubt familiar with
dialog boxes. They pop up anytime there is an error, or a program wants to confirm something, such as if
you really want to uninstall a program, or if you want to display sensitive information.

 Tkinter offers up two types of dialog boxes — modal and nonmodal. Modal dialog boxes wait for some
action from the user before going away, and pause the progress of the program. Nonmodal dialog boxes
do not interrupt the flow of the program.

 Try It Out Creating a Custom Dialog Box

 You can use several methods to create dialog boxes. In this Try It Out, you create a custom dialog box
using Toplevel. Create a new file called MyPopUp.py and enter in the following text:

import sys
from tkinter import *
popupper = (len(sys.argv) > 1)

def dialog():
 win = Toplevel()
 Label(win, text=’Do You Always Do What You Are Told?’).pack()
 Button(win, text=’Now click this one’, command=win.destroy).pack()
 if popupper:
 win.focus_set()
 win.grab_set()
 win.wait_window()
 print(‘You better obey me...’)

root = Tk()
Button(root, text=’Click Me’, command=dialog).pack()
root.mainloop()

 When you run this program, you first get a pop up, stating simply: “ Click Me. ” When you do, two
things occur; first, some text is written to stdout (specifically, “ You better obey me . . . ”). Second,
another pop - up window appears, taking focus and asking for you to click it as well. When you do, it
closes itself, and the original pop - up window takes back focus.

c13.indd 236c13.indd 236 12/22/09 10:47:34 AM12/22/09 10:47:34 AM

Chapter 13: Writing a GUI with Python

237

 This is just the tip of the iceberg when it comes to creating dialog boxes. Aside from warnings, error
messages, and confirmations, dialog boxes can also be used to load files (think about using the open
command in most applications), pick a color from a color wheel, and much, much more.

 Other Widget Types
 This chapter has covered many of the widget types so far, but many are still left to explore. A full guide
to these is beyond the scope of this chapter, and indeed, this book, but at the very least you should be
aware of their existence. The following table lists the different widget classes available to you, and offers
an explanation of each one.

 Widget Class Description

 BitMapImage A widget object that allows you to showcase bitmap images on top of
other widgets.

 Button A “ clickable ” button.

 Canvas An object for displaying graphics, which can include circles, lines, images,
text, and so forth.

 Checkbutton A button widget that has two states; True and False. It is used to offer users
multiple choices.

 Entry A text entry field consisting of one line.

 Frame A container that holds other widgets.

 Label A widget where you can write text or a “ label. ”

 Listbox A box that holds a selection of data.

 Menu A set of options.

 Menubutton A menu that shows another menu of options and submenus.

 Message Like a label, only for multiple lines.

 PhotoImage The same as BitMapImage, only for full color images.

 Radiobutton A button with a True/False state, used in multiple - choice situations.

 Scale A widget that slides up and down and allows the user to choose options in
that manner.

 Scrollbar A widget that allows you to scroll other widgets.

 Text A browse/edit widget that works on multiple lines.

 Toplevel, Tk A new window.

c13.indd 237c13.indd 237 12/22/09 10:47:35 AM12/22/09 10:47:35 AM

238

Part III: Putting Python to Work

 Summary
 There ’ s no limit to the things you can do with your GUI using Tkinter. You can take screenshots, display
graphics, handle complex information sets in large windows, draw on a blank canvas, or simply pop up
quick GUIs for custom command - line utilities, exposing them to less technically oriented users.

 There are, of course, personal styles to every programming project. Many people have developed tools
that enable automated application development. Python ’ s bevy of introspection and OO (object-oriented)
features enables you to dynamically handle all sorts of changes in your GUI. As you become more
familiar with Tkinter, you ’ ll find these sorts of techniques to be extremely natural.

 Even if you don ’ t use Tkinter, understanding how Tkinter works will be a valuable asset in your
programming toolbox. Furthermore, there ’ s always the possibility that you have a spare 15 minutes and
want to write a custom GUI chat client for your friends.

 Exercises
 1. Experiment with different layouts using different pack orders.

 2. Practice modifying the look of your widgets by changing every property.

c13.indd 238c13.indd 238 12/22/09 10:47:35 AM12/22/09 10:47:35 AM

 14
Accessing Databases

 Just about every large enterprise system uses a database for storing data. For example, Amazon.com,
the online retailer, needs a database to store information on each product for sale. For Python
to prove capable of handling these types of enterprise applications, the language must be able to
access databases.

 Luckily, Python provides a database API (Application Programming Interface — how you
program for the database), which is a generic API that enables you to access most databases, in
spite of the databases ’ different native APIs. The database, or DB, API doesn ’ t define all aspects of
working with databases, so some minor differences exist. For the most part, though, you can access
databases such as Oracle or MySQL from your Python scripts without worrying too much about
the details of the specific databases.

 Having a generic database API is very useful because you may need to switch databases or have
your application work with multiple databases, and you won ’ t want to recode major parts of your
program to allow this. Normally, you can do all of this in Python without a lot of programming
changes.

 Even if you aren ’ t writing the next amazon.com online site, databases provide a convenient means
to persist data for longer than the program is running (so that you don ’ t lose the data that a user
has entered if you want to restart your program), query for items, and modify your data in a
safe manner.

 This chapter covers the two main database systems supported by Python: dbm persistent
dictionaries and relational databases with the DB API. In addition, this chapter describes how to
set up a database, in case you don ’ t have one handy.

In this chapter you learn:

 Using the dbm libraries to create persistent dictionaries

 About relational databases

❑

❑

c14.indd 239c14.indd 239 12/22/09 10:47:57 AM12/22/09 10:47:57 AM

240

Part III: Putting Python to Work

 Setting up the Sqlite database

 Setting up the MySQL database

 Working with the Python DB API

 Creating connections

 Accessing data with cursors

 Connecting to databases

 Querying and modifying data

 Working with transactions

 Handling errors

 Using other database tools

 In many cases, you don ’ t require a full - blown relational database. In such cases, creating a persistent
dictionary using dbm files is enough.

 Working with DBM Persistent Dictionaries
 A persistent dictionary acts exactly like you ’ d expect. You can store name/value pairs in the dictionary,
which are saved to a disk, and so their data will endure between various times that your program is run.
So if you save data to a dictionary that ’ s backed by a dbm, the next time you start your program you can
read the value stored under a given key again, once you ’ ve loaded the dbm file. These dictionaries work
like normal Python dictionaries, which are covered in Chapter 3. The main difference is that the data is
written to and read from disk.

 An additional difference is that the keys and the values must both be strings.

 DBM, short for database manager , acts as a generic name for a number of C language libraries originally
created on UNIX systems. These libraries sport names such as dbm , gdbm , ndbm , sdbm , and so on. These
names correspond closely to the available modules in Python that provide the requisite functionality.

 Choosing a DBM Module
 Python supports a number of dbm modules. Each dbm module supports a similar interface and uses a
particular C library to store the data to disk. The main difference lies in the underlying binary format of
the data files on disk. Each dbm module, unfortunately, creates incompatible files. That is, if you create a
dbm persistent dictionary with one dbm module, you must use the same module to read the data. None
of the other modules will work with that data file.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 240c14.indd 240 12/22/09 10:47:58 AM12/22/09 10:47:58 AM

Chapter 14: Accessing Databases

241

 The following table lists the dbm modules.

 Module Description

 dbm Chooses the best dbm module

 dbm.dumb Uses a simple, but portable, implementation of the dbm library

 dbm.gnu Uses the GNU dbm library

 All of these libraries exist because of the history of the dbm library. Originally, this library was available
only on commercial versions of UNIX. Free versions of UNIX, and later Linux, Windows, and so on,
could not use the dbm library. This led to the creation of alternative libraries, such as the Berkeley UNIX
library and the GNU gdbm library.

 With all the incompatible file formats, this plethora of libraries can be a real pain. The dbm module,
though, offers a handy alternative to choosing a specific dbm module. With the dbm module, you can let
it choose for you. In general, the dbm module will choose the best implementation available on your
system when creating a new persistent dictionary. When reading a file, the dbm module uses the
function whichdb to make an informed guess as to which library created the data file.

 Unless you need a specific advanced feature of one of the dbm libraries, use the dbm module.

 Creating Persistent Dictionaries
 All of the dbm modules support an open function to create a new dbm object. Once opened, you can
store data in the dictionary, read data, close the dbm object (and the associated data file or files), remove
items, and test for the existence of a key in the dictionary.

 To open a dbm persistent dictionary, use the open function on the module you choose. For example, you
can create a persistent dictionary with the dbm module.

Try It Out Creating a Persistent Dictionary

 Enter the following code and name your file dbmcreate.py :

import dbm

db = dbm.open(‘websites’, ‘c’)

Add an item.
db[‘www.python.org’] = ‘Python home page’

print(db[‘www.python.org’])

Close and save to disk.
db.close()

c14.indd 241c14.indd 241 12/22/09 10:47:58 AM12/22/09 10:47:58 AM

242

Part III: Putting Python to Work

 When you run this script, you ’ ll see output like the following:

$ python dbmcreate.py
b ‘Python home page’

 How It Works
 This example uses the recommended dbm module.

 The open function requires the name of the dictionary to create. This name gets translated into the
name of the data file or files that may already be on the disk. (The dbm module may — though not
always — create more than one file, usually a file for the data and one for the index of the keys.) The
name of the dictionary is treated as a base file name, including the path. Usually, the underlying dbm
library will append a suffix such as .dat for data. You can find the file yourself by looking for the file
named websites , most likely in your current working directory.

 You should also pass the optional flag. The following table lists the available flags.

 Flag Usage

 C Opens the data file for reading and writing, creating the file if needed.

 N Opens the file for reading and writing, but always creates a new empty file. If one
already exists, it will be overwritten and its contents lost.

 W Opens the file for reading and writing, but if the file doesn ’ t exist it will not be created.

You can also pass another optional parameter, the mode. The mode holds a set of UNIX file
permissions. See Chapter 8 for more on opening files.

 The open method of the dbm modules returns a new dbm object, which you can then
use to store and retrieve data.

 After you open a persistent dictionary, you can write values as you normally would
with Python dictionaries, as shown in the following example:

db[‘www.python.org’] = ‘Python home page’

 Both the key and the value must be strings and can ’ t be other objects, like numbers
or python objects. Remember, however, that if you want to save an object, you can
serialize it using the pickle module, as you saw in Chapter 8.

The close method closes the file or files and saves the data to disk.

c14.indd 242c14.indd 242 12/22/09 10:47:59 AM12/22/09 10:47:59 AM

Chapter 14: Accessing Databases

243

 Accessing Persistent Dictionaries
 With the dbm modules, you can treat the object you get back from the open function as a dictionary
object. Get and set values using code like the following:

db[‘ key ’] = ‘ value ’
value = db[‘ key ’]

 Remember that the key and the value must both be text strings.

 You can delete a value in the dictionary using del :

del db[‘ key ’]

 The keys method returns a list of all the keys, in the same way it would with a normal dictionary:

for key in db.keys():
 # do something...

 The keys method may take a long time to execute if there are a huge number of keys in the file. In
addition, this method may require a lot of memory to store the potentially large list that it would create
with a large file.

 You can use the following script as a guide for how to program with dbm persistent dictionaries.

Try It Out Accessing Persistent Dictionaries

 Enter the following script and name the file dbmaccess.py :

import dbm

Open existing file.
db = dbm.open(‘websites’, ‘w’)

Add another item.
db[‘www.wrox.com’] = ‘Wrox home page’

Verify the previous item remains.
if db[‘www.python.org’] != None:
 print(‘Found www.python.org’)
else:
 print(‘Error: Missing item’)

Iterate over the keys. May be slow.
May use a lot of memory.
for key in db.keys():
 print(“Key =”,key,” value =”,db[key])

del db[‘www.wrox.com’]
print(“After deleting www.wrox.com, we have:”)

for key in db.keys():

c14.indd 243c14.indd 243 12/22/09 10:47:59 AM12/22/09 10:47:59 AM

244

Part III: Putting Python to Work

 print(“Key =”,key,” value =”,db[key])

Close and save to disk.
db.close()

 When you run this script, you ’ ll see output similar to the following:

$ python dbmaccess.py
Type of dbmfile = dbhash
Found www.python.org
Key = www.wrox.com value = Wrox home page
Key = www.python.org value = Python home page
After deleting www.wrox.com, we have:
Key = www.python.org value = Python home page

 How It Works
 This script works with a small database of website URLs and descriptions. You need to first run the
 dbmcreate.py example, shown previously. That example creates the dbm file and stores data in the
file. The dbmaccess.py script then opens the preexisting dbm file.

 The dbmaccess.py script opens the persistent dictionary websites in read/write mode. The call to
the open function will generate an error if the necessary data file or files do not exist on disk in the
current directory.

 From the previous example, dbmcreate.py , there should be one value in the dictionary, under the
key www.python.org . This example adds the Wrox website, www.wrox.com , as another key.

 The script verifies that the www.python.org key exists in the dictionary, using the following code:

if db[‘www.python.org’] != None:
 print(‘Found www.python.org’)
else:
 print(‘Error: Missing item’)

 Next, the script prints out all of the keys and values in the dictionary:

for key in db.keys():
 print(“Key =”,key,” value =”,db[key])

 Note that there should be only these two entries.

 After printing out all of the entries, the script removes one using del :

 del db[‘www.wrox.com’]

 The script then prints all of the keys and values again, which should result in just one entry, as shown
in the output.

 Finally, the close method closes the dictionary, which involves saving all the changes to disk, so the
next time the file is opened it will be in the state you left it.

 As you can see, the API for working with persistent dictionaries is incredibly simple because it works
like files and like dictionaries, which you ’ re already familiar with.

c14.indd 244c14.indd 244 12/22/09 10:47:59 AM12/22/09 10:47:59 AM

www.wrox.com

Chapter 14: Accessing Databases

245

 Deciding When to Use DBM and When to Use
a Relational Database

 The dbm modules work when your data needs can be stored as key/value pairs. You can store more
complicated data within key/value pairs with some imagination — for instance, by creating formatted
strings that use a comma or some other character to delimit items in the strings, both on the key and the
value part of the dictionary. This can be useful, but it can also be very difficult to maintain, and it can
restrict you because your data is stored in an inflexible manner. Another way that you can be limited is
technical: Note that some dbm libraries limit the amount of space you can use for the values (sometimes
to a maximum of 1024 bytes, which is very, very little).

 You can use the following guidelines to help determine which of these two types of data storage is
appropriate for your needs:

 If your data needs are simple, use a dbm persistent dictionary.

 If you plan to store only a small amount of data, use a dbm persistent dictionary.

 If you require support for transactions , use a relational database. (Transactions are when more
than one thing happens at once — they let you keep your data from getting changed in one
place but not in another; you get to define what happens concurrently with transactions.)

 If you require complex data structures or multiple tables of linked data, use a relational
database.

 If you need to interface to an existing system, use that system, obviously. Chances are good this
type of system will be a relational database.

 Unlike the simple dbm modules, relational databases provide a far richer and more complex API.

 On a side note, I should mention that there is a third type of database you can work with, though it is
beyond the scope of this chapter. That third type is known as an ORM or object - relational database, and
it allows for the conversion of data between type systems that are incompatible in relational databases.

 Python has several options available if you wish to work with an ORM, such as SQL Object,
SQLAlchemy, and even the Django ORM. For more information, visit the Python Wiki at http://wiki
.python.org/moin/HigherLevelDatabaseProgramming.

 Working with Relational Databases
 Relational databases have been around for decades so they are a mature and well - known technology.
People who work with relational databases know what they are supposed to do, and how they are
supposed to work, so relational databases are the technology of choice for complex data storage.

 In a relational database, data is stored in tables that can be viewed as two - dimensional data structures.
The columns, or vertical part of the two - dimensional matrix, are all of the same type of data; like strings,
numbers, dates, and so on. Each horizontal component of the table is made up of rows, also called
records. Each row in turn is made up of columns. Typically, each record holds the information pertaining
to one item, such as an audio CD, a person, a purchase order, an automobile, and so on.

❑

❑

❑

❑

❑

c14.indd 245c14.indd 245 12/22/09 10:48:00 AM12/22/09 10:48:00 AM

246

Part III: Putting Python to Work

 For example, the following shows a simple employee table.

 empid firstname lastname department manager phone

 105 Peter Tosh 2 45 555 - 5555

 201 Bob Marley 1 36 555 - 5551

 This table holds six columns:

 empid: Holds the employee ID number. Relational databases make extensive use of ID numbers
where the database manages the assignment of unique numbers so that each row can be
referenced with these numbers to make each row unique (even if they have identical data). We
can then refer to each employee by the ID number. The ID alone provides enough information to
look up the employee.

 firstname: Holds the person ’ s first name.

 lastname: Holds the person ’ s last name.

 department: Holds the ID of the department in which the employee works. This would likely be
a numeric ID of the department, where departments are defined in a separate table that has a
unique ID for each department.

 manager: Holds the employee ID of the manager of the given employee. This is sort of self -
 referential, because in this example, a manager is actually an employee.

 phone: Holds the office phone number.

 In real life, a company would likely store a lot more information about an employee, such as a taxation
authority identification number (Social Security number in the U.S.), home address, and more, but not
anything that ’ s really different in principle to what you ’ ve already seen.

 In this example, the column empid , the employee ID, would be used as the primary key . A primary key is
a unique index for a table, where each element has to be unique because the database will use that
element as the key to the given row and as the way to refer to the data in that row, in a manner similar
to dictionary keys and values in Python. So, each employee needs to have a unique ID number, and
once you have an ID number, you can look up any employee. So, the empid will act as the key into this
table ’ s contents.

 The department column holds an ID of a department — that is, an ID of a row in another table. This ID
could be considered a foreign key , because the ID acts as a key into another table. (In databases, a foreign
key has a much more strict definition, so it ’ s okay to think of it this way.)

 For example, the following table shows a possible layout for the department table.

❑

❑

❑

❑

❑

❑

c14.indd 246c14.indd 246 12/22/09 10:48:00 AM12/22/09 10:48:00 AM

Chapter 14: Accessing Databases

247

 department id name manager

 1 Development 47

 2 QA 32

 In these examples, the employee Peter Tosh works for department 2, the QA, or Quality Assurance,
department in a dynamic world - class high - quality software development firm. Bob Marley works for
department 1, the Development department.

 In a large enterprise, there may be hundreds of tables in the database, with thousands or even millions of
records in some tables.

 Writing SQL Statements
 The Structured Query Language, or SQL, defines a standard language for querying and modifying
databases.

 You can pronounce SQL as “ sequel ” or “ s - q - l. ”

 SQL supports the basic operations listed in the following table.

 Operation Usage

 Select Perform a query to search the database for specific data.

 Update Modify a row or rows, usually based on a certain condition.

 Insert Create new rows in the database.

 Delete Remove a row or rows from the database.

 In general, these basic operations are called QUID, short for Query, Update, Insert, and Delete, or CRUD,
short for Create, Read, Update, and Delete. SQL offers more than these basic operations, but for the most
part, these are the majority of what you ’ re going to use to write applications.

 If you are not familiar with SQL, look at a SQL book or search on the Internet. You will find a
huge amount of tutorial material. You can also look at the website for this book for more references
to SQL resources.

 SQL is important because when you access databases with the Python DB API, you must first create SQL
statements and then execute these statements by having the database evaluate them. You then retrieve
the results and use them. Thus, you will find yourself in the awkward position of using one language,
Python, to create commands in another language, SQL.

c14.indd 247c14.indd 247 12/22/09 10:48:00 AM12/22/09 10:48:00 AM

248

Part III: Putting Python to Work

 The basic SQL syntax for the CRUD operations follows:

SELECT columns FROM tables WHERE condition ORDER BY columns ascending_or_
descending

UPDATE table SET new values WHERE condition

INSERT INTO table (columns) VALUES (values)

DELETE FROM table WHERE condition

 In addition to this basic look at the available syntax, many more parameters and specifiers for each
operation are optional. You can still use them with Python ’ s DB API if you ’ re familiar with SQL.

 To insert a new row in the employee table, using the previous employee example, you can use a SQL
query like the following (even though it ’ s adding data and not getting data, the convention is that all
SQL commands or statements can also be called queries):

insert into employee (empid, firstname, lastname, manager, dept, phone)
 values (3, ‘Bunny’, ‘Wailer’, 2, 2, ‘555-5553’)

 In this example, the first tuple (it ’ s useful to think of these in Python terms, even though SQL will give
these different names) holds the names of the columns in the order you are using for inserting your data.
The second tuple, after the keyword values , holds the data items in the same order. Notice how SQL
uses single quotes to delimit strings, and no quotes around numbers. (The phone number is different —
 it ’ s actually a string because it has to be able to contain non - numbers, like dashes, periods, and plus
signs, depending on how the data is entered.)

 With queries, you can use shortcuts such as * to say that you want an operation to be performed using
all of the columns in a table. For example, to query all of the rows in the department table, showing all of
the columns for each row, you can use a query like the following:

select * from department

 Note that SQL is not case - sensitive for its keywords, such as SELECT and FROM . But, some databases
require table and column names to be all uppercase. It is common, therefore, to see people use SELECT
and FROM and other operations in all capital letters to make them easily distinguished from other parts
of the query.

 This SQL statement omits the names of the columns to read and any conditions that would otherwise
narrow down the data that would be returned. Thus the query will return all of the columns (from the *)
and all of the rows (because there is no where clause).

 You can perform a join with the select command, to query data from more than one table, but present
it all in a single response. It ’ s called a join because the data from both tables will be returned as though
it was queried from a single table. For example, to extract the department name with each employee,
you could perform a query like the following (all of which would need to be in one string to be
a single query):

c14.indd 248c14.indd 248 12/22/09 10:48:01 AM12/22/09 10:48:01 AM

Chapter 14: Accessing Databases

249

select employee.firstname, employee.lastname, department.name
from employee, department
where employee.dept = department.departmentid
order by lastname desc

 In this example, the select statement requests two columns from the employee table (the firstname
and the lastname , but these are specified as coming from employee by the convention of specifying the
table name and the column name in the table) and one from the department table (department.name).
The order by section of the statement tells the database to order the results by the value in the
 lastname column, in descending order.

 To simplify these queries, you can use aliases for the table names, which make them easier to type and to
read (but don ’ t change the logic or the syntax of your queries). For example, to use the alias e with the
employee table, you can start a query as follows:

select e.firstname, e.lastname
from employee e
...

 In this case, you must place the alias, e , after the table name in the from clause. You can also use the
following format with the optional keyword as , which could be easier for you to read:

select e.firstname, e.lastname
from employee as e
...

 To modify (or update) a row, use a SQL statement like the following:

update employee set manager=55 where empid=3

 This example modifies the employee with an ID of 3 by setting that employee ’ s manager to the employee
with an ID of 55. As with other queries, numbers don ’ t need to have quotes around them; however,
strings would need to be quoted with single quotes.

 To delete a row, use a SQL statement like the following:

delete employee where empid=42

 This example deletes the employee with an ID of 42 but doesn ’ t affect anything else in the database.

 Defining Tables
 When you first set up a database, you need to define the tables and the relations between them. To do
this, you use the part of the SQL called the DDL, or Data Definition Language. (It defines the structure of
your tables — get it?) DDL basics are pretty simple, where you use one operation to create tables, and
another one to remove them:

CREATE TABLE tablename (column, type column type, ...)
DROP TABLE tablename

c14.indd 249c14.indd 249 12/22/09 10:48:01 AM12/22/09 10:48:01 AM

250

Part III: Putting Python to Work

 There is also an ALTER TABLE command to modify an existing table, but you won ’ t need to do that for
now. When you want to use this, a dedicated SQL book or web page will have more about this
command.

 Unfortunately, SQL is not an entirely standard language, and there are parts of it that each database
handles differently. The DDL remains a part of SQL that has not been standardized. Thus, when defining
tables you will find differences between the SQL dialects supported by the different databases, though
the basics concepts are the same.

 Setting Up a Database
 In most cases when you ’ re the programmer, you will already have a database that ’ s up and running,
perhaps even a database chosen by some other organization that you ’ re going to have to use. For
example, if you host your website with a website hosting company that provides bells and whistles, like
a database, your hosting package may include access to the MySQL database. If you work for a large
organization, your IT department may have already standardized on a particular database such as
Oracle, DB/2, Sybase, or Informix. These latter packages are likely present in your workplace if you
create enterprise applications with Python.

 If you have no database at all, yet still want to work on the examples in this chapter, a good starting
database is Sqlite. The main virtues of Sqlite are that it comes installed with Python, and it is simple and
small, but functional. This makes it a great candidate for experimentation while you ’ re learning, even if
you have another database available to you. Just keep in mind that each database has its own quirks.

 The examples in this chapter were written to work with Sqlite so that you can follow them without any
external infrastructure being needed. You can easily modify these examples, though, to work with a dif-
ferent database. That ’ s one of the great aspects of the Python DB API.

 Using Sqlite is as simple as importing the module. The following example shows you all you need
to create a database.

 If you are working with another database, such as SQL Server, chances are good that a database has
already been created. If not, follow the instructions from your database vendor. (A lot of the time, you
can get help on tasks like this from your Database Administrator, or DBA, who would really rather have
you working on a test database instead of on a production database.)

 With Sqlite, creating a database is rather easy.

Try It Out Creating an Sqlite3 Database

 Enter the following script and name the file createdb.py :

import os
import sqlite3
conn=sqlite3.connect(‘sample_database’)
cursor=conn.cursor()
Create tables.
cursor.execute(“””
create table employee

c14.indd 250c14.indd 250 12/22/09 10:48:01 AM12/22/09 10:48:01 AM

Chapter 14: Accessing Databases

251

(empid integer,
firstname varchar,
lastname varchar,
dept integer,
manager integer,
phone varchar)
“””)
cursor.execute(“””
create table department
 (departmentid integer,
 name varchar,
 manager integer)
“””)
cursor.execute(“””
create table user
 (userid integer,
 username varchar,
 employeeid integer)
“””)
Create indices.
cursor.execute(“””create index userid on user (userid)”””)
cursor.execute(“””create index empid on employee (empid)”””)
cursor.execute(“””create index deptid on department (departmentid)”””)
cursor.execute(“””create index deptfk on employee (dept)”””)
cursor.execute(“””create index mgr on employee (manager)”””)
cursor.execute(“””create index emplid on user (employeeid)”””)
cursor.execute(“””create index deptmgr on department (manager)”””)
conn.commit()
cursor.close()
conn.close()

 When you run this script, you should see no output unless the script raised an error.

 How It Works
 Sqlite has its own API along with the standard Python DB API. This script uses the Sqlite API,
but you ’ ll notice that this API is very similar to the DB API covered in the following section,
“ Using the Python Database APIs. ” This section briefly describes the Sqlite specific code in the
 creatdb.py script.

 Following is the code used to create a Connection object using the Sqlite module:

conn=sqlite3.connect(‘sample_database’)

 From there, the script gets a Cursor object, covered in the section “ Working with Cursors. ” The
 Cursor object is used to create three tables and define indexes on these tables.

 The script calls the commit method on the connection to save all the changes to disk.

 Sqlite stores all of its data in the file sample_database. After running the createdb.py script, you
should see the file in your Python30 directory.

You are now ready to start working with the Python database APIs.

c14.indd 251c14.indd 251 12/22/09 10:48:02 AM12/22/09 10:48:02 AM

252

Part III: Putting Python to Work

 Using the Python Database APIs
 First, some history about Python and relational databases. Python ’ s support for relational databases
started out with ad hoc solutions, with one solution written to interface with each particular database,
such as Oracle. Each database module created its own API, which was highly specific to that database
because each database vendor evolved its own API based on its own needs. This is hard to support,
because coding for one database and trying to move it to the other gives a programmer severe heartburn,
as everything needs to be completely rewritten and retested.

 Over the years, though, Python has matured to support a common database, or DB, API, that ’ s called the
DB API. Specific modules enable your Python scripts to communicate with different databases, such as
DB/2, PostgreSQL, and so on. All of these modules, however, support the common API, making your job
a lot easier when you write scripts to access databases. This section covers this common DB API.

 The DB API provides a minimal standard for working with databases, using Python structures and
syntax wherever possible. This API includes the following:

 Connections, which cover guidelines for how to connect to databases

 Executing statements and stored procedures to query, update, insert, and delete data
with cursors

 Transactions, with support for committing or rolling back a transaction

 Examining metadata on the database module as well as on database and table structure

 Defining the types of errors

 The following sections take you step by step through the Python database APIs.

 Downloading Modules
 You must download a separate DB API module for each database you need to access. For example, if you
need to access an Oracle database as well as a MySQL database, you must download both the Oracle and
the MySQL database modules.

 See http://wiki.python.org/moin/DatabaseInterfaces for a listing of databases.

 Modules exist for most major databases with the notable exception of Microsoft ’ s SQL Server. You can
access SQL Server using an ODBC module, though. In fact, the mxODBC module can communicate with
most databases using ODBC on Windows or an ODBC bridge on UNIX (including Mac OS X) or Linux.
If you need to do this, you can search for more information on these terms online to find out how other
people are doing it.

 Download the modules you need. Follow the instructions that come with the modules to install them.

 You may need a C compiler and build environment to install some of the database modules. If you do,
this will be described in the module ’ s own documentation, which you ’ ll need to read.

❑

❑

❑

❑

❑

c14.indd 252c14.indd 252 12/22/09 10:48:02 AM12/22/09 10:48:02 AM

Chapter 14: Accessing Databases

253

 For some databases, such as Oracle, you can choose among a number of slightly different modules. You
should choose the module that seems to best fit your needs or go to the website for this book and ask the
authors for any recommendations if you ’ re not sure.

 Once you have verified that the necessary modules are installed, you can start working with
Connections.

 Creating Connections
 A Connection object provides the means to communicate from your script to a database program. Note
the major assumption here that the database is running in a separate process (or processes). The Python
database modules connect to the database. They do not include the database application itself.

 Each database module needs to provide a connect function that returns a connection object. The
parameters that are passed to connect vary by the module and what is required to communicate with the
database. The following table lists the most common parameters.

 Parameter Usage

 Dsn Data source name, from ODBC terminology. This usually includes the name of
your database and the server where it ’ s running.

 Host Host, or network system name, on which the database runs.

 Database Name of the database.

 User User name for connecting to the database.

 Password Password for the given user name.

 For example, you can use the following code as a guide:

conn = dbmodule .connect(dsn=’localhost:MYDB’,user=’tiger’,password=’scott’)

 Use your database module documentation to determine which parameters are needed.

 With a Connection object, you can work with transactions, covered later in this chapter; close the
connection to free system resources, especially on the database; and get a cursor.

 Working with Cursors
 A cursor is a Python object that enables you to work with the database. In database terms, the cursor is
positioned at a particular location within a table or tables in the database, sort of like the cursor on your
screen when you ’ re editing a document, which is positioned at a pixel location.

 To get a cursor, you need to call the cursor method on the connection object:

cursor = conn.cursor()

 Once you have a cursor, you can perform operations on the database, such as inserting records.

c14.indd 253c14.indd 253 12/22/09 10:48:02 AM12/22/09 10:48:02 AM

254

Part III: Putting Python to Work

Try It Out Inserting Records

 Enter the following script and name the file insertdata.py :

import os
import sqlite3

conn=sqlite3.connect(‘sample_database’)
cursor = conn.cursor()

Create employees.
cursor.execute(“””
insert into employee (empid,firstname,lastname,manager,dept,phone)
values (1,’Eric’,’Foster-Johnson’,1,1,’555-5555’)”””)

cursor.execute(“””
insert into employee (empid,firstname,lastname,manager,dept,phone)
values (2,’Peter’,’Tosh’,2,3,’555-5554’)”””)

cursor.execute(“””
insert into employee (empid,firstname,lastname,manager,dept,phone)
values (3,’Bunny’,’Wailer’,2,2,’555-5553’)”””)

Create departments.
cursor.execute(“””
insert into department (departmentid,name,manager)
values (1,’development’,1)”””)

cursor.execute(“””
insert into department (departmentid,name,manager)
values (2,’qa’,2)”””)

cursor.execute(“””
insert into department (departmentid,name,manager)
values (3,’operations’,2)”””)

Create users.
cursor.execute(“””
insert into user (userid,username,employeeid)
values (1,’ericfj’,1)”””)

cursor.execute(“””
insert into user (userid,username,employeeid)
values (2,’tosh’,2)”””)

cursor.execute(“””
insert into user (userid,username,employeeid)
values (3,’bunny’,3)”””)

conn.commit()

cursor.close()

conn.close()

c14.indd 254c14.indd 254 12/22/09 10:48:03 AM12/22/09 10:48:03 AM

Chapter 14: Accessing Databases

255

 When you run this script, you will see no output unless the script raises an error.

 How It Works
 The first few lines of this script set up the database connection and create a cursor object:

import os
import sqlite3
conn=sqlite3.connect(‘sample_database’)
cursor = conn.cursor()

 Note how we connect to an Sqlite database. To connect to a different database, replace this with your
database - specific module, and modify the call to use the connect function from that database
module, as needed.

 The next several lines execute a number of SQL statements to insert rows into the three tables set
up earlier: employee, department, and user. The execute method on the cursor object executes the
SQL statement:

cursor.execute(“””
insert into employee (empid,firstname,lastname,manager,dept,phone)
values (2,’Peter’,’Tosh’,2,3,’555-5554’)”””)

 This example uses a triple - quoted string to cross a number of lines as needed. You ’ ll find that SQL
commands, especially those embedded within Python scripts, are easier to understand if you can
format the commands over a number of lines. This becomes more important with complex queries
covered in examples later in this chapter.

 To save your changes to the database, you must commit the transaction:

conn.commit()

 Note that this method is called on the connection , not the cursor .

 When you are done with the script, close the cursor and then the connection to free up resources. In
short scripts like this, it may not seem important, but this helps the database program free its
resources, as well as your Python script:

cursor.close()

conn.close()

 You now have a very small amount of sample data to work with using other parts of the DB API, such
as querying for data.

c14.indd 255c14.indd 255 12/22/09 10:48:03 AM12/22/09 10:48:03 AM

256

Part III: Putting Python to Work

 Try It Out Writing a Simple Query

 The following script implements a simple query that performs a join on the employee and
department tables:

import os
import sqlite3
conn=sqlite3.connect(‘sample_database’)
cursor = conn.cursor()
cursor.execute(“””
select employee.firstname, employee.lastname, department.name
from employee, department
where employee.dept = department.departmentid
order by employee.lastname desc
“””)
for row in cursor.fetchall():
 print(row)
cursor.close()
conn.close()

 Save this script under the name simplequery.py . When you run this script, you will see output like
the following:

(‘Bunny’, ‘Wailer’, ‘qa’)
(‘Peter’, ‘Tosh’, ‘operations’)
(‘Eric’, ‘Foster-Johnson’, ‘development’)

 How It Works
 This script initializes the connection and cursor in the same manner as the previous script. This
script, though, passes a simple join query to the cursor execute method. This query selects two
columns from the employee table and one from the department table.

 This is truly a simple query, but, even so, you ’ ll want to format your queries so they are readable, simi-
lar to what is shown here.

 When working with user interfaces, you will often need to expand IDs stored in the database to human -
 readable values. In this case, for example, the query expands the department ID, querying for the
department name. You simply cannot expect people to remember the meaning of strange numeric IDs.

 The query also orders the results by the employees ’ last names, in descending order. (This means that
it starts at the beginning of the alphabet, which is what you ’ d normally expect. However, you can
reverse this and have them sorted in ascending order.)

 After calling the execute method, the data, if any was found, is stored in the cursor object. You can
use the fetchall method to extract the data.

 You can also use the fetchone method to fetch one row at a time from the results.

c14.indd 256c14.indd 256 12/22/09 10:48:03 AM12/22/09 10:48:03 AM

Chapter 14: Accessing Databases

257

 Note how the data appears as Python tuples:

(‘Bunny’, ‘Wailer’, ‘qa’)
(‘Peter’, ‘Tosh’, ‘operations’)
(‘Eric’, ‘Foster-Johnson’, ‘development’)

 You can use this example as a template to create other queries, such as the more complex join shown
in the following Try It Out.

Try It Out Writing a Complex Join

Enter this script and name the file finduser.py:

import sqlite3
conn=sqlite3.connect('sample_database')
cursor = conn.cursor()
username = 'bunny'
query = """
select u.username,e.firstname,e.lastname,m.firstname,m.lastname, d.name
from user u, employee e, employee m, department d where username=?
and u.employeeid = e.empid
and e.manager = m.empid
and e.dept = d.departmentid
"""
cursor.execute(query, (username,))
for row in cursor.fetchall():
 (username,firstname,lastname,mgr_firstname,mgr_lastname,dept) = row
 name=firstname + " " + lastname
 manager=mgr_firstname + " " + mgr_lastname
 print(username,":",name,"managed by",manager,"in",dept)
cursor.close()
conn.close()

When you run this script, you will see results like the following:

bunny : Bunny Wailer managed by Peter Tosh in qa

You need to pass the user name of a person to query from the database. This must be a valid user
name of a person in the database. In this example, bunny is a user name previously inserted
into the database.

How It Works
This script performs a join on all three example tables, using table-name aliases to create a shorter
query. The purpose is to find a given user in the database by searching for that user name. This script
also shows an example of expanding both the manager’s ID to the manager’s name and the
department’s ID to the department’s name. All of this makes for more readable output.

This example also shows how you can extract data from each row into Python variables. For example:

(username,firstname,lastname,mgr_firstname,mgr_lastname,dept) = row

c14.indd 257c14.indd 257 12/22/09 10:48:04 AM12/22/09 10:48:04 AM

258

Part III: Putting Python to Work

Note that this is really nothing new. See Chapter 3 for more on Python tuples, which is all row is.

An important new feature of this script, though, is the use of a question mark to enable you to build a
query using dynamic data. When you call the execute method on the Cursor, you can pass a tuple of
dynamic data, which the execute method will fill in for the question marks in the SQL statement.
(This example uses a tuple of one element.) Each element in the tuple is used, in order, to replace the
question marks. Thus, it is very important to have as many dynamic values as you do question marks
in the SQL statement, as shown in the following example:

query = """
select u.username,e.firstname,e.lastname,m.firstname,m.lastname, d.name
from user u, employee e, employee m, department d where username=?
and u.employeeid = e.empid
and e.manager = m.empid
and e.dept = d.departmentid
"""

cursor.execute(query, (username,))

The query used in this example is very helpful when you want to start updating rows in the tables.
That’s because users will want to enter meaningful values. It is up to you, with your SQL statements,
to translate the user input into the necessary IDs.

For example, the following script enables you to change the manager for an employee:

Personally, I’d like to make myself my own manager.

Try It Out Updating an Employee’s Manager

Enter the following script and name the file updatemgr.py:

import sqlite3
import sys
conn=sqlite3.connect('sample_database')
cursor = conn.cursor()
newmgr = sys.argv[2]
employee = sys.argv[1]
Query to find the employee ID.
query = """
select e.empid
from user u, employee e
where username=? and u.employeeid = e.empid
"""
cursor.execute(query,(newmgr,));
for row in cursor.fetchone():
 if (row != None):
 mgrid = row
Note how we use the same query, but with a different name.
cursor.execute(query,(employee,));
for row in cursor.fetchone():
 if (row != None):

c14.indd 258c14.indd 258 12/22/09 10:48:04 AM12/22/09 10:48:04 AM

Chapter 14: Accessing Databases

259

 empid = row
Now, modify the employee.
cursor.execute("update employee set manager=? where empid=?", (mgrid,empid))
conn.commit()
cursor.close()
conn.close()

When you run this script, you need to pass the name of the user to update, as well as the name of the
manager. Both names are user names from the user table. For example:

$ python finduser.py bunny
bunny : Bunny Wailer managed by Peter Tosh in qa
$ python updatemgr.py bunny ericfj
$ python finduser.py bunny
bunny : Bunny Wailer managed by Eric Foster-Johnson in qa

How It Works
The example output shows the before and after picture of the employee row, verifying that the
updatemgr.py script worked.

The updatemgr.py script expects two values from the user: the user name of the employee to update
and the user name of the new manager. Both of these names must be user names stored in the
database. Both names are converted into IDs using a simple query. This is not very efficient, because it
involves two extra round-trips to the database. A more efficient means would be to perform an inner
select statement on the update statement. For simplicity, though, the separate queries are far easier
to understand.

This example also shows the use of the fetchone method on the Cursor. The final SQL statement then
updates the employee row for the given user to have a new manager.

The next example uses a similar technique to terminate an employee. You can really have fun with this
one (terminate your friends, your enemies, and so on).

Try It Out Removing Employees

Enter the following script and name the file terminate.py:

import sqlite3
import sys
conn=sqlite3.connect('sample_database')
cursor = conn.cursor()
employee=sys.argv[1]
Query to find the employee ID.
query = """
select e.empid
from user u, employee e
where username=? and u.employeeid = e.empid
"""

c14.indd 259c14.indd 259 12/22/09 10:48:04 AM12/22/09 10:48:04 AM

260

Part III: Putting Python to Work

cursor.execute(query,(employee,));
for row in cursor.fetchone():
 if (row != None):
 empid = row
Now, modify the employee.
cursor.execute("delete from employee where empid=?", (empid,))
conn.commit()
cursor.close()
conn.close()

When you run this script, you need to pass the user name of the person to terminate. You should see
no output unless the script raises an error:

$ python finduser.py bunny
bunny : Bunny Wailer managed by Eric Foster-Johnson in qa
$ python terminate.py bunny
$ python finduser.py bunny

How It Works
This script uses the same techniques as the updatemgr.py script by performing an initial query to get
the employee ID for the given user name and then using this ID in a later SQL statement. With the
final SQL statement, the script deletes the employee from the employee table.

Note that this script leaves the record in the user table. Question 3 of the exercises at the end
of this chapter addresses this.

 Working with Transactions and Committing the Results
 Each connection , while it is engaged in an action, manages a transaction . With SQL, data is not
modified unless you commit a transaction. The database then guarantees that it will perform all of the
modifications in the transaction or none. Thus, you will not leave your database in an uncertain and
potentially erroneous state.

 To commit a transaction, call the commit method of a connection:

conn.commit()

 Note that the transaction methods are part of the connection class, not the cursor class.

 If something goes wrong, like an exception is thrown that you can handle, you should call the rollback
method to undo the effects of the incomplete transaction; this will restore the database to the state it was
in before you started the transaction, guaranteed:

conn.rollback()

 The capability to roll back a transaction is very important, because you can handle errors by ensuring
that the database does not get changed. In addition, rollbacks are very useful for testing. You can insert,
modify, and delete a number of rows as part of a unit test and then roll back the transaction to undo the

c14.indd 260c14.indd 260 12/22/09 10:48:04 AM12/22/09 10:48:04 AM

Chapter 14: Accessing Databases

261

effects of all the changes. This enables your unit tests to run without making any permanent changes to
the database. It also enables your unit tests to be run repeatedly, because each run resets the data.

 See Chapter 12 for more on testing.

 Examining Module Capabilities and Metadata
 The DB API defines several globals that need to be defined at the module level. You can use these globals
to determine information about the database module and the features it supports. The following table
lists these globals.

 Global Holds

 Apilevel Should hold ‘ 2.0 ’ for the DB API 2.0, or ‘ 1.0 ’ for the 1.0 API.

 Paramstyle Defines how you can indicate the placeholders for dynamic data in your SQL
statements. The values include the following:

 ‘ qmark ’ — Use question marks, as shown in the examples in this chapter.

 ‘ numeric ’ — Use a positional number style, with ‘ :1 ’ , ‘ :2 ’ , and so on.

 ‘ named ’ — Use a colon and a name for each parameter, such as :name.

 ‘ format ’ — Use the ANSI C sprintf format codes, such as %s for a string and %d
for an integer.

 ‘ pyformat ’ — Use the Python extended format codes, such as %(name)s.

 In addition, remember that pydoc is your friend. You can use pydoc to display information on modules,
such as the database modules.

 With a cursor object, you can check the definition attribute to see information about the data returned.
This information should be a set of seven - element sequences, one for each column of result data. These
sequences include the following items:

(name, type_code, display_size, internal_size, precision, scale, null_ok)

 None can be used for all but the first two items, as shown in this example:

((‘FIRSTNAME’, None, None, None, None, None, None),
(‘LASTNAME’, None, None, None, None, None, None),
(‘NAME’, None, None, None, None, None, None))

 Handling Errors
 Errors happen. With databases, errors happen a lot. The DB API defines a number of errors that must
exist in each database module. The following table lists these exceptions.

c14.indd 261c14.indd 261 12/22/09 10:48:05 AM12/22/09 10:48:05 AM

262

Part III: Putting Python to Work

 Exception Usage

 Warning Used for non - fatal issues. Must subclass StandardError.

 Error Base class for errors. Must subclass StandardError.

 InterfaceError Used for errors in the database module, not the database itself. Must
subclass Error.

 DatabaseError Used for errors in the database. Must subclass Error.

 DataError Subclass of DatabaseError that refers to errors in the data.

 OperationalError Subclass of DatabaseError that refers to errors such as the loss of a
connection to the database. These errors are generally outside of the
control of the Python scripter.

 IntegrityError Subclass of DatabaseError for situations that would damage the
relational integrity, such as uniqueness constraints or foreign keys.

 InternalError Subclass of DatabaseError that refers to errors internal to the database
module, such as a cursor no longer being active.

 ProgrammingError Subclass of DatabaseError that refers to errors such as a bad table
name and other things that can safely be blamed on you.

 NotSupportedError Subclass of DatabaseError that refers to trying to call unsupported
functionality.

 Your Python scripts should handle these errors. You can get more information about them by reading the
DB API specification. See www.python.org/topics/database/ and www.python.org/peps/
pep - 0249.html for more information.

 Summary
 Databases provide a handy means for storing data. You can write Python scripts that can access all the
popular databases using add - on modules. This chapter provided a whirlwind tour of SQL, the
Structured Query Language, and covered Python ’ s database APIs.

 You also learned about the dbm modules that enable you to persist a dictionary using a variety of dbm
libraries. These modules enable you to use dictionaries and transparently persist the data.

 In addition, this chapter covered the Python database APIs, which define a standard set of methods and
functions that you should expect from all database modules. This includes the following:

 A connection object encapsulates a connection to the database. Use the connect function on
the database module to get a new connection. The parameters you pass to the connect function
may differ for each module.

❑

c14.indd 262c14.indd 262 12/22/09 10:48:05 AM12/22/09 10:48:05 AM

Chapter 14: Accessing Databases

263

 A cursor provides the main object for interacting with a database. Use the connection object to
get a cursor. The cursor enables you to execute SQL statements.

 You can pass dynamic data as a tuple of values to the cursor execute method. These values are
placed into your SQL statements, enabling you to create reusable SQL statements.

 After performing a query operation, the cursor object holds the data. Use the fetchone or
 fetchall methods to extract the data.

 After modifying the database, call commit on the connection to commit the transaction and save
the changes. Use the rollback method to undo the changes.

 Call close on each cursor when done. Call close on the connection when done.

 The DB APIs include a defined set of exceptions. Your Python scripts should check for these
exceptions to handle the variety of problems that may arise.

 Chapter 15 covers XML, HTML, and XSL style sheets, technologies frequently used for web
development.

 Exercises
 1. Suppose you need to write a Python script to store the pizza preferences for the workers in your

department. You need to store each person ’ s name along with that person ’ s favorite pizza top-
pings. Which technologies are most appropriate to implement this script?

 a. Set up a relational database such as MySQL or Sqlite.

 b. Use a dbm module such as dbm.

 c. Implement a web - service - backed rich web application to create a buzzword - compliant
application.

 2. Rewrite the following example query using table name aliases:
select employee.firstname, employee.lastname, department.name
from employee, department
where employee.dept = department.departmentid
order by employee.lastname desc

 3. The terminate.py script, shown previously, removes an employee row from the employee
table; but this script is not complete. There remains a row in the user table for the same
person. Modify the terminate.py script to delete both the employee and the user table rows
for that user.

❑

❑

❑

❑

❑

❑

c14.indd 263c14.indd 263 12/22/09 10:48:05 AM12/22/09 10:48:05 AM

c14.indd 264c14.indd 264 12/22/09 10:48:05 AM12/22/09 10:48:05 AM

 15
Using Python for XML

 XML has exploded in popularity over the past few years as a medium for storing and transmitting
structured data. Python supports the wealth of standards that have sprung up around XML, either
through standard libraries or a number of third - party libraries.

 In this chapter you learn:

 Create and manipulate XML .

 Validate XML .

 Work with some of the standard libraries that come bundled with Python.

 What Is XML?
 The term XML is bandied around in corporate boardrooms and meetings around the world. Its
flexibility and extensibility have encouraged people to think big, advocating XML for everything
from a new, formatting - independent semantic code storage mechanism to a replacement for object
serialization. But beyond the buzzwords and hype, what is it, really? Is it a panacea for the world ’ s
woes? Probably not. But it is a powerful, flexible, open - standards – based method of data storage.
Its vocabulary is infinitely customizable to fit whatever kind of data you want to store. Its format
makes it human readable, while remaining easy to parse for programs. It encourages semantic
markup, rather than formatting - based markup, separating content and presentation from each
other, so that a single piece of data can be repurposed many times and displayed in many ways.

 A Hierarchical Markup Language
 At the core of XML is a simple hierarchical markup language. Tags are used to mark off
sections of content with different semantic meanings, and attributes are used to add metadata
about the content.

❑

❑

❑

c15.indd 265c15.indd 265 12/22/09 10:48:39 AM12/22/09 10:48:39 AM

266

Part III: Putting Python to Work

 Following is an example of a simple XML document that could be used to describe a library:

 < ?xml version=”1.0”? >
 < library >
 < book >
 < title > Sandman Volume 1: Preludes and Nocturnes < /title >
 < author > Neil Gaiman < /author >
 < /book >
 < book >
 < title > Good Omens < /title >
 < author > Neil Gamain < /author >
 < author > Terry Pratchett < /author >
 < /book >
 < book >
 < title > ”Repent, Harlequin!” Said the Tick-Tock Man < /title >
 < author > Harlan Ellison < /author >
 < /book >
 < /library >

 Notice that every piece of data is wrapped in a tag and that tags are nested in a hierarchy that contains
further information about the data it wraps. Based on the previous document, you can surmise that
 < author > is a child piece of information for < book > , as is < title > , and that a library has an attribute
called owner .

 Unlike semantic markup languages like LaTeX, every piece of data in XML must be enclosed in tags.
The top - level tag is known as the document root , which encloses everything in the document. An XML
document can have only one document root.

 Just before the document root is the XML declaration: < ?xml version= “ 1.0 ” ? > . This mandatory
element lets the processor know that this is an XML document. As of the writing of this book, there are
two versions of XML – – 1.0 and 1.1. Because version 1.1 is not fully supported yet, for our examples we
will be concentrating on version 1.0.

 One problem with semantic markup is the possibility for confusion as data changes contexts. For
instance, you might want to ship a list of book titles off to a database about authors. However, without a
human to look at it, the database has no way of knowing that < title > means a book title, as opposed to
an editor ’ s business title or an author ’ s honorific. This is where namespaces come in. A namespace is used
to provide a frame of reference for tags and is given a unique ID in the form of a URL, plus a prefix to
apply to tags from that namespace. For example, you might create a library namespace, with an
identifier of http://server.domain.tld/NameSpaces/Library and with a prefix of lib : and use
that to provide a frame of reference for the tags. With a namespace, the document would look like this:

 < ?xml version=”1.0”? >
 < lib:library
 xmlns:lib=”http://server.domain.tld/NameSpaces/Library” >
 < lib:book >
 < lib:title > Sandman Volume 1: Preludes and Nocturnes < /lib:title >
 < lib:author > Neil Gaiman < /lib:author >
 < /lib:book >
 < lib:book >
 < lib:title > Good Omens < /lib:title >
 < lib:author > Neil Gamain < /lib:author >

c15.indd 266c15.indd 266 12/22/09 10:48:39 AM12/22/09 10:48:39 AM

Chapter 15: Using Python for XML

267

 < lib:author > Terry Pratchett < /lib:author >
 < /lib:book >
 < lib:book >
 < lib:title > ”Repent, Harlequin!” Said the Tick-Tock Man < /lib:title >
 < lib:author > Harlan Ellison < /lib:author >
 < /lib:book >
 < /lib:library >

 It ’ s now explicit that the title element comes from a set of elements defined by a library namespace, and
can be treated accordingly.

 A namespace declaration can be added to any node in a document, and that namespace will be available
to every descendant node of that node. In most documents, all namespace declarations are applied to
the root element of the document, even if the namespace isn ’ t used until deeper in the document. In this
case, the namespace is applied to every tag in the document, so the namespace declaration must be
on the root element.

 A document can have and use multiple namespaces. For instance, the preceding example library might
use one namespace for library information and a second one to add publisher information.

 Notice the xmlns: prefix for the namespace declaration. Certain namespace prefixes are reserved for
use by XML and its associated languages, such as xml: , xsl: , and xmlns: . A namespace declaration can
be added to any node in a document, and that namespace will be available to every descendant node of
that node.

 This is a fairly simple document. A more complex document might contain CDATA sections for storing
unprocessed data, comments, and processing instructions for storing information specific to a single
XML processor. For more thorough coverage of the subject, you may want to visit http://w3cschools.org
or pick up Wrox Press ’ s Beginning XML, 3rd Edition (9780764570773) by David Hunter et al.

 A Family of Standards
 XML is more than just a way to store hierarchical data. If that were all there were to it, XML would
quickly fall to more lightweight data storage methods that already exist. XML ’ s big strength lies in its
extensibility, and its companion standards, XSLT, XPath, Schema, and DTD languages, and a host of
other standards for querying, linking, describing, displaying, and manipulating data. Schemas and
DTDs provide a way for describing XML vocabularies and a way to validate documents. XSLT provides
a powerful transformation engine to turn one XML vocabulary into another, or into HTML, plaintext,
PDF, or a host of other formats. XPath is a query language for describing XML node sets. XSL - FO
provides a way to create XML that describes the format and layout of a document for transformation to
PDF or other visual formats.

 Another good thing about XML is that most of the tools for working with XML are also written in XML,
and can be manipulated using the same tools. XSLTs are written in XML, as are schemas. What this
means in practical terms is that it ’ s easy to use an XSLT to write another XSLT or a schema, or to validate
XSLTs or schemas using schemas.

c15.indd 267c15.indd 267 12/22/09 10:48:40 AM12/22/09 10:48:40 AM

268

Part III: Putting Python to Work

 What Is a Schema/DTD?
 Schemas and DTDs (Document Type Definitions) are both ways of implementing document models . A
document model is a way of describing the vocabulary and structure of a document. It ’ s somewhat akin
to what a DBA does when creating a database. You define the data elements that will be present in your
document, what relationship they have to one another, and how many of them you expect. In plain
English, a document model for the previous XML example might read as follows: “ A library is a
collection of books with a single owner. Each book has a title and at least one author. ”

 DTDs and schemas have different ways of expressing this document model, but they both describe the
same basic formula for the document. Subtle differences exist between the two, as you see later, but they
have roughly the same capabilities.

 What Are Document Models For?
 Document models are used when you want to be able to validate content against a standard before
manipulating or processing it. They are useful whenever you will be interchanging data with an
application that may change data models unexpectedly, or when you want to constrain what a user can
enter, as in an XML - based documentation system where you will be working with hand - created XML
rather than with something from an application.

 Do You Need One?
 In some applications, a document model might not be needed. If you control both ends of the data
exchange and can predict what elements you are going to be receiving, a document model would
be redundant.

 Document Type Definitions
 A DTD is a Document Type Definition. These were the original methods of expressing a document
model and are ubiquitous throughout the Internet. DTDs were originally created for describing SGML,
and the syntax has barely changed since that time, so DTDs have had quite a while to proliferate. The
W3C (the World Wide Web Consortium, or one of the groups that brings standards to the Internet)
continues to express document types using DTDs, so DTDs exist for each of the HTML standards, for
Scalable Vector Graphics (SVG), MathML, and for many other useful XML vocabularies.

 An Example DTD
 If you were to translate the English description of the example library XML document into a DTD, it
might look something like the following:

 < ?xml version=”1.0”? >
 < !ELEMENT library (book+) >
 < !ATTLIST library
 owner CDATA #REQUIRED
 >
 < !ELEMENT book (title, author+) >

c15.indd 268c15.indd 268 12/22/09 10:48:40 AM12/22/09 10:48:40 AM

Chapter 15: Using Python for XML

269

 < !ELEMENT title (#PCDATA) >
 < !ELEMENT author (#PCDATA) >

 To add a reference to this DTD in the library file discussed before, you would insert a line at the top of
the file after the XML declaration that read < !DOCTYPE config SYSTEM “ library.dtd “ > , where
 library.dtd was the path to the DTD on your system.

 Let ’ s break this down, one step at a time. The first line, < ?xml version= “ 1.0 ” ? > , tells you that this is
going to be an XML document. Technically, this line is optional; DTDs don ’ t behave like other XML
documents, but we ’ ll get to that later. The next line, < !ELEMENT library (book+) > , tells you that there
is an element known as library , which can have one or more child elements of the book type. The
syntax for element frequencies and grouping in DTDs is terse, but similar to that of regular expressions.
The following table lists element frequency and element grouping operators in DTDs.

 Operator Definition

 ? Specifies zero or one of the preceding elements. For instance, editor? would
mean that a book could have an optional editor element.

 + Specifies one or more of the preceding elements. As in the previous example,
 author+ means that a book has one or more authors.

 , Specifies a sequence of elements that must occur in that order. (title,
author+) means that the book must have a title, followed by one or more
authors, in that order.

 (list) Groups elements together. An operator applied after parentheses applies to all
elements in the group. For instance, (author, editor)+ would mean that a
document could have one or more authors and one or more editors.

 | Or operator. This operator permits a choice between alternatives. As an
example, (author | editor) would permit a book to have an author or an
editor, but not both.

 * Specifies that zero or more of the preceding elements or group can appear.
 (book, CD)* would permit the library to have any number of books and
CDs in it, or none at all.

 The next bit is a little more complex:

 < !ATTLIST library
 owner CDATA #REQUIRED
 >

 The first line specifies that the library element has a list of attributes. Notice that the attribute list is
separate from the library element declaration itself and linked to it by the element name. If the element
name changes, the attribute list must be updated to point to the new element name. Next is a list of
attributes for the element. In this case, library has only one attribute, but the list can contain an
unbounded number of attributes. The attribute declaration has three mandatory elements: an attribute
name, an attribute type, and an attribute description. An attribute type can either be a data type, as

c15.indd 269c15.indd 269 12/22/09 10:48:40 AM12/22/09 10:48:40 AM

270

Part III: Putting Python to Work

specified by the DTD specification, or a list of allowed values. The attribute description is used to specify
the behavior of the attribute. A default value can be described here, and whether the attribute is optional
or required.

 DTDs Aren ’ t Exactly XML
 As a holdover from SGML, DTDs are technically not exactly XML. Unlike schemas, they are difficult to
manipulate and validate using the same tools as XML. If you apply a document type declaration at the
beginning of a DTD, your parser will either ignore it or, more likely, generate a syntax error. Although
there is a specification for creating DTDs, there is no document model in the form of a DTD for
validating the structure of a DTD. Tools exist for validating DTDs, but they are distinct from the tools
used to validate XML. On the other hand, there is a document model in the form of a schema against
which schemas can be validated using standard XML tools.

 Limitations of DTDs
 DTDs have a number of limitations. Although it is possible to express complex structures in DTDs, it
becomes very difficult to maintain. DTDs have difficulty cleanly expressing numeric bounds on a
document model. If you wanted to specify that a library could contain no more than 100 books, you
could write < !ELEMENT library (book, book, book, book etc etc) > , but that quickly becomes
an unreadable morass of code. DTDs also make it hard to permit a number of elements in any order. If
you have three elements that you could receive in any order, you have to write < !ELEMENT book
(((author, ((title, publisher) | (publisher, title))) | (title, ((author,
publisher) | (publisher, author))) | (publisher, ((author, title) | (title,
publisher))))) > , which is beginning to look more like LISP (which is a language with a lot of
parentheses) than XML and is far more complicated than it really should be. Finally, DTDs don ’ t permit
you to specify a pattern for data, so you can ’ t express constructs such as “ A telephone number should be
composed of digits, dashes, and plus signs. ” Thankfully, the W3C has published a specification for a
slightly more sophisticated language for describing documents, known as Schema.

 Schemas
 Schema was designed to address some of the limitations of DTDs and provide a more sophisticated
XML - based language for describing document models. It enables you to cleanly specify numeric models
for content, describe character data patterns using regular expressions, and express content models such
as sequences, choices, and unrestricted models.

 An Example Schema
 If you wanted to translate the hypothetical library model into a schema with the same information
contained in the DTD, you would wind up with something like the following:

 < ?xml version=”1.0”? >
 < xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema” >

 < xs:element name=”library” >
 < xs:complexType >

c15.indd 270c15.indd 270 12/22/09 10:48:41 AM12/22/09 10:48:41 AM

Chapter 15: Using Python for XML

271

 < xs:sequence >
 < xs:element name=”book” maxOccurs=”unbounded” >
 < xs:complexType >
 < xs:sequence >
 < xs:element name=”title” type=”xs:string”/ >
 < xs:element name=”author” type=”xs:string” maxOccurs=”unbounded”/ >
 < /xs:sequence >
 < /xs:complexType >
 < /xs:element >
 < /xs:sequence >
 < xs:attribute name=”owner” type=”xs:string” use=”required”/ >
 < /xs:complexType >

 < /xs:element >
 < /xs:schema >

 This expresses exactly the same data model as the DTD, but some differences are immediately apparent.

 Schemas Are Pure XML
 To begin with, this document ’ s top - level node contains a namespace declaration, specifying that all
tags starting with xs: belong to the namespace identified by the URI “ http://www.w3.org/2001/
XMLSchema ” . For practical purposes, this means that you now have a document model that you
can validate your schema against, using the same tools you would use to validate any other
XML document.

 Schemas Are Hierarchical
 Next, notice that the preceding document has a hierarchy very similar to the document it is describing.
Rather than create individual elements and link them together using references, the document model
mimics the structure of the document as closely as possible. You can also create global elements and
then reference them in a structure, but you are not required to use references; they are optional. This
creates a more intuitive structure for visualizing the form of possible documents that can be created
from this model.

 Other Advantages of Schemas
 Finally, schemas support attributes such as maxOccurs , which will take either a numeric value from 1 to
infinity or the value unbounded, which expresses that any number of that element or grouping may
occur. Although this schema doesn ’ t illustrate it, schemas can express that an element matches a specific
regular expression, using the pattern attribute, and schemas can express more flexible content models
by mixing the choice and sequence content models.

c15.indd 271c15.indd 271 12/22/09 10:48:41 AM12/22/09 10:48:41 AM

272

Part III: Putting Python to Work

 XPath
 XPath is a language for describing locations and node sets within an XML document. Entire books have
been written on it. However, the basics are fairly simple. An XPath expression contains a description of a
pattern that a node must match. If the node matches, it is selected; otherwise, it is ignored. Patterns are
composed of a series of steps , either relative to a context node or absolutely defined from the document
root. An absolute path begins with a slash, a relative one does not, and each step is separated by a slash.

 A step contains three parts: an axis that describes the direction to travel, a node test to select nodes along
that axis, and optional predicates , which are Boolean (true or false) tests that a node must meet. An
example step might be ancestor - or - self::book[1] , where ancestor - or - self is the axis to move
along, book is the node test, and [1] is a predicate specifying to select the first node that meets all the
other conditions. If the axis is omitted, it is assumed to refer to the child axis for the current node, so
 library/book[1]/author[1] would select the first author of the first book in the library.

 A node test can be a function as well as a node name. For instance, book/node() will return all nodes
below the selected book node, regardless of whether they are text or elements.

 The following table describes a handful of shortcuts for axes.

 Shortcut Meaning

 @ Specifies the attribute axis. This is an abbreviation for attribute:: .

 * Specifies all children of the current node.

 // Specifies any descendant of the current node. This is an abbreviation for
 descendant - or - self::*// . If used at the beginning of an XPath, it matches
elements anywhere in the document.

 For more thorough coverage of the subject, you may want to visit http://w3schools.org or pick up a
book on XPath.

 HTML as a Subset of XML
 XML bears a striking resemblance to HTML. This isn ’ t entirely by accident. XML and HTML both sprang
from SGML and share a number of syntactic features. Earlier versions of HTML aren ’ t directly
compatible with XML, because XML requires that every tag be closed, and certain HTML tags don ’ t
require a closing tag, such as < br > and < img > . However, the W3C has declared the XHTML schema in
an attempt to bring the two standards in line with each other. XHTML can be manipulated using the
same sets of tools as pure XML. However, Python also comes with specialized libraries designed
specifically for dealing with HTML.

c15.indd 272c15.indd 272 12/22/09 10:48:41 AM12/22/09 10:48:41 AM

Chapter 15: Using Python for XML

273

 The HTML DTDs
 The current version of HTML is 4.01, which includes 4.01 Transitional, 4.01 Strict, and 4.01 Frameset,
specifically for dealing with frames.

 HTMLParser
 The HTMLParser class, unlike the htmllib class, is not based on an SGML parser and can be used for
both XHTML and earlier versions of HTML.

 Try It Out Using HTMLParser

 1. Create a sample HTML file named headings.html that contains at least one h1 tag. Save the
file in your Python30 directory with the name “ headings.html. ”

 2. Cut and paste the following code from the wrox.com website into a file:

from html.parser import HTMLParser
class HeadingParser(HTMLParser):
 inHeading = False
 def handle_starttag(self, tag, attrs):
 if tag == “h1”:
 self.inHeading = True
 print(“Found a Heading 1”)
 def handle_data(self, data):
 if self.inHeading:
 print(data)
 def handle_endtag(self, tag):
 if tag ==”h1”:
 self.inHeading = False
hParser = HeadingParser()
file = open(“headings.html”, “r”)
html = file.read()
file.close()
hParser.feed(html)

 3. Run the code.

 How It Works
 The HTMLParser class defines methods, which are called when the parser finds certain types of
content, such as a beginning tag, an end tag, or a processing instruction. By default, these methods do
nothing. To parse an HTML document, a class that inherits from HTMLparser and implements the
necessary methods must be created. After a parse class has been created and instantiated, the parser
is fed data using the feed method. Data can be fed to it one line at a time or all at once.

 This example class only handles tags of type < h1 > . When an HTMLParser encounters a tag, the
 handle_starttag method is called, and the tag name and any attached attributes are passed to it.

c15.indd 273c15.indd 273 12/22/09 10:48:42 AM12/22/09 10:48:42 AM

274

Part III: Putting Python to Work

This handle_starttag method determines whether the tag is an < h1 > . If so, it prints a message
saying it has encountered an h1 and sets a flag indicating that it is currently in an < h1 > .

 If text data is found, the handle_data function is called, which determines whether it is in an < h1 > ,
based on the flag. If the flag is true , the method prints the text data.

 If a closing tag is encountered, the handle_endtag method is called, which determines whether the
tag that was just closed was an < h1 > . If so, it prints a message, and then sets the flag to false .

 XML Libraries Available for Python
 Python comes standard with a number of libraries designed to help you work with XML. You have your
choice of several DOM (Document Object Model) implementations, an interface to the nonvalidating
Expat XML parser, and several libraries for using SAX (the Simple API for XML).

 The available DOM implementations are as follows:

 xml.dom : A fully compliant DOM processor

 Xml.dom.minidom : A lightweight and much faster but not fully compliant implementation of
the DOM specification

 What Is SAX?
 When parsing XML, you have your choice of two different types of parsers: SAX and DOM. SAX stands
for the Simple API for XML. Originally only implemented for Java, it was added to Python as of version
2.0. It is a stream - based, event - driven parser. The events are known as document events , and a document
event might be the start of an element, the end of an element, encountering a text node, or encountering
a comment. For example, the following simple document:

 < ?xml version=”1.0”? >
 < author >
 < name > Ursula K. LeGuin < /name >
 < /author >

might fire the following events:

start document
start element: author
start element: name
characters: Ursula K. LeGuin
end element: name
end element: author
end document

❑

❑

c15.indd 274c15.indd 274 12/22/09 10:48:42 AM12/22/09 10:48:42 AM

Chapter 15: Using Python for XML

275

 Whenever a document event occurs, the parser fires an event for the calling application to handle. More
precisely, it fires an event for the calling application ’ s Content Handler object to handle. Content
Handlers are objects that implement a known interface specified by the SAX API from which the parser
can call methods. In the preceding example, the parser would call the startDocument method of the
content handler, followed by two calls to the startElement method, and so on.

 Stream - based
 When parsing a document with SAX, the document is read and parsed in the order in which it appears.
The parser opens the file or other datasource (such as a URL) as a stream of data (which means that it
doesn ’ t have to have it all at once) and then fires events whenever an element is encountered.

 Because the parser does not wait for the whole document to load before beginning parsing, SAX can
parse documents very soon after it starts reading the document. However, because SAX does not read
the whole document, it may process a partial document before discovering that the document is badly
formed. SAX - based applications should implement error - checking for such conditions.

 Event - driven
 When working with SAX, document events are handled by event handlers, similar to a GUI. You declare
callback functions for specific types of document events, which are then passed to the parser and called
when a document event occurs that matches the callback function.

 What Is DOM?
 At the heart of DOM lies the Document object. This is a tree - based representation of the XML document.
Tree - based models are a natural fit for XML ’ s hierarchical structure, making this a very intuitive way of
working with XML. Each element in the tree is called a Node object, and it may have attributes, child
nodes, text, and so on, all of which are also objects stored in the tree. DOM objects have a number of
methods for creating and adding nodes, for finding nodes of a specific type or name, and for reordering
or deleting nodes.

 In - memory Access
 The major difference between SAX and DOM is the latter ’ s ability to store the entire document in
memory and manipulate and search it as a tree, rather than force you to parse the document repeatedly,
or force you to build your own in - memory representation of the document. The document is parsed
once, and then nodes can be added, removed, or changed in memory and then written back out to a file
when the program is finished.

 Why Use SAX or DOM
 Although either SAX or DOM can do almost anything you might want to do with XML, you might want
to use one over the other for a given task for several reasons. For instance, if you are working on an
application in which you will be modifying an XML document repeatedly based on user input, you
might want the convenient random access capabilities of DOM. On the other hand, if you ’ re building an

c15.indd 275c15.indd 275 12/22/09 10:48:42 AM12/22/09 10:48:42 AM

276

Part III: Putting Python to Work

application that needs to process a stream of XML quickly with minimal overhead, SAX might be a better
choice for you. Following are some of the advantages and disadvantages you might want to be aware of
when architecting your application to use XML.

 Capability Trade - Offs
 DOM is architected with random access in mind. It provides a tree that can be manipulated at runtime
and needs to be loaded into memory only once. SAX is stream - based so data comes in as a stream one
character after the next, but the document isn ’ t seen in its entirety before it starts getting processed;
therefore, if you want to randomly access data, you have to either build a partial tree of the document
in memory based on document events, or reparse the document every time you want a different piece
of data.

 Most people find the object - oriented behavior of DOM very intuitive and easy to learn. The event -
driven model of SAX is more similar to functional programming and can be more challenging to get up
to speed on.

 Memory Considerations
 If you are working in a memory - limited environment, DOM is probably not the right choice. Even on a
fairly high - end system, constructing a DOM tree for a 2 or 3 MB XML document can bring the computer
grinding to a halt while it processes. Because SAX treats the document as a stream, it never loads the
whole document into memory, so it is preferable if you are memory constrained or working with very
large documents.

 Speed Considerations
 Using DOM requires a great deal of up - front processing time while the document tree is being built,
but once the tree is built DOM allows for much faster searching and manipulation of nodes because the
entire document is in memory. SAX is somewhat fast for searching documents, but not as efficient for
their manipulation. However, for document transformations, SAX is considered to be the parser of
choice because the event - driven model is fast and very compatible with how XSLT works.

 SAX and DOM Parsers Available for Python
 The following Python SAX and DOM parsers are available: xml.sax and xml.dom.minidom . They each
behave a bit differently, so here is an overview of each of them.

 xml.sax
 xml.sax is the built - in SAX package that comes with Python. It uses the Expat nonvalidating parser by
default but can be passed a list of parser instances that can change this behavior.

c15.indd 276c15.indd 276 12/22/09 10:48:43 AM12/22/09 10:48:43 AM

Chapter 15: Using Python for XML

277

 xml.dom.minidom
 xml.dom.minidom is a lightweight DOM implementation, designed to be simpler and smaller than a
full DOM implementation.

 Try It Out Working with XML Using DOM

 1. If you haven ’ t already, save the example XML file from the beginning of this chapter in a file
called library.xml .

 2. Either type in or get the following code from this book ’ s website, and save it to a file called
 xml_minidom.py :

from xml.dom.minidom import parse
import xml.dom.minidom
def printLibrary(library):
 books = myLibrary.getElementsByTagName(“book”)
 for book in books:
 print(“*****Book*****”)
 print(“Title: %s” % book.getElementsByTagName(“title”)[0].childNodes[0].data)
 for author in book.getElementsByTagName(“author”):
 print(“Author: %s” % author.childNodes[0].data)
open an XML file and parse it into a DOM
myDoc = parse(‘library.xml’)
myLibrary = myDoc.getElementsByTagName(“lib:library”)[0]
#Get all the book elements in the library
books = myLibrary.getElementsByTagName(“book”)
#Print each book’s title and author(s)
printLibrary(myLibrary)
#Insert a new book in the library
newBook = myDoc.createElement(“book”)
newBookTitle = myDoc.createElement(“title”)
titleText = myDoc.createTextNode(“Beginning Python”)
newBookTitle.appendChild(titleText)
newBook.appendChild(newBookTitle)
newBookAuthor = myDoc.createElement(“author”)
authorName = myDoc.createTextNode(“Peter Norton, et al”)
newBookAuthor.appendChild(authorName)
newBook.appendChild(newBookAuthor)
myLibrary.appendChild(newBook)
print(“Added a new book!”)
printLibrary(myLibrary)
#Remove a book from the library
#Find ellison book
for book in myLibrary.getElementsByTagName(“book”):
 for author in book.getElementsByTagName(“author”):
 if author.childNodes[0].data.find(“Ellison”) != -1:
 removedBook= myLibrary.removeChild(book)
 removedBook.unlink()
print(“Removed a book.”)

c15.indd 277c15.indd 277 12/22/09 10:48:43 AM12/22/09 10:48:43 AM

278

Part III: Putting Python to Work

printLibrary(myLibrary)
#Write back to the library file
lib = open(“library.xml”, ‘w’)
lib.write(myDoc.toprettyxml(“ “))
lib.close()

 3. Run the file with python xml_minidom.py .

 How It Works
 To create a DOM, the document needs to be parsed into a document tree. This is accomplished by
calling the parse method from xml.dom.minidom . This method returns a Document object,
which contains methods for querying for child nodes, getting all nodes in the document of a
certain name, and creating new nodes, among other things. The getElementsByTagName method
returns a list of Node objects whose names match the argument, which is used to extract the root node
of the document, the < library > node. The print method uses getElementsByTagName again,
and then for each book node, prints the title and author. Nodes with text that follows them are
considered to have a single child node, and the text is stored in the data attribute of that node, so
 book.getElementsByTagName(“ title “)[0].childNodes[0].data simply retrieves the text node
below the < title > element and returns its data as a string.

 Constructing a new node in DOM requires creating a new node as a piece of the Document object,
adding all necessary attributes and child nodes, and then attaching it to the correct node in the
document tree. The createElement(tagName) method of the Document object creates a new node
with a tag name set to whatever argument has been passed in. Adding text nodes is accomplished
almost the same way, with a call to createTextNode(string) . When all the nodes have been
created, the structure is created by calling the appendChild method of the node to which the newly
created node will be attached. Node also has a method called insertBefore(newChild, refChild)
for inserting nodes in an arbitrary location in the list of child nodes, and replaceChild(newChild,
oldChild) to replace one node with another.

 Removing nodes requires first getting a reference to the node being removed and then a call to
 removeChild(childNode) . After the child has been removed, it ’ s advisable to call unlink() on it to
force garbage collection for that node and any children that may still be attached. This method is
specific to the minidom implementation and is not available in xml.dom .

 Finally, having made all these changes to the document, it would be useful to be able to write the
DOM back to the file from which it came. A utility method is included with xml.dom.minidom called
 toprettyxml , which takes two optional arguments: an indentation string and a newline character. If
not specified, these default to a tabulator and \n, respectively. This utility prints a DOM as nicely
indented XML and is just the thing for printing back to the file.

c15.indd 278c15.indd 278 12/22/09 10:48:43 AM12/22/09 10:48:43 AM

Chapter 15: Using Python for XML

279

 Try It Out Working with XML Using SAX

 This example shows you how you can explore a document with SAX.

#!/usr/bin/python
from xml.sax import make_parser
from xml.sax.handler import ContentHandler
#begin bookHandler
class bookHandler(ContentHandler):
 inAuthor = False
 inTitle = False
 def startElement(self, name, attributes):
 if name == “book”:
 print(“*****Book*****”)
 if name == “title”:
 self.inTitle = True
 print(“Title: “,)
 if name == “author”:
 self.inAuthor = True
 print(“Author: “,)
 def endElement(self, name):
 if name == “title”:
 self.inTitle = False
 if name == “author”:
 self.inAuthor = False
 def characters(self, content):
 if self.inTitle or self.inAuthor:
 print(content)
#end bookHandler
parser = make_parser()
parser.setContentHandler(bookHandler())
parser.parse(“library.xml”)

 How It Works
 The xml.sax parser uses Handler objects to deal with events that occur during the parsing of a
document. A handler may be a ContentHandler , a DTDHandler , an EntityResolver for handling
entity references, or an ErrorHandler . A SAX application must implement handler classes, which
conform to these interfaces and then set the handlers for the parser.

 The ContentHandler interface contains methods that are triggered by document events, such as the
start and end of elements and character data. When parsing character data, the parser has the option
of returning it in one large block or several smaller whitespace - separated blocks, so the characters
method may be called repeatedly for a single block of text.

 The make_parser method creates a new parser object and returns it. The parser object created will be
of the first parser type the system finds. The make_parser method can also take an optional argument
consisting of a list of parsers to use, which must all implement the make_parser method. If a list is
supplied, those parsers will be tried before the default list of parsers.

c15.indd 279c15.indd 279 12/22/09 10:48:43 AM12/22/09 10:48:43 AM

280

Part III: Putting Python to Work

 Intro to XSLT
 XSLT stands for Extensible Stylesheet Language Transformations. Used for transforming XML into
output formats such as HTML, it is a procedural, template - driven language.

 XSLT Is XML
 Like a Schema, XSLT is defined in terms of XML, and it ’ s being used to supplement the capabilities of
XML. The XSLT namespace is “ http://www.w3.org/1999/XSL/Transform ” , which specifies the
structure and syntax of the language. XSLT can be validated, like all other XML.

 Transformation and Formatting Language
 XSLT is used to transform one XML syntax into another or into any other text - based format. It is often
used to transform XML into HTML in preparation for web presentation or a custom document model
into XSL - FO for conversion into PDF.

 Functional, Template - Driven
 XSLT is a functional language, much like LISP. The XSLT programmer declares a series of templates ,
which are functions triggered when a node in the document matches an XPath expression. The
programmer cannot guarantee the order of execution, so each function must stand on its own and make
no assumptions about the results of other functions.

 Python doesn ’ t directly supply a way to create an XSLT, unfortunately. To transform XML documents, an
XSLT must be created, and then it can be applied via Python to the XML.

 In addition, Python ’ s core libraries don ’ t supply a method for transforming XML via XSLT, but a couple
of different options are available from other libraries. Fourthought, Inc., offers an XSLT engine as part of
its freely available 4Suite package, which unfortunately, at the time of this writing, does not support
Python 3.0. However, there are also Python bindings for the widely popular libxslt C library, in
particular lxml.

 What Is lxml?
 The following examples use the latest version of lxml, which, as of this writing, is 2.2. If you don ’ t have it
installed, please download it from http://pypi.python.org/pypi/lxml/ . You will need it to
complete the exercises later in this chapter.

 lxml is a unique Python binding that utilizes the speed and rich features of the libxml2 and libxslt
libraries alongside a simplistic API that allows you to work with both HTML and XML. The package
uses the ElementTree API with a few twists, trying to make coding with libxml2 less error prone.

 Importing lxml is fairly simple:

 > > > import lxml
 > > > from lxml import etree

c15.indd 280c15.indd 280 12/22/09 10:48:44 AM12/22/09 10:48:44 AM

Chapter 15: Using Python for XML

281

 Element Classes
 Elements are the primary container objects for the ElementTree API, providing the core of your XML tree
functionality. They behave like lists, and in fact, are technically lists. They are capable of having
attributes and containing text, which we discuss in a bit. Let ’ s first learn to create an element class. Type
in the following:

 > > > author = etree.Element(“Horror”)
 > > > print(author.tag)
Horror

 In this example, we created a new element class called author , and then assigned it a tag name: Horror.
We then used the print() function and printed out the name via the element classes tag property.
Element classes follow your standard XML tree hierarchy, and therefore support both parent and child
elements.

 Let ’ s say that we wanted author to be the root element. We gave author the element tag name of
 “ horror, ” and now we would like to add a group of horror writers to the author element class. These
new elements will now become children of our horror element.

 Try It Out Creating Children Classes

 > > > author=etree.Element(“Horror”)
 > > > writer1=etree.SubElement(author, “NeilGaiman”)
 > > > writer2=etree.SubElement(author, “StephenKing”)
 > > > writer3=etree.SubElement(author, “CliveBarker”)
 > > > print(etree.tostring(author))
 b’ < Horror > < NeilGaiman/ > < StephenKing/ > < CliveBarker/ > < /Horror > ’
 > > > writer=author[0]
 > > > print(writer.tag)
 NeilGaiman
 > > > writer=author[1]
 > > > print(writer.tag)
 StephenKing
 > > > for writer in author:
 print(writer.tag)

NeilGaiman
StephenKing
CliveBarker

 How It Works
 A SubElement operates in much the same way as you would expect; that is, it is literally a sub element
of an element, or in simpler terms, a child of a parent. When we wrote etree.SubElement(author,
 “ NeilGaiman ”) we were telling Python to create a new child, writer1, whose element tag would
be “ NeilGaiman ” , and whose parent would be “ author ” . This worked the same way for writer2
and writer3, as we saw when we printed out the subelements in “ author ” using the etree.tostring
method.

c15.indd 281c15.indd 281 12/22/09 10:48:44 AM12/22/09 10:48:44 AM

282

Part III: Putting Python to Work

 Earlier I stated that element classes were lists, and as such, list functions work on them. Our statement
writer=author[0] assigned the value of our first subelement to the variable writer. Likewise, using the
for writer in author code lets us step through every subelement in the author class and print out their
name tags.

 In the beginning of this chapter we discussed attributes, and as stated before, elements can contain
attributes, which help further describe the element.

 > > > author=etree.Element(“author”, audience=”Adult”)
 > > > print(author.get(“audience”))
Adult
 > > > author.etree.Element(“author”, type=”fiction”, bestseller=”Yes”)
 > > > print(author.get(“type”))
Fiction
 > > > print(author.get(“bestseller”))
Yes
 > > > print(author.get(“audience”))
None

 We can add attributes to elements using etree.Element , as shown in the preceding code. You can
add one attribute, or a thousand attributes, but it is important to note that you must declare them all at
the same time. Take our example. We started off by giving our author an attribute called “ audience ” ,
and assigned that value the descriptor, “ Adult ” . When we used author.get to retrieve the value in
our audience attribute (and display it with the print function), our program worked as it should, and
printed out the word: Adult. However, we then tried to assign two more attributes to author (namely,
type and bestseller), and then tried to print out audience, we got the result: None. This is because
every time we assign a new attribute to an element, it overwrites the existing attributes.

 There is a way of getting around this problem. Just as we use the get() method to retrieve data from
an element, we can use the set() method to set an attribute, or add attributes:

 > > > author.etree.Element(“author”, type=”fiction”, bestseller=”Yes”)
 > > > etree.tostring(author)
b’ < author type=”fiction” bestseller=”Yes”/ > ’
 > > > author.set(“audience”, “Adult”)
 > > > etree.tostring(author)
b’ < author type=”fiction” bestseller=”Yes” audience=”Adult”/ >

 Adding Text to Elements
 In addition to attributes, we can also add text to our elements. When dealing with XML documents that
are primarily data - driven, the only place you can place text is within the element. To do so is quite
simple. In our next sample, we create a tree resembling a basic HTML document:

 > > > html=etree.Element(“html”)
 > > > body=etree.SubElement(html,”body”)
 > > > h1=etree.SubElement(body, “h1”)

c15.indd 282c15.indd 282 12/22/09 10:48:44 AM12/22/09 10:48:44 AM

Chapter 15: Using Python for XML

283

 > > > h1.text=”Introduction”
 > > > paragraph=etree.SubElement(body, “p”)
 > > > paragraph.text=”Here is some text representing our paragraph”
 > > > etree.tostring(html)
b’ < html > < body > < h1 > Introduction < /h1 >
< p > Here is some text < /p > < /body > < /html > ’
 > > > etree.tostring(paragraph)
b’ < p > Here is some text < /p > ’

 The preceding example is an excellent way to showcase parent - child relationships. Even though
etree.tostring prints the results out on a single line, perhaps it would be better to view it as an actual
tree structure:

 < html >
 < body >
 < h1 > Introduction < /h1 >
 < p > Here is some text < /p >
 < /body >
 < /html >

 As you can see, < html > is the parent, < body > is the child of < html > , and < h1 > and < p > are both siblings,
whose parent is < body > .

 In this scenario, the text property allows us to display content that the user could view, while any
attributes we added would provide data about the elements themselves.

 One last thing about the preceding code. You will notice that we use etree.tostring not only to print
out the entire contents of HTML, but we also used it to hone in on the contents of paragraph specifically.
This is a great method to see what a given element contains, but there are times when we do not wish to
see the tags. What if we wanted to just see the text of an element, if there was any? For that, we could do
the following:

 > > > etree.tostring(paragraph, method=”text”)
b’Here is some text’

 Parsing with lxml
 Parsing with lxml is pretty straightforward. There are three parser functions to choose from, each with
its own benefits and pitfalls. Each supports the parsing of a particular type of object, such as files,
strings, and URLs (both the HTTP and FTP variety), with the simplest being our string parser:
 fromstring() .

 Of all the parser functions lxml has to offer, fromstring() is the easiest to use:

 > > > sentence=” < info > Here is a sentence < /info > ”
 > > > info=etree.fromstring(sentence)
 > > > print(info.tag)
info
 > > > print(info.text)
Here is a sentence

c15.indd 283c15.indd 283 12/22/09 10:48:45 AM12/22/09 10:48:45 AM

284

Part III: Putting Python to Work

 In this code, we begin by assigning our variable sentence with an open and closed < info > tag, with
some text nested in - between. We then create another variable, info, and use the etree.fromstring()
function to parse the data in the sentence.

 Another method of parsing is to use the XML() function, which is similar to fromstring() , but differs
by writing XML literals straight to the source, like so:

 > > > info=etree.XML(“ < info > Here is a sentence < /info > ”)
 > > > print(info.tag)
info
 > > > print(info.text)
Here is a sentence
 > > > etree.tostring(info)
b’ < info > Here is a sentence < /info > ’

 Here, we ’ ve skipped the initial step of creating and assigning data to the sentence variable, and instead
used the XML() function to assign the data straight to info, saving us a step. When we print the tag and
text from info, we get the same result as before.

 Parsing Files
 So far you have learned to parse simple strings. To truly understand the power of lxml parsing however,
you need to learn to work with files and file - like objects, including URLs, objects with a .read method,
and file name strings.

 Unlike our other two parser functions, the parse() function returns an ElementTree object, instead of an
Element object. This allows us to parse entire documents, and not just simple XML fragments:

 > > > import io
 > > > newsentence=io.StringIO(“ < info > This is another sentence < /info > ”)
 > > > somesentence=etree.parse(newsentence)
 > > > etree.tostring(somesentence)
b’ < info > This is another sentence < /info > ’

 If you want to access the value in somesentence with a print() function, you can do so in the
following manner:

 > > > printit=somesentence.getroot()
 > > > print(printit.tag)
info
 > > > print(printit.text)
This is another sentence

 This only scrapes the surface of what you can achieve with lxml. A complete coverage of the subject
would easily encompass two books, which, unfortunately, we do not have space for here. For more
information, you can visit the documentation for the module here: http://codespeak.net/lxml/
index.html .

c15.indd 284c15.indd 284 12/22/09 10:48:45 AM12/22/09 10:48:45 AM

Chapter 15: Using Python for XML

285

 Summary
 The key things to take away from this chapter are:

 How to parse XML using both SAX and DOM

 How to validate XML using xmlproc

 How to parse HTML using HTMLParser

 How to work with lxml

 In Chapter 16, you learn more about network programming and e - mail. Before proceeding, however,
try the exercises that follow to test your understanding of the material covered in this chapter. You can
find the solutions to these exercises in Appendix A.

 Exercises
 1. Given the following configuration file for a Python application, write some code to extract the

configuration information using a DOM parser:

 < ?xml version=”1.0”? >
 < !DOCTYPE config SYSTEM “configfile.dtd” >
 < config >
 < utilitydirectory > /usr/bin < /utilitydirectory >
 < utility > grep < /utility >
 < mode > recursive < /mode >
 < /config >

 2. Given the following DTD, named configfile.dtd , write a Python script to validate the previ-
ous configuration file:

 < !ELEMENT config (utilitydirectory, utility, mode) >
 < !ELEMENT utilitydirectory (#PCDATA)* >
 < !ELEMENT utility (#PCDATA)* >
 < !ELEMENT mode (#PCDATA)* >

 3. Use SAX to extract configuration information from the preceding config file instead of DOM.

❑

❑

❑

❑

c15.indd 285c15.indd 285 12/22/09 10:48:45 AM12/22/09 10:48:45 AM

c15.indd 286c15.indd 286 12/22/09 10:48:45 AM12/22/09 10:48:45 AM

 16
Network Programming

 For more than a decade at the time this book is being written, one of the main reasons driving the
purchase of personal computers is the desire to get online: to connect in various ways to other
computers throughout the world. Network connectivity — specifically, Internet connectivity — is
the “ killer app ” for personal computing, the feature that got a computer - illiterate general
population to start learning about and buying personal computers en masse .

 Without networking, you can do amazing things with a computer, but your audience is limited to
the people who can come over to look at your screen or who can read the printouts or load the
CDs and DVDs you distribute. Connect the same computer to the Internet and you can
communicate across town or across the world.

 The Internet ’ s architecture supports an unlimited number of applications, but it boasts two killer
apps of its own — two applications that people get online just to use. One is, of course, the
incredibly popular World Wide Web, which is covered in Chapter 20, “ Web Applications and
Web Services. ”

 The Internet ’ s other killer app is e - mail, which is covered in depth in this chapter.

 In this chapter you learn:

 To use standard libraries to write applications that compose, send, and receive e - mail

 To create programs that send and receive data in custom formats.

 The basics of socket programming

❑

❑

❑

c16.indd 287c16.indd 287 12/22/09 10:59:29 AM12/22/09 10:59:29 AM

Part III: Putting Python to Work

288

 Try It Out Sending Some E - mail

 Jamie Zawinski, one of the original Netscape programmers, has famously remarked, “ Every program
attempts to expand until it can read mail. ” This may be true (it certainly was of the Netscape browser
even early on when he worked on it), but long before your program becomes a mail reader, you ’ ll
probably find that you need to make it send some mail. Mail readers are typically end - user applications,
but nearly any kind of application can have a reason to send mail: monitoring software, automation
scripts, web applications, even games. E - mail is the time - honored way of sending automatic
notifications, and automatic notifications can happen in a wide variety of contexts.

 Python provides a sophisticated set of classes for constructing e - mail messages, which are covered a
bit later. Actually, an e - mail message is just a string in a predefined format. All you need to send an
e - mail message is a string in that format, an address to send the mail to, and Python ’ s smtplib
module. Here ’ s a very simple Python session that sends out a bare - bones e - mail message:

 > > > fromAddress = ‘sender@example.com’
 > > > toAddress = ‘me@my.domain’
 > > > msg = “Subject: Hello\n\nThis is the body of the message.”
 > > > import smtplib
 > > > server = smtplib.SMTP(“localhost”, 25)
 > > > server.sendmail(fromAddress, toAddress, msg)
{}

 smtplib takes its name from SMTP, the Simple Mail Transport Protocol. That ’ s the protocol, or
standard, defined for sending Internet mail. As you see, Python comes packaged with modules that help
you speak many Internet protocols, and the module is always named after the protocol: imaplib ,
 poplib , httplib , ftplib , and so on.

 Put your own e - mail address in me@mydomain , and if you ’ ve got a mail server running on your machine,
you should be able to send mail to yourself, as shown in Figure 16 - 1.

Figure 16-1

 However, you probably don ’ t have a mail server running on your machine. (You might have one if you ’ re
running these scripts on a shared computer, or if you set the mail server up yourself, in which case you
probably already know a bit about networking and are impatiently waiting for the more advanced parts of
this chapter.) If there ’ s no mail server on the machine where you run this script, you ’ ll get an exception when
you try to instantiate the remote SMTP mail server object, something similar to this:

Traceback (most recent call last):
 File “ < pyshell#9 > ”, line 1, in < module >
 server=smtplib.SMTP(“localhost”,25)
 File “C:\Python31\lib\smtplib.py”, line 239, in __init__

c16.indd 288c16.indd 288 12/22/09 10:59:30 AM12/22/09 10:59:30 AM

Chapter 16: Network Programming

289

 (code, msg) = self.connect(host, port)
 File “C:\Python31\lib\smtplib.py”, line 295, in connect
 self.sock = self._get_socket(host, port, self.timeout)
 File “C:\Python31\lib\smtplib.py”, line 273, in _get_socket
 return socket.create_connection((host, port), timeout)
 File “C:\Python31\lib\socket.py”, line 307, in create_connection
 raise error(msg)
socket.error: [Errno 10061] No connection could be made because the target
machine actively refused it)

 What ’ s going on here? Look at the line that caused the exception:

 > > > server = smtplib.SMTP(“localhost”, 25)

 The constructor for the smtplib class is trying to start up a network connection using IP, the Internet
Protocol. The string “ localhost “ and the number 25 identify the Internet location of the putative mail
server. Because you ’ re not running a mail server, there ’ s nothing at the other end of the connection, and
when Python discovers this fact, it can ’ t continue.

 To understand the mystical meanings of “ localhost “ and 25 , it helps to know a little about protocols,
and the Internet Protocol in particular.

 Understanding Protocols
 A protocol is a convention for structuring the data sent between two or more parties on a network. It ’ s
analogous to the role of protocol or etiquette in relationships between humans. For instance, suppose
that you wanted to go out with friends to dinner or get married to someone. Each culture has defined
conventions describing the legal and socially condoned behavior in such situations. When you go out for
dinner, there are conventions about how to behave in a restaurant, how to use the eating utensils, and
how to pay. Marriages are carried out according to conventions regarding rituals and contracts,
conventions that can be very elaborate.

 These two activities are very different, but the same lower - level social protocols underlie both of
them. These protocols set standards for things such as politeness and the use of a mutually understood
language. On the lowest level, you may be vibrating your vocal cords in a certain pattern, but on a
higher level you ’ re finalizing your marriage by saying “ I do. ” Violate a lower - level protocol (say, by
acting rudely in the restaurant) and your chances of carrying out your high - level goal can be
compromised. All of these aspects of protocols for human behavior have their correspondence in
protocols for computer networking.

 Comparing Protocols and Programming Languages
 Thousands of network protocols for every imaginable purpose have been invented over the past few
decades; it might be said that the history of networking is the history of protocol design. Why so many
protocols? To answer this question, consider another analogy to the world of network protocols: Why so
many programming languages? Network protocols have the same types of interrelation as programming
languages, and people create new protocols for the same reasons they create programming languages.

c16.indd 289c16.indd 289 12/22/09 10:59:31 AM12/22/09 10:59:31 AM

Part III: Putting Python to Work

290

 Different programming languages have been designed for different purposes. It would be madness to
write a word processor in the FORTRAN language, not because FORTRAN is objectively “ bad, ” but
because it was designed for mathematical and scientific research, not end - user GUI applications.

 Similarly, different protocols are intended for different purposes. SMTP, the protocol you just got a brief
look at, could be used for all sorts of things besides sending mail. No one does this because it makes
more sense to use SMTP for the purpose for which it was designed, and use other protocols for
other purposes.

 A programming language may be created to compete with others in the same niche. The creators of a
new language may see technical or aesthetic flaws in existing languages and want to make their own
tasks easier. A language author may covet the riches and fame that come with being the creator of a
popular language. A person may invent a new protocol because he ’ s come up with a new type of
application that requires one.

 Some programming languages are designed specifically for teaching students how to program, or, at the
other end of programming literacy, how to write compilers. Some languages are designed to explore new
ideas, not for real use, and other languages are created as a competitive tool by one company for use
against another company.

 These factors also come into play in protocol design. Companies sometimes invent new, incompatible
protocols to try to take business from a competitor. Some protocols are intended only for pedagogical
purposes. For instance, this chapter, under the guise of teaching network programming, also teaches
designing protocols for things like online chat rooms. Perfectly good protocols for this already exist, but
they ’ re too complex to be given a proper treatment in the available space.

 The ADA programming language was defined by the U.S. Department of Defense to act as a common
language across all military programming projects. The Internet Protocol was created to enable multiple
previously incompatible networks to communicate with one another (hence the name “ Internet ”).

 Nowadays, even internal networks (intranets) usually run atop the Internet Protocol, but the old motives
(the solving of new problems, competition, and so on) remain in play at higher and lower levels, which
brings us to the most interesting reason for the proliferation of programming languages and protocols.

 The Internet Protocol Stack
 Different programming languages operate at different levels of abstraction. Python is a very high - level
language capable of all kinds of tasks, but the Python interpreter itself isn ’ t written in Python: It ’ s
written in C, a lower - level language. C, in turn, is compiled into a machine language specific to your
computer architecture. Whenever you type a statement into a Python interpreter, there is a chain of
abstraction reaching down to the machine code, and even lower to the operation of the digital circuits
that actually drive the computer.

 There ’ s a Python interpreter written in Java (Jython), but Java is written in C. PyPy is a project that
aims to implement a Python interpreter in Python, but PyPy runs on top of the C or Java
implementation. You can ’ t escape C!

 In one sense, when you type a statement into the Python interpreter, the computer simply “ does what
you told it to. ” In another, it runs the Python statement you typed. In a third sense, it runs a longer series

c16.indd 290c16.indd 290 12/22/09 10:59:31 AM12/22/09 10:59:31 AM

Chapter 16: Network Programming

291

of C statements, written by the authors of Python and merely activated by your Python statement. In a
fourth sense, the computer runs a very long, nearly incomprehensible series of machine code statements.
In a fifth, it doesn ’ t “ run ” any program at all: You just cause a series of timed electrical impulses to be
sent through the hardware. The reason we have high - level programming languages is because they ’ re
easier to use than the lower - level ones. That doesn ’ t make lower - level languages superfluous, though.

 English is a very high - level human language capable of all kinds of tasks, but one can ’ t speak English just
by “ speaking English. ” To speak English, one must actually make some noises, but a speaker can ’ t just
 “ make some noises ” either: We have to send electrical impulses from our brains that force air out of the
lungs and constantly reposition the tongues and lips. It ’ s a very complicated process, but we don ’ t even
think about the lower levels — only the words we ’ re saying and the concepts we ’ re trying to convey.

 The soup of network protocols can be grouped into a similar hierarchical structure based on levels of
abstraction, or layers . On the physical layer, the lowest level, it ’ s all just electrical impulses and EM
radiation. Just above the physical layer, every type of network hardware needs its own protocol,
implemented in software (for instance, the Ethernet protocol for networks that run over LAN wires). The
electromagnetic phenomena of the physical layer can now be seen as the sending and receiving of bits
from one device to another. This is called the data link layer . As you go up the protocol stack, these raw
bits take on meaning: They become routing instructions, commands, responses, images, web pages,
and so on.

 Because different pieces of hardware communicate in different ways, connecting (for example) an
Ethernet network to a wireless network requires a protocol that works on a higher level than the data
link layer. As mentioned earlier, the common denominator for most networks nowadays is the Internet
Protocol (IP), which implements the network layer and connects all those networks together. IP works on
the network layer .

 Directly atop the network layer is the transport layer , which makes sure the information sent over IP gets
to its destination reliably, in the right order, and without errors. IP doesn ’ t care about reliability or error -
 checking: It just takes some data and a destination address, sends it across the network, and assumes it
gets to that address intact.

 TCP, the Transmission Control Protocol, does care about these things. TCP implements the transport
layer of the protocol stack, making reliable, orderly communication possible between two points on the
network. It ’ s so common to stack TCP on top of IP that the two protocols are often treated as one and
given a unified name, TCP/IP.

 All of the network protocols you study and design in this chapter are based on top of TCP/IP.
These protocols are at the application layer and are designed to solve specific user problems. Some of
these protocols are known by name even to nonprogrammers: You may have heard of HTTP, FTP,
BitTorrent, and so on.

 When people think of designing protocols, they usually think of the application layer, the one best
suited to Python implementations. The other current field of interest is at the other end in the data link
layer: embedded systems programming for connecting new types of devices to the Internet. Thanks to
the overwhelming popularity of the Internet, TCP/IP has more or less taken over the middle of the
protocol stack.

c16.indd 291c16.indd 291 12/22/09 10:59:31 AM12/22/09 10:59:31 AM

Part III: Putting Python to Work

292

 A Little Bit About the Internet Protocol
 Now that you understand where the Internet Protocol fits into the protocol stack your computer uses,
there are only two things you really need to know about it: addresses and ports.

 Internet Addresses
 Each computer on the Internet (or on a private TCP/IP network) has one or more IP addresses, usually
represented as a dotted series of four numbers, like “ 208.215.179.178. ” That same computer may also
have one or more hostnames, which look like “ wrox.com. ”

 To connect to a service running on a computer, you need to know its IP address or one of its
hostnames. (Hostnames are managed by DNS, a protocol that runs on top of TCP/IP and silently
turns hostnames into IP addresses.) Recall the script at the beginning of this chapter that sent out mail.
When it tried to connect to a mail server, it mentioned the seemingly magic string “ localhost “ :

 > > > server = smtplib.SMTP(“localhost”, 25)

 “ localhost ” is a special hostname that always refers to the computer you ’ re using when you mention
it (each computer also has a special IP address that does the same thing: 127.0.0.1). The hostname is
how you tell Python where on the Internet to find your mail server.

 It ’ s generally better to use hostnames instead of IP addresses, even though the former immediately
gets turned into the latter. Hostnames tend to be more stable over time than IP addresses. Another
example of the protocol stack in action: The DNS protocol serves to hide the low - level details of IP ’ s
addressing scheme.

 Of course, if you don ’ t run a mail server on your computer, “ localhost ” won ’ t work. The organization
that gives you Internet access should be letting you use its mail server, possibly located at mail.[your
ISP].com or smtp.[your ISP].com. Whatever mail client you use, it probably has the hostname of a mail
server somewhere in its configuration, so that you can use it to send out mail. Substitute that for
 “ localhost “ in the example code listed previously and you should be able to send mail from Python:

 > > > fromAddress = ‘sender@example.com’
 > > > toAddress = ‘[your e-mail address]’
 > > > msg = “Subject: Hello\n\nThis is the body of the message.”
 > > > import smtplib
 > > > server = smtplib.SMTP(“mail.[your ISP].com”, 25)
 > > > server.sendmail(fromAddress, toAddress, msg)
{}

 Unfortunately, you still might not be able to send mail, for any number of reasons. Your SMTP server
might demand authentication, which this sample session doesn ’ t provide. It might not accept mail from
the machine on which you ’ re running your script (try the same machine you normally use to send
mail). It might be running on a nonstandard port (see the following section). The server might not like
the format of this bare - bones message, and expect something more like a “ real ” e - mail message; if so, the
 e-mail module described in the following section might help. If all else fails, ask your system
administrator for help.

c16.indd 292c16.indd 292 12/22/09 10:59:32 AM12/22/09 10:59:32 AM

Chapter 16: Network Programming

293

 Internet Ports
 The string “ localhost ” has been explained as a DNS hostname that masks an IP address. That leaves
the mysterious number 25 . What does it mean? Well, consider the fact that a single computer may host
more than one service. A single machine with one IP address may have a web server, a mail server, a
database server, and a dozen other servers. How should clients distinguish between an attempt to
connect to the web server and an attempt to connect to the database server?

 A computer that implements the Internet Protocol can expose up to 65,536 numbered ports . When you
start an Internet server (say, a web server), the server process “ binds ” itself to one or more of the ports on
your computer (say, port 80, the conventional port for a web server) and begins listening for outside
connections to that port. If you ’ ve ever seen a website address that looked like “ http://www.example
.com:8000/ ” , that number is the port number for the web server — in this case, a port number that
violates convention. The enforcer of convention in this case is the Internet Assigned Numbers Authority.

 The IANA list of protocols and conventional port numbers is published at www.iana.org/
assignments/port - numbers .

 According to the IANA, the conventional port number for SMTP is 25. That ’ s why the constructor to the
SMTP object in the above example received 25 as its second argument (if you don ’ t specify a port
number at all, the SMTP constructor will assume 25):

 > > > server = smtplib.SMTP(“localhost”, 25)

 The IANA divides the port numbers into “ well - known ports ” (ports from 0 to 1023), “ registered ports ”
(from 1024 to 49151), and “ dynamic ports ” (from 49152 to 65535). On most operating systems, you must
have administrator privileges to bind a server to a well - known port, because processes that bind to those
ports are often themselves given administrator privileges. Anyone can bind servers to ports in the
registered range, and that ’ s what you ’ ll do for the custom servers written in this chapter. The dynamic
range is used by clients , not servers; we cover that later when talking about sockets.

 Sending Internet E - mail
 With a basic understanding of how TCP/IP works, the Python session from the beginning of this chapter
should now make more sense:

 > > > fromAddress = ‘sender@example.com’
 > > > toAddress = ‘recipient@example.com’
 > > > msg = “Subject: Hello\n\nThis is the body of the message.”
 > > > import smtplib
 > > > server = smtplib.SMTP(“localhost”, 25)
 > > > server.sendmail(fromAddress, toAddress, msg)
{}

 If you don ’ t have an SMTP server running on your machine, you should now be able to find out a
hostname and port number that will work for you. The only aspect of the code I haven ’ t explained is
why the e - mail message looks the way it does.

c16.indd 293c16.indd 293 12/22/09 10:59:32 AM12/22/09 10:59:32 AM

Part III: Putting Python to Work

294

 The E - mail File Format
 In addition to the large number of e - mail – related protocols that have been created, Internet engineers
have designed a couple of file formats for packaging the parts of an e - mail message. Both of these
protocols and file formats have been published in numbered documents called RFCs .

 Throughout this chapter, until you start writing your own protocols, you ’ ll be working with protocols
and formats designed by others and specified in RFCs. These documents often contain formal language
specifications and other not - quite - light reading, but for the most part they ’ re pretty readable.

 The current standard defining the format of e - mail messages is RFC 2822. Published in 2001, it updated
the venerable RFC 822, which dates from 1982 (maybe RFC 2822 would have been published earlier if
they hadn ’ t had to wait for the numbers to match up). You may still see references to “ RFC 822 ” as
shorthand for “ the format of e - mail messages, ” such as in Python ’ s now deprecated rfc822 module.

 To find a particular RFC, you can just search the web for “ RFC x ” , or look on the official site at www.ietf
.org/rfc.html . RFC 2822 is hosted at (among other places) www.ietf.org/rfc/rfc2822.txt .

 An e - mail message consists of a set of headers (metadata describing the message) and a body (the message
itself). The headers are actually sent in a form like key - value pairs in which a colon and a space separate
the key and the value (for instance, “ Subject: Hello ”). The body is just that: the text of the message.

 You can create RFC 2822 – compliant messages with Python using the Message class in Python ’ s
 e-mail module. The Message object acts like a dictionary that maps message header names to their
values. It also has a “ payload, ” which is the body text:

 > > > import os
 > > > import sys
 > > > import smtplib
 > > > import mimetypes
 > > > from optparse import OptionParser
 > > > from e-mail import encoders
 > > > from e-mail.message import Message
 > > > message=Message()
 > > > message[‘Subject’]=’Hello’
 > > > message.set_payload(‘This is the body of the message’)
 > > > print(str(message))

Subject: Hello
This is the body of the message

 That ’ s more code than just specifying the e - mail string, but it ’ s less error - prone, especially for a complex
message. Also, you ’ ll notice that you got back information that you didn ’ t put into the message. This is
because the smtplib adds some required headers onto your message when you send it.

 RFC 2822 defines some standard message headers, described in the following table. It also defines data
representation standards for some of the header values (for instance, it defines a way of representing
e - mail addresses and dates). The standard also gives you space to define custom headers for use in your
own programs that send and receive e - mail.

c16.indd 294c16.indd 294 12/22/09 10:59:33 AM12/22/09 10:59:33 AM

Chapter 16: Network Programming

295

 Header Example Purpose

 To To: Leonard Richardson < leonardr
@example.com >

 Addresses of people who should
receive the message

 From From: Peter C. Norton < peter@example.
com >

 The e - mail address of the person who
(allegedly) sent the message

 Date Date: Wed, 16 Mar 2009 14:36:07 -
 0500 (EST)

 The date the message was sent

 Subject Subject: Python book A summary or title of the message,
intended for human consumption

 Cc Cc: michael@example.com, Jason
Diamond < jason@example.com >

 Addresses of people who should
receive the message, even though it ’ s
not addressed to them

 Note a few restrictions on the content of the body. RFC 2822 requests that there be fewer than
1000 characters in each line of the body. A more onerous restriction is that your headers and body can
only contain U.S. ASCII characters (that is, the first 127 characters of ASCII): no “ international ” or
binary characters are allowed. By itself this doesn ’ t make sense because you ’ ve probably already seen
e - mail messages in other languages. How that happens is explained next.

 MIME Messages
 If RFC 2822 requires that your e - mail message contain only U.S. ASCII characters, how is it possible that
people routinely send e - mail with graphics and other binary files attached? This is achieved with an
extension to the RFC 2822 standard called MIME, the Multi - purpose Internet Mail Extension.

 MIME is a series of standards designed around fitting non - U.S. - ASCII data into the 127 7 - bit characters
that make up U.S. ASCII. Thanks to MIME, you can attach binary files to e - mail messages, write
messages and even headers (such as your name) using non - English characters, and have it all come out
right on the other end (assuming the other end understands MIME, which almost everyone does
nowadays).

 The main MIME standard is RFC 1521, which describes how to fit binary data into the body of e - mail
messages. RFC 1522 describes how to do the same thing for the headers of e - mail messages.

 MIME Encodings: Quoted - printable and Base64
 The most important parts of MIME are its encodings, which provide ways of encoding 8 - bit characters
into 7 bits. MIME defines two encodings: quoted - printable encoding and Base64 encoding. Python
provides a module for moving strings into and out of each encoding,

 The quoted - printable encoding is intended for text that contains only a few 8 - bit characters, with the
majority of characters being U.S. ASCII. The advantage of the quoted - printable encoding is that the text
remains mostly legible once encoded, making it ideal for text written in or borrowing words from
Western European languages (languages that can be represented in U.S. ASCII except for a few

c16.indd 295c16.indd 295 12/22/09 10:59:33 AM12/22/09 10:59:33 AM

Part III: Putting Python to Work

296

characters that use diacritical marks). Even if the recipient of your message can ’ t decode the quoted -
 printable message, they should still be able to read it. They ’ ll just see some odd - looking equal signs and
hexadecimal numbers in the middle of words.

 The Python module for encoding and decoding is quopri :

 > > > import quopri

 > > > encoded = quopri.encodestring(bytes(“I will have just a
soupçon of soup.”,’utf-8’))
 > > > print(encoded)
I will have just a soup=E7on of soup.
 > > > print(quopri.decodestring(encoded))
I will have just a soup\xe7on of soup.

 Depending on your terminal settings, you might see the actual “ç ” character in the last line, or you might
see “ \xe7. ” “ \xe7 ” is the Python string representation of the “ç ” character, just as “ \E7 ” is the quoted -
 printable representation. In the session reproduced in the preceding code, that string was decoded into a
Python string, and then re - encoded in a Python - specific form for display! (Note, the str object is
wrapped in a bytes object because the encodestring method requires a string or buffer object. A str is
really a list of characters, which is different from a list of bytes.)

 The Base64 encoding, on the other hand, is intended for binary data. It should not be used for human -
 readable text, because it totally obscures the text:

 > > > import base64

 > > > encoded = base64.encodestring(bytes(“I will have just a
soupçon of soup.”,’utf-8’))
 > > > print(encoded)
SSB3aWxsIGhhdmUganVzdCBhIHNvdXBvbiBvZiBzb3VwLg==
 > > > print(base64.decodestring(encoded))
I will have just a soupçon of soup.

 Why bother with Base64 when quoted - printable works on anything and doesn ’ t mangle human - readable
text? Apart from the fact that it would be kind of misleading to encode something as “ quoted - printable ”
when it ’ s not “ printable ” in the first place, Base64 encoding is much more efficient at representing binary
data than quoted - printable encoding. Here ’ s a comparison of the two encodings against a long string of
random binary characters:

 > > > import random
 > > > import quopri
 > > > import base64
 > > > length = 10000
 > > > randomBinary = ‘’.join([chr(random.randint(0,255)) for x in range(0,
length)])
 > > > len(quopri.encodestring(bytes(randomBinary, ‘utf-8’))) / float(length)
2.0663999999999998
 > > > len(base64.encodestring(randomBinary)) / float(length)
1.3512

c16.indd 296c16.indd 296 12/22/09 10:59:34 AM12/22/09 10:59:34 AM

Chapter 16: Network Programming

297

 Those numbers will vary slightly across runs because the strings are randomly generated, but if you try
this experiment you should get similar results to these every time. A binary string encoded as quoted -
 printable encoding is safe to send in an e - mail, but it ’ s (on average) about twice as long as the original,
unsendable string. The same binary string, encoded with Base64 encoding, is just as safe, but only
about 1.35 times as long as the original. Using Base64 to encode mostly binary data saves space
and bandwidth.

 At the same time, it would be overkill to encode an ASCII string with Base64 just because it contains a
few characters outside of the U.S. ASCII range. Here ’ s the same comparison done with a long random
string that ’ s almost entirely composed of U.S. ASCII characters:

 > > > import random
 > > > import quopri
 > > > import base64
 > > > length = 10000
 > > > randomBinary = ‘’.join([chr(random.randint(0,128)) for x in range(0,
length)])
 > > > len(quopri.encodestring(bytes(randomBinary,’utf-8’))) / float(length)
1.0661
 > > > len(base64.encodestring(bytes(randomBinary,’utf-8’))) / float(length)
1.3512

 Here, the quoted - printable representation is barely larger than the original text (it ’ s almost the same as
the original text), but the Base64 representation is 1.35 times as long as the original, just as before. This
demonstrates why MIME supports two different encodings: to quote RFC1521, “ a ’ readable ’ encoding
[quoted - printable] and a ’ dense ’ encoding [Base64]. ”

 MIME is more “ multi - purpose ” than its name implies. Many features of MIME have been picked up for
use outside of e - mail applications. The idea of using Base64 or quoted - printable to turn non - ASCII
characters into ASCII shows up in other domains. Base64 encoding is also sometimes used to obscure
text from human readability without actually encrypting it.

 MIME Content Types
 The other important part of MIME is its idea of a content type. Suppose you send your friend an e - mail
message: “ Here ’ s that picture I took of you. ” and attach an image. Thanks to Base64 encoding, the
recipient will get the encoded data as you sent it, but how is her mail reader supposed to know that it ’ s
an image and not some other form of binary data?

 MIME solves this problem by defining a custom RFC 2822 – format header called Content - Type . This
header describes what kind of file the body is, so that the recipient ’ s mail client can figure out how to
display it. Content types include text/plain (what you ’ d get if you put a normal e - mail message into a
MIME envelope), text/html , image/jpeg , video/mpeg , audio/mp3 , and so on. Each content type has a “ major
type ” and a “ minor type, ” separated by a slash. The major types are very general and there are only
seven of them, defined in the MIME standard itself. The minor types usually designate particular
file formats.

 The idea of a string having a “ Content - Type, ” which tells the recipient what to do with it, is another
invention of MIME used outside of the e - mail world. The most common use is in HTTP, the protocol
used by the World Wide Web and covered in Chapter 20. Every HTTP response is supposed to have a
 “ Content - Type ” header (just like a MIME e - mail message), which tells the web browser how to display
the response.

c16.indd 297c16.indd 297 12/22/09 10:59:34 AM12/22/09 10:59:34 AM

Part III: Putting Python to Work

298

 Try It Out Creating a MIME Message with an Attachment

 So far, so good. Python provides many submodules of the e - mail module for constructing MIME
messages, including a module for each of the major content types. It ’ s simple to use these to craft a
MIME message containing an encoded image file.

import smtplib
from e-mail.mime.multipart import MIMEMultipart
from e-mail.mime.image import MIMEImage
msg=MIMEMultipart()
filename=(‘C:\Python30\photos.jpg’)
msg[‘To’]=’jamesrobertpayne@yahoo.com’
msg[‘From’]=’james@developershed.com’
msg[‘Subject’]=’Some picture’
pic = open(‘C:\Python30\photos.jpg’, ‘rb’)
img = MIMEImage(pic.read())
pic.close()
print(str(msg))
msg.attach(img)
sendit = smtplib.SMTP()
sendit.connect()
sendit.sendmail(me, family, msg.as_string())
sendit.close()

 Of course, for ‘photos.jpg’ , you should substitute the file name of any other image file you have
handy. Just put the file into the directory from which you invoke the Python session.

 Because you told the MIMEImage constructor that the picture was called photo.jpg , the mail client on
the other end will be able to save it under that file name.

 MIME Multipart Messages
 There ’ s just one problem. This isn ’ t quite the e - mail message described earlier. That message was a short
piece of text (“ Here ’ s that picture I took of you. ”) and an attached image. This message is just
the image. There ’ s no space for the text portion in the body of the message; putting it there would
compromise the image file. The Content - Type header of a mail message can be text/plain or image/
jpeg ; it can ’ t be both. So how do mail clients create messages with attachments?

 In addition to classifying the file formats defined by other standards (for instance, image for image file
formats), MIME defines a special major type called multipart . A message with a major content type of
multipart can contain other MIME messages in its body, each with its own set of headers and its own
content type.

 The best way to see how this works is to create a multipart message using the e-mail.mime.multipart
module, in conjunction with the e-mail.mime * modules for the files you want to attach. Here is a script
called FormatMimeMultipartMessage.py , a slightly more complicated version of the
previous example:

c16.indd 298c16.indd 298 12/22/09 10:59:34 AM12/22/09 10:59:34 AM

Chapter 16: Network Programming

299

#!/usr/bin/python
from e-mail.mime.multipart import MIMEMultipart
import os
import sys
filename=’C:\Python30\photos.jpg’
msg = MIMEMultipart()
msg[‘From’] = ‘Me < me@example.com > ’
msg[‘To’] = ‘You < you@example.com > ’
msg[‘Subject’] = ‘Your picture’
from e-mail.mime.text import MIMEText
text = MIMEText(“Here’s that picture I took of you.”)
msg.attach(text)
from e-mail.mime.image import MIMEImage
image = MIMEImage(open(filename, ‘rb’).read(), name=os.path.
split(filename)[1])
msg.attach(image)

 Run this script, passing in the path to an image file, and you ’ ll see a MIME multipart e - mail message that
includes a brief text message and the image file, encoded in Base64:

python FormatMimeMultipartMessage.py ./photo.jpg
From nobody Sun June 20 15:41:23 2009
Content-Type: multipart/mixed; boundary=”===============1011273258==”
MIME-Version: 1.0
From: Me < me@example.com >
To: You < you@example.com >
Subject: Your picture

--===============1011273258==
Content-Type: text/plain; charset=”us-ascii”
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit

Here’s that picture I took of you.
--===============1011273258==
Content-Type: image/jpeg; name=”photo.jpg”
MIME-Version: 1.0
Content-Transfer-Encoding: base64

/4AAQSkZJRgABAQEASABIAAD//gAXQ3JlYXRlZCB3aXRoIFRoZSBHSU1Q/9sAQwAIBgYHBgUI
...
[As before, much base64 encoded text omitted.]
...
3f7kklh4dg+UTZ1TsAAv1F69UklmZ9hrzogZibOqSSA8gZySSSJI/9k=
--===============1011273258==

 When you send this message, it will show up at the other end looking more like you’d expect a
message with an attachment to look. This is the kind of e - mail your e - mail client creates when you
send a message with attachments.

c16.indd 299c16.indd 299 12/22/09 10:59:35 AM12/22/09 10:59:35 AM

Part III: Putting Python to Work

300

 Several features of this e - mail bear mentioning:

 The content type (multipart/mixed) isn ’ t enough, by itself, to make sense of the message body.
MIME also requires the definition of a “ boundary, ” a string generated semi - randomly by Python
and used in the body of the message to note where one part stops and another begins.

 The message as a whole has all the headers you associate with e - mail messages: Subject ,
 From , To , and the MIME - specific Content - Type header. In addition to this, each part of the
message has a separate set of headers. These are not message headers, although they ’ re in
the RFC 2822 header format; and some headers (MIME - Version and Content - Type) show up
in both the message headers and the body. These are MIME message body headers, interpreted
by the MIME parser. As far as RFC 2822 is concerned, they ’ re part of the message body, just like
the files they describe, the boundaries that separate MIME parts, and the text “ Here ’ s that
picture I took of you. ”

 The MIME part containing the body of the message has an encoding of 7bit . This just means
that the part is not encoded at all. Every character in the part body was U.S. ASCII, so there was
no need to encode it.

 Python ’ s mail classes are very useful once you know what kind of mail you want to construct: for text -
 only messages, use the simple e-mail.message class. To attach a file to a message, use one of the
e-mail.mime * classes. To send multiple files, or a combination of text and files, use e-mail.mime.
multipart in conjunction with the other e-mail.mime * classes.

 A problem arises when you ’ re not sure ahead of time which class to use to represent your e - mail
message. Here ’ s a class called SmartMessage for building e - mail messages that starts out keeping body
text in a simple Message representation, but which will switch to MimeMultipart if you add an
attachment. This strategy will generate the same range of e - mail message bodies as a typical end - user
mail application: simple RFC 2822 bodies for simple messages, and complex MIME bodies for messages
with attachments. Put this class in a file called SendMail.py :

from e-mail import encoders as Encoders
from e-mail.message import Message
from e-mail.mime.text import MIMEText
from e-mail.mime.multipart import MIMEMultipart
from e-mail.mime.nonmultipart import MIMENonMultipart
import mimetypes
class SmartMessage:
 “””A simplified interface to Python’s library for creating e-mail
 messages, with and without MIME attachments.”””
 def __init__(self, fromAddr, toAddrs, subject, body):
 “””Start off on the assumption that the message will be a simple RFC
 2822 message with no MIME.”””
 self.msg = Message()
 self.msg.set_payload(body)
 self[‘Subject’] = subject
 self.setFrom(fromAddr)
 self.setTo(toAddrs)
 self.hasAttachments = False

❑

❑

❑

c16.indd 300c16.indd 300 12/22/09 10:59:35 AM12/22/09 10:59:35 AM

Chapter 16: Network Programming

301

 def setFrom(self, fromAddr):
 “Sets the address of the sender of the message.”
 if not fromAddr or not type(fromAddr)==type(‘’):
 raise Exception (‘A message must have one and only one sender.’)
 self[‘From’] = fromAddr
 def setTo(self, to):
 “Sets the address or addresses that will receive this message.”
 if not to:
 raise Exception (‘A message must have at least one recipient.’)
 self._addresses(to, ‘To’)
 #Also store the addresses as a list, for the benefit of future
 #code that will actually send this message.
 self.to = to
 def setCc(self, cc):
 “””Sets the address or addresses that should receive this message,
 even though it’s not addressed directly to them (“carbon-copy”).”””
 self._addresses(cc, ‘Cc’)
 def addAttachment(self, attachment, filename, mimetype=None):
 “Attaches the given file to this message.”
 #Figure out the major and minor MIME type of this attachment,
 #given its filename.
 if not mimetype:
 mimetype = mimetypes.guess_type(filename)[0]
 if not mimetype:
 raise Exception (“Couldn’t determine MIME type for “, filename)
 if ‘/’ in mimetype:
 major, minor = mimetype.split(‘/’)
 else:
 major = mimetype
 minor = None
 #The message was constructed under the assumption that it was
 #a single-part message. Now that we know there’s to be at
 #least one attachment, we need to change it into a multi-part
 #message, with the first part being the body of the message.
 if not self.hasAttachments:
 body = self.msg.get_payload()
 newMsg = MIMEMultipart()
 newMsg.attach(MIMEText(body))
 #Copy over the old headers to the new object.
 for header, value in self.msg.items():
 newMsg[header] = value
 self.msg = newMsg
 self.hasAttachments = True
 subMessage = MIMENonMultipart(major, minor, name=filename)
 subMessage.set_payload(attachment)
 #Encode text attachments as quoted-printable, and all other
 #types as base64.
 if major == ‘text’:
 encoder = Encoders.encode_quopri
 else:
 encoder = Encoders.encode_base64
 encoder(subMessage)

(continued)

c16.indd 301c16.indd 301 12/22/09 10:59:35 AM12/22/09 10:59:35 AM

Part III: Putting Python to Work

302

 #Link the MIME message part with its parent message.
 self.msg.attach(subMessage)
 def _addresses(self, addresses, key):
 “””Sets the given header to a string representation of the given
 list of addresses.”””
 if hasattr(addresses, ‘__iter__’):
 addresses = ‘, ‘.join(addresses)
 self[key] = addresses
 #A few methods to let scripts treat this object more or less like
 #a Message or MultipartMessage, by delegating to the real Message
 #or MultipartMessage this object holds.
 def __getitem__(self, key):
 “Return a header of the underlying message.”
 return self.msg[key]
 def __setitem__(self, key, value):
 “Set a header of the underlying message.”
 self.msg[key] = value
 def __getattr__(self, key):
 return getattr(self.msg, key)
 def __str__(self):
 “Returns a string representation of this message.”
 return self.msg.as_string()

 Try It Out Building E - mail Messages with SmartMessage

 To test out SmartMessage , put it into a file called SendMail.py and run a Python session like
this one:

 > > > from SendMail import SmartMessage
 > > > msg = SmartMessage(“Me < me@example.com > ”, “You < you@example.com > ”, “Your
picture”,
“Here’s that picture I took of you.”)
 > > > print (str(msg))
Subject: Your picture
From: Me < me@example.com >
To: You < you@example.com >

Here’s that picture I took of you.
 > > > msg.addAttachment(open(“photo.jpg”).read(), “photo.jpg”)
 > > > print (str(msg))

Content-Type: multipart/mixed; boundary=”===============1077328303==”
MIME-Version: 1.0
Subject: Your picture
From: Me < me@example.com >
To: You < you@example.com >

--===============1077328303==
Content-Type: text/plain; charset=”us-ascii”
MIME-Version: 1.0

(continued)

c16.indd 302c16.indd 302 12/22/09 10:59:36 AM12/22/09 10:59:36 AM

Chapter 16: Network Programming

303

Content-Transfer-Encoding: 7bit

Here’s that picture I took of you.
--===============1077328303==
Content-Type: image/jpeg
MIME-Version: 1.0
Content-Transfer-Encoding: base64

/9j/4AAQSkZJRgABAQEASABIAAD//gAXQ3JlYXRlZCB3aXRoIFRoZSBHSU1Q/9sAQwAIBgYHBgUI
...
[Once again, much base64 text omitted.]
...
3f7kklh4dg+UTZ1TsAAv1F69UklmZ9hrzogZibOqSSA8gZySSSJI/9k=
--===============0855656444==--

 How It Works
 SmartMessage wraps the classes in Python ’ s e-mail module. When the SmartMessage object is first
created, it keeps its internal representation in a Message object. This message has a simple string
representation.

 When a file is attached to the SmartMessage , though, a Message object won ’ t do the job anymore.
 Message objects know only about RFC 2822, nothing about the MIME extensions. At this point,
 SmartMessage transparently swaps out the Message object for a MimeMultipart object with the
same headers and payload.

 This transparent swap avoids forcing the user to decide ahead of time whether or not a message
should be MIME-encoded. It also avoids a lowest - common - denominator strategy of MIME - encoding
each and every message, which is a wasteful operation for messages that are just one text part.

 Sending Mail with SMTP and smtplib
 Now that you know how to construct e - mail messages, it ’ s appropriate to revisit in a little more detail
the protocol used to send them. This is SMTP, another TCP/IP - based protocol, defined in RFC 2821.

 Look at the original example one more time:

 > > > fromAddress = ‘sender@example.com’
 > > > toAddress = [your e-mail address]
 > > > msg = “Subject: Hello\n\nThis is the body of the message.”
 > > > import smtplib
 > > > server = smtplib.SMTP(“localhost”, 25)
 > > > server.sendmail(fromAddress, toAddress, msg)
{}

 You connect to an SMTP server (at port 25 on localhost) and send a string message from one address to
another. Of course, the location of the SMTP server shouldn ’ t be hard - coded, and because some servers
require authentication, it would be nice to be able to accept authentication information when creating the

c16.indd 303c16.indd 303 12/22/09 10:59:36 AM12/22/09 10:59:36 AM

Part III: Putting Python to Work

304

SMTP object. Here ’ s a class that works with the SmartMessage class defined in the previous section to
make it easier to send mail. Because the two classes go together, add this class to SendMail.py , the file
that also contains the SmartMessage class:

from smtplib import SMTP
class MailServer(SMTP):

 “A more user-friendly interface to the default SMTP class.”

 def __init__(self, server, serverUser=None, serverPassword=None, port=25):
 “Connect to the given SMTP server.”
 SMTP.__init__(self, server, port)
 self.user = serverUser
 self.password = serverPassword
 #Uncomment this line to see the SMTP exchange in detail.
 #self.set_debuglevel(True)

 def sendMessage(self, message):
 “Sends the given message through the SMTP server.”
 #Some SMTP servers require authentication.
 if self.user:
 self.login(self.user, self.password)

 #The message contains a list of destination addresses that
 #might have names associated with them. For instance,
 #”J. Random Hacker < jhacker@example.com > ”. Some mail servers
 #will only accept bare e-mail addresses, so we need to create a
 #version of this list that doesn’t have any names associated
 #with it.
 destinations = message.to
 if hasattr(destinations, ‘__iter__’):
 destinations = map(self._cleanAddress, destinations)
 else:
 destinations = self._cleanAddress(destinations)
 self.sendmail(message[‘From’], destinations, str(message))

 def _cleanAddress(self, address):
 “Transforms ‘Name < e-mail@domain > ’ into ‘e-mail@domain’.”
 parts = address.split(‘ < ’, 1)
 if len(parts) > 1:
 #This address is actually a real name plus an address:
 newAddress = parts[1]
 endAddress = newAddress.find(‘ > ’)
 if endAddress != -1:
 address = newAddress[:endAddress]
 return address

c16.indd 304c16.indd 304 12/22/09 10:59:36 AM12/22/09 10:59:36 AM

Chapter 16: Network Programming

305

 Try It Out Sending Mail with MailServer

 This chapter ’ s initial example constructed a message as a string and sent it through SMTPlib . With the
 SmartMessage and MailServer classes, you can send a much more complex message, using simpler
Python code:

 > > > from SendMail import SmartMessage, MailServer
 > > > msg = SmartMessage(“Me < me@example.com > ”,
 “You < you@example.com > ”,
 “Your picture”,
 “Here’s that picture I took of you.”)
 > > > msg.addAttachment(open(“photo.jpg”).read(), “photo.jpg”)
 > > > MailServer(“localhost”).sendMessage(msg)
 > > >

 Run this code (substituting the appropriate e-mail addresses and server hostname), and you ’ ll be able
to send mail with MIME attachments to anyone.

 How It Works
 SmartMessage wraps the classes in Python ’ s e-mail module. As before, the underlying representation
starts out as a simple Message object but becomes a MimeMultipart object once photo.jpg is
attached.

 This time, the message is actually sent through an SMTP server. The MailServer class hides the fact that
 smtplilb expects you to specify the “ To ” and “ From ” headers twice: once in the call to the sendmail
method and again in the body of the mail message. It also takes care of sanitizing the destination addresses,
putting them into a form that all SMTP servers can deal with. Between the two wrapper classes, you can
send complex e - mail messages from a Python script almost as easily as from a mail client.

 Retrieving Internet E - mail
 Now that you ’ ve seen how to send mail, it ’ s time to go all the way toward fulfilling Jamie Zawinski ’ s
prophecy and expand your programs so that they can read mail. There are three main ways to do this,
and the choice is probably not up to you. How you retrieve mail depends on your relationship with the
organization that provides your Internet access.

 Parsing a Local Mail Spool with mailbox
 If you have a UNIX shell account on your mail server (because, for instance, you run a mail server on
your own computer), mail for you is appended to a file (probably /var/spool/mail/[your
username]) as it comes in. If this is how your mail setup works, your existing mail client is probably set
up to parse that file. It may also be set up to move messages out of the spool file and into your home
directory as they come in.

 The incoming mailbox in /var/spool/mail/ is kept in a particular format called “ mbox format. ” You
can parse these files (as well as mailboxes in other formats such as MH or Maildir) by using the classes in
the mailbox module.

c16.indd 305c16.indd 305 12/22/09 10:59:36 AM12/22/09 10:59:36 AM

Part III: Putting Python to Work

306

 Here ’ s a simple script, MailboxSubjectLister.py , that iterates the messages in a mailbox file, printing
out the subject of each one:

#!/usr/bin/python
import e-mail
import mailbox
import sys
if len(sys.argv) < 2:
print(“Usage: %s [path to mailbox file]” % sys.argv[0])
sys.exit([1])
path = sys.argv[1]
fp = open(path, ‘rb’)
subjects = []
for message in mailbox.PortableUnixMailbox(fp, e-mail.message_from_file):
 subjects.append(message[‘Subject’])
print(‘s message(s) in mailbox “%s”:’ % (len(subjects), path))
for subject in subjects:
 print(‘’, subject)

 UnixMailbox (and the other Mailbox classes in the mailbox module) take as their constructor a file
object (the mailbox file), and a function that reads the next message from the file - type object. In this
case, the function is the e-mail module ’ s message_from_file . The output of this useful function is a
 Message object, or one of its MIME * subclasses, such as MIMEMultipart . This and the e-mail.
message_from_string function are the most common ways of creating Python representations of
messages you receive.

 You can work on these Message objects just as you could with the Message objects created from scratch
in earlier examples, where the point was to send e - mail messages. Python uses the same classes to
represent incoming and outgoing messages.

 Try It Out Printing a Summary of Your Mailbox

 If you have a UNIX account on your e - mail server, you can run the mailbox subject lister against your
mail spool file, and get a list of subjects. If you don ’ t have a UNIX account on your e - mail server, or if
you use a web - based mail service, you won ’ t be able to get your mail this way:

$ python MailboxSubjectLister.py /var/spool/mail/leonardr
4 message(s) in mailbox “/var/spool/mail/leonardr”:
 DON’T DELETE THIS MESSAGE -- FOLDER INTERNAL DATA
 This is a test message #1
 This is a test message #2
 This is a test message #3

 The first message isn ’ t a real message; it ’ s a dummy message sometimes created when you use a mail
client to read your spool file. If your application works on spool files that are sometimes accessed
through other means, you ’ ll need to recognize and deal with that kind of message.

c16.indd 306c16.indd 306 12/22/09 10:59:37 AM12/22/09 10:59:37 AM

Chapter 16: Network Programming

307

 Fetching Mail from a POP3 Server with poplib
 Parsing a local mail spool didn ’ t require going over the network, because you ran the script on the same
machine that had the mail spool. There was no need to involve a network protocol, only a file format
(the format of UNIX mailboxes, derived mainly from RFC 2822).

 However, most people don ’ t have a UNIX shell account on their mail server (or if they do, they want to
read mail on their own machine instead of on the server). To fetch mail from your mail server, you need
to go over a network, which means you must use a protocol. There are two popular protocols for doing
this. The first, which was once near - universal though now it’s waning in popularity, is POP3, the third
revision of the Post Office Protocol.

 POP3 is defined in RFC 1939, but as with most popular Internet protocols, you don ’ t need to delve
very deeply into the details, because Python includes a module that wraps the protocol around a
Python interface.

 Here ’ s POP3SubjectLister , a POP3 - based implementation of the same idea as the mailbox parser
script. This script prints the subject line of each message on the server:

#!/usr/bin/python
from poplib import POP3
import e-mail
class SubjectLister(PpOP3):
 “””Connect to a POP3 mailbox and list the subject of every message
 in the mailbox.”””
 def __init__(self, server, username, password):
 “Connect to the POP3 server.”
 POP3.__init__(self, server, 110)
 #Uncomment this line to see the details of the POP3 protocol.
 #self.set_debuglevel(2)
 self.user(username)
 response = self.pass_(password)
 if response[:3] != ‘+OK’:
 #There was a problem connecting to the server.
 raise Exception (response)
 def summarize(self):
 “Retrieve each message, parse it, and print the subject.”
 numMessages = self.stat()[0]
 print(‘%d message(s) in this mailbox.’ % numMessages)
 parser = e-mail.Parser.Parser()
 for messageNum in range(1, numMessages+1):
 messageString = ‘\n’.join(self.top(messageNum, 0)[1])
 message = parser.parsestr(messageString)
 #message = parser.parsestr(messageString, True)
 print(‘’, message[‘Subject’])

c16.indd 307c16.indd 307 12/22/09 10:59:37 AM12/22/09 10:59:37 AM

Part III: Putting Python to Work

308

 After the data is on this side of the network, there ’ s no fundamental difference between the way it ’ s
handled with this script and the one based on the UnixMailbox class. As with the UnixMailbox script,
you use the e-mail module to parse each message into a Python data structure (although here, you use
the Parser class, defined in the e-mail.Parser module, instead of the message_from_file
convenience function).

 The downside of using POP3 for this purpose is that the POP3.retr method has side effects. When you
call retr on a message on the server, the server marks that message as having been read. If you use a
mail client or a program like fetchmail to retrieve new mail from the POP3 server, then running this
script might confuse the other program. The message will still be on the server, but your client might not
download it if it thinks the message has already been read.

 POP3 also defines a command called top , which doesn ’ t mark a message as having been read and which
only retrieves the headers of a message. Both of these — top and retr — are ideal for the purposes of
this script; you ’ ll save bandwidth (not having to retrieve the whole message just to get the subject) and
your script won ’ t interfere with the operation of other programs that use the same POP3 mailbox.
Unfortunately, not all POP3 servers implement the top command correctly. Because it ’ s so useful when
implemented correctly, though, here ’ s a subclass of the SubjectLister class that uses the top
command to get message headers instead of retrieving the whole message. If you know your server
supports top correctly, this is a better implementation:

class TopBasedSubjectLister(SubjectLister):

 def summarize(self):
 “””Retrieve the first part of the message and find the ‘Subject:’
 header.”””
 numMessages = self.stat()[0]
 print(‘%d message(s) in this mailbox.’ % numMessages)
 for messageNum in range(1, numMessages+1):
 #Just get the headers of each message. Scan the headers
 #looking for the subject.
 for header in self.top(messageNum, 0)[1]:
 if header.find(‘Subject:’) == 0:
 print(header[len(‘Subject:’):])
 break

 Both SubjectLister and TopBasedSubjectLister will yield the same output, but you ’ ll find that
 TopBasedSubjectLister runs a lot faster (assuming your POP3 server implements top correctly).

 Finally, you ’ ll create a simple command - line interface to the POP3 - based SubjectLister class, just as
you did for the MailboxSubjectLister.py . This time, however, you need to provide a POP3 server
and credentials on the command line, instead of the path to a file on disk:

if __name__ == ‘__main__’:
 import sys
 if len(sys.argv) < 4:
 print(‘Usage: %s [POP3 hostname] [POP3 user] [POP3 password]’ % sys.
argv[0])
 sys.exit(0)
 lister = TopBasedSubjectLister(sys.argv[1], sys.argv[2], sys.argv[3])
 lister.summarize()

c16.indd 308c16.indd 308 12/22/09 10:59:38 AM12/22/09 10:59:38 AM

Chapter 16: Network Programming

309

 Try It Out Printing a Summary of Your POP3 Mailbox

 Run POP3SubjectLister.py with the credentials for a POP server, and you ’ ll get a list of subjects:

$ python POP3SubjectLister.py pop.example.com [username] [password]
3 message(s) in this mailbox.
 This is a test message #1
 This is a test message #2
 This is a test message #3

 When you go through the POP3 server, you won ’ t get the dummy message you might get when
parsing a raw UNIX mailbox file, as shown previously. Mail servers know that that message isn ’ t
really a message; the UNIX mailbox parser treats it as one.

 How It Works
 The SubjectLister object (or its TopBasedSubjectLister subclass) connects to the POP3 server
and sends a “ stat ” command to get the number of messages in the mailbox. A call to stat returns a
tuple containing the number of messages in the mailbox, and the total size of the mailbox in bytes. The
lister then iterates up to this number, retrieving every message (or just the headers of every message)
as it goes.

 If SubjectLister is in use, the message is parsed with the e-mail module ’ s Parser utility class, and
the Subject header is extracted from the resulting Message or MIMEMultipart object. If
 TopBasedSubjectLister is in use, no parsing is done: The headers are retrieved from the server as a
list and scanned for a “ Subject ” header.

 Fetching Mail from an IMAP Server with imaplib
 The other protocol for accessing a mailbox on a remote server is IMAP, the Internet Message Access
Protocol. The most recent revision of IMAP is defined in RFC 3501, and it has significantly more features
than POP3. It ’ s also gaining in popularity over POP3.

 The main difference between POP3 and IMAP is that POP3 is designed to act like a mailbox: It just holds
your mail for a while until you collect it. IMAP is designed to keep your mail permanently stored on the
server. Among other things, you can create folders on the server, sort mail into them, and search them.
These are more complex features that are typically associated with end - user mail clients. With IMAP, a
mail client only needs to expose these features of IMAP; it doesn ’ t need to implement them on its own.

 Keeping your mail on the server makes it easier to keep the same mail setup while moving from
computer to computer. Of course, you can still download mail to your computer and then delete it from
the server, as with POP3.

 Here ’ s IMAPSubjectLister.py , an IMAP version of the script you ’ ve already written twice, which
prints out the subject lines of all mail on the server. IMAP has more features than POP3, so this script
exercises proportionately fewer of them. However, even for the same functionality, it ’ s a great
improvement over the POP3 version of the script. IMAP saves bandwidth by retrieving the message
subjects and nothing else: a single subject header per message. Even when POP3 ’ s top command is
implemented correctly, it can ’ t do better than fetching all of the headers as a group.

c16.indd 309c16.indd 309 12/22/09 10:59:38 AM12/22/09 10:59:38 AM

Part III: Putting Python to Work

310

 What ’ s the catch? As the imaplib module says of itself, “ to use this module, you must read the RFCs
pertaining to the IMAP4 protocol. ” The imaplib module provides a function corresponding to each of
the IMAP commands, but it doesn ’ t do many transformations between the Python data structures you ’ re
used to creating and the formatted strings used by the IMAP protocol. You ’ ll need to keep a copy of RFC
3501 on hand or you won ’ t know what to pass into the imaplib methods.

 For instance, to pass a list of message IDs into imaplib , you need to pass in a string like 1,2,3, — not the
Python list (1,2,3). To make sure only the subject is pulled from the server, IMAPSubjectLister.py
passes the string “ (BODY[HEADER.FIELDS (SUBJECT)]) “ as an argument to an imaplib method. The
result of that command is a nested list of formatted strings, only some of which are actually useful to
the script.

 This is not exactly the kind of intuitiveness one comes to expect from Python. imaplib is certainly
useful, but it doesn ’ t do a very good job of hiding the details of IMAP from the programmer:

#!/usr/bin/python
from imaplib import IMAP4
class SubjectLister(IMAP4):
 “””Connect to an IMAP4 mailbox and list the subject of every message
 in the mailbox.”””
 def __init__(self, server, username, password):
 “Connect to the IMAP server.”
 IMAP4.__init__(self, server)
 #Uncomment this line to see the details of the IMAP4 protocol.
 #self.debug = 4
 self.login(username, password)
 def summarize(self, mailbox=’Inbox’):
 “Retrieve the subject of each message in the given mailbox.”
 #The SELECT command makes the given mailbox the ‘current’ one,
 #and returns the number of messages in that mailbox. Each message
 #is accessible via its message number. If there are 10 messages
 #in the mailbox, the messages are numbered from 1 to 10.
 numberOfMessages = int(self._result(self.select(mailbox)))

 print(‘%s message(s) in mailbox “%s”:’ % (numberOfMessages, mailbox))
 #The FETCH command takes a comma-separated list of message
 #numbers, and a string designating what parts of the
 #message you want. In this case, we want only the
 #’Subject’ header of the message, so we’ll use an argument
 #string of ‘(BODY[HEADER.FIELDS (SUBJECT)])’.
 #
 #See section 6.4.5 of RFC3501 for more information on the
 #format of the string used to designate which part of the
 #message you want. To get the entire message, in a form
 #acceptable to the e-mail parser, ask for ‘(RFC822)’.
 subjects = self._result(self.fetch(‘1:%d’ % numberOfMessages,
 ‘(BODY[HEADER.FIELDS (SUBJECT)])’))
 for subject in subjects:
 if hasattr(subject, ‘__iter__’):

c16.indd 310c16.indd 310 12/22/09 10:59:38 AM12/22/09 10:59:38 AM

Chapter 16: Network Programming

311

 subject = subject[1]
 print(‘’, subject[:subject.find(‘\n’)])
 def _result(self, result):
 “””Every method of imaplib returns a list containing a status
 code and a set of the actual result data. This convenience
 method throws an exception if the status code is other than
 “OK”, and returns the result data if everything went all
 right.”””
 status, result = result
 if status != ‘OK’:
 raise status (result)
 if len(result) == 1:
 result = result[0]
 return result
if __name__ == ‘__main__’:
 import sys
 if len(sys.argv) < 4:
 print(‘Usage: %s [IMAP hostname] [IMAP user] [IMAP password]’ % sys.
argv[0])
 sys.exit(0)
 lister = SubjectLister(sys.argv[1], sys.argv[2], sys.argv[3])
 lister.summarize()

 Try It Out Printing a Summary of Your IMAP Mailbox

 Just execute IMAPSubjectLister.py with your IMAP credentials (just as with
 POP3SubjectLister), and you ’ ll get a summary similar to the two shown earlier in this chapter:

$ python IMAPSubjectLister.py imap.example.com [username] [password]
3 message(s) in mailbox “Inbox”:
 This is a test message #1
 This is a test message #2
 This is a test message #3

 How It Works
 As with the POP3 example, the first thing to do is connect to the server. POP3 servers provide only
one mailbox per user, but IMAP allows one user any number of mailboxes, so the next step is to select
a mailbox.

 The default mailbox is called “ Inbox, ” and selecting a mailbox yields the number of messages in that
mailbox (some POP3 servers, but not all, return the number of messages in the mailbox when you
connect to the server).

 Unlike with POP3, IMAP lets you retrieve more than one message at once. It also gives you a lot of
flexibility in defining which parts of a message you want. The IMAP - based SubjectLister makes
just one IMAP call to retrieve the subjects (and only the subjects) of every message in the mailbox.
Then it ’ s just a matter of iterating over the list and printing out each subject. The real trick is knowing
what arguments to pass into imaplib and how to interpret the results.

c16.indd 311c16.indd 311 12/22/09 10:59:39 AM12/22/09 10:59:39 AM

Part III: Putting Python to Work

312

 IMAP ’ s Unique Message IDs
 Complaints about imaplib ’ s user - friendliness aside, you might have problems writing IMAP scripts if
you assume that the message numbers don ’ t change over time. If another IMAP client deletes messages
from a mailbox while this script is running against it (suppose you have your mail client running, and
you use it to delete some spam while this script is running), the message numbers will be out of sync
from that point on.

 The IMAP - based SubjectLister class minimizes this risk by getting the subject of every message in
one operation, immediately after selecting the mailbox:

self.fetch(‘1:%d’ % numberOfMessages, ‘(BODY[HEADER.FIELDS (SUBJECT)])’)

 If there are 10 messages in the inbox, the first argument to fetch will be 1:10. This is a slice of the
mailbox, similar to a slice of a Python list, which returns all of the messages: message 1 through message
10 (IMAP and POP3 messages are numbered starting from 1).

 Getting the data you need as soon as you connect to the server minimizes the risk that you ’ ll pass a no -
 longer - valid message number onto the server, but you can ’ t always do that. You may write a script that
deletes a mailbox ’ s messages, or that files them in a second mailbox. After you change a mailbox, you
may not be able to trust the message numbers you originally got.

 Try It Out Fetching a Message by Unique ID

 To help you avoid this problem, IMAP keeps a unique ID (UID) for every message under its control.
You can fetch the unique IDs from the server and use them in subsequent calls using imaplib ’ s uid
method. Unfortunately, this brings you even closer to the details of the IMAP protocol. The IMAP4
class defines a separate method for each IMAP command (for example, IMAP4.fetch , IMAP4.
search , and so on), but when you ’ re dealing with IDs, you can ’ t use those methods. You can use only
the IMAP4.uid method, and you must pass the IMAP command you want as the first argument. For
instance, instead of calling IMAP4.fetch([arguments]) , you must call IMAP4.uid(‘FETCH’,
[arguments]) .

 > > > import imaplib
 > > > import e-mail
 > > > imap = imaplib.IMAP4(‘imap.example.com’)
 > > > imap.login(‘[username]’, ‘[password]’)
(‘OK’, [‘Logged in.’])
 > > > imap.select(‘Inbox’)[1][0]
‘3’
 > > >
 > > > #Get the unique IDs for the messages in this folder.
... uids = imap.uid(‘SEARCH’, ‘ALL’)
 > > > print(uids)
(‘OK’, [‘49532 49541 49563’])
 > > >
 > > > #Get the first message.
... uids = uids[1][0].split(‘ ‘)
 > > > messageText = imap.uid(‘FETCH’, uids[0], “(RFC822)”)[1][0][1]
 > > > message = e-mail.message_from_string(messageText)
 > > > print(message[‘Subject’])
This is a test message #1

c16.indd 312c16.indd 312 12/22/09 10:59:39 AM12/22/09 10:59:39 AM

Chapter 16: Network Programming

313

 How It Works
 Getting a message by unique ID requires four IMAP commands. First and second, the client must
connect to the server and select a mailbox, just as in the previous IMAP example. Third, the client
needs to run a SEARCH command that returns a list of message UIDs. Finally, the client can pass in one
of the UIDs to a FETCH command and get the actual message.

 The last two steps both go through the IMAP4.uid method; if UIDs weren ’ t involved, they would use
the search and fetch methods, respectively.

 Using imaplib to interact with an IMAP server can be a pain, but it ’ s not as bad as communicating
directly with the server.

 POP3 servers also support UIDs, though it ’ s less common for multiple clients to access a single
POP3 mailbox simultaneously. A POP3 object ’ s uidl method will retrieve the UIDs of the messages in
its mailbox. You can then pass a UID into any POP3 object ’ s other methods that take message IDs: for
instance, retr and top . IMAP ’ s UIDs are numeric; POP3 ’ s are the “ message digests ” : hexadecimal
signatures derived from the contents of each message.

 Secure POP3 and IMAP
 Both the POP3 or IMAP examples covered earlier in this section have a security problem: They send
your username and password over the network without encrypting it. That ’ s why both POP and IMAP
are often run atop the Secure Socket Layer (SSL). This is a generic encryption layer also used to secure
HTTP connections on the World Wide Web. POP and IMAP servers that support SSL run on different
ports from the ones that don ’ t: The standard port number for POP over SSL is 995 instead of 23, and
IMAP over SSL uses port 993 instead of port 143.

 If your POP3 or IMAP server supports SSL, you can get an encrypted connection to it by just swapping
out the POP3 or IMAP4 class for the POP3_SSL or IMAP4_SSL class. Each SSL class is in the same
module and has the same interface as its insecure counterpart but encrypts all data before sending it
over the network.

 Webmail Applications Are Not E - mail Applications
 If you use a webmail system such as Yahoo! Mail or Gmail, you ’ re not technically using a mail
application at all: You ’ re using a web application that happens to have a mail application on the other
side. The scripts in this section won ’ t help you fetch mail from or send mail through these services,
because they implement HTTP, not any of the e - mail protocols (however, Yahoo! Mail offers POP3 access
for a fee). Instead, you should look at Chapter 20 for information on how web applications work.

 The libgmail project aims to create a Python interface to Gmail, one that can treat Gmail as an SMTP,
POP3, or IMAP server. The libgmail homepage is at http://libgmail.sourceforge.net/ .

c16.indd 313c16.indd 313 12/22/09 10:59:39 AM12/22/09 10:59:39 AM

Part III: Putting Python to Work

314

 Socket Programming
 So far, you ’ ve concerned yourself with the protocols and file formats surrounding a single Internet
application: e - mail. E - mail is certainly a versatile and useful application, but e - mail – related protocols
account for only a few of the hundreds implemented atop the Internet Protocol. Python makes it easier
to use the e - mail – related protocols (and a few other protocols not covered in this chapter) by providing
wrapper libraries, but Python doesn ’ t come with a library for every single Internet protocol. It certainly
won ’ t have one for any new protocols you decide to create for your own Internet applications.

 To write your own protocols, or to implement your own Python libraries along the lines of imaplib or
 poplib , you ’ ll need to go down a level and learn how programming interfaces to IP - based protocols
actually works. Fortunately, it ’ s not hard to write such code: smtplib , poplib , and others do it without
becoming too complicated. The secret is the socket library , which makes reading and writing to a network
interface look a lot like reading and writing to files on disk.

 Introduction to Sockets
 In many of the previous examples, you connected to a server on a particular port of a particular machine
(for instance, port 25 of localhost for a local SMTP server). When you tell imaplib or smtplib to connect
to a port on a certain host, behind the scenes Python is opening a connection to that host and port. Once
the connection is made, the server opens a reciprocal connection to your computer. A single Python
 “ socket ” object hides the outgoing and incoming connections under a single interface. A socket is like a
file you can read to and write from at the same time.

 To implement a client for a TCP/IP - based protocol, you open a socket to an appropriate server. You
write data to the socket to send it to the server, and read from the socket the data the server sends you.
To implement a server, it ’ s just the opposite: You bind a socket to a hostname and a port and wait for
a client to connect to it. Once you have a client on the line, you read from your socket to get data from
the client, and write to the socket to send data back.

 It takes an enormous amount of work to send a single byte over the network, but between TCP/IP and
the socket library, you get to skip almost all of it. You don ’ t have to figure out how to get your data
halfway across the world to its destination, because TCP/IP handles that for you. Nor need you worry
about turning your data into TCP/IP packets, because the socket library handles that for you.

 Just as e - mail and the Web are the killer apps for the use of the Internet, sockets might be considered the
killer app for the adoption of TCP/IP. Sockets were introduced in an early version of BSD UNIX, but
since then just about every TCP/IP implementation has used sockets as its metaphor for how to write
network programs. Sockets make it easy to use TCP/IP (at least, easier than any alternative), and this
has been a major driver of TCP/IP ’ s popularity.

 As a first socket example, here ’ s a super - simple socket server, SuperSimpleSocketServer.py :

#!/usr/bin/python
import socket
import sys
if len(sys.argv) < 3:
 print(‘Usage: %s [hostname] [port number]’ % sys.argv[0])
 sys.exit(1)

c16.indd 314c16.indd 314 12/22/09 10:59:40 AM12/22/09 10:59:40 AM

Chapter 16: Network Programming

315

hostname = sys.argv[1]
port = int(sys.argv[2])
#Set up a standard Internet socket. The setsockopt call lets this
#server use the given port even if it was recently used by another
#server (for instance, an earlier incarnation of
#SuperSimpleSocketServer).
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
#Bind the socket to a port, and bid it listen for connections.
sock.bind((hostname, port))
sock.listen(1)
print(“Waiting for a request.”)
#Handle a single request.
request, clientAddress = sock.accept()
print(“Received request from”, clientAddress)
request.send(bytes(‘-=SuperSimpleSocketServer 3000=-\n’, ‘utf-8’))
request.send(bytes(‘Go away!\n’, ‘utf-8’))
request.shutdown(2) #Stop the client from reading or writing anything.
print(“Have handled request, stopping server.”)
sock.close()

 This server will serve only a single request. As soon as any client connects to the port to which it ’ s
bound, it will tell the client to go away, close the connection, stop serving requests, and exit.

 Try It Out Connecting to the SuperSimpleSocketServer with Telnet

 The telnet program is a very simple client for TCP/IP applications. You invoke it with a hostname and
a port; it connects you to that port; and then you ’ re on your own. Anything you type is sent over a
socket to the server, and anything the server sends over the socket is printed to your terminal. Telnet is
included as a command - line program in Windows, Mac OS X, and UNIX installations, so you
shouldn ’ t have trouble getting it.

 Because the example socket server doesn ’ t really do anything, there ’ s little point in writing a custom
client for it. To test it out, just start up the server:

$ python SuperSimpleSocketServer.py localhost 2000
Waiting for a request.

 Then, in a separate terminal, telnet into the server:

$ telnet localhost 2000
Trying 127.0.0.1...
Connected to rubberfish.
Escape character is ‘^]’.
-=SuperSimpleSocketServer 3000=-
Go away!
Connection closed by foreign host.

 Go back to the terminal on which you ran the server and you should see output similar to this:

Received request from (‘127.0.0.1’, 32958)
Have handled request, stopping server.

c16.indd 315c16.indd 315 12/22/09 10:59:40 AM12/22/09 10:59:40 AM

Part III: Putting Python to Work

316

 How It Works
 When you started the SuperSimpleSocketServer , you bound the process to port 2000 of the
 “ localhost ” hostname. When that script called socket.accept , it stopped running and began to
 “ block ” on socket input, waiting for someone to connect to the server.

 When your telnet command opens up a TCP/IP connection to the SuperSimpleSocketServer , the
 socket.accept method call returns from its wait. At last, someone has connected to the server!
The return values of socket.accept give the server the tools it needs to communicate with this client:
a socket object and a tuple describing the network address of the client. The server sends some data to
the client through the socket and then shuts down. No further socket connections will be accepted.

 The only obscure thing here is that client address tuple: (’ 127.0.0.1 ’ , 32958) . You ’ ve seen
127.0.0.1 already; it is a special IP address that refers to “ this computer ” : it ’ s the IP address equivalent
of “ localhost. ” A connection to the server from 127.0.0.1 means that the client is coming from the
same computer that ’ s running the server. If you ’ d telnetted in from another machine, that machine ’ s
IP address would have shown up instead.

 The port number 32958 is a temporary or “ ephemeral ” port number for the client. Recall that what
looks like a single, bidirectional “ socket ” object actually contains two unidirectional connections: one
from the client to the server and one from the server to the client. Port 2000 on localhost, the port to
which the server was bound when you started it up, is the destination for all client data (not that this
client got a chance to send any data). The data sent by the server must also have a destination
hostname and port, but not a predefined one. Whereas a server port is usually selected by the human
in charge of the server, ephemeral ports are selected by the client ’ s operating system. Run this exercise
again and you ’ ll see that each individual TCP/IP connection is given a different ephemeral port
number.

 Binding to an External Hostname
 If you tried to telnet into the SuperSimpleSocketServer from another machine, as suggested
previously, you might have noticed that you weren ’ t able to connect to the server. If so, it may be because
you started the server by binding it to localhost . The special “ localhost ” hostname is an internal
hostname, one that can ’ t be accessed from another machine. After all, from someone else ’ s perspective,
 “ localhost ” means their computer, not yours.

 This is actually very useful because it enables you to test out the servers from this chapter (and
Chapter 20) without running the risk of exposing your computer to connections from the Internet at
large (of course, if you are running these servers on a multiuser machine, you might have to worry
about the other users on the same machine, so try to run these on a system that you have to yourself).
However, when it comes time to host a server for real, and external connections are what you want, you
need to bind your server to an external hostname.

 If you can log in to your computer remotely via SSH, or you already run a web server, or you ever make
a reference to your computer from another one, you already know an external hostname for your
computer. On the other hand, if you have a dial - up or broadband connection, you ’ re probably assigned a

c16.indd 316c16.indd 316 12/22/09 10:59:40 AM12/22/09 10:59:40 AM

Chapter 16: Network Programming

317

hostname along with an IP address whenever you connect to your ISP. Find your computer ’ s IP address
and do a DNS lookup on it to find an external hostname for your computer. If all else fails, you can bind
servers directly to your external IP address (not 127.0.0.1, because that will have the same problem as
binding to “ localhost ”).

 If you bind a server to an external hostname and still can ’ t connect to it from the outside, there may be a
firewall in the way. Fixing that is beyond what this book can cover. You should ask your local computer
guru to help you with this.

 The Mirror Server
 Here ’ s a server that ’ s a little more complex (though not more useful) and that shows how Python enables
you to treat socket connections like files. This server accepts lines of text from a socket, just as a script
might on standard input. It reverses the text and writes the reversed version back through the socket,
just as a script might on standard output. When it receives a blank line, it terminates the connection:

#!/usr/bin/python
import socket

class MirrorServer:
 “””Receives text on a line-by-line basis and sends back a reversed
 version of the same text.”””

 def __init__(self, port):
 “Binds the server to the given port.”
 self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 self.socket.bind(port)
 #Queue up to five requests before turning clients away.
 self.socket.listen(5)

 def run(self):
 “Handles incoming requests forever.”
 while True:
 request, client_address = self.socket.accept()
 #Turn the incoming and outgoing connections into files.
 input = request.makefile(‘rb’, 0)
 output = request.makefile(‘wb’, 0)
 l = True
 try:
 while l:
 l = input.readline().strip()
 if l:
 output.write(l[::-1] + bytes(‘\r\n’,’utf-8’))
 else:
 #A blank line indicates a desire to terminate the
 #connection.
 request.shutdown(2) #Shut down both reads and writes.
 except socket.error:
 #Most likely the client disconnected.
 pass
 (continued)

c16.indd 317c16.indd 317 12/22/09 10:59:41 AM12/22/09 10:59:41 AM

Part III: Putting Python to Work

318

if __name__ == ‘__main__’:
 import sys
 if len(sys.argv) < 3:
 print(‘Usage: %s [hostname] [port number]’ % sys.argv[0])
 sys.exit(1)
 hostname = sys.argv[1]
 port = int(sys.argv[2])
 MirrorServer((hostname, port)).run()

Try It Out Mirroring Text with the MirrorServer

 As with the SuperSimpleSocketServer , you can use this without writing a specialized client. You
can just telnet into the MirrorServer and enter some text. Enter a blank line and the server will
disconnect you. In one terminal, start the server:

$ python MirrorServer.py localhost 2000

In another, telnet into the server as a client:

$ telnet localhost 2000
Trying 127.0.0.1...
Connected to rubberfish.
Escape character is ‘^]’.
Hello.
.olleH
Mirror this text!
!txet siht rorriM

Connection closed by foreign host.
$

 The Mirror Client
 Though you ’ ve just seen that the mirror server is perfectly usable through telnet, not everyone is
comfortable using telnet. What you need is a flashy mirror server client with bells and whistles, so that
even networking novices can feel the thrill of typing in text and seeing it printed out backward. Here ’ s a
simple client that takes command - line arguments for the server destination and the text to reverse. It
connects to the server, sends the data, and prints the reversed text:

#!/usr/bin/python
import socket

class MirrorClient:
 “A client for the mirror server.”

(continued)

c16.indd 318c16.indd 318 12/22/09 10:59:41 AM12/22/09 10:59:41 AM

Chapter 16: Network Programming

319

 def __init__(self, server, port):
 “Connect to the given mirror server.”
 self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 self.socket.connect((server, port))

 def mirror(self, s):
 “Sends the given string to the server, and prints the response.”
 if s[-1] != ‘\n’:
 s += ‘\r\n’
 self.socket.send(bytes(s, ‘utf-8’))

 #Read server response in chunks until we get a newline; that
 #indicates the end of the response.
 buf = []
 input = ‘’
 while not ‘\n’ in input:
 try:
 input = self.socket.recv(1024)
 buf.append(input)
 except socket.error:
 break
 return ‘’.join(buf)[:-1]

 def close(self):
 self.socket.send(bytes(‘\r\n’, ‘utf-8’)) #We don’t want to mirror
 anything else.
 self.socket.close()

if __name__ == ‘__main__’:
 import sys
 if len(sys.argv) < 4:
 print(‘Usage: %s [host] [port] [text to be mirrored]’ % sys.argv[0])
 sys.exit(1)
 hostname = sys.argv[1]
 port = int(sys.argv[2])
 toMirror = sys.argv[3]

 m = MirrorClient(hostname, port)
 print (m.mirror(toMirror))
 m.close()

 The mirror server turns its socket connection into a pair of files, but this client reads from and writes to
the socket directly. There ’ s no compelling reason for this; I just felt this chapter should include at least
one example that used the lower - level socket API. Note how the server response is read in chunks, and
each chunk is scanned for the newline character that indicates the end of the response. If this example
had created a file for the incoming socket connection, that code would have been as simple as calling
 input.readline .

c16.indd 319c16.indd 319 12/22/09 10:59:41 AM12/22/09 10:59:41 AM

Part III: Putting Python to Work

320

 It ’ s important to know when the response has ended, because calling socket.recv (or input.
readline) will block your process until the server sends some more data. If the server is waiting for
more data from the client, your process will block forever.

 SocketServer
 Sockets are very useful, but Python isn ’ t satisfied with providing the same C - based socket interface you
can get with most languages on most operating systems. Python goes one step further and provides
 socketserver , a module full of classes that let you write sophisticated socket - based servers with very
little code.

 Most of the work in building a socketserver is defining a request handler class. This is a subclass of
the socketserver module ’ s BaseRequestHandler class, and the purpose of each request handler
object is to handle a single client request for as long as the client is connected to the server. This is
implemented in the handler ’ s handle method. The handler may also define per - request setup and tear -
 down code by overriding setup and finish .

 The methods of a BaseRequestHandler subclass have access to the following three members:

 request : A socket object representing the client request: the same object obtained from
socket.accept in the MirrorServer example.

 client_address : A 2 - tuple containing the hostname and port to which any data the
server outputs will be sent. The other object obtained from socket.accept in the
 MirrorServer example.

 server : A reference to the socketserver that created the request handler object.

 By subclassing StreamRequestHandler instead of BaseRequestHandler , you also get access to the
file - like objects that let you read from and write to the socket connection. BaseRequestHandler gives
you access to two other members:

 rfile : The file corresponding to the data that comes in over the socket (from the client if you ’ re
writing a server, from the server if you ’ re writing a client). Equivalent to what you get when you
call request.makefile(‘rb’) .

 wfile : The file corresponding to the data that you send over the socket (to the client if you ’ re
writing a server, to the server if you ’ re writing a client). Equivalent to what you get when you
call request.makefile(‘wb’) .

 By rewriting the MirrorServer as a socketserver server (specifically, a TCPServer), you can
eliminate a lot of code to do with socket setup and teardown, and focus on the arduous task of reversing
text. Here ’ s MirrorSocketServer.py :

❑

❑

❑

❑

❑

c16.indd 320c16.indd 320 12/22/09 10:59:42 AM12/22/09 10:59:42 AM

Chapter 16: Network Programming

321

#!/usr/bin/python
import socketserver

class RequestHandler(socketserver.StreamRequestHandler):
 “Handles one request to mirror some text.”

 def handle(self):
 “””Read from StreamRequestHandler’s provided rfile member,
 which contains the input from the client. Mirror the text
 and write it to the wfile member, which contains the output
 to be sent to the client.”””
 l = True
 while l:
 l = self.rfile.readline().strip()
 if l:
 self.wfile.write(l[::-1] + bytes(‘\n’, ‘utf-8’))

if __name__ == ‘__main__’:
 import sys
 if len(sys.argv) < 3:
 print(‘Usage: %s [hostname] [port number]’ % sys.argv[0])
 sys.exit(1)
 hostname = sys.argv[1]
 port = int(sys.argv[2])

 socketserver.TCPServer((hostname, port), RequestHandler).serve_forever()

 Almost all of the socket - specific code is gone. Whenever anyone connects to this server, the TCPServer
class will create a new RequestHandler with the appropriate members and call its handle method to
handle the request.

 The MirrorClient you wrote earlier will work equally well with this server, because across the network
both servers take the same input and yield the same output. The same principle applies as when you
change the implementation of a function in a module to get rid of redundant code but leave the interface
the same.

 Multithreaded Servers
 One problem with both of these implementations of the mirror server is that only one client at a time can
connect to a running server. If you open two telnet sessions to a running server, the second session won ’ t
finish connecting until you close the first one. If real servers worked this way, nothing would ever get
done. That ’ s why most real servers spawn threads or subprocesses to handle multiple connections.

 The SocketServer module defines two useful classes for handling multiple connections at once:
 ThreadingMixIn and ForkingMixIn . A SocketServer class that subclasses ThreadingMixIn will
automatically spawn a new thread to handle each incoming request. A subclass of ForkingMixIn
will automatically fork a new subprocess to handle each incoming request. I prefer ThreadingMixIn

c16.indd 321c16.indd 321 12/22/09 10:59:42 AM12/22/09 10:59:42 AM

Part III: Putting Python to Work

322

because threads are more efficient and more portable than subprocesses. It ’ s also much easier to write
code for a thread to communicate with its parent than for a subprocess to communicate with its parent.

 See Chapter 9 for an introduction to threads and subprocesses.

 Here ’ s MultithreadedMirrorServer.py , a multithreaded version of the MirrorSocketServer . Note
that it uses the exact same RequestHandler definition as MirrorSocketServer.py . The difference
here is that instead of running a TCPServer , you run a ThreadingTCPServer , a standard class that
inherits both from ThreadingMixIn and TCPServer :

#!/usr/bin/python
import socketserver

class RequestHandler(SocketServer.StreamRequestHandler):
 “Handles one request to mirror some text.”

 def handle(self):
 “””Read from StreamRequestHandler’s provided rfile member,
 which contains the input from the client. Mirror the text
 and write it to the wfile member, which contains the output
 to be sent to the client.”””
 l = True
 while l:
 l = self.rfile.readline().strip()
 if l:
 self.wfile.write(l[::-1] + bytes(‘\n’, ‘utf-8’))

if __name__ == ‘__main__’:
 import sys
 if len(sys.argv) < 3:
 print(‘Usage: %s [hostname] [port number]’ % sys.argv[0])
 sys.exit(1)
 hostname = sys.argv[1]
 port = int(sys.argv[2])
 server = socketserver.ThreadingTCPServer((hostname, port),
RequestHandler)
 server.serve_forever()

 With this server running, you can run a large number of telnet sessions and MirrorClient sessions in
parallel. ThreadingMixIn hides the details of spawning threads, just as TCPServer hides the details of
sockets. The goal of all these helper classes is to keep your focus on what you send and receive over
the network.

 The Python Chat Server
 For the mirror server, the capability to support multiple simultaneous connections is useful but it doesn ’ t
change what the server actually does. Each client interacts only with the server, and not even indirectly
with the other clients. This model is a popular one; web servers and mail servers use it, among others.

 There is another type of server, though, that exists to connect clients to each other. For many
applications, it ’ s not the server that ’ s interesting: it ’ s who else is connected to it. The most popular

c16.indd 322c16.indd 322 12/22/09 10:59:42 AM12/22/09 10:59:42 AM

Chapter 16: Network Programming

323

applications of this sort are online chat rooms and games. In this section, you design and build a simple
chat server and client.

 Perhaps the original chat room was the (non - networked) UNIX wall command, which enables you to
broadcast a message to everyone logged in on a UNIX system. Internet Relay Chat, invented in 1988 and
described in RFC 1459, is the most popular TCP/IP - based chat room software. The chat software you
write here will have some of the same features as IRC, although it won ’ t be compatible with IRC.

 Design of the Python Chat Server
 In IRC, a client that connects to a server must provide a nickname : a short string identifying the person
who wants to chat. A nickname must be unique across a server so that users can ’ t impersonate one
another. Your server will carry on this tradition.

 An IRC server provides an unlimited number of named channels , or rooms , and each user can join any
number of rooms. Your server will provide only a single, unnamed room, which all connected users will
inhabit.

 Entering a line of text in an IRC client broadcasts it to the rest of your current room, unless it starts with
the slash character. A line starting with the slash character is treated as a command to the server. Your
server will act the same way.

 IRC implements a wide variety of server commands: For instance, you can use a server command to
change your nickname, join another room, send a private message to another user, or try to send a file to
another user.

 For example, if you issue the command /nick leonardr to an IRC server, you ’ re attempting to change
your nickname from its current value to leonardr . Your attempt might or might not succeed, depending
on whether or not there ’ s already a leonardr on the IRC server.

 Your server will support the following three commands, taken from IRC and simplified:

 /nick [nickname] : As described earlier, this attempts to change your nickname. If the nickname
is valid and not already taken, your nickname will be changed and the change will be
announced to the room. Otherwise, you ’ ll get a private error message.

 /quit [farewell message] : This command disconnects the user from the chat server. Your
farewell message, if any, will be broadcast to the room.

 /names : This retrieves the nicknames of the users in the chat room as a space - separated string.

 The Python Chat Server Protocol
 Having decided on a feature set and a design, you must now define an application - specific protocol for
your Python Chat Server. This protocol will be similar to SMTP, HTTP, and the IRC protocol in that it
will run atop TCP/IP to provide the structure for a specific type of application. However, it will be much
simpler than any of those protocols.

❑

❑

❑

c16.indd 323c16.indd 323 12/22/09 10:59:43 AM12/22/09 10:59:43 AM

Part III: Putting Python to Work

324

 The mirror server also defined a protocol, though it was so simple it may have escaped notice. The
mirror server protocol consists of three simple rules:

 1. Send lines of text to the server.

 2. Every time you send a newline, the server will send you back that line of text, reversed, with a
newline at the end.

 3. Send a blank line to terminate the connection.

 The protocol for the Python Chat Server will be a little more complex than that, but by the standards of
protocol design it ’ s still a fairly simple protocol. The following description is more or less the
information that would go into an RFC for this protocol. If you were actually writing an RFC, you would
go into a lot more detail and provide a formal definition of the protocol; that ’ s not as necessary here,
because the protocol definition will be immediately followed by an implementation in Python.

 Of course, if you did write an RFC for this, it wouldn ’ t be accepted. The IRC protocol already has an
RFC, and it ’ s a much more useful protocol than this example.

 Your Hypothetical Protocol in Action
 One good way to figure out the problems involved in defining a protocol is to write a sample session to
see what the client and server need to say to each other. Here ’ s a sample session of the Python Chat
Server. In the following transcript, a user nicknamed jamesp connects to a chat room in which a shady
character nicknamed nrini is already lurking. The diagram shows what jamesp might send to the
server, what the server would send to him in response, and what it would send to the other client
(nrini) as a result of jamesp ’ s input.

 Me to the Server The Server to Me The Server to nrini

 Who are you?

 jamesp

 Hello, jamesp, welcome to the Python
Chat Server.

 jamesp has joined the chat.

 /names

 nrini jamesp

 Hello!

 < jamesp > Hello! < jamesp > Hello!

 /nick nrini

 There ’ s already a user named nrini
here.

 /nick james

c16.indd 324c16.indd 324 12/22/09 10:59:43 AM12/22/09 10:59:43 AM

Chapter 16: Network Programming

325

 Me to the Server The Server to Me The Server to nrini

 jamesp is now known as james jamesp is now known as
james

 Hello again!

 < james > Hello again! < james > Hello again!

 /quit Goodbye

 james has quit: Goodbye

 Initial Connection
 After establishing a connection between the client and server, the first stage of the protocol is to get a
nickname for the client. A client can ’ t be allowed into a chat room without a nickname because that
would be confusing to the other users. Therefore, the server will ask each new client: “ Who are you? ”
and expect a nickname in response, terminated by a newline. If what ’ s sent is an invalid nickname
or the nickname of a user already in the chat room, the server will send an error message and terminate
the connection. Otherwise, the server will welcome the client to the chat room and broadcast an
announcement to all other users that someone has joined the chat.

 Chat Text
 After a client is admitted into the chat room, any line of text he sends will be broadcast to every user in
the room, unless it ’ s a server command. When a line of chat is broadcast, it will be prefaced with the
nickname of the user who sent it, enclosed in angle brackets (for example, “ < jamesp > Hello, all. ”).
This will prevent confusion about who said what, and visually distinguish chat messages from system
messages.

 Server Commands
 If the client sends a recognized server command, the command is executed and a private system
message may be sent to that client. If the execution of the command changes the state of the chat room
(for instance, a user changes his nickname or quits), all users will receive a system message notifying
them of the change (for example, “ jamesp is now known as james ”). An unrecognized server
command will result in an error message for the user who sent it.

 General Guidelines
 For the sake of convenience and readability, the chat protocol is designed to have a line - based and
human - readable format. This makes the chat application usable even without a special client (although
you will write a special client to make chatting a little easier). Many TCP/IP protocols work in similar
ways, but it ’ s not a requirement. Some protocols send only binary data, to save bandwidth or because
they encrypt data before transmitting it.

c16.indd 325c16.indd 325 12/22/09 10:59:43 AM12/22/09 10:59:43 AM

Part III: Putting Python to Work

326

 Here ’ s the server code, in PythonChatServer.py . Like MultithreadedMirrorServer , its actual
server class is a ThreadingTCPServer . It keeps a persistent map of users ’ nicknames that point to the
 wfile members. That lets the server send those users ’ data. This is how one user ’ s input can be
broadcast to everyone in the chat room:

#!/usr/bin/python
import socketserver
import re
import socket

class ClientError(Exception):
 “An exception thrown because the client gave bad input to the server.”
 pass

class PythonChatServer(socketserver.ThreadingTCPServer):
 “The server class.”

 def __init__(self, server_address, RequestHandlerClass):
 “””Set up an initially empty mapping between a user’s nickname
 and the file-like object used to send data to that user.”””
 SocketServer.ThreadingTCPServer.__init__(self, server_address,
 RequestHandlerClass)
 self.users = {}

class RequestHandler(SocketServer.StreamRequestHandler):
 “””Handles the life cycle of a user’s connection to the chat
 server: connecting, chatting, running server commands, and
 disconnecting.”””

 NICKNAME = re.compile(‘^[A-Za-z0-9_-]+$’) #Regex for a valid nickname

 def handle(self):
 “””Handles a connection: gets the user’s nickname, then
 processes input from the user until they quit or drop the
 connection.”””
 self.nickname = None

 self.privateMessage(‘Who are you?’)
 nickname = self._readline()
 done = False
 try:
 self.nickCommand(nickname)
 self.privateMessage(‘Hello %s, welcome to the Python Chat
Server.’\
 % nickname)
 self.broadcast(‘%s has joined the chat.’ % nickname, False)
 except ClientError (error):
 self.privateMessage(error.args[0])
 done = True
 except socket.error:
 done = True

 #Now they’re logged in; let them chat.
 while not done:
 try:

c16.indd 326c16.indd 326 12/22/09 10:59:44 AM12/22/09 10:59:44 AM

Chapter 16: Network Programming

327

 done = self.processInput()
 except ClientError (error):
 self.privateMessage(str(error))
 except socket.error (e):
 done = True

 def finish(self):
 “Automatically called when handle() is done.”
 if self.nickname:
 #The user successfully connected before disconnecting.
 #Broadcast that they’re quitting to everyone else.
 message = ‘%s has quit.’ % self.nickname
 if hasattr(self, ‘partingWords’):
 message = ‘%s has quit: %s’ % (self.nickname,
 self.partingWords)
 self.broadcast(message, False)

 #Remove the user from the list so we don’t keep trying to
 #send them messages.
 if self.server.users.get(self.nickname):
 del(self.server.users[self.nickname])
 self.request.shutdown(2)
 self.request.close()

 def processInput(self):
 “””Reads a line from the socket input and either runs it as a
 command, or broadcasts it as chat text.”””
 done = False
 l = self._readline()
 command, arg = self._parseCommand(l)
 if command:
 done = command(arg)
 else:
 l = ‘ < %s > %s\n’ % (self.nickname, l)
 self.broadcast(l)
 return done
Each server command is implemented as a method. The _parseCommand method,
defined later, takes a line that looks like /nick and calls the corresponding
method (in this case, nickCommand):
 #Below are implementations of the server commands.

 def nickCommand(self, nickname):
 “Attempts to change a user’s nickname.”
 if not nickname:
 raise ClientError (‘No nickname provided.’)
 if not self.NICKNAME.match(nickname):
 raise ClientError (Invalid nickname: %s’ % nickname)
 if nickname == self.nickname:
 raise ClientError (‘You are already known as %s.’ % nickname)
 if self.server.users.get(nickname, None):
 raise ClientError (‘There\’s already a user named “%s” here.’ %
nickname)
 oldNickname = None

(continued)

c16.indd 327c16.indd 327 12/22/09 10:59:44 AM12/22/09 10:59:44 AM

Part III: Putting Python to Work

328

 if self.nickname:
 oldNickname = self.nickname
 del(self.server.users[self.nickname])
 self.server.users[nickname] = self.wfile
 self.nickname = nickname
 if oldNickname:
 self.broadcast(‘%s is now known as %s’ % (oldNickname, self.
nickname))

 def quitCommand(self, partingWords):
 “””Tells the other users that this user has quit, then makes
 sure the handler will close this connection.”””
 if partingWords:
 self.partingWords = partingWords
 #Returning True makes sure the user will be disconnected.
 return True

 def namesCommand(self, ignored):
 “Returns a list of the users in this chat room.”
 self.privateMessage(‘, ‘.join(self.server.users.keys()))

 # Below are helper methods.

 def broadcast(self, message, includeThisUser=True):
 “””Send a message to every connected user, possibly exempting the
 user who’s the cause of the message.”””
 message = self._ensureNewline(message)
 for user, output in self.server.users.items():
 if includeThisUser or user != self.nickname:
 output.write(message)

 def privateMessage(self, message):
 “Send a private message to this user.”
 self.wfile.write(self._ensureNewline(message))

 def _readline(self):
 “Reads a line, removing any whitespace.”
 return self.rfile.readline().strip()

 def _ensureNewline(self, s):
 “Makes sure a string ends in a newline.”
 if s and s[-1] != ‘\n’:
 s += ‘\r\n’
 return s

 def _parseCommand(self, input):
 “””Try to parse a string as a command to the server. If it’s an
 implemented command, run the corresponding method.”””
 commandMethod, arg = None, None
 if input and input[0] == ‘/’:
 if len(input) < 2:
 raise ClientError, ‘Invalid command: “%s”’ % input
 commandAndArg = input[1:].split(‘ ‘, 1)
 if len(commandAndArg) == 2:

(continued)

c16.indd 328c16.indd 328 12/22/09 10:59:44 AM12/22/09 10:59:44 AM

Chapter 16: Network Programming

329

 command, arg = commandAndArg
 else:
 command, = commandAndArg
 commandMethod = getattr(self, command + ‘Command’, None)
 if not commandMethod:
 raise ClientError, ‘No such command: “%s”’ % command
 return commandMethod, arg

if __name__ == ‘__main__’:
 import sys
 if len(sys.argv) < 3:
 print(‘Usage: %s [hostname] [port number]’ % sys.argv[0])
 sys.exit(1)
 hostname = sys.argv[1]
 port = int(sys.argv[2])
 PythonChatServer((hostname, port), RequestHandler).serve_forever()

 The Python Chat Client
 As with the mirror server, this chat server defines a simple, human - readable protocol. It ’ s possible to use
the chat server through telnet, but most people would prefer to use a custom client.

 Here ’ s PythonChatClient.py , a simple text - based client for the Python Chat Server. It has a few
niceties that are missing when you connect with telnet. First, it handles the authentication stage on its
own: If you run it on a UNIX - like system, you won ’ t even have to specify a nickname, because it will use
your account name as a default. Immediately after connecting, the Python Chat Client runs the /names
command and presents the user with a list of everyone in the chat room.

 After connecting, this client acts more or less like a telnet client would. It spawns a separate thread to
handle user input from the keyboard even as it reads the server ’ s output from the network:

#!/usr/bin/python
import socket
import select
import sys
import os
from threading import Thread

class ChatClient:

 def __init__(self, host, port, nickname):
 self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 self.socket.connect((host, port))
 self.input = self.socket.makefile(‘rb’, 0)
 self.output = self.socket.makefile(‘wb’, 0)

 #Send the given nickname to the server.
 authenticationDemand = self.input.readline()
 if not authenticationDemand.startswith(“Who are you?”):
 raise Exception (“This doesn’t seem to be a Python Chat Server.”)
 self.output.write(nickname + ‘\r\n’)
 response = self.input.readline().strip()

(continued)

c16.indd 329c16.indd 329 12/22/09 10:59:45 AM12/22/09 10:59:45 AM

Part III: Putting Python to Work

330

 if not response.startswith(“Hello”):
 raise Exception (response)
 print(response)

 #Start out by printing out the list of members.
 self.output.write(‘/names\r\n’)
 print(“Currently in the chat room:”, self.input.readline().strip())

 self.run()

 def run(self):
 “””Start a separate thread to gather the input from the
 keyboard even as we wait for messages to come over the
 network. This makes it possible for the user to simultaneously
 send and receive chat text.”””

 propagateStandardInput = self.PropagateStandardInput(self.output)
 propagateStandardInput.start()

 #Read from the network and print everything received to standard
 #output. Once data stops coming in from the network, it means
 #we’ve disconnected.
 inputText = True
 while inputText:
 inputText = self.input.readline()
 if inputText:
 print inputText.strip()
 propagateStandardInput.done = True

 class PropagateStandardInput(Thread):
 “””A class that mirrors standard input to the chat server
 until it’s told to stop.”””

 def __init__(self, output):
 “””Make this thread a daemon thread, so that if the Python
 interpreter needs to quit it won’t be held up waiting for this
 thread to die.”””
 Thread.__init__(self)
 self.setDaemon(True)
 self.output = output
 self.done = False

 def run(self):
 “Echo standard input to the chat server until told to stop.”
 while not self.done:
 inputText = sys.stdin.readline().strip()
 if inputText:
 self.output.write(inputText + ‘\r\n’)

if __name__ == ‘__main__’:
 import sys
 #See if the user has an OS-provided ‘username’ we can use as a default
 #chat nickname. If not, they have to specify a nickname.
 try:

(continued)

c16.indd 330c16.indd 330 12/22/09 10:59:45 AM12/22/09 10:59:45 AM

Chapter 16: Network Programming

331

 import pwd
 defaultNickname = pwd.getpwuid(os.getuid())[0]
 except ImportError:
 defaultNickname = None

 if len(sys.argv) < 3 or not defaultNickname and len(sys.argv) < 4:
 print(‘Usage: %s [hostname] [port number] [username]’ % sys.argv[0])
 sys.exit(1)

 hostname = sys.argv[1]
 port = int(sys.argv[2])

 if len(sys.argv) > 3:
 nickname = sys.argv[3]
 else:
 #We must be on a system with usernames, or we would have
 #exited earlier.
 nickname = defaultNickname

 ChatClient(hostname, port, nickname)

 A more advanced chat client might have a GUI that put incoming text in a separate window from the
text the user types, to keep input from being visually confused with output. As it is, in a busy chat room,
you might be interrupted by an incoming message while you ’ re typing, and lose your place.

 Single - Threaded Multitasking with select
 The reason PythonChatClient spawns a separate thread to gather user input is that a call to sys.
stdin.readline won ’ t return until the user enters a chat message or server command. A na ï ve chat
client might call sys.stdin.readline and wait for the user to type something in, but while it was
waiting the other users would keep chatting and the socket connection from the server would fill up
with a large backlog of chat. No chat messages would be displayed until the user pressed the Enter key
(causing sys.stdin.readline to return), at which time the whole backlog would come pouring onto
the screen. Trying to read from the socket connection would cause the opposite problem: The user would
be unable to enter any chat text until someone else in the chat room said something. Using two threads
avoids these problems: One thread can keep an eye on standard input while the other keeps an eye on
the socket connection.

 However, it ’ s possible to implement the chat client without using threads. (After all, telnet works more
or less the same way as PythonChatClient , and the telnet program is older than the idea of threads.)
The secret is to just peek at standard input and the socket connection — not trying to read from them,
just seeing if there ’ s anything to read. You do this by using the select function, provided by Python ’ s
 select module.

 select takes three lists of lists, and each second - level list contains file - type objects: one for objects you
read (like sys.stdin), one for objects to which you write (like sys.stdout), and one for objects to
which you write errors (like sys.stdout). By default, a call to select will block (wait for input), but
only until at least one of the file - type objects you passed in is ready to be used. It will then return three
lists of lists, which contain a subset of the objects you passed in: only the ones that are ready and have
some data for the program to pay attention to. You might think of select as acting sort of like Python ’ s

c16.indd 331c16.indd 331 12/22/09 10:59:45 AM12/22/09 10:59:45 AM

Part III: Putting Python to Work

332

built - in filter function, filtering out the objects that aren ’ t ready for use. By using select , you can
avoid the trap of calling read on a file - type object that doesn ’ t have any data to read.

 Here ’ s a subclass of ChatClient that uses a loop over select to check whether standard input or the
server input have unread data:

class SelectBasedChatClient(ChatClient):

 def run(self):
 “””In a tight loop, see whether the user has entered any input
 or whether there’s any from the network. Keep doing this until
 the network connection returns EOF.”””
 socketClosed = False
 while not socketClosed:
 toRead, ignore, ignore = select.select([self.input, sys.stdin],
 [], [])
 #We’re not disconnected yet.
 for input in toRead:
 if input == self.input:
 inputText = self.input.readline()
 if inputText:
 print(inputText.strip())
 else:
 #The attempt to read failed. The socket is closed.
 socketClosed = True
 elif input == sys.stdin:
 input = sys.stdin.readline().strip()
 if input:
 self.output.write(input + ‘\r\n’)

 You must pass in three lists to select , but you pass in empty lists of output files and error files. All you
care about are the two sources of input (from the keyboard and the network), because those are the ones
that might block and cause problems when you try to read them.

 In one sense, this code is more difficult to understand than the original ChatClient , because it uses a
trick to rapidly switch between doing two things, instead of just doing both things at once. In another
sense, it ’ s less complex than the original ChatClient because it ’ s less code and it doesn ’ t involve
multithreading, which can be difficult to debug.

 It ’ s possible to use select to write servers without forking or threading, but I don ’ t recommend writing
such code yourself.

 Other Topics
 Many aspects of network programming are not covered in this chapter. The most obvious omission (the
technologies and philosophies that drive the World Wide Web) are taken up Chapter 20. The following
sections outline some other topics in networking that are especially interesting or important from the
perspective of a Python programmer.

c16.indd 332c16.indd 332 12/22/09 10:59:46 AM12/22/09 10:59:46 AM

Chapter 16: Network Programming

333

 Miscellaneous Considerations for Protocol Design
 The best way to learn about protocol design is to study existing, successful protocols. Protocols are
usually well documented, and you can learn a lot by using them and reading RFCs. Here are some
common design considerations for protocol design not covered earlier in this chapter.

 Trusted Servers
 The Python Chat Server is used by one client to broadcast information to all other clients. Sometimes,
however, the role of a server is to mediate between its clients. To this end, the clients are willing to trust
the server with information they wouldn ’ t trust to another client.

 This happens often on websites that bring people together, such as auction sites and online payment
systems. It ’ s also implemented at the protocol level in many online games, in which the server acts
as referee.

 Consider a game in which players chase each other around a map. If one player knew another ’ s location
on the map, that player would gain an unfair advantage. At the same time, if players were allowed to
keep their locations secret, they could cheat by teleporting to another part of the map whenever a
pursuer got too close. Players give up the ability to cheat in exchange for a promise that other players
won ’ t be allowed to cheat either. A trusted server creates a level playing field.

 Terse Protocols
 Information that can be pieced together by a client is typically not put into the protocol. It would be
wasteful for a server that ran chess games to transfer a representation of the entire board to both players
after every successful move. It would suffice to send “ Your move was accepted. ” to the player who made
the move, and describe the move to the other player. State - based protocols usually transmit the changes
in state, rather than send the whole state every time it changes.

 The protocol for the Python Chat Server sends status messages in complete English sentences. This
makes the code easier to understand and the application easier to use through telnet. The client behavior
depends on those status messages: For instance, PythonChatClient expects the string “ Who are you? ”
as soon as it connects to the server. Doing a protocol this way makes it difficult for the server to
customize the status messages, or for the client to translate them into other languages. Many protocols
define numeric codes or short abbreviations for status messages and commands, and explain their
meanings in the protocols ’ RFC or other definition document.

 The Peer - to - Peer Architecture
 All of the protocols developed in this chapter were designed according to the client - server architecture.
This architecture divides the work of networking between two different pieces of software: the clients,
who request data or services, and the servers, which provide the data or carry out the services. This
architecture assumes a few powerful computers will act as servers, and a large number of computers will
act as clients. Information tends to be centralized on the server: to allow for central control, to ensure
fairness (for instance, in a game with hidden information), to make it unnecessary for clients to trust
each other, or just to make information easier to find.

c16.indd 333c16.indd 333 12/22/09 10:59:46 AM12/22/09 10:59:46 AM

Part III: Putting Python to Work

334

 The other popular architecture is the peer - to - peer architecture . In this architecture, every client is also a
server. A peer - to - peer protocol may define “ client ” actions and “ server ” actions, but every process that
makes requests is also capable of serving them.

 Though most of the protocols implemented on top of it use the client - server architecture, TCP/IP is a
peer - to - peer protocol. Recall that a socket connection actually covers two unidirectional TCP/IP
connections: one from you to your destination and one going the other way. You can ’ t be a TCP/IP client
without also being a TCP/IP server: you ’ d be sending data without any way of receiving a response.

 At the application level, the most popular peer - to - peer protocol is BitTorrent. BitTorrent makes it easy to
distribute a large file by sharing the cost of the bandwidth across all of the people who download it.
Under the client - server architecture, someone who wanted to host a file would put it on her server and
bear the full cost of the bandwidth for every download. The original BitTorrent implementation is
written in Python, and the first release was in 2002. BitTorrent is proof positive that there ’ s still room for
clever new TCP/IP protocols, and that it ’ s possible to implement high - performance protocols in Python.

 Summary
 Python provides high - level tools for using existing TCP/IP - based protocols, making it easy to write
custom clients. It also comes packaged with tools that help you design your own networked
applications. Whether you just want to send mail from a script, or you have an idea for the Internet ’ s
next killer app, Python can do what you need.

 The key points to take away from this chapter are:

 The smtplib module takes its name from SMTP, the Simple Mail Transport Protocol. That ’ s the
protocol, or standard, defined for sending Internet mail.

 Protocols are a convention for structuring the data sent between two or more parties on
a network.

 Localhost is a special hostname that always refers to the computer you ’ re using when you
mention it. The hostname is how you tell Python where on the Internet to find your mail server.

 MIME is a series of standards designed around fitting non - U.S. - ASCII data into the 127 7 - bit
characters that make up U.S. ASCII.

 You can use the mailbox module to parse files of the mbox type.

 PoP3 stands for Post Office Protocol. The 3 stands for the version.

 IMAP stands for Internet Message Access Protocol.

❑

❑

❑

❑

❑

❑

❑

c16.indd 334c16.indd 334 12/22/09 10:59:46 AM12/22/09 10:59:46 AM

Chapter 16: Network Programming

335

 Exercises
1. Distinguish between the following e - mail - related standards: RFC 2822, SMTP, IMAP, MIME,

and POP.

 2. Write a script that connects to a POP server, downloads all of the messages, and sorts the mes-
sages into files named after the sender of the message. (For instance, if you get two e - mails from
user@example.com, they should both go into a file called “ user@example.com ”).

 What would be the corresponding behavior if you had an IMAP server instead? Write that
script, too (use RFC 3501 as a reference).

 3. Suppose that you were designing an IRC - style protocol for low - bandwidth embedded
devices such as cell phones. What changes to the Python Chat Server protocol would it be
useful to make?

4. A feature of IRC not cloned in the Python Chat Server is the /msg command, which enables one
user to send a private message to another instead of broadcasting it to the whole room. How
could the /msg command be implemented in the Python Chat Server?

5. When does it make sense to design a protocol using a peer - to - peer architecture?

c16.indd 335c16.indd 335 12/22/09 10:59:46 AM12/22/09 10:59:46 AM

c16.indd 336c16.indd 336 12/22/09 10:59:47 AM12/22/09 10:59:47 AM

 17
Extension Programming

with C

 Don ’ t let anybody mislead you: well - written code in C will always execute faster than code written
in Python. Having said that, don ’ t be misled: Developing code in Python will always be faster than
developing code in C.

 This may seem like a dilemma at first. You want to have fast code, and you want to produce it
quickly. Balancing these, and the problem it creates, is actually easily solved. Develop your code
in Python. After all, developer ’ s time is much more expensive than the computer ’ s time. Plus,
humans have a miserable track record of predicting where a bottleneck is going to occur in a
system. Spending time optimizing code up front by doing things like taking a lot of time to write
a new program in C is usually wasted time. This is what led the esteemed computer scientist,
C. A. R. Hoare, to say, “ Premature optimization is the root of all evil. ” Of course, he was only
talking about computer programs, but the point is there.

 If you ’ ve written your code, optimized your algorithms, and still find performance is
unacceptable, you should profile your application by finding out where it ’ s spending its time,
determine where the bottlenecks are, and reimplement those small parts in C as a Python
extension module. That ’ s part of what this chapter is about.

 Or if you already have an existing body of code written in C and you want to leverage that from
within Python, you can create a small Python extension module exposing that C code to your
Python code so it can be called as though it were written in Python. This is probably the more
common reason for implementing an extension module (a module written in a language other
than Python).

 In this chapter you learn:

 How to create an extension module in C for the standard Python interpreter (but you have
to promise that you ’ ll do so only if you have absolutely no other option.) This chapter
assumes you are already familiar with C. If you ’ re not, you need to rope someone who is
familiar with C into helping you out.

❑

c17.indd 337c17.indd 337 12/22/09 11:00:38 AM12/22/09 11:00:38 AM

Part III: Putting Python to Work

338

 Basic and real - world, practical examples in which you define, in C, a class that can encode raw
audio data into MP3 - encoded data. Your class will be usable from Python and will make method
calls on pure Python objects, demonstrating how you can communicate both ways.

 How to work with the Python API from C.

 This chapter is just an introduction to using the Python API from C and is no way a substitute for the
API documentation found at http://docs.python.org/ . You should look up the function definitions
you ’ ll be using because they ’ re mentioned throughout the examples.

 Extension Module Outline
 First of all, a Python extension module is nothing more than a normal C library. On UNIX machines,
these libraries usually end in .so (for shared object). On Windows machines, you typically see .dll (for
dynamically linked library).

 Before you get started, you ’ re going to need the Python header files. On UNIX machines, this usually
requires installing a developer - specific package. Windows users get these headers as part of the package
when they use the binary Python installer.

 For your first look at a Python extension module, you ’ ll be grouping your code into three parts:
the C functions you want to expose as the interface from your module; a table mapping the names
of your functions as Python developers will see them to C functions inside the extension module;
and an initialization function.

 Most extension modules can be contained in a single C source file, sometimes called the glue . Start the
file out including Python.h , which will give you access to the internal Python API used to hook your
module into the interpreter. Be sure to include Python.h before any other headers you might need. You ’ ll
follow the includes with the functions you want to call from Python.

 Interestingly, the signatures of the C implementations of your functions will always take one of the
following three forms:

PyObject * MyFunction(PyObject * self, PyObject * args);

PyObject * MyFunctionWithKeywords(PyObject * self,
 PyObject * args,
 PyObject * kw);

PyObject * MyFunctionWithNoArgs(PyObject * self);

 Typically, your C functions will look like the first of the preceding three declarations. The arguments
passed into your functions are packed into a tuple that you ’ ll have to break apart in order to use, which
explains how you can implement a function in C that takes only two arguments but can accept any
number of arguments as called from Python.

 Notice how each one of the preceding declarations returns a Python object. There ’ s no such thing as
a “ void ” function in Python as there is in C. If you don ’ t want your functions to return a value,

❑

❑

c17.indd 338c17.indd 338 12/22/09 11:00:39 AM12/22/09 11:00:39 AM

Chapter 17: Extension Programming with C

339

return the C equivalent of Python ’ s None value instead. The Python headers define a macro,
 Py_RETURN_NONE , that does this for you.

 Seeing these declarations should make it obvious how object - oriented Python is. Everything is an object.
In C, you ’ ll be using the Python API to work with these objects, but the concepts you know from Python
still hold.

 The names of your C functions can be whatever you like because they ’ ll never be seen outside of the
extension module. In fact, the functions are usually declared with the static keyword (which in C
means they ’ re not visible outside of the current source file). In the example code, functions usually are
named by combining the Python module and function names together, as shown here:

static PyObject * foo_bar(PyObject * self, PyObject * args) {
 / * Do something interesting here. * /
 Py_RETURN_NONE;
}

 This would be a Python function called bar inside of the module foo . You ’ ll be putting pointers to your
C functions into the method table for the module that usually comes next in your source code.

 This method table is a simple array of PyMethodDef structures. That structure looks something like this:

struct PyMethodDef {
 char * ml_name;
 PyCFunction ml_meth;
 int ml_flags;
 char * ml_doc;
};

 That first member, ml_name , is the name of the function as the Python interpreter will present it when
it ’ s used in Python programs. The PyCFunction member must be the address to a function that has any
one of the signatures described previously. ml_flags tells the interpreter which of the three signatures
 ml_meth is using. ml_flags will usually have a value of METH_VARARGS . This value can be bitwise or ’ ed
with METH_KEYWORDS if you want to allow keyword arguments into your function. It can also have a
value of METH_NOARGS that indicates you don ’ t want to accept any arguments. Finally, the last member
in the PyMethodDef structure, ml_doc , is the docstring for the function, which can be NULL if you don ’ t
feel like writing one — shame on you.

 This table needs to be terminated with a sentinel that consists of NULL and 0 values for the appropriate
members.

 This is what a table containing an entry for your foo_bar function would look like:

static PyMethodDef foo_methods[] = {
 { “bar”, (PyCFunction)foo_bar, METH_NOARGS, “My first function.”
 },
 { NULL, NULL, 0, NULL }
};

 Casting the address of foo_bar to a PyCFunction is necessary to get the compiler to not warn you
about incompatible pointer types. This is safe because of the METH_NOARGS flag for the ml_flags

c17.indd 339c17.indd 339 12/22/09 11:00:40 AM12/22/09 11:00:40 AM

Part III: Putting Python to Work

340

member, which indicates to the Python interpreter that it should call your C function with only one
 PyObject * as an argument (and not two as would be the case if you used METH_VARARGS , or three if
you used METH_VARARGS|METH_KEYWORDS).

 The last part of your extension module is the initialization function. This function is called by the Python
interpreter when the module is loaded. It ’ s required that the function be named initfoo , where foo is
the name of the module.

 The initialization function needs to be exported from the library you ’ ll be building. The Python headers
define PyMODINIT_FUNC to include the appropriate incantations for that to happen for the particular
environment in which you ’ re compiling. All you have to do is use it when defining the function.

 Putting this all together looks like the following:

#include < Python.h >

static PyObject * foo_bar(PyObject * self, PyObject * args) {
 / * Do something interesting here. * /
 Py_RETURN_NONE;
}

static PyMethodDef foo_methods[] = {
 { “bar”, (PyCFunction)foo_bar, METH_NOARGS, NULL },
 { NULL, NULL, 0, NULL }
};

PyMODINIT_FUNC initfoo() {
 Py_InitModule3(“foo”, foo_methods, “My first extension module.”);
}

 The Py_InitModule3 function is typically what you use to define a module because it lets you define a
docstring for a module, which is always a nice thing to do.

 Building and Installing Extension Modules
 You can build the extension module in a couple of different ways. The obvious way is to build it the way
you build all of the libraries on your platform. Save the previous example as foo.c . Then, to compile
your module on Linux, you could do something like this:

gcc -shared -I/usr/include/python3.1 foo.c -o foo.so

 Building the extension module on Windows would look something like this:

cl /LD /IC:\Python31\include foo.c C:\Python31\libs\python31.lib

 For either of these commands to work, you ’ ll need to have a C compiler installed and have it
available in your path (if you ’ re reading this chapter, you probably do). The Python headers need to be
installed and accessible to the compiler. In both of these examples, the directory containing
the Python headers is specified on the command line (as is the path to the Python library for the

c17.indd 340c17.indd 340 12/22/09 11:00:40 AM12/22/09 11:00:40 AM

Chapter 17: Extension Programming with C

341

Windows compiler). If your headers and libraries are located in a different location, the commands
will have to be modified accordingly.

 The name of the actual shared object (or DLL on Windows) needs to be the same as the string passed in
to Py_InitModule3 (minus the .so or .dll extension). Optionally, you can suffix the base name of the
library with module . So your foo extension module could be called foo.so or foomodule.so .

 This works, but it ’ s not the only way to do it. The new and improved way of building extension modules
is to use distutils , which is included in all recent versions of Python.

 The distutils package makes it possible to distribute Python modules, both pure Python and
extension modules, in a standard way. Modules are distributed in source form and built and installed via
a setup script (usually called setup.py). As long as your users have the required compiler packages and
Python headers installed, this usually works.

 The setup script is surprisingly succinct:

from distutils.core import setup, Extension
setup(name=’foo’, version=’1.0’, ext_modules=[Extension(‘foo’,
[‘foo.c’])])

 Running this script through the Python interpreter demonstrates that you ’ re getting quite a bit more
than initially expected with just two lines of code:

$ python setup.py
usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]
 or: setup.py --help [cmd1 cmd2 ...]
 or: setup.py --help-commands
 or: setup.py cmd --help

error: no commands supplied

 Trying again with the - - help - commands argument displays all of the commands your setup script can
respond to:

$ python setup.py --help-commands
Standard commands:
 build build everything needed to install
 build_py “build” pure Python modules (copy to build
directory)
 build_ext build C/C++ extensions (compile/link to build
directory)
 build_clib build C/C++ libraries used by Python extensions
 build_scripts “build” scripts (copy and fixup #! line)
 clean clean up output of ‘build’ command
 install install everything from build directory
 install_lib install all Python modules (extensions and pure
Python)
 install_headers install C/C++ header files
 install_scripts install scripts (Python or otherwise)
 install_data install data files

(continued)

c17.indd 341c17.indd 341 12/22/09 11:00:40 AM12/22/09 11:00:40 AM

Part III: Putting Python to Work

342

 sdist create a source distribution (tarball, zip file,
etc.)
 register register the distribution with the Python package
index
 bdist create a built (binary) distribution
 bdist_dumb create a “dumb” built distribution
 bdist_rpm create an RPM distribution
 bdist_wininst create an executable installer for MS Windows

usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]
 or: setup.py --help [cmd1 cmd2 ...]
 or: setup.py --help-commands
 or: setup.py cmd --help

 There ’ s a lot going on here, but all you need for now is the build command. Executing that will compile
 foo.c into foo.so (on Linux) or foo.dll (on Windows). This file will end up in a subdirectory of the
 build directory in your current directory unless you change that with more command - line options.

 For the module to be importable by the Python interpreter, it needs to be in the current directory or in a
directory listed in the PYTHONPATH environmental variable or in a directory listed in the sys.path list,
which you can modify at runtime, although I wouldn ’ t recommend it.

 The easiest way to get this to happen is to use another one of the setup script commands:

$ python setup.py install

 If you hadn ’ t already built the module, this would have done that for you because building is a
prerequisite for installing (much like a make file). The install command also copies the module to the
site - packages directory for your Python installation. This site - packages directory is listed in sys.path ,
so after this is done, you can start using the module.

 On UNIX - based systems, you ’ ll most likely need to run this command as root in order to have
permissions to write to the site - packages directory. This usually isn ’ t a problem on Windows. It ’ s also
possible to install modules in alternative locations using the - - home or - - prefix command - line
options, but doing this leaves you responsible for ensuring they ’ re put in a directory the Python
interpreter knows about when it ’ s run.

 Passing Parameters from Python to C
 After you have everything built and installed, importing your new extension module and invoking its
one function is easy:

 > > > import foo
 > > > dir(foo)
[‘__doc__’, ‘__file__’, ‘__name__’, ‘bar’]
 > > > foo.bar()

(continued)

c17.indd 342c17.indd 342 12/22/09 11:00:40 AM12/22/09 11:00:40 AM

Chapter 17: Extension Programming with C

343

 If you tried to pass in any arguments to your function, the interpreter will rightfully complain:

 > > > foo.bar(1)
Traceback (most recent call last):
 File “ < stdin > ”, line 1, in ?
TypeError: bar() takes no arguments (1 given)

 Because you ’ ll most likely want to define functions that do accept arguments, you can use one of the
other signatures for your C functions. For example, a “ normal ” function (one that accepts some number
of parameters) would be defined like this:

static PyObject * foo_baz(PyObject * self, PyObject * args) {
 / * Parse args and do something interesting here. * /
 Py_RETURN_NONE;
}

 The method table containing an entry for the new function would look like this:

static PyMethodDef foo_methods[] = {
 { “bar”, (PyCFunction)foo_bar, METH_NOARGS, NULL },
 { “baz”, foo_baz, METH_VARARGS, NULL },
 { NULL, NULL, 0, NULL }
};

 After making those changes to foo.c and saving them, you ’ re going to want to close any open Python
interpreters that imported the old version of the extension module so that you can recompile the source,
start a new interpreter, and import the new version of the extension module. It ’ s easy to forget to do this
if you ’ re compiling in one window and invoking Python in another.

 Compiling the new version of your module and importing it will enable you to invoke the new function
with any number of arguments of any type:

 > > > foo.baz()
 > > > foo.baz(1)
 > > > foo.baz(1, 2.0)
 > > > foo.baz(1, 2.0, “three”)

 The reason why anything goes is that you haven ’ t written the C code to enforce a certain number and
type of arguments.

 The Python API gives you the PyArg_ParseTuple function to extract the arguments from the one
 PyObject pointer passed into your C function. This is a variadic function much like the standard
 sscanf function with which you might be familiar.

 The first argument to PyArg_ParseTuple is the args argument. This is the object you ’ ll be “ parsing. ”
The second argument is a format string describing the arguments as you expect them to appear. Each
argument is represented by one or more characters in the format string. An i indicates that you expect
the argument to be an integer - like object, which PyArg_ParseTuple will convert into a int as known in
C. Specifying a d in the format string will give you a double , and s will give you a string (char *). For
example, if you expected the baz function to be passed one integer, one double, and one string, your
format string would be “ ids “ . You can find the full list of indicators that you can include in a format
string at http://docs.python.org/api/arg - parsing.html .

c17.indd 343c17.indd 343 12/22/09 11:00:41 AM12/22/09 11:00:41 AM

Part III: Putting Python to Work

344

 The remaining arguments to PyArg_ParseTuple are pointers to storage space of the appropriate type
for your arguments, just like sscanf . Knowing this, you might rewrite baz to look like the following:

static PyObject * foo_baz(PyObject * self, PyObject * args) {
 int i;
 double d;
 char * s;
 if (!PyArg_ParseTuple(args, “ids”, & i, & d, & s)) {
 return NULL;
 }
 / * Do something interesting here. * /
 Py_RETURN_NONE;
}

 PyArg_ParseTuple will return 0 if it fails to extract exactly what was specified in the format string. It ’ s
important that you return NULL from your function when this happens so that the interpreter can
generate an exception for your caller.

 What about optional arguments? If you include a | (the vertical bar) character in your format string,
the indicators to the left of the | will be required, but the indicators to the right will be optional.
You ’ re going to want to give your local storage for the optional arguments a default value because
 PyArg_ParseTuple won ’ t write anything to those variables if the caller didn ’ t specify the necessary
arguments.

 For example, if baz required one int, one double, and one string but also allowed an optional int, double,
and then a string, you might rewrite it to look like this:

static PyObject * foo_baz(PyObject * self, PyObject * args) {
 int i;
 double d;
 char * s;
 int i2 = 4;
 double d2 = 5.0;
 char * s2 = “six”;
 if (!PyArg_ParseTuple(args, “ids|ids”, & i, & d, & s, & i2, & d2,
 & s2)) {
 return NULL;
 }
 / * Do something interesting here. * /
 Py_RETURN_NONE;
}

 Lastly, this next and final form your C functions might take will only be necessary when your functions
accept keyword arguments. In this case, you ’ ll use the signature that accepts three PyObject * arguments
and set the ml_flags member in your method table entry to METH_VARARGS|METH_KEYWORDS . Instead of
using the PyArg_ParseTuple function to extract your arguments, you ’ ll use
 PyArg_ParseTupleAndKeywords .

c17.indd 344c17.indd 344 12/22/09 11:00:41 AM12/22/09 11:00:41 AM

Chapter 17: Extension Programming with C

345

 This is what the function might look like:

static PyObject * foo_quux(PyObject * self, PyObject * args, PyObject
 * kw) {
 char * kwlist[] = { “i”, “d”, “s”, NULL };
 int i;
 double d = 2.0;
 char * s = “three”;
 if (!PyArg_ParseTupleAndKeywords(args, kw, “i|ds”, kwlist, & i,
 & d, & s)) {
 return NULL;
 }
 / * Do something interesting here. * /
 Py_RETURN_NONE;
}

 This would be its entry in the method table right after the entry for the baz function but before the
sentinel entry:

{ “quux”, (PyCFunction)foo_quux, METH_VARARGS|METH_KEYWORDS, NULL },

 PyArg_ParseTupleAndKeywords works just like PyArg_ParseTuple with the exception of two extra
arguments. First, you need to pass in the pointer to the Python object containing the keyword
arguments. Second, you need to indicate what keywords you ’ re interested in. You do that with a
NULL - terminated list of strings. In the preceding example, you ’ re saying that your keywords are “ i “ ,
 “ d “ , and “ s “ .

 Each keyword needs to correspond with one indicator in the format string even if you don ’ t ever intend
to have your callers use a keyword for certain arguments. Notice how the preceding example includes
three indicators in the format string. The first, “ i “ , is required whereas the other two, “ d “ and “ s “ , are
optional. You could call this function (from Python) in any of the following ways:

 > > > foo.quux(1)
 > > > foo.quux(i=1)
 > > > foo.quux(1, 2.0)
 > > > foo.quux(1, 2.0, “three”)
 > > > foo.quux(1, 2.0, s=”three”)
 > > > foo.quux(1, d=2.0)
 > > > foo.quux(1, s=”three”)
 > > > foo.quux(1, d=2.0, s=”three”)
 > > > foo.quux(1, s=”three”, d=2.0)
 > > > foo.quux(i=1, d=2.0, s=”three”)
 > > > foo.quux(s=”three”, d=2.0, i=1)

 You can probably come up with even more variations.

 Returning Values from C to Python
 PyArg_ParseTuple and PyArg_ParseTupleAndKeywords convert from Python objects into C values
but what about going the other way? How would you return a value from a function implemented in C
back into Python?

c17.indd 345c17.indd 345 12/22/09 11:00:41 AM12/22/09 11:00:41 AM

Part III: Putting Python to Work

346

 All of the function signatures you saw previously return a PyObject * , so you need to use whatever the
opposite of PyArg_ParseTuple is in order to turn a C value into a Python object. That function is called
 Py_BuildValue .

 Py_BuildValue takes in a format string much like PyArg_ParseTuple does. Instead of passing in the
addresses of the values you ’ re building, you pass in the actual values. Here ’ s an example showing how
to implement an add function:

static PyObject * foo_add(PyObject * self, PyObject * args) {
 int a;
 int b;
 if (!PyArg_ParseTuple(args, “ii”, & a, & b)) {
 return NULL;
 }
 return Py_BuildValue(“i”, a + b);
}

 The Python equivalent of this function would look like this:

def add(a, b):
 return a + b

 What if you want to return more than one value from your function? In Python, you do that by returning
a tuple. In C, you do that by building a tuple with Py_BuildValue . If your format string has more than
one indicator, you ’ ll get a tuple. You can also be explicit and surround your indicators with parentheses:

static PyObject * foo_add_and_subtract(PyObject * self, PyObject * args)
 {
 int a;
 int b;
 if (!PyArg_ParseTuple(args, “ii”, & a, & b)) {
 return NULL;
 }
 return Py_BuildValue(“(ii)”, a + b, a - b);
}

 To help visualize what this function is doing, this is what it would look like if implemented in Python:

def add_and_subtract(a, b):
 return (a + b, a - b)

 Now, armed with just this knowledge, it ’ s possible for you to create a wide variety of extension modules.
Let ’ s put this to good use and work on a real example.

 The LAME Project
 LAME is (or was) an acronym that originally stood for “ LAME Ain ’ t an MP3 Encoder. ” Whether or not
it ’ s officially considered an MP3 encoder isn ’ t important to you, because it functions as a (most excellent)
free and open - source library that is capable of encoding MP3s.

c17.indd 346c17.indd 346 12/22/09 11:00:42 AM12/22/09 11:00:42 AM

Chapter 17: Extension Programming with C

347

 Dozens of software projects use LAME but not many are implemented in Python, which is why you ’ ll be
using it as an example to demonstrate just how easy it is to create extension modules for Python that
leverage an existing C code base, even when the C code wasn ’ t written to be interfaced with Python.

 This example is also a very practical one. Consider how many years went into developing the LAME
code base, which in case you don ’ t know is many, many, many years. Would you really want to duplicate
that work by reimplementing it in Python? Now consider what your answer would be if you were told
how unbelievably slow it would run if you had a Python - only encoder! This isn ’ t anything against
Python, by the way. This would old true of any language that is higher - level than C. Languages such as
Java, Perl, and so on would have the same limitation. This is a perfect example of code that you would
 not want to use Python to develop (there are very few examples where this is true).

 Before creating an extension module that wraps the LAME library, you need to learn how to use the
API exposed by that library. The core of the LAME API is small enough to create a quick demonstration
with only a page or so of C code.

 You need the LAME headers and libraries installed on your machine before you can write any code
that uses its API, of course. The LAME Project ’ s website is located on SourceForge at http://lame
.sourceforge.net/ . You can download the source code from there. Though you can download and
compile and install the libraries for any part of the LAME package from there, you won ’ t find any
pre - built binaries on this site (presumably to avoid the potential legal issues of distributing an MP3
encoder). However, you can find links to sites that do provide downloadable binaries by looking
for them on the LAME Project ’ s website (if you ’ d rather not build from source).

 You can find packages on the Web for most Linux distributions. Some names these packages may be
listed under are lame, liblame, or the liblame - dev package. If you can ’ t find a package or would rather
build from source, ./configure , make , and make install will work to build a complete working
installation of LAME, just as they do with almost every other project you build from source on Linux.

 Windows users can use any of the pre - built binaries but those don ’ t usually come with the headers, so
you ’ ll have to download those from the main site. If you ’ re doing that, you might as well build the
libraries yourself. The LAME source code includes a Visual Studio workspace that can build everything
you need to get through the rest of this chapter. There will be errors (there were for the author), but the
build process makes it far enough to finish building just what you need, so you can ignore those errors
and be OK.

 The general overview of creating an MP3 file with LAME is described here:

 1. Initialize the library.

 2. Set up the encoding parameters.

 3. Feed the library one buffer of audio data at a time (returning another buffer of MP3 - encoded
bytes of that data).

 4. Flush the encoder (possibly returning more MP3 data).

 5. Close the library.

 That ’ s it!

c17.indd 347c17.indd 347 12/22/09 11:00:42 AM12/22/09 11:00:42 AM

Part III: Putting Python to Work

348

 Here ’ s an example written in C that uses the LAME API. It can encode any raw audio file into an
MP3 - encoded audio file. If you want to compile it to make sure it works, save it in a file called clame.c :

#include < stdio.h >
#include < stdlib.h >

#include < lame.h >

#define INBUFSIZE 4096
#define MP3BUFSIZE (int)(1.25 * INBUFSIZE) + 7200

int encode(char * inpath, char * outpath) {
 int status = 0;
 lame_global_flags * gfp;
 int ret_code;
 FILE * infp;
 FILE * outfp;
 short * input_buffer;
 int input_samples;
 char * mp3_buffer;
 int mp3_bytes;

 / * Initialize the library. * /
 gfp = lame_init();
 if (gfp == NULL) {
 printf(“lame_init returned NULL\n”);
 status = -1;
 goto exit;
 }

 / * Set the encoding parameters. * /
 ret_code = lame_init_params(gfp);
 if (ret_code < 0) {
 printf(“lame_init_params returned %d\n”, ret_code);
 status = -1;
 goto close_lame;
 }

 / * Open our input and output files. * /
 infp = fopen(inpath, “rb”);
 outfp = fopen(outpath, “wb”);

 / * Allocate some buffers. * /
 input_buffer = (short *)malloc(INBUFSIZE * 2);
 mp3_buffer = (char *)malloc(MP3BUFSIZE);

 / * Read from the input file, encode, and write to the output
 file. * /
 do {
 input_samples = fread(input_buffer, 2, INBUFSIZE, infp);
 if (input_samples > 0) {
 mp3_bytes = lame_encode_buffer_interleaved(
 gfp,
 input_buffer,

c17.indd 348c17.indd 348 12/22/09 11:00:42 AM12/22/09 11:00:42 AM

Chapter 17: Extension Programming with C

349

 input_samples / 2,
 mp3_buffer,
 MP3BUFSIZE
);
 if (mp3_bytes < 0) {
 printf(“lame_encode_buffer_interleaved returned
 %d\n”, mp3_bytes);
 status = -1;
 goto free_buffers;
 } else if (mp3_bytes > 0) {
 fwrite(mp3_buffer, 1, mp3_bytes, outfp);
 }
 }
 } while (input_samples == INBUFSIZE);

 / * Flush the encoder of any remaining bytes. * /
 mp3_bytes = lame_encode_flush(gfp, mp3_buffer,
sizeof(mp3_buffer));
 if (mp3_bytes > 0) {
 printf(“writing %d mp3 bytes\n”, mp3_bytes);
 fwrite(mp3_buffer, 1, mp3_bytes, outfp);
 }

 / * Clean up. * /

free_buffers:
 free(mp3_buffer);
 free(input_buffer);

 fclose(outfp);
 fclose(infp);

close_lame:
 lame_close(gfp);

exit:
 return status;
}

int main(int argc, char * argv[]) {
 if (argc < 3) {
 printf(“usage: clame rawinfile mp3outfile\n”);
 exit(1);
 }
 encode(argv[1], argv[2]);
 return 0;
}

 To compile the file on Linux, this command should work (assuming you installed a package like
liblame - dev or that the lame development components have installed the appropriate header files in
 /usr/include/lame):

gcc -I/usr/include/lame clame.c -lmp3lame -o clame

c17.indd 349c17.indd 349 12/22/09 11:00:43 AM12/22/09 11:00:43 AM

Part III: Putting Python to Work

350

 On Windows, you ’ ll probably have to use a command like this (assuming you built from source):

cl /IC:\lame-3.98.2\include clame.c \
 C:\lame-3.98.2\libmp3lame\Release\libmp3lame.lib \
 C:\lame-3.98.2\mpglib\Release\mpglib.lib

 Those command - line parameters are telling the compiler where to find the LAME headers and necessary
libraries. You ’ ll probably have to adjust them to point to the correct directories.

 That wasn ’ t too bad, was it? Of course, this code doesn ’ t know how to extract data out of a WAV or any
other sort of audio file. It is assumed here that the input file contains nothing but raw, 16 - bit, signed
samples at 44.1 kHz. Turning a WAV file into one of these raw files is a simple command on most UNIX -
 based machines (assuming you have the sox program, which should also be available as a package):

sox test.wav -t raw test.raw

 The LAME Extension Module
 To create an extension module that enables you to encode a raw audio file into an MP3 could be
as simple as creating a simple function that invokes the encode function you defined in the
preceding example:

#include < Python.h >

#include < lame.h >

/ * defined in clame.c * /
int encode(char * , char *);

static PyObject * pylame1_encode(PyObject * self, PyObject * args) {
 int status;
 char * inpath;
 char * outpath;
 if (!PyArg_ParseTuple(args, “ss”, & inpath, & outpath)) {
 return NULL;
 }
 status = encode(inpath, outpath);
 return Py_BuildValue(“i”, status);
}

static PyMethodDef pylame1_methods[] = {
 { “encode”, pylame1_encode, METH_VARARGS, NULL },
 { NULL, NULL, 0, NULL }
};

PyMODINIT_FUNC initpylame1() {
 Py_InitModule3(“pylame1”, pylame1_methods, “My first LAME
module.”);
}

c17.indd 350c17.indd 350 12/22/09 11:00:43 AM12/22/09 11:00:43 AM

Chapter 17: Extension Programming with C

351

 Here the encode function accepts two string arguments — the input path and the output path.

 Try saving the preceding code in a file called pylame1.c and compiling it with this command:

gcc -shared -I/usr/include/python3.1 -I/usr/include/lame \
 pylame1.c clame.c \
 -lmp3lame -o pylame1.so

 On Windows, you ’ ll need something like this:

cl /LD /IC:\Python31\include /IC:\lame-3.96.1\include \
 pylame1.c clame.c \
 C:\Python31\libs\python31.lib \
 C:\lame-3.98.2\libmp3lame\Release\libmp3lame.lib \
 C:\lamexs-3.98.2\mpglib\Release\mpglib.lib

 Note that you ’ re compiling the same clame.c example you used in the previous section into this DLL by
including it on the command line.

 This works, but it ’ s not ideal; you have no way of influencing how the encode function works other than
by passing in two strings. What if you wanted to encode something other than a raw audio file? How
about a WAV file or perhaps some audio data you ’ re streaming off the network? There ’ s no reason why
you couldn ’ t implement that functionality in Python, where it would be much easier to do.

 You have two options: You can have the Python code pass the audio data into the encode function, one
chunk at a time, just like you do in the C function. Or, you can pass some object with a read method in
to encode , which would then read its data from that object.

 Although the second option might sound more object oriented, the first is the better choice because it
provides more flexibility. You could always define some sort of object that reads from some source and
passes it on to the encoder, but it would be a lot harder to go the other way around.

 Using this design is going to require that you make some changes in the extension module. Right now,
there ’ s just one function, and that ’ s fine because that function is doing all of the work for you. With
the new approach, however, you ’ ll be making multiple calls to the function that you ’ ll be using to
encode the audio data as MP3 data. You can ’ t have the function re - open the file every time it ’ s called,
so you ’ re going to need to maintain some state information about where you are in the file somewhere.
You can have the caller maintain that state, or you can encapsulate it inside some object defined by your
module, which is the approach you ’ ll be taking here.

 The new version of your extension module needs to expose a class so that your clients can create
instances of this class and invoke methods on them. You ’ ll be hiding a small amount of state in
those instances so they can remember which file they ’ re writing to between method calls.

 As you learn what you need to do for this new module, you ’ ll see the snippets of code relevant to what
is being explained. The entire source for pylame2.c is shown later so you can see the snippets together
in all of their glory.

c17.indd 351c17.indd 351 12/22/09 11:00:43 AM12/22/09 11:00:43 AM

Part III: Putting Python to Work

352

 The C language syntax doesn ’ t directly support defining a new class, but it does have structures; and in
C structures can contain function pointers, which is good enough for what you ’ re trying to do right now.
When the Python interpreter creates a new instance of your class, it will actually be allocating enough
space to store a new instance of your structure. It ’ s that structure that will contain all of your state for
each object.

 The Python interpreter needs to store some information in your objects as well. Every object has a
reference count and a type, so the first part of your structure has to contain these in order for the Python
interpreter to find them:

typedef struct {
 PyObject_HEAD
 / * State goes here. * /
} pylame2_EncoderObject;

 The PyObject_HEAD macro will add the appropriate members to the structure — you just have to make
sure that it ’ s the first thing you add.

 You need to provide a function to create the new instances of this structure:

static PyObject * Encoder_new(PyTypeObject * type, PyObject * args,
PyObject * kw) {
 pylame2_EncoderObject * self = (pylame2_EncoderObject *)
type- > tp_alloc(type, 0);
 / * Initialize object here. * /
 return (PyObject *)self;
}

 Think of this as equivalent to Python ’ s __new__ method. This function will be called by the interpreter
when it needs to create a new instance of your type. Notice how you ’ re not calling malloc directly but
are instead invoking some other function as indicated by the tp_alloc member of the PyTypeObject
that was passed in to your function. You see what function that is in a bit.

 You also need a function to free your instances:

static void Encoder_dealloc(PyObject * self) {
 self- > ob_type- > tp_free(self);
}

 Think of this function as equivalent to Python ’ s __del__ method and being a counterpart to Encoder_
new . Because you ’ re calling tp_free on your object ’ s type object here, you ’ re probably assuming that
the tp_free function is the counterpart to the tp_alloc function and you ’ re right.

 What about the other methods your object is supposed to support? Do you add function pointers to your
structure to represent those? If you did, each instance would be eating up memory with the exact same
set of pointers, which would be a waste. Instead, you ’ re going to store the function pointers for your
methods in a separate structure and your objects will refer to that structure.

 Remember that each object knows its type — there ’ s a pointer to a type object hiding inside the
 PyObject_HEAD macro. Therefore, you need another structure to represent that:

c17.indd 352c17.indd 352 12/22/09 11:00:44 AM12/22/09 11:00:44 AM

Chapter 17: Extension Programming with C

353

static PyTypeObject pylame2_EncoderType = {
 PyObject_HEAD_INIT(NULL)
 0, / * ob_size * /
 “pylame2.Encoder”, / * tp_name * /
 sizeof(pylame2_EncoderObject), / * tp_basicsize * /
 0, / * tp_itemsize * /
 Encoder_dealloc, / * tp_dealloc * /
 0, / * tp_print * /
 0, / * tp_getattr * /
 0, / * tp_setattr * /
 0, / * tp_compare * /
 0, / * tp_repr * /
 0, / * tp_as_number * /
 0, / * tp_as_sequence * /
 0, / * tp_as_mapping * /
 0, / * tp_hash * /
 0, / * tp_call * /
 0, / * tp_str * /
 0, / * tp_getattro * /
 0, / * tp_setattro * /
 0, / * tp_as_buffer * /
 Py_TPFLAGS_DEFAULT, / * tp_flags * /
 “My first encoder object.”, / * tp_doc * /
 0, / * tp_traverse * /
 0, / * tp_clear * /
 0, / * tp_richcompare * /
 0, / * tp_weaklistoffset * /
 0, / * tp_iter * /
 0, / * tp_iternext * /
 0, / * tp_methods * /
 0, / * tp_members * /
 0, / * tp_getset * /
 0, / * tp_base * /
 0, / * tp_dict * /
 0, / * tp_descr_get * /
 0, / * tp_descr_set * /
 0, / * tp_dictoffset * /
 0, / * tp_init * /
 0, / * tp_alloc * /
 Encoder_new, / * tp_new * /
 0, / * tp_free * /
};

 This is going to be the structure for what you ’ re going to get a pointer to when your Encoder_new
function is called. There ’ s a lot to that structure (and even more that you can ’ t see yet), but you ’ re letting
most of the members default to NULL for now. You ’ ll go over the important bits before moving on.

 The PyObject_HEAD_INIT macro adds the members that are common to all types. It must be the first
member in the structure. It ’ s like PyObject_HEAD except that it initializes the type pointer to whatever
you pass in as an argument.

 Remember: In Python, types are objects, too, so they also have types. You could call a type ’ s type a “ type
type. ” The Python API calls it PyType_Type . It ’ s the type of type objects. You really want to be able to

c17.indd 353c17.indd 353 12/22/09 11:00:44 AM12/22/09 11:00:44 AM

Part III: Putting Python to Work

354

pass & PyType_Type into this macro but some compilers won ’ t let you statically initialize a structure
member with a symbol defined in some other module, so you ’ ll have to fill that in later.

 The next member, ob_size , might look important but it ’ s a remnant from an older version of the Python
API and should be ignored. The member after the name of your type, tp_basicsize , represents the size
of all your object instances. When the interpreter needs to allocate storage space for a new instance, it
will request tp_basicsize bytes.

 Most of the rest of the members are currently NULL , but you ’ ll be filling them in later. They ’ ll hold
function pointers for some of the more common operations that many objects support.

 The tp_flags member specifies some default flags for the type object, which all type objects need; and
the tp_doc member holds a pointer to the docstring for the type, which you always want to provide
because you ’ re a good Python citizen.

 Notice the tp_alloc and tp_free members, which are set to NULL . Aren ’ t those the members you ’ re
calling from Encoder_new and Encoder_dealloc ? Yes, they are, but you ’ re going to use a Python API
function to fill them in with the appropriate addresses later on because some platforms don ’ t like it
when you statically initialize structure members with addresses of functions in other libraries.

 At this point, you ’ ve defined two structures. To actually make them available via your extension module,
you need to add some code to your module ’ s initialization function:

PyMODINIT_FUNC initpylame2() {
 PyObject * m;
 if (PyType_Ready(& pylame2_EncoderType) < 0) {
 return;
 }
 m = Py_InitModule3(“pylame2”, pylame2_methods, “My second LAME
module.”);
 Py_INCREF(& pylame2_EncoderType);
 PyModule_AddObject(m, “Encoder”, (PyObject *)
 & pylame2_EncoderType);
}

 PyType_Ready gets a type object “ ready ” for use by the interpreter. It sets the type of the object to
 PyType_Type and sets a number of the function pointer members that you had previously left NULL ,
along with a number of other bookkeeping tasks necessary in order to hook everything up properly,
including setting your tp_alloc and tp_free members to suitable functions.

 After you get your type object ready, you create your module as usual, but this time you ’ re saving the
return value (a pointer to a module object) so you can add your new type object to the module.
Previously, you had been ignoring the return value and letting the method table define all of the
members of the module. Because there ’ s no way to fit a PyObject pointer into a method table, you need
to use the PyModule_AddObject function to add your type object to the module. This function takes in
the pointer to the module returned from Py_InitModule3 , the name of your new object as it should be
known in the module, and the pointer to the new object itself.

c17.indd 354c17.indd 354 12/22/09 11:00:44 AM12/22/09 11:00:44 AM

Chapter 17: Extension Programming with C

355

 If you were to compile what you had so far, you ’ d be able to create new Encoder instances:

 > > > import pylame2
 > > > e = pylame2.Encoder()

 That object doesn ’ t do you much good, however, because it doesn ’ t have any useful behavior yet.

 To make these objects useful, you have to allow for some information to be passed into their initialization
functions. That information could simply be the path to the file to which you want to write. Your
initialization function could use that path to open a file handle that would enable you to write to it, but
there ’ ll be no writing until somebody invokes the encode method on your object. Therefore, your object
needs to retain the handle for the file it opened.

 You ’ re also going to be invoking functions defined in the LAME library, so your objects will also need to
remember the pointer to the lame_global_flags structure returned by lame_init .

 Here ’ s your structure with state and a modified Encoder_new function to initialize it:

typedef struct {
 PyObject_HEAD
 FILE * outfp;
 lame_global_flags * gfp;
} pylame2_EncoderObject;

static PyObject * Encoder_new(PyTypeObject * type, PyObject * args,
PyObject * kw) {
 pylame2_EncoderObject * self = (pylame2_EncoderObject *)
type- > tp_alloc(type, 0);
 self- > outfp = NULL;
 self- > gfp = NULL;
 return (PyObject *)self;
}

 You ’ re not checking args and kw here, because this is the equivalent of Python ’ s __new__ method,
not __init__ . It ’ s in your C implementation of __init__ that you ’ ll be opening the file and initializing
the LAME library:

static int Encoder_init(pylame2_EncoderObject * self,
 PyObject * args, PyObject * kw) {
 char * outpath;
 if (!PyArg_ParseTuple(args, “s”, & outpath)) {
 return -1;
 }
 if (self- > outfp || self- > gfp) {
 PyErr_SetString(PyExc_Exception, “__init__ already called”);
 return -1;
 }
 self- > outfp = fopen(outpath, “wb”);
 self- > gfp = lame_init();
 lame_init_params(self- > gfp);
 return 0;
}

c17.indd 355c17.indd 355 12/22/09 11:00:45 AM12/22/09 11:00:45 AM

Part III: Putting Python to Work

356

 Your __init__ implementation is checking two things. The first you ’ ve already seen. You ’ re using
 PyArg_ParseTuple to ensure that you were passed in one string parameter. The second check is
ensuring that the outfp and gfp members of your instance are NULL . If they ’ re not, this function must
already have been called for this object, so return the appropriate error code for this function after using
the PyErr_SetString function to “ set ” an exception. After you return into the Python interpreter, an
exception will be raised and your caller is going to have to catch it or suffer the consequences. You need
to do this because it ’ s always possible to call __init__ twice on an object. With this code in place,
calling __init__ twice on your objects might look like this:

 > > > import pylame2
 > > > e = pylame2.Encoder(“foo.mp3”)
 > > > e.__init__(“bar.mp3”)
Traceback (most recent call last):
 File “ < stdin > ”, line 1, in ?
Exception: __init__ already called

 Of course, you could be nice and reinitialize the object, but that ’ s not necessary for what you want to get
done today. You should also be checking for errors, of course.

 To indicate that you want this initialization function to be called for each new instance of your class, you
need to add the address that this function needs to your type object:

 (initproc)Encoder_init, / * tp_init * /

 You ’ re casting it here because you cheated and declared that Encoder_init accepted a
pylame2_EncoderObject * as its first argument instead of the more generic PyObject * . You can get
away with this type of stuff in C, but you have to be absolutely certain that you know what you ’ re doing.

 Because your instances now contain state that reference resources, you need to ensure that
those resources are properly disposed of when the object is released. To do this, update your
Encoder_dealloc function:

static void Encoder_dealloc(pylame2_EncoderObject * self) {
 if (self- > gfp) {
 lame_close(self- > gfp);
 }
 if (self- > outfp) {
 fclose(self- > outfp);
 }
 self- > ob_type- > tp_free(self);
}

 If you were to build your module with the code you have so far, import it, create an encoder object, and
then delete it (using the del keyword or rebinding the variable referencing your object to None or some
other object), you would end up with an empty file in the current directory because all you did was open
and then close it without writing anything to it. You ’ re getting closer!

 You now need to add support for the encode and close methods to your type. Previously, you had
created what was called a method table, but that was really defining module - level functions. Defining
methods for classes is just as easy but different. You define the methods just like the module - level
functions and then create a table listing them:

c17.indd 356c17.indd 356 12/22/09 11:00:45 AM12/22/09 11:00:45 AM

Chapter 17: Extension Programming with C

357

static PyObject * Encoder_encode(PyObject * self, PyObject * args) {
 Py_RETURN_NONE;
}

static PyObject * Encoder_close(PyObject * self) {
 Py_RETURN_NONE;
}

static PyMethodDef Encoder_methods[] = {
 { “encode”, Encoder_encode, METH_VARARGS,
 “Encodes and writes data to the output file.” },
 { “close”, (PyCFunction)Encoder_close, METH_NOARGS,
 “Closes the output file.” },
 { NULL, NULL, 0, NULL }
};

 Then the address of the table is used to initialize the tp_methods member of your type object:

 Encoder_methods, / * tp_methods * /

 With those stubs in place, you could build the module and see the methods and even call them on
your objects:

 > > > import pylame2
 > > > e = pylame2.Encoder(‘foo.mp3’)
 > > > dir(e)
[‘__class__’, ‘__delattr__’, ‘__doc__’, ‘__getattribute__’,
‘__hash__’,’__init__’, ‘__new__’, ‘__reduce__’, ‘__reduce_ex__’, ‘__repr__’,
‘__setattr__’, ‘__str__’, ‘close’, ‘encode’]
 > > > e.encode()
 > > > e.close()

 All you have to do now is implement the functions. Here ’ s Encoder_encode (sans complete
error - checking):

static PyObject * Encoder_encode(pylame2_EncoderObject * self,
PyObject * args) {
 char * in_buffer;
 int in_length;
 int mp3_length;
 char * mp3_buffer;
 int mp3_bytes;
 if (!(self- > outfp & & self- > gfp)) {
 PyErr_SetString(PyExc_Exception, “encoder not open”);
 return NULL;
 }
 if (!PyArg_ParseTuple(args, “s#”, & in_buffer, & in_length)) {
 return NULL;
 }
 in_length /= 2;
 mp3_length = (int)(1.25 * in_length) + 7200;
 mp3_buffer = (char *)malloc(mp3_length);
 if (in_length > 0) {

(continued)

c17.indd 357c17.indd 357 12/22/09 11:00:45 AM12/22/09 11:00:45 AM

Part III: Putting Python to Work

358

 mp3_bytes = lame_encode_buffer_interleaved(
 self- > gfp,
 (short *)in_buffer,
 in_length / 2,
 mp3_buffer,
 mp3_length
);
 if (mp3_bytes > 0) {
 fwrite(mp3_buffer, 1, mp3_bytes, self- > outfp);
 }
 }
 free(mp3_buffer);
 Py_RETURN_NONE;
}

 You expect this argument to be passed a string. Unlike strings in C, which are simple NULL - terminated
arrays of characters, you expect that this string will contain embedded NULL characters (the NULL
character, which is simple the end - of - string indication in C has the value of ’ \0 ‘ in C. Note the single
quotes — in C remember that the different quotes have different meanings. NULL can also be shown as
 “ ” in C.) Therefore, instead of using the “ s ” indicator when parsing the arguments, you use ” s# ” , which
allows for embedded NULL characters. PyArg_ParseTuple will return both the bytes in a buffer and
the length of the buffer instead of tacking a NULL character on the end. Other than that, this function is
pretty straightforward.

 Here ’ s Encoder_close :

static PyObject * Encoder_close(pylame2_EncoderObject * self) {
 int mp3_length;
 char * mp3_buffer;
 int mp3_bytes;
 if (!(self- > outfp & & self- > gfp)) {
 PyErr_SetString(PyExc_Exception, “encoder not open”);
 return NULL;
 }
 mp3_length = 7200;
 mp3_buffer = (char *)malloc(mp3_length);
 mp3_bytes = lame_encode_flush(self- > gfp, mp3_buffer,
sizeof(mp3_buffer));
 if (mp3_bytes > 0) {
 fwrite(mp3_buffer, 1, mp3_bytes, self- > outfp);
 }
 free(mp3_buffer);
 lame_close(self- > gfp);
 self- > gfp = NULL;
 fclose(self- > outfp);
 self- > outfp = NULL;
 Py_RETURN_NONE;
}

 You need to make sure you set outfp and gfp to NULL here to prevent Encoder_dealloc from trying to
close them again.

(continued)

c17.indd 358c17.indd 358 12/22/09 11:00:46 AM12/22/09 11:00:46 AM

Chapter 17: Extension Programming with C

359

 For both Encoder_encode and Encoder_close , you ’ re checking to make sure your object is in a valid
state for encoding and closing. Somebody could always call close and then follow that up with another
call to close or even a call to encode . It ’ s better to raise an exception than to bring down the process
hosting your extension module.

 You ’ ve gone over a lot to get to this point, so it would probably help if you could see the entire extension
module in one large example:

#include < Python.h >

#include < lame.h >

typedef struct {
 PyObject_HEAD
 FILE * outfp;
 lame_global_flags * gfp;
} pylame2_EncoderObject;

static PyObject * Encoder_new(PyTypeObject * type, PyObject * args,
PyObject * kw) {
 pylame2_EncoderObject * self = (pylame2_EncoderObject *)
type- > tp_alloc(type, 0);
 self- > outfp = NULL;
 self- > gfp = NULL;
 return (PyObject *)self;
}

static void Encoder_dealloc(pylame2_EncoderObject * self) {
 if (self- > gfp) {
 lame_close(self- > gfp);
 }
 if (self- > outfp) {
 fclose(self- > outfp);
 }
 self- > ob_type- > tp_free(self);
}

static int Encoder_init(pylame2_EncoderObject * self, PyObject * args,
PyObject * kw) {
 char * outpath;
 if (!PyArg_ParseTuple(args, “s”, & outpath)) {
 return -1;
 }
 if (self- > outfp || self- > gfp) {
 PyErr_SetString(PyExc_Exception, “__init__ already called”);
 return -1;
 }
 self- > outfp = fopen(outpath, “wb”);
 self- > gfp = lame_init();
 lame_init_params(self- > gfp);
 return 0;
}
 (continued)

c17.indd 359c17.indd 359 12/22/09 11:00:46 AM12/22/09 11:00:46 AM

Part III: Putting Python to Work

360

static PyObject * Encoder_encode(pylame2_EncoderObject * self,
PyObject * args) {
 char * in_buffer;
 int in_length;
 int mp3_length;
 char * mp3_buffer;
 int mp3_bytes;
 if (!(self- > outfp & & self- > gfp)) {
 PyErr_SetString(PyExc_Exception, “encoder not open”);
 return NULL;
 }
 if (!PyArg_ParseTuple(args, “s#”, & in_buffer, & in_length)) {
 return NULL;
 }
 in_length /= 2;
 mp3_length = (int)(1.25 * in_length) + 7200;
 mp3_buffer = (char *)malloc(mp3_length);
 if (in_length > 0) {
 mp3_bytes = lame_encode_buffer_interleaved(
 self- > gfp,
 (short *)in_buffer,
 in_length / 2,
 mp3_buffer,
 mp3_length
);
 if (mp3_bytes > 0) {
 fwrite(mp3_buffer, 1, mp3_bytes, self- > outfp);
 }
 }
 free(mp3_buffer);
 Py_RETURN_NONE;
}

static PyObject * Encoder_close(pylame2_EncoderObject * self) {
 int mp3_length;
 char * mp3_buffer;
 int mp3_bytes;
 if (!(self- > outfp & & self- > gfp)) {
 PyErr_SetString(PyExc_Exception, “encoder not open”);
 return NULL;
 }
 mp3_length = 7200;
 mp3_buffer = (char *)malloc(mp3_length);
 mp3_bytes = lame_encode_flush(self- > gfp, mp3_buffer,
sizeof(mp3_buffer));
 if (mp3_bytes > 0) {
 fwrite(mp3_buffer, 1, mp3_bytes, self- > outfp);
 }
 free(mp3_buffer);
 lame_close(self- > gfp);
 self- > gfp = NULL;
 fclose(self- > outfp);
 self- > outfp = NULL;
 Py_RETURN_NONE;

(continued)

c17.indd 360c17.indd 360 12/22/09 11:00:46 AM12/22/09 11:00:46 AM

Chapter 17: Extension Programming with C

361

}

static PyMethodDef Encoder_methods[] = {
 { “encode”, (PyCFunction)Encoder_encode, METH_VARARGS,
 “Encodes and writes data to the output file.” },
 { “close”, (PyCFunction)Encoder_close, METH_NOARGS,
 “Closes the output file.” },
 { NULL, NULL, 0, NULL }
};

static PyTypeObject pylame2_EncoderType = {
 PyObject_HEAD_INIT(NULL)
 0, / * ob_size * /
 “pylame2.Encoder”, / * tp_name * /
 sizeof(pylame2_EncoderObject), / * tp_basicsize * /
 0, / * tp_itemsize * /
 (destructor)Encoder_dealloc, / * tp_dealloc * /
 0, / * tp_print * /
 0, / * tp_getattr * /
 0, / * tp_setattr * /
 0, / * tp_compare * /
 0, / * tp_repr * /
 0, / * tp_as_number * /
 0, / * tp_as_sequence * /
 0, / * tp_as_mapping * /
 0, / * tp_hash * /
 0, / * tp_call * /
 0, / * tp_str * /
 0, / * tp_getattro * /
 0, / * tp_setattro * /
 0, / * tp_as_buffer * /
 Py_TPFLAGS_DEFAULT, / * tp_flags * /
 “My first encoder object.”, / * tp_doc * /
 0, / * tp_traverse * /
 0, / * tp_clear * /
 0, / * tp_richcompare * /
 0, / * tp_weaklistoffset * /
 0, / * tp_iter * /
 0, / * tp_iternext * /
 Encoder_methods, / * tp_methods * /
 0, / * tp_members * /
 0, / * tp_getset * /
 0, / * tp_base * /
 0, / * tp_dict * /
 0, / * tp_descr_get * /
 0, / * tp_descr_set * /
 0, / * tp_dictoffset * /
 (initproc)Encoder_init, / * tp_init * /
 0, / * tp_alloc * /
 Encoder_new, / * tp_new * /
 0, / * tp_free * /
};
 (continued)

c17.indd 361c17.indd 361 12/22/09 11:00:46 AM12/22/09 11:00:46 AM

Part III: Putting Python to Work

362

static PyMethodDef pylame2_methods[] = {
 { NULL, NULL, 0, NULL }
};

PyMODINIT_FUNC initpylame2() {
 PyObject * m;
 if (PyType_Ready(& pylame2_EncoderType) < 0) {
 return;
 }
 m = Py_InitModule3(“pylame2”, pylame2_methods, “My second LAME
module.”);
 Py_INCREF(& pylame2_EncoderType);
 PyModule_AddObject(m, “Encoder”, (PyObject *)
 & pylame2_EncoderType);
}

 You can now save this file as pylame2.c and compile it.

 On Linux:

gcc -shared -I/usr/include/python3.1 -I/usr/include/lame pylame2.c \
 -lmp3lame -o pylame2.so

 On Windows:

cl /LD /IC:\Python31\include /IC:\lame-3.98.2\include pylame2.c \
 C:\Python31\libs\python31.lib \
 C:\lame-3.98.2\libmp3lame\Release\libmp3lame.lib \
 C:\lame-3.98.2\mpglib\Release\mpglib.lib

 Once that ’ s done, you can exercise your new extension module with a simple driver script written
entirely in Python:

import pylame2

INBUFSIZE = 4096

encoder = pylame2.Encoder(‘test.mp3’)
input = file(‘test.raw’, ‘rb’)
data = input.read(INBUFSIZE)

while data != ‘’:
 encoder.encode(data)
 data = input.read(INBUFSIZE)

input.close()
encoder.close()

 That completes version 2 of your extension module. You ’ re able to read data from anywhere. Your
sample driver is still reading from the raw input file you created earlier, but there ’ s nothing stopping it
from extracting that information out of a WAV file or reading it from a socket.

(continued)

c17.indd 362c17.indd 362 12/22/09 11:00:46 AM12/22/09 11:00:46 AM

Chapter 17: Extension Programming with C

363

 The only deficiency with this version of the module is that you can ’ t customize how the encoded data is
written. You ’ re going to fix that in the next revision of the module by “ writing ” to an object and not
directly to the file system. Intrigued? Read on.

 Using Python Objects from C Code
 Python ’ s a dynamically typed language, so it doesn ’ t have a formal concept of interfaces even though we
use them all the time. The most common interface is the “ file ” interface. Terms like “ file - like object ”
describe this interface. It ’ s really nothing more than an object that “ looks like ” a file object. Usually, it can
get by with only either a read or write method and nothing more.

 For the next version of your extension module, you ’ re going to allow your users to pass in any file - like
object (supporting a write method) when constructing new encoder objects. Your encoder object will
simply call the write method with the MP3 - encoded bytes. You don ’ t have to be concerned about
whether it ’ s a real file object or a socket or anything else your users can dream up. This is polymorphism
at its finest.

 In the last version of the module, your object held a FILE * . You need to change this by adding a
reference to a PyObject and removing the FILE * :

typedef struct {
 PyObject_HEAD
 PyObject * outfp;
 lame_global_flags * gfp;
} pylame3_EncoderObject;

 Encoder_new can stay the same because all it does is set outfp to NULL . Encoder_dealloc , however,
needs to be modified:

static void Encoder_dealloc(pylame3_EncoderObject * self) {
 if (self- > gfp) {
 lame_close(self- > gfp);
 }
 Py_XDECREF(self- > outfp);
 self- > ob_type- > tp_free(self);
}

 Instead of calling fclose , you use the Py_XDECREF macro to decrement the reference count by one. You
can ’ t delete the object, because there might be other references to it. In fact, other references to this object
are likely because the object came from outside of this module. You didn ’ t create it, but somebody else
did and passed it in to you. They probably still have a variable bound to that object.

 If you ’ re decrementing the reference count here in Encoder_dealloc , you must be incrementing it
someplace else. You ’ re doing that in Encoder_init :

static int Encoder_init(pylame3_EncoderObject * self,
 PyObject * args, PyObjecti * kw) {
 PyObject * outfp;
 if (!PyArg_ParseTuple(args, “O”, & outfp)) {

(continued)

c17.indd 363c17.indd 363 12/22/09 11:00:47 AM12/22/09 11:00:47 AM

Part III: Putting Python to Work

364

 return -1;
 }
 if (self- > outfp || self- > gfp) {
 PyErr_SetString(PyExc_Exception, “__init__ already called”);
 return -1;
 }
 self- > outfp = outfp;
 Py_INCREF(self- > outfp);
 self- > gfp = lame_init();
 lame_init_params(self- > gfp);
 return 0;
}

 You ’ ve modified the format string for PyArg_ParseTuple to contain “ 0 ” instead of “ s ” . “ O ”
indicates that you want an object pointer. You don ’ t care what type of object it is; you just don ’ t want
 PyArg_ParseTuple to do any kind of conversion from the object to some primitive C data type.

 After you ’ re sure you were passed the correct number of arguments and __init__ hasn ’ t been called
before, you can store the object argument for later use. Here you ’ re using the Py_INCREF macro to
increment the reference count. This will keep the object alive until you decrement the count.

 Why did the previous macro, Py_XDECREF , have an X in it, whereas this one did not? There are actually
two forms of these macros. The “ X ” versions check to ensure that the pointer isn ’ t NULL before adjusting
the reference count. The non - “ X ” versions don ’ t do that check. They ’ re faster, but you have to know
what you ’ re doing in order to use them correctly. The documentation for PyArg_ParseTuple tells us
that if it succeeds, the output pointer will be valid, so you were safe using Py_INCREF here, but you
might not have been that safe using Encoder_dealloc .

 Making sure that you perfectly balance your increments with your decrements is the trickiest part of
implementing extension modules, so be careful. If you don ’ t, you could leak memory, or you might
access an object that ’ s already been deleted, which is never a good thing.

 It ’ s also very important to pay attention to the documentation for the different API functions you use in
terms of references. Some functions will increase the reference count before returning it. Others won ’ t.
The documentation for PyArg_ParseTuple states that the reference count is not increased, which is why
you have to increment it if you expect it to stick around for as long as you need it.

 Now that you have an object (that hopefully has a write method), you need to use it. Instead of calling
 fwrite in Encoder_encode and Encoder_close , you want to call the write method on your object.
The Python API has a function called PyObject_CallMethod that will do exactly what you need it to
do. Here ’ s the snippet of code you would use in both Encoder_encode and Encoder_close to call the
 write method on your object:

PyObject * write_result = PyObject_CallMethod(
 self- > outfp, “write”, “(s#)”,
mp3_buffer, mp3_bytes);
if (!write_result) {
 free(mp3_buffer);
 return NULL;
}
Py_DECREF(write_result);

(continued)

c17.indd 364c17.indd 364 12/22/09 11:00:47 AM12/22/09 11:00:47 AM

Chapter 17: Extension Programming with C

365

 PyObject_CallMethod requires three parameters. The first is the object on which you ’ re invoking the
method. This object will be the first argument into the method, usually called self . The second
argument to PyObject_CallMethod is the name of the method. The third argument is a format string
describing the arguments. This can be NULL if there are no arguments. When it ’ s not NULL , it looks very
similar to a PyArg_ParseTuple format string except it ’ s always surrounded with parentheses.
 PyObject_CallMethod is basically calling Py_BuildValue for you with these parameters, and the
tuple that results is being passed in to your method.

 PyObject_CallMethod returns a PyObject * . All write method implementations probably return
 None , but you ’ re still responsible for decrementing the reference count.

 Because most of pylame3.c hasn ’ t changed from pylame2.c , I won ’ t include the entire file here.
It shouldn ’ t be too difficult to insert the changes described in this section.

 Once the new version of the module is compiled, you can use any file - like object you want as a
parameter to the Encoder object. Here ’ s an example that demonstrates this:

import pylame3

INBUFSIZE = 4096

class MyFile(file):

 def __init__(self, path, mode):
 file.__init__(self, path, mode)
 self.n = 0

 def write(self, s):
 file.write(self, s)
 self.n += 1

output = MyFile(‘test3.mp3’, ‘wb’)
encoder = pylame3.Encoder(output)
input = file(‘test.raw’, ‘rb’)

data = input.read(INBUFSIZE)
while data != ‘’:
 encoder.encode(data)
 data = input.read(INBUFSIZE)

input.close()
encoder.close()
output.close()

print(‘output.write was called %d times’ % output.n)

 This example includes a class derived from the built - in file object to show off some of the stuff you can
do. OK, it ’ s not that impressive, but it at least shows how flexible your new extension module can be. As
long as you pass in an object that has a write method, your extension module is happy.

c17.indd 365c17.indd 365 12/22/09 11:00:47 AM12/22/09 11:00:47 AM

Part III: Putting Python to Work

366

 Summary
 In this chapter, you learned how to expose simple functions implemented in C to Python developers by
creating an extension module and defining a method table. Converting Python objects to C values is
done using PyArg_ParseTuple . Going the opposite way, turning a C value into a Python object is done
using Py_BuildValue .

 You also looked at how to define new types in an extension module by defining the object and type
structures. You set up the type object so that it could create new instances of your type and later destroy
them. Making sure that you correctly increment and decrement the reference counts of objects that you
use requires careful consideration.

 There ’ s a lot more to writing extension modules, of course, but not enough room in one chapter to cover
it all. Be sure to consult the documentation at http://docs.python.org/ext/ext.html and
 http://docs.python.org/api/api.html .

 The key points to take away from this chapter are:

 While code that is written in C may run faster than code written in Python, it is important to
note that writing code in Python is much faster than writing it in C.

 Python extension modules are normal C libraries. On UNIX machines, these libraries usually
end in .so (for shared object). On Windows machines, you typically see .dll (for dynamically
linked library).

 The distutils package makes it possible to distribute Python modules in a standard way.

 The - - help - commands argument displays all of the commands that a setup script is capable of
responding to.

 You can use PyArg_ParseTuple and PyArg_ParseTupleAndKeywords to convert from Python
objects into C values. To do the reverse, use Py_BuildValue.

 Exercises
 1. Add a new module - level function to the foo module you created earlier in the chapter. Call the

function reverse_tuple and implement it so that it accepts one tuple as an argument and returns
a similarly sized tuple with the elements in reverse order. Completing this exercise is going to
require research on your part because you need to know how to “ unpack ” a tuple. You already know
one way to create a tuple (using Py_BuildValue), but that ’ s not going to work for this exercise,
because you want your function to work with tuples of arbitrary size. The Python/C API
documentation for tuples (at http://docs.python.org/api/tupleObjects.html) lists all of
the functions you need to accomplish this. Be careful with your reference counting!

 2. List and dictionary objects are an extremely important part of nearly all Python applications
so it would be useful to learn how to manipulate those objects from C. Add another function to
the foo module called dict2list that accepts a dictionary as a parameter and returns a list.
The members of the list should alternate between the keys and the values in the dictionary. The
order isn ’ t important as long as each key is followed by its value. You ’ ll have to look up how to
iterate over the items in the dictionary (hint: look up PyDict_Next) and how to create a list and
append items to it (hint : look up PyList_New and PyList_Append).

❑

❑

❑

❑

❑

c17.indd 366c17.indd 366 12/22/09 11:00:48 AM12/22/09 11:00:48 AM

 18
Numerical Programming

 In this chapter, you learn how to use Python to work with numbers. You ’ ve already seen some
arithmetic examples, but after reading this chapter, you ’ ll have a better understanding of the
different ways you can represent numbers in Python, of how to perform mathematical
computations, and of efficient ways of working with large numerical data sets.

 Numerical code lies at the heart of technical software, and is used widely in science, engineering,
finance, and related fields. Almost any substantial program does some nontrivial numerical
computation, so it pays to be familiar with some of the contents of this chapter even if you are not
working in one of these fields. For instance, if you are writing a script to analyze web logs, you
might want to compute statistics on the rate of hits on your web server; if you are writing a
program with a graphical user interface, you might need math functions to compute the
coordinates of the graphics in your GUI.

 Parts of this chapter require some understanding of math beyond simple arithmetic. Feel free to
skip over these if you have forgotten the math being used. The last section of this chapter, which
discusses numerical arrays, is technically more advanced than most of the material in this book,
but it ’ s important reading if you plan to use Python for handling large sets of numbers.

 Designing software that performs complex numerical computation, known as numerical analysis , is
both a science and an art. There are often many ways of doing a computation, and numerical
analysis tells you which of these will produce an answer closest to the correct result. Things can
get tricky, especially when working with floating - point numbers, because, as you will see, a
floating - point number is merely an approximation of a real number. This chapter mentions
numerical precision but doesn ’ t go into the finer points, so if you are embarking on writing
software that performs extensive floating - point computations, consider flipping through a book on
numerical analysis to get a sense of the kind of problems you might run into.

 In this chapter you learn:

 The different data types that relate to numbers .

 Some basic (and advanced) math operators .

❑

❑

c18.indd 367c18.indd 367 12/22/09 5:33:14 PM12/22/09 5:33:14 PM

368

Part III: Putting Python to Work

 How to perform mathematical equations on arrays .

 How to work with the math and array modules .

 Numbers in Python
 A number, like any object in Python, has a type. Python has three basic numerical types. One of these,
 int , represents integers, and float represents floating - point numbers. The third numeric type, which is
covered later in this chapter, represents complex floating - point numbers.

 Integers
 You ’ ve already seen the integer type, int . If you write an ordinary number in your program like 42 ,
called a literal number, Python creates an int object for it:

 > > > x = 42
 > > > type(x)
 < class ‘int’ >

 You didn ’ t have to construct the int explicitly, but you could if you want, like this:

 > > > x = int(42)

 You can also use the int constructor to convert other types, such as strings or other numerical types, to
integers:

 > > > x = int(“17”)
 > > > y = int(4.8)
 > > > print(x, y, x - y)
17 4 13

 In the first line, Python converts a string representing a number to the number itself; you can ’ t do math
with “ 17 ” (a string), but you can with 17 (an integer). In the second line, Python converted the floating -
 point value 4.8 to the integer 4 by truncating it — chopping off the part after the decimal point to make it
an integer.

 When you convert a string to an int , Python assumes the number is represented in base 10. You can
specify another base as the second argument. For instance, if you pass 16, the number is assumed to be
hexadecimal:

 > > > hex_number = “a1”
 > > > print(int(hex_number, 16))
161

 You can specify hexadecimal literals by prefixing the number with 0x . For example, hexadecimal 0xa1 is
equivalent to decimal 161 . Similarly, literals starting with just a 0 are assumed to be octal (base 8), so
octal 0105 is equivalent to decimal 69 . These conventions are used in many other programming
languages, too.

❑

❑

c18.indd 368c18.indd 368 12/22/09 5:33:15 PM12/22/09 5:33:15 PM

Chapter 18: Numerical Programming

369

 Long Integers
 What ’ s the largest number Python can store in an int ? Prior to Python 3.0, Python used at least 32 bits to
represent integers, which meant that you could store numbers at least as large as 2 31 – 1 and negative
numbers as small as – 2 31 . If you needed to store a larger number, Python provided the long type, which
represented arbitrarily large integers.

 For example, long before the search engine Google existed, mathematicians defined a googol , a one
followed by 100 zeros. To represent this number in Python, you used to type out the hundred zeros, or
you could have saved yourself the trouble by using the exponentiation operator, ** :

 > > > googol = 10 ** 100
 > > > print(googol)
100
00

 The preceding was an example of a long integer. Starting in Python 3.0, the long type no longer exists;
instead, int has been extended so that there is no limit to the size of an integer.

 Floating - point Numbers
 In Python, a floating - point number is represented by a float object. A floating - point number is only an
approximation to a real number, so you may sometimes see results that look strange. For example:

 > > > x = 1.1
 > > > x
1.1000000000000001
 > > > print(x)
1.1

 What ’ s going on here? You assigned to x the floating - point approximation to the number 1.1. The floating -
 point number that Python can represent that is closest to 1.1 is actually a tiny bit different, and Python is
honest with you and shows this number when you ask for the full representation of x . When you print x ,
however, Python provides you with a “ nice ” depiction of the number, which doesn ’ t show enough
decimal places to illustrate the floating - point approximation.

 Simply entering x at the command prompt prints what you would get by calling repr(x) . Entering
 print x prints what you would get by calling str(x) .

 As with integers, you can use the float constructor to covert strings to numbers (but only in base 10).
For example:

 > > > x = float(“16.4”)

c18.indd 369c18.indd 369 12/22/09 5:33:15 PM12/22/09 5:33:15 PM

370

Part III: Putting Python to Work

 Very large and very small floating - point numbers are represented with exponential notation , which
separates out the power of ten. A googol as a floating - point number would be 1e+100 , which means the
number 1 times ten raised to the power 100. The U.S. national debt at the time this was written,
according to the Treasury Department website, was:

 > > > debt = 11322188570453.51

 Python prefers exponential notation to print a number this large:

 > > > print(debt)
1.13221885705e+13

 You can also enter literals with exponential notation.

Floating - point Precision
 A floating - point number is an approximation. As you have seen, it can carry only
a limited number of digits of precision.

 Formally, Python does not make any promises about the number of digits of
precision retained in float variables. However, internally Python uses the C
type double to store the contents of float objects, so if you know the precision
of a C double variable on a platform, you ’ ll know the precision of a Python
 float when running on that platform.

 Most systems store a double in 64 bits and provide about 16 digits of precision.

 Formatting Numbers
 You can convert any Python number to a string using the str constructor. This produces the text that
would be printed by the print statement, as a string object. For simple applications, this is adequate.

 For better control of the output format, use Python ’ s built - in string formatting operator, % .

 Note that this has nothing to do with the remainder operator. If you use % after a string, that ’ s the string
formatting operator. If you use % between two numbers, you get the remainder operator.

 Following are some details on formatting numbers. If you are familiar with the printf function in C,
you already know much of the syntax for formatting numbers in Python.

 To format an integer, use the %d conversion in the format string. For a floating - point number, use %f . If
you use %d with a floating - point number or %f with an integer, Python will convert the number to the
type indicated by the conversion. For example:

c18.indd 370c18.indd 370 12/22/09 5:33:15 PM12/22/09 5:33:15 PM

Chapter 18: Numerical Programming

371

 > > > print(“%d” % 100)
100
 > > > print(“%d” % 101.6)
101

 You probably didn ’ t really notice, because it ’ s so obvious, that Python formatted these integers in
base 10. For some applications, you might prefer your output in hexadecimal. Use the %x conversion to
produce this. If you use %#x , Python puts 0x before the output to make it look just like a hexadecimal
literal value, like so:

 > > > print(“%#x” % 100)
0x64

 Similarly, %o (that ’ s the letter “ o, ” not a zero) produces output in octal, and %#o produces octal output
preceded by a 0 .

 For integers, you can specify the width (number of digits) of the output by placing a number after the %
in the format string. If the number starts with 0 , the output will be left - padded with zeros; otherwise, it
will be padded with spaces. In the examples that follow, the output is surrounded with parentheses so
you can see exactly what Python generates for the %d conversions:

 > > > print(“z is (%6d)” % 175)
z is (175)
 > > > print(“z is (%06d)” % 175)
z is (000175)

 When you format floating - point numbers, you can specify the total width of the output, and/or the
number of digits displayed after the decimal place. If you want the output to have total width w and to
display p decimal places, use the conversion %w.pf in the format string. The total width includes the
decimal point and digits after the decimal point. Unlike converting a float to an integer value, Python
 rounds to the nearest digit in last decimal place:

 > > > x = 20.0 / 3
 > > > print(“(%6.2f)” % x)
(6.67)

 If you omit the number before the decimal point, Python uses as much room as necessary to print the
integer part and the decimal places you asked for:

 > > > print(“(%.4f)” % x)
(6.6667)

 You can demand as many digits as you want, but remember that a float carries a limited precision and,
therefore, contains information for only 16 digits or so. Python will add zero digits to fill out the rest:

 > > > two_thirds = 2.0 / 3
 > > > print(“%.40f” % two_thirds)
0.6666666666666666300000000000000000000000

c18.indd 371c18.indd 371 12/22/09 5:33:16 PM12/22/09 5:33:16 PM

372

Part III: Putting Python to Work

 The number you see may be slightly different, because architectures handle the details of floating - point
computations differently.

 If you omit the number after the decimal point (or specify zero decimal places), Python doesn ’ t show
any decimal places and omits the decimal point, too:

 > > > print(“(%4.f)” % x)
(7)

 For example, the following function formats the ratio of its arguments, num and den , as a percentage,
showing one digit after the decimal point:

 > > > def as_percent(num, den):
... if den == 0:
... ratio = 0
... else:
... ratio = float(num) / den
... return “%5.1f%%” % (100 * ratio)
...
 > > > print(“ratio = “ + as_percent(6839, 13895))
ratio = 49.2%

 One nice thing about this function is that it confirms that the denominator is not zero, to avoid division -
 by - zero errors. Moreover, look closely at the format string. The first % goes with the f as part of the
floating - point conversion. The %% at the end is converted to a single % in the output: Because the percent
symbol is used to indicate a conversion, Python requires you to use two of them in a format string if you
want one in your output.

 You don ’ t have to hard - code the width or number of decimal places in the format string. If you use an
asterisk instead of a number in the conversion, Python takes the value from an extra integer argument in
the argument tuple (positioned before the number that ’ s being formatted). Using this feature, you can
write a function that formats U.S. dollars. Its arguments are an amount of money and the number of
digits to use for the dollars part, not including the two digits for cents:

 > > > def format_dollars(dollars, places):
... return “$%*.2f” % (places + 3, dollars)
...
 > > > print(format_dollars(499.98, 5))
$ 499.98

 In the format string, you use * instead of the total width in the floating - point conversion. Python looks at
the argument tuple and uses the first value as the total width of the conversion. In this case, you specify
three more than the desired number of digits for dollars, to leave room for the decimal point and the two
digits for cents.

 Even more options are available for controlling the output of numbers with the string formatting
operator. Consult the Python documentation for details, under the section on sequence types (because
strings are sequences) in the Python Library Reference .

c18.indd 372c18.indd 372 12/22/09 5:33:16 PM12/22/09 5:33:16 PM

Chapter 18: Numerical Programming

373

 Characters as Numbers
 What about characters? C and C++ programmers are used to manipulating characters as numbers,
because C ’ s char type is just another integer numeric type. Python doesn ’ t work like this, though. In
Python, a character is just a string of length one, and cannot be used as a number.

 Occasionally, you might need to convert between characters and their numeric values. Python provides
the built - in function ord to convert a single character to its numeric code and the function asc to convert
back from a numeric code to a character. The numeric code must be between 0 and 255.

 Strictly speaking, this code is not ASCII, because ASCII only goes up to 127. However, the first 127
values converted by ord and asc are ASCII code values.

 If you are a Usenet regular, you are probably familiar with the rot13 cipher. It ’ s not particularly secure; all
it does is rotate letters of the alphabet 13 positions forward, wrapping around from “ z ” to “ a. ” Using chr
and ord functions, it ’ s not hard to implement in Python:

def rot13_character(character):
 # Look up codes for ends of the alphabet.
 a = ord(‘a’)
 z = ord(‘z’)
 A = ord(‘A’)
 Z = ord(‘Z’)

 code = ord(character)
 # Rotate lower-case characters.
 if a < = code < = z:
 code = a + (code - a + 13) % 26
 # Rotate upper-case characters.
 elif A < = code < = Z:
 code = A + (code - A + 13) % 26
 # Leave other characters alone.
 else:
 pass
 return chr(code)

def rot13(plaintext):
 # Loop over letters in the text.
 ciphertext = “”
 for character in plaintext:
 ciphertext += rot13_character(character)
 return ciphertext

 The program is composed of two functions. The first, rot13_character , applies rot13 to a single
character. If it ’ s an uppercase or lowercase letter, it is rotated 13 places; otherwise, it is left alone.
(In case you are not familiar with the remainder operator, % , it is described in the next section.) The main
function, rot13 , takes the message to be coded (the “ plaintext ”) and creates the encoded message
(the “ ciphertext ”) by rotating each letter.

c18.indd 373c18.indd 373 12/22/09 5:33:16 PM12/22/09 5:33:16 PM

374

Part III: Putting Python to Work

 Type the preceding code into a module file named rot13.py . In Python, import the module and
try it out:

 > > > import rot13
 > > > message = rot13.rot13(“This is a TOP-SECRET encoded message.”)
 > > > print(message)
Guvf vf n GBC-FRPERG rapbqrq zrffntr.

 rot13 has the nice property that it is its own inverse: To decode a rot13 - encoded message, you just
apply rot13 to it again:

 > > > print(rot13.rot13(message))
This is a TOP-SECRET encoded message.

 Mathematics
 In addition to the usual complement of arithmetic operations, Python includes some handy built - in math
functions, and a math module that provides other commonly used functions. Coverage of arithmetic
operators may seem obvious, but you should also understand some subtle points about how Python
handles certain numeric types.

 Arithmetic
 Python provides the normal arithmetic operators + (addition), − (subtraction), * (multiplication), and
/ (division) for numerical types. You can mix numerical types when using these operators; Python
automatically chooses the more flexible type for the result:

 > > > i = 10
 > > > f = 6.54
 > > > print(i + f)
16.54

 When adding an integer, i , and a floating - point number f , Python chose a float for the result.

 These operators all have special forms for updating the values of variables, written by adding an equals
sign right after the operator. Instead of writing

 > > > total = total + 6
 > > > coefficient = coefficient / 2

 you can simply write:

 > > > total += 6
 > > > coefficient /= 2

 and so forth.

c18.indd 374c18.indd 374 12/22/09 5:33:17 PM12/22/09 5:33:17 PM

Chapter 18: Numerical Programming

375

 When dividing two integers, Python always uses an integer type for the result, unless the result is
fractional, as is the case in the following example:

 > > > print 10 / 3
3.33333333333

Floor Division
Python provides another division operator, called floor division , which explicitly
rounds down the quotient to an integer. Floor division is represented by // . You
can use it with float objects as well: for instance, 6.6//3.0 evaluates to 2.0 .

 The exponentiation operator ** is used previously in examples. It, too, works for integer and floating -
 point values. The function that follows uses it to compute compounded interest. The function returns the
amount of money you would have if you put starting_balance in a bank account with APR annual_
rate and waited for years :

 > > > def compound(starting_balance, annual_rate, years):
... return starting_balance * ((1 + annual_rate) ** years)
...

 Ten grand in the bank at 4 percent APR for a century yields:

 > > > print(compound(10000, 0.04, 100))
505049.481843

 That ’ s half a million bucks. Start saving now.

 Also useful is the remainder operator % . It ’ s like floor division, but instead of returning the quotient,
it returns the remainder. Using it, you can format a number of months into whole years and
remaining months:

 > > > def format_months(months):
... print(“%d years, %d months” % (months // 12, months % 12))
...
 > > > format_months(100)
8 years, 4 months

 Built - in Math Functions
 A few very common mathematical functions are available as built - in functions. The simplest is abs ,
which returns the absolute value of a number. The number that abs returns is the same type as the
number you pass it:

 > > > print(abs(-6.5))
6.5

c18.indd 375c18.indd 375 12/22/09 5:33:17 PM12/22/09 5:33:17 PM

376

Part III: Putting Python to Work

 Also useful are min and max , which return the smallest or largest of several values. You can call them
either with several numeric arguments or with a single argument that is a sequence (such as a list or
tuple) of numbers. The values needn ’ t all be the same type:

 > > > print(min(6, 7, 2, 8, 5))
2
 > > > print(max([0, 43.5, 19, 5, -6]))
43.5

 The round function rounds a floating - point value to a specified number of digits. This is similar to the
behavior you saw before in the %f conversions, except the result is not a string but rather another
floating - point number with which you can perform further computations. Specify the number to round,
and the number of decimal places you want to keep:

 > > > print(round(1234.56789, 2))
1234.57

 You can even specify a negative number of decimal places, which rounds to that multiple of 10:

 > > > print(round(1234.56789, -2))
1200.0

 Lastly, the sum function adds numbers in a sequence. Together with range , you can compute the sum of
the first 100 positive integers:

 > > > print(sum(range(1, 101)))
5050

 Suppose in your Python programming class you got a 96 percent and 90 percent on the two homework
assignments, a perfect score on the final project, and an 88 percent on the final exam. What ’ s your
average for the class? Of course, you would write a Python function to compute it. The function uses
sum and computes the mean, or average, value of a sequence of numbers:

 > > > def mean(numbers):
... if numbers:
... return float(sum(numbers)) / len(numbers)
... else:
... raise ValueError(“no numbers specified”)
...
 > > > print(mean([96, 90, 100, 88]))
93.5

 It ’ s a good idea to make sure that the sequence of numbers isn ’ t empty, to avoid dividing by zero. In this
case, the function raises an exception if the sequence is empty.

 The math module contains the standard transcendental functions listed here. All these functions take
 float arguments and return float values:

c18.indd 376c18.indd 376 12/22/09 5:33:17 PM12/22/09 5:33:17 PM

Chapter 18: Numerical Programming

377

 Square root: sqrt

 Exponentiation: exp

 Logarithms: log (natural logarithm), log10 (base 10 logarithm)

 Trigonometric functions: sin , cos , and tan ; arguments are in radians

 Inverse trigonometric functions: asin , acos , and atan ; results are in radians

 Hyperbolic functions: sinh , cosh , and tanh

 A few other useful math functions are included:

 hypot(x, y) is equivalent to sqrt(x ** 2 + y ** 2)

 atan2(x, y) is like atan(x / y) but gets the quadrant right and handles a zero denominator

 floor and ceil are the standard floor and ceiling functions; their results are integers but
represented as float values

 The math package also contains the constants pi and e .

 Here ’ s some sample code that uses the math module. It will give you flashbacks to your freshman
physics class. It ’ s a function that computes the time of flight and range of a projectile launched into
the air (such as a cannonball), neglecting friction. Examine it at least long enough to understand how the
Python code works. Pay attention to how sin , cos , and pi are imported from math , which saves
you from having to refer to them as math.sin and so on. It ’ s a handy technique for commonly used
functions. Note also how carefully the units used in the arguments and results are documented. Many
failed rocket launches attest to the importance of this practice.

from math import sin, cos, pi

def trajectory(velocity, angle):
 “””Compute time of flight and range of a projectile.

 For a projectile with initial ‘velocity’ in meters/sec launched at
 ‘angle’ from horizontal in degrees, returns time of flight in sec
 and range in meters, neglecting friction.”””

 # Gravitational acceleration in meters/sec^2.
 g = 9.8
 # Convert ‘angle’ to radians.
 angle = angle * pi / 180
 # Compute horizontal and vertical components of velocity.
 v_h = velocity * cos(angle)
 v_v = velocity * sin(angle)
 # Compute the time of flight and range.
 tof = 2 * v_v / g
 range = tof * v_h
 return tof, range

❑

❑

❑

❑

❑

❑

❑

❑

❑

c18.indd 377c18.indd 377 12/22/09 5:33:18 PM12/22/09 5:33:18 PM

378

Part III: Putting Python to Work

 Suppose you throw a ball into the air at 40 m/sec (about 90 mph) at a 45 ̊ angle. How long will it stay in
the air, and how far away will it land? Save the preceding code into a file named ballistic.py , and
then call the function like this:

 > > > from ballistic import trajectory
 > > > tof, range = trajectory(40, 45)
 > > > print(“time of flight: %.1f sec, range: %.0f meters” % (tof, range))
time of flight: 5.8 sec, range: 163 meters

 Complex Numbers
 A complex number is the sum of a real number and an imaginary number. In case you need a refresher, an
imaginary number is a multiple of the imaginary unit , which is the square root of – 1. Mathematicians
(and math teachers) usually use the symbol i for the imaginary unit, whereas engineers often use j .

 In Python, an imaginary number is written as a number followed by j (with no intervening spaces):

 > > > imaginary_number = 16j

 To create a complex number, add (or take the difference of) a real number and an imaginary number:

 > > > complex_number = 6 + 4j

 Python stores the complex number as a single object, whose type is complex :

 > > > print(complex_number)
(6+4j)
 > > > print(type(complex_number))
 < class ‘complex’ >

 If you prefer, you can use the complex constructor to construct complex number objects. This
assignment is equivalent to the preceding one:

 > > > complex_number = complex(6, 4)

 Let ’ s make sure that 1j is really the imaginary unit:

 > > > print(1j ** 2)
(-1+0j)

 This verifies that j 2 is in fact – 1, and also demonstrates that the result of an arithmetic operation
involving complex values is itself a complex , even if the result happens to be a real number (that is, has
a zero imaginary part).

 You can ’ t write j by itself to represent the imaginary unit. You must write 1j . By itself, j represents
the variable named “ j. ”

c18.indd 378c18.indd 378 12/22/09 5:33:18 PM12/22/09 5:33:18 PM

Chapter 18: Numerical Programming

379

 Both the real and imaginary parts of a complex object are stored as floating - point values, even if you
specified them as integers. Remember that 1/3 in Python returns zero? Not so for complex numbers:

 > > > print((1+0j)/3)
(0.333333333333+0j)

 Arithmetic works for complex numbers as you would expect, and you can mix int , float , and complex
in the same expression:

 > > > print(2 * (10 + 3j) * (6.5 - 4j) / (1 - 1j) + 30)
(127.5+56.5j)

 A few other operations round out Python ’ s handling of complex numbers. First, the mathematical
operations Re and Im return the real and imaginary parts of a complex number, respectively. These are
provided in Python by attributes named real and imag that every complex object has. The value of
each is a float :

 > > > x = 5 - 6j
 > > > print(x.real)
5.0
 > > > print(x.imag)
-6.0

 You saw before that the built - in abs function returns the absolute value of an int , long , or double
object. For complex numbers, it returns the magnitude, which is the square root of the sum of the
squares of the real and imaginary parts. You can verify this by using the hypot function discussed
previously:

 > > > print(abs(x))
7.81024967591
 > > > import math
 > > > print(math.hypot(x.real, x.imag))
7.81024967591

 Finally, every complex object has a method conjugate , which returns the complex conjugate. This is the
complex number with the same real part and negated imaginary part. Keep in mind that whereas real
and imag are attributes (you don ’ t call them), conjugate is a method (you must call it):

 > > > print(x.conjugate())
(5+6j)

 The transcendental functions in the math package work only on and return float values. For instance,
you can ’ t actually take the square root of – 1 to obtain 1j :

 > > > print(math.sqrt(-1))
Traceback (most recent call last):
 File “ < interactive input > ”, line 1, in ?
ValueError: math domain error

c18.indd 379c18.indd 379 12/22/09 5:33:18 PM12/22/09 5:33:18 PM

380

Part III: Putting Python to Work

 That ’ s a shame, because square roots and most of the other functions in math can be defined on complex
numbers, too. Fortunately, Python provides a parallel module named cmath , which contains versions of
the same functions that operate on and return complex objects. Its version of the square root function
can handle – 1:

 > > > import cmath
 > > > print(cmath.sqrt(-1))
1j

Precision of Complex Numbers
Let ’ s verify the famous and very fundamental mathematical identity ei π + 1 = 0:

 > > > print(cmath.exp(1j * cmath.pi) + 1)
1.22460635382e-016j

 What ’ s this? It ’ s a complex number with real part of zero and imaginary part
approximately 1.225 � 10 � 16 . That ’ s close, but not quite equal to zero.

 Python stores both the real part and the complex part with the same precision as
a float value, about 16 digits on most systems. That means Python ’ s
representation of eiπ is equal to – 1 only to about 16 digits. Therefore, you
shouldn ’ t be surprised if the result after adding +1 is off by about 10 – 16.

 Arrays
 You ’ ve learned how to perform computations with individual numbers, be they integers, floating - point
numbers, or even complex numbers. What if you want to perform computations on many numbers?
A group of numbers is typically arranged into an array . In this section, you learn different ways of
implementing arrays in Python.

 Keep in mind that arrays may be multidimensional. If you arrange numbers in a row, you have a
one - dimensional array. A vector in linear algebra is an example; another is a list of daily closing prices
of your favorite stock. You can also arrange your numbers on a rectangular grid, to produce a two -
 dimensional array. A grayscale image is often represented as a two - dimensional array, where each value
is the lightness of one pixel in the image. In some applications, you may want to arrange your numbers
into higher - dimensional arrays as well.

 You ’ ve already seen one technique for constructing arrays in Python, when you wrote the mean function
earlier. That function takes a sequence of numbers (of arbitrary length) and computes the numbers ’
mean. You can think of this sequence of numbers as an array and can think of mean as a function that
acts on an array. You can invoke the function with a list of numbers, but it works with any sequence
type, including tuples. These built - in types are the simplest way of building arrays.

c18.indd 380c18.indd 380 12/22/09 5:33:19 PM12/22/09 5:33:19 PM

Chapter 18: Numerical Programming

381

Lists or Tuples?
Which should you use for arrays: lists or tuples? Remember that lists can be
modified, whereas tuples cannot. Therefore, if you need to add to, remove from,
or change the array, use a list. Though you can perform these operations on a
tuple by creating a new tuple with numbers added, removed, or changed, this is
more difficult to code and often runs more slowly. For fixed sequences of
numbers, you can use tuples.

 Let ’ s take another example of a function that operates on an array. You already wrote a function that
computes the mean of an array of numbers. Now write a function that computes the standard
deviation. To remind you, the standard deviation is an indication of how much the numbers vary
among themselves. If they ’ re all almost the same, the standard deviation will be small, whereas if they
are all over the place, the standard deviation will be large. The formula for the standard deviation that
you will use is shown in Figure 18 - 1.

Figure 18-1

 Here x 1 , . . . , x N are the numbers in the array, µ is their mean, and N is the length of the array.

 You could implement a standard deviation function several different ways. Here ’ s one of them:

from math import sqrt

def stddev(numbers):
 n = len(numbers)
 sum = 0
 sum_of_squares = 0
 for number in numbers:
 sum += number
 sum_of_squares += number * number
 return sqrt(sum_of_squares / n - (sum / n) ** 2)

 This function loops over the numbers to compute their sum of squares. Simultaneously, it computes their
sum, because it needs that to compute the mean. The last line computes the standard deviation according
to the preceding formula. You might have noticed that the function uses number * number when
computing the sum of squares instead of number ** 2 ; that ’ s because squaring a number by
multiplying it by itself is faster than using the general exponentiation operator.

 Watch stddev in action. Remember that it takes one argument, a sequence of numbers (not several
numerical arguments):

 > > > print(stddev((5.6, 3.2, -1.0, 0.7)))
2.50137462208

c18.indd 381c18.indd 381 12/22/09 5:33:19 PM12/22/09 5:33:19 PM

382

Part III: Putting Python to Work

 Think for a moment about some advantages and drawbacks of using lists of numbers for arrays:

 The elements of a Python list need not be of the same type. You can create a list for which some
elements are int , float , long , and double , or other objects like strings or even other
sequences. For some applications, this is very handy. For instance, you may want to store None
in a sequence to indicate that a value is not known. For other applications, it ’ s important to
make sure that all of the values in an array are of the same type. In that case, you ’ ll have to write
extra code to ensure this.

 Lists are single - dimensional, which makes them natural for expressing one - dimensional arrays.
You can create two - dimensional arrays as lists of lists and higher - dimensional arrays
analogously, but this can get complicated.

 Lists are a standard part of Python. They ’ re always available (you don ’ t even have to import a
module), and you already know how to use them.

 Lists can be pickled. That makes it easy to store your list in a file for later use.

 Internally, Python represents each element in a list as a separate object. Therefore, if you have a
list of a million numbers (not at all unusual in many fields), you force Python to keep track of
1,000,001 objects: the list itself and all of its elements. This both wastes a lot of memory and
makes Python work pretty hard whenever you access or modify the array.

 This last point is a major limitation in many types of numerical work. To address it, you can use one of
two other array implementations that store numbers more efficiently.

 The Array Module
 The Python standard library has just the ticket: a module array for one - dimensional arrays of
numbers. The array type in this module stores numbers all together in memory as one object subject to
the constraint that all of them must be of the same type. The numerical types supported by array are
not the same as Python ’ s numeric types. (In fact, they correspond to the numerical types in the C
language.) An array can store numbers equivalent to Python ’ s int and float , as well as integers of
other sizes, and floating - point numbers of other precisions. (An array can store long values, but not
arbitrarily large ones, and cannot store complex values at all.)

 When you create an array, you have to specify the numerical type to store in the array. The type is
specified by a single character. To store numbers as Python int objects, use “ l ” ; for float use “ d ” .
(Other options are available; see the documentation for the array module for a list of them.) If you don ’ t
specify anything else, you ’ ll get an empty array:

 > > > import array
 > > > a = array.array(“l”)
 > > > print(a)
array(‘l’)

 Generally, you can use an array object just as you would an ordinary list. You can insert, append, or
delete elements, and the indexing syntax is the same. (Note that in versions of Python earlier than 2.4, an
 array object is somewhat more limited than a list object.) For example:

❑

❑

❑

❑

❑

c18.indd 382c18.indd 382 12/22/09 5:33:20 PM12/22/09 5:33:20 PM

Chapter 18: Numerical Programming

383

 > > > a.append(15)
 > > > a.extend([20, 17, 0])
 > > > print(a)
array(‘l’, [15, 20, 17, 0])
 > > > a[1] = 42
 > > > print(a)
array(‘l’, [15, 42, 17, 0])
 > > > del a[2]
 > > > print(a)
array(‘l’, [15, 42, 0])

 You can also convert a list or tuple to an array object by passing it to the constructor:

 > > > t = (5.6, 3.2, -1.0, 0.7)
 > > > a = array.array(“d”, t)
 > > > print(a)
array(‘d’, [5.5999999999999996, 3.2000000000000002, -1.0, 0.69999999999999996])

 Here again you see the approximate nature of floating - point values.

 In fact, because an array object behaves very much like a list, you can pass it to the same stddev
function you wrote previously, and it works just fine:

 > > > print(stddev(a))
2.50137462208

 If you ever need to convert back to an ordinary tuple or list, just pass the array to the tuple or list
constructor:

 > > > back_again = tuple(a)
 > > > print(back_again)
(5.5999999999999996, 3.2000000000000002, -1.0, 0.69999999999999996)

 Compared to lists, array objects have the following advantages and disadvantages:

 All elements of an array are the same type.

 Like a list, an array is one - dimensional.

 The array module is part of Python ’ s standard library (but don ’ t forget to import it).

 An array object cannot automatically be pickled.

 An array object stores its values much more efficiently than a list of numbers does. However,
computations on the numbers are generally not much faster, because computations are
performed using Python ’ s normal number objects.

❑

❑

❑

❑

❑

c18.indd 383c18.indd 383 12/22/09 5:33:21 PM12/22/09 5:33:21 PM

384

Part III: Putting Python to Work

 Summary
 In this chapter, you learned how to perform many kinds of numerical computations in Python. You
experimented first with Python ’ s built - in integer and floating - point number types and saw how to use
Python ’ s built - in arithmetic operations. Then you moved on to higher mathematics, using the special
functions in the math module and Python ’ s complex number type.

 Finally, you learned two different ways of representing arrays of numbers: The simplest method is to use
a list or tuple of numbers. For more efficient storage, use the array module included with Python.

 The key things to take away from this chapter are:

 A number, like any object in Python, has a type. Python has three basic numerical types. One of
these, int, represents integers, and float represents floating - point numbers. The third numeric
type represents complex floating-point numbers.

 You can convert any Python number to a string using the str constructor. This produces the text
that would be printed by the print statement, as a string object.

 To format an integer, use the %d conversion in the format string. For a floating - point number,
use %f. If you use %d with a floating - point number or %f with an integer.

 Python provides the normal arithmetic operators + (addition), − (subtraction), * (multiplication),
and / (division) for numerical types.

 The array type in the array module stores numbers all together in memory as one object.
(Note that they must all be the same type.)

 The math module contains the functions: sqrt (square root), exp (exponentiation), log/log10
(natural logarithm and base 10 logarithm), sin, cos, and tan (trigonometric functions), asin, acos,
and atan (inverse trigonometric functions), and the hyperbolic functions: sinh, cosh, and tanh.

 Exercises
 1. Write a function that expresses a number of bytes as the sum of gigabytes, megabytes, kilobytes,

and bytes. Remember that a kilobyte is 1024 bytes, a megabyte is 1024 kilobytes, and so on. The
number of each should not exceed 1023. The output should look something like this:

 > > > print(format_bytes(9876543210))
9 GB + 203 MB + 5 KB + 746 bytes

 2. Write a function that formats an RGB color in the color syntax of HTML. The function should
take three numerical arguments: the red, green, and blue color components, each between zero
and one. The output is a string of the form #RRGGBB , where RR is the red component as a value
between 0 and 255, expressed as a two - digit hexadecimal number, and GG and BB likewise for
the green and blue components.

❑

❑

❑

❑

❑

❑

c18.indd 384c18.indd 384 12/22/09 5:33:21 PM12/22/09 5:33:21 PM

Chapter 18: Numerical Programming

385

 For example:

 > > > print(rgb_to_html(0.0, 0.0, 0.0) # black)
#000000
 > > > print(rgb_to_html(1.0, 1.0, 1.0) # white)
#ffffff
 > > > print(rgb_to_html(0.8, 0.5, 0.9) # purple)
#cc80e6

 3. Write a function named normalize that takes an array of float numbers and returns a copy of
the array in which the elements have been scaled such that the square root of the sum of their
squares is one. This is an important operation in linear algebra and other fields.

 Here ’ s a test case:
 > > > for n in normalize((2.2, 5.6, 4.3, 3.0, 0.5)):
... print(“%.5f” % n,)
...
0.27513 0.70033 0.53775 0.37518 0.06253

c18.indd 385c18.indd 385 12/22/09 5:33:21 PM12/22/09 5:33:21 PM

c18.indd 386c18.indd 386 12/22/09 5:33:21 PM12/22/09 5:33:21 PM

 19
An Introduction to Django

 If you have ever developed web applications, you are probably aware that it can oftentimes
be a tedious task. To help ease this problem, some languages have turned to web application
frameworks such as Ruby on Rails or Java ’ s Spring Framework to handle some of the basic
building blocks common to all web applications, leaving the programmer to concentrate on
the more interesting aspects.

 Nearly every language has at least one — and in many instances quite a few — frameworks, and
Python is no exception. Built upon the Python language, Django is the standard web application
framework used by Python developers who want to build for the Web on the fly.

 You do not need to know web development to read this chapter, but it will certainly make things
easier. At the bare minimum you should have a solid understanding of procedural programming,
and be comfortable working with decision making (if statements and loops), as well as data
storage through lists and hashes. If not, it might be worth going back and reviewing the previous
chapters in this book.

 In this chapter you learn:

 To define what a framework is and explain why you would use one

 To install the latest version of Django

 To explain what the MVC/MTV Architecture is

 To create views and templates in Django

 To incorporate databases into your Django web applications

❑

❑

❑

❑

❑

c19.indd 387c19.indd 387 12/22/09 10:51:15 AM12/22/09 10:51:15 AM

388

Part III: Putting Python to Work

 What Are Frameworks and
Why Would I Use One?

 Earlier I bandied about the term web application framework without really explaining what one was.
To fully understand not only the what, but also the why of frameworks, it is essential to understand
some of the core fundamentals that pretty much every web application/database - centric website must
have as a foundation.

 The first of the foundations is database connectivity. This is a vital part of any web application. It
contains many records you may not even think about. Here is where you will store information like user
name, permissions, settings, comments, profiles — the list goes on and on. Django supports quite a few
databases (covered later in the chapter), some of which do and do not use SQL.

 The second foundation is the administrative panel. An administrative panel gives the admin, and others,
the ability to work with anything stored in the database. For instance, if you want to change a user ’ s
permissions from a registered user to a super administrator, you will need an admin panel.

 Next up is the ability to leave comments. Despite the seemingly endless amount of useless comments that
eat up acres of landscape on the Web, they are still a vital aspect of any well - designed website. They allow
users to feel as though they are part of a community and not a lone voice whispering into the wind.

 Another important feature of this type of site is user authentication. This controls how the users sign in,
ensures secure logins, decides who has permission to do what on the site, and so forth.

 You are not even halfway through the list of the tenants that dictate a well - thought - out web application,
and as you can see, it is a lot to think about, and program. And let ’ s face it — it ’ s not very interesting. You
have not even touched upon user - interfaces and design, which really should be the main focus of the site.

 In the days before frameworks, a programmer would have to code all of the above and more by hand,
eating up oodles of time, which in turn increases production costs. Fortunately for us, though, frameworks
take care of the mundane aspects. All of the above, and more, can instantly be set up thanks to Django.

 Other Features of Web Frameworks
 In addition to what is listed in the preceding section, frameworks offer the following:

 URL Mapping, Frameworks, and Django (in particular) – – Interpret URLs so they are more friendly
(and intuitive) to both the user, and more importantly, search engines and indexing. A good example of
this is the URL: /mypage.cgi?cat=comic & topic=superman . The URL mapping feature would change
this to a simpler address, such as /mypage/comic/superman . Visitors to your site are more likely to
remember this URL if they want to automatically come to this page again, and it makes it easier for
search engines to understand the underlying structure of your website.

c19.indd 388c19.indd 388 12/22/09 10:51:15 AM12/22/09 10:51:15 AM

389

Chapter 19: An Introduction to Django

 Caching – – Web caching is the process of storing a copy of a document. When this page is revisited, if
certain criteria are met, the page is loaded from memory, instead of a new page being requested. This, in
turn, increases the speed by which the page loads and the overall usability of the site.

 Templating – – A template gives a uniform look to a website, and serves many purposes. For one, it looks
professional. Secondly, it ensures that users do not become confused and think that they have left your
site. Next, it creates a seamless feel, so that every part of the site behaves in the manner you expect it to.
For example, if clicking a print button on one page prints a document, the print button on every page
will do the same thing, and will also appear in the same spot. Perhaps more importantly, templating can
reduce the number of pages within a website. By having a “ flat page, ” your site can access the database
and grab certain data, displaying it in the page. A good way to think of this is to consider a website that
lists author bios. If your site features 10,000 authors, in the old days you may have had to write 10,000
pages — one for each author. With templating, however, you have one “ flat page ” that reaches into the
database and fills in the data for one of the 10,000 authors in the database. So essentially you now have
one page that can dynamically act as many.

 A full run - down of web frameworks and their features is beyond the scope of this book, but with the
preceding information, you should have a pretty steady handle on the possibilities. It is certainly enough
information to get you started using frameworks.

 Django — How It All Began
 Django, pronounced with a silent “ d ” and rhyming with Bang - o, was named after the gypsy jazz
guitarist Django Reinhardt. It was created by a group of programmers at a little place called World Online,
which at the time was the department responsible for web design for the Lawrence Journal - World
newspaper in Kansas, among other properties.

 Often forced to scramble to meet last - minute deadlines and asked to write new web apps on the fly, two
men by the names of Adrian Holovaty and Simon Willison developed a new web framework to handle
the demands of the editorial staff. Two years later, in 2005, the team joined up with Jacob Kaplan - Moss
and released the framework to the open source community under the name of Django.

 Because Django was originally built to handle the needs of several online newspapers, it has earned both
the prestige and the stigma of being a “ content ” framework, good for publishers but little else. This, of
course, is simply not true. Django is just as powerful and flexible as any other framework, as you will
soon see.

 For more information on the history and purpose behind Django, feel free to visit
 http://www.djangoproject.com/ .

 Installing Django
 At the time of this writing, the current version of Django is 1.1. As with many libraries and components,
it has not been upgraded to work with Python version 3.1. However, it does work with Python 2.6, and
as such, you will be working with that version for the remainder of this chapter. If you do not have a
copy of Python 2.6 installed, please install it at this time. It installs the same as version 3.1. You can find it
at http://www.python.org/download/ .

c19.indd 389c19.indd 389 12/22/09 10:51:16 AM12/22/09 10:51:16 AM

390

Part III: Putting Python to Work

 To install Django, go to http://www.djangoproject.com/download/ . I suggest that you download
the official version and steer clear of the latest development version. If you do decide to go with the
development version, you probably do not need instructions on how to install it, so for the purposes of
this chapter, you will use the latest version.

 For Windows users, installation is fairly simple. Download the .tar.gz file and extract it to your
 Python26 folder (this is typically located at C:/Python26). Once the file has been unzipped, open up
your command prompt (Start Menu ➪ All Programs ➪ Accessories ➪ Command Prompt) and change
the directory to your Python26 folder by typing in the following at the prompt:

cd C:\Python26\Django-1.1

 Next, type in:

setup.py install

 You will see the program installing and configuring a bunch of packages. Finally, it will finish, and
Django will be officially installed. The install location, for the record, will be something along the lines of
 C:\Python26\Lib\site - packages .

 To test your installation, all you need to do is open up IDLE and type the following:

 > > > import django
 > > > django.VERSION
(1, 1, 0, ‘final’, 0)

 To install Django on non - Windows computers, such as Linux, Mac OS X, or other UNIX - based systems,
download the tar.gz file and untar it with:

tar xzvf Django-1.0.0-final.tar.gz

 Note that you will have to change the 1.0.0 to whatever version you have downloaded. Next, change the
directory to the directory in which the file was untarred:

cd Django-1.0.0

 where 1.0.0 is the version number. Finally, enter sudo python setup.py install in your command prompt,
and wait for the magic to happen. To test that it is working, use the same method described earlier.

 Understanding Django ’ s Architecture
 Before you begin developing your first Django project, let ’ s touch upon one final aspect of web
frameworks — namely, architecture. Most frameworks operate under the MVC architecture, or Model -
 View - Controller. Django is no different, though at times you will hear that it runs under an MTV, or
Model - Template - View architecture, which, for me at least, is simply a matter of semantics.

c19.indd 390c19.indd 390 12/22/09 10:51:16 AM12/22/09 10:51:16 AM

391

Chapter 19: An Introduction to Django

 For web application purposes, MVC architecture is best described by the following breakdown:

 Model – – The actual data or content that is displayed in the page and is stored in a database,
XML node, or other area.

 View – – The web page, be it HTML, XHTML, or markup language.

 Controller – – The portion of code that collects the data from the model (database/xml) and
passes it to the view (web page).

 Though this may be a simplistic view, for your purposes, it is more than sufficient.

 Initial Project Setup
 Because this is your first time doing a Django project, you must do some things first. Note that a project
in Django terms doesn’t follow the typical sense of the word project. In Django, a project refers to the
settings of an instance of Django, which is comprised of Django and application - specific settings as well
as database options.

 To start with, create a new directory. To do this, navigate to the location where a file called
 django - admin.py resides, which is usually in your site - packages\django\bin directory. Here is
what you type into your command prompt to change to that directory:

cd C:\Python26\Lib\site-packages\django\bin

 Next, you need to run the django - admin.py file and tell it to create a new directory where your project
and code will be stored. For the purposes here, call this new directory newsite . Type the following in
your command prompt:

django-admin.py startproject newsite

 Note that in the future you can change newsite to whatever you would like to call your directory.

 Startproject is a command that creates not only a new directory, but stores four important files inside
of it. They are:

 __init__.py – – This empty file allows Python to treat your directory (in this case newsite) as
a package. You may remember that packages are nothing more than groups of Python modules.

 manage.py – – This is a command - line utility for interacting with Django projects.

 settings.py – – This file allows you to change the settings and general configuration of your
project. Following is the code you will see if you open it in IDLE:

Django settings for newsite project.
DEBUG = True
TEMPLATE_DEBUG = DEBUG
ADMINS = (
 # (‘Your Name’, ‘your_email@domain.com’),
)
MANAGERS = ADMINS

❑

❑

❑

❑

❑

❑

c19.indd 391c19.indd 391 12/22/09 10:51:16 AM12/22/09 10:51:16 AM

392

Part III: Putting Python to Work

DATABASE_ENGINE = ‘’ # ‘postgresql_psycopg2’, ‘postgresql’,
‘mysql’, ‘sqlite3’ or ‘oracle’.
DATABASE_NAME = ‘’ # Or path to database file if using sqlite3.
DATABASE_USER = ‘’ # Not used with sqlite3.
DATABASE_PASSWORD = ‘’ # Not used with sqlite3.
DATABASE_HOST = ‘’ # Set to empty string for localhost. Not used
with sqlite3.
DATABASE_PORT = ‘’ # Set to empty string for default. Not used
with sqlite3.

Local time zone for this installation. Choices can be found here:

http://en.wikipedia.org/wiki/List_of_tz_zones_by_name

although not all choices may be available on all operating systems.

If running in a Windows environment this must be set to the same as your

system time zone.

TIME_ZONE = ‘America/Chicago’

Language code for this installation. All choices can be found here:

http://www.i18nguy.com/unicode/language-identifiers.html

LANGUAGE_CODE = ‘en-us’

SITE_ID = 1

If you set this to False, Django will make some optimizations so as not

to load the internationalization machinery.
USE_I18N = True

Absolute path to the directory that holds media.

Example: “/home/media/media.lawrence.com/”
MEDIA_ROOT = ‘’

URL that handles the media served from MEDIA_ROOT. Make sure to use a
trailing slash if there is a path component (optional in other cases).
Examples: “http://media.lawrence.com”, “http://example.com/media/”
MEDIA_URL = ‘’

URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a
trailing slash.
Examples: “http://foo.com/media/”, “/media/”.
ADMIN_MEDIA_PREFIX = ‘/media/’

Make this unique, and don’t share it with anybody.

c19.indd 392c19.indd 392 12/22/09 10:51:17 AM12/22/09 10:51:17 AM

393

Chapter 19: An Introduction to Django

SECRET_KEY = ‘ms159e^bu=@m & grk106cl4kq & b058)*b4#01p69z@xop1y4zas’

List of callables that know how to import templates from various sources.
TEMPLATE_LOADERS = (
 ‘django.template.loaders.filesystem.load_template_source’,
 ‘django.template.loaders.app_directories.load_template_source’,
‘django.template.loaders.eggs.load_template_source’,
)
MIDDLEWARE_CLASSES = (
 ‘django.middleware.common.CommonMiddleware’,
 ‘django.contrib.sessions.middleware.SessionMiddleware’,
 ‘django.contrib.auth.middleware.AuthenticationMiddleware’,
)

ROOT_URLCONF = ‘newsite.urls’
TEMPLATE_DIRS = (
 # Put strings here, like “/home/html/django_templates” or “C:/www/django/
templates”.
 # Always use forward slashes, even on Windows.
 # Don’t forget to use absolute paths, not relative paths.
)

INSTALLED_APPS = (
 ‘django.contrib.auth’,
 ‘django.contrib.contenttypes’,
 ‘django.contrib.sessions’,
 ‘django.contrib.sites’,
)

 I discuss how to modify this file later on.

 urls.py – – This is where all of the URLs for your current Django project will be stored.

 The final step to take before you can begin working with your first project is to set up the development
server. The development server allows you to test your site and see its progress without having to set up
your actual web server (you ’ ll eventually need to do this when you are ready to have your site go live to
the public.)

 The first step to set up the server is to change your directory to the newsite :

cd C:\Python26\Lib\site-packages\django\bin\newsite

 Next, you will need run the manage.py file and give it the runserver command:

manage.py runserver

 After a few seconds your command prompt will display the following:

Django version 1.1, using settings ‘newsite.settings’
Development server is running at http”//127.0.0.1:8000/
Quit the server with CTRL-BREAK.
 ...

❑

c19.indd 393c19.indd 393 12/22/09 10:51:17 AM12/22/09 10:51:17 AM

394

Part III: Putting Python to Work

 Your server is now set up to run locally. You can view the result by typing the following into your web
browser ’ s address bar: http://127.0.0.1:8000/ . Note that this will only be visible from your
computer, so do not expect outsiders to be able to view your page.

 And that is all there is to it. Now you are finally ready to get your hands dirty!

 Creating a View
 You read about views earlier in the discussion on the Model - View - Controller architecture. As you will
recall, in simple terms, the view is nothing more than an HTML or XHTML page. For the first few
examples in this chapter, you are going to create the HTML inside of your Python code. This is purely
for demonstrational purposes; in reality, your HTML would be inside of a templated page. But don ’ t
worry — I will cover that soon enough.

 Try It Out Making a View

 For this example, you are going to create a very simple view to display some text in your user ’ s
browser. Start off by opening up a text file or new window in IDLE and enter the following code,
being sure to save the file as myfirstview.py in the newsite directory:

from django.http import HTTPResponse
def sometext(request):
 mypage= “ < html > < body > < H1 > Welcome to My First Page! < /H1 > < /body > < /html > ”
 return HttpResponse(mypage)

 Now, open up a browser window and type in the address http://127.0.0.1:8000/sometext/. Note that
you will need to have your web development server running. If you closed it, just follow the steps
from the previous sections to restart it.

 Not quite what you were expecting, right? Don ’ t worry, you didn ’ t do anything wrong. Creating your
 myfirstview.py file is just the first step. All it does is create a function (in this case, sometext) that
holds the makeup of a simple web page with a header that reads: Welcome to My First Page!

 To actually have the page display in a web browser, you need to tell Django to activate the page. You
do this in the __urls.py__ file that was automatically generated when you ran the startproject
function earlier.

 If you open up the __urls.py__ file in a text editor or IDLE, you will see the following code:

from django.conf.urls.defaults import *

Uncomment the next two lines to enable the admin:
from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns(‘’,
 # Example:
 # (r’^mysite/’, include(‘mysite.foo.urls’)),

 # Uncomment the admin/doc line below and add ‘django.contrib.admindocs’
 # to INSTALLED_APPS to enable admin documentation:
 # (r’^admin/doc/’, include(‘django.contrib.admindocs.urls’)),

c19.indd 394c19.indd 394 12/22/09 10:51:17 AM12/22/09 10:51:17 AM

395

Chapter 19: An Introduction to Django

 # Uncomment the next line to enable the admin:
 # (r’^admin/’, include(admin.site.urls)),
)

 As it stands, this code does nothing. When you are finished with it, however, it will act as the catalyst
to display your myfirstview.py file.

 Try It Out Creating a URLconf

 URLconfs are a simple way to tell Django which code it should use for which URL. For instance, if you
have a URL such as www.mysite.com/purple , your URLconf might tell Django explicitly to use
the file purple.py . If your URL is www.mysite.com/spaghetti , your URLconf might tell Django to
use the code found in the file spaghettiview.py .

 Before you get ahead of yourself, however, delete all of the text in your __urls.py__ file and replace
it with the following:

from django.conf.urls.defaults import *
from newsite.myfirstview import sometext

urlpatterns = patterns(‘’,
 (‘^sometext/$’, sometext),

)

 Now when you refresh your browser (or if you closed it, simply go to http://127.0.0.1:8000/
sometext/) y our result should be a blank page with an < H1 > header that reads simply: Welcome to
My First Page!

 Congratulations, you have created your first view!

 How It Works
 Let ’ s start by explaining how your view works. First, for consistency ’ s sake, you will want to identify
any view file by using the word “ view ” in the title, such as myfirstview.py . This makes it easier to
spot which files are views in your directory and which are not.

 The first step was to import the django.http module, and one of its classes, HttpResponse . Next,
you created an instance of the HttpResponse class by creating a view function named sometext . This
view function takes the parameter request , which must always be the first parameter of any view
function.

 Finally, you used return to return your HttpResponse , which you have filled with a bit of
HTML code.

 The __urls.py__ file, meanwhile, starts off by importing everything from the django.conf.urls
.defaults module. Within this module is a function known as patterns , whose purpose is to save
its value into the urlpatterns variable.

 Next, you imported the function sometext from your module myfirstview (from newsite
.myfirstview import sometext). After that, you added the value of patterns to urlpatterns ,

c19.indd 395c19.indd 395 12/22/09 10:51:18 AM12/22/09 10:51:18 AM

396

Part III: Putting Python to Work

which, as stated earlier, is a tuple. This tuple uses a regular expression as its first element, and the
 sometext view function as its second element.

 If you remember, earlier I said that URLconfs told Django which code to use for which URL. The way
this translates in the previous example is that the code:

urlpatterns = patterns(‘’,
 (‘^sometext/$’, sometext),

)

 tells Django that when it sees the URL /sometext , it should use the sometext view function found
within your module myfirstview .

 Although this barely scrapes the surface of what you can do with views and URLconfs, it should be
enough to get you started; a full explanation of views is beyond the scope of this book.

 Working with Templates
 Now that you understand the ways that views and URLconfs work, you can begin to work with
templates. As stated previously, embedding HTML in your Python is not the best way to go about
creating views. In this section, you learn to use templates instead.

 Templates, in their simplest form, are a way to ensure consistency across a site. Using a template also
saves time; you may recall the discussion about the 10,000 author bios?

 Like an HTML document, templates are made up of many different tags — too numerous to cover
here — as well as filters. As you continue through this section, I will try to cover the most important
ones. These filters and tags control how the page looks, regardless of the data that is displayed in them.
Think of them the way you would a school uniform; different students with different attributes all wear
the same clothes, and therefore have a level of uniformity.

 To see a template in action, open up your Command Prompt and navigate to the newsite folder (if you
are not already there):

cd C:\Python26\Lib\site-packages\django\bin\newsite

 Next, run the following command:

manage.py shell

 This command opens up the interactive interpreter. At this point you are probably wondering why you
don ’ t just use the IDLE editor, and it is a valid question. The reason you use the interactive interpreter, at
least for now, is because it automatically sets your Django settings file for you. If you try to run the code
in the next section in IDLE, it simply won ’ t work. Later in the chapter, you learn how to edit your Django
settings so that you can code wherever you like. For now, though, you are going to let the manage.py
shell do all of your work for you.

c19.indd 396c19.indd 396 12/22/09 10:51:18 AM12/22/09 10:51:18 AM

397

Chapter 19: An Introduction to Django

 For your first step, you need to import the template system. You do this like so:

 > > > from django import template

 Now you are going to create a template object. In this case, you want to create an object that will
eventually hold a book title:

 > > > btitle = template.Template(‘Your book is titled {{ book }}.’)

 The next bit of code will actually fill or give context to your template object:

 > > > a = template.Context({‘book’: ‘American Gods’})

 Within the template object is a method called render() , which returns the rendered template as a string,
evaluating every variable and template tag in the proper context. Here is how you use it:

 > > > print btitle.render(a)
Your book is titled American Gods.

 Try It Out Creating a Template

 Now that you have learned the fundamentals of the template system, you can put it to work. Type the
following code into the interactive interpreter:

 > > > from django.template import Template, Context
 > > > myfirsttemplate = “”” < H1 > Welcome to {{owner}}’s Library < /H1 >
 … < p > Below you will find a list of {{owner}}’s favorite books < /p >
 … < br / >
 … < H3 > Book Title: {{books}} Author: {{author}} < /H3 > ”””
 > > > a=Template(myfirsttemplate)
 > > > b=Context({‘owner’: ‘James Payne’, ‘books’: ‘American Gods’, ‘author’:
‘Neil Gaimen’})
 > > > print a.render(b)
 < H1 > Welcome to James Payne’s Library < /H1 >
 < p > Below you will find a list of James Payne’s favorite books. < /p >
 < br / >
 < H3 > Book Title: American Gods Author: Neil Gaimen < /H3 >

 There you have it: a simple template.

 How It Works
 Even though there is very little code, there is a lot going on. That, of course, is part of the beauty that is
Django. To explain the process, let ’ s go through each bit of code a line at a time.

 First, you imported the Template and Context classes from the django.template module. Next,
you created a variable named myfirsttemplate , which holds the text of your template. Note that this
variable holds all of the data from your first < H1 > tag all the way through to the closing < /H3 > tag.

c19.indd 397c19.indd 397 12/22/09 10:51:18 AM12/22/09 10:51:18 AM

398

Part III: Putting Python to Work

 You then created your template object, with the simple name of a , by assigning it the value of
 myfirsttemplate . This is followed by the creation of a context object, which you used to map the
variable names to their respective values (that is, owner is mapped to James Payne). Lastly, you
printed the rendering, which shows what happens when the tags in the template are executed.

 Using Templates and Views
 Now that you know how to use views, modify your URLconfs, and create templates, you can use your
view and template together, instead of embedding the HTML directly in your code.

 Before you do, however, I just want to make a quick note: Django templates are not a mandatory part of
the system. Python provides its own set of templates. However, Django ’ s built - in templating system is
pretty flexible and powerful, so you might want to strongly consider using it instead.

 Try It Out Using Templates and Views

 You need to take several steps in order to ensure that your template works with your view. For
starters, you will need to create your template. If you have not done so yet, create a new folder in your
 newsite directory and name it templates (note that it is not mandatory that you place your template
directory here. I am simply doing it now for demonstration purposes).

 Next, open a new text file and type in the following code, being sure to save the file as
 myfirsttemplate.html :

 < H1 > Welcome to {{owner}}’s Library < /H1 > < p > Below you will find a list of
{{owner}}’s favorite books < /p >
 < br / >
 < H3 > Book Title: {{books}} Author: {{author}} < /H3 >

 You will note that you have not defined your variables (in Django, anything wrapped in double
brackets [{{}}] is a variable). Don ’ t fear; you ’ ll be doing that shortly.

 Now that your template is defined and saved to the newsite/templates folder, the next step is to
create a new view (if you still have the myfirstview.py view, you can simply modify it so that it has
the code in the following example). Name the view myfirstview.py and enter in the following code:

from django.shortcuts import render_to_response
def sometext(request):
 return render_to_response(‘myfirsttemplate.html’,{‘owner’: ‘James Payne’,
 ‘books’: ‘American Gods’,
 ‘author’: ‘Neil Gaimen’})

 This is the first time you have seen a lot of the code in this file. For starters, 90 percent of the time, this
is the method you will use to view a template. Other methods exist, but they are not as efficient.

 This code starts off by importing the method render_to_response from the django.shortcuts
module. Render_to_response is a nifty method that essentially handles the creation of template

c19.indd 398c19.indd 398 12/22/09 10:51:19 AM12/22/09 10:51:19 AM

399

Chapter 19: An Introduction to Django

objects, the contexting (adding values to the template object), and the rendering, saving you from
typing out a bunch of code as you did in previous examples.

 After your importing, you define a new function and give it the required request parameter. You then
return the render_to_response method, telling it the name of your template (myfirsttemplate
.html). Your second argument acts as the context, allowing you to give values to owner , books , and
 author . This second argument is not mandatory; however, if you leave it empty, your page will not
display those variables.

 Now that you have created your template and your view, only one step remains. You must now
modify your __settings.py__ file. If you recall, this is located in your newsite folder. Open up this
file in IDLE or Notepad. You should see something along the following lines:

Django settings for newsite project.

DEBUG = True
TEMPLATE_DEBUG = DEBUG

ADMINS = (
 # (‘Your Name’, ‘your_email@domain.com’),
)

MANAGERS = ADMINS

DATABASE_ENGINE = ‘’ # ‘postgresql_psycopg2’, ‘postgresql’,
‘mysql’, ‘sqlite3’ or ‘oracle’.
DATABASE_NAME = ‘’ # Or path to database file if using sqlite3.
DATABASE_USER = ‘’ # Not used with sqlite3.
DATABASE_PASSWORD = ‘’ # Not used with sqlite3.
DATABASE_HOST = ‘’ # Set to empty string for localhost. Not used
with sqlite3.
DATABASE_PORT = ‘’ # Set to empty string for default. Not used
with sqlite3.

Local time zone for this installation. Choices can be found here:
http://en.wikipedia.org/wiki/List_of_tz_zones_by_name
although not all choices may be available on all operating systems.
If running in a Windows environment this must be set to the same as your
system time zone.
TIME_ZONE = ‘America/Chicago’

Language code for this installation. All choices can be found here:
http://www.i18nguy.com/unicode/language-identifiers.html
LANGUAGE_CODE = ‘en-us’

SITE_ID = 1

If you set this to False, Django will make some optimizations so as not
to load the internationalization machinery.
USE_I18N = True

Absolute path to the directory that holds media.
Example: “/home/media/media.lawrence.com/”
MEDIA_ROOT = ‘’

c19.indd 399c19.indd 399 12/22/09 10:51:19 AM12/22/09 10:51:19 AM

400

Part III: Putting Python to Work

URL that handles the media served from MEDIA_ROOT. Make sure to use a
trailing slash if there is a path component (optional in other cases).
Examples: “http://media.lawrence.com”, “http://example.com/media/”
MEDIA_URL = ‘’

URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a
trailing slash.
Examples: “http://foo.com/media/”, “/media/”.
ADMIN_MEDIA_PREFIX = ‘/media/’

Make this unique, and don’t share it with anybody.
SECRET_KEY = ‘ms159e^bu=@m & grk106cl4kq & b058)*b4#01p69z@xop1y4zas’

List of callables that know how to import templates from various sources.
TEMPLATE_LOADERS = (
 ‘django.template.loaders.filesystem.load_template_source’,
 ‘django.template.loaders.app_directories.load_template_source’,
‘django.template.loaders.eggs.load_template_source’,
)

MIDDLEWARE_CLASSES = (
 ‘django.middleware.common.CommonMiddleware’,
 ‘django.contrib.sessions.middleware.SessionMiddleware’,
 ‘django.contrib.auth.middleware.AuthenticationMiddleware’,
)

ROOT_URLCONF = ‘newsite.urls’

TEMPLATE_DIRS = (
 # Put strings here, like “/home/html/django_templates” or
“C:/www/django/templates”.
 # Always use forward slashes, even on Windows.
 # Don’t forget to use absolute paths, not relative paths.
)

INSTALLED_APPS = (
 ‘django.contrib.auth’,
 ‘django.contrib.contenttypes’,
 ‘django.contrib.sessions’,
 ‘django.contrib.sites’,
)

 For now, you only need to concern yourself with one small section:

TEMPLATE_DIRS = (
 # Put strings here, like “/home/html/django_templates” or
“C:/www/django/templates”.
 # Always use forward slashes, even on Windows.
 # Don’t forget to use absolute paths, not relative paths.
)

 This portion of the __settings.py__ code is where you tell Django to find your templates. Add the
following code to the file, being sure to include the comma (,) at the end of the inserted line, and save it:

c19.indd 400c19.indd 400 12/22/09 10:51:19 AM12/22/09 10:51:19 AM

401

Chapter 19: An Introduction to Django

TEMPLATE_DIRS = (
 ‘C:/Python26/Lib/site-packages/django/bin/newsite/templates’,
 # Put strings here, like “/home/html/django_templates” or
“C:/www/django/templates”.
 # Always use forward slashes, even on Windows.
 # Don’t forget to use absolute paths, not relative paths.
)

 Basically, what you are doing here is telling Django that your template is located in the
 newsite/templates directory.

 And that is all there is to it. To view your web page, restart the Django development server again
(if you do not have it running already) by typing manage.py runserver into your interactive
interpreter. Then, open up a new web browser and enter the following address:
http://127.0.0.1:8000/sometext/. You should now see the results of your handiwork.

 This is the tip of the iceberg when it comes to working with Django templates. Many tags have not
been touched upon, and the list is growing all the time. However, this should give you a good starting
place as you delve further into templating.

 Models
 You may recall the conversation about Django having an MVC (Model - View - Controller) architecture.
As stated, sometimes Django ’ s architecture is referred to as MTV (Model - Template - View). Most people in
the Django community will agree that both are correct. In either case, so far you have viewed both the
View and Template portion of Django ’ s architecture, leaving you with only one further aspect: the Model.

 Simply put, a model in Django describes the data that is held in your database. This description gives you
information on how to access the data, the various relationships in the database, and how to validate your
data. Another way to look at it is to think of it as an SQL Create Statement, only a little more defined. This
added definition comes courtesy of the way Django creates tables; it does so through Python code instead
of SQL (note that Django does use SQL code, but the data structures that it returns are all Python).

 An example of this extra definition would be how most databases that work on SQL handle URLs. There
is no special data type to handle them. In Django, however, there is. This type of higher definition
capability gives you more control over your data types .

 Creating a Model: First Steps — Configure
the Database Settings

 Because you used sqlite3 for the examples in chapter 14, it only makes sense to use it here as well.
Fortunately, because you are using Python 2.6 for this chapter, there are no additional components
to install.

c19.indd 401c19.indd 401 12/22/09 10:51:19 AM12/22/09 10:51:19 AM

402

Part III: Putting Python to Work

 You will recall from the discussion on templates that you needed to change some settings in a
file — appropriately named __settings.py__ . For databases, you will need to use this file as well.
If you closed the folder, never fear; you can find it by navigating to your newsite directory.

 Open the file with Notepad or IDLE, and scan through the file until you see some code near the top,
similar to the following:

DATABASE_ENGINE = ‘’ # ‘postgresql_psycopg2’, ‘postgresql’,
‘mysql’, ‘sqlite3’ or ‘oracle’.
DATABASE_NAME = ‘’ # Or path to database file if using sqlite3.
DATABASE_USER = ‘’ # Not used with sqlite3.
DATABASE_PASSWORD = ‘’ # Not used with sqlite3.
DATABASE_HOST = ‘’ # Set to empty string for localhost. Not used
with sqlite3.
DATABASE_PORT = ‘’ # Set to empty string for default. Not used
with sqlite3.

 This is the portion of the __settings.py__ file where you configure your database. If you look at the
comments for each option, you will notice that most of them require you to do nothing if you are using
sqlite3 — yet another reason why it is a good idea to use it.

 Still, although you only have to use two of these options, it is useful to understand what the rest do, in
the event that you need to use a separate database program.

 First in the list is Database Engine. This setting is where you tell Django which database engine you will
be using. You can choose from four options, and each has a separate engine you will need to install if
you want to use them with Django (again, if you are using SQLite3, you do not need to worry about
downloading an engine). The four options are PostgreSQL (version 1.x and 2.x), MySQL, SQLite3, and
Oracle. Whichever database you choose to use, you must place its name within the single quotes, like so:

DATABASE_ENGINE = ‘sqlite3’

 The preceding code tells Django to use SQLite3 as its database engine. If you wanted to use MySQL, you
would change ‘ sqlite3 ’ to ‘ mysql ’ If you wanted to use PostgreSQL version 1.x, you would replace
it with ‘ postgresql ’ and so forth (note that version 2.x of PostgreSQL would use
 ‘ postgresql_psycopg2 ’).

 The next option is Database Name, which does exactly what might you might expect it to do — it allows
you to specify to Django the name of the database you are going to be using. Because you are using
SQLite3, you have to include a path to the database file you are using, such as the one shown here:

DATABASE_NAME = ‘C:/Python26/Lib/site-packages/django/bin/newsite/sample_
database.db’

 If you are not using SQLite3, you simply enter the name of the database file you want to use, and not
the path:

DATABASE_NAME = ‘sample_database’

c19.indd 402c19.indd 402 12/22/09 10:51:20 AM12/22/09 10:51:20 AM

403

Chapter 19: An Introduction to Django

 Next up is the setting DATABASE_USER. This tells Django which user to connect to the database as.
This is important because different database users can have different privileges. For SQLite3 users, this
field is left blank. For any other systems, use something along these lines:

DATABASE_USER = ‘chew_bacca’

 And of course if you are signing in with a user name, you will likely have a password, so your next
setting is DATABASE_PASSWORD. If you are using SQLite3, this is left blank. Likewise, if you do not
use a password, it is also left blank. Otherwise, use the following convention:

DATABASE_PASSWORD = ‘chewie’

 Your last setting is DATABASE_HOST, which tells Django the host that it should use to connect to your
database. As with most of the examples, if you are using SQLite3, this setting will be left blank. Likewise,
if you are hosting the database on your own computer, you can leave this blank. Otherwise, enter
the host name you are using.

 That is all there is to configuring your database. If you want to make sure that it works, open up the
Interactive Interpreter (as mentioned in the previous sections) by running manage.py shell. Then type
in the following code:

 > > > from django.db import connection
 > > > cursor=connection.cursor()

 If nothing happens when you type this, don ’ t worry — your file is configured properly. If you get an
error message, however, that means that something is not set properly in your file. Just read the error
message you receive and go back through your file to ensure everything is set properly.

 Creating a Model: Creating an Application
 Applications — or Django Apps — are a Python package that consists of models, views, and a variety of
other code. They differ from Django projects, in that Django projects consist of one or more applications
and the settings for those applications.

 Another difference between an application and a project is that you do not always need to create an
application. In fact, the only instance where you really need to create an application (that is, where it is a
requirement) is when you are using models or database - driven sites.

 Now that you understand what an application is, how it differs from a project, and when it is a
requirement, you can create your first one. The code is pretty simple. Just type the following into your
command prompt (making sure you are in the newsite directory):

manage.py startapp employees

 If nothing happens, you are in luck — you created an application. If you get an error it is likely because
you are not in the appropriate directory or there was a typo. To see the results of what you just created,
open up your newsite folder and take a gander. You should see a new directory called employees .

c19.indd 403c19.indd 403 12/22/09 10:51:20 AM12/22/09 10:51:20 AM

404

Part III: Putting Python to Work

Click inside of that directory and you will see four files: __init.py__ , __models.py__ , __tests.py__ ,
and __views.py__ .

 Conveniently, Django creates a blank model and view file for you — thoughtful, right? These are the files
that you will be working with for the upcoming example.

 For starters, open up the __models.py__ file and modify it so it looks like the following code:

from django.db import models

class Employer(models.Model):
 name = models.CharField(max_length=50)
 website = models.URLField()
 industry =models.CharField(max_length=50)

class Employee(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)
 address = models.CharField(max_length=50)
 hire_date = models.DateField()
 email = models.EmailField()

 You start off this code by importing models from django.db . You then create your first class, Employer ,
which is a subclass of the models class. Next, you begin creating the fields that will be contained within
the Employer class and defining their respective data type. It is important to know from here that the
 Employer class is now acting as the equivalent of a table in a database.

 The first field in the Employer class is name, which you define as a CharField. The max_length=50
portion is where you set the parameter, which basically tells Django that the field contains characters,
and no more than 50 of them.

 You continue creating your second class, Employee , which will hold information about — you guessed
it — the employees. Once all of the fields are done, you are finished creating your model.

 Working with Models: Installation
 Earlier, you created a model, which, as the name implies, is literally a model of what your data is going
to look like and what type of data it will hold. Up to this point you haven ’ t actually created the tables
yet. To do that, you must install them.

 To do this, you have to go back once in your newsite directory and open up the __settings.py__ file
again. Scroll down until you see the section for Installed_Apps . You will notice that four files are
already listed in here. Leave those alone for now, because they are default files. Simply modify the
section so it looks like this:

INSTALLED_APPS = (
 ‘newsite.employees’,
)

c19.indd 404c19.indd 404 12/22/09 10:51:20 AM12/22/09 10:51:20 AM

405

Chapter 19: An Introduction to Django

 Next, modify the Middle_Ware Classes section by deleting the classes that are in there by default
(the Installed Apps that you deleted rely on these and will cause errors when you try to create your
database):

MIDDLEWARE_CLASSES = (

)

 Now save the file and run the following command in your Interactive Interpreter:

 manage.py validate

 As is probably obvious from the command, this code validates your model and ensures that everything
is defined properly. If you get a message saying 0 errors found, all is right in the world. If not, something
was not defined properly in your model.

 Now you are going to have Django create your tables by executing some SQL code for you. Type in
the following:

manage.py syncdb employees

 This code creates the tables in your database (assuming that they do not yet exist). You will see the
following when you execute the command:

Creating table employees_employer
Creating table employees_employee

 This means that it created the tables employer and employee in the employees.db . And that is all there
is to installing your model!

 Summary
 You ’ ve really only touched the surface of what Django is capable of in this chapter. Alongside having
the ability to create powerful and interactive websites in a snap, Django ’ s true power lies in its
 database - driven capabilities. Though this chapter was not a comprehensive study (it would require
a book about the same size as this one to accomplish that), it should be more than enough to get you
started down the right path.

 You started off learning Django ’ s background and history, which is important to understand because it
gives you some key insights as to why you may want to use Django, and what some of its strengths — and
weaknesses — are. You also got an overview of frameworks in general, and took a rudimentary glance at
the MVC and MTV architectures — the basic building blocks of a lot of frameworks.

 After that, you dove into installing Django and worked on configuring your setup files. Then it was
straight into creating URLConfs, views, templates, and — where you finally left off — models.

c19.indd 405c19.indd 405 12/22/09 10:51:21 AM12/22/09 10:51:21 AM

406

Part III: Putting Python to Work

 The key things to take away from this chapter are:

 Django is a powerful tool in the online publication industry, but has potential for virtually every
type of web application.

 Django runs under the MVC architecture, or Model - Template - Controller, and is commonly said
to truly be MTV or Model - Template - View.

 Model is the actual data or content that is displayed in the page and is stored in a database, XML
node, or other area.

 View is the webpage, be it HTML, XHTML, or markup language.

 Controller is the portion of code that collects the data from the model (database/xml) and passes
it to the view (web page).

 The __settings.py__ file is where you configure your Django settings. Here you can define
which databases are being used, which applications, and much, much more.

 Applications — or Django Apps — are a Python package that consists of models, views, and a
variety of other code. They are different from Django projects, in that Django projects consist of
one or more applications and the settings for those applications.

 Exercises
 1. Configure the __settings.py file to work with each type of database that Django supports.

 2. Explain the MVC and MTV architectures and elaborate on the differences between the two.

 3. Create a template that shows the menu from a restaurant and have it display.

 4. Working with the same data fields you used in exercise 3, create a model that shows a menu
from a restaurant and have Django create the database.

❑

❑

❑

❑

❑

❑

❑

c19.indd 406c19.indd 406 12/22/09 10:51:21 AM12/22/09 10:51:21 AM

 20
Web Applications
and Web Services

 If you ’ ve ever surfed the Web, you ’ ve probably used web applications: to do research, to pay your
bills, to send e - mail, or to buy from an online store. As a programmer, you may even have written
web applications in other languages. If you have, you ’ ll find the experience of doing so in Python
comfortingly familiar, and probably easier. If you ’ re just starting out, rest assured that there ’ s no
better way to enter this field than with Python.

 When the World Wide Web was invented in the early 1990s, the Internet was used mainly by
university students, researchers, and employees of technology companies. Within a few years, the
Web had brought the Internet into popular use and culture, co - opting proprietary online services
or driving them into bankruptcy. Its triumph is so complete that for many people, the Web is
synonymous with the Internet, a technology that predates it by more than 20 years.

 Our culture became dependent on the Web so quickly that it hardly seems necessary to evangelize
the benefits for the user of web applications over traditional client - server or standalone
applications. Web applications are accessible from almost anywhere in the world. Installing one
piece of software on your computer — a web browser — gives you access to all of them. Web
applications present a simple user interface using a limited set of widgets. They are (usually)
platform independent, usable from any web browser on any operating system — including ones
not yet created when the application was written.

 If you haven ’ t yet written your own web applications, however, you might not know about the
benefits of developing for the web platform. In many respects, the benefits for the developer are
the flip side of the benefits for the user. A web application doesn ’ t need to be distributed; its users
come to it. Updates don ’ t have to be distributed either: When you upgrade the copy of the
program on your server, all of your users start using the new version. Web applications are by
convention easy to pick up and use, and because others can link to a web application from their
own web sites, driving traffic there, buzz and word - of - mouth spread much more quickly. As the
developer, you also have more freedom to experiment and more control over the environment in
which your software runs.

c20.indd 407c20.indd 407 12/22/09 6:18:29 PM12/22/09 6:18:29 PM

Part III: Putting Python to Work

408

 The virtues of the Web are the virtues of Python: its flexibility, its simplicity, and its inclusive spirit.
Python applications are written on Internet time; a hobbyist ’ s idea can be explored in an evening and
become a Web fad the next day.

 Python also comes packaged with simple, useful modules for interacting with web clients and servers:
 urllib.parse , urllib , urllib.request , urllib.error , cgi , even http.server . Many (some
would say too many) open - source frameworks are also available that make it easy to build a complex
Python web application. Frameworks such as Django — covered in Chapter 19 — Zope, and others,
provide templating, authentication, access control, and more, freeing you up to work on the code that
makes your application special.

 It ’ s a huge field, perhaps the most active in the Python community, but this chapter gets you started.
You learn how to use basic, standard Python modules to make web applications people will find useful.
You also learn how to make them even more useful by creating “ web service ” interfaces that make it
possible for your users to use your applications as elements in their own programs. In addition, you
learn how to write scripts of your own to consume popular web services and turn the knowledge gained
to your advantage.

 If you ’ re reading this chapter, you ’ ve probably used web applications before and perhaps have written a
web page or two, but you probably don ’ t know how the Web is designed or how web applications work
behind the scenes. If your experience is greater, feel free to skip ahead, although you may find the next
section interesting. If you ’ ve been writing web applications, you might not have realized that the Web
actually implements a specific architecture, and that keeping the architecture in mind leads to better,
simpler applications.

 In this chapter you learn:

 All about the web ’ s architecture, including what REST is and the important concepts behind it.

 How to create and run your own simple web server.

 How to work with HTTP Request ’ s and Responses.

 How to utilize other web services.

 The proper “ web service etiquette. ”

 REST : The Architecture of the Web
 It might seem strange to think of the Web as having an architecture at all, especially for anyone who
started programming as or after the Web became popular. Because it ’ s so tightly integrated into your
daily life, the assumptions that drive the Web might seem invisible or have the flavor of defaults.
They are out there, though, differing from what came before and arranged into a coherent architecture.
The architecture of the Web was formally defined in 2000 by Roy Fielding, one of its founders. He calls
the web architecture Representational State Transfer, or REST. This section briefly summarizes the most
important concepts behind REST, while connecting them to the workings of HTTP (the protocol that
implements REST) and providing examples of architectures that made the same decisions differently.

❑

❑

❑

❑

❑

c20.indd 408c20.indd 408 12/22/09 6:18:30 PM12/22/09 6:18:30 PM

Chapter 20: Web Applications and Web Services

409

 Characteristics of REST
 Much of this chapter is dedicated to writing applications that use the features of the REST architecture to
best advantage. As a first step toward learning about those features, here ’ s a brief look at some of the
main aspects of REST.

 A Distributed Network of Interlinked Documents
 The most fundamental characteristic of an architecture is the purpose it serves. Without this to use as a
guideline, there would be no way to distinguish good architectures from bad ones. Therefore, the first
characteristic of REST is the problem it solves: the creation of a “ distributed hypermedia system, ” to
quote the Fielding dissertation. REST drives the Web: a network of documents that link to one another,
dispersed over a large number of geographically scattered computers under varied ownership. All of
REST ’ s other characteristics must be evaluated against this one.

 A Client - Server Architecture
 The second characteristic of REST is the nature of the actors in a REST architecture. REST defines a
client - server relationship between actors, as opposed to, say, the peer - to - peer relationship defined by
BitTorrent or other file - sharing programs. A document on the Web is stored on (or generated by) a
particular server and delivered upon request to a client who asks for it. A client talks only to servers, and
a server only to its clients. In HTTP, the server is a web server, and the client is typically a web browser.

 Servers Are Stateless
 The third characteristic of REST is that no session state is kept on the server. Every request made by a
client must contain all of the information necessary to carry out that request. The web server need not
know anything about previous requests the client may have made. This requirement is why web
browsers pass cookies and authentication credentials to a site with every single request, rather than only
once at the beginning of a long session.

 An HTTP session lasts only as long as one back - and - forth transaction between client and server: The
client requests a document from the server, and the server delivers the response, which either contains
the requested document or explains why the server couldn ’ t deliver it. Protocols like FTP and SSH, in
which the client and server communicate more than once per session, must keep state on the server side
so that each communication can be understood in the context of the previous one. REST puts this burden
on the client instead.

 Many frameworks and applications build sessions on top of HTTP by using cookies, special URLs,
or some other trick. There ’ s nothing wrong with this — it ’ s not illegal or immoral, and it has its
benefits — but by doing this, the application forfeits the benefits of the stateless server. A user might find

REST Resources
Fielding’s dissertation on architectural styles and REST is available at www.ics
.uci.edu/~fielding/pubs/dissertation/top.htm. Chapter 5 describes
REST. Introductions that are more informal are available at the REST Wiki, at
http://rest.blueoxen.net/, and at the Wikipedia entry for REST, at
http://en.wikipedia.org/wiki/REST.

c20.indd 409c20.indd 409 12/22/09 6:18:30 PM12/22/09 6:18:30 PM

Part III: Putting Python to Work

410

it impossible to come back to a particular document or might get stuck in a bad state and be unable to do
anything about it because the problem is on the server.

 Resources
 Because the problem REST solves is that of managing a distributed network of documents, its unit of
storage is the document, or in REST terms, the resource . A static web page is a resource according to
REST, but so is one that ’ s dynamically generated by a web application. On the Web, anything interesting
you can get with your web browser is a resource.

 Each resource has at least one unique identifier, a string that names it and no other resource. In the
world of HTTP, this is the resource ’ s URL. The resource identifier http://www.python.org/ identifies
a well - known resource that talks about Python. http://python.org/ is another identifier for the same
resource. http://www.google.com/search?q 5 Python is an identifier denoting a dynamic resource:
one created upon request by a web application. This custom - made resource is an index full of references
to other resources; all of which should pertain in some way to Python (the language or the snake). It
didn ’ t have to be this way: WAIS, one of the technologies subsumed by the Web, treated searches and
search results as first - class objects. In the REST architecture, these things exist only within resources and
their identifiers.

 A web object that can ’ t be reached by typing an address is not technically a REST resource, because it has
no identifier. If you can only get to a web page by submitting a form in your web browser, that page is
not a resource; it ’ s a side effect of your form submission. It ’ s generally a good idea to make your web
pages real resources. A resource is more useful than a nonresource that contains the same information: It
can be bookmarked, passed around to others, accessed automatically, and used as input to scripts that
manipulate resources.

 Representations
 When you request a resource with your web browser, what you actually get back is a representation of
that resource. In the most common case, a resource has only one representation: The resource is a file on
the disk of the web server, and its representation is byte - for - byte the same as that file. However, a single
resource may have multiple representations. A news site may make each of its stories available in an
HTML file, a stripped - down printer - friendly HTML file, a plaintext file, a PDF file, and so on.

 A web client may choose a representation for a resource by choosing between that resource ’ s identifiers
(for instance, story.html or story.html?printable), or it may simply tell the server which format it
prefers and let the server decide which representation is most appropriate.

 REST Operations
 We normally think of web pages as things we read, but we act on the Web as well, creating and changing
pages through the same tool we use to retrieve them. If you have a weblog, you ’ re familiar with creating
new web resources by using your web browser, but it also happens in other contexts. When you send
e - mail through a webmail application, an archive page is created that contains the message you sent.
When you buy something from an online store, a receipt page is made available, and other pages on the
site change to show the outstanding order.

 The action of retrieving a resource should be idempotent: The fact that you made the request should not
change the contents of the resource. Resource modification is a different operation altogether. In addition

c20.indd 410c20.indd 410 12/22/09 6:18:30 PM12/22/09 6:18:30 PM

Chapter 20: Web Applications and Web Services

411

to retrieving a resource, REST also enables a client to create, modify, and delete a server ’ s resources
(given the proper authorization, of course). A client creates a new resource by specifying, in some format,
a representation for the resource, and modifies an existing resource by specifying the desired new
representation. It ’ s up to the web application to render to the exact format of the representation it wants.

 In HTTP, the four basic operations are implemented by four commands, or verbs , as described in the
following table.

 HTTP Verb Purpose

 GET Retrieves a resource ’ s representation

 POST Modifies a resource to bring it in line with the provided new representation

 PUT Creates a new resource from the provided representation

 DELETE Deletes an existing resource

 These four commands are often compared to the basic file system operations (read , write , create , and
 delete) and to the four basic SQL commands (SELECT , UPDATE , INSERT , and DELETE). Unfortunately, as
you see in a bit, web browsers support only the first two commands.

 HTTP : Real - World REST
 Although REST ’ s principles are generally applicable, it ’ s realized primarily in HTTP, the protocol that
drives the Web. The best way to understand HTTP is to see it in action. To that end, you ’ re going to write
a web server.

 No, really. It ’ s easy to write a web server in Python. In fact, the simplest one takes just a few lines of
code, because Python is packaged with a web server, and all you have to do is activate it.

 Try it Out Python ’ s Three - Line Web Server

 Enter this script into a file called EasyWebServer.py :

#!/usr/bin/python
import http.server
from http.server import HTTPServer
from http.server import BaseHTTPRequestHandler

def run(server_class=HTTPServer, handler_class=BaseHTTPRequestHandler):
 server_address=(‘’,8000)
 httpd=server_class(server_address, handler_class)
 httpd.serve_forever()
if __name__ == ‘__main__’:
 run()

c20.indd 411c20.indd 411 12/22/09 6:18:31 PM12/22/09 6:18:31 PM

Part III: Putting Python to Work

412

 Run the script and you ’ ll be able to access your new web server by visiting the URL
http://localhost:8000/ .

 If another server is already running on port 8000 on your machine, just change the port number in the
script and in the URL when you check it and voila!

 How It Works
 The script drives an HTTPServer object, which listens on port 8000 for HTTP requests. Every time you
hit the web server with a web browser, an object will be spawned to handle your request. The server
will serve pages forever until you interrupt it by killing the script.

 When you run this script, the directory in which you ran it becomes a REST - accessible resource, as do
all of its files and subdirectories. When you use your web browser to make an HTTP request for one of
those resources, the server looks on disk for a file corresponding to the resource you requested and
serves it to you as part of the HTTP response.

 Binding the web server to the special hostname localhost prevents people on the Internet at large, or
elsewhere on your local network, from using your web server (see Chapter 16 for more details).
However, anyone else on the computer you ’ re using can visit http://localhost:8000/ and see
everything you ’ re serving. If you ’ re running this script on a shared machine, make sure you run it
from a directory that doesn ’ t contain documents you don ’ t want to share.

 When you ’ re ready to start serving web pages and applications to everyone on the Internet, you ’ ll need
to bind the web server to an external - facing hostname or IP address. Again, Chapter 16 has more infor-
mation on this.

 The Visible Web Server
 Because you ’ re already programming your own web servers, it ’ s not difficult to write one that enables
you to see your own sample HTTP request and response. Here ’ s a script called VisibleWebServer.py . It
includes a subclass of SimpleHTTPRequestHandler that does everything SimpleHTTPRequestHandler
does, but that also captures the text of the HTTP request and response and prints them to standard
output. When you make a request, it just prints out a little log message to the server ’ s standard output.
When you hit the Visible Web Server, you get everything:

#!/usr/bin/python
import http.server
from http.server import SimpleHTTPRequestHandler
from http.server import HTTPServer

#The port of your local machine on which you want to run this web
#server. You’ll access the web server by visiting,
#e.g. “http://localhost:8000/”

PORT = 8000

class VisibleHTTPRequestHandler(SimpleHTTPRequestHandler):
 “””This class acts just like SimpleHTTPRequestHandler, but instead
 of logging only a summary of each hit to standard output, it logs

c20.indd 412c20.indd 412 12/22/09 6:18:31 PM12/22/09 6:18:31 PM

Chapter 20: Web Applications and Web Services

413

 the full HTTP request and response.”””

 def log_request(self, code=’-’, size=’-’):
 “””Logs a request in great detail. This method is called by
 SimpleHTTPRequestHandler.do_GET().”””
 print(self._heading(“HTTP Request”))
 #First, print the resource identifier and desired operation.
 print(self.raw_requestline,)
 #Second, print the request metadata
 for header, value in self.headers.items():
 print(header + “:”, value)

 def do_GET(self, method=’GET’):
 “””Handles a GET request the same way as
 SimpleHTTPRequestHandler, but also prints the full text of the
 response to standard output.”””
 #Replace the file object being used to output response with a
 #shim that copies all outgoing data into a place we can see
 #later. Then, give the actual work of handling the request to
 #SimpleHTTPRequestHandler.
 self.wfile = FileWrapper(self.wfile)
 SimpleHTTPRequestHandler.do_GET(self)
 #By this time, the shim file object we created previously is
 #full of the response data, and is ready to be displayed. The
 #request has also been displayed, since it was logged by
 #log_request() (called by SimpleHTTPRequestHandler’s do_GET)
 print(“”)
 print(self._heading(“HTTP Response”))
 print(self.wfile)

 def _heading(self, s):
 “””This helper method formats a header string so it stands out
 from the data beneath it.”””
 line = ‘=’ * len(s)
 return line + ‘\n’ + s + ‘\n’ + line

class FileWrapper:
 “””This class wraps a file object, such that everything written to
 the file is also silently appended to a buffer that can be printed
 out later.”””

 def __init__(self, wfile):
 “””wfile is the file object to which the response is being
 written, and which this class silently replaces.”””
 self.wfile = wfile
 self.contents = []

 def __getattr__(self, key):
 “””If someone tries and fails to get an attribute of this
 object, they’re probably trying to use it as the file object
 it replaces. Delegate to that object.”””
 return getattr(self.wfile, key)

 def write(self, s):

(continued)

c20.indd 413c20.indd 413 12/22/09 6:18:32 PM12/22/09 6:18:32 PM

Part III: Putting Python to Work

414

 “””Write a string to the ‘real’ file and also append it to the
 list of strings intended for later viewing.”””
 self.contents.append(s)
 self.wfile.write(s)

 def __str__(self):
 “””Returns the output so far as a string.”””
 return ‘’.join(self.contents)

if __name__ == ‘__main__’:
 httpd = HTTPServer((‘localhost’, PORT), VisibleHTTPRequestHandler)
 httpd.serve_forever()

 Note how even though SimpleHTTPRequestHandler wasn ’ t designed for its output to be intercepted, it
wasn ’ t terribly difficult to replace its output file with an impostor that does what you need. Python ’ s
operator overloading makes it easy for one object to impersonate another. In the following exercise, you
actually use this script and consider a sample request and response.

 Try It Out Seeing an HTTP Request and Response

 Create a file called hello.html in the directory in which you put VisibleWebServer.py . Put the
following HTML code into the file:

 < html >
 < body > Hello, world! < /body >
 < /html >

 Start up VisibleWebServer.py and, using a web browser, visit the URL http://localhost:8000/
hello.html . In the standard output of the VisibleWebServer.py process, you should see output
much like the following:

============
HTTP Request
============
b’GET /testpage.html HTTP/1.1\r\n’
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-
ms-application, application/vnd.ms-xpsdocument, application/xaml+xml,
application/x-ms-xbap, application/msword, application/vnd.ms-excel,
application/vnd.ms-powerpoint, application/x-shockwave-flash, * / *
Accept-Language: en-us
UA-CPU: x86
Accept-Encoding: gzip, deflate
User-Agent: Mozilla (compatible; MSIE 7.0; Windows NT 6.0; GTB6; SLCC1; .NET
CLR 2.0.50727; Media Center PC 5.0; InfoPath.1; InfoPath.2; .NET CLR
3.5.30729; .NET CLR 3.0.30618)
Host: localhost:8000
Connection: Keep-Alive

=============
HTTP Response
=============
HTTP/1.0 200 OK
Server: SimpleHTTP/0.6 Python/3.1.1

(continued)

c20.indd 414c20.indd 414 12/22/09 6:18:32 PM12/22/09 6:18:32 PM

Chapter 20: Web Applications and Web Services

415

Date: Thu, 24 Sep 2009 00:47:25 GMT
Content-type: text/html
Content-Length: 42

 < html >
 < body > Hello, world! < /body >
 < /html >

 How It Works
 When you request hello.html , the HTTPServer object created by VisibleWebServer.py spawns a
 VisibleHTTPRequestHandler object to handle your request. This does everything that a
 SimpleHTTPRequestHandler spawned by EasyWebServer.py would do, but it also makes sure the
full text of the HTTP request and response are printed to standard output.
 SimpleHTTPRequestHandler would have just printed a summary of the request.

If you use the FireFox or Mozilla web browser, you can install an extension that
will let you see portions of every HTTP request you make and every response
you get. The extension is called LiveHTTPHeaders, and it’s available from
http://livehttpheaders.mozdev.org/. This can be very useful in
debugging web applications, but you can see only the headers, not the actual
request or response data.

Several web applications also exist that will make an HTTP request on your
behalf and show you the request and response. The most full-featured
application of this sort is Web-Sniffer, at http://web-sniffer.net/.

 The HTTP Request
 An HTTP request has two parts. The first line of the request is the command; it contains an HTTP verb, a
resource identifier, and (optionally) the version of HTTP being used:

GET /hello.html HTTP/1.1

 Here the verb is GET and the resource identifier is /hello.html .

 The second part of the HTTP request is a series of headers: key - value pairs describing the client and
providing additional information about the request:

host: localhost:8000
accept-language: en
accept-encoding: gzip, compress
accept: text/ * , * / * ;q=0.01

c20.indd 415c20.indd 415 12/22/09 6:18:32 PM12/22/09 6:18:32 PM

Part III: Putting Python to Work

416

 In the REST architecture, all information necessary to identify the resource should be kept in the
identifier. Because SimpleHTTPServer serves only static files, you ’ ll use /foo.html to uniquely
identify one file on disk. Another web server might be able to dynamically generate a representation
of /foo.html instead of just looking for a file on disk, but /foo.html would still identify one
particular resource.

 Though the identifier should completely identify the resource, the key - value pairs can be used to make
smaller - scale decisions about which representation of the resource to show — for instance, to send a
localized version of a document in response to the Accept - Language header. HTTP headers are also
used to regulate caching and to transmit persistent client state (that is, cookies) and authentication
information.

 Web browsers generally send HTTP headers with capitalized names like “ User - Agent, ” and that ’ s how
this chapter refers to particular headers. A quirk of the SimpleHTTPRequestHandler class means
that the Visible Web Server prints out header names in lowercase even if that ’ s not how they were
received, but it doesn ’ t matter much: HTTP headers are not case - sensitive. “ User - Agent ” and “ user -
 agent ” are the same header.

 The HTTP Response
 The HTTP response tells the story of how the web server tried to fulfill the corresponding request. It
begins with a status code, which summarizes the response:

HTTP/1.1 200 OK

 In this case, the response code was 200 (OK), which means everything went fine and your resource is
enclosed. Less desirable status codes you may have seen in your web browsing include the following:

 403 (Forbidden), which means the resource might or might not exist but you ’ re not allowed to
receive it anyway

 404 (File Not Found) The most famous HTTP status code that you ’ ll actually see in your
browser, this means the resource is just gone and has left no forwarding address, or was
never there

 500 (Internal Server Error), which is often caused by a bug in a web application

 All forty standard error codes are defined and categorized in RFC 2616, available at www.w3.org/
Protocols/rfc2616/rfc2616 - sec10.html . Some of them are obscure, but it pays to know them.
For instance, the 204 response code, “ No Content, ” can be used in a web application to take action when
the user clicks a link, without making the user ’ s web browser load another page.

 Following the status code are a number of headers, in the same key - value format as HTTP
request headers:

Server: SimpleHTTP/0.6 Python/3.1.0
Date: Thu, 24 Sep 2009 00:47:25 GMT
Content-type: text/html
Content-Length: 42

❑

❑

❑

c20.indd 416c20.indd 416 12/22/09 6:18:33 PM12/22/09 6:18:33 PM

Chapter 20: Web Applications and Web Services

417

 Just as request headers contain information potentially useful to the web server, response headers
contain information potentially useful to the web browser. By far the most important HTTP response
header is “ Content - Type. ” Without this header, the web browser wouldn ’ t know how to display the
document being sent. The content type of /foo.html is text/html , which tells the web browser to
render the representation it receives as HTML. If the client had requested /foo.jpg instead, the content
type would have been image/jpeg , and the browser would have known to render the document as a
graphic instead.

 A blank line follows the response headers, and the rest of the response consists of the document being
delivered (if any). For a successful GET request, the document is the resource that was requested. For a
successful POST , PUT , or DELETE request, the result document is often the new version of the resource
that was changed, or a status message talking about the success of the operation. An unsuccessful
operation often results in an HTTP response containing a document describing the error and possibly
offering help.

Web applications are considered more or less “ RESTful ” depending on how well they employ the
features of HTTP. There are no hard - and - fast rules for this, and sometimes convenience wins out over
RESTfulness, but HTTP has conventions, and you might as well use them to your advantage instead of
reinventing them unnecessarily. Some rules of thumb for designing RESTful interfaces follow:

 Keep resource identifiers transparent. A user should be able to figure out what kind of resource is on the
other end of a resource identifier just by looking at it. The biggest challenge to achieving this is designing
the resource identifier so that it holds all of the information necessary to uniquely identify the resource.

 On the other hand, don ’ t put something into the resource identifier if it doesn ’ t help identify a resource.
Ask the user to provide that information in an HTTP header instead, or in the data of a POST , DELETE ,
or PUT request.

 Don ’ t put something into the data of a POST , DELETE , or PUT request if it makes sense to put it into
one of the standard HTTP headers. For instance, authentication information can be submitted through
HTTP authentication. If you make a resource available in multiple formats, you can have clients use
the HTTP header “ Accept ” to specify which one they want.

 Don ’ t return a status code of 200 (“ OK ”) on an error, unless there ’ s really no HTTP error that conveys
the problem. 500 (problem on the server end) and 400 (problem on the user end) are good general - purpose
errors. One problem with this rule is that browsers such as Internet Explorer may show their own generic
error screen if they receive an error code other than 200, blocking a document you might have generated to
help the user with her specific problem.

 CGI : Turning Scripts into Web Applications
 Using different web browsers and resources, experiment with the Visual Web Server until it becomes
boring. Unless you find this whole topic boring, this encroaching ennui probably means you ’ re pushing
the limits of what ’ s to be learned from examining HTTP requests and responses. Fortunately, it gets
much more interesting very quickly: The next phase is the dynamic world of web applications.

 REST is easy to implement when you ’ re just serving files off of a hard disk, but that only covers the part
of REST whereby you request resources. Representations, the means by which you create, modify, and
delete resources, don ’ t come into the picture at all. Although a set of static HTML files is technically a
web application, it ’ s not a very interesting one.

c20.indd 417c20.indd 417 12/22/09 6:18:33 PM12/22/09 6:18:33 PM

Part III: Putting Python to Work

418

 You can handle the transfer of representations and the creation of dynamic applications in a number of
ways (remember the chapter on Django?), but the venerable standard is the Common Gateway Interface
(CGI). CGI was developed in the early 1990s and has remained more or less the same since its creation.
The goal of CGI is to enable someone to write a script that can be invoked from an HTTP request,
without having to know anything about web server programming. A web server that supports CGI is
capable of transforming certain HTTP requests into script invocations.

 The CGI standard is hosted at http://hoohoo.ncsa.uiuc.edu/cgi/ . The page hasn ’ t changed
since 1996, but neither has CGI.

 Because CGI is implemented inside the web server, it must be enabled through web server
configuration. The setup of CGI is highly dependent on the brand of web server and on your system
administrator ’ s idea of how a system should be administrated. Even different Linux distributions have
different out - of - the - box setups for CGI. Rather than give comprehensive instructions for all contingencies,
or evade the issue altogether and assume you can get it working, following are a few lines of Python that
implement a simple CGI server; save this under the name of EasyCGIServer.py . This server can be used
for all of the CGI examples in this chapter. Once again, a built - in Python module makes it easy.

#!/usr/bin/python
import http.server
from http.server import HTTPServer
from http.server import CGIHTTPRequestHandler

def run(server_class=HTTPServer, handler_class=CGIHTTPRequestHandler):
 server_address=(‘’,8001)
 httpd=server_class(server_address, handler_class)
 httpd.serve_forever()
if __name__ == ‘__main__’:
 run()

 The code is as simple as that for EasyWebServer ; in fact, it ’ s nearly identical. The only new feature
 EasyCGIServer supports is special treatment of the cgi - bin directory, which is where CGI scripts
are kept.

 Try it Out Running a CGI Script

 Create a directory called cgi - bin beneath the directory in which you keep EasyWebServer.py and
 EasyCGIServer.py . Put the following code in the file cgi-bin/hello.cgi :

#!/usr/bin/python
Print(“Content-type: text/plain\n”)
Print(“Hello, world!”)

 The filenames of all the CGI scripts in this chapter will have the .cgi extension. This visually distin-
guishes the CGI scripts from the regular Python scripts, and makes it possible to run them on web serv-
ers that will only execute a CGI script if it has a .cgi extension.

 If you ’ re on a UNIX - based system, you ’ ll also need to make hello.cgi editable with the chmod
command:

chmod u+x ./cgi-bin/hello.cgi

c20.indd 418c20.indd 418 12/22/09 6:18:33 PM12/22/09 6:18:33 PM

Chapter 20: Web Applications and Web Services

419

 Run hello.cgi from the command line to make sure the script works:

./cgi-bin/hello.cgi
Content-type: text/plain

Hello, world!

 Start EasyWebServer.py and use a web browser to visit http://localhost:8001/cgi - bin/
hello.cgi . Either your web browser will invite you to download hello.cgi as a Python script, or
you will see the source code to hello.cgi as plaintext in your web browser:

#!/usr/bin/python
print “Content-type: text/plain\n”
print “Hello, world!”

 Kill EasyWebServer.py and start up EasyCGIServer.py instead. In your web browser, reload
 http://localhost:8001/cgi - bin/hello.cgi . You should see the string “ Hello, world! ” as
plaintext in your web browser:

Hello, world!

 How It Works
 When you requested /cgi-bin/hello.cgi through EasyWebServer , the server interpreted it the
way EasyWebServer interprets every request: as a request for a static file to be found on disk. What
you received was the contents of the static file /cgi-bin/hello.cgi .

 When you requested the same resource through EasyCGIServer , the server interpreted it differently.
Instead of treating hello.cgi as a file to be read, EasyCGIServer treated it as a script to be run. The
script was executed as from the command line, and its output was used to create the HTTP response.
What you saw in your web browser was the content part of the HTTP response, rendered according to
the Content - Type header provided by the script. Any executable .py or .cgi script you put into
cgi - bin/ will be run by EasyWebServer when requested, and its output will be used to create an
HTTP response.

 The Web Server Makes a Deal with the CGI Script
 The CGI standard specifies a deal that a CGI - enabled web server makes with any file it chooses to
interpret as a CGI script. The web server is responsible for receiving and parsing the HTTP request, for
routing the request to the correct script, and for executing that script just as you might execute a Python
script from the command line. It ’ s also responsible for modifying the script ’ s runtime environment to
include CGI - specific variables, whose values correspond to information about the runtime environment,
and information found in the HTTP request. For instance, the User - Agent header becomes the
environment variable HTTP_USER_AGENT , and the HTTP verb invoked by the request becomes the
environment variable HTTP_METHOD . As with any other environment variables, these special variables
can be accessed through the os.environ dictionary, and the script can use them to evaluate the
HTTP request.

 In return for this service, the CGI script is expected to take over the duties of the web server for the
duration of that HTTP session. Anything the script writes to standard output is output as part of

c20.indd 419c20.indd 419 12/22/09 6:18:34 PM12/22/09 6:18:34 PM

Part III: Putting Python to Work

420

the HTTP response. This means that in addition to producing a document of some kind, the script needs
to output any necessary HTTP headers as a preface to the document. At the very least, every CGI script
must output the Content - Type HTTP header.

 If you ’ re having trouble getting a script to work through the web browser, you can try setting the appro-
priate CGI environment variables manually and executing the script from the command line.

 CGI ’ s Special Environment Variables
 Your script might find more than 20 special CGI variables in its environment. The important ones are
covered a bit later, but first look at a very simple CGI script that gives you the tools you need to explore
the variables yourself. It ’ s called PrintEnvironment.cgi :

#!/usr/bin/python

import os
import cgitb
cgitb.enable()

 The cgitb module will give you exception reporting and stack tracebacks in your web browser,
similar to what you see when a command - line Python script throws an exception. It ’ ll save you from
getting mysterious 500 error codes, and from having to look through web server logs to find the actual
error message:

#Following is a list of the environment variables defined by the CGI
#standard. In addition to these 17 predefined variables, each HTTP
#header in the request has a corresponding variable whose name begins
#with “HTTP_”. For instance, the value of the “User-Agent” header is
#kept in “HTTP_USER_AGENT”.
CGI_ENVIRONMENT_KEYS = [‘SERVER_SOFTWARE’,
 ‘SERVER_NAME’,
 ‘GATEWAY_INTERFACE’,
 ‘SERVER_PROTOCOL’,
 ‘SERVER_PORT’,
 ‘REQUEST_METHOD’,
 ‘PATH_INFO’,
 ‘PATH_TRANSLATED’,
 ‘SCRIPT_NAME’,
 ‘QUERY_STRING’,
 ‘REMOTE_HOST’,
 ‘REMOTE_ADDR’,
 ‘AUTH_TYPE’,
 ‘REMOTE_USER’,
 ‘REMOTE_IDENT’,
 ‘CONTENT_TYPE’,
 ‘CONTENT_LENGTH’]

#First print the response headers. The only one we need is Content-type.
print(“Content-type: text/plain\n”)

#Next, print the environment variables and their values.
print(“Here are the headers for the request you just made:”)

c20.indd 420c20.indd 420 12/22/09 6:18:34 PM12/22/09 6:18:34 PM

Chapter 20: Web Applications and Web Services

421

for key, value in os.environ.items():
 if key.find(‘HTTP_’) == 0 or key in CGI_ENVIRONMENT_KEYS:
 print(key, “= ”, value)

 Put this file in your cgi-bin/ directory, make it executable, and visit http://localhost:8000/
cgi - bin/PrintEnvironment.cgi . You should see something like the following:

Here are the headers for the request you just made:
SERVER_SOFTWARE = > SimpleHTTP/0.6 Python/3.1.0
REQUEST_METHOD = > GET
PATH_INFO = >
SERVER_PROTOCOL = > HTTP/1.1
QUERY_STRING = >
CONTENT_LENGTH = >
SERVER_NAME = > rubberfish
PATH_TRANSLATED = > /home/jamesp/LearningPython/listings
SERVER_PORT = > 8001
CONTENT_TYPE = > text/plain
HTTP_USER_AGENT = >
HTTP_ACCEPT = > text/html, text/plain, text/rtf, text/ * , * / * ;q=0.01

GATEWAY_INTERFACE = > CGI/1.1
SCRIPT_NAME = > /cgi - bin/PrintEnvironment.py
REMOTE_ADDR = > 127.0.0.1
REMOTE_HOST = > rubberfish

 With the PrintEnvironment.py file in place, you ’ re defining a resource with the identifier
 http://localhost:8000/cgi-bin/PrintEnvironment.cgi . When you run EasyCGIServer , this
resource is defined by the output you get when you run the Python code in PrintEnvironment.cgi ;
and, depending on the content of your request, it can be different every time you hit that URL.

PrintEnvironment.cgi contains an enumeration of the defined CGI
environment variables and only prints the values of those variables. The purpose
of this is twofold: to put that information where you’ll see it and to avoid leaking
information that might be contained in other irrelevant environment variables.

EasyCGIServer inherits the environment of the shell you used to run it; this means
that if you run EasyCGIServer instead of Apache or another web server, a version
of PrintEnvironment.cgi that printed the whole environment would print PATH
and all the other environment variables in your shell. This information would
swamp the legitimate CGI variables and possibly disclose sensitive information
about your user account. Remember that any web servers you set up on your
computer can be accessed by anyone else on the same machine, and possibly by the
Internet at large. Don’t expose information about yourself unnecessarily.

c20.indd 421c20.indd 421 12/22/09 6:18:34 PM12/22/09 6:18:34 PM

Part III: Putting Python to Work

422

 A few of the CGI - specific environment variables deserve further scrutiny here:

 REQUEST_METHOD is the HTTP verb corresponding to the REST method you used against this
resource. Because you were just trying to retrieve a representation of the resource, you used the
 GET HTTP verb.

 QUERY_STRING and PATH_INFO are the two main ways in which a resource identifier makes it
into a CGI script. You can experiment with these two variables by accessing
 PrintEnvironment.cgi in different ways. For instance, GET ting the resource identifier /cgi -
 bin/PrintEnvironment.cgi/pathInfo/?queryString will set PATH_INFO to pathInfo/
and QUERY_STRING to queryString . The strange - looking, hard - to - understand URLs you often
see when using web applications are usually long QUERY_STRING s.

 HTTP_USER_AGENT is a string provided by the web browser you used to access the page, which
corresponds to the “ User - Agent ” HTTP header and which is supposed to identify the web
browser you ’ re using. It ’ s interesting as an example of an HTTP header being transformed into a
CGI environment variable. Another such variable is HTTP_REFERER , derived from the “ Referer ”
HTTP header. The “ Referer ” header is provided whenever you click a link from one page to
another, so that the second page knows how you accessed it.

 Accepting User Input through HTML Forms
 It ’ s possible to manipulate the output of PrintEnvironment.cgi enough to prove that it serves
dynamic resources, but the interface to it isn ’ t that good. To get different text back, you have to use
different web browsers, hack the URL (that is, request different resources), or do even weirder things.
Most web applications eschew this type of interface in favor of one based on HTML forms. You can make
a lot of useful web applications just by writing simple CGIs that print HTML forms and read the QUERY_
STRING and PATH_INFO variables.

 A brief recap of HTML forms seems appropriate here, because the forms are relevant only to web
applications. Even if you already know HTML, it ’ s useful to place HTML forms in the context of the
REST architecture.

 An HTML form is enclosed within < FORM > tags. The opening < FORM > tag has two main attributes:
 action , which contains the identifier of the CGI script to call or the resource to be operated upon, and
 method , which contains the HTTP verb to be used when submitting the form.

 HTML Forms ’ Limited Vocabulary
 The only HTTP verbs supported by HTML forms are GET , for reading a resource, and POST , for writing
to a resource. A form action of PUT or DELETE is invalid HTML, and most web browsers will submit a
 POST request instead. As you ’ ll see, this puts a bit of a kink in the implementation of REST - based web
applications, but it ’ s not too bad.

 Between the opening < FORM > tag and the closing < /FORM > tag, special HTML tags can be used, which a
web browser renders as GUI controls. The GUI controls available include text boxes, checkboxes, radio
button groups, buttons that activate form submission (all achieved with the INPUT tag), large text entry
fields (the TEXTAREA tag), and drop - down selection boxes (the SELECT tag).

❑

❑

❑

c20.indd 422c20.indd 422 12/22/09 6:18:35 PM12/22/09 6:18:35 PM

Chapter 20: Web Applications and Web Services

423

 If you put that HTML in a file called SimpleHTMLForm.html in the root directory of your
 EasyCGIServer installation, you can retrieve it via the URL http://localhost:8001/
SimpleHTMLForm.html . Because it ’ s not a CGI script, EasyCGIServer will serve it as a static file, just as
 EasyWebServer would. If you then click the Submit button, the form data will be encoded by the
web browser into a GET request, and submitted to a resource with a long identifier beginning with /
cgi-bin/PrintFormSubmission.cgi . Unfortunately, there ’ s nothing on disk — no file and no
script — corresponding to that resource identifier, so instead of doing anything useful, the web server is
going to return a “ page not found ” error document (status code: the famous 404). With Python ’ s cgi
module, though, it ’ s easy to put a script in place that will take the form submission and do something with it.

 The cgi Module: Parsing HTML Forms
 When you click one of the Submit buttons on SimpleHTMLForm.html , notice that you ’ re not exactly
 GET ting the resource /cgi - bin/PrintFormSubmission.cgi , the resource specified in the action
attribute of the < FORM > tag. You ’ re GET ting a slightly different resource, something with the long,
unwieldy identifier of /cgi-bin/PrintFormSubmission.cgi?textField=Some+text & radio
Button=2 & button=Submit .

 This is how a GET form submission works: The web browser gathers the values of the fields in the form
you submitted and encodes them so they don ’ t contain any characters not valid in a URL (for instance,
spaces are replaced by plus signs). It then appends the field values to the form destination, to get the
actual resource to be retrieved. Assuming there ’ s a CGI at the other end to intercept the request, the CGI
will see that encoded form information in its QUERY_STRING environment variable. A similar encoding
happens when you submit a form using the POST verb, but in that case the form data is sent as part of
the data, not as part of the resource identifier. Instead of being made available to the script in
environment variables, POST ed data is made available on standard input.

 The cgi module knows how to decode the form data present in HTTP requests, whether the request
uses GET or POST . The cgi module can obtain the data from environment variables (GET) or standard
input (POST), and use it to create a reconstruction of the original HTML form in a class called
 FieldStorage .

 FieldStorage can be accessed just like a dictionary, but the safest way to use it is to call its getfirst()
method, passing in the name of the field whose value you want.

 Safety When Accessing Form Values
 Why is form.getfirst(‘fieldName’) safer than form[‘fieldName’] ? The root of the problem is
that sometimes a single form submission can legitimately provide two or more values for the same field
(for instance, this happens when a user selects more than one value of a selection box that allows
multiple selections). If this happens, form[‘fieldName’] will return a list of values (for example, all
the selected values in the multiple - selection box) instead of a single value. This is fine as long as your
script is expecting it to happen, but because users have complete control of the data they submit to your
CGI script, a malicious user could easily submit multiple values for a field in which you were only
expecting one.

c20.indd 423c20.indd 423 12/22/09 6:18:35 PM12/22/09 6:18:35 PM

Part III: Putting Python to Work

424

 If someone pulls that trick on you and your script is using form[‘fieldName’] , you ’ ll get a list where
you were expecting a single object. If you treat a list as though it were a single object your script will
surely crash. That ’ s why it ’ s safer to use getfirst : It is always guaranteed to return only the first
submitted value, even if a user is trying to crash your script with bad data.

 In older versions of Python prior to 2.2, the getfirst method is not available. Instead, to be safe you
need to simulate getfirst with code like the following:

fieldVal = form.getValue(“field”)
if isinstance(fieldVal, list): #More than one “field” was submitted.
 fieldVal = fieldVal[0]

 When you ’ re actually expecting multiple values for a single CGI variable, use the _getlist_ method
instead of getfirst to get all the set values.

 Now that you know about the FieldStorage object, it ’ s easy to write the other half of
 SimpleHTMLForm.html : PrintFormSubmission.cgi , a CGI script that prints the values it finds in the
form ’ s fields:

#!/usr/bin/python
import cgi
import cgitb
cgitb.enable()

form = cgi.FieldStorage()
textField = form.getfirst(“textField”)
radioButton = form.getfirst(“radioButton”)
submitButton = form.getfirst(“button”)

print(‘Content-type: text/html\n’)
print(‘ < html > ’)
print(‘ < body > ’)
print(‘ < p > Here are the values of your form submission: < /p > ’)
print(‘ < ul > ’)
print(‘ < li > In the text field, you entered “%s”. < /li > ’ % textField)
print(‘ < li > Of the radio buttons, you selected “%s”.’ % radioButton)
print(‘ < li > The name of the submit button you clicked is “%s”.’ %
submitButton)
print(‘ < /ul > ’)
print(‘ < /body > ’)
print(‘ < /html > ’)

 Now, when you click the submit button on SimpleHTMLForm.html , instead of getting a 404 Not Found
error, you ’ ll see something similar to what is shown in Figure 20 - 1.

Figure 20-1

c20.indd 424c20.indd 424 12/22/09 6:18:36 PM12/22/09 6:18:36 PM

Chapter 20: Web Applications and Web Services

425

 So far so good. You can go a little further, though, and create a script capable of printing out any form
submission at all. That way, you can experiment with HTML forms of different types. To get started,
have the new script print out a fairly complex HTML form when you hit it without submitting a form to
it. The script that follows deserves to be called PrintAnyFormSubmission.cgi :

#!/usr/bin/python
import cgi
import cgitb
import os

cgitb.enable()
form = cgi.FieldStorage()

print(‘Content-type: text/html\n’)
print(‘ < html > ’)
print(‘ < body > ’)
if form.keys():
 verb = os.environ[‘REQUEST_METHOD’]
 print(‘ < p > Here are the values of your %s form submission:’ % verb)
 print(‘ < ul > ’)
 for field in form.keys():
 valueObject = form[field]
 if isinstance(valueObject, list):
 #More than one value was submitted. We therefore have a
 #whole list of ValueObjects. getlist() would have given us
 #the string values directly.
 values = [v.value for v in valueObject]
 if len(values) == 2:
 connector = ‘” and “’ #’”Foo” and “bar”’
 else:
 connector = ‘”, and “’ #’”Foo”, “bar”, and “baz”’
 value = ‘”, “’.join(values[:-1]) + connector + values[-1]
 else:
 #Only one value was submitted. We therefore have only one
 #ValueObject. getfirst() would have given us the string
 #value directly.
 value = valueObject.value
 print(‘ < li > For < var > %s < /var > , I got “%s” < /li > ’ % (field, value))
else:
 print(‘’’ < form method=”GET” action=”%s” >

 < p > Here ’ s a sample HTML form. < /p >

 < p > < input type=”text” name=”textField” value=”Some text” / > < br / >
 < input type=”password” name=”passwordField” value=”A password” / >
 < input type=”hidden” name=”hiddenField” value=”A hidden field” / > < /p >

 < p > Checkboxes:
 < input type=”checkbox” name=”checkboxField1” checked=”checked” / > 1
 < input type=”checkbox” name=”checkboxField2” selected=”selected” / > 2
 < /p >

 < p > Choose one: < br / >
 < input type=”radio” name=”radioButton” value=”1” / > 1 < br / >

(continued)

c20.indd 425c20.indd 425 12/22/09 6:18:36 PM12/22/09 6:18:36 PM

Part III: Putting Python to Work

426

 < input type=”radio” name=”radioButtons” value=”2” checked=”checked” / > 2 < br / >
 < input type=”radio” name=”radioButtons” value=”3” / > 3 < br / > < /p >

 < textarea name=”largeTextEntry” > A lot of text < /textarea >

 < p > Choose one or more: < select name=”selection” size=”4” multiple=”multiple” >
 < option value=”Option 1” > Option 1 < /option >
 < option value=”Option 2” selected=”selected” > Option 2 < /option >
 < option value=”Option 3” selected=”selected” > Option 3 < /option >
 < option value=”Option 4” selected=”selected” > Option 4 < /option >
 < /select > < /p >

 < p > < input type=”Submit” name=”button” value=”Submit this form” / >
 < p > < input type=”Submit” name=”button” value=”Submit this form (Button #2)” / >

 < /form > ’’ ’ % os.environ[‘SCRIPT_NAME’])

print(‘ < /body > ’)
print(‘ < /html > ’)

 Try It Out Printing Any HTML Form Submission

 Put PrintAnyFormSubmission.cgi in your cgi - bin/ directory and start up EasyCGIServer . Visit
 http://localhost:8001/cgi - bin/PrintAnyFormSubmission.cgi . You ’ ll be given an HTML
form that looks something like what is shown in Figure 20 - 2.

Figure 20-2

 Change any of the form data you want and click one of the Submit buttons. You ’ ll be taken to a screen
that looks like the one shown in Figure 20 - 3.

(continued)

c20.indd 426c20.indd 426 12/22/09 6:18:36 PM12/22/09 6:18:36 PM

Chapter 20: Web Applications and Web Services

427

 How It Works
 When you first request the resource identified by /cgi - bin/PrintAnyFormSubmission.cgi , the
script uses the cgi module to look for a form submission. Because there are no form variables, it
assumes you didn ’ t submit a form at all and presents the default resource: a fairly complex HTML
form for you to play with.

 When you click one of the Submit buttons, you request a very different resource: something like
 /cgi-bin/PrintAnyFormSubmission.cgi?textField=Some+text & passwordField=A+password
& hiddenField=A+hidden+field & checkboxField1=on & radioButtons=2 & largeTextEntry=A+lo
t+of+text & selection=Option+2 & selection=Option+3 & selection=Option+4 & button=Submit
+this+form+%28Button+%232%29 . This time, the cgi module picks up a lot of form variables and
outputs a dynamically generated resource that iterates over the submitted form variables to describe
the form you submitted. If you submit the form again with different values, you ’ re requesting a
slightly different resource and the HTML output by the script will be different in corresponding ways.

 If you ’ re new to web programming, note especially that even though there was a checkboxField2
field in the form submitted, there ’ s no mention of it in the description of the form submission. Web
browsers don ’ t encode unchecked checkboxes into the form submission, so they don ’ t show up at all in
the FieldStorage object. This can be a little annoying.

 You can use SimpleHTMLForm.html against this script as well as against PrintFormSubmission.cgi .
In fact, you can use any form at all against this script, including forms designed for other web
applications, as long as you change the form ’ s action attribute to point to /cgi-bin/
PrintFormSubmission.cgi . However, if you don ’ t provide any inputs at all (that is, you GET the
base resource /cgi-bin/PrintFormSubmission.cgi), you ’ ll be given the default HTML form. This
pattern — a CGI script that, when invoked with no arguments, prints its own form — is a powerful tool
for building self - contained applications. Note also how the script uses the special CGI - provided
environment variable SCRIPT_NAME to refer to itself. Even if you name this script something else or put
it in another directory, the form it generates will still refer to itself.

 Like the EasyHTTPServer , PrintAnyFormSubmission.cgi is a good way to experiment with a new
concept, but it gets boring quickly. It ’ s time to move on to something more interesting: a real web
application.

Figure 20-3

c20.indd 427c20.indd 427 12/22/09 6:18:37 PM12/22/09 6:18:37 PM

Part III: Putting Python to Work

428

 Building a Wiki
 With a basic knowledge of REST, the architecture of the Web; and CGI, the main way of hooking up
programs to that architecture, you ’ re ready to design and build a basic application. The next few pages
detail the construction of a simple content management system called a wiki .

 The wiki was invented in 1995 by Ward Cunningham and is best known today as the base for Wikipedia
(www.wikipedia.org), a free online encyclopedia (see Figure 20 - 4). Cunningham ’ s original wiki
(http://c2.com/cgi/wiki/) is still popular among programmers, containing information on
and discussion of technical and professional best practices. Of course, there ’ s also the REST wiki
mentioned earlier.

Figure 20-4

 The most distinctive features of wikis are as follows:

 Open, web - based editing — Some content management systems require special software or a
user account to use, but wiki pages are editable through any web browser. On most wikis, every
page is open to editing by anyone at all. Because of problems with spam and vandalism, some
wikis have begun to require user accounts. Even with wikis that distinguish between members
and nonmembers, though, the norm is that any member can edit any page. This gives wikis an
informal feel, and the near lack of barriers to entry encourages people to contribute.

 A flat namespace of pages — Each page in a wiki has a unique name. Page names are often
 WikiWords , strings formed by capitalizing several words (the title of the page) and pushing them

❑

❑

c20.indd 428c20.indd 428 12/22/09 6:18:37 PM12/22/09 6:18:37 PM

Chapter 20: Web Applications and Web Services

429

together. That is, WikiPageNames OftenLookLikeThis. There is no directory structure in a wiki;
all pages are served from the top level. Pages are organized through the creation of additional
pages to serve as indexes and portals.

 Linking through citing — One wiki page can link to another simply by mentioning its
WikiWord name in its own body. When a page is rendered, all WikiWords cited therein are
linked to the corresponding pages. A page may reference a WikiWord for which no page yet
exists: At rendering time, such a reference is linked to a form for creating the nonexistent page.
Wikis that don ’ t name their pages with WikiWords must define some other convention for
linking to another page in the same wiki.

 Simple, text - based markup — Rather than require the user to input HTML, wikis employ a few
simple rules for transforming ASCII text into the HTML displayed when a page is rendered.
Sample rules include the use of a blank line to signify a new paragraph, and the use of
 * asterisks * to bold a selection. Unfortunately, these conventions are only informal, and there are
no hard - and - fast rules. So, the specific rules differ widely across the various wiki
implementations.

 See http://c2.com/cgi/wiki?WikiDesignPrinciples for Cunningham ’ s original wiki
design principles.

 Sample applications often lack important features necessary to make the application fit for actual use. An
online store application presented within the context of this chapter would be too complex to be easily
understood, yet not complete enough to actually use to run an online store. Because the defining features
of a wiki are so few and simple, it ’ s possible to design, build, and explain a fully fledged wiki in just a
few pages. BittyWiki, the application designed and built in this chapter according to the principles just
described, weighs in at under 10 kilobytes, but it ’ s not the shortest wiki written in Python.

 See http://infomesh.net/2003/wypy/wypy.txt for a wiki written in only 814 characters and
11 lines of Python. It ’ s acutely painful to behold.

 The BittyWiki Core Library
 Before writing any code, you need to make a couple of design decisions about the nature of the wiki you
want to create. In the following examples, the design decisions made are the ones that lead to the
simplest wiki back end: after all, for the purposes of this discussion, the important part of BittyWiki is
the interface it presents to the Web, not the back end.

 Back - end Storage
 Wiki implementations store their pages in a variety of ways. Some keep their files on disk, some in a
database, and some in a version-controlled repository so that users can easily repel vandalism. For
simplicity ’ s sake, a BittyWiki installation will keep a page on a disk file named after that page. All of a
given wiki ’ s pages will be kept in the same directory. Because the wiki namespace is flat, no
subdirectories are needed.

❑

❑

c20.indd 429c20.indd 429 12/22/09 6:18:37 PM12/22/09 6:18:37 PM

Part III: Putting Python to Work

430

 WikiWords
 Each wiki implementation that uses WikiWords must decide which strings are valid names of wiki
pages, so that it can automatically link citations of those pages. BittyWiki uses one of the simplest
WikiWord definitions: It treats as a WikiWord any string of letters and numbers that begins with a capital
letter and contains at least two capitals. “ WikiWord ” is itself a WikiWord, as are “ WikiWord2, ”
 “ WikiworD, ” “ WWW, ” and “ AI. ”

 Any wiki page can be retrieved by name, but you also need a default page for when no name is
specified. The default page will be the one called “ HomePage. ”

 Writing the BittyWiki Core
 On the basis of those design decisions, it ’ s now possible to write the core of BittyWiki: the code that
reads from and writes to the back end, and that processes the WikiWord links. Put this code into
 BittyWiki.py , in your cgi - bin/ directory or somewhere in your PYTHON_PATH :

“””This module implements the BittyWiki core code: that which is not
bound to any particular interface.”””

import re
import os

class Wiki:
 “A class representing a wiki as a whole.”
 HOME_PAGE_NAME = “HomePage”

 def __init__(self, base):
 “Initializes a wiki that uses the provided base directory.”
 self.base = base

 if not os.path.exists(self.base):
 os.makedirs(self.base)
 elif not os.path.isdir(self.base):
 raise IOError(‘Wiki base “%s” is not a directory!’ % self.base)

 def getPage(self, name=None):
 “””Retrieves the given page for this wiki, which may or may not
 currently exist.”””
 if not name:
 name = self.HOME_PAGE_NAME
 return Page(self, name)

class Page:
 “””A class representing one page of a wiki, containing all the
 logic necessary to manipulate that page and to determine which other
 pages it references.”””

 #We consider a WikiWord any word beginning with a capital letter,
 #containing at least one other capital letter, and containing only
 #alphanumerics.
 WIKI_WORD_MATCH = “(([A-Z][a-z0-9]*){2,})”

c20.indd 430c20.indd 430 12/22/09 6:18:38 PM12/22/09 6:18:38 PM

Chapter 20: Web Applications and Web Services

431

 WIKI_WORD = re.compile(WIKI_WORD_MATCH)
 WIKI_WORD_ALONE = re.compile(‘^%s$’ % WIKI_WORD_MATCH)

 def __init__(self, wiki, name):
 “””Initializes the page for the given wiki with the given
 name, making sure the name is valid. The page may or may not
 actually exist right now in the wiki.”””

 #WIKI_WORD matches a WikiWord anywhere in the string. We want to make
 #sure the page is a WikiWord and nothing else.
 if not self.WIKI_WORD_ALONE.match(name):
 raise(NotWikiWord, name)
 self.wiki = wiki
 self.name = name
 self.path = os.path.join(self.wiki.base, name)

 def exists(self):
 “Returns true if there’s a page for the wiki with this name.”
 return os.path.isfile(self.path)

 def load(self):
 “Loads this page from disk, if it exists.”
 if not hasattr(self, ‘text’):
 self.text = ‘’
 if self.exists():
 self.text = open(self.path, ‘r’).read()

 def save(self):
 “Saves this page. If it didn’t exist before, it does now.”
 if not hasattr(self, ‘text’):
 self.text = ‘’
 out = open(self.path, ‘w’)
 out.write(self.text)
 out.close()

 def delete(self):
 “Deletes this page, assuming it currently exists.”
 if self.exists():
 os.remove(self.path)

 def getText(self):
 “Returns the raw text of this page.”
 self.load()
 return self.text

class NotWikiWord(Exception):
 “””Exception thrown when someone tries to pass off a non-WikiWord
 as a WikiWord.”””
 Pass

c20.indd 431c20.indd 431 12/22/09 6:18:38 PM12/22/09 6:18:38 PM

Part III: Putting Python to Work

432

 Try it Out Creating Wiki Pages from an Interactive Python Session

 In just a bit, you ’ re going to give BittyWiki a web interface, and spend much of the rest of the chapter
accessing it via HTTP. The easiest way to get used to the basic API, however, is to play with BittyWiki
from an interactive Python session — no web interface needed:

 > > > from BittyWiki import Wiki
 > > > wiki = Wiki(“localwiki”)
 > > > homePage = wiki.getPage()
 > > > homePage.text = “Here ’ s the home page.\n\nIt links to PageTwo and
PageThree.”
 > > > homePage.save()

 The localwiki directory now contains your wiki ’ s files:

 > > > #The “localwiki” directory now contains your wiki ’ s files.
 > > > import os
 > > > open(os.path.join(“localwiki”,”HomePage”)).read()
“Here ’ s the home page.\n\nIt links to PageTwo and PageThree.”

 HomePage references other pages in the wiki, but none of them exist yet:

 > > > page2 = wiki.getPage(“PageTwo”)
 > > > page2.exists()
False

 Of course, you can create one of those pages:

 > > > page2.text = “Here ’ s page 2.\n\nIt links back to HomePage.”
 > > > page2.save()
 > > > page2.exists()
True

 Finally, a look at the NotWikiWord exception:

 > > > wiki.getPage(“Wiki”)
Traceback (most recent call last):
 File “ < stdin > ”, line 1, in ?
 File “BittyWiki.py”, line 25, in getPage
 return Page(self, name)
 File “BittyWiki.py”, line 47, in __init__
 raise NotWikiWord, name
BittyWiki.NotWikiWord: Wiki

 The BittyWiki Web Interface
 The BittyWiki library provides a way to manipulate the wiki, but it has no user interface. You can write
standalone scripts to manipulate the repository, or create pages from an interactive prompt, but wikis

c20.indd 432c20.indd 432 12/22/09 6:18:39 PM12/22/09 6:18:39 PM

Chapter 20: Web Applications and Web Services

433

were intended to be used over the Web. Another set of design decisions awaits, related to how BittyWiki
should expose the wiki pages and operations as REST resources.

 Resources
 Because REST is based on resources, the first thing to consider when designing a web application is the
nature of the resources to provide. A wiki provides only one type of resource: pages out of a flat
namespace. Information in the URL path is easier to read than keeping it in the string, so a wiki page
should be retrieved by sending a GET request to the CGI, appending the page name to the CGI path. The
resulting resource identifier looks like /bittywiki.cgi/PageName . To modify a page, a POST request
should be sent to its resource identifier.

 The allowable operations on a wiki page are as follows: creating one, reading one, updating one, and
deleting one. These four operations are so common to different types of resources that they have their
own acronym (CRUD), used to describe the many applications designed for performing those
operations. A wiki is a web - based CRUD application for named pages of text kept in a flat namespace.

 Most wikis either implement page delete as a special administrator command, or don ’ t implement it at
all; this is because a page delete command makes vandalism very easy. BittyWiki ’ s na ï vet é with respect
to the delete command is perhaps its least realistic feature.

 Request Structure
 Not by coincidence, the CRUD operations correspond to the four main HTTP verbs: Recall that the same
four operations show up repeatedly, whether the subject is databases, file system access, or web
resources. Ideally, one CRUD operation would map to one HTTP verb.

 When users request a page for reading, the only information they must provide is the page name.
Therefore, for the read operation, no additional information must be tacked on to the resource identifier
defined in the previous section. A simple GET to the resource identifier will suffice.

 When modifying a page, it ’ s necessary to send not only the name of the page but its desired new
contents. POST ing the data to the resource identifier should suffice to do that.

 Now you run into a problem: You have two more operations (create and delete), but only one HTTP
method (POST) is both suitable for those operations and also supported by the HTML forms that will
make up your interface. These operations must be consolidated somehow.

 It makes no sense to “ create ” a page that already exists or to “ edit ” a nonexistent page, so those two
operations could be combined into a single write operation. There are still two actions (write and
delete) to go through POST , so the problem remains.

 The solution is to have users put a marker in their POST data to indicate which operation they want to
perform, rather than just post the data they want to use in the operation. The key for this marker is
 operation , and the allowable values are write and delete .

 But Wait — There ’ s More (Resources)
 So far, the design assumes that the write and delete actions are triggered in response to HTML form
submissions. Where are those HTML forms going to come from? Because the forms need to be
dynamically generated based on the name of the page they ’ re modifying, they must be generated by the

c20.indd 433c20.indd 433 12/22/09 6:18:39 PM12/22/09 6:18:39 PM

Part III: Putting Python to Work

434

wiki program. This makes them a new type of resource. Contrary to what was stated earlier, BittyWiki
actually serves two types of resources. Its primary job is to serve pages, but it must also serve HTML
forms for manipulating those pages.

 Unlike pages, forms can ’ t be created, updated, or deleted by the user: they can only be read. (After
they ’ re read, however, they can be used to create, update, or delete pages.) The forms should therefore be
accessible through GET URLs.

 Because the user will be requesting a form to write or delete a particular page, it makes sense to base the
resource identifier for the form on that of the page. You have two ways of doing this. The first is to
continue to append to the PATH_INFO of the identifier, so that the form to delete the page at
/bittywiki.cgi/MyPage is located at /wiki.cgi/MyPage/delete . The other way is to use the QUERY_
STRING , so that that form is located at /wiki.cgi/MyPage?operation=delete .

 There ’ s no right or wrong solution. However, because the operation keyword is already in use for the
 POST form submissions, and because the pages (not the forms) are the real point of a wiki, BittyWiki
implements the second strategy. The possible values are the same as for the POST commands: write and
 delete .

 To summarize: Each wiki page in BittyWiki boasts three associated resources. Each resource might
behave differently in response to a GET and a POST , as shown in the following table.

 Resource What GET does What POST does

 /bittywiki.cgi/PageName Displays the page if it
exists; displays create form
if not

 Nothing

 /bittywiki.cgi/
PageName?operation=write

 Displays edit form Writes page, provides status

 /bittywiki.cgi/PageName?
operation=delete

 Displays delete form Deletes page, provides status

 If no page name is specified (that is, someone GET s the bare resource /bittywiki.cgi/), the CGI will
ask the core wiki code to retrieve the default page.

 There are tradeoffs to consider when you ’ re designing your resource identifiers and weighing
 PATH_INFO against QUERY_STRING . Both “/foo.cgi/clients/MegaCorp” and “/foo.
cgi?client=MegaCorp” are legitimate REST identifiers for the same resource. The advantage of the
first one is that it looks a lot nicer, more like a “ real ” resource. If you want to give the appearance of
hierarchy in your data structure, nothing does it as well as a PATH_INFO - based identifier scheme.

 The problem is that you can ’ t use that scheme in conjunction with an HTML form that lets you, for
example, select MegaCorp from a list of clients. The destination of an HTML form needs to be defined at
the time the form is printed, so the best you can do ahead of time would be /foo.cgi/ , letting the web
browser tack on “?client=MegaCorp” when the user submits the form. If your application has this

c20.indd 434c20.indd 434 12/22/09 6:18:39 PM12/22/09 6:18:39 PM

Chapter 20: Web Applications and Web Services

435

problem, you might consider defining two resource identifiers for each of your resources: an identifier
that uses PATH_INFO , and one that uses QUERY_STRING .

 Wiki Markup
 The final question is to consider how to transform the plaintext typed by writers into the HTML
displayed to readers. Some wikis are extravagant and let writers do things like draw tables and upload
images. BittyWiki supports only a few very basic types of text - to - HTML markup:

 To ensure valid HTML, all pages are placed within paragraph (< p >) tags.

 Two consecutive newlines are treated as a paragraph break.

 Any HTML manually typed into a wiki page is escaped, so that it ’ s displayed to the viewer
instead of being interpreted by the web browser.

 Because there are so few markup rules, BittyWiki pages will look a little bland, but prohibiting raw
HTML will limit the capabilities of any vandals that happen along.

 With these design decisions made, it ’ s now possible to create the CGI web interface to BittyWiki. This
code should go into bittywiki.cgi , in the same cgi - bin/ directory where you put BittyWiki.py :

#!/usr/bin/python
import cgi
import cgitb
import os
import re
from BittyWiki import Wiki, Page, NotWikiWord
cgitb.enable()

#First, some HTML templates.
MAIN_TEMPLATE = ‘’’ < html >
 < head > < title > %(title)s < /title >
 < body > %(body)s < hr / > %(navLinks)s < /body >
 < /html > ’’’

VIEW_TEMPLATE = ‘’’%(banner)s
 < h1 > %(name)s < /h1 >
%(processedText)s’’’

WRITE_TEMPLATE = ‘’’%(banner)s
 < h1 > %(title)s < /h1 >
 < form method=”POST” action=”%(pageURL)s” >
 < input type=”hidden” name=”operation” value=”write” >
 < textarea rows=”15” cols=”80” name=”data” > %(text)s < /textarea > < br / >
 < input type=”submit” value=”Save” >
 < /form > ’’’

DELETE_TEMPLATE = ‘’’ < h1 > %(title)s < /h1 >
 < p > Are you sure %(name)s is the page you want to delete? < /p >

 < form method=”POST” action=”%(pageURL)s” >
 < input type=”hidden” name=”operation” value=”delete” >

❑

❑

❑

(continued)

c20.indd 435c20.indd 435 12/22/09 6:18:40 PM12/22/09 6:18:40 PM

Part III: Putting Python to Work

436

 < input type=”submit” value=”Delete %(name)s!” >
 < /form > ’’’

ERROR_TEMPLATE = ‘ < h1 > Error: %(error)s < /h1 > ’
BANNER_TEMPLATE = ‘ < p style=”color:red;” > %s < /p > < hr / > ’

#A snippet for linking a WikiWord to the corresponding wiki page.
VIEW_LINK = ‘ < a href=”%s” > %%(wikiword)s < /a > ’

#A snippet for linking a WikiWord with not corresponding page to a
#form for creating that page.
ADD_LINK = ‘%%(wikiword)s < a href=”%s” > ? < /a > ’

 Rather than print out HTML pages from inside the CGI script, it ’ s often useful to define HTML templates
as strings ahead of time and use Python ’ s string interpolation to fill them with dynamic values. This
helps to separate presentation and content, making it much easier to customize the HTML. Separating
the HTML out from the Python code makes it possible to hand the templates over to a web designer who
doesn ’ t know Python.

 One feature of Python that deserves wider recognition is its capability to do string interpolation with a
map instead of a tuple. If you have a string “A %(foo)s string” , and a map containing an item keyed
to foo , interpolating the string with the map will replace “%(foo)s” with the string value of the item
keyed to foo :

class WikiCGI:

 #The possible operations on a wiki page.
 VIEW = ‘’
 WRITE = ‘write’
 DELETE = “delete’

 def __init__(self, wikiRoot):
 self.wiki = Wiki(wikiRoot)

 def run(self):
 toDisplay = None
 try:
 #Retrieve the wiki page the user wants.
 page = os.environ.get(‘PATH_INFO’, ‘’)
 if page:
 page = page[1:]
 page = self.wiki.getPage(page)
 except NotWikiWord, badName:
 page = None
 error = ‘”%s” is not a valid wiki page name.’ % badName
 toDisplay = self.makeError(error)

 if page:
 #Determine what the user wants to do with the page they
 #requested.

(continued)

c20.indd 436c20.indd 436 12/22/09 6:18:40 PM12/22/09 6:18:40 PM

Chapter 20: Web Applications and Web Services

437

 makeChange = os.environ[‘REQUEST_METHOD’] == ‘POST’
 if makeChange:
 defaultOperation = self.WRITE
 else:
 defaultOperation = ‘’
 form = cgi.FieldStorage()
 operation = form.getfirst(‘operation’, defaultOperation)

 #We now know which resource the user was trying to access
 #(“page” in conjunction with “operation”), and “form”
 #contains any representation they were submitting. Now we
 #delegate to the appropriate method to handle the operation
 #they requested.
 operationMethod = self.OPERATION_METHODS.get(operation)
 if not operationMethod:
 error = ‘”%s” is not a valid operation.’ % operation
 toDisplay = self.makeError(error)

 if not page.exists() and operation and not \
 (makeChange and operation == self.WRITE):
 #It’s okay to request a resource based on a page that
 #doesn’t exist, but only if you’re asking for the form to
 #create it, or actually trying to create it.
 toDisplay = self.makeError(‘No such page: “%s”’ % page.name)

 if operationMethod:
 toDisplay = operationMethod(self, page, makeChange, form)

 #All the operation methods, as well as makeError, are expected
 #to return a set of values that can be used to render the HTML
 #response: the title of the page, the body template to use, a
 #map of variables to interpolate into the body template, and a
 #set of navigation links to put at the bottom of the page.
 title, bodyTemplate, bodyArgs, navLinks = toDisplay
 if page and page.name != Wiki.HOME_PAGE_NAME:
 backLink = ‘ < a href=”%s” > Back to wiki homepage < /a > ’
 navLinks.append(backLink % self.makeURL())
 print(“Content-type: text/html\n”)
 print(MAIN_TEMPLATE % {‘title’ : title,
 ‘body’ : bodyTemplate % bodyArgs,
 ‘navLinks’ : ‘ | ‘.join(navLinks)})

 When the WikiCGI class is instantiated, it finds out which resource is being requested, and what the user
wants to do with that resource. It delegates to one of a number of methods (yet to be defined) that
handle the various possible operations.

 Each of these methods is expected to return the skeleton of a web page: the title, a template string (one of
the templates defined earlier: VIEW_TEMPLATE , WRITE_TEMPLATE , and so on), a map of variables to use
when interpolating that template, and a set of links to help the user navigate the wiki.

 The last act of WikiCGI instantiation is to fill out this skeleton: to interpolate the provided variable map
into the page - specific template string and then to interpolate that into the overarching main template.
The result, a complete HTML page, is simply printed to standard output.

c20.indd 437c20.indd 437 12/22/09 6:18:40 PM12/22/09 6:18:40 PM

Part III: Putting Python to Work

438

 The next part of the CGI defines the three operation - specific methods, which take a page and (possibly)
a resource representation stored in form data; make any appropriate changes; and return the raw
materials for a document:

 def viewOperation(self, page, makeChange, form=None, banner=None):
 “””Renders a page as HTML, either as the result of a request
 for it as a resource, or as a side effect of some other
 operation.”””
 if banner:
 banner = BANNER_TEMPLATE % banner
 else:
 banner = ‘’
 if not page.exists():
 title = ‘Creating %s’ % page.name
 toDisplay = (title, WRITE_TEMPLATE,
 {‘title’ : title,
 ‘banner’ : banner,
 ‘pageURL’ : self.makeURL(page),
 ‘text’ : ‘’},
 [])
 else:
 writeLink = ‘ < a href=”%s” > Edit this page < /a > ’ \
 % self.makeURL(page, self.WRITE)
 deleteLink = ‘ < a href=”%s” > Delete this page < /a > ’ \
 % self.makeURL(page, self.DELETE)
 toDisplay = (page.name, VIEW_TEMPLATE,
 {‘name’ : page.name,
 ‘banner’ : banner,
 ‘processedText’ : self.renderPage(page)},
 [writeLink, deleteLink])
 return toDisplay

 def writeOperation(self, page, makeChange, form):
 “Saves a page, or displays its create or edit form.”
 if makeChange:
 data = form.getfirst(‘data’)
 page.text = data
 page.save()
 #The operation is done, but we still need a document to
 #return to the user. Display the new version of this page,
 #with a banner.
 toDisplay = self.viewOperation(page, 0, banner=’Page saved.’)
 else:
 navLinks = []
 pageURL = self.makeURL(page)
 if page.exists():
 title = ‘Editing ‘ + page.name
 navLinks.append(‘ < a href=”%s” > Back to %s < /a > ’ % (pageURL,
 page.name))
 else:
 title = ‘Creating ‘ + page.name

c20.indd 438c20.indd 438 12/22/09 6:18:41 PM12/22/09 6:18:41 PM

Chapter 20: Web Applications and Web Services

439

 toDisplay = (title, WRITE_TEMPLATE, {‘title’ : title,
 ‘banner’ : ‘’,
 ‘pageURL’ : pageURL,
 ‘text’ : page.getText()},
 navLinks)
 return toDisplay

 def deleteOperation(self, page, makeChange, form=None):
 “Deletes a page, or displays its delete form.”
 if makeChange:
 page.delete()
 banner = ‘Page “%s” deleted.’ % page.name
 #The page is deleted, but we still need a document to
 #return to the user. Display the wiki homepage, with a banner.
 toDisplay = self.viewOperation(self.wiki.getPage(), 0,
 banner=banner)
 else:
 if page.exists():
 title = ‘Deleting ‘ + page.name
 pageURL = self.makeURL(page)
 backLink = ‘ < a href=”%s” > Back to %s < /a > ’
 toDisplay = (title, DELETE_TEMPLATE, {‘title’ : title,
 ‘name’ : page.name,
 ‘pageURL’ : pageURL},
 [backLink % (pageURL, page.name)])
 else:
 error = “You can’t delete a page that doesn’t exist.”
 toDisplay = self.makeError(error)
 return toDisplay

 #A registry mapping ‘operation’ keys to methods that perform the
operations.
 OPERATION_METHODS = { VIEW : viewOperation,
 WRITE: writeOperation,
 DELETE: deleteOperation }

 def makeError(self, errorMessage):
 “Creates a set of return values indicating an error.”
 return (ERROR_TEMPLATE, “Error”, {‘error’ : errorMessage,
 ‘mainURL’ : self.makeURL(“”)}, [])

 def makeURL(self, page=””, operation=None):
 “Creates a URL to the resource defined by the given page and resource.”
 if hasattr(page, ‘name’):
 #A Page object was passed in, instead of a page name.
 page = page.name
 url = os.environ[‘SCRIPT_NAME’] + ‘/’ + page
 if operation:
 url += ‘?operation=’ + operation
 return url

c20.indd 439c20.indd 439 12/22/09 6:18:41 PM12/22/09 6:18:41 PM

Part III: Putting Python to Work

440

 The last main section of this CGI is the code that transforms the raw wiki text into HTML, linking
WikiWords to BittyWiki resources and creating paragraph breaks:

 #A regular expression for use in turning multiple newlines
 #into paragraph breaks.
 MULTIPLE_NEWLINES = re.compile(“(\r?\n){2,}”)

 def renderPage(self, page):
 “””Returns the text of the given page, with transforms applied
 to turn BittyWiki markup into HTML: WikiWords linked to the
 appropriate page or add form, and double newlines turned into
 paragraph breaks.”””

 #First, escape any HTML present in the bare text so that it is
 #shown instead of interpreted.
 text = page.getText()
 for find, replace in ((‘ < ’, ‘ & lt;’), (‘ > ’, ‘ & gt;’), (‘ & ’, ‘ & amp;’)):
 text = text.replace(find, replace)

 #Link all WikiWords in the text to their view or add resources.
 html = ‘ < p > ’ + page.WIKI_WORD.sub(self._linkWikiWord, text) \
 + ‘ < /p > ’

 #Turn multiple newlines into paragraph breaks.
 html = self.MULTIPLE_NEWLINES.sub(‘ < /p > \n < p > ’, html)
 return html

 def _linkWikiWord(self, match):
 “””A helper method used to replace a WikiWord with a link to view
 the corresponding page (if it exists), or a link to create the
 corresponding page (if it doesn’t).”””
 linkedPage = self.wiki.getPage(match.group(0))
 link = ADD_LINK
 if linkedPage.exists():
 link = VIEW_LINK
 link = link % self.makeURL(“%(wikiword)s”)
 #The link now looks something like:
 # < a href=”/cgi-bin/bittywiki.cgi/%(wikiword)s” > %(wikiword)s < /a >
 #We’ll interpolate ‘wikiword’ to fill in the actual page name.
 return link % {‘wikiword’ : linkedPage.name}

 Finally, here is the code that invokes WikiCGI against a particular wiki when this file is run as a script:

if __name__ == ‘__main__’:
 WikiCGI(“wiki/”).run()

 Once you ’ re underway, you ’ ll be able to start editing pages of your own.

 Make this code executable and try it out in conjunction with EasyCGIServer or with your web host ’ s
CGI setup. Hitting http://localhost:8001/cgi - bin/bittywiki.cgi (or the equivalent on your
web host) sends you to the form for creating the wiki ’ s homepage. You can write a homepage, making
references to other pages that don ’ t exist yet, and then click the question marks near their names to
create them. You can build your wiki starting from there; this is how real wikis grow. A wiki is an

c20.indd 440c20.indd 440 12/22/09 6:18:42 PM12/22/09 6:18:42 PM

Chapter 20: Web Applications and Web Services

441

excellent tool for managing collaboration with other members of a development team, or just for keeping
track of your own notes. They ’ re also easy and fun to build, which is why so many implementations
exist.

 BittyWiki is a simple but fully functional wiki with a simple but flexible design. The presentation HTML
is separated from the logic, and the job of identifying the resource is done by a method that then
dispatches to one of several handler methods. The handler methods identify the provided representation
(if any), take appropriate action, and return the resource representation or other document to be
rendered. The resources and operations were designed by considering the problem according to the
principles of REST. This type of design and architecture are a very useful way of building standalone
web applications.

 Web Services
 So far, the web applications developed in this chapter share one unstated underlying assumption: their
intended audience is human. The same is true of most applications available on the Web. The resource
representations served by the typical web application (the wiki you just wrote being no exception) are a
conglomeration of data, response messages, layout code, and navigation, all bundled together in an
HTML file intended to be rendered by a web browser in a form pleasing to humans. When interaction is
needed, applications present GUI forms for you to fill out through a human - computer interface; and
when you submit the forms, you get more pretty HTML pages. In short, web applications are generally
written by humans for humans.

 Yet web applications, even the most human centric, have always had nonhuman users: software clients
not directly under the direction of a human — to give them a catchy name, robots. From search engine
spiders to automatic auction bidding scripts to real - time weather display clients, all sorts of scripted
clients consume web applications, often without the knowledge of the people who originally wrote those
applications. If a web application proves useful, someone will eventually write a robot that uses it.

 In the old days, robots had no choice but to impersonate web browsers with humans driving them. They
would make HTTP requests just like a web browser would, and parse the resulting HTML to find the
interesting parts. Though this is still a common technique, more and more web applications are exposing
special interfaces solely for the benefit of robots. Doing so makes it easier to write robots, and frees the
server from using its bandwidth to send data that won ’ t be used. These interfaces are called web services .
Big - name companies like Google, Yahoo!, Amazon, and eBay have exposed web service APIs to their
web applications, as have many lesser - known players.

 Many fancy standards have been created around web services, some of which are covered later in this
chapter, but the basic fact is that web services are just web applications for robots . A web service usually
corresponds to a web application, and makes some of the functionality of that application available in
robot - friendly form. The only reason these fancy standards exist is to make it easier to write robots or to
expose your application to robots.

 Robots have different needs than humans. Humans can glance at an HTML rendering of a page and
separate the important page - specific data from the navigation, logos, and clutter. A robot has no such
ability: It must be programmed to parse out the data it needs. If a redesign changes the HTML a site
produces, any robot that reads and parses that HTML must be reprogrammed. A human can recall or
make up the input when a web application requires it; a robot must be programmed ahead of time to

c20.indd 441c20.indd 441 12/22/09 6:18:42 PM12/22/09 6:18:42 PM

Part III: Putting Python to Work

442

provide the right input. Because of this, it ’ s no surprise that web services tend to have better usage
documentation than their corresponding web applications, nor that they serve more structured resource
representations.

 Web services and the scripts that use them can exist in symbiotic relationships. If you provide web
services that people want to use, you form a community around your product and get favorable
publicity from what they create. You can give your users the freedom to base new applications on yours,
instead of having to implement their feature requests yourself. Remember that if your application is
truly useful, people are going to write robots that use it no matter what you do. You might as well bless
this use, monitor it, and track it.

 The benefits of consuming others ’ web services are more obvious: You gain access to data sets and
algorithms you ’ d otherwise have to implement yourself. You don ’ t need to get permission to use these
data sets, because web services are prepackaged permission.

 Even if you control both the producers and the consumers of data, advantages exist to bridging the gap
with web services. Web services enable you to share code across machines and programming languages,
just as web applications can be accessed from any browser or operating system.

 Python is well suited to using and providing web services. Its loose typing is a good match for the
various web service standards, which provide limited or nonexistent typing. Because Python lets you
overload a class ’ s method call operator, it ’ s possible to make a web service call look exactly like an
ordinary method call. Finally, Python ’ s standard library provides good basic web support. If a high - level
protocol won ’ t meet your needs or its library has a bug, you can drop to the next lowest level and still
get the job done.

 How Web Services Work
 Web services are just web applications for robots, so it ’ s natural that they should operate just like normal
web applications: You send an HTTP request and you get some structured data back in the response.
A web service is supposed to be used by a script, though, so the request that goes in and the response
that comes out need to be more formally defined. Whereas a web application usually returns a full - page
image that is rendered by a browser and parsed by the human brain, a web service returns just the
 “ important ” data in some easily parseable format, usually XML. There ’ s also usually a human - readable
or machine - parseable description of the methods being exposed by the web service, to make it easier for
users to write a script that does what they want.

 Three main standards for web services exist: REST, XML - RPC, and SOAP. For each standard, this chapter
shows you how to use an existing public web service to do something useful, how to expose the
BittyWiki API as a web service, and how to make a robot manipulate the wiki through that web service.

 REST Web Services
 If REST is so great for the Web that humans use, why shouldn ’ t it also work for robots? The answer is
that it works just fine. The hypertext links and HTML forms you designed for your human users are
access points into a REST API that can just as easily be used by a properly programmed robot. All you

c20.indd 442c20.indd 442 12/22/09 6:18:42 PM12/22/09 6:18:42 PM

Chapter 20: Web Applications and Web Services

443

need to add is a way to provide robot - friendly representations of your resources, and a way for robots to
get at those representations.

 If you ’ re designing a web application from scratch, keep in mind the needs of both humans and robots.
You should end up able to expose similar APIs to your HTML forms and to external scripts. It ’ s unlikely
you ’ ll expose the exact same features to humans and to robots, but you ’ ll be able to reuse a lot of
architecture and code.

 In some situations you might want to create a new, simpler API and expose that as your web service
instead. This might happen if you ’ re working on an application with an ugly API that was never meant
to be seen by outsiders, if your web application is very complex, or if the people writing robots only
want to use part of the full API.

 REST Quick Start: Finding Bargains on Amazon.com
 Amazon.com, the popular online store, makes much of its data available through a REST web service
called Amazon Web Services. Perhaps the most interesting feature of this web service is the capability it
offers to search for books or other items and then retrieve metadata, pictures, and reviews for an item.
Amazon effectively gives you programmatic access to its product database, something that would be
difficult to duplicate or obtain by other means.

 The Amazon Web Services homepage is at http://aws.amazon.com/ .

 To use Amazon Web Services you need a subscription ID . This is a 13 - character string that identifies your
account. You can get one for free by signing up at www.amazon.com/gp/aws/registration/
registration - form.html/ . After you have an API key, you can use it to query Amazon Web Services.
Because the AWS interface is RESTful, you invoke it by sending a GET request to a particular resource:
The results are returned within an XML document. It ’ s the web service equivalent of Amazon ’ s search

The Amazon Web Services are actually something of a REST heretic. Though
most of AWS’s design is RESTful, it defines a few operations that make changes
on the server side when you GET them. For instance, the AWS CartModify
operation enables you to add or remove items from your Amazon shopping cart
just by making a GET request. Recall that GET requests shouldn’t change any
resources on the server side; you should use POST, PUT, or DELETE for such
operations. Presumably, the AWS designers chose consistency (using GET for
everything) over RESTfulness.

Because the AWS API isn’t purely RESTful, it’s not necessarily safe to pass
around the resource identifiers AWS gives you. Someone else might end up
adding books to your shopping cart by mistake! This is exactly the sort of thing
to avoid when designing your own REST API.

c20.indd 443c20.indd 443 12/22/09 6:18:43 PM12/22/09 6:18:43 PM

Part III: Putting Python to Work

444

engine web application. Instead of a user interface based on HTML forms, AWS has rules for
constructing resources. Instead of a pretty HTML document containing your search results, it gives you a
structured XML representation of them.

 Try It Out Peeking at an Amazon Web Services Response

 You can invoke Amazon Web Services using the same urllib module you ’ d use to download a web
page. Here ’ s an interactive Python session that searches for books by James Joyce (slightly reformatted
and edited for brevity):

 > > > import urllib
 > > > author = “Joyce, James”
 > > > subscriptionID = [your subscription id]
 > > > url = “http://xml.amazon.com/onca/xml3?f=xml & t=webservices-20 & dev-t=%s & ty
pe=lite & mode=books & AuthorSearch=%s” % (subscriptionID, urllib.quote(author))
 > > > print(urllib.urlopen(url).read())
 < ?xml version=”1.1” encoding=”UTF-8”? >
 < ProductInfo xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” xsi:noName
spaceSchemaLocation=”http://xml.amazon.com/schemas3/dev-lite.xsd” >
...
 < Details url=”http://www.amazon.com/exec/obidos/ASIN/0142437344/webservices-
20?dev-t=D8O1OTR10IMN7%26camp=2025%26link_code=xm2” >
 < Asin > 0142437344 < /Asin >
 < ProductName > A Portrait of the Artist As a Young Man (Penguin Classics)
< /ProductName >
 < Catalog > Book < /Catalog >
 < Authors >
 < Author > James Joyce < /Author >
 < /Authors >
 < ReleaseDate > 25 March, 2003 < /ReleaseDate >
 < Manufacturer > Penguin Books < /Manufacturer >

 < ImageUrlSmall > http://images.amazon.com/images/P/0142437344.01.THUMBZZZ.jpg < /
ImageUrlSmall >

 < ImageUrlMedium > http://images.amazon.com/images/P/0142437344.01.MZZZZZZZ.
jpg < /ImageUrlMedium >

 < ImageUrlLarge > http://images.amazon.com/images/P/0142437344.01.LZZZZZZZ.jpg < /
ImageUrlLarge >
 < Availability > Usually ships in 24 hours < /Availability >
 < ListPrice > $9.00 < /ListPrice >
 < OurPrice > $8.10 < /OurPrice >
 < UsedPrice > $1.95 < /UsedPrice >
 < /Details >
...
 < /ProductInfo >

c20.indd 444c20.indd 444 12/22/09 6:18:43 PM12/22/09 6:18:43 PM

Chapter 20: Web Applications and Web Services

445

 How It Works
 All we did there was open a URL and read it. You can visit the same URL in a web browser (treating
the web service as a web application) and get the exact same data we did from the interactive Python
session. The differences between web applications and web services have nothing to do with
architecture; both use the architecture of the Web. The only differences are related to the format of the
requests and responses.

 Two problems exist with just opening that resource and reading it, however (whether from a script or
from a web browser), and they should be obvious from that session log. The AWS URL to do a search
is really long and difficult to remember. Even with a reference guide, it ’ s hard to keep all the URL
parameters straight. Second, the response is a lot of XML data. It ’ ll take some work to parse it or
transform it into a more human - friendly form. Fortunately, that work has already been done for us.

 A popular web service will eventually sprout clients written in every major programming language.
For Amazon Web Services, the standard Python client is PyAmazon , originally written by Mark Pilgrim
and now maintained by Michael Josephson. This module abstracts the details of the Amazon Web
Services REST API. It enables you to request one of those complex resources just by making a method
call, and retrieve a list of Python objects instead of a mass of XML. Behind the scenes, it uses urllib
to retrieve a resource (just like we did), and then parses the XML response into a Python data
structure. Thanks to PyAmazon , it ’ s easy to have Pythonic fun with Amazon Web Services.

 Download PyAmazon from www.josephson.org/projects/pyamazon/ and install it into your
 PYTHON_PATH or into the directory in which you plan to write your scripts that use AWS. While
you ’ re at it, also download OnDemandAmazonList , a class that lets you iterate over paginated lists of
AWS search results as though they were normal Python lists. The sample application that follows uses
OnDemandAmazonList to make the code more natural.

 Introducing WishListBargainFinder
 Amazon lets individuals and booksellers advertise their used copies of books on its site, and Amazon
presents the lowest used price for a book alongside its own price for a new book. If you look back at that
XML search result for James Joyce, you ’ ll see that A Portrait of the Artist as a Young Man is available new
from Amazon for $8.10 (“ OurPrice ”), but people are also selling used copies for as low as $1.95
(“ UsedPrice ”). That ’ s a pretty good price, even when you factor in shipping. Many of the books listed on
Amazon are available used for as little as one cent. Amazon will show you the lowest used price for any
individual book, but it ’ s not so easy to scan a whole list looking for bargains.

 Amazon users can keep “ wish lists ” of things they ’ d like to own. If you keep one yourself, you ’ ve selected out
of the millions of items on Amazon a few that you ’ d be especially interested in buying for a bargain. Amazon
Web Services provides a wish list search, so it ’ s possible to write a script that uses AWS to go through a wish
list and identify the bargains. If you don ’ t mind buying used, this could save you a lot of money.

 Here ’ s a class, BargainFinder , that accepts a list obtained from an AWS query and scans it for
second-hand bargains. Bargains can be defined as costing less than a certain amount (say, $3), or as
costing a certain amount less than the corresponding items new from Amazon (say, 75% less). It, and the
code fragments that follow it, are part of a file I call WishListBargainFinder.py :

c20.indd 445c20.indd 445 12/22/09 6:18:43 PM12/22/09 6:18:43 PM

Part III: Putting Python to Work

446

import copy
import re
import amazon

class BargainFinder:
 “””A class that, given a list of Amazon items, finds out which
 items in the list are available used at a bargain price.”””

 def __init__(self, bargainCoefficient=.25, bargainCutoff=3.00):
 “””The bargainCoefficient is how little an item must cost
 used, versus its new price, to be considered a bargain. The
 default bargain coefficient is .25, meaning that an item
 available used for less than 25% of its Amazon price is
 considered a bargain.

 The bargainCutoff is for finding bargains among items that are
 cheap to begin with. The default bargainCutoff is 5, meaning
 that any item available used for less than $3.00 is considered
 a bargain, even if it’s available new for only a little more
 than $3.00.”””
 if bargainCoefficient > = 1:
 raise Exception, ‘It makes no sense to look for “bargains” that ‘ \
 + ‘cost more used than new!’
 self.coefficient = bargainCoefficient
 self.cutoff = bargainCutoff

 def printBargains(self, items):
 “””Find the bargains in the given list and present them in a
 textual list.”””
 bargains = self.getBargains(items)
 printedHeader = 0
 if bargains:
 print (‘Here are items available used for less than $%.2f, ‘ + \
 ‘or for less than %.2d%% of their Amazon price:’) \
 % (self.cutoff, self.coefficient * 100))
 prices = bargains.keys()
 prices.sort()
 for usedPrice in prices:
 for bargain, amazonPrice in bargains[usedPrice]:
 savings = ‘’
 if amazonPrice:
 percentageSavings = (1-(usedPrice/amazonPrice)) * 100
 savings = ‘(Save %.2d%% off $%.2f) ‘ \
 % (percentageSavings, amazonPrice)
 Print(‘ $%.2f %s%s’ % (usedPrice, savings,
 bargain.ProductName))
 else:
 print(“Sorry, I couldn’t find any bargains in that list.”)

 def getBargains(self, items):
 “Scan the given list, looking for bargains.”
 bargains = {}
 for item in items:

c20.indd 446c20.indd 446 12/22/09 6:18:44 PM12/22/09 6:18:44 PM

Chapter 20: Web Applications and Web Services

447

 bargain = False
 amazonPrice = self.getPrice(item, “OurPrice”)
 usedPrice = self.getPrice(item, “UsedPrice”)
 if usedPrice:
 if usedPrice < self.cutoff:
 bargain = True
 if amazonPrice:
 if (amazonPrice * self.coefficient) > usedPrice:
 bargain = True
 if bargain:
 #We sort the bargains by the used price, so the
 #cheapest items are displayed first.
 bargainsForPrice = bargains.get(usedPrice, None)
 if not bargainsForPrice:
 bargainsForPrice = []
 bargains[usedPrice] = bargainsForPrice
 bargainsForPrice.append((item, amazonPrice))
 return bargains

 def getPrice(self, item, priceField):
 “””Retrieves the named price field (eg. “OurPrice”,
 “UsedPrice”, and attempts to parse its currency string into a
 number.”””
 price = getattr(item, priceField, None)
 if price:
 price = self._parseCurrency(price)
 return price

 def _parseCurrency(self, currency):
 “””A cheap attempt to parse an amount of currency into a
 floating-point number: Strip out everything but numbers,
 decimal point, and negative sign.”””
 return float(self.IRRELEVANT_CURRENCY_CHARACTERS.sub(‘’, currency))
 IRRELEVANT_CURRENCY_CHARACTERS = re.compile(“[^0-9.-]”)

 This class won ’ t quite work as is, because it assumes that a list of query results obtained from PyAmazon
(the items argument to getBargains) works just like a Python list. Actually, AWS query results are
delivered in pages of 10. Making a single AWS query returns only the single page you request, and you ’ ll
need extra logic to iterate from the last item on the first page to the first item of the second.

 That ’ s why OnDemandAmazonList was invented. This class, available from the same website as
 PyAmazon itself, hides the complexity of retrieving successive AWS result pages behind an interface that
looks just like a Python list. You iterate over an OnDemandAmazonList as you would any other list, and
behind the scenes it makes the necessary web service calls to get the data you want. This is another
example of why Python excels at web services: It makes it easy to hide this kind of inconvenient detail.

 With OnDemandAmazonList , it ’ s a simple matter to put an interface on the BargainFinder class with
code that retrieves a wish list as an OnDemandAmazonList , and runs it through the BargainFinder to
find the items on the wish list that are available used for a bargain price. You could just as easily use the
 BargainFinder to find bargains in the result set of any other AWS query, so long as you made sure to
wrap the query in an OnDemandAmazonList :

c20.indd 447c20.indd 447 12/22/09 6:18:44 PM12/22/09 6:18:44 PM

Part III: Putting Python to Work

448

from OnDemandAmazonList import OnDemandAmazonList
def getWishList(subscriptionID, wishListID):
 “Returns an iterable version of the given wish list.”
 kwds = {‘license_key’ : subscriptionID,
 ‘wishlistID’ : wishListID,
 ‘type’ : ‘lite’}
 return OnDemandAmazonList(amazon.searchByWishlist, kwds)

if __name__ == ‘__main__’:
 import sys
 if len(sys.argv) != 3:
 print ‘Usage: %s [AWS subscription ID] [wish list id]’ % sys.argv[0]
 sys.exit(1)
 subscriptionID, wishListID = sys.argv[1:]
 wishList = getWishList(subscriptionID, wishListID)
 BargainFinder().printBargains(wishList)

 Here ’ s the WishListBargainFinder running against my mother ’ s wish list:

python WishListBargainFinder.py [My subscription ID] 1KT0ATF9MM4FT
Here are items available used for less than $3.00, or for less than 25% of
their Amazon price:
 $0.29 (Save 94% off $4.99) Clockwork : Or All Wound Up
 $1.99 (Save 68% off $6.29) The Fifth Elephant: A Novel of Discworld
 $2.95 (Save 57% off $6.99) Interesting Times (Discworld Novels (Paperback))
 $2.96 (Save 52% off $6.29) Jingo: A Novel of Discworld

 A quick word about Amazon wish list IDs: The WishListBargainFinder takes a wish list ID as
command - line input, but wish list IDs are a little bit hidden in the Amazon web application. To find a
person ’ s wish list ID, you need to go to his or her wish list and then look at the id field of the URL. The
wish list ID is a twelve - character series of letters and numbers that looks like BUWBWH9K2H77 .

 You can programmatically search for a user ’ s wish list by making an AWS call (using the ListSearch
operation), but because that method is not yet supported by PyAmazon , you ’ ll have to construct the
URL and parse the XML yourself. For guidance, look at the examples on Amazon ’ s site: http://aws
.amazon.com/resources/ .

 Giving BittyWiki a REST API
 Let ’ s revisit BittyWiki, the simple wiki application you created in the previous section as a sample web
application. By design, BittyWiki already exposes a very simple REST API. Recall that in addition to the
name of the page, which is always part of the resource identifier, there are only two variables to consider:
 operation and data . operation tells BittyWiki what you want to do to the page you named, and data
contains the data you want to shove into the page. Now consider this API from a robot ’ s point of view.

 The first thing to consider is how to even determine whether a given request comes from a human (more
accurately, a web browser) or a robot. You might think this is easy; after all, the User - Agent HTTP header
you saw earlier is supposed to identify the software that ’ s making the request. The problem is that
there ’ s no definitive list of web browsers. New browsers and robots are being created all the time, and
some use the same underlying libraries (a web browser and a robot written in Python might both claim
to be urllib). The User - Agent string isn ’ t reliable enough to be used as a basis for this decision.

c20.indd 448c20.indd 448 12/22/09 6:18:44 PM12/22/09 6:18:44 PM

Chapter 20: Web Applications and Web Services

449

 Most web services solve this problem by creating a second set of resource identifiers that mirror the
resource identifiers used by the web application but serve up robot - friendly resource representations.
The “ robot ’ s entrance ” for your application might be an entirely separate script (app - api.cgi instead of
 app.cgi) or a standard string prepended to the PATH_INFO of a resource identifier (app.cgi/api/foo
instead of app.cgi/foo). The PATH_INFO solution yields nicer - looking resource identifiers, but
BittyWiki ’ s REST web service will be implemented as a separate CGI, just because it ’ s easier to present.

 One final note with respect to PUT and DELETE . Web services are free from dependence on HTML forms.
Though the PUT and DELETE HTTP verbs aren ’ t supported by web browsers, they are supported by
many (but not all) programmable clients. You could simplify the preexisting BittyWiki interface a little
by bringing in PUT and DELETE . Doing this would let you get rid of the operation argument, which is
only used to distinguish a PUT - or POST - style POST request from a DELETE - style POST request. However,
for the sake of correspondence with the web application, and because not all programmable clients
support PUT and DELETE , the BittyWiki REST web service won ’ t take this route.

 The second thing to consider is which features of the web application it makes sense to expose through
an external API. Why would someone want programmatic access to the contents of a wiki? A wiki ’ s
users might create two types of robot:

 A robot that modifies or creates wiki pages — for instance, an automated test system that posts a
daily status report to a particular wiki page

 A robot that retrieves wiki pages — to archive or mirror a wiki or to render wiki pages to an end
user in some format besides HTML

 The first type of robot might need to create, edit, and delete a wiki page. That functionality can remain
more or less intact, but unlike in a web application, there ’ s no need to present a nice - looking document
after taking a requested action. All the robot needs to know is whether or not its request was carried out.
The document returned for a POST operation need only contain a status message.

 Both types of robots need to retrieve pages from the wiki. What they actually need, though, is not the
HTML rendering of the page (the thing you get when you GET /bittywiki.cgi/PageName), but the
raw page data (the thing that shows up in the edit box when you GET /bittywiki.cgi/PageName?
operation=write). The first type of robot needs the data in this format because it ’ s going to do its own
rendering, and it ’ s easier to render from the raw data than from HTML. The second type of robot needs
it in this format for a similar reason; it ’ s because that ’ s what shows up in the edit box because that ’ s how
it ’ s stored on the back end.

 BittyWiki ’ s REST API for robots is therefore basically similar to the REST API for web browsers. The only
difference is the format of the responses: Instead of human - readable HTML documents, the REST web
service outputs plaintext documents. A more complicated REST web service, like Amazon ’ s, would
probably output documents formatted in XML or sparse HTML, expecting the client to parse them.
Here ’ s the plaintext result of GET ting http://localhost:8001/cgi - bin/bittywiki - rest.cgi ;
compare it to the HTML output when you GET http://localhost:8001/cgi - bin/bittiwiki.cgi :

This is the home page for my BittyWiki installation.

Here you can learn about the philosophy and technologies that drive web
applications: REST, CGI, and the PythonLanguage.

❑

❑

c20.indd 449c20.indd 449 12/22/09 6:18:45 PM12/22/09 6:18:45 PM

Part III: Putting Python to Work

450

 The structure of bittywiki - rest.cgi is also similar to bittywiki.cgi :

#!/usr/bin/python
import cgi
import cgitb
cgitb.enable()
import os
import re
from BittyWiki import Wiki, Page, NotWikiWord

class WikiRestApiCGI:

 #The possible operations on a wiki page.
 VIEW = ‘’
 WRITE = ‘write’
 DELETE = ‘delete’

 #The possible response codes this application might return.
 RESPONSE_codeS = { 200 : ‘OK’,
 400 : ‘Bad Request’,
 404 : ‘Not Found’}

 def __init__(self, wikiBase):
 “Initialize with the given wiki.”
 self.wiki = Wiki(wikiBase)

 def run(self):
 “””Determine the command, dispatch to the appropriate handler,
 and print the results as an XML document.”””
 toDisplay = None
 try:
 page = os.environ.get(‘PATH_INFO’, ‘’)
 if page:
 page = page[1:]
 page = self.wiki.getPage(page)
 except NotWikiWord, badName:
 toDisplay = 400, ‘”%s” is not a valid wiki page name.’ % badName

 if not toDisplay:
 form = cgi.FieldStorage()
 operation = form.getfirst(‘operation’, self.VIEW)
 operationMethod = self.OPERATION_METHODS.get(operation)
 if operationMethod:
 if not page.exists() and operation != self.WRITE:
 toDisplay = 404, ‘No such page: “%s”’ % page.name
 else:
 toDisplay = operationMethod(self, page, form)
 else:
 toDisplay = 400, ‘”%s” is not a valid operation.’ % operation

c20.indd 450c20.indd 450 12/22/09 6:18:45 PM12/22/09 6:18:45 PM

Chapter 20: Web Applications and Web Services

451

 #Print the response.
 responseCode, payload = toDisplay
 print(‘Status: %s %s’ % (responseCode,
 self.RESPONSE_codeS.get(responseCode)))
 print(‘Content-type: text/plain\n’)
 print(payload)

 The main code figures out the resource and the desired operation and hands this off (along with any
provided representation) to a handler method. The result is then rendered — but this time as plaintext:

 def viewOperation(self, page, form=None):
 “Returns the raw text of the given wiki page.”
 return 200, page.getText()

 def writeOperation(self, page, form):
 “Writes the specified page.”
 page.text = form.getfirst(‘data’)
 page.save()
 return 200, “Page saved.”

 def deleteOperation(self, page, format, form=None):
 “Deletes the specified page.”
 if not page.exists():
 toDisplay = 404, “You can’t delete a page that doesn’t exist.”
 else:
 page.delete()
 toDisplay = 200, “Page deleted.”
 return toDisplay

 #A registry mapping ‘operation’ keys to methods that perform the
operations.
 OPERATION_METHODS = { VIEW : viewOperation,
 WRITE: writeOperation,
 DELETE: deleteOperation }

 The three operation handler methods are also similar to their counterparts in bittywiki.cgi , though
simpler because they produce less data.

 Wiki Search - and - Replace Using the REST Web Service
 What good is this web service for BittyWiki? Well, here ’ s an only slightly contrived example: Suppose
that you get someone to host a BittyWiki installation for an open - source project you ’ re working on,
called Foo. You create a lot of wiki pages that mention the name of the project in their text (“ Foo is a
triphasic degausser for semantic defribulation ”) and in the titles of the pages (BenefitsOfFoo, FooDesign,
and so on). All is going well until one day when you decide to change the name of your project to Bar. It
would take a long time to manually change those wiki pages (including renaming many of them), and
you don ’ t have access to the server on which the wiki is actually hosted, so you can ’ t write a script to
crawl the file system. What do you do?

 Here ’ s a Python script, WikiSpiderREST.py , which acts as a wiki search - and - replace spider. Starting at
the HomePage of the wiki (which is a WikiWord), it crawls the wiki by following WikiWord links, and
replaces all of the instances of one string (for example, “ Foo ”) with another string (for example, “ Bar ”).

c20.indd 451c20.indd 451 12/22/09 6:18:45 PM12/22/09 6:18:45 PM

Part III: Putting Python to Work

452

A page whose name contains the old string (for example, “ FooDesign ”) is deleted and re - created under a
different name (for example, “ BarDesign ”). WikiSpiderREST.py keeps track of the pages it has
processed so as not to waste time or get stuck in a loop:

#!/usr/bin/python
import re
import urllib

class WikiReplaceSpider:
 “A class for running search-and-replace against a web of wiki pages.”

 WIKI_WORD = re.compile(‘(([A-Z][a-z0-9] *){2,})’)

 def __init__(self, restURL):
 “Accepts a URL to a BittyWiki REST API.”
 self.api = BittyWikiRestAPI(restURL)

 def replace(self, find, replace):
 “””Spider wiki pages starting at the front page, accessing them
 and changing them via the provided API.”””

 processed = {} #Keep track of the pages already processed.
 todo = [‘HomePage’] #Start at the front page of the wiki.
 while todo:
 for pageName in todo:
 print(‘Checking “%s”; % pageName)
 try:
 pageText = self.api.getPage(pageName)
 except RemoteApplicationException, message:
 if str(message).find(“No such page”) == 0:
 #Some page mentioned a WikiWord that doesn’t exist
 #yet; not a big deal.
 pass
 else:
 #Some other problem; pass it on up.
 raise RemoteApplicationException, message
 else:
 #This page actually exists; process it.
 #First, find any WikiWords in this page: they may
 #reference other existing pages.
 for wikiWord in self.WIKI_WORD.findall(pageText):
 linkPage = wikiWord[0]
 if not processed.get(linkPage) and linkPage not in todo:
 #We haven’t processed this page yet: put it on
 #the to-do list.
 todo.append(linkPage)

 #Run the search-and-replace on the page text to get the
 #new text of the page.
 newText = pageText.replace(find, replace)

 #Check to see if this page name matches
 #search and replace. If it does, delete it and
 #recreate it with the new text; otherwise, just

c20.indd 452c20.indd 452 12/22/09 6:18:46 PM12/22/09 6:18:46 PM

Chapter 20: Web Applications and Web Services

453

 #save the new text.
 newPageName = pageName.replace(find, replace)
 if newPageName != pageName:
 print(‘ Deleting “%s”, will recreate as “%s”’ \
 % (pageName, newPageName))
 self.api.delete(pageName)
 if newPageName != pageName or newText != pageText:
 print(‘ Saving “%s”’ % newPageName
 self.api.save(newPageName, newText))
 #Mark the new page as processed so we don’t go through
 #it a second time.
 if newPageName != pageName:
 processed[newPageName] = True
 processed[pageName] = True
 todo.remove(pageName)

 So far, there ’ s been nothing REST - specific except the reference to a BittyWikiRestAPI class. That ’ s
about to change as you go ahead and define that class, as well as others that implement a general Python
interface to the BittyWiki REST API:

class BittyWikiRestAPI:

 “A Python interface to the BittyWiki REST API.”

 def __init__(self, restURL):
 “Do all the work starting from the base URL of the REST interface.”
 self.base = restURL

 def getPage(self, pageName):
 “Returns the raw markup of the named wiki page.”
 return self._doGet(pageName)

 def save(self, pageName, data):
 “Saves the given data to the named wiki page.”
 return self._doPost(pageName, { ‘operation’ : ‘write’,
 ‘data’ : data })

 def delete(self, pageName):
 “Deletes the named wiki page.”
 return self._doPost(pageName, { ‘operation’ : ‘delete’ })

 def _doGet(self, pageName):
 “”””Does a generic HTTP GET. Returns the response body, or
 throws an exception if the response code indicates an error.”””
 url = self._makeURL(pageName)
 return self.Response(urllib.urlopen(url)).body

 def _doPost(self, pageName, data):
 “””Does a generic HTTP POST. Returns the response body, or
 throws an exception if the response code indicates an error.”””
 url = self._makeURL(pageName)
 return self.Response(urllib.urlopen(url, urllib.urlencode(data))).body

(continued)

c20.indd 453c20.indd 453 12/22/09 6:18:46 PM12/22/09 6:18:46 PM

Part III: Putting Python to Work

454

 def _makeURL(self, pageName):
 “Returns the URL to the named wiki page.”
 url = self.base
 if url[-1] != ‘/’:
 url += ‘/’
 return url + pageName

 class Response:
 “””This class handles the HTTP response returned by the REST
 web service.”””

 def __init__(self, inHandle):
 self.body = None
 statusCode = None

 info = inHandle.info()
 #The status has automatically been read into an object
 #that also contains all the HTTP headers. The status
 #string looks like ‘200 OK’
 statusHeader = info[‘status’]
 statusCode = int(statusHeader.split(‘ ‘)[0])

 #The remaining data is the plain-text response. In a more
 #complex application, this might be structured text or
 #XML, and at this point it would need to be parsed.
 self.body = inHandle.read()

 #The response codes in the 2xx range are the only good
 #ones. Getting any other response code should result in
 #an exception.
 if statusCode / 100 != 2:
 raise RemoteApplicationException, self.body

class RemoteApplicationException(Exception):
 “””A simple exception class for use when the REST API returns an
 error condition.”””
 pass

 The BittyWikiRestAPI class uses the urllib library to GET and POST things to BittyWiki ’ s REST
interface CGI. It interprets the response as a status message, an exception message, or the text of a
requested page. This class could be distributed in a standalone module to encourage developers to write
BittyWiki add - ons in Python.

 Note that the Response class is defined within the BittyWikiRestAPI class: No one else is going to use
it, and putting it here makes it invisible outside the class. This is completely optional, but it makes the
top - level view neater.

 Finally, some code that implements a command - line interface to the spider:

(continued)

c20.indd 454c20.indd 454 12/22/09 6:18:46 PM12/22/09 6:18:46 PM

Chapter 20: Web Applications and Web Services

455

if __name__ == ‘__main__’:
 import sys
 if len(sys.argv) == 4:
 restURL, find, replace = sys.argv[1:]
 else:
 print(‘Usage: %s [URL to BittyWiki REST API] [find] [replace]’ \
 % sys.argv[0])
 sys.exit(1)
 WikiReplaceSpider(restURL).replace(find, replace)

 Try It Out Wiki Searching and Replacing

 Use your BittyWiki installation to create a few wiki pages around a particular topic. In the example, a
few pages have been created for the mythical Foo project.

 Run the WikiSpiderREST.py command to change your topic to another one. You should see output
similar to this:

$ python WikiSpiderREST.py http://localhost:8001/cgi-bin/bittywiki-rest.cgi
Foo Bar
Checking “HomePage”
 Saving “HomePage”
Checking “FooCaseStudies”
 Deleting “FooCaseStudies”, will recreate as “BarCaseStudies”
 Saving “BarCaseStudies”
Checking “CVSRepository”
 Saving “CVSRepository”
Checking “CaseStudy2”
Checking “BenefitsOfFoo”
 Deleting “BenefitsOfFoo”, will recreate as “BenefitsOfBar”
 Saving “BenefitsOfBar”
Checking “CaseStudy1”
 Saving “CaseStudy1”
Checking “FooDesign”
 Deleting “FooDesign”, will recreate as “BarDesign”
 Saving “BarDesign”

 Lo and behold: The wiki pages have been changed and, where necessary, renamed.

 How It Works
 WikiSpiderREST.py keeps a list of WikiWords to check and possibly subject to search - and - replace.
To process one of the WikiWords, it retrieves the corresponding page through the BittyWiki web
service API. If the page actually exists, its text is scanned, and all of its WikiWords are put on the list of
items to check later. The page then has its text modified using string search - and - replace, and is saved
through the web service API. If the page name contains the string to be replaced, it ’ s deleted and a
new page with the same content is created — again, through the web service API. The next WikiWord
in the list is then checked, and so on.

 Because WikiSpiderREST.py has no knowledge of wiki pages that are inaccessible from the
HomePage, it ’ s not guaranteed to get all of the pages on the wiki. It only gets the ones human users
would see if they started at the HomePage and clicked all of the links.

c20.indd 455c20.indd 455 12/22/09 6:18:47 PM12/22/09 6:18:47 PM

Part III: Putting Python to Work

456

 XML - RPC
 XML - RPC is a protocol that does the same job as REST: It makes it easy to write a robot that accesses
and/or modifies some remote application just by making HTTP requests. Some important differences
exist, though. Whereas a REST call looks like manipulation of a document repository, an XML - RPC looks
like a function call (in fact, in Python implementations, the call to the web service is disguised as a
function call). Instead of sending a GET or POST to the resource you want to retrieve or modify, as with
REST, XML - RPC traditionally has you do all your calls by POST ing to one special “ server ” resource. The
data you POST contains an XML representation of a function you ’ d like to call, and any arguments to that
function. As with REST, the response to your call is a document containing any information you
requested, any status messages, and so on.

 BittyWiki is simple enough that everything you pass in or get out is a mere string. We ’ re fortunate in this
regard because strings are the only data type supported by REST. If you need to pass an integer into a
REST application, you need to encode it as a string and trust that the resource handler will know to turn
it back into an integer. If you need to pass in an ordered list, you need to learn the server ’ s preferred way
of representing an ordered list as a string. One REST application might represent lists as
 ” item1,item2,item3 ” ; another might represent them as ” item1|item2|item3| ” ; a third might represent
them as a custom - defined XML data structure. The major shortcoming of REST is that there ’ s no
standard way of marshalling different data types into strings, or of unmarshalling a string into typed
data. You need to relearn the request and response format for every REST web service you use.

 Here ’ s the canonical sample XML - RPC client application. The public XML - RPC server betty.
userland.com provides some example methods, including one that returns the name of a U.S. state,
given an index, into an alphabetical list:

 > > > import xmlrpc.client
 > > > from xmlrpc.client import ServerProxy
 > > > server=xmlrpc.client.ServerProxy(“http://bettey.userland.com”)
 > > > server.examples.getStateName(41)
‘South Dakota’

 If this were a REST web service, the forty - first state in the list would be accessible as a distinct resource,
perhaps http://betty.userland.com/StateNames/41 . You ’ d get the name of a state by GET ting the
appropriate resource. You might have access to a Python library that handles the request and response
details (the way the PyAmazon library handles the details of Amazon Web Services), but such libraries
need to be written anew for each REST web service, because there ’ s no REST standard for data structure
representation.

 XML - RPC ’ s main advantage over REST is that it provides a standard way of encoding simple data
structures into request and response data. XML - RPC specifies different XML strings for encoding the
integer 4 , the floating - point value 4.0 , the string “4” , and a list containing only the string “4” . What
you get back from an XML - RPC call is not a document that you have to parse, but a description of a data
structure that can be automatically created for you by xmlrpc.client , the XML - RPC library that comes
with Python. It ’ s possible to make any kind of XML - RPC call using just one library (xmlrpc.client).

c20.indd 456c20.indd 456 12/22/09 6:18:47 PM12/22/09 6:18:47 PM

Chapter 20: Web Applications and Web Services

457

 By now, you ’ ll have noticed that Python is not very fastidious about types, and it will work with you on
transforming one type to another. That said, its built - in types cover just about everything for which
XML - RPC defines a representation: Booleans, integers, floating - point numbers, strings, arrays, and
dictionaries. For binary data and dates, xmlrpc.client provides wrapper classes.

 The XML - RPC spec, at www.xml - rpc.com/spec/ , is short and sweet.

 The XML - RPC Request
 The XML - RPC request body is the body of an HTTP POST request. It ’ s an XML document containing a
 methodCall element. The methodCall element contains two elements of its own: methodName , which
designates the method to be called; and params , which contains a list of the parameters to be passed as
arguments into the method.

 Here ’ s a sample XML - RPC request for a hypothetical method that sorts a list of numbers in either
ascending or descending order:

 < ?xml version=”1.1”? >
 < methodCall >
 < methodName > searchsort.sortList < /methodName >
 < params >
 < param >
 < value >
 < array >
 < data >
 < value > < i4 > 10 < /i4 > < /value >
 < value > < i4 > 2 < /i4 > < /value >
 < /data >
 < /array >
 < /param >
 < param > < value > < boolean > 1 < /boolean > < /param >
 < /params >
 < /methodCall >

 This is the XML - RPC equivalent of invoking a hypothetical local method with the following code:

 import searchsort
 searchsort.sortList([10, 2], True)

 Given what you know about xmlrpc.client , it ’ s no surprise that this method request would be
generated and POST ed when you ran code like this:

import xmlrpc.client
xmlrpc.client.ServerProxy(“http://sortserver/RPC”).searchsort.sortList([10,
2], True)

 Representation of Data in XML - RPC
 The XML - RPC methodName can be any string, but XML - RPC methods are traditionally grouped into
named packages, such as searchsort in the preceding example. In a Python implementation, this
makes it look like a module called searchsort that contains the functions to expose, like sortList .

c20.indd 457c20.indd 457 12/22/09 6:18:48 PM12/22/09 6:18:48 PM

Part III: Putting Python to Work

458

 XML - RPC parameters can be any of the following types:

 Data Type Sample XML - RPC Representation

 Boolean True or False < boolean > 1 < /boolean >

 A string < string > James Joyce < /string >

 An integer < i4 > 10 < /i4 >

 A floating - point number < double > 5.1 < /double >

 An array (items can be of any type, or
a mixed type)

 < array >

 < data >

 < value > < i4 > 10 < /i4 > < /value >

 < value > < i4 > 2 < /i4 > < /value >

 < /data >

 < /array >

 A dictionary (keys must be strings;
values can be any type)

 < struct >

 < member >
 < name > search < /name >

 < value > < string > James Joyce < /string > < /
value >

 < /member >

 < member >

 < name > channels < /name >

 < value > < boolean > 1 < /boolean > < /
value >

 < /member >

 < /struct >

 A date and time < dateTime.iso8601 > 20090914T19:11:20 < /
dateTime.iso8601 >

 (Use xmlrpc.client ’ s DateTime wrapper class,
which can be instantiated from a time tuple, seconds
since epoch, and so on.)

 Binary data < base64 > AVRoaXMgaXMgYmluYXJ5IGRhdGEu < /
base64 >

 Strongly typed languages can have problems with some of these: mixed - type arrays, for example.
Dynamic languages like Python handle these in stride.

c20.indd 458c20.indd 458 12/22/09 6:18:48 PM12/22/09 6:18:48 PM

Chapter 20: Web Applications and Web Services

459

 The XML - RPC Response
 The body of the XML - RPC response is an XML document describing the return value of the function
invoked by the request.

 Assuming the hypothetical searchsort.sortList method does what it says, when invoked with the
sample body given earlier it ’ ll return a response that looks like this:

 < ?xml version=”1.1”? >
 < methodResponse >
 < params >
 < param >
 < value >
 < array >
 < data >
 < value > < i4 > 2 < /i4 > < /value >
 < value > < i4 > 10 < /i4 > < /value >
 < /data >
 < /array >
 < /value >
 < /param >
 < /params >
 < /methodResponse >

 The response has the same basic structure as the request, but it ’ s sparser. It ’ s missing a methodName
element because it ’ s assumed you know which method you just called. It has a params element, just
like the request; but whereas the request ’ s params element could contain any number of param children
(the arguments to the method), the response list is only allowed to contain a single param child : the
return value.

 If Something Goes Wrong
 A REST web service is expected to flag error conditions using HTTP status codes, in conjunction with
error documents that describe the problem. As you might expect, XML - RPC does a similar thing in a
more structured way.

 If an XML - RPC server can ’ t complete a request for any reason, it returns a response containing a fault ,
instead of one containing a return value in params . A sample fault response is as follows:

 < ?xml version=”1.1”? >
 < methodResponse >
 < fault >
 < value >
 < struct >
 < member >
 < name > faultCode < /name >
 < value > < int > 4 < /int > < /value >
 < /member >
 < member >
 < name > faultString < /name >

(continued)

c20.indd 459c20.indd 459 12/22/09 6:18:48 PM12/22/09 6:18:48 PM

Part III: Putting Python to Work

460

 < value > < string > No such method: “searchSort.sortList”. < /string > < /value >
 < /member >
 < /struct >
 < /value >
 < /fault >
 < /methodResponse >

 The fault element describes an XML - RPC struct (that is, a Python dictionary) with two members:
 faultString , which contains a human - readable description of what went wrong, and faultCode , the
equivalent to the HTTP status code used to signify failure in REST contexts (even an XML - RPC call
that results in a fault response will have an HTTP status code of 200). The advantage of faultCode s is
that you can define them as you please for whatever problems are specific to your application. The
disadvantage is that, unlike with HTTP status codes, there ’ s no consensus as to what faultCode s mean.
You ’ ll need to reach an understanding with your users about the meanings of your service ’ s
 faultCode s.

 Within Python, a response with a fault corresponds to an xmlrpc.client.Fault object, a subclass of
 Error . If you ’ re using Python ’ s XML - RPC libraries, you can just raise and catch exceptions normally,
instead of having to worry about creating or parsing XML - RPC faults.

 Exposing the BittyWiki API through XML - RPC
 If you doubt that Python programmers are spoiled, consider this: Not only does the language come
bundled with a library that makes it easy to write XML - RPC clients; it also comes bundled with an XML -
 RPC server. As with the other s erver classes, xmlrpc.server runs as a standalone web server on its
own port. However, the XML - RPC functionality is also available as a CGI program that accepts HTTP
 POST s in XML - RPC format. This is implemented in another class, CGIXMLRPCRequestHandler , the
name of which probably has more consecutive capital letters than any other class name in the Python
standard library.

 Here ’ s a script, bittywiki - xmlrpc.cgi , that exposes the BittyWiki API either through an XML - RPC
CGI (if you invoke it without command - line arguments, the way a CGI - enabled web server would) or
through a standalone XML - RPC server (if you pass it through the port to use on the command line):

 If you ’ re using the EasyCGIServer presented earlier, or another server based on Python ’ s CGI-
HTTPServer , using this script as a CGI may not work for you. If you run into problems with the CGI,
try using another web server, such as Apache, or running a standalone XML - RPC server instead of
going through a CGI.

import sys
import xmlrpc.server
from BittyWiki import Wiki

class BittyWikiAPI:
 “””A simple wrapper around the basic BittyWiki functionality we
 want to expose to the API.”””

 def __init__(self, wikiBase):
 “Initialize a wiki located in the given directory.”

(continued)

c20.indd 460c20.indd 460 12/22/09 6:18:49 PM12/22/09 6:18:49 PM

Chapter 20: Web Applications and Web Services

461

 self.wiki = Wiki(wikiBase)

 def getPage(self, pageName):
 “Returns the text of the given page.”
 page = self.wiki.getPage(pageName)
 if not page.exists():
 raise NoSuchPage, page.name
 return page.getText()

 def save(self, pageName, newText):
 “Saves a page of the wiki.”
 page = self.wiki.getPage(pageName)
 page.text = newText
 page.save()
 return “Page saved.”

 def delete(self, pageName):
 “Deletes a page of the wiki.”
 page = self.wiki.getPage(pageName)
 if not page.exists():
 raise NoSuchPage, pageName
 page.delete()
 return “Page deleted.”

class NoSuchPage(Exception):
 pass

 So far, nothing XML - RPC specific — just a nicely packaged interface to the three basic functions of the
BittyWiki API. Next, you write a function that exposes those three functions to XML - RPC. You have two
ways of doing this: You can register functions one at a time or register an object instance, which registers
all that object ’ s methods at once. This example provides code for both ways of registering the methods,
but the instance registration is commented out, because in earlier versions of Python it exposed a
security vulnerability:

def handlerSetup(handler, api):
 “””This function registers the methods of the BittyWiki API
 as functions of an XML-RPC handler.”””

 #Register the standard functions used by XML-RPC to advertise which methods
 #are available on a given server.
 handler.register_introspection_functions()

 #Register the BittyWiki API methods as XML-RPC functions in the
 #’bittywiki’ namespace.
 handler.register_function(api.getPage, ‘bittywiki.getPage’)
 handler.register_function(api.save, ‘bittywiki.save’)
 handler.register_function(api.delete, ‘bittywiki.delete’)

c20.indd 461c20.indd 461 12/22/09 6:18:49 PM12/22/09 6:18:49 PM

Part III: Putting Python to Work

462

 Finally, the script portion, which starts up either a standalone XML - RPC server that can serve any
number of requests, or a CGI - based XML - RPC script, which serves only the current request:

if __name__ == ‘__main__’:
 WIKI_BASE = ‘wiki/’
 api = BittyWikiAPI(WIKI_BASE)
 standalonePort = None
 if len(sys.argv) > 1:
 #The user provided a port number; that means they want to
 #run a standalone server.
 standalonePort = sys.argv[1]
 try:
 standalonePort = int(standalonePort)
 except ValueError:
 #Oops, that wasn’t a port number. Chide the user and exit.
 scriptName = sys.argv[0]
 print(‘Usage:’)
 print(‘ “%s [port number]” to start a standalone server.’ \
 % scriptName)
 print(‘ “%s” to invoke as a CGI.’ % scriptName)
 sys.exit(1)
 isStandalone = 1
 print(“Starting up standalone XML-RPC server on port %s.” \
 % standalonePort)
 handler = xmlrpc.server.SimpleXMLRPCServer\
 ((‘localhost’, standalonePort))
 else:
 #No port number specified; this is a CGI invocation.
 handler = xmlrpc.server.CGIXMLRPCRequestHandler()

 handlerSetup(handler, api)

 if standalonePort:
 handler.serve_forever()
 else:
 handler.handle_request()

 Try It Out Manipulating BittyWiki through XML - RPC

 It ’ s now possible to make XML - RPC calls against BittyWiki from other machines and even other
programming languages, just as you were earlier making XML - RPC calls against Meerkat (which is
written in PHP).

 In one window, start the standalone XML - RPC server (alternatively, make sure the web server that
serves the XML - RPC CGI is running):

python BittyWiki-XMLRPC.py 8001
Starting up standalone XML-RPC server on port 8001.

 In another, start an interactive Python session:

 > > > import xmlrpc.server
 > > > server = xmlrpc.server.ServerProxy(“http://localhost:8001/”)

c20.indd 462c20.indd 462 12/22/09 6:18:49 PM12/22/09 6:18:49 PM

Chapter 20: Web Applications and Web Services

463

 > > > bittywiki = server.bittywiki
 > > > bittywiki.getPage(“CreatedByXMLRPC”)
Traceback (most recent call last):
 File “ < stdin > ”, line 1, in ?
 ...
 raise Fault(* * self._stack[0])
xmlrpc.server.Fault: < Fault 1: ‘No such page:CreatedByXMLRPC’ >
 > > > bittywiki.save(“CreatedByXMLRPC”, “This page was created through the XML-
RPC interface.”)
‘Page saved.’
 > > > bittywiki.getPage(“CreatedByXMLRPC”)
‘This page was created through the XML-RPC interface.’

 You ’ re using web services, but you didn ’ t have to write special client code or (except at the beginning,
when you connected to the server) even be aware that you ’ re using web services. Of course, the
changes you make to the wiki through this interface will also show up for people using the web
application or BittyWiki ’ s REST - based web service.

 Wiki Search - and - Replace Using the XML - RPC Web Service
 Remember WikiSpiderREST.py , the script that crawled BittyWiki pages using its REST API to perform
search - and - replace operations? You had to write a custom class (BittyWikiRESTAPI) to construct the
right URLs to use against the REST interface, and a custom XML parser to process the response
documents you got in return. Of course, once you have written that stuff, it can be reused in any
application that uses BittyWiki ’ s REST API, but the main selling point of XML - RPC is that such classes
aren ’ t necessary: xmlrpc.client handles everything. Put that to the test by rewriting
 WikiSpiderREST.py as WikiSpiderXMLRPC.py :

#!/usr/bin/python
import re
import xmlrpc.client

class WikiReplaceSpider:
 “A class for running search-and-replace against a web of wiki pages.”

 WIKI_WORD = re.compile(‘(([A-Z][a-z0-9] *){2,})’)

 def __init__(self, rpcURL):
 “Accepts a URL to a BittyWiki XML-RPC API.”
 server = xmlrpc.client.ServerProxy(rpcURL)
 self.api = server.bittywiki

 def replace(self, find, replace):
 “””Spider wiki pages starting at the front page, accessing them
 and changing them via the XML-RPC API.”””

 processed = {} #Keep track of the pages already processed.
 todo = [‘HomePage’] #Start at the front page of the wiki.
 while todo:

(continued)

c20.indd 463c20.indd 463 12/22/09 6:18:50 PM12/22/09 6:18:50 PM

Part III: Putting Python to Work

464

 for pageName in todo:
 print(‘Checking “%s”’ % pageName)
 try:
 pageText = self.api.getPage(pageName)
 except xmlrpc.client.Fault, fault:
 if fault.faultString.find(“No such page”) == 0:
 #We tried to access a page that doesn’t exist;
 #not a big deal.
 pass
 else:
 #Some other problem; pass it on up.
 raise xmlrpc.client.Fault, fault
 else:
 #This page actually exists; process it.

 #First, find any WikiWords in this page: they may
 #reference other pages.
 for wikiWord in self.WIKI_WORD.findall(pageText):
 linkPage = wikiWord[0]
 if not processed.get(linkPage) and linkPage not in todo:
 #We haven’t processed this page yet: put it on
 #the to-do list.
 todo.append(linkPage)

 #Run the search-and-replace on the page text to get the
 #new text of the page.
 newText = pageText.replace(find, replace)

 #Check to see if this page name matches the search
 #string. If it does, delete it and recreate it
 #with the new text; otherwise, just save the new
 #text in the existing page.
 newPageName = pageName.replace(find, replace)
 if newPageName != pageName:
 print(‘ Deleting “%s”, will recreate as “%s”’ \
 % (pageName, newPageName))
 self.api.delete(pageName)
 if newPageName != pageName or newText != pageText:
 print(‘ Saving “%s”’ % newPageName)
 saveResponse = self.api.save(newPageName, newText)
 #Mark the new page as processed so we don’t go through
 #it a second time.
 if newPageName != pageName:
 processed[newPageName] = True
 processed[pageName] = True
 todo.remove(pageName)

(continued)

c20.indd 464c20.indd 464 12/22/09 6:18:50 PM12/22/09 6:18:50 PM

Chapter 20: Web Applications and Web Services

465

 The WikiReplaceSpider class looks almost exactly the same as before. The only big difference is that,
whereas before a method call like api.getPage moved into custom REST code you had to write, it now
moves into preexisting xmlrpclib code. Without those API - specific classes to implement, the
 WikiReplaceSpider class is pretty much all the code:

if __name__ == ‘__main__’:
 import sys
 if len(sys.argv) == 4:
 rpcURL, find, replace = sys.argv[1:]
 else:
 print(‘Usage: %s [URL to BittyWiki XML-RPC API] [find] [replace]’ \
 % sys.argv[0])
 sys.exit(1)
 WikiReplaceSpider(rpcURL).replace(find, replace)

 That ’ s it. This spider works just like the REST version, but it takes less code because there ’ s no one - off
code to deal with the specifics of the REST API. This script is run just like the REST version, but the URL
passed in is the URL to the XML - RPC interface, instead of the URL to the REST interface:

$ python WikiSpiderXMLRPC.py http://localhost:8000/cgi-bin/bittywiki-xmlrpc.
cgi Foo Bar
Checking “HomePage”
 Saving “HomePage”
Checking “FooCaseStudies”
...

 SOAP
 XML - RPC solves REST ’ s main problem by defining a standard way to represent data types such as
integers, dates, and lists. However, while XML - RPC was being defined, the W3C ’ s XML working group
was working on its own representation of those data types and many others. After XML - RPC became
popular, the W3C turned its attention to it, and started redesigning it to use WC3 ’ s preexisting
standards. Along the way, ambition broadened the scope of the project to include any kind of message
exchange, not just procedure calls and their return values. The result was SOAP. The acronym originally
stood for Simple Object Access Protocol, but because the standard ’ s scope has been expanded so far
beyond simple remote procedure calls, the acronym itself is no longer applicable.

 SOAP may still be simple compared to COM or CORBA, but it ’ s a lot more complicated than XML - RPC.
Fortunately, you don ’ t need all of SOAP just to expose a web application as a web service. The part
you do need looks basically like XML - RPC with a more general XML encoding scheme. SOAP gives you
access to a broader range of data types than XML - RPC, and even lets you define your own.

 Unfortunately, at the time of this writing, Python 3.1 does not widely support SOAP and useful third -
 party modules such as SOAPpy have not yet been updated to work with the current version (or even
Python version 2.6 for that matter). Because there is every reason to anticipate that this will be corrected
in the (hopefully) near future, this section demonstrates how to use SOAP (and specifically the SOAPpy
module) in Python version 2.4. If you want to try out the examples, I recommend downloading and
installing Python 2.4 on your computer. Otherwise, just follow along; the examples closely mirror those
of the previous XML - RPC examples, so it should not be too difficult.

 Note that writing any of the following code in Python 2.6 and above will not work.

c20.indd 465c20.indd 465 12/22/09 6:18:50 PM12/22/09 6:18:50 PM

Part III: Putting Python to Work

466

 SOAP Quick Start
 Just as with REST and XML - RPC, a SOAP message is typically sent as the data portion of an HTTP POST
request. Just as with those other protocols, then, it ’ s technically possible to use a SOAP web service
without any SOAP - specific tools: Just construct the message by hand, send it off with urllib , and parse
the response with the xml.sax module. Realistically, though, you need a SOAP library to use SOAP with
Python. A SOAP library will deal with transforming Python data structures to SOAP ’ s XML
representations and back, just as xmlrpc.client does for XML - RPC.

 Unfortunately, there ’ s no “ soaplib ” bundled with Python, but you can download one. There are two
SOAP libraries for Python. The one library used in this chapter is SOAPpy , which provides an xmlrpc
.client - like version of a SOAP client and a SOAP server.

 If you ’ re running Debian GNU/Linux, you can just install the “ soappy ” package; if not, you can
download the distribution from http://pywebsvcs.sourceforge.net/ . ZSI, the other Python
SOAP package, is also available from that site. Be warned that SOAPpy requires two other packages:
 fpconst , a floating - point library, and PyXML , a set of XML utilities. More information and links to
the packages are available in the SOAPpy README file.

 The SOAP Request
 Here ’ s a transcript of a hypothetical SOAP RPC call that tries to sort a list in ascending order; compare it
to the XML - RPC transcript earlier that called an XML - RPC version of the same method:

 < ?xml version=”1.1” encoding=”UTF - 8”? >
 < SOAP-ENV:Envelope SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/
encoding/”
 xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
 xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”
 xmlns:xsi=”http://www.w3.org/1999/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/1999/XMLSchema” >
 < SOAP-ENV:Body >
 < ns1:sortList xmlns:ns1=”urn:SearchSort” SOAP-ENC:root=”1” >
 < v1 SOAP-ENC:arrayType=”xsd:int[2]” xsi:type=”SOAP-ENC:Array” >
 < item > 10 < /item >
 < item > 2 < /item >
 < /v1 >
 < v2 xsi:type=”xsd:boolean” > True < /v2 >
 < /ns1:sortList >
 < /SOAP-ENV:Envelope >

 The first thing to notice is all those xmlns declarations. SOAP is very particular about XML namespaces,
whereas XML - RPC is much more informal and serves standalone XML documents. SOAP uses XML
namespaces to define the format of the SOAP message itself (SOAP - ENV), the data types (such as xsd:
boolean and the SOAP - specific SOAP - ENC:Array), and the very concept of a data type (xsi:type). This
gives SOAP a lot more flexibility in how its data is encoded, but between XML Schema (xsd) and the
SOAP data encoding schema (SOAP - ENC), most of the basic data types are already defined for you.
Only in more complicated cases will you need to define custom data types.

 The other namespace mentioned in this message is urn:SearchSort . That ’ s the namespace of the
method you ’ re trying to call. As mentioned before, this is like the way the XML - RPC version of this
request named its method searchsort.sortList , instead of just sortList . SOAP has formalized the

c20.indd 466c20.indd 466 12/22/09 6:18:51 PM12/22/09 6:18:51 PM

Chapter 20: Web Applications and Web Services

467

XML - RPC convention, and uses XML namespaces to distinguish between different methods with the
same name. Your SOAP call must be executed in a particular XML namespace. If you use a Python SOAP
library to make SOAP calls, this is probably the only namespace you ’ ll actually have to worry about.

 If you ignore the namespaces, this message looks a lot like the XML - RPC message you saw earlier.
There ’ s a method call tag that contains a list of tags for the arguments to be passed into the method.
Instead of the method call tag containing a child tag with the method name, here the tag is simply
named after the method to be called. In XML - RPC, the arguments were listed inside a separate params
tag. Here, they ’ re direct children of the method call tag. The SOAP message is a little more concise, but
(again, disregarding the namespace declarations) just as easy to read.

 Compare the XML - RPC representation of the array to be sorted, which you saw earlier, to the SOAP
representation of the same array:

 < array >
 < data >
 < value > < i4 > 2 < /i4 > < /value >
 < value > < i4 > 10 < /i4 > < /value >
 < /data >
 < /array >
 < v1 SOAP-ENC:arrayType=”xsd:int[2]” xsi:type=”SOAP-ENC:Array” >
 < item > 10 < /item >
 < item > 2 < /item >
 < /v1 >

 This difference between the two protocols is typical. There ’ s more up - front definition in SOAP and more
references to external documents that formally define the data types. The upside of that is that once the
definition is done, it takes fewer bytes to actually define a data structure. It doesn ’ t make much
difference with a small array like this, but consider an array with thousands or millions of elements.
SOAP is more efficient than XML - RPC at representing large data structures.

 The SOAP Response
 Here ’ s a possible response you might get from a SOAP server after sending it the sortList request:

 < ?xml version=”1.1” encoding=”UTF-8”? >
 < SOAP-ENV:Envelope SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/
encoding/”
xmlsn:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
 xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”
 xmlns:xsi=”http://www.w3.org/1999/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/1999/XMLSchema” >
 < SOAP-ENV:Body >
 < ns1:sortList xmlns:ns1=”urn:SearchSort” SOAP-ENC:root=”1” >
 < return SOAP-ENC:arrayType=”xsd:int[2]” xsi:type=”SOAP-ENC:Array” >
 < item > 2 < /item >
 < item > 10 < /item >
 < /return >
 < /ns1:sortList >
 < /SOAP-ENV:Envelope >

c20.indd 467c20.indd 467 12/22/09 6:18:51 PM12/22/09 6:18:51 PM

Part III: Putting Python to Work

468

 Just as with XML - RPC, a SOAP response has the same basic structure as a SOAP request. Where the
SOAP request had a list of arguments, the SOAP response has a single return value. This, too, is similar
to XML - RPC: Recall that an XML - RPC response contained a params list, which was only allowed to
contain one param — the return value. SOAP makes this convention more natural by eliminating the
 params tag and just returning the return value.

 If Something Goes Wrong
 If you make a SOAP request that makes the server code throw an exception, the Body of the response
you get back will contain a Fault element. It might look something like this:

 < /SOAP-ENV:Body >
 < SOAP-ENV:Fault SOAP-ENC:root=”1” >
 < faultcode > SOAP-ENV:Client < /faultcode >
 < faultstring > No method urn:SearchSort:sortList found < /faultstring >
 < detail xsi:type=”xsd:string” >
 There ’ s no method “sortList” in the urn:SearchSort namespace.
 < /detail >
 < /SOAP-ENV:Fault >
 < /SOAP-ENV:Body >

 The faultstring and detail sub - elements of Fault are for human - readable descriptions, and the
 faultcode element describes the type of error. Whereas XML - RPC says nothing about the fault code
except that it must be an integer, SOAP defines four standard strings to serve as fault codes. Two of them
(mustUnderstand and VersionMismatch) you probably won ’ t encounter in basic SOAP use. The other
two fault codes serve, appropriately enough, to identify who caused the fault. If you ’ re writing a SOAP
client and you get a faultcode of Client , that means you caused the error (for instance, in the
preceding, by calling a method that doesn ’ t exist in the namespace you specified). If the faultcode is
 Server , that means there ’ s nothing wrong with your request but the server can ’ t fulfill it at the moment
— perhaps the server code can ’ t access a database or some other necessary resource.

 Within a Python interface, the details of a response with a Fault are hidden from you, pretty much as in
XML - RPC. If a Python method you ’ ve exposed through SOAP throws an exception, the SOAP server
automatically transforms the exception into a SOAP response with a Fault element. If you ’ re using
 SOAPpy and you call a remote method that responds with a Fault , it is transformed into a subclass of
 Error: SOAPpy.Types.faultType .

 Exposing a SOAP Interface to BittyWiki
 In principle, there ’ s no reason why you shouldn ’ t be able to run a SOAP server from a CGI script:
Remember that despite all the additional complexity and mystique of SOAP, it ’ s just like REST and
XML - RPC in that it ’ s just a document being POST ed to a URL and another document being sent in
return. Unfortunately, SOAPpy doesn ’ t provide a CGI script that serves SOAP requests, only a standalone
server, SOAPServer .

 ZSI, the other SOAP implementation for Python, does offer a CGI - based server.

 The following sample script, BittyWiki - SOAPServer.py , exposes the BittyWiki interface to SOAP
using a standalone server. This file should go into the same directory as the file BittyWiki.py , so that

c20.indd 468c20.indd 468 12/22/09 6:18:51 PM12/22/09 6:18:51 PM

Chapter 20: Web Applications and Web Services

469

you can use the core BittyWiki engine. Alternatively, you can put BittyWiki.py into one of the
directories in your PYTHON_PATH so you can use it from anywhere:

#!/usr/bin/python
import sys
import SOAPpy
from BittyWiki import Wiki

class BittyWikiAPI:
 “””A simple wrapper around the basic BittyWiki functionality we
 want to expose to the API.”””

 def __init__(self, wikiBase):
 “Initialize a wiki located in the given directory.”
 self.wiki = Wiki(wikiBase)

 def getPage(self, pageName):
 “Returns the text of the given page.”
 page = self.wiki.getPage(pageName)
 if not page.exists():
 raise NoSuchPage, page.name
 return page.getText()

 def save(self, pageName, newText):
 “Saves a page of the wiki.”
 page = self.wiki.getPage(pageName)
 page.text = newText
 page.save()
 return “Page saved.”

 def delete(self, pageName):
 “Deletes a page of the wiki.”
 page = self.wiki.getPage(pageName)
 if not page.exists():
 raise NoSuchPage, page.name
 page.delete()
 return “Page deleted.”

class NoSuchPage(Exception):
 “””An exception thrown when a caller tries to access a page that
 doesn’t exist.”””
 pass

 The actual API code is exactly the same as for the XML - RPC server; it could even be moved into a
common library. The only difference is that now you register it with a SOAPServer instead of a
 SimpleXMLRPCServer :

DEFAULT_PORT = 8002
NAMESPACE = ‘urn:BittyWiki’
WIKI_BASE = ‘wiki/’
if __name__ == ‘__main__’:
 api = BittyWikiAPI(WIKI_BASE)
 port = DEFAULT_PORT
 if len(sys.argv) > 1:

(continued)

c20.indd 469c20.indd 469 12/22/09 6:18:52 PM12/22/09 6:18:52 PM

Part III: Putting Python to Work

470

 port = sys.argv[1]
 try:
 port = int(port)
 except ValueError:
 #Oops, that wasn’t a port number. Chide the user and exit.
 print ‘Usage: “%s [optional port number]”’ % sys.argv[0]
 sys.exit(1)
 print “Starting up standalone SOAP server on port %s.” % port
 handler = SOAPpy.SOAPServer((‘localhost’, port))
 handler.registerObject(api, NAMESPACE)
 handler.serve_forever()

 Try It Out Manipulating BittyWiki through SOAP

 In one window, start the standalone SOAP server:

$ python BittyWiki-SOAPServer.py 8002
Starting up standalone XML-RPC server on port 8002.

 In another, start an interactive Python session:

 > > > import SOAPpy
 > > > bittywiki = SOAPpy.SOAPProxy(“http://localhost:8002/”, “urn:BittyWiki”)
 > > > bittywiki.getPage(“CreatedBySOAP”)
 < Fault SOAP-ENV:Server: Method urn:BittyWiki:getPage failed.: __main__.
NoSuchPage CreatedBySOAP >
Traceback (most recent call last):
 File “ < stdin > ”, line 1, in ?
 ...
SOAPpy.Types.faultType: < Fault SOAP-ENV:Server: Method urn:BittyWiki:getPage
failed.: __main__.NoSuchPage CreatedBySOAP >
 > > > bittywiki.save(“CreatedBySOAP”, “This page was created through the SOAP
interface.”)
‘Page saved.’
 > > > bittywiki.getPage(“CreatedBySOAP”)
‘This page was created through the SOAP interface.’

 The experience of using SOAP, hidden behind SOAPpy , is similar to the experience of using XML - RPC,
hidden behind xmlrpclib . You can make method calls, passing in standard Python objects, and let
the library take care of all the details.

 Wiki Search - and - Replace Using the SOAP Web Service
 Here ’ s WikiSpiderSOAP.py , another wiki search - and - replace client similar to the ones described earlier
for BittyWiki ’ s REST and XML - RPC interfaces. By now, this code should be familiar. The pattern is
always the same: Set up some reference to the basic BittyWiki API and run the basic search - and - replace
spider algorithm using it. The only major difference between this version and the XML - RPC version
is the exception handling: xmlrpclib and SOAPpy act differently when something goes wrong on
the server side, so the exception handling code must be different. Other than that, the SOAP - based
search - and - replace spider looks more or less the same as the XML - RPC one:

(continued)

c20.indd 470c20.indd 470 12/22/09 6:18:52 PM12/22/09 6:18:52 PM

Chapter 20: Web Applications and Web Services

471

#!/usr/bin/python
import re
import SOAPpy

class WikiReplaceSpider:
 “A class for running search-and-replace against a web of wiki pages.”

 WIKI_WORD = re.compile(‘(([A-Z][a-z0-9] *){2,})’)

 def __init__(self, rpcURL):
 “Accepts a URL to a BittyWiki SOAP API.”
 self.api = SOAPpy.SOAPProxy(rpcURL, “urn:BittyWiki”)
 self.api.config.dumpSOAPIn=1

 def replace(self, find, replace):
 “””Spider wiki pages starting at the front page, accessing them
 and changing them via the XML-RPC API.”””

 processed = {} #Keep track of the pages already processed.
 todo = [‘HomePage’] #Start at the front page of the wiki.
 while todo:
 for pageName in todo:
 print ‘Checking “%s”’ % pageName
 try:
 pageText = self.api.getPage(pageName)
 except SOAPpy.Types.faultType, fault:
 if fault.detail.find(“NoSuchPage”) != -1:
 #Some page mentioned a WikiWord that doesn’t exist
 #yet; not a big deal.
 pass
 else:
 #Some other problem; pass it on up.
 raise SOAPpy.Types.faultType, fault
 else:
 #This page actually exists; process it.
 #First, find any WikiWords in this page: they may
 #reference other existing pages.
 for wikiWord in self.WIKI_WORD.findall(pageText):
 linkPage = wikiWord[0]
 if not processed.get(linkPage) and linkPage not in todo:
 #We haven’t processed this page yet: put it on
 #the to-do list.
 todo.append(linkPage)

 #Run the search-and-replace on the page text to get the
 #new text of the page.
 newText = pageText.replace(find, replace)

 #Check to see if this page name matches the search
 #string. If it does, delete it and recreate it
 #with the new text; otherwise, just save the new
 #text in the existing page.

(continued)

c20.indd 471c20.indd 471 12/22/09 6:18:53 PM12/22/09 6:18:53 PM

Part III: Putting Python to Work

472

 newPageName = pageName.replace(find, replace)
 if newPageName != pageName:
 print ‘ Deleting “%s”, will recreate as “%s”’ \
 % (pageName, newPageName)
 self.api.delete(pageName)
 if newPageName != pageName or newText != pageText:
 print ‘ Saving “%s”’ % newPageName
 self.api.save(newPageName, newText)
 #Mark the new page as processed so we don’t go through
 #it a second time.
 if newPageName != pageName:
 processed[newPageName] = True
 processed[pageName] = True
 todo.remove(pageName)

if __name__ == ‘__main__’:
 import sys
 if len(sys.argv) == 4:
 rpcURL, find, replace = sys.argv[1:]
 else:
 print ‘Usage: %s [URL to BittyWiki SOAP API] [find] [replace]’ \
 % sys.argv[0]
 sys.exit(1)
 WikiReplaceSpider(rpcURL).replace(find, replace)

 This spider works just like the REST and the XML-RPC versions described earlier in this chapter:

$ python WikiSpiderSOAP.py http://localhost:8002/ Foo Bar
Checking “HomePage”
 Saving “HomePage”
Checking “FooCaseStudies”
...

 Note that because BittyWiki-SOAPServer.py runs its own web server, there ’ s no need to point to
a script somewhere on the web server that handles the SOAP interface. The entire web server is the
SOAP interface.

 That concludes the use of Python version 2.4 for now; we return to it in the section on WSDL later on.

 Documenting Your Web Service API
 Exposing a web service API won ’ t do any good unless the people who want to write robots can figure
out how to use it. If you were to distribute a Python module with inadequate documentation (shame on
you) , a determined user could try to figure out the API by looking at the source code and, if necessary,
making experimental changes, learning through trial and error. That isn ’ t possible when you expose a
web service, so it ’ s especially important that you have a real way of getting the API information to your
users.

(continued)

c20.indd 472c20.indd 472 12/22/09 6:18:53 PM12/22/09 6:18:53 PM

Chapter 20: Web Applications and Web Services

473

 Human - Readable API Documentation
 In my opinion, no matter which web service protocol you ’ re using, nothing beats an up - to - date human -
 readable description of an API. This can be written manually or generated through introspection and the
use of Python docstrings. Up next are three sample documents that describe the three web service APIs
for the BittyWiki application created in this chapter. They ’ re all extremely short, but they contain all the
information a user needs to write an application using any of them.

 The BittyWiki REST API Document
 To get the raw wiki markup for the page “ WikiPage ” , GET the URL http://localhost:8000/
cgi - bin/bittywiki - rest.cgi/WikiPage . You ’ ll get an XML data structure in which the < data > tag
contains the wiki markup of the WikiPage page. If the WikiPage page doesn ’ t exist, you ’ ll get an error.

 To modify the contents of the page “ WikiPage ” , POST to the URL http://localhost:8000/cgi - bin/
bittywiki - rest.cgi/WikiPage . Set data equal to the wiki markup you want to write to the page,
and operation to the string write . You ’ ll receive an XML data structure in which the < message > tag
contains a status message. If the WikiPage page doesn ’ t exist, it will be automatically created.

 To delete the page “ WikiPage ” , POST to the URL http://localhost:8000/cgi - bin/bitty
wiki - rest.cgi/WikiPage . Set “ operation ” to the string delete . You ’ ll receive an XML data structure
in which the < message > tag contains a status message. If the WikiPage page doesn ’ t exist, you ’ ll get
an error.

 The BittyWiki XML - RPC API Document
 The BittyWiki API server is located at http://localhost:8001/ . It exposes three methods:

 bittywiki.getPage(string pageName) — Returns the text of the named page. Passing an empty
string designates the wiki homepage. This throws a fault if you request a page that doesn ’ t exist.

 bittywiki.save(string pageName, string text) — Sets the text of the named page. If the page
doesn ’ t already exist, it is automatically created.

 bittywiki.delete(string pageName) — Deletes the named page. This throws a fault if you try to
delete a page that doesn ’ t exist.

 The BittyWiki SOAP API Document
 The BittyWiki SOAP server is located at http://localhost:8002/ . It exposes three methods in the
namespace “ urn:BittyWiki ” :

 getPage(string pageName) — Returns the text of the named page. Passing an empty string
designates the wiki homepage. This throws a fault if you request a page that doesn ’ t exist.

 save(string pageName, string text) — Sets the text of the named page. If the page doesn ’ t
already exist, it is automatically created.

 delete(string pageName) — Deletes the named page. This throws a fault if you try to delete a
page that doesn ’ t exist.

❑

❑

❑

❑

❑

❑

c20.indd 473c20.indd 473 12/22/09 6:18:53 PM12/22/09 6:18:53 PM

Part III: Putting Python to Work

474

 The XML - RPC Introspection API
 An unofficial addendum to the XML - RPC specification defines three special functions in the “ system ”
namespace, as a convenience to users who might not know which functions an XML - RPC server
supports, or what those functions might do. These special functions are the web service equivalent of
Python ’ s ever - useful dir and help commands. Both xmlrpc.server and CGIXMLRPCRequestHandler
support two of the three introspection functions, assuming you call the register_introspection_
functions method on the server or handler object after instantiating it:

handler=xmlrpc.server.SimpleXMLRPCServer((host,port))
handler.register_introspection_functions()

 Method Name What It Does

 System.listMethods() Returns the names of all the functions the server
makes available.

 System.methodHelp(string funcName) Returns a string with documentation for the
named function. Implemented in Python by
returning the function ’ s Python docstring.

 System.methodSignature(string
funcName)

 Returns the signature and return type of the
named function. Not automatically supported
by the Python implementation because Python
function definitions don ’ t include type
information.

 Try It Out Using the XML - RPC Introspection API

 Start up and connect to the BittyWiki XML - RPC server (or CGI) as before. In addition to the BittyWiki
methods shown earlier, you can use the XML - RPC introspection methods:

 > > > import xmlrpc.client
 > > > server=xmlrpc.client.ServerProxy(“http://localhost:8001/”)
 > > > server.system.listMethods()
[‘bittywiki.delete’, ‘bittywiki.getPage’, ‘bittywiki.save’, ‘system.
listMethods’, ‘system.methodHelp’, ‘system.methodSignature’]
 > > > server.system.methodHelp(“bittywiki.save”)
‘Saves a page of the wiki.’
 > > > server.system.methodSignature(“bittywiki.save”)
 ’ signatures not supported’

 XML - RPC introspection isn ’ t meant as a substitute for a human - readable API document. For one
thing, it ’ s hard to get people excited about using your API if they must use XML - RPC method calls to
even see what it is. However, the introspection API does make it a lot easier to experiment with an
XML - RPC web service from an interactive Python shell.

c20.indd 474c20.indd 474 12/22/09 6:18:53 PM12/22/09 6:18:53 PM

Chapter 20: Web Applications and Web Services

475

 WSDL
 Many SOAP - based web services define their interface in a WSDL file. WSDL is basically a machine -
 parseable version of the human - readable API document shown earlier in this section.

 Recall that XML - RPC defines a set of rules for transforming a few basic data structures into XML documents
and back into data structures. WSDL allows such rules to be constructed on the fly. It ’ s more or less a
programming language- agnostic schema for describing functions: their names, the data types of their
arguments, and the data types of their return values. Although WSDL is associated with SOAP, it ’ s possible
to use SOAP without using WSDL (in fact, you did just that throughout this chapter ’ s section on SOAP).

 A WSDL file is an XML document (of course!), which defines the following aspects of your web service
inside its definitions element:

 Any custom data types defined by your web service. These go into complexType elements of a
 types list.

 The formats of the messages sent and received by your web service; that is, the signatures and
return values of the functions your web service defines. These are defined in a series of message
elements, and may make reference to any custom data types you defined earlier.

 The names of the functions your web service provides, along with the input and output
messages expected by each. This is in the portType element, which contains an operation
element for each of the web service ’ s functions.

 A binding of your web service ’ s functions to a specific protocol — that is, HTTP. For simple
SOAP applications, this section is an exercise in redundancy: You end up just listing all of your
functions again. It exists because SOAP is protocol - independent; you need to explicitly state that
you ’ re exposing your methods over HTTP. This goes in the binding element.

 Finally, the URL to your web service. This is defined in the service element.

 Note that because you are once again working with SOAP, and the SOAP libraries have not been
updated (at the time of this writing) to work with Python version 2.6 or 3.0, you will once more rely on
Python version 2.4 for the following examples. Here ’ s BittyWiki.wsdl , a WSDL file for the SOAP API
exposed by BittyWiki:

<?xml version=”1.1”?>
<definitions name=”BittyWiki”
 targetNamespace=”urn:BittyWiki”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
 xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<!--Descriptions of the functions exposed by the BittyWiki API. The
definitions of the functions reference message elements which will be
defined afterwards.-->
<portType name=”BittyWikiPortType”>
 <operation name=”getPage”>
 <input message=”sendPageName”/>
 <output message=”getPageText”/>
 </operation>

 <operation name=”save”>

❑

❑

❑

❑

❑

(continued)

c20.indd 475c20.indd 475 12/22/09 6:18:54 PM12/22/09 6:18:54 PM

Part III: Putting Python to Work

476

 <input message=”sendPageNameAndText”/>
 <output message=”getStatusMessage”/>
 </operation>

 <operation name=”delete”>
 <input message=”sendPageName”/>
 <output message=”getStatusMessage”/>
 </operation>
</portType>

 The WSDL parser now knows which functions are exposed by BittyWiki, but nothing about the
signatures or return types of those functions. Those come next:

 < !--Descriptions of the method signatures used by the BittyWiki API.
For instance, this first one is for a method where you send in a page name.
This method signature is common to getPage() and delete().-- >
 < message name=”sendPageName” >
 < part name=”pageName” type=”xsd:string”/ >
 < /message >

 < message name=”sendPageNameAndText” >
 < part name=”pageName” type=”xsd:string”/ >
 < part name=”pageText” type=”xsd:string”/ >
 < /message >

 < !--Descriptions of the possible return values obtained from the
BittyWiki API. The first one is for a return value that contains
a wiki page ’ s markup: that is, the return value of getPage().-- >
 < message name=”getPageText” >
 < part name=”pageText” type=”xsd:string”/ >
 < /message >

 < message name=”getStatusMessage” >
 < part name=”message” type=”xsd:string”/ >
 < /message >

 A rather redundant section follows, as the four SOAP functions are bound to SOAP - over - HTTP:

 < !--A binding of the BittyWiki API functions (previously defined only
in the abstract) to the specific “SOAP-over-HTTP” protocol.-- >
 < binding type=”BittyWikiPortType” name=”BittyWikiSOAPBinding” >
 < soap:binding style=”rpc” transport=”http://schemas.xmlsoap.org/soap/http” / >
 < operation name=”getPage” >
 < input > < soap:body use=”literal” namespace=”urn:BittyWiki” / > < /input >
 < output > < soap:body use=”literal” namespace=”urn:BittyWiki” / > < /output >
 < /operation >

 < operation name=”save” >
 < input > < soap:body use=”literal” namespace=”urn:BittyWiki” / > < /input >
 < output > < soap:body use=”literal” namespace=”urn:BittyWiki” / > < /output >
 < /operation >

 < operation name=”delete” >
 < input > < soap:body use=”literal” namespace=”urn:BittyWiki” / > < /input >
 < output > < soap:body use=”literal” namespace=”urn:BittyWiki” / > < /output >

(continued)

c20.indd 476c20.indd 476 12/22/09 6:18:54 PM12/22/09 6:18:54 PM

Chapter 20: Web Applications and Web Services

477

 < /operation >
 < /binding >

 Finally, the code to let WSDL know where to find the BittyWiki web service:

 < !--A link to the BittyWiki web service on the web. It uses the
BittyWiki API defined in BittyWikiPortType, as realized by its
SOAP-over-HTTP binding, BittyWikiSOAPBinding.-- >
 < service name=”BittyWiki” >
 < port name=”BittyWikiPort” binding=”BittyWikiSOAPBinding” >
 < soap:address location=”http://localhost:8002/”/ >
 < /port >
 < /service >
 < /definitions >

 The BittyWiki API doesn ’ t define any custom data types, so there ’ s no types element in its WSDL file.
If you want to see a types element that has some complexType s, look at the WSDL file for the
Google Web APIs.

 WSDL is pretty complicated: That WSDL file is bigger than the Python script implementing the web
service it describes. WSDL files are usually generated from the corresponding web service source code,
so that humans don ’ t have to specify them. It ’ s not possible to do this from Python code because a big
part of WSDL is defining the data types, and Python functions don ’ t have predefined data types. Both
the SOAPpy and ZSI libraries can parse WSDL (in fact, they share a WSDL library: wstools), but there ’ s
not much in the way of Python - specific resources for generating WSDL.

 Try It Out Manipulating BittyWiki through a WSDL Proxy

 The following looks more or less like the previous example of BittyWiki manipulation through direct
SOAP calls:

 > > > import SOAPpy
 > > > proxy = SOAPpy.WSDL.Proxy(open(“BittyWiki.wsdl”))
 > > > proxy.getPage(“SOAPViaWSDL”)
 < Fault SOAP-ENV:Server: Method urn:BittyWiki:getPage failed.: __main__.
NoSuchPage SOAPViaWSDL >
Traceback (most recent call last):
 ...
SOAPpy.Types.faultType: < Fault SOAP-ENV:Server: Method urn:BittyWiki:getPage
failed.: __main__.NoSuchPage SOAPViaWSDL >
 > > > proxy.save(“SOAPViaWSDL”, “This page created through SOAP via WSDL.”)
‘Page saved.’
 > > > proxy.getPage(“SOAPViaWSDL”)
‘This page created through SOAP via WSDL.’

 The main difference here is that going through WSDL will stop you from calling web service methods
that don ’ t exist:

 > > > proxy.noSuchMethod()
Traceback (most recent call last):
 ...
AttributeError: noSuchMethod

c20.indd 477c20.indd 477 12/22/09 6:18:54 PM12/22/09 6:18:54 PM

Part III: Putting Python to Work

478

 > > >
 > > > server = SOAPpy.SOAPProxy(“http://localhost:8002/”, “urn:BittyWiki”)
 > > > server.noSuchMethod()
 < Fault SOAP-ENV:Client: No method urn:BittyWiki:noSuchMethod found:
exceptions.AttributeError BittyWikiAPI instance has no attribute
‘noSuchMethod’ >
Traceback (most recent call last):
 ...
SOAPpy.Types.faultType: < Fault SOAP-ENV:Client: No method urn:BittyWiki:
noSuchMethod found: exceptions.AttributeError BittyWikiAPI instance has no
attribute ‘noSuchMethod’ >

 Both attempts to call noSuchMethod raised an exception, but going through WSDL meant the problem
was caught on the local machine instead of the server. This ability is a lot more interesting to a
compiled language: WSDL makes it possible to apply the same compile - time checks to web service
calls as to local function calls.

 And once more, that rounds out the usage of Python version 2.4 for this chapter.

 Choosing a Web Service Standard
 This chapter described three standards for web services, each with a different philosophy, each with
advantages and drawbacks. REST aims to get the most out of the facilities provided by HTTP, but it lacks
a standard encoding for even simple data types. XML - RPC provides that encoding, but it ’ s verbose and
 only deals with simple data types and compositions of simple data types. SOAP offers the structured
data types of XML - RPC with the flexibility of REST, but its added complexity makes hard cases more
difficult to understand than if they ’ d just been implemented with REST.

 Industry trends favor REST and SOAP over XML - RPC. SOAP has the backing of large software
companies such as IBM and Microsoft; REST has the backing of independent web service users and
developers. That ’ s because APIs based around REST and XML - RPC are generally easier to learn and use.
Whenever web services expose the same API through different protocols, the simplest one generally
wins. For instance, Amazon exposes a SOAP API in addition to the REST API covered in this chapter, but
about 80 percent of its users choose REST over SOAP.

 Which should you choose? Well, if you were a big fan of large software companies like IBM and
Microsoft, you probably wouldn ’ t be using Python in the first place. You would be using Java or .NET:
two strongly typed languages with good SOAP tool support. In most cases, the extra functionality of
SOAP isn ’ t needed, and Python ’ s support for SOAP isn ’ t consummate with the added complexity, so
why choose it unnecessarily?

 You should start off by planning to expose a well - designed REST or XML - RPC API. If, during the
design or implementation stage, you start running into problems with your choice, look into using
SOAP (once the libraries have been updated). Unless you ’ re doing heavy - duty automatic business
process software, or interfacing with a statically typed language like Java or .NET, you ’ ll probably
be able to see the REST or XML - RPC API through to the end. Your users will thank you for the
simpler interface.

c20.indd 478c20.indd 478 12/22/09 6:18:55 PM12/22/09 6:18:55 PM

Chapter 20: Web Applications and Web Services

479

 My ideal web service would have a RESTful interface in which each resource could accept POST data in
the format defined by XML - RPC (or some simple subset of SOAP). The web service could then be
designed along REST principles, but some variant of xmlrpc.client or SOAPpy could be used to
marshal and unmarshal the data without requiring the creation of custom parsers.

 Whatever you choose, please try to keep web services in mind from the moment you begin the design: A
web service is just a web application for robots . If you want your application to inspire creativity and not just
meet a predefined need, you must give up some of the control to your users.

 Web Service Etiquette
 A web service may have users who skirt the rules, or administrators who feel the users are ungrateful
for the service they ’ re being provided. In the interests of harmony, here are a few basic pieces of
advice for managing the social aspect of web services.

 For Consumers of Web Services
 If you write a robot to consume someone else ’ s web services, it ’ s important to play by the rules. In
particular, don ’ t try to evade any limitations such as license keys or daily limits on your access to the
API. Access to a web service is a privilege, not a right. It ’ s better to run out of API calls and have to
complete a task later than you planned than to have your access taken away altogether.

 For Producers of Web Services
 If you ’ re planning to expose your web application through a web service, you need to consider the flip
side of these issues. If your audience is already scripting your application, you ’ ve got a leg up because
you don ’ t have to guess what people might do with it. Before you design your web services, poll your
robot - writing users to see what parts of your application they ’ re using. Make your web services available
on terms that allow users to move over to the new system, or they ’ ll have no incentive to switch.

 As producer of a public web service, you might feel like the burden of etiquette falls completely on your
users. After all, you ’ re providing a service to them and not expecting anything in return. Nonetheless,
it ’ s important to make your terms of use palatable because the people writing the robots have the final
advantage: So long as you provide a web application with the same functionality as the web service,
determined users can always write a robot to use the web application however they want. There ’ s no
foolproof way you can distinguish between a robot that uses your site and the web browser a human
might use to use your site. They ’ re both pieces of software running on someone ’ s computer, making an
HTTP request. All the HTTP headers, including the User - Agent and the authentication headers, can be
forged by a robot.

 That said, if a particular robot is causing you trouble, you can solve the problem with the same tools
you ’ d use against a troublesome human user.

c20.indd 479c20.indd 479 12/22/09 6:18:55 PM12/22/09 6:18:55 PM

Part III: Putting Python to Work

480

 Using Web Applications as Web Services
 It ’ s possible to write scripts that consume web applications as though they were web services. After all,
that ’ s how the idea of web services got started in the first place. Some sites still haven ’ t gotten the web
services religion, or might have web services that don ’ t expose the functionality you need. To write the
robot you have in mind, you ’ d have to go through the application.

 This chapter doesn ’ t cover how to write such scripts, but the general principles are similar to web
services; and if this topic interests you, you ’ ll eventually find yourself doing it. When you do, don ’ t do
anything that violates the site ’ s terms of service. In addition, don ’ t access the site more than a human
user would. If you can, run your script in off hours so you don ’ t add to the load on the system. Finally,
ask the site administrators for a web service interface so you can work against a more stable interface
that uses less bandwidth.

 Summary
 Web applications are powerful and popular; with Python, they ’ re also easy to write. The REST
architecture made the Web usable and successful: Employing it when designing your application gives
you a head start. Web applications are designed for humans; a web service is just a web application
designed for use by software scripts instead. Expose REST and XML - RPC web services for simplicity
and easy adoption; SOAP for heavy - duty tasks or when interfacing with Java or .NET applications.
Make use of the web services provided by others: They ’ re opening up their data sets and algorithms for
your benefit.

 Exercises
 1. What ’ s a RESTful way to change BittyWiki so that it supports hosting more than one Wiki?

 2. Write a web application interface to WishListBargainFinder.py . (That is, a web application
that delegates to the Amazon Web Services.)

 3. The wiki search - and - replace spider looks up every new WikiWord it encounters to see whether
it corresponds to a page of the wiki. If it finds a page by that name, that page is processed. Oth-
erwise, nothing happens and the spider has wasted a web service request. How could the web
service API be changed so that the spider could avoid those extra web service requests for non-
existent pages?

 4. Suppose that, to prevent vandalism, you change BittyWiki so that pages can ’ t be deleted. Unfor-
tunately, this breaks the wiki search - and - replace spider, which sometimes deletes a page before
re - creating it with a new name. What ’ s a solution that meets both your needs and the needs of
the spider ’ s users?

c20.indd 480c20.indd 480 12/22/09 6:18:56 PM12/22/09 6:18:56 PM

 21
Integrating Java with Python

 Java is an object - oriented programming language. Java programs are compiled from source code
into byte codes. The Java runtime engine, called a Java virtual machine , or JVM , runs the compiled
byte codes. Sound familiar? At an abstract level at least, Java and Python are very similar. Like
Java, Python programs are compiled into byte codes, although this can be done at runtime.

 Despite these similarities, some differences between the languages exist:

 With Python, you can run scripts directly from the source code. Compiling is optional. If
you don ’ t compile your Python code in advance, the python command will take care of
this for you.

 Java syntax is based on C and C � � , two very popular programming languages. This
makes it easy for developers using C � � to migrate to Java. Consequently, Java is
considered a more serious and businesslike language than Python.

 Python syntax is very simple and easy to learn, but the syntax has diverged far from C.

 With its simple syntax and built - in support for lists, dictionaries, and tuples, you ’ ll find
Python code much easier to write than Java code. Generally, Python programs require a
lot less code than the corresponding Java code.

 Java has an advantage over Python in terms of standard APIs, though. The base Java
language includes a mature database API, an API for parsing XML documents, an API for
remote communication, and even an API to access LDAP directory servers. You can do all
of this in Python, but Python lacks the richness, and standardization, of the many
Java APIs. This becomes more apparent when you write enterprise applications in
Python. Java ’ s enterprise APIs, called Java EE, enable Java to be a player in the
enterprise market. Python, unfortunately, has been relegated to a minimal role in
the enterprise market.

 When writing enterprise applications, you ’ ll likely need to write them in Java. Even though
Python can work well in this space, Java controls the mind share for the enterprise. Luckily, you
can get the best of both worlds with Jython, an implementation of Python in Java.

❑

❑

❑

❑

❑

c21.indd 481c21.indd 481 12/22/09 11:03:34 AM12/22/09 11:03:34 AM

Part III: Putting Python to Work

482

 Jython enables you to execute Python code from within a Java virtual machine — that is, from within
any Java application.

 In this chapter you learn:

 Reasons for scripting within Java applications

 Comparing Jython with the regular C - based Python implementations

 Installing Jython

 Running Python scripts from Jython

 Calling Java code from Python scripts

 Extending Java classes with Python classes

 Writing Java EE servlets in Python

 Embedding the Jython interpreter in your Java applications

 Note that you ’ ll want to have some familiarity with both Java and Python to be able to integrate Python
and Java.

 Scripting within Java Applications
 Most software developers consider Java to be a large systems programming language, a serious
language for serious tasks. Python, in this way of thinking, comes from the realm of scripting languages
such as Perl and Tcl. As such, many developers typically don ’ t respect Python because scripting
languages are, of course, created for people who cannot program. You know this isn ’ t true, but the
split between programming and scripting languages remains, even though Python gracefully
bridges this gap.

 Despite this lack of respect, scripting languages have proven to be very productive and are widely
deployed as critical parts of companies small and large (and huge and gigantic, too). You can generally
accomplish a lot more in less time with less code using a scripting language than you can with a system
programming language like Java.

 With Java applications, scripting comes in handy for a number of reasons, including the following:

 The scripting language can act as a macro extension language. Much like Visual Basic for
Applications (VBA) enables you to script extensions to Microsoft Office; you can enable
users to extend your own Java applications using Jython. Complex text editors such as jEdit
(www.jedit.org) enable you to write scripts in this fashion.

 Use Jython to speed the development of Java applications. As a high - level scripting language,
you can take advantage of the productivity features of Python when compared to the
complexity of Java.

 Explore and debug running systems. Using the interactive capabilities of Jython, you can
explore a running Java application. You can execute code as needed, all interactively. You
already take this for granted in Python, but it ’ s something that Java just doesn ’ t have.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c21.indd 482c21.indd 482 12/22/09 11:03:35 AM12/22/09 11:03:35 AM

Chapter 21: Integrating Java with Python

483

 You can script unit tests much faster than writing them in Java. Many organizations feel
uncomfortable about introducing scripting languages, especially open - source ones. Using
scripts for testing provides the advantages of scripting without shipping the scripting packages
in your application or using the scripting packages in production.

 In addition to unit testing, scripting works well for full system testing. A system - testing package
called the Grinder uses Jython to create test scripts. See http://grinder.sourceforge.net/
for more on the Grinder.

 You can create one - off scripts for tasks such as data migration. If you just need to update a
particular row in a database table, or fix a particular setting, you can do this a lot quicker
using a script.

 You can extend enterprise applications without having to redeploy the application. This is very
handy if you need to keep your system running all the time. In addition, developers can extend
the functionality of the system without requiring the security permissions to redeploy the
application.

 Jython, being based on the very popular Python language, enables you to do all of this, and more.

 Comparing Python Implementations
 The traditional Python implementation, often called C - Python, compiles and runs on a huge number of
platforms, including Windows, Linux, and Mac OS X. C - Python is written in the C programming
language. The Java - based Jython compiles and runs on any platform that supports the Java virtual
machine. This includes Windows, Linux, and Mac OS X. In this respect, the two Python implementations
are very similar in how cross - platform they are.

 However, Jython isn ’ t up to date compared to the traditional C - Python implementation. The C - Python
implementation sports new features that have not yet been written in the Java implementation. That ’ s
understandable, because C - Python is where the first development happens, and the Jython developers
have to re - implement every Python feature in Java.

 Which foundation you use for Python scripting, C - Python or Jython, doesn ’ t really matter, because both
support the Python language. In general, you ’ ll want to use C - Python unless you have a specific need to
work within the Java platform. In that case, obviously, use Jython!

 The rest of this chapter shows you how to do just that.

 Installing Jython
 As an open - source project, Jython doesn ’ t follow a set release cycle. Your best bet is to download the
latest release from www.jython.org . Then, follow the instructions on the website for installing Jython.

 Older versions of Jython, such as 2.1, are packaged as a Java .class file of the installation program.
When you run the file, the program will install Jython on your hard disk. Newer pre - release versions
come packaged as a Zip file. Unzip the file to install Jython.

❑

❑

❑

❑

c21.indd 483c21.indd 483 12/22/09 11:03:35 AM12/22/09 11:03:35 AM

Part III: Putting Python to Work

484

 After installing Jython, you should have two executable scripts in the Jython installation directory:
 jython and jythonc , similar in purpose to python and pythonc . The jythonc script, though, is
intended to compile Python code into Java .class files. You need to have the jython script in your
path, or available so you can call it.

 On Windows, you will get DOS batch files jython.bat and jythonc.bat .

 Running Jython
 The jython script runs the Jython interpreter. The jythonc script runs the Jython compiler, which
compiles Jython code to Java .class files. In most cases, you ’ ll want to use the jython script to
run Jython.

 Running Jython Interactively
 Like Python with the python command, Jython supports an interactive mode. In this mode, you can
enter Jython expressions, as you ’ d expect. Jython expressions are for the most part the same as Python
expressions, except you can call upon the Java integration as well.

 To run the Jython interpreter, run the jython script (jython.bat on Windows).

 Try It Out Running the Jython Interpreter

 Run the interpreter and then enter in the following expressions:

 > > > 44 / 11
4
 > > > 324 / 101
3
 > > > 324.0 / 101.0
3.207920792079208
 > > > 324.0 / 101
3.207920792079208
 > > > import sys
 > > > sys.executable
‘C:\\jython2.5.0\\jython.bat’
 > > > sys.platform
‘java1.6.0_03’
 > > > sys.version_info
(2, 5, 0, ‘final’, 0)
 > > >

 How It Works
 As shown in this example, the Jython interpreter appears and acts like the Python interpreter. This is
just what you ’ d expect, because Jython is supposed to be an implementation of the Python language
on top of the Java platform.

c21.indd 484c21.indd 484 12/22/09 11:03:35 AM12/22/09 11:03:35 AM

Chapter 21: Integrating Java with Python

485

 Math operations should work mostly the same as with Python. (“ Mostly the same ” means that
some floating - point operations will create slightly different results.) Also note that this example is
using Jython 2.5.

 On the same platform, you can see the differences when you run the same expressions with the
 python command, the C - Python interpreter. For example:

 > > > 44 / 11
4
 > > > 324 / 101
3
 > > > 324.0 /101.0
3.2079207920792081
 > > > 324.0 / 101
3.2079207920792081
 > > > import sys
 > > > sys.executable
‘C:\\Python31\\pythonw.exe’
 > > > sys.platform
win32
 > > > sys.version_info
(3, 1, 0, ‘final’, 0)
 > > >

 Running Jython Scripts
 As with the python command, jython can also run your scripts, as shown in the following example.

 Try It Out Running a Python Script

 Enter the following simple script and name the file jysys.py :

import sys

print(‘Python sys.path:’)
print(sys.path)

print(‘Script arguments are:’)
print(sys.argv)

 When you run this script with jython , you should see output like the following:

Python sys.path:
[‘’, ‘ C:\\jython2.5.0\\LIB’,’__classpath__’, ‘__pyclasspath__/’,
‘C:\\jython2.5.0\\LIB\\site-packages’]
Script arguments are:
[‘’]

 The file paths will differ depending on where you installed Jython.

c21.indd 485c21.indd 485 12/22/09 11:03:36 AM12/22/09 11:03:36 AM

Part III: Putting Python to Work

486

 How It Works
 The sys.path property holds a very small number of directories, especially when compared to the
standard C - Python distribution. For example, you can run the same script with the python interpreter
as shown here :

Python sys.path:
[‘C:\\Python31\\Lib\\idlelib’, C:\\Windows\\system32\\python31.zip’,
‘C:\\Python31\\DLLs’, ‘C:\\Python31\\lib’, ‘C:\\Python31\\lib\\plat-win’,
‘C:\\Python31’, ‘C:\\Python31\\lib\\site-packages’]

 In this case, note the larger number of directories in the sys.path property.

 These examples were run on Windows Vista. The paths will differ on other operating systems.

 You ’ ll notice that the startup time for jython - run scripts is a lot longer than that for python - run scripts.
That ’ s because of the longer time required to start the java command and load the entire Java
environment.

 Controlling the jython Script
 The jython script itself merely acts as a simple wrapper over the java command. The jython script
sets up the Java classpath and the python.home property. You can also pass arguments to the jython
script to control how Jython runs, as well as arguments to your own scripts. The basic format of the
 jython command line follows:

jython jython_arguments what_to_run arguments_for_your_script

 The jython_arguments can be - S to not imply an import site when Jython starts and - i to run Jython in
interactive mode. You can also pass Java system properties, which will be passed in turn to your Jython
scripts. The format for this is - Dproperty=value , which is a standard Java format for passing property
settings on the command line.

 You ’ ll normally pass the name of a Jython script file as the what_to_run section of the command. The
 jython script offers more options, though, as shown in the following table.

 Option Specifies

 filename.py Runs the given Jython script file.

 - c command Runs the command string passed on the command line.

 - jar jarfile Runs the Jython script __run__.py in the given jar file.

 - Reads the commands to run from stdin. This allows you to pipe Jython
commands to the Jython interpreter.

c21.indd 486c21.indd 486 12/22/09 11:03:36 AM12/22/09 11:03:36 AM

Chapter 21: Integrating Java with Python

487

 You can choose any one of the methods listed in the table.

 In addition, the arguments_for_your_script are whatever arguments you want to pass to your script. These
will be set into sys.argv[1:] as you ’ d expect.

 Making Executable Commands
 Note that because jython is a script, you cannot use the traditional shebang comment line to run Jython
scripts. (On UNIX and Linux systems, that ’ s the line that starts with the hash, or sharp, symbol and then
has the exclamation point, or “ bang, ” so you get “ sh(arp) - bang. ” This tells the system that this command
is how the program you ’ re running should be invoked.) For example, with a Python script, you can add
the following line as the first line of your script:

#! /usr/bin/python

 If your script has this line as the first line, and if the script is marked with execute permissions, the
operating system can run your Python scripts as commands.

 Note that Windows is the lone exception. Windows uses a different means to associate files ending in
 .py with the Python interpreter.

 With Jython scripts, though, you cannot use this mechanism. That ’ s because many operating systems
require that the program that runs a script be a binary executable program, not a script itself. That is, you
have a script you wrote that you want run by the jython script.

 To get around this problem, use the env command. For example, change the shebang line to
the following:

#! /usr/bin/env jython

 For this line to work, the jython script must be in your path.

 Try It Out Making an Executable Script

 Insert the following lines into the previous jysys.py script. The new line is marked in bold.

#! /usr/bin/env jython

import sys

print(‘Python sys.path:’)
print(sys.path)

print(‘Script arguments are:’)
print(sys.argv)

 Save this new file under the name jysys , with no extension. Use the chmod command to add execute
permissions, as shown in the following example:

$ chmod a+x jysys

c21.indd 487c21.indd 487 12/22/09 11:03:36 AM12/22/09 11:03:36 AM

Part III: Putting Python to Work

488

 You can then run this new command:

$./jysys 1 2 3 4
Python sys.path:
[‘’, ‘ C:\\jython2.5.0\\LIB’,’__classpath__’, ‘__pyclasspath__/’,
‘C:\\jython2.5.0\\LIB\\site-packages’]
Script arguments are:
[‘./jysys’, ‘1’, ‘2’, ‘3’, ‘4’]

 How It Works
 The shebang comment works the same for Jython as it does for all other scripting languages. The only
quirk with Jython is that the jython command itself is a script that calls the java command.

 In the next section, you learn more about how the java command runs Jython scripts.

 Running Jython on Your Own
 You don ’ t have to use the jython script to execute Jython scripts. You can call the Jython interpreter just
like any other Java application.

 The jython script itself is fairly short. Most of the action occurs by calling the java command with a
large set of arguments, split up here for clarity:

java -Dpython.home=”C:\\jython2.5.0\” \
 -classpath C:\\jython2.5.0\\jython.jar:$CLASSPATH” \
 “org.python.util.jython” “$@”

 The paths will differ depending on where you installed Jython. The jython script, though, does nothing
more than run the class org.python.util.jython from the jar file jython.jar (which the script adds
to the Java classpath). The script also sets the python.home system property, necessary for Jython to find
support files.

 To run Jython on your own, you just need to ensure that jython.jar is in the classpath. Execute an
interpreter class, such as org.python.util.jython . In addition, you need to set the python.home
system property.

 You also need to ensure that Jython is properly installed on every system that will run your
Jython scripts.

 Packaging Jython - Based Applications
 Jython isn ’ t a standalone system. It requires a large number of Python scripts that form the Jython
library. Thus, you need to include the jython.jar file as well as the Jython library files. At a bare
minimum, you need the Lib and cachedir directories that come with the Jython distribution.

c21.indd 488c21.indd 488 12/22/09 11:03:37 AM12/22/09 11:03:37 AM

Chapter 21: Integrating Java with Python

489

 Jython needs to be able to write to the cachedir directory.

 Java applications, especially Java EE enterprise applications, usually don ’ t require a set of files stored in
a known location on the file system. If you include Jython, though, you ’ ll need to package the files, too.

 Up to now, you can see that Jython really is Python, albeit an older version of Python. The real
advantage of Jython lies in the capability to integrate Python with Java, offering you the best of
both worlds.

 Integrating Java and Jython
 The advantage of Jython comes into play when you integrate the Jython interpreter into your Java
applications. With this combination, you can get the best of both the scripting world and the rich set of
Java APIs. Jython enables you to instantiate objects from Java classes and treat these objects as Python
objects. You can even extend Java classes within Jython scripts.

 Jython actively tries to map Java data types to Python types and vice versa. This mapping isn ’ t always
complete because the feature is under active development. For the most part, however, you ’ ll find that
Jython does the right thing when converting to and from Python types.

 Using Java Classes in Jython
 In general, treat Java classes as Python classes in your scripts. Jython uses the Python syntax for
importing Java classes. Just think of Java packages as a combination of Python modules and classes. For
example, to import java.util.Map into a Jython script, use the following code:

from java.util import Map

 Note how this looks just like a Python import. You can try this out in your own scripts, as shown in the
following example.

 Try It Out Calling on Java Classes

 Enter the following script and name the file jystring.py :

import sys
from java.lang import StringBuffer, System

sb = StringBuffer(100) # Preallocate StringBuffer size for performance.

sb.append(‘The platform is: ‘)
sb.append(sys.platform) # Python property
sb.append(‘ time for an omelette.’)

sb.append(‘\n’) # Newline
sb.append(‘Home directory: ‘)
sb.append(System.getProperty(‘user.home’))

c21.indd 489c21.indd 489 12/22/09 11:03:37 AM12/22/09 11:03:37 AM

Part III: Putting Python to Work

490

sb.append(‘\n’) # Newline
sb.append(‘Some numbers: ‘)
sb.append(44.1)
sb.append(‘, ‘)
sb.append(42)
sb.append(‘ ‘)

Try appending a tuple.
tup=(‘Red’, ‘Green’, ‘Blue’, 255, 204, 127)
sb.append(tup)

print(sb.toString())

Treat java.util.Properties as Python dictionary.
props = System.getProperties()

print(‘User home directory:’, props[‘user.home’])

 When you run this script, you should see the following output:

$ jython jystring.py
The platform is: java1.6.0_03 time for an omelette.
Home directory: /Users/James
Some numbers: 44.1, 42 (‘Red’, ‘Green’, ‘Blue’, 255, 204, 127)
User home directory: /Users/James

 Note that your output will depend on where your home directory is located and which version of Java
you have installed.

 How It Works
 This script imports the Java StringBuffer class and then calls a specific constructor for the class:

from java.lang import StringBuffer

sb = StringBuffer(100)

 The Jython interpreter converts the value 100 from a Python number to a Java number.

 In Java programs, you do not need to import classes from the java.lang package. In Jython, import
every Java class you use.

 You can pass literal text strings as well as Python properties to the StringBuffer append method:

sb.append(‘The platform is: ‘)
sb.append(sys.platform) # Python property

c21.indd 490c21.indd 490 12/22/09 11:03:37 AM12/22/09 11:03:37 AM

Chapter 21: Integrating Java with Python

491

 This example shows that Jython will correctly convert Python properties into Java strings for use in a
Java object. You can also pass the data returned by a Java method:

sb.append(System.getProperty(‘user.home’))

 In this case, the System.getProperty method returns an object of the Java type Object . Again,
Jython properly handles this case, as Jython does with numbers:

sb.append(44.1)

sb.append(42)

 You can even append a Python tuple:

tup=(‘Red’, ‘Green’, ‘Blue’, 255, 204, 127)
sb.append(tup)

 The preceding example shows that Jython does the right thing when converting the tuple to a Java
text string.

 In addition to converting Python types to Java types, Jython works the other way as well. You can pass
a Java String object, returned by the toString method, to the Python print function:

print sb.toString()

 This shows how you can treat Java strings as Python strings. You can also treat Java hash maps and
hash tables as Python dictionaries, as shown in the following example:

props = System.getProperties()

print(‘User home directory:’, props[‘user.home’])

 The Java System.getProperties method returns an object of type java.util.Properties , which
Jython automatically converts into a Python dictionary.

 Data type conversions as shown by this example are just what you ’ d expect when you integrate Java
and Python. Jython does a lot of work under the covers, though. Java has a class hierarchy, as does
Python. A large part of Jython is an attempt to merge these two large hierarchies together. Ultimately,
you tend to get the best of both worlds.

 For example, Python has the ability to pass named properties to a constructor. This proves especially
useful when you work with APIs such as Swing for user interfaces. The Swing API has many, many
classes. Each class supports a large number of properties on objects. Working with Java alone, you can
call only the constructors that have been defined, and the parameters must be placed in a particular
order. With Python, though, you can pass named properties to the object ’ s constructor and set as many
properties as needed within one call.

 The following example shows this technique.

c21.indd 491c21.indd 491 12/22/09 11:03:38 AM12/22/09 11:03:38 AM

Part III: Putting Python to Work

492

 Try It Out Creating a User Interface from Jython

 Enter the following script and name the file jyswing.py :

from java.lang import System
from javax.swing import JFrame, JButton, JLabel
from java.awt import BorderLayout

Exit application
def exitApp(event):
 System.exit(0)

Use a tuple for size
frame = JFrame(size=(500,100))

Use a tuple for RGB color values.
frame.background = 127,255,127

button = JButton(label=’Push to Exit’, actionPerformed=exitApp)
label = JLabel(text=’A Pythonic Swing Application’,
 horizontalAlignment=JLabel.CENTER)

frame.contentPane.add(label, BorderLayout.CENTER)
frame.contentPane.add(button, BorderLayout.WEST)

frame.setVisible(1)

 When you run this script, you should see a window like the one shown in Figure 21 - 1.

Figure 21-1

 Click the button to exit the application.

 How It Works
 This script shows how you can use Jython with the complex Swing APIs. Although this example
is almost all calls to Java APIs, it is much shorter than the corresponding Java program would be.
That ’ s because of the handy built - in features that come with Python, such as support for tuples and
setting properties.

 The script starts by importing several classes in the AWT and Swing APIs. The JFrame class acts as a
top - level window in an application. You can create a JFrame widget with the following statements:

frame = JFrame(size=(500,100))

c21.indd 492c21.indd 492 12/22/09 11:03:38 AM12/22/09 11:03:38 AM

Chapter 21: Integrating Java with Python

493

 The size property on a JFrame widget is an instance of another Java class, java.awt.Dimension . In
this example, you can make a Dimension object from a tuple and then pass this object to set the size
property of the JFrame .

 This shows how Jython can make working with the Swing APIs palatable. Creating a user interface with
Swing usually involves a lot of tedious coding. Jython greatly reduces this effort.

 You can use the Python support for tuples and the Jython - provided integration with Java APIs to set
colors as well:

frame.background = 127,255,127

 This sets the background color to a light green.

 This example uses an 8 - bit color definition, with values of zero to 255 for each of the red, green, and
blue components of the color. Therefore, 255 means that the green value is set to all on, and the red
and blue values are set to half on.

 Jython makes it easy to create interactive widgets on the screen. For example, the following code
creates a JButton widget and sets the widget to call the function exitApp when the user clicks
the button:

def exitApp(event):
 System.exit(0)

button = JButton(label=’Push to Exit’, actionPerformed=exitApp)

 In this case, the exitApp function calls the Java method System.exit to exit the Java engine and
therefore quit the application. Jython enables you to set Java properties to Python functions, such as
 exitApp in this example. In Java, you would need to make a class that implements the methods in the
 java.awt.event.ActionListener interface and then pass in an instance of this class as the action
listener for the JButton . The Jython approach makes this much easier.

 The example also creates a JLabel widget, which displays a text message, an image, or both. The
 jyswing.py script sets the horizontal alignment so that the text displays in the center of the
widget ’ s bounds:

label = JLabel(text=’A Pythonic Swing Application’,
 horizontalAlignment=JLabel.CENTER)

 In this example, the value JLabel.CENTER is a constant on the JLabel class.

 In Java terms, JLabel.CENTER is a public static final value on the class.

 Once created, you need to place the widgets within a container. In the example script, you need to place
the JButton and JLabel widgets in the enclosing JFrame widget, as shown by the following code:

frame.contentPane.add(label, BorderLayout.CENTER)
frame.contentPane.add(button, BorderLayout.WEST)

 In Swing applications, you add widgets to the content pane of the JFrame , not directly to the
JFrame itself.

c21.indd 493c21.indd 493 12/22/09 11:03:38 AM12/22/09 11:03:38 AM

Part III: Putting Python to Work

494

 Finally, the script makes the JFrame widget visible:

frame.setVisible(1)

 Note that the Java setVisible method expects a Java Boolean value, but using the Python True would
be flagged as a syntax error because the Java boolean objects aren ’ t 0 and 1, as they are in Python;
they ’ re a class that gets used sometimes, whereas 0 and 1 get used at other times in Java. This is one area
where Python data types and constants are not yet mapped to their Java equivalents.

 Accessing Databases from Jython
 JDBC, or Java Database Connectivity, provides a set of APIs to access databases in a consistent manner.
Most, but not all, differences between databases can be ignored when working with JDBC.

 Python has a set of database APIs as well, as described in Chapter 14. A large difference between
the Python APIs and the Java APIs is that the Java JDBC drivers are almost all written entirely in Java.
Furthermore, almost all JDBC drivers are written by the database vendors. Most Python DB drivers, such
as the ones for Oracle, are written in C with a Python layer on top. Most are written by third parties, and
not by the database vendors. The Java JDBC drivers, then, can be used on any platform that supports
Java. The Python DB drivers, though, must be recompiled on each platform and may not work on all
systems that support Python.

 With Jython, the zxJDBC package provides a Python DB - compliant driver that works with any JDBC
driver. That is, zxJDBC bridges between the Python and Java database APIs, enabling your Jython scripts
to take advantage of the many available JDBC drivers and to use the simpler Python DB APIs.

 When working with JDBC drivers, you need the value of four properties to describe the connection to
the database, shown in the following table.

 Property Holds

 JDBC URL Description of the connection to the database in a format defined by the driver.

 User name Name of a user who has access rights to the database.

 Password Password of the user. This is the password to the database, not to an operating
system.

 Driver Name of the Java class that provides the JDBC driver.

 You need to gather these four values for any database connection you need to set up using JDBC. The
 zxJDBC module requires these same values. To connect to a database using the zxJDBC driver, you can
use code like the following:

from com.ziclix.python.sql import zxJDBC

url=’jdbc:hsqldb:hsql://localhost/xdb’
user=’sa’
pw=’’

c21.indd 494c21.indd 494 12/22/09 11:03:39 AM12/22/09 11:03:39 AM

Chapter 21: Integrating Java with Python

495

driver=’org.hsqldb.jdbcDriver’

db = zxJDBC.connect(url, user, pw, driver)

 The values shown here for the JDBC connection come from the default values for the HSqlDB database,
covered in the section “ Setting Up a Database, ” later in the chapter.

 Working with the Python DB API
 Once you have a connection, you can use the same techniques shown in Chapter 14. The zxJDBC module
provides a DB 2.0 API - compliant driver. (Well, mostly compliant.) For example, you can create a
database table using the following code:

cursor = db.cursor()

cursor.execute(“””
create table user
 (userid integer,
 username varchar,
 firstname varchar,
 lastname varchar,
 phone varchar)
“””)

cursor.execute(“””create index userid on user (userid)”””)

 After creating a table, you can insert rows using code like the following:

cursor.execute(“””
insert into user (userid,username,firstname,lastname,phone)
values (4,’scientist’,’Hopeton’,’Brown’,’555-5552’)
“””)

 Be sure to commit any modifications to the database:

db.commit()

 You can query data using code like the following:

cursor.execute(“select * from user”)
for row in cursor.fetchall():
 print(row)

cursor.close()

 See Chapter 14 for more on the Python DB APIs.

c21.indd 495c21.indd 495 12/22/09 11:03:39 AM12/22/09 11:03:39 AM

Part III: Putting Python to Work

496

 Setting Up a Database
 If you already have a database that includes a JDBC driver, you can use that database. For example,
Oracle, SQL Server, Informix, and DB2 all provide JDBC drivers for the respective databases.

 If you have a database set up, try to use it. If you have no database, a handy choice is HSqlDB . HSqlDB
provides a small, fast database. A primary advantage of HSqlDB is that because it is written in Java, you
can run it on any platform that runs Java.

 See https://sourceforge.net/projects/hsqldb/files/hsqldb/hsqldb_1_8_1/ for
more on the HSqlDB database. You can download this open - source free package from this site.

 You ’ ll find installing HSqlDB quite simple. Just unzip the file you download and then change to the new
 hsqldb directory. To run the database in server mode, with the default parameters, use a command like
the following:

$ java -cp ./lib/hsqldb.jar org.hsqldb.Server -database.0 mydb -dbname.0 xdb
[Server@922804]: [Thread[main,5,main]]: checkRunning(false) entered
[Server@922804]: [Thread[main,5,main]]: checkRunning(false) exited
[Server@922804]: Startup sequence initiated from main() method
[Server@922804]: Loaded properties from
[/Users/James/writing/python/chap22/server.properties]
[Server@922804]: Initiating startup sequence...
[Server@922804]: Server socket opened successfully in 160 ms.
[Server@922804]: Database [index=0, id=0, db=file:mydb, alias=xdb]
opened successfully in 1168 ms.
[Server@922804]: Startup sequence completed in 1444 ms.
[Server@922804]: 2009-08-22 20:09:33.417 HSQLDB server 1.8.1 is online
[Server@922804]: To close normally, connect and execute SHUTDOWN SQL
[Server@922804]: From command line, use [Ctrl]+[C] to abort abruptly

 You can stop this database by typing Ctrl � C in the shell window where you started HSqlDB . You now
have a database that you can connect to using the default properties shown in the following table.

 Property Value

 JDBC URL driver.jdbc:hsqldb:hsql://localhost/xdb

 User name sa

 Password ‘’ (two single quotes, an empty string)

 Driver org.hsqldb.jdbcDriver

c21.indd 496c21.indd 496 12/22/09 11:03:39 AM12/22/09 11:03:39 AM

Chapter 21: Integrating Java with Python

497

 Working with JDBC drivers requires that you add the JDBC jar or jars to the Java classpath. The jython
script doesn ’ t handle this case, so you need to modify the script. For example, to use the HSqlDB
database, modify the script to add the hsqldb.jar file:

#!/bin/sh
##
This file generated by Jython installer

java -Dpython.home=” C:\\jython2.5.0” \
 -classpath \
 “C:\\jython2.5.0jython.jar:$CLASSPATH: ./hsqldb.jar ” \
 “org.python.util.jython” “$@”

 The bold text shows the additional jar file. This example assumes that the file hsqldb.jar will be
located in the current directory. That may not be true. You may need to enter the full path to this jar file.

 To pull all this together, try the following example, built using the HSqlDB database.

 Try It Out Create Tables

 Enter the following script and name the file jyjdbc.py :

from com.ziclix.python.sql import zxJDBC

Modify as needed for your database.
url=’jdbc:hsqldb:hsql://localhost/xdb’
user=’sa’
pw=’’
driver=’org.hsqldb.jdbcDriver’

db = zxJDBC.connect(url, user, pw, driver)

cursor = db.cursor()

cursor.execute(“””
create table user
 (userid integer,
 username varchar,
 firstname varchar,
 lastname varchar,
 phone varchar)
“””)

cursor.execute(“””create index userid on user (userid)”””)

c21.indd 497c21.indd 497 12/22/09 11:03:40 AM12/22/09 11:03:40 AM

Part III: Putting Python to Work

498

cursor.execute(“””
insert into user (userid,username,firstname,lastname,phone)
values (1,’ericfj’,’Eric’,’Foster-Johnson’,’555-5555’)
“””)

cursor.execute(“””
insert into user (userid,username,firstname,lastname,phone)
values (2,’tosh’,’Peter’,’Tosh’,’555-5554’)
“””)

cursor.execute(“””
insert into user (userid,username,firstname,lastname,phone)
values (3,’bob’,’Bob’,’Marley’,’555-5553’)
“””)

cursor.execute(“””
insert into user (userid,username,firstname,lastname,phone)
values (4,’scientist’,’Hopeton’,’Brown’,’555-5552’)
“””)

db.commit()

cursor.execute(“select * from user”)
for row in cursor.fetchall():
 print(row)

cursor.close()
db.close()

 When you run this script, you will see output like the following:

$ jython jyjdbc.py
(1, ‘ericfj’, ‘Eric’, ‘Foster-Johnson’, ‘555-5555’)
(2, ‘tosh’, ‘Peter’, ‘Tosh’, ‘555-5554’)
(3, ‘bob’, ‘Bob’, ‘Marley’, ‘555-5553’)
(4, ‘scientist’, ‘Hopeton’, ‘Brown’, ‘555-5552’)

 How It Works
 This script is almost the same as the createtable.py script from Chapter 14. This shows the freedom
the Python DB API gives you, because you are not tied to any one database vendor. Other than the
code to establish the connection to the database, you ’ ll find your database code can work with
multiple databases.

 To establish a connection to HSqlDB , you can use code like the following:

from com.ziclix.python.sql import zxJDBC

Modify as needed for your database.
url=’jdbc:hsqldb:hsql://localhost/xdb’
user=’sa’

c21.indd 498c21.indd 498 12/22/09 11:03:40 AM12/22/09 11:03:40 AM

Chapter 21: Integrating Java with Python

499

pw=’’
driver=’org.hsqldb.jdbcDriver’

db = zxJDBC.connect(url, user, pw, driver)

 This code uses the default connection properties for HSqlDB for simplicity. In a real - world scenario, you
never want to use the default user name and password. Always change the database administrator user
and password. Furthermore, HSqlDB defaults to having no password for the administration user, sa
(short for system administrator). This, of course, provides a large hole in security.

 The following code, taken from Chapter 14, creates a new database table:

cursor = db.cursor()

cursor.execute(“””
create table user
 (userid integer,
 username varchar,
 firstname varchar,
 lastname varchar,
 phone varchar)
“””)

cursor.execute(“””create index userid on user (userid)”””)

 Though SQL does not standardize the commands necessary to create databases and database tables,
this table sports a rather simple layout, so you should be able to use these commands with most
SQL databases.

 The code to insert rows also comes from Chapter 14, as does the query code. In this, it is Python, with the
DB 2.0 API, that provides this commonality. The Jython zxJDBC module follows this API. For example,
the code to query all the rows from the user table follows:

cursor = db.cursor()

cursor.execute(“select * from user”)
for row in cursor.fetchall():
 print(row)

cursor.close()

 The zxJDBC module, though, extends the Python DB API with the concept of static and dynamic cursors.
(This ties to the concepts in the java.sql.ResultSet API.) In the Python standard API, you should be
able to access the rowcount attribute of the Cursor object. In Java, a ResultSet may not know the full
row count for a given query, which may have returned potentially millions of rows. Instead, the JDBC
standard allows the ResultSet to fetch data as needed, buffering in the manner determined by the
database vendor or JDBC driver vendor. Most Java code that reads database data will then iterate over
each row provided by the ResultSet .

c21.indd 499c21.indd 499 12/22/09 11:03:40 AM12/22/09 11:03:40 AM

Part III: Putting Python to Work

500

 To support the Python standard, the zxJDBC module needs to read in all the rows to properly determine
the rowcount value. This could use a huge amount of memory for the results of a query on a large table.
This is what the zxJDBC documentation calls a static database cursor.

 To avoid the problem of using too much memory, you have the option of getting a dynamic cursor. A
 dynamic cursor does not set the rowcount value. Instead, a dynamic cursor fetches data as needed. If you
request a dynamic cursor, you cannot access the rowcount value, but, you can iterate through the cursor
to process all the rows returned by the query. To request a dynamic cursor, pass a 1 to the cursor method:

cursor = db.cursor(1)

 Dynamic cursors are not part of the Python DB API, so code using this technique will not work with any
DB driver except for the Jython zxJDBC driver.

 Database access is essential if you are writing enterprise applications. You also need it to be able to create
robust web applications.

 Writing Java EE Servlets in Jython
 Most Java development revolves around enterprise applications. To help (or hinder, depending on your
view), Java defines a set of standards called Java EE, or Java Platform Enterprise Edition. The Java EE
standards define an application server and the APIs such a server must support. Organizations can then
choose application servers from different vendors, such as WebSphere from IBM, WebLogic from Bea,
JBoss from the JBoss Group, and Tomcat from the Apache Jakarta project. Java developers write
enterprise applications that are hosted on one of these application servers.

 A servlet is defined as a small server - based application. The term servlet is a play on applet, which
describes a small application. Because in the Java arena applets always run on the client, the server
equivalent needed a new name, hence servlet. Each servlet provides a small piece of the overall
application, although the term small may be defined differently than you are used to, because most
enterprise applications are huge .

 Within a Java EE application server, servlets are passive request - response applications. The client,
typically a web browser such as Internet Explorer or Firefox, sends a request to the application server.
The application server passes the request to a servlet. The servlet then generates the response, usually an
HTML document that the server sends back to the client. In virtually all cases, the HTML document sent
back to the client is created dynamically. For example, in a web ordering system, the HTML document
sent back may be the results of a search or the current prices for a set of products.

 The benefit of writing servlets is that Java EE provides a well - defined API for writing your servlets, and
multiple vendors support this API. Contrast this situation with the Python situation where you can
choose from many Python Web APIs, but you won ’ t find anywhere near the vendor support you find in
the Java EE arena.

 With Jython, you can write Java servlets in Python, simplifying your work immensely. To do so, though,
you need an application server that supports servlets.

c21.indd 500c21.indd 500 12/22/09 11:03:40 AM12/22/09 11:03:40 AM

Chapter 21: Integrating Java with Python

501

 Setting Up an Application Server
 If you already have a Java EE application server, use that. If not, try Tomcat. Tomcat, from the Apache
Jakarta project, provides a free open - source servlet engine (called a servlet container in Java EE - speak).

 Download Tomcat from http://jakarta.apache.org/tomcat/ . To install, unzip the file you
downloaded in a directory. You should see a Tomcat directory based on the version you downloaded,
such as jakarta - tomcat - 6.0.20 . Change to this directory. In this directory, you will see a number
of files and subdirectories. The two most important subdirectories are bin , which contains scripts for
starting and stopping Tomcat, and webapps , which is where you need to place any Jython scripts you
create (in a special subdirectory covered in the next section).

 To run Tomcat, change to the bin subdirectory and run the startup.sh script (startup.bat on
Windows). For example:

$./startup.sh
Using CATALINA_BASE: /Users/jamesp/servers/jakarta-tomcat-5.0.28
Using CATALINA_HOME: /Users/jamesp/servers/jakarta-tomcat-5.0.28
Using CATALINA_TMPDIR: /Users/jamesp/servers/jakarta-tomcat-5.0.28/temp
Using JAVA_HOME: /Library/Java/Home

 You must ensure that the JAVA_HOME environment variable is set, or Tomcat will not start. To verify
Tomcat is running, enter the following URL into a web browser: http://localhost:8080/ . You should
see a document like the one shown in Figure 21 - 2.

Figure 21-2

 Once you have an application server such as Tomcat running, the next step is to deploy an application —
 in this case, a special Python servlet called PyServlet .

 Adding the PyServlet to an Application Server
 Jython includes a class called org.python.util.PyServlet that acts as a front end for Python scripts.
The PyServlet class will load Python scripts, compile these scripts, and then execute the scripts as if
they were Java servlets (which, in fact, they are, as shown in the following section “ Extending
HttpServlet ”).

c21.indd 501c21.indd 501 12/22/09 11:03:41 AM12/22/09 11:03:41 AM

Part III: Putting Python to Work

502

 To make all this magic work, though, you need to create a bona fide Java EE web application. Luckily,
this isn ’ t that hard. Change to the directory in which you installed Tomcat and run the following
commands, which create directories:

$ cd webapps
$ mkdir jython

 This command creates a directory under webapps with the name of jython . This means the name of
your web application will be jython :

$ mkdir webapps/jython/WEB-INF

 This command creates a WEB - INF directory. The name and case of this directory are very important.
In Java EE, the WEB - INF directory contains the libraries and deployment information about your
web application:

$ mkdir webapps/jython/WEB-INF/lib

 The lib subdirectory holds any jar files needed by your web application. You need one jar file, jython.
jar , from the Jython installation. Copy this file into the webapps/jython/WEB - INF/lib directory that
you just created.

 Next, you need to modify a file named web.xml in the tomcat 6.0/conf directory. Enter the following
text into web.xml :

<web-app>
 <servlet>
 <servlet-name>PyServlet</servlet-name>
 <servlet-class>
 org.python.util.PyServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 <init-param>
 <param-name>python.home</param-name>
 <param-value>c:\jython-2.5</param-value>
 </init-param>
 <init-param>
 <param-name>python.path</param-name>
 <param-value>
 c:\jython-2.5\lib\site-packages
 </param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>PyServlet</servlet-name>
 <url-pattern>*.py</url-pattern>
 </servlet-mapping>
</web-app>

 Change the path in bold to the full path to the directory in which you installed Jython.

 Next, you need to create some Python scripts within the new web application.

c21.indd 502c21.indd 502 12/22/09 11:03:42 AM12/22/09 11:03:42 AM

Chapter 21: Integrating Java with Python

503

 This chapter presents a whirlwind introduction to Java EE, a frightfully complicated subject. If
you ’ re not familiar with Java EE, you can look up more information in a Java EE tutorial, or visit
 http://java.sun.com/javaee/ .

 Extending HttpServlet
 The javax.servlet.http.HttpServlet class provides the main hook for Java EE developers to create
servlets. Java EE developers extend HttpServlet with their own classes to create servlets. With the
 PyServlet class, you can do the same with Jython. With Jython, however, this task becomes a lot easier
than writing everything in Java.

 Use the following code as a template for creating your servlet classes in Jython:

from javax.servlet.http import HttpServlet

class verify(HttpServlet):
 def doGet(self, request, response):
 self.handleRequest(request, response)

 def doPost(self, request, response):
 self.handleRequest(request, response)

 def handleRequest(self, request, response):
 response.setContentType(‘text/html’);
 out = response.getOutputStream()
 print > > out, “YOUR OUTPUT HERE”
 out.close()
 return

 Your classes must inherit from HttpServlet . In addition, you need to create two methods, doGet and
 doPost , as described in the following table.

 Method Usage

 DoGet Handles GET requests, which place all the parameters on the URL

 DoPost Handles POST requests, usually with data from a form

 In virtually all cases, you want both methods to perform the same task. Any differences in these methods
only serve to make your web applications harder to debug. Therefore, write another method that both
can call, such as the handleRequest method shown in the previous template.

 In your handleRequest method, you must perform a number of tasks. All must be correct, or you will
see an error or no output. These tasks include the following:

 Set the proper content type on the response object. In most cases, this will be text/html.

 Get an output stream from the response object.

❑

❑

c21.indd 503c21.indd 503 12/22/09 11:03:42 AM12/22/09 11:03:42 AM

Part III: Putting Python to Work

504

 Write all output to this stream.

 Close the stream.

 The following example shows how to create a real servlet from this code template.

 Try It Out Writing a Python Servlet

 Enter the following and save the file as webapps/jython/verify.py :

import sys
from javax.servlet.http import HttpServlet

class verify(HttpServlet):
 def doGet(self, request, response):
 self.handleRequest(request, response)

 def doPost(self, request, response):
 self.handleRequest(request, response)

 def handleRequest(self, request, response):
 response.setContentType(“text/html”);

 out = response.getOutputStream()
 print > > out, “ < html > < head > < title > ”
 print > > out, “Jython Is Running < /title > < /head > ”
 print > > out, “ < body > ”
 print > > out, “ < h2 > Jython is running < /h2 > ”
 print > > out, “ < p > ”
 print > > out, “Version:”, sys.version, “ verified.”
 print > > out, “ < /p > ”
 print > > out, “ < /body > < /html > ”
 out.close()
 return

 You must place this file within your web application in the webapps/jython directory. After saving
the file, stop and then restart Tomcat to ensure that your changes are recognized.

 Test your new servlet by entering the following URL in your web browser: http://
localhost:8080/jython/verify.py . Figure 21 - 3 shows the results you should see.

❑

❑

Figure 21-3

c21.indd 504c21.indd 504 12/22/09 11:03:42 AM12/22/09 11:03:42 AM

Chapter 21: Integrating Java with Python

505

 How It Works
 Three crucial parts make this servlet work:

❑ Tomcat must be running.

❑ You must have the correct directory structure and contents for your web application.

❑ The URL must name a Python script in your web application. The script must have a .py file name
extension.

 In the web.xml file modified previously, you registered the servlet PyServlet for all files ending with
a .py extension. Thus, with a URL of http://localhost:8080/jython/verify.py , Tomcat will
direct the servlet PyServlet to handle the request. The following table splits this URL into its
important components.

 Component Usage

 http:// Defines the protocol used, HTTP in this case.

 jython This is the name of your web application (it could be any name you
wanted). With Tomcat, there must be a webapps/jython directory.

 verify.py Name of a file within the web application. The . py extension signals
that the PyServlet should handle the request.

 The actual servlet class itself is rather small and follows the code template shown previously. The
main action of this servlet occurs in the handleRequest method:

 def handleRequest(self, request, response):
 response.setContentType(“text/html”);

 out = response.getOutputStream()
 print > > out, “ < html > < head > < title > “
 print > > out, “Jython Is Running < /title > < /head > ”
 print > > out, “ < body > ”
 print > > out, “ < h2 > Jython is running < /h2 > ”
 print > > out, “ < p > ”
 print > > out, “Version:”, sys.version, “ verified.”
 print > > out, “ < /p > ”
 print > > out, “ < /body > < /html > ”
 out.close()
 return

 Most of this method is a number of print statements, sending HTML - formatted text to the output
stream. Compare this method for creating web applications with the technologies introduced in
Chapter 20.

 As you can see, you really need to know both Python and Java, at least a bit, to be able to work with
Jython. That ’ s why choosing the right tools is important.

c21.indd 505c21.indd 505 12/22/09 11:03:43 AM12/22/09 11:03:43 AM

Part III: Putting Python to Work

506

 Choosing Tools for Jython
 Because Jython focuses on working with Java as well as Python, the best choice for Jython tools comes
from the Java arena. The following tools can help with your Jython work:

 The jEdit text editor (www.jedit.org/) includes a number of plugins for working with Python.
The editor highlights Python syntax, whether you are working with Python or Jython. In
addition, the JythonInterpreter plugin includes an embedded Jython interpreter. See http://
plugins.jedit.org/ for more on jEdit plugins.

 The Eclipse Integrated Development Environment, or IDE, provides excellent support for Java
development. In addition, one Eclipse plugins stand out for Jython usage: PyDev, for working
with Python, at http://sourceforge.net/projects/pydev/ ; download Eclipse itself from
 www.eclipse.org .

 Whichever tools you choose, all you really need is a text editor and a command - line shell. Furthermore,
the tools you choose can help with testing, especially testing Java applications.

 Testing from Jython
 Because Jython provides an interactive environment on top of the Java platform, Jython makes an
excellent tool for interactive testing. The following examples show how you can use Jython ’ s interactive
mode to explore your Java environment.

 Try It Out Exploring Your Environment with Jython

 Enter the following commands to see information on the Java Map interface:

$ jython
Jython 2.1 on java1.4.2_05 (JIT: null)
Type “copyright”, “credits” or “license” for more information.
 > > > from java.util import Map
 > > > print(dir(Map))
[‘__Entry__’,’__class__’,’__contains__’,’__delattr__’,’__delitem__’,’__doc__’,
‘__eq__’,’__getattribute__’,’__getitem__’,’__hash__’,’__init__’,’__iter__’,
‘__len__’,’__ne__’,’__new__’,’__reduce__’,’__reduce_ex__’,’__repr__’,
‘__setattr__’,’__setitem__’,’__str__’,’class’,’clear’,’containsKey’,
‘containsValue’,’empty’,’entrySet’,’equals’,’get’,’getClass’,’hashCode’,
‘isEmpty’,’keySet’,’notify’,’notifyAll’,’put’,’putAll’,’remove’,’size’,
‘toString’,’values’,’wait’]
 > > >

 How It Works
 This example uses the Python dir function to display information about the java.util.Map interface
in Java. You can list information on any Java class or interface.

❑

❑

c21.indd 506c21.indd 506 12/22/09 11:03:43 AM12/22/09 11:03:43 AM

Chapter 21: Integrating Java with Python

507

As another example, you can examine the JNDI, or Java Naming and Directory Interface, classes such
as InitialContext , as shown here:

$ jython
Jython 2.1 on java1.4.2_05 (JIT: null)
Type “copyright”, “credits” or “license” for more information.
 > > > from javax.naming import InitialContext
 > > > print(dir(InitialContext))
[‘APPLET’, ‘AUTHORITATIVE’, ‘BATCHSIZE’, ‘DNS_URL’, ‘INITIAL_CONTEXT_
FACTORY’, ‘
LANGUAGE’, ‘OBJECT_FACTORIES’, ‘PROVIDER_URL’, ‘REFERRAL’, ‘SECURITY_
AUTHENTICAT
ION’, ‘SECURITY_CREDENTIALS’, ‘SECURITY_PRINCIPAL’, ‘SECURITY_PROTOCOL’,
‘STATE_
FACTORIES’, ‘URL_PKG_PREFIXES’, ‘__class__’, ‘__delattr__’, ‘__doc__’, ‘__eq__’,
 ‘__getattribute__’, ‘__hash__’, ‘__init__’, ‘__ne__’, ‘__new__’, ‘__reduce__’,
‘__reduce_ex__’, ‘__repr__’, ‘__setattr__’, ‘__str__’, ‘addToEnvironment’, ‘bind
‘, ‘class’, ‘close’, ‘composeName’, ‘createSubcontext’, ‘destroySubcontext’, ‘do
Lookup’, ‘environment’, ‘equals’, ‘getClass’, ‘getEnvironment’, ‘getNameInNamesp
ace’, ‘getNameParser’, ‘hashCode’, ‘list’, ‘listBindings’, ‘lookup’, ‘lookupLink
‘, ‘nameInNamespace’, ‘notify’, ‘notifyAll’, ‘rebind’, ‘removeFromEnvironment’,
‘rename’, ‘toString’, ‘unbind’, ‘wait’]
 > > >

 Combine this technique with an embedded Jython interpreter to examine a running application. See the
following section, “ Embedding the Jython Interpreter, ” for more information on embedding the Jython
interpreter.

 In addition to using Jython ’ s interactive mode, you can also write tests in Jython.

 Many organizations shy away from open - source software such as Jython. You may find it much easier to
introduce Jython just for writing tests, something that will not go into production. Once your organiza-
tion gains some experience with Jython, people may be more receptive to using Jython in more areas.

 The examples so far have all used the jython script to run Jython scripts, except for the PyServlet
servlet example. With the PyServlet class, you have a Java class with the Jython interpreter. You can
add the Jython interpreter to your own classes as well.

 Embedding the Jython Interpreter
 By embedding the Jython interpreter in your own Java classes, you can run scripts from within
your application, gaining control over the complete environment. That ’ s important because few Java
applications run from the command line.

c21.indd 507c21.indd 507 12/22/09 11:03:43 AM12/22/09 11:03:43 AM

Part III: Putting Python to Work

508

 You can find the Jython interpreter in the class org.python.util.PythonInterpreter .

 You can use code like the following to initialize the Jython interpreter:

Properties props = new Properties();

props.put(“python.home”, pythonHome);

PythonInterpreter.initialize(
 System.getProperties(),
 props,
 new String[0]);

interp = new PythonInterpreter(null, new PySystemState());

 Note that this is Java code, not Python code.

 You must set the python.home system property.

 Calling Jython Scripts from Java
 After initializing the interpreter, you can execute a Jython script with a call to the execfile method.
For example:

interp.execfile(fileName);

 You need to pass the full name of the file to execute. You can see this in action with the
following example.

 Try It Out Embedding Jython

 Enter the following Java program and name the file JyScriptRunner.java :

package jython;

import java.util.Properties;

import org.python.util.PythonInterpreter;
import org.python.core.PySystemState;

/ * *
 * Runs Jython scripts.
 * /
public class JyScriptRunner {

 private PythonInterpreter interp;

c21.indd 508c21.indd 508 12/22/09 11:03:44 AM12/22/09 11:03:44 AM

Chapter 21: Integrating Java with Python

509

 / * *
 * Initializes the Jython interpreter.
 * /
 public void initialize(String pythonHome) {
 Properties props = new Properties();

 props.put(“python.home”, pythonHome);

 PythonInterpreter.initialize(
 System.getProperties(),
 props,
 new String[0]);

 interp = new PythonInterpreter(null, new PySystemState());

 }

 / * *
 * Runs the given script.
 * /
 public void run(String fileName) {
 interp.execfile(fileName);
 }

 public static void main(String[] args) {
 String fileName = args[0];

 JyScriptRunner runner = new JyScriptRunner();

 String pythonHome = System.getProperty(“python.home”);

 runner.initialize(pythonHome);

 runner.run(fileName);
 }
}

 Because this is a Java program, you will need to compile the program with a command like the
following:

$ javac -classpath ./jython.jar JyScriptRunner.java

 When you run this Java program, you will see output like the following:

$ java -cp ./jython.jar:. \
 -Dpython.home=”c:/jython2.5” \
 jython.JyScriptRunner jystring.py
The platform is: java1.6.0_03 time for an omelette.
Home directory: c:/jython2.5
Some numbers: 44.1, 42 (‘Red’, ‘Green’, ‘Blue’, 255, 204, 127)
User home directory: /Users/jamesp

c21.indd 509c21.indd 509 12/22/09 11:03:44 AM12/22/09 11:03:44 AM

Part III: Putting Python to Work

510

 This example runs the jystring.py example script. You will need to change the - Dpython.home
setting to the location where you have installed Jython. Also change the ./jython.jar to the location
where you have the file jython.jar .

 How It Works
 The program expects the caller to pass two values: the setting for the python.home system property
and the name of a script to execute. You must have the jython.jar located in the current directory
(or change the command line to refer to the location of your jython.jar file).

 The JyScriptRunner class includes a main method, called when you run the program. The main
method extracts the system property python.home as well as the file name from the command line
(held in the args array). The main method then instantiates a JyScriptRunner object.

 The main method initializes the JyScriptRunner object and then calls the run method to execute the
script. Any errors encountered in the Jython script will result in exceptions that stop the program.

This is probably about the simplest Jython interpreter you can create. In your applications, you ’ ll
likely want to control the location of the Python home directory, perhaps placing this under an
application directory.

 Handling Differences between
C - Python and Jython

 The C - Python platform creates a complete environment based on Python standards and conventions.
Jython, on the other hand, tries to create a complete Python environment based on the Java platform.
Because of this, there are bound to be differences between the two implementations. These differences
are compounded when you mix Java code into your Jython scripts.

 The Jython interpreter will attempt to convert Python types into the necessary Java types to call methods
on Java classes. Wherever possible, the Jython interpreter tries to do the right thing, so in most cases you
don ’ t have to pay much attention to these type conversions. If you are unsure which Python types are
needed to call a particular Java method, look at the types listed in the following table.

 Python Type Java Type

 None Null

 Integer (any non - zero value is true) Boolean

 Integer short, int, long, byte

 String byte[], char[], java.lang.String

 String of length 1 Char

 Float float, double

c21.indd 510c21.indd 510 12/22/09 11:03:44 AM12/22/09 11:03:44 AM

Chapter 21: Integrating Java with Python

511

 Python Type Java Type

 String java.lang.Object, converted to java.lang.String

 Any java.lang.Object

 Class or JavaClass java.lang.Class

 Array (must contain objects of a given type
or subclasses of the given type)

 Array of a particular type

 For example, if a Java method expects a type of java.lang.Object and you pass a Python String ,
Jython will convert the Python String to a java.langString object. Jython will pass any other Python
object type unchanged.

 You can do many more things with Jython beyond the introduction provided in this chapter. For
example, you can create classes in Jython and then call those classes from Java. (Look in the source code
for the PyServlet class to see an example of this.)

 Summary
 Jython provides the capability to combine the scripting power of Python with the enterprise
infrastructure of Java. Using Jython can make you a much more productive Java developer, especially in
organizations where Python is not accepted but Java is.

 Jython allows you to do the following:

 Run Python scripts from the Java platform. Because these scripts differ from Python, they are
usually called Jython scripts.

 Call on Java code and classes from within your scripts. This enables you to take advantage of the
rich set of Java libraries from Jython scripts.

 Create user interfaces with the Java Swing API. Jython scripts can use Python ’ s tuple and
property support to dramatically reduce the code required to create Swing - based user interfaces.

 Access any database that provides a JDBC driver. The zxJDBC driver bridges from the Python
DB API to the Java JDBC API.

 Run Jython scripts as Java servlets by using the handy PyServlet class from your Java EE web
applications.

 Interactively gather information on Java classes and execute methods on those classes. This is
very useful for testing.

 Embed the Jython interpreter in your own Java classes, enabling you to execute Jython scripts
and expressions from your Java code.

 This chapter wraps up this tutorial on Python. The appendixes provide answers to the chapter exercises
and links to Python resources.

❑

❑

❑

❑

❑

❑

❑

c21.indd 511c21.indd 511 12/22/09 11:03:45 AM12/22/09 11:03:45 AM

Part III: Putting Python to Work

512

 Exercises
 1. If Python is so cool, why in the world would anyone ever use another programming language

such as Java, C � � , C#, Basic, or Perl?

 2. The Jython interpreter is written in what programming language? The python command is
written in what programming language?

 3. When you package a Jython - based application for running on another system, what do you
need to include?

 4. Can you use the Python DB driver modules, such as those described in Chapter 14, in your
Jython scripts?

 5. Write a Jython script that creates a window with a red background using the Swing API.

c21.indd 512c21.indd 512 12/22/09 11:03:45 AM12/22/09 11:03:45 AM

Part IV

Appendices

 Appendix A: Answers to the Exercises

Appendix B: Online Resources

Appendix C: What’s New in Python 3.1

Appendix D: Glossary

bapp01.indd 513bapp01.indd 513 12/22/09 10:35:06 AM12/22/09 10:35:06 AM

bapp01.indd 514bapp01.indd 514 12/22/09 10:35:07 AM12/22/09 10:35:07 AM

 A
Answers to the Exercises

 Chapter 1
 1. In the Python shell, type the string, “ Rock a by baby,\n\ton the tree top,\t\

when the wind blows\n\t\t\t the cradle will drop. ” Feel free to experiment
with the number of \n and \t escape sequences to see how this affects what gets
displayed on your screen. You can even try changing their placement. What do you think
you are likely to see?

 2. In the Python shell, use the same string indicated in Exercise 1, but this time, display it
using the print() function. Once more, try differing the number of \n and \t escape
sequences. How do you think it will differ?

 Exercise 1 Solution
‘Rock a by baby,\n\ton the tree top,\t\twhen the wind blows\n\t\t\t the
cradle will drop.’

 Because this is not being printed, the special characters (those preceded with a backslash) are not
translated into a form that will be displayed differently from how you typed them.

 Exercise 2 Solution
Rock a by baby,
 on the tree top, when the wind blows
 the cradle will drop.

 When they are printed, “ \n ” and “ \t ” produce a newline and a tab character, respectively. When
the print() function is used, it will render them into special characters that don ’ t appear on your
keyboard, and your screen will display them.

bapp01.indd 515bapp01.indd 515 12/22/09 10:35:07 AM12/22/09 10:35:07 AM

Part IV: Appendices

516

 Chapter 2
 Do the following first three exercises in Notepad and save the results in a file called ch2_exercises.py .
You can run it from within Python by opening the file and choosing Run Module.

 1. In the Python shell, multiply 5 and 10. Try this with other numbers as well.

 2. Print every number from 6 through 14 in base 8.

 3. Print every number from 9 through 19 in base 16.

 4. Try to elicit other errors from the Python interpreter — for instance, by deliberately misspelling
 print as pinrt . Notice how as you work on a file in the Python shell, it will display print
differently than it does pinrt .

 Exercise 1 Solution
 > > > 5 * 10
50

 Exercise 2 Solution
 > > > print(“%o” % 6)
6
 > > > print(“%o” % 7)
7
 > > > print(“%o” % 8)
10
 > > > print(“%o” % 9)
11
 > > > print(“%o” % 10)
12
 > > > print(“%o” % 11)
13
 > > > print(“%o” % 12)
14
 > > > print(“%o” % 13)
15
 > > > print(“%o” % 14)
16

 Exercise 3 Solution
 > > > print(“%x” % 9)
9
 > > > print(“%x” % 10)
a
 > > > print(“%x” % 11)
b
 > > > print(“%x” % 12)
c

bapp01.indd 516bapp01.indd 516 12/22/09 10:35:08 AM12/22/09 10:35:08 AM

Appendix A: Answers to the Exercises

517

 > > > print(“%x” % 13)
d
 > > > print(“%x” % 14)
e
 > > > print(“%x” % 15)
f
 > > > print(“%x” % 16)
10
 > > > print(“%x” % 17)
11
 > > > print(“%x” % 18)
12
 > > > print(“%x” % 19)
13

 Exercise 4 Solution
 When an unknown function is called, Python doesn ’ t know that the name that ’ s been typed in is
necessarily a function at all, so it just flags a general syntax error:

 > > > pintr(“%x” & x)
 File “ < input > ”, line 1
 Pintr(“%x” & x)

SyntaxError: invalid syntax

 You ’ ll notice, however, that Python Shell will display print in bold when you type it. This is because
print is a special word to Python, and Python Shell knows this. You can help yourself catch errors by
paying attention to how the editor reacts to what you ’ ve typed.

 Chapter 3
 Perform all of the following in the Python shell:

 1. Create a list called dairy_section with four elements from the dairy section of a supermarket.

 2. Print a string with the first and last elements of the dairy_section list.

 3. Create a tuple called milk_expiration with three elements: the month, day, and year of the
expiration date on the nearest carton of milk.

 4. Print the values in the milk_expiration tuple in a string that reads “ This milk carton will
expire on 12/10/2005. ”

 5. Create an empty dictionary called milk_carton . Add the following key/value pairs. You can
make up the values or use a real milk carton:

❑ expiration_date : Set it to the milk_expiration tuple.

❑ fl_oz : Set it to the size of the milk carton on which you are basing this.

bapp01.indd 517bapp01.indd 517 12/22/09 10:35:08 AM12/22/09 10:35:08 AM

Part IV: Appendices

518

❑ Cost : Set this to the cost of the carton of milk.

❑ brand_name : Set this to the name of the brand of milk you ’ re using.

 6. Print out the values of all of the elements of the milk_carton using the values in the dictionary,
and not, for instance, using the data in the milk_expiration tuple.

 7. Show how to calculate the cost of six cartons of milk based on the cost of milk_carton .

 8. Create a list called cheeses. List all of the cheeses you can think of. Append this list to the
 dairy_section list, and look at the contents of dairy_section . Then remove the list of
cheeses from the array.

 9. How do you count the number of cheeses in the cheese list?

 10. Print out the first five letters of the name of your first cheese.

 Exercise 1 Solution
 > > > dairy_section = [“milk”, “cottage cheese”, “butter”, “yogurt”]

 Exercise 2 Solution
 > > > print(“First: %s and Last %s” % (dairy_section[0], dairy_section[1]))
First: milk and Last cottage cheese

 Exercise 3 Solution
 > > > milk_expiration = (10, 10, 2009)

 Exercise 4 Solution
 > > > print(“This milk will expire on %d/%d/%d” % (milk_expiration[0],
milk_expiration[1], milk_expiration[2]))
This milk will expire in 10/10/2009

 Exercise 5 Solution
 > > > milk_carton = {}
 > > > milk_carton[“expiration_date”] = milk_expiration
 > > > milk_carton[“fl_oz”] = 32
 > > > milk_carton[“cost”] = 1.50
 > > > milk_carton[“brand_name”] = “Milk”

 Exercise 6 Solution
 > > > print(“The expiration date is %d/%d/%d” %
(milk_carton[“expiration_date”][0], milk_carton[“expiration_date”][1],
milk_carton[“expiration_date”][2]))
The expiration date is 10/10/2009

bapp01.indd 518bapp01.indd 518 12/22/09 10:35:08 AM12/22/09 10:35:08 AM

Appendix A: Answers to the Exercises

519

 Exercise 7 Solution
 > > > print(“The cost for 6 cartons of milk is %.02f” % (6 *
milk_carton[“cost”]))
The cost for 6 cartons of milk is 9.00

 Exercise 8 Solution
 > > > cheeses = [“cheddar”, “american”, “mozzarella”]
 > > > dairy_section.append(cheeses)
 > > > dairy_section
[‘milk’, ‘cottage cheese’, ‘butter’, ‘yogurt’, [‘cheddar’, ‘american’,
‘mozzarella’]]
 > > > dairy_section.pop()
[‘cheddar’, ‘american’, ‘mozzarella’]

 Exercise 9 Solution
 > > > len(dairy_section)
4

 Exercise 10 Solution
 > > > print(“Part of some cheese is %s” % cheeses[0][0:5])
Part of some cheese is chedd

 Chapter 4
 Perform all of the following in the codeEditor Python shell:

 1. Using a series of if ... : statements, evaluate whether the numbers from 0 through 4 are True
or False by creating five separate tests.

 2. Create a test using a single if ... : statement that will tell you whether a value is between 0
and 9 inclusively (that is, the number can be 0 or 9 as well as all of the numbers in between, not
just 1–8) and print a message if it ’ s a success. Test it.

 3. Using if ... : , elif , ...: and else: , create a test for whether a value referred to by a
name is in the first two elements of a sequence. Use the if ... : to test for the first element of
the list; use elif ... : to test the second value referenced in the sequence; and use the else:
clause to print a message indicating whether the element being searched for is not in the list.

 4. Create a dictionary containing foods in an imaginary refrigerator, using the name fridge . The
name of the food will be the key, and the corresponding value of each food item should be a
string that describes the food. Then create a name that refers to a string containing the name of a
food. Call the name food_sought . Modify the test from Exercise 3 to be a simple if ... : test
(no elif ... : or else: will be needed here) for each key and value in the refrigerator using
a for ... in ... : loop to test every key contained in the fridge. If a match is found, print a
message that contains the key and the value and then use break to leave the loop. Use an

bapp01.indd 519bapp01.indd 519 12/22/09 10:35:09 AM12/22/09 10:35:09 AM

Part IV: Appendices

520

 else ... : statement at the end of the for loop to print a message for cases in which the
element wasn ’ t found.

 5. Modify Exercise 3 to use a while ... : loop by creating a separate list called fridge_list
that will contain the values given by fridge.keys . As well, use a variable named,
current_key that will refer to the value of the current element in the loop that will be
obtained by the method fridge_list.pop . Remember to place fridge_list.pop as the last
line of the while ... : loop so that the repetition will end normally. Use the same else:
statement at the end of the while loop as the one used at the end of Exercise 3.

 6. Query the fridge dictionary created in Exercise 3 for a key that is not present, and elicit an error.
In cases like this, the KeyError can be used as a shortcut to determining whether or not the
value you want is in the list. Modify the solution to Exercise 3 so that instead of using a
for ... in ... : a try: block is used.

 Exercise 1 Solution
 The key theme here is that 0 is False , and everything else is considered not False , which is the same
as True :

 > > > if 0:
... print(“0 is True”)
...
 > > > if 1:
... print(“1 is True”)
...
1 is True
 > > > if 2:
... print(“2 is True”)
...
2 is True
 > > > if 3:
... print(“3 is True”)
...
3 is True
 > > > if 4:
... print(“4 is True”)
...
4 is True
 > > > if 5:
... print(“5 is True”)
...
5 is True

 Exercise 2 Solution
 > > > number = 3
 > > > if number > = 0 and number < = 9:
... print(“The number is between 0 and 9: %d” % number)
...
The number is between 0 and 9: 3

bapp01.indd 520bapp01.indd 520 12/22/09 10:35:09 AM12/22/09 10:35:09 AM

Appendix A: Answers to the Exercises

521

 Exercise 3 Solution
 > > > test_tuple = (“this”, “little”, “piggie”, “went”, “to”, “market”)
 > > > search_string = “toes”
 > > > if test_tuple[0] == search_string:
... print(“The first element matches”)
... elif test_tuple[1] == search_string:
... print(“the second element matches”)
... else:
... print(“%s wasn’t found in the first two elements” % search_string)
...
toes wasn’t found in the first two elements

 Exercise 4 Solution
 > > > fridge = {“butter”:”Dairy spread”, “peanut butter”:”non-dairy spread”,
“cola”:”fizzy water”}
 > > > food_sought = “chicken”
 > > > for food_key in fridge.keys():
... if food_key == food_sought:
... print(“Found what I was looking for: %s is %s” % (food_sought,
fridge[food_key]))
... break
... else:
... print(“%s wasn’t found in the fridge” % food_sought)
...
chicken wasn’t found in the fridge

 Exercise 5 Solution
 > > > fridge = {“butter”:”Dairy spread”, “peanut butter”:”non-dairy spread”,
“cola”:”fizzy water”}
 > > > fridge_list = fridge.keys()
 > > > current_key = fridge_list.pop()
 > > > food_sought = “cola”
 > > > while len(fridge_list) > 0:
... if current_key == food_sought:
... print(“Found what I was looking for: %s is %s” % (food_sought,
fridge[current_key]))
... break
... current_key = fridge_list.pop()
... else:
... print(“%s wasn’t found in the fridge” % food_sought)
...
Found what I was looking for: cola is fizzy water

 Exercise 6 Solution
 > > > fridge = {“butter”:”Dairy spread”, “peanut butter”:”non-dairy spread”,
“cola”:”fizzy water”}
 > > > food_sought = “chocolate milk”
 > > > try:

bapp01.indd 521bapp01.indd 521 12/22/09 10:35:09 AM12/22/09 10:35:09 AM

Part IV: Appendices

522

... fridge[food_sought]

... except KeyError:

... print(“%s wasn’t found in the fridge” % food_sought)

... else:

... print(“Found what I was looking for: %s is %s” % (food_sought,
fridge[food_key]))
...
chocolate milk wasn’t found in the fridge

 Chapter 5
 1. Write a function called do_plus that accepts two parameters and adds them together with the

 “ + ” operation.

 2. Add type checking to confirm that the type of the parameters is either an integer or a string. If the
parameters aren ’ t good, raise a TypeError.

 3. This one is a lot of work, so feel free to take it in pieces. In Chapter 4, a loop was written to make
an omelet. It did everything from looking up ingredients to removing them from the fridge and
making the omelet. Using this loop as a model, alter the make_omelet function by making a
function called make_omelet_q3 . It should change make_omelet in the following ways to get it
to more closely resemble a real kitchen:

 a. The fridge should be passed into the new make_omelet as its first parameter. The fridge ’ s
type should be checked to ensure it is a dictionary.

 b. Add a function to check the fridge and subtract the ingredients to be used. Call this
function remove_from_fridge . This function should first check to see if enough
ingredients are in the fridge to make the omelet, and only after it has checked that should it
remove those items to make the omelet. Use the error type LookupError as the type of error
to raise.

 c. The items removed from the fridge should be placed into a dictionary and returned by the
 remove_from_fridge function to be assigned to a name that will be passed to make_food .
After all, you don ’ t want to remove food if it ’ s not going to be used.

 d. Rather than a cheese omelet, choose a different default omelet to make. Add the ingredients
for this omelet to the get_omelet_ingredients function.

 4. Alter make_omelet to raise a TypeError error in the get_omelet_ingredients function if
a salmonella omelet is ordered. Try ordering a salmonella omelet and follow the resulting
stack trace.

 Exercise 1 Solution
def do_plus(first, second):
 return first + second

 Exercise 2 Solution
def do_plus(first, second):
 for param in (first, second):

bapp01.indd 522bapp01.indd 522 12/22/09 10:35:10 AM12/22/09 10:35:10 AM

Appendix A: Answers to the Exercises

523

 if (type(param) != type(“”)) and (type(param) != type(1)):
 raise TypeError(“This function needs a string or an integer”)
 return first + second

 Exercise 3 Solution
Part 1 - fridge has to go before the omelet_type. omelet_type is an
optional parameter with a default parameter, so it has to go at the end.
This can be used with a fridge such as:
f = {‘eggs’:12, ‘mozzarella cheese’:6,
‘milk’:20, ‘roast red pepper’:4, ‘mushrooms’:3}
or other ingredients, as you like.
def make_omelet_q3(fridge, omelet_type = “mozzarella”):
 “””This will make an omelet. You can either pass in a dictionary
 that contains all of the ingredients for your omelet, or provide
 a string to select a type of omelet this function already knows
 about
 The default omelet is a mozzarella omelet”””

 def get_omelet_ingredients(omelet_name):
 “””This contains a dictionary of omelet names that can be produced,
and their ingredients”””
 # All of our omelets need eggs and milk
 ingredients = {“eggs”:2, “milk”:1}
 if omelet_name == “cheese”:
 ingredients[“cheddar”] = 2
 elif omelet_name == “western”:
 ingredients[“jack_cheese”] = 2
 ingredients[“ham”] = 1
 ingredients[“pepper”] = 1
 ingredients[“onion”] = 1
 elif omelet_name == “greek”:
 ingredients[“feta_cheese”] = 2
 ingredients[“spinach”] = 2
 # Part 5
 elif omelet_name == “mozzarella”:
 ingredients[“mozzarella cheese”] = 2
 ingredients[“roast red pepper”] = 2
 ingredients[“mushrooms”] = 1
 else:
 print(“That’s not on the menu, sorry!”)
 return None
 return ingredients
 # part 2 - this version will use the fridge that is available
 # to the make_omelet function.
 def remove_from_fridge(needed):
 recipe_ingredients = {}
 # First check to ensure we have enough
 for ingredient in needed.keys():
 if needed[ingredient] > fridge[ingredient]:
 raise LookupError(“not enough %s to continue” % ingredient)
 # Then transfer the ingredients.
 for ingredient in needed.keys():
 # Remove it from the fridge

bapp01.indd 523bapp01.indd 523 12/22/09 10:35:10 AM12/22/09 10:35:10 AM

Part IV: Appendices

524

 fridge[ingredient] = fridge[ingredient] - needed[ingredient]
 # and add it to the dictionary that will be returned
 recipe_ingredients[ingredient] = needed[ingredient]
 # Part 3 - recipe_ingredients now has all the needed ingredients
 return recipe_ingredients

 # Part 1, continued - check the type of the fridge
 if type(fridge) != type({}):
 raise TypeError(“The fridge isn’t a dictionary!”)

 if type(omelet_type) == type({}):
 print(“omelet_type is a dictionary with ingredients”)
 return make_food(omelet_type, “omelet”)
 elif type(omelet_type) == type(“”):
 needed_ingredients = get_omelet_ingredients(omelet_type)
 omelet_ingredients = remove_from_fridge(needed_ingredients)
 return make_food(omelet_ingredients, omelet_type)
 else:
 print(“I don’t think I can make this kind of omelet: %s” %

omelet_type)

 Exercise 4 Solution
 The get_omelet_ingredient from make_omelet_q3 could be changed to look like the following:

 def get_omelet_ingredients(omelet_name):
 “””This contains a dictionary of omelet names that can be produced,
and their ingredients”””
 # All of our omelets need eggs and milk
 ingredients = {“eggs”:2, “milk”:1}
 if omelet_name == “cheese”:
 ingredients[“cheddar”] = 2
 elif omelet_name == “western”:
 ingredients[“jack_cheese”] = 2
 ingredients[“ham”] = 1
 ingredients[“pepper”] = 1
 ingredients[“onion”] = 1
 elif omelet_name == “greek”:
 ingredients[“feta_cheese”] = 2
 ingredients[“spinach”] = 2
 # Part 5
 elif omelet_name == “mozzarella ”:
 ingredients[“mozzarella cheese”] = 2
 ingredients[“roast red pepper”] = 2
 ingredients[“mushrooms”] = 1
 # Question 4 - we don’ want anyone hurt in our kitchen!
 elif omelet_name == “salmonella”:
 raise TypeError(“We run a clean kitchen, you won’t get this

here”)
 else:
 print(“That’s not on the menu, sorry!”)
 return None
 return ingredients

bapp01.indd 524bapp01.indd 524 12/22/09 10:35:11 AM12/22/09 10:35:11 AM

Appendix A: Answers to the Exercises

525

 When run, the error raised by trying to get the salmonella omelet will result in the following error:

 >>> make_omelet_q3({‘mozzarella cheese’:5, ‘eggs’:5, ‘milk’:4, ‘roast red
pepper’:6, ‘mushrooms’:4}, “salmonella”)
Traceback (most recent call last):
 File “ < stdin > ”, line 1, in ?
 File “ch5.py”, line 209, in make_omelet_q3
 omelet_ingredients = get_omelet_ingredients(omelet_type)
 File “ch5.py”, line 179, in get_omelet_ingredients
 raise TypeError, “We run a clean kitchen, you won’t get this here”
TypeError: We run a clean kitchen, you won’t get this here
>>>

 Note that depending on the contents of your ch5.py file, the exact line numbers shown in your stack
trace will be different from those shown here.

 Next, you can see that line 179 is where get_omelet_ingredients raised the error (though it may be at
a different line in your own file).

If you called this from within another function, the stack would be one layer deeper, and you would see
the information relating to that extra layer as well.

 Chapter 6
 Each of the following exercises builds on the exercises that preceded it:

 1. Add an option to the Omelet class ’ s mix method to turn off the creation messages by adding a
parameter that defaults to True , indicating that the “ mixing . . . ” messages should be printed.

 2. Create a method in class Omelet that uses the new mix method from Exercise 1. Called
quick_cook , it should take three parameters: the kind of omelet, the quantity wanted, and
the Fridge that they ’ ll come from. The quick_cook method should do everything required
instead of requiring three method calls, but it should use all of the existing methods to
accomplish this, including the modified mix method with the mix messages turned off.

 3. For each of the methods in the Omelet class that do not have a docstring, create one. In each
docstring, make sure you include the name of the method, the parameters that the method
takes, what the method does, what value or values it returns upon success, and what it returns
when it encounters an error (or what exceptions it raises, if any).

 4. View the docstrings that you ’ ve created by creating an Omelet object.

 5. Create a Recipe class that can be called by the Omelet class to get ingredients. The Recipe class
should have the ingredient lists of the same omelets that are already included in the Omelet
class. You can include other foods if you like. The Recipe class should include methods to
retrieve a recipe, get(recipe_name) , a method to add a recipe as well as name it, and create
(recipe_name, ingredients) , where the ingredients are a dictionary with the same format
as the one already used in the Fridge and Omelet classes.

bapp01.indd 525bapp01.indd 525 12/22/09 10:35:11 AM12/22/09 10:35:11 AM

Part IV: Appendices

526

 6. Alter the __init__ method of Omelet so that it accepts a Recipe class. To do this, you can do
the following:

 a. Create a name, self.recipe , that each Omelet object will have.

 b. The only part of the Omelet class that stores recipes is the internal method __known_kinds .
Alter __known_kinds to use the recipes by calling self.recipe.get() with the kind of
omelet that ’ s desired.

 c. Alter the set_new_kind method so that it places the new recipe into self.recipe and
then calls set_kind to set the current omelet to the kind just added to the recipe.

 d. In addition, modify __known_kinds to use the recipe method ’ s get method to find out the
ingredients of an omelet.

 7. Try using all of the new classes and methods to determine whether you understand them.

 Exercise 1 Solution
 def mix(self, display_progress = True):
 “””
 mix(display_progress = True) - Once the ingredients have been
obtained from a fridge call this
 to prepare the ingredients. If display_progress is False do not print
messages.
 “””
 for ingredient in self.from_fridge.keys():
 if display_progress == True:
 print(“Mixing %d %s for the %s omelet” %
(self.from_fridge[ingredient], ingredient, self.kind))
 self.mixed = True

 Exercise 2 Solution
 Note that you could go one step further and make the quiet setting of the mix function an option, too. As
it is, this doesn ’ t give you much feedback about what ’ s going on, so when you test it, it may look a bit
strange.

 def quick_cook(self, fridge, kind = “cheese”, quantity = 1):
 “””
 quick_cook(fridge, kind = “cheese”, quantity = 1) -
 performs all the cooking steps needed. Turns out an omelet fast.
 “””

 self.set_kind(kind)
 self.get_ingredients(fridge)
 self.mix(False)
 self.make()

bapp01.indd 526bapp01.indd 526 12/22/09 10:35:11 AM12/22/09 10:35:11 AM

Appendix A: Answers to the Exercises

527

 Exercise 3 Solution
 Just the documentation, not the functions, would look something like this. However, you should find a
format that suits you.

 Note that only undocumented functions will have their docstrings described here.

class Omelet:
 “””This class creates an omelet object. An omelet can be in one of
 two states: ingredients, or cooked.
 An omelet object has the following interfaces:
 get_kind() - returns a string with the type of omelet
 set_kind(kind) - sets the omelet to be the type named
 set_new_kind(kind, ingredients) - lets you create an omelet
 mix() - gets called after all the ingredients are gathered from the
fridge
 cook() - cooks the omelet
 “””
 def __init__(self, kind=”cheese”):
 “””__init__(self, kind=”cheese”)
 This initializes the Omelet class to default to a cheese omelet.
 Other methods
 “””
 self.set_kind(kind)
 return

 def set_kind(self, kind):
 “””
 set_kind(self, kind) - changes the kind of omelet that will be
created
 if the type of omelet requested is not known then return False
 “””
 def get_kind(self):
 “””
 get_kind() - returns the kind of omelet that this object is making
 “””

 def set_kind(self, kind):
 “””
 set_kind(self, kind) - changes the kind of omelet that will be created
 if the type of omelet requested is not known then return False
 “””

 def set_new_kind(self, name, ingredients):
 “””
 set_new_kind(name, ingredients) - create a new type of omelet that is
 called “name” and that has the ingredients listed in “ingredients”
 “””
 def __known_kinds(self, kind):
 “””
 __known_kinds(kind) - checks for the ingredients of “kind” and returns
them

bapp01.indd 527bapp01.indd 527 12/22/09 10:35:12 AM12/22/09 10:35:12 AM

Part IV: Appendices

528

 returns False if the omelet is unknown.
 “””

 def get_ingredients(self, fridge):
 “””
 get_ingredients(fridge) - takes food out of the fridge provided
 “””

 def mix(self):
 “””
 mix() - Once the ingredients have been obtained from a fridge call this
 to prepare the ingredients.
 “””
 def make(self):
 “””
 make() - once the ingredients are mixed, this cooks them
 “””

 Exercise 4 Solution
 >>> print(“%s” % o.__doc__)
This class creates an omelet object. An omelet can be in one of
 two states: ingredients, or cooked.
 An omelet object has the following interfaces:
 get_kind() - returns a string with the type of omelet
 set_kind(kind) - sets the omelet to be the type named
 set_new_kind(kind, ingredients) - lets you create an omelet
 mix() - gets called after all the ingredients are gathered from the fridge
 cook() - cooks the omelet

 >>> print(“%s” % o.set_new_kind.__doc__)

 set_new_kind(name, ingredients) - create a new type of omelet that is
 called “name” and that has the ingredients listed in “ingredients”

 You can display the remaining docstrings in the same way.

 Exercise 5 Solution
class Recipe:
 “””
 This class houses recipes for use by the Omelet class
 “””

 def __init__(self):
 self.set_default_recipes()
 return

 def set_default_recipes(self):
 self.recipes = {“cheese” : {“eggs”:2, “milk”:1, “cheese”:1},
 “mushroom” : {“eggs”:2, “milk”:1, “cheese”:1,
“mushroom”:2},
 “onion” : {“eggs”:2, “milk”:1, “cheese”:1, “onion”:1}}

bapp01.indd 528bapp01.indd 528 12/22/09 10:35:12 AM12/22/09 10:35:12 AM

Appendix A: Answers to the Exercises

529

 def get(self, name):
 “””
 get(name) - returns a dictionary that contains the ingredients needed
to
 make the omelet in name.
 When name isn’t known, returns False
 “””
 try:
 recipe = self.recipes[name]
 return recipe
 except KeyError:
 return False

 def create(self, name, ingredients):
 “””
 create(name, ingredients) - adds the omelet named “name” with the
ingredients
 “ingredients” which is a dictionary.
 “””

 self.recipes[name] = ingredients

 Exercise 6 Solution
 Note that the order of parameters in the interface for the class has now been changed, because you can ’ t
place a required argument after a parameter that has an optional default value.

 When you test this, remember that you now create an omelet with a recipe as its mandatory parameter.

 def __init__(self, recipes, kind=”cheese”):
 “””__init__(self, recipes, kind=”cheese”)
 This initializes the omelet class to default to a cheese omelet.

 “””
 self.recipes = recipes
 self.set_kind(kind)

 return

 def set_new_kind(self, name, ingredients):
 “””
 set_new_kind(name, ingredients) - create a new type of omelet that is
 called “name” and that has the ingredients listed in “ingredients”
 “””
 self.recipes.create(name, ingredients)
 self.set_kind(name)
 return
 def __known_kinds(self, kind):
 “””
 __known_kinds(kind) - checks for the ingredients of “kind” and returns
them
 returns False if the omelet is unknown.
 “””
 return self.recipes.get(kind)

bapp01.indd 529bapp01.indd 529 12/22/09 10:35:12 AM12/22/09 10:35:12 AM

Part IV: Appendices

530

 Chapter 7
 Moving code to modules and packages is straightforward and doesn ’ t necessarily require any changes to
the code to work, which is part of the ease of using Python.

 In these exercises, the focus is on testing your modules, because testing is essentially writing small
programs for an automated task.

 1. Write a test for the Foods.Recipe module that creates a recipe object with a list of foods, and
then verifies that the keys and values provided are all present and match up. Write the test so
that it is run only when Recipe.py is called directly, and not when it is imported.

 2. Write a test for the Foods.Fridge module that will add items to the Fridge , and exercise all of
its interfaces except get_ingredients , which requires an Omelet object.

 3. Experiment with these tests. Run them directly from the command line. If you ’ ve typed them
correctly, no errors should come up. Try introducing errors to elicit error messages from
your tests.

 Exercise 1 Solution
 Remember that you ’ re not a regular user of your class when you write tests. You should feel free to
access internal names if you need to!

if __name__ == ‘__main__’:
 r = Recipe()
 if r.recipes != {“cheese” : {“eggs”:2, “milk”:1, “cheese”:1},
 “mushroom” : {“eggs”:2, “milk”:1, “cheese”:1,
“mushroom”:2},
 “onion” : {“eggs”:2, “milk”:1, “cheese”:1, “onion”:1}}:
 Print(“Failed: the default recipes is not the correct list”)
 cheese_omelet = r.get(“cheese”)
 if cheese_omelet != {“eggs”:2, “milk”:1, “cheese”:1}:
 print(“Failed: the ingredients for a cheese omelet are wrong”)
 western_ingredients = {“eggs”:2, “milk”:1, “cheese”:1, “ham”:1,
 “peppers”:1, “onion”:1}
 r.create(“western”, western_ingredients)
 if r.get(“western”) != western_ingredients:
 print(“Failed to set the ingredients for the western”)
 else:
 print(“Succeeded in getting the ingredients for the western.”)

 Exercise 2 Solution
 At the end of the Fridge module, insert the following code. Note the comment about changing the
 add_many function to return True . If you don ’ t do that, add_many will return None , and this test will
always fail!

if __name__ == ‘__main__’:
 f = Fridge({“eggs”:10, “soda”:9, “nutella”:2})
 if f.has(“eggs”) != True:

bapp01.indd 530bapp01.indd 530 12/22/09 10:35:13 AM12/22/09 10:35:13 AM

Appendix A: Answers to the Exercises

531

 print(“Failed test f.has(‘eggs’)”)
 else:
 print(“Passed test f.has(‘eggs’)”)
 if f.has(“eggs”, 5) != True:
 print(“Failed test f.has(‘eggs’, 5)”)
 else:
 print(“Passed test f.has(‘eggs’, 5)”)
 if f.has_various({“eggs”:4, “soda”:2, “nutella”:1}) != True:
 print(‘Failed test f.has_various({“eggs”:4, “soda”:2, “nutella”1})’)
 else:
 print(‘Passed test f.has_various({“eggs”:4, “soda”:2, “nutella”1})’)
 # Check to see that when we add items, that the number of items in the
fridge
 # is increased!
 item_count = f.items[“eggs”]
 if f.add_one(“eggs”) != True:
 print(‘Failed test f.add_one(“eggs”)’)
 else:
 print(‘Passed test f.add_one(“eggs”)’)
 if f.items[“eggs”] != (item_count + 1):
 print(‘Failed f.add_one() did not add one’)
 else:
 print(‘Passed f.add_one() added one’)
 item_count = {}
 item_count[“eggs”] = f.items[“eggs”]
 item_count[“soda”] = f.items[“soda”]
 # Note that the following means you have to change add_many to return True!
 if f.add_many({“eggs”:3,”soda”:3}) != True:
 print(‘Failed test f.add_many({“eggs”:3,”soda”:3})’)
 else:
 print(‘Passed test f.add_many({“eggs”:3,”soda”:3})’)
 if f.items[“eggs”] != (item_count[“eggs”] + 3):
 print(“Failed f.add_many did not add eggs”)
 else:
 print(“Passed f.add_many added eggs”)
 if f.items[“soda”] != (item_count[“soda”] + 3):
 print(“Failed f.add_many did not add soda”)
 else:
 print(“Passed f.add_many added soda”)

 item_count = f.items[“eggs”]
 if f.get_one(“eggs”) != True:
 print(‘Failed test f.get_one(“eggs”)’)
 else:
 print(‘Passed test f.get_one(“eggs”)’)
 if f.items[“eggs”] != (item_count - 1):
 print(“Failed get_one did not remove an eggs”)
 else:
 print(“Passed get_one removed an eggs”)

 item_count = {}
 item_count[“eggs”] = f.items[“eggs”]
 item_count[“soda”] = f.items[“soda”]
 eats = f.get_many({“eggs”:3, “soda”:3})
 if eats[“eggs”] != 3 or eats[“soda”] != 3:

bapp01.indd 531bapp01.indd 531 12/22/09 10:35:13 AM12/22/09 10:35:13 AM

Part IV: Appendices

532

 print(‘Failed test f.get_many({“eggs”:3, “soda”:3})’)
 else:
 print(‘Passed test f.get_many({“eggs”:3, “soda”:3})’)

 if f.items[“eggs”] != (item_count[“eggs”] - 3):
 print(“Failed get many didn’t remove eggs”)
 else:
 print(“Passed get many removed eggs”)

 if f.items[“soda”] != (item_count[“soda”] - 3):
 print(“Failed get many didn’t remove soda”)
 else:
 print(“Passed get many removed soda”)

 Exercise 3 Solution
 You can try to generate errors by mistyping the name of a key in one place in the module, and
confirming that this results in your tests warning you. If you find situations that these tests don ’ t catch,
you should try to code a test for that situation so it can ’ t ever catch you.

 Chapter 8
 1. Create another version of the (nonrecursive) print_dir function that lists all subdirectory

names first, followed by names of files in the directory. Names of subdirectories should be
alphabetized, as should file names. (For extra credit, write your function in such a way that it
calls os.listdir only one time. Python can manipulate strings faster than it can execute
os.listdir .)

 2. Modify the rotate function to keep only a fixed number of old versions of the file. The number
of versions should be specified in an additional parameter. Excess old versions above this
number should be deleted.

 Exercise 1 Solution
 Here ’ s a simple but inefficient way to solve the problem:

import os

def print_dir(dir_path):
 # Loop through directory entries, and print directory names.
 for name in sorted(os.listdir(dir_path)):
 full_path = os.path.join(dir_path, name)
 if os.path.isdir(full_path):
 print(full_path)

 # Loop again, this time printing files.
 for name in sorted(os.listdir(dir_path)):
 full_path = os.path.join(dir_path, name)

bapp01.indd 532bapp01.indd 532 12/22/09 10:35:13 AM12/22/09 10:35:13 AM

Appendix A: Answers to the Exercises

533

 if os.path.isfile(full_path):
 print(full_path)

 Here ’ s the extra - credit solution, which only scans and sorts the directory once:

import os

def print_dir(dir_path):
 # Loop through directory entries. Since we sort the combined
 # directory entries first, the subdirectory names and file names
 # will each be sorted, too.
 file_names = []
 for name in sorted(os.listdir(dir_path)):
 full_path = os.path.join(dir_path, name)
 if os.path.isdir(full_path):
 # Print subdirectory names now.
 print(full_path)
 elif os.path.isfile(full_path):
 # Store file names for later.
 file_names.append(full_path)

 # Now print the file names.
 for name in file_names:
 print(name)

 Exercise 2 Solution
import os
import shutil

def make_version_path(path, version):
 if version == 0:
 return path
 else:
 return path + “.” + str(version)

def rotate(path, max_keep, version=0):
 “””Rotate old versions of file ‘path’.

 Keep up to ‘max_keep’ old versions with suffixes .1, .2, etc.
 Larger numbers indicate older versions.”””

 src_path = make_version_path(path, version)
 if not os.path.exists(src_path):
 # The file doesn’t exist, so there’s nothing to do.
 return

 dst_path = make_version_path(path, version + 1)
 if os.path.exists(dst_path):
 # There already is an old version with this number. What to do?

bapp01.indd 533bapp01.indd 533 12/22/09 10:35:14 AM12/22/09 10:35:14 AM

Part IV: Appendices

534

 if version < max_keep - 1:
 # Renumber the old version.
 rotate(path, max_keep, version + 1)
 else:
 # Too many old versions, so remove it.
 os.remove(dst_path)

 shutil.move(src_path, dst_path)

 Chapter 9
 Chapter 9 is a grab - bag of different features. At this point, the best exercise is to test all of the sample
code, looking at the output produced and trying to picture how the various ideas introduced here could
be used to solve problems that you ’ d like to solve or would have liked to solve in the past.

 Chapter 10
 1. How can you get access to the functionality provided by a module?

 2. How can you control which items from your modules are considered public? (Public items are
available to other Python scripts.)

 3. How can you view documentation on a module?

 4. How can you find out what modules are installed on a system?

 5. What kind of Python commands can you place in a module?

 Exercise 1 Solution
 You get access to the functionality with a module by importing the module or items from the module.

 Exercise 2 Solution
 If you define the variable __all__ , you can list the items that make up the public API for the module.
For example:

__all__ = [‘Meal’,’AngryChefException’, ‘makeBreakfast’,
 ‘makeLunch’, ‘makeDinner’, ‘Breakfast’, ‘Lunch’, ‘Dinner’]

 If you do not define the __all__ variable (although you should), the Python interpreter looks for all
items with names that do not begin with an underscore.

 Exercise 3 Solution
 The help function displays help on any module you have imported. The basic syntax follows:

help(module)

bapp01.indd 534bapp01.indd 534 12/22/09 10:35:14 AM12/22/09 10:35:14 AM

Appendix A: Answers to the Exercises

535

 Exercise 4 Solution
 Look in the directories listed in the variable sys.path for the locations of modules on your system. You
need to import the sys module first.

 Exercise 5 Solution
 Any Python commands can be placed in a module. Your modules can have Python commands, Python
functions, Python variables, Python classes, and so on. In most cases, though, you want to avoid running
commands in your modules. Instead, the module should define functions and classes and let the caller
decide what to invoke.

 Chapter 11
 1. Modify the scan_pdf.py script to start at the root, or topmost, directory. On Windows, this

should be the topmost directory of the current disk (C:, D:, and so on). Doing this on a network
share can be slow, so don ’ t be surprised if your G: drive takes a lot more time when it comes
from a file server). On UNIX and Linux, this should be the topmost directory (the root
directory, /).

 2. Modify the scan_pdy.py script to match only PDF files with the text boobah in the file name.

 3. Modify the scan_pdf.py script to exclude all files with the text boobah in the file name.

 Exercise 1 Solution
import os, os.path
import re

def print_pdf (arg, dir, files):
 for file in files:
 path = os.path.join (dir, file)
 path = os.path.normcase (path)
 if not re.search (r”. * \.pdf”, path): continue
 if re.search (r” “, path): continue

 print(path)

os.path.walk (‘/’, print_pdf, 0)

 Note how this example just changes the name of the directory to start processing with the
os.path.walk function.

 Exercise 2 Solution
import os, os.path
import re

bapp01.indd 535bapp01.indd 535 12/22/09 10:35:14 AM12/22/09 10:35:14 AM

Part IV: Appendices

536

def print_pdf (arg, dir, files):
 for file in files:
 path = os.path.join (dir, file)
 path = os.path.normcase (path)
 if not re.search (r”. * \.pdf”, path): continue
 if not re.search (r”boobah”, path): continue

 print(path)

os.path.walk (‘.’, print_pdf, 0)

 This example just includes an additional test in the print_pdf function.

 Exercise 3 Solution
import os, os.path
import re

def print_pdf (arg, dir, files):
 for file in files:
 path = os.path.join (dir, file)
 path = os.path.normcase (path)
 if not re.search (r”. * \.pdf”, path): continue
 if re.search (r”boobah”, path): continue

 print(path)

os.path.walk (‘.’, print_pdf, 0)

 Note how this example simply removes the not from the second test.

 Chapter 13
 1. Experiment with different layouts using different pack orders.

 2. Practice modifying the look of your widgets by changing every property.

 Chapter 14
 1. Suppose you need to write a Python script to store the pizza preferences for the workers in your

department. You need to store each person ’ s name along with that person ’ s favorite pizza
toppings. Which technologies are most appropriate to implement this script?

 a. Set up a relational database such as MySQL or Sqlite.

 b. Use a dbm module such as dbm.

 c. Implement a web - service - backed rich web application to create a buzzword - compliant
application.

bapp01.indd 536bapp01.indd 536 12/22/09 10:35:15 AM12/22/09 10:35:15 AM

Appendix A: Answers to the Exercises

537

 2. Rewrite the following example query using table name aliases:

select employee.firstname, employee.lastname, department.name
from employee, department
where employee.dept = department.departmentid
order by employee.lastname desc

 3. The terminate.py script, shown previously, removes an employee row from the employee
table; but this script is not complete. There remains a row in the user table for the same person.
Modify the terminate.py script to delete both the employee and the user table rows for
that user.

 Exercise 1 Solution
 The choice is c, of course. Just joking. The most appropriate choice is b, with the keys being the person ’ s
name and the values holding the pizza ingredients, perhaps using commas to separate the different
ingredients.

 Exercise 2 Solution
 You can use any alias you like. Here is one example:

select e.firstname, e.lastname, d.name
from employee e, department d
where e.dept = d.departmentid
order by e.lastname desc

 Exercise 3 Solution
 You don ’ t have to change much. The changes are in bold:

import sys
import sqlite3

conn=sqlite3.connect(‘sample_database’)
cursor = connection.cursor()

employee = sys.argv[1]

Query to find the employee ID.
query = “””
select e.empid
from user u, employee e
where username=? and u.employeeid = e.empid
“””
cursor.execute(query,(employee,));
for row in cursor.fetchone():
 if (row != None):
 empid = row

Now, modify the employee.

bapp01.indd 537bapp01.indd 537 12/22/09 10:35:15 AM12/22/09 10:35:15 AM

Part IV: Appendices

538

cursor.execute(“delete from employee where empid=?”, (empid,))
cursor.execute(“delete from user where employeeid=?”, (empid,))

connection.commit()
cursor.close()
connection.close()

 Chapter 15
 1. Given the following configuration file for a Python application, write some code to extract the

configuration information using a DOM parser:

 < ?xml version=”1.0”? >
 < !DOCTYPE config SYSTEM “configfile.dtd” >
 < config >
 < utilitydirectory > /usr/bin < /utilitydirectory >
 < utility > grep < /utility >
 < mode > recursive < /mode >
 < /config >

 2. Given the following DTD, named configfile.dtd , write a Python script to validate the
previous configuration file:

 < !ELEMENT config (utilitydirectory, utility, mode) >
 < !ELEMENT utilitydirectory (#PCDATA) * >
 < !ELEMENT utility (#PCDATA) * >
 < !ELEMENT mode (#PCDATA) * >

 3. Use SAX to extract configuration information from the preceding config file instead of DOM.

 Exercise 1 Solution
from xml.dom.minidom import parse
import xml.dom.minidom

open an XML file and parse it into a DOM
myDoc = parse(‘config.xml’)
myConfig = myDoc.getElementsByTagName(“config”)[0]

#Get utility directory
myConfig.getElementsByTagName(“utilitydirectory”)[0].childNodes[0].data

#Get utility
myConfig.getElementsByTagName(“utility”)[0].childNodes[0].data

#get mode
myConfig.getElementsByTagName(“mode”)[0].childNodes[0].data

#.....Do something with data.....

bapp01.indd 538bapp01.indd 538 12/22/09 10:35:15 AM12/22/09 10:35:15 AM

Appendix A: Answers to the Exercises

539

 Exercise 2 Solution
#!/usr/bin/python

from xml.parsers.xmlproc import xmlval

class docErrorHandler(xmlval.ErrorHandler):
 def warning(self, message):
 print(message)
 def error(self, message):
 print(message)
 def fatal(self, message):
 print(message)

parser=xmlval.XMLValidator()
parser.set_error_handler(docErrorHandler(parser))
parser.parse_resource(“configfile.xml”)

 Exercise 3 Solution
#!/usr/bin/python

from xml.sax import make_parser
from xml.sax.handler import ContentHandler

#begin configHandler
class configHandler(ContentHandler):
 inUtildir = False
 utildir = ‘’
 inUtil = False
 util = ‘’
 inMode = False
 mode = ‘’

 def startElement(self, name, attributes):

 if name == “utilitydirectory”:
 self.inUtildir = True

 elif name == “utility”:
 self.inUtil = True

 elif name == “mode”:
 self.inMode = True

 def endElement(self, name):
 if name == “utilitydirectory”:
 self.inTitle = False

 elif name == “utility”:
 self.inUtil = False

 elif name == “mode”:
 self.inMode = False

bapp01.indd 539bapp01.indd 539 12/22/09 10:35:15 AM12/22/09 10:35:15 AM

Part IV: Appendices

540

 def characters(self, content):
 if self.inUtildir:
 utildir = utildir + content
 elif self.inUtil:
 util = util + content
 elif self.inMode:
 mode = mode + content
#end configHandler

parser = make_parser()
parser.setContentHandler(configHandler())
parser.parse(“configfile.xml”)

#....Do stuff with config information here

 Chapter 16
 1. Distinguish between the following e - mail - related standards: RFC 2822, SMTP, IMAP, MIME,

and POP.

 2. Write a script that connects to a POP server, downloads all of the messages, and sorts the
messages into files named after the sender of the message. (For instance, if you get two e - mails
from user@example.com , they should both go into a file “ user@example.com ”).

 What would be the corresponding behavior if you had an IMAP server instead? Write that
script, too (use RFC 3501 as a reference).

 3. Suppose that you were designing an IRC - style protocol for low - bandwidth embedded devices
such as cell phones. What changes to the Python Chat Server protocol would it be useful to
make?

 4. A feature of IRC not cloned in the Python Chat Server is the /msg command, which enables one
user to send a private message to another instead of broadcasting it to the whole room. How
could the /msg command be implemented in the Python Chat Server?

 5. When does it make sense to design a protocol using a peer - to - peer architecture?

 Exercise 1 Solution
 RFC 2822 is a file format standard that describes what e - mail messages should look like.

 MIME is a file format standard that describes how to create e - mail messages that contain binary data and
multiple parts, while still conforming to RFC 2822.

 SMTP is a protocol used to deliver an e - mail message to someone else.

 POP is a protocol used to pick up your e - mail from your mail server.

 IMAP is a newer protocol that does the same job as POP. It ’ s intended to keep the e - mail on the server
permanently, instead of just keeping it until you pick it up.

bapp01.indd 540bapp01.indd 540 12/22/09 10:35:16 AM12/22/09 10:35:16 AM

Appendix A: Answers to the Exercises

541

 Exercise 2 Solution
 Here ’ s a script that uses POP:

#!/usr/bin/python
from poplib import POP3
from email import parser

#Connect to the server and parse the response to see how many messages there
#are, as in this chapter’s previous POP example.
server = POP3(“pop.example.com”)
server.user(“[user]”)
response = server.pass_(“[password]”)
numMessages = response[response.rfind(‘, ‘)+2:]
numMessages = int(numMessages[:numMessages.find(‘ ‘)])

#Parse each email and put it in a file named after the From: header of
#the mail.
parser = parser()
openFiles = {}
for messageNum in range(1, numMessages+1):
 messageString = ‘\n’.join(server.retr(messageNum)[1])
 message = email.parsestr(messageString, True)
 fromHeader = message[‘From’]
 mailFile = openFiles.get(fromHeader)
 if not mailFile:
 mailFile = open(fromHeader, ‘w’)
 openFiles[fromHeader] = mailFile
 mailFile.write(messageString)
 mailFile.write(‘\n’)
#Close all the files to which we wrote mail.
for openFile in openFiles.values():
 openFile.close()

 Because IMAP enables you to sort messages into folders on the server, an IMAP version of this script can
simply create new mailboxes and move messages into them. Here ’ s a script that does just that:

#!/usr/bin/python
from imaplib import IMAP4
import email
import re

#Used to parse the IMAP responses.
FROM_HEADER = ‘From: ‘
IMAP_UID = re.compile(‘UID ([0-9]+)’)

#Connect to the server.
server = IMAP4(‘imap.example.com’)
server.login(‘[username]’, ‘[password]’)
server.select(‘Inbox’)

#Get the unique IDs for every message.
uids = server.uid(‘SEARCH’, ‘ALL’)[1][0].split(‘ ‘)
uidString = ‘,’.join(uids)

bapp01.indd 541bapp01.indd 541 12/22/09 10:35:16 AM12/22/09 10:35:16 AM

Part IV: Appendices

542

#Get the From: header for each message
headers = server.uid(‘FETCH’, ‘%s’ % uidString,
 ‘(BODY[HEADER.FIELDS (FROM)])’)
for header in headers[1]:
 if len(header) > 1:
 uid, header = header
 #Parse the IMAP response into a real UID and the value of the
 #’From’ header.
 match = IMAP_UID.search(uid)
 uid = match.groups(1)[0]

 fromHeader = header[len(FROM_HEADER):].strip()

 #Create the mailbox corresponding to the person who sent this
 #message. If it already exists the server will throw an error,
 #but we’ll just ignore it.
 server.create(fromHeader)

 #Copy this message into the mailbox.
 server.uid(‘COPY’, uid, fromHeader)

#Delete the messages from the inbox now that they’ve been filed.
server.uid(‘STORE’, uidString, ‘+FLAGS.SILENT’, ‘(\\Deleted)’)
server.expunge()

 Exercise 3 Solution
 In general, move as much text as possible out of the protocol and into the client software, which needs to
be downloaded only once. Some specific suggestions:

 Send short status codes instead of English sentences: for instance, send “ HELLO ” instead of
 “ Hello [nickname], welcome to the Python Chat Server! ” .

 Assign a number to every user in the chat room, and send the number instead of their nickname
whenever they do something — for instance, broadcast ‘ 4 Hello ’ instead of ‘ < user > Hello ’
whenever a user sends a message.

 Use a compression technique to make the chat text itself take up less bandwidth.

 Exercise 4 Solution
 The easiest way is to simply define a method ‘ msgCommand ’ and let the _parseCommand dispatch it.
Here ’ s a simple implementation of msgCommand :

 def msgCommand(self, nicknameAndMsg):
 “Send a private message to another user.”
 if not ‘ ‘ in nicknameAndMsg:
 raise ClientError(‘No message specified.’)
 nickname, msg = nicknameAndMsg.split(‘ ‘, 1)
 if nickname == self.nickname:
 raise ClientError(‘What, send a private message to yourself?’)
 user = self.server.users.get(nickname)
 if not user:

❑

❑

❑

bapp01.indd 542bapp01.indd 542 12/22/09 10:35:16 AM12/22/09 10:35:16 AM

Appendix A: Answers to the Exercises

543

 raise ClientError(‘No such user: %s’ % nickname)
 msg = ‘[Private from %s] %s’ % (self.nickname, msg)
 user.write(self._ensureNewline(msg))

 Exercise 5 Solution
 The peer - to - peer architecture is more general than the client - server architecture. The peer - to -
 peer design of TCP/IP makes it a flexible general - purpose protocol. It ’ s easier to implement a
client - server protocol atop TCP/IP than it is to implement a peer - to - peer design on top of
a client - server protocol. If you want a general - purpose protocol, try to preserve the peer - to - peer
nature of TCP/IP.

 Consider using peer - to - peer when it makes sense for a client to download some data from a
server and then immediately start serving it to other clients. A peer - to - peer architecture for the
distribution of e - mail doesn ’ t make sense, because most e - mail is addressed to one person only.
Once that person has downloaded the e - mail, it shouldn ’ t be automatically distributed further.
A peer - to - peer architecture for the distribution of newsletters makes more sense.

 Peer - to - peer is most useful when you have some way of searching the network. When a network
resource doesn ’ t have a single, unambiguous location (the way a file hosted on a web server
does), it ’ s more difficult to find what you want, and search facilities are more important.

 Chapter 17
 1. Add a new module - level function to the foo module you created earlier in the chapter. Call the

function reverse_tuple and implement it so that it accepts one tuple as an argument and returns
a similarly sized tuple with the elements in reverse order. Completing this exercise is going to
require research on your part because you need to know how to “ unpack ” a tuple. You already
know one way to create a tuple (using Py_BuildValue), but that ’ s not going to work for this
exercise, because you want your function to work with tuples of arbitrary size. The Python/C
API documentation for tuples (at http://docs.python.org/api/tupleObjects.html) lists
all of the functions you need to accomplish this. Be careful with your reference counting!

 2. List and dictionary objects are an extremely important part of nearly all Python applications so
it would be useful to learn how to manipulate those objects from C. Add another function to the
foo module called dict2list that accepts a dictionary as a parameter and returns a list. The
members of the list should alternate between the keys and the values in the dictionary.
The order isn ’ t important as long as each key is followed by its value. You ’ ll have to look up
how to iterate over the items in the dictionary (hint: look up PyDict_Next) and how to create
a list and append items to it (hint: look up PyList_New and PyList_Append).

 Chapter 18
 1. Write a function that expresses a number of bytes as the sum of gigabytes, megabytes, kilobytes,

and bytes. Remember that a kilobyte is 1024 bytes, a megabyte is 1024 kilobytes, and so on. The
number of each should not exceed 1023. The output should look something like this:

 > > > print(format_bytes(9876543210))
9 GB + 203 MB + 5 KB + 746 bytes

❑

❑

❑

bapp01.indd 543bapp01.indd 543 12/22/09 10:35:17 AM12/22/09 10:35:17 AM

Part IV: Appendices

544

 2. Write a function that formats an RGB color in the color syntax of HTML. The function should
take three numerical arguments: the red, green, and blue color components, each between zero
and one. The output is a string of the form #RRGGBB , where RR is the red component as a value
between 0 and 255, expressed as a two - digit hexadecimal number, and GG and BB likewise for
the green and blue components.

 For example:

 > > > print(rgb_to_html(0.0, 0.0, 0.0) # black)
#000000
 > > > print(rgb_to_html(1.0, 1.0, 1.0) # white)
#ffffff
 > > > print(rgb_to_html(0.8, 0.5, 0.9) # purple)
#cc80e6

 3. Write a function named normalize that takes an array of float numbers and returns a copy of
the array in which the elements have been scaled such that the square root of the sum of their
squares is one. This is an important operation in linear algebra and other fields.

 Here ’ s a test case:

 > > > for n in normalize((2.2, 5.6, 4.3, 3.0, 0.5)):
... print(“ %.5f ” % n,)
...
0.27513 0.70033 0.53775 0.37518 0.06253

 Exercise 1 Solution
def format_bytes(bytes):
 units = (
 (“GB”, 1024 * * 3),
 (“MB”, 1024 * * 2),
 (“KB”, 1024 * * 1),
 (“bytes”, 1),
)
 terms = []
 for name, scale in units:
 if scale > bytes:
 continue
 # Show how many of this unit.
 count = bytes // scale
 terms.append(“%d %s” % (count, name))
 # Compute the leftover bytes.
 bytes = bytes % scale
 # Construct the full output from the terms.
 return “ + “.join(terms)

 Exercise 2 Solution
def rgb_to_html(red, green, blue):
 # Convert floats between zero and one to ints between 0 and 255.
 red = int(round(red * 255))
 green = int(round(green * 255))

bapp01.indd 544bapp01.indd 544 12/22/09 10:35:17 AM12/22/09 10:35:17 AM

Appendix A: Answers to the Exercises

545

 blue = int(round(blue * 255))
 # Write out HTML color syntax.
 return “#%02x%02x%02x” % (red, green, blue)

 Exercise 3 Solution
 Solution using a list of numbers:

from math import sqrt

def normalize(numbers):
 # Compute the sum of squares of the numbers.
 sum_of_squares = 0
 for number in numbers:
 sum_of_squares += number * number
 # Copy the list of numbers.
 result = list(numbers)
 # Scale each element in the list.
 scale = 1 / sqrt(sum_of_squares)
 for i in xrange(len(result)):
 result[i] * = scale
 return result

 This very concise numarray version works only when called with a numarray.array object. You can
convert a different array type with numbers = numarray.array(numbers) :

from math import sqrt
import numarray

def normalize(numbers):
 return numbers / sqrt(numarray.sum(numbers * numbers))

 Chapter 19
 1. Configure the __ settings.py file to work with each type of database that Django supports.

 2. Explain the MVC and MTV architectures and elaborate on the difference between the two.

 3. Create a template that shows the menu from a restaurant and have it display.

 4. Working with the same data fields you used in exercise 3, create a model that shows a menu
from a restaurant and have Django create the database.

 Chapter 20
 1. What ’ s a RESTful way to change BittyWiki so that it supports hosting more than one Wiki?

 2. Write a web application interface to WishListBargainFinder.py . (That is, a web application
that delegates to the Amazon Web Services.)

bapp01.indd 545bapp01.indd 545 12/22/09 10:35:17 AM12/22/09 10:35:17 AM

Part IV: Appendices

546

 3. The wiki search - and - replace spider looks up every new WikiWord it encounters to see whether
it corresponds to a page of the wiki. If it finds a page by that name, that page is processed.
Otherwise, nothing happens and the spider has wasted a web service request. How could the
web service API be changed so that the spider could avoid those extra web service requests for
nonexistent pages?

 4. Suppose that, to prevent vandalism, you change BittyWiki so that pages can ’ t be deleted.
Unfortunately, this breaks the wiki search - and - replace spider, which sometimes deletes a page
before re - creating it with a new name. What ’ s a solution that meets both your needs and the
needs of the spider ’ s users?

 Exercise 1 Solution
 Put the name of the wiki in the resource identifier, before the page name: Instead of “/PageName” , it
would be “/Wikiname/PageName” . This is RESTful because it puts data in the resource identifier,
keeping it transparent. Not surprising, this identifier scheme also corresponds to the way the wiki files
would be stored on disk.

 Exercise 2 Solution
#!/usr/bin/python
import cgi
import cgitb
import os
from WishListBargainFinder import BargainFinder, getWishList
cgitb.enable()

SUBSCRIPTION_ID = ‘[Insert your subscription ID here.]’
SUBSCRIPTION_ID = ‘D8O1OTR10IMN7’

form = cgi.FieldStorage()
wishListID = form.getfirst(‘wishlist’, ‘’)

args = {‘title’ : ‘Amazon Wish List Bargain Finder’,
 ‘action’ : os.environ[‘SCRIPT_NAME’],
 ‘wishListID’ : wishListID}

print(‘Content-type: text/html\n’)
print(‘’’ < html > < head > < title > %(title)s < /title > < /head >)
 < form method=”get” action=”%(action)s” >
 < h1 > %(title)s < /h1 >
Enter an Amazon wish list ID:
 < input name=”wishlist” length=”13” maxlength=”13” value=”%(wishListID)s” / >
 < input type=”submit” value=”Find bargains”/ >
 < /form > ’’’ % args

if wishListID:
 print(‘ < pre > ’)
 BargainFinder().printBargains(getWishList(SUBSCRIPTION_ID, wishListID))
 Print(‘ < /pre > ’)

print(‘ < /body > < /html > ’)

bapp01.indd 546bapp01.indd 546 12/22/09 10:35:18 AM12/22/09 10:35:18 AM

Appendix A: Answers to the Exercises

547

 Note that this points to an improvement in BargainFinder : creating a method that returns the bargain
information in a data structure, which can be formatted in plaintext, HTML, or any other way, instead of
just printing the plaintext of the bargains.

 Exercise 3 Solution
 For REST: The BittyWiki web application already outputs rendered HTML because that ’ s what web
browsers know how to parse. However, a BittyWiki page served by the web application includes
navigation links and other elements besides just a rendering of the page text. If web service users aren ’ t
happy scraping away that extraneous HTML to get to the actual page text, or if you want to save
bandwidth by not sending that HTML in the first place, there are two other solutions. The first is to
have web service clients provide the HTTP Accept header in GET requests to convey whether they want
the “ text/plain ” or “ text/html ” flavor of the resource. The second is to provide different flavors of the
same document through different resources. For instance, /bittywiki-rest.py/PageName.txt could
provide the plaintext version of a page, and /bittywiki-rest.py/PageName.html could provide the
rendered HTML version of the same page.

 For XML - RPC and SOAP, the decision is simpler. Just have clients pass in an argument to getPage
specifying which flavor of a page they want.

 Exercise 4 Solution
 This could be fixed by changing the GET resource or getPage API call to return not only the raw text
of the page, but a representation of which WikiWords on the page correspond to existing pages. This
could be a list of WikiWords that have associated pages, or a dictionary that maps all of the page ’ s
referenced WikiWords to True (if the word has an associated page) or False (if not). The advantage of
the second solution is that it could save the robot side from having to keep its own definition of what
constitutes a WikiWord.

 Exercise 5 Solution
 Create a new API call specifically for renaming a page. In XML - RPC or SOAP, this would be as simple as
creating a rename function and removing the delete function. For a REST API, you might add a
capability to the POST request that creates a new wiki page: Instead of providing the data, let it name
another page of the wiki to use as the data source, with the understanding that the other page will be
deleted afterward.

 Chapter 21
 1. If Python is so cool, why in the world would anyone ever use another programming language

such as Java, C++, C#, Basic, or Perl?

 2. The Jython interpreter is written in what programming language? The python command is
written in what programming language?

 3. When you package a Jython - based application for running on another system, what do you
need to include?

bapp01.indd 547bapp01.indd 547 12/22/09 10:35:18 AM12/22/09 10:35:18 AM

Part IV: Appendices

548

 4. Can you use the Python DB driver modules, such as those described in Chapter 14, in your
Jython scripts?

 5. Write a Jython script that creates a window with a red background using the Swing API.

 Exercise 1 Solution
 Many organizations have an investment in another programming language. Jython, though, enables you
to use Python in a Java environment.

 Exercise 2 Solution
 Jython is written in Java. The python interpreter is written in C.

 Exercise 3 Solution
 You need to include your Jython scripts, of course, but also the following:

 The jython.jar Java library

 The Jython Lib directory

 The Jython cachedir directory. This directory must be writeable.

 Exercise 4 Solution
 No, unless the DB drivers are written in Python or Java. Most Python DB drivers are written in C and
Python, and so cannot run from Jython (without a lot of work with the Java Native Interface, or JNI).
Luckily, the Jython zxJDBC module enables you to call on any JDBC driver from your Jython scripts.
This opens up your options to allow you to access more databases than those for which you can get
Python DB drivers.

 Exercise 5 Solution
 This is probably the simplest way to create such a window:

from javax.swing import JFrame

frame = JFrame(size=(500,100))

Use a tuple for RGB color values.
frame.background = 255,0,0

frame.setVisible(1)

 You can get fancy and add widgets such as buttons and labels, if desired.

❑

❑

❑

bapp01.indd 548bapp01.indd 548 12/22/09 10:35:18 AM12/22/09 10:35:18 AM

 B
Online Resources

 Python is software available from the Internet, and Python ’ s best day - to - day resources can all be
found there. This appendix describes the software that is used in this book and how to install it.

 Most Python - related software can be downloaded for free, and much of it can be downloaded as
source code and compiled — for those of you interested in doing that for yourself. For those
readers who begin with the second part of the book, this may be the challenge you ’ re looking for.
However, the broader audience for this book will be glad to know that everything you need to
follow along with the book ’ s examples can be installed as packages for the operating systems on
which they are supported.

 Software
 The examples in this book require that your computer have additional software installed, as well
as an appropriate and functioning operating system such as Windows 2000, XP, XP Pro, 2003, or
Vista; Linux (Red Hat ’ s Fedora RC3 or newer; Debian testing or unstable; or a similarly current
distribution), Ubuntu, or Mac OSX.

 Following is a brief list of the required software, with a description and the URL from which the
software can be downloaded:

 Python: www.python.org/ is the home page for the Python language. You can find out
about all things Python there, including additional online tutorials, introductions to the
language, and mailing lists to help you out. The people who write, maintain, change, and
use Python are there. You can find a complete, if terse, set of documentation available
there as well. The version of software used in this book is Python 3.1.1, and to download it
you can click the Download link at the top of the Python home page, or go directly to
 www.python.org/download/ . If you ’ re lucky, maybe you ’ ll find a more recent version of
Python there that you can use! At the time of publication, Python 3.1.1 has been released.

❑

bapp02.indd 549bapp02.indd 549 12/22/09 10:36:08 AM12/22/09 10:36:08 AM

550

Part IV: Appendices

 For Windows, use the Windows .msi installer of the most recent Python 3.1.1 installations.

 For Linux systems, install the package provided for your distribution by the maintainer of the
distribution (for example, the .deb packages from debian.org or the .rpm packages from
redhat.com, such as the information at www.python.org/download/releases/3.1.1/). For
other Linux distributions, see the home page for this book for comments from other readers that the
authors will be compiling.

 For Mac users, you can find information about Python 3.1.1 on the Mac at www.python
.org/download/mac/ .

 Tkinter: The GUI programming chapter in this book is written using the tkinter interface,
which gives you access to the Tcl/TK graphical user interface toolkit from within Python. It is
cross - platform and is portable across every system.

 For more information, visit http://wiki.python.org/moin/TkInter .

 PyUnit: The unit testing framework for Python. This module provides a systematic way
of writing tests within your own source code so that you can verify that your code works as
you expect. PyUnit now comes as part of the standard Python library, and is better known as
unittest.

 PyUnit ’ s home page is at http://pyunit.sourceforge.net/ .

 MySQL: A popular and fast open - source relational database system. Python has robust
MySQL support:

❑ www.mysql.com/ — This is the home page for mysql.com, the company that maintains the
MySQL database.

❑ http://sourceforge.net/projects/mysql - python — This is the home page of the
 mysql - python module, but there is a minimum amount of documentation online.

 Jython: An implementation of the Python language in pure Java, Jython provides access to all of
the tools available in the commercial Java product space, but it enables you to program using
Python as your language. Visit www.jython.org/ .

 Sqlite3: For our database section, we used Sqlite3 to create simple database structures. It is a
lightweight library written in C that is compliant with the DB - API 2.0. You can find more
information at http://docs.python.org/library/sqlite3.html .

Django: A higher-level web framework for Python, Django is a great tool to get a site up and
running in no time. Perfect for database driven sites and web applications, it helps save time by
setting up a basic “framework” for the developer. To download and read more about it, visit
http://www.djangoproject.com/.

❑

❑

❑

❑

❑

❑

bapp02.indd 550bapp02.indd 550 12/22/09 10:36:08 AM12/22/09 10:36:08 AM

Appendix B: Online Resources

551

 For More Information
 You can find a lot of Python - related information on the Internet. In addition, you can find information
related to the specific components that appear in this book. As a result of the constantly changing nature
of Python and its modules, please look at this book ’ s web page at www.wrox.com , and follow the
instructions in the introduction to find the specific page for this book. That ’ s the place to go for help with
installing software, to download samples and provide feedback to the authors, and to receive help with
anything in the book. In addition, you can find more packages and information about the ones that have
been mentioned here online at the website for this book.

bapp02.indd 551bapp02.indd 551 12/22/09 10:36:09 AM12/22/09 10:36:09 AM

www.wrox.com

bapp02.indd 552bapp02.indd 552 12/22/09 10:36:09 AM12/22/09 10:36:09 AM

 C
What ’ s New in Python 3.1

 Python is constantly changing in little ways. Python 3.1 has evolved from version 2.6, but it
contains important changes. This appendix introduces you to the changes relevant to the topics
covered in this book. This means that this is not an exhaustive treatment by any means but only
a selection of topics touched on in the book — topics that you may want to know as someone new
to Python.

 You can find the official list of changes to Python 3.1 at http://docs.python.org/3.1/
whatsnew/3.1.html . If a newer version of Python is available by the time you read this, you can
find the list of changes for that version on the Python website as well.

 Print Is Now a Function
 In the olden days of yore, print was a statement. With version 3.1, it has reached the major leagues
and is now a bonafide function — specifically, print() .

 Certain API s Return Views and Iterators
 The following no longer return lists, but instead return views and iterators:

 The dict methods — dict.keys() , dict.items() , and dict.values . You will also note
that dict.iterkeys() , dict.iteritems() , and dict.itervalues() are no longer
supported methods in Python.

 Both map() and filter() return iterators instead of lists.

 The range() method has replaced xrange() and is used in the same manner.

 The zip() method is now used to return an iterator.

❑

❑

❑

❑

bapp03.indd 553bapp03.indd 553 12/22/09 10:36:50 AM12/22/09 10:36:50 AM

554

Part IV: Appendices

 Integers
 The long data type has been renamed to int (basically the only integral type is now int). It works in
roughly the same manner as the long type did. Integers no longer have a limit, and as such, sys.maxint
has been deprecated. In addition, when dividing numbers such as 2/4, you will be given a float. If you
want to have the results truncated, you can still use 2//4.

 Unicode and 8 - bit
 Unicode and 8 - bit strings have been replaced with text and binary data. All text is considered to be
Unicode, but the encoded Unicode is now presented as strictly binary data. Hence, text is stored in str,
whereas data is stored in bytes. If you should ever try to mix these two data types, it will result in the
raising of a TypeError. If you want to mix str and bytes, you must convert them. If you wanted to, for
instance, convert a byte to a str, you would use bytes.decode() . To go from a str to a byte, you would
likewise use str.encode() .

 Another change is how you work with literals. The use of u ” ... ” literals for Unicode text has been
removed entirely, while the use of b ” ... ” literals for binary data is still usable.

 There are many changes to Unicode and 8 - bit — far more than I could cover here. See the section on
Unicode and 8 - bit at the What ’ s New page here: http://docs.python.org/dev/py3k/whatsnew/
3.1.html .

 Exceptions
 The use of raise exception has been replaced. You no longer write it as raise Exception, “ I take
exception to that! ” Instead you would use the following:

 exception(“ I take exception to that! ”)

 Similarly, if you wish to catch an exception, you write it in the following manner:

try:
a=int(“hotdog”)
except ValueError as oops:
print(“ValueError has occurred “, oops)

 This would return the result:

ValueError has occurred invalid literal for int() with base 10: ‘hotdog’

 Other changes to exceptions exist as well. For instance, all exception objects use the __traceback__
attribute to store the value of the traceback. Additionally, the StandardError was removed.

bapp03.indd 554bapp03.indd 554 12/22/09 10:36:51 AM12/22/09 10:36:51 AM

Appendix C: What’s New in Python 3.1

555

 Classes
 Old - style classes have been removed entirely from Python 3.1. This leaves us with a simple, single object
model based on new - style classes. Definitions for these classes are similar to their previous versions,
however, object is now implicitly a superclass.

 Comparisons, Operators, and Methods
 There are several changes that have been made to the way comparison operators work in Python 3.1.
For starters, comparisons have to make logical sense now. For example, you cannot use 0 > none. In past
versions this would have returned False, but since you cannot compare zero to nothing, it now returns
an error.

 The function cmp() and the method __cmp__() have both been removed.

 As for Operators, they have experienced the following changes:

 Unbound methods have been removed.

 The operator != now returns the complete opposite of ==.

 Next() has been renamed and is now __next()__

 The following have all been removed: __delitem__() , __getslice__() , __hex__() ,
__members__ , __methods__ , __oct__() , and __setslice__() .

 Syntactical Changes
 There are many syntax changes in Python 3.1. Again, this list is too much to cover in the limited space
we have here, but the following changes are some of the more important ones.

 The keywords as , with , True , False , and None have become reserved words.

 When working with Metaclasses, it is important to note that the old method

Class Example:
 __metaclass__ = Apple
...

i s no longer valid. Instead you would write:

Class Example(metaclass=Apple):
...

 In addition, the module - global __metaclass__ variable has been removed.

❑

❑

❑

❑

bapp03.indd 555bapp03.indd 555 12/22/09 10:36:51 AM12/22/09 10:36:51 AM

556

Part IV: Appendices

 The old method for writing list comprehensions was to use:

[for var in example1, example2, example 3]

 This has now changed to:

[for var in (example1, example2, example3)]

 The old standby < > has been removed and replaced with != .

 Both string literals and integer literals have been changed. String literals no longer accept the leading u
and U , while integer literals no longer accept the leading l or L .

 The keyword exec() has been removed, though it still functions as a function.

 Packages and Modules
 The following modules have been removed from Python 3.1. Note that this is not a complete list:

 cfmfile

 cl

 md5 and sha (replaced with hashlib)

 mimetools, MimeWriter, mimify, multifile, and rfc822 (replaced with the e-mail package)

 posixfile

 sv

 timing (use time.clock instead)

 Canvas

 commands and popen2 (replaced with subprocess)

 compiler

 dircache

 dl

 fpformat

 htmllib (replaced with HTMLParser)

 mhlib (replaced with mailbox)

 stat (changed to os.stat)

 urllib (replaced with urllib2)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

bapp03.indd 556bapp03.indd 556 12/22/09 10:36:52 AM12/22/09 10:36:52 AM

Appendix C: What’s New in Python 3.1

557

 In addition, the following modules have been renamed:

 _winreg is now winreg

 ConfigParser is now configparser

 copy_reg is now copyreg

 Queue is now queue

 SocketServer is now socketserver

 markupbase is now _markupbase

 repr is now reprlib

 test.test_support is now test.support

 To make things simpler, Python 3.1 has also gathered some similar modules and grouped them into a
single package. They are listed below:

 dbm now contains: anydbm, dbhash, dbm, dumbdbm, gdbm, and whichdb.

 html now contains: HTMLParser andhtmlentitydefs.

 http now contains: httplib, BaseHTTPServer, CGIHTTPServer, SimpleHTTPServer, Cookie, and
cookielib.

 tkinter now contains every Tkinter - related module with the sole exception of turtle.

 urllib now contains urllib, urllib2, urlparse, and robotparse.

 xmlrpc now contains xmlrpclib, DocXMLRPCServer, and SimpleXMLRPCServer.

 Builtins
 The following builtins were removed:

 apply()

 callable()

 coerce()

 execfile()

 the file type

 reduce()

 reload()

 dict.has_key()

 In addition, raw_input() has been changed to input().

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

bapp03.indd 557bapp03.indd 557 12/22/09 10:36:52 AM12/22/09 10:36:52 AM

558

Part IV: Appendices

 The 2to3 Tool
 While not an end all be all to converting your Python 2x code to 3x, the 2to3 tool can certainly help in
many areas. Basically, what the program does is take your existing code and apply a set of fixers to it,
transforming old code into new. For instance, if you were to run 2to3 on the following code:

print “Hi, my name is James and I am a Pythonaholic”

It would convert it to:
print(“Hi, my name is James and I am a Pythonaholic”)

 Pretty nifty right? There are, of course, many caveats for using the tool. First and foremost, the code you
run it against must work properly, so you will want to rigorously test your Python 2x code to ensure
there are no errors. Next, you must note that 2to3 will not fix everything; there are some things it has
not been programmed to convert. For these things, 2to3 will print a warning, which you will need to
manually change.

 For more information on using 2to3 and documentation on its fixers, visit the Python documentation at
 http://docs.python.org/dev/py3k/library/2to3.html#to3 - reference .

bapp03.indd 558bapp03.indd 558 12/22/09 10:36:52 AM12/22/09 10:36:52 AM

 D
 Glossary

 The following terms are used in the book and are presented here for your convenience.

 127.0.0.1 A special IP address used to denote “ this computer. ” See also localhost.

 Anonymous Anonymous functions and variables are not bound to names. Examples of this are
the functions created by the lambda function, a list, or a tuple created but never associated with
a name.

 Base64 An encoding strategy defi ned by MIME that escapes an entire string as a whole. More
effi cient than quoted - printable for binary data.

 BitTorrent A peer - to - peer protocol that distributes the cost of hosting a fi le among all the parties
downloading it.

 Call stack When code is executing, the call stack is the list of functions that your code has
executed to reach that point in the program. As functions or methods are entered, the location in
the fi le is noted along with the parameters that the function was called with, and the entry point is
marked in the call stack. When a function is exited, its entry in the call stack is removed. When an
exception occurs, a stack trace is printed that indicates where in the program the problem occurred.

 CGI The Common Gateway Interface: A standard for web servers that makes it easy to expose
web interfaces to scripts.

 Class (1) A class is a defi nition that can be used to create objects. A particular class defi nition
contains the declarations of the data and the methods that objects that are instances of that
particular class will have available to them. In Python, functions that appear within the context of
a class are considered to be methods. (2) An object holds data as well as the methods that operate
on that data. A class defi nes what data is stored and what methods are available. Python is a little
looser than most programming languages, such as Java, C++, or C#, in that Python lets you break

bapp04.indd 559bapp04.indd 559 12/22/09 10:37:20 AM12/22/09 10:37:20 AM

560

Part IV: Appendices

rules enforced in other languages. For example, Python, by default, lets you access data inside a class.
This does violate some of the concepts of object - oriented programming but with good reason: Python
aims fi rst and foremost to be practical.

 Client - server Describes an architecture in which one actor (the server) is a repository for information
requested and acted upon by other actors (the clients).

 Comment Comments are text in a program that Python does not pay attention to. At any point outside
of a string where a hash mark (#) appears, from that point until the end of the line, the Python interpreter
ignores all text.

 Content type A MIME concept used to indicate the type of a fi le being sent encoded inside an e - mail
message. Also used by web servers to indicate the type of fi le being served.

 DB API A Python API for accessing databases. The neat thing about this API is that you can use the
same Python code to work with any database for which there is a DB - compliant driver. This includes
Oracle, DB2, and so on. The only differences in your code will likely be the code to connect to the
database, which differs by vendor.

 DBM Short for database manager, DBM libraries provide a means to persist Python dictionaries.

 Dictionary A data type in Python that is indexed by an arbitrary value that is set by the programmer.
The value can be any kind of Python object. The index is called the “ key ” and the object that a key
references is referred to as its “ value. ”

 DNS Domain Name System. A service that runs on top of TCP and resolves hostnames (wrox.com) to
IP addresses (208.215.179.178).

 Document Model A way of describing the vocabulary and structure of a document. Defi nes the data
elements that will be present in a document, what relationship they have to one another, and how many
of them are expected.

 DOM The Document Object Model, a tree - based API recommendation from the W3C for working with
XML documents.

 DTD Document Type Defi nition. A specifi cation for producing a Document Model.

 Dynamic port See Ephemeral port.

 Encapsulation Encapsulation is the idea that a class can hide the internal details and data necessary to
perform a certain task. A class holds the necessary data, and you are not supposed to see that data under
normal circumstances. Furthermore, a class provides a number of methods to operate on that data. These
methods can hide the internal details, such as network protocols, disk access, and so on. Encapsulation
is a technique to simplify your programs. At each step in creating your program, you can write code that
concentrates on a single task. Encapsulation hides the complexity.

 Encryption The act of hiding information so that it is diffi cult or impossible to recover without a secret
password. Data is encrypted when it is recoverable. Data that is scrambled and unrecoverable should be
thought of as lost instead.

bapp04.indd 560bapp04.indd 560 12/22/09 10:37:20 AM12/22/09 10:37:20 AM

Appendix D: Glossary

561

 Ephemeral port High - numbered IP ports are often created to receive data over TCP/IP as part of a
particular socket connection. Ephemeral ports are administered by the operating system, and have a
lifetime of a single socket connection.

 Escape sequences Special characters that begin with the backslash, such as \n for a newline.

 Fault A term used in web services to denote an error condition. Similar to Python ’ s exceptions, and
generally implemented the same way as exceptions in Python are.

 Float A fl oating - point number is a number with a fractional or decimal component. Fractions can be
represented as decimal values using a fl oat value. When arithmetic is done with a fl oat and an integer,
the integer will be promoted to being a fl oat.

 Function A function is a collection of code defi ned using a name, and which is invoked through
that name.

 Header An item of metadata found both in e - mail messages and in HTTP requests and responses. A
header line consists of a key and value separated by a colon and a space. For instance: “ Subject: Hello ” .

 Hexadecimal Base 16 notation, where the numbers are from 0 through 15, and are represented by the
numbers 0 – 9. Once single digits are exhausted, the letters A – F are used. So the number 11 in hex is B.

 hostname A human - readable identifi er for a computer on an IP network, for instance: wrox.com .
Hostnames are administered through DNS.

 HTTP body The data portion of an HTTP request or response.

 HTTP headers The metadata portion of an HTTP request or response: a series of key - value pairs. HTTP
defi nes some standard headers, and CGI defi nes some more: applications can defi ne their own.

 HTTP HyperText Transfer Protocol, the protocol devised to let web browsers and web servers
communicate.

 HTTP request The string sent by an HTTP client to the server, requesting some operation on some
resource.

 HTTP response The string sent by an HTTP server to a client, in response to an HTTP request. In REST
terminology, it contains either a representation of a resource or a document describing action taken on a
resource.

 HTTP status code A numeric code used in an HTTP response to denote the status of the corresponding
request. Forty of these are defi ned in the HTTP standard.

 HTTP verb A string used in an HTTP request to describe what the client wants to do to a resource (for
instance, retrieve a representation of it or modify it).

 Idempotent An idempotent action has no side effects. A term taken from mathematics: Multiplying
a number by 1 is an idempotent action. So should be calling an object ’ s accessor method or (in REST)
making an HTTP GET request.

bapp04.indd 561bapp04.indd 561 12/22/09 10:37:21 AM12/22/09 10:37:21 AM

562

Part IV: Appendices

 Imaginary number A special number that acts like a fl oat but cannot be mixed freely with fl oats or
integers. If they are mixed, a complex number is the result, not an imaginary number.

 IMAP The Internet Message Access Protocol. Also known as IMAP4. A protocol for retrieving and
managing mail. IMAP4 intends for you to store your mail on the server. See also POP.

 Infi nite loop A loop that has no termination clause, such as “ while True: ” . Often, infi nite loops are an
accidental situation, but they can be useful as long as there are actions that will happen, and there is code
being executed. One example is a server waiting for connections.

 Inheritance Inheritance means that a class can inherit, or gain access to, data and methods defi ned in a
parent class. This just follows common sense in classifying a problem domain. For example, a rectangle
and a circle are both shapes. In this case, the base class would be Shape. The Rectangle class would then
inherit from Shape, as would the Circle class. Inheritance allows you to treat objects of both the Rectangle
and Circle classes as Shapes, meaning you can write more generic code. For the most part, the base class
should be general and the subclasses specialized. Oftentimes inheritance is called specialization.

 Input/Output An umbrella term that covers any kind of operation that reads or writes data. Writing to
screen, inputting from the keyboard, and network connections are all examples of Input/Output.

 Integer Whole numbers, without a fractional or decimal component.

 I/O See Input/Output.

 IP address The location of a computer on an IP network. For instance, 208.215.179.178.

 IP The Internet Protocol. Connects networks based on different technologies (for instance, Ethernet and
wireless) into a single network.

 IRC Internet Relay Chat. A protocol for online chat rooms.

 Iterator Iterators are objects that you can use in certain contexts that generate a sequence of outputs.
Unlike sequence objects, an iterator like xrange doesn ’ t have to return a fi nite list. The object can continue
to create return values when its next method is invoked. Iterators can be used with for loops.

 J2EE Java 2 Enterprise Edition, a set of standards for writing enterprise - worthy Java applications. There
are no real corresponding Python standards, but the Twisted framework and others provide enterprise -
 worthy features for Python.

 JVM Java Virtual Machine, the runtime engine of the Java platform. The java command runs Java
applications similar to the way the Python command runs Python applications.

 Jython An implementation of Python written in the Java language that runs on top of the Java platform.

 List A list is a type of sequence, as well as being an iterator. It is similar to a tuple, except that it can be
modifi ed after it is created. A list is created by using the square brackets ([]).

 localhost A special hostname used to denote “ this computer. ” See also 127.0.0.1.

bapp04.indd 562bapp04.indd 562 12/22/09 10:37:21 AM12/22/09 10:37:21 AM

Appendix D: Glossary

563

 Loop A loop is a form of repetition where a set of operations is performed, and the operations are
repeated until a set of conditions are set.

 Method A method is a function inside the context of an object (it is also called a method when
you write it inside of a class). It has automatic access to all of the data within the object that it was
invoked from.

 MIME Multipurpose Internet Mail Encoding. A set of standards that make it possible to send multiple
fi les and international and binary data through e - mail, while still complying with RFC 2822.

 Module A module is a collection of code within a fi le. Modules can contain functions, named variables,
and classes. When a module is used in a program, it is made available using the import built - in word,
and it lives within a scope named after the module. So in a module named “ mymodule ” the function
 “ myfunction ” would be called by calling “ mymodule.myfunction() ” . This can be modifi ed by the way
the module is imported; importing the modifi ers “ from ” and “ as ” can modify the behavior of import so
that the module is seen as having a different name. The current module can be found by looking at the
variable name “ __name__ ” , which is created locally in each module ’ s scope. If __name__ is “ __main__ ”
then the scope is currently the top-level module — that is, the program being run.

 Module A module is just a Python source fi le. A module can contain variables, classes, functions, and
any other element available in your Python scripts.

 Multipart message A MIME message that contains more than one “ document ” (for instance, a text
message and an image).

 Object An object is an instance of a class. Objects contain data and methods that are defi ned in the
class. Multiple objects of the same class may exist in the same program at the same time, using different
names. Each object has data that will be different from other objects of the same type. Objects are bound
to a name when they are created.

 Octal Base 8 notation, where the numbers range from 0 – 7.

 Package A package is a grouping of modules in a directory that contains a fi le called __init__.py .
Together, all the fi les in the directory can act together to implement a combined package that appears,
when it ’ s used, to act like a single module. The module can contain subdirectories that can also contain
modules. The package offers an organizational structure for distributing more complex program
structures, and it also allows for the conditional inclusion of code that may only work on one platform
(for instance, if one fi le could not work except on a Mac OS X system, it could be put into its own fi le and
called only after the correct platform had been verifi ed).

 Peer - to - peer Describes an architecture in which all actors have equal standing.

 Polymorphism Polymorphism means that subclasses can override methods for more specialized
behavior. For example, a Rectangle and a Circle are both Shapes. You may defi ne a set of common
operations, such as move and draw, that should apply to all shapes. But the draw method for a Circle will
obviously be different from the draw method for a Rectangle. Polymorphism allows you to name both
methods draw and then call these methods as if the Circle and the Rectangle were both Shapes (which
they are, at least in this example).

bapp04.indd 563bapp04.indd 563 12/22/09 10:37:22 AM12/22/09 10:37:22 AM

564

Part IV: Appendices

 POP The Post Offi ce Protocol. Also known as POP3. A protocol for downloading e - mail from a server.
POP intends that you delete the mail from the server after downloading it. See also IMAP.

 Port Along with an IP address, a port number identifi es a particular service on an Internet network.

 Protocol A convention for structuring the data sent between parties on a network. HTTP and TCP/IP
are examples of protocols.

 Protocol stack A suite of protocols in which the higher - level protocols delegate to the lower - level ones.

 Quoted - printable An encoding strategy defi ned by MIME that escapes each non - US ASCII character
individually. More effi cient than Base64 for text that contains mostly U.S. ASCII characters.

 Quotes In Python, strings are defi ned by being text within quotes. Quotes can be either single (‘),
double (“), or triple (“ “ ” or ‘ ‘ ‘). If a string is started with a single quote, it must be ended with a single
quote. A string begun with a double quote must be terminated with a double quote. A string begun with
a triple quote must be terminated with a triple quote of the same kind (’ ’ ’ must be matched by ‘ ‘ ‘ ,
and “ “ ” must be matched by “ “ ”). Single and double quotes function in exactly the same way. Triple
quotes are special because they can enclose multi - line strings (strings that contain newlines).

 Range Range generates a list of numbers, by default from zero to the number it is given as a parameter,
by one. It can also be instructed to start at a number other than zero and to increment in steps rather
than by one.

 RDBMS Relational Database Management System. See Relational database.

 Relational database In a relational database, data is stored in tables — two - dimensional data structures.
Each table is made up of rows, also called records. Each row in turn is made up of columns. Typically,
each record holds the information pertaining to one item, such as an audio CD, a person, a purchase
order, an automobile, and so on.

 Representation In REST terminology, a depiction of a resource. When you request a resource, what
you get back is a representation. One resource may have multiple representations. For instance, a single
document resource may have HTML, PostScript, and plain - text representations.

 Resource In REST terminology, an object that can be accessed and/or manipulated from the Web. Can
take a number of forms: For instance, it may be a document located on the server, a row in a database, or
even a physical object (such as an item you order in an online store).

 Resource identifi er A string that uniquely identifi es a resource. Generally equivalent to a URL. One
resource may have multiple identifi ers.

REST REpresentational State Transfer, a name for the architecture of the World Wide Web.

 RESTfulness An informal metric of how well a web application conforms to the design.

 RFC 2822 The standard format for Internet e - mail messages. Requires that e - mail messages be
formatted in U.S. ASCII.

 Robot A script that makes HTTP requests while not under the direct control of a human.

bapp04.indd 564bapp04.indd 564 12/22/09 10:37:22 AM12/22/09 10:37:22 AM

Appendix D: Glossary

565

 RSS Rich Site Summary, or RDF Site Summary. An XML - based format for syndicating content.

 SAX The Simple API for XML. A stream - based XML parser.

 Scope Names of data and code; variable names, class names, function names, and so on, which have
different levels of visibility. Names that are visible within a function or method are either in their scope or
come from a scope that is at a level above the scope of the operation accessing it.

 Sequence A sequence is a category of data types. A sequence can refer to any type of object that
contains an ordered numerical index, starting from zero, which contains references to values. Each
value referenced from an index number can be any Python object that could normally be referenced by a
variable name. Elements in a sequence are de-referenced by using the square brackets after the name of
the sequence. So for a sequence named “ seq, ” the fourth element is de-referenced when you see “ seq[3] ” .
It is 3 instead of 4 because the fi rst index number of the sequence is 0.

 SMTP Simple Mail Transport Protocol. The standard protocol for sending Internet e - mail.

 SOAP Originally stood for Simple Object Access Protocol. A standard for making web service calls,
similar to XML - RPC but more formally defi ned.

 Socket A two - way connection over an IP network. Sockets allow programmers to treat network
connections like fi les.

 Spider Robot that, given a starting web page, follows links to fi nd other web pages to operate on. Most
search engines have implemented spiders.

 SQL Structured query language, pronounced either sequel or S - Q - L. Language used to access relational
databases.

 SSL Secure Socket Layer. A protocol that runs between TCP/IP and some other protocol (such as SMTP
or HTTP), providing end - to - end encryption.

 Stack trace See Call stack.

 String Any combination of letters or numbers enclosed in quotation marks (either single, double, or a
series of three single or double quotes together). Strings are made up of multiple instances of characters
(a character is a data type that holds a single letter or number enclosed in quotation marks). In Python
3.1 there are two types of strings: str and bytes. The str type holds text, while the bytes type holds data.
If you wish to blend the two types together, you must explicitly convert between the two. If you want to
convert a string to a byte you would use str.encode(); to go from a byte to a string you would use bytes.
decode().

 TCP/IP A term used to describe a very common protocol stack: TCP running on top of IP.

 TCP Transport Control Protocol: Makes reliable, orderly communication possible between two points
on an IP network.

 Tuple A tuple is a type of sequence as well as an iterator. A tuple is similar to a list, except that once a
tuple has been defi ned, the number of elements, and the references to elements in it, cannot be changed
(however, if it references an object whose data you can change, such as a list or a dictionary, the data

bapp04.indd 565bapp04.indd 565 12/22/09 10:37:23 AM12/22/09 10:37:23 AM

566

Part IV: Appendices

within that other type can still be changed). Tuples are created with the parentheses “ () ” . When you
create a tuple that has only one element, you must put a comma after that single element. Failing to do
this will create a string.

 UID Unique ID. Used in a variety of contexts to denote an ID that is unique and stable over time.

 Unicode Unicode is a system for encoding strings so that the original letters can be determined, even if
someone using a different character encoding, by default, reads that string later. (Think of someone using
a computer localized for Russia trying to read a document written in Hebrew — internally, characters can
be thought of as numbers in a lookup table, and with different languages and character sets, character
#100 in either character set is likely to be different.)

 User agent A web browser or HTTP - enabled script.

 Variable A variable is what data bound to a name is called. The name “ variable ” usually refers to the
basic types and not more complex objects. This is true even though integers, fl oats, imaginary numbers,
and strings are all objects in Python. This way of thinking is a convention that carries over from other
languages where the distinction is made.

 Web application A program that exposes its interface through HTTP instead of through a command -
 line or GUI interface.

 Web service A web application designed for use by HTTP - enabled scripts instead of human beings
with web browsers.

 Well - known port IP port numbers between 0 and 1023 are well - known ports. Popular services like
web servers tend to run on well - known ports, and services running on well - known ports often run with
administrator privileges.

 Whitespace Whitespace refers to the names of the characters that you can ’ t see when you are typing or
reading. Newlines, spaces, and tab characters are all whitespace. Python pays attention to whitespaces
at the beginnings of lines, and it is aware of newlines at the ends of lines, except inside list or tuple
defi nitions, and except inside triple - quoted strings.

 wiki A web application that allows its users to create and edit web pages through a web interface.

 WSDL Web Services Description Language, a way of representing method calls in XML.

 XML eXtensible Markup Language. A specifi cation for creating structured markup languages with
customized vocabularies.

 XML - RPC The RPC stands for Remote Procedure Call. XML - RPC is a standard for making web service
calls. It defi nes a way of representing simple data structures in XML, sending data structures over HTTP
as arguments to a function call, and getting another data structure back as a return value.

 XML schema A specifi cation for producing a Document Model.

 XML validation The process of checking that an XML document is well formed and conforms to its
document model.

bapp04.indd 566bapp04.indd 566 12/22/09 10:37:23 AM12/22/09 10:37:23 AM

Appendix D: Glossary

567

 XML wellformedness The process of checking that an XML document conforms to the XML
specifi cation.

 Xrange Xrange generates an xrange object, which is an iterable object that behaves similarly to a list,
but because a list is not created there is no additional memory used when larger ranges of numbers are
required.

 XSL - FO Extensible Style Language Formatting Objects. Markup language for graphical display.
Commonly used for producing documents for fi nal presentation.

 XSLT Extensible Style Language for Transformations. A programming language for transforming XML.

bapp04.indd 567bapp04.indd 567 12/22/09 10:37:23 AM12/22/09 10:37:23 AM

bapp04.indd 568bapp04.indd 568 12/22/09 10:37:23 AM12/22/09 10:37:23 AM

Index

In
de

x

SYMBOLS/NUMERICS
! = (exclamation and equals), unequal

comparison, 53
‘ (single quotes), 9–11
“ (double quotes), 9–11
“ “ “ (triple quotes), 7, 10
character, 78
% sign (format specifiers)

as remainder operator, 370, 375
as string formatting operator, 21, 370
strings, 12

%d conversions, 371
%f format specifier

floating-point numbers, 370–371
program files, 24

%o and %#o conversion, 371
%w.pf conversion, 371
%x conversion, 371
() (parentheses), types, 34
* (asterisk)

floating-point conversions, 372
for glob patterns, 141
importing from modules, 167
modules’ contents, 120
multiplication, 21
in queries, 248

** (exponentiation operator), 375
+ (plus sign)

to combine strings, 11
number types, 20

, (commas)
recursive functions, 133
in tuples, 36–37

. (periods)
creating modules, 113, 114
as general wildcard, 199

\ (backslash)
directory names, 131
regular expressions, 199

Index

special text, 192
in strings, 127–128

/ (forward slash), 21, 131, 192, 272
/ / (forward slashes), floor division, 375
= (equals sign), names and values, 32
== (double equals), equality comparison, 52
? (question mark), for glob patterns, 141
{ } (curly braces), types, 34
[] (square braces)

glob patterns, 141
lists, 37
types, 34

2to3 tool, 558

A
__all__ list, 120–121
__all__ variable, 167
abs built-in function, 375
absolute paths, defined, 129, 134
ADA programming language, 290
add_some_text() function, 129
addition, testing, 210–212
addresses (Internet), 292
administrative panel (web applications), 388
aliases in SQL queries, 249
Amazon.com Web service

responses, 444–445
REST quick start, 443–445

anonymous functions, 143–144
Apilevel global, 261
APIs (Application Programming Interfaces),

252–262
AWS, 443
basics of, 239
swing APIs, Jython, 492–493

application layer, 291
applications. See also Web applications

Django, creating, 403–405
Jython-based, packaging, 488–489
vs. projects (Django), 403

bindex.indd 569bindex.indd 569 12/22/09 11:07:02 AM12/22/09 11:07:02 AM

570

architecture
client-server, 333, 409
Django, 390–396
MVC, 390–391
peer-to-peer, 333–334
of Web, 408–409

args data list, 150
arguments

defined, 26, 116
format specifiers, 26
Jython, 486

argv (argument vector), 116
arithmetic

order of evaluation, 24–25
program files, 21–23
in Python, 374–375
testing, 210–212

ArithTest class, 210, 211, 215
ArithTest2 class, 216
ArithTestSuper class, 215
array module, 382–383
arrays, 380–383
assert language feature, 208–209
AssertionErrors, 208
assertions, 208–209
assignment operator (the = sign), 83
attachments (MIME), 298
authentication (users), 388
axis (XPath), 272

B
base 10, defined, 27
base 16, defined, 27
base 8, defined, 27
Base64 encoding, 295–297
BaseRequestHandler subclass, 320
baz function, 343, 344
Beginning XML, 3rd Edition (Wrox Press), 267
binding to external hostnames, 316–317
BitTorrent, 334
BittyWiki

API documents, 473
API through XML-RPC, 460–463
core library, 429–432
exposing SOAP interface to, 468–470
manipulating through SOAP, 470
manipulating through WSDL proxies, 477–478
REST API, 448–451, 473

BittyWiki Web interface, 432–441
markup, 435–441
request structure, 433
resources, 433–435

bittywiki.delete(string pageName) method, 473
bittywiki.getPage(string pageName)

method, 473
BittyWikiRestAPI class, 453–454
bittywiki.save(string pageName, string text)

method, 473
blocks, programming in, 4
borders of widgets, customizing, 234
boundaries (e-mail), defined, 300
braces, enclosing, 34
break statements, 63, 64
bug reports, 224–225
built-ins

docstrings (documentation strings), 375–378
math functions, 375–378
Python 3.1 changes in, 557

C
C

Java, 481
Python, 337, 481
Python interpreter, 290–291

C, extension programming with, 337–366
C vs. Python, 337
exercises, 366
extension modules, building and installing,

340–342
extension modules outline, 338–340
LAME extension module, 350–363
LAME project, 346–350
parameters, passing to C, 342–345
Python objects from C code, 363–365
returning values from C, 345–346
summary, 366

C++
characters as numbers, 373
Java, 481

caching, web frameworks, 389
calling functions, 88
case sensitivity

globbing, 140
SQL keywords, 248

CGI (Common Gateway Interface), 417–422
basics of, 417–418
environment variables, 420–422

architecture

bindex.indd 570bindex.indd 570 12/22/09 11:07:03 AM12/22/09 11:07:03 AM

571

In
de

x

scripts, running, 418–419
user input with HTML forms, 422
web interface to BittyWiki, 435–436
Web servers and scripts, 419–420

CGIXMLRPCRequestHandler function, 474
channels (chats and), 323
characters as numbers, 373–374
Chat Server. See Python Chat Server
checkboxes, creating, 235
child processes, 152
children, defined, 163
children classes

creating, 281–282
defined, 163

class keyword, 96
classes, 95–107. See also specific classes

children classes, creating, 281–282
code, making into objects, 96–103
defined, 111, 163
defining/creating, 96–107, 163–164
documenting, 168–169
element classes (XML), 281–283
exceptions, 97
extending, 165–166
interface methods, writing, 100–101
internal methods, writing, 99
Java classes, using in Jython, 489–494
JNDI, 507
mail, 300
objects, creating from, 96–99
objects, 93–94, 104–107
overview, 111
Python 3.1 changes in, 555
scope of objects, 104–107
servlet classes in Jython, creating, 503
SmartMessage and MailServer classes,

302–305
widget classes, 237

clients
chat clients, 329–331
mirror clients, 318–320
Web clients, interacting with, 408
WikiSpiderSOAP.py client, 470–473

client-server architecture, 333, 409
clipping logs, 191
close method (dbm modules), 242, 244
cmath module, 380
code. See also source code

creating modules from pre-existing, 113–115
defining, def, 73

grouping under names, 73–74
making into objects, 96–103
saving in files, 71–72

Code Editor, saving program files with, 71
color

background, setting (Java), 493
customizing (widgets), 234

command line, starting modules from, 115–117
commands. See also specific commands

four basic (HTTP), 411
Jython, executable, 186–187
servers, 325

commas (,)
recursive functions, 133
in tuples, 36–37

comments
basics of, 78–79
web applications, 388

Common Gateway Interface (CGI). See CGI
(Common Gateway Interface)

comparison of values
difference comparison, 53
equality comparison, 51–53
more than one comparison, 56–60
Python 3.1 changes in, 555

compiling, .pyc Files, 122
complex joins, writing, 257–258
complex numbers, 16–17, 378–380
concatenation, 11–13
configuring

database settings (Django models), 401–403
GUI widgets, 231, 234

conjugate method, 379
connections (databases)

Connection object, 253
transactions, 260

content types (MIME), 297
context, defined, 6
continue statement, 64–65
controller, MVC architecture, 391
copying

data, 33
files, 138

C-Python
basics of, 483
vs. Jython, 483
Jython, handling differences, 510–511

CRUD (Create, Read, Update, Delete), 247,
248, 433

CRUD (Create, Read, Update, Delete)

bindex.indd 571bindex.indd 571 12/22/09 11:07:03 AM12/22/09 11:07:03 AM

572

Cunningham, Ward, 428
curly braces ({ }), types, 34
cursors

databases, 253–255
defined, 253
dynamic, 500
static database cursors, 500
widgets, customizing, 234

customizing widgets, 233–234

D
__doc__, 76
data

changing through names, 33
copying, 33
dictionaries as indexed groupings of, 39–41
lists as changeable sequences of, 37–39
names for, 31–34
representation of in XML-RPC, 457–458
storage, relational databases, 245
storing using lists, 45–46
tuples for unchanging sequences of, 34–37

data link layer, 291
database APIs

complex joins, writing, 257–258
connections, creating, 253
cursors, 253–255
documenting. See Web service APIs,

documenting
employees, removing, 259–260
errors, handling, 261–262
managers, updating, 258–259
module capabilities, 261
modules, downloading, 252–253
simple query, writing, 256–257
transactions, 260–261

databases. See also DBM persistent dictionaries;
relational databases; text processing

accessing, 239–240
basics of, 189
connectivity (web applications), 388
exercises, 263
setting up, 250–251, 496–500
settings for Django models, 401–403
summary, 262–263

databases, accessing from Jython, 494–500
basics of, 494–495
databases, setting up, 496–500

Python DB API, 495
tables, creating, 497–500

DB API
basics of, 252
modules, downloading, 252–253

dbm module, 240, 245
DBM persistent dictionaries, 240–245

accessing, 243–244
creating, 241–242
DBM modules, choosing, 240–241
vs. relational databases, 245

dbm.dumb module, 240
dbm.gnu module, 240
decimal points in formatting numbers, 371, 372
decisions in Python, 57–60
def, defining code, 73
defining/creating classes, 96–107, 163–164
delete(string pageName) method, 473
deleting. See also removing

CRUD, 247, 248, 433
files, 138
QUID, 247
rows, 249

dereference feature, tuples, 35
dialog boxes, creating, 236–237
dictionaries

defined, 39
dictionary parameters, 222
getting keys from, 40–41
making, 39–40
string substitution using, 148–149

difference comparison, 53
dir function

methods, objects and strings, 94–95
modules, 158–159
print_dir function, 137

directories. See also files and directories
contents, 135–136
creating and removing, 140
navigation of, text processing, 190
packages, 118–119
recursive listings, 136–137
types of entries, 136

distutils package
distributing modules, 341
for installing modules, 184, 185, 186

division, 21–22
Django, 387–406

applications, creating, 403–405
apps vs. projects, 403

Cunningham, Ward

bindex.indd 572bindex.indd 572 12/22/09 11:07:03 AM12/22/09 11:07:03 AM

573

In
de

x

architecture of, 390–396
exercises, 406
installing, 389–390
origination of, 389
project setup, 391–394
summary, 405–406
templates, 396–398
templates and views. See templates

and views (Django)
URLconf, creating, 395–396
views, creating, 394–396
web application frameworks, 387–389

docstrings (documentation strings), 75, 96
document models, 268
document root (XML), 266
documentation

in context of functions, 75
of modules, 168–176
Web services, 441–442

documenting APIs. See Web service
APIs, documenting

doGet method, 503
DOM

basics of, 275–276
parsers, 276–278

doPost method, 503
double equals (==), equality comparison, 52
double quotes (“), 9–11
drivers

databases, 496–497
JDBC, 494

DTDs (Document Type Definitions)
basics of, 268–270
HTML, 273

dynamic cursors, defined, 500

E
Eclipse Integrated Development Environment

(IDE), 506
element classes (XML), 281–283
else: condition, 64
e-mail. See also mailboxes; MailServer

mail spools, parsing with, 305–306
retrieving, 305–313

from IMAP servers, 309–313
parsing with mailbox, 305–306
from POP3 servers, 307–309
printing mailbox summaries, 309, 311

security: POP3 and IMAP, 313
webmail vs. e-mail, 313

sending, 293–305
e-mail file format, 294–295d
example of, 288–289
with MailServer, 305
MIME messages. See MIME (Multi-purpose

Internet Mail Extension)
with SMTP and smtplib, 303–304

sifting through, 192
vs. webmail, 313

employees
managers of, updating, 258–259
removing, 259–260

encapsulation
basics of, 163
defined, 168

encode function, 350–351
encodings (MIME), 295–297
equality

equality comparison, 51–53
more/less than, 55

equals (=) sign, names and values, 32
error codes, standard, 416
error handling

database modules, 261–262
deeper, reading, 88–89
flagging errors, 87
module-specific, defining, 166–167
preparing Python for, 65–67
SOAP Web services, 468
XML-RPC Web services, 459–460

etiquette for Web services, 479–480
events, SAX, 275
except: statements, 65
exceptions. See also os exceptions

classes, 97
creating, 66–67
DB API, 261–262
error handling, 65–67
file exceptions, 131
format specifiers, 26
IOError exception, 131
Python 3.1 changes, 554

execute method, 256, 258
exercises (answers by chapter), 515–548
exponential notation, 370
exponentiation operator (**), 375
extend method, for growing lists, 45
extensibility, XML, 267

extensibility, XML

bindex.indd 573bindex.indd 573 12/22/09 11:07:04 AM12/22/09 11:07:04 AM

574

EXtensible Markup Language. See XML
(EXtensible Markup Language)

eXtensible Stylesheet Language Transformations
(XSLT), 280

extension modules, C and
building and installing, 340–342
outline, 338–340

Extreme Programming. See XP testing
methodology

F
fall-through statements, 60
false values. See values, True and False
Fielding, Roy, 408, 409
file systems, navigating with os module,

192–198
basics of, 192–194
files, listing, 194–195
files, searching for, 195–198
paths, 194–195

files
directories, 127–142

exceptions in os. See os exceptions
exercises, 142
file exceptions, 131
file objects, 127–131
paths and directories, 131–132
summary, 142
text, appending to files, 129
text files, reading, 130–131
text files, writing, 128–129

file information, obtaining, 136–137
file permissions, 138
listing, 194–195
parsing (XML), 284
renaming/moving/copying/removing, 137–138
rotating, 138–139
searching for, 190–191, 195–198, 220–224
WSDL, 475, 477

filter functions, 143–144
find_file function, 221, 222
finding files. See searching for files
flags

creating persistent dictionaries, 242
defined, 116

float objects, 369
float type, 368
floating-point numbers

%f format specifier, 24
basics of, 16, 19

in Python, 369–370
using care with, 23

floor division, 375
folders, saving program files in, 71
fonts (widgets), customizing, 234
for . . . in . . . : statements, 63, 64
for loop, iterating, 60, 61–62, 64
for operations, 60, 61–62
foreign keys, defined, 246
ForkingMixIn class (SocketServer module), 321
format specifiers, 12
formats

e-mail, 294–295
of numbers, 25–26

formatting numbers, 370–372
forms (HTML), limited vocabulary, 422–423
forward slash (/), 21, 131, 192, 272
fromstring() function, 283, 284
functions

anonymous, 143–144
built-in math, 375–378
C implementation of, 338–339
calling, 88
creating modules with, 162
defined, 8
defining, 74
documenting, 168–169
inside of, 86–87
invoking when complete, 85–86
invoking with parameters, 80
lambda and filter, 143–144
layers of, 88–89
methods, 95
named. See named functions
os and os.path, 193–195
in os.path, 137
program files, 71–73
recursive, 133

G
__getitem____ method, 147
getPage(string pageName) method, 473
global scope

importing into, 120
names in, 77

globals (DB API), 261
globbing, 140–141
glue (C), defined, 338

EXtensible Markup Language

bindex.indd 574bindex.indd 574 12/22/09 11:07:04 AM12/22/09 11:07:04 AM

575

In
de

x

gnu_getopt, 150
graphical user interface. See GUI (graphical

user interface); GUIs, writing
greater than and less than, 54–55
the Grinder, 483
GUI (graphical user interface)

GUI widgets. See Tkinter, creating GUI
widgets with

IDLE GUI, 5
writing, 227–238

exercises, 238
overview, 227
summary, 238
Tkinter. See Tkinter, creating GUI widgets with
toolkits for, 228–229

H
handle_data function (HTML), 274
handle_starttag/endtag methods (HTML),

273–274
handleRequest method, 503–504
handling errors. See error handling
has and has_various methods, 101
headers

email, 294–295
HTTP, 416–417

help function, documenting modules, 169–176
hexadecimal literals, 368, 371
hexadecimal numbers, formatting, 27
hierarchy

schemas, 271
of widgets, 232

Hoare, C. A. R., 337
Holovaty, Adrian, 389
hostnames

external, binding to, 316–317
vs. IP addresses, 292

HSqlDB, 496–497, 498–499
HTML

basics of, 422
forms, safety when accessing, 423–427
forms basics, 422
forms limited vocabulary, 422–423
as subset of XML, 272–274

HTMLParser class, 273
HTTP: real-world REST, 411–417

HTTP requests, 414–416
HTTP responses, 414–417

Visible Web Server, 412–415
Web server, 411–412

HTTP_USER_AGENT string, 422
HttpServlet (Jython), 503–504
Hunter, David, 267

I
-i, running programs with, 73, 486
__init__ method, 98
__init__implementation, 355–356
__init__.py file, 119, 391
IANA (Internet Assigned Numbers

Authority), 293
IDE (Eclipse Integrated Development

Environment), 506
IDLE GUI, 5
if. . . reserved word, 57–60
Im mathematical operation, 379
imaginary numbers, 17–18, 378
IMAP

e-mail from servers with imaplib, 309–313
security, 313

immutable frozensets, 46
import keyword, 112–113, 115, 118
importing

extension modules, 342–343
modules, 112–113, 159
modules and packages, 121–123

IndexErrors, 37
infinite loops, defined, 62–63
inheritance, 163
initialization function, 340
installing

Django, 389–390
Jython, 483–484
modules, 183–186
Python, 5–6
Tomcat, 501

int constructor, 368
int type, 368
integers

basics of, 16, 19, 368
long integers, 369
Python 3.1 changes, 554

interfaces
basics of, 97–98
BittyWiki Web interface. See BittyWiki Web

interface
Python, 363

interfaces

bindex.indd 575bindex.indd 575 12/22/09 11:07:05 AM12/22/09 11:07:05 AM

576

robots, 441
user interfaces from Jython, 492–494

Internet. See also network programming
addresses, 292
ports, 293

Internet Assigned Numbers
Authority (IANA), 293

Internet Protocol (IP)
basics of, 292–293
stack, 290–291

interpreted languages, defined, 4
interpreters

Jython interpreter, embedding, 507–510
JythonInterpreter plugin, 506
Python interpreter and C, 290–291

IOError exception, 131
IP addresses, 292
iteration

iterators, generating for loops, 146–148
for loop, 60, 61–62, 64
returning iterators (Python 3.1), 553
while operations, 60–62

J
Java, integrating with Jython, 489–506

databases. See databases, accessing
from Jython

Java classes, using in Jython, 489–494
Java EE servlets, writing in Jython. See Jython,

writing Java EE servlets in
user interfaces from Jython, 492–494

Java, integrating with Python, 481–512
C-Python and Jython, handling differences,

510–511
C-Python vs. Jython, 483
exercises, 512
Java, integrating with Jython. See databases,

accessing from Jython; Java, integrating
with Jython

Java basics, 481
Java vs. Python, 481
JDBC, 494
Jython, executable commands, 186–187
Jython, installing, 483–484
Jython, running interactively, 484–485
Jython, running on your own, 488
Jython, testing from, 506–507
Jython basics, 481–482

Jython interpreter, embedding, 507–510
Jython scripts, calling from Java, 508–510
Jython scripts, controlling, 486–487
Jython scripts, running, 485–486
Jython-based applications, packaging, 488–489
scripting with Java applications, 482–483
summary, 511

Java Database Connectivity (JDBC), 494
Java EE (Java Platform Enterprise Edition), 500
Java methods, calling, 510–511
Java Naming and Directory Interface (JNDI)

classes, 507
Java virtual machine (JVM), 481
javax.servlet.http.HttpServlet class, 503
JButton widget, 493
JDBC (Java Database Connectivity), 494
jEdit text editor, 506
JFrame widget, 494
JLabel widget, 493
JNDI (Java Naming and Directory Interface)

classes, 507
joins

complex, writing, 257–258
defined, 248
performing, 248–249
simple query for performing, 256–257

Josephson, Michael, 444
JVM (Java virtual machine), 481
JyScriptRunner.java file, 508–510
Jython

applications, packaging, 488–489
basics, 481–482
vs. C-Python, 483
C-Python, handling differences, 510–511
databases. See databases, accessing

from Jython
executable commands, 486–487
installing, 483–484
Java classes, using in, 489–494
Jython command, 486
Jython interpreter, embedding, 507–510
resources, 550
running interactively, 484–485
running on your own, 488
scripts, calling from Java, 508–510
scripts, controlling, 486–487
scripts, running, 485–486
tools for, 506
user interfaces, 492–494
when to use, 483

interfaces (continued)

bindex.indd 576bindex.indd 576 12/22/09 11:07:05 AM12/22/09 11:07:05 AM

577

In
de

x

Jython, writing Java EE servlets in, 500–505
application server setup, 501
basics of, 500
HttpServlet, extending, 503–504
PyServlet, adding to application servers,

501–503
Python servlets, writing, 504–505
tools for Jython, 506

JythonInterpreter plugin, 506

K
Kaplan-Moss, Jacob, 389
KeyError, 66
keys

dictionaries, 39, 40–41
foreign keys, defined, 246
primary keys, defined, 246

keys method (persistent dictionaries), 243
keyword parameter mechanism, 222

L
__len__ methods, 95
lambda, 143–144
LAME

extension module, 350–363
project, 346–350

languages
comparing protocols of, 289–290
Internet protocol stack, 290–291
interpreted, defined, 4
large systems programming languages, 482
scripting, 482
semantic markup languages, 266
XML, 265–267
XSLT, 280

layers
defined, 291
of functions, 88–89

layouts (GUI widgets), creating, 232–233
less than and greater than, 54–55
libgmail project, 313
libraries

BittyWiki core library, 429–432
dbm library, 241
LAME library, 347
libxslt C library, 280
SOAP library for Python, 466

socket library, 314
wxPython library, 229
XML document to describe, 266
XML libraries, 274

Linux
compiling extension modules on, 340–342
installing Python on, 6
os.path on, 132–133
packages for, 347

lists
appending sequences to, 45
arrays, 381
basics of, 37–39
list comprehension, 145
recursive directory listings, 136–137
slicing, 44
for storing data, 45–46
treating strings like, 41–42
vs. tuples, 38–39

literal numbers, 368
LiveHTTPHeaders extension, 415
local scopes, 77
localhost, defined, 292
logs, clipping, 191
long integers, 369
loops

generating iterators for, 146–148
infinite loops, defined, 62–63
for loop, 60, 61–62, 64
while loops, 60–62

lxml, 280, 283–284

M
__models.py__ file, 404
Mac, installing Python on, 6
mail. See e-mail
mail spools, parsing with, 305–306
mailboxes

parsing with, 305–306
POP3 and IMAP, 309, 311
summary of, printing, 306, 309, 311

MailServer, 305
make_text_file() function, 128
manage.py ⎯ file, 391
map function, 144–145
markup

BittyWiki Web interface, 435–441
wikis, 429

markup

bindex.indd 577bindex.indd 577 12/22/09 11:07:06 AM12/22/09 11:07:06 AM

578

math module, 374, 376–377
mathematics. See also arithmetic

in Jython, 485
in Python, 374–378

max built-in function, 376
maxOccurs, 271
membership in classes, defined, 163
memory, DOM, 275, 276
methods. See also specific methods

BaseRequestHandler subclass, 320
BittyWiki API server, 473
BittyWiki SOAP server, 473
defining classes, 99–103
documenting, 168–169
functions, 95
interface, writing, 100–101
internal, writing, 99
Java, calling, 510–511
Python 3.1 changes in, 555
strings, 94
XML-RPC introspection API, 474

MIME (Multi-purpose Internet Mail
Extension), 295–303

attachments, 298
basics of, 295
content types, 297
encodings, 295–297
multipart messages, 298–303
SmartMessage, 302–303

min built-in function, 376
mirror clients, 318–320
mirror servers, 317–318
mistakes, numbers, 26–27
modal dialog boxes, 236
the mode, 242
models (Django)

basics of, 401
configuring database settings, 401–403
creating, 403–405
installing, 404–405

models, MVC architecture, 391
Model-Template-View (MTV) architecture, 401
Model-View-Controller (MVC) architecture,

390–391
modules

array, 382–383
basics of, 111–112
CGI, 423
cmath, 380
creating from pre-existing code, 113–115

current scope, 120–121
defined, 157, 162
exercises, 125
exporting from packages, 121
extension modules, building and

installing, 340–342
extension modules outline, 338–340
import keyword, 112–113, 115, 118
importing, 112–113
for interacting with web clients and servers, 408
for Internet protocols, 288
math, 374, 376–377
packages, using, 120–124
packages basics, 118–120
quopri module, 296
re-importing modules and packages, 121–123
removed/renamed in Python 3.1, 556–557
select module, 331–332
summary, 124–125
sys.modules, examining, 122–123
testing, 124
urllib module, 444
using, command line, 115–117

modules, building, 157–188
basics of, 157–159
classes, creating, 163–164
classes, extending, 165–166
completing, 166
creating whole modules, 179–183
DB API and module capabilities, 261
DB API modules, downloading, 252–253
documenting, 168–176
exercises, 188
exploring, 160–161
exporting, 167–168
finding, 159–160
functions, 162
getopt module, 149–152
importing, 112–113, 159, 167
installing, 183–186
modules and packages, creating, 162
module-specific errors, defining, 166–167
OOP, defining, 163
os module. See file systems, navigating

with os module; os exceptions
re module. See regular expressions and

the re module
running as programs, 178
selecting (DBM), 240–241
summary, 187
testing, 176–177

math module

bindex.indd 578bindex.indd 578 12/22/09 11:07:06 AM12/22/09 11:07:06 AM

579

In
de

x

modulus operation, 22
money, displaying, 25
moving

files, 137–138
os exceptions, 137–138

MP3s
creating (LAME), 347–350
encoding, 346, 350–361

MTV (Model-Template-View) architecture, 401
multidimensional sequences, 36
multipart messages (MIME), 298–303
Multi-purpose Internet Mail Extension (MIME).

See MIME (Multi-purpose Internet Mail
Extension)

multithreaded servers, 321–322
mutable sets, 46
MVC architecture, 390–391
MySQL resources, 550

N
named functions, 73–87

calling from within other functions, 84–86
comments, 78–79
defining, 73–74
describing, 75–76
duplicate names, 76–78
errors, flagging, 87
functions inside of, 86–87
name selection, 75
parameters, checking, 81–83
parameters, setting default values, 83–84
values, providing, 79–80

named variables, 93
names

assigning values to, 32
for data, 31–34
grouping code under, 73–74
nicknames, defined (chats), 323
reserved, 34

/names command, 323
namespaces, 266–267
network layer, 291
network programming, 287–335

e-mail, sending. See e-mail, sending; MIME
(Multi-purpose Internet Mail Extension)

exercises, 335
peer-to-peer architecture, 333–334
protocol design considerations, 333
protocols. See protocols

retrieving e-mail. See e-mail, retrieving
socket programming. See socket programming
summary, 334
terse protocols, 333
trusted servers, 333

/nick [nickname] command, 323
nicknames, defined (chats), 323
node test (XPath), 272
nodes

DOM, 278
XPath, 272

none value, 42
nonmodal dialog boxes, 236
Notepad, creating program files in, 18–19
NULL characters, LAME extension module, 358
numbers, 15–29, 368–374

characters as, 373–374
complex, 378–380
exercises, 29
floating-point. See floating-point numbers
formats, 25–26
formatting, 370–372
integers. See integers
kinds of, 15–18
literal, 368
long integers, 369
mistakes, 26–27
octal and hexadecimal, 27
order of evaluation, 24–25
program files. See program files and numbers
summary, 28
type function, 16

numerical analysis, defined, 367
numerical programming, 367–385.

See also numbers
arithmetic, 374–375
arrays, 380–383
built-in math functions, 375–378
complex numbers, 378–380
exercises, 384–385
mathematics, 374–378
summary, 384

O
- O, 209
object-oriented programming (OOP)

defined, 4
defining, 163
usefulness of, 106

object-oriented programming (OOP)

bindex.indd 579bindex.indd 579 12/22/09 11:07:07 AM12/22/09 11:07:07 AM

580

object-relational databases (ORM), 245
objects

basics of, 93–95
from C code, 363–365
creating from classes, 96–99
defined, 111
file objects, 127–131
LAME extension module, 351, 352, 353
making code into, 96–103
methods and strings, 94
prevalence in Python, 339
using, 95

octal, defined, 27
octal numbers, formatting, 27
OnDemandAmazonList class, 447–448
open function, 241, 242
operators

arithmetic, 374
in DTDs, 269
Python 3.1 changes in, 555

ord function, 373
ORM (object-relational databases), 245
os and os.path functions, 193–195
os exceptions, 132–141

directories, creating and removing, 140
directory contents, 135–136
file information, obtaining, 136–137
files, renaming/moving/copying/removing,

137–138
globbing, 140–141
paths, 132–134
rotating files, 138–139

os module, 112. See also file systems, navigating
with os module

os.fork calls, 152, 153, 154
os.spawn family of functions, 153
os.wait function, 153
os.walk function, 194, 196, 221
overloading, defined, 22

P
P2P forums, xxxiii–xxxiv
packages

basics of, 111, 118–120
creating installable, 184–186
defined, 111
exporting modules from, 121

importing, 121–123
Jython-based applications, 488–489
modules, 120–124
Python 3.1 changes in, 557
testing, 124

packing order (widgets), 233
parameters

arguments, 116
checking type, 81–83
database connections, 253
defined, 26, 79
invoking functions with, 80
passing to C, 342–345
PyObject_CallMethod, 365
setting default values, 83–84
XML-RPC, 458

params list (SOAP), 468
Paramstyle global, 261
parent-child relationships

widget hierarchy, 232
XML, 283

parents
element classes (XML), 281–282
parent directories, 140
parent paths, 132–133
processes, 152–153
widgets, 232

parsing
DOM parsers, 276–278
HTML forms, 423
HTMLParser class, 273
with lxml, 283–284
with mailbox, 305–306
SAX parsers, 276, 279
xml.dom.minidom parser, 277–278
xml.sax parser, 276

PATH_INFO variable, 422
paths

directories, 131–132
os exceptions, 132–134
os.path module, 194–195

peer-to-peer architecture, 333–334
permissions

administrative panel, 388
file permissions, 138

Pilgrim, Mark, 444
plugins (Jython), 506
polymorphism, 163

object-relational databases (ORM)

bindex.indd 580bindex.indd 580 12/22/09 11:07:07 AM12/22/09 11:07:07 AM

581

In
de

x

POP3
e-mail, retrieving, 307–309
vs. IMAP, 309
security, 313
UIDs, 313

poplib, retrieving e-mail with, 307–309
pop-ups (print() function), 8–9
ports (Internet), 293
predicates, XPath, 272
primary keys, defined, 246
print() function

basics of, 8–9
displaying numbers with, 24
joining strings with, 12
Python 3.1, 553

print_dir function, 137
print_dir_by_ext function, 136
print_line_lengths function, 131
printing

HTML form submissions, 426–427
lengths of lines, 131
math, 23
sys.argv, 117

private methods, 98
processes

multiple tasks with one process, 154–155
using more than one, 152

program files
first line of, 72
.py extension, 72
saving code in, 71–72

program files and numbers, 18–24
%f format specifier, 24
basic math, 21–23
creating in Notepad, 18–19
different number types, 19–21
printing math, 23

programming, 3–14
basics of, 3–5
exercises, 14
extension. See C, extension programming with
Extreme Programming. See XP testing

methodology
foundation of, 93
installing Python, 5–6
network. See network programming
numerical. See numerical programming
OOP, 4. See also object-oriented

programming (OOP)
the shell, 6

socket. See socket programming
strings. See strings
summary of basics, 13–14

programming languages. See languages
programs, running modules as, 178
projects, vs. applications (Django), 403
properties

databases, connecting to, 496
JDBC drivers, 494
passing named to constructors, 491

protocols, 289–293
defined, 289
design considerations, 333
Internet addresses, 292
Internet ports, 293
Internet protocol stack, 290–291
mirror servers, 324
programming languages, 289–290
Python Chat Server, 323–329
terse protocols, 333

Purcell, Steve, 211
.py extension, 18, 72, 113
Py_BuildValue function, 346
PyAmazon, 444
PyArg_ParseTuple function, 343–344, 345, 364
PyArg_ParseTupleAndKeywords function,

344–345
.pyc Files, compiling, 122
PyDev plugin, 506
PyMethodDef structures, 339
PyObject_CallMethod, 365
PyQT, 228
PyServlet class, 501–503, 505, 507
Python

vs. C, 337
C-Python and Jython, handling differences,

510–511
C-Python vs. Jython, 483
installing, 5–6
vs. Java, 481
Jython, 482–483
Python DB API, Jython, 495
when to use, 191

Python 3.1 changes, 553–558
2to3 tool added, 558
in APIs, 553
in built-ins, 557
in classes, 555
in comparisons, operators and methods, 555
exceptions, 554

Python 3.1 changes

bindex.indd 581bindex.indd 581 12/22/09 11:07:07 AM12/22/09 11:07:07 AM

582

integers, 554
modules removed/renamed, 556–557
in packages, 557
print function, 553
syntactical, 555–556
in Unicode and 8 bit strings, 554

Python Chat Client, 329–331
Python Chat Server, 322–329

basics of, 322–323
design of, 323
protocol, 323–329

Python Code Editor, 71
Python IDLE GUI, 5
Python interpreter, C, 290–291
PythonChatClient.py client, 329
PyUnit module. See also testing

basics of, 207, 209
resources, 550

Pywftk resources, 550

Q
queries, database, 256–257
QUERY_STRING variable, 422
QUID (Query, Update, Insert, Delete), 247
/quit [farewell message] command, 323
quopri module, 296
quoted-printable encoding, 295–297
quotes in strings, 6, 7–11

R
radio buttons, creating, 235–236
radix 10, defined, 27
raise . . . command, 87
range function, 146–148
range iterators, 147
raw strings, defined, 199
Re mathematical operation, 379
re module. See regular expressions

and the re module
read method, 130
reading text files, 130–131
readline method, 130
records, inserting, 254–255
recursive functions, 133
regular expressions, 199

text processing, 190
vs. wildcards, 199

regular expressions and the re module, 199–203
basics of, 199–202
exercises, 204
summary, 203
tests, adding, 202–203

Reinhardt, Django, 389
relational databases, 245–251

vs. DBM persistent dictionaries, 245
setting up, 250–251
SQL statements, writing, 247–249
tables, defining, 249–250
working with, 245–247

relative paths, defined, 129, 134
reload function (modules), 176
remainder operator (%), 375
reminder operation, 22
removing. See also deleting

directories, 140
employees (from databases), 259–260
files, 137–138

renaming
files, 137–138
modules, 556–557

render_to_response method, 398–399
repetition

repetitive tasks, 60–62
stopping, 62–65

representation of resources (REST), 410
request structure (BittyWiki Web interface), 433
REQUEST_METHOD verb, 422
requests (HTTP)

basics of, 414–416
BittyWiki Web interface, 433
SOAP Web services, 466–467
XML-RPC Web services, 457–458

resizing GUI widgets, 230–231
the resource (REST), 410
resources. See also Websites for downloading;

Websites for further information
BittyWiki Web interface, 433–435
REST, 409

resources in REST, 410–411
responses (HTTP)

Amazon.com Web service, 444–445
basics of, 414–417
SOAP Web services, 467–468
XML-RPC Web services, 459

REST (Representational State Transfer). See also
HTTP: real-world REST; REST Web services

Amazon Web services, 443
basics of, 408–409

Python 3.1 changes (continued)

bindex.indd 582bindex.indd 582 12/22/09 11:07:08 AM12/22/09 11:07:08 AM

583

In
de

x

further information, 409
operations, 410–411
pros and cons of, 478
representations of resources, 410
resources, 410
vs. SOAP, 478
vs. XML-RPC, 478
vs. XML-RPC Web services, 456

REST Web services, 442–455
Amazon.com, 443–445
basics of, 442–443
BittyWiki REST API, 448–451
quick start, 443–445
wiki search-and-replace, 451–455
wish lists, 445–448

RFC 2822, 294–295
rfile, defined, 320
robots and Web services, 441–442, 449
rot13 cipher, 373
rotating files, 138–139
round function (numbers), 376
rows

deleting, 249
inserting, 248

S
__settings.py__ file, 402
save(string pageName, string text) method, 473
SAX

basics of, 274–276
vs. DOM, 275–276
parsers, 276, 279

schemas (XML), 268, 270–271
scope

defined, 104
naming functions, 77
of objects, 96–99, 104–107
packages, 123

scripting
with Java applications, 482–483
for Python, 483
subscripting, defined, 81

scripts
CGI, Web servers, 419–420
executable (Jython), 487–488
Jython, calling from Java, 508–510
Jython, controlling, 486–487

Jython, running, 485–486
text processing scripts, 189, 190, 191
turning into Web applications (CGI). See CGI

(Common Gateway Interface)
sdist argument, 184
search utility, implementing, 216–217
search-and-replace

using REST, 451–455
using SOAP, 470–472
using XML-RPC, 463–465

searching for files
navigating with os module, 195–198
search frameworks, 220–224
text processing scripts, 190–191

Secure Socket Layer (SSL), POP3 and IMAP, 313
security (POP3 and IMAP), 313
select command, joins, 248–249
select module, 331–332
select module, single-threaded multitasking

with, 329–331
self, defined, 104
sequences

appending to lists, 45
multidimensional, 36
properties, 43–47
ranges of, 44
referencing final elements, 43–44

server commands, 325
servers

adding PyServelet to (Jython), 501–503
application server setup (Jython), 501
Chat Server. See Python Chat Server
IMAP servers, 309–313
mail servers, keeping on, 309
mirror servers, 317–318
multithreaded servers, 321–322
POP3 servers, 307–309
session state, 409–410
trusted servers, 333

servlet containers, defined, 501
servlets

defined, 500
HttpServlet (Jython), 503–504
PyServlet (Jython), 501–503
writing, 504–505

session state, servers, 409–410
sets, 46–47
settings.py ⎯ file, 391
setUp method, 213

setUp method

bindex.indd 583bindex.indd 583 12/22/09 11:07:08 AM12/22/09 11:07:08 AM

584

setup.py script, 184–185
shebang comment, 487, 488
the shell, 6
shortcuts, XPath, 272
signed numbers, 27
signed type numbers, 27
SimpleHTTPRequestHandler class, 412, 414
single quotes ('), 9–11
size (widgets), customizing, 234
slicing

sequences, 44
strings, 41–42

SmartMessages, 302–303
SMTP (Simple Mail Transport Protocol),

303–304
smtplib module, 288, 333–334
SOAP Web services

basics of, 465
BittyWiki, exposing interface to, 468–470
BittyWiki, manipulating through, 470
errors, 468
pros and cons of, 478
quick start, 466
requests, 466–467
responses, 467–468
wiki search-and-replace using, 470–472
vs. XML-RPC and REST, 478

SOAPpy package, 465, 466
socket programming, 314–332

Chat Server. See Python Chat Server
external hostnames, binding to, 316–317
mirror clients, 318–320
mirror servers, 317–318
multithreaded servers, 321–322
Python Chat Client, 329–331
single-threaded multitasking, 331–332
socket library, 314
sockets, defined, 314
sockets basics, 314–316
SocketServer, 320–321

software life cycles, testing, 224–225
source code

defined, 5
used in book, xxxiii

specialization, defined, 163
speed, DOM vs. SAX, 276
spools (mail) parsing with, 305–306
SQL (Structured Query Language)

QUID, 247
writing statements, 247–249

Sqlite
basics of, 250
connecting to, 254, 255
databases, creating with, 250–251

sqlite3
databases, creating, 250–251
Django models, creating, 401–403
resources, 550

square braces ([])
glob patterns, 141
lists, 37
types, 34

SSL (Secure Socket Layer), POP3 and IMAP, 313
stability of interfaces, defined, 103
stack, Internet protocol, 290–291
stack trace, 88–89
standards

for Web services, 442, 478–479
XML, 267

Startproject command, 391
static database cursors, defined, 500
static keyword, 339
steps (XPath), 272
storage, back-end (BittyWiki), 429
storing data

relational databases, 245
using lists, 45–46

str constructor, numbers, 370
stream-based data (SAX), 275, 276
strings, 7–13

% sign in, 21
basics of, 7
combining, 11–13
defined, 6, 7, 94
including different numbers in, 20–21
methods, 94
print() function, 8–9
quotes, 7–11
regular expressions, 199–202
REST support of, 456
slicing, 41–42, 44
string interpolation, 436–437
substitution using dictionaries, 148–149
treating like lists, 41–42
using to compare types, 82–83

Structured Query Language (SQL)
QUID, 247
writing statements, 247–249

subclasses, creating, 165–166
subclassing, threads, 154

setup.py script

bindex.indd 584bindex.indd 584 12/22/09 11:07:09 AM12/22/09 11:07:09 AM

585

In
de

x

SubjectLister class
IMAP, 309, 311, 312
POP3, 307–309

subscripting, defined, 81
subscription IDs, 443
sum function (numbers), 376
SuperSimpleSocketServer, 315–316
swing APIs, Jython, 492–493
syntax, Python 3.1 changes in, 555–556
sys.argv, 117
sys.modules, 113–114, 122–123, 160
sys.path variable (modules), 183–184
System.listMethods() method, 474
System.methodHelp(string funcName)

method, 474
System.methodSignature(stringfuncName)

method, 474

T
tables

creating (Jython), 497–500
defining, 249–250

tags, XML, 266
TCP (Transmission Control Protocol), 291
TCP/IP, 291, 314
tearDown method, 213
telnet program, connecting with, 315–316
templates

basics of, 280, 396–398
web frameworks, 389

templates and views (Django), 398–403
models, configuring database settings, 401–403
models, 401
templates basics, 396–398
using, 398–401
views, creating, 394–396

terse protocols, 333
test cases, 209–212
test fixtures, 213–216
test suites

basics of, 210–212
writing, 217–220

TestCase classes, 209, 210, 213
testing, 207–226. See also XP testing

methodology
assertions, 208–209
basics of, 207
files, 202–203

full systems, 483
from Jython, 506–507
modules, 124, 176–177
packages, 124
PyUnit basics, 207
software life cycles, 224–225
summary, 225–226

tests
reversing outcome of, 56
test cases, 209–212
test fixtures, 213–216
test suites, 210–212
tests within tests, 58–60

text
adding to elements (XML), 282–283
appending to files, 129
chat text, 325
mirroring with MirrorServer, 318
Python 3.1 changes, 554

text files
reading, 130–131
writing, 128–129

text processing, 189–204
clipping logs, 191
defined, 189
file systems, navigating. See file systems,

navigating with os module
files, searching for, 190–191
mail, sifting through, 192
regular expressions. See regular expressions

and the re module
usefulness of, 189–190

TextTestRunner class, 211
ThreadingMixIn class (SocketServer module),

321–322
threads, multiple tasks, 153
Tkinter, creating GUI widgets with, 229–237

appearance, 233–234
configuring options, 231
dialog boxes, 236–237
exercises, 238
layouts, creating, 232–233
packing order, 233
radio buttons and checkboxes, 235–236
resizing, 230–231
simple program, 229–230
summary, 238
Tkinter basics, 229
widgets, applying actions to, 231–232
widgets, types of, 237

Tkinter, creating GUI widgets with

bindex.indd 585bindex.indd 585 12/22/09 11:07:09 AM12/22/09 11:07:09 AM

586

Tkinter resources, 550
Tomcat, servlets containers, 501
tools

2to3 tool, 558
Jython, 506
toolkits for writing GUIs, 228–229
Workflow toolkit resources, 550

top command (POP3), 308, 309
toprettyxml utility, 278
transactions (databases)

committing, 255
connections, 260
defined, 245
support for, 245
working with and committing results, 260–261

Transmission Control Protocol (TCP), 291
transport layer, 291
triple quotes (“ “ “), 7, 10
true values. See values, True and False
truncating numbers, defined, 368
trusted servers, 333
try statements, 65–67
tuples

arrays, 381
basics of, 34–37
vs. lists, 38–39
slicing, 44

type function, 16, 82
type objects, 353, 354
TypeError, 66, 81
types

content types (MIME), 297
determining with type function, 82
immutable, 37, 42
lists as, 37–39
number types, 16, 19–21
special types, 42–43
strings, to compare, 82–83
tuples as, 34–37

U
__urls.py__ file, 395
UID (unique ID), 312–313
Unicode in Python 3.1, 554
unit tests, 209–212, 483
unittest, 209
unsigned numbers, 27
unsubscriptable, defined, 81

URLconf, Django, 395–396
urllib module, 444
URLs

URL mapping and web frameworks, 388
URLconf, 395, 398

__urls.py__ file, 394, 395
user authentication, 388
user interfaces. See also GUI (graphical user

interface); GUIs, writing
creating (Jython), 492–494

V
values

dictionaries, 39–40
difference comparison, 53
equality comparison, 52–53
form values, accessing (HTML), 423–427
for functions, 79–80
greater/less than, 54–55
more than one comparison, 56–60
providing for named functions, 79–80
returning from C, 345–346
setting for parameters, 83–84

values, True and False
equality comparison, 51–53
reversing, 56
as special types, 42–43

variable __debug__, 209
variables, 31–48

defined, 32, 93
dictionaries, 39–41
environment variables (CGI), 420–422
exercises, 48
lists, 37–39
lists, for storing data, 45–46
lists, joining, 45
named, 93
names for data, 31–34
ranges of sequences, 44
referencing final elements, 43–44
sequence properties, 43–47
sets, 46–47
special types, 42–43
strings, treating like lists, 41–42
summary, 47–48
tuples, 34–37

vectors, defined, 116
verbs (HTTP), 411

Tkinter resources

bindex.indd 586bindex.indd 586 12/22/09 11:07:10 AM12/22/09 11:07:10 AM

587

In
de

x

views. See also templates and views (Django)
creating (Django), 394–396
MVC architecture, 391
returning (Python 3.1), 553

W
the Web

background of, 407
REST, 408–411
virtues of, 408

web application frameworks, 387–389
Web applications, 407–441. See also Web

services
accessing form values, 423–427
benefits for developers, 407
exercises, 480
HTML forms, 422–423
HTTP: real-world REST. See HTTP: real-world

REST
REST, 408–411
summary, 480
turning CGI scripts into. See CGI (Common

Gateway Interface)
as Web services, 480
wikis. See wikis, building

Web servers
CGI scripts, 419–420
simple, 411–412
Visible Web Server, 412–415

Web service APIs, documenting, 472–478
human-readable API documentation, 473
WSDL, 475–478
XML-RPC introspection API, 474

Web services, 441–480
basics of, 441–442
defined, 441
documenting APIs. See Web service APIs,

documenting
etiquette, 479–480
REST Web services. See Rest Web services
robots, 441–442
standards, choosing, 478–479
standards for, 442
Web applications as, 480
XML-RPC. See XML-RPC Web services

Websites for downloading
database modules, 252
Django, 390
Eclipse, 506

Jython, 483
LAME package, 347
LiveHTTPHeaders extension, 415
lxml, 280
PyAmazon, 444
Python, 6, 389
SOAP libraries, 466
software required for book examples, 549–550
source code used in book, xxxiii
Tomcat, 501
toolkits for writing GUIs, 228
Web-Sniffer, 415

Websites for further information
2to3 tool, 558
DB API, 262
Django, 389
error codes, 416
floating-point numbers, 19
the Grinder, 483
Java EE, 503
jEdit text editor and plugins, 506
LAME Project, 347
libgmail project, 313
lxml, 284
namespaces, 267
ORM, 245
Python, 551
Python 3.1 changes, 553
Python API documentation from C, 338
Python documentation, 184
REST, 409
SQL, 247
Tkinter, 229
wiki design principles, 429
wxPython, 229
XPath shortcuts, 272

webmail, vs. e-mail, 313
Web-Sniffer, 415
wfile, defined, 320
wftk resources, 550
while . . . : statements, 62–63
while operations, 60–62
widgets. See also Tkinter, creating

GUI widgets with
defined, 229

Wikipedia, 428
wikis

search-and-replace using REST, 451–455
search-and-replace using SOAP, 470–472
search-and-replace using XML-RPC, 463–465

wikis

bindex.indd 587bindex.indd 587 12/22/09 11:07:10 AM12/22/09 11:07:10 AM

588

wikis, building, 428–441
BittyWiki core library, 429–432
BittyWiki Web interface. See BittyWiki

Web interface
pages, creating, 432
wiki basics, 428–429
WikiWords, 430

WikiSpiderREST.py command, 455, 463
WikiSpiderSOAP.py client, 470–473
WikiSpiderXMLRPC.py script, 463–465
WikiWords, 428, 430
wildcards. See also globbing

vs. regular expressions, 199
Willison, Simon, 389
Windows, installing Python on, 5–6
wish lists (Amazon.com), 445–448
Wrox P2P, xxxiii–xxxiv
WSDL, documenting Web service APIs, 475–478
wxPython, 229
wxWidgets, 229

X
XML (EXtensible Markup Language), 265–285

basics of, 265, 267
DOM, 275–276
DOM parsers, 276–278
DTDs, 268–270
element classes, 281–283
exercises, 285
extensibility and standards, 267
as hierarchical language, 265–267
HTML as subset of, 272–274
libraries, 274
lxml, 280, 283–284

SAX, 274–276
SAX parsers, 276, 279
schemas, 268, 270–271
summary, 285
XPath, 272
XSLT, 280

xml.dom.minidom parser, 277–278
XML-RPC Web services, 456–465

basics of, 456–457
BittyWiki API through, 460–463
errors, 459–460
introspection API, 474
pros and cons of, 478
requests, 457–458
responses, 459
vs. REST, 456, 478
SOAP. See SOAP Web services
vs. SOAP, 478
wiki search-and-replace using, 463–465

xmlrpc.server function, 474
xml.sax parser, 276
XP testing methodology, 216–224

search frameworks, 220–221
search parameters, adding, 222–224
search utility, implementing, 216–217
test suites, writing, 217–220

XPath, 272
XSLT (eXtensible Stylesheet Language

Transformations), 280

Z
Zawinski, Jamie, 288–289
zxJDBC module (Jython), 494, 495

wikis, building

bindex.indd 588bindex.indd 588 12/22/09 11:07:11 AM12/22/09 11:07:11 AM

badvert.indd 589badvert.indd 589 12/22/09 6:04:48 PM12/22/09 6:04:48 PM

badvert.indd 590badvert.indd 590 12/22/09 6:04:48 PM12/22/09 6:04:48 PM

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Related Wrox Books

Python: Create - Modify - Reuse
ISBN: 978-0-470-25932-0
This hands-on book shows how you can efficiently use Python to create robust, real-world applications. You will jump right into
practical Python development so that you can create useful, streamlined scripts that are easy to maintain and enhance, and that
you can immediately put to use in the real world. Each chapter features a complete project that you can use as it currently
exists or modify to suit your particular purposes.

Professional Python Frameworks: Web 2.0 Programming with Django and Turbogears
ISBN: 978-0-470-13809-0
As two of the leading MVC web frameworks for Python, Django and TurboGears allow you to develop and launch sites in a fraction
of the time compared to traditional techniques, and they provide greater stability, scalability, and management than alternatives.
Packed with examples, this book will help you discover a new methodology for designing, coding, testing, and deploying rich web
applications. For both frameworks, you’ll create useful applications that exemplify common Web 2.0 design paradigms and their
solutions. Ultimately, you’ll leverage your Python skills using Django and TurboGears and go from novice to RIA expert.

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Using Python 2.6 and Python 3.1

Beginning

Python®

James Payne

Beginning

Payne

 $39.99 USA
 $47.99 CANSoftware Development / General

Python
®

Create a robust, reliable, and
reusable Python application

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

As an open source, object-oriented programming language, Python is
easy to understand, extendable, and user-friendly. This book covers
every aspect of Python so that you can get started writing your own
programs with Python today. Author James Payne begins with the most
basic concepts of the Python language—placing a special focus on the
2.6 and 3.1 versions—and he offers an in-depth look at existing Python
programs so you can learn by example. Topics progress from strings,
lists, and dictionaries to classes, objects, and modules. With this book,
you will learn how to quickly and confidently create a robust, reliable,
and reusable Python application.

Beginning Python:

• Introduces the concepts of variables for storing and manipulating data

• Examines files and input/output for reading or writing data

• Reviews examples of often-overlooked features of Python

• Delves into writing tests for modules and programs

• Addresses programming with a graphical user interface in Python

• Places special focus on XML, HTML, XSL, and related technologies

• Explains how to extend Python

• Shares numerical programming techniques

• Offers an inside look at Jython, a version of Python written in Java

James Payne is Editor in Chief of www.developershed.com, a network of high-
technology sites that serves millions of unique visitors every month who are
seeking tutorials, advice, answers, or articles.

Wrox Beginning guides are crafted to make learning programming languages
and technologies easier than you think, providing a structured, tutorial format
that will guide you through all the techniques involved.

Using
Python 2.6

and
Python 3.1

	Beginning Python: Using Python 2.6 and Python 3.1
	About the Author
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Part I: Dipping Your Toe into Python
	Chapter 1: Programming Basics and Strings
	How Programming is Different from Using a Computer
	The First Steps
	Beginning to Use Python—Strings
	Putting Two Strings Together
	Putting Strings Together in Different Ways
	Summary
	Exercises

	Chapter 2: Numbers and Operators
	Different Kinds of Numbers
	Program Files
	Using Numbers
	Summary
	Exercises

	Chapter 3: Variables—Names for Values
	Referring to Data—Using Names for Data
	Using More Built-in Types
	Other Common Sequence Properties
	Summary
	Exercises

	Part II: Python Language and the Standard Library
	Chapter 4: Making Decisions
	Comparing Values—Are They the Same?
	Doing the Opposite—Not Equal
	Comparing Values—Which One Is More?
	Reversing True and False
	Looking for the Results of More Than One Comparison
	Repetition
	Handling Errors
	Summary
	Exercises

	Chapter 5: Functions
	Putting Your Program into Its Own File
	Functions: Grouping Code under a Name
	Layers of Functions
	Summary
	Exercises

	Chapter 6: Classes and Objects
	Thinking About Programming
	Defining a Class
	Summary
	Exercises

	Chapter 7: Organizing Programs
	Modules
	Packages
	Modules and Packages
	Basics of Testing Your Modules and Packages
	Summary
	Exercises

	Chapter 8: Files and Directories
	File Objects
	Paths and Directories
	Exceptions in os
	Summary
	Exercises

	Chapter 9: Other Features of the Language
	Lambda and Filter: Short Anonymous Functions
	Map: Short-Circuiting Loops
	Decisions within Lists—List Comprehension
	Generating Iterators for Loops
	Special String Substitution Using Dictionaries
	Featured Modules
	Summary
	Exercises

	Chapter 10: Building a Module
	Exploring Modules
	Creating Modules and Packages
	Working with Classes
	Finishing Your Modules
	Creating a Whole Module
	Installing Your Modules
	Summary
	Exercises

	Chapter 11: Text Processing
	Why Text Processing Is So Useful
	Navigating the File System with the os Module
	Working with Regular Expressions and the re Module
	Summary
	Exercises

	Part III: Putting Python to Work
	Chapter 12: Testing
	Assertions
	Test Cases and Test Suites
	Test Fixtures
	Putting It All Together with Extreme Programming
	Formal Testing in the Software Life Cycle
	Summary

	Chapter 13: Writing a GUI with Python
	GUI Programming Toolkits for Python
	Tkinter Introduction
	Creating GUI Widgets with Tkinter
	Summary
	Exercises

	Chapter 14: Accessing Databases
	Working with DBM Persistent Dictionaries
	Working with Relational Databases
	Using the Python Database APIs
	Summary
	Exercises

	Chapter 15: Using Python for XML
	What Is XML?
	What Is a Schema/DTD?
	Document Type Definitions
	Schemas
	XPath
	HTML as a Subset of XML
	XML Libraries Available for Python
	What Is SAX?
	Why Use SAX or DOM
	SAX and DOM Parsers Available for Python
	Intro to XSLT
	What Is lxml?
	Element Classes
	Parsing with lxml
	Summary
	Exercises

	Chapter 16: Network Programming
	Understanding Protocols
	Sending Internet E-mail
	Retrieving Internet E-mail
	Socket Programming
	Other Topics
	Summary
	Exercises

	Chapter 17: Extension Programming with C
	Extension Module Outline
	Building and Installing Extension Modules
	Passing Parameters from Python to C
	Returning Values from C to Python
	The LAME Project
	The LAME Extension Module
	Using Python Objects from C Code
	Summary
	Exercises

	Chapter 18: Numerical Programming
	Numbers in Python
	Mathematics
	Complex Numbers
	Arrays
	Summary
	Exercises

	Chapter 19: An Introduction to Django
	What Are Frameworks and Why Would I Use One?
	Other Features of Web Frameworks
	Django—How It All Began
	Understanding Django’s Architecture
	Working with Templates
	Using Templates and Views
	Creating a Model: Creating an Application
	Summary
	Exercises

	Chapter 20: Web Applications and Web Services
	REST: The Architecture of the Web
	HTTP: Real-World REST
	CGI: Turning Scripts into Web Applications
	HTML Forms’ Limited Vocabulary
	Safety When Accessing Form Values
	Building a Wiki
	Web Services
	REST Web Services
	XML-RPC
	SOAP
	Documenting Your Web Service API
	Choosing a Web Service Standard
	Web Service Etiquette
	Summary
	Exercises

	Chapter 21: Integrating Java with Python
	Scripting within Java Applications
	Comparing Python Implementations
	Installing Jython
	Running Jython
	Running Jython on Your Own
	Packaging Jython-Based Applications
	Integrating Java and Jython
	Testing from Jython
	Embedding the Jython Interpreter
	Handling Differences between C-Python and Jython
	Summary
	Exercises

	Part IV: Appendices
	Appendix A: Answers to the Exercises
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21

	Appendix B: Online Resources
	Software
	For More Information

	Appendix C: What’s New in Python 3.1
	Print Is Now a Function
	Certain APIs Return Views and Iterators
	Integers
	Unicode and 8-bit
	Exceptions
	Classes
	Comparisons, Operators, and Methods
	Syntactical Changes
	Packages and Modules
	Builtins
	The 2to3 Tool

	Appendix D: Glossary

	Index

