

Learn Chart.js

Create interactive visualizations for the Web with Chart.js 2

Helder da Rocha

BIRMINGHAM - MUMBAI

Learn Chart.js
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Content Development Editor: Pranay Fereira
Technical Editor: Diksha Wakode
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Manju Arasan
Graphics: Alishon Mendonsa
Production Coordinator: Nilesh Mohite

First published: February 2019

Production reference: 1280219

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-248-2

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Helder da Rocha has taught, written, and developed applications with Java and web
technologies since 1995. In 1996, he wrote one of the first books in Portuguese about HTML
and JavaScript. Since then he has created hundreds of presentations, tutorials, and course
materials on Java, Java EE, programming tools, patterns, techniques, methodologies,
HTML, CSS, JavaScript, SVG, XML, data visualization, Arduino, and the Internet of Things.
He holds a master's degree in computer science. He also has a background in the visual arts
and design and has some of his artwork in permanent museum exhibits. He lives in São
Paulo, Brazil, where he works as an independent consultant, developer, and instructor, and
is a frequent speaker at technological events.

I would like to thank my wife, Ana Carolina, and my daughter, Marina, for their patience
and inspiration. Many examples created for this book use data from public portals and
scientific publications. Thanks to the researchers for sharing it, which certainly made this
book much more interesting. Finally, I must thank the creators of Chart.js 2.0, Ranner
Linsley, Evert Timberg, and the GitHub community, since this book would not exist
without them.

About the reviewer
Bruno Joseph D'mello is proactively working at Truckx as a full stack developer. He is a
JS enthusiast and loves working with open source communities. He possesses more than
6 years' experience in web development. Bruno follows kaizen and enjoys the freedom
of architecting new things at work. He is socially active via coaching web technologies
or participating in other research projects and meetups. When not engaged with
technology, Bruno likes to spend quality time traveling with family and friends.

I would like to thank my family for their patience and support, especially my mom.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction 5
Data visualization 6

Chart types 6
Choosing a chart 7
Web-based visualizations 11

Why use a data visualization library? 11
Creating data visualizations for the Web 11

How to use this book 15
Summary 17
References 18

Chapter 2: Technology Fundamentals 19
Essential JavaScript for Chart.js 20

Browser tools 20
JavaScript types and variables 21
Data structures used in charts 22
Arrays 22
Strings 25
Functions 27
Objects 28

Other technologies 30
HTML Document Object Model(DOM) 30
Cascading Style Sheets 33
JQuery fundamentals 36
HTML5 Canvas 37

Data formats 41
CSV 42
XML 43
JSON 43

Loading and parsing external data files 44
Using a Web server 45
Loading files using standard JavaScript 45
Loading files using JQuery 46
Loading files using the standard Fetch API 46
Parsing JSON 47
Parsing CSV 48
Loading multiple files 48
Displaying a map 48

Table of Contents

[ii]

Extracting and transforming data 51
Online tools 51
Extracting data with XPath 52

Summary 55

Chapter 3: Chart.js - Quick Start 56
Introduction to Chart.js 57

Installation and setup 57
Creating a simple bar chart 60

Setting up the graphics context 60
Creating a bar chart 62
Configuring colors, fonts, and responsiveness 65

Dataset configuration for bar charts 65
Options configuration 67

Text and fonts 69
Global defaults 71
Transitions, interactions, and tooltips 72

Transition duration 72
Updating charts 72

Tooltips 74
Working with larger and multiple datasets 75

Loading data 75
Horizontal bar chart 78

Adding extra datasets 79
Stacking bars 82
Summary 84
References 84

Chapter 4: Creating Charts 86
Line and area charts 86

Creating a simple line chart 87
Dataset configuration 88
Options configuration for line charts 94
Line charts with more than one dataset 95
Loading data from external files 98

Stacked area charts 103
Radar charts 107
Pie and doughnut charts 112

Creating a simple pie chart 112
Dataset properties for pie charts 114
Configuration options 115
How to show values in the slices 115
Preparing data for pie and doughnut charts 117
Changing the circumference 122
Pie and doughnut charts with multiple datasets 124

Table of Contents

[iii]

Polar area charts 126
Scatter and bubble charts 129

Creating a scatter chart 129
Revealing correlations with scatter charts 132
Scatter charts with large quantities of data 136
Bubble charts 138

Summary 142
References 142

Chapter 5: Scales and Grid Configuration 144
Configuring scales 144
Cartesian configuration options 145
Cartesian axes, ticks, and grid lines 147
Numeric Cartesian scales 148

Linear scales 149
Logarithmic scales 150
Configuring axis titles 152
Configuring ticks 153
Configuring grid lines 157

Category scales 161
Configuring the axes 161
Configuring ticks 165
Configuring grid lines 166

Time scales 167
Configuring the time format 169
Configuring the axes 171
Configuring ticks 172
Configuring grid lines 174

Radial scales 174
Configuring point labels 175
Configuring ticks 176
Configuring grids and angle lines 179

Configuring advanced scales 180
Multiple Cartesian axes 181
Callbacks 183
The scale service 184

Summary 185
References 185

Chapter 6: Configuring Styles and Interactivity 186
Default configuration 186

Global defaults 188
Scale defaults 190
Graphical elements 191
Chart defaults 192

Table of Contents

[iv]

Fonts 194
Selecting standard fonts 194
Using Web fonts 195

Colors, gradients, patterns, and shadows 197
Configuring colors 197
Color schemes and palettes 198

Gradients 202
Patterns 205
Shadows and bevels 208
Adding text elements and labels 209

Legends and labels 210
Titles 214

Adding labels to lines, bars, and slices 214
Interactions, data updates, and animations 218
Data updates 219

Events 221
Configuring animations 221

Summary 225
References 225

Chapter 7: Advanced Chart.js 226
Tooltip configuration 226
Hovering interactions 231
Scriptable properties 233

Tooltip callbacks 235
Custom HTML tooltips 237

Advanced legend configuration 240
Generating labels 240

HTML legends 242
Displaying multiple charts 244

Rendering many charts on one page 244
Mixed charts 247

Overlaying a canvas 249
Extending Chart.js 253

Prototype methods 253
Creating plugins 255
Chart.js extensions 261
Summary 261
References 261

Other Books You May Enjoy 263

Index 266

Preface
Learn Chart.js will make visualization easy and attractive for websites that are data
intensive. I will explain how to make complicated data simple, accessible, and intuitive, so
that your users will be able to better understand your website.

This book is a practical introduction to creating and publishing your own interactive data
visualization projects on the Web.

After reading this book, you will be able to create beautiful charts for the Web with Chart.js.

Who this book is for
The book is for designers and artists who wish to create interactive data visualizations for
the Web.

Basic knowledge of HTML, CSS, and JavaScript would be of great help.

What this book covers
Chapter 1, Introduction, introduces Chart.js and explains the basic concepts.

Chapter 2, Technology Fundamentals, explains the various fundamentals and setups needed
for Chart.js

Chapter 3, Chart.js - Quick Start, provides a quick start to creating web-based data
visualizations with Chart.js. It will show you how to set up the library and configure a basic
web page on which you can place a chart. We will walk through a complete step-by-step
example, describing how to create a bar chart and configure it with labels, tooltips, titles,
interactions, colors, animations, and more.

Chapter 4, Creating Charts, covers several charts that can be created with Chart.js to
efficiently communicate quantitative information and relationships. The choice of a chart
depends on the type of data, how each set of values is related to one another, and what
kind of relationships you want to show.

Preface

[2]

Chapter 5, Scales and Grid Configuration, explains how to configure the look and feel of a
chart so it reflects a desired layout or style, follow good practices of chart design, and tune
its interactive and responsive behavior.

Chapter 6, Configuring Styles and Interactivity, explores configuration topics that you won't
use as frequently and that may require additional coding, extensions, and integration with
other libraries, such as tooltip behavior configuration, label generation, scripting, creating
mixed charts, creating plugins, using the Chart.js API, and using HTML Canvas with
Chart.js.

Chapter 7, Advanced Chart.js, will explore fonts, padding, axes, screen resizing, and
responsiveness.

To get the most out of this book
I recommend that you read the first chapter to make sure that you are up to speed with the
basic concepts and fundamentals of Chart.js. In the next chapters, we will see the setup that
Chart.js needs and the various visual representation techniques this book will teach us and
their uses. There will be tutorials on using the different chart types, and we will explore
their interactivity.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[3]

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Learn- ​Charts. ​js. In case there's an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "This sets the color to be used in fill() commands."

A block of code is set as follows:

const chartObj = {…}; // the chart data is here
const context = canvas.getContext("2d");
new Chart(context, chartObj); // this will display the chart in the canvas

Any command-line input or output is written as follows:

npm install chart.js --save
bower install chart.js --save

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"You just need to add the Chart.js CDN in the Resources tab."

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://github.com/PacktPublishing/Learn-Charts.js
https://github.com/PacktPublishing/Learn-Charts.js
https://github.com/PacktPublishing/Learn-Charts.js
https://github.com/PacktPublishing/Learn-Charts.js
https://github.com/PacktPublishing/Learn-Charts.js
https://github.com/PacktPublishing/Learn-Charts.js
https://github.com/PacktPublishing/Learn-Charts.js
https://github.com/PacktPublishing/Learn-Charts.js
https://github.com/PacktPublishing/Learn-Charts.js
https://github.com/PacktPublishing/Learn-Charts.js
https://github.com/PacktPublishing/Learn-Charts.js
https://github.com/PacktPublishing/Learn-Charts.js
https://github.com/PacktPublishing/Learn-Charts.js
https://github.com/PacktPublishing/Learn-Charts.js
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Introduction

This is a book about data visualization using JavaScript with Chart.js, one of the most
popular data visualization libraries, and also one of the easiest to use. Chart.js provides
ready-to-use interactive visualizations for your data with minimal coding. After loading
your data into a standard JavaScript array, you can add styles and other configuration
using simple object-based declarative structures. Chart.js automatically scales your data,
generates ticks and grid lines, creates interactive tooltips, and fits the available space,
making your chart automatically responsive. It's a great way to start creating data
visualizations for the Web.

Chart.js is free, open source, and maintained by an active community of developers on
GitHub. As a data visualization library, it is in second place on GitHub in terms of the
number of stars it has. First place belongs to D3.js, a much larger and complex library with
a steep learning curve. You still need to know JavaScript, HTML, and CSS to use Chart.js,
but you don't have to be a guru. Besides JavaScript, it's also based on other Web standards,
such as DOM, CSS, and Canvas. Charts are automatically rendered in Canvas and control
all canvas configuration, resizing, and pixel ratios. The only thing you need to know about
Canvas is how to include a <canvas> tag in your page and obtain a context, but Canvas
knowledge can be useful in advanced charts.

This book assumes you know some JavaScript, HTML, and CSS. The next chapter provides
a quick refresher on specific topics and the main technologies you are likely to encounter
while learning Chart.js. You can skip it and jump straight to Chapter 3, Chart.js – Quick
Start, if you wish. This chapter provides a brief introduction to data visualization and data
visualization frameworks, and gives an overview of the rest of the book.

Introduction Chapter 1

[6]

This chapter will cover the following topics:

Data visualization
Why use a data visualization library?
How to use this book

Data visualization
Visual representations provide data with contexts that stimulate the viewer's brain,
revealing information that is usually not obvious from tabular data. It's normally much
more natural to capture the substantive content of data using visual artifacts. Charts and
maps are a powerful, clear, and effective means to tell stories through data. They can pack
huge quantities of information in small spaces and make it easier to compare data, provide
insights, and reveal trends, relationships, causality, and other patterns hidden in the
numbers.

Charts reveal and emphasize data by attracting the viewer's attention. They can simplify
complex data sets to foster discovery and comprehension, helping viewers to analyze and
reason about data in different contexts. But they can also exaggerate, mislead, and even lie.
A visually attractive chart is important, but designers should discover how to achieve a
balance between form and function.

Data visualization is both an art and a science. A chart does not need to explain everything.
It doesn't always have to be precise. It may be directed toward a specific audience, which
should provide the context necessary to understand and decode it.

Chart types
Data visualization usually refers to the visual display of quantitative information, as in
statistical and information charts, plots, data maps, and so on. but it can include any kind of
visual representation of data, such as mathematical graphics, path networks (subway
systems, roads, electronic circuit diagrams), word clouds, musical and sound
representations, timelines, geographical information systems, chemical and atomic
diagrams, or any other way of coding of data using visual artifacts.

Introduction Chapter 1

[7]

You can create any type of visualization if you use a data-driven library such as D3.js. A
charting library such as Chart.js, which comes with a set of pre-configured formats, is more
limited, but much easier to use.

Chart.js supports eight basic types of chart:

Bar (horizontal and vertical)
Line/area (including stacked)
Radar (radial line)
Polar area (radial bar)
Scatter
Bubble
Pie
Doughnut

It doesn't offer support for network diagrams, trees, or geographical maps, but you can
create Chart.js visualizations that share data with other graphics. In Chapter 4, Creating
Charts, we will create a bubble chart, representing populations of cities around the world,
and plot them on a map with Chart.js.

Choosing a chart
Choosing a chart requires knowing your data. Charts are a means of communication aimed
at revealing information, so the main question is: what do you want to show? Once you've
answered that question, you should analyze your data and discover what kind of data you
have. Data values used in visualizations can usually be classified as one of these three
types:

Quantitative: A value that can be measured or counted (a number, a length, an
area, an angle)
Ordinal: A value can be ranked or compared (color saturation, area, angle,
length, words)
Nominal: A category (a name)

What is the purpose of you chart? Do you wish to reveal relationships, trends, or causality?
What kind of relationship do you wish to emphasize? Do your variables relate to time or
space?

Introduction Chapter 1

[8]

Visualizations can be organized into categories, which make it easier to choose the kind of
chart you need. Most charts and maps can be placed in one of these categories:

Time-series (plots a single variable over a period of time). For example, a line
chart that demonstrates a trend.
Temporal/linear (categories placed in a time-line). For example, a series of events.
Spatial/planar/volumetric (categories distributed in a spatial map). For example, a
cartogram or choropleth with data distributed on a geographical map.
Comparison (categories associated with quantities are compared and ranked
during a single period). For example, a bar chart that compares values.
Part-to-whole (categorical subdivisions as ratio to a whole). For example, a pie
chart with slices as percentages.
Correlation (comparing two or more variables). For example, a scatterplot
comparing two variables, or a bubble chart comparing three.

In his classic book, The Visual Display of Quantitative Information, Edward Tufte defines some
aspects that can be used to measure the quality and integrity of visualizations. They are the
following:

Data-ink ratio: The amount of ink (or pixels) dedicated to the data shown
Chartjunk: Visual garbage that is irrelevant to the data shown (and that
frequently get in the way)
Lie factor: A number that measures the integrity of a visualization; for example,
charts that lie by not representing proportions and lengths with enough precision

The data-ink ratio can be improved by removing chart-junk such as unnecessary lines and
labels from charts. Sometimes the lines are important for context, but in interactive Web
visualizations you can be very minimalistic. You can always provide details of demand
with tooltips or other interactive resources.

Communication is deeply affected by the way humans perceive graphics, and may be
improved or distorted by optical illusions. There are no charts with a lie factor of zero, but
an adequate choice can improve it significantly. A bad choice increases the lie factor and
can induce viewers to false perceptions.

Position and length are best for representing quantitative information. Direction and angles
come next, then area, volume, curvature, and finally shadows, saturation, and color. Since
lengths and positions are easier to perceive and compare than angles and areas, data in a
bar chart is perceived with greater accuracy than the same data in a pie chart. Consider the
following pie chart, which compares the areas of continents:

Introduction Chapter 1

[9]

A pie chart comparing areas of continents

Now look at the exact same data represented in a bar chart:

A bar chart comparing areas of continents

Introduction Chapter 1

[10]

Which one is clearer? While the pie chart is good for showing proportions, angles are much
harder to compare. Differences in length are much easier to compare and a bar chart is
better in this case. But it would probably be clearer to use a pie chart to compare two values
as part of a whole, such as the area of one continent compared to the remaining area, to
reveal the proportion of land it occupies compared to the rest of the planet.

To have both proportions and lengths, you might be tempted to try a single stacked bar
chart, but it still rates worse than the simple bar chart, since stacked bars aren't as easy to
compare as when they are placed side-by-side:

A stacked bar chart comparing areas of continents

Of course, you can choose a chart for other reasons, but it's important to know what you
lose and gain in each case. Analytic and exploratory visualizations require a high degree of
accuracy, but you might want to use a more attractive visualization at the price of losing
some accuracy if you need to capture the attention of your audience.

Introduction Chapter 1

[11]

Web-based visualizations
When Edward Tufte wrote his classic books on data visualization, most of it was intended
for printed media. Today, you can create visualizations that use data that can be updated in
real time, with dynamic interfaces that allows interaction by the user. The design guidelines
for web-based visualizations are different. They can and should be dynamic and interactive.
Interactive charts can pack in much more information by hiding the details, which can be
requested by the user on demand. Charts are sometimes rendered as overviews or
sparklines, only revealing details through strategies such as zooming and brushing.

Why use a data visualization library?
Actually, you don't need any coding to create fantastic and interactive visualizations for the
web. You can always use a charting service. There are many; some are paid, others are free.
They offer configuration screens and data transformation tools that allow you to create all
kinds of beautiful charts. Popular services include Google Charts, Tableau, Infogram,
and Plotly. If they fully satisfy your data visualization needs, you don't really need this
book.

But if you know HTML, CSS, and JavaScript, you don't need to use these platforms. Web
standards provide all the tools you need to create any sophisticated graphics, with no
restrictions imposed by a platform or a plan. Using web standards also facilitates the
integration of your visualizations with web applications, frontend frameworks (such as
React, Angular, and Vue) and backend web services (such as resources and data provided by
RESTful services).

But do you really need to use a library like Chart.js? Can't you just use standard JavaScript,
HTML, CSS, and Canvas?

Creating data visualizations for the Web
You don't really need any libraries or frameworks to create and display interactive and
animated data visualizations on the Web. Plain standard HTML, CSS, and JavaScript
already do that for you. Basic HTML provides structural elements that can be styled with
CSS to display simple graphical elements such as colored rectangles. That means you can
create a basic static bar chart just applying different widths in CSS to div elements.

Introduction Chapter 1

[12]

Take a look at the following HTML and CSS code:

<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Title</title>
 <style>
 #data {
 width: 600px;
 border: solid black 1px;
 padding: 10px;
 }
 .label {
 display: inline-block;
 width: 60px;
 }
 .bar {
 display: inline-block;
 background: red;
 margin: 2px 0;
 text-align: right;
 padding-right: 5px;
 color: white;
 }
 #data .bar1 { width: 500px; }
 #data .bar2 { width: 200px; }
 #data .bar3 { width: 300px; }

 </style>
</head>
<body>

<h1>Bar chart</h1>
<div id="data">
 <div>Item 1<span class="bar
bar1">50</div>
 <div>Item 2<span class="bar
bar2">20</div>
 <div>Item 3<span class="bar
bar3">30</div>
</div>

</body>
</html>

Introduction Chapter 1

[13]

If you run it in a web browser, you get the following chart:

A simple static bar chart created with just HTML and CSS

Of course, this is not the best way to draw a bar chart. The numbers were inserted
somewhat arbitrarily in the HTML, and the lengths are defined by CSS width properties.
You have to calculate the scales yourself. It's easy to make a mistake and reveal the wrong
numbers. This is just to illustrate that all the graphical tools already exist in HTML and CSS.
All we need is a library that generates that code for us.

Since the Document Object Model (DOM) allows scripting languages to access and change
style attributes of an element, widths can be specified in JavaScript and can even respond to
events or change with time, allowing the creation of interactive graphics with animation.
Adding the following JavaScript function to the previous chart, you can the change value,
length, and colors of the bars when the user clicks on the chart using standard DOM
commands:

 <div id="data" onclick="changeData()">...</div>
 <script>
 function changeData() {
 let chart = document.getElementById("data");
 let elements = chart.children;
 let values = [5, 35, 15];
 for(let i = 0; i < values.length; i++) {
 let labelElement = elements[i].children[1].innerText =
 values[i];
 elements[i].children[1].style.background = "blue";
 elements[i].children[1].style.width = values[i] * 10 + "px";
 }
 }
 </script>

Introduction Chapter 1

[14]

The following screenshot shows the same chart as the preceding one after clicking, with
new colors and values:

An interactive bar chart created with the standard DOM, CSS, HTML, and Javascript

But you don't have to use div and CSS to draw bars. Since HTML5, you can also use the
Canvas API—a complete graphical library that can be used to create any kind of graphics,
not just rectangles. The following example displays the same data as a pie chart using only
standard HTML and no extra libraries:

<canvas id="chart" height="200" width="400"></canvas>

<script>
 const canvas = document.getElementById('chart');
 const ctx = canvas.getContext('2d');
 const rad = Math.min(canvas.height, canvas.width) / 2;

 const data = [100, 100, 100];
 const comp = n => Math.floor(Math.random() * 255);
 const colors = function() {
 return "rgba("+comp()+","+comp()+","+comp()+",0.5)";
 };

 let angle = 0.0;
 let total = data.reduce((a, b) => a + b, 0);

 for (var i = 0; i < data.length; i++) {
 ctx.fillStyle = colors();
 ctx.strokeStyle = 'white';
 ctx.lineWidth = 4;
 ctx.beginPath();
 ctx.moveTo(rad, rad);
 ctx.arc(rad, rad, rad, angle, angle +
 (Math.PI * 2 * (data[i]/total)), false);
 ctx.lineTo(rad, rad);
 ctx.fill();
 ctx.stroke();

Introduction Chapter 1

[15]

 angle += Math.PI * 2 * (data[i] / total);
 }
</script>

You can download all these code examples from the GitHub repository for this chapter. See
the last section for details. The result is shown as follows:

A simple pie chart created using HTML Canvas

You can make even nicer pie charts in Chart.js without writing a single line of Canvas code,
and you won't have to worry about calculating angles in radians or adjusting scales to fit
the page. You also get free tooltips with far fewer lines of code than we used previously.
Chart.js may not satisfy all your data visualization needs, but it certainly is a great way to
start. You can then apply your knowledge of HTML and JavaScript and extend it with
plugins, integrate with other charting solutions, or migrate to a larger and unrestricted
library such as D3.js.

How to use this book
This book was designed as a practical hands-on guide on how to create data visualizations
with Chart.js. It doesn't cover all aspects of Chart.js, but does cover most of the features you
are likely to use to create visualizations. All eight Chart.js charts are covered, exploring
different configurations and applications using external data obtained from public
repositories.

Each chapter covers fundamental concepts. Each concept is always illustrated with a simple
code example, but more complex examples that might require extra JavaScript
programming are also presented in each chapter, and include solutions to real-world
problems, such as downloading, parsing, and filtering a data file to convert it into a format
usable by Chart.js.

Introduction Chapter 1

[16]

Code listings are used throughout the book, but most of the time, they focus on a specific
feature and show only a fragment of the full code. But you can download the full listing.
All the code examples used in the book are available from a public GitHub repository
located at: https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​Learn- ​charts. ​js.

There is a folder for each chapter in the repository, named Chapter01, Chapter02, and so
on. Each code listing and every image generated by code contains a relative reference to a
file located in the corresponding folder for each chapter. You can try out all the code
examples as you learn. You can also use it in any way you like, since it's free and open
source.

Here's a brief summary of each chapter:

Chapter 2, Technology Fundamentals, covers technology fundamentals, data formats, and
also explores some techniques for loading and parsing files. It gives a general background
on topics used by Chart.js, such as JavaScript, CSS, DOM, and Canvas. You may skip these
sections if you wish.

Chapter 3, Chart.js – Quick Start, includes a quick start and overview of several Chart.js
features. It shows how to set up a web page to use Chart.js and how to create your first
chart. You will learn a bit of everything Chart.js has to offer. It also introduces the bar chart
type (vertical and horizontal).

Chapter 4, Creating Charts, covers all other chart types available: line/area, radar, polar
area, pie, doughnut, scatter, and bubble. It also shows how to load and parse external CSV
and JSON data from public data portals and use them to create real-world visualizations.

Chapter 5, Scales and Grid Configuration, focuses on configuring scales, axes, and grid lines
for all charts. You will learn how to use radial grids and Cartesian grids with linear,
logarithmic, category, and time axes.

Chapter 6, Configuring Styles and Interactivity, deals with configuration of several
properties, for which Chart.js already provides defaults: fonts, titles, and labels. It also
explores some neat labeling plugins and color schemes, which are important for accessible
charts. This chapter also shows how to configure transitions, animations, and interactions.

Chapter 7, Advanced Charts.js, covers some advanced features that you will are less likely to
use on a regular basis, since Chart.js already provides good defaults. These include tooltip
configuration, creating custom legends, mixed charts, how to display multiple charts on a
single page, overlaying Chart.js on a Canvas, and creating plugins.

https://github.com/PacktPublishing/Learn-charts.js
https://github.com/PacktPublishing/Learn-charts.js
https://github.com/PacktPublishing/Learn-charts.js
https://github.com/PacktPublishing/Learn-charts.js
https://github.com/PacktPublishing/Learn-charts.js
https://github.com/PacktPublishing/Learn-charts.js
https://github.com/PacktPublishing/Learn-charts.js
https://github.com/PacktPublishing/Learn-charts.js
https://github.com/PacktPublishing/Learn-charts.js
https://github.com/PacktPublishing/Learn-charts.js
https://github.com/PacktPublishing/Learn-charts.js
https://github.com/PacktPublishing/Learn-charts.js
https://github.com/PacktPublishing/Learn-charts.js
https://github.com/PacktPublishing/Learn-charts.js
https://github.com/PacktPublishing/Learn-charts.js

Introduction Chapter 1

[17]

I believe the book covers the most important topics in Chart.js. It leaves out some advanced
programming topics, several plugins, and integration with front-end frameworks, which
are also not covered.

I am not affiliated with Chart.js in any way and this book does not replace the official
Chart.js documentation, which is the ultimate reference guide on the topic. The
documentation is community-maintained and freely available at
www.chartjs.org/docs/latest. There are also many samples that explore its main features
that are also part of the documentation at www.chartjs.org/samples/latest.

When writing this book, I did my best to provide the most accurate information possible.
All code listings were tested, and additional efforts were made to guarantee that all code
examples are properly referenced in the book and work as expected. This book is based on
Chart.js version 2.7.3. I expect that the examples should continue working with any 2.x
version, but there is a small possibility that some code may not work as expected if you are
using a later version.

The Chart.js community is very active on GitHub and StackOverflow. If you have any
questions about Chart.js, you can submit a question on stackoverflow.com and you will
probably have an answer within a few hours or less.

I hope you enjoy this book and have as much fun as I had when learning Chart.js.

Summary
This chapter provided a quick introduction to data visualization topics and introduced
Chart.js, the JavaScript library with which you will learn to create responsive interactive
visualizations for the web. We also demonstrated how standard web technologies provide
all you need to create charts for the web, and how a data visualization library such as
Chart.js can be beneficial.

In the next chapter, we will cover the fundamentals of some standard technologies used by
Chart.js—data formats and data manipulation techniques—but if you want to start using
Chart.js right away, you can skip it and jump straight to Chapter 3, Chart.js – Quick Start.

http://www.chartjs.org/docs/latest
http://www.chartjs.org/samples/latest
http://stackoverflow.com

Introduction Chapter 1

[18]

References
Books and websites:

Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press,
1997
Isabel Meirelles. Design for Information. Rockport Publishers, 2013
Stephen Few. Data Visualization: past, present and future. Perceptual Edge, 2007
David Kahneman. Thinking Fast and Slow. Farrar, Straus and Giroux. 2011
Ben Bederson and Ben Schneiderman. The Craft of Information Visualization. 2003

2
Technology Fundamentals

This book assumes that you have a working knowledge of HTML, CSS, and JavaScript,
which are essential tools for creating visualizations with Chart.js. All examples in the book
are written with JavaScript ES2015 or ES6. One of the goals of this chapter is to review the
fundamental topics of these technologies. This includes JavaScript topics related to string,
object, and array manipulation, the HTML document object model (DOM), basic JQuery,
CSS selectors, and HTML canvas. You can, of course, skip these sections if you already feel
comfortable with these technologies.

This chapter also describes popular data formats used in visualizations, such as CSV, XML,
and JSON, and how to load, parse, and use external data files in these formats in your Web
pages. You will also learn how to set up a small testing Web server to run files that load
external resources.

The final section contains some tips on how to obtain and prepare data for your
visualizations, how to convert HTML data into standard formats, and how to extract
selected information from HTML pages.

In this chapter, you will learn about the following:

Essential JavaScript for Chart.js
Other technologies: DOM, CSS, JQuery, and Canvas
Data formats
How to load and parse external data files
How to extract and transform data

Technology Fundamentals Chapter 2

[20]

Essential JavaScript for Chart.js
Client-side applications, such as interactive Web graphics, depend on browser support.
This book assumes that your audience uses browsers that support HTML5 Canvas and
ES2015 (which include all modern browsers). All examples use ES2015 syntax, including
const and let instead of var, arrow functions where appropriate, spread operators, maps,
sets, and promises. External files are loaded using the Fetch API, which has only been
supported more recently, but you can easily switch to JQuery if necessary.

Although the creation of visualizations with Chart.js is mostly a declarative process, it is
still a JavaScript library and requires basic knowledge of JavaScript. To create a simple
chart, you need to know how to declare constants and variables, perform basic
mathematical Boolean string and attribution operations, call and create functions,
manipulate objects and arrays, and instantiate the Chart.js object. A typical chart also
requires enough knowledge to program control structures, write callbacks, sort and filter
datasets, generate random numbers, and load external files. This section is a quick refresher
on the main ES2015 topics you will need to use Chart.js.

Browser tools
You don't need a full frontend modular Node development environment to create
visualizations with Chart.js, but you still need a good debugger. Every browser comes with
development tools that allow you to navigate a static page structure and generated DOM
elements, and a console where you can interact in real time with the data used by the
JavaScript engine.

The most important tool is the JavaScript console, where you will see any error messages.
It's very common to get a blank page when you expected something else and not have a
clue as to why your code doesn't work as expected. Sometimes, it's just a comma you
forgot, or the internet is down and some file was not loaded. If you have the JavaScript
console open while you run your page, it will instantly tell you what's going on. It's also a
good idea to use an editor with line numbering, since most error messages inform us of the
lines where the problem occurred:

Technology Fundamentals Chapter 2

[21]

Debugging JavaScript with the JavaScript console

You can open the developer tools as a frame in your browser or as a separate window. The
following are the menu paths for the JavaScript console in latest versions of the three most
popular browsers:

Chrome: View | Developer | JavaScript Console
Firefox: Tools | Web Developer | Web Console
Safari: Develop | Show Error Console

Most of the code fragments and examples in this section can be tested by typing them in the
JavaScript console. It's a great way to learn JavaScript. It will also access the functions of
any JavaScript library file that was loaded with the <script> tag, and any global variables
declared in the <script></script> blocks.

JavaScript types and variables
JavaScript is not a typed language, since types are not declared and variables can receive
different types, but data values do have types. The main types are Number, String, Boolean,
Array, Object, and Function. The first three are scalar types, and the last three are also
objects. A value is treated differently in the same expression if it has one type or another.
For example, in an expression such as a = b + c, the value of a will be different if b and c are
numbers (they will be added) or if one of them is a string (they will be concatenated).

Technology Fundamentals Chapter 2

[22]

Values can be compared, and their types are important if the comparison is strict (for
example, using === instead of ==). But it can be confusing to rely on such conversions (0,
"", null, NaN , and undefined are all considered false, but the false string converts
to true, since its not an empty string).

In ES5 JavaScript, var was the only keyword for declaring a variable. It ignores block scope
and is hoisted to the top of the functions. Since ES6 (ES2015), two new keywords have been
introduced: const and let. They both are block-scoped and need to be assigned a value
before they are used (var defaults to undefined). Declarations with const are constants
and can't be reassigned. It's usually considered good practice to use const whenever
possible, and only use let if you actually need to redefine a variable.

Data structures used in charts
Data used as sources for visualizations is usually organized in some kind of structure. The
most common structures are probably lists (arrays) and tables (maps), stored in some
standard data format. When using data from external sources, you usually need to clean it
up, removing unnecessary values, simplifying its structure, applying bounds, and so on.
After that, you can parse it and finally store it locally in a JavaScript array or JavaScript
object that can be used by the chart.

Once your data is stored in a JavaScript data structure, you can transform it further by
applying mathematical operations on the stored values. You can change the structure,
create new fields, merge, and delete data. Typical operations include pushing new values
into the dataset, splicing or splitting the array, creating a subset, transforming data, and so
on. JavaScript provides many native operations that make it easier to modify arrays and
objects. You can also use libraries such as JQuery.

Arrays
The main data structure you will use to store one-dimensional data is the JavaScript array.
It's used as the main dataset format in most chart types in Chart.js. An array of values is all
you need to make a simple bar chart. You can create an array by declaring a list of items
within brackets, or simply a pair of opening-closing brackets if you want to start with an
empty array:

const colors = ["red", "blue", "green"];
const geocoords = [27.2345, 34.9937];
const numbers = [1,2,3,4,5,6];
const empty = [];

Technology Fundamentals Chapter 2

[23]

You can then access the items of an array using an array index, which starts counting from
zero:

const blue = colors[1];
const latitude = geocoords[0];

Each array has a length property that returns the number of elements. It's very useful to
iterate using the array index:

for(let i = 0; i < colors.length; i++) {
 console.log(colors[i]);
}

You can also loop over the elements of an array using the of operator (introduced in ES2015)
when you don't need the index:

for(let color of colors) {
 console.log(color);
}

And you can use the forEach() method, which runs a function for each element and also
allows access to the index, item, and array inside the function:

colors.forEach(function(i, color, colors) {
 console.log((i+1) + ": " + color);
}

Multidimensional arrays are created in JavaScript as arrays of arrays:

const points = [[200,300], [150,100], [100,300]];

You can retrieve individual items like this:

const firstPoint = points[0];
const middleX = points[1][0];

JavaScript provides many ways to extract and insert data into an array. It's usually
recommended to use these methods whenever possible. The following table lists useful
methods you can use on arrays. Some modify the array; others return new arrays and other
types. The examples provided use the colors and numbers arrays as declared previously.
Try them out using your browser's JavaScript console:

Method Description Example

push(item)
Modifies the array, adding an
item to the end.

colors.push("yellow");
/*["red", "blue", "green",
 "yellow"];*/

Technology Fundamentals Chapter 2

[24]

pop()
Modifies the array, removing
and returning the last item.

const green = colors.pop();
// ["red", "blue"];

unshift(item)
Modifies the array, inserting an
item at the beginning.

colors.unshift("yellow");
/*["yellow", "red", "blue",
 "green"];*/

shift()
Modifies the array, removing
and returning the first item.

const red = colors.shift();
// ["blue", "green"];

splice(p,n,i)
Modifies the array, starting at
position p. Can be used to
delete, insert, or replace items.

const s = numbers.splice(2,3);
 // s = [3,4,5]
 // numbers = [1,2,6]

reverse()
Modifies the array, reversing
its order.

numbers.reverse();
// [6,5,4,3,2,1]

sort()
Modifies the array, sorting by
string order (if no args) or by a
comparator function.

numbers.sort((a,b) => b – a);
// numbers = [6,5,4,3,2,1]

slice(b,e)
Returns a shallow copy of the
array between b and e.

const mid = numbers.slice(2,4)
 // mid = [3,4]

filter(callback)
Returns new array where the
elements pass the test
implemented by the function.

const even = numbers.filter(n =>
n%2==0);
// [2,4,6]

find(function)
Returns the first element that
satisfies the test function.

const two = numbers.find(n =>
n%2==0);
// 2

indexOf(item)
Returns the index of the first
occurrence of the item in the
array.

const n = numbers.indexOf(3);
// 4

includes(item)
Returns true if an array
contains the item among its
entries.

const n = numbers.includes(3);
// true

lastIndexOf(item)
Returns the index of the last
occurrence of the item in the
array.

const n =
colors.lastIndexOf("blue");
// 1

concat(other)
Returns a new array that
merges the current array with
another.

const eight =
numbers.concat([7,8]);
// [1,2,3,4,5,6,7,8]

join()
join(delim)

Returns a comma-separated
string of the elements in the
array (an optional delimiter
may be used).

const csv = numbers.join();
// "1,2,3,4,5,6"
const conc = numbers.join("");
// "123456"

Technology Fundamentals Chapter 2

[25]

map(function)
Returns a new array with each
element modified by the
function.

const squares = numbers.map(n =>
n*n);
// [1,4,9,16,25,36]

reduce(function)
Returns the result of an
accumulation operation using
the values in the array.

const sum =
 numbers.reduce((a, n) => a + n);

forEach(function)
Executes the provided function
once for each element in the
array.

const squares = [];
numbers.forEach(n =>
squares.push(n*n)
// squares = [1,4,9,16,26,36]

JavaScript functions for array manipulation

Besides arrays, ES2015 also introduced two new data structures: Map, an associative array
with key-value pairs, easier to use than simple objects, and Set, which doesn't allow
repeated values. Both can be transformed to and from arrays.

Strings
Strings are primitive types in JavaScript that can be created with single quotes or double
quotes. There is no difference. It's only a matter of style. ES2015 introduced two new string
features: template literals and multiline strings.

Multiline strings can be created by adding a backslash at the end of each line:

const line = "Multiline strings can be \
reated adding a backslash \
at the end of each line";

Template literals are strings created with backticks. They allow the inclusion of JavaScript
expressions inside the ${} placeholders. The result is concatenated as a single string:

const template = `The square root of 2 is ${Math.sqrt(2)}`;

If you need to use a special character in a string, such as a double quote in a double-quoted
string or a backslash, you need to precede it with a backslash:

const s = "This is a backslash \\ and this is a double quote \"";

Technology Fundamentals Chapter 2

[26]

There are several methods for string manipulation. They all return new strings or other
types. No methods modify the original strings:

Method Description Example

startsWith(s)
Returns true if the string
starts with the string passed
as a parameter.

const s = "This is a test string"
const r = s.startsWith("This");
// true

endsWith(s)
Returns true if string ends
with the string passed as a
parameter.

const s = "This is a test string"
const r = s.endsWith("This");
// false

substring(s,e)
Returns a substring between
start (incl.) and end indexes
(not incl.).

const k = "Aardvark"
const ardva = k.substring(1,6);

split(regx)
split(delim)

Splits a string by a delimiter
character or a regular
expression and returns an
array.

const result = s.split(" ");
// result =
//["This","is","a","test","string"]

indexOf()
Returns the index of the first
occurrence of a substring.

const k = "Aardvark"
const i = k.indexOf("ar"); // i = 1

lastIndexOf()
Returns the index of the last
occurrence of a substring.

const k = "Aardvark"
const i = k.lastIndexOf("ar");
// i = 5

charAt(i)
Returns char at index i. Also
supported as ‘string'[i].

const k = "Aardvark"
const v = k.charAt(4);

trim()
Removes whitespace from
both ends of a string.

const text = " data "
const r = data.trim();
// r = "data"

match(regx)
Returns an array as the result
of matching a regular
expression against the string.

const k = "Aardvark"
const v = k.match(/[a-f]/g);
// v = ["a", "d", "a"]

replace(regx,r)
replace(s,t)

Returns a new string
replacing the matching of
regexp applied to the string
with a replacement or all
occurrences of the source
string with a target string.

const k = "Aardvark"
const a = p.replace(/a/gi, 'u')
// a = "uurdvurk"
const b = p.replace('ardv', 'ntib')
// b = "Antibark"

JavaScript functions for string manipulation

Technology Fundamentals Chapter 2

[27]

Functions
Functions are typically created in JavaScript using the function keyword, using one of the
following forms:

function f() {
 console.log('function1', this);
}
const g = function(name) {
 console.log('function ' + name, this);
}
f(); // calls f
g('test'); // calls g() with a parameter

The this keyword refers to the object that owns the function. If this code runs in a browser,
and this is a top-level function created in the <script> block, the owner is the global
window object. Any properties accessed via this refer to that object.

A function can be placed in the scope of an object, behaving as a method. The this
reference in the following code refers to the obj object and can access this.a and this.b:

const obj = {a: 5, b: 6}
obj.method = function() {
 console.log('method', this)
}
object.method()

Arrow functions were introduced in ES2015. They are much more compact and can lead to
cleaner code, but the scope of this is no longer retained by the object. In the following
code, it refers to the global window object. Code that uses this.a and this.b will not find
any data in the object and will return undefined:

obj.arrow = () => console.log('arrow', this)
object.arrow()

You can use arrow functions in Chart.js callbacks, but you should use regular functions
instead of arrow functions if you need to access the instance of the chart, usually available
using this.

Technology Fundamentals Chapter 2

[28]

Objects
An object is an unordered collection of data. Values in an object are stored as key-value
pairs. You can create an object by declaring a comma-separated list of key:value pairs within
curly braces, or simply a pair of opening-closing curly braces if you want to start with an
empty object:

const color = {name: "red", code: ff0000};
const empty = {};

Objects can contain other objects and arrays, which can also contain objects. They can also
contain functions, which have access to local properties and behave as methods:

const city = {name: "Sao Paulo",
 location: {latitude: 23.555, longitude: 46.63},
 airports: ["SAO","CGH","GRU","VCP"]};
const circle = {
 x: 200,
 y: 100,
 r: 50,
 area: function() {
 return this.r * this.r * 3.14;
 }
}

A typical dataset used by a simple chart usually consists of an array of objects:

var array2 = [
 {continent: "Asia", areakm2: 43820000},
 {continent: "Europe", areakm2: 10180000},
 {continent: "Africa", areakm2: 30370000},
 {continent: "South America", areakm2: 17840000},
 {continent: "Oceania", areakm2: 9008500},
 {continent: "North America", areakm2=24490000}
];

You can access the properties of an object using the dot operator or brackets containing the
key as a string. You can run its methods using the dot operator:

const latitude = city.location.latitude;
const oceania = array2[4].continent;
const code = color["code"];
circle.r = 100;
const area = circle.area();

Technology Fundamentals Chapter 2

[29]

You can also loop over the properties of an object:

for(let key in color) {
 console.log(key + ": " + color[key]);
}

Properties and functions can be added to objects. It's common to write code that declares an
empty object in a global context so that operations in other contexts add data to it:

const map = {};
function getCoords(coords) {
 map.latitude = coords.lat;
 map.longitude = coords.lng;
}

Objects can also be created with a constructor. You can create an object that contains the
current date/time using:

const now = new Date();

A Chart.js instance is created using a constructor that receives at least two parameters. The
second parameter is an object with two properties, a string and another object:

const chart =
 new Chart("bar-chart ",{type:"bar", data:{labels:[],datasets:[]}});

JSON is a data format based on JavaScript objects. It has the same structure as a JavaScript
object, but the property keys have to be placed within double quotes:

{"name": "Sao Paulo",
 "location": {"latitude": 23.555, "longitude": 46.63},
 "airports": ["SAO","CGH","GRU","VCP"]};

To use a JSON string in JavaScript you have to parse it.

Technology Fundamentals Chapter 2

[30]

Other technologies
This section presents a brief summary of other technologies you should know about,
covering their fundamental concepts. They include HTML DOM, JQuery, CSS, and HTML
Canvas. You can skim or skip this section if you already know about and use these
technologies. The next sections also provide code examples that can be downloaded from
the GitHub repository for this chapter.

HTML Document Object Model(DOM)
The structure of an HTML document is normally described with tags, but it can also be
specified using JavaScript commands with a Document Object Model (DOM): a language-
neutral API that represents an HTML or XML document as a tree. Consider the following
HTML document (Examples/example-1.html):

<html>
<body>
 <h1>Simple page</h1>
 <p>Simple paragraph</p>
 <div>

 <p>Click me!</p>
 </div>
 </body>
 </html>

This page builds a tree of interconnected nodes containing HTML elements and text. The
exact same result can be obtained with the following JavaScript commands
(Examples/example-2.html):

 const html = document.documentElement;

 const body = document.createElement("body");
 html.appendChild(body);

 const h1 = document.createElement("h1");
 const h1Text = document.createTextNode("Simple page");
 h1.appendChild(h1Text);
 body.appendChild(h1);

 const p = document.createElement("p");
 const pText = document.createTextNode("Simple paragraph");
 p.appendChild(pText);
 body.appendChild(p);

Technology Fundamentals Chapter 2

[31]

 const div = document.createElement("div");
 const divImg = document.createElement("img");
 divImg.setAttribute("src", "pluto.jpg");
 divImg.setAttribute("width", "100");
 div.appendChild(divImg);

 const divP = document.createElement("p");
 const divPText = document.createTextNode("Click me!");
 divP.appendChild(divPText);
 div.appendChild(divP);

 body.appendChild(div);

Of course, it's much simpler to write tags, but JavaScript gives you the power to make the
structure and content dynamic. Using DOM commands, you can add new elements, move
them around, remove them, and change their attributes and text contents. You can also
navigate the DOM tree, select or search for specific elements or data, and bind styles and
event handlers to elements.

For example, if you add the following code, a new <p> containing the “New line” text will
be created every time you click on the image (Examples/example-3.html):

div.style.cursor = "pointer";
div.addEventListener("click", function() {
 const p = document.createElement("p");
 p.innerHTML = "New line";
 this.appendChild(p);
});

Normally, you wouldn't write your entire document using DOM, but only the parts you
wish to control dynamically. Normally, you write the static parts as HTML and use
scripting only when necessary (Examples/example-4.html):

 <html>
 <body>
 <h1>Simple page</h1>
 <p>Simple paragraph</p>
 <div id="my-section">

 <p>Click me!</p>
 </div>
 </body>

 <script>
 const div = document.getElementById("my-section");
 div.style.cursor = "pointer";
 div.addEventListener("click", function() {

Technology Fundamentals Chapter 2

[32]

 const p = document.createElement("p");
 p.innerHTML = "New line";
 this.appendChild(p);
 });
 </script>
 </html>

For data-driven documents, you can use DOM scripting to bind data stored in arrays and
objects to attributes of the elements, changing the dimensions, colors, text contents, and
position. Most data visualization libraries do exactly that by providing functions that are
built over the DOM, and make this task much simpler.

The following table lists the most important DOM commands:

Method or property Description

createElement(tag)
Creates an element (not connected to the node tree) and
returns its reference.

createTextNode(text)
Creates a text node (not connected to the node tree) and
returns its reference.

appendChild(element)
Connects the element passed as a parameter as the child
of the current element.

removeChild(element) Disconnects the child element from the current element.

setAttribute(name, value)
Sets an attribute for this element with the name and value
passed as parameters.

getElementById(id)
Returns an element identified by the id passed as a
parameter.

getElementsByTagName(tag)
Returns a nodelist (array) containing all the elements
that match the tag name passed as a parameter.

addEventListener(e, func)

Attaches an event handler to this element. The first
parameter is the event type (for example, ‘click', ‘key',
and so on) and the second parameter is a handler
function.

documentElement
This property references the element at the root of the
document. For HTML and XHTML, it is the <html>
element.

children
This property returns a node list containing the child
elements of this element.

innerText
In SVG or HTML documents, this read/write property is a
shortcut for creating a text node and appending it to the
element.

Technology Fundamentals Chapter 2

[33]

innerHTML
In HTML documents, this read/write property is a
shortcut for appending an entire HTML fragment as a
child element.

style
In SVG or HTML documents, this property allows access
to the element's CSS styles. You can use it to read and
modify styles dynamically.

A selection of properties and methods supported by HTML DOM

Cascading Style Sheets
Cascading Style Sheets (CSS) is a W3C standard that specifies how HTML and XML
elements are displayed on the screen. It's a declarative language where visual properties are
applied to tag selectors. You can use CSS to apply properties such as colors, fonts, margins,
shadows, and gradients to one or more tags, perform coordinate transformations in two
and three dimensions, and set rules for transitions and animations. CSS properties and
selectors are also used in JavaScript libraries, such as JQuery and D3.js.

CSS selectors are expressions used to select elements by type, class, ID, wildcards,
attributes, context, state, and position. The result of a selection expression may consist of
none, one, or more elements. JavaScript libraries use selectors to obtain objects that can be
manipulated programmatically via DOM. A result set can be formed from a list of comma-
separated selection expressions. Elements may also be selected from context with
combinator selectors. The following table lists some of the main selectors and some
examples:

Selector Syntax Description Example (in CSS)

Type selector tagname
Selects a set of elements of the specified type (tag name), for
example td, h1, prect { … } /* all <rect> tags */.

Class selector .classname
Selects a set of elements that belongs to a specified class, for
example .selected and p.copy.

ID selector #idname
Selects one element with the specified id attribute, for
example #main and #chart.

Universal
selector

* Selects all elements.

Attribute
selector

[attr]
[attr=value]

(several other
combinations)

Selects elements that contain an attribute.
Selects elements that contain an attribute with a specified value.
Other combinations match a string in the attribute value.

Technology Fundamentals Chapter 2

[34]

Descendant
combinator

ancestor
selectedtag

Selects elements nested within a specified ancestor element
(may have other elements in between), for example table td.

Child
combinator

parent >
selectedtag

Selects elements nested directly below a specified parent element
(selectedTag is a child of a parent), for example table
>tbody >tr >td.

General sibling
combinator

preceding ~
selectedtag

Selects elements that appear after a specified predecessor (both
have the same parent), for example h1 ~p.last.

Adjacent sibling
combinator

previous +
selectedtag

Selects elements that appear directly after a specified sibling
(both have the same parent), for example h1 +p.first.

Pseudo-classes tag:state
Selects elements that are in a specified state, for
example a:hover, p:last-child, td:nth-of-type(2),
:not(x).

Pseudo-elements tag::property Selects elements with a specified property, and is rarely used.

CSS selectors

Most of the time, you will use the simplest selectors. The ID, class, and type selectors are
the most common. Eventually, you might use descendant combinators or attribute
selectors.

The following code uses simple selectors to change the visual appearance of an
unformatted page containing three sections. The sections are stacked one on top of the
other. The CSS properties and other parts were omitted, but you can see them in the full
code listing (Examples/example-5-selectors.html):

<html lang="en">
<head>
 <style>
 h1 {…}
 .tab h1 {…}
 .tab p {…}
 .illustration {…}
 .tab {…}
 .tab .contents {…}
 .container {…}
 .tab:nth-child(2) h1 {…}
 .tab:nth-child(3) h1 {…}
 </style>
</head>

<body>
<h1>CSS and JQuery selectors</h1>

<div id="container">

Technology Fundamentals Chapter 2

[35]

 <div class="tab first" id="section1">
 <div class="contents">

 <p>…</p>
 </div>
 <h1>Tab 1: Jupiter</h1>
 </div>

 <div class="tab" id="section2">
 <div class="contents">

 <p>…</p>
 </div>
 <h1>Tab 2: Saturn</h1>
 </div>

 <div class="tab" id="section3">
 <div class="contents">

 <p>…</p>
 </div>
 <h1>Tab 3: Pluto</h1>
 </div>

</div>
</body>

</html>

The result is as follows:

An HTML page with stacked information styled using only CSS

Technology Fundamentals Chapter 2

[36]

JQuery fundamentals
JQuery is not a standard technology, but it's a de facto Web standard. It uses CSS selectors
to locate elements in any HTML file, and provides the same power as the DOM but with a
much cleaner syntax. To use JQuery, you first need to include its library in your HTML page
using the <script> tag. This is easily done with a CDN URL:

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>

The code fragment here is a page that uses JQuery to perform the exact same operations
shown in the last DOM example. The result is much easier to understand
(Examples/example-6.html):

<html>
<body>
<head>
 <style>
 #my-section {
 cursor: pointer;
 }
 </style>
</head>
<h1>Simple page</h1>
<p>Simple paragraph</p>
<div id="my-section">

 <p>Click me!</p>
</div>
</body>
<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<script>
 $("#my-section").on("click", function() {
 $(this).append("<p>New Line</p>");
 });
</script>
</html>

CSS selectors are used in JavaScript libraries such as JQuery to apply dynamic styles and
manipulate a document's structure and contents. The main JQuery(selector) function,
normally used via its alias, the $(selector) function, is an element selector that receives a
CSS selector expression as its parameter:

const divSet = $("div");
const title1 = $("#section1 h1");

Technology Fundamentals Chapter 2

[37]

A selection can return zero, one, or a list of elements. You can test the length of a selection
using the length attribute:

if($("table").length == 0) {
 console.log("there are no tables in this document")
 }

Using JQuery and the code shown in the CSS example, we can make the tabs fade in and
fade out as they are clicked using selectors and JQuery functions (Examples/example-7-
selectors.html):

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<script>
 $(".tab").on("click", function() {
 $(".tab h1").css("color", "gray");
 $(".tab h1").css("background", "white");
 $(".tab h1").css("font-weight", "normal");
 $(".tab h1").css("z-index", "-1");
 $("#" + $(this).attr("id") + " h1").css("color", "black");
 $("#" + $(this).attr("id") + " h1").css("background",
"whitesmoke");
 $("#" + $(this).attr("id") + " h1").css("font-weight", "bold");
 $("#" + $(this).attr("id") + " h1").css("z-index", "1");
 $(".tab .contents").fadeOut();
 $("#" + $(this).attr("id") + " .contents").fadeIn();
 });
 $("#section1").trigger("click");
</script>

HTML5 Canvas
There is no way to draw circles or gradients using HTML tags, but you can use HTML
Canvas: a full-featured JavaScript graphics API for 2D vector graphics. You can draw
anything you wish with Canvas, and since it's JavaScript, you can make it animate and
respond to events.

To draw using Canvas, you need to create a <canvas> element in your page. You can do
that using plain HTML:

<body>
 <canvas id="canvas" width="300" height="300"></canvas>
</body>

Technology Fundamentals Chapter 2

[38]

You can also create it dynamically, using HTML DOM:

const canvas = document.createElement("canvas");
canvas.setAttribute("width", 300);
canvas.setAttribute("height", 300);
document.body.appendChild(canvas);

You can create it using JQuery too:

const canvas = $("<canvas/>",{id: "canvas"}).prop({width:300,height:300});

Then you can reference using the DOM:

const canvas = document.getElementById("canvas");
const canvas = $("#canvas");

Or you can reference using JQuery:

const canvas = document.getElementById("canvas");
const canvas = $("#canvas");

Once you have a canvas object, you obtain a 2D graphics context and can start drawing:

const ctx = canvas.getContext("2d");

Practically, all the Canvas API consists of is methods and properties called from the
graphics context. Before drawing, you set properties such as font, fill color, and stroke
color:

ctx.fillStyle = "red";
ctx.strokeStyle = "rgba(255,127,0,0.7)";
ctx.lineWidth = 10;

And then fill or stroke rectangles and arbitrary paths containing lines and curves. These
commands will draw a red 50 x 50 pixel square with a 10 pixel wide yellow semi-
transparent border at position 50,50:

ctx.fillRect(50,50,50,50);
ctx.strokeRect(50,50,50,50);

You can draw other shapes, texts, and images on the same canvas. The context properties
will not change unless they are redefined.

You can also draw using path commands. You need to start the path with
ctx.beginPath(), and call a sequence of commands that moves to points and draws lines
and curves, and when you are done you can close the path (if it's a closed path) and call
fill() and/or stroke() to draw it using the current styles.

Technology Fundamentals Chapter 2

[39]

The following code draws some shapes, paths, shadows, gradients, and text:

 ctx.strokeStyle = "blue";
 ctx.lineWidth = 2;
 ctx.shadowBlur = 10;
 ctx.shadowColor = "green";
 ctx.shadowOffsetX = ctx.shadowOffsetY = 5;
 ctx.setLineDash([5,2,1,2]);
 ctx.beginPath();
 ctx.moveTo(150,200);
 ctx.lineTo(150,150);
 ctx.lineTo(100,150);
 ctx.bezierCurveTo(100,200,150,250,200,250);
 ctx.lineTo(200,200);
 ctx.closePath();
 ctx.stroke();
 const text = "Canvas";
 ctx.font = "24px monospace";
 const textWidth = ctx.measureText(text).width;
 const gradient = ctx.createLinearGradient(200,100,200 + textWidth,100);
 gradient.addColorStop(0,"magenta");
 gradient.addColorStop(1, "yellow");
 ctx.fillStyle = gradient;
 ctx.shadowColor = "transparent";
 ctx.fillText("Canvas", 200, 100);
 ctx.setLineDash([0]);
 ctx.strokeStyle = "gray";
 ctx.beginPath();
 ctx.moveTo(50,200);
 ctx.lineTo(50,250);
 ctx.lineTo(100,250);
 ctx.arcTo(100,200,50,200,50);
 ctx.stroke();
 ctx.beginPath();
 ctx.arc(275,150,50,1.57,3.14,false);
 ctx.lineTo(275,150);
 ctx.fill();
 ctx.globalAlpha = 0.75;
 ctx.beginPath();
 ctx.arc(175,75,40,0,6.28,false);
 ctx.clip();
 const image = new Image(100,100);
 image.onload = function() {
 ctx.drawImage(this, 125, 25, this.width, this.height);
 }
 image.src = "pluto.jpg";

Technology Fundamentals Chapter 2

[40]

The following diagram shows the result. You can try and run the full code, which is
available in Examples/example-8-canvas.html:

Some shapes drawn in an HTML Canvas context. Code: Examples/example-8-canvas.html

Some essential Canvas commands are listed in the following table. All commands are
methods of the current Canvas context:

Method or property Description

fillStyle
Sets the color to be used in the fill()
commands.

strokeStyle
Sets the color to be used in the stroke()
commands.

lineWidth
Sets the line width to be used in the stroke()
commands.

lineCap
Sets the style of the line caps, for example butt
(default), round, or square.

lineJoin
Sets the style of the line joins, for
example ‘round', ‘bevel', or ‘miter' (default).

font
Sets the font to be used in the strokeText() or
fillText() commands.

globalAlpha
Sets the global opacity (0 = transparent, 1 =
opaque) for the context.

Technology Fundamentals Chapter 2

[41]

shadowBlur, shadowColor,
shadowOffsetX, shadowOffsetY

Sets shadow properties. The default color is
transparent black. The default numeric values
are zero.

fillRect(x,y,w,h) Fills a rectangle.
strokeRect(x,y,w,h) Draws a border around a rectangle.

setLineDash(dasharray)
Receives an array for the dash, alternating lines
and spaces.

fillText(text,x,y);
Fills text at the x and y positions (y is the
baseline).

strokeText(text, x, y); Draws a border around text at the x and y
positions.

createLinearGradient(x0, y0, x1,
y1)

Creates a linear gradient perpendicular to the
line. Radial gradients and patterns are also
supported.

drawImage(image, x, y, w, h) Draws an image.
beginPath() Starts a path.
moveTo(x, y) Moves the cursor to a position in the path.

lineTo(x, y)
Moves the cursor to a position in the path,
drawing a line along the way.

bezierCurveTo(c1x, c1y, c2x,
c2y, x, y), quadraticCurveTo(cx,
cy, x, y)

Draws curves with one (quadratic) or two
(Bezier) control points in a path.

arc(x, y, r, sa, ea)
Draws an arc by specifying the center, radius,
start, and end angles in a path.

arcTo(sx, sy, r, ex, ey)
Draws an arc by specifying the coordinates of
the starting point, the radius, and the
coordinates of the end point.

rect(x, y, w, h)
Draws a rectangle in a path with the coordinates
of the top-left corner, width, and height.

clip()
Creates a clipping region with the shapes drawn
by the path that will affect objects that are
drawn afterwards.

fill() Fills a path with the current color.
stroke() Strokes the path with the current color.

Selected HTML Canvas commands

Technology Fundamentals Chapter 2

[42]

Data formats
Data used in visualizations is usually distributed in a standard format that can be shared.
Even when the data is served from a database, the data is usually delivered in some
standard format. Popular proprietary formats, such as Excel spreadsheets, are common, but
most statistical data is stored or delivered in CSV, XML, or JSON formats.

CSV
CSV stands for comma-separated values. It's a very popular data format for public data. A
CSV file is a text file that emulates a table. It usually contains one header row with the
names of the columns, and one or more data rows containing value fields. Rows are
separated by line breaks, and the comma-separated fields in each row form columns. It
maps perfectly to an HTML table. This is a simple CSV file containing the population and
land area of seven continents (Data/sample.csv):

 continent,population,areakm2
 "North America",579024000,24490000
 "Asia",4436224000,43820000
 "Europe",738849000,10180000
 "Africa",1216130000,30370000
 "South America",422535000,17840000
 "Oceania",39901000,9008500
 "Antarctica",1106,13720000

There are no types in CVS. Quotes are used to contain text that might contain the delimiter.
They are not necessary if the fields don't contain a comma.

CSV is also used to refer to similar files that don't use a comma as a delimiter. These files
are more accurately called delimiter-separated value (DSV) files. The most common
delimiters are tabs (TSV), vertical bars (|), and semicolons.

CSVs may become corrupt and unreadable, but it's text and you can fix it. Missing or
unescaped commas are the most common problems.

Technology Fundamentals Chapter 2

[43]

XML
eXtensible Markup Language (XML) is a very popular data format. Ajax responses from
Web services are usually returned as text or XML. It has standard native support in
JavaScript via the DOM APIs and doesn't require additional parsing. Although it is still
common to find data in XML format, CSV and JSON alternatives, if available, are usually
smaller and easier to work with.

This is an example of an XML file with the same data as the CSV file shown earlier
(Data/sample.xml):

<continents>
 <continent>
 <name>North America</name>
 <population>579024000</population>
 <area unit="km">24490000</area>
 </continent>
 <continent>
 <name>Asia</name>
 <population>4436224000</population>
 <area unit="km">43820000</area>
 </continent>
 ...
 <continent>
 <name>Antarctica</name>
 <population>1106</population>
 <area>13720000</area>
 </continent>
 </continents>

XML files can be validated if an XML Schema is available. You can extract data from a well-
formed XML file with DOM or with XPath (which is easier). There are many tools in all
languages to manipulate XML. XML is also very easy to generate. Its main disadvantage is
verbosity and size.

JSON
JSON stands for JavaScript Object Notation. It looks a lot like a JavaScript object, but it has
stricter formation rules. It's probably the easiest format to work with. It's compact and easy
to parse, and it's gradually replacing XML as a preferred data format in Web services.

Technology Fundamentals Chapter 2

[44]

The following data file containing continent data is shown in JSON format
(Data/sample.json):

[
 {
 "continent": "North America",
 "population": 579024000,
 "areakm2": 24490000
 },{
 "continent": "Asia",
 "population": 4436224000,
 "areakm2": 43820000
 },{
 "continent": "Europe",
 "population": 738849000,
 "areakm2": 10180000
 },{
 "continent": "Africa",
 "population": 1216130000,
 "areakm2": 30370000
 },{
 "continent": "South America",
 "population": 422535000,
 "areakm2": 17840000
 },{
 "continent": "Oceania",
 "population": 39901000,
 "areakm2": 9008500
 },{
 "continent": "Antarctica",
 "population": 1106,
 "areakm2": 13720000
 }
]

JSON is the preferred format for data manipulation in JavaScript. There are many online
tools you can use to transform CSV and XML files into JSON.

Loading and parsing external data files
Unless you have a very small or static dataset, it will usually not be embedded in your web
page. You will probably use an asynchronous request to load it from a separate file after
your HTML page is already loaded and then parse it. This section covers topics related to
loading and parsing external files.

Technology Fundamentals Chapter 2

[45]

Using a Web server
Most of the examples in this book consist of a single file (not considering the external
libraries loaded using the <script> tags), and you can run them by simply opening them
in a browser. You don't even need a Web server. Just click on the file and view it in your
browser. But this won't work in examples that load external files via Ajax. For those files,
you do need a Web server.

If you are using an HTML editor, such as PHPStorm or Brackets, it automatically starts a
Web server for you and serves the page to your default browser. If you have Python
installed in your system (it is native in macOS and Linux, and you can install it in
Windows), you can run a simple server from the directory where your files are installed.
The syntax depends on which Python version you have installed. You can check by
opening a console and typing:

python -v

Now move to the directory where your HTML files are stored and run one of the following
commands. If you have Python 3.x , run:

python3 -m http.server

If your version is 2.x, run:

python -m SimpleHTTPServer

Now you can open your files using http://localhost:8080/your-file-name.html.

Loading files using standard JavaScript
The standard way to load data into a Web page is using asynchronous JavaScript and XML,
or Ajax. It uses the standard built-in XMLHttpRequest object, supported by all modern
browsers.

To load a file using XMLHttpRequest, you need to create the XMLHttpRequest object,
choose an HTTP method, use the object to open an HTTP connection to the file's URL, and
send the request. You must also create a callback function that listens to the
object's 'readystatechange' event and test the object's readystate property.

Technology Fundamentals Chapter 2

[46]

When this property contains XMLHttpRequest.DONE, the request is done and you can
extract the data. But it's not finished yet! If the request finished successfully (the
object status property equals 200), you need to extract the data from the object. In a CSV file,
the data will be in the responseText property (it's in a different place if it's XML). Only
then can you finally parse its contents and create your data array. This is shown in the
following code (Examples/example-9-ajax.html):

 const httpRequest = new XMLHttpRequest();
 httpRequest.open('GET', 'Data/sample.csv');
 httpRequest.send();
 httpRequest.onreadystatechange = function(){
 if (httpRequest.readyState === XMLHttpRequest.DONE) {
 if (httpRequest.status === 200) {
 const text = httpRequest.responseText;
 parse(text);
 }
 }
 }
function parse(text) {
 // parse the CSV text and transform it into a JavaScript object
 }

Loading files using JQuery
You never have to use standard JavaScript to load files, but it's good to know how it works.
It's much, much simpler to load files using the JQuery library (Examples/example-10-
ajax-jquery.html):

$.ajax({
 url: 'Data/sample.csv',
 success: function(text){
 parse(text)
 }
 });

You can also load and parse JSON files in a single step using JQuery:

$.getJSON('/Data/sample.json', function(object) {
 // use the JavaScript object
 }

Technology Fundamentals Chapter 2

[47]

Loading files using the standard Fetch API
In all modern browsers, you can also load external files using the Fetch API. It's the new
JavaScript standard for loading files asynchronously, and we will be using it in all examples
that load external files in this book, but it may not work in some older browsers. In that
case, you should revert to standard JavaScript or JQuery.

The fetch() command is a reactive method based on JavaScript promises. A basic fetch
request is shown as follows (Examples/example-12-fetch.html):

fetch('Data/sample.csv')
 .then(response => response.text())
 .then(function(text) {
 parse(text);
 });

You can also parse JSON files using fetch():

fetch('Data/sample.json')
 .then(response => response.json())
 .then(function(object) {
 // use the JavaScript object
 });

Parsing JSON
Although JSON is based on JavaScript, a JSON file is not a JavaScript object. It's a string. To
convert it into an object and access its properties with the dot operator, you can use
JSON.parse():

const obj = JSON.parse(jsonString);

Sometimes you need to convert a JavaScript object back into JSON format. You might also
do this for debugging. You can do this with JSON.stringify():

const jsonString = JSON.stringify(obj);

If you parsed the example JSON file at the beginning of this section, the JavaScript object
will actually be an array of objects, and you can list its contents (in the JavaScript console)
using the following code (Examples/example-14.html):

obj.forEach(function(item) {
 console.log(item.continent, +item.population, +item.areakm2);
 });

Technology Fundamentals Chapter 2

[48]

Parsing CSV
There is no native CSV parser in JavaScript, but if you have a very small and simple CSV
file, you can parse it using JavaScript string manipulation tools or regular expressions,
splitting by newlines (\n) to select each row, and then splitting by the delimiter to select
each data cell within each row.

Larger data files are more complex, since the preceding code depends on a specific format
and does not deal with commas inside quoted strings, missing data, and so on. In this case,
you should use a CSV parser. Most examples in this book use the PapaParse CSV parser
(papaparse.com) by Matt Holt, which is open source and free. The following code shows
how to convert CSV into a JavaScript object using PapaParse:

const csvData = Papa.parse(csvText, {header: true}).data;

If you parsed the example CSV file at the beginning of this section, you will receive an array
of objects, and you can list the contents (in the JavaScript console) using the following code
(Examples/example-15.html):

csvData.forEach(function(item) {
 console.log(item.continent, +item.population, +item.areakm2);
 });

The + before the last two properties converts them into numbers. If you don't do that they
will be loaded as strings, even though they are numbers.

Loading multiple files
Sometimes you need files from different sources that need to be loaded and then
manipulated within a page. You load these using Promise.all(), as shown next. The
code in the promise will only be executed when all the files are loaded
(Examples/example-16.html):

 const files = ['/path/to/file.json', '/path/to/file.csv'];
 var promises = files.map(file => fetch(file).then(resp => resp.text()));
 Promise.all(promises).then(results => {
 const jsonData = JSON.parse(results[0]);
 const csvData = Papa.parse(results[1], {header: true}).data;
 // use the two data objects
 });

http://papaparse.com

Technology Fundamentals Chapter 2

[49]

Displaying a map
Without any charting library, using just standard JavaScript, you can load a JSON file and
draw a world map using Canvas. The data is a special JSON format that stores geographical
shapes: GeoJSON. Its general structure is as follows:

{"type":"FeatureCollection",
 "features":[
 {"type":"Feature",id":"AFG","properties":{"name":"Afghanistan"},
"geometry":{"type":"Polygon","coordinates":[[[61.210817,35.650072],...]]
 },{"type":"Feature", "id":"AGO", "properties":{"name":"Angola"},
"geometry":{"type":"MultiPolygon","coordinates":[[[[16.326528,-5.87747,...]
]
 },
 // many other lines
]
 }

Using JavaScript, you can load this file, parse it, and access each longitude and latitude
pair. Then you can scale the values so that they fit into the coordinate system of your
Canvas, and draw each shape using Canvas path commands. This is done in the following
code (Examples/example-17.html):

<canvas id="map" width="1000" height="500"></canvas>
<script>
 var canvas = document.getElementById("map");
 var ctx = canvas.getContext("2d");

 // Map ocean background
 ctx.fillStyle = 'white';
 ctx.fillRect(0, 0, canvas.width, canvas.height);

 // countries border and background
 ctx.lineWidth = .25;
 ctx.strokeStyle = 'white';
 ctx.fillStyle = 'rgb(50,100,150)';

 // load and draw map
 fetch('Data/world.geojson')
 .then(response => response.text())
 .then((jsonData) => {
 let object = JSON.parse(jsonData);
 drawMap(object.features);
 });
 function scaleX(coord) {
 return canvas.width * (180 + coord) / 360;
 }

Technology Fundamentals Chapter 2

[50]

 function scaleY(coord) {
 return canvas.height * (90 - coord) / 180;
 }
 function drawPolygon(coords) {
 ctx.beginPath();
 for(let i = 0; i < coords.length; i++) {
 let latitude = coords[i][1];
 let longitude = coords[i][0];
 if(i == 0) {
 ctx.moveTo(scaleX(longitude), scaleY(latitude));
 } else {
 ctx.lineTo(scaleX(longitude), scaleY(latitude));
 }
 }
 ctx.stroke();
 ctx.fill();
 }
 function drawMap(data) {
 data.forEach(obj => {
 if(obj.geometry.type == 'MultiPolygon') {
 obj.geometry.coordinates.forEach(poly =>
drawPolygon(poly[0]));
 } else if(obj.geometry.type == 'Polygon') {
 obj.geometry.coordinates.forEach(poly =>
drawPolygon(poly));
 }
 });
 }
 </script>

The result is shown as follows:

A world map created using GeoJSON, JavaScript, and Canvas code

Technology Fundamentals Chapter 2

[51]

Extracting and transforming data
If you are lucky enough to find your data in CSV, XML, or JSON, you can load it and start
using it right away. But what if your data is only available as HTML tables, or worse, as a
PDF file? In these cases, you need to extract your data and transform it into a usable format.

If it's a very simple HTML table, sometimes you can select it and copy and paste it into a
spreadsheet and preserve the rows and columns. Then you can export it as a CSV.
Sometimes you will need to do extra work, perhaps removing garbage characters, styles,
and unnecessary columns. This is risky, since you may also lose data or introduce errors
during the process.

Online tools
You can also use online tools that try to convert HTML tables into XML, CSV, and JSON.
Let's try an example. The NASA JPL site has a Web page containing data about the moon
and the planets in our solar system (nssdc.gsfc.nasa.gov/planetary/factsheet). To use
that data, you will need to have it in a standard format such as JSON, CSV, or XML, but it's
only available as an HTML table, shown as follows:

An HTML table containing data that can be used in a chart

http://nssdc.gsfc.nasa.gov/planetary/factsheet

Technology Fundamentals Chapter 2

[52]

Let's first try an online conversion service. Searching for HTML-to-CSV conversion, I found
an online conversion service at at www.convertcsv.com with several CSV conversion
tools. Open the HTML Table to CSV link and either paste the source code in the input box,
or provide its URL. There are some options you can configure, such as choosing the
delimiter. Click on the Convert HTML to CSV button, and the following text will appear in
the output box:

,MERCURY,VENUS,EARTH,MOON,MARS,JUPITER,SATURN,URANUS,NEPTUNE,PLUTO
 Mass (1024kg),0.330,4.87,5.97,0.073,0.642,1898,568,86.8,102,0.0146
 Diameter
(km),4879,"12,104","12,756",3475,6792,"142,984","120,536",...,2370
 Density (kg/m3),5427,5243,5514,3340,3933,1326,687,1271,1638,2095
 Gravity (m/s2),3.7,8.9,9.8,1.6,3.7,23.1,9.0,8.7,11.0,0.7
 ... several rows not shown ...
 Number of Moons,0,0,1,0,2,79,62,27,14,5
 Ring System?,No,No,No,No,No,Yes,Yes,Yes,Yes,No
 Global Magnetic Field?,Yes,No,Yes,No,No,Yes,Yes,Yes,Yes,Unknown
 ,MERCURY,VENUS,EARTH,MOON,MARS,JUPITER,SATURN,URANUS,NEPTUNE,PLUTO

This is valid CSV, but some fields were interpreted as strings, not numbers (some
diameters, for example). You might also wish to remove some unnecessary rows, such as
the last one, or data you don't need. You can edit the file later and write a script to fix the
numbers using regular expressions. Download the result and save it in a file, and then try
loading the file using JavaScript.

Since this is a third-party online service, I can't guarantee it will still exist when you read
this book, but you should find similar services that perform the same conversion. If not,
you can always write an extraction script yourself. A good tool for that is XPath, supported
by many extraction libraries and browsers, described in the next section.

Extracting data with XPath
Since HTML is a structure document, you can use a computer program to navigate that
structure and extract selected text nodes, attributes, and elements. Most Web extraction
tools are based on XPath: an XML standard that can be used to navigate in a XML structure
and select elements, attributes, and text nodes using path notation. Although HTML is not
as strict as XML, it has similar structures that can be represented as XPath paths and is
supported by many Web scraping tools.

Technology Fundamentals Chapter 2

[53]

For example, the first lines of the previous web page have the following structure:

<html>
 <head>
 <title>Planetary Fact Sheet</title>
 </head>
 <body bgcolor=FFFFFF>
 <p>
 <hr>
 <H1>Planetary Fact Sheet - Metric</H1>
 <hr>
 <p>
 <table> ...

It's not XML or XHTML, since attributes are not within quotes and tags don't close, but you
can still use XPath to extract data from it. This path will give you the title:

/html/head/title/text()

Any one of these one will return the bgcolor attribute (its name and value) from the body
tag:

/html/body/@bgcolor
/html/body/attribute::bgcolor

This one will return the contents of the <H1> header:

/html/head/h1/text()

This one is tricky. If this was XML, it would be /html/head/p/hr/H1, because all XML
tags must close, but HTML parsers automatically close the <p> and <hr> tags because there
can't be an <h1> header inside them. HTML is also case insensitive, so using H1 or h1
doesn't make any difference with these parsers. Still, this may still confuse some parsers.
You can play it safe by using:

/html/head//H1/text()

The // or double slash means that between <head> and <H1> there can be any number of
levels. This is compatible with the XML or HTML absolute path.

You can experiment with XPath using your browser's JavaScript console, writing XPath
expressions inside $x(expression). Let's try it out using the Planetary Fact Sheet page.
Open the page in your browser and then open a console window, and type the following:

$x("//table")

Technology Fundamentals Chapter 2

[54]

This will select all the tables in the document. In this case, there is only one. You can also
view the source code or inspect the page to discover the absolute path:

$x("/html/body/p/table")

Enter this command and the console will reveal the HTML fragment corresponding to your
selection. Now let's select the row that contains diameters. It's the third row in the table.
You can ignore the existing <thead> or <tbody> tags using the //. XPath counts child
nodes starting with 1, not 0 as in JavaScript. The command returns a single <tr> element in
an array. We can extract it using [0]:

$x("//table//tr[3]")[0]

This will select the following fragment:

<tr>
 <td align="left">Diameter
(km)</td>
 <td align="center" bgcolor="F5F5F5">4879</td>
 <td align="center" bgcolor="FFFFFF">12,104</td>
 <td align="center" bgcolor="F5F5F5">12,756</td>
 <td align="center" bgcolor="FFFFFF">3475</td>
 <td align="center" bgcolor="F5F5F5">6792</td>
 <td align="center" bgcolor="FFFFFF">142,984</td>
 <td align="center" bgcolor="F5F5F5">120,536</td>
 <td align="center" bgcolor="FFFFFF">51,118</td>
 <td align="center" bgcolor="F5F5F5">49,528</td>
 <td align="center" bgcolor="FFFFFF">2370</td>
 </tr>

To select the diameter of the earth, you need to add one more path step:

$x("//table//tr[3]/td[4]")[0]

The result is as follows:

<td align="center" bgcolor="F5F5F5">12,756</td>

To extract the text, you need to include the text() function at the end of the XPath
expression. You also need to extract the data from the $x() function result, using the data
property:

const result = $x("/html/body/p/table/tbody/tr[3]/td[4]/text()")[0].data

Technology Fundamentals Chapter 2

[55]

This will return the result as a string. You can then use regular expressions to remove the
comma and then convert the result to a number:

const value = +data.replace(/\,/g,'');
// removes commas and converts to number

You might want to automate that with a programming library if you need to extract lots of
data, such as all the planetary diameters. The $x() command only works in the browser
console, but many programming languages support XPath libraries and APIs. You can also
use tools such as Scrapy (in Python) or testing tools such as Selenium (in several languages)
that support XPath selectors for extracting data from HTML.

XPath is a very powerful data extraction language, and this was only a very brief
introduction. But there are also alternatives, such as XQuery (another XML standard with a
query syntax) and CSS selectors (used by JQuery and also supported by Scrapy and
Selenium).

Summary
This chapter provided a refresher on several fundamental technology concepts that will
help you create visualizations with Chart.js. Even though Chart.js tries to hide all the
underlying complexity from you, it is still a JavaScript library and basic knowledge of
JavaScript, DOM, and CSS are important.

This chapter also described the main data formats used for statistical data: CSV, XML, and
JSON. It also described how to load external files in these formats and how to parse them.
Additionally, you learned some ways to obtain data not in these formats by extracting it
from HTML pages.

In the next chapter, we will begin using Chart.js to create data visualizations.

3
Chart.js - Quick Start

This chapter provides a quick start to creating web-based data visualizations with Chart.js.
You will learn how to set up the library and configure a basic web page where you can
include a chart. We will walk through a complete step-by-step example, describing how to
create a bar chart and configure it with labels, tooltips, titles, interactions, colors,
animations, and more. By using Chart.js to create a full-featured chart, you will have a
better understanding of the main concepts when we explore the details later on.

In this chapter, you will learn about the following topics:

How to install and set up Chart.js
How to create a simple bar chart
How to configure axes, colors, and tooltips
How to add animation and respond to simple events
How to create a horizontal and a stacked bar chart

Chart.js - Quick Start Chapter 3

[57]

Introduction to Chart.js
Chart.js is an open source community-maintained JavaScript data visualization library
based on HTML5 Canvas. At the time of writing, it is available as version 2.7.3, and comes
with eight customizable chart types. It's very easy to create a chart using Chart.js. It can be
as simple as loading the JavaScript library into your page, choosing a chart type, and
providing it with an array of data.

All charts are configured with a default look and feel, as well as basic interactive features.
You can focus on the data and quickly create a simple responsive and interactive chart that
fits nicely in your page. You don't have to worry about configuring padding or margins,
fitting labels in axes, adding tooltips, or controlling transitions. But if you need to change
something, there are many configuration options available.

Installation and setup
To set up a web page for Chart.js, you just need to load the library. If you already have a
website set up, you can download Chart.js from www.chartjs.org, store it where you can
load it from a web page, and import it using the <script> tag, as follows:

<script src="../js/Chart.min.js"></script>

You can also use npm or bower to install Chart.js if you have a modular development
environment, as shown in the following code. Chart.js integrates well with ES6 modules,
Angular, React, and Vue applications:

npm install chart.js --save
bower install chart.js --save

The simplest way to get started is to link to a library file provided by a Content Delivery
Network (CDN). You can obtain a list at cdnjs.com/libraries/Chart.js, choose the
version and CDN provider of your choice, and copy one of the links. Unless you want to
inspect the code, use the minified link (that ends in min.js). It's best not to use the bundle
version, since it includes some extra non-Chart.js libraries (a better practice is to include
third-party libraries separately when needed).

http://www.chartjs.org

Chart.js - Quick Start Chapter 3

[58]

Using any text or code editor, copy the link to the src attribute of a script tag placed
somewhere in the <head> of your HTML file, as follows:

<script
src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.2/Chart.min.js">
</script>

If you have a development environment, such as Visual Studio Code, PHPStorm, or
Brackets, you may wish to set up a template file that includes the Chart.js CDN script tag
for new pages.

Another way to explore Chart.js and follow the examples in this book, is to use an online
code editor, such as CodePen or JSFiddle. It's also a great way to share your charts and code.

Using JSFiddle (https:/ ​/​jsfiddle. ​net/ ​), you just need to add the Chart.js CDN to the
Resources tab, as shown in the following screenshot, and then you can use the tabs to write
the HTML, CSS, and JavaScript code for your charts:

Using JSFiddle (jsfiddle.net) as an online code editor

https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/
https://jsfiddle.net/

Chart.js - Quick Start Chapter 3

[59]

To configure Chart.js in CodePen (https:/ ​/ ​codepen. ​io/ ​), click the Settings menu and then
the JavaScript tab. Search for Chart.js, and click the first option to add the CDN to your
environment, as demonstrated in the following screenshot:

Adding Chart.js support to CodePen (codepen.io)

You can now use the Chart.js library and see the results in real time, as shown in the
following screenshot:

https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/

Chart.js - Quick Start Chapter 3

[60]

Using CodePen (codepen.io) as an online code editor

Creating a simple bar chart
Now that you have a working environment set up, let's get started and create a simple bar
chart. You can type in the code as we go along, but you can also download the full working
examples from the GitHub repository for this chapter. Each screenshot and code listing in
this book contains a reference to the file used to produce it.

Setting up the graphics context
Charts are displayed inside the graphics context provided by an HTML Canvas object.
There are many ways to create one; the simplest way is to use plain HTML. Place a
<canvas> element somewhere inside <body>. It should have an ID attribute, as follows:

<canvas id="my-bar-chart" width="200" height="200"></canvas>

Chart.js - Quick Start Chapter 3

[61]

Chart.js graphics are responsive by default. The chart will fit in the available space: the
height and width attributes won't affect the actual size of the chart (unless you change the
defaults).

You can obtain a JavaScript handle to the canvas object using DOM (or JQuery) in any
script block or file loaded by your HTML file, as shown in the following code snippet (the
script block will be ignored in most JavaScript listings in this book):

<script>
 const canvas = document.getElementById("my-bar-chart");
</script>

You can also dynamically create a <canvas> object using Document Object Model
(DOM), or JQuery. In this case, an ID attribute is not strictly necessary, since the variable
itself can be used as a handle, but it's good practice to define one, as follows:

canvas canvas = document.createElement("canvas");
canvas.setAttribute("id","my-bar-chart");
document.body.appendChild(canvas);

A chart is created using the Chart() constructor. It receives two arguments: the graphics
context of the canvas where the chart will be displayed, and an object containing the chart
data, as demonstrated in the following code:

const chartObj = {…}; // the chart data is here
const context = canvas.getContext("2d");
new Chart(context, chartObj); // this will display the chart in the canvas

If your canvas object has declared an ID attribute, you don't need a context object. You
can simply use the ID attribute as the first argument, as follows:

new Chart("my-bar-chart", chartObj);

The object that contains the chart data requires at least two properties: type, which selects
one of the eight different kinds of Chart.js charts; and data, which references an object
containing the datasets and properties of the data to be displayed, as follows:

const chartObj = {type: "bar", data: dataObj};

Normally, the chart object is configured inside the constructor, as follows:

new Chart("my-bar-chart", {type: "bar", data: dataObj});

Chart.js - Quick Start Chapter 3

[62]

This is the basic setup for any chart created with Chart.js. It won't show any chart yet,
because we didn't provide any data, but if your library loaded correctly, you should see an
empty axis. The code is in the Templates/BasicTemplate.html file.

If nothing shows up in your screen, there may be a syntax error in your code. Check your
browser's JavaScript console. It's always a good idea to keep it open when you are working
with JavaScript, so that errors can be detected and fixed quickly.

Creating a bar chart
A bar chart displays a list of categories associated with values represented by the length of
the bars. To create a simple bar chart, we need a list of categories, as well as list of values.

Let's create a simple chart to display the volume of water in each ocean. We will need an
array of categories, as follows:

const labels = ["Arctic", "North Atlantic", "South Atlantic",
 "Indian", "North Pacific", "South Pacific",
 "Southern"];

In addition, we will also need a corresponding array of values, as follows:

const volumes = [18750,146000,160000,264000,341000,329000,71800]; // 10^3
km3

The data object should contain a labels property, which will refer to the categories
array, and a datasets property, which contains an array with at least one dataset object.
Each dataset object has a label property, and a data property, which will receive the
data for our chart (the volumes array), as follows:

const dataObj = {
 labels: labels,
 datasets: [
 {
 label: "Volume",
 data: volumes
 }
]
}

Chart.js - Quick Start Chapter 3

[63]

Charts already come preconfigured with scales, axes, default colors, fonts, animation, and
tooltips. Include the dataObj object from the preceding code as the data property of the
chart object (chartObj), and you will have an interactive and responsive bar chart similar
to the one shown as follows:

A simple bar chart (code: Pages/BarChart1.html)

Chart.js - Quick Start Chapter 3

[64]

Try resizing the window and see how the labels and scales adapt to the new display. Move
your mouse over the bars and see how the tooltips display the chart's information. Click on
the dataset label and toggle its visibility. In the following sections, we will configure some
of its appearance and behavior.

The full listing is shown as follows:

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <script
src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.7.2/Chart.min.js">
 </script>
 </head>
 <body>
 <canvas id="ocean-volume-bar-chart" width="400" height="400"></canvas>
 <script>
 const labels = ["Arctic", "North Atlantic", "South Atlantic",
 "Indian", "North Pacific", "South Pacific", "Southern"];
 const volumes = [18750,146000,160000,264000,341000,329000,71800];

 const dataObj = {
 labels: labels,
 datasets: [
 {
 label: "Volume",
 data: volumes
 }
]
 }
 new Chart("ocean-volume-bar-chart", {type: "bar", data: dataObj});
 </script>
 </body>
 </html>

Try typing in the preceding code in your development environment, or download it
from Pages/BarChart1.html.

Chart.js - Quick Start Chapter 3

[65]

Configuring colors, fonts, and
responsiveness
Charts created with Chart.js are born responsive and fit nicely into your screen, but they are
also born gray. In this section, you will discover how to change some style properties.

Dataset configuration for bar charts
Besides the data and label properties, each dataset object can contain a number of
optional configuration properties. Most of them are used to configure fill and border colors
and widths. They are briefly described in the following table:

Property Value Description

data Number[]
An array of numbers containing the data to
display (this is mandatory)

label String A label for the dataset

backgroundColor
String or
String[]

The fill color of the bar

borderColor
String or
String[]

The color of the border

borderWidth
Number or
Number[]

The width of the border

hoverBackgroundColor
String or
String[]

The fill when the mouse is over the bar

hoverBorderColor
String or
String[]

The border color when the mouse is over
the bar

hoverBorderWidth
Number or
Number[]

The border width when the mouse is over
the bar

borderSkipped
bottom, left,
top, right

Selects which edge of the bar with no
border (the default is bottom for bar, and
left for horizontalBar)

yAxisID and xAxisID

An Axis ID (see
Chapter 5,
Scales and Grid
Configuration)

Used in axis configuration

Dataset properties for bar charts

Chart.js - Quick Start Chapter 3

[66]

You can change the gray colored bars by adding color properties in each dataset object, or
by configuring global defaults that affect all charts. The backgroundColor property
receives a string containing a color specified in a legal CSS format. For example, if you want
to have solid red bars, you can use the following formats:

red

rgb(255,0,0)

rgba(100%,0,0,1)

#ff0000, #f00
hsl(0,100%,50%)

hsla(0,100%,50%,1)

The borderColor property controls the color of the label icon. It also configures the color
of the bars if the borderWidth is specified with a value greater than zero, as follows:

 const dataObj = {
 labels: labels,
 datasets: [
 {
 label: "Volume",
 data: volumes,
 borderWidth: 2,
 backgroundColor: "hsla(20,100%,80%,0.8)",
 borderColor: "hsla(0,100%,50%,1)"
 }
]
 }
 new Chart("ocean-volume-bar-chart", {type: "bar", data: dataObj});

Chart.js - Quick Start Chapter 3

[67]

The preceding code should produce the result shown as follows. The full code is available
at Pages/BarChart2.html:

Applying color attributes to a bar chart (code: Pages/BarChart2.html)

Options configuration
Defaults are configured per chart with an options configuration object included in the
chart object (the second parameter of the constructor), as demonstrated in the following
block of code:

new Chart("ocean-volume-bar-chart",
 {
 type: "bar",

Chart.js - Quick Start Chapter 3

[68]

 data: dataObj,
 options: {} // configure options here
 });

There are many defaults that you can change. You might, for example, wish to have more
control over the size of your chart, which resizes automatically. That happens because
charts are responsive by default. You can turn responsiveness off by overriding the
responsive property, which has a default true value, as follows:

options: {
 responsive: false
}

Now, your chart no longer resizes automatically. However, what if you do want to
undertake resizing, but don't care about the aspect ratio? Then, you can override the
maintainAspectRatio property, as follows:

options: {
 maintainAspectRatio: false
}

You might want this if your canvas object is located inside a parent <div> container,
which controls its size and is configured with CSS. In the following code
(Pages/BarChart4.html), the canvas will occupy 80% of the size of its parent container,
as follows:

<style>
 #canvas-container {
 position: relative;
 height: 80%;
 width: 80%;
 }
</style>
<div id="canvas-container">
 <canvas id="ocean-volume-bar-chart" width="200" height="200"></canvas>
</div>

Chart.js - Quick Start Chapter 3

[69]

If you try to resize the chart, it will, by default, maintain its aspect ratio (and no longer fit in
the page), unless the maintainAspectRatio property is set to false, as follows:

Configuring the aspect ratio of a chart to make it fit in a canvas (code: Pages/BarChart4.html)

Text and fonts
Text can be included in many different objects. Each data object can have a list of categories,
each dataset can have a legend, the chart can have a title, and tooltips can have titles and
other information. Some text is visible or invisible by default. You can configure the
visibility, font families, font sizes, and colors of any text inside a chart.

Fonts can be applied globally (for all charts) using default configurations. Using the
options configuration object, they can be applied locally to titles and legends, which are
also configured as objects.

In our chart, we have a single dataset, which makes the legend superfluous. You can hide it
by changing the legend.display property to false, as follows:

options: { // configure options here
 ...
 legend: {
 display: false
 }
}

We can also give the chart a title and configure its font size, color, and family, as follows:

options: { // configure options here
 maintainAspectRatio: false,
 legend: {

Chart.js - Quick Start Chapter 3

[70]

 display: false
 },
 title: {
 display: true,
 text: ['Volume of the oceans','in thousands of cubic km'],
 fontFamily: "TrebuchetMS",
 fontSize: 24,
 fontColor: 'rgb(0,120,0)',
 }
 }

It's not enough to simply add the title to the text property. Since the display property is
false by default, you must explicitly define it to be true for the title to be displayed. With
these changes, your chart should look similar to the following:

Adding a title and defining font properties (code: Pages/BarChart5.html)

You can configure the style of all of the text in the chart, including individual tooltip titles
and bodies, scales, and major and minor ticks, as we will see in the following chapters.

Chart.js - Quick Start Chapter 3

[71]

Global defaults
Local configuration options override global default configurations, which can be
configured using the Chart.defaults.global object. You can configure properties, such
as fonts, colors, axes, gridlines, ticks, animations, tooltips, and element properties, either
globally (for all charts), or locally (for a specific chart).

To specify a global font family, you can use the following code:

Chart.defaults.global.defaultFontFamily = "Helvetica Neue";

This will affect all of the text in the chart. You can also define defaults for specific text
elements by changing the properties, such as Chart.defaults.global.legend,
Chart.defaults.global.title, and many more, as follows:

Chart.defaults.global.legend.fontSize = 10; // all legend text will be size
10

The default color used in charts is rgba(0,0,0,0.1) (lightgray). You can change this
using Chart.defaults.global.defaultColor.

Global properties are great to include in a separate .js file, so that your charts have a
consistent look and field. You might also prefer to use them even when you have a single
chart.

The following table lists specific configurations for bar charts that can be applied locally or
globally. The global bar chart settings are stored in Chart.defaults.bar and
Charts.defaults.horizontalBar. Local settings should be stored inside the options
object under scales.xAxes[] or scales.yAxes[], for vertical and horizontal bar charts,
respectively. Try using some of these in your chart and see the results you get:

Property Value Description

barPercentage

Number

The percentage of the category (all datasets) width taken
by the bar (each dataset) width. The default is 0.9.

categoryPercentage
The percentage of the sample width taken by the category
width. The default is 0.8.

barThickness
This manually sets the bar width (ignores
categoryPercentage and barPercentage).

maxBarThickness This limits the bar thickness to this number.

Option configuration properties for charts

Chart.js - Quick Start Chapter 3

[72]

Transitions, interactions, and tooltips
All charts are also born with basic transitions, animations, and interactive tooltips. For a
simple chart, you might not need to change anything; but in case you want more control,
you can configure these behaviors with local and global properties.

Transition duration
You can create charts that change the way they look on user interaction. They will
automatically transition to the new values gracefully and smoothly. Transition animations
are configured with default ease algorithms and durations, but you can change them by
editing the properties of the Chart.defaults.global.animation object, or override any
defaults locally by using the options.animation object.

For example, in the following chart code, all transitions last five seconds
(Pages/BarChart6.html):

new Chart("ocean-volume-bar-chart", {
 type: "bar",
 data: {...},
 options: {
 …
 animation: {
 duration: 5000
 }
 }
});

Updating charts
You can use JavaScript functions and libraries to change your data dynamically, but the
changes will not be reflected immediately in your chart. After changing data, you have to
call update() in order to redraw it. For this, you will need a variable reference to the
chart object, as follows:

const ch = new Chart("ocean-volume-bar-chart", {...});

Chart.js - Quick Start Chapter 3

[73]

The following example toggles the data in the chart, replacing the values in the dataset with
a different array, and changing labels, titles, and colors. The toggle() function is
registered as a click event listener on the canvas. Whenever you click anywhere in the
canvas it will run, change the values of several properties, and call update(),which forces
the chart to transition to the new data and appearance, as follows:

const labels = ["Arctic", "North Atlantic", "South Atlantic", "Indian",
 "North Pacific", "South Pacific", "Southern"];

 const area = [15558,41900,40270,70560,84000,84750,21960]; // km2 *
10^3
 const volume = [18750,146000,160000,264000,341000,329000,71800];
//km3 * 10^3
 const canvas = document.getElementById("ocean-volume-bar-chart");
 const ctx = canvas.getContext("2d");
 const ch = new Chart(ctx, {
 type: "bar",
 data: {
 labels: labels,
 datasets: [
 {
 label: "Volume",
 data: volume,
 borderWidth: 2,
 backgroundColor: "hsla(20,100%,80%,0.8)",
 borderColor: "hsla(0,100%,50%,1)"
 }
]
 },
 options: {
 maintainAspectRatio: false,
 title: {
 display: true,
 text: ['Volume of the oceans','in thousands of cubic km'],
 fontFamily: "TrebuchetMS",
 fontSize: 24
 },
 legend: {
 display: false
 }
 }
 });

 canvas.addEventListener("click", toggle);

 function toggle(event) {
 if(ch.data.datasets[0].label == "Volume") {

Chart.js - Quick Start Chapter 3

[74]

 ch.data.datasets[0].data = area;
 ch.data.datasets[0].label = "Area";
 ch.data.datasets[0].borderColor = "hsla(120,100%,50%,1)";
 ch.data.datasets[0].backgroundColor = "hsla(140,100%,80%,0.8)";
 ch.options.title.text = ['Surface area of the oceans',
 'in thousands of square km'];
 } else {
 ch.data.datasets[0].data = volume;
 ch.data.datasets[0].label = "Volume";
 ch.data.datasets[0].backgroundColor = "hsla(20,100%,80%,0.8)";
 ch.data.datasets[0].borderColor = "hsla(0,100%,50%,1)";
 ch.options.title.text = ['Volume of the oceans',
 'in thousands of cubic km'];
 }
 ch.update();
 }

The following screenshot shows the same chart before and after being clicked. The full code
is available at Pages/BarChart7.html:

Screenshots of same chart after and before a click. Code: Pages/BarChart7.html

Tooltips
The animation duration does not affect tooltips, which have their own configuration.
Besides animation, you can configure colors, fonts, spacing, shape, and behaviors in
tooltips. You can also declare callback functions that change the appearance and content at
every interaction. If you need to add more information to a tooltip, Chart.js allows you to
create sophisticated HTML tooltips containing images and text.

Chart.js - Quick Start Chapter 3

[75]

For example, the following configuration creates black tooltips that contain default title
colors. The tooltip configuration options contain callbacks that set text colors that match the
colors of the bars, as follows:

options: {
 …
 title: {…},
 legend: {…},
 animation: {…},
 tooltips: {
 backgroundColor: 'rgba(200,200,255,.9)',
 titleFontColor: 'black',
 caretSize: 5,
 callbacks: {
 labelColor: function(tooltipItem, chart) {
 return {
 borderColor: 'black',
 backgroundColor:
 chart.data.datasets[0].backgroundColor
 }
 },
 labelTextColor:function(tooltipItem, chart){
 return chart.data.datasets[0].borderColor;
 }
 }
 }
 }

You can run the preceding code in the Pages/BarChart8.html file.

Working with larger and multiple datasets
From what we have seen so far, you should already be able to create a simple bar chart. In
this section, we will explore some configuration options related to large datasets, which
you will probably load as an external file, and multiple datasets, which can be plotted on
the same chart.

Loading data
Many times, your data will be available online and you may want to load it dynamically.
It's also a good idea to keep your data and code in separate files. If you have data in a CSV
file, you can load it into your JavaScript code and use it to generate the chart.

Chart.js - Quick Start Chapter 3

[76]

JavaScript loads data asynchronously using Ajax. You can use standard Ajax, JQuery, or the
ES6 fetch function, which functions like a JavaScript promise. After you load the CSV file,
you need to parse it. If you only need one set of category labels and values, you can handle
it without a parser.

In this example, we will use a CSV file that contains the amount of plastic waste disposed of
in the oceans by the 20 greatest pollutants. You can find the following code in the GitHub
repository for this chapter in Data/waste.csv:

 Country,Tonnes
 China,8819717
 Indonesia,3216856
 Philippines,1883659
 ...
 United States,275424

The following code loads and parses the file, splitting the data into rows, and then splitting
each row by a comma to assemble a labels array and a values array (we could also have
used a CSV parser). This process transforms the data into arrays in a format that can be
used by Chart.js, as follows:

fetch('../Data/waste.csv')
 .then(response => response.text())
 .then((data) => {
 const labels = [],
 values = [];
 const rows = data.split("\n");

 rows.forEach(r => {
 const item = r.split(",");
 labels.push(item[0]);
 values.push(+item[1]);
 });

 labels.shift(); // remove the header
 values.shift(); // remove the header

 console.log(labels); // print to check if the arrays
 console.log(values); // were generated correctly

 draw(labels, values);

 });

Chart.js - Quick Start Chapter 3

[77]

The draw() function contains the code to set up a canvas, and create and display the bar
chart, as follows:

function draw(labels, values) {
 const canvas = document.getElementById("bar-chart");
 const ctx = canvas.getContext("2d");

 new Chart(ctx, {
 type: "bar",
 data: {
 labels: labels, // the labels
 datasets: [
 {
 label: "Tonnes of plastic",
 data: values, // the data values
 borderWidth: 2,
 backgroundColor: "hsla(20,100%,80%,0.8)",
 borderColor: "hsla(0,100%,50%,1)"
 }
]
 },
 options: {
 maintainAspectRatio: false,
 title: {
 display: true,
 text: 'Tonnes of plastic waste',
 fontSize: 16
 },
 legend: {
 display: false
 }
 }
 });
 }

Chart.js - Quick Start Chapter 3

[78]

You can view the full code in Pages/BarChart9.html. The result is shown as follows:

A bar chart created with data loaded from an external file (code: Pages/BarChart9.html)

Horizontal bar chart
When you have a lot of data to display and compare, it might fit better in a horizontal bar
chart. You can easily convert a vertical bar chart into a horizontal one by changing the type
to horizontalBar, as follows:

new Chart(ctx, {
 type: "horizontalBar",
 data: {…}
}

Chart.js - Quick Start Chapter 3

[79]

The preceding chart seems better as a horizontal chart, since the category labels don't have
to be turned sideways. You can see the full code in Pages/BarChart10.html. The
following screenshot shows what the chart looks like now:

A horizontal bar chart (code: Pages/BarChart10.html)

Adding extra datasets
You can add more datasets to a bar chart, and configure it with a new legend label, colors,
and data arrays. In the following example, we will load a larger .csv file, which contains
the data for plastic waste disposal in 2010, and a forecast for 2025. It has one extra column,
as follows:

 Country,2010,2025
 China,8819717,17814777
 Indonesia,3216856,7415202
 Philippines,1883659,5088394
 ...
 United States,275424,336819

Chart.js - Quick Start Chapter 3

[80]

This time, the code will generate two data arrays and a single labels array. The data and
labels that belong to the same category have the same index, as follows:

fetch('../Data/waste2.csv')
 .then(response => response.text())
 .then((data) => {
 const labels = [],
 values2010 = [],
 values2025 = [];

 const rows = data.split("\n");

 rows.forEach(r => {
 const item = r.split(",");
 labels.push(item[0]);
 values2010.push(+item[1]/1000000); // divide by 1 million to make
 values2025.push(+item[2]/1000000); // the chart easier to read
 });

 labels.shift();
 values2010.shift();
 values2025.shift();

 draw(labels, [values2010, values2025]);

 });

The new values will be included in a second dataset, in the datasets array, as follows.

function draw(labels, values) {
 const canvas = document.getElementById("bar-chart");
 const ctx = canvas.getContext("2d");

 new Chart(ctx, {
 type: "horizontalBar",
 data: {
 labels: labels,
 datasets: [
 {
 label: "2010",
 data: values[0],
 backgroundColor: "hsla(20,100%,50%,0.7)",
 },{
 label: "2025",
 data: values[1],
 backgroundColor: "hsla(260,100%,50%,0.7)",
 }
]

Chart.js - Quick Start Chapter 3

[81]

 },
 options: {
 maintainAspectRatio: false,
 title: {
 display: true,
 text: 'Millions of tonnes of plastic waste',
 fontSize: 16
 }
 }
 });
 }

The full code is in Pages/BarChart12.html. With two datasets, there are two bars for
each category. There is also one legend item for each dataset. The result is shown in the
following screenshot:

A bar chart with two datasets (code: Pages/BarChart12.html)

Chart.js - Quick Start Chapter 3

[82]

With two or more datasets, you may want to configure the width of the bars using the
configuration option properties, barPercentage and categoryPercentage. The former
controls the width of the individual bars for each category, and the latter determines the
space taken by all of the bars in one category. These properties should be defined in
options.scales.xAxes[] if you are using a bar chart, and options.scales.yAxes[] if
it is a horizontalBar (see Pages/BarChart12.html), as follows:

options: {
 maintainAspectRatio: false,
 title: {
 display: true,
 text: 'Tonnes of plastic waste',
 fontSize: 16
 },
 scales: {
 yAxes: [{
 barPercentage: .3,
 categoryPercentage: .5
 }]
 }
 }

Stacking bars
Bars are usually placed side-by-side for comparison. However, if the values are part of a
whole, you can stack bars in different datasets to emphasize this relationship. We can stack
the volumes of the world's oceans, since their sum reveals the total volume of ocean water
in the world. The following data object places the volume of each ocean in a separate
dataset, as follows:

const dataObj = {
 labels: ["Volume"], // there is only one category
 datasets: [
 {
 label: "Arctic", data: [18750],
 backgroundColor: "hsla(0,100%,50%,0.5)"
 },{
 label: "North Atlantic", data: [146000],
 backgroundColor: "hsla(60,100%,50%,0.5)"
 },{
 label: "South Atlantic", data: [160000],
 backgroundColor: "hsla(120,100%,50%,0.5)"
 },{
 label: "Indian", data: [264000],

Chart.js - Quick Start Chapter 3

[83]

 backgroundColor: "hsla(180,100%,50%,0.5)"
 },{
 label: "North Pacific", data: [341000],
 backgroundColor: "hsla(240,100%,50%,0.5)"
 },{
 label: "South Pacific", data: [329000],
 backgroundColor: "hsla(300,100%,50%,0.5)"
 },{
 label: "Southern", data: [71800],
 backgroundColor: "hsla(340,100%,50%,0.5)"
 },
]
 };

To transform a bar chart into a stacked chart, you have to configure the settings for the x
and y axes, enabling the stacked property as follows:

 const optionsObj = {
 maintainAspectRatio: false,
 title: {
 display: true,
 text: 'Volume of oceans (km3)',
 fontSize: 16
 },
 legend: {
 position: 'right'
 },
 scales: {
 xAxes: [{
 stacked: true
 }],
 yAxes: [{
 stacked: true
 }]
 }
 }
 new Chart("ocean-volume-bar-chart",
 {type: "bar", data: dataObj, options: optionsObj});

The expected result is shown in the following screenshot. The full code is in
Pages/BarChart13.html:

Chart.js - Quick Start Chapter 3

[84]

A stacked bar chart can be used to display data as parts of a whole (code: Pages/BarChart13.html)

Summary
In this chapter, we learned how to install Chart.js in a web application and how to quickly
create a simple interactive and responsive bar chart, which can be included in a web page.
We also learned how to configure the default look and feel of a chart, by changing basic
properties, such as colors, fonts, responsiveness, animation duration, and tooltips. With this
knowledge, you can already start using Chart.js to display simple data visualizations in
your web pages.

This chapter also explored some real-world issues, such as loading external files, and how
to deal with larger datasets, by filtering data and configuring the chart in order to display
the information more efficiently.

In the following chapters, we will explore Chart.js in greater detail, create all eight different
types of charts, learn how to configure several other properties, and deal with more
complex datasets.

Chart.js - Quick Start Chapter 3

[85]

References
Books and websites:

Chart.js official documentation and samples: https:/ ​/​www. ​chartjs. ​org/ ​docs/
latest/​

Data sources:

Volumes of the World’s Oceans (based on ETOPO1):
Chapter03/Pages/BarChart1.html and others. https:/ ​/​www. ​ngdc. ​noaa. ​gov/
mgg/​global/ ​etopo1_ ​ocean_ ​volumes. ​html

Plastic waste: Chapter03/Data/waste.csv. Jambeck et al. Plastic waste inputs
from land into the ocean. Science magazine. 13 February 2015

https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html

4
Creating Charts

This chapter covers several charts that can be created with Chart.js to efficiently
communicate quantitative information and relationships. The choice of a chart depends on
the type of data, how each set of values is related to one another, and what kind of
relationships you want to show. In the previous chapter, we learned how to efficiently
display data in bar charts and compare quantitative information related to different
categories. In this chapter, you will create line and radar charts to compare sequences of
one-dimensional data, pie and doughnut charts to compare proportions, scatterplots and
bubble charts to represent two or more dimensions, and polar area charts to display
quantitative data in a radial grid.

In this chapter, you will learn about the following topics:

Line and area charts
Radar and polar area charts
Pie and doughnut charts
Scatterplots and bubble charts

Line and area charts
Line charts are used to display a correlation between two sets of data, where one of the sets
should contain categorical or ordered data (ascending or descending). The most common
application of a line chart is the time series, where the ordered set consists of instants of
time. If arbitrary categories are used, it should be possible to establish some kind of
connected sequence with them (for example, an ordered sequence of steps).

Line charts display estimates. The points that correlate the datasets are connected with
straight or curved lines that represent estimated values. Line charts can be used to predict
intermediate values and reveal trends.

Creating Charts Chapter 4

[87]

Creating a simple line chart
Just like the bar chart, you need to load the Chart.js JavaScript library, place a <canvas>
object somewhere in the <body> of your page, and create a new chart referring to the ID of
the canvas, and an object with the chart data. The chart object should specify line as the
chart type. The following code is the minimum you need to create a line chart with the
global defaults provided by Chart.js:

<html>
 <head>
 <script src=".../Chart.min.js"></script>
 </head>
 <body>

 <canvas id="my-line-chart" width="400" height="200"></canvas>

 <script>
 const values =
 [1.17,1.35,1.3,1.09,0.93,0.76,0.83,0.98,0.87,0.89,0.93,0.81];
 const labels =
["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"];

 const dataObj = {
 labels: labels,
 datasets: [{ data: values }]
 }
 const chartObj = {
 type: "line",
 data: dataObj
 };
 new Chart("my-line-chart", chartObj);
 </script>
 </body></html>

Creating Charts Chapter 4

[88]

This data contains average global temperatures for 2016, obtained from NASA. The result is
shown as follows. As you can see, the default line chart has a gray line and a gray fill. You
can change these defaults using the options or dataset configurations. The full code is in
LineArea/line-1.html:

Simple line chart with default Chart.js properties showing average global temperatures in 2016 (code: LineArea/line-1.html)

Dataset configuration
Dataset-specific options can be applied to control attributes, such as color and width of each
line. Adding a borderColor attribute to the dataset will set the color of the line (and
legend box), as follows:

let dataObj = {
 labels: labels,
 datasets: [{
 data: values,
 borderColor: 'hsla(300,100%,50%,1)'
 backgroundColor: 'transparent';
 }]
 }

Creating Charts Chapter 4

[89]

The following chart shows the effect of setting borderColor and backgroundColor for a
dataset. This configuration only affects one dataset. You can also configure properties that
affect all datasets. In this example, the legend was also removed using the options
configuration (explained in a separate section). You can see the full code in
LineArea/line-2.html, as shown in the following screenshot:

Simple line chart with average global temperatures measured in 2016 (code: LineArea/line-2.html)

The following listed dataset properties can be declared for each object of the datasets
array. Many are also shared by other charts that display numerical data, such as radar,
scatter, and bubble charts:

Property Value Description

data Number[]
An array of numbers containing
the data to display (mandatory).

label String
A label for the dataset (appears in
legend and tooltips).

Creating Charts Chapter 4

[90]

backgroundColor
A CSS color property
value string

The fill color under (or above) the
line. Position depends on the
fill property.

borderColor
A CSS color property
value string The color of the line.

borderWidth Number The width of the line in pixels.

borderDash Number[]

The canvas setLineDash method.
An array describing the width of
alternated line and space. For
example, [5, 10] will create a
dashed line with 5 pixel dashes
and 10 pixel spaces.

borderDashOffset Number

The canvas lineDashOffset
property. An offset for line dashes.
If zero (default), a [10,10] dash
will start with a 10 pixel line. If
10, it will start with the 10 pixel
space. If 5, it will start with a 5
pixel line, followed by a 10 pixel
space, 10 pixel line, and so on.

borderJoinStyle
'bevel', 'round', or
'miter' (default) The canvas lineJoin property.

borderCapStyle
'butt' (default),
'round', or
'square'

The canvas lineCap property.

pointBackgroundColor Color or Color[] The background color of the point.
pointBorderColor Color or Color[] The border color of the point.
pointBorderWidth Number or Number[] The border width of the point.
pointRadius String or String[] The radius of the point.

pointStyle

circle (default),
cross, line,
crossRot, dash,
rectRounded,
rectRot, star,
or triangle

The style of the point. A string or a
DOM reference to an Image object.

pointHoverBackgroundColor Color or Color[] The background color of the point
when the mouse hovers over it.

Creating Charts Chapter 4

[91]

pointHoverBorderColor Color or Color[] The border color of the point when
the mouse hovers over it.

pointHoverBorderWidth Number or Number[] The width of the point when the
mouse hovers over it.

pointHoverRadius Number or Number[] The radius of the point when the
mouse hovers over it.

pointHitRadius Number or Number[]
The invisible radius of the point
that reacts to the mouse hover (to
show a tooltip).

cubicInterpolationMode
'default' or
'monotone'

The default algorithm employs a
cubic weighted interpolation. It
doesn't guarantee monotonicity
(so, if values increase or decrease,
the default algorithm may deviate
from this behavior).

lineTension Number

The cubic bezier line tension (this
applies only to default
interpolation mode). If zero, the
chart will draw straight lines.

fill

false, start, end,
origin, or dataset
index (relative or
absolute)

This property describes how the
space between lines is filled.
false turns the feature off. start
fills the space above or before the
line, end fills the opposite space,
origin fills to the origin of the
chart, and index values fill the
space between two datasets. A
number represents the absolute
index of a dataset. A string
containing a signed number (for
example: +2) represents a relative
dataset (for example: the
preceding two datasets).

spanGaps
'bottom', 'left',
'top', or 'right'

If false, a null value or NaN (not
zero) will cause a break in the line.
The default is false.

showLine Boolean
If false, the line for this dataset is
not shown (only points will be
displayed).

Creating Charts Chapter 4

[92]

steppedLine

true = 'before',
false (default),
or 'after'

Draws line as a sequence of steps.
If true or before, the initial point
is used. If after, the final value is
used. The default is false, which
disables this algorithm.

yAxisID and xAxisID
An axis ID (see
Chapter 7, Advanced
Chart.js)

This is used in axis configuration.

Dataset properties for line charts

Data points represent the actual data in a dataset, and serve as an anchor for tooltips. There
are several different data point styles that can be selected with the pointStyle property.
These are shown as follows:

Point styles available for line charts (code: LineArea/line-3-pointStyle.html)

Data points can also configure radius, background color, border color, and tooltip
behaviors. In a line chart, only the points represent actual values. The lines are just
estimates. Depending on the kind of data you are displaying or the amount of points you
have to display, it may not make sense to show them. You might also want to render them
differently.

Creating Charts Chapter 4

[93]

There are several options to control the algorithm that draws the lines. The lineTension
property is a number (usually between 0 and 0.5) that configures the cubic Bezier
interpolation of each line, drawing smooth curves between each point. If you set it to zero,
the chart will draw straight lines, as demonstrated in the following diagram:

Comparing different values for the lineTension property (code: LineArea/line-4-tension.html)

If you are plotting discrete values, you may prefer to draw the lines as steps. You can place
the step on a line based on the first or the second point of the line segment by choosing
between the before or after strategies for the steppedLine property. The effects are
shown as follows:

The effect of using different strategies for the steppedLine property (code: LineArea/line-5-stepped.html)

Creating Charts Chapter 4

[94]

Options configuration for line charts
The same general options we used for bar charts can be used to configure line charts, but
there are some chart specific options, too. All charts come preconfigured with defaults,
which can be overridden using local or global properties. One of the ways to remove the
shading for all charts that use lines (instead of setting transparency per dataset) is to declare
the fill global property for line elements as false, as follows:

Chart.defaults.global.elements.line.fill = false;

However, you can configure options per-chart setting properties in the options
configuration object. We improved the way our first line chart was rendered, removing the
legend, which is not necessary as there is only one dataset (see LineArea/line-2.html),
as follows:

let chartObj = {
 type: "line",
 data: dataObj,
 options:{
 legend: {
 display: false
 }
 }
 };
 new Chart("my-line-chart", chartObj);

Data points can be completely hidden by setting pointRadius to zero in each dataset.
However, you can also configure them for all datasets and charts globally by setting the
values of the properties in Chart.defaults.global.elements.point.radius. This
hides all points from all charts that use points, as follows:

Chart.defaults.global.elements.point.radius = 0;

If you have a very large number of points, you may not want to draw the lines. To hide the
line of a specific dataset, you can set its showLine property to false, but you can also
configure line drawing for all lines with the options properties listed as follows.

Creating Charts Chapter 4

[95]

They can be set locally for the current chart or globally for all charts:

Property Value Description

showLines
true or
false

If this property is false, the lines between the points are not
drawn. The default for line charts is true. The default for scatter
charts is false .

spanGaps
true or
false

A null value or NaN (not zero) causes a break in the line if this
property is false. The default is false.

Configuration properties for line charts

Global options for line elements are configured using the Chart.defaults.line object.
To hide all lines as default, use the following code:

Chart.defaults.line.showLines = false;

Locally, they are defined directly inside the options object. You can override the default in
a chart with the following code:

options: { showLines: true }

Line charts with more than one dataset
Each dataset is displayed in a line chart by a separate line. The following example adds a
new set of values to our chart, that is, the average monthly temperatures measured in 1880.
We can now plot both datasets in the same grid and compare them with the average
temperatures in 2016, as follows:

// NASA/GISS Temperature anomalies from 1880 to 2016
 let values2016 =
 [1.17,1.35,1.3,1.09,0.93,0.76,0.83,0.98,0.87,0.89,0.93,0.81];
 let values1880 =
 [-0.3,-0.21,-0.18,-0.27,-0.14,-0.29,-0.24,-0.08,-0.17,-0.16,-0.19,
 -0.22];
 Chart.defaults.global.elements.line.fill = false;

 let labels =
 ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov",
 "Dec"];

 let dataObj = {
 labels: labels,
 datasets: [{
 label: '2016',

Creating Charts Chapter 4

[96]

 data: values2016,
 borderColor: 'hsla(300,100%,50%,1)',
 borderDash: [5, 5],
 },{
 label: '1880',
 data: values1880,
 borderColor: 'hsla(200,100%,50%,1)'
 }]
 }
// the rest of the code is identical

The result of the preceding code is shown in the following chart. The full code is in
LineArea/line-6-datasets.html. The chart reveals that the average temperature
anomalies in 2016 are approximately 1° C higher than the measurements in 1880:

Line chart with two datasets (code: LineArea/line-6-datasets.html)

Creating Charts Chapter 4

[97]

The fill property can be used with a Boolean value to turn on/off shading for all lines, but
it can also be used as a dataset property to configure a shading strategy for individual
datasets. In this case, it receives a string identifying an axis line: 'start', 'end', or
'origin', which will shade the chart between the line and an axis line (smallest, largest, or
zero axis, respectively). It can also shade between lines, specifying a relative number as a
string: '-1' will shade between the current dataset and the previous one, '+2', will shade
from the current dataset to the dataset that is two positions higher in the dataset array.
You can also refer to an absolute index of the dataset array. The following chart compares
the effects of some of these fill strategies:

Fill strategies for line charts (code: LineArea/line-7-fill.html)

Creating Charts Chapter 4

[98]

Loading data from external files
Line charts are great for revealing trends and relationships in large amounts of data. Public
data is widely available in standard formats, such as CSV and JSON, but usually needs to
be downscaled, parsed, and converted to a data format expected by Chart.js before using.
In this section, we will extract data from a public data file and turn it into a trend-revealing
visualization.

For all examples that use external files, you need to open your files using a web server.
Double-clicking on the HTML file and opening it in your browser won't work. If you are
not running your files with a web server, see the section Loading data files, in Chapter 2,
Technology Fundamentals, on how to configure a web server for testing.

The temperature data in the previous example was extracted from a JSON file obtained
from the NASA Goddard Institute for Space Studies (GISS) website
(data.giss.nasa.gov/gistemp), which includes monthly measurements for each year
between 1880 and 2016. It would be very interesting to plot the numbers for all months in a
single chart. We can do by this loading the file and using JavaScript to extract the data we
want.

The following is a fragment of the JSON file from the GISS site. It's also available from the
GitHub repository for this chapter in Data/monthly_json.json:

[
 {"Date": "2016-12-27", "Mean": 0.7895, "Source": "GCAG"},
 {"Date": "2016-12-27", "Mean": 0.81, "Source": "GISTEMP"},
 {"Date": "2016-11-27", "Mean": 0.7504, "Source": "GCAG"},
 {"Date": "2016-11-27", "Mean": 0.93, "Source": "GISTEMP"},
 {"Date": "2016-10-27", "Mean": 0.7292, "Source": "GCAG"},
 {"Date": "2016-10-27", "Mean": 0.89, "Source": "GISTEMP"},
 /* ... many, many more lines ... */
 {"Date": "1880-02-27", "Mean": -0.1229, "Source": "GCAG"},
 {"Date": "1880-02-27", "Mean": -0.21, "Source": "GISTEMP"},
 {"Date": "1880-01-27", "Mean": 0.0009, "Source": "GCAG"},
 {"Date": "1880-01-27", "Mean": -0.3, "Source": "GISTEMP"}
]

Files should be loaded asynchronously. You can use any Ajax library for this (for example,
JQuery) or use standard ES2015 features, supported by all modern browsers. In this book,
we will use the standard JavaScript fetch() command (in the GitHub repository, there are
also JQuery alternatives for most examples).

http://data.giss.nasa.gov/gistemp

Creating Charts Chapter 4

[99]

The fetch() command is reactive. It will wait until the whole file is loaded into memory
before moving to the first then() step, which processes the response and extracts the JSON
string (using the text() method). The second then() step only starts after all of the
contents are placed in a string, made available for parsing in the final step, as follows:

fetch('monthly_json.json')
 .then(response => response.text())
 .then((json) => {
 const dataMap = new Map();
 ...
 });

Before using a JSON file (which is a string), we need to parse it so that it will become a
JavaScript object, from which we can read individual fields using the dot operator. This can
be done with the standard JavaScript command, JSON.parse(), as follows:

const obj = JSON.parse(json);

If you are using JQuery or some other library instead of fetch(), you might prefer to use a
function that loads and parses JSON. In this case, you should not run the preceding
command.

The data contains two measurements, labeled GCAC and GISTEMP. We only need one of
them, so we will filter only the objects that have GISTEMP as Source. We will also reverse
the array so that the earlier measurements appear first in the chart. We can do all of this in
one line, as follows:

const obj = JSON.parse(json).reverse()
 .filter(field => field.Source == 'GISTEMP');
console.log(obj);

The last line will print the following code in your browser's JavaScript console:

 Array(1644)
 [0 ... 99]
 0:{Date: "1880-01-27", Mean: -0.3, Source: "GISTEMP"}
 1:{Date: "1880-02-27", Mean: -0.21, Source: "GISTEMP"}
 2:{Date: "1880-03-27", Mean: -0.18, Source: "GISTEMP"}
 3:{Date: "1880-04-27", Mean: -0.27, Source: "GISTEMP"}
 …

Now, it's easy to select the data we need to build a dataset for each year. The best way to do
that is to create a Map storing each value and month, and use the year as a retrieval key.
Split the date components to extract the year and month, and then store these values and
the temperature anomaly in a new object (with properties: year, month, and value) for
each Map entry.

Creating Charts Chapter 4

[100]

These steps are performed in the following code:

const dataMap = new Map();
obj.forEach(d => {
 const year = d.Date.split("-")[0], month = d.Date.split("-")[1];
 if(dataMap.get(year)) {
 dataMap.get(year).push({year: year, month: month, value: d.Mean});
 } else {
 dataMap.set(year, [{year: year, month: month, value: d.Mean}]);
 }
 });
console.log(dataMap); // check the structure of the generated map!
draw(dataMap);

The resulting map will contain one key for each year in the dataset. The value of each entry
will be an array of 12 objects, one for each month. Use your browser's JavaScript console to
inspect the generated map.

The draw() function will convert dataMap into a format that Chart.js can use. For each
entry it will create a dataset object and add it to the datasets array. Each dataset object
contains a data property with an array of data values (one per month), and dataset
configuration properties, such as line color and label. The map's key (year) is the label, and
the colors are generated in a gradient sequence using the year to change the hue, as follows:

function draw(dataMap) {
 const datasets = [];
 dataMap.forEach((entry, key) => {
 const dataset = {
 label: key, // the year
 data: entry.map(n => n.value),
 // array w temperature for each month
 borderColor: 'hsla('+(key*2)+',50%,50%,0.9)',
 //gradient
 backgroundColor: 'hsla('+(key*2)+',50%,50%,0.9)',
 borderWidth: 1,
 pointRadius: 0 // hide the data points
 };
 datasets.push(dataset);
 });
 ...

Now we can assemble the data object and instantiate the line chart, as follows:

 const months = ["Jan","Feb", ...,"Oct","Nov","Dec"];
 Chart.defaults.global.elements.line.fill = false;
 const chartObj = {
 type: "line",

Creating Charts Chapter 4

[101]

 data: {
 labels: months,
 datasets: datasets
 }
 };
 new Chart("my-line-chart", chartObj);
 }

The final result is shown as follows. The full code is available in LineArea/line-8-load-
fetch.html (fetch version), and LineArea/line-8-load-jquery.html (JQuery
Version):

Line chart using external data showing temperature variation from 1880 to 2016 (data: NASA/GISS; and code: LineArea/line-8-load-fetch.html for fetch version, or
LineArea/line-8-load-jquery.html for JQuery version)

It looks nice, but there is too much information. We could filter out some results, but we
can also just reduce the amount of labels. The options.legend.labels.filter property
supports a callback function that we can use to filter out selected labels. In the following
code, it will only display labels that are 20 years apart:

const chartObj = {
 type: "line",
 data: {
 labels: labels,
 datasets: datasets
 }

Creating Charts Chapter 4

[102]

 options:{
 legend: {
 labels: {
 filter: function(item, chart) {
 return new Number(item.text) % 20 == 0;
 }
 }
 }
 }
};

The result is shown as follows and the full code is in LineArea/line-10-filter.html.
Now only a few legends are shown, and the colors differ enough to relate them to different
parts of the chart. Although there is still a lot of information in the chart, the colors are
sufficient to reveal a trend toward increasing temperatures:

Line chart using external data after filtering out excess labels (code: LineArea/line-10-filter.html)

Creating Charts Chapter 4

[103]

Stacked area charts
A line chart could be used to show how much CO2 that each country releases in the
atmosphere each year. It would reveal if a country's emissions were increasing, stable, or
decreasing, but such a line chart would not be very useful to show the total amount of CO2
released in the air, and how each country contributes to this total. You can display this kind
of information using a stacked area chart.

There is no special area type chart in Chart.js. Instead, you can create a simple overlapping
area chart configuring the fill properties for each dataset in a line chart. To create a stacked
area chart, you will need to set the stacked property to true in the x and y-axes.

Let's try an example. We will use a JSON file containing data about carbon emissions (in
kilotonnes) from selected countries from 1960 to 2014. It's based on a CSV file containing
data for all countries, which is available for download from the World Bank public
database. I created a JSON Version of this file containing only the six greatest polluters,
adding up all of the other countries in a single entry. This is the file we will use
(Data/world_bank_co2_kt.json), as follows:

{ "labels":[1960,1961,…,2013,2014],
 "entries":[
 {"country":"Others",
 "data":[983835.74025,1015886.52639,
 …,10073290.7688,10300830.9827]},
 {"country":"Russian Federation",
 "data":[0,0,… ,1778561.006,1705345.684]},
 {"country":"India",
 "data":[120581.961,130402.187,… ,2034752.294,2238377.137]},
 {"country":"Japan",
 "data":[232781.16,283118.069,… ,1246515.976,1214048.358]},
 {"country":"China",
 "data":[780726.302,552066.85,… ,10258007.128,10291926.878]},
 {"country":"European Union",
 "data":[2359594.88616257,2445945.66448806,…
 ,3421472.348,3241844.353]},
 {"country":"United States",
 "data":[2890696.1,2880505.507,2987207.873,…
 ,5159160.972,5254279.285]}
]}

Creating Charts Chapter 4

[104]

As in the previous example, we need to load the file and parse the JSON string, as follows:

fetch('world_bank_co2_kt.json')
 .then(response => response.text())
 .then((json) => {
 draw(JSON.parse(json));
 });

The next step is to set up an array of labels and datasets from the data. The JSON file
already contains an array with the years, so all you have to do is copy it directly into the
chart's data object labels property. The datasets array is assembled iterating through
each entry in the data file's entries array to extract the label of the dataset (from the
country property) and the data array (from the data property). We will use the array's
index to generate different colors, as follows:

 function draw(datasetsObj) {
 const datasets = [];
 datasetsObj.entries.forEach((entry, index) => {
 const color = 'hsla('+(index+5)*50+',75%,75%,1)';
 const dataset = {
 label: entry.country,
 data: entry.data,
 borderColor: color,
 backgroundColor: color,
 borderWidth: 3,
 fill: 'start', // fills the space below each line
 pointRadius: 0
 };
 datasets.push(dataset);
 });

 const dataObj = {
 labels: datasetsObj.labels, // copied from the JSON data
 datasets: datasets
 }

 new Chart("my-area-chart", {type: "line", data: dataObj });

Creating Charts Chapter 4

[105]

The result of this code is shown as follows. The full code is in LineArea/line-11-
area.html. The step between 1990 and 1992 is caused by a lack of data in previous years,
mostly from Warsaw Pact countries and the Soviet Union:

An area chart with overlapped (not stacked) datasets (code: LineArea/line-11-area.html)

The Chart is probably not what you would expect. It's not stacking the data. The other
dataset is overlapping all of the other datasets.

Datasets could be stacked in two ways: on the x axis, or on the y axis, so you have to tell
Chart.js how you want to do it. In this example, it doesn't make sense to add up the years,
but it does to add up carbon emissions, so we have to stack the y axis. This is done by
setting the scales.yAxes[0].stacked property to true, in the options configuration
object, as follows:

 const chartObj = {
 type: "line",
 data: dataObj,
 options:{
 scales: {
 yAxes: [{
 stacked: true
 }]
 },
 legend: {
 labels: {

Creating Charts Chapter 4

[106]

 boxWidth: 20,
 }
 }
 }
 };

In the preceding options configuration, we have also reduced the size of the legend boxes to
half (the boxWidth property). You can see the final result as follows. The full code is in
LineArea/line-12-area-stacked.html:

A stacked area chart showing total and per-country CO2 emissions (code: LineArea/line-12-area-stacked.html)

Now the chart reveals that the step from 1990 to 1992 is mostly due to Russia, for which the
World Bank didn't have any carbon emission data before 1990, when it was the Soviet
Union.

Creating Charts Chapter 4

[107]

Radar charts
Radar charts are line charts plotted on a radial axis. They can be used with one or more
datasets that contain at least three values each. There is only one axis, which starts from the
center. Each line begins and ends at the same point and, for that reason, radar charts are
usually used to display values that are either cyclic in nature (such as hours, months,
schedules, or repeating events), a sequential list of categories which end at the same place
where it begins (such as round-trip), or categories that have no specific order. A radar chart
can be used to compare different datasets by revealing strong and weak points, or showing
outliers and commonality in data. It usually works best with a small number of datasets
(that is, no more than three or four).

Radar charts are usually a poor choice for large datasets. In these cases, it's usually better to
use a Cartesian line chart or a bar chart. Radial distances are also harder to perceive,
although this limitation can be minimized with the grid.

The configurable properties for radar charts are the same as line charts. You can even reuse
the same datasets and labels. The data property of each dataset must contain an array of
numbers and the chart object should be configured with type='radar'.

In the following example, a radar chart is being used to compare three different travel
schedules for a 30-day trip. Each dataset lists the number of days spent in each city. Using
this chart, a tourist can quickly visualize how the days of the trip will be distributed, per
city, making it easier to choose the best schedule:

 let dataObj = {
 labels: ["Lisbon", "Paris", "Berlin", "Moscow", "Rome",
 "Barcelona"],
 datasets: [
 {
 label: "Trip schedule #1",
 data: [5,5,5,5,5,5],
 borderColor: 'red',
 backgroundColor: 'hsla(0,75%,75%,.25)'
 },{
 label: "Trip schedule #2",
 data: [7,3,3,3,7,7],
 borderColor: 'blue',
 backgroundColor: 'hsla(240,75%,75%,.25)'
 },{
 label: "Trip schedule #3",
 data: [4,7,7,7,3,2],
 borderColor: 'yellow',
 backgroundColor: 'hsla(60,75%,75%,.25)'
 }

Creating Charts Chapter 4

[108]

]
 }

 const chartObj = {
 type: "radar",
 data: dataObj,
 options: {
 scale: {
 ticks: {
 beginAtZero: true,
 stepSize: 1 // show one gridline per day
 }
 }
 }
 };
 new Chart("my-radar-chart", chartObj);

Instead of a scales property containing x axes and y axes, a radar chart has a single scale
property. The grid structure is configured within the ticks property (more about scales at
the end of this chapter).

The result is shown as follows. You can see the full code in Radar/radar-1.html:

Radar chart comparing three different trip schedules for a 30-day trip (code: Radar/radar-1.html)

Creating Charts Chapter 4

[109]

Radar charts are great for cyclic data, such as the months in a year. Let's try to transform
the Cartesian line chart we created in the previous section into a radar chart with the same
data. Most of the code is the same. You only need to change the chart type, but some minor
changes in the configuration will make it look better.

The following code shows a slightly modified draw() function that uses the same
NASA/GISS monthly temperature data, but draws the lines in a radar chart:

 const months = ["Jan", "Feb", "Mar", ... , "Sep", "Oct", "Nov",
 "Dec"];

 function draw(datasetMap) {
 const datasets = [];

 datasetMap.forEach((entry, key) => {
 const dataset = {
 label: key,
 data: entry.map(n => n.value),
 borderColor: 'hsla('+(key*2)+',50%,50%,.9)',
 backgroundColor: 'hsla('+(key*2)+',50%,50%,0.1)',
 borderWidth: 1,
 pointRadius: 0, // don't show the data points
 lineTension: .4 // do draw lines as curves (not default in
 radar)
 };
 datasets.push(dataset);
 });

 const dataObj = {
 labels: months,
 datasets: datasets
 }

 const chartObj = {
 type: "radar",
 data: dataObj,
 options: {
 animation: {
 duration: 0
 },
 scale: {
 ticks: {
 max: 1.5
 }
 },
 legend: {
 labels: {

Creating Charts Chapter 4

[110]

 boxWidth: 20,
 filter: function(item, chart) {
 return new Number(item.text) % 20 == 0
 || item.text % 2016 == 0;
 }
 }
 }
 }
 };

 new Chart("my-radar-chart", chartObj);
 }

The default line tension is 0 for radar charts, which draws straight lines. Since the values
are averages, we selected a value between 0 and 0.5 for the lineTension property to make
the chart draw curved lines.

The full code is available in Radar/radar-3.html. The result is shown as follows:

A radar chart showing the increase in global temperatures from 1880 to 2016 (code: Radar/radar-3.html)

Creating Charts Chapter 4

[111]

The variation in color is sufficient to reveal that temperatures are increasing year after year.
However, if you wish for more precision, you can try filtering out some datasets and
display only the data for every two decades, as follows:

datasets: datasets.filter(d => d.label % 20 == 0 || d.label % 2016 == 0)

The result, showing only eight years is demonstrated as follows. The full code is in
Radar/radar-4.html:

A radar chart showing the increase in global temperatures every 20 years from 1880 to 2016 (code: Radar/radar-4.html)

Creating Charts Chapter 4

[112]

Pie and doughnut charts
Pie and doughnut charts are used to display numerical proportion between data as parts of
a whole. Each data value is represented as a slice, which represents a proportional quantity.
These charts are very popular but are also widely criticized. Since we don't perceive angles
very well, it's much harder to compare data displayed in a pie chart, than in a bar or line
chart. Using pie charts to compare only very small sets of data can avoid or reduce these
problems.

A pie chart is usually used to display a single dataset. The type property of the chart object
should be pie. Doughnut charts are equivalent to pie charts, but they are created with
type: doughnut. You can also transform any pie chart into a doughnut by simply
changing the dataset property cutoutPercentage to 50 (or some other value different
than zero).

Creating a simple pie chart
Let's create a simple pie chart to compare CO2 emissions among the world's greatest
polluters for a single year. You can use the same data we used for the area chart, but you
will need to choose one of the datasets, place the country names in a labels array, the data
for one year in the data array, and generate colors for each slice. All this can be done in
JavaScript (see Pie/pie-2-fetch.html), but for the sake of simplicity and to focus on the
construction of a simple pie chart, we will include the data directly in the HTML file, as
shown in the following code block:

 const dataset = [1.21, 1.71, 2.24, 3.24, 5.25, 10.29, 10.3]; // 2014 data
 const labels = ["Japan", "Russian Federation", "India", "European Union",
 "United States", "China", "Others"];
 const colors = [];

 dataset.forEach((entry, index) => { // generate some colors
 colors.push('hsla('+((index+5)*50)+',75%,75%,1)');
 });

Creating Charts Chapter 4

[113]

The datasets array contains a single dataset, as follows:

const dataObj = {
 labels: labels,
 datasets: [{
 data: dataset,
 backgroundColor: colors,
 borderWidth: 3
 }]
 }

The chart type should be pie, as follows:

const chartObj = {
 type: "pie",
 data: dataObj,
 options:{
 title: {
 text: "CO2 emissions (billions of tonnes)",
 display: true,
 fontSize: 24
 },
 legend: {
 labels: {
 boxWidth: 20,
 },
 position: 'right'
 }

 }
 };
 new Chart("my-pie-chart", chartObj);

The results are shown as follows. You can also see the full code in Pie/pie-1.html. Note
that slices don't have any labels. You can only see the value of each slice if you hover the
mouse over it. It will be shown in a tooltip:

Creating Charts Chapter 4

[114]

A simple pie chart showing CO2 emissions by the greatest polluters in billions of tonnes (code: Pie/pie-1.html)

Dataset properties for pie charts
Besides data and labels properties, several other properties (listed as follows) can be
used in each dataset object to configure the colors and style of each slice. All properties
receive an array of attributes, and each attribute is applied to the corresponding slice:

Property Value Description

backgroundColor
Array of CSS color
strings The fill color of the slice

borderColor
Array of CSS color
strings The border color of the slice

borderWidth Array of numbers The border width of the slice

hoverBackgroundColor
Array of CSS color
strings

The fill color of the slice when the
mouse hovers over it

hoverBorderColor
Array of CSS color
strings

The border color of the slice when the
mouse hovers over it

hoverBorderWidth Array of numbers The border width of the slice when the
mouse hovers over it

Dataset options for pie and doughnut charts

Creating Charts Chapter 4

[115]

Configuration options
Common configuration options are inherited for pie charts, but there are also some options
that are specific to pie and doughnut charts. These are listed in the following table:

Property Value Description

cutoutPercentage
Number. Defaults: 0 for
'pie', and '50' for doughnut

A percentage of the chart that is cut
out from the middle

rotation
Number. Default: -0.5 *
Math.PI The starting angle to draw the arcs

circumference Number. Default: 2 * Math.PI The circumference of the pie

Configuration options for pie and doughnut charts

These options are merged (and override) global configuration options. Default options for
each type of chart can also be set through the Chart.defaults.doughnut and
Chart.defaults.pie objects, which support the same properties listed earlier.

How to show values in the slices
Currently, there is no native Chart.js way to show values or percentages in a pie chart
without tooltips. But you can achieve this using a plugin or extension. In the following
example, we will use a very simple library called Chart.Piecelabel.js. You can
download it from github.com/emn178/Chart.PieceLabel.js and include it your page
using a script tag:

<script src="../JavaScript/Chart.PieceLabel.js"></script>

http://github.com/emn178/Chart.PieceLabel.js

Creating Charts Chapter 4

[116]

That's it! Now you can add the pieceLabel property to the options object, and configure
labels for the slices. You can display absolute values or percentages, place the labels inside,
at the border or outside the slices, draw the text on the arc and configure several font
attributes. The following is a selection of these properties (you can check the library's
documentation for more properties):

Property Value Description

render
'percentage' (default)
or 'value'

Displays the percentage or the value of the
slice.

precision Number
The precision (number of digits after the
decimal point) for percentages (does not
work with other values).

fontSize,
fontColor,
fontSize, and
fontFamily

CSS property value
strings Changes font attributes for the label.

textShadow true or false
Applies a shadow to the label (the shadow
attributes, such as offset and color, can also
be configured with additional properties).

position
'default', 'border'
or 'outside' Places the label in the different positions.

arc true or false Draws the text aligned with the arc. Works
better when the position is 'outside'.

Some configuration options for the Chart.PieceLabel.js plugin

To include labels in the pie chart you created in the previous example, add the following
property to the options object of your chart (see Pie/pie-3-plugin.html):

options:{
 pieceLabel: {
 fontColor: '#000',
 render: 'value',
 textShadow: true,
 position: 'border'
 },
 …

Creating Charts Chapter 4

[117]

Run the script and you have labels containing the value represented by each slice, as shown
in the following chart:

A simple pie chart using the Chart.PieceLabel.js extension to display labels on each slice (code: Pie/pie-3-plugin.html)

If you want even more customization, you can try other plugins such as ChartJS-
Datalabels and ChartJS-Outlabels, which support sophisticated label placement
options. These two plugins will be explored in Chapter 6, Configuring Styles and
Interactivity.

Preparing data for pie and doughnut charts
Pie charts can't be used with any type of data. They should only be used to display part-
whole relationships and contain not much more than half a dozen data values. The
following screenshot shows what happens when you create a pie or doughnut chart with
too much data. In this example, we loaded a doughnut chart containing the populations of
almost 200 countries. It may be art, but not really a useful visualization:

Creating Charts Chapter 4

[118]

Abusing a pie chart (code: Pie/pie-4-evilpie.html; see also Pie/pie-6-evilpie.html)

Even if you reduce this dataset to less than 20 values, it would still not be efficiently
displayed in a pie chart. There aren't enough colors, and it would be difficult to place labels
inside or beside so many slices, not considering the fact that angles are much harder to
compare. In such cases, you should switch to a bar chart, which can be used to efficiently
compare 20 values or even more.

The following screenshot shows a bar chart created with the same data, filtered to show the
35 most populous countries:

A bar chart is a better choice than a pie chart to compare large datasets (code: Pie/pie-5-evilpie-as-bar.html; see also Pie/pie-7-evilpie-as-bar.html)

Creating Charts Chapter 4

[119]

If you still want to use a pie chart, you need to reduce the data sample, but it's not enough
to simply filter out data (for example, by including only the most populous countries).
Since a pie chart should display part-whole relationships, but you also need to add the
excluded items (for example, add up the populations of the smaller countries, as in the CO2
emissions example).

This is done in the following example: it loads and parses a CSV data file, sorts the data by
population, creates an array of objects with the largest countries, and finally, adds up all of
the other populations into a new others entry.

To parse the CSV, we are using the popular PapaParse library
(github.com/mholt/PapaParse). You can include it in your page using the following code:

<script
src="https://cdnjs.cloudflare.com/ajax/libs/PapaParse/4.6.0/papaparse.min.j
s">
 </script>

PapaParse reads CSV and transforms the data into a JavaScript array, where each row is
an object with the column headers as keys. To obtain the data from any CSV file where the
first row contains the headers (which is the most common case), use the following code:

const data = Papa.parse(csv, {header: true}).data;

Now, for each array item, you can access the values using item.header or
item['header'].

The following code loads the CSV, parses it, and calls a function to reduce the data. The
reduced data is then passed to the drawData() function that will use Chart.js to draw the
pie, as follows:

 const numberOfEntries = 6; // change this to include more countries

 fetch('../Data/WPP2017_UN.csv')
 .then(response => response.text())
 .then((csv) => {
 const data = Papa.parse(csv, {header: true}).data;
 const reduced = reduceData(data);
 drawData(reduced);
 });

http://github.com/mholt/PapaParse

Creating Charts Chapter 4

[120]

The reduceData() function filters the countries with the largest population (that is, by
sorting by population, and then slicing the array), and adds the populations of the
remaining countries to create the others entry, as follows:

 function reduceData(array) {
 array.sort((a, b) => a["2015"] - b["2015"]);

 const topEntries =
 array.slice(array.length - numberOfEntries,array.length)
 .map(d => ({country: d["Country or region"], data:
 +d["2015"]}));

 let others = array.slice(0, array.length - numberOfEntries);
 const sumOthers = others.map(d => +d["2015"]).reduce((a,b) => a+b, 0);
 others = {country: "Others", data: sumOthers};
 topEntries.push(others);
 return topEntries;
 }

The drawData() function prepares the data so that it can be used by Chart.js, and uses the
result to populate the chart's labels, datasets[0].data and
datasets[0].backgroundColor, as follows:

 function drawData(data) {
 const dataset = [], labels = [], colors = [];
 let count = 0;
 data.forEach(d => {
 dataset.push(Math.round(d.data/1000));
 labels.push(d.country);
 colors.push('hsla('+(count++ *
 300/numberOfEntries)+',100%,70%,.9)');
 });

 const dataObj = {
 labels: labels,
 datasets: [
 {
 data: dataset,
 backgroundColor: colors,
 borderWidth: 5,
 hoverBackgroundColor: 'black',
 hoverBorderColor: 'white'
 }
]
 }

 const chartObj = {

Creating Charts Chapter 4

[121]

 type: "doughnut",
 data: dataObj,
 options: {
 title: {
 display: true,
 position: 'left',
 fontSize: 24,
 text: "World population (millions)"
 },
 legend: {
 position: 'right'
 },
 pieceLabel: {
 fontColor: '#000',
 render: 'value',
 textShadow: true,
 position: 'border'
 }
 }
 };
 new Chart("my-pie-chart", chartObj);
 }

You can see the full code in Pie/pie-8-filter.html. The final result, showing six
countries compared to all of the others, is shown as follows:

A doughnut chart comparing the most populous countries with the rest of the world (code: Pie/pie-8-filter.html)

Creating Charts Chapter 4

[122]

Changing the circumference
Pie and doughnut charts don't have to be complete circles. You can set the value of the
circumference property (in radians) and use less than 360 degrees (2 * Math.PI radians).
Using Math.PI as the circumference, you get a half-pie or half-doughnut chart. These
charts are good to compare two or three values and may fit better in reduced spaces.

We modified the previous chart in the following example. It compares the 2017 populations
of China and India with the rest of the world using a half-doughnut. The following
fragment contains the relevant code. You can see the full code in Pie/pie-9-
halfpie.html:

 const numberOfEntries = 2;
 // ...
 const chartObj = {
 type: "doughnut",
 data: dataObj,
 options: {
 circumference: Math.PI, // creates the half-pie
 rotation: Math.PI / 2, // rotates the half-pie 180 degrees
 title: {...},
 legend: {...},
 pieceLabel: {...}
 }
 };
new Chart("my-pie-chart", chartObj);

Creating Charts Chapter 4

[123]

The resulting chart is shown as follows. The rotation property doesn't contain the
amount of rotation, but a position (that is, the starting angle from where the arcs are
drawn), and the default rotation position is -Math.PI/2, so the value of Math.PI/2 actually
rotates it 180 degrees, not 90 degrees, as it might seem (for that, use Math.PI to move it to a
perpendicular position):

Changing the circumference and rotation properties of a doughnut chart (code: Pie/pie-9-halfpie.html)

Creating Charts Chapter 4

[124]

Pie and doughnut charts with multiple datasets
Normally, you only display a single dataset with a pie chart, but multiple datasets are
supported. They are displayed as concentric circles. Labeling the data in this case is
mandatory, since it's impossible to visually compare the sizes of the slices.

The following example uses two datasets containing country population estimates from
1980 and 2015 to create a doughnut chart with the 1980 values in the inner circle, and the
2015 values in the outer circle. The relevant code fragments are shown as follows. You can
see the full code in Pie/pie-10-multiset.html:

 const dataset2015 = [189,206,258,320,1309,1397,3703],
 dataset1980 = [78,121,147,230,697,994,2191];

 const labels = ["Pakistan", "Brazil", "Indonesia", "United States of
 America", "India", "China", "Others"];

 const colors2015 = [], colors1980 = [];

 let count = 0;
 labels.forEach(d => {
 count++;
 colors2015.push('hsla('+(count * 300 / labels.length)+', 100%,
 50%, .9)');
 colors1980.push('hsla('+(count * 300 / labels.length)+', 100%,
 75%, .9)');
 });

 const dataObj = {
 labels: labels,
 datasets: [
 { data: dataset2015, backgroundColor: colors2015 },
 { data: dataset1980, backgroundColor: colors1980 }
]
 }
 const canvas = document.getElementById("my-pie-chart");
 const ctx = canvas.getContext("2d");

 const chartObj = {
 type: "doughnut",
 data: dataObj,
 options: {
 animation: { // to draw on canvas use this callback
 onComplete: function() {
 ctx.fillText("Population in 1980",
 canvas.width/2 - 140,canvas.height/2);
 ctx.fillText("Population in 2015",

Creating Charts Chapter 4

[125]

 canvas.width/2 + 70,canvas.height - 10);
 }
 } // ...
 }
 };

 const chart = new Chart("my-pie-chart", chartObj);
 chart.update();

The label in the center of the doughnuts was created by drawing directly on the canvas. If
you need to do that, you must use a callback. The onComplete callback (configured under
options.animation) is called when the chart has finished drawing. If you don't use a
callback, Chart.js may erase whatever you draw. This behavior will be detailed in Chapter
6, Configuring Styles and
Interactivity.

The result is shown as follows:

A doughnut chart with two datasets (code: Pie/pie-10-multiset.html)

Creating Charts Chapter 4

[126]

These charts may be visually attractive, but they can introduce some serious perception
errors. The outer arcs are perceived to be much larger than they actually are. It's an optical
illusion. A population growth in the preceding chart won't be noticed unless the difference
is significant. You can visualize this problem if you invert the order of the datasets, placing
the 1980 values on the outer circle. This is shown in the following chart, where it seems that
some populations grew in proportion to the whole, when all of them actually decreased.
This chart is lying to us:

Multiple datasets cannot be compared in pie and doughnut charts: the smaller values seem to be larger (code: Pie/pie-11-evilmultiset.html)

Polar area charts
Polar area charts are like bar charts rendered on a radial axis. A bar chart is usually a better
option if you need precision, but you might choose a polar area chart for its visual effects.

To create a polar area chart, you set up the data the same way you would for a bar chart,
then change the type to polarArea. As in the radar chart, there is only one scale property
and axis to configure.

Creating Charts Chapter 4

[127]

In the following example, we use a polar area chart to compare the volumes of the world's
oceans. It is based on the bar chart with the same data we created in Chapter 3, Chart.js –
Quick Start.

 const labels = ["Arctic", "Southern", "North Atlantic", "South
 Atlantic", "Indian", "South Pacific", "North Pacific"];
 const volume = [18750, 71800,146000,160000,264000,329000,341000];
 // km3*10^3

 Chart.defaults.global.elements.rectangle.borderWidth = 1;

 const chartObj = {
 labels: labels,
 datasets: [
 {
 label: "Volume",
 data: volume,
 borderWidth: 2,
 backgroundColor: [
 'hsla(260,100%,75%,.7',
 'hsla(245,100%,75%,.7',
 'hsla(230,100%,75%,.7',
 'hsla(210,100%,75%,.7',
 'hsla(195,100%,75%,.7',
 'hsla(180,100%,75%,.7',
 'hsla(165,100%,75%,.7']
 }
]
 }
 new Chart("my-polar-area-chart", {
 type: "polarArea",
 data: chartObj,
 options: {
 title: {
 display: true,
 position: 'left',
 fontSize: 24,
 text: "Volume of water (in 1000 cubic km)"
 },
 legend: {
 position: 'right'
 }
 }
 });

You can see the full code in PolarArea/polar-area-1.html. The result is shown as
follows:

Creating Charts Chapter 4

[128]

A polar area chart comparing the volume of water in each ocean (code: PolarArea/polar-area-1.html)

Polar area charts share the same dataset properties as pie and doughnut charts, which
consist mostly of properties to set the border widths, border colors, and fill colors of the
slices.

There is one configuration option specific to polar area charts, listed as follows:

Property Value Description
startAngle Number The angle to start drawing the arcs

Configuration options for polar area charts

You can draw polar area charts containing multiple datasets, but they will be overlapped.
The current version of Chart.js (2.7.2) does not support stacking or other ways of showing
multiple datasets in these charts. You can also see PolarArea/polar-area-2.html and
polar-area-3.html for other ways to configure polar area charts.

Creating Charts Chapter 4

[129]

Scatter and bubble charts
Scatter charts or scatterplots are very popular in data science and statistics. They can be
used to explore various kinds of correlations between variables, revealing trends, clusters,
linear, and non-linear relationships. It's an essential tool in problem solving procedures and
decision-making.

Scatter charts display the correlation between two variables by plotting their points in a
system of Cartesian coordinates. Additional variables can be displayed by using different
shapes and/or colors for the points.

A bubble chart is a scatter chart that uses circles with different radii to display an additional
variable. It's also common to overlap scatter charts with other charts, such as line and bar
charts, as to emphasize patterns and compare raw data with estimates, such as trendlines
(best-fit).

Creating a scatter chart
The type property should be scatter. Scatter charts support the same properties as line
charts, but instead of an array of numbers, the data property should contain an array of
point objects with the following structure:

{
 x: number,
 y: number
 }

The following example creates a simple scatter chart with a single dataset. The data values
consist of a sequence of numbers generated for the x property, and the sine function of each
number for the y property:

const dataset = [];
 for(let i = 0; i <= 360; i+= 5) {
 const point = {
 x: i,
 y: Math.sin(i * Math.PI / 180)
 }
 dataset.push(point);
 }

 const dataObj = {
 datasets: [
 {
 data: dataset,

Creating Charts Chapter 4

[130]

 pointRadius: 2,
 backgroundColor: 'red'
 }
]
 }

 const chartObj = {
 type: "scatter",
 data: dataObj,
 options: {
 legend: {
 display: false
 },

 }
 };
 new Chart("my-scatter-chart", chartObj);

You can see the full code in ScatterBubble/scatter-1.html. The result is shown as
follows:

A simple scatter chart with x = n and y = sin(x) (code: ScatterBubble/scatter-1.html)

Creating Charts Chapter 4

[131]

Multiple datasets can be displayed on the same chart. This following example generates
two more mathematical functions and displays their graphs using the same scales:

const dataset1 = [], dataset2 = [], dataset3 = [];
 for(let i = 0; i <= 360; i+= 5) {
 const n = i * Math.PI / 180;
 const point1 = { x: n - Math.PI, y: Math.sin(n) }
 const point2 = { x: n - Math.PI, y: Math.cos(n) }
 const point3 = { x: Math.cos(n) + Math.sin(n), y: Math.cos(n) -
 Math.sin(n) }
 dataset1.push(point1);
 dataset2.push(point2);
 dataset3.push(point3);
 }

 const dataObj = {
 datasets: [
 { data: dataset1,
 pointRadius: 2,
 backgroundColor: 'red'
 },{
 data: dataset2,
 pointRadius: 2,
 backgroundColor: 'blue'
 },{
 data: dataset3,
 pointRadius: 2,
 backgroundColor: 'green'
 }
]
 }

 const chartObj = {
 type: "scatter",
 data: dataObj,
 options: {
 legend: { display: false },
 scales: {
 yAxes: [{
 ticks: {min: -2, max: 2}
 }]
 }
 }
 };
 new Chart("my-scatter-chart", chartObj);

Creating Charts Chapter 4

[132]

 You can see the full code in ScatterBubble/scatter-3.html. The result is shown as
follows:

Scatterplot with multiple datasets (code: ScatterBubble/scatter-3.html)

Revealing correlations with scatter charts
Scatter charts are great to show correlations between data. The following example will
combine NASA/GISS global temperature data (Data/monthly_json.json) and CO2
emission data (Data/co2_mm_mlo.csv) measured in Mauna Loa, Hawaii, to discover if
there is any correlation between the two. Since the Mauna Loa data is only available after
1959, we will only use the GISS data after that year.

Since we must load multiple files, we will use JavaScript promises. Each data source is
parsed and the data is sent to the combine() function, which returns an array that can be
used by Chart.js, as follows:

const canvas = document.getElementById("my-scatter-chart");
 const files = ['../Data/monthly_json.json', '../Data/co2_mm_mlo.csv'];
 var promises = files.map(file => fetch(file).then(resp => resp.text()));
 Promise.all(promises).then(results => {
 const temperatures = JSON.parse(results[0]);
 const co2emissions = Papa.parse(results[1], {header: true}).data;

Creating Charts Chapter 4

[133]

 const data = combine(temperatures, co2emissions);
 drawData(data);
 });

The combine() function iterates through each object in the CO2 data, extracts the year and
the month and uses it to obtain the corresponding mean temperature, then creates an object
with the CO2 and temperature for each month/year. Each object is pushed into an array
that is returned, as follows:

function combine(tempData, co2Data) {
 const entries = [];
 co2Data.filter(n => +n.year >= 1959).forEach(measure => {
 const year = measure.year, month = measure.month;
 let temperature = 0;
 tempData.filter(n => n.Source=='GISTEMP' && +n.Date.split("-")
 [0] >= 1959)
 .forEach(temp => {
 if(+temp.Date.split("-")[0] == year
 && +temp.Date.split("-")[1] == month) {
 temperature = temp.Mean;
 }
 });
 entries.push({ co2: measure.average, temp: temperature });
 });
 return entries;
 }

The following drawData() function uses the array of objects that contains co2 and temp
properties to draw the scatter chart by copying these values into {x,y} objects:

function drawData(datasets) {
 const entries = [];
 datasets.forEach(entry => {
 const obj = { x: entry.co2, y: entry.temp };
 entries.push(obj);
 });
 const dataObj = {
 datasets: [
 {
 data: entries,
 pointRadius: 2,
 pointBackgroundColor: 'rgba(255,0,0,.5)'
 }
]
 }
 const chartObj = {
 type: "scatter",
 data: dataObj,

Creating Charts Chapter 4

[134]

 options: { legend: { display: false } }
 };
 new Chart("my-scatter-chart", chartObj);
 }

You can see the full code in ScatterBubble/scatter-4.html. The result is shown in the
following chart and reveals a possible relationship between growing CO2 emissions and
global temperatures. It also shows some data that we should have filtered out (if we had
read the documentation that comes with the data), such as missing CO2 measurements,
which appear as -99.99:

Comparing CO2 emissions (source: Mauna Loa) and global temperature (source: NASA; code: ScatterBubble/scatter-4.html)

We can filter out the bad measurements by adding an extra predicate to the co2Data filter,
as follows:

co2Data.filter(n => +n.year >= 1959 && n.average > 0)

It's also a good idea to label the axes, so the viewer knows what kind of data is being
compared. The following configuration adds axis titles and also a title for the chart. The full
code is in ScatterBubble/scatter-5.html:

const chartObj = {
 type: "scatter",
 data: dataObj,
 options: {

Creating Charts Chapter 4

[135]

 legend: { display: false},
 title: {
 display: true,
 text: 'CO2 emissions vs. Global temperatures',
 fontSize: 24
 },
 scales: {
 xAxes: [{
 scaleLabel: {
 labelString: 'CO2 emissions (ppm)',
 display: true
 }
 }],
 yAxes: [{
 scaleLabel: {
 labelString: 'Temperature anomaly (Celsius)',
 display: true
 }
 }],
 }
 }
 };
 new Chart("my-scatter-chart", chartObj);

 The final chart is shown as follows:

CO2 vs temperature scatter chart after filtering out wrong measurements (code: ScatterBubble/scatter-5.html)

Creating Charts Chapter 4

[136]

Scatter charts with large quantities of data
Scatter charts are great to reveal hidden patterns in large datasets. In the following
example, we will use a huge file obtained from a public database (geonames.org) to plot a
scatter chart showing the position of cities based on their latitude and longitude. The file
contains a list of locations with populations above 15,000 (Data/cities_15000.csv). It
contains over 100,000 entries (and because of this, it will take a few seconds to load). This is
the general structure of the CSV file:

geonameid;asciiname;latitude;longitude;country_code;population;timezone1425
6;Azadshahr;34.79049;48.57011;IR;514102;Asia/Tehran
18918;Protaras;35.0125;34.05833;CY;20230;Asia/Nicosia
23814;Kahriz;34.3838;47.0553;IR;766706;Asia/Tehran
24851;Nurabad;34.0734;47.9725;IR;73528;Asia/Tehran
// + than 100 000 lines

To build the scatter chart, we need to process the file and convert latitudes and longitudes
into the point data format. The axes also have to be configured to represent a cylindrical
projection of the globe (limited by longitude: -180 to 180 and latitude: -90 to 90). The
following code configures the scales, loads the files, parses the data, builds the point object
for each coordinate pair, and draws the chart:

fetch('../Data/cities15000.csv')
 .then(response => response.text())
 .then(csv => drawData(Papa.parse(csv, {header: true}).data));

 function drawData(datasets) {
 const locations = [];
 datasets.forEach(city => {
 const obj = {
 x: city.longitude,
 y: city.latitude,
 name: city.asciiname
 }
 locations.push(obj);
 });

 const dataObj = {
 datasets: [
 {
 label: "Label",
 data: locations,
 pointRadius: .25,
 pointBackgroundColor: 'red'
 }
]

http://geonames.org

Creating Charts Chapter 4

[137]

 }

 const chartObj = {
 type: "scatter",
 data: dataObj,
 options: {
 animation: { duration: 0 },
 title: { display: false },
 responsive: false,
 legend: { display: false },
 scales: {
 xAxes: [{ ticks: { min: -180, max: 180 } }],
 yAxes: [{ ticks: { min: -90, max: 90 } }]
 },
 tooltips: {
 callbacks: {
 title: (items,data) => locations[items[0].index].name
 }
 }
 }
 };

 new Chart("my-scatter-chart", chartObj);
 }

You can see the full code in ScatterBubble/scatter-6-world.html. The result reveals
a surprising hidden pattern (and correlation between land and humans). You can move the
mouse over the points and it will reveal the name and coordinates of the location (this was
configured using tooltip callbacks):

Creating Charts Chapter 4

[138]

Scatter chart showing the position of over 100,000 human-populated locations (code: ScatterBubble/scatter-6-world.html)

Bubble charts
Bubble charts are just like scatter charts, but they can display an extra variable in the
diameter of the point (or shape). The type property should be bubble. Although they
share the same dataset properties as scatter charts, most of them can receive callbacks in
bubble charts, which allow a higher degree of interactivity. The data structure for bubble
charts contains three properties, as follows:

{x: number, y: number, r: number}

The properties x and y are scaled automatically when the chart is scaled. The r property is
the raw radius of the circle in pixels and is not scaled (but you can configure a callback if
you need to scale it).

The following code (ScatterBubble/bubble-1.html) creates a simple bubble chart with
a single dataset containing five entries. The color of each bubble is generated automatically
according to the radius of the bubble using a callback:

const dataObj = {
 datasets: [
 {
 data: [{x:5, y:1, r:60},{x:3, y:1, r:30},{x:1, y:2, r:15},

Creating Charts Chapter 4

[139]

 {x:3, y:5, r:90},{x:2, y:4, r:20}],
 backgroundColor: function(context) {
 const point = context.dataset.data[context.dataIndex];
 return 'hsla('+(point.r * 4)+',100%,70%,.6)'
 }
 }
]
 }

 const chartObj = { type: "bubble", data: dataObj,
 options: {
 scales: {
 xAxes: [{ticks: {min: 0, max: 6}}],
 yAxes: [{ticks: {min: 0, max: 7}}]
 },
 }
 };
 new Chart("my-bubble-chart", chartObj);

The result is shown as follows. Note that if you resize the chart, the bubble sizes don't
change:

A simple bubble chart with one dataset (code: ScatterBubble/bubble-1.html)

Creating Charts Chapter 4

[140]

Bubble charts are as not as informative as scatter charts when displaying large amounts of
data, but they can still reveal interesting information. The following example converts the
previously shown scatter chart into a bubble chart using the population of each location to
generate the radius of the bubble.

Since bubbles may overlap, the dataset is sorted so that the smaller populations stay on top.
The scaleR() function creates a simple scale to convert populations into circle radii, as
follows:

fetch('../Data/cities15000.csv')
 .then(response => response.text())
 .then(csv => {
 const data = Papa.parse(csv, {header: true}).data;
 drawData(data.sort((a, b) => b.population - a.population));
 });

 function scaleR(value) {
 const r = Math.floor(value / 100000);
 return r != 0 ? r/10 : .25;
 }

The drawData() function creates a data point object for the bubble chart, with three
properties x, y containing the longitudes and latitudes, and the scaled population
converted into a radius, as follows:

function drawData(datasets) {
 const coordset = [];
 datasets.forEach(city => {
 const obj = {
 x: city.longitude,
 y: city.latitude,
 r: scaleR(city.population)
 };
 coordset.push(obj);
 });

The data object includes the data array as its data, and configures the backgroundColor
property as a callback that returns different colors for the bubbles depending on the value
of the radius, as follows:

 const dataObj = {
 datasets: [
 {
 label: "Label",
 data: coordset,
 backgroundColor: function(context) {
 const value =

Creating Charts Chapter 4

[141]

 context.dataset.data[context.dataIndex].r;
 if(value > 20) return 'hsla(0,100%,50%,.4)';
 if(value > 10) return 'hsla(30,100%,50%,.5)';
 if(value > 5) return 'hsla(60,100%,50%,.6)';
 if(value > 1) return 'hsla(120,100%,50%,.7)';
 else return 'hsla(0,0%,50%,1)';
 }
 }
]
 }

 new Chart("my-bubble-chart", {type: 'bubble', data: dataObj, options:
{...});
 }

 You can see the full code in ScatterBubble/bubble-2.html. The result is shown as
follows:

A bubble map of cities. The bubble's radius is proportional to the population of each location (code: ScatterBubble/bubble-2.html)

Creating Charts Chapter 4

[142]

Summary
In this chapter, we learned how to create all of the standard types of charts supported by
Chart.js: bar, horizontal bar, line, area, pie, doughnut, polar area, radar, scatter, and bubble
charts.

Different charts are more suited for certain types of datasets and purposes than others. We
explored the same examples with different charts and saw how each type communicates
different aspects of the data, revealing correlations, proportions, trends, and hidden
patterns.

Each chart was introduced with a simple example, but we also created some real world
visualizations using public CSV and JSON data, which needed to be downscaled,
combined, filtered, and mapped to data formats expected by Chart.js.

We also experimented with several configuration properties, for graphical elements,
datasets, and charts, allowing a high degree of customization. Many of these will be
explored in greater detail in the next chapters.

References
Books and websites:

Chart.js official documentation and samples: https:/ ​/​www. ​chartjs. ​org/ ​docs/
latest/​

PieceLabel plugin (Chart.PieceLabel.js) https:/ ​/​github. ​com/ ​emn178/
Chart.​PieceLabel. ​js

Data sources:

Mauna Loa CO2 measurements: Chapter04/Data/co2_mm_mlo.csv. Dr. Pieter
Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/) and Dr. Ralph
Keeling, Scripps Institution of Oceanography (scrippsco2.ucsd.edu/).
Ocean temperatures: Chapter04/Data/monthly_json.json. GISTEMP Team,
2019: GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for
Space Studies. Dataset accessed 2019-02-01 at https:/ ​/ ​data. ​giss. ​nasa. ​gov/
gistemp/ ​. Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface
temperature change, Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://github.com/emn178/Chart.PieceLabel.js
https://github.com/emn178/Chart.PieceLabel.js
https://github.com/emn178/Chart.PieceLabel.js
https://github.com/emn178/Chart.PieceLabel.js
https://github.com/emn178/Chart.PieceLabel.js
https://github.com/emn178/Chart.PieceLabel.js
https://github.com/emn178/Chart.PieceLabel.js
https://github.com/emn178/Chart.PieceLabel.js
https://github.com/emn178/Chart.PieceLabel.js
https://github.com/emn178/Chart.PieceLabel.js
https://github.com/emn178/Chart.PieceLabel.js
https://github.com/emn178/Chart.PieceLabel.js
https://github.com/emn178/Chart.PieceLabel.js
https://github.com/emn178/Chart.PieceLabel.js
http://www.esrl.noaa.gov/gmd/ccgg/trends/
http://scrippsco2.ucsd.edu/
https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/

Creating Charts Chapter 4

[143]

Geographical database: Chapter02/Data/cities1000.csv. GeoNames
geographical database: www.geonames.org.
CO2 emissions per country in kilotons (1960-2014):
Chapter04/world_bank_co2_kt.json. World bank public data. https:/ ​/​data.
worldbank. ​org

World population: Chapter04/WPP2017_UN.csv. United Nations World
Population Prospects 2017. https:/ ​/​www. ​un. ​org

http://www.geonames.org
https://data.worldbank.org
https://data.worldbank.org
https://data.worldbank.org
https://data.worldbank.org
https://data.worldbank.org
https://data.worldbank.org
https://data.worldbank.org
https://data.worldbank.org
https://www.un.org
https://www.un.org
https://www.un.org
https://www.un.org
https://www.un.org
https://www.un.org
https://www.un.org
https://www.un.org
https://www.un.org

5
Scales and Grid Configuration

In this chapter, you will learn how to configure the scales that control how your chart is
displayed in a Cartesian or radial grid. Scales are used in all charts except pie and
doughnut. Cartesian charts, such as line, bar, scatter, and bubble, use a pair of
perpendicular axes, each one with a scale automatically calculated by Chart.js to position
data points. Data in charts, such as polar area and radar, use a single scale, placing the data
points at different positions that originate from the center. You can configure scales,
altering the way the data points are presented, for example, by using a logarithmic scale
instead of a default linear scale for numerical values. You may also choose a sequential time
scale instead of a category scale. There are also many ways to configure styles and change
the way axes, grid lines, ticks, and labels are shown in your chart.

In this chapter, we will cover the following topics:

Configuring scales
Cartesian axes, ticks, and grid lines
Radial axes, ticks, and grid lines
Advanced scales configuration

Configuring scales
A scale is a transformation that enlarges or shrinks a data domain so that it fits a specific
range. Chart.js scales data automatically, adjusting domain data values so they fit within
the space reserved for the chart. A scale is represented by an axis, which is a directed line
that represents the extent of the domain. The discrete values that are placed on an axis line
are called ticks. A coordinate system with perpendicular or radial axes and discrete ticks
forms a grid. Scales, axes, ticks, and grids exist in all charts, even if you don’t see them.
They control how the data points will be displayed in the chart.

Scales and Grid Configuration Chapter 5

[145]

Cartesian charts have two scales, each represented by perpendicular axes, x and y, and
radial charts have one scale, represented by the radius and angle. Radial scales are always
linear, but Cartesian scales can be linear, logarithmic, categorical, or temporal. Chart.js also
allows you to create your own scales.

In most charts, the axes, grid lines, and tick labels are visible by default, but you may wish
to remove unnecessary lines, lighten colors, dash lines, and hide unused legends to
maximize the data-ink ratio of your chart. Font sizes and colors can be configured for all
labels, and you can conditionally hide data using callbacks.

Cartesian configuration options
Cartesian grids are used in scatter, bubble, bar, and line charts, and contain two sets of
scales, one for each perpendicular axis. They are configured in an object assigned to the
options.scales property:

options: {
 scales: {
 xAxes: [{…}, ..., {…}], // array of x-axis objects
 yAxes: [{…}, ..., {…}] // array of y-axis objects
 }
 }

You can have multiple axes of each type. They can be stacked, placed side by side, or
positioned on opposite sides. Each axis may be linked to a specific dataset.

Polar area and radar charts use radial scales and configure a single options.scale
property:

options: {
 scale: {
 {…} // axis object containing configuration for the radial axis
 }
 }

Scales and Grid Configuration Chapter 5

[146]

All axis configuration objects in Cartesian charts and the scale property in radial charts
contain a display property, which receives a Boolean value (true or false), making it
visible or not. The following code fragments hide all axes, grids and labels from a Cartesian
chart and a radial chart:

options: { // configuration for a Cartesian chart
 scales: { xAxes: [{display: false}], yAxes: [{display: false}] }
 }
options: { // configuration for a radial chart
 scale: { display: false }
 }

The result is shown here. You can use this effect to create sparklines (small minimalistic
visualizations). See the full code in Scales/scales-1-Cartesian-display.html and
scales-2-radial-display.html:

A Cartesian chart and a radial chart with hidden axes, gridlines, and tick labels.
Code: Scales/scales-1-Cartesian-display.html and scales-2-radial-display.html

Axes also support more than a dozen callback functions that can be used to configure
labels, ticks, and other data displayed by each axis.

Scales and Grid Configuration Chapter 5

[147]

Cartesian axes, ticks, and grid lines
There are five chart types that use Cartesian grids: bar, horizontalBar, line, scatter, and
bubble. Every chart has two scales, one for each perpendicular axis. Each scale can be of
four types:

type:'linear': A numeric scale that can be used to compare values of the
same order of magnitude.
type:'logarithmic': A numeric scale to compare values that differ in order of
magnitude.
type:'category': A list of unordered categories.
type:'time': An ordered list of instants. This scale requires the moment.js
library.

In most charts, at least one of the scales is numeric (linear or logarithmic). In scatterplots
and bubble charts, both scales are numeric. Time-series charts use a numeric scale and a
time scale, but you can also use a category scale. You can also create correlation charts
where both scales are categories.

The following table lists common configuration options for all Cartesian axes (the three last
are objects, which contain specific configuration parameters that will be described in
separate sections):

Property Value Description

type

'logarithmic',
'linear' (default
for both axes in
scatter and bubble
charts, and in the y
axis for line and
bar charts),
'category'

(default in the x
axis for bar and
line charts),
'time' (requires
the moment.js
library)

Selects axis type. Note that some configuration properties are specific to certain types of axes,
and others may not be supported.

position

top or bottom
(default) for
xAxes;
left (default) or
right for yAxes

The axis position. If there is more than one axis in the same position, it will be placed below
or to the left of the existing axis. You can sort them using weight. See
Cartesian/Cartesian-1-position.html.

weight Number
Order axes when more than one axis is in the same position. Larger numbers are position the
axes farther from the chart. See Cartesian/Cartesian-2-weight.html.

Scales and Grid Configuration Chapter 5

[148]

offset

true or false
(default for all axes
except
type:'category'

in bar charts)

If true, adds space to each side of the axis.

id String Labels an axis so it can be related to a dataset, when using multiple axes.
gridLines Object Configures grid lines.
scaleLabel Object Configures scale titles.
ticks Object Configures ticks.

Configuration properties and objects for Cartesian scales

There are also 14 life cycle callback functions not listed here. These properties are always
used inside objects of the scales.xAxes or scales.yAxes arrays. A typical configuration
is shown as follows:

options: {
 scales: {
 xAxes: [{
 ticks: {…},
 scaleLabel: {…},
 gridLines: {…}
 }],
 yAxes: [{
 type: 'logarithmic',
 position: 'left',
 scaleLabel: {…},
]
 }
 }

This multi-level nesting hierarchy may sometimes be confusing. A common error is to place
a property in the wrong object; no error messages are shown but nothing happens. In this
chapter, we will use axis to refer to any axis object inside xAxes or yAxes (such
as axis.ticks.minor, axis.scaleLabel), or use its full path from the scales object
(such as scale.yAxes[0].ticks.minor). The exception is when they are listed in tables,
but in this case the parent object will be qualified.

Numeric Cartesian scales
There are two types of numeric scales. In all charts that use numeric scales,
type:'linear' is the default, but it's not always the best option. A linear chart is best to
compare data points of the same magnitude, but when the samples contain some values
that are hundreds of times larger than others, data correlations may be hard to find.

Scales and Grid Configuration Chapter 5

[149]

Linear scales
A linear scale was used to for the following scatter chart, which plots the populations of
several countries, comparing their population in 1980 (y axis) with their population in 2015
(x axis). The data is from the United Nations (see Data/WPP2017_UNH.csv in the GitHub
repository for this chapter). The median line represents the points where the population is
the same. Countries that appear in the shaded area above the middle line experienced a
decrease in population:

A chart showing population increase/decrease from 1980 to 2015. Due to the different order of magnitude between China, India, and the rest of the world, the linear scale is not
the best choice

Code: Numeric/numeric-1-linear.html

The two dots on the right side of the chart are India and China. All the other countries are
concentrated in the lower-left corner of the chart. This chart is very difficult to read because
it mixes values of different orders of magnitude. Most countries have a small population (in
the order of millions), and when compared to China and India (billions), they end up
cluttered near the beginning of the scale. In these situations, we should use a logarithmic
scale.

Scales and Grid Configuration Chapter 5

[150]

Tooltips reveal the name of each country represented in the chart. You can check the full
code for this chart in Numeric/numeric-1-linear.html. It's a mixed chart, with datasets
of different types (line and scatter). We will explore mixed charts in Chapter 7, Advanced
Chart.js.

Logarithmic scales
Declaring the type property of an axis object as logarithmic will render its data according to
a logarithmic scale. Change one of the axes of the previous example to type:
'logarithmic' and the line will become a curve, as shown as follows. It seems that the
distribution of data points has improved in this visualization. They are a bit closer and the
chart reveals some data that was not visible before:

Making one of the scales logarithmic improves the scatter chart, revealing hidden data
Code: Numeric/numeric-2-log.html

Scales and Grid Configuration Chapter 5

[151]

We can improve it. Since both scales contain the same population data, we can declare the
type of both axes as logarithmic, as shown as follows. Now the curve becomes a line again,
the points are much closer and easier to compare, and even more hidden data is revealed:

An even better scatterplot with two logarithmic axes
Code: Numeric/numeric-3-log.html

The full code for these last two examples is in Numeric/numeric-2-log.html and
numeric-3-log.html.

Scales and Grid Configuration Chapter 5

[152]

Configuring axis titles
You can add a label or title for each axis in any Cartesian chart using the
axis.scaleLabel property (for example, options.scales.xAxes[0].scaleLabel
configures the title for the first x axis). The following table lists the configurable properties
of a scaleLabel object:

Property Value Description

display
true or false
(default) Displays or hides the axis title

labelString String (default is '') The title for the axis
lineHeight Number Spacing above and below the text
fontColor, fontFamily,
fontStyle

String CSS font attributes

fontSize Number Font size in pixels
padding Number Spacing before and after the text

Scale label (scale title) configuration for Cartesian scales. These properties are used in any axis.scaleLabel object.

The following code fragment adds titles for the x and y axes of a bar chart that we created in
Chapter 3, Chart.js – Quick Start. Note that it's not enough to just add
axis.scaleLabel.labelString, you also have to set axis.scaleLabel.display:
true, since the titles are hidden by default:

scales: {
 xAxes: [{
 scaleLabel: {
 display: true,
 labelString: "Oceans",
 fontSize: 16
 }
 }],
 yAxes: [{
 scaleLabel: {
 display: true,
 labelString: "Volume in cubic km",
 fontSize: 16
 }
 }]
 }

Scales and Grid Configuration Chapter 5

[153]

See the full code in Cartesian/Cartesian-3-scaleLabel.html. The result is shown as
follows:

Axis titles added with the scaleLabel property. Code: Cartesian/Cartesian-3-scaleLabel.html.

Configuring ticks
Ticks are discrete points placed along an axis. Their position determines how the data
points will be plotted in relation to the axis. In numeric scales, the axis.ticks property
configures numerical parameters such as the maximum and minimum values that an axis
will display and the amount of ticks to show. In any Cartesian scale, it can be used apply
styles to tick labels and configure padding and other positioning parameters. Tick markers
are configured separately in the axis.gridLines property.

The following table lists tick properties that can be configured for any Cartesian scale:

Property Value Description

display
true (default) or
false

Shows or hides tick labels.

fontSize Number The font size in pixels.
fontColor,
fontFamily,
fontStyle

String CSS font attributes.

Scales and Grid Configuration Chapter 5

[154]

reverse
true or false
(default) Reverses the order of tick labels.

callback
Function. Default:
d=>d

The function receives the value of the tick. It
can be used to hide ticks or change the values
displayed.

labelOffset Number. Default: 0 Offsets the label from the center point of the
tick.

mirror
true or false
(default)

Flips labels around the axis to the inside of
the chart.

padding Number. Default: 10 Space between tick label and the axis.

autoSkip
true (default) or
false

If there is not enough space for horizontal
labels, they are skipped. autoSkip:true
always shows them.

maxRotation Number. Default: 90 Maximum rotation of label in the xAxis.
minRotation Number. Default: 0 Minimum rotation of label in the xAxis.

Tick configuration for Cartesian scales. These properties are used in any axis.ticks object.

The following table lists additional tick properties supported by numeric scales (linear or
logarithmic):

Property Value Description
min Number The lower limit of the axis.
max Number The upper limit of the axis.

suggestedMin Number
Will set this as the minimum, if the data’s minimum
is larger.

suggestedMax Number
Will set this as the maximum, if the data’s maximum
is smaller.

beginAtZero
true (default) or
false

Forces the axis to use zero as the lower limit.

stepSize Number
Sets a minimum step size between ticks. Overrides
precision.

maxTicksLimit
Number. Default is
11.

Explicitly sets a maximum number of ticks for the
axis.

Tick configuration for linear and logarithmic scales. These properties are used in any axis.ticks object of these scales

Scales and Grid Configuration Chapter 5

[155]

The following configuration was applied to one of the bar charts we created in Chapter
3, Chart.js – Quick Start. It uses the axis.ticks.callback property to add the word
ocean as a suffix to the tick labels in the horizontal axis. The vertical axis was reversed,
making the bars appear upside-down:

scales: {
 xAxes: [{
 ticks: {
 callback: d => d + ' ocean'
 }
 }],
 yAxes: [{
 ticks: {
 reverse: true,
 }
 }]
 }

The result is shown here. See the full code in Cartesian/Cartesian-4-ticks-
style.html:

Tick configuration in Cartesian charts, reversing the vertical axis and adding text to labels in the horizontal axis with axis.ticks.callback.
Code: Cartesian/Cartesian-4-ticks-style.html

Scales and Grid Configuration Chapter 5

[156]

Chart.js automatically calculates the minimum range for each of the axes so that the data
can be rendered in the most efficient way possible. But you can explicitly set minimum and
maximum values using axis.ticks.min and axis.ticks.max properties. In this case,
any parts of the chart that fall out of range will not be displayed. Alternatively, you can use
axis.ticks.suggestedMin and axis.ticks.suggestedMax, which also limit the
range, but only if no data values are left out. The following code applies these properties to
a scatter chart, and adds more ticks (default maximum is 11) by setting a smaller value for
axis.ticks.stepSize:

scales: {
 xAxes: [{
 ticks: {
 padding: 10,
 stepSize: 20,
 }
 }],
 yAxes: [{
 ticks: {
 padding: 10,
 min: -0.6,
 suggestedMax: 0.6, // ignored, because data is larger

 }
 }]
 }

The result of this configuration is shown as follows. The full code is in
Cartesian/Cartesian-5-ticks-minmax.html:

Tick configuration in numeric charts: step size and minimum value
Code: Cartesian/Cartesian-5-ticks-minmax.html

Scales and Grid Configuration Chapter 5

[157]

Configuring grid lines
Cartesian grids support several properties that change their appearance on the screen. You
can change colors, line widths, line styles, tick size, spacing for the grid lines, and different
styles for the zero line. You can also show and hide grid lines, ticks, and borders, reducing
the amount of unnecessary chart junk and making your chart more efficient.

These properties are configured in the gridLines object inside each object of the xAxes or
yAxes arrays and are listed here:

Property Value Description

display true (default) or false Shows or hides the grid lines
for this axis.

color
A CSS color or array of
colors; default is
‘rgba(0,0,0,.1)’

The color of the grid lines. If
an array is used, sets a color
for each line.

lineWidth Number; default is 1 The width of the grid lines.
borderDash Number[] A dash array for the grid lines.

borderDashOffset Number
The dash offset for the grid
lines.

drawBorder true (default) or false Draws/hides the axis line.

drawOnChartArea true (default) or false Draws/hides grid lines inside
the chart for the axis.

drawTicks true (default) or false Draws/hides the tick marks.
tickMarkLength Number The size of the tick mark.
zeroLineWidth Number The width of the zero line.
zeroLineColor CSS color The color of the zero line.
zeroLineBorderDash Number[] A dash array for the zero line.

zeroLineBorderDashOffset Number
The dash offset for the zero
line.

offsetGridLines true or false Moves the grid lines between
labels (default in bar charts).

Configuration of gridlines in Cartesian scales. These properties are used in any axis.gridLines object

Scales and Grid Configuration Chapter 5

[158]

Some grid-line configuration examples are shown here. This code applies different colors to
the vertical grid lines and a dash array for the horizontal lines. The axis lines are hidden
because axis.gridLines.drawBorder is false. A different width and color was applied
to the zero lines on both axes:

scales: {
 xAxes: [{
 gridLines: {
 color: ['#fff','#d30','#b33',...,'#09b','#09e'],
 lineWidth: 2,
 zeroLineColor: 'black',
 zeroLineWidth: 5,
 drawBorder: false
 },
 ticks: {
 padding: 10,
 callback: function(d) {return d != 200 ? d : undefined;}
 }
 }],
 yAxes: [{
 gridLines: {
 zeroLineColor: 'black',
 zeroLineWidth: 5,
 lineWidth: 2,
 borderDash: [5, 5],
 drawBorder: false
 },
 ticks: { padding: 10 }
 }]
 }

Scales and Grid Configuration Chapter 5

[159]

The result is shown in the following screenshot. The full code is in
Cartesian/Cartesian-6-grid-styles.html:

Vertical grid lines with different colors and horizontal lines with dash arrays. Both axis lines are hidden with axis.gridLines drawBorder: false
Code: Cartesian/Cartesian-6-grid-styles.html

Tick marks are lines that cross outside of the chart area. You can hide them with
axis.gridLines.drawTicks:false or make them longer or shorter with
axis.gridLines.tickMarkLength. You can hide gridLines inside the chart area with
axis.gridLines.drawOnChartArea:false and the axis line with
axis.gridLines.drawBorder:false. These properties were used to configure the
following chart (Cartesian/Cartesian-7-grid-styles.html):

Vertical grid with an axis.gridLines.tickMarkLength of 15 pixels and axis.gridLines drawOnChartArea: false. Horizontal grid hides axis with axis.gridLines drawBorder: false
Code: Cartesian/Cartesian-7-grid-styles.html

Scales and Grid Configuration Chapter 5

[160]

This configuration hides ticks and gridLines to produce a minimalistic chart with a
single centered y axis:

options: {
 scales: {
 xAxes: [{
 ticks: { display: false },
 gridLines: { display: false }
 }],
 yAxes: [{
 ticks: {
 mirror: true,
 padding: -(canvas.width/2)
 },
 gridLines: {
 drawBorder: false,
 drawOnChartArea: false,
 drawTicks: false,
 offsetGridLines: true
 }
 }]
 }
 }

The result applied to a line chart is shown here. See the full code in
Cartesian/Cartesian-8-grid-minimal.html:

A chart with minimal grid markings Code: Cartesian/Cartesian-8-grid-minimal.html

Scales and Grid Configuration Chapter 5

[161]

Category scales
Typical bar and line charts use a category scale for the x axis, and a numeric scale for the
y axis. Multiple datasets reuse the same category data. In these charts, the values used for
the category axis are obtained from the labels property of the data object. If a dataset has
a labels property, its x axis will automatically be defined as type:category.

Configuring the axes
Category scales share the same axis configuration as numeric charts, but support some
additional properties in the axis and axis.ticks objects. The axis object has one
additional property that can be used to override the data object labels for an axis:

Property Value Description

labels
Array
of
String

An array of labels to display. Overrides any other definition for labels,
including data object properties: labels, xLabels, or yLabels.

Additional axis configuration for category scales

The following code fragment shows category labels defined in three different properties.
Since the single x axis contains a labels property, it will override all previous definitions:

new Chart("my-chart",
 type: ...,
 data: {
 labels: ['One', 'Two', 'Three'], // used if others are not present
 xLabels: ['ONE', 'TWO', 'THREE'], // overrides ‘labels’
 datasets: […]
 },
 options: {
 scales: {
 xAxes: [{
 type: 'category',
 labels: ['Label 1', 'Label 2', 'Label 3'] // overrides
 xLabels
 }]
 }
 }
});

Scales and Grid Configuration Chapter 5

[162]

You can create charts that have category scales for both x and y axes in Chart.js with the
xLabels and yLabels properties in the data object. The first axis of each type will use
them. The data and xLabels array have the same size. Each element in the xLabels array
is related to a corresponding item from the data array, which contains values from the
yLabels array. This creates a one-to-many relationship between the categories. There is a
single y value shared by many x values.

In the following example, properties were set for all axes using Global.defaults.scale:

const yLabels = ["Water", "Land", "Air"]; // groups: multiple points
const xLabels = ["Ship", "Train", "Bike", "Cruiser",
 "Jet", "Bus", "Rocket", "Car"]; // items: single point
const data = ["Water", "Land", "Land", "Water", "Air", "Land", "Air",
 "Land"];

const dataObj = {
 xLabels: xLabels, // used by x-axis category scale
 yLabels: yLabels, // used by y-axis category scale
 datasets: [
 {
 data: data,
 pointRadius: 50, pointHoverRadius: 50,
 pointStyle: 'rectRot',
 showLine: false,
 backgroundColor: "hsla(20,100%,80%,0.8)",
 borderColor: "hsla(0,100%,50%,1)"
 }
]
}

 Chart.defaults.scale.gridLines.drawBorder = false;
 Chart.defaults.scale.gridLines.lineWidth = 10;
 Chart.defaults.scale.gridLines.drawBorder = false;
 Chart.defaults.scale.offset = true;
 Chart.defaults.scale.ticks.padding = 20;

 new Chart("correlation",
 {
 type: "line",
 data: dataObj,
 options: {
 legend: {display: false},
 scales: {
 xAxes: [{type: 'category'}],
 yAxes: [{type: 'category'}]
 },
 animation: {duration: 0},

Scales and Grid Configuration Chapter 5

[163]

 tooltips: {displayColors: false}
 }
 });

The result is shown as follows. See the full code in Category/category-1-one-to-
many.html:

A correlation chart for one-to-many relationships created with two type:’category’ axes.
Code: Category/category-1-one-to-many.html.

You can also create many-to-many categorical relationships, but it won’t work with
category scales. You have to set up a scatter chart with two numeric linear scales and then
map the numbers back to categories using a callback. The following code shows how to do
that:

const xLabels = ["Lake","River","Road","Railroad","Ocean","Air"];
 const yLabels = ["Car","Bus","Airplane","Sailboat","Cruiser","Train",
 "Bike"]
 const data = [
 {x: 1, y: 4}, {x: 1, y: 5}, {x: 2, y: 4}, {x: 3, y: 1}, {x: 3, y: 2},
 {x: 3, y: 7}, {x: 4, y: 6}, {x: 5, y: 5}, {x: 6, y: 3}
];

 const dataObj = {
 datasets: [
 {
 data: data,

Scales and Grid Configuration Chapter 5

[164]

 pointRadius: 20, pointHoverRadius: 20,
 pointStyle: 'rectRot',
 backgroundColor: "hsla(20,100%,80%,0.8)",
 borderColor: "hsla(0,100%,50%,1)"
 }
]
 }

 Chart.defaults.scale.gridLines.drawBorder = false;
 Chart.defaults.scale.gridLines.lineWidth = 2;
 Chart.defaults.scale.gridLines.color = 'red';
 Chart.defaults.scale.offset = true;
 Chart.defaults.scale.ticks.padding = 10;
 Chart.defaults.scale.ticks.min = 0;

 new Chart("correlation",
 {
 type: "scatter",
 data: dataObj,
 options: {
 legend: {display: false},
 animation: { duration: 0 },
 scales: {
 xAxes: [{
 ticks: {
 max: 7,
 callback: function(value) {
 return xLabels[value-1];
 }
 }
 }],
 yAxes: [{
 ticks: {
 max: 8,
 callback: function(value) {
 return yLabels[value-1];
 }
 }
 }]
 }
 }
 });

Scales and Grid Configuration Chapter 5

[165]

 The result is shown as follows. See the full code in Category/category-2-many-to-
many.html:

A correlation chart for many-to-many relationships created with two type:'linear' axes and numerical values mapped to categories
Code: Category/category-2-many-to-many.html

Configuring ticks
Category scales extend the axis.ticks configuration for Cartesian charts with three
additional properties, listed in the following table:

Property Value Description

labels String
The tick labels array. This overrides any previous declarations of this
array.

min String
A string in axis.ticks.labels that represents the lower limit for the
categorical data.

max String
A string in axis.ticks.labels that represents the upper limit for the
categorical data.

Additional tick configuration properties for category scales

Scales and Grid Configuration Chapter 5

[166]

The axis.ticks.min and axis.ticks.max properties depend on the order that the
strings appear in the axis.ticks.labels array. If the order is reversed, the result could
be an empty chart.

This is the bar chart we created in Chapter 3, Chart.js – Quick Start, with the category labels
in reverse order and with five bars instead of seven. The missing bars were removed by the
axis.ticks.min and axis.ticks.max properties for category scales, which accept strings:

scales: {
 xAxes: [{ // category axis
 display: true,
 ticks: {
 labels: labels.reverse(), // overrides labels array
 min: 'South Pacific',
 max: 'North Atlantic'
 }
 }]
 }

The result is shown here. See the full code in Category/category-3-minmax.html:

Using axis.ticks.min and axis.ticks.max to restrict the range of a category scale.
Code: Category/category-3-minmax.html.

Configuring grid lines
Category scales share the same axis.gridLines configuration used by numeric scales.

Scales and Grid Configuration Chapter 5

[167]

Time scales
You can use simple string categories to represent dates and temporal information, but by
using an axis of the time type, you can parse, format, and generate temporal data. This
allows greater flexibility and interactivity.

The time scale requires the moment.js library (momentjs.com). To use the time scale, you
can either import the moment.js library or include the Chart.bundle.js library in your
page. It's best to import moment.js since you might want to use other date and time
functions. You can do that including by it in your page via CDN:

<script
src="https://cdnjs.cloudflare.com/ajax/libs/moment.js/2.24.0/moment.js">
 </script>

The data is usually configured using the point structure, where the x property is a Date and
the y property is some quantitative value. You can also use the t property instead of x.
Many standard date formats are parsed automatically. These are some valid data points for
time:

{x: new Date(), y: 1} // now
{t: ‘20190224’, y: 2} // 2019-02-24

You can also include dates in a simple data object labels array:

new Chart("my-chart", {
 type: "bar",
 data: {
 labels: [‘20190224’, ‘20190227’, ‘20190305’],
 datasets: [...],
 }
 });

Here's a minimal example. This code uses the moment.js library to generate a list of dates
using the moment.js library and creates a dataset of 10 dates. It uses the default values of
all time-scale properties except axis.time.unit, which informs the unit that should be
used:

const dataset = [];
 let date = moment('20181120');
 for(let i = 1; i <= 10; i+= 1) {
 dataset.push({t: date, y: Math.random() * 10});
 date = moment(date)
 .add(Math.floor(Math.random() * 10)+1, 'days').calendar();
 }
 const dataObj = {

http://momentjs.com

Scales and Grid Configuration Chapter 5

[168]

 datasets: [{data: dataset, backgroundColor: 'hsla(290,100%,45%,.5)'}]
 }
 new Chart("my-chart", {
 type: "bar",
 data: dataObj,
 options: {
 legend: {display: false},
 scales: {
 xAxes: [{
 type: 'time',
 offset: true,
 gridLines: { offsetGridLines: true },
 time: {unit: 'day'}
 }]
 }
 }
 });

Offsets move bars and gridLines so that they stay within the chart. This is the default in
bar charts with category scales, but not time scales. The result is shown here
(Time/time-1.html). Note that the bars are not equally spaced, but the time intervals are.
This is the default configuration, but you can change it, as we will see next:

A bar chart using a time scale with default configuration. Code: Time/time-1-html.

Scales and Grid Configuration Chapter 5

[169]

Configuring the time format
Properties that are specific for time scales are configured in the axis.time property. It
receives an object. Some of these properties are listed as follows:

Property Value Description

unit

millisecond, second,
minute, hour, day, week,
month, quarter, year

The unit of time to consider for the
data.

stepSize Number
The minimum step between values in
the scale (this may group several values
in a single tick).

displayFormats
Object, containing zero or more
time units as String properties

This object is used to override the
default string format used for each unit.
See supported tokens below.

tooltipFormat
A string with a date format,
such as MMMM, YYYY, or
h:mm:ss

A format string to display data/time
information in tooltips. See supported
tokens below.

Selected properties of the axis.time object

Time scales use moment.js formats, which are based on standard date/time formatting
tokens. The default formats for each unit and the output they produce are listed as follows:

Unit Default format Output example
Millisecond h:mm:ss.SSS A 2:07:36.976 PM

Second h:mm:ss A 2:07:36 PM

Minute h:mm A 2:07 PM

Hour hA 2 PM

Day MMM D Feb 24

Week ll Feb 24 2019

Month MMM YYYY Feb 2019

Quarter [Q]Q - YYYY Q1 – 2019
Year YYYY 2019

Default time unit formats used in time scales

Scales and Grid Configuration Chapter 5

[170]

If you wish to format date/time in a specific way, you can use the
axis.time.displayFormats property to override the default format for the time units
you are using:

time: {
 unit: 'month',
 displayFormats: {
 month: 'MMMM', // will print January, February,… for month units
 }
 }

You can combine the following tokens and create a string:

Property Tokens Output
Day of month D, Do, DD 1 2 … 31, 1st 2nd … 31st, 01 02 … 31

Day of week d, ddd, dddd
0 1 … 6, Sun Mon … Sat, Sunday, Monday …
Saturday

Month
M, MM, MMM,
MMMM

1 2 … 12, 01 02 … 12, Jan Feb … Dec,
January February … December

Quarter Q, Qo 1 2 3 4, 1st 2nd 3rd 4th

Year YYYY, Y 1970 1971 … 2030, 1970 1971 … 9999

AM/PM A, a AM PM, am pm

AM/PM A, a AM PM, am pm

Hour H, HH, h, hh
0 1 … 23, 00 01 … 23, 1 2 … 12, 01 02 …
12

Minute m, mm 0 1 … 59, 00 01 … 59

Second s, ss 0 1 … 59, 00 01 … 59

Millisecond SSS 000 001 … 999

Time zone ZZ -0700 -0600 … +0700

Most common tokens for creating date-string formats

There are also other localized formats. See additional options in the documentation for
moment.js (momentjs.com/docs/#/displaying/format).

Scales and Grid Configuration Chapter 5

[171]

Configuring the axes
Time scales support all properties for Cartesian scales and add two additional properties,
listed in the following table. These properties are configured in each axis (for
example, scales.xAxes[0].bounds):

Property Value Description

bounds
data (default),
ticks

Sets the scale boundary strategy. The default data will re-
dimension the axes to fit the data. Using ticks, the chart
will be truncated to fit the scales.

distribution
linear (default)
or series

How the data is distributed on the axis. If series, the data
values will be equally spaced. If linear, the instants will
be equally spaced.

Additional axis configuration properties for time scales

In the last example, the bars were unevenly positioned because the default distribution
preserved the time instants. In this example, the bars will be evenly spaced, but the periods
between them will not be uniform. The data is bounded by the ticks, instead of the data
points, and the date format for the days displays the abbreviated month, day, and year:

xAxes: [{
 type: 'time',
 offset: true,
 gridLines: { offsetGridLines: true },
 distribution: 'series',
 bounds: 'ticks',
 time: {
 unit: 'day',
 displayFormats: {
 day: 'MMM D Y',
 }
 }
 }]

Scales and Grid Configuration Chapter 5

[172]

The result is shown as follows. See the full code in Time/time-2.html:

A bar chart with a time scale with equally-distributed bars, and tick bounds. Code: Time/time-2.html.

Configuring ticks
Time scales extend the axis.ticks configuration for Cartesian charts with an additional
property, listed here:

Property Value Description

source
auto (default), data (default, if data in point
format), labels (default, if data in array
format)

Selects where to obtain the entries
for the time scale.

Additional tick configuration properties for time scales

Scales and Grid Configuration Chapter 5

[173]

The axis.ticks.source property allows you to select the source of the data for the time
scale. If your dataset is a simple array and the dates are in the labels array, the default
configuration will automatically get the dates from there. You can also set this property
explicitly:

const dataset = [], labels = [];
 let date = moment('20181120');
 for(let i = 1; i <= 10; i+= 1) {
 labels.push(date);
 dataset.push(Math.random() * 10);
 date = moment(date)
 .add(Math.floor(Math.random() * 10)+1, 'days').calendar();
 }

 const dataObj = {
 labels: labels,
 datasets: [{
 data: dataset,
 backgroundColor: 'hsla(290,100%,45%,.5)'
 }]
 }

 new Chart("my-chart", { type: "bar", data: dataObj,
 options: {
 scales: {
 xAxes: [{
 // ... other configuration not shown
 ticks: { source: 'labels' }
 }]
 }
 }
 });

Scales and Grid Configuration Chapter 5

[174]

The result is shown here. See the full code in Time/time-3.html:

A bar chart with a time scale using the labels array as a source for the tick data. Code: Time/time-3.html.

Configuring grid lines
Time scales share the same axis.gridLines configuration used by numeric scales.

Radial scales
Two Chart.js chart types use radial scales: radar and polarArea. Radial charts that have a
single scale are configured with the properties listed here. Some properties are similar to
the properties used in Cartesian scales, but they have fewer configuration options:

Property Value Description
pointLabels Object Configure point labels
ticks Object Configure chart ticks

Scales and Grid Configuration Chapter 5

[175]

angleLines Object Configures radial grid lines
gridLines Object Configure concentric grid lines

Configuration objects for radial scales

These properties are used directly inside the options.scale object. For example:

options: {
 scale: {
 ticks: {…},
 angleLines: {…},
 gridLines: {…},
 pointLabels: {…}
 }
 }

Configuring point labels
Point labels are the labels that are displayed around the radial chart, at each angle line. Tick
labels are placed inside the chart over the first angle line and have a backdrop. Point labels
are configured with the scale.pointLabels property, which is an object with the
following properties:

Property Value Description

display
true (default in radar) or
false (default in polar area)

Displays or hides the axis
labels

callback Function; default is d=>d Returns the value label for
each point

fontColor, fontFamily,
fontStyle

Strings containing CSS font
attributes Font attributes

fontSize Number Font size in pixels

Properties for point label configuration in radial axes

You can hide pointLabels using display:false in a radial chart (see the following
diagram). If you are using a polar area chart, you can use display:true if you want to
make them visible. See Radial/radial-1-pointLabels-hide.html and radial-2-
pointLabels-polar.html.

Scales and Grid Configuration Chapter 5

[176]

The following code uses some other pointLabel properties to change the color of the
labels in a radar chart and uses a callback to append text to each label:

scale: {
 pointLabels: { callback: (d) => 'Step ' + d, fontColor: 'red'}
 }

See the full code in Radial/radial-3-pointLabels-callback.html. The result is
shown as follows:

Radial scales point labels configuration. Left: Hiding labels with scale.pointLabels.display = false. Right: Changing color and appending text with a callback. Code:
Radial/radial-1-pointLabels-hide.html and radial-3-pointLabels-callback.html.

Configuring ticks
Ticks in radial axes are concentric circles (which can be rendered as circles or multi-sided
regular polygons, with vertices at each angle line). Tick labels are placed on the circles with
a backdrop behind them.

Scales and Grid Configuration Chapter 5

[177]

Ticks are configured in the scale.ticks object with the following properties:

Property Value Description
display true (default) or false Shows or hides tick labels.
fontSize Number The font size in pixels.
fontColor, fontFamily,
fontStyle

String CSS font attributes.

reverse true or false (default) Reverses the order of tick
labels.

callback Function; default: d=>d

The function receives the
value of the tick. It can be
used to hide ticks or change
the values displayed.

min Number The lower limit of the axis.
max Number The upper limit of the axis.

suggestedMin Number
Will set this as the
minimum, if the data's
minimum is larger.

suggestedMax Number
Will set this as the
maximum, if the data's
maximum is smaller.

beginAtZero true (default) or false Forces the axis to use zero
as the lower limit.

stepSize Number
Sets a minimum step size
between ticks.

maxTicksLimit Number; default is 11 Explicitly sets a maximum
number of ticks for the axis.

showLabelBackdrop true or false; default is true
Draws a background
behind tick labels over the
grid lines.

backdropPaddingX
backdropPaddingY

Number; default is 2 Backdrop padding.

backdropColor
Color; default is
rgba(255,255,255,.75)

Color of the label
backdrops.

Tick properties for radial scales

Scales and Grid Configuration Chapter 5

[178]

Tick properties are similar to those used in Cartesian linear charts. The following code
shows some tick configurations applied to a radar chart:

scale: {
 ticks: {
 fontColor: 'blue',
 callback: (d) => d + ' m',
 reverse: true,
 min: 0,
 }
 }

The result is shown here. See the full code in Radial/radial-4-ticks.html:

Radar chart with some tick configurations. Code: Radial/radial-4-ticks.html.

Scales and Grid Configuration Chapter 5

[179]

Configuring grids and angle lines
The following properties are used to configure the radial lines (scale.angleLines) and
concentric circles or polygons (scale.gridLines) of a radial grid. All properties listed are
supported for both objects except circular, which is supported only by scale.gridLines:

Property Value Description

display
true (default in radar) or
false (default in polar area) Shows or hides lines.

color Color Color of the lines.

circular
true (default in polar area) or
false (default in radar)

In gridLines object only. If true, gridLines
are circular. Otherwise, they are straight lines
between points.

lineWidth Number The width of the lines.

Configuration for grid and angle lines in radial grids

The following code configures several grid and angle line properties in a radial chart. It
changes the grid lines to circular, and also changes the line width and colors:

scale: {
 gridLines: {
 circular: true,
 lineWidth: 2,
 color: 'hsla(240,100%,50%,.2)'
 },
 angleLines: {
 display: true,
 lineWidth: 2,
 color: 'hsla(120,100%,25%,.2)'
 }
 }

Scales and Grid Configuration Chapter 5

[180]

The result applied to a radar chart is shown as follows. See the full code in
Radial/radial-5-grid-angle-lines.html:

Radar chart with grid and angle lines configurations. Code: Radial/radial-5-grid-angle-lines.html

Configuring advanced scales
This section contains a brief overview on some configurations that you will probably not
use very often. For more details on these topics, refer to the official documentation.

Scales and Grid Configuration Chapter 5

[181]

Multiple Cartesian axes
You only need two axes to plot data in a two-dimensional Cartesian grid, but you can add
more if you need to. You may wish to repeat axis titles or tick labels on both sides of a chart
for clarity. You may also wish to show two datasets with different scales (although this is
usually a bad practice in data visualization).

If you have multiple axes, you can control their positions with the axis.weight and
axis.position properties. Unless you connect an axis to a specific dataset using the id
property, the first axis in the yAxis array will be used for all datasets. A dataset is linked to
an axis using the yAxisID or xAxisID properties that reference the ID of an axis. See
Advanced/adv-1-position-evil.html for an example.

The following code fragment configures three axes for a chart, and places them on different
sides of the chart. It doesn’t explicitly link any dataset, since they all use the same scales:

scales: {
 yAxes: [{
 id: 'y-axis-1',
 ticks: {min: -2,max: 2},
 scaleLabel: {display: true, labelString: "Left Axis"},
 position: 'left'
 },{
 id: 'y-axis-2',
 ticks: {min: -2, max: 2},
 scaleLabel: {display: true,labelString: "Right Axis"},
 gridLines: {display: false},
 position: 'right'
 }],
 xAxes: [{
 ticks: {min: -4, max: 4},
 scaleLabel: {display: true,labelString: "Top Axis"},
 position: 'top'
 }],
 }

Scales and Grid Configuration Chapter 5

[182]

See the full code in Cartesian/Cartesian-1-position.html.The result is shown as
follows:

A chart with three axes, in different positions. Code: Cartesian/Cartesian-1-position.html.

You can also stack axes on the same side, as shown as follows. This is useful in categorical
scales when you wish to add a context. In this example, an extra category scale was added
for the oceans:

const labels = ["Arctic", "North Atlantic", "South Atlantic", "Indian",
 "North Pacific", "South Pacific", "Southern"];
 const labels2 = ["","Atlantic", "", "Pacific",""];
// ...
xAxes: [
 {
 weight: 10,
 labels: labels,
 ticks: {
 fontColor: 'black'
 }
 },{
 weight: 20,
 labels: labels2,
 ticks: {
 fontColor: 'purple'
 },

Scales and Grid Configuration Chapter 5

[183]

 offset: true
 },
]

The result is shown as follows. See the full code in Cartesian/Cartesian-2-
weight.html:

A chart with two category axes on the same side. Code: Cartesian/Cartesian-2-weight.html.

It might be a good idea to hide or configure the grid lines from the second category scale, so
they won’t leak into the chart area.

Callbacks
If you need to filter or change individual tick labels, you can use life cycle callbacks. There
are 14 of them and they are configured directly in each axis object. The following code a
callback to filter ticks based on their value (increasing the step) and at a later stage, changes
the value to be displayed (at this stage, the change no longer affects the chart):

yAxes: [
 {
 afterBuildTicks: function(axis) {
 log('afterBuildTicks')
 axis.ticks = axis.ticks.filter((d,i) => d % 100000 == 0);

Scales and Grid Configuration Chapter 5

[184]

 },
 afterTickToLabelConversion: function(axis) {
 log('afterTickToLabelConversion')
 axis.ticks.forEach((d,i) => axis.ticks[i] = +d/1000);
 }
 }
]

 See the full code in Advanced/adv-2-callbacks.html and adv-3-radial-
callbacks.html.

The scale service
The scale service can be used to update scales during changes. You can use it to pass a
partial configuration that will be merged with the current configuration. In the following
code, it was used to set the minimum boundary for ticks in the linear scale, and append text
to tick labels in the category scale:

Chart.scaleService.updateScaleDefaults('linear', {
 ticks: {
 min: -100000
 },
 afterTickToLabelConversion: function(axis) {
 axis.ticks.forEach((d,i) => axis.ticks[i] = +d/1000);
 }
 });

 Chart.scaleService.updateScaleDefaults('category', {
 afterTickToLabelConversion: function(axis) {
 axis.ticks.forEach((d,i) => axis.ticks[i] = d + " Ocean")
 }
 });

See the full code in Advanced/adv-4-scaleService.html.

Scales and Grid Configuration Chapter 5

[185]

Summary
In this chapter, you learned how to configure the different kinds of scales supported by
Chart.js: the linear scale used in radial charts, such as radar and polar area, and the
Cartesian scales used in scatter, bubble, line, and bar charts. You can configure scales in
ways that change how data is presented, or style the grid lines and labels to add context to
a chart.

We also compared different types of Cartesian charts, showing why sometimes it's better to
use a logarithmic scale instead of a linear scale. We created category charts without any
numeric scales and explored time scales.

In the next chapter, we will explore configuration in greater detail, efficiently using colors,
fonts, and interactivity to control the appearance of charts using callbacks.

References
Books and websites:

Chart.js official documentation and samples: https:/ ​/​www. ​chartjs. ​org/ ​docs/
latest/​Zoom plugin: https:/ ​/ ​github. ​com/ ​chartjs/ ​chartjs- ​plugin- ​zoom

https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://github.com/chartjs/chartjs-plugin-zoom
https://github.com/chartjs/chartjs-plugin-zoom
https://github.com/chartjs/chartjs-plugin-zoom
https://github.com/chartjs/chartjs-plugin-zoom
https://github.com/chartjs/chartjs-plugin-zoom
https://github.com/chartjs/chartjs-plugin-zoom
https://github.com/chartjs/chartjs-plugin-zoom
https://github.com/chartjs/chartjs-plugin-zoom
https://github.com/chartjs/chartjs-plugin-zoom
https://github.com/chartjs/chartjs-plugin-zoom
https://github.com/chartjs/chartjs-plugin-zoom
https://github.com/chartjs/chartjs-plugin-zoom
https://github.com/chartjs/chartjs-plugin-zoom
https://github.com/chartjs/chartjs-plugin-zoom
https://github.com/chartjs/chartjs-plugin-zoom

6
Configuring Styles and

Interactivity
In this chapter, you will learn how to configure the look and feel of a chart so it will reflect a
desired layout or style, follow good practices of chart design, and tune its interactive and
responsive behavior. This includes configuring colors, gradients, patterns and fonts, setting
margins, padding, borders, fills, backgrounds, line widths, dashes, positioning titles and
legends, and configuring the behavior of transitions and animations. Some of these
properties are easily configured using Chart.js configuration options, but others require
plugins and extensions, which will also be introduced in this chapter.

In this chapter, you will learn the following:

Default configuration
Fonts
Colors, gradients, patterns, and shadows
Adding text elements and labels
Interactions, data updates, and animation

Default configuration
Every chart created in Chart.js comes previously configured with default properties. You
can always override these properties in the options object when creating a new Chart
instance, but you can also override them for all or for many of your charts, by setting the
properties directly in the Chart.defaults object.

Configuring Styles and Interactivity Chapter 6

[187]

For example, the default line tension is 0.4 for any kind of chart. If you want all your charts
to use only straight lines and have scales beginning at zero, you can make all pages load a
defaults.js file that declares the following defaults:

Charts.defaults.global.elements.line.tension = 0;
Charts.defaults.scales.ticks.beginAtZero = true;

If you want to have only curved lines in the radar charts, you can override the property for
all radar charts (but not any other kind of chart) using the following:

Charts.defaults.radar.elements.line.tension = 0.4;

Then, if you have a specific line chart where you would prefer to use curved lines, you can
again override the property when you create the chart instance, using its options
configuration object:

const chart = new Chart("my-chart", { type: 'line', data: {...},
 options: {
 elements: {
 line: {
 tension: 0
 //overrides Charts.defaults.global.elements.line.tension
 }
 }
 }
 });

Some options can even be configured for a specific dataset within a chart, which is the case
with line tension. If you use lineTension: 0.3 for a specific dataset in the datasets
array, only the line corresponding to that dataset will exhibit the new tension:

datasets: [{
 data: [1,2,1],
 lineTension: 0.3
}]

The order is significant, and so is the hierarchy. Properties set in a more specific context will
almost always override the values set in a more general context. And any global properties
should be set before instantiating a chart. In the next sections, we will explore options that
can be defined at different configuration levels, their object structure, and their default
values.

Configuring Styles and Interactivity Chapter 6

[188]

Global defaults
Properties in Chart.defaults.global contain configuration options for all types of
charts, including graphical elements, titles and captions, layout properties, animation,
tooltips, events, and plugins. But it doesn't include grids and scales, which are configured
in the Chart.defaults.scale object. The options available in Chart.defaults.global
are listed as follows. All these properties, except the default font and color settings, are also
available as properties in the options configuration object of any chart instance:

Object Value Description

defaultColor CSS color

The default color for all chart
elements. This property is
overriden in several chart
elements, so it's not really very
useful. The default is
'rgba(0,0,0,0.1)'.

defaultFontColor

CSS color (examples:
'lightblue', '#9cf',
'#ff0000',
'rgb(100%,50%,25%)',
'hsl(60,100%,50%)',
'rgba(100%,50%,25%,0.6)',
'hsla(60,100%,50%,0.1)')

The default color for all text
(unless overridden with a more
specific font color property).
The default is '#666'.

defaultFontFamily

CSS font-family name or list
(example: 'Helvetica,
"Helvetica Neue", sans-
serif')

The default family for all text
(unless overridden with a more
specific font color property).
The default is 'Helvetica
Neue', 'Helvetica',
'Arial', sans-serif.

defaultFontSize Font size in pixels

The default size in pixels for all
text (unless overridden with a
more specific font size
property). The default is 12.

defaultFontStyle

CSS font-style (ex: 'bold',
'italic', 'normal') or any
style available with the font
that is being used (ex:
'condensed bold', 'light',
and so on)

The default style for all text
(unless overridden with a more
specific font style property).
The default is 'normal'.

Configuring Styles and Interactivity Chapter 6

[189]

layout.padding
The number or object with
numerical properties for top,
left, right, bottom

If the value is a number, the
padding in pixels is applied to
all sides of a chart. If it's an
object, the individual values
can be applied to different sides
of the chart.

maintainAspectRatio true or false Maintains the aspect ratio of the
canvas element.

responsive true or false
Resizes the chart when the
canvas is resized. The default is
true.

showLines true or false

If true, shows lines between
point values. Default is true,
but is overridden to false in
scatter charts.

title Object See the Legends
and labels section in this chapter.

legend Object See the Legends and
labels section in this chapter.

tooltips Object See Chapter 7, Advanced
Chart.js.

hover Object See Chapter 7, Advanced
Chart.js.

elements Object See the Chart elements section in
this chapter.

events Object See the Animation section in this
chapter.

plugins Object See Chapter 7, Advanced
Chart.js.

animation Object See the Animation section in this
chapter.

Configurable options in Charts.defaults.global that can be configured for all charts. Callbacks are not listed.

Configuring Styles and Interactivity Chapter 6

[190]

For example, the following configuration will turn off-line rendering between value points
for any charts. Since this property is not overridden in line or radar charts, if you create a
line chart, it won't have any lines. Only the points will be visible:

Chart.defaults.global.showLines = false;

This other configuration will turn off the legends for all charts (very useful for single-
dataset charts):

Chart.defaults.global.legend.display = false;

Scale defaults
Scales and grids can be globally configured in the Charts.defaults.scale object. The
following table lists the top-level properties and some of the default properties of this
object. Some of these defaults are overridden in specific charts. In these cases, changing
them in this context may not have any effect:

Object Description Default properties

display
Displays (true) or not (false) the scales for
this chart. The default is true.

offset
Adds extra space to left and right edges of the
chart.

The default is false
(overridden to true in bar
charts).

gridLines
Default properties and callbacks for all scales
(some are overridden in specific chart types).
See Chapter 5, Scales and Grid Configuration.

display = true
color = 'rgba(0,0,0,0.1)
lineWidth = 1
drawTicks: true
drawOnChartArea = true
offsetGridLines = false

scaleLabel

The default properties and callbacks for all
scales (some are overridden in specific chart
types). See Chapter 5, Scales and Grid
Configuration, for details.

display = false,
labelString = ''
lineHeight = 1.2
padding: {top: 4, bottom:
4}

ticks

The default properties and callbacks for all
scales (some are overriden in specific chart
types). See Chapter 5, Scales and Grid
Configuration, for details.

display = true
beginAtZero = false
autoSkip = true
reverse = false

Options in Charts.defaults.scales that can be configured for scales of all charts.

Configuring Styles and Interactivity Chapter 6

[191]

For example, the following code will place the same labels on all axes in any charts that use
Cartesian axes (bar, horizontalBar, line, scatter, bubble):

Chart.defaults.scale.scaleLabel.display = true;
Chart.defaults.scale.scaleLabel.labelString = 'default';

The display property is available in all scale components. With display: false, you
can globally remove ticks, labels, gridlines, and other non-chart information from your
default charts, overriding these properties in specific charts only when necessary. This is a
good practice and will maximize the data-to-ink ratio of your charts.

The code fragments in this section are from Config/defaults-1-global-config.html,
in the GitHub repository for this chapter.

Graphical elements
Graphical elements are the primitives used to render visualizations of datasets in different
types of charts. You can define defaults for them configuring the four objects in the
Chart.defaults.global.elements context, listed as follows. Some of these properties
are overridden in the defaults for certain charts, so changing them at this level may not
cause any effect:

Object Description Default properties

arc
The default properties for Canvas
arcs, which are used in pie,
doughnut, and polar area charts.

backgroundColor:"rgba(0,0,0,0.1)"
borderColor:"#fff"
borderWidth:2

line

The default properties for Canvas
lines, which are used in line and
radar charts. See Chapter 2,
Technology Fundamentals, for
Canvas properties used in
borderCapStyle and
borderJoinStyle. See Chapter
4, Creating Charts, for fill
strategies.

backgroundColor:"rgba(0,0,0,0.1)"
borderCapStyle:"butt"
//(see Chapter 2)
 borderColor:"rgba(0,0,0,0.1)"
 borderDash:[]
 borderDashOffset:0
 borderJoinStyle:"miter"
//(see Chapter 2)
 borderWidth:3
 capBezierPoints:true
 fill:true //(see Chapter 4)
 tension:0.4
 stepped: false

Configuring Styles and Interactivity Chapter 6

[192]

Point

Value points are actually circles
drawn with Canvas arcs. This
object contains default properties
for points in line, radar, scatter, or
bubble charts. See Chapter
4, Creating Charts, for more point
styles.

backgroundColor:"rgba(0,0,0,0.1)"
borderColor:"rgba(0,0,0,0.1)"
borderWidth:1
hitRadius:1
hoverBorderWidth:1
hoverRadius:4
pointStyle:"circle"
//(see Chapter 4)
radius:3

Rectangle

The default properties for Canvas
rectangles used in bar and
horizontalBar charts. One of the
borders is not drawn (skipped).

backgroundColor:"rgba(0,0,0,0.1)"
borderColor:"rgba(0,0,0,0.1)"
borderSkipped:"bottom" ("left"in
horizontalBar)
borderWidth:0

Options in Charts.defaults.global.elements that apply to elements in all charts

The following code will make all line and radar charts use red dashed 5-pixel lines as the
default, unless they are overridden in their default configuration or options object.
See Config/defaults-2-global-elements.html, as follows:

const line = Chart.defaults.global.elements.line;
line.borderDash = [5,5];
line.borderWidth = 5;
line.borderColor = 'red';

Chart defaults
The Chart.default context contains an object for each chart type supported in Chart.js.
The types are in the following table, which also lists some of the properties previously
configured in each one. These properties may override the global defaults for chart styles
and elements (Chart.default.global) and the default properties for scales
(Chart.default.scales). You can define new defaults by changing these properties in
the Chart.default context, or locally inside an options object:

Object Description Default properties (selection)

bar
The default properties
for bar charts

hover.mode = 'label'
scales.xAxes[0].type = 'category'
scales.yAxes[0].type = 'linear'

horizontalBar
The default properties
for horizontal bar
charts

hover.mode = 'index'
scales.xAxes[0].type = 'linear'
scales.yAxes[0].type = 'category'
elements.rectangle.borderSkipped = 'left'

Configuring Styles and Interactivity Chapter 6

[193]

pie
The default properties
and callbacks for pie
charts

circumference = 2 * Math.PI
cutoutPercentage = 0
hover.mode = 'single'

doughnut
The default properties
and callbacks for
doughnut charts

circumference = 2 * Math.PI
cutoutPercentage = 50
hover.mode = 'single'

line
The default properties
and callbacks for line
charts

hover.mode = 'label'
scales.xAxes[0] = {type: 'category', id:
'x-axis-0'}
scales.yAxes[0] = {type: 'linear', id: 'y-
axis-0'}
showLines = true,
spanGaps = false

radar
The default properties
for radar charts

elements.line.tension = 0
scale.type = 'radialLinear'

polarArea
The default properties
for polar area charts

angleLines.display = false
gridLines.circular = true
pointLabels.display = false
ticks.beginAtZero = true
type = "radialLinear"
startAngle = Math.PI / 2

scatter
The default properties
for scatter charts

hover.mode = 'single'
showLines = false
scales.xAxes[0] = {type: 'linear', id: 'x-
axis-1'}
scales.yAxes[0] = {type: 'linear', id: 'y-
axis-1'}

bubble
The default properties
for bubble charts

hover.mode = 'single'
scales.xAxes[0] = {type: 'linear', id: 'x-
axis-0'}
scales.yAxes[0] = {type: 'linear', id: 'y-
axis-0'}

 Default options in Charts.defaults for different types of charts

You can check the current values of your default properties by printing them to your
JavaScript console and inspecting the object tree, with console.log(). The following code
will print the context root:

console.log(Chart.defaults);

Configuring Styles and Interactivity Chapter 6

[194]

You can also inspect (and modify the properties of) the chart instance. In this case, you
need to assign the new chart to a variable handle (see Config/defaults-1-global-
config.html):

const chart = new Chart(…);
console.log("Chart Data, chart.config.data);
console.log("Chart Options, chart.options);

Fonts
Chart.js uses Canvas to select and display local and installed fonts. The font configuration
involves setting up to four font properties: family, size, style, and color. A fontFamily is a
string containing a list of font-family names, a fontStyle contains a string with the name
of a style supported by the corresponding font-family, a fontColor is any valid CSS-
compatible color string, and the fontSize is a number that represents the size in pixels.
You can configure font attributes in any object that includes text: titles, tick captions, legend
labels, or tooltips, or you can set global defaults that will be inherited by text elements that
don't explicitly set font attributes.

Selecting standard fonts
The basic font properties are named fontFamily, fontSize, fontStyle, and fontColor.
Some objects have prefixed versions of these same properties. These objects are listed as
follows:

Object containing text element Description Font properties

Chart.defaults.global Global
defaults

defaultFontFamily, defaultFontSize, defaultFontStyle,
defaultFontColor

Chart.defaults.global.title Chart title

fontFamily,
fontSize,
fontStyle,
fontColor

Chart.defaults.scale.ticks Axis label

Chart.defaults.scale.ticks.minor Minor tick
label

Chart.defaults.scale.ticks.major Major tick
label

Chart.defaults.global.legend Legend
label

Chart.defaults.global.tooltips Tooltip
header titleFontFamily, titleFontSize, titleFontStyle, titleFontColor

Chart.defaults.global.tooltips Tooltip
body bodyFontFamily, bodyFontSize, bodyFontStyle, bodyFontColor

Chart.defaults.global.tooltips Tooltip
footer

footerFontFamily, footerFontSize,
footerFontStyle, footerFontColor

Objects that have font configuration properties

Configuring Styles and Interactivity Chapter 6

[195]

Since it's usually good practice to avoid using more than one font family for the whole
chart, global options are the best place to configure this property. You can also set other
font defaults:

Chart.defaults.global.defaultFontFamily =
 'Courier, "Courier New", "Lucida Console",
monospace';Chart.defaults.global.defaultFontSize = 12;
Chart.defaults.global.defaultFontStyle= 'normal';
Chart.defaults.global.defaultFontColor = '#333';

You can always choose to override specific properties where appropriate, such as the font
size of a chart title:

Chart.defaults.global.title.fontSize = 24;

And you can override it again, setting a different value in the chart instance, if necessary:

const chart = new Chart("my-chart", {type: 'line', data: {…},
 options: {
 title: {
 display: true,
 text: "Very large title that doesn't fit in the default space",
 fontSize: 20
 }
 }
});

Using Web fonts
Chart.js can use any fonts that are available for your website. Besides the standard fonts
supported by all browsers (serif, sans-serif, monospace), you can also use online fonts loaded
by a style sheet.

Configuring Styles and Interactivity Chapter 6

[196]

In the following example, we are using a free web font (OFL license), called Yanone
Kaffeesatz, obtained from Google Fonts. To install it, simply load the CSS by adding the
following link to the <head> of your HTML page:

<link href="https://fonts.googleapis.com/css?family=Yanone+Kaffeesatz"
 rel="stylesheet">

Now you can use the Yanone Kaffeesatz font family in CSS and HTML. Canvas can set it as
the context font, using the font property. The simplest way to use it in Chart.js is to declare
it as the default global font. You can also configure any font styles if this feature is
available:

Chart.defaults.global.defaultFontFamily = '"Yanone Kaffesatz", sans-serif';

In the following example, we changed several font properties (family, color, size, and
style), using global options from one of the pie/doughnut charts that were created in the
last chapter:

Chart.defaults.global.defaultFontColor = 'black';
Chart.defaults.global.defaultFontFamily =
 '"Yanone Kaffesatz", "Helvetica Narrow", "Arial Narrow", sans-serif';
Chart.defaults.global.defaultFontSize = 24;
Chart.defaults.global.defaultFontStyle = 'normal';
Chart.defaults.global.title.fontSize = 40;
Chart.defaults.global.title.fontColor = 'hsla(240,50%,70%,1)';
Chart.defaults.global.legend.labels.fontColor = 'hsla(120,20%,60%,1)';

The result is shown in the following diagram. The code is available in
Fonts/fonts-1.html and requires the installing of the Yanone Kaffesatz font (or any
other font, if you edit the code):

A doughnut chart using a web font for titles and labels. Code: Fonts/fonts-1.html.

Configuring Styles and Interactivity Chapter 6

[197]

Colors, gradients, patterns, and shadows
Choosing an effective color scheme for data visualization is no easy task. Colors aren't
simply used to make a chart look nicer. Besides distinguishing and suggesting associations
between sets of data, they may also communicate information through aspects such as hue,
contrast, saturation, or lightness. They can even influence the mood of the viewer. The
choice of colors is never neutral. It may attract or repel the viewer from relevant
information.

Other aspects may be important, depending on your audience. You may want to use
gradients, bevels, and shadows for purely aesthetic reasons, but if your audience requires
maximum accessibility, you may also need to consider the use of color-blind-safe palettes
or patterns.

Configuring colors
Chart.js supports standard HTML/CSS color names and codes (see Chapter 2, Technology
Fundamentals), which are assigned to properties that control fonts, strokes (lines, and
borders), and fills. You can select a color by its name (for example, red), hexadecimal code
(#f00, #ff0000), or three-argument generator functions that receive RGB or HSL
components (rgb(255,0,0), or hsl(0,100%,50%)). CSS color generator functions also
include a four-argument version that controls transparency with the alpha component
('rgba(255,0,0,1)', or 'hsla(0,100%,50%,1)').

The Chart.defaults.global.defaultColor property sets a default color for all the
chart components, but it is mostly overridden by the default configurations for fonts, scales,
graphical elements, and charts that default to monochromatic tones. These properties occur
in different chart elements. They have different names, but they all end with the Color
suffix. The basic configuration properties (used in Chart.defaults.global or
the options object) contain a single color, but they may also be an array of colors when
applied to a single dataset.

Configuring Styles and Interactivity Chapter 6

[198]

Color schemes and palettes
Chart.js does not include a native color palette generator. In our examples so far, we have
either assigned explicit colors, created color palettes with no more than six colors, or used
random color-generator functions. But colors are an important means of communicating
information in a chart, and should be chosen carefully. If not used with care, your chart
may suggest nonexistent relationships among data, deceiving the viewer. Colors that vary
in lightness and saturation suggest a sequential relationship (stronger/weaker or
hotter/colder). Opposing data can be better represented using divergent color palettes,
where extremes are represented by complementary colors. If your data represents different
categories, it will be better visualized with a qualitative color scheme. Depending on your
audience and the purpose of your chart, you may also need to consider accessibility issues,
such as color blindness or rendering in color-limited devices, when selecting colors. All
these tasks are facilitated by the use of a specially-designed color palette or scheme.

A color palette is a fixed-size sequence of colors and is usually represented as an array in
JavaScript. A scheme represents a collection of color palettes and is usually a function (or
an object) in JavaScript. You can use a scheme to generate a palette containing an arbitrary
sequence of colors.

You can write your own palettes, schemes, and color generators, but it's much easier to
generate carefully-selected palettes and schemes using popular services and JavaScript
libraries.

ColorBrewer, by Cynthia Brewer, is a website where you can generate an array string
containing a palette of colors carefully designed to not only look nice on your page, but to
also consider the type of data you are using (qualitative, diverging, and sequential) and its
accessibility (color blindness, display/print, and grayscale). You can select and view the
effects in real time, configure accessibility and data properties, and generate a color string
in different formats (including JavaScript arrays and CSS):

Configuring Styles and Interactivity Chapter 6

[199]

Using ColorBrewer to select and generate a small color-blind-safe palette

Let's try it out with a simple bar chart containing a single dataset listed in the code, as
follows:

<body>
<canvas id="canvas" width="200" height="100"></canvas>
<script>
 const data = {
 labels: ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat"],
 datasets: [
 {
 data: [10, 5, 2, 20, 30, 41],
 }
]
 };
 new Chart('canvas', { type: 'bar', data: data,
 options: {legend: {display: false}} });
</script>
</body>

Configuring Styles and Interactivity Chapter 6

[200]

When you load the page, it should display a monochromatic bar chart, where all the bars
share the same tone of gray.

Using the ColorBrewer site, choose a six-color palette, configure any properties you wish,
and then copy the JavaScript array to your clipboard. Paste it as the backGroundColor
property for the dataset:

datasets: [{
 data: [10, 5, 2, 20, 30, 41],
backgroundColor:['#d73027','#fc8d59','#fee090','#e0f3f8','#91bfdb','#4575b4
']
}]

Then load your chart and see the result. It should be similar to the following bar chart. The
full code is in Colors/colors-1-brewer.html:

Chart using colors from a ColorBrewer six-color diverging palette. Code: Colors/colors-1-brewer.html.

The ColorBrewer palettes are limited to nine colors (or even fewer, depending on the settings
you choose). If you need more colors, you can choose them from Paul Tol's schemes page,
which is also very popular, or use other generators (there are many).

Configuring Styles and Interactivity Chapter 6

[201]

Another option is to use the Google palette.js library, which contains color palette-
generating functions. It supports all schemes from ColorBrewer and Paul Tol's color schemes
page, and includes additional generators for HSV, RGB, and Solarized schemes. To use it,
you need to include the palette.js file on your page. You can download it from the
GitHub site or use a CDN:

<script src="https://cdn.jsdelivr.net/npm/palette.min.js"></script>

Now you can generate palettes by calling one of the color scheme functions listed in the
demo page located at google.github.io/palette.js, shown as follows:

Page with a list of color schemes supported by the palette.js generator (see the full demo page at google.github.io/palette.js)

The demo page allows you to experiment with different schemes, check how many colors
you can include in a palette, and simulate different levels of color blindness. The following
code will generate a palette for our bar chart containing six colors from Paul Tol's
qualitative color scheme:

const colorsArray = palette('tol', 6);

Configuring Styles and Interactivity Chapter 6

[202]

The colors array contains the hexadecimal codes of the colors, but Canvas (and Chart.js)
will not show the colors unless there is a hash character before the number. The following
code fixes this:

const colorsArray = palette('tol', 6).map(n=>'#'+n);

Now just set the backgroundColor property as the colors array:

backgroundColor: colorsArray

The result is shown as follows. The code is in Colors/colors-2-palettejs.html:

Chart using colors from a generated palette. Code: Colors/colors-2-palettejs.html

Gradients
There is no native support in Chart.js for gradients, but they are fairly easy to generate with
Canvas. The problem is that a gradient has an absolute position in a Canvas object, while
your chart may be responsive. If the chart is resized, the gradient has to be recalculated and
the chart updated.

Configuring Styles and Interactivity Chapter 6

[203]

One way to deal with this is to call a gradient function as soon as the chart is created and
every time the window is resized, feeding the Canvas gradient function with the
dimensions of the area where the gradient will be applied. We can do this with a callback
and the Chart.js update() function.

A gradient in Canvas is created with the following function:

canvasContext.createLinearGradient(x0, y0, x1, y1);

The gradient contains the equation of a perpendicular line. To create a linear gradient that
varies along the y axis, we need to draw the line from the bottom of the chart to the top.
That means that x0 = x1 = 0, y1 is the bottom of the chart, and y0 is the top. If we write a
function that receives a chart instance, we can retrieve that information from scales["y-
axis-0"].top and scales["y-axis-0"].bottom. Here is a function for drawing
gradients for the background colors and a line chart with two datasets
(Colors/colors-3-gradient.html):

function drawGradient(chart) {
 const x0 = 0;
 const y0 = chart.scales["y-axis-0"].top;
 const x1 = 0;
 const y1 = chart.scales["y-axis-0"].bottom;

 const gradient1 = chart.ctx.createLinearGradient(x0, y0, x1, y1);
 gradient1.addColorStop(0, 'hsla(60,100%,70%,.4)');
 gradient1.addColorStop(1, 'hsla(0,100%,25%,.8)');

 const gradient2 = chart.ctx.createLinearGradient(x0, y0, x1, y1);
 gradient2.addColorStop(0, 'hsla(300,100%,70%,.4)');
 gradient2.addColorStop(1, 'hsla(240,100%,25%,.8)');

 chart.data.datasets[0].backgroundColor = gradient1;
 chart.data.datasets[1].backgroundColor = gradient2;
 }

Configuring Styles and Interactivity Chapter 6

[204]

You have to call that function as soon as the chart is created and then invoke update() to
redraw the chart. After each resize, call it again. This can be done automatically using the
onComplete() animation callback, as shown in the following code:

const data = {
 labels: ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"],
 datasets: [
 {
 label: 'Week 1',
 data: [2, 5, 2, 0, 20, 48, 51],
 borderColor: 'red'
 },{
 label: 'Week 2',
 data: [44, 36, 13, 40, 40, 9, 3],
 borderColor: 'blue'
 }
]
};

const chart = new Chart('canvas', {
 type: 'line',
 data: data,
 options: {
 animation: {
 onComplete: function(context) {
 drawGradient(context.chart);
 }
 }
 }
});
drawGradient(chart);
chart.update();

Configuring Styles and Interactivity Chapter 6

[205]

The final result is shown in the following screenshot:

Line chart using gradients as backgroundColor for each dataset. Code: Colors/colors-3-gradient.html.

Patterns
Patterns are a great way to create charts that don't depend on color-coding, and they can be
used in color or monochromatic devices or print media. And they are, of course, color-blind
safe. You can create patterns using HTML Canvas commands somewhat similar to the ones
used for gradients, but it's much easier to use a plugin, such as the Patternomaly plugin,
listed in the Chart.js official documentation.

Configuring Styles and Interactivity Chapter 6

[206]

You can obtain Patternomaly by downloading the JavaScript library from its GitHub
repository (github.com/ashiguruma/patternomaly) or by using a CDN link:

<script
src="https://cdn.jsdelivr.net/npm/patternomaly@1.3.0/dist/patternomaly.min.
js">
</script>

To generate a pattern, all you have to do is choose a color and call pattern.generate(),
which will randomly select 1 of the 21 patterns available:

pattern.generate('rgb(50%,20%,10%');

You can also choose a specific pattern as the first argument of pattern.draw():

pattern.draw('triangle', 'lightblue');

A list of the supported patterns is shown as follows (Colors/colors-4-
patternomaly.html):

Patterns available in the patternomaly.js plugin. Code: Colors/colors-4-patternomaly.html.

http://github.com/ashiguruma/patternomaly

Configuring Styles and Interactivity Chapter 6

[207]

The generate() function also accepts an array of colors as an argument. You can include
the palette obtained for the Color Brewer example and generate patterns based on them:

let patternArray =
['#d73027','#fc8d59','#fee090','#e0f3f8','#91bfdb','#4575b4'];
pattern.generate(patternArray);

Let's use patterns to color our bar chart. For this example (Colors/colors-5-
pattern.html), we will pass a call to the pallete() function from the palette.js
library (which returns an array of colors) as the parameter for generate(), and assign it to
the backgroundColor property for the bars:

backgroundColor: pattern.generate(palette('tol', 6).map(n=>'#'+n)),

The result is shown as follows:

A color-blind-safe chart using generated patterns and colors. Code: Colors/colors-5-pattern.html.

Configuring Styles and Interactivity Chapter 6

[208]

Shadows and bevels
There are several third-party plugins listed in the official Chart.js documentation, and one
of them, called chartjs-plugin-style, adds a few styling options for charts; these
options include bevels, shadows, and glows. To use it, you can install the plugin via npm or
download the JavaScript file from nagix.github.io/chartjs-plugin-style that can
be imported on to your page:

<script src="../JavaScript/chartjs-plugin-style.min.js"></script>

Now you can use new properties in your datasets to add bevels, shadows, and glows. The
following example configures bevels and adds shadows to a simple bar chart. The names of
the properties should be self-explanatory:

const data = {
 labels: ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat"],
 datasets: [
 {
 label: 'Week 1',
 data: [20, 5, 2, 20, 30, 51],
 backgroundColor: ['yellow','red','blue','green','orange',
 'cyan'],
 bevelWidth: 3,
 bevelHighlightColor: 'rgba(255, 255, 255, 0.75)',
 bevelShadowColor: 'rgba(0, 0, 0, 0.5)',
 shadowOffsetX: 5,
 shadowOffsetY: 5,
 shadowBlur: 10,
 shadowColor: 'rgba(0, 0, 0, 0.5)',
 }
]
};

new Chart('canvas', { type: 'bar', data: data,
 options: {legend: {display: false}} });

Configuring Styles and Interactivity Chapter 6

[209]

The final result is shown next. You can also mix it with generated colors, palette functions,
and patterns. Try it out with different types of charts! The code is in Colors/colors-6-
shadows.html:

A bar chart enhanced with bevels and shadows. Code: Colors/colors-6-shadows.html.

Adding text elements and labels
You can always add captions and titles outside your chart, using plain HTML or JavaScript.
However, Chart.js also includes properties that draw and configure text elements inside the
canvas as part of the chart. If the properties don't give you enough flexibility, you can use
callbacks to filter or generate labels. If tooltips, titles, and legends aren't enough, you can
also use plugins to add labels to bars, slices, and lines. You can even draw over the chart
using plain HTML Canvas. This section will explore some of these techniques.

Configuring Styles and Interactivity Chapter 6

[210]

Legends and labels
Legends are displayed by default in bar, line, pie and doughnut charts. They appear as a
list of labeled, colored boxes that relate to the color of the lines, bars, or slices represented
by a dataset, and they are rendered on the screen even when there is a single dataset. In
such cases, you may wish to hide them. You can also tune several other properties and
callbacks. The most important properties are listed as follows:

Property Value Description

Display true or false Shows or hides the legend of the chart. The default is
true.

Position
'top', 'bottom',
'left', 'right'

Selects the position of the label in relation to the chart.
The default is 'top'.

Reverse true or false Reverses the order of the labels in the legend. The
default is false.

Labels Object Configures the text and the colored box for each label.

Main properties of the legend object

There are also two callbacks you can attach to legends:

Property Parameters Description

onClick
(event,label): the label.text property contains the
text of the label; the label.datasetIndex contains
the index of the array.

Reacts to a 'click' event.
The default
implementation toggles the
label and associated dataset
on and off.

onHover
(event,label): the label.text property contains the
text of the label; the label.datasetIndex contains
the index of the array.

Reacts to a 'hover' event.
This callback is not
implemented by default.

Callbacks for the legends object

Configuring Styles and Interactivity Chapter 6

[211]

The following example contains a simple three-dataset line chart. Instead of hiding the
dataset, the onClick callback for the legends was overridden to change the color of the
selected dataset to gray. Note that the dataset index is obtained from the callback
parameters, but the dataset properties are changed in the object tree for the current chart
(this.chart.data.datasets):

const data = [[12,19,3,5,2,3],[6,5,33,2,7,11],[2,3,5,16,0,1]],
 strokes = ['rgba(54,162,235,1)','rgba(255,99,132,1)',
 'rgba(132,255,99,1)'],
 fills =
 ['rgba(54,162,235,.2)','rgba(255,99,132,.2)','rgba(132,200,99,.2)'];
const grayFill = 'rgb(0,0,0,.2)';
const grayStroke = 'rgb(0,0,0,.8)';

const datasets = [];
for(const i = 0; i < data.length; i++) {
 datasets.push({
 label: 'Dataset ' + (i+1),
 data: data[i],
 backgroundColor: fills[i],
 borderColor: strokes[i],
 borderWidth: 1
 });
 }

 const myChart = new Chart("myChart", {
 type: 'line',
 data: {
 labels: ['Day 1','Day 2','Day 3','Day 4','Day 5','Day 6'],
 datasets: datasets,
 },
 options: {
 legend: {
 position: 'left',
 reverse: true,
 onClick: function(event, label) {
 const index = label.datasetIndex;
 const dataset = this.chart.data.datasets[index];
 if(dataset.backgroundColor == fills[index]) {
 dataset.backgroundColor = grayFill;
 dataset.borderColor = grayStroke;
 } else {
 dataset.backgroundColor = fills[index];
 dataset.borderColor = strokes[index];
 }
 this.chart.update();
 }

Configuring Styles and Interactivity Chapter 6

[212]

 }
 }
 })

The following screenshots show the chart before and after clicking on a dataset. See the full
code in Text/text-1-legend-callback.html:

Implementing an onClick callback to change the color of a dataset. Code: Text/text-1-legend-callback.html.

The legend.labels property is used to configure the appearance of the individual legend
labels. The following table shows the properties you are most likely to use:

Property Value Description
fontSize, fontStyle,
fontColor, fontFamily

Number and
string Font properties inherit global font.

boxWidth Number The width of the colored box. The default
is 40.

Padding Number The padding between rows of colored
boxes.

Main properties of the legend.labels object

Configuring Styles and Interactivity Chapter 6

[213]

There is no property to set the color of the colored box. It will normally inherit from the
global defaultColor if no colors are assigned to the datasets. You can change this
behavior with the generateLabels callback property. You can also filter out unwanted
labels by assigning a function to the filter callback property. These are listed as follows:

Property Parameters Description

generateLabels
(chart): The current chart. This is
the same as this.chart.

The default implementation
returns the dataset label as text
and a rectangular colored box
that matches the dataset's colors.

filter

(label, item): label.text
contains the text of the label;
label.datasetIndex contains the
index of the array; item.datasets
contains the dataset array;
and item.labels contains the x axis
labels or pie slice labels.

This contains a filtering function
that returns true for labels that
should be displayed. The default
implementation returns true.
This property only filters out
labels, not datasets (the lines or
slices will still be displayed).

Callback properties for the legend.labels object

Label styles can be configured inside the options object, in each chart instance, or for all
charts using the Global.defaults.legend object, for example:

 Chart.defaults.global.legend.labels.fontSize = 16;
 Chart.defaults.global.legend.labels.boxWidth = 20;

The following filter configuration will only show the labels for datasets that have a
maximum value below 20. All three datasets will be shown, but only two labels will be
displayed (Text/text-2-legend-label.html):

labels: {
 filter: function(label, item) {
 return Math.max(...item.datasets[label.datasetIndex].data) <= 20;
 }
}

The generateLabels callback should only be implemented if you want to create your own
legend. If you have a very complex legend, you can generate an HTML legend
implementing a callback function for the Chart.defaults.global.legendCallback
property or in each chart using the legendCallback property in options. This will be
explored in Chapter 7, Advanced Chart.js.

Configuring Styles and Interactivity Chapter 6

[214]

Titles
The default in Chart.js is to have the title turned off, since you can also create your title with
greater flexibility in HTML. If you still want to have a title in your chart, you need to set at
least set two properties: display (with the value true) and text (with the text of your
title). Other properties you might want to configure are listed as follows:

Property Value Description
display true or false Displays the title. The default is false.

text
String or
String[]

A string containing the text of the title or an
array of strings, for a multi-line title.

fontStyle,

fontFamily,
fontSize,
fontColor

String and
Number

Font attributes. The default fontStyle is bold,
but the others are inherited.

lineHeight Number The default line height is 1.2.
padding Number The default padding is 10.

position
'top', 'bottom',
'left' or
'right'

This is where the title should be placed. The
default is 'top'. The titles' places on the sides
will be rotated 90 degrees counterclockwise.

Main properties of the options.title object

You can configure the title using Chart.defaults.global.title for all charts, or in the
options object for a new chart instance. You can also change the title at any time after
updating a chart or responding to events.

Adding labels to lines, bars, and slices
In Chapter 4, Creating Charts, we used a simple plugin to add labels to pie slices. In this
section, we will show you two others that allow a lot more customization. They are listed in
the official documentation for Chart.js but are developed by third parties and should be
installed or downloaded from their own repositories.

Configuring Styles and Interactivity Chapter 6

[215]

The chart-plugin-datalabels plugin offers the highly customizable labeling of values
in all types of charts, with support for scripting and event handling. You can see several
samples in chartjs-plugin-datalabels.netlify.com/samples/, where there is also
a link to the documentation and the GitHub repository. The easiest way install it is with a
CDN. Include the following code in your page:

 <script src="https://cdn.jsdelivr.net/npm/chartjs-plugin-datalabels">
 </script>

Configurations can be made per dataset, per chart, or globally, using one of the three
contexts as follows:

In datasets: dataset.datalabels.*
In a chart instance: options.plugins.datalabels.*
Globally, for all charts: Chart.defaults.global.plugins.datalabels.*

The local settings override the global ones. Details are beyond the scope of this chapter, but
the plugin is very well documented. The following is a simple example, using the line chart
we used in the previous sections. All the configuration was done in the
options.plugins.datalabels object, which adds nice labels inside rounded rectangles
over the data points (see Text/text-4-datalabels.html):

options: {
 plugins: {
 datalabels: {
 backgroundColor: function(context) {
 return context.dataset.borderColor;
 },
 borderRadius: 4,
 color: 'white',
 font: { weight: 'bold'},
 formatter: Math.round
 }
 },
}

Configuring Styles and Interactivity Chapter 6

[216]

The result is shown in the following screenshot:

Using the chartjs-datalabels plugin to add value labeling to a line chart. Code: The code is in Text/text-4-datalabels.html.

There's a lot more that can be done with this plugin. Try it on other charts and check out the
samples.

A second labeling plugin is chart-plugin-outlabels. It allows for better visualization of
the data values in pie and doughnut charts, displaying the labels outside the slices. You can
see a sample in piechart-outlabels.netlify.com/sample/, where you will also find
a link to the documentation and the GitHub repository. To use it on your page, include the
following:

<script src="https://cdn.jsdelivr.net/npm/chartjs-plugin-piechart-
 outlabels"> </script>

As in many other plugins, configurations can be made per dataset, per chart, or globally,
using one of the three contexts as follows:

In datasets: dataset.outlabels.*
In a chart instance: options.plugins.outlabels.*
Globally, for all charts: Chart.defaults.global.plugins.outlabels.*

Configuring Styles and Interactivity Chapter 6

[217]

The plugin also introduces a new chart type: outlabeledPie. It can be used in place of
pie or doughnut and is simpler to configure.

The following is a simple example of the doughnut chart we used in previous examples,
using an outlabeledPie (see Text/text-5-outlabels.html for the full code):

 const data = {
 labels: ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat"],
 datasets: [
 {
 label: 'Week 1',
 data: [20, 5, 2, 20, 30, 51],
 backgroundColor: palette('tol', 6).map(n=>'#'+n),
 }
]
 };

 new Chart('canvas', {
 type: 'outlabeledPie',
 data: data,
 options: {
 zoomOutPercentage: 30,
 plugins: {
 legend: false,
 outlabels: {
 text: '%l %p',
 color: 'white',
 stretch: 45,
 font: {
 resizable: true,
 minSize: 12,
 maxSize: 18
 }
 }
 }
 }
 });

Configuring Styles and Interactivity Chapter 6

[218]

The result is shown in the following screenshot:

A pie chart with values labeled by the chartjs-outlabels plugin. Code: Text/text-5-outlabels.html.

Check the documentation for more options, and try to use this plugin in other charts.

Interactions, data updates, and animations
Unless configuration options are changed, all charts come pre-configured with default
behaviors and transitions, which are animated. Animations are triggered by events, such as
window resizing, data updates, or user interaction. The default pre-configured chart
interactions include hovering the mouse over or near value points (used to trigger the
appearance of tooltips containing details) and clicking or touching legends. This provides
basic interactivity with smooth data transitions, but you may still want to fine-tune it by
writing callbacks for different events or animation stages, changing animation properties
such as duration or ease algorithms, or even turn the animations off completely. If you need
more control, you can extend much of this functionality using plugins or standard
JavaScript.

Configuring Styles and Interactivity Chapter 6

[219]

Data updates
An interactive chart may display data that is changing periodically. A web page might
contain an algorithm that changes data automatically; it may download new data files with
new data, or it may allow the user to enter or request changes in the source-data values. In
any of these cases, as soon as the new data is available, the chart should be updated. Data
updates can occur automatically inside callback functions or can be explicitly called using
the update() command. To use it, you will need to save a variable handle to the chart
object:

const chart = new Chart(…);
 // make changes
 chart.update();

When using callbacks, you can usually refer to the current instance of the chart, using the
this keyword:

callback: function() {
 // make changes
 this.chart.update();
}

Changes usually involve properties in datasets and options of a chart instance. Let's see an
example. In the following code, the square() function will square all the data values in a
chart and change the x axis to a logarithmic scale. The squareRoot() function does the
opposite. After updating the grid (with the undocumented scaleMerge() function), the
chart is updated:

function square(chart) {
 const datasets = chart.config.data.datasets;
 for(let i = 0; i < datasets.length; i++) {
 for(let j = 0; j < datasets[i].data.length; j++) {
 let value = datasets[i].data[j];
 datasets[i].data[j] = value * value;
 }
 }
 chart.options.scales.yAxes =
 Chart.helpers.scaleMerge(Chart.defaults.scale,
 {yAxes: [{type: 'logarithmic'}]}).yAxes;
 chart.update();
}

function squareRoot(chart) {
 const datasets = chart.config.data.datasets;
 for(let i = 0; i < datasets.length; i++) {
 for(let j = 0; j < datasets[i].data.length; j++) {

Configuring Styles and Interactivity Chapter 6

[220]

 let value = datasets[i].data[j];
 datasets[i].data[j] = Math.sqrt(value);
 }
 }
 chart.options.scales.yAxes =
 Chart.helpers.scaleMerge(Chart.defaults.scale,
 {yAxes: [{type: 'linear'}]}).yAxes;
 chart.update();
}

The HTML button is registered as an event listener that calls one of the two functions,
depending on the current y axis type, and updates the chart:

 let button = document.getElementById("toggle");
 button.addEventListener('click', function() {
 const type = myChart.options.scales.yAxes[0].type;
 if(type == 'linear') {
 square(myChart);
 } else {
 squareRoot(myChart);
 }
 });

Try it out. The full code is in Animation/animation-1-update.html, and the following
screenshots show the chart in the two different states:

Updating a chart after changing values and scales. Code: Animation/animation-1-update.html.

Configuring Styles and Interactivity Chapter 6

[221]

Events
You can select which events your chart will respond to by locally configuring the
options.events property, or globally using Chart.defaults.global.events. The
default configuration includes an array with six event names:

events: ["mousemove", "mouseout", "click", "touchstart", "touchmove",
"touchend"]

These are the events the browser will listen to when the cursor is within the canvas context.
They control the behavior of clickable items such as legend labels and tooltips. If you are
writing your own handlers, you may wish to turn off some events by redefining the
property to include an array containing fewer events. For example, if you want to disable
hovering and touch events in a chart, allowing only the click event, you can add the
following to your options configuration:

options: {
 events: ['click']
}

Configuring animations
You should have noted that when you click the button, the lines don't move to their new
positions immediately. The chart transitions smoothly, and it takes about a second.
Transitions triggered by calling update() will automatically use standard animation
configurations.

There are two animation properties you can easily change. They are listed as follows:

Property Values Description

Duration Number
The duration of the animation in
milliseconds. The default is 1,000 (one
second).

Configuring Styles and Interactivity Chapter 6

[222]

Easing

'linear', 'easeInQuad',
'easeOutQuad', 'easeInOutQuad',
'easeInCubic', 'easeOutCubic',
'easeInOutCubic', 'easeInQuart',
'easeOutQuart', 'easeInOutQuart',
'easeInQuint', 'easeOutQuint',
'easeInOutQuint', 'easeInSine',
'easeOutSine', 'easeInOutSine',
'easeInExpo', 'easeOutExpo',
'easeInOutExpo', 'easeInCirc',
'easeOutCirc', 'easeInOutCirc',
'easeInElastic', 'easeOutElastic',
'easeInOutElastic', 'easeInBack',
'easeOutBack', 'easeInOutBack',
'easeInBounce', 'easeOutBounce',
'easeInOutBounce'

The easing function to use for the
animation. These are based on Robert
Penner's Easing Functions
(robertpenner.com/easing). They are
easier to choose if you look at a
graphical representation of each one,
which is available at http:/ ​/​easings.
net.

Properties for the options.animation object

To make an instant transition to the new values (without any animations), you should
include an object containing duration:0:

options: {
 animation: {
 duration: 0
 }
}

Now the change will happen instantly.

Properties can be configured per chart, in the options object, or globally in
Chart.defaults.global.

http://robertpenner.com/easing
http://easings.net
http://easings.net
http://easings.net
http://easings.net
http://easings.net
http://easings.net

Configuring Styles and Interactivity Chapter 6

[223]

There are two callback properties for configuring animations, listed as follows. One
allows you to hook on to each step of the animation, and the other allows you to run code
after the animation is complete:

Property Parameters Description

onProgress

(animation): The main properties are
animation.chart (the current chart),
animation.currentStep, and
animation.numSteps

(currentStep/numSteps returns a
percentage of the animation so far)

Called after each step of an
animation.

onComplete

(animation): The main properties are
animation.chart (the current
chart), animation.currentStep,
and animation.numSteps
(currentStep/numSteps returns a
percentage of the animation so far)

Called at the end of an animation.
Any changes to be applied after
the chart is rendered (such as a
Canvas overlay) should be called
in this context.

Callback properties for options.animation

We added an HTML progress bar to the web page of the previous example and configured
the line chart animation to last five seconds in the following code. At each step, the progress
bar is updated by the onProgress callback function. Each callback also prints the current
step to the JavaScript console each time it is called:

<body>
<canvas id="myChart" width="400" height="200"></canvas>
<form><button type="button" id="toggle">Square/Unsquare</button></form>
<progress id="progress" max="1" value="0"></progress>
<script>
 ...
 const progress = document.getElementById("progress");
 ...
 const myChart = new Chart("myChart", { type: 'line', data: {…},
 options: {
 animation: {
 duration: 5000,
 onProgress: function(animation) {
 console.log(animation.currentStep /
 animation.numSteps);
 progress.value = animation.currentStep /
 animation.numSteps;
 },
 onComplete: function(animation) {

Configuring Styles and Interactivity Chapter 6

[224]

 console.log(animation.currentStep);
 }
 }
 }
})
 let button = document.getElementById("toggle");
 button.addEventListener('click', function() {…});
</script>

The full code is in Animation/animation-2.html. Here is a screenshot showing the
animation halfway through:

Using a progress bar during a five-second animation, after updating the chart. Code: Animation/animation-2.html.

In this example, the onComplete callback is simply printing to the console, but it is one of
the most important callbacks if you need to update or change anything after the chart is
rendered on the screen. If you draw something to a Canvas outside a callback, Chart.js will
erase it. In Chapter 4, Creating Charts, we used it to draw text, using the Canvas API over a
doughnut chart. In this chapter, we added a gradient color to the chart, after every resizing
event.

Configuring Styles and Interactivity Chapter 6

[225]

Summary
In this chapter, we explored several ways to configure the look and feel of interactive charts
created with Chart.js, using native properties, as well as some extensions and plugins.

We first learned how to set global defaults, which can be inherited by multiple charts and
used to set a consistent theme across different charts, sharing basic layout, fonts, and color
schemes. We also explored some online services, tools, extensions, and plugins for styling
charts and adding labels. Then we configured the behavior of a chart after updates and user
interactions, tinkering with animation algorithms and callbacks.

You already know enough Chart.js to create any chart. In the next chapter, we will dive
deeper into some of these topics, configure tooltips, learn how to program the Chart.js API,
and you will learn how to create your own plugins.

References
Books and websites:

Chart.js official documentation and samples: https:/ ​/​www. ​chartjs. ​org/ ​docs/
latest/​

Data sources:

Volumes of the World’s Oceans (based on ETOPO1):
Chapter03/Pages/BarChart1.html and others. https:/ ​/​www. ​ngdc. ​noaa. ​gov/
mgg/​global/ ​etopo1_ ​ocean_ ​volumes. ​html

World population: Chapter04/WPP2017_UN.csv. United Nations World
Population Prospects 2017. https:/ ​/​www. ​un. ​org

https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.un.org
https://www.un.org
https://www.un.org
https://www.un.org
https://www.un.org
https://www.un.org
https://www.un.org
https://www.un.org
https://www.un.org

7
Advanced Chart.js

When you create data visualizations with Chart.js, most of the work you will have involves
preparing the data so that it can be loaded and used by a chart instance. You don't have to
worry much about fonts, padding, axes, screen resizing, or responsiveness, since new
charts are preconfigured with defaults intended for optimal presentation and interactivity.
In the last chapter, we learned how to adjust colors, labels, animations, and other typical
configurations in different types of charts. In this chapter, we will explore configuration
topics that you won’t use as frequently, and that may require additional coding, extensions,
and integration with other libraries, such as tooltip behavior configuration, label
generation, scripting, creating mixed charts, creating plugins, using the Chart.js API, and
using HTML Canvas with Chart.js.

What you will learn in this chapter includes the following:

Tooltip configuration
Advanced legend configuration
Displaying multiple charts
Extending Chart.js

Tooltip configuration
Tooltips are the main feature used by Chart.js to reveal quantitative details about data.
While some context comes from the grid, the only way to natively display data right next to
the data point is using a tooltip. Of course, you can label the value points as we saw in the
previous chapter, but that requires extensions or plugins, and may clutter your chart if used
in excess. Chart.js visualizations rely on interactivity to show details. In this section, we will
learn how to configure the way these details are displayed.

Advanced Chart.js Chapter 7

[227]

Tooltips can be configured for each chart using the tooltips key in the options object. They
can also be configured for all charts using Chart.defaults.global.tooltips. The
properties of these objects that you can configure are listed in the following table:

Object Value Description

titleSpacing Number Space before and after each title line.
Default is 2.

bodySpacing Number Space before and after each tooltip
item. Default is 2.

footerSpacing Number Space before and after each footer line.
Default is 2.

titleMarginBottom Number Margin after the title in pixels.
Default is 6.

footerMarginTop Number Margin before the footer in pixels.
Default is 6.

xPadding Number Vertical padding in pixels. Default is
6.

yPadding Number Horizontal padding in pixels. Default
is 6.

enabled true or false Turns tooltips on or off. Default is
true.

intersect true or false

If true, the tooltip interaction mode
will only be applied when the cursor
hovers exactly over the point (inside
the pointHitRadius). If false, it
will be applied at all times. Global
default is true, but changes
depending on the type of chart.

Advanced Chart.js Chapter 7

[228]

mode

nearest, index,
dataset, x, y.
Deprecated values are
label (same as index),
and single (behaves like
nearest when intersect:
true).

Selects the tooltip interaction mode.
nearest displays the value of the
nearest point (includes one item per
tooltip), index displays values of all
the points with the same index (will
include an item for each dataset in
the same tooltip), dataset will
display the entire dataset in a
tooltip. Two other modes are available
for cartesian scales only: x will include
in the tooltip all items that share the
same x coordinate value, and y will
include all items that share the same y
coordinate value. index mode, which
in Cartesian scales defaults to the x
indexes, can also be set for the y
indexes by adding the property axis:
y. The global default is nearest but it
changes depending on the type of
chart.

position
average, nearest, or a
custom position

Defines where the tooltip is positioned
in relation to the value point. The
default is average. (You can define
your own custom position creating an
entry in the
Chart.Tooltip.positioners map
that returns an object with x and y
coordinates.)

titleFontFamily,
titleFontStyle,
titleFontColor,
titleFontSize

String and Number Font attributes for title (which is
configured using callbacks).

bodyFontFamily,
bodyFontStyle,
bodyFontColor,
bodyFontSize

String and Number Font attributes for body (which is
configured using callbacks).

Advanced Chart.js Chapter 7

[229]

footerFontFamily,
footerFontStyle,
footerFontColor,
footerFontSize

String and Number Font attributes for footer (which is
configured using callbacks).

caretSize Number
Size in pixels of the tooltip arrow.
Default is 5.

caretPadding Number
Distance of the arrow tip from the
tooltip position (example: the value
point). Default is 2.

cornerRadius Number
The radius of the rounded rectangle in
pixels. Default is 6.

backgroundColor CSS color The background color of the tooltip.
Default is rgba(0,0,0,0.8).

multiKeyBackground CSS color
The background of the colored box
(won't be visible if the dataset color
is opaque). Default is #fff.

borderColor CSS color The border color of the tooltip. Default
is rgba(0,0,0,0).

borderWidth Number The border width of the tooltip.
Default is 0.

displayColors true or false If false, hides color boxes. Default is
true.

callbacks Object

An object containing several callback
functions. See the Tooltip callbacks
section on tooltip callbacks in this
chapter.

Static properties for tooltips (used in the options.tooltips key)

In the following example, several default style properties were changed for the tooltips of a
chart instance. Each tooltip will have a gray background, a yellow 3-pixel border, a pink 16-
pixel title, an italic body, and a 10-pixel arrow, distant 10 pixels from the data point:

const data = {
 labels: ["One", "Two", "Three", "Four"],
 datasets: [{label:'Dataset 1',… },{label:'Dataset 2',…},
 {label:'Dataset 3',…}]
};
new Chart('chart', {type: 'line', data: data,
 options: {

Advanced Chart.js Chapter 7

[230]

 legend: { display: false },
 tooltips: {
 mode: 'index',
 titleFontSize: 16,
 titleFontColor: 'pink',
 bodyFontStyle: 'italic',
 titleSpacing: 10,
 caretSize: 10,
 caretPadding: 10,
 backgroundColor: 'rgba(10,10,60,.5)',
 borderColor: 'yellow',
 borderWidth: 3,
 },
 }
});

The full code is in Tooltips/tooltip-1.html. The result is as follows:

Tooltip with modified border color and width, background color, title font size and color, body font style,
caret arrow size, and padding (distance from value point). Code: Tooltips/tooltip-1.html.

Advanced Chart.js Chapter 7

[231]

Hovering interactions
Tooltips respond to hover events. The next table lists properties of the hover object, which
can be configured globally using Chart.defaults.global.hover or locally using
options.hover:

Object Value Description

intersect true or false

Same behavior as
tooltip.intersect. Tooltips can
respond to different intersect states
when hovering.

mode

nearest, index, dataset,
x, y. Deprecated values are
label (same as index), and
single (behaves like
nearest when intersect:
true).

Same behavior as tooltip.mode.
Tooltips can respond to a different
mode when hovering.

axis x, y, xy

Selects parameters that are used to
calculate the distance from the value
point to the cursor during a hover
event. The default is x. Horizontal
bar charts override this to y so that
mode:index can select different bars.

animationDuration Number
The duration of the animation. This
affects any hovering events,
including tooltips.

Configuration options for the hover object

Both the hover and the tooltip objects support the mode and intersect properties. They are
similar, but the hover property also applies to non-tooltip events (configured with the
optional onHover callback).

If the intersect property is true, the event will only be fired if the mouse is directly over
a bar or pie slice, or within a certain radius from the value point (for line, scatter, and
bubble charts). If intersect is false, the event may be fired before the mouse is over the
value point.

Advanced Chart.js Chapter 7

[232]

The mode property selects the data values related to the event. If intersect is false, and
mode is nearest, it will select the nearest point.

When used in tooltips, the mode property also determines which items appear in a tooltip.
If nearest, it will show the value that is nearest to the point where the mouse is (typical in
scatter and bubble charts). The property can also have the following values:

point, showing only items that actually intersect the point (typical inline charts)
index, showing all the points at the same index (typical in a bar or pie chart)
dataset, listing all points in the dataset

There are also two more modes that are exclusive to Cartesian scales: x and y, which selects
all points with the same values of x and y, respectively.

Edit the Tooltips/tooltip-3-modes.html file and experiment with different modes.
The following screenshots show some tooltip modes applied to a line chart with three
datasets:

Tooltip interaction modes: (a) displays single value point; (b) displays items with same index (or x value in this case);
(c) displays items with same y value; (d) displays all items in a dataset. Code: Tooltips/tooltip-3-modes.html.

Advanced Chart.js Chapter 7

[233]

Scriptable properties
Tooltips have three properties that receive functions. One allows you to replace the Canvas-
generated tooltips with your own custom HTML tooltips. The other two allow sorting of
tooltip items (when several items appear in a single tooltip) and filtering. These properties
are listed as follows:

Object Parameters Description

custom (tooltipModel)

Used to generate custom HTML
tooltips. See the Custom HTML
tooltips section on HTML tooltips
in this chapter.

filter

(item, data); array of datasets in
data.datasets; array of labels in
data.labels; item.x and item.y contain
coordinates of the value point, item.xLabel
and item.yLabel the labels in each axis,
item.index is the index of the item in the
dataset, and item.datasetIndex is the
index of its dataset.

A function that returns true or
false and is called before
rendering a tooltip item. If it
returns false, the item will not
be rendered.

itemSort

(item1, item2); each parameter is an item
object with the following properties: x, y,
xLabel, yLabel, index, dataSetIndex.

Sorts items (in tooltips that
contain multiple items). The
function returns a number. If
item1 < item2 the function
should return negative value, if
item1 > item2 a positive value
should be returned, and zero
should be returned if they are
equal.

Scriptable properties for tooltips

Let’s see some examples. In the following code (Tooltip/tooltip-4-script-
filter.html), the filtering function ignores all items that contain y values greater than 20.
Additionally, the events key was used to reduce the events the tooltips respond to. In this
example, they are only activated with clicks:

const data = {
 labels: ["One", "Two", "Three", "Four"],
 datasets: [{label:'Dataset 1',… },{label:'Dataset 2',…},
 {label:'Dataset 3',…}]

Advanced Chart.js Chapter 7

[234]

};
new Chart('chart', { type: 'line', data: data,
 options: {
 legend: { display: false },
 tooltips: {
 mode: 'index',
 intersect: false,
 filter: (item, data) => data.datasets[item.datasetIndex]
 .data[item.index] < 20
 },
 events: ['click']
 }
});

The following screenshot shows the result of clicking near the values points of index 1.
Since one of the three points is greater than 20, it doesn't show up in the tooltip:

Tooltip with mode: index filtering only items that have a y value less than 20. Code: Tooltip/tooltip-4-script-filter.html.

This other example (Tooltip/tooltip-5-script-sort.html) configures item sorting in
ascending order by the y value, in the same chart:

new Chart('chart', { type: 'line', data: data,
 options: {
 legend: { display: false },
 tooltips: {
 mode: 'index',
 intersect: false,
 itemSort: (a,b) => b.y - a.y

Advanced Chart.js Chapter 7

[235]

 },
 events: ['click']
 }
 });

The result is as follows. Note that the tooltip items are ordered by their y value:

Tooltip with mode: ‘index’ sorting items by their y value. Code: Tooltip/tooltip-5-script-sort.html.

Tooltip callbacks
With callbacks, you can dynamically generate the text contents and colors of the items
displayed in a tooltip based on data values and other accessible attributes. The Callbacks
are properties of the tooltips.callbacks object, which can be configured globally
(Chart.defaults.global.tooltips.callbacks) or locally per chart instance
(options.tooltips.callbacks). They are listed in the table as follows:

Object Parameters Description

beforeTitle, title,
afterTitle

(item[], data); array of datasets in
data.datasets; array of labels in
data.labels; each item element contains
the following properties: x, y, xLabel,
yLabel, index, dataSetIndex.

The title function
returns the text for the
tooltip title. You can
also implement other
functions to include
text above or below it.

Advanced Chart.js Chapter 7

[236]

beforeBody, body,
afterBody

The body function returns the text for the
tooltip body (including labels). You can also
implement other functions to include text
above or below it.

beforeFooter,
footer,
afterFooter

The footer function returns the text for the
tooltip footer. You can also implement
other functions to include text before or
after it.

beforeLabel, label,
afterLabel

(item,data); array of datasets in
data.datasets; array of labels in
data.labels; item.x and item.y contain
coordinates of the value point,
item.xLabel and item.yLabel the labels
in each axis, item.index is the index of the
item in the dataset, item.datasetIndex is
the index of its dataset.

The label function
returns the text for this
label. You can also
implement other
functions to include
text above or below
one or more labels.

labelColor (item, chart)

The function returns
the color of the text
box of an individual
item label

labelTextColor (item, chart)

The function returns
the color of the text for
an individual item
label

Callbacks to create and change the text contents of tooltips

The following example (Tooltips/tooltip-6-callback.html) uses callbacks to add
extra text to the title, insert separator characters above and below the item labels, and
append a footer containing the average of all the value points:

new Chart('chart', { type: 'horizontalBar', data: data,
 options: {
 legend: { display: false },
 tooltips: {
 mode: 'index',
 callbacks: {
 footer: (items, data) => 'Average: ' + (data.datasets
 .map(d=>d.data[items[0].index])
 .reduce((a,b)=>a+b, 0) /
 items.length)
 .toFixed(2),

Advanced Chart.js Chapter 7

[237]

 title: (items, data) => "Stage " + items[0].yLabel,
 beforeBody: () => '============',
 afterBody: () => '------------------',
 }
 },
 events: ['click']
 }
});

The result is as follows:

Tooltip with a footer, extra text in title, and separators before and after body created with callbacks. Code: Tooltips/tooltip-6-callback.html.

Custom HTML tooltips
The Chart.defaults.global.tooltips.custom (or options.tooltips.custom)
property receives a function that should build an HTML tooltip and connect it to a tooltip
model object passed as a parameter. The tooltip model is a native object that responds to
tooltip events and stores tooltip properties. Its properties can be copied and reused inside
the HTML tooltip if desired.

Advanced Chart.js Chapter 7

[238]

The following example (Tooltips/tooltip-7-custom.html) shows how to create a
simple custom HTML tooltip containing an image. The custom tooltip can be created using
HTML as shown in the following snippet, or programmatically using DOM, and should
initially be hidden (opacity: 0). When a hover event activates a tooltip, the model’s
opacity changes and the custom tooltip uses this state to make itself visible:

<html><head> ...
 <style>
 #tooltip {
 opacity: 0;
 position: absolute;
 margin: 5px;
 }
 </style>
</head><body>
<canvas id="chart" width="200" height="100"></canvas>
<div id="tooltip"></div>
<script>
 const data = {
 labels: ["jupiter", "saturn", "uranus", "neptune"],
 datasets: [{
 data: [142984,120536,51118,49528],
 backgroundColor: ['#d7191c','#fdae61','#abdda4','#2b83ba'],
 }]
 };
 new Chart('chart', { type: 'bar', data: data,
 options: {
 legend: { display: false },
 title: {
 display: true,
 text: 'Planetary diameters',
 fontSize: 24
 },
 tooltips: {
 mode: 'index',
 intersect: true,
 enabled: false, // turn off canvas tooltips
 custom: function(model) {
 const tooltip = document.getElementById('tooltip');
 if(model.opacity === 0) {
 tooltip.style.opacity = 0;
 return; }
 if(model.body) {
 const value = model.body[0].lines[0];
 tooltip.innerHTML = ''+ value + " km
"
 +'<img width="50"
 src="../Images/'

Advanced Chart.js Chapter 7

[239]

 +model.title[0] +'.jpg"
 ';
 const pos =
 this._chart.canvas.getBoundingClientRect();
 tooltip.style.opacity = 1;
 tooltip.style.left = pos.left + model.caretX +
 'px';
 tooltip.style.top = -50 + pos.top +
 model.caretY + 'px';
 }
 }
 }
 }
 });
</script>
</body></html>

The code extracts the title and filename from the tooltip model’s title, and the value from
the model’s body. The custom tooltip also used the model’s coordinates to decide where it
would be placed. The result is as follows. If you hover over the labels in the x-axis or the
bars, the HTML tooltip will be shown above each bar:

Bar chart with a custom HTML tooltip that appears when the mouse hovers over a bar or label. Code: Tooltips/tooltip-7-custom.html.

Advanced Chart.js Chapter 7

[240]

Positioning tooltips in pie charts is a bit more complex. For more examples on how to create
custom HTML tooltips, check the samples page in the official documentation.

Advanced legend configuration
Chart.js provides default presentation and behavior for legends and labels. In the previous
chapter, we saw some examples of how to change the default behavior by programming
the onClick event handler callback. In this section, we will see how to generate individual
labels and, if you need even more control, how to create custom HTML legends.

Generating labels
Labels can be generated with the generateLabels callback property. They should return
an item object (the same object that is passed to an onClick function), which contains the
properties listed as follows:

Object Value Description
text String The text of the label
datasetIndex Number The index of the label
fillStyle,
strokeStyle,
lineCap,
lineJoin,
lineDash,
lineWidth,
lineDashOffset

The same values as
the corresponding
Canvas commands

Fill and stroke attributes for the legend box

pointStyle

circle, cross,
crossRot, dash,
line, rect,
rectRounded,
rectRot, star,
triangle

If legend.labels.usePointStyle is true,
the label will use the same point style as the
chart. This allows you to set a different point
style for the legend labels.

hidden Boolean If true, chart elements related to the dataset
will not be rendered

Properties of a legend label object (received by onClick and returned by generateLabels)

Advanced Chart.js Chapter 7

[241]

The following code shows configuration for legend labels (Legend/legend-1-gen-
labels.html) using a generateLabels callback. The colored box is configured as a
rotated rectangle with pointStyle. The label’s fontSize controls the size of the font and
point. The border color of each dataset is the fill for each label:

options: {
 legend: {
 labels: {
 usePointStyle: true,
 fontSize: 14,
 generateLabels: function(chart) {
 const items = [];
 chart.data.datasets.forEach((dataset, i) => {
 items.push({
 text: dataset.label,
 datasetIndex: i,
 fillStyle: dataset.borderColor,
 lineWidth: 0,
 pointStyle: 'rectRot',
 });
 });
 return items;
 },
 }, ...
 }
}

The result is as follows:

Generated labels with different symbols for legends. Code: Legend/legend-1-gen-labels.html.

Advanced Chart.js Chapter 7

[242]

HTML legends
If you have a very complex legend or wish to display a legend outside the Canvas mixed
with the HTML in your page, you can generate custom HTML legends. To create them, you
need an empty <div> block:

<div id="chart-legends"></div>

So, the legend can be attached to the page’s body. Then, you implement a callback
function for the Chart.defaults.global.legendCallback property or
options.legendCallback that returns the HTML for the legend. You can create the
content dynamically and apply CSS styles with property values copied from the chart. The
HTML is generated with chart.generateLegend().

It’s easier with an example. The following code implements a simple HTML legend from an
HTML list. You can run the full code in Legend/legend-2-html-callback.html:

const myChart = new Chart("myChart", {
 type: 'line',
 data: {
 labels: ['Day 1','Day 2','Day 3','Day 4','Day 5','Day 6'],
 datasets: datasets,
 },
 options: {
 legendCallback: function(chart) {
 const labels = document.createElement("ul");
 labels.style.display = 'flex';
 labels.style.justifyContent = 'center';

 chart.data.datasets.forEach((dataset, i) => {
 const item = document.createElement("li");
 item.style.listStyle = 'none';
 item.style.display = 'inline';

 const icon = document.createElement("div");
 icon.style.width = icon.style.height = '15px';
 icon.style.display = 'inline-block';
 icon.style.margin = '0 6px';
 icon.style.backgroundColor = dataset.borderColor;

 item.appendChild(icon); // add colored square
 item.innerHTML += dataset.label; // add label text
 labels.appendChild(item);
 });
 return labels.outerHTML;
 },

Advanced Chart.js Chapter 7

[243]

 legend: { display: false, position: 'bottom' }
 }
 });

 const legend = document.getElementById('chart-legends');
 legend.innerHTML = myChart.generateLegend(); // generates HTML

The new legend doesn’t replace the default label. Unless you wish to display both legends,
you should hide the default legend using display: false.

No behaviors are included in these HTML legends. You need to implement them yourself
using JavaScript events. The following screenshot shows the result of the previous code:

Legends created with HTML. Code: Legend/legend-1-gen-labels.html.

Advanced Chart.js Chapter 7

[244]

Displaying multiple charts
Many times, you need to display more than one chart in a page to present different sets of
data, or different views of the same data using different chart types. You may also wish to
draw multiple charts over the same axes, so they can be compared. Another possibility is to
use Canvas to draw over or under a chart and add context or additional data. All these
scenarios are possible in Chart.js, but they require different strategies.

Rendering many charts on one page
You can render several different charts on the same page by simply drawing a separate
Canvas for each one.

The following example displays four charts on one page that share the same data. First, we
need to set up the canvases using HTML and CSS:

<html lang="en">
<head>
 <script src=".../Chart.min.js"></script>
 <style>
 .container {
 width: 98%;
 height: 80vh;
 position: absolute;
 }
 .top {
 height:50%;
 position: relative;
 }
 .col {
 width: 50%;
 position: absolute;
 }
 .col:nth-child(2n-1) {
 left: 50%;
 }
 .footer {
 height: 50%;
 position: relative;
 }
 </style>
 </head>
 <body>
 <div class="container">
 <div class="top" width="400" height="200">

Advanced Chart.js Chapter 7

[245]

 <div class="col"><canvas id="chart1"></canvas></div>
 <div class="col"><canvas id="chart2"></canvas></div>
 </div>
 <div class="top" width="400" height="200">
 <div class="col"><canvas id="chart3"></canvas></div>
 <div class="col"><canvas id="chart4"></canvas></div>
 </div>
 <div class="footer">
 <form>
 <button type="button" id="changeData">Get Data</button>
 </form>
 </div>
 </div>
 <script> ... </script>
 </body>
 </html>

The JavaScript code is shown in the following code. The chart initially loads some static
data, but every time the button is pressed, the data changes and the charts are updated. The
updateData() function was created to simulate new random data that is loaded into each
chart every time the button is pressed:

function updateData() {
 charts.forEach(c => {
 let datasets = 3
 if(c.canvas.id == 'chart4') {
 datasets = 1;
 }
 for(let i = 0; i < datasets; i++) {
 for (let j = 0; j < 6; j++) {
 c.config.data.datasets[i].data[j] =
 Math.ceil(Math.random() * 25);
 }
 }
 c.update();
 });
 }

 Chart.defaults.global.legend.labels.boxWidth = 15;

 const data = [[12, 19, 3, 5, 2, 3],[6, 5, 22, 2, 7, 11],[2, 3, 5, 16,
 0, 1]],
 labels = ['Day 1','Day 2','Day 3','Day 4','Day 5','Day 6'],
 strokes =
 ['rgba(54,162,235,1)','rgba(255,99,132,1)','rgba(132,255,99,1)'],
 fills=
 ['rgba(54,162,235,.2)','rgba(255,99,132,.2)',
 'rgba(132,200,99,.2)'];

Advanced Chart.js Chapter 7

[246]

 const datasets = [];
 for(let i = 0; i < data.length; i++) {
 datasets.push({
 label: 'Dataset ' + (i+1),
 data: data[i],
 backgroundColor: fills[i],
 borderColor: strokes[i],
 });
 }

 const charts = [];

 charts.push(new Chart("chart1", { type: 'line',
 data: { labels: labels, datasets: datasets }
 }));

 charts.push(new Chart("chart2", { type: 'bar',
 data: { labels: labels, datasets: datasets }
 }));

 charts.push(new Chart("chart3", { type: 'radar',
 data: { labels: labels, datasets: datasets },
 options: {legend: {display: false }}
 }));

 charts.push(new Chart("chart4", { type: 'doughnut',
 data: {
 labels: labels,
 datasets: [datasets[0]].map(d => ({
 data: d.data,
 backgroundColor: ['#d73027','#fc8d59','#fee090',
 '#e0f3f8','#91bfdb','#4575b4'],
 })),
 },
 options: {legend: {position: 'left'}}
 }));

 document.getElementById("changeData")
 .addEventListener("click", updateData);

Advanced Chart.js Chapter 7

[247]

You can see the following result. Run the full code from Multiple/ multiple-1-
canvas.html. Press the button and observe all the charts changing at once:

Displaying and updating multiple charts in one page. Code: Multiple/multiple-1-canvas.html.

Mixed charts
Mixed charts are charts of different types that share the same axes. A typical example is to
overlay a bar chart with one or more line charts. In Chart.js, this is achieved simply by
adding a different type property in one or more datasets.

In the following example (Multiple/ multiple-2-mixed.html), a bar chart is used to
display a set of values and a line chart is used to show the accumulated average:

const values = [12, 33, 42, 67, 90, 56, 51, 78, 95, 101, 120, 140];
const averages = [];
for(let i = 0; i < values.length; i++) {
 averages[i] = values.slice(0,i+1).reduce((a,b)=>a+b,0)/(i+1);
 }

Advanced Chart.js Chapter 7

[248]

 new Chart("myChart", {
 type: 'bar',
 data: {
 labels: ['Jan','Feb','Mar','Apr','May','Jun','Jul',
 'Aug','Sep','Oct','Nov','Dec'],
 datasets: [{
 type: 'line',
 label: 'Line dataset (average)',
 data: averages,
 borderColor: 'red',
 fill: false
 },{
 label: 'Bar dataset (totals)',
 data: values,
 borderColor: 'blue',
 backgroundColor: 'rgba(0,0,120,.6)'
 }]
 }
 })

Since bar is the default type, it doesn’t need a type property. There could also be
additional datasets for each type.

The result is as follows:

A mixed bar/line chart. Code: Multiple/multiple-2-mixed.html.

Advanced Chart.js Chapter 7

[249]

Overlaying a canvas
One way to draw text and graphics on a chart is to draw on the same canvas after the chart
is completely loaded. You can do that implementing your code in a function assigned to the
animation.onComplete property. You can also write a simple plugin. Another way to
draw over or under a chart is to draw on top of another canvas, and position it exactly over
or under your chart canvas. This is easy to do if you won’t be resizing your page. If you do
any resizing, you will have to write additional scripts to scale your canvas content to keep it
in sync with the chart (in this case, a plugin would be a better solution).

As an example, let's use the GeoJSON world map we loaded and rendered in Chapter
2, Technology Fundamentals, and place it under the bubble chart with the city populations we
created in Chapter 4, Creating Charts. Since the map uses a simple cylindrical projection,
we just have to make them both the same size, and use CSS absolute positioning to stack
one over the other:

<html lang="en">
 <head>
 <script src="../JavaScript/canvasmap.js" ></script>
 <script src=".../Chart.min.js"></script>
 <script src=".../papaparse.min.js"></script>
 <style>
 canvas {
 position: absolute;
 top: 0;
 left: 0;
 }
 </style>
 </head>
 <body>

<canvas id="map" width="1000" height="500"></canvas>
<canvas id="my-bubble-chart" width="1000" height="500"></canvas>
<script>...</script>
</body></html>

The drawings also have to start on the same point and use the same scales. The code uses
four functions from JavaScript/canvasmap.js: a simple script that draws a map from
GeoJSON data:

map.setCanvas(canvas): receives the background canvas where the map will
be drawn
map.drawMap(geodata): receives an array of GeoJSON features and draws the
map

Advanced Chart.js Chapter 7

[250]

map.scaleX(longitude) and map.scaleY(latitude): converts latitudes and
longitudes into pixel coordinates

The following code obtains the canvas context for the map and sets its fill and stroke
styles, loads and parses a GeoJSON file containing shapes for a world map, and a CSV
containing city names, populations, latitudes, and longitudes. It then calls functions to
draw the map and the chart:

const mapCanvas = document.getElementById("map");
const mapContext = mapCanvas.getContext("2d");

 // Map ocean background
 mapContext.fillStyle = 'rgb(200,200,255)';
 mapContext.fillRect(0, 0, mapCanvas.width, mapCanvas.height);

 // countries border and background
 mapContext.lineWidth = .25;
 mapContext.strokeStyle = 'white';
 mapContext.fillStyle = 'rgb(50,50,160';

 // setup map canvas
 map.setCanvas(mapCanvas); // Function from JavaScript/canvasmap.js

 // load files
 const files = ['../Data/world.geojson', '../Data/cities15000.csv'];
 const promises = files.map(file => fetch(file).then(resp =>
 resp.text()));
 Promise.all(promises).then(results => {

 // Draw the map
 const object = JSON.parse(results[0]);
 map.drawMap(object.features); // function from
 JavaScript/canvasmap.js

 // Draw the chart
 const data = Papa.parse(results[1], {header: true});
 drawChart(data.data); // function described below
 });

The radius of each bubble will be somewhat proportional to the population. This function
will return a value that fits well in the map:

function scaleR(value) {
 const r = Math.floor(value / 100000);
 return r != 0 ? r/10 : .25;
 }

Advanced Chart.js Chapter 7

[251]

The drawChart() function uses the parsed CSV datasets to generate an array of location
objects, each containing name and the required bubble chart properties: r radius and x, y
coordinates. The generated locations array is used as the dataset for the bubble chart:

function drawChart(datasets) {
 const locations = [];
 datasets.forEach(city => {
 const obj = {
 x: map.scaleX(+city.longitude), // From
 JavaScript/canvasmap.js
 y: map.scaleY(-city.latitude), // From
 JavaScript/canvasmap.js
 r: scaleR(city.population),
 name: city.asciiname
 };
 locations.push(obj);
 });

 const dataObj = {
 datasets: [
 { data: locations,
 backgroundColor: function(context) {...}
 }
]
 }

The options configuration object must configure scales so that there are no margins.
Setting min and max properties for the ticks, removing legends and making
responsive:false will guarantee this. Tooltips were also configured to show name and
population (this is not shown here, but you can see the full code in
Multiple/multiple-3-overlay.html):

 const chartObj = {
 type: "bubble",
 data: dataObj,
 options: {
 scales: {
 xAxes: [{ display: false,
 ticks: {
 min: map.scaleX(-180), // match map size
 with
 max: map.scaleX(180) // canvas size
 }
 }
],
 yAxes: [{ display: false,
 ticks: {

Advanced Chart.js Chapter 7

[252]

 min: map.scaleY(-90), // match map size
 with
 max: map.scaleY(90) // canvas size
 }
 }
]
 },
 tooltips: {...}, // see full code
 animation: { duration: 0 },
 responsive: false,
 legend: { display: false }
 }
 };
 new Chart("my-bubble-chart", chartObj);
 }

The final result is as follows. The chart is interactive; you can hover over a large city and get
details:

Two stacked HTML Canvases: one draws an SVG GeoJSON map, the other draws a bubble chart with Chart.js.
Code: Multiple/multiple-3-overlay.html.

Since we used very large files in this example, it takes a while to load the chart and the
tooltips may run a bit slow on some systems. A quick way to optimize it is to reduce the
data files previously before loading them. You can also filter and only use the large cities,
drawing the small ones separately with Canvas.

Advanced Chart.js Chapter 7

[253]

Extending Chart.js
There are several ways to extend Chart.js. You may use the prototype methods, callbacks,
and event handlers and interact with the rendering process; you can create plugins, which
have their own life cycle and are easier to reuse in other charts; and you can extend Chart.js
from existing charts or even create new charts and scales.

Prototype methods
Prototype methods are automatically called during rendering and updates. You can also
call them directly if you need to interfere with the rendering process. They are listed in the
following table:

Method Description

destroy()
Destroys a chart instance. This can be used if you wish to reuse
the canvas, or remove the chart completely.

reset()
Restores the chart to its initial state (after layout and before its
initial animation). A new animation can be triggered with
render() or update().

stop()
Stops an animation loop. This is usually called in an
onProgress callback. Calling render() or update() will
resume the animation.

clear()
Clears the chart canvas (effective after the chart has finished
rendering). You can call render() or update() to draw it
again.

resize()
Resizes the chart. Called automatically every time the canvas is
resized.

update(config)

Updates the chart. This should be called after any changes in
the datasets. You can include a configuration object with the
following properties: duration (Number) to control the redraw
animation duration, lazy (boolean) to decide if the animation
can be interrupted by others, and easing (String), to select an
easing function.

render(config)
Redraws all chart elements but does not update the chart
elements for new data.

toBase64Image()
Generates the chart as a new base64-encoded PNG image. It
can be displayed in an HTML page, or converted into a blob
for download.

Advanced Chart.js Chapter 7

[254]

generateLegend()
Returns the contents of the options.legendCallback
property (an HTML legend) when called.

getElementAtEvent(e) Used in event handlers to obtain the element at an event.

getElementsAtEvent(e)
Used in event handlers to obtain all elements with the same
data index at an event.

getDatasetAtEvent(e)
Used in event handlers to obtain an array of elements that
belong to a dataset.

getDatasetMeta(index)
Returns the metadata for the dataset corresponding to the
index.

Chart.js prototype methods

Some of these methods are used to trigger the execution of life cycle callbacks in plugins.
Many are already called automatically and may not be effective in all stages of an
animation, since other stages may call methods that undo the desired effect.

In this chapter, we saw an example with generateLabels(), and in the previous chapter,
we used update(). Event methods are common in event handlers, which receive a
JavaScript event.

The toBase64Image() method generates a Base64 image string. Call it in
animation.onComplete or in any callback function that is invoked only when the chart
is fully drawn (otherwise it may generate a partially drawn or blank image). It returns a
string that can be assigned to the src attribute of an HTML image for rendering on an
HTML page:

<image id="image"></image>
…
<script>
new Chart("chart", { type: 'line', data: {…},
 options: {
 animation: {
 onComplete: function () {
 let image = document.getElementById('image');
 image.src = this.toBase64Image();
 }
 }
});
</script>

Advanced Chart.js Chapter 7

[255]

You can also use it to create an image for download with a blob function. Use the b64-to-
blob function available from www.npmjs.com/package/b64-to-blob or via CDN by adding
the following line to your page:

<script src="https://unpkg.com/b64-to-blob"></script>

Add the following tag where you want the download link:

Then, place this code in the animation.onComplete function:

const link = document.getElementById('link');
const blob = b64toBlob(image.src.split(',')[1], 'image/png');
link.href = URL.createObjectURL(blob);

After the chart loads, it will create a link that, when clicked, will download a PNG image of
the chart. The full code is in Extensions/ext-1-prototype.html.

Creating plugins
Plugins are the most efficient way to extend Chart.js. A plugin can insert code before and
after different phases of the rendering cycle of a chart. At each phase, it can access the chart
object and read configurable options. This can be used to change practically any property or
behavior of the chart.

Plugins are designed to be reusable. During the previous chapters, we used several popular
plugins to extend Chart.js in different ways. They are great to encapsulate complexity, but
simple plugins can also be very useful.

In the last example, we created a download link for a PNG version of the chart. If you tried
it, you may have noticed that the image has a transparent background. This is OK if your
background is white, but if it isn’t, the chart may be hard to read. A naïve approach to
fixing the problem would be painting the canvas white using CSS or fill commands. But, it
won’t work because Chart.js redraws the canvas during its render cycle. You also need to
deal with any animations, resizing, updates, and other events that might reset the
background after you changed its color. This is a case for a plugin. With a plugin, you can
insert code during the render cycle, draw the background after the canvas is initialized, and
before the chart is drawn.

http://www.npmjs.com/package/b64-to-blob

Advanced Chart.js Chapter 7

[256]

The render life cycle of Chart.js is illustrated as follows. When the chart is loaded for the
first time, it performs the init, update, and render steps. Every time the page is resized,
update and render are executed, and on events, the render step is performed:

Chart.js life cycle. Each phase can be intercepted by plugin callbacks.

Advanced Chart.js Chapter 7

[257]

Depending on your plugin, you may need to intercept one or more of these steps. The
following table lists the callbacks that are available for plugins. Each callback function
contains at least two parameters: a reference to the chart instance and an options object
(configured under a plugin ID key, in options.plugins). Some callbacks may have
additional parameters:

Method Parameters Description
beforeInit
afterInit

(chart, options) Called before and after new Chart() is
invoked

beforeUpdate
afterUpdate

(chart, options) Called before and after the update stage

beforeLayout
afterLayout

(chart, options) Called before and after the layout stage

beforeDatasetsUpdate
afterDatasetsUpdate

(chart, options) Called before and after updating all
datasets

beforeDatasetUpdate
afterDatasetUpdate

(chart, dataset, options) Called before and after updating each
dataset

beforeRender
afterRender

(chart, options) Called before and after the render stage

beforeDraw
afterDraw

(chart, easing, options) Called before and after the draw stage

beforeDatasetsDraw
afterDatasetsDraw

(chart, easing, options) Called before and after drawing all
datasets

beforeDatasetDraw
afterDatasetDraw

(chart, dataset, options) Called before and after drawing each
dataset

beforeEvent
afterEvent

(chart, event, options) Called before and after events

resize
(chart, dimensions,
options) Called after resizing

destroy (chart, options) Called after chart.destroy() is called

Life cycle callbacks that can be used in plugins

To see a demonstration of these methods, run the Extensions/ext-2-plugin-
lifecycle.html file. It logs every life cycle event while a chart with three plugins is
rendered and destroyed.

Advanced Chart.js Chapter 7

[258]

A plugin is a simple object. An id property is not necessary unless you plan to configure
the plugin in the options object. You can include just the callback properties you need. The
following code will create a simple configurable plugin that will draw a blue square in front
of the chart, and a red one in front of the axes but behind the bars (Extensions/ext-3-
simple-plugin.html):

const plugin = {
 id: 'p1',
 afterRender: function(chart, options) {
 chart.ctx.fillStyle = 'blue';
 chart.ctx.fillRect(60,60,100,100);
 },
 beforeDatasetsDraw: function(chart, percent, options) {
 chart.ctx.fillStyle = 'red';
 chart.ctx.fillRect(200,60,100,100);
 },
 };

This effect is shown here:

The blue and red squares were drawn in the chart using simple plugins. Code: Extensions/ext-3-simple-plugin.html.

Advanced Chart.js Chapter 7

[259]

If you are writing a plugin locally and have multiple charts, you can include a list of
plugins to add to each chart using the plugins key in the Chart() constructor. It takes an
array:

new Chart("chart", {
 type: 'bar',
 data: {…},
 options: {…},
 plugins: [plugin1]
 });

Plugins should be reusable whenever possible. Reusable plugins are normally created in
separate .js files and made automatically available to all charts. In this case, they should
be registered globally with the following:

Chart.plugins.register(plugin);

Let’s create a plugin for the last example so that the image and the chart have an opaque
background. Plugins should have configurable options. There are greater chances you will
reuse this plugin if you can configure the background color for each chart. We could also
add the possibility of drawing a background image. The plugin will be stored in a separate
JavaScript file, JavaScript/chartback.js, which creates the plugin object and registers
it globally. The id is necessary so that a chart can identify the plugin and configure its
options.

Since the image needs to be redrawn every time the chart is resized or updated, the best
place to draw it is in the beforeDraw callback. This code will also place the image behind
the axes:

const bgPlugin = { id: 'chartback',
 beforeDraw: function(chart, steps, options) {
 let ctx = chart.ctx;
 if(options.backgroundColor) {
 ctx.fillStyle = options.backgroundColor;
 ctx.fillRect(0, 0, chart.width, chart.height);
 }
 if(options.backgroundImage) {
 let image = new Image(chart.width, chart.height);
 image.src = options.backgroundImage;
 ctx.drawImage(image, 0,0,chart.width, chart.height);
 }
 }
}
Chart.plugins.register(bgPlugin);

Advanced Chart.js Chapter 7

[260]

To use the plugin, import it into the HTML file where the chart will be created:

<script src="../JavaScript/chartback.js"></script>

This plugin's configuration options can be set in the options.plugins.chartback key
(chartback is the plugin's ID). This code is in Extensions/ext-4-chartback.html:

new Chart("chart", { type: 'bar', data: {…},
 options: {
 animation: {…},
 plugins: {
 chartback: {
 backgroundColor: 'white',
 backgroundImage: '../Images/mars.jpg'
 }
 }
 },
});

The chart will be drawn with an image behind. If you don’t want the image, you can just set
the backgroundColor and have a chart with an opaque background. The following
screenshot shows a web page with the chart and the .png file loaded by an image viewer
application:

Using a plugin that places a background image behind the chart. Code: Extensions/ext-4-chartback.html.

Advanced Chart.js Chapter 7

[261]

Chart.js extensions
Besides plugins, Chart.js also includes an advanced extensions API where you can extend
charts and axes. With this API, you can derive from existing chart types or create entirely
new chart types by implementing the provided interfaces. This topic is beyond the scope of
this book, but you can try out the examples provided in the official documentation or
perhaps use some of the many popular extensions already available. A selection is listed in
the official documentation.

Summary
In this chapter, we explored several advanced Chart.js topics that you may rarely need, but
give you more control over the look and feel of your charts, allowing a high degree of
customization and the possibility of integrating it with standard web technologies and
frameworks.

We learned how to configure tooltip and legend presentation and behavior using native
Canvas options and custom HTML extensions, and how to create pages with multiple
charts, mixed charts, and overlaying charts with other graphics using Canvas. We also
wrote extensions for Chart.js using its programming API to generate a PNG version of a
chart, and to create a simple plugin that adds a background image to a chart.

References
Books and websites:

Chart.js official documentation and samples: https:/ ​/​www. ​chartjs. ​org/ ​docs/
latest/​

Palette.js Color schemes: http:/ ​/​google. ​github. ​io/ ​palette. ​js/​

Color brewer 2.0 by Cynthia Brewer: http:/ ​/​colorbrewer2. ​org/ ​

Patternomaly plugin: https:/ ​/​github. ​com/​ashiguruma/ ​patternomaly

Datalabels plugin: https:/ ​/ ​github. ​com/ ​chartjs/ ​chartjs- ​plugin- ​datalabels

Outlabels plugin: https:/ ​/ ​github. ​com/ ​Neckster/ ​chartjs- ​plugin- ​piechart-
outlabels

https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
https://www.chartjs.org/docs/latest/
http://google.github.io/palette.js/
http://google.github.io/palette.js/
http://google.github.io/palette.js/
http://google.github.io/palette.js/
http://google.github.io/palette.js/
http://google.github.io/palette.js/
http://google.github.io/palette.js/
http://google.github.io/palette.js/
http://google.github.io/palette.js/
http://google.github.io/palette.js/
http://google.github.io/palette.js/
http://google.github.io/palette.js/
http://google.github.io/palette.js/
http://google.github.io/palette.js/
http://colorbrewer2.org/
http://colorbrewer2.org/
http://colorbrewer2.org/
http://colorbrewer2.org/
http://colorbrewer2.org/
http://colorbrewer2.org/
http://colorbrewer2.org/
http://colorbrewer2.org/
https://github.com/ashiguruma/patternomaly
https://github.com/ashiguruma/patternomaly
https://github.com/ashiguruma/patternomaly
https://github.com/ashiguruma/patternomaly
https://github.com/ashiguruma/patternomaly
https://github.com/ashiguruma/patternomaly
https://github.com/ashiguruma/patternomaly
https://github.com/ashiguruma/patternomaly
https://github.com/ashiguruma/patternomaly
https://github.com/ashiguruma/patternomaly
https://github.com/ashiguruma/patternomaly
https://github.com/chartjs/chartjs-plugin-datalabels
https://github.com/chartjs/chartjs-plugin-datalabels
https://github.com/chartjs/chartjs-plugin-datalabels
https://github.com/chartjs/chartjs-plugin-datalabels
https://github.com/chartjs/chartjs-plugin-datalabels
https://github.com/chartjs/chartjs-plugin-datalabels
https://github.com/chartjs/chartjs-plugin-datalabels
https://github.com/chartjs/chartjs-plugin-datalabels
https://github.com/chartjs/chartjs-plugin-datalabels
https://github.com/chartjs/chartjs-plugin-datalabels
https://github.com/chartjs/chartjs-plugin-datalabels
https://github.com/chartjs/chartjs-plugin-datalabels
https://github.com/chartjs/chartjs-plugin-datalabels
https://github.com/chartjs/chartjs-plugin-datalabels
https://github.com/chartjs/chartjs-plugin-datalabels
https://github.com/Neckster/chartjs-plugin-piechart-outlabels
https://github.com/Neckster/chartjs-plugin-piechart-outlabels
https://github.com/Neckster/chartjs-plugin-piechart-outlabels
https://github.com/Neckster/chartjs-plugin-piechart-outlabels
https://github.com/Neckster/chartjs-plugin-piechart-outlabels
https://github.com/Neckster/chartjs-plugin-piechart-outlabels
https://github.com/Neckster/chartjs-plugin-piechart-outlabels
https://github.com/Neckster/chartjs-plugin-piechart-outlabels
https://github.com/Neckster/chartjs-plugin-piechart-outlabels
https://github.com/Neckster/chartjs-plugin-piechart-outlabels
https://github.com/Neckster/chartjs-plugin-piechart-outlabels
https://github.com/Neckster/chartjs-plugin-piechart-outlabels
https://github.com/Neckster/chartjs-plugin-piechart-outlabels
https://github.com/Neckster/chartjs-plugin-piechart-outlabels
https://github.com/Neckster/chartjs-plugin-piechart-outlabels
https://github.com/Neckster/chartjs-plugin-piechart-outlabels

Advanced Chart.js Chapter 7

[262]

Data sources:

Volumes of the World’s Oceans (based on ETOPO1):
Chapter03/Pages/BarChart1.html and others. https:/ ​/​www. ​ngdc. ​noaa. ​gov/
mgg/​global/ ​etopo1_ ​ocean_ ​volumes. ​html

Geographical database: Chapter02/Data/cities1000.csv. GeoNames
geographical database: www.geonames.org
GeoJSON map of the world: Chapter02/Data/world.geojson. Simplified
version adapted from https:/ ​/​www. ​naturalearthdata. ​com

https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
http://www.geonames.org
https://www.naturalearthdata.com
https://www.naturalearthdata.com
https://www.naturalearthdata.com
https://www.naturalearthdata.com
https://www.naturalearthdata.com
https://www.naturalearthdata.com
https://www.naturalearthdata.com
https://www.naturalearthdata.com
https://www.naturalearthdata.com

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

D3.js Quick Start Guide
Matthew Huntington

ISBN: 9781789342383

Build a scatter plot
Build a bar graph
Build a pie chart
Build a force-directed graph
Build a map
Build interactivity into your graphs

https://www.packtpub.com/application-development/d3js-quick-start-guide

Other Books You May Enjoy

[264]

Mastering The Faster Web with PHP, MySQL, and JavaScript
Andrew Caya

ISBN: 9781788392211

Install, configure, and use profiling and benchmarking testing tools
Understand how to recognize optimizable data structures and functions to
effectively optimize a PHP7 application
Diagnose bad SQL query performance and discover ways to optimize it
Grasp modern SQL techniques to optimize complex SQL queries
Identify and simplify overly complex JavaScript code
Explore and implement UI design principles that effectively enhance the
performance
Combine web technologies to boost web server performance

https://www.packtpub.com/web-development/mastering-faster-web-php-mysql-and-javascript

Other Books You May Enjoy

[265]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
animations
 about 218
 configuring 221, 224
area charts 86

B
bar charts
 colors, configuring 65
 creating 60, 62, 64
 dataset configuration 65, 67
 fonts, configuring 65
 graphics context, setting up 60, 62
 responsiveness, configuring 65
bars
 stacking 82, 83
bevels 208, 209
bubble charts 129, 138, 140, 141

C
callbacks
 configuring 183
Cartesian axes
 about 147, 148
 configuring 181, 182, 183
Cartesian grid lines 147, 148
Cartesian ticks 147, 148
Cartesian
 configuration options 145, 146
Cascading Style Sheets (CSS) 33, 35
category scales
 about 161
 axes, configuring 161, 163, 165
 grid lines, configuring 166
 ticks, configuring 165
chart defaults 192, 193

Chart.js
 about 57
 extending 253
 extensions 261
 installing 57, 59
 prototype methods 253, 255
 setting up 57, 59
charts
 selecting 7, 9, 10
 types 7
 updating 72, 74
 updating, with tooltips configuration 74
circumference
 modifying, in doughnut charts 122
 modifying, in pie charts 122
color palette generator 198, 200, 202
color schemes 198, 200, 202
colors
 about 197
 configuring 197
 configuring, for bar charts 65
configuration options
 for Cartesian 145, 146
 for pie charts 115
Content Delivery Network (CDN) 57
CSV
 about 42
 parsing 48
custom HTML tooltips
 about 237, 239
 advanced legend configuration 240
 labels, generating 240

D
data formats
 about 42
 CSV 42

[267]

 eXtensible Markup Language (XML) 43
 JSON 43, 44
data updates 218, 219, 220
data visualization library
 using 11
data visualization
 about 6
 chart, types 6
 creating, for Web 11, 13, 15
 creating, with Chart.js 15
data
 extracting 51
 extracting, with online tools 51, 52
 extracting, with XPath 52, 55
 loading 75, 78
 transforming 51
 transforming, with online tools 51, 52
dataset configuration
 for bar charts 65, 67
 for line charts 88, 90, 93
dataset properties
 for pie charts 114
default configuration
 about 186, 187
 chart defaults 192, 193
 global defaults 188, 190
 graphical elements 191, 192
 scale defaults 190, 191
delimiter-separated value (DSV) 42
Document Object Model (DOM) 13, 61
doughnut charts
 about 112
 circumference, changing 122
 data, preparing for 117, 120, 121
 with multiple datasets 124, 126

E
events
 about 221
 animations, configuring 221, 224
eXtensible Markup Language (XML) 43
external data files
 loading 44
 loading, with Fetch API 47
 loading, with JavaScript 45

 loading, with JQuery 46
 loading, with Web server 45
 parsing 44
 parsing, with Web server 45

F
Fetch API
 used, for loading external data files 47
fonts
 about 194
 configuring, for bar charts 65
 standard fonts, selecting 194, 195
 Web fonts, using 195

G
global default configurations 71
global defaults 188, 190
Goddard Institute for Space Studies (GISS)
 about 98
 reference 98
gradients 197, 202, 205
graphical elements 191, 192

H
horizontal bar chart
 about 78
 extra datasets, adding 79, 82
hovering interactions 231, 232
HTML DOM 30, 32
HTML legends 242, 243
HTML5 Canvas 37, 39, 40, 41

I
interactions 72, 218

J
JavaScript, for Chart.js
 about 20
 arrays 22, 24
 browser tools 20, 21
 data structures, used in charts 22
 functions 27
 objects 28, 29
 strings 25

[268]

 types 21
 variables 21
JavaScript
 used, for loading external data files 45
JQuery
 fundamentals 36, 37
 used, for loading external data files 46
JSON 43, 44
JSON file
 parsing 47

L
labels
 adding 209, 210, 212, 213
larger datasets
 working with 75
legend configuration 240
legend labels
 generating 240
legends 210, 213
line charts
 about 86
 creating 87
 data, loading from external files 98, 99, 101
 dataset configuration 88, 90, 93
 options configuration 94, 95
 with more than one dataset 95, 97

M
map
 displaying 49, 50
mixed charts
 about 247
 canvas, overlaying 249, 250, 252
multiple charts
 displaying 244
 rendering, on one page 244, 247
multiple datasets
 working with 75
multiple files
 loading 48

N
numeric Cartesian scales
 about 148

 axis titles, configuring 152
 grid lines, configuring 157, 159, 160
 linear scales 149, 150
 logarithmic scales 150, 151
 ticks, configuring 153, 155, 156

O
options configuration
 about 67, 69
 fonts, configuring 69, 70
 for line charts 94, 95
 text, configuring 69, 70

P
patterns 205, 207
pie charts
 about 112
 circumference, changing 122
 configuration options 115
 creating 112
 data, preparing for 117, 120, 121
 dataset properties 114
 values, showing in slices 115, 117
 with multiple datasets 124, 126
plugins
 creating 255, 258, 260
polar area charts 126, 128

R
radar charts 107, 108, 110, 111
radial scales
 about 174
 angle lines, configuring 179, 180
 grids lines, configuring 179, 180
 point labels, configuring 175, 176
 ticks, configuring 176, 178
responsiveness colors
 configuring, for bar charts 65

S
scale defaults 190, 191
scale service
 configuring 184
scales

 configuring 144, 180
scatter charts
 about 129
 creating 129, 132
 used, for revealing correlations 132, 134, 135
 with large quantities of data 136, 137
scheme 198
scriptable properties
 about 233, 234
 tooltip callbacks 235, 236
shadows 197, 208, 209
stacked area charts 103, 105, 106

T
text elements
 adding 209
time scales
 about 167, 168
 axes, configuring 171
 grid lines, configuring 174
 ticks, configuring 172, 174
 time format, configuring 169, 170
titles

 about 214
 labels, adding to bars 214, 217
 labels, adding to lines 214, 217
 labels, adding to slices 214, 217
tooltip callbacks 235, 236
tooltip configuration 226, 229, 230
tooltips 72
transition
 about 72
 duration 72

W
Web fonts
 using 195
Web server
 used, for loading external data files 45
 used, for parsing external data files 45
web-based visualizations 11

X
XPath
 used, for extracting data 52, 55

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction
	Data visualization
	Chart types
	Choosing a chart
	Web-based visualizations

	Why use a data visualization library?
	Creating data visualizations for the Web

	How to use this book
	Summary
	References

	Chapter 2: Technology Fundamentals
	Essential JavaScript for Chart.js
	Browser tools
	JavaScript types and variables
	Data structures used in charts
	Arrays
	Strings
	Functions
	Objects

	Other technologies
	HTML Document Object Model(DOM)
	Cascading Style Sheets
	JQuery fundamentals
	HTML5 Canvas

	Data formats
	CSV
	XML
	JSON

	Loading and parsing external data files
	Using a Web server
	Loading files using standard JavaScript
	Loading files using JQuery
	Loading files using the standard Fetch API
	Parsing JSON
	Parsing CSV
	Loading multiple files
	Displaying a map

	Extracting and transforming data
	Online tools
	Extracting data with XPath

	Summary

	Chapter 3: Chart.js - Quick Start
	Introduction to Chart.js
	Installation and setup

	Creating a simple bar chart
	Setting up the graphics context

	Creating a bar chart
	Configuring colors, fonts, and responsiveness
	Dataset configuration for bar charts

	Options configuration
	Text and fonts

	Global defaults
	Transitions, interactions, and tooltips
	Transition duration

	Updating charts
	Tooltips

	Working with larger and multiple datasets
	Loading data

	Horizontal bar chart
	Adding extra datasets

	Stacking bars
	Summary
	References

	Chapter 4: Creating Charts
	Line and area charts
	Creating a simple line chart
	Dataset configuration
	Options configuration for line charts
	Line charts with more than one dataset
	Loading data from external files

	Stacked area charts
	Radar charts
	Pie and doughnut charts
	Creating a simple pie chart
	Dataset properties for pie charts
	Configuration options
	How to show values in the slices
	Preparing data for pie and doughnut charts
	Changing the circumference
	Pie and doughnut charts with multiple datasets

	Polar area charts
	Scatter and bubble charts
	Creating a scatter chart
	Revealing correlations with scatter charts
	Scatter charts with large quantities of data
	Bubble charts

	Summary
	References

	Chapter 5: Scales and Grid Configuration
	Configuring scales
	Cartesian configuration options
	Cartesian axes, ticks, and grid lines
	Numeric Cartesian scales
	Linear scales
	Logarithmic scales
	Configuring axis titles
	Configuring ticks
	Configuring grid lines

	Category scales
	Configuring the axes
	Configuring ticks
	Configuring grid lines

	Time scales
	Configuring the time format
	Configuring the axes
	Configuring ticks
	Configuring grid lines

	Radial scales
	Configuring point labels
	Configuring ticks
	Configuring grids and angle lines

	Configuring advanced scales
	Multiple Cartesian axes
	Callbacks
	The scale service

	Summary
	References

	Chapter 6: Configuring Styles and Interactivity
	Default configuration
	Global defaults
	Scale defaults
	Graphical elements
	Chart defaults

	Fonts
	Selecting standard fonts
	Using Web fonts

	Colors, gradients, patterns, and shadows
	Configuring colors
	Color schemes and palettes

	Gradients
	Patterns
	Shadows and bevels
	Adding text elements and labels
	Legends and labels

	Titles
	Adding labels to lines, bars, and slices
	Interactions, data updates, and animations
	Data updates

	Events
	Configuring animations

	Summary
	References

	Chapter 7: Advanced Chart.js
	Tooltip configuration
	Hovering interactions
	Scriptable properties
	Tooltip callbacks

	Custom HTML tooltips
	Advanced legend configuration
	Generating labels

	HTML legends
	Displaying multiple charts
	Rendering many charts on one page

	Mixed charts
	Overlaying a canvas

	Extending Chart.js
	Prototype methods

	Creating plugins
	Chart.js extensions
	Summary
	References

	Other Books You May Enjoy
	Index

