

M A N N I N G

in an imperfect world

FOREWORD BY
MARY POPPENDIECK

GREG SMITH
AHMED SIDKY

Becoming Agile

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Becoming Agile

... IN AN IMPERFECT WORLD

GREG SMITH
AHMED SIDKY

M A N N I N G
Greenwich

(74° w. long.)
Licensed to Abner Lopez <ihackn3wton@gmail.com>

1

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department

Manning Publications Co.

Sound View Court 3B fax: (609) 877-8256

Greenwich, CT 06830 email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Development Editor: Nermina Miller

Manning Publications Co. Copyeditor: Tiffany Taylor

Sound View Court 3B Typesetter: Gordan Salinovic

Greenwich, CT 06830 Cover designer: Leslie Haimes

Second, corrected printing August 2009
ISBN 978-1-933988-25-2
Printed in the United States of America

2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09
Licensed to Abner Lopez <ihackn3wton@gmail.com>

www.manning.com
mailto:orders@manning.com

brief contents

PART 1 AGILE FUNDAMENTALS AND A SUPPORTING CASE STUDY 1

1 ■ Moving to agile 3

2 ■ The story of Acme Media 17

PART 2 GETTING STARTED ... 25

3 ■ Are you ready for agile? 27

4 ■ The fitness test: all about readiness assessments 43

5 ■ The importance of obtaining executive support 58

6 ■ Improving buy-in by creating a core team 66

7 ■ The mindset of an agile leader 73

8 ■ Injecting agility into your current process 87

9 ■ Selecting a pilot project 105

PART 3 KICKING OFF... 113

10 ■ Feasibility: is this project viable? 115

11 ■ Aligning the pilot team with the project 136

v

Licensed to Abner Lopez <ihackn3wton@gmail.com>

 vi BRIEF CONTENTS

PART 4 POPULATING THE PRODUCT BACKLOG.............................. 151

12 ■ Feature cards: a tool for “just enough” planning 153

13 ■ Prioritizing the backlog 170

14 ■ Estimating at the right level with the right people 183

PART 5 ENOUGH INFORMATION FOR SCHEDULING......................... 193

15 ■ Release planning: envisioning the overall schedule 195

16 ■ Iteration planning: the nitty-gritty details 204

PART 6 BUILDING THE PRODUCT ... 221

17 ■ Start your engines: iteration 0 223

18 ■ Delivering working software 230

19 ■ Testing: did you do it right? 244

PART 7 EMBRACING CHANGE... 253

20 ■ Adapting: reacting positively to change 255

21 ■ Delivery: bringing it all together 277

22 ■ The retrospective: working together to improve 297

PART 8 MOVING FORWARD ... 311

23 ■ Extending the new process across your company 313

Licensed to Abner Lopez <ihackn3wton@gmail.com>

contents

foreword xvii

preface xix

acknowledgments xxi

about this book xxiii

PART 1 AGILE FUNDAMENTALS AND
A SUPPORTING CASE STUDY 1

1 Moving to agile 3

1.1 Is Agile just another process? 5

■
The Agile Manifesto and related values 6 The agile principles 7
The agile practices 9

1.2 A paradigm shift from a plan-driven mentality 10

1.3 Agile and the bottom line 11

1.4 How this book will help you become more agile 14

1.5 Key points to remember 16

1.6 Looking ahead 16

2 The story of Acme Media 17

2.1 Case study background and circumstances 18

2.2 About the Acme Media teams 19

vii

Licensed to Abner Lopez <ihackn3wton@gmail.com>

viii	 CONTENTS

2.3	 About the individuals 19

2.4	 What does it look like when a team “becomes agile”? 20

■	 ■The existing process 20 A process with more agility 21 The
ultimate process 22

2.5	 Key points to remember 24

2.6	 Looking ahead 24

PART 2 GETTING STARTED... 25

3 Are you ready for agile? 27

3.1	 What areas will you become more agile in? 28

■Increasing customer involvement 28 Improving prioritization of
■
features 28 Increasing team buy-in and involvement 28

Clarifying priorities and reminding everyone of the consequences of
changing them 28 Adapting to change during development 29■

■Better understanding the project’s status 29 More efficient
■
planning and estimating 29 Continuous risk management 30

■Delivering the project needed at the end 30 Achieving the right level
of project structure 30

3.2	 The different flavors of agile 32

■
Scrum 32 Extreme Programming 34

3.3	 Create your own flavor to become agile within your

constraints 35

Your goal: reach the right level of agility for your organization 36

■Characteristics that make agile easier to adopt 38 Roadblocks that

others have overcome 40

3.4	 Key points to remember 42

3.5	 Looking ahead 42

4 The fitness test: all about readiness assessments 43

4.1	 The importance of readiness assessments 44

4.2	 Reducing the risks of agile adoption using assessments 44

4.3	 Increasing productivity during transitions 46

4.4	 Getting executive buy-in for agile adoption using

readiness assessments 47

4.5	 Conducting readiness assessments 49

■
Readiness-assessment tables 49 Finding out the results 52
Licensed to Abner Lopez <ihackn3wton@gmail.com>

ix CONTENTS

4.6 Key points 57

4.7 Looking ahead 57

5 The importance of obtaining executive support 58

5.1 Why should we pursue agile? 59

5.2 The cost of migrating 60

5.3 The risks in migrating 61

5.4 Rewards for the executives 62

5.5 Communicating frequently with your executive team 62

5.6 The role of the sponsor 63

5.7 Following Acme Media as the company obtains a sponsor 63

5.8 Key points 65

5.9 Looking forward 65

6 Improving buy-in by creating a core team 66

6.1 Who should be in the core team? 67

6.2 Choosing the core team at Acme Media 68

6.3 The kickoff meeting 69

■
Tough questions 70 Your role in the migration 71

6.4 Key points 72

6.5 Looking forward 72

7 The mindset of an agile leader 73

7.1 The role of an agile coach 75

■Attributes of a good coach 75 Training and mentoring the core
team 76

7.2 Agile management: more shepherding, less directing 77

■ ■Soft skills 78 Working with other managers 78 Working with

■ ■stakeholders 79 Demonstrating value 79 Leading the team to
ownership 81

7.3 Creating a team with an agile mindset 82

■Culture and roles 83 Characteristics that influence individual

performance 84

7.4 Key points 86

7.5 Looking forward 86

Licensed to Abner Lopez <ihackn3wton@gmail.com>

x CONTENTS

8 Injecting agility into your current process 87

8.1 Understanding your current process 88

■Documenting the existing process with Acme Media 88 Deciding
■what to keep: identifying existing valuable practices 91 Another

potential tool: documenting a perfect process 93

8.2 Enhancing the existing process 94

■
Deciding what to change at Acme Media 95 Feasibility phase 97

■	 ■
Planning phase 99 Development phase 100 Adapt phase 101
Deployment phase 102

8.3 Key points 104

8.4 Looking forward 104

9 Selecting a pilot project 105

9.1 Characteristics of a good pilot 107

■A project you can complete in 2 to 8 weeks 107 A medium-priority
■	 ■project 108 A project that hits all phases and areas 109 No

external customers 110

9.2 Evaluating projects at Acme Media 110

■
Request backlog 110 Selecting a pilot project: an example 111

9.3 Key points 112

9.4 Looking forward 112

PART 3 KICKING OFF .. 113

10 Feasibility: is this project viable? 115

10.1	 Feasibility in the big picture 116

10.2	 Selecting a feasibility team 118

Selecting feasibility team members at Acme Media 119

10.3	 Introducing the known requirements

to the feasibility team 121

■What does a feasibility investigation look like? 124 Analyzing an
■idea with the Feasibility Discussion Guide 124 Feedback from the

■Acme Media feasibility team 126 Modifying the idea during
■	 ■feasibility analysis 126 Reacting to the feedback 127 Team

■review of the modified concept 131 Regrouping after technical
■
analysis 131 Summarizing the feasibility work 132

10.4	 The go/no go decision 132

Licensed to Abner Lopez <ihackn3wton@gmail.com>

xi CONTENTS

10.5 Alternate feasibility paths 134

■What people are talking about 134 Feasibility for risk management

vs. go/no go 134

10.6 Key points 135

10.7 Looking forward 135

11 Aligning the pilot team with the project 136

11.1 Identifying the pilot team 137

11.2 Preparing the pilot team 138

■Ensure everyone is trained on agile 139 Providing a mechanism for
feedback 139

11.3 Envisioning the product 140

■Creating an elevator statement 140 Introduce the team to the

■
features 141 Common understanding of the features 144

11.4 The tradeoff matrix 145

11.5 Project worksheet 146

■ ■
Team members 149 Objective statement 149 Issues and risks 149
■ ■Technical considerations 149 Stakeholders 149 User/customer

■ ■ ■benefits 149 Highlights 149 Major milestones 149 Elevator
statement 150

11.6 Key points 150

11.7 Looking forward 150

PART 4 POPULATING THE PRODUCT BACKLOG 151

12 Feature cards: a tool for “just enough” planning 153

12.1 The structure of a feature card 154

■The right amount and type of information 156 Additional feature-
card benefits 156

12.2 A team approach to creating feature cards 157

■Creating a feature card at Acme Media 158 Reviewing the feature

cards as a team 160

12.3 Feature cards compared to… 161

■ ■
User stories 161 Use cases 162 Functional specifications 163

12.4 Limitations in using feature cards 164

■
Project complexity 165 The customer isn’t available 165

Compliance and traceability 165

Licensed to Abner Lopez <ihackn3wton@gmail.com>

xii	 CONTENTS

12.5	 Hard-copy cards vs. electronic cards 166

12.6	 Key points 168

12.7	 Looking forward 169

13 Prioritizing the backlog 170

13.1	 The art of prioritizing, sequencing, and grouping features 171

13.2	 Prioritizing the backlog at Acme Media 172

■	 ■Prioritizing by value 174 Evaluating risk 175 Grouping
related features 178

13.3	 Other ways to prioritize features 180

What about technical features? 181

13.4	 Key points 181

13.5	 Looking forward 182

14 Estimating at the right level with the right people 183

14.1	 Contrasting traditional and agile estimation techniques 184

14.2 The importance of whole-team estimation 185

14.3 A step toward agility: estimating size, not effort 187

■
Using story points for quick estimation 187 Planning poker 189

14.4	 Estimating story points at Acme Media 189

14.5	 Key points 191

14.6	 Looking forward 191

PART 5 ENOUGH INFORMATION FOR SCHEDULING 193

15 Release planning: envisioning the overall schedule 195

15.1	 Defining the pieces of a release plan 196

■	 ■Iteration 0 length 196 Development iteration length 196 How
■long do you need between iterations? 197 Determining the overall

timeline 198

15.2	 Completing the release plan by assigning features

to iterations 199

Assigning features to iterations at Acme Media 200

Licensed to Abner Lopez <ihackn3wton@gmail.com>

CONTENTS	 xiii

15.3	 Communicating the release plan with a kickoff meeting 201

15.4	 Key points 203

15.5	 Looking forward 203

16 Iteration planning: the nitty-gritty details 204

16.1	 Clearly defining the goals: what is “feature

complete”? 204

16.2	 Using feature modeling to identify and estimate

tasks 205

■Outlining the workflow for a feature 206 Discovering new

■	 ■features 207 Outlining the screens for a feature 207 Adding
■details to a screen by considering user interaction 208 Is modeling

worth it? 209

16.3	 Identifying and estimating tasks 209

16.4	 Determining the hours available in an iteration 211

16.5	 Bringing estimates and capacity

together to complete the plan 212

16.6	 Making status visible 213

■
Visibility within an iteration 214 Tracking release status 216
Finding tools that work for you 217

16.7	 Key points 220

16.8	 Looking forward 220

PART 6 BUILDING THE PRODUCT 221

17 Start your engines: iteration 0 223

17.1 Initial vision for the architecture 224

17.2	 Completing contracts with third parties 224

17.3	 Preparing environments and support tools 225

17.4	 Obtaining funding 226

17.5	 Finalizing and dedicating the project team 227

17.6 Cheating: starting the work early 228

17.7	 Key points 229

17.8	 Looking forward 229

Licensed to Abner Lopez <ihackn3wton@gmail.com>

xiv CONTENTS

18 Delivering working software 230

18.1 Supporting the agile principles during development

and testing 231

Satisfy the customer through early and continuous delivery of valuable
software 232 Have business people and developers work together daily■

■throughout the project 232 Whenever possible, communicate face to
■
face 232 Pay attention to technical excellence and good design 233

Focus on simplicity and the art of maximizing the amount of work not
done 234 Welcome changing requirements, even late in develop-■

■ ■ment 234 Test early, and test often 235 Continuously integrate
■
code changes 235 Obtain customer feedback as early as possible 235

Minimize team distractions during development iterations 236

18.2 Where to begin? 237

■
Sequence within an iteration 238 Making assignments 238

18.3 Completing a feature 239

■What the work looks like 240 Other considerations for development

iterations 242

18.4 Key points 242

18.5 Looking forward 243

19 Testing: did you do it right? 244

19.1 Unit testing 245

19.2 Integration testing 246

19.3 Functional testing 247

19.4 Exploratory testing 248

19.5 Test automation 249

19.6 Key points 251

19.7 Looking forward 252

PART 7 EMBRACING CHANGE .. 253

20 Adapting: reacting positively to change 255

20.1 Common reasons for adapting 256

■Feature is larger than expected 256 Customer refinement of
■ ■requirements 257 The business need changes 257 A technical

■
constraint is discovered 258 A team member is unavailable 258
■A third party doesn’t deliver 259 Team throughput is lower than

expected 259

20.2 Adapting during an iteration 260

Licensed to Abner Lopez <ihackn3wton@gmail.com>

CONTENTS	 xv

20.3	 Three ways Acme Media adapted during its first iteration 261

■
A change in feature scope 261 An issue with performance 262

Underestimating the registration need 262

20.4	 Adapting at the end of an iteration 262

■Demonstrating and gathering feedback 263 Re-evaluating

■priorities: what are your options? 263 Reviewing team performance
■
and velocity 265 Re-planning and reacting 265

20.5 How Acme Media adapts during adapt week 265

■
Reviewing the work completed 266 Demonstrating the work 267

■Personality types and demonstrations 268 Demonstrating
incomplete features 269

20.6	 User Acceptance Testing 270

■
Acme Media’s UAT approach 270 Output from Acme Media’s UAT 270

20.7	 Changes in the business climate 271

20.8	 Reviewing the findings and revising the plan for the next

iteration 272

■Evaluating team velocity 272 New work identified during the

■
iteration 273 Features originally slated for iteration 2 273

20.9	 Key points 276

20.10 Looking forward 276

21 Delivery: bringing it all together 277

21.1	 When to release 278

■
To support a constraint 278 To meet a predetermined schedule 279
■
When there is enough value 280 To test the product 281

21.2	 Final testing 282

■What about quality level? 282 Completing functional/usability

■
testing 283 Completing the user acceptance process 284
Validation of nonfunctional requirements 284

21.3	 Preparing support groups and processes 286

■The running maintenance and support worksheet 286 Finalizing

■help materials and support processes 287 Enabling system
■monitoring, and creating an escalation process 287 Enabling

maintenance and background processes 288

21.4	 Communication and training 288

21.5	 Ready to release 289

■
Deciding to go live 289 Planning the deployment steps 291
■Deployment considerations 291 Creating a deployment and

■
backout plan 292 Reducing risk with a pilot 294
Licensed to Abner Lopez <ihackn3wton@gmail.com>

xvi CONTENTS

21.6 Enough planning; let’s deploy 294

Celebrate! 294

21.7 Key points 295

21.8 Looking forward 296

22 The retrospective: working together to improve 297

22.1 Setting expectations for the retrospective 298

22.2 Time to digest: a survey in advance 300

22.3 Conducting the retrospective meeting 302

22.4 What to expect during the meeting 304

22.5 Converting the feedback into action 307

22.6 Key points 308

22.7 Looking forward 309

PART 8 MOVING FORWARD .. 311

23 Extending the new process across your company 313

23.1 Common findings after a pilot 314

23.2
 What the Acme Media team learned from their pilot 316

23.3
 Next steps 322

23.4
 Key points 331
23.5
 Conclusion 331

appendix A
 Readiness assessment tables by practice 333

354

362

365

368

appendix B
 Agile concepts from a phase perspective
appendix C
 Agile process overview in text
appendix D
 Example: determining process and document needs for a project
appendix E
 Quantitative feedback on the SAMI

■
Slower than the old process 314 Confusion about the process 314
■
Team polarization 315 Starting to feel agile 315

■Embracing change to deliver customer value 316 Customer involvement
■
and feedback 317 Planning and delivering software frequently 318

■
Technical excellence 319 Human-centric practices 320

■ ■
Spanning the chasm 322 Using the SAMI 326 Agile practices 330

resources 371

index 373

Licensed to Abner Lopez <ihackn3wton@gmail.com>

foreword

Over the years I have seen a lot of software development organizations try to become
agile. Some have succeeded beyond their wildest dreams and continue to improve to
this day. But those are the exceptions. In a more typical scenario, agile development
shows some initial success, but once the low-hanging fruit has been picked, it doesn’t
seem to deliver that much sustained value over time. The question is, why does sus
tained success from agile development seem to be so elusive?

 I observe three reasons why agile initiatives seem to plateau:
 First, agile development is frequently initiated as a grassroots movement to

develop better software—it is seen as a “developer thing.” Consequently, development
managers and customer organizations are often not on board. This is a mistake,
because dramatic improvements from agile development require a different mindset
on the part of both development managers and the organizations for which the soft
ware is being developed.

 Second, some companies have made serious missteps in applying agile—perhaps
by developing an unmaintainable code base or creating an unsupportable set of
expectations in the minds of development teams or customers. Sometimes an agile
implementation follows a simple recipe that is a bad fit to the company needs; some
times the implementation is perfect for some people in the company (developers, for
instance), but it doesn’t take into account the needs of others (testers, for example).

 Finally, agile development might be considered a silver bullet—a quick and easy fix
to problems that plague software development. In this case, the hard work required to
make agile successful is ignored, and when companies come to the realization that agile
is not going to be as easy as they anticipated, all too often commitment dissipates.
xvii

Licensed to Abner Lopez <ihackn3wton@gmail.com>

xviii FOREWORD

 Initiating and sustaining an effective agile development program is a challenging
journey. First, implementation should involve far more than the development team. A
broad array of cross-functional impacts should be considered, not to mention the fact
that agile might well require a different management approach. Second, the technical
practices that agile brings to the table—short iterations, test-first development, contin
uous integration—are not optional. Ignore them or leave them until later at your own
risk. Finally, nothing, not even agile development, will remove the inherent complex
ity of software development or its nonlinear escalation with size.

 In Becoming Agile, Greg Smith and Ahmed Sidky lay out a path to agile software
development that addresses the typical failure modes. First, they understand that no
environment is perfect, and it is practically impossible to roll out a perfect agile pro
cess. To compensate for this reality, Greg and Ahmed suggest numerous ways of pursu
ing the agile principles within the constraints of your business. The book does not ask
you to discard processes that have been successful for you; the authors realize your
existing processes may have many positive aspects. They show you how to convene a
cross-functional steering committee to guide the agile implementation so that it fits
into your organization.

 Second, since part of being agile is learning and adapting, Greg and Ahmed show
you how to pilot the new approach. They explain how to select a pilot project and how
to try out the new ideas and adapt them so they work in your context. Through an
extended case study, they show what actually happened in agile deployments they
have led. The case study also introduces real personas so you can see how different
personality types react to a move to agile.

 Finally, Greg and Ahmed dispel the notion that agile is a simple recipe that anyone
can learn in a day with guaranteed success. Instead of offering a simple, foolproof for
mula, this book shows how to thoughtfully introduce agile into a company. After lead
ing you through a readiness assessment to determine the most logical areas to
introduce agile, Greg and Ahmed take you through assembling a cross-functional lead
ership team, identifying the best aspects of your current process, designing more adap
tive processes, carefully choosing a pilot, trying and adapting the process, and gradually
improving and expanding agile processes over time. This strikes me as a more likely
approach to successfully evolve a new development process that fits the company.

 The book is full of simple tools that will help people think clearly; it is about readi
ness, chartering, specifying, estimating, assuring quality, product demonstrations, ret
rospectives, and so on. By using an extended case study, Greg and Ahmed show you one
example of a migration to agile, all the while pointing out other ways to accomplish the
same objectives. Their book is neither a recipe nor a set of principles. It is a thoughtful,
practical set of steps, presented with commentary and alternatives, about how to become
agile. It will help you put together an agile development approach that matches your
company needs and has a high likelihood of delivering sustained value over time.

MARY POPPENDIECK

 PRESIDENT, POPPENDIECK, LLC
Licensed to Abner Lopez <ihackn3wton@gmail.com>

http://www.manning.com/TheArtofUnitTesting
http://www.manning.com/TheArtofUnitTesting
http://www.manning.com/TheArtofUnitTesting
http://www.manning.com/smith
http://www.manning.com/smith

preface

In 2005 I began teaching an Agile Project Management course at Bellevue Commu
nity College. Although my students noted I was a bit “wordy,” they appreciated the
real-world case study I used for the course, based on my own agile experiences. I told
the students I had created the course because most available agile training was based
on perfect world explanations of agile practices and the creation of a pure agile envi
ronment. The case study used in the course showed what it was like to start transition
ing to agile versus what it looked like after a team had been using agile for many years.

 Positive student feedback made me wonder if a book on transitioning to agile
would be of value to the software community. I began searching through the shelves
of Barnes & Noble and through the inventory available on Amazon.com. I was sur
prised to see that very few books addressed agile migration, and I could not find any
books that demonstrated what the process looked like from day one through the com
pletion of a pilot project. Maybe it was time to find out if I had any writing skills!

 Needless to say, Manning saw the value in the idea and helped me refine the con
cept. Manning also sought out experts in the agile community who provided unfil
tered feedback on the first chapters of the book (reviewers, you were anonymous to
us, but we want you to know we appreciate all of your feedback and we worked quite a
bit of it into the book).

 As I started writing the book I kept receiving feedback that I needed to discuss agil
ity levels within an organization. Reviewers wanted a tool for assessing their ability to
use agile and also for measuring their agility at the organization level, similar to the
Capability Maturity Model Integration (CMMI). I was not an authority in the assessment
xix

Licensed to Abner Lopez <ihackn3wton@gmail.com>

http:Amazon.com

xx PREFACE
field, so I sought out an expert and came across Ahmed Sidky, creator of the Sidky Agile
Measurement Index (SAMI).

 At first I just wanted permission to use Ahmed’s assessment materials, but as we
spoke more on the phone it felt like we were two lost agile brothers who had spent a
lifetime apart. Although our software experiences were completely different, Ahmed
and I were in synch with our core agile beliefs. So much so that Ahmed signed on to
not only provide the assessment content, but also to coauthor and refine the book
with me. He suggested great ways to organize the content and also provided insight
into agile practices where my experience was light. His contribution was invaluable
and helped take the book to another level.

 I am proud of our final product and I hope our experiences do help others
become agile.

 GREG SMITH
Licensed to Abner Lopez <ihackn3wton@gmail.com>

acknowledgments

Together the authors would like to thank the many great people who brought this
book together.

 Thank you to all the reviewers who took time out of their busy schedules to read
our manuscript in different stages during its development. Your feedback was invalu
able. Thanks to John C. Tyler, Robi Sen, Randy Miller, Andrew Siemer, Tariq Ahmed,
Bernard Farrell, Bruno Lowagie, Carlo Bottiglieri, Paul King, Mike Tian-Jian Jiang,
Federico Tomassetti, Robert Dempsey, Patrick Debois, Doug Warren, Horaci Mcias,
Daniel Alford, Amr Elssamadisy, Dave Corun, Bas Vodde, Vincent Yin, Valentin Cret
taz, Marco Ughetti, Darren Neimke, Hannu Terävä, Eric Raymond, Jason Kolter,
Christopher Haupt, Robert Hanson, Dusty Jewett, and Christian Siegers.

 We had a first-class review team for this book. Craig Smith provided solid technical
proofreading and helped us enrich the content for different perspectives. Nermina
Miller was the main editor and provided great guidance for connecting with the
reader. You are the best, Nermina!

 The final edit team also put the book through several reviews to improve continu
ity, wording, grammar, and flow. Tiffany Taylor, Linda Recktenwald, and Katie Ten
nant may need a vacation after correcting all of our typos. Director of Production,
Mary Piergies, did an excellent job of coordinating all of our work and getting the
book into print.

GREG SMITH Writing this book has been an exciting journey that brought several
incredible people into my life. First, thank you to Ahmed Sidky for your superb ideas
xxi

Licensed to Abner Lopez <ihackn3wton@gmail.com>

xxii ACKNOWLEDGMENTS

on how to organize the book and for the content you provided. Your insights on agile
adoption are groundbreaking, and I am honored to work with you. You are a great
partner.

 I also want to thank Michael Stephens of Manning for spending weeks working
with me to convert a raw idea into a real book. Your guidance and feedback had a
huge impact on the final product. And of course, thank you to publisher Marjan Bace
for taking on this book and sticking with it as it went down various paths and side
roads on the way to final copy.

 I would also like to thank all of the people who have shaped my ideas about soft
ware development throughout my career. Joe Woodmancy, thank you for my first com
mercial software job. You were a great mentor and provided sound guidance on
application development. Jim Highsmith, you have influenced me more than any
other person. The first class I took from you opened my eyes and allowed me to start
enjoying software projects again. Thank you for the great training and inspiration you
have provided to me. Mary Poppendieck, thank you for providing the foreword and
for pioneering new discoveries and insights in the agile community. I am always learn
ing something new from your work.

 Lastly, I thank my family. Thanks to my parents, Darrell and Eva, for providing
unconditional support for whatever endeavor I have pursued. Thanks to my wife,
Peggy, who continued to provide support even after we discovered what it really
means to write a book. And finally, a thank you to my daughter, Lauren, for listening
to me go on and on about agile for years. Although only 10 years old, Lauren now has
the skills necessary to lead any company in its move to agile.

AHMED SIDKY First and foremost, I am grateful and thankful to Allah, who blessed me
with guidance, health, family, and friends who supported me and helped me through
the writing of this book. I am especially grateful to my sisters and beloved parents,
Samy and Hoda, who supported me and encouraged me through every step of my life
to reach where I am today. I am very fortunate to have been blessed with an amazing
and supportive wife, Noura, who has felt both the pain and joy of this book. Thank
you, Noura, for your love and enthusiasm, and I hope you are ready for my next book!
This book could not have happened without the hard work and dedication of my dear
friend and coauthor Greg Smith. I really enjoyed working with him and thank him for
his patience and perseverance.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

about this book

You may be wondering if there is a need for another book on agile. We have dozens of
books on Extreme Programming and Scrum. Areas such as retrospectives, Test Driven
Development, and estimating have been covered well. It seems every subject has been
thoroughly discussed. However, one area that still does not have a lot of coverage is
the actual process of adopting agile. You may find all of the information you need
related to agile practices, but you may have a hard time finding information on how to
go from your existing process to an agile one.

 The authors have created this book in the hope of providing more information on
what it takes to move to a more agile process. We have taken all of our migration expe
riences and rolled them into this book to help you with your own agile adoption. To
make the adoption steps even more tangible, we have created a case study that is an
amalgamation of our experiences. As you follow the case study, you will be reviewing
actual situations that we encountered during migrations and how the companies we
worked with dealt with constraints and cultural change. Real company names are not
used, but the events are real.

 Our case study also helps you envision working with different personality types and
experience levels during a migration to agile. We will introduce several personas at
the start of the pilot project, and you will see how the personas react to the process
and cultural changes of an agile environment.

 The approach we outline in this book is based on five key observations we have
made:
xxiii

Licensed to Abner Lopez <ihackn3wton@gmail.com>

 xxiv ABOUT THIS BOOK
■ Moving to agile is not a straightforward process. Every organization has unique
constraints it must address.

■ Adopting agile can be risky and even harmful if done incorrectly.
■ Many teams try to use popular agile practices before they are ready for them.

They believe they “are not agile” if they are not using techniques such as Test
Driven Development or Pair Programming.

■ Many teams rush to adopt agile practices without properly embracing the agile
values and principles. They assume “that’s how we become agile.”

■ Many teams start from scratch when moving to agile, discarding legacy practices
that may have been effective and valuable in their environment.

We address these five discoveries with the following approach.
 First, we understand the realities of constraints within a company. We have wit

nessed agile constraints such as

■ Distributed teams
■ The need to support production operations in parallel with projects
■ Compliance and regulatory constraints
■ Limited employee experience
■ Limited customer availability
■ And many more

To support these realities we will walk you through a process of reviewing your existing
process and performing an assessment/survey of your company culture and maturity.
This process will allow you to identify many barriers before you begin your migration,
and you can make an informed decision about which constraints to accept and which
ones to challenge as you move to agile.

 Second, we have witnessed the risks associated with moving to agile. We have seen
product delivery jeopardized, and we have seen employees become upset with a
change to the development process.

 To minimize these risks we will guide you through a process that involves the devel
opment team in the migration. Any concerns the team has with the new process will be
taken into account because the team will be involved in creating the new agile process
for your company. Involving the team will also help you create an agile lifecycle that
should flourish in your environment. Your team is closest to the work, and they will
know how things work today and in which areas a change could introduce high risk.

 Related to the third observation and the desire to use popular practices, the assess
ment tool we provide will help you determine which practices the team, company, and
customer can support. We will not encourage you to pursue the most trendy or popular
practices. Instead we will ask you to select practices that add value for your situation.

 Concerning the fourth item and the desire to become agile overnight, we have
seen many companies try to shotgun agile in, attempting to get through the pain as
quickly as possible. While there are situations where this makes sense, it can be a risky
Licensed to Abner Lopez <ihackn3wton@gmail.com>

 ABOUT THIS BOOK xxv

approach. Instead we will walk you through an iterative process for bringing agile into
your organization. We will guide you through developing and piloting an agile process
that meets your needs, and we will provide a system for maintaining, improving, and
sustaining the lifecycle over time.

 Lastly, concerning starting from scratch, if you are a startup, or if your company is
very dysfunctional, it may make sense to start from scratch and throw away everything
you currently do. However, if you have significant experience with your company, you
probably have some practices that add value, and these practices may continue to add
value as you move to agile. In many cases it will not make sense to discard everything
you do today.

 Our hope is that we can show you how to make your team and organization
become as agile as possible within your current constraints.

Roadmap
■ Chapter 1 discusses why agile is a better development process. The chapter also

ties agile to the two most important factors for most companies: increasing rev
enue and lowering costs.

■ Chapter 2 introduces our case study and the circumstances that have added
urgency to its projects. The chapter also provides an example of a company
going from no agility, to medium-level agility, to high agility.

■ Chapter 3 discusses the ability for any company to increase its agility and how
you can become agile within your constraints.

■ Chapter 4 kicks off our approach for becoming agile. We will walk you through
a process of assessing your ability to use each agile practice.

■ Chapter 5 builds on the assessment from chapter 4. Now that you have an
understanding of your ability to become agile, you will pursue executive sup
port within your company. You will also follow along as our case study pursues
executive support and obtains an executive sponsor.

■ Chapter 6 discusses the selection of the “core team.” This core team is made up
of project team members and includes agile supporters, agile detractors, and
people on the fence. Working with their coach, the core team will determine
which agile practices to pilot.

■ Chapter 7 talks about the agile mindset and how managers need to shift to
more of a coaching role as the team matures.

■ Chapter 8 focuses on designing a development process that works for a specific
environment. Acme Media’s core team will document their existing process and
compare it to an agile process. The core team will then document modifica
tions to the existing process to make it more agile. This new process will be
piloted on a test project.

■ Chapter 9 walks you through the process of identifying a pilot project to test
your new, more agile process. We will provide guidelines for how to select a
pilot project based on size, scope, and priority.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

 xxvi ABOUT THIS BOOK
■ Chapter 10 starts the pilot project. Acme Media will analyze the pilot to verify it
is feasible. The feasibility work answers two questions: (1) is the project techni
cally possible? and (2) is there truly a market/need for this project?

■ Chapter 11 shows the selection of the project team members who will perform
the pilot. The pilot team will go through an exercise of chartering and align
ment to reach a clear understanding on the project benefits and objectives.
Chartering will also expose the main features of the pilot.

■ Chapter 12 explains feature cards and how Acme Media learns to create the
correct level of requirements throughout the project. Historically Acme Media
has created detailed specifications before work begins. Feature cards will
require a change in mindset.

■ Chapter 13 follows Acme Media as it more clearly defines and prioritizes fea
tures for the project. The features are prioritized by business value and risk.

■ Chapter 14 introduces Acme Media to a new approach on early estimation: esti
mating for relative size versus identifying tasks and trying to map out the proj
ect hour by hour. The work in this chapter is based on the story-point process
that Mike Cohn promotes in his book Agile Estimating and Planning.

■ Chapter 15 leads Acme Media through the process of creating an overall release/
project schedule. Iterations are identified, and the team compares capacity to
estimates to determine what features will be initially targeted for each iteration.

■ Chapter 16 follows Acme Media through detailed iteration planning. The team
will identify the tasks for each feature in iteration 1 and verify that they can
commit to the features that were assigned during release planning. The team
will also create a burndown chart to support daily meetings and transparency of
iteration status.

■ Chapter 17 covers iteration 0, the time needed to get foundational pieces of the
project in place before development begins. This includes environment prepa
ration, finalization of funding, and negotiation of contracts with vendors or
partners that may be needed for the project.

■ Chapter 18 follows Acme Media through the first iteration of development. The
team will begin designing, coding, refining, testing, and delivering features in
the 10 working days allocated for the iteration. The team will focus on early test
ing and integration of features to identify requirement gaps or technical issues
as soon as possible.

■ Chapter 19 covers the different types of testing in an agile environment. These
include unit, integration functional, exploratory, and usability testing. We also
focus on identifying tests that can be automated to speed up the build process.

■ Chapter 20 is about adapting during and after an iteration. This chapter, more
than any other, demonstrates what it is like to work in an agile environment
and respond successfully to discoveries during a project. The chapter also
discusses customer demonstrations and validating status via the measurement
of working code.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

 ABOUT THIS BOOK xxvii

■ Chapter 21 focuses on aggregating iterations and releasing them to a produc
tion environment. We discuss important areas such as determining when qual
ity is good enough for releasing and validation of nonfunctional requirements.

■ Chapter 22 is about project retrospectives. We identify the common issues with
retrospectives and walk you through a process that optimizes the use of every
one’s time. We also follow Acme Media through a retrospective and provide
templates and guides that you can use during your retrospectives.

■ Chapter 23 is about “what’s next?” We review what Acme Media learned from its
pilot and discuss what it takes to go from project-level agile adoption to enter-
prise-level adoption. We also introduce the Sidky Agile Measurement Index
(SAMI). The SAMI highlights five agile value levels or steps and guides organiza
tions in introducing the practices that satisfy each step.

About the graphics

Most of the photos and illustrations in this book were created by the authors or obtained
via stock photos, unless otherwise noted. Several graphics and photos have been
reduced to fit the format of this book. You can view and download many of the graphics
in full size from the publisher’s website: www.manning.com/BecomingAgile.

Author Online
The purchase of Becoming Agile includes free access to a private forum run by Man
ning Publications where you can make comments about the book, ask technical ques
tions, and receive help from the authors and other users. To access and subscribe to
the forum, point your browser to www.manning.com/BecomingAgile or www.man
ning.com/smith. This page provides information on how to get on the forum once
you are registered, what kind of help is available, and the rules of conduct in
the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking them some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi
ble from the publisher’s website as long as the book is in print.

About the authors
GREG SMITH is a Senior Project Manager, ScrumMaster, and Agile coach who has been
helping teams become agile since 2001. Greg has been teaching Agile Project Man
agement since 2005.

 Greg’s experience is based on helping the companies he has worked for increase
their agility. Greg has worked for companies including Philips Electronics, The Seat
tle Times, R.R. Donnelley, Washington Mutual, and JP Morgan Chase. Greg currently
Licensed to Abner Lopez <ihackn3wton@gmail.com>

www.manning.com/BecomingAgile
www.manning.com/BecomingAgile
www.manning.com/smith
www.manning.com/smith

xxviii ABOUT THIS BOOK

works for GS Solutions Group, helping teams become agile through training and
adoption coaching. Greg focuses on helping teams add agility within corporate and
business constraints, with a focus on the most important business metrics: increasing
revenue and lowering costs.

AHMED SIDKY Along with many years of experience in software development, Ahmed
has a Ph.D. in value-based process frameworks for effective agile adoption. Ahmed’s
work has gained popularity and respect in the agile community as a pragmatic
approach for organizations of all sizes attempting to adopt agile. Ahmed is frequently
referred to as Dr. Agile on account of having developed a free online agile readiness
assessment tool named Doctor Agile (www.doctoragile.com). He is a frequent speaker
at numerous national and international agile conferences as well as a managing part
ner at TenPearls. At TenPearls, Ahmed helps guide small and large organizations dur
ing their transition to agile software development, and enjoys coaching and educating

agile teams around the world. You can reach him at asidky@tenpearls.com

About the cover illustration
The figure on the cover of Becoming Agile is “un Fauconnier” or a falconer, taken from
a compendium of French dress customs published in Paris between 1835 and 1839.
The four-volume collection is entitled Costumes Français depuis Clovis jusqu’a nos jours
and consists of hand-colored engraved plates, many heightened with gilt.

 The lithographs from this collection, like the other illustrations that appear on our
covers, bring to life the richness and variety of dress customs of two centuries ago.
Dress codes have changed since then and the diversity by region, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another, not to mention a country or region. Perhaps, trying to view it optimistically,
we have traded a cultural and visual diversity for a more varied personal life. Or a
more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of long
ago—brought back to life by the pictures from collections such as this one.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

mailto:asidky@tenpearls.com
http:www.doctoragile.com

Part 1

Agile fundamentals and

 a supporting case study

The following two chapters will provide a foundation for understanding what
agile is and introduce a case study that we will use throughout the book. Chapter
one will discuss the origins of agile and contrast agile to traditional software devel
opment practices. Chapter one also focuses on correlating agile to the two most
important goals for many companies: making money and holding down costs.
 Chapter two will introduce you to our case study, Acme Media. Acme Media
has business needs that are driving it to become more agile. They have not deliv
ered software very well in the past, and there has not been urgency surrounding
their projects. This has all changed with the rise of online advertising. The
team needs to learn how to deliver valuable software quickly, else their custom
ers will shift to their competitors.

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Moving to agile

The tragedy started when the crew accidentally bored into an adjacent, abandoned
mine that was flooded with water. The miners’ map told them, incorrectly, that the
abandoned mine was hundreds of yards away. The men scrambled to reach the
exit, but the rising water blocked the way out. Their only option was to seek out the
highest point in the mine.

 Word of the accident spread above ground and a rescue team was formed.
The rescue team estimated where the crew was located in the mine and picked a
spot to drill. Maps revealed a gas line that ran close to the target drilling point; and
if their coordinates were incorrect, they might rupture the line and create an
explosion. Being careful to avoid the gas line, the team began drilling a small,
exploratory hole. After 90 minutes the drill broke through the wall of the tunnel,
3

Licensed to Abner Lopez <ihackn3wton@gmail.com>

4 CHAPTER 1 Moving to agile
and the rescuers listened anxiously for any sounds from the miners. After minutes of
sobering silence, the rescuers could hear the trapped men pounding on the drill bit
with their hammers. The miners had been located. Now the challenge was to get them
out of the mine before hypothermia set in.

 The rescue team outlined a two-part plan. First, they would drill additional
holes to help pump water from the mine. Second, they would use a “super drill” to
create a 2-foot-wide escape tunnel for the miners. The drilling work began without a
hitch, but then the super drill bit broke 105 feet below the surface. A special “fishing”
tool was needed to extract the bit. In the past it had taken 3 days to build such a tool.
The rescuers knew they did not have 3 days to get to the miners out.

 Rescue workers contacted Frank Stockdale, the plant manager at Star Iron
Works, and asked him to build the tool they needed. They faxed engineering prints to
Stockdale and explained the dire situation to him. Using his 95-member machine
shop, Stockdale was able to reduce a 3-day job to 3 hours. The rescue team then
removed the broken bit and resumed drilling the rescue tunnel.

 Finally, 78 hours after the tragedy began, the drill penetrated the shaft and the
drill operator shouted with joy. The last miner was pulled to safety 5 hours later from
the Quecreek Mine in Somerset County, Pennsylvania on July 28, 2002. After being
trapped 240 feet below the surface, and with body temperatures as low as 92.5 Fahren
heit, they would all make full recoveries (see figure 1.1).

 You may wonder why a software development book starts with a story about a min
ing rescue. If you’ve performed agile software development previously, you’ve proba
bly identified the parallels. Let’s look at a few.

 All software projects have constraints. Similar to the situation during the Quecreek
rescue, the number-one constraint is frequently time. The Quecreek rescue team had a
few days to reach the miners. Software projects are often limited to a few days, weeks,

Figure 1.1 A Quecreek miner
is rescued from the flooded
mine after spending 3 days
crouched in waist-deep water.
(Photo courtesy of the U.S.
Department of Labor.)
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Is Agile just another process? 5
or months, after which they’re of no value. Like a Sunday newspaper delivered on
Monday, all the quality work and effort invested in the project are worthless if you
don’t meet your most critical priority.

 The rescue project also had a clear vision of the primary project priority: to reach
the miners while they were still alive. A secondary priority was to reach them before
they got hypothermia, and a third priority was to reach them before they started los
ing consciousness due to hunger. The team focused on delivering the number-one
priority first.

 When you perform software projects, you can lose track of your priorities, things
can get muddy, and low-value work can hold up project delivery. Agile software devel
opment asks you to follow the Quecreek model by identifying what is critical and
focusing on delivering to meet the critical need as soon as possible.

 Quecreek also reinforces another agile tenet: you should expect change, you
should embrace change, and you should be ready to plan and adapt frequently. The
Quecreek rescuers adapted to broken drill bits, gas lines blocking their path, and the
need to reduce the time required to create a fishing device. In software development,
you encounter similar situations. You discover a missing requirement, you identify a
technical constraint that prevents you from following your initial design, or a third
party delivers their part of the project later than expected. These types of issues hap
pen on every software project; and to ensure success, agile asks you not to be surprised
but to continue to perform by adapting to the reality of the situation.

 Finally, the Quecreek rescue demonstrated goodwill and collaborative team work.
Ideas came from all team members, such as the suggestion to try positive air pressure
to keep the water at bay. Goodwill and collaboration were also demonstrated when the
rescue team approached Frank Stockdale and asked if he could create the fishing
tool. Stockdale didn’t ask the rescuers to spend days creating a contract and going
through legal papers; instead, he trusted the rescue team and quickly delivered the
fishing device.

 Agile development depends on this type of relationship with customers and vendors.
You want a vendor who is a partner, not a vendor who is considered the enemy because
you spend more time talking about contracts than ensuring the delivery of value.

 In this chapter, we’ll help you understand the need for agile practices, what agile
really is, and how agile contrasts to plan-driven development practices. We’ll conclude
the chapter by discussing the most important consideration when pursuing a develop
ment process: how does agile correlate to the most common corporate goal of increas
ing revenue and reducing expenses?

1.1 Is Agile just another process?
Many people may think that agile is just another software development process.
Although that is true to a degree, there is a lot more to agile than just a process or
just a set of practices. Agile (or agility) is more of a mindset—a way of thinking
about software development. This agile mindset can be applied to any process using
Licensed to Abner Lopez <ihackn3wton@gmail.com>

6 CHAPTER 1 Moving to agile

any set of practices. The best way to illus
trate our understanding of agile is through

figure 1.2.

 Today the market is moving quickly, and as

a result, the software development lifecycle

needs to be flexible enough to enable organi
zations to seize new and emerging market

opportunities before their competitors do. To

reach the desired ability to respond to con
stant change, your software process needs to

focus on what is truly important.

 Similar to the way you pack light when

you’re going to backpack around Europe,

your process needs to be light. You need to

increase everything in the process that adds

value to the end goal and decrease everything

that doesn’t add value. Agile values attempt to

highlight what adds value in a software devel
opment process.

1.1.1 The Agile Manifesto and related values

In 2001, a group of authors wrote a document called the Manifesto for Agile Software
Development, with a goal of identifying the values that yield the most benefit to a soft
ware development process. Let’s look at the manifesto, which is available online at
http://agilemanifesto.org/:

We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

■ Individuals and interactions over processes and tools
■ Working software over comprehensive documentation
■ Customer collaboration over contract negotiation
■ Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

When people first read the manifesto they immediately agree with the stated values or
they hesitate. The hesitation usually comes from the perception that an agile method
ology throws away the items on the right (processes, tools, documentation, contracts,
and planning). This is completely false. The manifesto is saying that the items on the
right do add value to the development process but the items on the left (interaction
between individuals, developing working software, and so on) provide more value to the
process. The manifesto is trying to point out that organizations traditionally put a huge
emphasis on the items on the right, such as processes and tools, and neglect the items
on the left, such as the interaction between individuals. An agile mindset promotes the

Figure 1.2 The relationship between
agile values, principles, and practices
Licensed to Abner Lopez <ihackn3wton@gmail.com>

http://agilemanifesto.org/

Is Agile just another process?	 7

items on the left while maintaining the level required for the items on the right. Let us
re-emphasize that an agile process can and sometime should contain some of the items
on the right; but you need to make sure that each of those items adds indispensible
value to the project.

1.1.2 The agile principles

Moving to the layer that surrounds agile values in figure 1.2, let’s consider the agile
principles. The Manifesto for Agile Software Development defines a set of 12 principles that
represent the characteristics or inherent traits of an agile process:

1	 Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software. As obvious as this principle may seem, it’s often violated in
traditional software development. It’s important to remember that customers
are asking you to deliver working software that adds value; they don’t want a
prototype or a set of documents. The earlier you can start delivering working
software, the earlier you can begin satisfying your customer.

2	 Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage. Your customers are compet
ing in a dynamic market, and therefore they may have to change the require
ments for their software in order to gain a competitive advantage. It is
important to note that you should welcome changing requirements, but no one
said this change is free.

3	 Deliver working software frequently, from a couple of weeks to a couple of months, with
a preference to the shorter timescale. Have you ever shown your customer
software for the first time and received no feedback? In most cases, you
receive feedback—sometimes minor, but usually major. The trick is to deliver
software early so that you can get feedback early. This early feedback can save
you re-work down the road.

4	 Business people and developers must work together daily throughout the project. This
principle is careful to say business people and not the customer. In most cases, it
would be impractical to work with the customer on a daily basis; but generally
there are multiple business proxies. These proxies may not know everything
about the customer’s wants and needs, but they usually know more about the
business needs than the developers do. These proxies may be analysts, product
managers, or program managers. The key is to maintain constant communica
tion between the developers and the business people to ensure that the project
never goes off track—not even for a day.

5	 Build projects around motivated individuals. Give them the environment and sup
port they need, and trust them to get the job done. Remember, people aren’t
resources. Software development is different from manufacturing. Software
development is more of an art. Project teams need to be motivated and trusted.
If you have motivated team members they will find a way to give you their best;
and that’s what an agile process needs—everyone’s best.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

8 CHAPTER 1 Moving to agile

6 The most efficient and effective method of conveying information to and within a develop
ment team is face-to-face conversation. Instant messaging or the telephone should
never replace face-to-face communication. A lot of context is lost in communi
cation over email and instant messaging—not to mention the fact that ambigu
ity increases with nonverbal communication. Face-to-face communication also
lets you run with less formal documentation.

7 Working software is the primary measure of progress. If you recall, the customer is
primarily interested in working software. So why would you measure progress
in terms of anything else? Today, the progress of most software development
efforts is measured in terms of their plan. When requirements are complete,
the managers say the project is 30 percent complete. In a plan-driven world,
this may be correct; but in a value-driven world, where the value is the work
ing software, the project is 30 percent complete when 30 percent of the
required functionality is coded, integrated, tested, and deployed. This is a fun
damental difference between the agile value-driven world and the traditional
plan-driven world.

8 Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely. In traditional
development, the team often has to work late toward the end of a project,
although at the beginning of the project they may have taken 2-hour lunch
breaks. This is primarily due to the way project activities are distributed across
the project’s lifecycle. There isn’t much for developers to do at the beginning of
the project, but at the end everything is put on their shoulders because of tight
delivery schedules. With agile development, you deliver every two weeks or so,
and development begins with the first iteration. Efforts are distributed more
consistently throughout the project lifecycle, which leads to a constant develop
ment pace for the team.

9 Continuous attention to technical excellence and good design enhances agility. A suc
cessful gymnast needs strong muscles. Similarly, technical excellence is an
essential enabler for a truly agile software development process. For example,
extensible designs and architectures make it much easier to build the product
in an evolutionary manner. Automated testing frameworks are needed to
ensure that refactoring one part of the system doesn’t affect other parts. Con
tinuous integration is essential if you want assurance that your software is work
ing after every change.

10 Simplicity—the art of maximizing the amount of work not done—is essential. No code
means no bugs. The more code you write, the more bugs your code may have. If
something isn’t essential to the product, then don’t build it. Some developers
tend to develop massive underlying frameworks and infrastructures in the sys
tem under the assumption that those elements may be needed in the future.
The key is simplicity: try not to develop anything that isn’t essential to the fea
tures you’re developing now. Remember, the more time you invest in anything,
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Is Agile just another process?	 9

the more you get attached to it. This attachment makes it harder to accept the
fact that you don’t need a piece of code or that you need to change it.

11	 The best architectures, requirements, and designs emerge from self-organizing teams. In
traditional software development, analysts write requirements, and architects
lay out the architecture of the system. Then the requirements and architectures
are communicated to the team in a document. In the agile world, we encourage
teams to self-organize. True self-organization involves giving the whole team the
task and asking them, as a team, to complete the task without specifying who
should do what—they’re left to self-organize. It will naturally occur that archi
tects will lead the discussion when it comes to architecture, but now everyone is
free to challenge them and suggest new ideas that may enhance the architec
ture the architects would have come up with on their own. This form of collabo
ration also increases the knowledge transfer within the team.

12	 At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly. We believe this is probably the most important
principle of agility. The idea of always reflecting on what you’re doing and try
ing to figure out better ways to do things is the essence of continuous improve
ment. Without continuous improvement, people and organizations remain at a
status quo. If you adopt only one thing that will make your process better, regu
larly reflect on your process as a team. You need to identify what you’re doing
well and continue doing it, and you need to identify what you’re doing poorly
and improve it.

1.1.3 The agile practices

The last layer in figure 1.2 represents the agile practices. These are activities that are
used to manifest or implement the agile principles and values. There are numerous
agile practices, such as user stories, test-driven development, pair programming, daily
stand-up meetings, and so forth. But no specific set of agile practices is defined—it’s
anti-agile to say that there is a defined set of practices and that no new practices can
be created. Organizations create different agile practices or tailor existing agile prac
tices to address specific organizational or team needs. Teams may also need to be cre
ative and come up with new agile practices to achieve agility while adhering to
organizational constraints.

 Known agile development methodologies like Extreme Programming (XP), Scrum,
Lean, and Feature Driven Development (FDD) consist of a set of agile practices that have
a certain synergy. Some methodologies, like Scrum, focus more on agile practices
related to project management; others, like XP, focus more on technical agile practices.
No methodology is better than the other; it all depends which works best in your environment and
within your constraints. Better yet, in this book, we won’t talk about a certain methodology:
we’ll talk about a generic set of agile practices and then show how you can customize the
practices to fit your organization.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

10 CHAPTER 1 Moving to agile

1.2 A paradigm shift from a plan-driven mentality
Traditionally, once a project starts, a requirements package is created and then is
“signed off.” The project manager assumes that this sign-off results in a fixed set of
requirements and that now planning can begin. The project manager estimates how
long it will take to complete the requirements and creates the project plan. The plan
predicts that the project will be finished by a certain date, and that date is communi
cated back to the customer.

 The fundamental flaw in this approach is that the plan, which drives everything, is
based on an assumption that the requirements are fixed and won’t change. Experi
ence has shown us that this is never the case; requirements are never fixed—they
always change. When the requirements change, the plan is affected; and as a result,
the completion date needs to change too. Unfortunately, in many cases, that is impos
sible, and the team has to deliver by the date they committed to. This is when a major
crisis occurs and the project starts to go out of control.

The value-driven agile approach switches the whole mindset. It assumes from the
start that whatever requirements exist up front are not fixed and that they will change.
The agile mindset also assumes that you have to deliver by a certain date. This approach
fixes the time and resources and leaves the requirements undetermined. To us, this
approach more closely resembles the reality of creating software. Now the whole notion
of value-driven makes perfect sense. When you have a fixed amount of time in which you
aren’t sure whether you can deliver all the requirements (because they will change and
hence the time needed to finish them will change), the natural reaction is to prioritize
the requirements and finish first those that add the most value to the customer.

 You may be thinking, “What about the requirements that aren’t finished by the
delivery date?” That is the reason you use the value-driven approach. You acknowledge
the fact that not all of the requirements will be completed by the delivery date. The
important question to ask is whether you have delivered enough features to support a
system that provides value to the customer.

Figure 1.3 shows an interesting find
ing from a study by the Standish Group.

Only 20 percent of the features in a sys
tem are often or always used; 45 percent

of the features are never used. Another

study showed that when a new system was

installed at DuPont, only 25 percent of

the system’s features were really needed.

The important point we’re trying to

emphasize is that if you can deliver, say,

35 percent of the features by the delivery

date, you may be giving the customer all

the value they’re looking to attain from

the system.

Figure 1.3 A study by the Standish Group
indicates how often features are used in a
typical application.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

11 Agile and the bottom line
 The traditional plan-based approach isn’t flawed in and of itself; it just isn’t suit
able for today’s software industry. The plan-based approach was originally based on
traditional project management concepts, which originated from the construction
industry. In the construction industry, the plan-based approach is suitable: the blue
prints, which are the requirements, are fixed and probably won’t change while the
building is being built. You can estimate how long it will take to build the steel pillars,
pour the concrete, and so forth.

 The reason why the traditional plan-based approach is suitable for the construc
tion industry but not for the software industry comes back to the difference in the way
we control empirical systems (like software development) and the way we control
defined systems (like construction or manufacturing). Table 1.1 shows the differences
between the characteristics of a defined process and those of an empirical process.

Table 1.1 Comparison between a defined process and an empirical process

Predictable manufacturing (defined process) New product development (empirical process)

It’s possible to first complete specifications
and then build.

Near the beginning, you can reliably estimate
effort and cost.

It’s possible to identify, define, schedule, and
order all the detailed activities at the start of
the project.

Adaptation to unpredictable change isn’t the
norm, and change rates are relatively low.

It’s rarely possible to create up-front, unchanging,
detailed specs.

Near the beginning, it isn’t possible to reliably esti
mate effort and cost. As empirical data emerge, it
becomes increasingly possible to plan and estimate.

Near the beginning, it isn’t possible to identify, define,
schedule, and order activities. Adaptive steps driven
by build-feedback cycles are required.

Creative adaptation to unpredictable change is the
norm. Change rates are high.

After reading the table, it’s easy to see that software development is definitely an empir
ical process, not a defined process. The problem is that we’ve been approaching soft
ware development for years as a defined process—and that approach doesn’t work.

1.3 Agile and the bottom line
If you’re an executive, you may wonder whether agile can provide any value for
what matters: the company’s bottom line. If agile can’t help you make money and
reduce costs, is it worth pursuing? Most companies would say, “no, we don’t need
agile if it doesn’t help us make money.” Thankfully, agile does tie directly to the bot
tom line. To see the financial correlation, let’s start by looking at statistics related to
agile adoption.

 In 2007, VersionOne, a leading provider of agile management tools, surveyed 1,700
people in 71 countries. All the participants were using agile to some extent in their com
panies. VersionOne asked the participants to identify specific improvements they had
realized from implementing agile practices; see figure 1.4.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

12 CHAPTER 1 Moving to agile

Figure 1.4 Teams that use agile attest to the benefits.

VersionOne’s data shows that agile does help in key areas related to software develop
ment, with increased productivity, fewer defects, quicker time to market, and reduced
costs. We have witnessed similar results with the companies we’ve helped move
to agile.

 The VersionOne survey provides proof that agile worked for most of the compa
nies interviewed, but the main question for most people remains: “Will agile help my
specific company with my specific situation?” Agile will help your company if you
have changing requirements and a need to deliver functioning software frequently.
If your requirements rarely change and you have the luxury of delivering when you
feel the product is satisfactory, then you may not obtain the full benefits recorded in
VersionOne’s survey. (Note that we’ve never worked for any companies where this
was true.)

 It’s valuable to see how well agile has worked for others, but the most important
thing is how agile correlates to the bottom line. How does agile help you to increase
revenue and/or reduce costs?

 To increase revenue and profits indefinitely, your company must identify the key
objectives that ensure success within your business environment. These objectives will
vary depending on your customers, your competition, and your product market. But
almost all companies list the following five items among their key objectives:

1 Customer retention —Retaining customers is key for almost all businesses. An
existing customer provides continuous revenue and spreads the word to other
potential customers, leading to increased revenues.

2 Accurate delivery—To be successful, you need to understand the needs of your
market. You must deliver what the customer needs, or satisfaction will decline
and revenues will go down.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Agile and the bottom line	 13

3	 Innovation —Not only must you help customers address their known needs, you
must also anticipate their future needs. Innovative companies solve problems
that their customers don’t realize they have.

4	 Timely delivery—Similar to the Sunday newspaper analogy at the start of the
chapter, you must deliver while the need still exists.

5	 Motivated workforce —As the poet Hebbel noted, “Nothing great in the world has
ever been accomplished without passion.” Executives know their development
teams need to be passionate about their projects; otherwise, the projects and
the company will remain mediocre.

If these are the strategic objectives, then what principles do companies follow
to obtain these objectives? We believe the following agile principles should be
pursued:

1	 Embrace change. The world is volatile, and many discoveries occur during any
development project. You’ll discover missing requirements, business needs may
change, or you may encounter a technical constraint. The goal is to succeed,
not to make excuses. A good development team adapts and delivers in the face
of adversity.

2	 Plan and deliver software frequently. To ensure customer satisfaction and timely
delivery, you must work with customers and prioritize their needs. After the
needs are prioritized, the team works to deliver the functionality iteratively,
starting with the minimal features necessary to deploy a working system.

3	 Use human-centric methods. Don’t abandon practices and disciplines, but put
more focus on individuals and interactions. Your focus should be on collabo
ration and communication. Productive teams have frequent face-to-face inter
action, minimizing delays due to email chains or the need to formally
schedule meetings.

4	 Achieve technical excellence. You want processes that enhance quality during
development. Solid development processes ensure delivery of a quality product
and do wonders for team morale and pride.

5	 Engage in customer collaboration. To ensure timely delivery, you must be as effi
cient as possible when you develop. To be efficient, you require frequent feed
back and customer interaction to validate that you’re delivering to the need.
Real-time customer collaboration also minimizes the effort required to adjust
your work. You can’t wait for testing: you need feedback on your understanding
of the requirements, on your design thoughts, on your prototypes, and on your
code as you iteratively deliver it.

We believe these five principles are the foundation for successfully moving to agile.
Figure 1.5 illustrates the relationship between agile principles, company strategies,
and the ultimate goal.

 We’ll reference and use these principles as we work through a case study that fol
lows a company called Acme Media during its migration to agile. (We’ll introduce this
Licensed to Abner Lopez <ihackn3wton@gmail.com>

14	 CHAPTER 1 Moving to agile

Figure 1.5 Agile provides the enablers that ultimately lead to company success. (This diagram
was inspired by the Strategic Intermediate Objectives Map H. William Dettmer discusses in The
Logical Thinking Process, American Society for Quality, 2nd Edition 2007.)

case study in chapter 2.) Before we delve into the details, let’s spend a moment dis
cussing how this book can help you with your own move to agile.

1.4 How this book will help you become more agile
We’ve helped several companies become more agile. Greg has been in the United
States helping the companies he worked for and the students who take his course at
Bellevue Community College. Ahmed has been helping companies all over the
world, some as an employee and others as an agile coach/consultant. We have noth
ing in common in terms of personal experiences, but amazingly we agree on the best
way to bring agile into an organization. We believe that using a single flavor or
approach to migrate to agile doesn’t make sense—each company needs to approach
its migration uniquely.

 We believe the following five steps can ensure your success in your own unique
move to agile:

1	 Assess your potential for becoming agile. We’ll provide an assessment tool that will
help you identify potential risks. The assessment will also help you determine
which agile practices you are ready for.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

How this book will help you become more agile	 15

2	 Ensure company buy-in. We’ll walk you through the steps for obtaining execu
tive management, line management, and team support, ultimately leading the
team to ownership of the process.

3	 Understand your current process. We’ll walk you through reviewing your existing
process and making sure it’s clearly understood before you try to change it.
We’ll help you identify your constraints and become agile within them.

4 Pilot a more agile process. We’ll walk you through the process of selecting, con
ducting, and evaluating an agile pilot project.

5 Perform a retrospective. We’ll show you a solid approach for reviewing, maintain
ing, enhancing, and scaling a more agile process across your company.

In effect, we’re trying to put all of our migration experience into this book and pro
vide a virtual consultant to help you along the way.

The need for agile today: a story from Greg
A few years ago, I worked for a major financial institution. Interest rates were low, and
business was booming. We spent a lot of money on extravagant meetings, everyone
was paid well, and almost everyone had a Blackberry. We planned projects for the
long term, looking to package in as much functionality as we could. Projects could
run 2 or 3 years.

We also went overboard on ensuring that we were compliant with a formal project-
management lifecycle. Huge groups were dedicated to making sure we followed the
process, even if the process overhead marginalized project benefits. Project manag
ers were located in a project-management office and received one-off assignments.
A good portion of project time was devoted to project-team members acclimating to
each other.

In 2007, my company was hit by the subprime mortgage crisis. Suddenly the Black
berries started disappearing. A group was formed to simplify our project-management
process. The goal was to remove bureaucracy and make the process more agile and
lean. The company also disbanded many of the project-management offices and put
the project managers directly into the business teams so they could be closer to the
customer.

A large project I was helping with was restructured. Instead of trying to deliver mega-
benefits 2 years down the road, we outlined an iterative plan to deliver critical, mini
mal functionality within a few months.

My company lacked a sense of urgency when I started working there, but suddenly
we were similar to a dotcom. We were fighting for survival, and we began to follow
practices that supported the urgency. Looking back, I wish my company had pursued
an agile mentality to prevent the issues in the first place as opposed to trying to use
agile to save the ship.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

16 CHAPTER 1 Moving to agile
1.5 Key points to remember
Here are the key points to remember from this chapter:

■	 Agile provides solid business values for almost every company.
■	 Agile isn’t a trend. After 9 years and proven results, agile is here to stay.
■	 You must understand the principles behind the agile practices first, and then

apply the practices accordingly.
■	 Software product development is unpredictable and requires creative adapta

tion to be successful.
■	 Agile methods tie directly to the key objectives of most companies: increasing

revenue/market share while lowering costs.
■	 Migrating to agile is unique for each company. This book will help you

approach your migration in a way that provides the best possible chance for
long-term success.

1.6 Looking ahead
In this chapter, we discussed what agile development really means and the value it pro
vides. As this book continues, our goal will be to demonstrate what moving to agile
looks like. We’ll do this via a case study that is representative of our years of helping
teams become agile within their constraints. The case study, Acme Media, is introduced
in chapter 2.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

The story of Acme Media

To make it easier to follow the practices discussed throughout this book, we’ve cre
ated a case study to demonstrate the practices in action. The case study will allow
you to reflect on the issues and constraints encountered by real companies as they
move to agile.

 The Acme Media case study is a blend of our experiences with various compa
nies as they migrated to a more agile process. These companies have ranged from
tiny internet startups to Fortune 500 companies. The products have included com
mercial software, internal applications, and online services. The existing develop
ment methods have ranged from formal to no defined processes at all. The
cultures have ranged from open and collaborative to closed and bureaucratic. The
products have ranged from ultrasound equipment to beef jerky.
17

Licensed to Abner Lopez <ihackn3wton@gmail.com>

18	 CHAPTER 2 The story of Acme Media

 We don’t use actual company names in order to protect their privacy, but the sce
narios discussed are based on real events. Our case study follows Acme Media as the
company moves to a custom agile methodology and learns how to deliver maximum
value from its software projects.

 Let’s look at the details of the Acme Media case study.

2.1 Case study background and circumstances
Acme Corporation is a media company that engages in television broadcasting and
interactive media operations. The interactive media operations consist of three prod
uct websites. Our case study is tied to the interactive media group and its following
three sites:

■	 The first website focuses on delivering the news. If the television station is cover
ing a breaking story, the news site needs to have the story online during the TV
coverage or a few minutes afterward. The news website also provides enriched
coverage about news articles, such as blogs, opinion surveys, and deeper analysis.

■	 The second website is focused on classified advertising for the local metropoli
tan area. The classifieds are for real estate, autos, and merchandise. The case
study’s pilot project will deliver an application for the classifieds site.

■	 The third website is responsible for travel and outdoors. This site contains con
tent related to tourism, hiking, getaways, and lodging.

All three websites sell online advertising space to national and local businesses.
 The three sites are supported by a group of 20 people. The skill sets in this group

include product management, development, design, database analysis, business analy
sis, architecture, implementation, support, testing, and project management. Several
team members wear various hats depending on the state of the project. For example,
developers may do their own DBA work, or a product manager may end up doing the
requirements documentation. The development group is also the maintenance and
support group for the production environment.

 The Acme Media websites have always been a secondary priority for the company.
They don’t make much money and exist only as a supplementary presence to the tele
vision station. Until about a year ago, working in the web group was laid-back and
easy; there was rarely any pressure, and projects were completed on a loose schedule.
All of that has changed now.

 With the popularity of online advertising on the rise, Acme Media’s web division
found itself overwhelmed with advertising requests and a significant increase in site
traffic. In addition, advertisers were asking Acme to publish more television content
on the websites to attract a younger crowd. Suddenly, web projects had urgency, and
revenue was on the line.

 The heat was on the three product teams. The lack of reliable schedules and
the teams’ frequent need to push out promise dates were motivating advertisers and
readers to go to competitive websites. Projects needed to be delivered on time to
retain the customers.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

About the individuals 19
 In the following chapters, we’ll help Acme Media migrate to a methodology that is
more in tune with the urgency of its environment.

2.2 About the Acme Media teams
Acme Media started down its road to more agility when the company’s project man
ager, Wendy Johnson, began investigating ways to deliver products sooner. Wendy con
ducted research and discussed her issue with a number of friends and colleagues. One
friend Wendy spoke with, Jim Moore, happened to be an agile coach. Jim told Wendy
about several companies he had helped move to agile and the benefits these compa
nies had achieved. After Wendy was convinced, she set about selling Acme’s CIO on
the idea that Acme’s development team needed to give agile a try. Wendy will get
approval from the executive team to pilot agile.

 Acme will create two teams as the company completes its pilot project and evalu
ates how agile it can become. First, the company will create a core team. The core team
will be trained and mentored by the agile coach, Jim Moore. The core team will be in
charge of reviewing the existing development process at Acme Media to see where
agile practices can be injected. This team will consist of actual project team members.
After the core team outlines a new process to test, a pilot project team will be selected to
actually complete the pilot project.

 The pilot project team will include a few core team members, but most of the pilot
team members selected will be getting their first look at the new process. The pilot
team will receive training on agile principles and basic practices, and then they will
perform the pilot and provide feedback to the core team. The core team will use the
feedback to refine the process and then continue to scale the new process throughout
the company.

2.3 About the individuals
You’ll learn more about the individual team members in chapter 6, when we establish
the core team, and in chapter 11, when we select team members for the pilot project.
Acme Media’s development team has various experiences, backgrounds, and opinions
about how software development should be completed (see figure 2.1). Some team
members have experience in formal, plan-driven environments; many team members
have worked in environments where the development process was homegrown; and a
few team members have experience in agile environments.

 As Acme Media pursues its new process, some team members will be energetic,
some will be neutral, and some will be skeptics. In our experience, a variety of
responses is common in most companies. Acme will use all three perspectives to help
roll out the best possible new process.

 Some of the energetic team members will help in documenting the existing pro
cess. The team members on the fence will be part of the core team and the pilot team.
Skeptics will also be included on both teams, and their input will be welcome as the
new process is created and critiqued.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

20 CHAPTER 2 The story of Acme Media
Figure 2.1 Acme Media’s
development team is composed
of a variety of personality types
and personal experiences.
Regardless of background, you
want everyone to learn the value
of moving to agile; and over time
you want the team to buy in to
the new process.

2.4 What does it look like when a team “becomes agile”?
Before we take off with the story of Acme Media, you may wonder what it looks like
when a team moves to a more agile process. Let’s take a look at a real-world example.

2.4.1 The existing process

One company we worked with, which we’ll call Archway Software, had a development-
release process that is depicted in figure 2.2.

 As you can see, Archway’s development process was traditional and for the most
part reflective of a waterfall lifecycle. Archway released software somewhat effectively
every four months. This company was comfortable with the development process and
didn’t have any incentives to change it.

Figure 2.2 A development-release process with little flexibility. Discoveries are certain to delay the
project or jeopardize the quality level of the release.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

What does it look like when a team “becomes agile”?	 21
But over the years issues began to evolve. First, every software release supported up
to 20 existing customers. The customers competed with each other to get the fea
tures they desired into a release. If a request didn’t make the release list, customers
became upset.

 The second issue related to discovering missing functionality during a release. The
project plan didn’t allow for changes. Discoveries went into a backlog and were
reviewed when Archway was planning the subsequent release for delivery four months
later. Deferring these findings lowered the value of the current software release and
led to challenging discussions with customers after the release. Requirements that
were discovered midstream were often as valuable as the requirements identified dur
ing the requirements phase.

2.4.2 A process with more agility

Archway Software decided to visit another company—an insurance company—that
had encountered similar issues when creating software for its online sales website. The
insurance company walked Archway through the changes it had made to deal with
those issues. The main changes the insurance company made were as follows:

■	 Reduced the release cycle from 12 weeks to 8 weeks so that customers weren’t as
upset if their request didn’t make a release. The customers always knew another
release was just around the corner.

■	 Broke the development cycle into two feature sets, with the first cycle focused
on the most critical features. If issues were encountered during the first cycle,
work on the critical features continued into the second cycle.

■	 Modified the work area to enhance information sharing and support quicker
turn times. This included
–	 Co-locating all team members.
–	 Cutting the cubicle walls in half so team members could see and communi

cate with each other freely.
–	 Providing tools for quick discussions, including rolling whiteboards and

always-available open areas for collaboration.
–	 Working hard to keep the tribe together. The insurance company learned

that the longer teams stayed together, the more knowledge they had about
the software and customers, which led to quicker development.

Archway Software was impressed with what the insurance company had done to
address its issues. Back in the workplace, Archway designed the development process
outlined in figure 2.3.

 Archway Software tried the new process on several releases and was pleased with
the results. Customers were more patient if their features didn’t make a release, and
the team had a few days to recover if a discovery was made when they were working on
the features in development cycle 1. The team also implemented an informal process
to let customers preview features before official user-acceptance testing.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

22 CHAPTER 2 The story of Acme Media
Figure 2.3 A process with more agility and the opportunity to adapt to discoveries. Note how the
subsequent release gets started as the current release is wrapping up.

2.4.3 The ultimate process

After several releases, Archway Software discovered some interesting things about the
new process. First, the company had always completed functional specifications before
passing the work to the developers to start coding. But in reality, the analysts needed
to meet with the developers while creating the specifications. The analysts worked
with the developers to begin envisioning a design and also to take technical con
straints into account.

 Archway Software also learned that after the initial discussions, the developers
started working on technical designs and coding features while the functional specifi
cations were being completed by the analysts.

 The last thing Archway learned was that even though there were two development
cycles, the team still didn’t have time to recover from customer discoveries exposed
during user-acceptance testing. If a customer discovered an issue, the team had to
rush to fix and test the issue before the looming code-freeze date.

 Taking these findings into account, Archway Software revised its development pro
cess again; see figure 2.4.

 The company modified its process to reflect the realities it saw during releases.
Archway realized that requirements, design, and coding weren’t performed serially
but more frequently happened in parallel. Therefore, the iterations weren’t split into
Licensed to Abner Lopez <ihackn3wton@gmail.com>

23 What does it look like when a team “becomes agile”?
Figure 2.4 As a team addresses its issues, a process becomes more agile with early customer
demonstrations and dedicated time to adapt, re-plan, and adjust. True iterative development takes
place, and requirements, design, and coding frequently happen concurrently.

types of work—rather, all the work required to deliver a feature could happen simulta
neously. Business requirements initiated feature development, but functional specifi
cation, design, and coding usually happened in parallel.

 Archway also realized that discoveries were made during every iteration and that
the company should quit pretending that re-planning was an exception; instead, it was
a reality. Based on this finding, Archway outlined a 5-day window in which to demon
strate to the customer at the end of each iteration; then the company adjusted the
plan for the subsequent iteration based on the demonstration findings and the
throughput the team was achieving.

 At this point, Archway Software had revisited its development process twice. The
company revisited and reviewed the process frequently, adjusting it for the realities of
the company, its customers, and the constraints of the business.

In this chapter, we demonstrate how a process becomes more agile. What we don’t
discuss is how a company changes its culture and mindset in parallel with process
changes. In our example, we discuss how an insurance company reached a high level
of workflow agility. To do this, their organization had to mature and embrace an agile
mindset; otherwise, the team wouldn’t buy into the changes. (The agile mindset is
discussed in chapter 7.)

This is one example of how a team became agile. Turn to chapter 3, and you can fol
low along as this book’s case study, Acme Media, moves to a more agile process.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

24	 CHAPTER 2 The story of Acme Media

2.5 Key points to remember
Here are the key points to remember from this chapter:

■	 We’ll use a case study to illustrate what a migration to a more agile process can
look like.

■	 We’ll discuss common constraints that limit how agile you can become. In some
cases, we’ll show how to resolve the constraint; in other cases, we’ll explain why
you should accept the constraint.

■	 Our case study represents a company that needs to improve delivery speed and
accuracy. The web development team didn’t have a sense of urgency because it
was a small part of the business model. Now that web traffic has increased,
Acme Media needs to learn how to deliver quickly in a volatile environment.

■	 Our case study team contains a variety of personality types. We’ll discuss how
the migration affects different personalities as the case study proceeds.

2.6 Looking ahead
In this chapter, we provided an example of how a real company followed the process
outlined in this book to iteratively add agility to their development lifecycle. This
should help you envision what your own migration will look like and how your lifecy
cle will constantly evolve and improve.

 You’ve also met our case study. In subsequent chapters, Acme Media will develop
its own custom development process and test that process on a pilot project. In chap
ter 3, we’ll discuss whether your team is ready to attempt a move to a more agile pro
cess, and we’ll also discuss the common constraints that teams encounter when
moving to agile.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Part 2

Getting started

When we start an agile project, we frequently have an iteration 0. Itera
tion 0 is the time to put the project foundation in place before construction
begins. This includes tasks such as establishing development environments,
finalizing contracts with third parties, and assembling the project team.

 You’ll have the equivalent of an iteration 0 when you begin your migration to
a more agile process. You’ll need to put the foundation pieces in place that support
an environment conducive to the migration. The following chapters will help you
put a process in place to support adding agility to your existing methodology.

 We’ll lead you through an assessment that will let you understand your
potential for improving your existing development lifecycle. Afterward, we’ll
explain the importance of buy-in across the company and provide a blueprint
you can use to obtain executive and team-member support. We’ll conclude this
part of the book by rejoining our case study and watching the team at Acme
Media document their existing process and identify ways to make it more agile.
Acme will then select a pilot project on which to test the new process.

 These pages reflect our personal experiences, trials and errors, and beliefs
for bringing agility into an organization. We believe this foundational work will
prepare you for long-term success and give you the best opportunity to become
and stay agile.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Are you ready for agile?

Yes, you’re ready for agile. The real questions are as follows:

■ How much agility are you ready for today?
■ How much agility can you add tomorrow?
■ How can you continuously adapt to your ever-changing business climate?

We’re confident you can improve your current development process and obtain a
level of agility. If your environment is conducive to it, you may be able to reach the
level of agility that Archway Software reached in our discussion in chapter 2.

 We’ll start this chapter by providing information that helps you understand the
goals of an agile process and how these goals relate to packaged agile methods such
as Extreme Programming (XP) and Scrum. The chapter will conclude by discussing
our approach for bringing agile into your workplace. We’ll start your migration by
27

Licensed to Abner Lopez <ihackn3wton@gmail.com>

28	 CHAPTER 3 Are you ready for agile?

providing a tool that will let you assess your potential for bringing in agile practices
and cultural changes.

3.1	 What areas will you become more agile in?
When people think of becoming agile, they often envision the practices and not the
goals of an agile process. We often hear people say that they can’t become agile
because their developers don’t want to do pair programming, or they have limitations
with co-locating their project team members. Although these types of practices may
help you become agile, they aren’t the only practices that support the goals of an agile
process. Let’s take a moment to look at some of the key agile goals you’ll be able to
accomplish on some level.

3.1.1	 Increasing customer involvement

A traditional process has the customer involved mainly at the beginning and the end
of the project. In agile, you seek customer feedback and input throughout the project.
The customer or product owner is involved in planning, tradeoff decisions, prioritiza
tion, and demonstrations. Increased customer involvement leads to several benefits
such as quicker feedback, accurate delivery, increased customer satisfaction, and rapid
decisions. A great indirect benefit of customer involvement is the customer’s new
found appreciation for the work needed to deliver on requests.

3.1.2	 Improving prioritization of features

Agile processes improve prioritization and deliver higher-value features first. This is
accomplished by creating feature cards or user stories and evaluating features before
requirements are detailed. You’ll evaluate features for their customer value, level of
risk, frequency of use, and dependencies. This allows you to do the following:

■ Estimate work and evaluate risks early in the process.
■ Prioritize features in terms of customer value early in the process.
■ Deliver features in usable subsets.

In effect, the agile prioritization process lets your team run leaner and create deep
requirements only for work that passes the prioritization test.

3.1.3	 Increasing team buy-in and involvement

The majority of people on an agile project team are involved in planning, estimating,
and sequencing. The team is also involved in adapting to discoveries between itera
tions. Over time, the team begins suggesting features for the product or platform.
Increasing team involvement ensures that everyone understands the value of the proj
ect before work begins and also increases team satisfaction.

3.1.4	 Clarifying priorities and reminding everyone
of the consequences of changing them

An agile team works with the customer and/or sponsor to determine the most criti
cal category for the project. Is schedule the number-one priority, or is staying within
Licensed to Abner Lopez <ihackn3wton@gmail.com>

What areas will you become more agile in? 29

budget? Additional categories may include quality, feature richness, and compli
ance. The project team learns the priorities and uses this knowledge to make
tradeoff decisions along the way.

 Many projects wait for a fire before identifying their priorities. An agile team
knows the project priorities in advance of an emergency and can react quickly to keep
the focus on the main objective.

3.1.5 Adapting to change during development

A more agile and iterative methodology provides an opportunity to reassess and redi
rect the project while it’s in motion. You perform development in iterations and
offer demonstrations at the end of each. The customer has an opportunity to
request changes based on the demonstrations, even though this may affect other fea
tures or potentially the project timeline. Team members learn to expect and
embrace change.

3.1.6 Better understanding the project’s status

Agile development is time-boxed. You evaluate status by demonstrating functioning
code. Supporting tasks are also measured in binary terms (done or not done) to
eliminate possible confusion related to expressing status as “percent complete.” An
agile process also involves team members reporting their status themselves versus
through a manager or other intermediary. This improves tracking accuracy and per
sonal accountability.

3.1.7 More efficient planning and estimating

Many companies try to plan all of a project’s details at the start. The planning may be
at a detailed level even though the amount of uncertainty at this point is extremely
high. An agile team performs a level of planning that correlates to the current level of
uncertainty in the project.

 As you learn more about desired features you’ll do more detailed planning, but
you won’t waste time trying to guess intricate details early in the project. Figure 3.1
illustrates this point.

Figure 3.1 The accuracy of
initial feature estimates improves
dramatically during the first few
hours of estimation but levels out
over time. In this example, the effort
and time spent after five hours of
estimating doesn’t improve accuracy
and is wasted project time.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

30	 CHAPTER 3 Are you ready for agile?

3.1.8 Continuous risk management

A secondary definition of agile could be continuous risk management. The processes are
all intended to make the team alert and responsive to new information and changes as
the project progresses. The following are a few examples of how agile manages risk:

■	 Features are evaluated for requirements uncertainty and technical uncertainty.
These attributes help determine whether a feature goes into an iteration and
what iteration it should go into, to mitigate risk. For example, a feature with
high business value and high technical risk, such as an interface, would go into
an early iteration to allow more time for uncertainty. On the other hand, a fea
ture with low business value and high technical uncertainty might be moved to
the last iteration or removed from the project all together.

■	 Risk is managed via demonstrations throughout the project. The customer gets
a feel for how requirements are translated into an application before the project
is complete. This provides a window for adapting and hitting the final target.

■	 Risk is managed on a daily basis by building and integrating the latest code.
This process allows the team and the customer to validate the status of the latest
build.

■	 Deployment risk is also managed by gathering maintenance and deployment
concerns as early as possible. This starts early in the planning phase and contin
ues throughout development.

■	 Risk is managed via team review of potential features. During the feature-card
exercise, representatives from all areas can raise risks and concerns with pro
posed features. These concerns are noted with the feature information and
sometimes can lead to a feature not being pursued.

3.1.9 Delivering the project needed at the end

Jim Highsmith, one of the founding members of the Agile Alliance, taught Adaptive
Software Development a few years before the Agile Manifesto was created. One of
Jim’s adaptive principles is, “Deliver the project needed at the end, not the one
requested at the beginning.”

 This idea is a foundational piece of agile software development. Jim knew the
world wasn’t static during the project lifecycle; therefore the lifecycle should
support changes that happen during the project. This includes identifying new
requirements, discovering technical risks, and identifying potential changes in the
business environment.

3.1.10 Achieving the right level of project structure

Many companies have created a formal Project Management or Software Develop
ment Lifecycle (PMLC/SDLC) to support their projects. These lifecycles are collections
of processes that every project must follow. By establishing required processes, compa
nies eliminate variation between projects and provided a safety net for inexperienced
Licensed to Abner Lopez <ihackn3wton@gmail.com>

31 What areas will you become more agile in?

project teams and project managers. If you don’t know what to do next, you just look
at the lifecycle documentation to determine your next step.

 This approach is beneficial when you have inexperienced employees. A standardized
process defines roles, provides common tools, and offers gateways to evaluate status.

 If your employees are more experienced, this formal methodology has drawbacks.
The team will notice that every step or process isn’t needed for their specific project.
They will frequently find themselves doing compliance work that adds no value,
except to be in compliance.

 The agile process described in this book approaches the issue differently. We
suggest a standardized methodology, but the required processes are minimal and are
of value to every project. Your team chooses the majority of the processes to use at
the start of the project. The team also revisits their process and documentation
options as the project proceeds, to see if they need to add or remove a process
or document.

 To illustrate this idea, let’s look at an example from Acme Media after the company
has outlined a new, more agile process (see table 3.1).

 Acme Media has projects that last from 1 week to 6 months. The company doesn’t
require the teams for one-week projects to create iteration plans or to do a cost-bene
fit analysis every time.

Table 3.1 Required and optional processes and documentation

Project worksheet

Operational worksheet

Feature-card exercise (cards optional)

Retrospective discussion

Required for all projects Optional processes and documents

Elevator statement

Documented answers to feasibility discussion guide questions

Feature-card document (possibly created using only index cards)

User scenarios

Prototypes and/or mockups

Iteration plan

Maintenance plan

Evolutionary requirements

Additional documentation as required by the team/project

Test plan

Detailed schedule

Launch plan

Action items from project retrospective

Test Driven Development (TDD)

Agile estimating

Daily stand-up meeting

Demonstrations
Licensed to Abner Lopez <ihackn3wton@gmail.com>

32 CHAPTER 3 Are you ready for agile?
 These one-week projects are frequently driven by a need to increase readership or to
provide support in the aftermath of a major news event such as an election. Executive
approval is almost immediate, and the projects use team members already assigned to
the website. These teams only need the processes and documents outlined in the first
column of table 3.1.

 Conversely, Acme Media pursues some major projects that require funding, syn
chronization with third parties, and identification of milestones. In these instances,
the project teams review the items in the second column of table 3.1 and decide which
ones to use in addition to the required ones in the first column.

 In this way, agile provides the correct amount of structure for the project. Time
isn’t wasted on processes that don’t add value, and teams can scale their processes
mid-project if needed.

 Now that you understand the goals of an agile process, you need to know the best
way to obtain them. You can do this by selecting a prepackaged agile process, creating
a process from scratch, or a combination of the two. Let’s evaluate each option.

3.2 The different flavors of agile
Many packaged methods are available for agile. For our purposes, packaged will mean
a framework with a common set of practices. In this section, we’ll discuss two of the
most popular packages in use today: Scrum and XP. According to VersionOne’s 2008
“State of Agile Development” survey, 77 percent of the respondents said they use
Scrum, XP, or a Scrum/XP hybrid. Each of these packages has its own unique charac
teristics, strengths, and weaknesses. Let’s examine each package.

3.2.1 Scrum

The Scrum process begins by reviewing a product backlog with the product owner. You
identify the highest-priority features and then estimate how many will fit into a sprint.
These features then compose the sprint backlog. A sprint is a predefined period of time,
usually 2 to 4 weeks, during which the team analyzes, designs, constructs, tests, and doc
uments the selected features. Figure 3.2 shows an overview of the process.

Figure 3.2 A high-level overview
of the Scrum process (graphic
provided courtesy of Ken Schwaber
and Control Chaos)
Licensed to Abner Lopez <ihackn3wton@gmail.com>

33 The different flavors of agile

The team holds a daily status meeting, referred to as the daily Scrum, to review feature
status. Individual team members answer these three questions:

■	 What have you accomplished since our last meeting?
■	 What will you work on today?
■	 Are you encountering any impediments or roadblocks in completing your

work?

When a sprint is completed, the features are demonstrated to the customer, and the
team and the customer decide whether additional work is needed or if the sprint work
is approved to be released to a beta or production environment. Each sprint is fol
lowed by a retrospective during which the team lists items that went well or poorly;
action plans are documented to keep the successes going and to improve the areas
that performed poorly.

Some of the characteristics of Scrum are as follows:

■	 Discipline—Scrum is strict about time-boxing activities, compiling code daily,
and team members being punctual and responsible.

■	 Three major roles —Scrum teams have a ScrumMaster, a product owner, and team
members.

■	 Quality—Features are expected to be totally complete and deployable at the
end of a sprint.

Scrum has a number of strengths:

■	 Prioritized delivery—Features are delivered in a sequence that ties to business value.
■	 Non-prescriptive on practices performed during a sprint —This is demonstrated by

the fact that a Scrum/XP hybrid is the second most popular agile methodol
ogy in use. Many teams pull their detailed practices from XP while using the
Scrum framework.

■	 Demonstrated success across the software industry —Scrum has been successful in
multiple environments.

■	 Status transparency —The daily meetings expose the project status.
■	 Team accountability —Everyone signs off on the work that will be pursued during

the sprint.
■	 Continuous delivery—Scrum delivers product features (commercial software or

web portals) continuously.

Scrum also has some weaknesses:

■	 Scrum doesn’t want specialists. It may be difficult to quickly convert an existing
team from a group of specialists to a group where anyone can perform any task.

■	 A Scrum team can’t be successful without a strong ScrumMaster, which makes
the process highly dependent on one individual.

■	 Because Scrum is mainly a framework, the team still needs to identify the prac
tices and methods to use within the framework.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

34 CHAPTER 3 Are you ready for agile?

Scrum is incredibly popular today—it’s almost become synonymous with the term agile
development. Scrum provides a great, repeatable process that is well suited for product
development and steady-state release management. In addition, a plethora of books,
consultants, and other resources are available for those who pursue Scrum.

 Scrum may be more difficult to use with teams that do one-off projects versus
steady-state releases, or if a team has highly specialized resources and skill sets. In
addition, the Scrum framework still needs agile practices inserted to support a com
plete development lifecycle.

3.2.2 Extreme Programming

Similar to Scrum, XP starts the process by creating a backlog of work to perform dur
ing a sprint/iteration. XP creates the backlog by working with customers and creating
user stories. In parallel with this work, the team performs an architectural spike, dur
ing which they experiment with the features to envision the initial architecture. XP
classifies this work as the exploration phase.

 The planning phase follows exploration. This phase focuses on identifying the most
critical user stories and estimating when they can be implemented. Tasks are defined
for each feature, to aid with estimating complexity. The team outlines an overall
release schedule, with an understanding that a high level of uncertainty exists until
the work begins. A release will have one to many iterations, which are typically 2- to 4
week construction windows.

 When an iteration begins, the specific plan for the iteration is revisited. The team
adds any new user stories and tasks that have been discovered since the overall release
was outlined.

XP integrates customer testing into the development iteration. The customer is
asked to identify the acceptance tests, and the team works to automate these tests so
they can be run throughout the iteration.

 The planning phase is followed by the productionizing phase, during which the code
is certified for release. Certified means the code passes all customer tests plus nonfunc
tional requirements such as load testing, service-level requirements, and response-
time requirements. You can see an overview of XP in figure 3.3.

Figure 3.3 The
Extreme Programming
(XP) lifecycle (graphic
provided with permis
sion from Scott Ambler,
based on the writings of
Don Wells and the first
edition of Kent Beck’s
XP Explained)
Licensed to Abner Lopez <ihackn3wton@gmail.com>

35 Create your own flavor to become agile within your constraints

Some of the characteristics of XP are as follows:

■	 Specific practice—Unlike Scrum, XP is specific about the practices that should be
used during a software project. These practices include pair programming,
TDD, continuous integration, refactoring, and collective code ownership.

■	 Modeling—XP teams frequently use modeling to better understand the tasks
and architecture needed to support a user story.

■	 Simplicity—Teams perform the minimum work needed to meet requirements.
■	 Automation—Unit and functional tests are automated.
■	 Quality through testing —Features are tested constantly, and developers check

each other’s code via pair programming.

These are some of XP’s strengths :

■	 Customer-focused (it’s all about user stories)
■	 Quality via frequent testing
■	 Constant focus on identifying and delivering the critical user stories
■	 High visibility on project status
■	 Great support for volatile requirements

It also has weaknesses:

■	 Need for team maturity—Practices such as pair programming and TDD require
responsible developers, and they aren’t always easy to obtain.

■	 Dependency on testing—If developers know that significant testing will take place
downstream, they may be less than diligent when they’re creating designs.

■	 Scalability—XP may not work well for large projects.
■	 Dependency on team member co-location—The team usually has a team room.

XP supports many of the critical goals of an agile process, such as dealing with volatile
requirements and delivering prioritized, working software as soon as possible. XP also
supports the principle of just enough, keeping with the lean philosophy of minimiz-
ing waste.

XP has sometimes been criticized for its lack of formality in system documentation
and system design. In recent years this has changed, and XP teams now create the doc
umentation needed to support a project’s customers.

3.3	 Create your own flavor to become agile
within your constraints
As we discussed in chapter 1, VersionOne’s 2007 “State of Agile Development” survey
validated the benefits of using agile. If the survey is accurate, then should every com
pany migrate to agile methods tomorrow?

 We’re huge proponents of agile, but we need to tell you a few things that the sur
veys don’t reveal. Here are some questions that would bring additional perspective to
VersionOne’s findings.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

36	 CHAPTER 3 Are you ready for agile?
■	 How difficult was it to convert to an agile development process?
■	 How was your conversion initiated? Did the idea originate with executive man

agement or from within the development team?
■	 Have your employees bought into the process, or was it forced on them?
■	 What are you doing to ensure that your development process is viable for the

future?
■	 What did you do to make agile work within the realities of your environment?

We believe 100 percent of the survey respondents would say that moving to agile was a
lot of work. We think they would tell you that to be successful, you need your project
team to buy into the process; and that management requires time to learn how to pro
vide value in an agile environment.

 This discussion reminds us of a popular commercial from our childhood. When we
were kids, we ate Jiffy Pop popcorn. Jiffy Pop ran a commercial for many years that stated,
“Jiffy Pop: it’s as much fun to make as it is to eat!”

 After you establish an agile culture and life-

cycle, it’s “fun to eat” (as illustrated in fig-

ure 3.4), and you’ll do a better job of delivering

projects. But creating an agile environment is

work. Many companies implement an agile

methodology and then fade back into their pre
vious process because they didn’t cover all the

delicate areas needed to ensure long-term sup
port for agile.

 We’ve spent a lot of time with companies that
have made it to the other side and stayed there.
As this book continues, we’ll show you how com-

Figure 3.4 Is agile development like Jiffy
panies got to be agile with the least amount of 	 Pop popcorn—as much fun to make as it is
pain and sustainable benefits. 	 to eat? Not during the migration phase.

Managers need to learn when to manage Now let’s take a moment to look at the impor
(or not), and team members need to

tance of creating an agile process that supports experiment with their new freedoms. These
the unique characteristics of your environment. cultural changes take work and time.

3.3.1 Your goal: reach the right level of agility for your organization

Many companies try to “shotgun” agile into their organization. They think, “Let’s get
through the migration pain quickly and start obtaining the benefits as soon as possi
ble.” We’ve seen a few cases where this approach makes sense: for example, a project
team that has become so dysfunctional that they’re delivering practically no function
ality or business value. This approach also works well for a start-up company that
hasn’t yet established its development process. But for most companies, you should
allow time for the process to “bake.”

 This is why we suggest an iterative approach for bringing agile into an organiza
tion. An iterative approach allows you to see how well your employees are adapting to
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Create your own flavor to become agile within your constraints	 37

the change. It also lets you learn what works and what doesn’t in your environment. In
effect, it allows you to reach the right level of agility for your organization.

 Part of your iterative approach will include a process for maintaining the method
ology. We suggest establishing a core team to support this maintenance. A core team is
composed of employees from all aspects of the development process. They play a
huge part in establishing your custom methodology and then settle into a mainte
nance mode with the goal of constantly adapting to your environment. The core team
is covered in detail in chapter 6.

 Next, you need to choose the best way to iteratively create a methodology at your
company. Should you select a packaged method, such as Scrum or XP? Or should you
create a custom or hybrid process?
CUSTOM PROCESS OR PACKAGED METHOD?

In order to be successful, you should customize your agile process. For many years,
consultants and others have said that you must embrace agile completely or not at all.

 In 2006, we witnessed a shift in this attitude. Highly respected folks such as Kent
Beck (the founder of XP) and Steve McConnell (the writer of Code Complete) now
endorse customization. Kent Beck noted the following in an interview with InfoQ
(InfoQ.com is an independent online community focused on change and innovation
in enterprise software development) in 2006:

Failure at an organizational level seems to come from the inability to customize processes

and make them their own. Trying to apply someone else’s template to your organization

directly doesn’t work well. It leaves out too many important details of the previous

successes and ignores your company’s specific situation. Rubber-stamping agile processes

isn’t agile. The value of having a principle-based process is that you can apply the

principles for an individualized process for your situation and, as an extra bonus, one

that has been designed to adapt from your learning as you adopt changes into your

organization. It’s always “custom.”

Kent’s quote is comforting to us because it supports our personal experiences. Custom
means picking and choosing the agile practices that best support your environment.
Custom means you shouldn’t use a pure packaged methodology off the shelf, such as
Scrum or XP. You can start with one of these methods as a basis for your process, but
you should modify it to obtain the best results for your company.

 If we revisit VersionOne’s 2008 survey, we see that 14 percent of the people who
responded are using a hybrid process based on Scrum and XP. The hybrid model is
closer to what we’ll suggest for you. To be specific, here are the steps we’ll walk you
through as the book continues:

1	 Assess your organization to determine where you should begin adding agility.
2	 Obtain executive support for the move to a more agile process. You can use the

readiness assessment in chapter 4 to quantify the value of bringing in agile and
identify the risks you must manage during migration.

3	 Get the development team involved in the migration process to ensure buy-in.
You do this by establishing a core team.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

http:InfoQ.com

38	 CHAPTER 3 Are you ready for agile?

4 Identify a coach or consultant to help you with your migration. They will train
the core team on agile and help you with other adoption aspects.

5 Develop a clear understanding of your current processes by documenting
them.

6	 Review your current process, and look for areas that can be shifted to more
agile methods. Focus on areas with the most potential for improvement and the
most value to the customer and your organization. The readiness assessment
will also help with this task.

7 Outline a custom process based on the findings in step 6.

8 Try the new process on a pilot project.

9 Review the findings after the pilot, make changes, and continue to scale out

your new methodology.

As this book continues, our case study, Acme Media, will represent your company.
We’ll take Acme through these nine steps and show you how the company iteratively
creates and tests a custom process. We’ll also show you how Acme Media takes its own
constraints into account with the new methodology.

 Before we jump into the case study, let’s spend a moment looking at the character
istics that make it easier to adopt agile and the characteristics that make agile adop
tion more challenging.

3.3.2 Characteristics that make agile easier to adopt

As we stated earlier in this chapter, agile principles can be applied in any environ
ment, but some environmental characteristics influence how easy the principles are to
adopt. Let’s look at these characteristics.
URGENCY TO DELIVER

Agile works best in an urgent environment. It provides tools to prioritize features
quickly and determine how much scope to pursue within the constraints of a critical
timeline. If you have urgency due to a competitive market, compliance deadlines, or a
large backlog of project requests, agile provides methods for quicker delivery.
EVOLVING OR VOLATILE REQUIREMENTS

One descriptor of agile could be just enough. “Give me just enough requirements to
start a design.” “Give me just enough design to start my code.” “Give me just enough
code to demonstrate some level of value to the customer.” If you don’t have all the
requirements, you can still get started with an agile project. If you complete an itera
tion and the customer wants to change the requirements, you can adapt and still meet
the objectives. Managing changing requirements still takes effort in an agile environ
ment, but you don’t have to fight the project framework. The framework is designed
to support uncertainty.
CUSTOMER AVAILABILITY

One Agile Manifesto principle states, “Business people and developers must work
together daily throughout the project.” In our experience, these groups don’t have to
Licensed to Abner Lopez <ihackn3wton@gmail.com>

39 Create your own flavor to become agile within your constraints

work together every day throughout a project cycle, but there are definite times when
the customer must be available. In theory, a project must not be urgent if the cus
tomer can’t make time to clarify requirements or review functionality. The customer
can have a proxy, such as a product manager; but someone needs to be available every
day to represent the customer’s vision.
CONSISTENT RESOURCES

Part of the power of agile is a level of familiarity within the team and a consistent
understanding of the processes they use. Agile teams and processes get better over
time. If project team members are new to each other, they must learn processes
together while at the same time trying to complete the project. Agile works best with a
core group of people who work together on continuous projects. Agile isn’t a good
methodology to use with a team that has never worked together before, unless you
have long-term plans to keep them together.
CO-LOCATED RESOURCES

Agile promotes face-to-face communication and common understanding. One of the
best ways to support this principle is to put your team members face to face. Co-location
is an amazing tool. Your team can get out of email hell, and their mutual understanding
of the project will increase.

 One of the best setups we have seen is at a Fortune 500 company we visited. All 10
of the project team members are in an area approximately 25 feet by 25 feet. The
cubicles have half-walls that provided a level of privacy when people are sitting but let
them easily see the rest of the team and communicate when they stand up. This setup
provides the privacy the developers enjoy when they’re deep into a coding session but
also lets team members stand up to converse with each other at any time without hav
ing to go to each others’ cubicles. Team members can also walk a few feet and reach
common areas where they can whiteboard a design or have a quick caucus.
THE TEAM IS A TEAM

In larger companies, a project team may be constructed of team members from a
shared resource pool. For example, the QA (Quality Assurance) lead for a project may
be from the QA shared resources pool. If such team members view themselves as
resources on loan, and not as team members dedicated to the project, the result can
be functional silos.

When silos exist, team members are more concerned about the welfare of their
team or area than they are with the livelihood of the project. This mentality doesn’t
bode well for agile development and leads to customer neglect. The team needs to
bond as a unified group toward the goals of the project. Roles are assigned, but one of
the objectives of agile is for the team to working collectively.

 Working collectively can also be applied to team member roles. A tester can point
out a possible code improvement. A developer can suggest a feature enhancement. In
general, team members speak out—they don’t limit their roles to their titles.

 Management should ensure that individual goals include how well employees sup
port the common good of the project.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

40 CHAPTER 3 Are you ready for agile?

3.3.3 Roadblocks that others have overcome

Now that you know the characteristics that make agile easier to implement, let’s look
at a few that make agile more difficult to move to.
LACK OF AGILE KNOWLEDGE

Your first challenge will be finding expertise to help you with your migration. If
you’re fortunate, you’ll have some level of agile experience within your company;
but this probably won’t be true to the point that you can coach yourself through an
agile migration.

 We’ll help you with this issue by showing you how often Acme Media requested
assistance, from initial training to issues encountered along the way.
LARGE PROJECT TEAMS

Agile is compromised as team size increases. Major principles such as face-to-face com
munication and common understanding require additional effort to maintain their
effectiveness as a team grows.

 Larger teams require additional overhead to ensure that information is shared
consistently across all groups. Scrum teams frequently use the term scrum of scrums,
meaning a representative from each team Scrum attends a master Scrum meeting to
share information with other groups.

 Jeff Bezos of Amazon.com believes that the most productive and innovative teams
can be “fed with two pizzas.” Jeff shared this thought with his senior managers at an
offsite retreat. He envisioned a company culture of small teams that could work inde
pendently, which would lead to more innovative products. Since that time, the Ama
zon “pizza teams” have created some of the most popular features on the site (Fast
Company, 2004).

 If your team has an average appetite, you can convert Jeff’s concept into a team of
five to seven people. This is a nice-size group for communication and agility. If five to
seven is perfect, then what is the maximum size for a team to remain agile? On the
high side, we believe you can have a team of 15 people without major impact on your
agility. When you have more than 15, communication needs to become more formal,
which slows the team.

 There are ways to make agile work with larger or distributed teams, but you’ll sacri
fice some level of agility.
DISTRIBUTED DEVELOPMENT

Related to large teams, many companies use distributed development. Frequently, the
distributed development is performed by offshore resources.

 Distributed development implies that the team is large in size and that communi
cation methods must be scaled to get information to all involved. In addition, you may
have issues with time zone differences, language, and code integration into a common
environment. Some offshore companies support and advertise the use of agile meth
odologies, but their location may make it challenging to support the core principles.

 We’ve seen agile teams successfully use offshore resources for commodity or
repeatable-type work, such as regression testing, smoke testing, and cookie-cutter
Licensed to Abner Lopez <ihackn3wton@gmail.com>

http:Amazon.com

41 Create your own flavor to become agile within your constraints

development (for example, providing an offshore group with standardized tools to
create automated workflows).
FIXED-BID CONTRACT WORK

Fixed-bid contract work goes against most of the agile principles. The customer isn’t a
partner, evolving requirements are a no-no, and adapting is usually called scope creep.
We used to believe that fixed-bid work couldn’t be performed using an agile process,
but recently we’ve met several managers who have customized their process to allow
the inner workings to be agile while customer interaction remained contract oriented.
AN IMMATURE OR ONE-TIME TEAM

If you have a team that will work together for only one project, they’re usually better
served by using a plan-driven methodology unless they have previous exposure to agile.
If the team will work through multiple projects or releases, you can introduce agile tech
niques, and the team can migrate to a full agile methodology as their knowledge matures.
GOING TOO FAST

“Hey, it’s agile. We don’t need to do any planning to convert to it, just start thinking
agile!” A lot of folks take this approach when migrating to agile. But if you go too fast,
you don’t give your company enough time to digest the concepts. When this happens,
you may experience issues with common understanding and terminology.

 Don’t let this happen to you. You need to plan before migrating to agile, and this
book will show you how to do it with an awareness, buy-in, ownership approach. If you
take your time, the methodology will stick, and you’ll minimize the risk of failure.
You’ll learn more about ownership in chapter 5.
TEAM WITH SPECIALIZED SKILL SETS

An organization’s structure can create artificial barriers between teams, and so can
skill sets. If your team has specialized skill sets, it’s hard to be agile when the work mix
doesn’t correlate well to the available resource types. Some tasks always have to be
done by certain individuals, which doesn’t help the team bond or unite when pursu
ing the completion of a feature.

 Specialized skill sets also place an additional constraint on team capacity. Imagine
that your team has only one person who can perform user-interface design, and the
work assigned to an iteration is 80 percent user-interface work. Other team members
can look for work to do outside of the iteration, but delivery will be slow due to the
one-person constraint.

 Teams that are just becoming agile usually have members with specialized roles.
You can overcome this constraint by cross training over time and rewarding employees
for obtaining and using additional skills.
AVOIDING CUSTOMIZATION

Many people get hung up on the questions, “Are we doing it right? Are we doing it in
an agile fashion? Are we following a pure agile process?”

 When teams ask us these questions, we tell them the answers aren’t important. All
we want to know is this: Have you created a development process that provides the
most benefit to your company?
Licensed to Abner Lopez <ihackn3wton@gmail.com>

42	 CHAPTER 3 Are you ready for agile?

 This same mentality has managers trying to find a perfect agile methodology and
insert it directly into their company. As we discussed earlier, you can start with a pack
aged agile process, but you need to look at the realities of your company and adjust
accordingly. Acme Media will look at a generic agile process and see how it applies to
their realities; then, they’ll modify the process to fit their environment.

3.4 Key points to remember
The key points to remember from this chapter are as follows:

■	 Moving to agile isn’t a one-time event. You can and will add agility over time.
■	 The goals of an agile process tie directly to company success.
■	 You can start with a prepackaged agile process such as Scrum and then modify

and enrich the process to support the realities of your environment.
■	 Some of your existing company characteristics will make it easier to move to

agile. This is especially true if you have volatile requirements or urgency to
deliver frequently.

■	 Every migration to agile encounters roadblocks. We’ll identify the most com
mon roadblocks and show you how others have addressed them.

■	 Every migration to agile is unique, but we believe our nine-step framework will
work for most companies and provide the best chance of moving to and sustain
ing an agile process.

3.5 Looking ahead
In this chapter, you’ve learned that the question isn’t whether you’re ready to become
agile, but rather what level of agility you’re ready for today. In chapter 4, we’ll help you
answer this question by discussing the use of assessment tools to determine which agile
practices you can initially adopt with minimum risk. Assessing your current potential is
also important for gaining executive support, which we’ll cover in chapter 5.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

The fitness test:
all about

 readiness assessments
Imagine the average Joe hears about a marathon that is being run for a great cause.
He gets motivated and decides to participate. Joe thinks that running a marathon is
no big deal and does absolutely no preparation. He starts the marathon and gets
off to a great start. But after half an hour or so, Joe’s body can’t take it. He doesn’t
have what it takes to run the marathon.

 Similarly, organizations may hear about agile and its benefits and get motivated
to adopt agile practices. Although becoming agile is about adopting a new mindset
toward software development, many organizations think that adopting agile is only
about embracing some new practices, and that’s it. Hence, those organizations do
no preparation for the transition to agile. The danger is that those organizations
and/or teams may not have what it takes to adopt certain agile practices.
43

Licensed to Abner Lopez <ihackn3wton@gmail.com>

44	 CHAPTER 4 The fitness test: all about readiness assessments

 Just as people have to go through fitness training before they can run a marathon,
organizations and teams need to go through an agile-readiness test before they begin
their journey to agile. This assessment shows organizations if they have what it takes
for the transition and which areas they need to improve to prepare for the transition.

 In this chapter, we’ll talk about the importance of readiness assessments and show
how you can conduct a quick agile-readiness assessment for your team or organization.

4.1 The importance of readiness assessments
The idea of conducting an assessment before the adoption process begins isn’t new.
In an article titled “Management challenges to implementing agile processes in tradi
tional development organizations,” the first suggestion Barry Boehm and Richard
Turner have for organizations is to incorporate preparation up front. They urge orga
nizations to spend time and effort conducting a significant up-front analysis to iden
tify any mismatches between the organization and the set of agile practices it wants to
adopt. Also, Ceschi et al point out in another journal article titled “Project Manage
ment in Plan-Based and Agile Companies” that one of the biggest challenges to intro
ducing agile methods in an organization is the lack of a detailed preliminary
evaluation of the challenges this introduction may cause.

 Although it’s important to know whether an organization is ready to handle the
adoption of certain agile practices before it starts adopting them, all too often the adop
tion efforts overlook this pre-adoption assessment phase or don’t spend enough time
and effort on it. Many organizations and teams start the transformation initiative to
agile without knowing whether they’re ready. Challenges begin to emerge, and hard
ships follow. Unfortunately, the most common reaction is to try harder to adopt the
practice (which translates to additional cost and effort), to abandon the practice and
deem it unsuitable, or, worse, to declare agility unsuitable.

4.2 Reducing the risks of agile adoption using assessments
Conducting readiness assessments can help identify and reduce the risks associated
with the adoption process, because you have better insight into whether adopting the
practice will succeed or fail before you begin the transition phase.

 For example, collaborative planning is a commonly adopted agile practice. It calls
for all stakeholders to be involved with the planning process, not only the project
manager. This seems like a pretty simple practice, so it’s common for organizations to
mandate it without any readiness assessment. But in reality, successfully adopting this
practice relies on four organizational characteristics:

■	 Management style —Before you begin using collaborative planning, you need to
find out whether a collaborative or a command-control relationship exists
between managers and the employees. The management style is an indication
of whether management trusts the developers and vice versa. If management
doesn’t trust the employees’ opinions, then collaborative planning may result
in many arguments.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

45 Reducing the risks of agile adoption using assessments

■	 Manager buy-in —It’s great to know whether management supports collaborative
planning. Many managers prefer to maintain control over the planning process
and hence are apprehensive during collaborative planning sessions.

■	 Power distance —Power distance is a characteristic related to organizational and
national cultures. By measuring power distance, you can find out whether peo
ple are intimidated by their managers and afraid to participate and be honest in
their presence. If a big power distance exists between managers and employees,
then having everyone sit around a table to plan together may not be as effective
as you’d wish.

■	 Developer buy-in —To reap the benefits of collaborative planning, the entire team
(including the developers) should be willing to be part of a collaborative plan
ning environment. As obvious as this may seem, many developers don’t see any
benefit in being part of the planning process, and therefore even if collabora
tive planning is mandated, they won’t be active participants.

These are some of the organizational characteristics that you should assess before you
attempt to adopt an agile practice like collaborative planning. The absence of some or
all of these characteristics may result in a failed attempt to adopt the practice.

 The problem is that when a change initiative fails for any reason, a number of dan
gerous, negative consequences may result:

■	 Decreased team productivity
■	 Unmotivated team
■	 Increased team resistance to future change initiatives
■	 Jeopardizing of management’s credibility (if the change was mandated from

management)

If you conduct a readiness assessment, you’ll recognize whether the organization lacks
some of the essential characteristics needed to support the agile practice you’re con
sidering. For example, the assessment results outlined in table 4.1 indicate that the
current management style is a risk if this organization tried to adopt collaborative
planning. Note that this result came from an online assessment tool.

Table 4.1 	 The results of a sample agile-readiness assessment. The results show the suitability of each
of the characteristics needed to successfully adopt collaborative planning.

Characteristic Suitability result

Management style
Whether a collaborative or a command-control relation exists between managers
and subordinates. The management style indicates whether management trusts
the developers and vice versa.

Partially suitable
(30.5%)

Manager buy-in
Whether management supports or resists having a collaborative environment.

Largely suitable
(72.5%)
Licensed to Abner Lopez <ihackn3wton@gmail.com>

46 CHAPTER 4 The fitness test: all about readiness assessments

Table 4.1 The results of a sample agile-readiness assessment. The results show the suitability of each

of the characteristics needed to successfully adopt collaborative planning. (continued)

Characteristic Suitability result

Power distance Largely suitable
Whether people are intimidated by / afraid to participate and be honest in the pres- (60.5%)
ence of their managers.

Developer buy-in Fully suitable
Whether the developers are willing to plan in a collaborative environment. (92.5%)

In the case of this example, now that you know the risk up front, you can attempt to
mitigate that risk by conducting training related to collaborative management style
versus command-and-control management styles. Your goal is to ensure, before you
begin the transition, that the team possesses the necessary characteristics to success
fully adopt the practice.

4.3 Increasing productivity during transitions
The Virginia Satir change curve (figure 4.1) illustrates how change initiatives cause
organizations to go through an intense period of resistance and chaos and how these

Figure 4.1 The Virginia Satir change curve depicted in figure 4.1a shows the relationship between
productivity and time during a transition. The curve suggests that after an initial gain, productivity usually
decreases during the resistance and chaos phases of a transition. Figure 4.1b shows how the curve
looks if the chaos phase is prolonged, and figure 4.1c shows how the curve looks with a shortened
chaos phase.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Getting executive buy-in for agile adoption using readiness assessments	 47

periods cause a drop in performance. (Virginia Satir is a family therapist who created
a change model to help families understand and deal with change.) No wonder exec
utives are concerned about the risks associated with any change initiative. They want
to ensure that the transition goes as smoothly as possible. They also want to find ways
to shorten or eliminate the resistance and chaos phase (figure 4.1c). Financial and
productivity losses are usually incurred when the period of resistance and chaos is pro
longed (figure 4.1b).

 It’s important to realize that if the organization isn’t ready to successfully adopt an
agile practice, it will have to go through some preparation efforts one way or another.
This preparation should take place before the transition starts; but if for some reason
that doesn’t happen, the preparation must occur sometime during the actual transi
tion—you can’t just skip it.

 Change models like Virginia Satir’s show that once you start a change initiative, a
drop in productivity is highly probable due to the period of resistance and chaos. Your
objective is to shorten this phase by completing all your preparation efforts before the
transition starts, not during the transition.

 Figure 4.2 shows two curves overlaid on each other. The lower curve shows how an
adoption would look if you didn’t conduct a readiness assessment—you’d start right
away, but the resistance and chaos phase would be much longer because no preparation
took place up front. The downside of this model is that the organization spends a long,
intense time with reduced productivity; not many organizations can handle this. On the
other hand, the upper curve illustrates a
transition that included a readiness assess
ment. The transition didn’t start right away;
the assessment identified some shortcom
ings that were fixed before the transition
began. After the transition started, the resis
tance and chaos phase was dramatically
shorter, and the organization spent the least
time possible with decreased productivity.

 You can increase productivity during the

transition to agile by conducting a compre
hensive readiness assessment before you

start. This way, all preparation efforts can be

identified early on, before the transition

into resistance and chaos.

4.4	 Getting executive buy-in for agile adoption
using readiness assessments
Many managers hesitate to begin major change initiatives like becoming agile because
they must objectively identify the risks involved with the transition. By conducting a
comprehensive readiness assessment, you can prove to management that the organi
zation possesses the necessary characteristics for a successful transition to agile. If your

Figure 4.2 A Virginia Satir change curve with a
shortened chaos phase overlaid on a change
curve with a prolonged chaos phase
Licensed to Abner Lopez <ihackn3wton@gmail.com>

48 CHAPTER 4 The fitness test: all about readiness assessments

organization isn’t ready for certain agile practices, the assessment will help pinpoint
exactly which characteristics need to be enhanced. This information will help man
agement make a more informed decision about whether the organization should start
the agile initiative.

 Figure 4.3 shows part of a complete readiness assessment report from an online
readiness assessment tool, created by Ahmed, named Dr. Agile (www.dragile.com). As
you can see, the first column lists different agile practices. To the right of each prac
tice are the organizational characteristics that are assessed; the final columns show the
assessment results. A report like this is beneficial and insightful to executives because
it shows them the amount of effort needed to adopt agile in the organization. Many
times, executives are reluctant to start an agile adoption initiative because there are
too many unknowns. One of these important unknowns is whether the organization is
ready. Readiness assessments give executives visibility into the amount of effort (which
they translate into cost) required for the adoption process.

 When executives looks at this report and sees that their organization has all the
necessary characteristics for a successful adoption, they’re more inclined to support
and even champion the initiative. If the organization needs to enhance some of the
characteristics required for the adoption of agile practices, then executives have the
option to either undertake the necessary steps to improve these characteristics or go
ahead with the adoption of those practices the organization is currently ready for.

 We believe that readiness assessments provide executives with the right amount of
information, visibility, and insights to make them support the agile transition initia
tive. Executive support is covered in more detail in chapter 5.

Figure 4.3 Part of a readiness-assessment report generated by Dr. Agile (www.dragile.com). The report
shows each agile practice (far-left column) and the degree to which its supporting characteristics are
achieved in the organization (far-right columns).
Licensed to Abner Lopez <ihackn3wton@gmail.com>

www.dragile.com
www.dragile.com

Conducting readiness assessments	 49

4.5 Conducting readiness assessments
Now that we’ve highlighted the importance of conducting agile readiness assessments,
the next question is, how do you conduct such an assessment? You can set up an assess
ment many ways, but our goal has been to create one that is flexible and extensible.

 We identified a set of 20 or so common agile practices. Then we created a readi
ness-assessment table for each of these practices. By creating a separate readiness-
assessment table for each practice, we’ve given people the flexibility to assess their
team/organization for one particular practice without having to go through the
assessment questions for all the other practices; and we’ve made the assessment exten
sible, because new practices can easily be added to the assessment by creating readi
ness-assessment tables for them. The next section will show you the readiness-
assessment table for an agile practice and take you through a step-by-step description
of how to use the table to determine whether your team or organization is ready to
adopt this practice.

 Whether someone suggests a practice for you to adopt or you read a book (like this
one) that encourages you to adopt certain practices, you can look for the readiness-
assessment tables for those practices and find out whether you possess the necessary
characteristics to successfully adopt them.

4.5.1 Readiness-assessment tables

Let’s imagine that Mike works for a company that uses some agile development meth
ods. His friend Jay works for Acme Media, which uses traditional development meth
ods. Mike and Jay meet one day, and Mike starts talking about this new way of working
called agile. Jay is skeptical, but one practice Mike mentions catches his attention: col
laborative planning. Jay is intrigued by the idea that the whole team is involved in the
planning process. Jay tells Mike that he wants to try this new practice with his team.
Mike is happy that Jay is taking a small step toward agility and tells him to first go buy
a book named Becoming Agile. Mike emphasizes that Jay should do a readiness assess
ment for his team before discussing agile with his boss. Jay buys the book and goes
straight to the readiness-assessment table for collaborative planning (see figure 4.4).

 Before we continue the story, let’s dissect the readiness-assessment table and
understand its layout. The assessment uses two main components: organizational
characteristics and assessment indicators.

Organizational characteristics are the various attributes you need to assess to deter
mine whether a team or organization is ready to adopt a certain agile practice. These
characteristics may be related to a number of different aspects of the organization,
most commonly the following:

■	 Customers—The project’s customers and clients
■	 Builders—The technical staff involved with the development of the project
■	 Managers—The managers or executives overseeing the project and involved

with decision making
Licensed to Abner Lopez <ihackn3wton@gmail.com>

50	 CHAPTER 4 The fitness test: all about readiness assessments
Figure 4.4 The readiness-assessment table for the agile practice of collaborative planning

■	 Tools —The software tools used within the organization or for a certain project
■	 Culture —The overall culture of the people within an organization or the proj

ect team
■	 Project management —The procedures and practices related to managing projects

in the organization
■	 Software process —The activities and artifacts related to the software-development

process in the organization
■	 Physical environment —The physical layout of the organization and the geograph

ical and spatial distribution of its employees

Indicators are the questions you use to assess each organizational characteristic. Indica
tors can be targeted at four different groups in the organizations:

■	 Developers—Team members who are involved in building the actual system.
They usually include developers/coders, architects, and testers.

■	 Managers—Any team members involved with management of the project. This
role is suitable for project managers, team leaders, and any other management
positions in direct relation with the project.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

51 Conducting readiness assessments
■	 Product owners —Team members who are involved with the product’s business
direction. This role is suitable for any team member who is in direct contact
with the customer. Some of the common positions that fall under this role are
business analyst, product manager, product leader, engagement manager, and
project manager (if they’re in contact with the client).

■	 Assessors—People outside the team. Their main role is to observe whether cer
tain process activities and artifacts exist. Common positions that fall under this
role are agile coaches, quality-assurance personnel, process-improvement per
sonnel, and independent observers outside the team.

Figure 4.5 shows where the organizational characteristics and indicators are laid out
in the readiness-assessment table for collaborative planning.

 The top part of the table names the agile practice and briefly describes it. Section
A lists the organizational characteristics. In this example, four characteristics should

Figure 4.5 Dissecting the layout of a readiness-assessment table
Licensed to Abner Lopez <ihackn3wton@gmail.com>

52	 CHAPTER 4 The fitness test: all about readiness assessments

be assessed for collaborative planning (management style, manager buy-in, power dis
tance, and developer buy-in). Each characteristic is accompanied by a brief explana
tion of what you want to discover by assessing it. For example, as mentioned earlier,
you assess power distance to determine whether people are intimidated by their man
agers and afraid to participate and be honest in the presence of those managers.

 In front of each characteristic (section B) are reference codes. These codes refer to
the indicators that are used to assess the organizational characteristic. The first letter
after the underscore in the code denotes whom the indicator is targeted at. If the letter
is an M, then a manager should answer the indicator. The letter D refers to a developer,
C to a customer or product owner, and A to an assessor. The indicators are grouped
depending on this letter. In this example, we have only three indicators for managers
and five for developers; indicators targeted at managers are grouped together (section
C), and indicators targeted at developers are also grouped together (section D). If we
were analyzing an agile practice that had more indicators targeted at assessors, then we
would have a section E (beneath D) that contained those indicators.

 Now, back to our story about Mike and Jay. The next section will show you how Jay
uses the readiness-assessment table to determine the areas in which his team is ready
and those in which it isn’t.

4.5.2 Finding out the results

Jay looks at the readiness assessment table for collaborative planning. He reads
the organizational characteristics, picks a project team, and sends the three questions
that are directed toward the project manager to Wendy. Jay sends the five ques-
tions directed toward developers to Matt (a developer on the team) and Vijay (the
team’s tester).

 Wendy asks Jay what the questions are about, and Jay replies that he wants to try
something new and needs her honest opinion. Wendy answers the questions in no
time and sends them back to Jay. Her answers are in table 4.2.

Table 4.2 	 Wendy’s answers to the questions for the project manager as part of the agile-readiness
assessment

COP_M1

Regardless of your personal preferences, as a manager you actively encourage team work
over individual work

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

COP_M2

You frequently brainstorm with the people you’re managing

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

COP_M3

It’s beneficial to have developers and business people take part in creating the project plan

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

53 Conducting readiness assessments

Vijay and Matt also send back their surveys. Vijay’s answers are shown in table 4.3.

Table 4.3 Vijay’s answers to the questions for developers as part of the agile-readiness assessment

COP_D1

Your manager encourages you to be creative and doesn’t dictate what to do exactly

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

COP_D2

Your manager gives you the authority to make some decisions without referring back to him/her

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

COP_D3

It’s acceptable for you to express disagreement with your manager(s) without fear of their
retribution

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

COP_D4

People’s titles and positions aren’t a great cause of intimidation in the organization

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

COP_D5

You would like to participate in the planning process of the project you work on

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Matt’s answers are shown in table 4.4.

Table 4.4 Matt’s answers to the questions for developers as part of the agile-readiness assessment

COP_D1

Your manager encourages you to be creative and doesn’t dictate what to do exactly

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

COP_D2

Your manager gives you the authority to make some decisions without referring back to him/her

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

COP_D3

It’s acceptable for you to express disagreement with your manager(s) without fear of their retri
bution

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

COP_D4

People’s titles and positions aren’t a great cause of intimidation in the organization

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

COP_D5

You would like to participate in the planning process of the project you work on

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

54	 CHAPTER 4 The fitness test: all about readiness assessments

Jay takes these answers and begins to compute the results of the readiness assessment.
He needs to complete four calculations to determine the final results.
STEP 1: COMPUTE A WEIGHT FOR EACH INDICATOR

The first step is to assign a weight to each indicator. A weight is a fractional value
between 0 and 1 that expresses the indicator’s level of influence on the characteristic
being assessed. The weights of all the indicators belonging to the same characteristic
must sum to 1. Jay assumes that all the indicators have an equal weight, but some indi
cators can be weighted higher than others.

 Jay looks at the first characteristic to be assessed for collaborative planning: man
agement style. As shown earlier in figure 4.4, this characteristic has a total of four indi
cators: two answered by managers and two answered by developers. At this point, Jay
doesn’t care which indicators are answered by whom—all he is interested in is the
total number of indicators required to assess the team’s management style. Jay com
putes the weights as follows (assuming all indicators have an equal influence on the
parent factor):

1 (sum of all weights) / 4 (number of indicators, including developers and managers)
= 0.25 (weight per indicator)

STEP 2: COMPUTE WEIGHED INTERVALS

After Jay computes the weight for each indicator, the next step is to compute the
weighted intervals for each of the indicators. To achieve more accurate assessment
results, each answer represents a range of values, not a fixed number. Table 4.5 shows
the lists of ranges assigned to each answer in the readiness assessment.

Strongly Disagree 0–15%

Tend to Disagree 15–40%

Neither Agree nor Disagree 40–60%

Tend to Agree 60–85%	 Table 4.5 The range of values assigned
to each answer option in the readiness-

Strongly Agree 85–100%

Answer Value range

assessment survey

These ranges can change, depending on the threshold and the answer values the
assessor uses. Table 4.6 shows another set of answers with different value ranges.

Never 0–20%

Rare 20–50%

Seldom 50–80%

Frequently / Usually 80–100%

Answer Value range

Table 4.6 A set of numeric values assigned to
different answer options in the readiness-

Always 85–100%
assessment survey
Licensed to Abner Lopez <ihackn3wton@gmail.com>

55 Conducting readiness assessments

What’s important is to ensure that you have a suitable range for each of the answer val
ues in the assessment.

 Jay starts to compute the weighted intervals for management style. Table 4.7 shows
the answers given to the sample indicators.

Table 4.7 	 Answers provided during the readiness assessment for the Management style
characteristic

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Indicator

COP_M1

COP_M2

COP_D1

COP_D2

0%-15%

1 (Vijay)

15%-40%

1 (Wendy)

1 (Wendy)

1 (Vijay)

1 (Matt)

40%-60% 60%-85%

1 (Matt)

85%-100%

Once you have the answers from the sample indicators, the next step is to multiply the
weight of the indicator by the high and low end of the interval range selected for the
indicator. Because Jay sent the survey to Vijay and Matt, there are two intervals for
each of the developers’ indicators. So, before he multiples the indicator’s weight by
the low and high interval values, Jay adds the low end of Vijay’s interval to the low end
of Matt’s interval and then divides the total by 2. He does the same thing with the high
ends of the intervals. When Jay has the resulting new interval, he multiplies it by the
weights computed in step 1. Table 4.8 shows the answers converted into their range
values and multiplied by the weight.

Table 4.8 	 All the answers provided during the readiness assessment are converted into number ranges
and then multiplied by the weight of each assessment indicator.

Reference
number

Computed
weight

Interval
low end

Interval
high end

Interval low
end × weight

Interval high
end × weight

COP_M1

COP_M2

COP_D1

COP_D2

0.25

0.25

0.25

0.25

15

15

(15 + 60)/2 = 37.5

(0 + 15)/2 = 7.5

40

40

(40 + 85)/2 = 62.5

(15 + 40)/2 = 27.5

15 x 0.25 = 3.75

15 x 0.25 = 3.75

37.5 x 0.25 = 9.4

7.25 x 0.25 = 1.8

40 x 0.25 = 10

40 x 0.25 = 10

62.5 x 0.25 = 15.6

27.5 x 0.25 = 6.8

STEP 3: CALCULATE THE RESULT RANGE

The next step is to compute the result range by calculating the optimistic and pessimistic
range for each characteristic. You do this by summing up all the weighed intervals you
obtained from the previous step. The following shows some of Jay’s calculations:

Pessimistic result = Sum of all the weighted low-end results from step 2

Pessimistic result: 3.7 + 3.7 + 9.4 + 1.8 = 18.6

Licensed to Abner Lopez <ihackn3wton@gmail.com>

56 CHAPTER 4 The fitness test: all about readiness assessments

Optimistic result = Sum of all the weighted high-end results from step 2
Optimistic result: 10 + 10 + 15.6 + 6.8 = 42.4

Result in terms of an interval = 18.6–42.4

Result as a single number = (18.6 + 42.4) / 2 = 30.5

STEP 4: TRANSLATE TO A NOMINAL SCORE

Now Jay has the result range for the management style characteristic: 18.6–42.4. He
also has the result as a single number: 30.5. The last step is to map the result range to
a nominal value.

 Table 4.9 shows a list of the nominal values used for Acme Media’s readiness assess
ment. Although this step is optional, people will be able to read your report more eas
ily if the results are translated to a nominal value. These nominal values are used to
evaluate the suitability of the characteristic to support the successful adoption of the
agile practice. If the result range from step 3 fits within one of these nominal value
intervals, then that suffices; if it doesn’t, then you need to obtain an average and see
where that number lies in the nominal-value intervals.

 Jay’s calculated result for management style falls between the Not suitable and Par
tially suitable values. So he uses the single-number result and finds that management
style barely makes it into the Partially suitable range.

Not suitable 0–30%

Partially suitable 30–60%

Largely suitable 60–75%

Nominal value Value range

Table 4.9 A set of nominal values
Fully suitable 75–100%

and the ranges associated with each

Jay goes on and calculates the results for the rest of the organizational characteristics.
Table 4.10 shows the results of his readiness assessment for collaborative planning.
Looking at the results, it seems that it may be risky to try to adopt the practice right
now; but after some training on collaborative management, the team may be ready.

Characteristic Suitability result

Management style Partially suitable (30.5%)

Manager buy-in Largely suitable (72.5%) Table 4.10 Results illustrating the

Power distance Largely suitable (60.5%)
suitability of each characteristic
needed for the successful adoption

Developer buy-in Fully suitable (92.5%) of the agile practice collaborative
planning

Just as Jay did a quick assessment to see if his team was ready for collaborative plan
ning, we encourage you to do a readiness assessment to determine which practices
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Looking ahead	 57
your team is ready for before you begin your transition to agile. Appendix A contains
the readiness-assessment tables for more than 20 different agile practices.

TIP	 If you like the idea of readiness assessments but feel that they’re too
much work to do, a free agile-readiness assessment tool is available
online. The tool is called Dr. Agile, and you can find it at www.drag
ile.com. Dr. Agile consists of more than 300 different assessment indica
tors that are used to determine your team’s readiness for 40 different
agile practices.

4.6 Key points
The key points from this chapter are as follows:

■	 Readiness assessments are crucial before agile adoption.
■	 Conducting readiness assessments can help you identify and reduce the risks

associated with agile adoption.
■	 You can use assessments as tools to help gain more executive buy-in.
■	 By conducting readiness assessments, you can shorten the period of time dur

ing which a drop in productivity usually occurs with a major change initiative.
■	 Readiness assessment tables for more than 20 different agile practices are

included in appendix A of this book. Feel free to add organizational character
istics or questions to the readiness-assessment tables; the assessment is designed
to be flexible and extensible.

■	 Dr. Agile (www.dragile.com) is an online agile readiness assessment tool that
can help determine your readiness for 40 different practices.

4.7 Looking ahead
In this chapter, we discussed how to assess your ability to adopt agile practices and how
to assess your organization’s overall readiness. This work will help your team prepare
for the migration and also provide valuable data points for your executive team. Man
agement will have early information related to areas where you should be able to pur
sue agile practices and also where agile could be risky.

 Preparing executives for a migration to agile involves more than taking an assess
ment. Your executive team also needs to understand the value of moving to agile and
what their role will be in the migration. We’ll cover these areas in chapter 5.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

www.dragile.com
www.dragile.com
www.dragile.com

The importance
of obtaining

executive support
Ralph Waldo Emerson said, “Nothing great was ever achieved without enthusiasm.”
Those of you with significant business experience know that nothing great was ever
achieved without executive support. This is not true because of executive team
impact; rather, it’s true because executives will stop any initiative they have not
endorsed. They will want details, justification, meetings, and more meetings if they
are caught by surprise on a major initiative—and a migration to agile would be con
sidered a major initiative in most companies.

 If you surprise the executive team, they may still let you go forward, but you’ll
lose energy and momentum if you get sidetracked by not involving them at the
start.
58

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Why should we pursue agile?	 59

 Executives are just like everyone else. They have specific needs, and whenever a
major initiative is suggested, they want to know what the benefits are for the company
and for themselves. In this chapter, we’ll show you how to obtain executive support for
agile by addressing the specific needs of your company’s executives.

 A few things are guaranteed when you meet with your executive team. They will
want answers to the following questions:

■	 Why are you pursuing this initiative?
■	 What is the value of this initiative?
■	 What are the costs?
■	 What are the risks?
■	 What will it do for me?

Let’s look at some potential answers to these questions and determine which ones best
fit your situation.

5.1 Why should we pursue agile?
There are a variety of reasons why you’re pursuing agile and what the value is. Here
are the ones that resonate with executives:

■	 No methodology is in place today. You don’t have any process or framework in
place, and you do projects differently every time with varying results. You’re
pursuing consistent, successful delivery of projects.

■	 Your current methodology is struggling to keep up with the volume and volatility of your
work. You’re looking for a way to deal with projects that need a quick turnaround
but have minimal requirements defined.

■	 Your customers aren’t happy. The customers feel disconnected from the process
and feel their needs aren’t being met. You’re looking for a way to get customers
more involved in the development process and improve their satisfaction.

These items are solid reasons for migrating to agile. But your executives may be con
cerned that the migration is inspired by something else, such as boredom or trying
to become cutting edge. Perhaps team members are looking for a good resume bul
let. There is nothing wrong with migrating to agile to get a resume bullet or to
modernize your processes, but these should be secondary benefits. Migrating to agile
isn’t free, and it should be pursued only if it benefits the company and the bot-
tom line.

 As you saw in chapter 1, this book includes many statistics related to the value of
agile: business satisfaction after migration, cost reduction, and improved quality.
These statistics are good for appeasing employees in your company who try to mea
sure everything in terms of probabilities. You can use these statistics to justify your
migration to agile; and for lack of better words, your backside will be covered if the
migration goes awry.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

60 CHAPTER 5 The importance of obtaining executive support

 But there are several things statistics can’t tell you:

■ How much effort the companies put into their migration
■ How passionate the employees were who brought agile into these companies
■ How much executive support was obtained before the migration began
■ How much training the employees received

In effect, the statistics only prove that agile isn’t a fad, because enough people have
used it that statistics are available about it.

 A migration to agile involves so many intangibles that we would feel guilty if we rec
ommended it based solely on statistics. We recommend agile because we’ve seen it work
in several environments. We recommend agile because we have enough experience to
know the common issues related to software development. We know agile principles
address these issues and increase the probability of successfully delivering projects.

5.2 The cost of migrating
What will you say when the executives ask about cost? In the model proposed, your
main expense will be obtaining a knowledgeable agile coach or consulting company
to come in and train and mentor your team. This usually involves 2 to 10 days of train
ing, with several phone calls and one-off consulting sessions post training. These ser
vices can run from US$2,000 to $50,000, depending on the length of the engagement
and the level of agile expertise already present in your company.

 The other expenses are less tangible. They’re frequently labeled soft expenses
because they don’t add to company outlay but reallocate existing employees. This will
be true of your core team. Over a 3-month period, the core team may spend 10 per
cent of their time working on the new agile methodology. Other costs are relatively
minor, such as printing out materials to support training.

 The last expense of note is slower delivery. You can expect the first few projects to
be slower as the team gets comfortable with the new processes and each other. After
an acclimation period, the team will gel around the process and you will start to
deliver high-priority features sooner than before; but patience is required during the
first few projects.

 An analogy that comes to mind is automobile reviews. We subscribe to magazines
such as Motor Trend, and we frequently read the road-test reviews for new vehicles.
Almost every auto review laments the position of the shifter, the strange angle of the
seats, or the lack of cup holders. The test driver may not feel comfortable in the car
and may even prefer the previous model.

 If you buy the same magazine six months later, it will contain the long-term road-
test results for the same vehicle. Frequently, the extended review will say something
like, “Although initially quirky, the position of the shifter becomes intuitive with long-
term use and simplifies the shifting process. We also found the seating position to be
excellent for long-distance road trips.” Your migration to agile will be similar. After
you get comfortable with how agile works, you’ll find it “becomes intuitive with long-
term use and simplifies the development process.”
Licensed to Abner Lopez <ihackn3wton@gmail.com>

The risks in migrating	 61

 While we’re discussing the cost of migrating to agile, we should also consider the
cost of not migrating. Reflect on the reasons for pursuing agile listed in the previous
section, and imagine what will happen if you don’t address those issues:

■	 Declining customer satisfaction
■	 Loss of key employees
■	 Missed deadlines for compliance-related projects
■	 Lost sales
■	 Lost product opportunities

Dr. Phil frequently asks his guests a question that relates to migrating to agile: “How is
your current process working for you?” This is Dr. Phil’s subtle way of saying that if
what you’re doing today isn’t working for you, you need to make a change.

5.3 The risks in migrating
If you migrate to agile correctly, we believe the risks are minimal. But we’ll list some
that can occur with poor management of the migration process:

■	 You can fail on a critical project if you use it to pilot your agile methodology.
The first few agile projects shouldn’t be mission critical. Begin with projects
that have medium priority, and work your way up to critical ones.

■	 The migration can fail if it’s executive driven and there is disregard for pursu
ing employee buy-in.

■	 Projects may be affected if employees hear about the work the core team is
doing and decide to experiment without guidance. We’ve seen teams take one
agile practice and try it with disregard for how it needs to dovetail into the
upstream and downstream processes.

■	 The migration can lead to cowboy coding and insufficient documentation with
improper training and coaching.

■	 The migration can fail if you obtain too much coaching. You can end up rolling
out a process that the consultant likes versus one that provides value in your
environment.

■	 The migration can fail if you obtain too little coaching. Many teams have
labeled their lifecycle as agile after adding one or two agile practices. In these
instances, the improvements are marginal, and a true migration doesn’t occur.

You can also comfort your executives and mitigate risk by following the process out
lined in this book:

■	 Completing an assessment to see your potential for adding agility
■	 Identifying people within your organization who are passionate about improv

ing your process and involving them in the migration
■	 Reviewing your existing process to identify logical places to add agility
■	 Performing a pilot on a non-mission-critical project to identify potential issues

before attempting to scale agile across the entire company
Licensed to Abner Lopez <ihackn3wton@gmail.com>

62	 CHAPTER 5 The importance of obtaining executive support
5.4 Rewards for the executives
Executives will wonder, “What will the agile migration do for me?” There is nothing
wrong with this question. We all have career needs, and no one likes to undertake a
venture that puts their career at risk. It’s fair to ask “What will agile do for me?” on a
personal level.

 The answer to this question is usually unique. More than likely, the executives will
never tell you the answer to this question directly. You must deduce the best way to
make them look good. Here are a few ways we’ve seen an agile migration satisfy the
personal needs of executives:

■	 Agile allows executives to acquire new skills and knowledge that enhance their
value to the company and increase their chances for promotion.

■	 The move to agile provides an opportunity to demonstrate leadership skills by
leading a major organizational change. The executive sponsor reaps this
reward.

■	 The migration to agile leads to more wealth. Like most of us, executives care
about their compensation. Migrating to agile lowers costs and increases reve
nues, which should also lead to an increase in stock value or, if you’re a small
company, survival.

■	 All managers dislike dealing with people issues. The agile work environment is
more satisfying, and the executives will find themselves dealing with fewer employ
ee issues. They will also be pleased to see employee retention rates increase.

■	 As we mentioned earlier, customer satisfaction increases with agile. A happier
customer leads to more pleasant discussions with the executives.

Now, let’s discuss the importance of keeping your executive team up to date during
your migration to agile.

5.5 Communicating frequently with your executive team
You need to communicate frequently with the executive team and keep them abreast of
the progress the core team is making. Although it may sound a bit anti-agile, you may
want to publish a weekly status report that provides an overview of progress made, status
related to the projected schedule, risks being managed, and issues encountered.

 You should schedule a recurring meeting with the executive team to interact with
them face to face. The meeting will allow you to add more depth to your status and
continue with the executives’ agile education. We believe you should meet with the
executives weekly. This timeframe works well with their busy schedules and also allows
you to spend more time managing the migration and less time reporting on it.

 You should also encourage informal interaction with the executives. Some executives
may like a one-on-one session with the core team. Welcome them with open arms.

 You may have executives who like to drop in during core team meetings to listen.
This is a positive, too; just make sure the presence of an executive doesn’t intimidate
the team so they can stay on course with the task at hand.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Following Acme Media as the company obtains a sponsor	 63

 All of these are great ways to communicate with executives, but the best way is to
have someone in their ranks directly tied to the migration. You need an executive
sponsor.

5.6 The role of the sponsor
Your executive sponsor is the liaison to the executive team who helps clear hurdles for
the team as they develop the new methodology. The most logical path is to find the
executive most closely related to software development. Frequently, this is the VP of
Development or the VP of Product Management.

 If your desire to migrate to agile is being driven from the “doers”—that is, not at
the executive management level—it’s best to work your way up the ladder to obtain
executive support. For example, if you’re the project manager and you’re proposing
the change, you can discuss it with the director of software development. If they buy
in, you can ask them to help you take it to their superior—perhaps the CIO. You can
do a dual presentation to convince the CIO of the need. Chapter 1 of this book pro
vides great information for such a presentation.

After you obtain your sponsor, you should expect him to play three major roles:

■	 Keep the executive team up to speed on the migration outside of scheduled status meetings,
and act as a champion for the migration —The sponsor should help your team acquire
funding for the migration and remove roadblocks at the executive level.

■	 Represent the organization, ensuring that the agile migration is in line with the organiza
tion’s goals and strategic objectives —The sponsor helps the agile team ensure suc
cess and minimize risk to protect the organizations investment in the change.

■	 Provide leadership for managing the organizational change that needs to occur with a
shift to agile —This includes working with the executive team to create a rewards
structure that encourages agile behaviors.

These three roles can manifest themselves in many ways. Here are some typical activi
ties of a project sponsor.

■	 Help the team define success for the migration.
■	 Help the team obtain outside help when needed.
■	 Ensure that the new methodology works within the organizational culture.
■	 Help with migration team morale, and recognize successes along the way.

Help your executive sponsor if he doesn’t have a technical background. Train him to
know how software development works and to understand the intricacies of agile. Be
patient if he needs time to digest how it all comes together.

5.7 Following Acme Media as the company obtains a sponsor
Acme Media’s move to agile was initiated by Wendy Johnson, the team project man
ager. Wendy was frustrated with the team’s inability to deliver, and she began chatting
with her friend, Jim Moore, who happened to be an agile coach.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

64 CHAPTER 5 The importance of obtaining executive support
 Wendy explained that she and her boss, Steve (the CIO) had discussed agile but
that for the most part she was doing methodology research on her own. The CIO knew
that something needed to change to support the new urgency around their projects,
and he empowered Wendy to do the research. Wendy suggested that Jim meet Steve
and discuss the fundamentals of agile.

 Steve was a well-seasoned IT executive, with most of his experience coming during
his tenure as CIO at GE Information Services. He was well-read on the principles of Six
Sigma, and he knew a little about developing lean processes.

 Steve began: “Wendy tells me this agile stuff is a good fit for the projects we’re start
ing to do. I know a little about it. Can you tell me why you think it would work well at
Acme Media?”

 Jim told Steve that agile wasn’t radical or new and that agile involves the applica
tion of solid principles to a development environment with urgent timelines and vola
tile requirements. Jim went on to walk Steve through all of the principles outlined in
chapter 1 of this book.

 Steve asked, “What about all of agile’s weaknesses? I’ve heard colleagues say that
agile doesn’t document requirements and that it leads to cowboy coding.” “Not true,”
Jim assured him. “Agile says ‘Don’t document it if it doesn’t add value to the process.’
If you have legal, regulatory, or other business reasons to document, agile principles
encourage you to do so.” Jim went on to tell Steve that agile eliminates cowboy coding
due to the short time-boxing of development. Developers are forced to demonstrate
what they have quickly, which encourages developing to the minimal requirement.

 Steve continued, “Well, I could try to do this in six months if I ask for midyear
funding. I just completed budgeting for the coming year, and I don’t have the money
to do an agile project. I don’t have funds for new project-management software or for
several weeks of consulting.”

 Jim explained to Steve that Acme didn’t need new tools and might find that it
could dispense some of its current tools. Companies can support agile with spread
sheets or even hard-copy plans and features taped to a wall. A lot of teams get by with
a large whiteboard.

 Jim also told Steve that heavy consulting wasn’t required and, to a point, could be a
hindrance. “You want the team to develop a deep understanding of the agile principles,
but you don’t want someone to create the methodology for them.” In Jim’s opinion, a
migration to agile has better staying power if it comes from within, over time. Jim sug
gested a 2- to 3-day session to teach the main principles to the core team and show them
examples of how agile has been deployed at other companies. Then the core team
could be turned loose on modifying Acme’s methodology, with Jim coaching along the
way. Steve agreed that he could probably fund a few days of training and coaching.

 “OK,” Steve said. “I might be up for piloting agile. But as you know, I have a Six
Sigma and quality background. I believe a whole lot in measurement. I need some way
to quantify the improvement if we go to agile.” Jim told Steve, “In my limited experi
ence with Six Sigma, I remember the main objective being the delivery of value to the
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Looking forward	 65

end customer. Why don’t we measure customer satisfaction and value delivered after
every project?” Steve smiled. “If we can do that, I’ll be very pleased.” And thus began
the migration of Acme Media to agile.

5.8 Key points
The key points from this chapter are as follows:

■	 If you don’t involve your executives in the move to agile, there is a good chance
that they will stop the move as soon as they learn of any issues with the migration.

■	 You and your executive team need to understand the benefits and costs associ
ated with a migration.

■	 Your first few agile projects may be slower than your historical projects. You
must prepare your executives for this reality and schedule a buffer to account
for the learning experience.

■	 Numerous solid business reasons exist for moving to a more agile process. Make
sure your migration ties to a solid reason, or you won’t be able to get executives
or team members to buy into the new process.

■	 Beyond value to the company, it’s helpful for executives to understand the per
sonal benefits that an agile process will provide to them.

■	 You need to establish a process that will provide frequent feedback to your exec
utive team during your migration.

■	 An executive sponsor helps you communicate with the executive team and also
helps remove roadblocks during your migration.

5.9 Looking forward
In this chapter, we looked at the importance of executive support when migrating to
agile. As we mentioned in the introduction, executive support is important not so
much because of the deliverables executives provide, but more so because executives
will block a move to agile if they aren’t involved. In chapter 6, we’ll shift to the doers:
the people who bring agile into your organization. This group is composed of your
own team members, some level of management, and your agile coach. We will call this
group the core team.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Improving buy-in
by creating a core team

If you want your migration to agile to last beyond a few projects, you need the
change to be driven from within by key players throughout the company. You need
to establish a team based on the people who build and deliver your software today.

 The role of this group, which we call the core team, is to learn as much as they can
about agile and to use this knowledge to add agility to your existing process with
the help of an agile coach. The team collaborates and reaches consensus on new
processes; then they mentor project teams as they use agile techniques.

 This core team is powerful and influential for three reasons:

■	 They aren’t a part of line management. A few members may come from the
management ranks, but the majority of the team are doers: people who
66

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Who should be in the core team?	 67

design, build, create, and test code. This adds to the team’s credibility as you
roll out the methodology to the company. Agile isn’t a management initiative
being forced on everyone; it’s coming from real people who will be a part of the
project teams.

■	 Because the team is composed of doers, they know the ins and outs of developing in your
environment. This is different than when consultants come in, suggest standard
practices, and disregard the realities of a specific company. The core team has
experience with your company, and as they develop a methodology they know
what to keep and what to discard from existing practices.

■	 Having team members from all areas initializes awareness across the company. Imagine
a tester going back to the testing team and excitedly telling them what is going
on with the new methodology, or a developer doing the same with the develop
ment team.

Many companies use outside consulting to get their methodology going. We’ve seen
several companies choose to go with agile methods such as Scrum and then have a
third party come in to train employees and design and deploy the methodology. In
our opinion, this approach isn’t as effective as growing the methodology from within.
Creating it from within the organization addresses all the issues with ownership. It’s
hard to get a team to buy into a process that was forced on them. (Note that in rare
cases, an organization is so dysfunctional that it needs to have a methodology forced
on it—but this should be the exception, not the norm.)

 We support using an agile coach along the way, but we prefer coaches who use a
Socratic approach. This type of coach asks you questions that lead you to your own
answers.

6.1 Who should be in the core team?
After you obtain executive support, you can begin to create the core team. Your spon
sor will probably suggest several managers for the team, but you need to remind them
that the core team gains part of their power and influence from their status as doers.
You may also find yourself pursuing the best and brightest people from each area:
people with a positive attitude and a pro-agile mentality; people who are open minded
to change. These would be excellent attributes to list for a job opening, but do they
reflect your current employee mix, the people you want to embrace the new method
ology? Probably not.

 If your company is like most, you probably have some blend of the following:

■	 Brilliant and collaborative people
■	 People who are brilliant but difficult to work with
■	 People who challenge every initiative
■	 People who loathe change and avoid it at all costs

You want the makeup of the core team to be similar to the makeup of the company as
a whole. This will help you obtain buy-in from all employee types when you begin rollout.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

68	 CHAPTER 6 Improving buy-in by creating a core team

 After you determine the types of people for the team, you need to decide on the
team size. You want a group that’s large enough to capture a diverse set of perspectives
but small enough to be, yes, agile. We suggest a number somewhere between 5 and 10
people. Note that if the team is larger, you can still make progress when a team mem
ber is pulled for a production issue or is out due to vacation or illness.

6.2 Choosing the core team at Acme Media
To give you a feel for creating your own team, let’s return to Acme Media. Wendy
Johnson has convinced the CIO, Steve Winters, to sign on as the executive sponsor for
the agile migration.

Do you really need a core team?
The core-team concept may seem like a lot of work. To some extent, it is; but the
return on the investment is worth it.

We’ve seen other models work, especially in smaller companies. Acme Media is mod
eled as a medium-size company, with team members having managers and a decent-
size executive team. In smaller companies, the managers are often doers, too. In
some companies we’ve worked with, the company owner also writes code.

If you’re in a smaller company, you won’t need this ceremony. You’ll probably have
most of your company involved in the migration due to your small size.

Those of you in medium to large companies should appreciate the core-team ap
proach. Change is difficult to drive through larger organizations, and having a core
team makes the road a little easier to travel.

Wendy and Steve have identified their core team members and have received approval
from those people’s managers. Wendy and Steve worked hard to get a diverse group of
people on the team, to allow many perspectives to be considered. Table 6.1 shows the
list of team members. Notice that members are from various functional areas and that
they all have different points of view about what a methodology should do—just like
your team will.

Table 6.1 	 Acme Media’s core team. Core teams are composed of cross-functional team members with
various levels of agile knowledge. The diversity of the team works well for scrutinizing the
new process.

Functional area/Role Name Background

Sponsor/CIO

Project management

Steve Winters

Wendy Johnson

Six Sigma enthusiast. Doesn’t believe in change for the
sake of change. Willing to pilot agile and see if the benefits
are realized.

Frustrated with the status quo. Wants a methodology that
supports the urgency that Acme Media is now seeing
around its projects.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

69 The kickoff meeting

Table 6.1 	 Acme Media’s core team. Core teams are composed of cross-functional team members with
various levels of agile knowledge. The diversity of the team works well for scrutinizing the
new process. (continued)

Functional area/Role Name Background

Development

Quality assurance

Operations

Requirements

Architecture

Product management

Roy Williams

Vijay Kumar

Matt Shiler

Wes Hunter

Keith Gastaneau

Peggy Romani

Familiar with Extreme Programming (XP) development tech
niques but comfortable with the waterfall/homegrown pro
cess that Acme Media has used for the last few years.

Concerned that agile will bypass or minimize the need for test
ing. Experience working in an ISO 9000 environment. Fre
quently says “document what you do, do what you document.”

Exists in a stressful world of managing production issues
and deploying new functionality. Worried that he won’t have
enough time to work with the core team.

An agile zealot. Has been looking forward to this day for a long
time. Dedicated to making agile work at Acme. Works with
Product Management to refine feature design for customers.

Wants to make sure that an agile methodology doesn’t
bypass good architectural practices and that there is
enough time to build the infrastructure needed for projects.

Unfamiliar with agile but excited about the promise to
embrace the customer and changing requirements.
Identifies target markets and strategic needs for Acme
Media’s products.

Just like Acme Media, you’ll need to get manager approval for the employees you
select for your team. The managers will probably want you to provide a time estimate.
You can take two approaches to the work the core team performs:

■	 Get the work done as quickly as possible. This is the preferred approach. You make
process work the number-one priority for the group for 1 to 3 weeks.

■	 Have team members work part-time on the core team. Many teams can’t pull several
team members away from their daily work for a solid 1 to 3 weeks. Greg experi
enced this constraint at the Seattle Times. To compensate, Greg’s team worked
on the new process three times a week for 2 hours at a time. Using this process,
the duration for establishing a new process was 6 weeks. Greg’s team enjoyed
the slower process, though, because it gave them more time to think about what
they were designing.

After you select your team, you need to meet with the core-team members and set
expectations. Let’s continue with an example at Acme Media.

6.3 The kickoff meeting
After your team has been named, you should schedule a kickoff meeting to set expec
tations and goals. Similar to meeting with your executive sponsor, you need to start
the meeting by telling the team why the company is migrating to agile. The verbiage is
Licensed to Abner Lopez <ihackn3wton@gmail.com>

70	 CHAPTER 6 Improving buy-in by creating a core team

slightly different with the core team, with less focus on financials and more focus
on process.

 As an example, let’s look at the presentation Steve Winters is using at Acme
Media’s core-team kickoff meeting. Steve starts the meeting with the following bullets:

■	 Acme Media’s web division is no longer a supplemental site to the television sta
tion. The websites have their own audiences and advertisers now.

■	 With the increase in popularity of the websites, the backlog of new features and
application requests has increased by 70 percent.

■	 Many of the feature requests are time sensitive. If the requests can’t be com
pleted soon, Acme’s competitive advantage will be lost.

■	 Acme’s development processes, where they exist, aren’t working well with the
tight deadlines or with the evolving requirements.

■	 Acme needs to identify a better way of dealing with urgent projects.

As you can see, Steve’s message is tailored more to the project team than to an execu
tive group. He speaks indirectly to revenue by saying “lost advantage,” and he mainly
targets process improvement. The best thing Steve says is “the websites are no longer
supplemental sites to the TV station” and “the websites have increased in popularity.”
Steve is telling the team that their work is important.

 You should follow Steve’s example during your migration, especially when it comes
to emphasizing the importance of the work the team does and how valuable the meth
odology they develop can be.

6.3.1 Tough questions

Of course, everything won’t be roses at your kickoff. You can expect difficult questions
and perhaps attitude from some of the core-team members. Here are a few of the ques
tions and comments you’re likely to hear during your kickoff:

■	 We can’t create the methodology. We don’t know anything about agile.
■	 We need consultants to do this for us.
■	 We’ve tried to change before and failed.
■	 What is our role?
■	 What is the role of the executive sponsor?

The response to the first comment is easy. The team will be trained and soon will have
a basic understanding of agile principles. If you’re lucky, a few team members will
already be versed in agile.

 On the second question, they’re half right. You’ll bring in a consultant or an agile
guru to train the team on the fundamentals and perhaps to discuss what other compa
nies have done with their methodologies. But the consultant won’t create the method
ology for you: the team will create the methodology with mentoring along the way.

 The third question is a warning sign to you if you don’t know the details of a past
failure. Was the failure due to a methodology being forced on the team? Was it due to
Licensed to Abner Lopez <ihackn3wton@gmail.com>

The kickoff meeting	 71
waning executive support for the change? Do your homework if you learn of a past
failure, and make sure your plan covers the lessons learned from previous attempts to
change processes.

 Assuming the issues related to a previous failure no longer exist, you can explain
why the migration should be a success this time:

■	 The design will be created by experts who know the business well: them.
■	 The team won’t be forced to remove a legacy process if it’s proven and adds

value. If this is true, there is a good chance the legacy process already supports
an agile principle.

■	 The approach won’t be shotgunned into the organization. The methodology
will be built iteratively and will be deployed iteratively to mitigate risk. In addi
tion, the new process will not be used on a mission-critical project until it has
been piloted and vetted.

Answering the question about the team’s role is simple. The team will learn about
agile and use this information to create the agile methodology. In a quick summary
form, they will do the following:

■	 Train
■	 Document the existing development process
■	 Determine what to keep and what to discard from the current process
■	 Compare the existing process to a generic agile lifecycle (we have provided a

generic example in appendix B)
■	 Design a new methodology based on agile principles and the findings from the

organizational assessment
■	 Get feedback on the design, and tweak it
■	 Take the design for a test run on a medium-priority project
■	 Learn from the test run
■	 Continue refining and testing until the methodology is solid enough to be used

on all projects and the team is comfortable with the processes being used

As we mentioned earlier, the role of the executive sponsor is to clear roadblocks for
the team and to be the liaison to the executive team at large.

6.3.2 Your role in the migration

Another question that isn’t listed but that may be asked is, “What is your role?”
Assuming you, the reader, are the leader of the core team, there will probably be
questions about your role. If you’re a manager, you should make it clear that all team
members will be equals during team meetings. Titles and status—including
yours—will be left at the door. As leader, you’ll help organize the meetings and
report status to the sponsor. You’ll act as facilitator and help the team reach consen
sus on design ideas. You’ll also keep the team cognizant of the schedule and time-box
the re-engineering activities.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

72	 CHAPTER 6 Improving buy-in by creating a core team
6.4 Key points
The key points from this chapter are as follows:

■	 Any organizational change requires awareness, buy-in, and eventually owner
ship. A core team will help you achieve buy-in.

■	 Initiatives driven strictly by management frequently fail or have marginal success.
■	 Your core team needs to include diverse team members so that the process out

lined can be critiqued from all perspectives.
■	 Your core team must understand why you’re pursuing a more agile process.
■	 Core team members need to clearly understand what their role is in the process

and the work they will be doing in the following weeks.

6.5 Looking forward
In this chapter, we discussed the creation of a core team and preparing them for the
work ahead. In chapter 7, we’ll continue with the foundational work for migration.
We’ll discuss the cultural aspects of creating an agile environment and how your com
pany mindset will need to change in parallel with your process changes.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

The mindset
of an agile leader

A few months ago, Greg was contacted by a friend with a problem. The friend had
let a compliance project slip through the cracks. The compliance deadline was
year-end, which was a mere five weeks away. Failure to comply could mean serious
governmental repercussions. Greg’s friend asked for help in creating an agile team
and doing an agile project in the following 5 weeks.

 This would be a great time for us to tout how agile came in and saved the day,
but that would be a lie. Greg did help his friend prioritize his work and make the
deadline, and they did follow some agile principles along the way, but they didn’t
73

Licensed to Abner Lopez <ihackn3wton@gmail.com>

74	 CHAPTER 7 The mindset of an agile leader

put an agile team or process in place. Why? Because it takes time to establish an agile
methodology. Teams need time to feel comfortable with agile processes, and they
need time to learn how to interact with each other. Managers need time to learn how
to lead in an agile environment. The team needs to use an agile process for several
months, and then major benefits will begin to become apparent.

 Migrating to agile means more than changing your process. It also requires a
change in culture. For most companies, changing culture is the most difficult part. We
believe this is true for several reasons:

■	 Regardless of whether it’s successful, companies get comfortable with their
existing development process.

■	 Many people still believe that requirements change because they’re poorly man
aged. They can’t comprehend a process that embraces changing requirements.

■	 Most managers have been trained to control events. Empowering the develop
ment team to deliver and co-own the project isn’t intuitive for managers.

■	 In larger companies, whole groups are dedicated to regulating and overseeing
projects. An agile team has less need for these services, so some employees may
feel that their jobs are threatened.

There are numerous other reasons, but we
believe these are at the center of the issue.

 You should address these issues in two
ways. First, you must address the culture
needs of each group head-on. We’ll show you
how to do that in this book by laying out a
game plan for obtaining support from line
management, the team, the individual, and
executive management.

Second, you must establish practices that
foster an agile culture. Practices such as high
customer involvement, testing early, and col
laborative decision making promote an agile
mentality throughout the company. You’ll see
these practices as we follow the case study
through the pilot project.

The information in this chapter establishes
the foundation that allows an agile process to
thrive (see figure 7.1). Similar to software devel
opment, if you get a good foundation in place,
everything else is easier to do. If you don’t,
you’ll fight the foundation with every change
you make. Let’s start by looking at the skills
required for a good agile coach.

Figure 7.1 An agile culture is established
when three major groups come together
within a company. Executive management
endorses the agile principles, working
managers learn to coach instead of direct,
and the project team understands and
supports agile principles and practices.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

The role of an agile coach	 75

7.1 The role of an agile coach
The goal of this book is to convert you and your company into a self-reliant team that
can design and maintain your own development process. But out of the gate, you’ll
have limited knowledge of agile, and you’ll be looking for good leadership and guid
ance from an agile coach.

 You use a coach to help you understand where you can become more agile, how to
address your constraints, and to train your team on agile principles and practices.
Let’s start by discussing how to find an agile coach that meets your unique needs.

7.1.1 Attributes of a good coach

We’ve worked with several good coaches. Here are some of the areas to consider when
you’re looking for a coach:

■	 Find a coach with proven results and references —A good coach has experience in
several industries with several flavors of agile. You should be able to speak to
their references and validate that value was provided.

■	 Don’t hire a company, hire a person —People often ask us for advice in selecting
agile consulting companies. In our experience, the quality and experience of
individuals within a company can vary greatly. When you need help, you can
look at companies; but identify and assess the specific individual who will poten
tially be working with you.

■	 Avoid a cookie-cutter approach —Some individuals may tell you that one flavor of
agile works for everyone. Some companies only support migration to Scrum. In
our opinion, Scrum may work for you, but a consultant should evaluate your
circumstances before committing to an approach. A good coach will help you
evaluate your circumstances before committing to an approach.

■	 What about certification? —A certificate does not validate a coach’s skills, but it
shows their dedication to their occupation. For the most part, certification is
lacking in the agile community today, but ScrumMaster certification and other
credentials are available. Recently, the University of Washington opened an
agile certificate program.

■	 Is chemistry important? —When you interview a potential coach, you’ll get a feel
for whether you click with them and whether their approach to migration
makes sense to you. Regardless of credentials, you should be wary of selecting
someone you aren’t comfortable with.

■	 Soft skills are critical for a coach —You should select a coach who can motivate and
inspire all the personality types on your team. They should have good interac
tion skills. Soft skills are discussed in detail in section 7.2.1.

■	 Find someone you already know and trust —As we’ve mentioned in previous chap
ters, Acme Media was lucky enough to have a connection to a good agile coach
before the company began its search. If you don’t know anyone personally, you
may have friends at other companies who have moved to agile, and they may be
able to provide recommendations.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

76	 CHAPTER 7 The mindset of an agile leader

Johanna Rothman, a well respected agile coach and consultant, recommends that a
coaching engagement should always have a deadline so the team doesn’t become reliant
on the coach. This is a great recommendation, and we agree with it. We often see the
coach and core-team leader working together initially; the coach becomes less involved
as the team matures.

 Now, let’s discuss how an agile coach will help you.

7.1.2 Training and mentoring the core team

Your company will need some level of training to begin your move to agile. You may
have enough experience in-house to lead your migration, but it’s helpful to obtain a
third party to coach your team and provide an outside perspective. By using a third
party, you also demonstrate that management is neutral and open to new ideas.

 Training should happen within a few days of the kickoff with the core team. Deter
mining the level of training is tricky. You want to provide enough information so the
team understands the agile principles and their value. But you don’t want to train to
the point that you hand them a methodology—especially somebody else’s. The team
should combine agile principles with their knowledge of your business to create a
methodology that is effective for your company.

 You and your coach must use your own judgment to decide how deeply to train
your core team. The assessment in chapter 4 will help here, allowing your coach to
understand the existing level of agile knowledge, practices, and culture within your
company. Here is our suggested outline for training:

1	 Begin training with the information in chapters 1 and 3. Explain to the team
where agile came from, what makes it works, places where it’s working, and why
it hasn’t faded away. This training should be focused around the agile princi
ples and understanding how agile improves the process. This training should
take 1 to 3 days. (Note that it would not be a bad idea for your team to review
chapters 7 through 22 in this book. It will allow them to envision how to create
and test a more agile lifecycle. It will also show them how agile practices tie
to principles.)

2	 Give the team a few days to absorb the principles, and then train them on the
phases of agile detailed in appendix B. We’ve chosen phase names that map well
to names used in traditional software development, which helps with the training
process. This will help the team begin to connect principles to practices.

3	 Use the case study in this book, along with your coach’s knowledge, to quantify
what agile looks like in practice. The example in chapters 9 through 22 shows
Acme Media implementing its own online auction application and the inner
details of the methodology the company creates. (In addition, appendix B pro
vides a walkthrough of a project going through a basic agile lifecycle.)

After training is complete, the team will work with your coach and begin the design
process by documenting the existing processes.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

77 Agile management: more shepherding, less directing

Do you really need training and coaching?
Many people believe they can do their own training on agile, using books or in-house
knowledge. We’ve worked in environments where the team had good agile knowl
edge, but in most instances we recommend going with some level of agile coaching.

When Greg worked for the Seattle Times, his team started a migration to agile with
two team members who had worked on an agile migration at another company. These
team members provided mentoring and guidance to other team members, but they
still decided to bring Jim Highsmith in for basic agile training and to provide coaching
as they created their custom process. This worked well because the team respected
Jim, and the team tapped into his breadth of agile knowledge when considering prac
tices and techniques.

A coach can be expensive, and you’ll want to use your coaching hours effectively. In
our experience, we’ve provided coaching during initial training and then returned
one or two weeks later to answer team questions and do more detailed training
related to agile practices. We’ve also provided a lot of coaching via telephone and
email, which holds down travel-related charges.

 Next, you need to prepare your line management team. Let’s look at how things
change for managers in an agile environment.

7.2 Agile management: more shepherding, less directing
Do you remember a commercial for a company named BASF a few years ago? Their
slogan was, “We don’t make a lot of the products you buy. We make a lot of the prod
ucts you buy better.” This is true of the agile manager.

 An agile manager never writes a line of code, never documents any requirements,
and never tests a feature. Instead, an agile manager does the following:

■ Helps the development team track true status
■ Encourages the automation of redundant, repeatable tests
■ Mentors the team on agile processes and demonstrates their value
■ Helps the team break their work into small chunks that can be delivered quickly
■ Ensures that the work being delivered is in tune with the customer’s needs
■ Acts as a buffer for outside interruptions and limits team distractions

Jim Highsmith offers a good explanation of light-touch leadership in an agile environment:

While Light-Touch Leadership may be “light” in terms of decision making, it’s heavy in
articulating goals, facilitating interactions, improving team dynamics, supporting
collaboration, and encouraging experimentation and innovation. These characteristics
of a leader are more critical to success than delegation of decision-making authority, but
decision making is still an important piece of the leader’s role. When a good Light-Touch
Leader is working, she or he is nearly invisible. Things seem to happen smoothly and the
teams operate seemingly without a leader.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

78	 CHAPTER 7 The mindset of an agile leader
An agile manager provides leadership without using formal power. Instead, the man
ager leverages the respect they earn from the team as they establish a history of work
ing together to successfully deliver projects.

 What does a manager need to do to establish a record of successful project deliv
ery? Let’s start with the soft skills.

7.2.1 Soft skills

If you look up soft skills on the United States Air Force website, you’ll find, “A set of skills
that influence how we interact with each other. It includes such abilities as effective com
munication, creativity, analytical thinking, diplomacy, flexibility, change-readiness, and
problem solving, leadership, team building, and listening skills.”

 This definition is an excellent prescription for the behaviors an agile manager
needs to subscribe to:

■	 Effective communication, to ensure that the team is synchronized on information
■	 Analytical thinking, to help the team brainstorm solutions when they encounter

a challenge
■	 Diplomacy skills, to ensure tactful communications that don’t offend or touch

on sensitivities
■	 Great listening skills, to not only ensure accurate understanding but also

enhance relationships with others

In summary, the manager should behave in

a way that enhances human relations (see

figure 7.2).

 Diane Ehrlich, PhD, of the Human

Resource Development program at the

University of Illinois, defines soft skills as

“[t]he skills needed to perform jobs where

job requirements are defined in terms of

expected outcomes, but the process(es) to

achieve the outcomes may vary widely.”

This is a good description for agile develop
ment in general. You have a desired output

(a project), and the way to achieve that out
put may vary wildly depending on the spe
cific needs of the project.

 Now, let’s discuss how soft skills are used.

7.2.2 Working with other managers

Let’s look at team management from the perspective of the person who spends the
most time with the team: a project manager or ScrumMaster. These individuals usually
lead a group of people who are not their direct reports. In order to do this, the project

Figure 7.2 An agile leader brings their soft
skills together to shepherd the team versus
directing them.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Agile management: more shepherding, less directing 79

manager or ScrumMaster must have the respect of the line managers who own the func
tional teams. The key is to ensure that the line managers buy into agile concepts before
asking the project team to.

 The line managers need some level of training before you pursue an agile migra
tion. This training can come from any resource, internal or external; but during this
training, managers need to normalize on their support of the principles. You don’t
want to ask the manager’s team to buy into the process before the managers do.

 You must also consider roles when working with other managers. Although every
one is flexible in the tasks they perform in an agile environment, everyone will have
areas of responsibility.

 Consider the development team. The development manager usually acts as a tech
nical mentor and also assigns tasks to the development team. Historically, the develop
ment manager may have been in charge of reporting status for the team, too. This
changes in an agile environment. Agile teams perform a 10-minute daily stand-up
meeting that allows the entire team to discuss what they did, what they will do, and any
roadblocks they have encountered. Team members speaks for themselves, and status
isn’t passed to a go-between manager. Traditional managers will need to learn how to
provide value and interact in this open atmosphere.

7.2.3 Working with stakeholders

Stakeholders are also vital to your project success. Stakeholders are those who have
interest in or influence on the project. Typical stakeholders include senior manage
ment along with indirect customers such as support teams, maintenance teams, help
desks, third parties that integrate with the system, and other related product groups
within the company.

 All the soft skills mentioned earlier are useful when you’re working with stakehold
ers. The stakeholders may not be the project’s main customers, but you want them to
feel valued. You should demonstrate good listening skills and make sure they know
you understand their needs. You also need to demonstrate diplomacy and not upset
the stakeholders by consciously providing information in a way that will inflame or
incite them.

7.2.4 Demonstrating value

The most important role of the agile manager is to exemplify the agile principles and
live them daily. If you want the team to follow you, you must provide a strong example.
There are numerous principles to emulate and follow. Here are the ones that provide
the most impact.
“JUST ENOUGH” PLANNING

In traditional project management, you identify features and then specify their
requirements. Typically, an analyst wants to answer every question possible in the spec
ification so the development process isn’t impeded by a missing requirement.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

80	 CHAPTER 7 The mindset of an agile leader

 In agile planning, you want to plan “just enough.” Just enough planning to deter
mine which features you want to build. Just enough coding to demonstrate the feature
to the customer and verify that you’re on track.

 Old planning habits are among the hardest habits to break with a traditional team,
and the agile manager needs to champion the just-enough mentality on a daily basis.
You can also emulate this behavior by creating project plans the same way: a plan that
has just enough information to get to the next level of the project, not a complete
work breakdown structure before development has even begun.
ALWAYS READY TO STOP, DROP, AND DELIVER

Agile development is performed in iterations to enhance urgency and to support early
delivery of the most valuable functionality. The project manager needs to infuse this
mentality into the project team.

 You need to get the team to inject the same urgency into an iteration that they do
with a final deployment deadline.
UNRELENTING PURSUIT OF CUSTOMER VALUE

An agile manager is always thinking about the customer and their needs. All other mea
surements of a project are meaningless if the product delivered is of no use to the customer. Follow
these three steps to ensure that you address the customer’s needs:

1	 Clearly define the customer(s). Many projects get underway with an incomplete
understanding of who the customer is. Make sure your customers are clearly
defined and their specific needs are clear.

2	 Develop a relationship with the customer. Get to know the customer well, and inte
grate them into the project team. Use your soft skills to collaborate with the cus
tomer frequently and make sure they can be easily accessed by the team.

3	 Be an advocate for the customer at all times. When features are being discussed
and the customer isn’t present, put your customer hat on and envision what
their response would be to the discussion. Share those thoughts with the team.

ENSURE TECHNICAL EXCELLENCE

The technical skill sets of agile managers vary. A manager can come from a classic
Project Management Institute (PMI) background, can be a former developer, or may
have worked as a business analyst in the past. Regardless of technical knowledge, all
agile managers can push the team to pursue technical processes that embody agile
beliefs. Here are a few of the best practices for obtaining technical excellence:

■	 Create a process for continuous code integration. As functionality is completed,
developers integrate their work into the existing code base. The key is to inte
grate as small pieces of functionality are completed, as opposed to waiting for a
complete feature. This practice identifies code issues early and minimizes the
complexity of tracking them down.

■	 Automate testing wherever possible. Work with the team to automate testing wher
ever possible. This is usually easiest to do with regression testing. You can also
automate daily smoke tests to speed up testing.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Agile management: more shepherding, less directing	 81

■	 Perform a daily build/smoke test. Related to automated testing, a daily build also
helps mitigate risk by identifying code issues early. The daily test focuses on
ensuring that the application’s critical pieces are still functional.

■	 Consider scalability. As an application is being developed, the team should con
sider future growth. What will happen if the application is extremely popular
and usage exceeds expected volumes? The team can consider scalability as they
design, keeping scalability in balance with simple design.

■	 Follow the principle of simplicity in design. As we mentioned in chapter 1, you
should avoid cowboy coding and deliver to the minimum requirement. You
should also create the simplest design that will work.

When you’ve learned how to lead an agile team, you can begin teaching the team how
to take part in ownership of the process.

7.2.5 Leading the team to ownership

In 1998, Arthur Andersen published a book titled Best Practices: Building Your Business
with Customer Focused Solutions. One of the best practices outlined in the book is the
ABO Continuum. This continuum identifies a vital element in introducing change to
an organization: ensuring ownership of the change.

 The continuum promotes the belief that organizational change goes through the
following three steps:

■	 Awareness —In this phase, information about the change is shared early and
informally. For example, during a team meeting, a manager can say, “The exec
utives are discussing improvements for our development process.” The man
ager can also indicate when they think they will hear more, and see what the
team reaction is.

The value isn’t so much in what is said as in when it’s said. Every individual
has their own timeframe for evaluating a change. The earlier you can make a
group aware of a potential change, the better your chances of getting them to
buy into the change when you’re ready to roll it out.

■	 Buy-in—This phase occurs when you roll out the change and begin implement
ing it. You created awareness earlier, and you’re looking for the team to con
sider the change and to use it with your guidance.

■	 Ownership—The team has tried the change, begun to believe in it, and adopted
it as a standard practice. They don’t need management to encourage them to
use it. They believe in it and will use it without being prodded.

The ABO Continuum is a great approach for rolling out an agile methodology.
 Now that we’ve outlined the characteristics of an agile management group, let’s

discuss creating an agile mentality within your project teams.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

82	 CHAPTER 7 The mindset of an agile leader
The ScrumMaster
Scrum has become one of the most popular agile packaged methods. The Scrum-
Master is at the heart of Scrum. This individual isn’t a manager but more of a process
facilitator and guide. A ScrumMaster does the following:

■	 Helps the team develop practices that support agile principles
■	 Acts as a guide in training the team on how to be agile and use Scrum
■	 Removes impediments that prevent the team from delivering software
■	 Shields the team from corporate bureaucracy and activities that don’t add

value to software development
■	 Champions engineering excellence and processes that support the creation

of shippable software
■	 Ensures that the team has direct access to the customer

We believe Scrum is a good agile framework, especially when there is urgency to es
tablish a development process quickly. But we worry that some teams can become
too dependent on the ScrumMaster.

Our opinion is based on something we learned when we became certified as Scrum-
Masters. Our instructor told us that ScrumMasters are the key to Scrum’s ability to
transform the organization. He also told us that ScrumMasters are responsible for
team health. We understand that not everyone was taught this principle when they
became ScrumMasters, but we are still concerned that many people believe the
ScrumMaster is the sole owner of team health.

Over time, we’ve come to dislike the thought of one person with so much responsi
bility. In our experience, leads and managers have shared ownership when we migrat
ed to agile. Our teams included definite agile experts and leaders, and we frequently
asked those experts for guidance; but we never asked the experts to own the process
or team health. We did this collaboratively as a leadership team. We’ve found this
method to be successful because we do get expert opinion, but we don’t relinquish
ownership of team health or the development process to one person.

7.3 Creating a team with an agile mindset
An agile team comes across as poised and ready for wherever the project may lead
them. Agile team members don’t fear uncertainty; they look forward to the challenge
and know they will succeed.

 Where does this air of self-assurance come from? Does this attitude reflect the type
of people who were hired? Or does it reflect the processes that are being used? Is the
attitude a byproduct of executive support? Does confidence come from a history of
successful deliveries?

 The answer to all of these questions is Yes. Each of these items supports the effec
tiveness and self-reliance that is inherent in an agile team. In some ways, creating an
agile team is like baking a cake. You can obtain the ingredients exactly as the recipe
requests, bake at the suggested temperature, and let the cake cool the specified time
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Creating a team with an agile mindset 83

before applying the icing. But what happens if you’re at high altitude and you forget
to make the necessary adjustments? The cake rises too quickly and then turns out too
dry. Or what if someone jumps up and down in the kitchen while the cake is baking?
The cake collapses and never rises.

 In this section, we’ll give you the ingredients for creating your agile team. In subse
quent chapters, we’ll walk you through “high-altitude baking” and how you should
adjust your recipe accordingly.

7.3.1 Culture and roles

We find it hard to describe agile team culture in a sentence, but we can easily describe
it with several words. The words that come to mind are collaborative, open, passionate,
courageous, honest, lighthearted, driven, synchronized, customer focused, funny, responsible,
innovative, and successful.

 The culture is one of low politics and high transparency. Words are honest but not
abrasive. Status is discussed in matter-of-fact terms. The team focuses on the situation,
not the person.

 Estimates are honest. There is no padding to make the work easier to do. There is
no lying about how long it will take, in order to appease management.

 Another nuance of an agile environment is the roles the team members play.
Other than as suggested by Scrum, agile doesn’t specify what team-member roles
should be. In our experience, this hasn’t been an issue. The teams we’ve worked
with didn’t change their roles after they migrated to agile. We still had develop-
ers, testers, project managers, product managers, customers, DBAs, and opera-
tions personnel.

 What did change for those teams was attitude. After we migrated to agile, we rarely
heard a team member saying something like “development isn’t responsible for that”
or “quality determines when the code is acceptable.” We saw many more team deci
sions and much more collaboration around problem solving. A problem wasn’t tied to
one role that had to solve it. Instead, it was tied to the project, and the team had to solve
it. An agile team focuses on the goal, not their job descriptions.

 The last item related to culture is diversity. If you don’t have a diverse team, your
agile process can lead to groupthink. Groupthink happens when team members want
to get along with each other so desperately that they won’t voice their opinion when
they disagree with an idea. This is a definite danger with agile. People assume collabo
ration means harmony and always getting along. They think that if they start agreeing
with each other all the time, they’re being collaborative. In fact, good collaboration
often includes disagreement.

 The reciprocal of groupthink is diverse opinion that is spoken freely. This is what
you want in your agile environment. A good example of this occurred during the
Apollo 13 space mission. In this instance, an explosion occurred aboard the spaceship
while it was on its way to the Moon. The ship and crew were saved with a little luck and
some spectacular collaboration.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

84	 CHAPTER 7 The mindset of an agile leader

A classic groupthink example: the space shuttle disaster of January 28, 1986
The space shuttle Challenger was preparing to launch on a cold day—the weather
was colder than it had been for any other space shuttle launch. One of the engineers
from a company that supplied parts to the space shuttle warned that there could be
risk in launching. He was concerned that the O-ring seals his company provided might
fail in the low temperatures because they had never been tested below 53 degrees
Fahrenheit. The engineer shared this concern during a teleconference with NASA, and
NASA urged him to reconsider his recommendation to not launch. The pressure from
NASA persuaded the company to acquiesce to the request and overrule their engi
neer’s warning. Subsequently, the O-rings failed just after launch, leading to the
death of the entire Challenger crew (Griffin 1997).

As the Apollo 13 crew experienced various issues in trying to return to earth, the sup
port team on the ground went through days of brainstorming and collaborating to
solve the problems. No one team member had more influence than another in sug
gesting a solution, and “getting along” wasn’t a requirement. When problems were
discovered, ideas were discussed passionately until the group reached consensus.

 Culture isn’t an optional ingredient in your agile recipe. The majority of the team
must embrace the agile culture or you won’t be agile—you’ll just be a team that calls
itself agile and goes about business as before.

 Let’s take a moment to look at the building block of the team: the individual.

7.3.2 Characteristics that influence individual performance

Not everyone on your team needs to be competent and mature, but you should put a
system in place that breeds competency and helps the entire team become competent
over time. But just as in traditional development, competency alone doesn’t guaran
tee team success. Several factors affect the productivity of an individual. Let’s review a
few of them.
MOTIVATION AND REWARD STRUCTURE

A talented, mature individual won’t stick around to work on your agile projects if their
efforts aren’t rewarded. A person who is talented can frequently choose where they
want to work. It’s up to the company to create an environment that attracts and
retains talented individuals.

 In simplest terms, behavior reflects incentives. What incentives can you provide to
attract talented individuals to your agile team?

 Consider the following items related to motivating and rewarding the individual:

■	 Is the mission of your company clear? Has it been clearly communicated to
each individual? Employees want to know where the company is going and how
their projects tie to the vision.

■	 How is health of your company? Are you doing well financially? Are you a start
up fighting to survive? Company health can tie to motivation in two ways. First,
Licensed to Abner Lopez <ihackn3wton@gmail.com>

85 Creating a team with an agile mindset

if you’re healthy and growing, you can convey this message to employees and
tell them that you offer stability, growth opportunity, raises, and potentially
equity. If you’re struggling to survive, the message is the importance of the proj
ect and how it affects the destiny of the company. Everyone wants to work on proj
ects that are important.

■	 The agile environment stresses the value of the employee beyond their job title.
They make management decisions and are responsible for proactive communi
cation. Talented individuals welcome this environment. Employee evaluations
should recognize and evaluate collaboration skills.

Another factor related to employee motivation is career stage.
CAREER STAGE

As you migrate to agile, you must consider various approaches to moving your employ
ees to an agile mindset. To help you determine the approach to use, consider where
each employee is in regard to their career. Here are the main stages and suggest-
ed approaches:

■	 New employees —Employees who are in a stage of rapid learning and trying to
understand the company and processes around them. They’re dependent on
others to get things done, and they’re working to become independent from
support. Such employees enjoy learning agile because it levels the playing field
for them. They’re at ground zero, just like senior employees, and they’re com
forted by the fact that everyone is learning agile together. They should also do
well using the methodology because they don’t have a lot of previous experi
ence to bias them.

You don’t have to do anything special with these folks. Just be sure they get
the same training as everyone else and that they’re offered the same opportuni
ties as other team members.

■	 Individual contributors —The employees who make up the bulk of your teams.
They aren’t new, and they aren’t supervisors or managers. They have a medium
to large amount of experience, and they may have chosen not to become man
agers but instead to become an expert in their functional area.

These folks require the most management, and you must address their needs
individually. Some general tips for motivating these employees are as follows:

–	 Give them an area to own and be responsible for in your migration.
–	 Give them an opportunity to use and share their expertise.
–	 Give them a chance to be innovative and unique.

A lot of these employees are looking for growth and embrace agile. Some of
them are just getting comfortable with the way things have always been done
and resent having to learn another new thing. Be patient with the “resenters”
and remember them when the time comes to criticize the agile design: their
feedback will be valuable.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

86	 CHAPTER 7 The mindset of an agile leader

■	 Coaches —Employees who are motivated by sharing their experience and
mentoring others. They’re also looking for an opportunity to renew and revital
ize themselves. An agile migration project is just what the doctor ordered for
these employees.

Give these employees leadership opportunities during the migration, such as
resolving design issues or leading the team to consensus. They can also be on
the forefront of receiving agile training and can mentor novice employees on
the process.

7.4 Key points
The key points from this chapter are as follows:

■	 Moving to agile requires a change in practices and culture.
■	 Moving to agile takes time. For optimum results, you need to allow time for

your company to digest the change.
■	 An agile coach will help you move to a more agile process by mentoring and

training your team.
■	 An agile coach will help you assess your team’s ability to increase agility and also

help you design a more agile process.
■	 Managers need to learn how to lead in an environment with empowered teams.

Managers will earn their money by knowing when to lead, when to help, and
when to let the team run on its own.

■	 Team members can maintain their existing roles, but a long-term goal for your
team is to cross-train and to minimize dependency on specialized skills.

■	 You must consider the needs of individuals when you move to agile. Address the
needs of the new employee, the individual contributor, and the coach.

7.5 Looking forward
In this chapter, we completed the organizational aspects of preparing for migrating to
agile. Now we’re ready to roll up our sleeves and start doing the work. In chapter 8,
we’ll join the Acme Media core team and watch as they review their existing process
and look for ways to inject agility.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Injecting agility
 into your current process
Failure at an organizational level seems to come from the inability to customize
processes and make them their own. Trying to apply someone else’s template to your
organization directly doesn’t work well. It leaves out too many important details of the
previous successes and ignores your company’s specific situation. Rubber-stamping
agile processes is not agile. The value of having a principle-based process is that you
can apply the principles for an individualized process for your situation and, as an
extra bonus, one that has been designed to adapt from your learning as you adopt
changes into your organization. It is always “custom.”

—Kent Beck in a 2006 interview with InfoQ.come>

Custom means that you start with a waterfall process, Scrum, or a homegrown meth
odology, but you modify and enhance the process to obtain the best results for your
company. You need to have a process that recognizes your unique challenges and
constraints.

 We’ve worked with many companies that have been successful with this
approach. It brings agility into your organization iteratively, which reduces risk and
provides time for employees to acclimate to an agile culture.
87

Licensed to Abner Lopez <ihackn3wton@gmail.com>

88 CHAPTER 8 Injecting agility into your current process

8.1 Understanding your current process
Many years ago, Greg’s business professor looked around the classroom and said, “To
pursue a solution, you must first clearly define the problem.” Greg was a freshman in
college and couldn’t contain his laughter. This institute for higher learning was going
to teach him something? This was the great insight he was going to absorb in the next
four years? Everyone knows you have to define a problem before you can solve it.

 Looking back now, Professor Poe may have been on to something. Greg has
worked in business and technical environments for 22 years, and he’d be a rich man if
he had a dollar for every time a group he worked with tried to solve a problem without
defining it.

 We’re not sure why this happens. Maybe everyone is in a hurry to be the hero. Or
perhaps everyone thinks they know what the problem is and assumes the others share
the same thought. Whatever the reason, it happens a lot. We’re dedicated to making
sure it doesn’t happen to you on your journey to agile.

 A way to avoid this issue is to reverse engineer your existing practices and identify
areas with the highest need for redesign. The first step is to document your existing
development processes. If your company is like most, you probably have a few flow
charts around that illustrate how your process flows. Those diagrams are probably out
of date and don’t reflect how you really develop software. It’s important to know how
things work before you try to change them; so if you have doubts, err on the side of
caution: go out and document your processes
from scratch.

 The tools you use can vary. You can use soft
ware like Visio or Acrobat to record your flow, or

you can use index cards, butcher paper, and a lot

of wall space. We suggest the index-card approach

(see figure 8.1).

 Butcher paper and index cards make it easy for

the entire team to participate in the documenta
tion exercise. This approach also makes the process

easy to review and scrutinize: the flow is visible to

everyone, and it’s easier to comprehend than a

flowchart on a computer screen. You can also use

sticky notes in conjunction with the index cards to

identify areas that could use improvement, as we’ll

Figure 8.1 You need to documentdiscuss in section 8.2.1.
your current methodology before you
try to tailor it. You may have existing8.1.1 Documenting the existing
documentation, but there is a good

process with Acme Media chance it’s out of date and doesn’t
represent how you develop softwareTo illustrate, let’s return to Acme Media and see
today. You can use cards of various

how its reverse engineering work is going. As you colors to differentiate your practices
may recall from chapter 2, Acme Media has three and improvement ideas.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

89 Understanding your current process

product groups: the news site, the classifieds site, and a travel/outdoors site. Each
group has its own processes for development.

 To minimize complexity and expedite the migration, the core team has decided to
document only the classified’s development process for now. The focus of this site is
advertisements for real estate, autos, and merchandise.

 Acme has assigned core-team members to various areas to document the phases.
The assignments are based on experience. For example, Steve Winters (CIO) and
Peggy Romani (product manager) are upstream, documenting how projects get
started at Acme. They both spend a lot of time in that area, and their experience will
help them document what happens during project initiation.

 Roy Williams (developer) and Vijay Kumar (tester) have taken responsibility for
documenting what happens on the development phase of projects at Acme. Other
team members are likewise assigned to their areas of expertise.

 The Acme team members have chosen to use butcher paper and index cards to
document their methodology. They find this approach useful because they can see the
progress that each mini-research team is making as they document their respective
areas. It also lends itself to questions when the team meets daily to review progress on
the documentation exercise.

 Acme has time-boxed its reverse engineering work to ensure the process doesn’t
go on for months. One week is allotted for documenting the existing methodology.
Most of the work will be performed offline from the core team meeting; then, the
group will meet to review the findings gathered by subteams and individuals.

 After a week, the Acme core team has recorded the information shown in table 8.1.
Note that their findings are on index cards, but we’ve converted the cards to a table to
make it easier for you to read.

Table 8.1 Acme Media’s current development process. Documenting the existing methodology can be
fun, and you’ll discover things you didn’t know. This exercise also helps the core team begin
to bond.

Initiation phase Description Group(s)

Submit requirement documents
(RDs) to request queue.

Review queue, and prioritize.

Approve projects.

Assign a project sponsor and a
project manager.

Documents that outline a request
and known requirements.

Review quarterly.

Approve quarterly.

Assign project managers across the
various projects for the quarter.

Marketing, sales, product
management

Executive team

Executive team

Executive team

Requirements & Analysis phase Description Group(s)

Obtain project-team members.

Create a project plan.

Work with line managers to identify
team members.

Interview team members to learn
what they will do during the project.

Project manager

Project manager
Licensed to Abner Lopez <ihackn3wton@gmail.com>

90	 CHAPTER 8 Injecting agility into your current process

Table 8.1 	 Acme Media’s current development process. Documenting the existing methodology can be
fun, and you’ll discover things you didn’t know. This exercise also helps the core team begin
to bond. (continued)

Requirements & Analysis phase Description Group(s)

Create functional specifications
from RDs.

Create storyboards, wireframes,
and mockups.

A project can have one to many func
tional specifications. The specs
cover all known use cases.

Prototypes to aid design.

Business analysts

UI designer, product manager

Design phase Description Group(s)

Design the data model.

Design the application.

Design the interface.

Identify data needs.

Program design.

Designer and developer work
together to ensure compatibility
between front end and program.

Development, DBA

Development

UI design, development

Development phase Description Group(s)

Create code.

Unit-test the code.

Create test cases.

Programming and research

Developer tests before releasing to QA

Developer with tester

Development

Development

Development, quality

Testing phase Description Group(s)

Smoke-test new functionality.

Build a verification test.

Perform functional testing.

Identify bugs.

Repair bugs.

Perform load-testing.

Obtain customer acceptance.

Verify that new programs run.

Regression test to verify new didn’t
break old.

Validate requirements.

Record defects.

Fix and also determine if the code is
functioning as designed.

After all code is complete, verify per
formance is still acceptable.

Meet with the customer to review
functionality and obtain approval.

Quality

Quality

Quality

Quality

Development, design

Quality

Requirements, quality

Deployment phase Description Group(s)

Integrate all features, and test.

Create maintenance plans.

System-integration testing of all
features.

Background work needed to keep the
application working.

Development, quality

Development
Licensed to Abner Lopez <ihackn3wton@gmail.com>

91 Understanding your current process

Table 8.1 	 Acme Media’s current development process. Documenting the existing methodology can be
fun, and you’ll discover things you didn’t know. This exercise also helps the core team begin
to bond. (continued)

Deployment phase Description Group(s)

Create operation and support
plans.

Create documentation.

Train.

Deploy code to production.

Deploy code to disaster recov
ery.

Information that support groups will
need to support the application.

Other documentation as needed;
marketing materials, release certifi
cation, customer approval.

Train operations and customer
service.

Deploy, usually off hours.

Put new code on backup servers.

Development

Marketing, sales, quality

Training

Implementation

Implementation

Conditional tasks/as needed Description Group(s)

Change requests

Create technical specifications

Architecture review

Company bug stomp

Create marketing plan

Needed if the customer has a
requirements change.

Some features are complex, and
the design needs to be clearly
understood.

Some applications are complex and
require an architecture review.

Get the whole company involved with
usability testing and final testing.

New, customer-facing features need
to be publicized.

Business analysts

Development

Development

All departments

Marketing

As you can see, the core team has identified six phases in the existing process: Initiation,
Requirements & Analysis, Design, Development, Testing, and Deployment. The team
has also identified several processes that are conditional. Tasks such as creating a change
request and generating a technical specification depend on the project’s circumstances.

 You’ll discover similar phases when you document your processes. We believe
most companies are doing similar tasks and labeling them slightly differently.
For example, one company may call their first phase feasibility, whereas another one
uses the word initiate. Don’t worry about labels; worry about what happens within
the labels.

8.1.2 Deciding what to keep: identifying existing valuable practices

Acme Media’s core team is proud of the work they’ve put into documenting the com
pany’s methodology. They’re also proud of what they’ve discovered. Their existing
development processes aren’t totally “throw-away.” The documentation exercise has
Licensed to Abner Lopez <ihackn3wton@gmail.com>

92 CHAPTER 8 Injecting agility into your current process

helped them recall the history behind some of the valuable steps in the process and
why they exist.

 For example, Acme used to require a technical specification for every feature
regardless of complexity. Over time, the company found that the project manager was
asking for approval to skip the technical specification for about 50 percent of features.
This happened frequently for feature requests that were simple enhancements that
used the existing infrastructure.

 The team makes a list of all such processes that arose from trial and error. They
feel these steps should be encapsulated in the new methodology (see table 8.2.)

Table 8.2 The core team lists the processes they feel are still valuable. They want to ensure that these
processes are included in the new methodology. Many times, such “trial and error” processes
are in line with agile principles and fit naturally into an agile lifecycle.

Existing process Comments

50% of the time, teams were creating them; but they didn’t add value to the
process.

Almost all features need a UI designer to create the interface. In the past,
developers created the interfaces on their own with resulting repercussions
to usability and issues with browser compatibility.

Acme has a long history of developers passing features to QA even when a
program wouldn’t run. Acme instituted unit testing as a requirement before
system-integration testing.

The QA team was burned many times by starting detailed functional testing
before verifying that the basic program(s) ran and didn’t blow up in the test
environment. Now the QA team runs the basic scripts of the programs to look
for “smoke” before initiating functional testing.

The Acme project teams used to chat about whether a project needed load
testing at the start of the testing phase. Several times, they assumed it
wasn’t needed, only to be surprised by performance issues after deployment.
Acme decided to make load testing a requirement for all projects.

Although this is an optional step, most projects have a company-wide bug
stomp. After QA is done with a release, employees are invited to spend their
lunch hour testing features without instruction. This step has identified many
issues and has also helped employees across the company understand
what’s being deployed.

Optional technical
specifications

Required interface
design assignment

Require unit testing

Smoke testing

Load testing

Company bug stomp

Unless you’re a start-up company, you should have an experience similar to Acme’s
when you start documenting your processes. You should see some keepers: processes
that evolved after toiling with an issue for several projects. We’ll speculate that a por
tion of your keeper processes can be labeled agile. Let’s review Acme’s keepers to see if
this is true:
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Understanding your current process	 93
■	 Making technical specifications optional is definitely an agile thought. Agile encour
ages documenting at a level that supports the process and adds value. Acme
realized this was not true for technical specifications and made them optional,
at the developer’s discretion. When the Acme team starts designing their new
process, their coach will encourage them to consider this approach on all of
their required documents. This will give the team the power to choose the right
documentation level for each project.

■	 Requiring the assignment of an interface designer is agile because it brings the impor
tance of the customer into the development process. This change was driven by
a desire to improve usability for the customer and ensure that functionality
worked regardless of the browser the customer chose. To make this a 100
percent agile process, the designer can review the UI with the customer dur-
ing design.

■	 Requiring unit testing is compatible with the agile perspective of viewing status
from a binary perspective. In the past, developers thought the code was finished,
but they didn’t know for sure. Now they execute unit tests before functional
testing begins to ensure code completeness.

■	 Smoke testing also lends itself to viewing code status from a binary perspective.
The program either passes the smoke test or fails.

■	 Requiring load testing for every release is an interesting step. In one sense,
it doesn’t seem agile because it takes the decision out of the team’s hands.
In another sense, it supports the agile principle of identifying and managing
risk. When the Acme team designs their new process, their coach will ask them
if they’re able to load test with automated scripts; if so, we’ll label this an
agile process.

■	 The company bug stomp is a solid process, and it’s highly agile. QA makes sure the
code does what it’s supposed to, and the company users make sure it doesn’t do
things it’s not supposed to. This process adds to company-wide collaboration
and leverages the knowledge of everyone who participates. This is a great pro
cess that Acme Media should use whenever possible.

Now that Acme has documented its existing processes, let’s look at another tool that
can help you improve your lifecycle: envisioning a pure agile process.

8.1.3 Another potential tool: documenting a perfect process

Acme Media has documented its existing process and now is looking for ways to add
agility to it. Some teams we’ve worked with like to outline a perfect methodology
before they begin redesigning their existing process. The thought is, “What would be
an ideal process if I didn’t have any constraints?”

 This is a good exercise to perform because it lets the team envision agile princi
ples in practice and motivates them to work around their constraints. It’s also good to
Licensed to Abner Lopez <ihackn3wton@gmail.com>

94 CHAPTER 8 Injecting agility into your current process

compare your existing process to one you consider perfect and then see what your
current methodology can absorb.

 This technique offers another benefit for start-ups and companies that don’t have
an existing process to change: you can document a perfect process and then review
the assessment you undertook in chapter 4 to see where that perfect process will work
and where it may have challenges.

 Figure 8.2 shows an example of a team envisioning a perfect process.

Figure 8.2 Some teams like to envision a perfect process before they modify their existing one.

In this example, a team has written their overall goal for a new process on the white
board and then outlined specific steps and the roles that will be involved in each. This
team had an issue with trying to deliver features that were too large. Their goal was to
break down work into features that could be completed in two weeks, so that mini-
teams could collaborate and deliver value quickly.

8.2 Enhancing the existing process
After achieving buy-in, the next most difficult step on your road to agile will be designing
your new methodology. You’ve been trained on the principles and phases, you’ve
reverse-engineered your existing process, and it’s time for the rubber to meet the road.

 If we were on your core team, we’d be hesitant. We’ve always learned from specific
examples, and we’d be asking you to show us how another company created its meth
odology and what it looks like.

 To remove the hesitancy and increase core team confidence, we suggest having the
team read chapters 9 through 22 before you outline your design. These chapters take
you through the design that Acme Media creates and how it works on a practice proj
ect. At a minimum, your team can copy the Acme methodology to get started. It’s a
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Enhancing the existing process	 95
sound agile methodology, and it’s vanilla enough to support most business models.
We also outline a phased, generic agile process in appendix B.

 Now, let’s rejoin Acme Media as the team reviews their existing process and
decides what to change.

8.2.1 Deciding what to change at Acme Media

Just as you will, the Acme Media core team has

reviewed the wall that outlines their existing pro
cess. While putting the wall together, the team

made notes concerning things they want to

change to be more agile. Earlier, we suggested

using sticky notes to label processes for improve
ment. You should have quite a few of these at the

conclusion of the documentation exercise. Let’s

review some of the sticky notes that the Acme

Media team attached to its existing process; see,

for example, figure 8.3.

 Table 8.3 summarizes the observations and
improvement suggestions that Acme Media has
identified for its existing process. The first few
sticky notes are attached to the first two steps in the Initiation phase: “Submit require
ment documents (RDs) to request queue” and “Review queue, and prioritize.” The
team likes these steps because they prove that feasibility is already being done, but the
team also identifies shortcomings in the steps:

■	 The RDs are usually completed only by the submitter. If a submitter isn’t famil
iar with an area, such as financials or technology, they guess at the information.
Historically, the RDs have contained some pretty wild assumptions—for exam
ple, a request submitted for streaming live news to the web assumed that Acme
would “leverage the existing infrastructure” and “not incur any additional
expense” in pursuit of the request. This is an issue because the executive team
bases approval decisions on the RDs.

■	 The executive team reviews the request queue once each quarter. On rare occa
sions, a request has been approved outside of the quarterly meeting, and that
has required a special session of the executive group. The quarterly review pro
cess doesn’t bode well with the new, urgent requests that are now coming in to
Acme. Acme needs a quicker way to get projects started.

The Acme team reviews all the sticky notes before outlining their new process.
 The Acme Media core team reviews the findings and then sits down to create their

design. The team debates where to begin and decides to use the agile phases they
were trained on as the framework for their design. They will build their steps around
the Feasibility, Planning, Development, Adapt, and Deployment phases.

Figure 8.3 Team members record
comments about the existing process
as they review it. Sticky “improvement”
notes are reviewed after the
documentation process is complete.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

96 CHAPTER 8 Injecting agility into your current process

Table 8.3 A collection of sticky-note comments after a first review of the existing process. If you have
 numerous suggestions, they need to be prioritized. Understanding agile principles is imperative

before you perform this exercise.

Initiation phase Sticky-note improvement comment

Submit requirement documents (RDs) to
request queue.

Requirement knowledge limited to submitters. Need
better information on feasibility.

Review queue, and prioritize. Needs to happen more frequently.

Approve projects. Features in an idea or project aren’t being prioritized.
It’s assumed the whole thing must be delivered.

Assign a project sponsor and a project manager.

Requirements & Analysis phase

Obtain project-team members.

Create a project plan. Hard to plan everything up front. We’ll have many
change requests, which leads to team guilt.

Create functional specifications from RDs. Sometimes we create functional specifications for fea
tures that are later dropped.

Create storyboards, wireframes, and mockups.

Design phase

Design the data model.

Design the application.

Design the interface. UI and dev work well together here.

Development phase

Create code.

Unit-test code.

Create test cases. Why can’t we start creating these before development?

Testing phase

Smoke-test new functionality.

Build a verification test.

Functional testing.

Bug identification.

Bug repair. We compress the time available for bug repairs if the
project is running late.

Load-testing.

Customer acceptance. Can we show the customer something earlier? We don’t
have time to recover if there are major discoveries.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

97 Enhancing the existing process

Table 8.3 	 A collection of sticky-note comments after a first review of the existing process. If you have
 numerous suggestions, they need to be prioritized. Understanding agile principles is imperative

before you perform this exercise. (continued)

Deployment phase Sticky-note improvement comment

Integrate all features, and test.

Create maintenance plans.

Create operation and support plans.

Create documentation.

Train.

Deploy code to production.

Deploy code to disaster recovery.

The first time we integrate, we see lots of issues.

Can we start these earlier?

Can we start these earlier?

Sometimes we’re running late, and the documentation

is compromised or delivered after the release.

On occasion, we have deployment issues and have to
abort. This is a shame because we kick the users off
of the system for a deployment.

We should do a retrospective at the end of a project.

The team begins to work for 2 hours at each of their core-team meetings. Team mem
bers also do research and design work between meetings. The work meetings are con
sumed by reviewing and debating design ideas and then reaching consensus about
whether to use a given idea.

 Here are some of the topics and questions Acme’s core team discusses while devel
oping their process:

■	 When does the methodology kick in? When is something a quick fix or an
enhancement versus a project?

■	 What is the difference between a product, a project, a release, a feature, an
enhancement, and a task?

■	 What are the minimum sets of processes and documents that need to be com
pleted on a project? Related to that, what are all the process options and docu
ments available to a project?

■	 How will we work with others? Will third parties and other departments need to
support our methodology, or will we have to abort on using our new lifecycle
when working with them?

After four core team meetings (elapsed time: 4 weeks), they’ve taken the design to a
level that is ready for a test project. Let’s review their phases. (Note that the total time
elapsed is 5 weeks. One week was spent documenting the existing process, then 4
weeks were spent designing a new process to test.)

8.2.2 Feasibility phase

The Acme team previously started their project lifecycle with the Initiation phase. In
the new design, they start with Feasibility. Table 8.4 outlines the processes for the Feasi
bility phase.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

98	 CHAPTER 8 Injecting agility into your current process

Table 8.4 	 Acme outlines a Feasibility phase for its new process. The new feasibility process
accelerates evaluation and gets work started more quickly on urgent projects.

Step Feasibility phase Group(s) Change notes

1 Submit idea to request
site.

Any employee In the past, ideas were only submitted by Mar
keting, Sales, or Product Management.
Ideas don’t need detailed requirements to be
submitted now.
The new online form requires minimal popula
tion of fields to be accepted.

2 Review queue, and
assign features for
investigation.

Product manager,
line managers, or
executive team

Ideas can be approved for more detailed
investigation (feasibility) by managers at any
time. Managers decide if a team is needed to
help with the research.

3 Research ideas for
feasibility.

Requestor, or fea
sibility team

In the past, we only used the requestor’s infor
mation to determine if an idea was feasible.
The team uses the Feasibility Discussion Guide
to lead investigative work. (This guide is cov
ered in chapter 10.)
The team returns with information such as
customer thoughts, information about what
the competition is doing, cost/benefit analy
sis, key risks, time estimates, and main bene
fits to the customer.
The feasibility team creates an elevator state
ment (covered in chapter 10).

4 Review findings to see if
the idea should continue
to the Planning phase.

Product manager,
line managers, or
executive team

Managers can send an idea on to planning.
This is possible because 50% of the team’s
capacity is now reserved for unscheduled proj
ects. The other 50% of the capacity is
reserved to support projects that come out of
the quarterly planning process.
A manager can escalate the decision to the
executive team if funds are needed or if the
project will exceed the remaining capacity in
the quarter.

5 Decide to approve, can
cel, or defer the idea/
project.

Product manager,
line managers, or
executive team

Make the call about whether to continue and
assemble a project team.

6 Assign resources to the
planning team.

Product manager,
line managers, or
executive team

We want the planning team to stay with the
project throughout development.

Acme Media has redesigned its first phase to allow for quicker investigation of proj
ects. Feasibility can now begin with approval from line or product managers. The
team has also improved the accuracy of feasibility work by not limiting it to the person
who submitted the idea. A feasibility team can be constructed quickly to help research
areas where the requestor has limited knowledge.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Enhancing the existing process	 99

 The team likes the fact that the executive team does quarterly planning and is
thinking about long-term strategy, so quarterly planning stays intact. What has
changed is the fact that executives assign projects for only 50 percent of the capacity
in the quarter. This allows 50 percent of the quarter’s capacity to be available for the
impromptu, urgent projects that are becoming more prevalent at Acme Media.

The next phase the team has outlined is the Planning phase.

8.2.3 Planning phase

The Acme core team has made the most changes around project planning; see table 8.5.

Table 8.5 	 Acme Media’s new planning process empowers the project team. The team determines the
 documents and processes to use from planning through development. Acme has also expedited

the feature-evaluation process by not requiring full functional specifications until there is confi
dence that a feature will be pursued.

Step Planning phase Group(s) Change notes

1 Determine docu
mentation needs
for the project.

Planning team All projects must complete a few core processes and
documents, but the team chooses (from a menu) a list
of additional process and document requirements.
This is a first pass at document needs. The team can
make changes to the list as the project proceeds.

2 Hold a team envi
sioning meeting.

Planning team Similar to a kickoff meeting, the assembled team
reviews the output from the Feasibility phase.
The team identifies the features of the project.

3 Prioritize feature
cards.

Planning team
and guests

This is a significant change for Acme Media. Histori
cally, the requirements team created functional specifi
cations for all features at the start of the project. The
project team wasn’t highly involved in prioritizing and
fleshing out requirements with the requirements team.
QA is involved in this process, and they begin envision
ing and creating the test cases at this point.

4 Sequence fea
ture cards.

Planning team
and guests

This is another major change. Instead of the project
manager creating the plan for feature development on
her own, the whole team gets involved in specifying
the sequence in which features will be built.

5 Plan iterations. Planning team
and guests

After sequencing, the team works together to assign
the features to iterations.

6 Make a decision
at the planning
gateway.

Project manager
with product man
ager or executives

The team makes a continue or stop decision. For the
first time, Acme Media will have the option to cancel
a project if the Planning phase identifies additional
information that makes the project less feasible
(technical discoveries, revision to work estimates,
dependency issues).

Acme Media has embraced the concept of “just enough” with the planning phase,
which will let the team spend more time developing high-priority features.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

100	 CHAPTER 8 Injecting agility into your current process

 The two biggest changes in this area are team involvement in planning and the
assignment of features to iterations. In the past, most planning was completed by the
project manager. They interviewed the team and documented the work-breakdown
structure, and the team began immediately on the detailed requirements and designs
for all the features.

 In the new model, the team reviews candidate features together and determines
their value and priority. Afterward, the team assigns features to iterations and only
does design work for the items that are assigned.

 Acme’s core team worries about a large group working together on planning and
notes that the planning team should have a maximum size of six to eight people. All
groups will have at least one representative at the planning sessions.

 The Planning phase also adds a new decision gateway for Acme Media. Because so
much discovery takes place during the Planning phase, the team presents the infor
mation to a manager or the executive team to make the call about whether to proceed
with development.

8.2.4 Development phase

The main change in the development area is that Acme Media will no longer use the
waterfall model for development. In the past, the developer received a functional speci
fication and started building from it. In the new model, the developer has the feature
card, and all the information is recorded on it. The developer works with the require
ments team and the product manager to build to the minimum specification so a
demonstration and validation can be obtained quickly.

 Another significant change is the daily stand-up meeting. The development team
used to meet daily to discuss status during development; now, most of the project
team (not just developers) is there to synchronize on information and quickly resolve
roadblocks to keep development rolling. Table 8.6 outlines the Development phase.

Table 8.6 	 Acme Media’s new Development phase is focused around delivering value early and early
validation of customer requirements. Testing also occurs sooner so that issues are easier to
trace and repair.

ID Development phase Group(s) Change notes

1

2

Perform iteration 0:
development initiation
work.

Perform development
iterations 1–n.

Project team with
potential executive
assistance

Project team

In the past, Acme developers received a func
tional specification to build from at this point.
This step is used to put foundation pieces in
place, such as architecture, vendor contracts,
and environment preparation.

The team swarms on the features to clarify the
design and build the functionality. Unit testing
occurs at a minimum.
Demonstrations are scheduled for the end of the
iteration, but impromptu customer demonstra
tions can happen within the iteration.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

101 Enhancing the existing process

Table 8.6 	 Acme Media’s new Development phase is focused around delivering value early and early
validation of customer requirements. Testing also occurs sooner so that issues are easier to
trace and repair. (continued)

ID Development phase Group(s) Change notes

3 Hold a daily stand-up
meeting (part of the
development iterations).

Project team Acme Media had weekly status meetings in the
past, but they were only attended by managers
who reported status for their teams.
The new daily stand-up meeting is limited to 15
minutes, and it’s “standing.” The team dis
cusses what has been done, what will be done,
and any roadblocks or issues.
The team discusses the status of features and
whether they’re ready to be integrated.

4 Integrate-build. Development-
implementation

In the past, Acme waited until the end of devel
opment to integrate and build. Optimally, they
would like to integrate every day, but for now they
will settle for integrating three times a week.

5 Test. Quality assurance Acme hasn’t made many changes to the testing
process. The team considered test-driven devel
opment, but the assessment they completed
indicated they aren’t mature enough to pursue it
at this time.

6 Repair bugs. Development Previously, Acme reserved a few weeks at the
end of the project to do bug cleanup. In the new
model, bugs identified during an iteration affect
capacity for subsequent iterations. Acme
reserves some time during the deployment
phase to clean up bugs, but major bugs are
treated as features.

7 Update maintenance
and support plans.

Development In the past, the team waited until deployment to
create maintenance and support plans. Now they
consider them part of feature delivery.

8 Complete the iteration. Project team This step indicates the end of the time allotted
for the iteration.

Acme Media also needs to consider a new phase that was previously limited to the end
of the project: the Adapt phase.

8.2.5 Adapt phase

In the past, change was a bad word at Acme. If you needed to change requirements, the
schedule, the scope, or some other project attribute, you had to create a change
request. Now, change is expected, and the Adapt phase is dedicated to reacting to
change. See table 8.7.

 Acme Media still requires change requests for some items, specifically those that
require incremental cost; but most changes are embraced, and the team works to
deliver what is needed at the end, not what was requested at the beginning.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

102	 CHAPTER 8 Injecting agility into your current process

Table 8.7 	 Acme Media’s Adapt phase embraces change. The team focuses on learning as the project
progresses and delivering what is needed at the end, not necessarily what was requested at
the beginning.

Step Adapt phase Group(s) Change notes

1 Perform customer
acceptance.

Requirements
and guests

In the past, Acme performed customer acceptance at
the very end of development. The new process allows
several reviews.
The deliverables for the iteration are presented to the
customer for review, testing, and ultimately acceptance.
When the review is kicked off, stakeholders are invited
to see the overall status of the iteration. In the past, the
review was only for customers. This step helps prevent
surprises.
If features aren’t accepted, the team reviews the issues
and makes a decision on whether to continue work on
the feature into the next iteration. In the past, rework
time was limited to the bug-fix window.

2 Undertake
discovery.

Project team The team reviews new information that materializes
during development: business-climate changes, com
petitor product changes, priority changes, and so on.

3 Evaluate the
iteration pace.

Project manager The project manager reviews development’s actual
velocity versus the forecast velocity and adjusts the
features assigned to the next iteration accordingly.

4 Re-plan. Project manager
and team

The team modifies the plan for the next iteration based
on all the information gleaned during the Adapt phase.

Adaptation occurs throughout Acme’s development lifecycle, but it’s stressed during
the Adapt phase. Customer demonstrations provide the ultimate opportunity to vali
date whether the product is on track and, if not, what needs to be done to redirect.

 This phase more than any other reveals what agile is all about. Change is unavoid
able in a project, so the methodology should embrace change. The team will be busy
enough reacting to the change; they don’t need additional hassles from the process.

8.2.6 Deployment phase

Acme hasn’t identified many functional changes for the Deployment phase, but they
have found some cultural areas to work on; see table 8.8.

Table 8.8 	 Acme Media’s Deployment phase finalizes work that has been in progress since the
 Feasibility phase. Items such as maintenance plans have been discussed and worked on
 throughout the project. The team has also added a step to stop and reflect on how well the

process is working—a retrospective.

Step Deployment phase Group(s) Change notes

1

2

Train support groups.

Finalize maintenance
plans.

Implementation

Development

This step is unchanged.

In the past, the entire plan was created days
before deployment; now it’s tweaked and final
ized. Work began back in the Planning phase.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

103 Enhancing the existing process

Table 8.8 	 Acme Media’s Deployment phase finalizes work that has been in progress since the
 Feasibility phase. Items such as maintenance plans have been discussed and worked on
 throughout the project. The team has also added a step to stop and reflect on how well the

process is working—a retrospective. (continued)

Step Deployment phase Group(s) Change notes

3 Finalize operation and
support plans.

Implementation The team finalizes these plans versus doing all
the work at this point.

4 Finalize documentation. Project Team The team finalizes the documentation versus
doing all the work at this point.

5 Deploy the code to
disaster recovery.

Implementation Acme has had issues deploying in the past. To
mitigate risk, they will deploy to the disaster-
recovery environment first to identify potential
production deployment issues.

6 Deploy the code to
production.

Implementation This step is now performed after disaster-recov
ery deployment.

7 Hold a lessons-learned
(retrospective) meeting.

Project team Acme has never stopped to review its processes
between releases.

8 Celebrate! Project team and
stakeholders

Things have been chaotic lately, and Acme has
stopped celebrating. The company needs to
return a sense of accomplishment to the team.

The team notes that they’ve never discussed the lessons learned after a project, and
subsequently they’ve found themselves repeating the same mistakes. A retrospective
will be part of the new process now.

When to skip this practice
Sometimes it doesn’t make sense to reverse-engineer your existing process. If you’re
a start-up company, you probably don’t have anything to reengineer. Likewise, if your
existing process is atrocious and you want a separation from it, you may want to skip
this exercise. In these cases, you may want to begin with a “perfect” process or a
prepackaged method such as Scrum or Extreme Programming and then look at the
realities of your environment and adjust accordingly. The readiness assessment in
chapter 4 can help you make this decision.

The team also notes that they’ve quit celebrating at the end of projects. After many
change requests, schedule slips, and chastisement from the executives, the team
hasn’t been in a celebratory mood lately. The team believes in the new process, and
they believe that the future will warrant success, so celebrations have been added as an
anticipated part of the delivery process.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

104	 CHAPTER 8 Injecting agility into your current process
8.3 Key points
The key points from this chapter are as follows:

■	 Your development process should focus on delivering as much value as possible
within your constraints.

■	 Don’t be afraid to design a development process that reflects the realities of
your environment. Customizing and adapting is what agile is about.

■	 You can begin designing a new process immediately, but it’s valuable to study
your existing process. You’ll identify practices that have been successful in your
environment, and you don’t want to throw them all away.

■	 Documenting your existing process is a fun exercise that will help the core team
bond.

■	 You should time-box the time spent on creating your new process, or you could
find yourself working on it for weeks. Take a first pass, and go try it with a pilot.
You can refine your process as you learn.

8.4 Looking forward
In this chapter, we discussed how to add agility to your existing process. The goal is to
add agility in an incremental fashion, focusing on areas where implementation isn’t
risky and the return can be great. Now that you have a process, we need to take it for a
test drive to look for issues that can’t be identified on a whiteboard. We’ll show you
how to test the new methodology on a pilot project in chapter 9.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Selecting a pilot project
Greg’s wife kicked him out of bed, and he landed on the floor with a thud. His
tropical-island dream was rudely interrupted. “Look!” she exclaimed. “Look at my
bathroom. It’s hideous. All that hard work to remodel it, and now it’s ruined by a
poor paint job!”

 She was right. The new shower doors looked great, the tile floor could grace a
palace, and the new sinks were sparkling. Unfortunately, the paint job had reduced
the whole room to a cave. The paint was too dark and absorbed any and all light in
the room. It was depressing.

 How had they arrived here? They had done the whole project by the book. They
hired a general contractor, they thoroughly identified all their requirements, and
then they sat back to watch their perfect new bathroom take shape. For the most
105

Licensed to Abner Lopez <ihackn3wton@gmail.com>

106 CHAPTER 9 Selecting a pilot project

part, it had gone well. Of course, they hadn’t anticipated that the new shower door
wouldn’t match the other fixtures. And they didn’t get too upset when they realized
that the new tile blocked their access to the bathtub plumbing. But the paint was the
last straw for Greg’s wife.

 In hindsight, what should they have done differently? How could they have
avoided this mistake? Greg walked through the process in his head.

 Obviously, the biggest error was picking a color from the deck of paint chips and
assuming it was exactly what they needed. In retrospect, Greg and his wife should have
specified the paint color to the painter and told him the choice was not final. They
should have asked him to paint a small part of the wall with the chosen color plus sev
eral similar colors. Then they would have seen that their choice was too dark and
selected a lighter shade. They could have next asked the painter to try the lighter
shade on one wall only. If it looked good on one wall, they would have turned the
painter loose to paint the whole room.

 And when they repainted the room, that is exactly the process they followed.
 What does this have to do with adding agility? It would be ridiculous to assume that

you know how well a new process is going to work across your organization without
testing the process first. When you roll out your new development methodology, you’ll
pilot the process, gather feedback about it, refine it, and continue to scale it across
your organization.

 A pilot identifies hidden weaknesses, increases agile knowledge throughout the
company, and acclimates the team to the new methodology. Similar to the bathroom-
remodel analogy, you’ll see what your company looks like when you apply a coat of
agile paint. The pilot project demonstrates how effective your new process is and
helps you prepare to scale agile across the organization.

 In this chapter, we’ll discuss how you select the correct pilot project (like the team
shown in figure 9.1). We’ll start by showing you the traits to look for and the traits to
avoid. And We’ll follow Acme Media as it uses the suggested guidelines to select a pilot.

Figure 9.1 A team
evaluates potential
pilot projects. The
team looks for a
project that can be
completed relatively
quickly with minimal
risk to the company.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Characteristics of a good pilot 107
9.1 Characteristics of a good pilot
The pilot will be the first time the new lifecycle is exposed on a real project with a
real team. In effect, it’s a marketing event for the new process. If you choose the
wrong type of pilot, you may end up aborting, which will be a poor advertisement for
the new methodology.

 With that thought in mind, you want to select a project that will push you through
the test but not shove you. You want time to test the process in all areas such as require
ments, design, development, testing, and implementation. You also want to give your
pilot team time to acclimate to their new level of ownership. Agile is about methodol
ogy and culture. The team should understand the literal process, but they should also
begin to understand what it means to be agile. You want them to start envisioning what
it’s like to own a project and be highly involved in decisions. Let’s look at the traits of
a good pilot project.

9.1.1 A project you can complete in 2 to 8 weeks

Your pilot project should have an overall completion estimate somewhere between a
couple of weeks and a maximum of 8 weeks. If your project runs longer than this, you
extend the time needed to record feedback on the process, which delays your ability
to adjust your methodology. What is the right size for a pilot?
HOW LARGE IS TOO LARGE?

One of the easiest ways to complicate your migration is to test your new methodology
on a large project. A large project requires training many people—and possible sev
eral third parties—on the new methodology. This will delay your ability to gather feed
back about the new process and adjust it, which is the ultimate objective of the pilot.

 Let us give you an example of a project that we consider large. We were upgrading
a company’s intranet platform, and the project was scheduled to run for 8 months.
The project went through several gateways to obtain funding. It required high involve
ment from the software provider, and consultants were needed to train the team on
the new software. Because the application affected the enterprise, we engaged several
internal teams to help us with training, communication, and security. A project of this
length and scope doesn’t allow time for testing a new process.

 You also don’t want to work on a project that is too small. Such a project limits the
areas and phases in which you can test the new process.
HOW SMALL IS TOO SMALL?

We recently worked on a project that allowed a company to change the appearance of
its brand. All of the company’s web pages needed to support new company colors,
logos, and slogans. The project had to touch every page of every website, but most of
the work was completed by changing one style sheet. The project required high
involvement for the user interface (UI) team, but the development, implementation,
and testing areas had minimal work to do.

 The project was completed in a week. If you used such a project as an agile pilot,
the UI team would learn more about agile, but the other teams would have limited
Licensed to Abner Lopez <ihackn3wton@gmail.com>

108	 CHAPTER 9 Selecting a pilot project
exposure. The new process wouldn’t be tested well because the areas outside UI
wouldn’t perform their typical project tasks.
USING A SUBSET OF A LARGE PROJECT

On occasion, we cross paths with folks who do nothing but large projects. They tell us
that a short project for them lasts 6 months, and they don’t know how they can do a
pilot that meets our criteria. You can handle this issue by finding a subset that meets
the criteria of a shorter project. The question you need to ask is, “What do you do dur
ing a project that can be completed within 8 weeks?” You need to identify a group of
features to serve as a mini-project within the larger project.

 For example, if you’re building a website similar to eBay, the project may take 6
months to a year. To test your new methodology, you can grab a few features and test
the new process on them. For example, you could do a mini-pilot project around
seller feedback and its related features.

 If you go the subset route you may have limitations on how far you can test the new
process. Your subset of features may need to rejoin the other features and go through
the legacy testing and deployment processes. If you experience this issue, you can try
to pull the features completely out of the project in subsequent tests, running them all
the way through to deployment.

9.1.2 A medium-priority project

Your pilot project needs to have some level of urgency to test the new process under
pressure; but if the project is deemed critical, failure isn’t a viable option. You may
panic, abort, and revert to methods you’re more comfortable with to complete the
project. As we mentioned in section 9.1, the pilot project is a marketing effort as well
as a test of the new methodology—you don’t want to send a message to your company
that the pilot was aborted.

 A project is usually critical if your company or the customer can’t survive without
it. Here are some example projects that a business would consider critical:

■	 A project to ensure a revenue stream
■	 A project that supports meeting a regulatory or compliance deadline
■	 A project with expiring funds (budget tied to a time frame)
■	 A project that delivers functionality that is a foundation for the organization

(such as service-oriented architecture [SOA])

From a customer perspective, these projects could be considered critical:

■	 A project tied to a fixed bid
■	 A project that the customer depends on for a marketing campaign
■	 A project that relates to a regulatory or compliance issue on the customer end

Your objective should be to find a medium-priority project. Such a project allows some
flexibility as you feel out your new process and also provides a level of urgency. You’re
moving to agile to better support urgent projects, so you need to simulate this with
your pilot.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Characteristics of a good pilot 109

Here are some examples of medium-priority projects:

■ Adding the ability to book hotels on an existing travel site
■ Delivering a maintenance release onto an existing platform
■ Adding customizable stock quotes to a portal page
■ Modifying your HR application to let employees view their vacation balance
■ Adding advanced search capabilities to your existing simple search

Now that you understand the pilot’s desired size and priority, let’s look at the breadth
of the project.

9.1.3 A project that hits all phases and areas

Your pilot project needs to touch all major areas related to projects at your company.
You don’t need to go deep, but you should go wide. It may be difficult to select a test
project that utilizes all possible processes and departments, but you should select one
that hits the majority of them.

 Although your pilot will go wide, you don’t want to test outside of your company.
The reason is that you’ll be busy watching the process within your company. Adding a
third party into the mix may diminish your ability to record feedback and learn from
the pilot. You can involve third parties in subsequent projects, when you have more
bandwidth for their feedback.

 It’s tempting to try to test agile area by area, but doing so usually leads to poor results.
Your new agile process will be designed to have practices integrate with each other. This
integration is where a good portion of the value comes from. A segmented test may mask
these benefits and also minimize your ability to identify issues with the process.

 Here’s an example. A few years ago, a prominent company implemented an agile
development process. The company had created a core team to create the custom meth
odology. The core team was composed of employees from various departments such as
Program Management, Development, QA, User Interface, Implementation, and Ana
lytics. On occasion, core-team members demonstrated a proposed process on a live proj
ect. In one such instance, a program manager decided to test the agile feature-card
process on a live project. The project was already following a traditional lifecycle.

 The value of the feature-card meeting is that it lets you gather enough information
to plan the project: it’s a precursor to gathering detailed requirements. The project that
was already in flight had complete functional specifications and a robust project plan.

 To perform the feature-card meeting, the program manager had to pretend that
all the information in the functional specifications didn’t exist. She also had to deter
mine what to do with the output from the feature-card meeting. In an agile process,
the output feeds an iteration or sprint plan. The project in progress already had a
detailed development plan, so no value was gained from the feature-card exercise.

 This demo had a negative effect on the company’s agile deployment. Because the
feature-card meeting was used at the wrong time, it added no value. The employees
who tested the process quickly spread their experience throughout the company, and
other employees who were already against an agile methodology now had the ammo
Licensed to Abner Lopez <ihackn3wton@gmail.com>

110 CHAPTER 9 Selecting a pilot project

they needed to try to stop it: they had proof that agile didn’t add any value to the
development process.

 In summary, you can use agile and traditional processes together, but you have to
design interface points so the process flows logically. You’ll see this in practice in sub
sequent chapters.

9.1.4 No external customers

At this point in the book, you should be surprised when you read the title of this sec
tion. Don’t involve the customer? That sounds anti-agile.

 You always want to show customers your good side. When you’re piloting your new
process, you’re hoping to find issues with it. The mixing of issues and customers isn’t
necessarily a good thing.

 There are exceptions to this rule. You may have a customer that is really a partner
and with whom you can share almost anything. If this is true, you can keep them
abreast of how things are going with development of the new process and include
them in the pilot. A long-term goal of agile is to get your relationship to this point. But
this is usually an exception for companies just starting to use agile techniques, where
the customer may be viewed as an adversary.

 We recommend that you have a customer advocate or proxy for the pilot. Typically,
proxies come from product or program management; they can simulate external cus
tomer interaction during the project. You’ll see this in practice during the pilot at
Acme Media, where Acme’s product manager will play the role of the customer.

 Although you may not involve a customer in your pilot, you can still use the pilot to
prepare for their involvement in the future. The pilot helps you more clearly define
the customer role in the process.

9.2 Evaluating projects at Acme Media
To help you understand the selection criteria outlined in section 9.1, let’s rejoin Acme
Media and see how it selects it’s pilot project.

9.2.1 Request backlog

Every company has a different way of populating their request/potential projects
backlog (a.k.a. project backlog). Sometimes backlog evaluation is driven by an executive
review process, sometimes it’s driven by product marketing, and sometimes it’s driven
by a customer.

 Acme Media populates its request backlog via a quarterly planning process. The
executives review all known project requests once every three months, prioritize them,
and loosely assign them to the quarter for completion.

 As you may recall from chapter 2, Acme Media supports a website that includes
news, classifieds, and travel/outdoors content. Executives from these three areas
attend the quarterly planning process along with managers from support areas such as
online advertising, user registration, and engineering. Acme’s project backlog is pic
tured in table 9.1.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

111 Evaluating projects at Acme Media

Table 9.1 	 Acme Media’s project backlog. You’ll review potential projects to identify the best one on
which to test your new methodology.

Area
Potential
projects

Priority
H-M-L

Estimated
duration

Request type Detailed description

News “My News”
personalization

M 9 weeks Customer User can build their own page
with content from AcmeNews.
com along with other sites.

Classifieds Free merchan
dise advertising

M 7 weeks Customer Compete with eBay and Craig
slist for lost classified adver
tisements.

All Investigate
Flash for videos

H 2 weeks Infrastructure Many readers’ videos are being
blocked by firewalls. Investigate
Flash as a solution.

Classifieds Autos email
alerts

L 1 weeks Customer User can enter criteria and be
notified when a car they desire
is posted for sale.

News Wireless
weather alerts

M 3 weeks Customer Deliver forecasts and alerts to
customer phones.

Advertising Behavioral
targeting

H 10 weeks Advertiser Serve tailored ads to the reader
based on their browsing habits.

When the Acme Media quarterly planning team sits down to identify their pilot proj
ect, they invite the project manager, Wendy Johnson, to assist. Wendy recently trained
on the agile principles, and she has worked with the core team to outline the new
methodology. Wendy also has a good feel for what a test project should do to exercise
all the new processes. The team sits down and compares the projects in the backlog to
the selection criteria outlined in section 9.1.

9.2.2 Selecting a pilot project: an example

Acme Media begins by screening projects by size. The team filters out the behavioral
targeting and ”My News” projects because they’re estimated to run longer than 8
weeks.

 Next, they filter by project breadth. The Macromedia investigation is only an inves
tigation—it will hit few areas and won’t have a code deliverable. It’s also a high-priority
project, which means there will be little patience for testing a new process.

 The autos email alert item is closer to a feature than a project. It’s a small enhance
ment to the existing autos site. This project doesn’t require a feature-card meeting
and will have only one iteration.

 Wireless weather alerts is a niche project that requires a limited and specialized
project team. It doesn’t require team members from most of the departments.

 That leaves Acme Media with the free merchandise advertising project. It’s esti
mated to last less than 8 weeks, which will allow for timely feedback. It will hit all the
phases of the new process and involve all the major functional areas of a project:
Licensed to Abner Lopez <ihackn3wton@gmail.com>

112	 CHAPTER 9 Selecting a pilot project

requirements, design, development, implementation, quality, and operations. It’s a
medium-priority project, so it will push the team along. It’s also a good fit because
third parties won’t be involved.

 The project is a product-management initiative, which means an internal product
manager can play the role of the customer. This supports a pilot objective of not
involving a real customer in the first test of the agile methodology.

 Based on all these findings, Acme Media chooses the free merchandise advertising
project as its pilot. Acme’s next step will be to identify the team members needed to
perform the pilot.

9.3 Key points
The key points from this chapter are as follows:

■	 A pilot project is needed to validate your agile process in the real world.
The pilot must be brief, to allow for quick feedback on the process. It needs

to be of medium priority so that it will push you but still allow time for scrutiny
of the new methodology.

■	 The pilot should exercise as many processes as possible and involve as many
areas as possible.

■	 You want to expose as many weaknesses as you can during the pilot so you can
improve the process and prepare it for scaling across your organization.

■	 Avoid risks on your pilot. Don’t select a mission-critical project.
■	 You can also invite risk if you involve your direct customer in the pilot. Work the

major kinks out of your methodology before exposing it to the customer. The
customer can participate after your team has matured around the process.

9.4 Looking forward
In this chapter, we identified a project that’s a good test for the enhanced methodol
ogy Acme Media has created. In the next chapter, we’ll join the case study as it starts
the pilot project. In effect, you’ll see agile in action.

 The pilot project will start with an assessment of feasibility. Many projects are well
into development before the team realizes the work isn’t possible or the return on
investment isn’t there. Acme Media now does feasibility as a normal part of its pro
cess, and the team will find out whether the Free Merchandise Advertising concept is
worth pursuing.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Part 3

Kicking off

We’ve worked on numerous projects where the team was expected to do
the work but not necessarily understand the value of the project. Many repercus
sions can result if you don’t orient the project team to the value of the idea.

 First, if the team doesn’t know why they’re pursuing an idea, they won’t be
able to make decisions if they encounter issues. Development will slow while
team members seek out management for redirection.

 Second, your project team contains a large quantity of intellectual power.
Team members may identify issues with an idea if they’re consulted before work
begins. The company can use this information to determine whether a project is
feasible and, if necessary, cancel a project before time is wasted.

 Third, it’s demoralizing not to be consulted about a project you’re going to
work on. When you’re told to do something, your underlying thought is, “Why
should I do this?” We believe in treating team members respectfully. Asking the
team for their input on a project before it begins shows respect and also helps
with project buy-in.

 In this part of the book, we’ll address these three issues. You’ll see how Acme
Media gets the buy-in of its pilot team by involving them in the feasibility assess
ment and by going through an envisioning process that quantifies the value of
the Free Merchandise Advertising idea.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Feasibility:
 is this project viable?
Our project backlogs are full of great ideas. In some cases, we get so excited about a
great idea that we disregard all the challenges and jump right in to start develop
ment. Sometimes we succeed, and sometimes we have to abort.

 Many companies struggle when trying to validate a project’s value. Some compa
nies initialize a project without knowing if it’s viable; other companies scrutinize
the value of a project for months before making a decision. There are issues with
both approaches.
115

Licensed to Abner Lopez <ihackn3wton@gmail.com>

116	 CHAPTER 10 Feasibility: is this project viable?

 If you perform minimal validation, you’ll frequently deliver projects that provide
marginal value. You may also find that you’re aborting on projects because you over
looked major risks at the outset. In both instances, you waste company time and
resources and potentially lose the opportunity to deliver valuable projects.

 Companies that perform too much validation have a different set of issues. These
companies create so many hurdles and gateways that a considerable expense is associ
ated with project justification. They also minimize their ability to achieve benefits
from projects that need to deliver value early: time that could be spent performing
the project is frequently lost to the justification cycle.

 How do you know when you’ve done enough research? How can you tell if a proj
ect is feasible without overkill? We suggest using the feasibility process outlined in this
chapter. This process works for two reasons:

■	 The feasibility effort is time-boxed.
■	 The team is empowered to question the viability of the project after the Feasibil

ity phase.

Time-boxing the effort prevents a runaway train. A time limit adds urgency to the
effort and prevents waste. Acme Media has a 3-day limit for feasibility work. We suggest
you create a time limit for feasibility work within your company, too. A good rule of
thumb is 2 to 5 days.

 Some employees won’t be happy with this time limit: they will say that each project
is different and that larger projects require more time for feasibility work. They will
also say that setting a fixed time for an activity is anti-agile. We agree with all these
points. This is where our second point comes into play: the team can cancel the proj
ect at any time.

 During the Feasibility phase, you’ll make a quick call about whether to go forward.
This will prevent you from missing an opportunity due to over-analysis. You’ll use the
Planning phase to learn more about each individual feature; and as you do this, you’ll
continue to consider project feasibility. You can still cancel the project if you encounter risks
and issues during the Planning phase.

10.1 Feasibility in the big picture
As Acme Media begins work on its pilot project, let’s take a moment to discuss how
feasibility fits into the overall agile lifecycle, depicted in figure 10.1. The agile pro
cess that Acme has created is represented by five virtual phases. We use the term
virtual because in reality you may perform feasibility, planning, development,
or adapting at any point in an agile project. The work is not performed in a seri-
al fashion.

 First is the Feasibility phase. You use this phase to determine if an idea has enough
merit to justify going forward with more detailed requirements, planning, funding,
and staffing. Why are you doing this project? What is the value of this request? What
Licensed to Abner Lopez <ihackn3wton@gmail.com>

117 Feasibility in the big picture
Figure 10.1 Overview of Acme Media’s phases

are the risks in pursuing this project? The Feasibility phase provides answers to these
questions quickly. You can see typical feasibility activities in figure 10.2.

 The Planning phase gets started by reviewing the output of the Feasibility phase
and going deeper into the information provided. You use the Planning phase to break
the idea into discrete pieces of functionality called features or user stories. You then pri
oritize the features and loosely assign them to development iterations.

 The release plan provides a first pass at the work that will be created, tested, and
demonstrated during the Development phase. This work is completed in iterations
and queued for later deployment. Each iteration is a deliverable subset of features;
these features are demonstrated at the end of development iterations.

 When the team reviews the features that are delivered, they adapt. The team gath
ers feedback from the customer during the Adapt phase to ensure their needs were
satisfied by the features delivered. The team also reviews their velocity (pace) to see if
their capacity estimates are correct. The team uses this information to adjust the plan
for the forthcoming iteration.

 The last phase is Deployment, which begins after the last iteration is complete. You
use this phase to deliver code to the production environment. You also use the
Licensed to Abner Lopez <ihackn3wton@gmail.com>

118 CHAPTER 10 Feasibility: is this project viable?

Figure 10.2 Acme’s Feasibility phase. The team gathers just enough information to validate the value
of the project and make the call about whether to go forward.

Deployment phase to prepare all of those affected by delivery of the project: you train
customers, prepare support organizations, turn on marketing plans, and complete the
phase with a project retrospective.

 Acme Media’s pilot project, free merchandise advertising (FMA), has been
approved for feasibility research. Chapter 9 provided the selection criteria that the
Acme management team used to identify the pilot. The FMA project met the condi
tions of the criteria: it’s medium priority, can be completed within 8 weeks, and
involves the majority of departments and areas within Acme. Now Acme Media needs
to identify a group of employees to look at the idea in more detail and make sure it’s
feasible to fund the project and identify a full project team.

10.2 Selecting a feasibility team
After a project has been endorsed for feasibility analysis, you assign an individual or a
team to perform the work. The work can be performed by an individual if the idea is
simple, such as a slight enhancement to existing functionality. More complicated
ideas should be reviewed from various perspectives, and a team will be required to
provide the analysis.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

119 Selecting a feasibility team
 First, you must determine what type of team members are needed to do the feasi
bility work. Second, you need to review the known requirements with the feasibility
team and have the members perform research in their respective areas. The feasibility
guide (discussed in section 10.3.1) focuses the team on the areas they should be
researching during the phase.

 When the team feels they’re reaching diminishing returns, or their time limit
expires, they will summarize their findings and present them to an approval body. The
team will make a recommendation on “go/no go” at the conclusion of the exercise,
and the approval body will make the ultimate decision about whether to proceed.
Note that an approval body can be as small as a product manager or as large as a steer
ing committee or executive team. In our experience the feasibility team’s suggestion is
usually followed.

 Let’s follow Acme Media as it goes through the feasibility phase with its pilot proj
ect, beginning with the creation of a feasibility team.

10.2.1 Selecting feasibility team members at Acme Media

Acme Media’s product manager, Jay Fosberg, and project manager, Wendy Johnson,
get together after the FMA idea is named for the pilot project, to determine the types
of employees they need to perform the feasibility work. They start—and you will,
too—by reviewing the pilot’s known requirements or objectives. Jay has a rough con
cept outlined for the idea. Because the project is medium priority, there has been no
reason to go beyond his initial requirements. At first glance, this may seem to be a
problem, but in reality it’s a blessing. When your company acclimates to the agile
mentality, you’ll find that you do lighter initial requirements. You’ll quickly jump to
feasibility and build out your requirements as you learn more along the way. It won’t
be critical to create a detailed, heavily structured requirements document before
determining if the project is feasible. (We’ll dive deeper into requirements when we
discuss the Planning phase.)

 Jay and Wendy spend a few hours reviewing the known requirements and deter
mine that they need three types of team members for the feasibility analysis:

■	 A developer—to provide thoughts about the coding that will be required
■	 A designer/UI employee—to identify any concerns in creating new screens to sup

port the project
■	 A customer—to answer any questions the developer and designer have about

scope, requirements, and objectives

They note these needs on the Feasibility Team Checklist shown in table 10.1. We sug
gest that you create a checklist similar to this one, tweaking it to reflect your organiza
tion structure and business model.

 In Acme’s case, the company has identified the need for a developer, a designer,
and a customer to participate in the feasibility process. A project-manager role isn’t
selected—it isn’t even an available option on the Feasibility Team Checklist. Acme did
Licensed to Abner Lopez <ihackn3wton@gmail.com>

120	 CHAPTER 10 Feasibility: is this project viable?

Table 10.1 	 Feasibility Team Checklist. A checklist can help prevent an oversight when you’re selecting

feasibility team members.

Technical Product/Customer Other teams

Developer

Database analyst

Architect

Implementation

Support

Designer

Direct customer

End user

Revenue supplying customer
(i.e. advertiser)

Product manager

Marketing manager

Focus group

Usability testers

Vendor (i.e. application provider)

Service provider

Legal

Finance

Quality

this because the company assigns a project manager to a project as soon as it’s
approved for Feasibility analysis; the project manager stays with the project until it’s
cancelled or delivered. Wendy will act as the project manager on the pilot project.

 We recommend that you follow this process with your methodology. It’s excellent
to have at least one person on the project team who has been with the idea since

Selecting a feasibility team for your pilot project vs. everyday projects
Acme’s agile process allows for different teams to be used between the Feasibility
phase and the Planning/Development phases. For example, a light team or even one
person can do the feasibility analysis. When an idea is through the Feasibility phase,
Acme can identify the team for planning and development—the actual project team.
Acme chose this design to minimize the impact on the organization until the project
has been deemed viable.

In the case of the pilot project, Acme has decided to name the team for planning and
development during the Feasibility phase. Only a few team members receive feasibil
ity assignments; the remaining team members sit in on feasibility activities to learn
how the process works. This is the beginning of Acme’s agile education process. On
projects after the pilot, Acme will perform the Feasibility phase as designed, having
only needed team members participate.

When you create your lifecycle, you can go either way. If you can free up the entire
team for the Feasibility phase, and the entire group is about eight people or fewer,
then we recommend having the entire project team involved in feasibility activities. In
contrast, you may choose to limit involvement to the minimum amount of employees
needed to explore the project for value. Many companies do this because they have
a limited number of team members.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Introducing the known requirements to the feasibility team 121
inception. This person will understand the vision behind the idea and communicate it
to team members as they join the project.

 Jay and Wendy select Matt Lee as the developer for feasibility. Matt had coded most
of the classifieds functionality, including the merchandise functionality, and he can
speak to the complexities the FMA project may encounter.

 Ryan Getty is selected as the designer for feasibility. Ryan has been the UI resource
for a good portion of the classifieds work. He’s good at outlining potential workflows
for requirements, which will come in handy during the Feasibility phase.

 The customer identified on the Feasibility Team Checklist is the advertiser. The
FMA project depends on advertisements from local businesses. Jay (who is the product
manager for the classifieds website) has been assigned the customer role for the pilot
project. As you may recall from chapter 6, you don’t want to expose your new method
ology to external customers until the pilot had been completed. But in this instance,
it’s OK to interview the advertisers. Acme had interviewed advertisers in the past, and
they enjoyed participating in discussions about new features.

 After you’ve assembled the feasibility team, it’s time to introduce them to the
known requirements.

10.3 Introducing the known requirements to the feasibility team
If you’re working on an agile project, one with volatile requirements or a tight dead
line, you won’t have deep requirements when you begin the Feasibility phase. A
request or idea has been approved for a feasibility investigation, and no one has docu
mented detailed requirements to this point. Your idea is relatively new, and you’re
working rapidly to either start the project or dismiss it.

The information that is available is presented to the feasibility team. The idea usu
ally has a champion or author who can meet with the team and go over the concept.
This person brings in all the information they have at this point, whether it’s a dia
gram on a cocktail napkin, a detailed flowchart, or a mini functional specification.
The following items can be analyzed during the Feasibility phase:

■ User scenarios ■ Storyboards
■ User stories ■ Marketing proposals
■ Use cases ■ Competitive analysis
■ Rough sketches of process flow ■ A website where a competitor
■ Financial analysis is already using the idea

■ Mock-ups

If your idea comes from within, you may have a white paper created by someone to
outline the idea. In Acme Media’s case, the idea came from product management,
which created a proposal for FMA.

 Acme Media starts its feasibility work with a meeting between Jay (the product
manager) and the feasibility team. Jay presents the requirements he has gathered so
far; see figures 10.3 and 10.4.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

122 CHAPTER 10 Feasibility: is this project viable?
Figure 10.3 The first section of the FMA proposal outlines the issue and the idea on how to resolve it.
It’s common to leverage existing functionality to demonstrate requirements. In this instance, Acme
Media has used Google’s search-results page to demonstrate how sponsored links should work.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

123 Introducing the known requirements to the feasibility team
Figure 10.4 The second section of the FMA proposal outlines the target users, revenue model, and key
features. This is enough information to initialize a feasibility review.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

124 CHAPTER 10 Feasibility: is this project viable?

The team is ready to begin their feasibility investigation.

10.3.1 What does a feasibility investigation look like?

When you present your idea to the feasibility team, they will provide initial feedback
and subsequent commentary after performing their offline feasibility work. The initial
review can provide positive feedback or identify issues immediately. You should
inform the feasibility team that candid conversation is not only desired but critical to
the process—you don’t want to go forward with more extensive feasibility analysis if
you don’t think the idea is viable.

 You should also prepare the idea owner for candid feedback. Encourage the owner
to demonstrate their passion for the idea, but at the same time prepare them for frank
conversation and a thorough review of the proposal.

 The time you spend on feasibility analysis will depend on various factors such as
the idea’s complexity, the availability of the feasibility team, and dependency on third
parties to provide information. An average feasibility analysis begins with a 1- or 2
hour meeting that kicks off the process; at this meeting, one person discusses the
known requirements with the feasibility team. The feasibility team reviews the idea
with the presenter, and team members ask questions about the customer, the project’s
value, and potential technology needs. (The next section describes a tool that can
help during this process: the Feasibility Discussion Guide.)

 This first meeting may provide enough information to make the go/no go deci
sion, but usually a few questions remain that require team members to work offline to
get the answers. This offline work may include the following:

■ Looking at existing code to see how it can support the request
■ Consulting with a vendor about a possible solution for the request
■ Doing deeper statistical analysis
■ Reviewing competitor functionality to see if they’ve addressed the same idea

Typically, the team regroups after 2 or 3 days to review their offline work. At this point,
they usually have enough information to make the call about whether to continue to
the Planning phase.

10.3.2 Analyzing an idea with the Feasibility Discussion Guide

A great tool to use during the Feasibility phase is a Feasibility Discussion Guide (see
figure 10.5). This guide provides a list of questions that you can use to examine each
project, quantify benefits, and identify potential issues.

 This feasibility guide is generic enough for practically any company to use; you
should modify the questions to better suit your business. For example, if you work in a
heavily regulated industry, you may want to add a question or two related to how well
the idea helps with compliance.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

125 Introducing the known requirements to the feasibility team
Figure 10.5 The Feasibility Discussion Guide provides a list of standard questions to help your team
scrutinize a project idea for all benefits and shortcomings.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

126 CHAPTER 10 Feasibility: is this project viable?

10.3.3 Feedback from the Acme Media feasibility team

As we return to Acme Media, Jay, the product manager, is presenting his idea to the
feasibility team. Jay emailed the Feasibility Discussion Guide and the FMA proposal to
the three employees in advance of the meeting. We suggest that you follow this
approach; you should give the feasibility team members time to review the idea in
advance of the first meeting, if possible.

 Jay explains the proposal to the team, and the discussion begins. Matt, the devel
oper, is enthusiastic about the FMA idea. He wrote much of the existing merchandise
classifieds functionality and is disappointed that use of the application is declining.
He’s happy to see product management fighting back.

 Ryan, the designer, likes the idea but is skeptical. He understands how free adver
tising can level the playing field, and he likes the idea of bringing in more revenue
through contextual advertisements. But Ryan doesn’t understand why a buyer or
seller who is currently happy using Craigslist will switch to Acme Media’s merchandise
classifieds site. From Ryan’s perspective, an equal product isn’t a sufficient reason to
switch. The contextual advertisements are something different, but they’re mainly for
commercial businesses to sell their wares—they won’t help the typical person looking
to buy or sell an item occasionally.

 The team knows that the idea is in its early stages, and they aren’t surprised that a
potential issue was overlooked. Ryan’s point is valid: the idea will bring contextual
advertising to the site, along with the associated revenue; but advertisers will stop pay
ing for the contextual ads if Acme Media can’t guarantee a certain level of traffic to
the site. Without buyers and sellers, there won’t be any traffic.

 At this point, the team stops their feasibility work without proceeding to detailed
analysis. Everyone agrees that the idea has a serious issue and the project probably
isn’t viable. They have two choices at this point: they can go back to the executive
team and recommend not going forward to the Planning phase, or they can take
some time to see if the issue can be circumvented.

 Acme’s feasibility team decides to go with the second option. They will spend a few
hours trying to resolve the issue before considering cancellation of the project.

10.3.4 Modifying the idea during feasibility analysis

Acme’s team continues their first feasibility meeting by shifting into a brainstorming
mode. How can they modify the FMA idea so that it will not only match the competitor
but also provide an incentive for users to leave the competitor?

 Wendy reviews the concept white paper one more time and notices that eBay is
also taking business away from Acme Media’s merchandise-advertising site. She asks
Jay why his idea proposal didn’t address the lost sales to eBay, too.

 Jay explains that eBay is taking only one-third of the business. Craigslist is taking
two-thirds of the business, so he decided to focus on Craigslist first.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

127 Introducing the known requirements to the feasibility team

 This conversation piques Ryan’s curiosity. He asks Jay about the two competitors’
weaknesses. Offhand, Jay can’t think of any glaring weaknesses, but Wendy thinks of a
few immediately.

 The first weakness relates to Craigslist. Wendy has used the site and doesn’t like the
fact that she can’t put her items up for auction: she has to list her items for sale at a
fixed selling price. If potential buyers want to offer less, they email her. This happens
quite often, and she finds herself flooded with emails asking her if she’ll consider a
lower offer.

 Because of this issue, Wendy often uses eBay. eBay lets Wendy set a minimum price
for an item, and often the auction process pushes her final selling price beyond her
expectations. But eBay had shortcomings, too: the seller has to pay a percentage to
eBay for listing the item, and the buyer never sees the item in person until it’s shipped
to them. Most sales aren’t local, and they involve shipping items after they’re paid for.
You also have to pay by electronic means, such as a credit or debit card. The Craigslist
model lets the buyer and seller choose their method for payment: cash, check, credit,
or money order.

 The wheels in Jay’s head begin to spin. He asks the feasibility team if they will give
him the remainder of the day to modify the proposal, and then regroup the following
day. The team agrees.

 What just happened at Acme is a common occurrence. While reviewing an idea,
you may encounter showstoppers and then either find a solution or abort the project.
It may be distressing to identify an issue, but at the same time doing so is a good thing.
You haven’t designed or coded anything yet, so there is no code to throw away. Your
investment has been minimal. Also, because the issue has been identified early in the
cycle, you have the luxury of aborting or spending a little time to try to overcome
the issue.

10.3.5 Reacting to the feedback

At Acme the following day, Jay has modified his concept significantly. The feedback
from the team helped clarify an opportunity for the company. Figures 10.6 through
10.8 display the modified proposal, with the changes underlined. Jay has renamed
the idea: instead of the FMA project, it’s now the Online Auction Service (a.k.a.
the Auctionator).

 Based on the team’s feedback, Jay has shifted the project from a free advertising
site to a free auction site. A free auction site addresses the weaknesses of both compet
itors and provides an incentive for buyers and sellers to return to Acme Media’s site.
Acme’s site will allow buyers and sellers to have their cake and eat it, too.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

128 CHAPTER 10 Feasibility: is this project viable?
Figure 10.6 Page 1 of the modified concept for Acme’s pilot project, the Auctionator. The underlined
area shows how Jay has modified the original concept. Initially, Acme Media was only worried about
buyers and sellers; now they will also address the needs of advertisers.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

129 Introducing the known requirements to the feasibility team
Figure 10.7 Page 2 of the modified concept for Acme Media’s pilot project. Jay now proposes that
Acme go beyond free merchandise postings and allow free auctions. This change will let Acme Media
fight both of its competitors.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

130 CHAPTER 10 Feasibility: is this project viable?
Figure 10.8 Page 3 of the modified concept for Acme Media’s pilot project. Jay is starting to get a feel
for the major features that need to be supported. This will provide a smooth segue to the Planning phase,
when Acme Media will analyze each feature.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

131 Introducing the known requirements to the feasibility team

10.3.6 Team review of the modified concept

The feasibility team reviews the revised proposal and are pleased. To be safe, though,
the team goes back to the Feasibility Discussion Guide one last time to see if it can
help them identify any remaining weaknesses with the idea.

 Matt notes that Acme Media had no experience creating auction functionality
and that he’d like to look at some competitor sites to estimate how difficult the work
could be.

 Matt also notes that he’d feel less at risk if the idea didn’t have an e-commerce
aspect. Electronic payment can be tricky; and if the idea is to copy Craigslist and not
have such payments, then the risk is minimal.

 This comment draws a response from Ryan. Ryan likes eBay’s electronic payment
functionality. He feels protected from fraud when he uses his credit card, knowing he
can refuse to pay for bad goods and his credit card company will go after deceitful sell
ers. Jay records Ryan’s concern.

 Wendy chimes in next. She notes that Jay specifies a feature to remove offensive
postings, because there is a higher probability that offensive postings will occur on a
free site. In the past, Acme collected a seller’s credit card before an ad was posted,
which provided a certain level of security. Wendy is concerned that the new feature
alone may not prevent the postings. Jay also notes Wendy’s concern.

 Jay wraps up the feedback session with a few thoughts of his own. Even though he
isn’t a project manager, he thinks an online auction service will be a medium-to-large
project, and he wonders if it can be completed within the pilot’s time constraint.

 Wendy agrees but reminds Jay that this kind of issue is what agile is all about: deliv
ering prioritized features within a limited timeframe. They should see what features
they can deliver within the 8-week window they’ve been given.

 Jay’s last thought relates to marketing the new idea. How can he get the word out
to users who have left the site? He has one free outlet for advertising: Acme Media’s
other websites. He can run ads on those pages, telling buyers and sellers that the Auc
tionator is a great new marketplace for them. Jay also has free advertising spots on
Acme’s TV station; he can supplement these ads with other mechanisms such as radio
advertising, for which he has a small budget.

 Jay asks the group if they’re comfortable taking their findings to the executive team
and asking for permission to continue into the Planning phase. Ryan and Wendy say yes,
but Matt wants a day or two to look at the eBay site and his own code to see how complex
the work would be. Ryan also notes that it wouldn’t hurt for him to look at eBay’s UI while
Matt looks at the functionality. Jay is fine with the time Matt and Ryan request.

10.3.7 Regrouping after technical analysis

The team regroups 2 days later. Matt and Ryan note that eBay’s site is rich with func
tionality. But the basic functionality needed to support an online auction system won’t
be overly complex to create. They also note that it would be fun to put some fancy fea
tures into the new site, such as store fronts and wireless bidding.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

132	 CHAPTER 10 Feasibility: is this project viable?

 The team asks Jay how rich he wants the new application to be. Jay explains that he
wants to deliver minimal functionality until they can prove that the concept will attract
buyers and sellers to the site.

 Matt also spends part of the 2 days reviewing his existing code for merchandise
advertising. He finds that the code is relatively modular and that it shouldn’t be diffi
cult to remove the payment process from the workflow. But the auction-related code
will have to be created from scratch.

 Jay asks Matt if they should consider buying the auction functionality from a third
party. Matt replies that if they truly keep the feature set minimal, he should be able to
do the work.

10.3.8 Summarizing the feasibility work

The team summarizes their findings into a simple cost/benefit table, shown in table 10.2.

Table 10.2 	 The cost/benefit analysis summary for the Auctionator. The analysis summarizes the
reasons for pursuing a project and the reasons for potentially passing on it.

Benefits Costs/Risks

Revenue
Recover lost revenue
Generate incremental revenue

Customers
Address the needs of buyers and sellers
Provide an advertising opportunity to
merchants

Expense
We can leverage existing hardware and
resources

Ancillary Benefits
Brand awareness and exposure

Skill set
No experience with auction functionality

Schedule/Scope
Desired feature set appears longer than 6
weeks
Some buyers and sellers may desire elec
tronic payment

Security
Free auctions may attract fraudulent post
ings

Marketing
A significant marketing effort may be needed
to bring buyers and sellers back to the site.

Acme Media uses a simple template to illustrate the pros and cons of pursing the Auc
tionator. You don’t need to be this formal—many teams present their findings with a
quick whiteboard discussion.

10.4 The go/no go decision
The Acme feasibility team meets with the executive team to review their findings. The
team presents the cost-benefit summary, and the executive team asks several questions.

 The first question relates to strategy. Does Acme Media want to be in the auction
space? Are there any risks in creating an auction site?

 Jay explains that he can’t identify any brand issues in pursuing an auction site. As a
matter of fact, many readers of the Acme site consider it vanilla and unexciting. An
Licensed to Abner Lopez <ihackn3wton@gmail.com>

133 The go/no go decision

auction site will demonstrate innovation and thinking outside the box. It may help the
perception of Acme’s brand.

 Another executive asks, “Will this tick off eBay? Does eBay do any business with us?”
Jay has spoken with the advertising department, and they confirmed that eBay has
never advertised on Acme’s website or television station. As to whether eBay will be
upset, they probably won’t worry too much about losing a few auctions to one city. What
will concern eBay is if other regional websites start creating their own auction sites.

Different ways of approving projects
When you create your own custom methodology, you’ll determine the approval level
required to pass from the Feasibility phase to the Planning phase. Final approval
may come from the project team, or you may decide to have it come from a man
agement group.

It’s logical to have different approval levels depending on the scope of a project. For
example, a project that can be completed in a few days with existing team members
may be blessed by a product manager or project team. Conversely, a project that will
take months to complete, with incremental expense, probably needs approval from a
management group.

The executives also want to know about expense. Won’t auction functionality be
expensive to create or purchase? Matt explains that he has reviewed the current classi
fieds code and spent some time on eBay’s site. He’s comfortable doing the project if
functionality is limited to critical features. Wendy tells the executives that Matt and the
other probable team members are already budgeted for, and the only incremental
expense will relate to advertising.

What about team size and expense?
Acme Media has a team that is dedicated to their project, but it isn’t unusual to have
team members working on different projects at the same time. In many environ
ments, executives want to know what types of skill sets are needed and how long
you’ll need those skill sets. In these instances, the output from your feasibility work
should include a high-level estimate of the people you’ll need for the project and ap
proximately how long you’ll use them. This is especially true if you believe you’ll need
help from outside the company; outside assistance may require additional funds that
aren’t budgeted for your team or the platform.

The sponsor asks the team what the estimated advertising expense will be. The team
explains that there will be no expense if they limit advertising to the mechanisms
available to them at Acme. They can advertise for free on the other sites within
Acme’s network, and they can also get free spots on the television station. There will
be incremental expense if they advertise through other channels, such as radio.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

134 CHAPTER 10 Feasibility: is this project viable?

 The feasibility team leaves the room to allow the executives to continue their meet
ing. When the meeting concludes, the agile sponsor tells them that the project has
been approved to continue into planning.

Now that the team understands why they should do the project, they will use the
Planning phase to show them how to do it.

10.5 Alternate feasibility paths
Acme Media followed a relatively common process for taking an idea through feasibil
ity. But you can follow several paths to determine feasibility; you can even skip it alto
gether. Let’s look at two additional models.

10.5.1 What people are talking about

Google’s employees are allowed to spend one day a week working on a dream project
or idea of their own. This leads to the generation of hundreds of ideas each year. It
would be impossible for an executive team to review each idea and determine if fur
ther analysis was needed.

 A few years ago, Google solved this problem with the use of wikis. Google employ
ees submit their ideas to a wiki for all employees to review. Employees discuss the ideas
within the wiki, which lets directors and product managers see which ideas are getting
the most buzz. The top 100 ideas are then reviewed in more detail and may be sent
out for further analysis, feasibility, and usability investigation. This process continues
iteratively until an idea is deployed or cancelled. This process has delivered ideas such
as the Google browser toolbar.

 Your company may not be as big as Google, but an idea wiki is simple to use and
usually inexpensive to deploy.

10.5.2 Feasibility for risk management vs. go/no go

We’ve coached many teams on agile, and we frequently hear teams discuss the lack of
a feasibility option. This is usually the case with companies that do one-off projects for
their clients.

 Greg once worked for a company that agreed to build a proprietary supply-chain
management system for GE Supply. The contract was signed with minimal involve
ment from the development teams. The salesperson walked in and told Greg’s team
that the work was sold and they had one year to deliver. The go/no go decision had
already been made.

 This scenario isn’t the optimal way to run a business, but sometimes it happens
due to the lack of company maturity or the fact that a company is fighting for survival
and risks have to be undertaken to survive. Whatever the reasons, it happens, and it’s
a real constraint.

 If you don’t have the option to reverse a sale that has been made, you can still use
the feasibility process to manage the project’s risks. You can identify the areas with the
highest risks, ensure that they’re started as early as possible, and communicate these
risks clearly to the salesperson and other stakeholders. You may be able to use the out
put from your feasibility investigation to adjust the scope with your client.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Looking forward	 135
 Even in instances where your company has a closed-bid contract, your customer is
more interested in being successful than watching you fail and taking you to court or
asking for their money back. Your customer probably has urgency too, and they
should work with you to reach agreement on a feasible project.

10.6 Key points
The key points from this chapter are as follows:

■	 It isn’t uncommon for a company to initialize a project without significant justi
fication. This is an issue for all companies, whether they use an agile lifecycle or
not.

■	 In an agile environment, you do not have the luxury of pursuing projects that
may never be delivered. Your efficiency in pursuing the highest-priority projects
is a component of your competitive edge.

■	 The Feasibility phase lets you determine if you should continue working on the
project, cancel it, or defer it to later. The analysis is performed without a major
resource investment in a short period of time. You want to do just enough anal
ysis to see if it’s realistic to continue to the Planning phase.

■	 You need to assign a team to perform the feasibility analysis. This team is com
posed of experts who work in the areas that will be most impacted by the proj
ect. This team usually stays together if the project continues to the Planning
phase. If your company is small, it should be relatively easy to determine who to
involve in the feasibility analysis. If you work at a larger company, you can use
the Feasibility Team Checklist from table 10.1 to assist you with the process.

■	 The feasibility team reviews the known requirements such as use cases, work-
flows, financial analysis, and so on to determine whether the idea should be
pursued. The Feasibility Discussion Guide from figure 10.5 is a great tool to use
for this process. The guide will help you perform a thorough examination of
the idea. You should customize the guide to fit your environment.

■	 The feasibility team can provide extraordinary value. When your employees get
comfortable with the process, it will be like having additional product manag
ers. A competent team can identify issues with an idea and can also identify new
opportunities that may be overlooked by a product manager working alone.

■	 If your project is approved, you proceed to the Planning phase and assemble
your full project team.

10.7 Looking forward
In this chapter, we explained how you review a project idea for feasibility. In chapter 11,
we’ll show you how to present the approved idea to the project team and go through a
process of envisioning the final product. Envisioning provides the team with the infor
mation needed to prioritize the work with the customer and begin the initial plan-
ning process.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Aligning the pilot
 team with the project
How many times have you done one of following?

■	 Delivered a feature that the customer never used
■	 Created a detailed specification for a feature and then failed to pursue the

feature
■	 Discovered a problem deep into a project, and had a team member tell you

they knew about the issue all along

You can avoid these issues by aligning your project team at the start of your projects
and envisioning the final product.

 Alignment does this by uniting the team around a common vision. You involve
the entire team in the planning process. If a team member perceives an issue, you
learn about it immediately. Developers don’t wait until coding starts to voice their
issues; they can communicate issues immediately as the team reviews the features at
the beginning of the planning cycle.

 Collaborative planning is one of the cornerstones of an agile development pro
cess. We’ve seen many companies move to an agile process mainly for the benefits
that come from improved project planning. You’ll see that value in this chapter as
Acme Media performs chartering exercises to better understand the project value
and goals.
136

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Identifying the pilot team 137
11.1 Identifying the pilot team
After a project makes it through feasibility analysis, you select the team that will deliver
the project. Ideally, you want to begin with your feasibility team and expand that group
as needed. Feasibility-team members can share the information from the Feasibility
phase with the additional team members; this will kick-start the project team.

Assignments are based on the current estimated size of the project, the type of
team members needed, and team member availability. If your company is small, you
may have the same people work on every project. You may also have employees who
are dedicated to a website or product within your company. If this is true, you have a
permanent project team, and you don’t need to select one.

A dedicated team?
In support of good planning, you should do everything in your power to dedicate the
team to the project during the planning and development cycles. Dedicated team
members are part of the agile process and a tenet of good project management. In
some environments, not all team members can be dedicated 100 percent to proj
ects. In these instances, you should make it clear what percentage of time each team
member will be working on the project; doing so removes ambiguity for team mem
bers and their managers.

We’ve seen companies where the functional leads or managers determine the team
members who are assigned to projects or features. In these environments, the leads
are given an overview of the project and its known requirements, and then they assign
people from their team based on the criteria mentioned earlier. In these cases, the
functional leads act as their own resource and capacity managers.

 Acme Media uses a resource pool for its projects. This provides flexibility and also
increases the tribal knowledge throughout the team. There are specialists for each
area, but team members may be assigned to any product or project depending on
company need and the employee’s desire to learn about a new area or technology.

 Table 11.1 lists the project team members that were selected for Acme Media’s
Auctionator project.

 As you may recall from chapter 6, the core team is composed of employees from
various areas and with various titles. When the pilot project is chosen, chances are that
some core-team members will be on it due to their functional jobs. But the majority of
pilot-team members probably won’t be from the core team. You need to review your
pilot-team roster and determine whether the team has enough core-team members to
support mentoring and hand-holding during the pilot.

 If the pilot team does not have enough mentoring, you should assign a few core-
team members to assist them. These core-team members must be present for all major
meetings and check in daily with the team.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

138	 CHAPTER 11 Aligning the pilot team with the project

Table 11.1 	 The pilot project team for the Auctionator/Online Auction System. (OAS). Asterisks indicate

core-team members. Your pilot project team will have various levels of agile knowledge.

Pilot project role Name Background Pilot project role

Project manager

Developer

Developer

UI

QA

Operations

Requirements

Architecture

Customer

*Wendy Johnson

*Roy Williams

Matt Lee

Ryan Getty

Gina Wallace

Tom Klein

Rich Jenkins

*Keith Gastaneau

Jay Fosberg

Wendy is part of the core team. She looks
forward to seeing how the project-manager
role works in an agile environment.

Roy is part of the core team.

Matt usually supports development of appli
cations for the Classifieds group.

Ryan has a lot experience doing prototype
work, which should bode well for the agile
process.

Gina is curious to see how much she’ll be
involved in planning the pilot project. Her
peer, Vijay Kumar, is on the core team, and
she’ll ask Vijay for mentoring during the pilot.

Tom works for Matt Shiler, who is on the
core team. Tom has no agile experience.

Rich has spent a lot of time learning about
agile from his peer on the core team, Wes
Hunter.

Keith is part of the core team.

Jay is a product manager for the Classifieds
group and proposed the concept of Free
Merchandise Advertising. Jay will play the
role of the customer for the pilot.

Project manager

Developer

Developer

UI

QA

Operations

Requirements

Architecture

Customer

Acme Media has three core-team members working on the pilot project. A good rule
of thumb is to ensure that the pilot team includes two or more core-team members.

 Acme also has a bonus in that one of the core-team members on the pilot is the
project manager. She will be involved in almost every aspect of the project and avail
able to provide mentoring to the pilot team.

 Jay Fosberg will be the proxy for the customer during the project, which isn’t a
stretch for him. Jay has always been a strong supporter of the customer and an advo
cate for application usability.

 After you identify the pilot project team, you need to train them and orient them
on the process you’re going to assess.

11.2 Preparing the pilot team
In addition to providing mentoring to the pilot team during the project, you also
need to prepare the team in other ways. You need to train the pilot team on agile prac
tices and principles, and provide a method for feedback during the pilot.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

139 Preparing the pilot team

11.2.1 Ensure everyone is trained on agile

The untrained pilot-team members go through a process similar to that followed by the
core team. They need an overview of why the company is pursuing agile, training on the
agile principles, and an understanding of the process they’re to use on the pilot.

 If possible, have your agile coach provide the pilot team’s training, with core-team
members contributing to the discussions. This process training takes one or two days
and is slightly different for the pilot team. In addition to the fundamental principles
and practices of agile, they also need training on how the core team has represented
those principles in the custom methodology. For example, they need to see how the
core team’s new process supports the agile principle of customers and developers working
together daily. If core-team members are attending the fundamentals training with the
pilot team, they can show the pilot team how the principles are reflected in the cus
tom methodology.

 You should expect the untrained team members to have some cynicism and
negativity related to using the new process. Their concerns usually relate to the
following:

■	 A misunderstanding of agile principles—Common misconceptions are discussed in
chapter 1.

■	 A belief that the current process works fine —Project team members may be unaware
of the issues that the new methodology addresses.

■	 Lack of detail in the agile process —In the past, you may have prescribed every step
in the development process. Now, the team is asked to participate in selecting
the processes that add the most value, and that can be a shock.

If your environment has been controlling in the past, the last item will take time to
resolve. Agile doesn’t assign employee A to do step B; it tells the employee to deliver
value to the customer as quickly as possible and provides tools and processes to reach
that goal. The team works together to determine logical steps and assignments during
the project.

 No matter what the feedback is, listen to the pilot team with an open mind. Where
applicable, show them how the new design takes their concerns into account.

 You may receive enough feedback from pilot-team members to tempt you to make
another update to the methodology. But unless the feedback identifies a showstopper,
we suggest holding off on any changes—the pilot will provide plenty of feedback, and
you can incorporate the pilot-team feedback when the pilot project is complete.

11.2.2 Providing a mechanism for feedback

When the pilot project kicks off, you need to provide a way to gather feedback from
the pilot team. The best way to do this is to invite them to the weekly core-team meet
ings and give them the floor. The core team can listen, see how the methodology is
working, and provide guidance to the pilot team.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

140 CHAPTER 11 Aligning the pilot team with the project
 You should expect some apprehension from the pilot team during the first few
meetings. The pilot team knows they’re providing feedback to the group that custom
ized the methodology. Do your best to create an environment where egos are checked
at the door and the pilot team feels comfortable sharing their feelings.

11.3 Envisioning the product
When you have your project team together, you’ll perform a series of exercises to ori
ent the team on the product idea and bring them up to speed on the feasibility work
that has already been performed. In some circles, this work is referred to as chartering.

 Chartering synchronizes the customer and the project team on the project’s value
and goals. The group also works together to define the scope of the project and the
project stakeholders.

 Let’s start by creating an elevator statement for the Auctionator.

11.3.1 Creating an elevator statement

If team members appreciate the value of a project, it will increase the likelihood of
their buy-in and support. If they don’t believe in the value, they may not apply them
selves, and they may undermine the project. You can provide clarity around the value
by having the team work together to create an elevator statement.

 An elevator statement allows you to condense the project concept into a short, com
pelling paragraph. The idea is that if you’re asked about your project in an elevator on
the bottom floor of a building, you should be able to describe the project in a concise,
intriguing way before you reach the top. This is a great tool for communicating the
value of the project to those outside the team, and it centralizes everyone on the ben
efits that should be delivered.

 You begin the exercise by having the team review the known requirements and the
desired deliverables. Then the team works together to answer the following questions:

■ Who is the customer?
■ What do they need?
■ What is the category of the product or service?
■ What are the most compelling benefits to the customer?
■ Can you quantify the benefits?
■ What differentiates your product from existing alternatives?

We also find it helpful to show the team a few examples of elevator statements to get
them started. We frequently use an elevator statement that we created for the iPod.
We have no idea if Apple uses elevator statements, but we took a guess at one the com
pany may have created before they pursued the iPod project:

Apple iPod Elevator Statement

For: music lovers

Who: desire a simple way to listen to and manage their songs

Licensed to Abner Lopez <ihackn3wton@gmail.com>

141 Envisioning the product
The: iPod
Is a: portable digital music player
That: provides intuitive, easy to use controls.
Unlike: other MP3 players
Our: product provides seamless integration with a world-class music store (iTunes).

This example quantifies what is different and better about Apple’s product. It will lure
consumers away from MP3 players that have confusing interfaces, or those players that
don’t integrate with an online music store.

 Now it’s time for Acme to quantify what is better about its product. The project
team reviews the outputs from the Feasibility phase to help them create their elevator
statement. The two artifacts they have are the concept proposal and the cost/benefit
summary. (You can review these items in chapter 10.)

 After a few hours of collaborating and discussing the project, the Acme Media
project team creates the following elevator statement for the Auctionator:

Auctionator Elevator Statement
For: internet buyers and sellers
Who: would like to sell their items locally within an auction framework
The: Acme Auctionator
Is a: local online auction system
That: allows the purchase of goods.
Unlike: eBay
Our: product allows the winning bidder to pay in person using cash or check.
And unlike: Craigslist
Our: product allows the seller to put an item up for bid, as opposed to selling at a fixed price.

Acme’s elevator statement is somewhat unique in that it has two unlike bullets. There is
nothing wrong with this; it reflects how Acme will deliver a product that is better than
the offerings from both of its competitors.

 Now that Acme has an elevator statement, the team is ready to identify the proj
ect’s key features.

11.3.2 Introduce the team to the features

As you may recall from chapter 10, Jay, the product manager, presented product high
lights to the feasibility team. These highlights are stated from a perspective of what the
user will have the ability to do, or ability to’s. For example, one of the ability to’s for the
Auctionator is “The ability for a seller to put an item up for bid.” These ability to’s will
be the basis for defining the features.

 When Acme concluded the Feasibility phase, the team recorded the product high
lights/ability to’s into the project worksheet (see table 11.2).
Licensed to Abner Lopez <ihackn3wton@gmail.com>

142 CHAPTER 11 Aligning the pilot team with the project

Highlights (ability to…)

Place an item up for bid

Bid on an item

View seller feedback

Contact the seller to ask questions

Flag problem postings

Expire auctions

Table 11.2 Original product highlightsPost an auction without payment
identified for the Auctionator

These highlights are good for starting the transition to feature identification. They’re
missing some attributes, such as “Who is the user of the feature?” and “What is the
business priority of this feature?” but they provide enough information to get started.

 Acme Media has a one-day break between completion of the Feasibility phase and
the start of the Planning phase. During that time, Jay, the product manager, reviews
the features and adds more detail to them.

 You may recall that the Auctionator is a medium-priority project for Acme Media.
Because it is not high priority, Jay has only outlined light requirements. This works well
for the pilot because most agile projects are initiated with light requirements.

Customer diligence
You should encourage the customers on your projects to do as much research as
they can before the kickoff meeting. Your team will welcome all the details they can
get about the requirements. The team will spend many hours trying to understand and
define the features over the life of the project, and the customer can reduce this time
by performing as much diligence as possible before meeting with the team.

After spending a few hours reviewing the project concept and cost/benefits summary,
Jay identifies additional features for the Auctionator and adds more detail to each fea
ture. He summarizes his findings in a document he labels Feature Description Docu
ment (see figures 11.1 and 11.2).

 As you review the Feature Description Document, notice that Jay has increased the
number of features from 7 to 14. He’s also added user types, such as buyer and seller.
And he’s identified a key piece of functionality that he overlooked earlier: the ability
to search for items that are up for bid. The rest of the features will be useless without
this capability.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

143 Envisioning the product

Figure 11.1 A summary of the features for the Auctionator project. Planning starts now as the team
scrutinizes the priority of the features.

In our experience, there is usually time to refine feature information after an idea
makes it through the feasibility gateway. On occasion, you may have a project that
must go directly from feasibility to planning; this may be due to project urgency, or a
project may be so small that refinement can occur during the Planning phase.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

144 CHAPTER 11 Aligning the pilot team with the project
Figure 11.2 The features outlined for the Auctionator project. The team will start with this raw list
and shape it into a prioritized release plan during the Planning phase.

11.3.3 Common understanding of the features

Jay presents the Feature Description Document to the project team at the kickoff
meeting and discusses each feature. The team asks questions to better understand the
scope of the project.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

145 The tradeoff matrix

Table 11.3 lists some of the questions the team asks Jay, and his responses.

Table 11.3 	 A great way to start the project is to have the customer or product owner discuss the features
 and take questions from the project team. The question-and-answer session synchronizes
 the team on the scope of the project and also validates the value of the project.

Question Answer

Feature 8 describes an auction browser toolbar. Will
this toolbar need to support all major browsers?

Feature 7 describes the ability to customize your
view. Do you envision this being done with a
cookie, or will the user have to be a logged-in, reg
istered user?

Feature 1 describes the automatic removal of a
posting if it receives enough complaints. Couldn’t
this feature create problems, if fake complaints
are created to get an auction removed?

Feature 4 describes the ability to place an item up
for bid and retract it. Will the user have the ability
to edit the posting too?

Won’t we need a way to remove and edit postings
ourselves? Some kind of admin tool?

The toolbar will need to support current versions of
Internet Explorer, Firefox, Safari, and Chrome.

We want the user to register with us and be logged
in before they have the option to customize their view.

Yes, this could be an issue; but the user must be
registered to file a complaint, which I hope will min
imize the issue. Do you (the team) have any ideas
how to solve this issue?

Yes. I overlooked that. I’ll create a new feature card
(#15) for this feature.

Good point. I’ll create another feature card (#16).
Maybe we can use our existing code for removing
merchandise postings. Our goal is to start with light
functionality for the Auctionator, so maybe we can get
by with a tool that only allows us to remove postings.

The juices get flowing at the start of this meeting—this is good. You want the team
engaged and energetic, so they own this project and bring it to completion. You’ve
started down the path to ownership by immediately asking them for their feedback.

 At this point, the team is starting to understand the features but doesn’t have
enough information to support the planning objective. You need sufficient informa
tion to assign the features to development iterations. The Acme team will help you
reach this objective by creating feature cards in chapter 12; the feature-card exercise
will examine each feature in more detail, identifying risks, quantifying value, and
more clearly defining feature scope.

11.4 The tradeoff matrix
Many projects begin without the team identifying the most important priority. Every
one involved in the project needs to know whether the highest priority is ensuring
delivery of scope, delivering the project by a specific date, or delivering the project
with a set amount of resources/team members.

 Your project sponsor will usually say that all three are equally important; but when
the project comes under duress, they will be forced to prioritize. The goal of creating
a tradeoff matrix like that shown in table 11.4 is to be honest from the start and let the
Licensed to Abner Lopez <ihackn3wton@gmail.com>

146	 CHAPTER 11 Aligning the pilot team with the project
Fixed
(1)

Flexible
(1)

Highly
flexible
(1–n)

Resources X

Schedule X

Scope X

Costs X

Table 11.4 The tradeoff matrix is a simple
tool that communicates a project’s priorities.
In this example, Acme Media states that it
must deliver the project by the target date,
with other areas being compromised if needed.

project team know what the priorities are in advance of any issues coming to light.

Completing this exercise increases the probability of project success.

When you create a tradeoff matrix, only one item can be the number-one priority.

For the Auctionator, Acme Media has set a completion date 8 weeks out to ensure

that the pilot doesn’t run on indefinitely. Therefore, Acme marks Schedule as Fixed,

or inflexible.

 Acme’s second priority is minimizing the need to use employees beyond the
named project team. Because the project is a pilot, Acme doesn’t want to complicate it
by involving third parties. Acme marks Resources (project team members or contract
help) as Flexible, meaning that if things get tight, the company will let a few addi
tional people be added to the project.

 If the project-team size and schedule are the first two priorities, then all other
components must be highly flexible. This means Acme must be flexible about fea-
ture scope and project expenses. The feature set can’t be rich if Acme Media wants to
meet its number-one goal, delivering by a specific date. In addition, Acme must be
flexible with the project budget, potentially spending beyond the estimates to ensure
on-time delivery.

NOTE	 The third column of the tradeoff matrix shows 1–n. You can add as many
components as you like to this column, but they all must be viewed as
highly flexible/lower priority.

The tradeoff matrix is the last item you need before you aggregate all the information
you’ve collected into a charter document called the project worksheet.

11.5 Project worksheet
After your project idea has been scrutinized by the project team, you can aggregate
the information collected into a project charter document. We call our charter the
project worksheet. Similar to a charter, the worksheet is a useful tool for collecting proj
ect highlights and presenting them to a product manager, sponsor, or other interested
party. The charter can also be posted on a prominent wall to remind the team what
they signed up for.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

147 Project worksheet
A different spin on the tradeoff matrix
A few years ago, Greg worked on a project that would allow employees to view their
benefit and pay information online. The goal was for employees to be able to verify
their benefit selections and review their most recent pay stub online. The functionality
would be available to 20,000 employees.

Being a typical project manager, Greg quickly identified a due date for the project and
started working the critical path to ensure on-time delivery. The project team identified
the critical features and major tasks to be accomplished and then kicked off the project.

As the project drew closer to the deadline for code completion, Greg began hearing
a consistent concern: several project-team members were worried about the fact that
they were exposing personal and intimate data via the application. They were con
cerned that the application could be hacked, or that one employee could see another
employee’s information.

Greg called a quick team meeting to discuss the concern with the project sponsor.
The sponsor made it clear that a security breach of any type was not acceptable. The
personal data had to be guaranteed secure, or the application wouldn’t go live.

After the meeting, the team outlined all possible ways the data could be accidentally
exposed or hacked. They also created a dummy database and asked an internal se
curity expert to try to breach the application.

All these efforts extended the project beyond the original schedule; but as the team
learned from the sponsor, schedule was not the number-one priority.

If the team had created a tradeoff matrix at the start of the project, they would have
avoided some stress and planned differently. They would have been in tune with the
project’s main priority: data security. Instead, they assumed it was a typical project
that was focused around delivering on time.

A tradeoff matrix for the project would have looked like this:

Greg learned two lessons: always be clear about your priorities before you begin the
project, and don’t assume that schedule is always the number-one priority.

Fixed
(1)

Flexible
(1)

Highly
flexible
(1-n)

Resources X

Data Security X

Scope X

Costs X

Acme’s new methodology suggests populating the worksheet with the information
that comes out of the Feasibility phase and then enriching that information after
reviewing the project with the project team. The information on the sheet can be
Licensed to Abner Lopez <ihackn3wton@gmail.com>

148 CHAPTER 11 Aligning the pilot team with the project
reviewed quickly by people interested in your project, whether they’re executives or
the project team itself.

 Sticking with the mentality of “just enough,” the project worksheet contains only
enough information to make the call about whether to proceed to the Planning
phase. The document is simple, it’s light, and it adds value to the process.

 Figure 11.3 shows project worksheet for the Auctionator after the Feasibility phase.
Let’s take a moment to review the sections of the project worksheet that we haven’t
covered so far.

Figure 11.3 The project worksheet after the Feasibility phase. One of the best things about
the project worksheet is the contents usually fit onto one page. Interested parties will enjoy
seeing all of the information in a quick snapshot.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

149 Project worksheet

11.5.1 Team members

The first two sections are simple. They list the assigned project manager and the team
that has been working on the project prior to kickoff.

11.5.2 Objective statement

The objective statement is the most rudimentary summary of what the project needs
to do. It also speaks to the constraints the team has assumed so far. In this instance,
they believe the project must be complete by the middle of June, using internal
employees and contract resources as needed.

11.5.3 Issues and risks

Acme summarizes the project risks it’s identified so far. It’s common for this list to
grow as the project progresses. The Planning phase may also identify features needed
to mitigate the risks. It’s important to note that although we’re mainly focusing on fea
sibility at this point, the Acme team has already started thinking about deployment
processes such as migrating existing advertisements.

11.5.4 Technical considerations

The technical considerations section identifies specific risks to the application itself.
These issues can relate to scalability, security, storage, new technologies, performance,
usability, firewalls, browser compatibility, and recovery.

11.5.5 Stakeholders

Stakeholders are people who have an interest in the project, but they aren’t the direct
customers. For Acme’s project, the sponsor definitely has an interest in the outcome. Jay
Fosberg also cares, because he is the product owner for the classifieds website. Roy Wil
liams has been listed as a stakeholder because the feasibility team believes the Auction
ator may use the existing user-registration functionality, which Roy manages for Acme.

11.5.6 User/customer benefits

The user/customer benefits are tied to end users and other revenue-providing cus
tomers such as advertisers. These are the main benefits identified so far.

11.5.7 Highlights

The highlights section lists the high-level features identified so far. Jay, the product
manager, has given the features simple descriptions in his Feature Description Docu
ment You want the team to begin looking at the features from more of a user per
spective now, so they’re relabeled in terms of “Ability to.” For example, instead of
saying “The system will support placing an item up for bid,” the label reads “The abil
ity to place an item up for bid.” The change is subtle, but it starts the transition to
user-centric analysis. In effect, it transitions the feature to a high-level user story.
Make sure you describe the value, not the task.

11.5.8 Major milestones

At this point, the team hasn’t identified many milestones. The only one currently
known is the target completion date. The team will flesh out more milestones during
the planning phase.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

150	 CHAPTER 11 Aligning the pilot team with the project

 In conclusion, the project worksheet should provide enough information to deter
mine whether the idea is feasible. Ideally, you want all the information to fit onto one
page, but on occasion you may find an additional page is needed.

11.5.9 Elevator statement

We will keep the elevator statement on the project worksheet so we are always
reminded of our main business goals during the project.

11.6 Key points
Key points from this chapter are as follows:

■	 Once your idea has been approved, you should run it by the project team as
soon as you can. The team will provide valuable feedback on the idea and also
normalize around the scope and goals of the project.

■	 Many projects get sidetracked by passive-aggressive behavior. You can eliminate
this issue by creating an environment where team members can challenge the
value of the project without repercussions.

■	 You may want to hold off on selecting project team members until an idea has
passed through initial feasibility analysis. In the spirit of lean, you don’t want to
risk wasting valuable employees on an idea that may not go forward.

■	 You’ll receive invaluable feedback from the pilot team as they test the processes
defined by the core team.

■	 The pilot project will also serve as excellent training for the pilot team and start
the evangelism of the new process throughout your organization.

■	 Be prepared to provide mentoring to your pilot team via your coach and your
core-team members. You should mix a few core-team members into the pilot
team to provide support.

■	 Perhaps no one exercise is more valuable than the product-envisioning exercise.
The team and the customer will reach consensus about the value of the project.

■	 A tradeoff matrix will help your team when you encounter constraints during a
project. Does schedule win? Does budget win? Your matrix should make it clear
what wins before the constraint is encountered.

■	 A project worksheet provides a great summary for stakeholders and others who
need an overview of the project and its value proposition.

■	 When you complete your team alignment work you’ll create feature cards,
which are covered in chapter 12.

11.7 Looking forward
In this chapter, we introduced the project team to the project idea and the customer.
The customer and team began to envision what the delivered project will look like,
and together they’re ready to begin detailing specific features. In chapter 12, we’ll
identify the features and create supporting feature cards to quantify the risk and value
of each feature.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Part 4

Populating the product backlog

Once we know the overall goals of a project, we can examine the project
in more detail and identify features. These features will go into our backlog, be
prioritized, and be added to an iteration if they are of high value.

 A product backlog holds features that tie to the product. These features
could include bug fixes, product suggestions, refactoring work, nonfunctional
requirements, migration work, or content setup.

 For a one-time project the backlog is initially populated after team align
ment. If you are doing steady-state releases, your backlog already exists and you
are in a state of constantly reviewing it before proceeding with your next itera
tion or release.

 Once you have a running backlog, anyone can populate it. The largest con
tributor is frequently your customer or product owner, but the queue can be pop
ulated by the project team, executives, or support groups within your company.

 When folks populate your backlog, they may put in requests that equate to an
entire project or work that could take several months to complete. You and your
team will need to break down the requests into features that can be completed
in 10 days or less, or else your project will lose transparency and you will have
deliveries that have to cross many iterations to be completed.

 Let’s get started by seeing how Acme Media populates its backlog by creating
its initial feature cards for the Auctionator project.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Feature cards:
a tool for

“just enough” planning
 When we plan an agile project, we try to do so in a lean fashion. We want to gather
the minimal information needed to prioritize, sequence, and estimate a feature, so
we can deliver high-value features as soon as possible. We can do this without creat
ing detailed functional specifications and without guessing at all the tasks that we
may need to complete, by creating feature cards.

 Feature cards start the discussion between the customer and the project team
and support reaching common agreement on what a feature entails. In this chapter
we will show you how much information to place in a feature card and how to
involve your team in the creation of the cards; we will also discuss the limitations in
using cards.
153

Licensed to Abner Lopez <ihackn3wton@gmail.com>

154	 CHAPTER 12 Feature cards: a tool for “just enough” planning

 To help you better understand feature cards and the feature-card exercise, let’s
look at the structure of a card.

12.1 The structure of a feature card
Feature cards are similar to the user stories used in Extreme Programming (XP) devel
opment. We also often use the term feature shell to describe a feature card. The card
provides enough information to plan a feature and discuss it quickly. The size of the
card also makes it easy to track a feature and re-plan when necessary.

 Let’s look at a completed feature card (see figure 12.1).

Figure 12.1 A completed
feature card for the
Auctionator. A feature card
provides just enough
information to prioritize a
feature. Additional dialogue
or documentation is usually
needed to support coding.

The following are the feature card’s fields:

■	 Feature ID —A unique number assigned to the feature. Numbering becomes
more important in large projects, when features can have similar names.

■	 Feature name —A high-level description of the feature. It should describe the
value of the feature to the customer. As we mentioned in chapter 11, the words
ability to are frequently included in the name to indicate what the user has the
ability to do.

■	 Description —A deeper description of the functionality.
■	 Feature type —Whether the feature is for the customer or for the system itself

(a technical feature type). An example of a customer feature is the ability
to bid on an item. An example of a technical feature is “create an email
web service.”
Licensed to Abner Lopez <ihackn3wton@gmail.com>

155 The structure of a feature card

■	 Estimated work effort (ideal days) —Total labor estimated to be needed for the fea
ture. It’s a summary of the task estimates on the back side of the card. This field
is used only for the first iteration of a project.

■	 Story points —A measure of the relative size of the feature, not an estimate. Story
points will be your main metric for determining capacity as the project proceeds.

■	 Planned iteration —The iteration in which you plan to build the feature.
■	 Customer value (C,H,M,L) —Critical, high, medium, or low. The customer’s or

user’s perspective of the value this feature provides. Critical means the cus
tomer doesn’t see the value of the project if this feature can’t be completed.
Customer priorities frequently change after the team discusses all possible
options for supporting the requirement outlined in the feature.

■	 User —Similar to an actor in a use case. For a pilot project, the most common
users are buyers and sellers.

■	 Usage frequency (daily, weekly, monthly, other) —Another way to help you determine
the value of the feature. Frequent use often implies high value to the customer.

■	 Requirements uncertainty (H,M,L) —High, medium, low. How comfortable the
project team is with the customer’s awareness of their need. After the customer
described the feature, were you confident they truly understood their need, or
was the customer still trying to clearly state the need? If a feature has high
uncertainty, it’s difficult to outline a design and the potential code needed.
Conversely, if the uncertainty is low, the team should be able to outline a design
and build the feature.

■	 Technical uncertainty (H,M,L) —High, medium, low. Tied to the technical risk
associated with the feature. Does the project team have a vision for the technol
ogy that is needed to support this feature? Do you have experience with this
technology? High technical risk means you don’t have experience with the tech
nology, or the technology itself isn’t stable.

■	 Dependencies w/other features —Do you need any other features in place, or
designed, before you can build this feature? For example, your project has a
feature that lets you view a seller’s feedback from their previous transactions.
Before you create this feature, you need to create a feature that lets you record
buyer feedback onto the seller’s record.

■	 Acceptance —An outline of a high-level user acceptance test. What tests will this
feature have to pass before it’s deemed complete?

We frequently hear project teams ask how they can go from a feature card to working
code. Many teams are used to receiving a detailed functional specification. A feature
card doesn’t have the detailed information they have received historically.

 The answer is that feature cards aren’t supposed to replace functional specifications. The
feature-card exercise helps your team assess the level of documentation or informa
tion that is needed to build the feature. This documentation may include use cases,
wireframes, mockups, usability studies, or other requirement artifacts.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

156	 CHAPTER 12 Feature cards: a tool for “just enough” planning

How much documentation for requirements?
We’ve seen teams build simple features from the information on the feature cards.
As features become more complex, teams bring in additional tools such
as use cases, workflow diagrams, wireframes, screen mockups, prototypes, and
information-flow diagrams. This is where agility and team knowledge come into
play. The methodology doesn’t dictate the documentation needed for each feature:
the team does.

12.1.1 The right amount and type of information

Teams also want to know when a feature card is too big and when it should it be split
into separate features. The best way to determine this is to walk through the steps
needed to support the feature.

 Project-team members grab a feature card during the feature-card exercise and
walk through it on a whiteboard. They review potential workflows to support the fea
ture and the steps needed. This workflow discussion usually identifies hidden features,
and the team can create additional feature cards. You’ll see an example of this process
when Acme Media performs its feature-card exercise.

 You can also use these guidelines to determine whether your feature cards contain
the correct amount and type of information:

■	 The functionality described is understandable to users.
■	 The card describes functionality, not an implementation task.
■	 There is enough information to estimate the implementation effort.
■	 The card generally represents 1–10 days’ worth of effort, or it fits in your story

point scale (which we’ll discuss later in chapter 14).
■	 Each card is as independent of the others as possible.
■	 The card is testable.

With experience, you and your team will develop a good feel for when the informa
tion is sufficient.

12.1.2 Additional feature-card benefits

In addition to providing the correct amount of information to initiate planning, fea
ture cards also provide these benefits:

■	 Customer focus—Many requirement-gathering processes can quickly turn into
task meetings. When this happens, the focus becomes how to build a feature,
not what the customer needs. Feature-card titles focus on the customer. You
provide the “ability to” for the customer. Your titles are user centric, and so are
your acceptance tests.

■	 Identifying risks early—Feature cards have two fields that ask the team how uncer
tain they are about requirements and about the technology that will be needed.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

A team approach to creating feature cards	 157
In many environments, these risks wouldn’t be identified until functional speci
fications were complete and the team started working on detailed design. In an
agile world, the developers and other team members are involved early in the
process to identify risk. This gives you more time to work through the risks, or
an opportunity to cancel risky, noncritical features.

■	 Common understanding—We’ve worked on many projects that had highly docu
mented requirements, but whose team was still confused about the feature.
This frequently happens when one person writes the detailed specifications and
then tries to explain a 30-page requirement document to the team. The feature
card starts the requirements process by letting the entire team see the direction
the feature is taking. This common understanding leads to quicker delivery and
quicker decisions, because the team doesn’t have to constantly reference and
interpret requirements documentation.

Now that you have a feel for the structure and benefits of feature cards, let’s look at
the process you use to create them.

12.2 A team approach to creating feature cards
One of our favorite agile practices is the team creation of feature cards. The exer
cise lets the team discover features together. The project team uses an organized
brainstorm to refine product highlights and convert them into feature cards. At the
conclusion of this exercise, the feature cards contain enough information to be pri
oritized, sequenced, grouped, and estimated. You’ll use this information to create
your release plan.

 You can expect the following things to happen during the exercise:

■	 Feature scope will become clearer.
■	 Additional feature dependencies will be identified.
■	 Many feature cards will be split into more granular features.

Team members grab blank index cards and enter the information from the Feature
Description Document (explained in chapter 11) and additional information gath
ered from the customer. Acme Media gathered this information in chapter 11 when
Jay, the product manager, introduced the project team to the project’s features.

At this point, your feature cards are born, but they aren’t complete. Figure 12.2
displays a feature card for the Auctionator after the initial conversation with the
customer.
Acme needs to complete the following fields on the card:

■	 Usage frequency
■	 Requirements uncertainty
■	 Technical uncertainty
■	 Dependencies

Let’s join the Acme Media team as they complete their feature cards.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

158 CHAPTER 12 Feature cards: a tool for “just enough” planning

Figure 12.2 A feature card
after Acme’s first discussion
with the customer. You need
to complete the question
areas before you can
prioritize this feature.

12.2.1 Creating a feature card at Acme Media

You complete the feature-card fields by discussing the cards as a team. As each team
member creates a feature card, they act as an investigator and speak to other team
members and the customer. To see this in practice, let’s watch a team member at
Acme Media complete the additional fields.

 Gina Wallace is the tester assigned to the pilot project. Gina grabs the feature card
for ability to bid on an item (shown in figure 12.2) and considers the four empty fields.
Based on the information Jay, the customer, provided during the feature introduction,
Gina knows this feature is at the core of the application and will be used frequently.
Gina writes high in the category for Usage frequency.

 Gina also remembers that Jay said a user must be registered to place a bid on an
item. Gina records feature 4, require user registration, as a dependency for this feature.

 Continuing to think about dependencies, Gina also realizes that a user can’t bid
on an item unless the item is posted. Gina records feature 10, place an item up for bid, as
another dependency.

 Next, Gina considers the requirements uncertainty for the feature. How well did
Jay describe the feature when the team asked him questions about it? Did Jay have a
good feel for the feature’s scope? After spending a few minutes thinking about the
Licensed to Abner Lopez <ihackn3wton@gmail.com>

159 A team approach to creating feature cards

card by herself, Gina realizes she still has some open questions, so she asks Jay for
more information:

■	 Will we have a way to refresh the bidding screen so the bidder can keep track of
how much time is left to bid, or will the bidder have to refresh their browser on
their own?

■	 Will a bidder have an option to buy it now, meaning can they place a bid so large
that the auction automatically ends and they win the item?

■ Will a bidder be able to view the bid history for an item up for bid?

Jay considers Gina’s questions within the overall vision for the project. The main
vision is to get live quickly with a minimal feature set so Acme Media can stop the com
petition from eroding the company’s customer base. With that vision in mind, Jay tells
Gina that the bidding screen won’t refresh automatically. Jay also feels the buy it now
functionality will make a great future feature, but they won’t pursue it in the current
release. Jay adds the buy it now feature to the product backlog.

 Jay also thinks about the ability to view bidding history. He considers his own expe
riences when buying items on eBay: he cares about seeing the highest bid but not about
seeing the entire bidding history. Jay decides that the ability to view the bidding history
will also go into the product backlog, but it won’t be considered for this release.

 Gina records the additional information on the feature card and then revisits the
question of requirements uncertainty. To her, it seems that the customer has a good
feel for this feature and that the basic requirements are well defined. Gina writes low
for Requirements uncertainty on the card.

 Next, Gina considers the last field: Technical uncertainty. The customer can’t help
her a lot here, but she knows Matt, the developer, was involved in the feasibility inves
tigation and can assist. Gina walks across the room and speaks with Matt.

 Matt shares the information he’s collected from his feasibility work. He tells Gina that
a level of concern exists because the team has never created auction functionality
before, but he’s researched competing sites and found free auction source code on the
internet. Matt has also looked at the existing merchandise applica- tion code and feels
the auction functionality can be added to it without much technical concern.

 Speaking to the ability to place an item up for bid specifically, Matt feels this feature
isn’t technically complex. Matt tells Gina that he’ll mark the feature as having low
technical uncertainty. Gina records the information on the card.

 Gina needs to complete only one more field. How will she describe an accep
tance test for this feature? She goes back to Jay to ask what he will consider a success
ful deployment of this feature. Jay and Gina identify two acceptance tests for the
feature: a bidder’s auction will be successfully recorded into the system, and the bid
der will receive a bid-confirmation notice. Gina records the tests onto the card.

 She has now completed all the fields she can; see figure 12.3.
 As Gina has been completing her card, other team members have been doing the

same thing. The room has been abuzz with conversations. When all the feature cards
are complete, each team member will describe the feature they documented to the
group for feedback and thoughts.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

160 CHAPTER 12 Feature cards: a tool for “just enough” planning
 Figure 12.3 A feature
card after completion of the
feature-card exercise. For now
we won’t address the fields for
estimated effort and planned
iteration. This will come after
you perform prioritization and
estimation work.

Why not design the feature right now?
As you create feature cards, you’ll begin to imagine potential design options and con
straints. It may be tempting to turn the feature-card meeting into a full-blown design
session. Don’t do it.

What if you discover that a feature has a low priority, or the customer decides the
feature isn’t needed after all? If this happens, you’ll have wasted precious time de
signing a feature that will never be delivered.

You must also consider the time needed to design each feature. The feature-card ex
ercise is time-boxed and is usually completed in one day. You’re gathering just
enough information to prioritize the work, not complete it. Designing every feature in
detail could take several days. You have urgency to evaluate and prioritize the work
before engaging in detailed design. You’ll go deeper into the features before and dur
ing the development iterations.

12.2.2 Reviewing the feature cards as a team

To complete the feature-card creation process, each team member presents their card
to the team at large for feedback. When the whole team reviews the cards, additional
issues are discovered, additional assumptions are added, and you give everyone on the
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Feature cards compared to…	 161
team a voice. It’s also common for team members to challenge the customer on the
value of some features.

 When Gina reviews the ability to bid on an item, various members of the team ask
questions:

■	 Keith from architecture wants to know the feature’s service-level requirements.
How much time will the system have to record a bid and then allow all bidders
to see the increase? Gina defers the question to Jay, the customer, who says the
system needs to reflect a new bid after five seconds. Gina records this assump
tion on the card.

■	 Ryan, the designer, wants to know about the user interface. He asks Jay if they
can use the existing site-navigation theme, or if the team will need to create a
new look and feel for the Auctionator. Jay responds that he wants to keep the
project as simple as possible and use the existing navigation if possible.

■	 Tom from operations asks how long a bid must be stored after an auction is
closed. Also, will they need to store all bids or just the winning bid? Jay replies
that he wants all bids for an auction to be stored for one month. Jay also tells
the team that he’s working on legal disclaimers for the site, to protect Acme
Media from any issues associated with disgruntled bidders.

Acme Media continues the feature-card exercise by reviewing and discussing all the
other features. As the end of the day, they have enough information to prioritize and
sequence the work.

12.3 Feature cards compared to…
Feature cards are at the heart of the agile case study we’re using. You may wonder how
they compare and contrast to other requirement and planning tools frequently used
for software development. Let’s take a moment to compare feature cards to three pop
ular tools.

12.3.1 User stories

Some of the people we’ve worked with refer to feature cards as user stories on ste
roids. We believe this is an accurate description.

 Feature cards share the same goals as user stories. You aren’t looking for require
ments; you want information to help you plan. You aren’t looking for formal require
ments to review; you want to interact with the customer verbally to better understand
their needs. You also want to gather just enough information to understand the scope
of the system. User stories and feature cards collect conversations with customers. Fea
ture cards also aim to represent a piece of work that can be completed within an itera
tion. And feature cards and user stories both collect the tests needed to verify a
feature is complete.

 The main thing that makes feature cards different is the additional fields for
uncertainty, dependencies, and frequency of use. By adding these fields, you make it
easier for the team to prioritize and sequence features after the initial customer
conversations.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

162	 CHAPTER 12 Feature cards: a tool for “just enough” planning

12.3.2 Use cases

Use cases have been an essential requirements-gathering tool for many years. We’ve
used them on many projects, and they can provide a good process for documenting a
system’s detailed requirements. But if use cases are used too early, they can create
issues for a project:

■	 A use case can imply technical-design details and bias the team toward imple
mentation. You can easily lose sight of what the customer needs and begin rush
ing down the path to building the application.

■	 A use case can define a large scope of functionality. You want to see all your fea
tures defined as pieces of work that can be completed within an iteration. Many
times, a use case exceeds this timeframe.

Let’s look at the first issue and how design can creep into the discussion with use
cases. A few years ago, Greg worked on a project that let employees update their per
sonal benefits information online. Greg and a developer worked with the customer
and quickly documented the main use case (see figure 12.4).

 In this example, the use case didn’t

have an extreme bias toward design

details, but hints were starting to sur
face. Greg’s team was already thinking

about using PeopleSoft and a SQL data
base. This team also assumed there

would be separate screens for each ben
efits area and that the customer would

receive a change confirmation via

email. Such assumptions may end up

being correct, but they steer the cus
tomer away from a conversation about

their needs and into a discussion of

implementation details.

 It’s important to note that there are

two types of use cases: essential and real.

An essential use case is closer to a feature

card; the interaction listed is at a high

level and isn’t implementation specific.

A real use case describes the detailed

interaction with the system, naming

screens, databases, triggers, and other

system artifacts.

 Returning to the second issue with

use cases, let’s see how scope could

become large for an Auctionator fea
ture (see figure 12.5).

Figure 12.4 A use case can create issues for a
project when it’s used too early. The format can
bias the team toward implementation planning
versus trying to understand the true user or
business need.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

163 Feature cards compared to…

 The Acme Media team could proba
bly complete the main use case for place

a bid within 10 days, but other use cases

that could come from the exceptions

probably wouldn’t be completed within

the same 10 days. Frequently, it takes

more time to create an exception fea
ture than it does to support the main,

perfect world flow.

In conclusion, we think use cases

are a great requirements-gathering

tool, but they should be used in con
junction with feature cards or after fea
ture cards are complete.

12.3.3 Functional specifications

In our experience, a functional specifi
cation is a deep, detailed document

that speaks to how a requirement will

be delivered. Functional specifications

frequently include use cases, wire-

frames, interaction diagrams, formal

business requirements, and entity-

relationship diagrams.

 Functional specifications are com
mon in a waterfall environment. We

usually see the following flow around a

functional specification:

1 A business-requirements or marketing-requirement document is created.
2 A functional specification is created from the business-requirement document.
3 A technical design document is created from the functional specification.
4 A test plan is created from the functional specification.

The process can be formal, and each document is created in series. In some cases, the
customer may not be consulted as the documents are being created; this process is
common with fixed-bid work.

 The team is trying to deliver to a requirement document and to use statements
such as “The system shall….” If the customer did not detail their requirements cor
rectly, you don’t care—you get paid as long as you deliver to their specifications. This
approach is different from the agile mentality of learning as you go and engaging in
frequent customer interaction.

 If you contrast a feature card to a functional specification (FSP), you’ll notice the
following differences:

Figure 12.5 Alternate flows and exceptions can
make a use case large and hard to consume within
one iteration.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

164	 CHAPTER 12 Feature cards: a tool for “just enough” planning
■	 A feature card starts a requirements conversation. An FSP tries to cover all
requirements immediately.

■	 A feature card is used to record conversations. An FSP doesn’t include conversa
tions but focuses on documenting how a documented business requirement
will be met.

■	 A feature card focuses on verbal communication, common understanding, and
synchronizing the team on the customer goals. An FSP focuses on documenting
the functional details and having team members read the FSP to understand
what they should do.

■	 A feature card focuses on gathering just enough information to prioritize,
sequence, and estimate the work.

Note that we don’t see an issue with creating functional specifications, but we do see
issues with the process that usually surrounds them. In our experience, we’ve wit
nessed four weaknesses with the processes typically used with a formal FSP:

■	 A functional specification focuses on delivering what was requested at the
beginning. In our experience, what the customer wants changes as they see the
product demonstrated. Feature cards begin the process of identifying what is
needed at the end, not the beginning.

■	 A functional specification can position the customer as an enemy, with defini
tive statements such as the system shall. The customer is also somewhat inhuman
when their needs are presented on paper versus via a face-to-face conversation.

■	 The process around functional specifications can delay the ability to get early
estimates for the project. An FSP may take weeks or months to complete, and
then it’s passed to developers for technical design and ultimately development
estimates. It may take months to get an estimate for project duration.

■	 When estimates do come in, you may realize that you’ve completed functional
specifications for features that you won’t have time to complete. This FSP work
will be wasted effort.

There is value in FSPs when you work with offshore resources, or to help you support
traceability requirements. It’s also great to have a document that holds all the infor
mation about a feature in one place, especially if you don’t have a dedicated team
room or a place to hold your whiteboard diagrams and flow. We’ve seen some teams
take pictures from their whiteboard-modeling discussions and store them in the FSP.
This is a great idea because team members usually understand diagrams better than
requirements statements. The main point is that you don’t want to start your initial
planning process by creating detailed functional specifications.

12.4 Limitations in using feature cards
Switching to a feature-card-based planning process can be a big cultural change. You
may have constraints that make it difficult for you to make the conversion. Let’s look
at some of the most common constraints.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

165 Limitations in using feature cards

12.4.1 Project complexity

We once worked on a huge project to deliver an online real estate site. The project was
estimated to have four major phases and take a year to complete. In addition, we were
outsourcing most of the functionality to a real-estate site service provider. The provider
wanted us to provide complete functional specifications for all our requirements before
they would provide a cost estimate. Our team had agile experience, but we didn’t see
how we could use feature cards for a vendor who didn’t want to work in an agile fashion.

 Since this time, we’ve learned that the best way to deal with large projects is to
focus on identifying the critical features first and then use the feature-card process for
the critical work. When we need to estimate all the work, we discuss themes for future
phases and provide high-level estimates to stakeholders, but we don’t try to estimate a
huge project in detail. This approach has worked well for us because we often find
that once phase 1 critical features are delivered, the customer may change their mind
about what is needed next and may cancel subsequent phases. You’ll also find that the
world isn’t static during your project, and a change in the business climate can make a
customer redirect you to a new need.

12.4.2 The customer isn’t available

An integral part of creating feature cards is dialogue with the customer or product owner.
On occasion, we’ve worked with teams that were able to complete the feature-card exer
cise with minimal customer interaction during the exercise. Here’s an example.

 Once we worked on an intranet platform that had multiple customers per release.
Some customers were available for the feature-card exercise, and others had only an
hour or two to give. Some customers were totally unavailable due to vacation or illness.
If a customer had only an hour or two, we interviewed them intensely for the time they
were available and then used a proxy to continue the process. The proxy was frequently
a business analyst who spent time with the customer before the feature card meeting.
As the feature-card discussions continued without the customer, the analyst provided
feature requirements and decisions; later, they reviewed the discussion with the
real customer.

 In cases where the customer wasn’t available at all, we debriefed them before the
session and had someone on our team named as a proxy in advance of the meeting.

 Ultimately, you want high customer involvement in your development process.
Assuming your customer was highly involved in the creation of business-requirement
documents in the past, your customer should have time for the feature-card exercise
now that you won’t require detailed business requirements to initiate the project.

12.4.3 Compliance and traceability

In many environments, you must provide requirements traceability and support com
pliance programs such as Sarbanes-Oxley (SOX). Let’s discuss traceability first.

 If you use feature cards, you may find it difficult to go through them for an auditor
to prove you supported a requirement. In these instances, you may want to have an
Licensed to Abner Lopez <ihackn3wton@gmail.com>

166 CHAPTER 12 Feature cards: a tool for “just enough” planning
electronic version of the card (see section 12.5) with a unique ID that can be refer
enced to show support for the original requirement. In our experience, we’ve gone a
step further and created an electronics requirement package that auditors can refer
ence. These packages contain customer discussions, wireframes, interactions dia
grams, workflow diagrams, and sometimes use cases. We’ve also stored a record of test
results and customer approval. The good news is that our feature cards, and every
thing we do in an agile environment, are focused around acceptance testing. Other
than documenting results in a place they can be referenced, you shouldn’t need to
make any process changes.

 Agile is also good for compliance environments because projects (releases or itera
tions) are small and make results easier to view and comprehend. An agile process
also lends itself to transparency, which most regulatory bodies desire.

 Perhaps the biggest thing to address with agile and compliance is how you docu
ment your process. We’ve found that companies often harm themselves by document
ing a process they don’t follow. In these examples, teams rush to create artifacts that
support compliance but provide no value to the project.

 We’ve also worked in ISO environments; one of the famous quotes from ISO audi
tors is “document what you do, and do what you document.” Many large companies
have teams dedicated to corporate methodology, and these teams document what
they think you do or should do. You need to work with these teams so they document
the true agile process that you use, so you’re always in compliance.

12.5 Hard-copy cards vs. electronic cards
The spirit of feature cards is to increase verbal communication with the customer and
enhace the team’s understanding of features. Using physical cards encourages face-to
face communication and also helps the team better remember what a feature is about,
because a team member writes the conversation notes on the card in their unique
handwriting (see figure 12.6).

Figure 12.6 Features
are easier to remember
when they’re created by
hand and always on the
wall for team members
to reference and edit.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

167 Hard-copy cards vs. electronic cards
You should make it easy to discuss, reference, and modify feature cards if needed. A
physical card simplifies this process. Physical cards also work well when you begin pri
oritizing and sequencing the features for a release: you can move the cards around
and view them as the team discusses sequencing.

 But sometimes you may also want an electronic representation of your card. For
example, if you’re working with distributed employees, you may want to show them
the features via a wiki or collaboration website, as in figure 12.7. You may also have a
queue for customer requests, where your customers complete an electronic form that
populates your backlog. You can print these cards for the feature-card exercise and
update them online after the exercise if necessary.

 Some teams don’t have a dedicated team room, and an electronic tool lets the
team view feature information at their desks or other remote locations.

Figure 12.7 Tools such as
SharePoint let you create
feature cards electronically.
Electronic cards can be used
to supplement the use of
physical cards and make it
easier to distribute feature
information to offshore teams
or across a large enterprise.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

168	 CHAPTER 12 Feature cards: a tool for “just enough” planning
A case study from a real project manager using both physical and electron
ic cards
When I was initially trained on agile processes, I was told to always use index cards
or paper for the feature cards. The team could quickly create, edit, view, and move
index cards. The physical paper was also conducive to collaboration and conversa
tion. I totally support this approach, and I can attest that paper works great for the
feature-card exercise.

On occasion, though, I’ve had issues with paper after the feature-card exercise. I’ve
worked in several environments where we couldn’t get a dedicated team room, so we
couldn’t leave our artifacts on the wall. In those instances, we brought a computer
and a digital camera with us to the team room. We created the feature cards in Mi
crosoft Word and used a digital camera to take a picture of any sequencing work. We
then posted the information on a team website that all team members could go to
whenever they wanted—they didn’t have to find the physical feature cards. When nec
essary, we printed out the feature cards and went back to work passing them around
physically and writing on them.

Going electronic has also helped me with capacity planning. I’ve used tools such as
SharePoint, VersionOne, and Rally to enter features into an electronic list. This list
lets me aggregate team capacity and story-point estimates for a quick comparison.
This helps me assign features to iterations during release planning.

I’ve also created a feature-card template in Microsoft Word. I print a stack of these
blank cards before the feature-card exercise and hand them out to the team when we
start breaking down the features. The template contains all the fields in which to record
feature information. This also helps people remember what data they should collect.

I suggest that you experiment with paper and electronic methods and then outline a
custom process that works for your team.

Do all you can to use physical cards that are viewable at all times, preferably in a dedi
cated team room. Physical cards are extremely important for the feature-card exercise
and later for release and iteration planning. Use electronic cards to supplement physical
cards if you have constraints that limit the availability of physical cards to team members.

12.6 Key points
 The key points from this chapter are as follows:

■	 Feature cards let you plan a project without creating detailed functional and
technical specifications.

■	 Feature cards help you prioritize your work and avoid wasting time on features
that may never be needed.

■	 Feature cards aren’t meant to be the only source of requirements information.
After initial planning, you may want to supplement the cards with additional
artifacts to support feature development.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Looking forward	 169

■	 Features need to be broken down into a size that allows delivery of working
code within 10 days. If you pursue large features that take weeks or months to
complete, you may fall back into a waterfall process and lose your ability to eval
uate project status.

■	 Feature cards are all about the customer. The cards should describe the value
that will be delivered to the customer.

■	 A completed feature card holds initial estimates, but you don’t perform estima
tion until you determined priorities and sequence. You’ll do this in chapter 16.

■	 Involve your entire project team in the feature-card exercise, unless the team is
too large. If your team has more than 12 people, you may need to have repre
sentatives by area.

■	 Involving the entire team ensures consistent understanding and buy-in. If any
one has doubts about feature value, they can share their concerns directly with
the customer.

■	 A feature card is similar to a user story. The main difference is that a feature
card has fields to remind team members about information to collect related to
risk and value.

■	 Use cases can assist you during the feature-card creation process, but you need
to make sure the use case speaks to the business need and not a specific imple
mentation of the need.

■	 If at all possible, use physical feature cards for the feature-card exercise. Physi
cal cards encourage you to interact with the customer and place a focus on ver
bal communications, which helps you understand the customer’s need. Try to
limit the use of electronic cards to supporting the physical cards or passing the
information to distributed groups.

12.7 Looking forward
In this chapter, we fleshed out the features for the pilot project. You should be starting
to understand the value and the risks of each feature. In chapter 13, you’ll learn how
to use this information to prioritize your work. After your work is prioritized, you can
estimate the features; then you’ll be ready to lay out your overall release schedule.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Prioritizing the backlog
Have you ever run out of time on a project and started skimping on testing, train
ing, or usability? Have you ever delivered a project and then been amazed that the
customer only used about 20 percent of the functionality? These common issues
illustrate the need for prioritizing features within a project.

 When you prioritize features, you ensure that you deliver the most valuable
functionality to your customer first. You do this by iteratively building feature sets
and deploying these features after each iteration if needed. For example, you may
find that you need three iterations of work to complete your project. In this
instance, you put the critical, minimum functionality needed in iteration 1, fol
lowed by high-priority features in iteration 2, followed by medium-priority features
170

Licensed to Abner Lopez <ihackn3wton@gmail.com>

The art of prioritizing, sequencing, and grouping features	 171
in phase 3. Each iteration concludes with usable features that could be deployed to
your production environment if needed. The power in this approach is you can still
deliver critical parts of your project if issues are encountered along the way. You won’t
need to compromise on the quality of the features you deliver, and the customer can
still receive a usable system.

 In this chapter, we’ll discuss the guidelines for prioritizing features, and you’ll see
these guidelines in action as Acme Media prioritizes its project/product backlog for
the Auctionator project. At the conclusion of this exercise, Acme Media will have a
prioritized backlog that is ready for initial estimation.

13.1 The art of prioritizing, sequencing, and grouping features
After you complete the feature-card exercise, you need to determine the logical build
sequence. There are dozens of ways to do this; we’ll walk you through a process that
has worked well for many project teams in various industries.

 However your project team chooses to do this process, follow the way you do it con
sistently so your team can focus on building the application. You want the team to get
familiar with a sequencing process so that it becomes intuitive.

 Here are the guidelines we suggest for prioritizing, sequencing, and grouping
features:

■	 Determine what features are most important to the user/customer.
■	 Determine which features go together to provide value to the customer. If possi

ble, avoid splitting features across groupings when both features are needed to
provide value to the user.

■	 Think about features that are high value and high risk. It’s usually good to get
them up front in the sequence so you can make the call on removing them from
the project or have the luxury of being able to work on them in every iteration.

■	 Interfaces always present risk. As a rule of thumb, feature cards that involve an
interface should have technical uncertainty marked as high.

■	 Third parties (vendors/partners) also represent high risk, especially if you’ve
never worked with them before. You want features related to third parties early
in the sequence also.

After you have the guidelines for prioritizing, you need to determine who will take
part in the prioritization exercise. In most agile environments, the customer or prod
uct owner prioritizes the backlog. We agree with this practice for initial prioritization,
which is based on anticipated business value. But after the customer has prioritized
the features, you should engage the entire project team in an exercise of reviewing
the priorities based on additional attributes of the feature cards, such as frequency of
use, technical/requirements uncertainty, and dependencies.

 Our suggestion is to tape all the feature cards to a wall, in the order of business
value, and then have the team move the cards around. The highest-priority items are
on the left, and the lesser-priority items are on the right. The team looks at the
Licensed to Abner Lopez <ihackn3wton@gmail.com>

172	 CHAPTER 13 Prioritizing the backlog

Figure 13.1 You’ll prioritize your feature cards based on business value, risk, dependencies, and
uncertainty.

features as a group, and team members are allowed to move cards based on their per
ception of value, risk, and usage. Figure 13.1 shows a whiteboard with features taped
to it; a team has just concluded the prioritization exercise for their project.

NOTE	 The X axis displays value, from left to right. If two features are at the
same place on the X axis, they’re of equal value, and you stack them one
on top of another. The Y axis position is irrelevant and has no relation
ship to value.

To see these concepts in practice, let’s spend a few moments with Acme Media as the
team prioritizes their product backlog.

13.2 Prioritizing the backlog at Acme Media
Acme Media has just completed its feature-card exercise with the customer. The prod
uct manager, Jay, is the customer. Acme Media hasn’t started the prioritization process
yet, but it has the information it needs to begin; see table 13.1.

Table 13.1 	 Acme Media has a product backlog after completing the feature-card exercise. The work
hasn’t been prioritized yet, but the team has the information they need. Note that you
should assign unique IDs to features to prevent confusion when you have features with
similar names.

Customer
value

ID
Feature name

(ability to)
Requirements
uncertainty

Technical
uncertainty

Usage Dependency Comments

High 1 Flag problem Low Low Low 4
postings

Medium 2 Create alerts for Low High Low 4 Feature
item type requires an

interface

Low 3 Email a friend Low Low Low 4
Licensed to Abner Lopez <ihackn3wton@gmail.com>

173 Prioritizing the backlog at Acme Media

Table 13.1 	 Acme Media has a product backlog after completing the feature-card exercise. The work
hasn’t been prioritized yet, but the team has the information they need. Note that you
should assign unique IDs to features to prevent confusion when you have features with
similar names. (continued)

Customer
value

ID
Feature name

(ability to)
Requirements
uncertainty

Technical
uncertainty

Usage Dependency Comments

Critical 4 Place an item up
for bid

Low Low High 5

Critical 5 Register on
the site

Low Low High Ties
into existing
registration
functionality

High 6 Contact the
seller

Low Low Medium 4, 5

Low 7 Customize
my view

Low Low Low 5

Low 8 Use an auction
browser toolbar

Low High Low 5 No experi
ence with
browser
toolbars

Medium 9 Receive help
online

Low Low Medium

Critical 10 Bid on an item Low Low High 4, 5

Medium 11 Record seller
feedback

Low Low Medium 5

Medium 12 View seller infor
mation

Low Low Medium 11

Critical 13 Search by
category

Low Low High

Medium 14 Perform
advanced search

Low Low Low 4

Low 15 Retract a bid Low Low Low 5

Medium 16 Purchase an item
immediately

Low Low High 5

Critical 17 Auction engine Medium Low High 4, 10 Processes
to support
the auctions

Note that we’ve aggregated the feature information into a table to make it easier for
you to follow the process. At Acme Media, the team uses their hard-copy cards and the
wall for the prioritization exercise.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

174	 CHAPTER 13 Prioritizing the backlog

13.2.1 Prioritizing by value

Acme Media’s first step is to make sure the business priorities are unchanged after the
feature-card exercise. The customer may want to reassign the priorities now that you
have more information about the features.

 The Acme Media project team asks their customer, Jay, if he still agrees with his ini
tial value assessments. Jay notes that the purchase an item immediately feature is pre
dicted to have high usage. Looking at it now, he’d label it as high or critical business
value. Jay decides to mark the feature high.

 After making the change that Jay requests, the team sorts the cards by customer/
business value. You can see the results from the initial sorting in table 13.2.

Table 13.2 	 Feature cards sorted by customer value. You sort by customer value first because
delivering valuable software “early and often” is your main objective.

Customer
priority

ID
Feature name

(ability to)
Requirements
uncertainty

Technical
uncertainty

Usage Dependency Comments

Critical 4 Place an item
up for bid

Low Low High 5

Critical 10 Bid on an
item

Low Low High 4, 5

Critical 5 Register on
the site

Low Low High Ties into exist
ing registration
functionality

Critical 13 Search by
category

Low Low High

Critical 17 Auction
engine

Medium Medium High 4, 10 Processes to
support the
auctions

High 16 Purchase an
item immedi
ately

Low Low High 5

High 1 Flag problem
postings

Low Low Low 4

High 6 Contact the
seller

Low Low Medium 4, 5

Medium 2 Create alerts
for item type

Low High Low 4 Feature
requires an
interface

Medium 9 Receive help
online

Low Low Medium

Medium 11 Record seller
feedback

Low Low Medium 5
Licensed to Abner Lopez <ihackn3wton@gmail.com>

175 Prioritizing the backlog at Acme Media

Table 13.2 	 Feature cards sorted by customer value. You sort by customer value first because

delivering valuable software “early and often” is your main objective. (continued)

Customer
priority

ID
Feature name

(ability to)
Requirements
uncertainty

Technical
uncertainty

Usage Dependency Comments

Medium 12 View seller
information

Low Low Medium 11

Medium 14 Perform
advanced
search

Low Low Low 4

Low 3 Email a friend Low Low Low 4

Low 7 Customize
my view

Low Low Low 5

Low 8 Use an auc
tion browser
toolbar

Low High Low 5 No experience
with browser
toolbars

Low 15 Retract a bid Low Low Low 5

This first sort of the feature cards lets the team understand which features are critical,
high, medium, and low. Note that another way of viewing the critical features is to say
they’re the minimum features needed to deliver a functional application. Although
you aren’t creating a release plan yet, the critical label gives you early insight into what
the first iteration will probably contain.

 The next sort relates to dependencies. Which features have a high dependency
placed on them? What features tie to each other?

 The Acme Media team looks at the Dependency column and sees that eight fea
tures are dependent on feature 5, the ability to register on the site. As a matter of fact, the
only critical feature that doesn’t require user registration is search by category. Based on
this, the team moves the ability to register on the site to the far left, indicating it’s the first
feature in the sequence.

13.2.2 Evaluating risk

The Acme Team follows the dependency evaluation by reviewing feature risk. The
team looks for high-risk features, knowing that they must be removed from the project
or moved to the top of the sort.

 You have three options for dealing with high-risk features. Here are our suggestions:

1 High risk and critical/high business value—Move the features to the top of your
sort, and pursue them early in the project. By doing this, you’ll be able to use
the entire length of the project to work out issues related to the risk.

2 High risk and medium business value—You have to make the call on a case-by-case
basis. You can work on the feature early, in the middle of the project, or at the
end of the project. We suggest that you review the value again with the customer
Licensed to Abner Lopez <ihackn3wton@gmail.com>

176	 CHAPTER 13 Prioritizing the backlog

and see which way the feature is leaning. If the customer leans toward high
value, pursue option 1. If the customer leans toward low business value, pursue
option 3.

3	 High risk and low business value—Move the feature to the bottom of your sort, or
consider removing it from the project.

For us, risk is tied to uncertainty. Which features do you have doubts about? Are the
requirements still vague for any features? Are you questioning what technology to use
for any features?

 If you do a quick review of Acme Media’s list, you can see a few features that meet
this uncertainty criterion. Feature 17, the auction engine, has medium requirements
uncertainty and medium technical uncertainty. This feature is also considered critical.

 Ideally, Acme would like to move this feature closer to the top, but it’s dependent
on other features. The ability to place an item up for bid (4) and the ability to bid on an
item (10) need to be understood at some level before Acme can build the auction
engine. Based on this, they move this feature above search but below features 4, 5,
and 10.

 Another feature with a risk implication is ability to use an auction browser toolbar (8).
This feature has high technical risk because the development team has never tried to
embed functionality into a browser. This feature is also marked as a low priority to the
customer. High-priority / high-risk features go to the top of the sequence list. Low-
priority / high-risk features go to the end of the sequence. Acme makes the auction
browser toolbar the last item in the sequence list.

The last item with a level of risk is the ability to create alerts for item type (2). This
feature is labeled as high risk because it requires an interface to a third party.
Acme has used this vendor in the past and is familiar with the vendor’s API. The risk
is probably lower than indicated, so the team leaves this feature where it is in
the sequence.

 Let’s review Acme’s sequence after these changes; see table 13.3.

Table 13.3 	 Feature cards sorted by customer value and risk. You sort high-value/high-risk items to
the top to ensure time for resolving the risk. You sort high-risk/low-value items to
the bottom.

Customer
priority

ID
Feature name

(ability to)
Requirements
uncertainty

Technical
uncertainty

Usage Dependency Comments

Critical 5 Register on
the site

Low Low High Ties into exist
ing registration
functionality

Critical 4 Place an
item up for
bid

Low Low High 5

Critical 10 Bid on an
item

Low Low High 4, 5
Licensed to Abner Lopez <ihackn3wton@gmail.com>

177 Prioritizing the backlog at Acme Media

Table 13.3 	 Feature cards sorted by customer value and risk. You sort high-value/high-risk items to
the top to ensure time for resolving the risk. You sort high-risk/low-value items to
the bottom. (continued)

Customer
priority

ID
Feature name

(ability to)
Requirements
uncertainty

Technical
uncertainty

Usage Dependency Comments

Critical 17 Auction
engine

Medium Medium High 4, 10 Processes to sup
port the auctions

Critical 13 Search by
category

Low Low High

High 16 Purchase an
item immedi
ately

Low Low High 5

High 1 Flag problem
postings

Low Low Low 4

High 6 Contact the
seller

Low Low Medium 4, 5

Medium 2 Create
alerts for
item type

Low High Low 4 Feature requires
an interface

Medium 9 Receive help
online

Low Low Medium

Medium 11 Record
seller feed
back

Low Low Medium 5

Medium 12 View seller
information

Low Low Medium 11

Medium 14 Perform
advanced
search

Low Low Low 4

Low 3 Email a
friend

Low Low Low 4

Low 7 Customize
my view

Low Low Low 5

Low 15 Retract a bid Low Low Low 5

Low 8 Use an auc
tion browser
toolbar

Low High Low 5 No experience
with browser
toolbars

Now Acme’s team has a good sort of their features. Critical features are first in the list,
where they belong. Risky features have been sorted accordingly and either moved up
front to buy the team time to work out the risk or moved to the end because they have
low customer value.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

178	 CHAPTER 13 Prioritizing the backlog

13.2.3 Grouping related features

The last step in Acme Media’s sorting exercise is grouping features. Acme needs to
group features that must be used together to provide value to the user/customer.

 For example, the customer won’t care if Acme delivers the ability to bid on an item
(10) if no one has the ability to put an item up for bid (4), because there won’t be any
items to bid on. These two features need each other to provide value to the customer.
Acme places them together and calls them Group A.

 If you review the features, another logical grouping stands out. Users can’t view
seller information (12) if they don’t have the ability to record seller feedback (11). These two
features needed to be delivered together to provide value to the customer (Group B).

 Let’s take a final look at the feature list after Acme establishes the groupings; see
table 13.4.

Table 13.4 	 Feature cards sorted by customer value and risk, with logical groupings. Groupings show
you features that must be delivered together to provide value to the customer.

Customer
priority

ID
Feature name

(ability to)
Requirements
uncertainty

Technical
uncertainty

Usage Dependency Comments

Critical 5 Register on Low Low High Tie into existing
the site registration

functionality

Critical 4 Place an item
up for bid

Low Low High 5 Group A

Critical 10 Bid on an item Low Low High 4, 5 Group A

Critical 17 Auction
engine

Medium Medium High 4, 10 Processes to
support the
auctions

Critical 13 Search by
category

Low Low High

High 16 Purchase an
item immedi-

Low Low High 5

ately

High 1 Flag problem
postings

Low Low Low 4

High 6 Contact the
seller

Low Low Medium 4, 5

Medium 2 Create alerts
for item type

Low High Low 4 Feature
requires an
interface

Medium 9 Receive help
online

Low Low Medium

Medium 11 Record seller
feedback

Low Low Medium 5 Group B
Licensed to Abner Lopez <ihackn3wton@gmail.com>

179 Prioritizing the backlog at Acme Media

Table 13.4 	 Feature cards sorted by customer value and risk, with logical groupings. Groupings show

you features that must be delivered together to provide value to the customer. (continued)

Customer
priority

ID
Feature name

(ability to)
Requirements
uncertainty

Technical
uncertainty

Usage Dependency Comments

Medium 12 View seller
information

Low Low Medium 11 Group B

Medium 14 Perform
advanced
search

Low Low Low 4

Low 3 Email a friend Low Low Low 4

Low 7 Customize my
view

Low Low Low 5

Low 15 Retract a bid Low Low Low 5

Low 8 Use an auc
tion browser
toolbar

Low High Low 5 No experience
with browser
toolbars

Now that the team has determined their priorities, sequence, and groupings, it’s time
to estimate the features. This process is covered in chapter 14.

 We suggest that you hold off on estimating features until you’ve completed the
sequencing exercise. The reason is you may identify several low-value items that you
may want to remove from the project. If you remove them, you don’t need to waste
time estimating them.

You can use estimates to assist in prioritizing the backlog
As noted in this chapter, we suggest performing initial estimates after you’ve deter
mined the priority of each feature. Our suggestion is based on the time needed to
estimate each feature. You don’t want to waste time estimating a feature that you
may never pursue.

In the last few years, however, we have crossed paths with teams who do a quick
initial estimate and use it as another factor in the sequencing/prioritization process
we’ve outlined in this chapter. We don’t have an issue with this approach, as long as
you time-box the estimating window. It’s easy for a team to want to do a first pass at
designing features before providing estimates. This can be a time-consuming process
and may delay the start of developing features that are known to be critical to the project.

Working with the customer, you can review the sequenced features and see if any low-
priority features should be removed. You especially want to consider features that are
low value and high risk. In the case study, one feature stands out: the auction browser
toolbar (8). It’s low value and high risk. The Acme Media team discusses its value and
risk with Jay ,the customer, and he agrees to remove the feature from the project. Jay
Licensed to Abner Lopez <ihackn3wton@gmail.com>

180	 CHAPTER 13 Prioritizing the backlog

understands how the feature could be technically complex and distract the team from
the most important features.

13.3 Other ways to prioritize features
As we mentioned at the start of this chapter, there are many ways to prioritize features.
Section 13.2 demonstrates a common way to perform prioritization; let’s contrast it to
another approach.

 We have a friend, Tim, who once worked for a small startup company that was fight
ing for survival. The company provided commercial software to other companies; sim
ilar to Acme Media, the company delivered to a product market, not a specific customer.

 Tim’s team performed the feature-card exercise but used a slightly different
approach for determining feature value (see figure 13.2). Tim’s company looked at
three factors when determining feature priority:

■	 How close is this feature to the target market? This is the most important rank
ing attribute; multiply the score of this value by 4.

■	 How much effort will this feature take to complete? Multiply this score by 3.
■	 How much organizational impact will this feature have? In this instance, organi

zational impact means the feature will make the company more attractive to
potential investors.

Notice that Tim’s team didn’t score the items 1 to 10. Every item had to be scored
as 9, 3, or 1. This scoring method was used to push the team to start thinking about
priorities immediately and to avoid having all items reach a similar score.

 When Tim’s team concluded this exercise, they didn’t consider the sorting process
complete. They used the output of the Excel spreadsheet as a starting point for dia
logue on how they would prioritize the items. The scores influenced their decisions,
but ultimately the team made the call about priorities.

Figure 13.2 An Excel spreadsheet is used to weight and sort features for a release.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Key points	 181
13.3.1 What about technical features?

You may have noticed that most of the features/user stories in the Auctionator are
customer facing. We’ve done this to make it easier to follow the case study, but we
understand that every project/release you perform includes some level of technical
work, and this work must be prioritized with the customer-facing features.

 Returning to Tim’s small company, figure 13.3 shows how his team prioritized
their technical/refactoring features.

Figure 13.3 Every project will have features that are related to architecture and refactoring. This work
is prioritized with the customer features, and your release will be a mixture of both types of features.

In this example of architectural features, the team used similar attributes to rank the
backlog. The main difference was removing the Market column and replacing it with a
column that measures how valuable the feature is to the platform.

 Your technical features will be stored in the same backlog as the customer-facing
backlog; but similar to Tim’s team, you may use different attributes to rank the features.

 Technical features frequently correlate to refactoring work and consolidating
redundant programs. In this example, Tim’s company had four product groups, and
each had created its own email engine. The team realized how much work was being
wasted in maintaining four sets of similar code, so they decided to work together to
create one email service that they could all use.

13.4 Key points
The key points from this chapter are as follows:

■	 Prioritizing features helps you deliver value to your customer sooner.
■	 Prioritizing features lets you stop a project before it’s complete and still deliver

the critical features.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

182	 CHAPTER 13 Prioritizing the backlog
■	 Customer value is the main attribute for determining prioritization, but you use
other factors such as risk, frequency of use, and dependencies to create your
final prioritized backlog.

■	 The customer or product owner can provide the business priorities, and then
the team and the customer should work together to complete the sorting pro
cess. This step aligns the team on the priorities and contributes to team buy-in.

■	 Some features need to be delivered together to provide value to the customer.
When these features are identified, you group them together, and they have
equal priority.

■	 You can customize the prioritization at your company to meet your unique
needs. You should start with customer value and then consider other areas that
are of value in your environment. These areas can include market share, usabil
ity, feature expense in time and or money, investor value, and innovation.

■	 You backlog will consist of features that are customer facing and features that
may be considered refactoring. You’ll review both types of features when priori
tizing your product backlog.

13.5 Looking forward
In this chapter, we explained how to prioritize features based on business value and
technical risk. In chapter 14, we’ll show you how to estimate the prioritized work so
that you can assign features to iterations.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Estimating at the right
level with the right people
Estimating software is a mystery for most teams. Teams can spend huge amounts
of time breaking down features to create their estimates, but the actual time
needed is usually a vastly different number. The issue lies in two areas: techniques
and expectations.

 Most teams use traditional estimation and capacity-planning techniques. Tradi
tional techniques are dependent on constants and repetitive work. A traditional
planning process wants to know how much time it takes to build a widget, how
many machines are available to build the widgets, and how many hours a day the
machines can be used for building the widgets.

 As you probably know, each piece of software is unique, and it’s difficult to esti
mate something that is being built for the first time. We never build the same widget
twice. It’s also hard to treat a developer like a machine and predict their output on
a daily basis. Communicating this to sponsors and stakeholders is also challenging;
many experienced software professionals still believe incorrect estimates are more
closely tied to incompetence than to the realities of software development.

 Agile estimation techniques won’t remove uncertainty from your early estimates,
but they will improve your accuracy as the project proceeds. This is true because agile
estimation methods take actual work into account as the project progresses. Your
work mix may be diverse, but if you measure at an aggregate level you can still iden
tify an average that you can use for estimating your capacity. We’ll demonstrate this
process as we follow the Auctionator through its development iterations.
183

Licensed to Abner Lopez <ihackn3wton@gmail.com>

184 CHAPTER 14 Estimating at the right level with the right people

 The estimation process covered in this chapter is based on the teachings of Mike
Cohn in Agile Estimating and Planning. Mike is a founding member of the Agile Alli
ance and one of the most knowledgeable estimation experts in the agile community.
We highly recommend reading Agile Estimating and Planning to gain a deeper under
standing of estimation techniques.

 Let’s start by seeing how a project team usually gathers the information needed to
create estimates.

14.1 Contrasting traditional and agile estimation techniques
An average software project begins when a team or person outlines a project and
receives approval to go forward. The project may be started by a product manager
with an idea for an existing product, or by a customer request, or by the signing of
a contract.

 In the early stages of a project, someone guesses how long it will take to deliver.
This person may be a salesperson, project manager, or development manager. They
may make a guess based on their experience, or they may have some quick chats with
seasoned employees and solicit their opinions.

 When the timeline guess is in place, the project begins. If the project is related to a
product, there may be marketing requirements to reference. If the project is for a cus
tomer, there may be a statement of work to reference. In either case, it’s common for
an analyst team to convert the information into functional specifications.

 After the functional specifications are completed, a conversation begins with the
development team, designs begin to evolve, and some teams may document a techni
cal design and architectural plan. When this work is complete, the development team
provides estimates based on the anticipated approach. The team also estimates their
capacity by resource type. Then the estimates, capacity, and known dependencies are
entered into a project plan. At this point, the team has a schedule that they feel confi
dent in, and they share it with the stakeholders.

 This exercise may take several weeks or months to complete. If a project is time-
boxed, the team may find that there isn’t enough time to deliver all the features for
which they created functional specifications, designs, and estimates. The team then
has to scope back the features for the project to meet the timeline, realizing they’ve
wasted valuable time in estimating features that won’t be pursued.

 Agile estimation techniques address the shortcomings of this method. You don’t
design and estimate all your features until there has been a level of prioritization and
you’re sure the features are needed. You used a phased approach to estimation, recog
nizing that you can be more certain as the project progresses and you learn more
about the features.
At a high level, the phased process looks like this:

1 Estimate the features in a short, time-boxed exercise during which you estimate
feature size, not duration.

2 Use feature size to assign features to iterations and create a release plan.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

185 The importance of whole-team estimation

3	 Break down the features you assigned to the first iteration. Breaking down means
identifying the specific tasks needed to build the features and estimating the
hours required.

4	 Re-estimate on a daily basis during an iteration, estimating the time remaining
on open tasks.

Agile estimating is also different in that you involve the entire team in the estimation
process. Let’s take a moment to look at the value of whole-team estimation.

Are traditional estimation techniques really that bad?
For some software projects, requirements rarely change and timely delivery isn’t crit
ical. Other times, a project sponsor may be more interested in schedule accuracy
than delivering while a need still exists. In still other cases, a long-term, fixed-bid con
tract must be supported, and you can’t risk identifying additional expenses after the
contract is signed. In these and many other instances, traditional techniques are wor
thy and valuable.

But if you’re reading this book, there is a good chance you have volatile requirements,
your customer needs to receive valuable software soon, and you must deliver your
project in a lean method with limited waste. If this is true, you need an agile estima
tion process.

14.2 The importance of whole-team estimation
Every year, Best Buy Corporation tries to predict how many gift cards will be sold at
Christmas. The typical process is to solicit the opinion of upper management and
internal estimation experts to forecast a number.

 In 2005, the CEO of Best Buy decided to try an experiment. The CEO followed the
normal process for obtaining the estimates but also sent an email to approximately 100
random employees throughout the company, asking them how many gift cards they
believed would be sold. The only information provided to both groups was the sales
number for the previous year.

 After the Christmas season was completed, the predictions of both groups were
reviewed. The expert panel was accurate within 95 percent of the actual number of
cards sold. The random group of employees was accurate within 99.9 percent of the
number of cards sold (see figure 14.1). How did a random group beat the internal
estimation experts?

 In his book The Wisdom of Crowds, author James Surowiecki makes a case that a
diverse set of independently thinking individuals can provide better predictions than
a group of experts. Surowiecki qualifies this assertion by stating that the diversity
needs to be in the way a group views problems and the heuristics each individual uses
to analyze a problem or question. For example, a person’s age can greatly influence
their perspective on an issue.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

186 CHAPTER 14 Estimating at the right level with the right people

Figure 14.1 Best Buy
Corporation realized
improved estimation
accuracy by querying a
large, diverse group of
employees. The diverse
set of employees
consistently delivered
better estimates than
the in-house estimation
experts.

Surowiecki’s work draws many parallels to the issues with estimating software develop
ment. We often get together a group of specialists or experts to estimate the work that
needs to be completed. These experts may be managers or leads who facilitate the
work of their various teams. The fact that all the experts may be a part of management
limits their diversity in opinion. And the fact that these experts may work together fre
quently may lead to standardized thinking, also known as groupthink.

 In an agile environment, you increase the accuracy of your feature estimates by
estimating the features together as a team. Estimates aren’t limited to managers or
leads but also include developers, testers, analysts, DBAs, and architects. The features
are viewed from various perspectives, and you merge these perspectives to create a
common, agreed-on estimate.

 Entire-team estimation has additional benefits beyond diverse opinion. First, you
get estimates from people who are closer to the work. Team members’ opinions may
be diverse, but they provide better estimates because they know your existing code,
architecture, and domains and what it takes to deliver in your environment.

 A second benefit is team ownership of the estimate. If a manager provides the esti
mate, they hope the team supports the estimate and buys into it. If the team provides
the estimate, they’re immediately closer to owning the estimate, and they feel more
responsible for making the dates they provided.
Moving to team-based estimation isn’t easy. Managers may not welcome additional
input, and team members may be reluctant to challenge the experts and instead echo
whatever the experts say.

 It will take time to overcome these hurdles, but you can do one thing to expedite
the change: when you perform team-based estimation, have the meeting facilitated by
an indirect manager such as a project manager or ScrumMaster. This person can treat
all people as equals regardless of title and proactively query team members who are
reluctant to contribute. You can also use the planning poker process discussed in the
next section to prevent one person’s estimate from influencing another’s.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

187 A step toward agility: estimating size, not effort

My team is huge; how can I involve everyone?
We’ve worked with development teams that included 20 people or more. It’s difficult
to involve a group this size in one estimation session. The teams we’ve worked with
have addressed this issue in three ways.

Some teams send a lead to the estimation meeting. Instead of providing estimates,
the lead records the information about the features and then returns to their team to
review the features. The lead may represent development, QA, business analysis, im
plementation, or other functional areas. The functional areas then do their own story-
point estimation for the feature, and the lead takes that estimate back to the smaller
leads-estimation meeting.

A second way we’ve seen this addressed is via conference phone. A small group of
leads or other representatives discuss the features with the customer, and other
team members listen in over the conference line and put in their perspective on how
large the feature is.

Finally, some companies assign features to subteams within a team at large and allow
the subteams to estimate the features they’re assigned. A project manager or other
resource then aggregates the information from several teams into one release plan.

14.3 A step toward agility: estimating size, not effort
As we mentioned in section 14.1, one of the main issues with traditional estimation
techniques is the fact that team members really don’t believe their project timeline
until they’ve completed detailed analysis of the features. They don’t feel comfort
able until they’ve completed functional specifications and correlating technical
designs. Then, when they complete this work, they’re often surprised and have to
notify stakeholders that they can’t make the timeline without a decrease in scope or
other project adjustment.

 It’s easy to see why stakeholders want you to estimate a delivery date immediately.
The project may have a constraint or deadline that must be met, or the project may
require funding that needs to be tied to a duration. You may also need to identify
when shared employees are needed so you can reserve them. How can you improve
the accuracy of your initial estimate without doing weeks or months of detailed fea
ture analysis? The answer is story points.

14.3.1 Using story points for quick estimation

Story points are a different way to look at estimating features. They aren’t a measure
of the time needed to complete a feature but a measurement of a feature’s size rela
tive to other features. This approach is powerful because you may not have enough
information to estimate the time to create a feature, but you can immediately begin
to compare the sizes of features to each other to determine a relative size (see fig
ure 14.2).
Licensed to Abner Lopez <ihackn3wton@gmail.com>

188 CHAPTER 14 Estimating at the right level with the right people

Figure 14.2 Similar to features
in a project, the buildings in a city
have various sizes and attributes.
Can you look at the buildings and
determine how long it took to
build each one? Probably not. But
you can compare the sizes of the
buildings to each other. This is
the main premise of story points.

To demonstrate, let’s pretend you’re making passenger cars instead of software. The
cars are listed in table 14.1. Because you’ve never built cars, you don’t know how long
it takes to create one, but you can estimate how large a car is compared to other cars.
For example, you know a Mini Cooper is probably the smallest car of all. You know
that a Camry is a medium-size car, and you know that a Town Car is probably the larg
est of them all.

 You can convert these size assumptions to numbers by using an estimation scale. A
popular scale for estimating feature size is the Fibonacci scale, which sums the previous
two numbers to derive the next number in the sequence. The sequence looks like
this: 1, 2, 3, 5, 8, …. The main benefit of the Fibonacci scale is that enough separation
exists between the numbers to prevent the team from squabbling over slight differences.
For example, if the scale was 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, team members might debate
whether a feature was a 7 or an 8. It’s easier for
team members to reach agreement if the scale

Table 14.1 Comparing the relativejumps from 5 to 8.
size of various automobiles

 When you have a list of cars or software fea
tures to compare, Mike Cohn suggests that you
first identify an item that is a 2 and then an item
that is a 5. By selecting a 2, you still have room to Mini Cooper 1

list an item as smaller; if you identify a 5, you Camry 3
have room to estimate another feature as larger,

Town Car 8
and you also have the ability to compare a list

Civic 2item to two other list items (the 2 and the 5).
 In the example in table 14.1, we quickly iden- Prius 2

tified the Civic as a 2 and the Impala as a 5. You
Accord 3

can use these two reference points to relatively
Beetle 2compare the other cars and estimate their size.

Now that you have size estimates, you may Impala 5

wonder how you can convert them into work esti- Crown Victoria 5
mates. Initially, you can’t convert them. In relation

Car Story points
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Estimating story points at Acme Media	 189
to the first iteration you perform, the story-point estimates won’t help at all. But after
you complete the first iteration, you’ll know how many story points you completed,
and you can use this number to estimate your story-point capacity for forthcoming
iterations. You’ll measure story-point throughput after every iteration going forward
and use those historic numbers to determine the average story-point capacity for
forthcoming iterations.

 To follow through with our example, let’s say you’ve identified 10 days as the stan
dard iteration length. In those 10 days, you completed the Camry (3), the Prius (2),
the Beetle (2), and the Impala (5). You were able to process 12 story points’ worth of
features in an iteration. For now, you’ll assume that you can complete 12 story points
in iteration 2, and you’ll assign 12 story points’ worth of cars to iteration 2. In effect,
you’re saying that your iteration capacity is 12 story points’ worth of features.

 When iteration 2 is complete, you’ll see how many story points you put through
that iteration. Average that number with 12 from iteration 1, and use the result as your
new capacity estimate for iteration 3. You’ll continue this process forever. Over time,
your story-point capacity estimates will become more accurate because they’re based
on several real production iterations.

NOTE	 Your initial estimation using story points is to help you quickly provide an
estimate to stakeholders and to let you lay out a high-level release plan.
We’ll cover release planning in chapter 15. You also plan in more detail
right before an iteration begins. This detailed planning includes identify
ing tasks and estimating the time needed to complete the tasks. Iteration
planning will be covered in chapter 16.

With classic estimation, you examine the major work tasks to derive an estimate. With
story points, the team doesn’t examine tasks, but they do compare the size and com
plexity of features. To improve the accuracy of your story-point estimates, the team
uses planning poker to ensure individual opinions.

14.3.2 Planning poker

In planning poker, each team member has index cards with 1, 2, 3, 5, and 8 printed
on them. One team member (preferably the customer or product owner) kicks off a
discussion of a feature, and the whole team asks questions and normalizes on the
scope and breadth of the feature. When the conversation is complete, a vote is taken:
all team members hold up an index card with their estimate on it. It’s important for
everyone to do it at the same time so they aren’t influenced by their peers. If everyone
holds up cards with the same number, the estimate is official, and you record it. If you
don’t have consensus, you investigate why. Let’s see this in action with an example
from Acme Media.

14.4 Estimating story points at Acme Media
The first thing the Acme Media team needs to do is establish two reference points for
all features. They do this by identifying a feature that is 2 story points in size and a feature
Licensed to Abner Lopez <ihackn3wton@gmail.com>

190 CHAPTER 14 Estimating at the right level with the right people
that is 5 story points in size. After a review of the features, the Acme team concludes that
Search by category is 2 story points and Receive help online is 5 story points; see table 14.2.
Acme Media’s team then reviews all the features against Search by category and Receive
help online to determine if the other features are the same size, smaller, or larger. As
additional features are estimated, they’re also used as reference points to compare the
nonestimated features.

More help with story points and estimating
As we mentioned at the start of this chapter, Mike Cohn is a superb authority on agile
estimation and planning and has written a book with that same title. Mike also has
a free website you can visit to learn more about planning poker: http://www.planning
poker.com/.

After the Acme Media team completes the planning-poker exercise, they have a prior
itized, estimated product backlog. Now the question becomes, how many features can
they complete within the project timeline? We’ll rejoin Acme Media in chapter 15 to
see how they answer this question.

ID Feature name (ability to) Story points

5 Register on the site 3

4 Place an item up for bid 3

10 Bid on an item 3

17 Auction engine 8

13 Search by category 2

16 Purchase an item immediately 2

1 Flag problem postings 2

6 Contact the seller 3

2 Create alerts for item type 3

9 Receive help online 5

11 Record seller feedback 5

12 View seller information 2

14 Perform advanced search 8

3 Email a friend 2

7 Customize my view 8

15 Retract a bid 2

Table 14.2 Story points let you
evaluate capacity and throughput
without performing detailed task
analysis in advance.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

http://www.planningpoker.com/
http://www.planningpoker.com/

191 Looking forward

14.5 Key points
Key points from this chapter are as follows:

■	 Software estimates are prone to high error rates when they’re created early in a
project. Based on this premise, you should time-box early estimation exercises,
realizing that there are diminishing returns after a day or two of estimating.

■	 Software development is unique, but you can still identify trends that let you
estimate your project timeline.

■	 Many teams limit software estimation to managers, leads, or other experts on
the team. The accuracy of your estimates will improve if you involve the whole
team in the process. In addition, you’ll increase team buy-in and support of
the estimates.

■	 You can reduce the time needed to obtain initial estimates by using the story-
point estimation technique. You may obtain better estimates by spending weeks
analyzing features, but story points allow you to quickly transition to a working
iteration and pursue delivery of critical features immediately.

■	 The story-point technique lets you outline your overall release schedule sooner
and update stakeholders on the ability to meet pre-established deadlines.

■	 Planning poker can add fun to your estimation process while ensuring indepen
dent estimating by team members.

14.6 Looking forward
In this chapter, we explained how you can estimate features in terms of relative size.
The work performed here will let you lay out an overall release schedule in chap-
ter 15. In chapter 16, we’ll do more detailed estimation, identifying the specific tasks
for the first iteration.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Part 5

Enough information
for scheduling

When chapter 14 concluded, Acme Media had a prioritized and estimated
product backlog. In this section we will take the backlog and assign the features
to iterations, which will allow us to provide our first pass at a release schedule.

 In the following two chapters we will discuss how to create an overall release
plan and how that plan is enriched before each iteration begins. We will also dis
cuss obtaining team commitment for the iteration by involving the members in
the detailed iteration planning process.

 You may recall one of the main agile principles, responding to change over follow
ing a plan. This is especially true when it comes to creating release and iteration
plans. We do create plans, but we do not fall in love with them. We know they are
temporary and will be adjusted. We are so confident of change that we will cre
ate windows of time for adapting between the iterations.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Release planning:
envisioning the
overall schedule
If you work with a smaller team doing smaller projects, it may be relatively easy to
create a release plan: you define the iteration length and see how many iterations
will fit into the window of time allotted for the project. But as projects grow in size,
complexity increases, and so does the need for coordination. Our case study is
emulating a medium-size project team working on a medium-size project. We’ll
stay within the medium-size context as we discuss the pieces of a release that most
teams need to consider when creating their release plan.

 If we reflect for a moment, Acme Media has spent one week taking its medium-
size project through feasibility, chartering, and creation of feature cards. In this
chapter, you’ll watch as Acme Media gathers additional information and outlines
its release schedule.

 Sometimes, confusion exists about the terms release and project. In the instance of
your pilot project, release and project are synonymous. Although every iteration of
the Auctionator will deliver releasable software, the initial goal of the project is to
wait until all iterations are complete before releasing.

 Acme Media still needs to gather some additional information before outlining
a release plan. Let’s start the chapter by finding this information.
195

Licensed to Abner Lopez <ihackn3wton@gmail.com>

196	 CHAPTER 15 Release planning: envisioning the overall schedule
15.1 Defining the pieces of a release plan
Once you have a prioritized, estimated backlog, you still need a few more pieces of infor
mation to create your release plan. You need to determine the length of iteration 0
(zero), the length of your development iterations, how much time will be needed
between iterations, and the project deadline. Let’s look at how you obtain each item.

15.1.1 Iteration 0 length

Iteration 0 represents the time needed to prepare the project for development itera
tions. This work can include completing contracts with third parties, preparing devel
opment environments, preparing development machines, setting up a project wiki,
obtaining funding, and organizing support tools such as bug trackers. Iteration 0 is
discussed in detail in chapter 17.

 You determine the time needed for iteration 0 based on how long it takes to get
these items completed for your project. In Acme Media’s case, the Auctionator
doesn’t require extensive time for preliminary setup work. The development environ
ments are already in the correct state for development, and incremental funding isn’t
needed for the project. Acme Media decides to complete four items before the devel
opment iterations:

■	 Create a new project within Acme’s bug-tracking tool
■	 Begin testing the API provided by the messaging vendor to make sure connec

tions and firewalls work correctly
■	 Continue to envision and model the architecture
■	 Hold a project kickoff meeting

The project manager, Wendy Johnson, discusses the items with the team, and together
they estimate that the preliminary work can be completed in one week. Acme records
one week for iteration 0 in its release plan.

15.1.2 Development iteration length

If you’re working on your first agile project, like Acme Media, you don’t know what a
good iteration duration is for your project. You know that you want to build the critical
pieces of the system as soon as you can, but how long will it take?

 Fortunately, thousands of agile projects have been completed across many indus
tries, and you can learn from them. Extreme Programming (XP) environments fre
quently have iterations of 1 to 2 weeks in length. Scrum teams like to do a sprint/
iteration every 30 days. More than likely, a number between 1 and 4 weeks will work for
your environment.

 We suggest that you start with 2-week iterations and see how that timeframe works
for you. It may be good to use this 2-week iteration length for several projects before
making the call on whether it’s successful. If you find that your features are too large
to complete in 2 weeks, you can examine your features to see if you’ve broken them
Licensed to Abner Lopez <ihackn3wton@gmail.com>

197 Defining the pieces of a release plan

down to their true, essential requirements; alternatively, you can try a longer iteration
length. Acme Media has followed this advice and created its release plan assuming 2
week iterations.

15.1.3 How long do you need between iterations?

Scrum has a structured process for completing a sprint/iteration and getting back
to work quickly. When an iteration is completed, the product is demonstrated and
(you hope) accepted. The team then goes through the following steps to initialize the
next iteration:

1 Perform a sprint retrospective.

2 Return to the backlog, which may have changed while the team was in the

sprint. If it has changed, the product owner is asked to prioritize the work.
3 Plan the next iteration based on estimates and the estimated iteration capacity.
4 Begin working on the next iteration.

Many Scrum teams complete this work in 1 or 2 days, which is somewhat amazing. If
you’re just becoming agile, it will be difficult to wrap up a sprint and start a new one
in 2 days. A 1- to 2-day turnaround demonstrates a mature team with a well-oiled pro
cess. It will take time for your team to develop this rhythm.

 As a starting point, we suggest that you space iterations approximately 1 week apart
until your team matures around your agile process. You won’t be well oiled right out
of the gate, and a week between iterations will let you breathe a little as you’re adapt
ing to your new methodology.

 We also find that many projects need the additional time to wrap up an iteration.
Here are the tasks we frequently see between iterations:

■ Completion of acceptance testing
■ Load testing of a completed iteration
■ Demonstrations to the customer and stakeholders
■ Usability testing
■ Iteration retrospective
■ Review of the backlog, and planning for the next iteration

As you can see, a lot of work may take place between iterations, and completing it in 2
days can be difficult.

 Some agile coaches would say that the work you list as “between iteration” work is
part of the iteration. The argument is that acceptance testing, performance testing, and
re-planning are iteration activities. We don’t have an issue with this perspective, but
we’ve chosen to model our case-study iterations without these tasks. If you wanted to,
you could include these tasks and say that Acme Media has 3-week iteration windows.
Now that Acme Media has determined its iteration length, the company can proceed
to outline an overall timeline for the project.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

198	 CHAPTER 15 Release planning: envisioning the overall schedule

Who is watching the store while you’re in the iteration?
In our early experience, most discussions of agile suggested that the project team
was dedicated to the project, and some other group took care of any issues encoun
tered in the production environment. In recent years, we’ve seen a shift in that men
tality; many people now factor in production support when determining team
capacity for an iteration. Many companies have only one team for projects and pro
duction work.

In 2004, Greg worked with the internet team at the Seattle Times Company. The Se
attle Times team factored production support into their capacity estimates, but they
also decided to add a support buffer to their break between iterations. Although the
team needed only 2 to 3 days to review one iteration and continue to the next, they
added an additional 2 days to address production issues that could wait. The 5-day
window allowed the team to plan for the next iteration while cleaning up any noncrit
ical issues.

15.1.4 Determining the overall timeline

Most projects are constrained by time, and the overall schedule is built to support this
constraint. Here are some typical causes for a time constraint:

■	 Your sales team sells a project to a customer.
■	 You need to put something in place to meet a regulatory timeline.
■	 You have an ongoing release schedule, and you must complete the work within

the predefined window.
■	 You have only a limited amount of time to use employees on a project (employ

ees may come from a shared pool).
■	 You have a fixed budget, and once that money is spent, so is your time.
■	 You need to beat your competitor to market.

To determine your timeline, you must review the total time available for your project.
In most instances, your timeline starts with today and ends on the date requested by
the customer or stakeholder. For our purposes, today is equal to the day you complete
the story-point estimates for your features.

 You can see the constraint model applied if we return to the Auctionator project.
For the Auctionator, today is equal to April 20. Acme Media’s stakeholders have asked
that the project be completed in 8 weeks, which means the Acme Media team has
from April 20 to June 15 to deliver the project.

 Once Wendy has the overall timeline, she takes the other information she’s collected
(time for iteration 0, iteration length, and time needed between iterations) and begins
outlining an iteration-by-iteration schedule in Microsoft Excel (see figure 15.1).

 Wendy uses Microsoft Excel because she’s comfortable with the tool and can post
the schedule on the project wiki. But Wendy understands the importance of keeping
Licensed to Abner Lopez <ihackn3wton@gmail.com>

199 Completing the release plan by assigning features to iterations

 Figure 15.1 A release plan
will begin to take shape after
you’ve determined your overall
project window, iteration length,
and time spent to prepare
between iterations. Most teams
need extra time at the end of a
project to prepare for deployment.

the schedule in front of the team, and she uses an office plotter to print the schedule
and post it prominently in the team area.

 Now that Acme Media has an outline for the project timeline, the team can com
plete their project plan by plugging the features into the schedule.

Just two iterations?
Acme Media has only two iterations in its pilot project, which is a minor change from
the company’s previous development process. In theory, you want more iterations so
you can demonstrate and react to new information sooner. But in the case of a pilot
project, two iterations are fine. The team is just learning agile techniques, and they
can increase the number of iterations on subsequent projects.

15.2	 Completing the release plan by
assigning features to iterations
After you’ve identified your release schedule, you can assign features to the iterations.
This process isn’t difficult because you’ve already prioritized and estimated your fea
tures (see chapters 13 and 14).

 You assign features to iterations based on the velocity you’ve demonstrated in the
past. For example, if you’ve historically averaged delivering 25 story points per itera
tion, you’ll use 25 story points for your capacity when scheduling new releases.

 If you’re doing a pilot or first-time agile project, you don’t have any history on
which to base your capacity. In this instance, you proceed to detailed planning of your
first iteration. In detailed planning, you’ll have the team break down each feature into
tasks and perform estimates at the task/hours-needed level. You’ll see this in practice
in chapter 16. After you complete detailed planning of the first iteration, you can see
Licensed to Abner Lopez <ihackn3wton@gmail.com>

200	 CHAPTER 15 Release planning: envisioning the overall schedule

how many story points are assigned to the first iteration and use that number as your
capacity for subsequent iterations.

 Completing a release plan is a little more complex than assigning features based
on capacity. You also want to consider the following guidelines during the assignment
process:

■	 Deliver usefulness to the customer in every iteration. In a perfect world, each itera
tion would be released and provide some level of value to the customer. Acme
Media will do this for iteration 1 of the Auctionator. The company will deliver
the minimal set of features needed for a working system.

■	 Consider dependencies between features. Features may be dependent on each other
to provide value, so you shouldn’t split them across iterations. For example, the
ability to record seller feedback is of no value unless the ability to view seller information
is also completed.

■	 Put high-priority, high-risk features in early iterations. You want high-priority, high-
risk features to go into early iterations so you have more time to work out the
issues that correlate to the risk. Acme Media understands that features depen
dent on third parties are always high risk, and the team begins testing their ven
dor’s interface during iteration 0 to get a jump on potential risks.

Let’s rejoin Acme Media to see the guidelines in action.

15.2.1 Assigning features to iterations at Acme Media

When Acme Media completes detailed planning for iteration 1, the team finds that
they’ve assigned 19 story points into the iteration. For now, 20 points will be used as
the capacity number, so they plan iteration 2 to hold 20 story points.

 Acme Media’s features were prioritized, grouped, and estimated in chapters 13
and 14; the main work remaining is to load up each iteration with 20 story points.

Projects without time constraints
The Auctionator is time-constrained to represent the most common projects we en
counter when working with agile teams. But on occasion, we see a project that is driv
en by feature richness, meaning the project goes on for as long as it takes to deliver
all the features requested. In such an instance, you lay out a project plan with as
many iterations as needed to complete the work.

Wendy, the project manager, loads up the iterations based on the work the team pro
vided (see figure 15.2).

 Now that Acme Media has a release plan, the team is ready to hold a kickoff meet
ing and share the information with stakeholders, executives, and support groups they
will depend on.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

201 Communicating the release plan with a kickoff meeting

Figure 15.2 The completed release plan for the Auctionator project. The numbers in parentheses
represent story-point estimates. Acme Media has estimated its story-point capacity at 20 points per
iteration. After loading, iteration 1 holds 19 points, and iteration 2 contains 20 points.

15.3 Communicating the release plan with a kickoff meeting
Acme Media has involved the entire project team in creation of the release plan, so
the team is up to speed on why the project is being pursued, the overall timeline, and
the features assigned to each iteration. Acme still needs to bring other groups on
board to make sure the project is supported and to create awareness about support
that may be needed.

 The first objective of the kickoff meeting is to bring stakeholders and sponsors up
to speed. The project team shares the information gathered during the feasibility and
Licensed to Abner Lopez <ihackn3wton@gmail.com>

202	 CHAPTER 15 Release planning: envisioning the overall schedule

chartering exercises, including scope, benefits, key dependencies, constraints, risks,
and the release schedule.

 In a traditional environment, the presentation may be performed by a project
manager or development manager. In an agile environment, you should try to get as
many team members to present as feel comfortable doing so. At Acme Media’s kick
off, four team members present: Wendy, the project manager, Jay, the customer, Gina,
the tester, and Roy, the developer.

 A second objective of the kickoff meeting, and perhaps the most important, is to
bring support groups up to speed so they can see when their help may be needed.
Some of the support areas typically discussed during a kickoff meeting are as follows:

■	 Operations—These teams will support your application once it’s deployed, and
they need to know what type of maintenance will be required to keep the appli
cation working correctly.

■	 Security—In larger companies, your application may need to be reviewed to
make sure it complies with corporate standards.

■	 Load testing—In larger companies, you may need to reserve load-testing
equipment.

■	 Load balancing—You may have specialized groups that manage load-balancing
environments, and you’ll need their support for your project.

■	 Hardware and storage —If you’re doing a project that requires new equipment,
you may need help from hardware teams.

■	 Documentation—If your project will require supporting documentation, you may
want to invite documentation teams to your kickoff.

■	 Marketing—If you need to do public announcements or advertising, you must
bring this team up to speed with your release plan.

■	 Training—If your project will require training for employees or customers, you
should invite this team to the kickoff.

NOTE	 If you work with a small team, all of this work may be covered by the same
team that does development. But if you work for a larger company, you
probably already have experience dealing with support groups and can
relate to the support categories we’ve outlined.

You can expect questions during the kickoff meeting, and there may even be discover
ies that force you to adjust your release plan. Many teams create their release plan and
rarely modify it during the project; but you should plan to modify your release plan
frequently. Discoveries and adaptation will occur throughout your project. This is part
of the value of having your release plan physically represented on a status wall. You
can move pieces around quickly when things change, without needing to go into a
tool such as Microsoft Project.

 You know that dates will change as you make discoveries during your project. Use
the project kickoff meeting to stress this point with stakeholders. Acme Media
reminds stakeholders that June 15 is the current estimate, not a guaranteed hard date.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

203 Looking forward

Tools for creating a release plan
You can document your release plan in a multitude of ways. You can sketch it on a
whiteboard, use butcher paper and index cards and create it on a wall, or go electron
ic and use tools such as Microsoft Excel and Microsoft Project. You can also pursue
tools that were made just for agile development, such as those available from Ver
sionOne and Rally Development.

In our experience, you should choose the tool that is easiest for you to maintain while
still making it possible to keep your team and stakeholders up to speed on timing
and status. This may include using additional tools such as burn down charts.

A good rule of thumb is the larger the project, the more need there is to create the
plan electronically so that it can be distributed and viewed throughout the enterprise.
If the project or your company is relatively small, you can have stakeholders visit the
team room to review the release plan.

Mike Cohn makes a good suggestion, that you should not even propose a delivery
date, but instead provide a delivery range so that expectations aren’t set for a specific
date. For example, the Acme Media team will go into the kickoff meeting and say that
they expect to deliver the project sometime between June 8 and June 22.

15.4 Key points
The key points for this chapter are as follows:

■	 The main driver for your release schedule is the length of your development
iterations. You must experiment to see what length works best for your work
mix and team. A good length is usually somewhere between 2 and 4 weeks.

■	 You need time between iterations to demonstrate, adapt, and re-plan. Some
teams can do this work within 2 days. Teams new to agile should allow more
time, taking as much as 5 days between iterations.

■	 Most projects are constrained by a target-completion date. You can create your
release plan by working backward from this target date.

■	 Features are assigned to iterations based on priorities and estimated size. One
person can do the assignments and review them with the team, or the team can
assign the features together.

■	 In larger organizations, you need to communicate the release plan to stake
holders and support groups.

15.5 Looking forward
In this chapter, we laid out the overall release schedule and kicked off the project. In
chapter 16, we’ll examine the features assigned to iteration 1 in more detail and iden
tify the tasks needed to complete the work.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Iteration planning:
the nitty-gritty details
When you plan for a release, you estimate features at a high level using story
points and measuring relative size. This lets you envision the entire release and
communicate the timeline to parties who have an investment in the project.

 When an iteration begins, you should understand the work being pursued in
detail so the team can understand the tasks and feel confident that they can deliver
the features assigned to the iteration. The team will increase their confidence by esti
mating the identified tasks in hours needed to complete the work, and they will com
pare the estimates to how much capacity they have in hours available for the iteration.

 A key part of iteration planning is a clear definition of what complete or done
means. Let’s start our discussion of iteration planning by defining done.

16.1 Clearly defining the goals: what is “feature complete”?
When you create your feature cards, you record acceptance tests. These acceptance
tests help you focus on delivering to the minimum requirement and also verifying
that a feature is complete.

 We suggest reviewing the acceptance tests at the start of iteration planning. The
team needs to have a good understanding of what success means before breaking
down the work and identifying the tasks needed to complete it.

 A good way to kick off iteration planning is to have the customer explain the accep
tance tests that have been recorded on the feature card. The team can ask more
204

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Using feature modeling to identify and estimate tasks	 205
questions about the tests, and a tester can document the tests in more detail during the
discussion. This may mean creating the tests in a testing tool such as TestDirector.

NOTE	 The tests you create should be in boolean terms, meaning that the test
results can be viewed from a true or false perspective.

For many teams, the customer can’t be available for every build and can’t test every
feature as it’s delivered, so a tester performs the daily tests. If a feature passes, it’s
queued for eventual approval by the customer. In the case of Acme Media, the cus
tomer performs user acceptance testing at the end of each iteration.

16.2 Using feature modeling to identify and estimate tasks
To this point, Acme Media’s team has struggled to not jump into a detailed design ses
sion for each feature. Even though they’ve been performing just enough planning to
create a release plan, it’s natural for a team to begin envisioning technical solutions as
soon as they see a feature description. When your release plan is complete and you
need to start working on the first iteration, you turn the team loose and let them
break down the features into detailed tasks and estimates.

 We cannot prescribe one perfect method for breaking down your features. You
may be able to understand the required tasks through team discussion, or you may
find that you need to create wireframes or mockups to understand the work that will
be required. Some teams can effectively identify tasks by creating use cases for the fea
ture cards and envisioning the system needed to support the use cases.

 One process that we’ve found effective is feature-card modeling. This technique is
focused around user interaction and screen design, and many teams find that the
exercise lets them learn enough about a feature to identify the required tasks. Here
are the steps you follow to perform a modeling session with your project team:

1 Select a feature card.

2 Outline a workflow for the feature.

3 Create new feature cards for features that are discovered in the workflow.

4 Outline the screens needed to support the feature.

5 Add detail to the screens, considering user and system interaction.

6 Identify the major tasks needed to build the feature.

7 Estimate the identified tasks.

If modeling is new to your team, you should involve the entire team the first time you
use it. After this training, they can break into subgroups in future sessions and model
several features concurrently.

 The customer should be highly involved in the modeling sessions. The project
team will have many questions for the customer as they probe for deeper understand
ing of the requirements.

 Let’s watch Acme Media as it models one of the features for the Auctionator.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

 206	 CHAPTER 16 Iteration planning: the nitty-gritty details

16.2.1 Outlining the workflow for a feature

Acme Media will model feature 10, the

ability to bid on an item. The first thing the

team does is outline how a buyer arrives

at the bid screen.

The team envisions that the buyer will

perform a search from the auction home

page. The search will bring back a list of

results the buyer can choose from. The

buyer will then choose a listing and view

the details of a specific auction. The team

outlines this workflow on the whiteboard

(figure 16.1).

 The team then discusses what the buyer can do once they arrive at an auction detail
page. They note the following:

■	 The buyer must be logged in to place a bid from the auction detail page.
■	 After the buyer places a bid, they will want to watch the auction and monitor

the status of their bid.
■	 The team thinks about the ability to retract a bid. Is that functionality required?

Jay, the customer, listens in and determines there is a need to support bid
retraction.

■	 The team also discusses the ability to “buy now.” In essence, that’s what Acme’s
classifieds site does. With input from the customer, the team determines that
they will have “buy now” functionality.

■	 The team notes that several processes must be triggered when an auction
closes.

You can see their whiteboard notes in figure 16.2.
 One of the common occurrences during this exercise is the identification of previ

ously hidden features.

Figure 16.1 A first pass at a workflow to support
a feature

Figure 16.2 The workflow
surrounding the ability to bid. As
the team discusses the feature,
additional questions surface
about system interaction.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

207 Using feature modeling to identify and estimate tasks

16.2.2 Discovering new features

The team now lists the additional feature cards that have been discovered during their
workflow exercise (figure 16.3). These features aren’t on the current list provided by
the customer; they need to be encompassed in existing cards, or new cards must be
created for them.

Figure 16.3
Identifying new feature
cards after reviewing
the workflow

The team decides that the ability to monitor an auction is an intrinsic part of the bidding
process. Monitoring and viewing auction details will be included in the scope of the
ability to bid feature. The team creates new feature cards for the other discoveries:

■	 Feature 15 —The ability to retract a bid.
■	 Feature 16 —The ability to purchase an item immediately.
■	 Feature 17 —An auction engine. The team has identified several processes that

the system needs to manage, such as tracking the highest bidder, emailing the
winning bidder and seller, notifying the seller if no one bids, and tracking the
time left in the auction.

The team now has a clear understanding of

the scope of the ability to bid feature. They will

take ownership for viewing auction details,

entering a bid, and monitoring an auction/

bid (see figure 16.4).

 With the additional features defined, the

team is ready to examine the user screens in

detail.

16.2.3 Outlining the screens for a feature

With the scope defined, the team outlines the screens that will be needed to support
bidding. They envision four screens to support the process:

Figure 16.4 Outlining the scope of a feature
Licensed to Abner Lopez <ihackn3wton@gmail.com>

 208	 CHAPTER 16 Iteration planning: the nitty-gritty details
■	 A screen to view auction details —The buyer will arrive here after selecting an auc
tion from the listings provided by the search feature.

■	 A screen to enter a bid —The screen will

tell the buyer the amount needed to

be the high bidder. The bids will be

in graduated amounts.

■	 A screen to review and confirm a bid.
■	 A bid confirmation from the system to the

buyer. The team isn’t sure whether to

provide a confirmation via the screen

or to append it to the auction-detail

screen to confirm the bid.

The screens are shown in figure 16.5.
 After you define your screens at a high

level, you can begin to define detailed sys
tem interactions.

16.2.4 Adding details to a screen by considering user interaction

Now that you know the scope of your feature and the probable screens, you’re closer
to your goal of identifying the tasks that will be required to build the feature. The final
step is breaking down each screen to under
stand user and system interaction in more
detail. Let’s start with the View Auction Details
screen shown in figure 16.6.

 The team outlines the fields for the auc
tion detail screen. The picture (photo), text

description, and location will come from

another feature, the ability to place an item up for

bid. The seller provides this information when

they put their item up for bid.

 The team envisions receiving the current bid

and time remaining from the auction engine.

 The other items on the screen are links to

functionality that will be delivered from other

features, such as the ability to send an auction to

a friend, the ability to contact the seller, and the

ability to view seller feedback. The team also envi
sions a search box to let the buyer search for

other auctions.

 The only remaining item is the link to place
bid. This will take the buyer to the screen for
placing a bid.

Figure 16.5 Identifying the screens needed
to support a feature

Figure 16.6 Adding details and fields to a
potential screen. A detailed screen increases
the understanding of a feature, which leads
to more accurate work estimates.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Identifying and estimating tasks	 209

The team goes through this exercise for each screen related to the ability to bid on
an item. Then they go through the exercise for each feature. At that point, the team
can identify all the tasks needed to complete the feature.

 It is important to reiterate that the modeling work is happening just before an iter
ation begins, and the work is performed for only the current iteration. We do not
want to waste time modeling features that may never be pursued because of the cus
tomer changing their mind or the scope of the project changing.

16.2.5 Is modeling worth it?

Some people will review the modeling exercise we’ve just outlined and question the
effort. You tie up the entire project team for one day to model all the features. At the
end of their work, the team has created no code, written no HTML, and performed no
database work. The team spends the whole day talking about features. What is the value?

 Here it is:

■	 The team has a deep, common understanding of the customer’s needs.
■	 The team has a feel for the scope of each feature and what they need to do to

support the feature.
■	 The team has contributed to the discussion and identified issues before devel

opment starts.
■ The team has a feel for how the features tie together.

The improvement in team performance due to the modeling exercise easily out
weighs the time lost doing “actual work.” This exercise is necessary work—it’s every bit
as important as coding, and maybe even more so. Code is worthless if it does not sup
port the customer’s needs.

 We’ve noticed a funny thing: we see teams skip modeling and then get confused
about features mid-iteration. The team calls a quick, impromptu meeting and begins
modeling a feature without realizing it. We suggest that you accept feature modeling
as a reality of software development and do the work up front. It will reduce your over
all cycle time for delivering features.

16.3 Identifying and estimating tasks
In the modeling exercise, you identify the screens needed to support the features. We
also discussed how those screens interact with the application at large. You use this
information to create your estimates. Your team reviews the workflow and screen lay
outs to identify the tasks they need to complete to build the feature. After they identify
the tasks, they estimate them. To see this in action, let’s review the feature card that
Acme modeled: the ability to bid on an item.

 Acme has identified four screens for this feature:

■	 View auction details
■	 Bid entry
■	 Bid review
■	 Bid confirmation
Licensed to Abner Lopez <ihackn3wton@gmail.com>

 210 CHAPTER 16 Iteration planning: the nitty-gritty details

The team has also laid out the fields for each one of these screens and discussed sys
tem interaction related to the screens. Based on this information, the team enters
their tasks and estimates for each feature. You can record the information on the back
of the feature card or in a project tool; Acme Media’s team recorded the estimates for
the ability to bid on an item, as shown in table 16.1.

Table 16.1 Recording tasks and estimates for a feature during modeling

Tasks Group Assigned Estimate

HTML for four screens

Design data model

Code to handle insert, update, delete

Create tests

Interface with user registration

Error handling

UI

Dev

Dev

QA

Dev

Dev

Ryan

Roy

Roy

Rich

Roy

Matt

16 hrs

16 hrs

8 hrs

2 hrs

4 hrs

8 hrs

The team does this task-identification exercise for each feature, starting with the fea
tures ranked as the highest priority by the customer. The team repeats this exercise,
estimating and adding features to the iteration, until they believe the iteration is full
and they can’t take on any more work. The team is committing to doing the work versus
having a schedule forced upon them.

 The team still uses a process to help them determine how much work they can take
on, but they make the ultimate decision about what to take on regardless of what the
estimate and capacity tools imply.

Task assignments aren’t permanent
Some people suggest not making any task assignments before an iteration begins.
They prefer to have team members pull tasks as they’re available, working their way
through the backlog of tasks without formal assignments.

In our experience, we’ve seen this approach work; but two items affect the value of
ad hoc assignments. First, you’ll probably have team members with specialties when
you begin using an agile process. You won’t have the capability for anyone to take on
any task—you’ll have to assign certain tasks to certain team members. Related to
this issue, if you work in an enterprise environment, it may take several years to de
velop the knowledge needed to be effective in delivering software in your environment.

Second, when teams model features, they may break up into groups and model sev
eral features in parallel. When this occurs, the team members participating have a
more detailed understanding of the features, and they’re better candidates to work
on those features.

We suggest developing your team to a point that anyone can do any task, but this will
take time and is rarely possible when you’re first moving to agile.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

211 Determining the hours available in an iteration

Let’s look at how you determine iteration capacity.

16.4 Determining the hours available in an iteration
The first step in determining iteration capacity is looking at how many hours are avail
able in an iteration. Advanced teams will measure hours available for the whole team.
Teams new to agile will measure hours available by specialization. When you first move
to agile, you probably won’t have interchangeable team members; instead, you’ll have
people with development skills, analyst skills, HTML skills, database skills, and other
specializations. Over time, the team should cross-train and lose dependency on spe
cific people for specific tasks; but on day one, specialization will probably be a reality,
and you must plan capacity around that reality.

 Acme Media knows that the team has 10 working days within their iteration. They
use this information to determine how much capacity each team member has avail
able (see figure 16.7).

Figure 16.7 Acme Media determines its capacity for iteration 1. The spreadsheet takes
implementation support into account and includes notes about other events that may affect
the capacity of specific individuals.

Once the team understands their capacity, they begin loading up the iteration with
features and tasks (see table 16.2).

Table 16.2 As features are added to an iteration, the team can see the impact by functional area.

Est. Req. Est. Ux Est. Dev. Est. Impl. Est. QA Est. Arch. Sum

Ability to bid on an item 24 40 40 16 24 4 148

Ability to place an item up for bid 16 24 40 8 24 4 116

Ability to search by category 40 24 16 8 32 16 136
Licensed to Abner Lopez <ihackn3wton@gmail.com>

 212	 CHAPTER 16 Iteration planning: the nitty-gritty details

As Acme Media adds features, Wendy, the project manager, use a spreadsheet that cal
culates the difference between iteration assignments and team capacity. The team can
see the workload by area and adjust the iteration features to keep everyone at approx
imately 100 percent usage (see figure 16.8).

Figure 16.8 The team can
compare capacity to esti
mates as they add features into
the iteration. In this example,
the features assigned to the
iteration are almost perfect for
the developers, pushing them
to 98% of their capacity. But
the user experience group is
booked way beyond their ca
pacity at 207%. The team can
back out features to get ev
eryone closer to 100%, or they
can disregard the calculation
and choose to go forward if
they feel comfortable doing so.

After the team reaches agreement on the features, they can commit to the iteration
plan. Let’s look at some of the ways the iteration plan can be recorded.

16.5	 Bringing estimates and capacity
together to complete the plan
When your team reaches agreement on the features for the iteration, you can use a
multitude of tools to share the iteration information. In the simplest form, you can
place all the tasks on a wall with index cards and let the team move cards over from
the task backlog to the completed backlog.

 Some teams use a combination of cards and online tools. The Acme Media team
loads the iteration plan into a tool called a burn down chart that lets them view the iter
ation plan and present it to stakeholders and other parties who may not be on-site or
have easy access to the team work area (see figure 16.9).
You may also find that your iteration becomes complex due to dependencies and that
it’s hard to keep track of all the work using an iteration wall or a burn down chart
alone. In those instances, you can use tools such as Microsoft Project.

 Some people believe that if you’re using a tool like Microsoft Project, you aren’t agile.
Many people believe that tools like Project imply formality and overhead, and they’re
good only for traditional projects. We can tell you that this definitely isn’t true. It isn’t
the tool that takes away agility but the way the tool is used. Let’s look at an example.

 As we’ve mentioned, Greg is a project manager, and his team releases new soft
ware every 8 weeks. Greg typically uses tools such as an iteration wall and burn down
charts. But his team noted that on some iterations, it was hard to keep track of
Licensed to Abner Lopez <ihackn3wton@gmail.com>

213 Making status visible
Figure 16.9 Acme Media enters its iteration plan into a burndown chart that lets them track the work
remaining as the iteration progresses. An electronic tool makes it easier to share status with the rest of
the company or the customer.

dependencies. Greg’s team asked if he could record the dependencies into a plan so
the team could track them during the iteration. Greg moved the iteration plan into
Microsoft Project, and the team found the tool valuable, especially because they still
had a level of specialization. Microsoft Project not only helped the team deal with
complexity but also showed the team estimated hours needed by each member dur
ing the iteration.

 Returning to Acme Media, project manager Wendy debates whether to enter the
iteration information into a tool such as Project. Wendy decides that little labor is
required to enter the information into the tool; plus, her team is familiar with it. You
can see Acme Media’s iteration plan in Project in figure 16.10.

 Now that the Acme team has their iteration plan, they’re ready to get started with
their feature work.

16.6 Making status visible
Historically, there are two issues with measuring status on software projects:

■ How do you make sure the code is complete?
■ How do you make it easy for the team to see and understand project status?

Project teams have struggled with these issues for years. They frequently prepare to
deploy code and at the last second realize something is missing.

 Let’s delve into these two issues and see how Acme Media simplifies status mea
surement and makes status transparent to the team.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

 214 CHAPTER 16 Iteration planning: the nitty-gritty details
Figure 16.10 Microsoft Project isn’t usually viewed as a tool used by agile teams, but it can help with
agility when an iteration becomes complex or team members need to anticipate how much work they
must deliver. The key to using a tool is to make sure everyone knows that assignments are tentative and
to ensure that the plan is highly visible and updated daily.

16.6.1 Visibility within an iteration

As we mentioned, Acme Media has entered its iteration tasks into a burn down chart,
which projects how much work should be completed as the iteration progresses. On a
day-by-day basis, the team can see if they’re on track, running behind, or running
ahead of schedule (see figure 16.11).

 Acme Media estimates 152 hours of tasks to complete for the iteration. The burn
down chart shows that this number needs to be down to 138 hours of work after
day 1, 120 hours of work after day 2, and so on. On the last day, the team should
have no hours of work remaining.

 Software development doesn’t care if it’s being tracked in a nice linear chart. In
reality, the work comes in surges, with the team sometimes stuck on an issue or prob
lem and not making any progress. Figure 16.12 shows Acme Media’s burn down chart
after 7 days of work.

 Many teams collect the estimates for remaining hours of work at their daily stand-up
meetings. This is where the days remaining line comes from in the chart. Day 1 represents
the task estimates before work has begun, and day 2 represents the estimates after the
first stand-up meeting. The Acme Media team has started work, and now they believe the
Licensed to Abner Lopez <ihackn3wton@gmail.com>

215 Making status visible
Figure 16.11 A burndown chart tells you how many hours of work you should have remaining as the
iteration progresses.

Figure 16.12 As the iteration progresses Acme Media sees status on a daily basis. In this example
they’re running behind after seven days of work, but they’re trending to get back on schedule.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

 216 CHAPTER 16 Iteration planning: the nitty-gritty details

work is larger than originally estimated. What was originally estimated at 152 hours of
work is now estimated to be 160 hours of work.

 This is a common occurrence: after your team gets deep into the code, they may
encounter surprises and need to increase their estimates for hours of work remaining
for some tasks. They will also discover new tasks that you’ll need to record into your burn
down chart. The positive here is that some tasks will also be easier than expected, which
will help your team stay on track toward completing the work within the iteration. Your
team will also appreciate knowing the status of the iteration on a daily basis.

 Acme’s situation also illustrates another common occurrence: as the team pro
gresses from day 4 to 5, the amount of work remaining doesn’t change. This happens
when a team gets stuck on an issue. The team may be investigating options or doing
technical research, so no code is created during this time.

16.6.2 Tracking release status

As your team tracks status for the iteration, a person such as a project manager or
ScrumMaster may be keeping track of the overall release. Let’s look at how Acme
Media keeps track of release status.

 Historically, Wendy the project manager used Microsoft Project to track release sta
tus, but team members frequently didn’t reference the tool because they found the
plan hard to decipher or didn’t have Project installed on their PCs.

 Wendy decides to go with a lighter tool for her team: a tool that will be easy to deci
pher and one that everyone can access. She creates the tool using Microsoft Excel,
which makes it easy to post on the project wiki site and also easy to print. She calls the
new tool the Progress Matrix (see figure 16.13).

Figure 16.13 The Progress Matrix makes status easy for the whole team to comprehend quickly.
Feature status is viewed from a binary status versus percentage complete.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

217 Making status visible
The Progress Matrix allows Acme’s team to quickly digest status. The columns in the
matrix convey completeness at each stage. The fields Wendy has decided to track are
as follows:

■	 Functional requirements —If the team feels they understand the initial scope of
the feature, they mark this field as complete. The customer can still request
changes later in the cycle.

■	 Code written—The code is complete from the developer’s perspective.
■	 Unit tested—The developer has executed the code locally, and it has passed the

unit tests.
■	 System integration—The code has been integrated into the system test environ

ment and didn’t break other features in the existing code base.
■	 Functional testing—If a feature passed integration testing, Acme has built the

feature into the User Acceptance environment, and a tester has performed
functional testing.

■	 Customer approval —Acme’s customers review and test features during the adapt
week. This box is selected when the customer approves the feature.

■	 Load test—Acme’s development team load-tests features to make sure there is
no unforeseen effect on performance.

■	 DR code release —Acme Media has created a Disaster Recovery (DR) environment
in case the Production environment ever goes down. The first step in a produc
tion code deployment is to put the new code into the DR environment.

■	 Production code release —This indicates that a feature has been deployed to the
Production environment. In theory, the project is over at this time; but Acme
sometimes deploys code to the Production environment in advance of exposing
it to users. This lets the team verify that the code works correctly in the Produc
tion environment.

We personally enjoy using tools like the Progress Matrix. They give management and
the team quick insight into release status. When we introduce the matrix to teams and
project managers, they frequently ask us if this is the only tool we use for release sta
tus. Our answer is, “it depends.”

16.6.3 Finding tools that work for you

Similar to the agile team, the agile project manager looks at the project and deter
mines the best tools for tracking a project. If you’re tracking a project, the Progress
Matrix is the lightest tool you can use. The project needs to be straightforward and
mainly focused on development.

 If the project becomes more complex, you can pursue a supplemental tool to help
track all tasks, not just those tied to development. We have a friend who was the proj
ect manager on a medium-complexity project a few years ago. She wasn’t comfortable
relying on the Progress Matrix or the iteration plan alone; she wanted another tool to
make her more comfortable with tracking the project. Our friend disliked Microsoft
Project and decided to track the project with an Excel spreadsheet (see figure 16.14).
Licensed to Abner Lopez <ihackn3wton@gmail.com>

 218 CHAPTER 16 Iteration planning: the nitty-gritty details
Figure 16.14 You can use tools such as Microsoft Excel to track project status. Tracking tools need
to be easy to use and simple for your team to digest.

So many tools, so little time
Numerous off-the-shelf tools are available for tracking the status of agile projects.
We’ve used many of the tools provided by Rally Software, VersionOne, and Thought-
works. As you’ve seen in our case study, there are other tools, such as SharePoint,
that weren’t made specifically for agile work but that can be configured to support
tracking features, iterations, and releases. Many tools also require no hardware on
your side: you can use the tools on the vendors’ servers.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

219 Making status visible

You can use various tools to track project status. The key is to pick a tool that makes it
easy to display status to the team and to those who need to manage the project. We
like the simple spreadsheet our friend created. It made it easy for her to track status
on multiple tasks and still use the Progress Matrix to verify code completeness.

 But what if a project runs for many months and has a multitude of dependencies
and complexities? What tools should you use to measure such a large, complex proj
ect? It happens that Greg recently participated in such a project.

 The project Greg worked on was slated to run 18 months. His company upgraded
its intranet platform and migrated content for more than 40,000 system users. The
team had been together many years and had adopted many agile techniques and pro
cesses. These agile processes were used to deliver a new release to the platform every 7.5
weeks. For the most part, Greg’s team leveraged the existing infrastructure and pro
vided new features and enhancements with each release.

 The team started the 18-month project using the same techniques they had used
for the enhancement releases. They broke the 18-month project into releases and set
out to do the work. During those 18 months, Greg’s team encountered many issues
with applying release techniques to a large project, including these:

■	 Many features took longer than a release to complete, such as procuring and
installing hardware.

■	 Features sometimes had as many as 10 dependencies that needed to be com
pleted before work could begin.

■	 The large project include 20 to 30 mini-projects. A given release could have as
many as 1,000 tasks to be completed.

■	 A good portion of the project was dependent on a third-party software provider.
The team could submit bugs to the vendor, but they couldn’t control when the
bugs were fixed. Many times, the fix spanned several releases.

The complexity of this project pushed Greg’s team to keep track of tasks and features.
They soon found that they needed three tools to keep track of issues, feature status, and
the project at large. The team continued to use a Progress Matrix to track feature com
pleteness, but they supplemented it with a list of outstanding vendor issues and a Micro-
soft Project plan. This plan provided a roadmap for the project and made it easier to see
the dependencies associated with a feature or piece of work (see figure 16.15).

 In essence, Greg’s team created the correct level of agility for their project. They
still delivered iteratively, received frequent customer feedback, and quickly adapted to
change.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

 220	 CHAPTER 16 Iteration planning: the nitty-gritty details
Figure 16.15 Complex projects frequently require the use of tools such as Microsoft Project to track
timelines and dependencies. Using such a tool isn’t anti-agile. Agile is all about using the correct level
of documentation and process. In a complex project, a tool such as Microsoft Project provides the
correct level of support.

16.7 Key points
The key points from this chapter are as follows:

■	 Acceptance tests are defined at the start of iteration planning to make it clear to
the team what complete means.

■	 Feature modeling is an effective practice for identifying the tasks needed to
support a feature.

■	 After tasks are indentified, iteration planning becomes similar to traditional
planning. Capacity is estimated and compared to detailed task estimates.

■	 The project team can use tools to determine their capacity, but ultimately the team
makes the call about the amount of work they can deliver during an iteration.

■	 Many teams are initially constrained by skill sets and capacity planning and have
to take available skills into account.

■	 Many agile teams list their iteration tasks on a wall so they’re easy to view and
move during an iteration. Teams can use additional tools such as burn down
charts, Microsoft Project, and project wikis if iterations become complex or if
the information needs to be shared with distributed locations.

16.8 Looking forward
In this chapter, you broke down the features for iteration 1. Now you’re ready to begin
construction. In some projects, especially in a steady-state release environment, work
will begin immediately; for other projects, some precursor work needs to be per
formed. We call this pre-work iteration 0, and we’ll discuss it in chapter 17.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Part 6

Building the product

This section begins with a discussion of iteration 0—the time needed to set
up development environments, finalize vendor contracts, and prepare the team
for the project. We then move to the development phase and discuss the agile
principles and how Acme Media has embraced them. You will see the principles
in action in chapter 18 as we follow Acme through its development iterations.
We will conclude this section with testing and the importance of identifying
issues early.

 As you read this section you will notice a mind shift compared to traditional
development. We will not take our requirements and go about building and test
ing code without customer involvement. We will surface our work to the cus
tomer frequently to validate that we are building what they asked for. The
customer will also have a chance to verify that the working code addresses the
business needs they have.

 We will conclude this section by discussing testing in an agile environment.
We will go beyond customer validation and discuss unit, integration, and explor
atory testing.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Start your engines:
iteration 0
At this point, the Acme team has performed feasibility and planning work for the
pilot project. Many people in the agile community label this pre-development work
iteration 0. Iteration 0 work is foundational work that is performed prior to develop
ment starting.

 For our purposes, iteration 0 is the foundational work performed after initial
planning but before development begins. Iteration 0 work usually runs for about a
week, but it can take less or more time depending on project complexity. Let’s look
at some of the typical tasks performed during this timeframe.
223

Licensed to Abner Lopez <ihackn3wton@gmail.com>

224	 CHAPTER 17 Start your engines: iteration 0
17.1 Initial vision for the architecture
The Acme Media team performed a high-level analysis of the architectural needs for the
Auctionator when they performed their feasibility work. They will take one more look
at the architectural needs before they begin development. This makes sense, because
they just came through the feature-card exercise. They have more information about
each feature, and they can use that knowledge to outline an initial architectural model.

 Assessing and modeling your architectural needs offers numerous benefits. Here
are a few:

■	 Confirmation of costs —You get a better feel for hardware and licensing needs,
and you thus minimize surprise expenses during development.

■	 Better understanding of third-party needs —You can identify dependencies with
other departments and begin planning with them early.

■	 Better communication—Documenting your initial model gives you a tool for inter
acting with other departments, vendors, and software providers.

■	 Reduced technical risk—Outlining your initial architecture identifies areas where
you may lack technical skills or technology needed to support the project.

You might think that this exercise would slow you down and prevent you from jump
ing into the code. In reality, you outline an architectural vision to ensure quick deliv
ery. Your architectural work helps identify areas of risk that could prevent deployment
at the end of development. You also focus on making the architecture flexible, so you
can be agile in supporting future needs and requirements.

 Here are the technical artifacts that may be created during architectural assessment:

■	 Infrastructure diagrams
■	 Application flow diagrams
■	 Logical component diagrams
■	 Security model/requirements
■	 Performance requirements
■	 Availability requirements
■	 User interface flow

What is your source for this technical information? Usually, an architect gets all the
developers in a room to discuss the architectural approach for a project. A customer
advocate is usually involved, too, to provide clarity on business needs.

 We’ve seen some companies perform architectural modeling without a customer
advocate in the room. This is possible, but it’s critical to have the requirements drive
the architecture, not the other way around.

17.2 Completing contracts with third parties
We can’t remember the last time we worked on project that didn’t require services or
software from a third party. Iteration 0 is a great time to take care of contracts related
to obtaining these services. Here are some examples:
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Preparing environments and support tools	 225

■	 Additional licenses—We see this a lot when working with Microsoft products. You
may need to obtain additional application or SQL server licenses to support
additional users or processes.

■	 Data feeds—Ahmed once worked on a Do Not Contact marketing application, and
his team had to obtain the Do Not Contact names from several vendors. We’ve
also worked on directory-type applications where we had to obtain business list
ings from Yellow Pages providers and load them into a database.

■	 Email services —Some companies will manage user alerts for you. Acme Media
uses eLertz for its various alert needs; eLertz will notify users when an item
they desire comes up for bid. Many companies will also manage online
subscriptions and pass articles or other information to your users based on
their profile.

■	 Search services —So many good search options are on the market that it fre
quently makes sense to buy this functionality instead of creating it. We’ve
worked at companies that purchased the Google Search Appliance or another
off-the-shelf search application and installed it in their environment.

■	 Contract help—You may work on projects where you need to beef up your team
to address a skill set that you don’t typically require. We recently helped a team
with a project where they needed to create a web-based training module for
users. This wasn’t a normal need for their projects, so the team hired a contrac
tor who specialized in creating training modules.

■	 Specialized applications—Similar to search, it doesn’t make sense for you to create
some other kinds of applications, because good, affordable products are
already on the market. These include stock tickers, weather widgets, blog appli
cations, mapping software, content-management systems, and online forms.

When you’re squared away with third parties, you can make sure your development
environments are ready to go.

17.3 Preparing environments and support tools
As you come out of initial planning, you’re thinking about the customer, their feature
requests, and how you’re going to design and create the features. It’s easy to get so
caught up in this moment that you forget to prepare the environment from a techni
cal and project-management perspective. Iteration 0 is the perfect time to make sure
you’re ready to develop, build, test, manage, and track code.

 Let’s start with the development aspect. What do you need to do to make sure
you’re ready to build code? You should set up some of the following areas:

■	 Version control —Set up a new branch or project in your version-control system
such as Subversion or Perforce.

■	 Automated builds —Get CruiseControl or your tool of choice to support daily
builds and continuous integration. Make sure all developers can monitor the
builds.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

226	 CHAPTER 17 Start your engines: iteration 0
■	 Workstations —In addition to build tools, make sure the developer workstations
are good to go. Be sure framework and development products are installed and
configured correctly for the project you’re pursuing.

■	 Defect tracking —If you use a bug-tracking tool, create a new project in the tool
before you begin recording issues.

When the development environment is prepared, you must consider all the ancillary
tools and processes required to support the project. Here are the ones we frequently
see teams use:

■	 Automation testing —Prepare your build-verification tools for the forthcoming
builds. This usually involves reviewing your latest release and seeing what addi
tional scripts must be created to regression-test the application.

■	 Load testing —If your initial planning indicates that some features may have high
volume or place a heavy load on the system, you need to plan for load testing dur
ing development. This involves using load-testing tools such as LoadRunner to
simulate many users hitting the system concurrently. You must create scripts that
will test your features and verify that the system will perform at the required level.

■	 Content testing —What kind of content or data do you need to test the features?
You’ll probably need to create the content before testing, so try to create it during
iteration 0. Even more important, make sure you have a process for refreshing the
data during testing and keeping data consistent across all test environments.

After ancillary tools, you need to make sure all the project-support tools are set up or
established. You may be using these types of tools:

■	 Time tracking —Time tracking is needed to measure how much of a project bud
get has been used or to bill a client for time and materials. Time tracking seems
like an anti-agile activity, but it frequently has to be done on a project and it’s
one of the constraints many teams have to accept.

■	 Status tracking —How will you track risks, code completeness, build notes, and
iteration status? These tools also need to be set up during iteration 0. Tools
such as burn down charts and iteration plans can be posted on your project
wall, configured in your wiki tool, or both.

If you have your tools and environments set up, what else do you need? Money!

17.4 Obtaining funding
One of the things we enjoy when working for small companies is having little over
head. We usually have only one product, one project, one project team, and one bud
get. It’s easy to focus on the goal of delivering value to the customer.

 When we work for larger companies, we see more overhead, bureaucracy, and
rules for initializing a project. One of those hurdles is obtaining funding.

 Acme Media doesn’t have many hurdles in funding the Auctionator project. The
company has a dedicated project budget for the team, and the Auctionator doesn’t
require additional funds beyond the team’s annual budget.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Finalizing and dedicating the project team	 227
 Funding becomes more difficult when a significant capital investment is required
to support a project. If you need to buy more servers or expensive licenses, your com
pany may require the completion of financial forms and spreadsheets. Greg currently
works in such an environment.

 In Greg’s workplace, several groups compete for capital dollars needed to support
their projects. The teams all present their business cases to an executive review group,
and the executives make the call about which projects to fund. As you can imagine,
this process can take some time: completing forms, going to review meetings, waiting
for the executive decisions, and finally waiting for an account to be opened so orders
can be placed.

 Greg’s company has realized that this formal process can jeopardize projects that
need to be delivered quickly to ensure benefits. To remove this issue and become
more agile, Greg’s company has created a process that lets a team receive early fund
ing before a project is formally approved. The team doesn’t receive enough funding
to pay for the entire project, but they get enough money to keep working on the proj
ect while the final decision is being made and the value is validated.

17.5 Finalizing and dedicating the project team
Let’s take a moment to review the current state of Acme’s project team and how the
team got where it is:

■	 Acme started with a project idea from the product manager (who acts as the
customer advocate).

■	 The product manager and project manager worked together to determine what
type of employees were needed to perform feasibility. They added a developer
and a UI resource at that time.

■	 After feasibility, the team had a better feel for the types of employees that would
be needed to bring the project home, and they brought several more people
into the project: an additional developer, a QA resource, an operations
resource, a business analyst, and an architect.

Now that development is about to start, how does the team change? First, Acme
lets the representative from the Operations team, Tom Klein, return to his job.
Tom won’t be involved in development, but the team will invite him to demonstra
tions so he can provide feedback and share any concerns he sees from an opera
tions perspective.

 The team also lets the architect reduce his involvement with the project. We typi
cally see architect involvement reduced by half after a project goes through initial
planning. The architect will come back for several design sessions and to help Acme’s
team resolve issues related to performance or scalability. This also frees the architect
to work with other project teams that may just be getting started.

 The remaining team members need to be dedicated to the project. In a perfect
world, you’ll have a product-development team and a production-support team. The
development team shouldn’t have any issues focusing on the project work at hand.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

228	 CHAPTER 17 Start your engines: iteration 0
 In the not-so-perfect world—and in the situation we see the most—the develop
ment team is also in charge of supporting the production environment. This means
they’re dedicated to the project unless a high-priority production issue interrupts
them. We say high priority because we encourage agile teams to wait until the adapt
period between iterations to look at noncritical issues that may have occurred in the
production environment.

 The main thing to remember is that collaboration and communication are critical
during an iteration. Make this the number-one priority for all team members. Try to
put off competing projects or issues until after the iteration is complete.

17.6 Cheating: starting the work early
We’re avid supporters of project cheating. We’re always looking to take advantage of
opportunities to start an activity early, test early, demonstrate early, adapt early, and
deliver early. Iteration 0 is a great time to cheat. In theory, you aren’t officially working
on an iteration, but you can still use this time to remove risk and increase understanding.

 Development environments may not be ready yet, but you can still pursue activities
that reduce risk and increase feature understanding. Some of the tasks you can start
during iteration 0 are as follows:

■	 Continue scoping —It’s doubtful that you got all the information needed to
develop features during the feature-card exercise. Continue interacting and
modeling with the customer to refine feature requirements and understanding.

■	 Start modeling and prototyping —In our experience, the development environ
ment isn’t required to create prototypes. You can outline prototypes with pure
HTML, Photoshop, whiteboards, and even sketches on a piece of paper.

■	 Test interfaces and APIs with vendors —If your project involves any type of inter
face, you should begin testing it as soon as possible. Interfaces usually represent
the highest risk to project timelines.

■	 Initialize test cases —Related to scoping, you probably didn’t come out of the fea
ture-card exercise with a crisp definition of how you’ll test each feature. You can
get a jump on this work in iteration 0.

■	 Work issues and risks —What items could potentially derail or delay the project?
Will you need sign-off from a compliance group before deploying? Will you
need support and maintenance processes in place before you go live? Do you
need to reserve shared resources for the project, such as a load-test environ
ment? Use iteration 0 to get started on these items.

■	 Training—Will you need to deliver training materials at the end of the project?
Iteration 0 can be used to jumpstart these.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Looking forward	 229
■	 Communication planning —Who will be affected by your project? Iteration 0 is a
great time to identify your audiences and the messages you need to send to
them during development, deployment, and (potentially) migration from the
old system to the new one being delivered.

■	 Marketing plan —Your product or project may require a marketing plan to roll it
out. For example, Acme Media needs a marketing plan to support the Auction
ator. Acme has faith in the product, but the company needs a way to advertise to
the customers they’ve lost to eBay and Craigslist.

When the development environments come online, you can stop cheating and begin
your development iterations in earnest.

17.7 Key points
The key points from this chapter are as follows:

■	 One-time projects may require set-up and foundation work before development
can begin.

■	 Initial architecture modeling can bring the team together on a design vision
and speed up development.

■	 Many projects require the services of third parties. You may need to complete
contracts or obtain vendor licenses before beginning development.

■	 You may need to set up your environments before work begins. This pre-work
could include setting up machines, organizing load-test environments, and pre
paring test content.

■	 Larger projects may need tools set up to support the project. These can include
time-tracking systems and status tools.

■	 Many projects require funding to get started. You may have to present your fea
sibility findings to a funding body and obtain approval before proceeding with
development.

■	 Although your development environments may not be ready to go, you can still
do other value-add work for the project. This can include feature modeling,
estimating, training preparation, and working on your communication plan.

■	 Work for a project does not have to start at a prescribed date or time. If team
members have capacity, they can begin design and investigation work before an
iteration formally begins.

17.8 Looking forward
In this chapter, we covered iteration 0 and the precursor work that is required to get
development started. In chapter 18, we’ll join Acme Media as the team starts develop
ment work and learn what development really means in an agile environment.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Delivering
 working software
If the Acme Media team decided to track their pilot project in a project tool, they
would say that the project is around 50 percent complete. Fifty-percent complete
sounds good. You’re halfway there. You can tell your stakeholders that you’re on
schedule and they don’t need to worry about anything. But this is where things
change in an agile environment.

 In an agile environment, you measure status by working code. Knowing if a proj
ect is feasible is a good thing. Doing initial planning is a good thing. But to this
point, you haven’t delivered any value to the customer. From a customer perspec
tive, you have a project status of 0 percent.
230

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Supporting the agile principles during development and testing	 231

 In agile, you get to working code quickly by using iterative development and build
ing to the minimum specification. You deliver the most valuable software in priori
tized batches. You do your best to make each batch contain enough functionality for it
to be a deployable subset of features.

 Iterative development works because it supports the realities of software develop
ment. You can’t forecast all the variables, but you can make sure you deliver critical
functionality as quickly as possible.

 This chapter begins with a discussion of the agile development principles and how
Acme Media has embraced them. You’ll see the principles in action as we follow Acme
through its development iterations. We’ll contrast these principles to Acme Media’s
legacy processes.

 The game of rugby provides a nice visual example of how the process works. In
rugby, one of the team formations is called a scrum. The scrum formation involves
many players meeting at the same point on the field and literally interlocking their
heads. The same thing is true during agile development. All team members, regard
less of title or area of expertise, work together to deliver working software. Their
minds are interlocked with a singular purpose: to deliver high-value functionality to
the customer as quickly as possible.

 In the past, Acme Media delivered all software, both high- and low-priority fea
tures, in one delivery at the end of the project. The entire team didn’t help during
development; it was solely up to the programmers to bring the features home. In this
chapter, Acme will use its new iterative approach and deliver the highest-value fea
tures first. The team will deliver working software in batches until they run out of time
or the customer need is satisfied.

18.1	 Supporting the agile principles
during development and testing
Acme Media moved to an agile process because the company wasn’t delivering proj
ects quickly. The development team had a history of constantly moving out milestones
and missing deadlines. With the newfound popularity of web advertising, the team was
overwhelmed, and customers were taking their advertisements to other websites that
could turn them around quickly.

 Acme Media made the correct choice in deciding to move to agile. The following
ten agile principles discussed in this chapter focus the team and the company on
delivering early during the construction phase:

1 Satisfy the customer through early and continuous delivery of valuable software.

2 Have business people and developers work together daily throughout the project.

3 Whenever possible, communicate face to face.

4 Pay attention to technical excellence and good design.

5 Focus on simplicity and the art of maximizing the amount of work not done.

6 Welcome changing requirements, even late in development.

Licensed to Abner Lopez <ihackn3wton@gmail.com>

232	 CHAPTER 18 Delivering working software

7 Test early, and test often.

8 Continuously integrate code changes.

9 Obtain customer feedback as early as possible.

10 Minimize team distractions during development iterations.

Let’s look at each principle separately.

18.1.1	 Satisfy the customer through early and
continuous delivery of valuable software

Acme Media never delivered early in the past, but the company’s new iterative
approach will let it get key features out to the customer early. The planning process
the team followed in chapter 8 also ties to this principle. The team will deliver more
quickly because they didn’t have to create functional specifications before they cre
ated their iteration plan. They saved time because they didn’t document requirements
for features that won’t be pursued.

18.1.2	 Have business people and developers work
together daily throughout the project

In Acme Media’s previous process, the business analysts worked with the customer to
document requirements. Frequently, an internal product manager communicated the
needs. After the requirements were documented, the analyst passed them to the
developer and determined whether there were any questions.

 In Acme Media’s new process, the developers have already had direct interaction
with the customer. The entire team participated in the feature-card exercise, and the
developers gained clarity on some customer needs by asking questions directly. The cus
tomer (in this case, the product manager) will also be available during the development
iterations and can clarify their needs and be consulted if issues are encountered.

 Notice how the principles stress business people, not just customers. In our experi
ence, several individuals beyond the customer and the development team care about
a project, including people in marketing, legal, security, implementation, support,
documentation, and training. In an agile environment, the development team inter
acts with these teams throughout a project.

18.1.3	 Whenever possible, communicate face to face

This principle is difficult for Acme Media to embrace. The team enjoys using email
and Instant Messenger. They rarely do face-to-face discussions during development.
The repercussion from this style is that team members frequently get into email hell,
where a message goes around and around with as many as 20 responses.

 We live in an age of Blackberries, texting, instant messaging, and blogs. Some
people like to wear headphones when they work. There are more and more ways to
communicate indirectly. Basically, we’re allowed to communicate on our own sched
ule, at our leisure. The convenience of communicating whenever you want to can be
helpful, especially when a team member has to travel or be away from the work area
Licensed to Abner Lopez <ihackn3wton@gmail.com>

233 Supporting the agile principles during development and testing

for a while. But during development, these methods should be the exception, not
the norm.

 This is where an agile coach or manager can help. A good coach will always be
observing the process and looking for ways to ensure collaboration, quick decision
making, and common understanding within the team.

 Acme Media’s agile sponsor, Steve, saw this issue at Acme after he received his
training on agile. Steve worked with the management team to create a physical envi
ronment at Acme Media that supports face-to-face communication:

■	 A few team members weren’t in the main development area, and these team
members were relocated to be with the main group.

■	 Acme had standard cubicles with walls 5 feet high. When team members wanted
to chat, they had to get up and walk around to see each other. Steve had the
cubicle walls lowered to 3½ feet so the team can communicate face to face with
out taking a walk.

■	 Steve cleared out a large area next to the development area and called it the bull
pen. It’s dedicated to the development team, and team members can meet there
at any time and post anything they want on the walls. Wendy, the project manager,
uses the wall to post status information for the features that are in progress.

■	 Steve purchased several rolling whiteboards so the team can have quick discus
sions within the cube areas.

These changes don’t force the team to work face to face more often, but you’ll find
that it happens naturally. Team members may find it a bit silly to IM or email a person
who is visible to them.

18.1.4 Pay attention to technical excellence and good design

Acme Media has the classic issue that most teams do: they need to deliver early, but
they also need to make sure their design and architecture are scalable. How do you
solve this problem? You don’t.

 This struggle continues in an agile environment. If you rush a product and deliver
it without any reflection on future needs, you may have to start from scratch to sup
port a simple enhancement. Your lack of foresight may prevent you from delivering
value quickly.

 Conversely, it’s easy to spend a lot of time pursuing the perfect design: one that is
scalable for any situation; that can’t be critiqued for any flaws; and that takes so long
to create that you ship your product late, after the opportunity is gone.

 Technical excellence involves balancing these two areas and delivering valuable
software frequently while minimizing the cost of future change. This isn’t simple to
do, but it’s a reality of software development. Developing software is complex, and for
many of us this is the challenge and joy in doing our work.

 Acme Media had this issue before they pursued agile. The main difference for
them now is that designers and architects know that a perfect design can cost the team
Licensed to Abner Lopez <ihackn3wton@gmail.com>

234	 CHAPTER 18 Delivering working software

a delivery. After several missed deliveries, the company and their careers could be in
jeopardy. Consistent delivery ensures customer satisfaction and income.

18.1.5	 Focus on simplicity and the art of
maximizing the amount of work not done

Some days, Ahmed gets under the skin of his clients. They know that sooner or later
they will hear his trademark questions: “Why are we doing this feature, and what hap
pens if we don’t?” Ahmed works with his teams during the feature-card exercise, and
he usually remembers what the customer requested during the session. When Ahmed
sees the team pursuing feature richness beyond that vision, he questions it.

 It’s easy to have scope drift within your team. It’s natural to want to create great
software and go beyond a customer’s minimal requirements. Greg once worked for a
company whose mission statement said it would “meet and exceed customer require
ments in an effort to delight them.” This is a dangerous approach to take in software
development. Getting code to a state where it can be deployed is challenging enough
without adding bonus functionality.

 Focusing on simplicity also lets you demonstrate to the customer sooner. The
sooner you demonstrate, the sooner you know if you’re in synch with their needs. This
prevents waste and minimizes rework.

 Acme Media never thought about this principle in the past. The developers
received a functional specification, and they determined feature richness. The devel
opers could even use a feature request to test new technology or add functionality
they thought the customer might request in the future. In the new agile world, the
development effort is time-boxed, and the team is encouraged to surface their work as
soon as possible for customer review.

18.1.6	 Welcome changing requirements,
even late in development

We can’t lie. We don’t welcome changing requirements. We embrace agile, and we
know the roots of this principle, but we haven’t been able to convert to a mode of wel
coming changing requirements. What we do welcome is a process that expects change
and doesn’t add to the issue by pretending change doesn’t exist in a software project.

 We’ve worked in environments where we had to create a change request for every
variation during a project. The change request was associated with guilt and poor
project management. In reality, all projects have changes in requirements. These
changes typically come from the customer seeing a working product and identifying
an oversight, or from a technical discovery after programming begins.

 Acme Media has lived in the guilt world. It thought other companies didn’t have
these issues. It thought it had wishy-washy customers and a poor project manager. In
the new environment, the company may not embrace changing requirements, but it
understands that they’re inevitable and can’t be planned out of a project.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

235 Supporting the agile principles during development and testing
18.1.7 Test early, and test often

Acme Media used to perform its testing at the end of development. The company
thought this was a good approach. If the team ran short on time, they could cut back
on testing and still finish development.

 The issue with this approach is that when you do find bugs, it takes longer to trace
them. The magnitude of a bug can be greater too, potentially requiring a rewrite of
code in several areas.

 To mitigate this risk, an agile team tests as soon as possible. In some sense, testing
begins during the feature-card exercise. A QA employee should be in the room during
the exercise to identify inconsistency in requirements, potential integration issues, val
idation of performance needs, and other technical constraints.

 Advanced agile teams take this concept even further by using a process called Test
Driven Development (TDD). A TDD process has the developer create a unit test before
writing any new code. The test is executed to validate that it failed, and then the devel
oper begins writing code until the test passes. This approach usually shortens the over
all delivery cycle.

 Acme Media won’t pursue TDD out of the gate, but the team will begin testing
early and pursue a goal of daily builds and a build-verification test.

18.1.8 Continuously integrate code changes

Related to testing early and often is the principle of continuous integration. Developers
need to continually integrate their code changes to verify that their latest change
hasn’t broken the code. Continuous integration also ensures that the entire team is
working from the same version of base code.

 Historically, integration has been an infrequent event during development, and
integration issues have been discovered late in the cycle, making them harder to find
and jeopardizing ship dates. Acme Media didn’t integrate often in the past, and this
added to the company’s issue of missing delivery dates. Integration of every change
requires discipline, and Acme Media’s developers didn’t want to be that disciplined.
Acme will move to daily integration during the pilot, with a long-term goal of integrat
ing every code change.

18.1.9 Obtain customer feedback as early as possible

In the past, Acme Media sought feedback from the customer after development was
complete. Using this approach, Acme Media’s team frequently found the customer
had functionality issues with the code that was developed. The issues went beyond
bugs: they frequently tied to the customer saying the code didn’t meet their needs.
Acme tried to address as many issues as possible before going live, and if major issues
couldn’t be fixed quickly, they delayed shipping the product.

 Acme Media’s new approach is to demonstrate to the customer as soon as the team
has functioning code. The customer won’t have to wait for the final product to pro
vide feedback. Issues will be discovered early, before layers of code are applied.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

236 CHAPTER 18 Delivering working software
Does scope creep exist in an agile environment?
Acme Media’s development team has never enjoyed change requests. Whenever the
customer asks for a change, team members go back to their desks and mumble
about “scope creep.” After their agile training, team members have a new perspec
tive. Let’s look at an example.

If a customer asks for an alarm clock, and during a demonstration they notice that
they forgot to ask for a snooze button, then they have experienced a natural occur
rence in software development. Sometimes you miss a feature detail during a require
ments discussion, and a demonstration exposes what was overlooked. This type of
change should be embraced.

On the other hand, if a customer asks for an alarm clock, and after a demonstration
they request that the alarm clock also be usable as a coffeemaker, then you have a
radical change in requirements and potentially a new project. Some might call this
scope creep, but we think the issue ties to the need to ask “why?” during the feature-
card exercise. If the root business need is known, it’s doubtful that a major function
ality shift like this will take place during development.

As we’ve mentioned, we do embrace change, and if the customer truly needs an alarm
clock/coffeemaker we’ll deliver it. But we want to make sure we understand the fun
damental need.

Acme Media’s new development model has a formal adapt phase between iterations,
during which the team demonstrates to the customer. These demonstrations will
occur every 2 weeks. The team has also adopted an approach of surfacing work in
advance of the adapt window if pieces are ready early or if the feedback will help them
make design decisions.

18.1.10 Minimize team distractions during development iterations

During development iterations, the team needs to be 100 percent focused on the
work at hand. Everyone must be available to clarify requirements and to collaborate
on and solve solutions. In our experience, issues discovered during development can
be solved in a multitude of ways, and involving the team at large makes this possible.
Customers can modify or reprioritize requirements, developers can code around an
issue, a product can be configured differently, or hardware can be modified.

 Because you’re on a tight schedule for an iteration (usually around 2 weeks), you
can’t spend time trying to trace down team members and orchestrate a meeting in the
next day or two. You don’t send emails and wait for people to respond. You need to
work issues promptly and stay on schedule for delivery at the end of the iteration.

 In a perfect world, the team would have no distractions and could focus solely on
the project at hand. Some companies have development groups that work only on
projects. But most teams we work with have to deal with distractions. Many teams are
also in charge of maintaining the current production environment, and if a produc
tion issue occurs they must work on it. This is true for Acme Media.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Where to begin? 237

 Acme Media’s development team works on projects and maintains the three exist
ing websites. In addition, they have daily maintenance activities, and they frequently
work on mini-enhancements that don’t require a project team. These supporting
activities have contributed to Acme Media’s failure to deliver in the past.

 The development team must continue to perform their support activities, but in
their new development model they will try to defer maintenance and support activities
until the adapt week. During development, they will be interrupted only for critical
production issues.

 Acme also realized that the company had become people dependent in several areas.
Experts existed for every area, and developers didn’t cross-train with each other.
When a production problem occurred, frequently only one person had the skills to
work the issue. Acme identified this problem when the company outlined its new agile
process and created a plan to cross-train the developers. The cross-training will spread
skills throughout the team and let the developer with the most free time address the
issue, which will minimize project interruptions.

 Now that you have a feel for the agile principles, let’s see them in action.

18.2 Where to begin?
When we left Acme Media, the team had

just completed their iteration plan. They

outlined one item for iteration 0, modify
ing the contract with eLertz to support an

additional alert needed for the Auction
ator. With this work out of the way, it’s time

to focus on the features that are assigned to

iteration 1.

The work backlog, shown in figure 18.1,

contains both features and tasks. The team

first identified tasks during their feature-

modeling exercise, when they identified

the high-level work required to support

each feature. The team identified addi
tional tasks during iteration 0; now that

they’re in a development iteration, they will

finalize and complete the tasks.

Figure 18.1 Acme Media’s backlog of work Even in an agile environment, you can’t
for iteration 1. In a perfect world, team

anticipate all of the tasks until you begin members grab a task and begin working. In
working on the features. We’ve often heard Acme Media’s world, the team is constrained

people say, “Development doesn’t really by specializations, and some tasks can be
completed only by certain team members orstart until we open the code.” In our experi
groups. Acme Media will cross-train, but it will

ence, we’ve found this to be true. Let’s look take time for the team to mature to a point of
at an example with Acme Media. no specializations.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

238 CHAPTER 18 Delivering working software
 When Acme did the initial planning for Search by category, the team identified four
major tasks:

■ Create a screen to enter search criteria.
■ Create a screen to display search results.
■ Create a screen to display an item up for bid.
■ Define the process for crawling and indexing items up for bid.

When Ryan, the user experience designer, starts working on the search screen, he
notices that the search categories haven’t been discussed with the customer. The cus
tomer, Jay, the product manager, gives Ryan the categories, and they have a quick dis
cussion about searching in general. It occurs to Jay that Acme Media serves a wide
geographic area and that buyers will want to filter by location when performing a
search. Ryan can add that functionality to the search screen without a significant
change in his effort, so they agree he should do so. They share this decision with the
entire team to see if it has any effect on designs for the other features.

18.2.1 Sequence within an iteration

We frequently hear team members ask, “In what order should we pursue the features
during an iteration?” The answer is twofold. First, you’ll often need to deliver all the
features assigned to an iteration to take the application to a state where it provides
value. From an end-user perspective, all features are equal—the customer needs them
all for a minimal functioning system.

 Second, from a coding perspective, it comes down to technical dependencies. Do
some parts of a feature have to be in place before a related feature is pursued? For
example, the Acme team members who create the search functionality will probably
need some level of the auction functionality in place first. They must know what attri
butes are associated with an auction and then build out the correct search logic and
indexing process.

 In our experience, the sequence we build in is rarely serial. Team members evolve
features together as everyone normalizes on what the system is. We frequently hear a
team member say, “I’ve completed my first pass” at a task or feature, acknowledging
that work on other features may require them to revisit their work. This approach is
normal. Just be sure you don’t label a feature complete until everyone agrees it is.

18.2.2 Making assignments

In the past, Acme Media made assignments at the start of a project. The team ham
mered out the tasks they thought they could do, and department leads assigned peo
ple to the tasks.

 Acme Media has made a subtle change with the new process. The department leads
assigned people to participate in the planning phase based on the information that
came out of the feasibility work. The planning team identified tasks during the model
ing exercise, and Wendy, the project manager, recorded the tasks on her iteration plan
(figure 18.1). Team members follow their areas of expertise and experience and put
their names on the tasks that they identified.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Completing a feature 239
The planning-team members also got a feel for the features and which tasks each
one of them will probably perform. Wendy recorded this information with the tasks
and went over it with the department leads at the end of the initial planning phase.

 In our experience, a team that works together for a while develops a feel for who
should do what on a given feature. Team knowledge and experience with each other
allows team members to make quick decisions and interact with each other in an agile
way. Acme Media’s development team has had some interaction, but that interaction
hasn’t matured to a point where they’re self-directed. The managers at Acme Media
will be tasked with taking the team to a more self-directed level in the coming months
and year.

 It’s also important to note that assignments aren’t permanent—they can be
changed on a daily basis if needed.

18.3 Completing a feature
Development begins by reviewing the features in the iteration plan. Team members
come together to determine the most logical place to start. If your team has a large
enough staff, you may be able to begin work on all features concurrently.

 In Acme Media’s instance, the team isn’t large enough to begin all features at the same
time, so they focus on features that are at the core of the functionality. They start with
Ability to place an item up for bid, Ability to bid on an item, and the Auction engine. The tasks
associated with these features are started one by one as the team begins doing the work.

Where are your functional specifications?
As you may recall from chapter 1, an agile team and their coach choose the process
es needed to support each project. They use their team experience and coaching to
determine which tools and practices to use. Acme Media decided to create a func
tional specification for one feature in iteration 1, the Auction engine.

Acme Media’s team viewed the auction engine as complex, and they wanted to have
a deep understanding of each use case, the actors involved, and the business rules.
They didn’t think a feature card and accompanying story could store all the informa
tion they would want to reference and share during development.

When the team created the functional specification, they decided to embed the fea
ture-card information into the specification. This information was still valuable, and it
would be great to reference it while reviewing the deeper functional requirements. The
team also took digital pictures during their whiteboarding sessions and embedded
the photos into the specifications for reference.

Acme Media’s approach is in line with a major agile concept. Greater levels of docu
mentation are expected if the project or feature requires greater ceremony. This means
you should create documentation if it helps the team get the job done or if you have
a customer for the documentation. Agile teams must be careful to make sure they
don’t skip creating documents because they consider paperwork anti-agile.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

240	 CHAPTER 18 Delivering working software
We’ve noticed one other thing during development, and you probably have, too:
many features are so dependent on each other that they must be built in parallel. For
example, it may be hard for the Acme team to create logic for search if they don’t know
the attributes of an auction. Conversely, they may want to change the data structure of
an auction if it impedes search engine performance. It’s common to iteratively build
out features in parallel as team members discover feature dependencies.

18.3.1 What the work looks like

Agile development begins when a developer pulls a task from the iteration plan and
then works with other team members to complete a feature. This work can take many
forms:

■	 Reviewing design and technology options—Every requirement can be addressed in
several ways from a technical perspective. Developers can choose a framework
they have experience with or experiment with a technology that may support
the need. The development team will review their options and reach agreement
before proceeding.

■	 Working a problem —We’re confident more time is spent working on issues than
on any other task during development. When the code is open, you’ll fre
quently discover constraints. Developers spend a lot of time reading blogs and
posts about issues they encounter. They also spend time discussing issues with
other developers and soliciting second opinions.

■	 Continuing to scope and refine the work —Even though the developer discusses the
requirements with an analyst or the customer, scope discussions continue. Similar
to Acme’s issue with search categories, the developer sees details that the analyst
couldn’t anticipate or places where two requirements contradict each other.

■	 Working on alternatives with the customer —Frequently, the customer will have a
requirement that can’t be met without a major expense. For example, Greg
once worked with a customer who wanted a guarantee that the system would be
available 99.95 percent of the time. Greg’s team estimated that the additional
architecture and hardware needed would cost around $500,000. The customer
decided to go with an up-time requirement of 99.50 percent instead, for no
additional expense.

■	 Creating content to test the application —This part of development is frequently
underestimated. Good content needs to be established to provide an accurate
test of the application, and the content must be consistent across environments.
You get a jump-start on this work in iteration 0 and then finalize the content
needed during the development iterations.

■	 Creating unit tests —Developers will create unit tests to verify their individual
functions are working correctly. In a test-driven environment, the unit tests are
created before construction begins.

To continue this discussion, let’s look at the model of feature development in fig-
ure 18.2.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

241 Completing a feature
Figure 18.2 Following a feature through development. An iteration plan sets you up for development,
and you pull tasks and complete them as a team. The team needs to work together to ensure consistent
understanding and to be aware of how tasks interact with each other.

After the team completes their work, the developer performs a unit test to make sure
the feature is working as requested and then integrates their code into the mainline
code stream.

 As the team is completing their work, a tester is preparing test cases for feature
testing. This work starts during initial planning. Acme Media’s tester, Gina Wallace,
was in the room during the feature-card exercise and began envisioning the tests
needed at that time. Gina also asked the customer questions about nonfunctional
necessities such as performance requirements.

 As features are completed, Gina pulls a feature and tests it. If a feature passes,
it’s labeled test complete and put into a queue for demonstrations at the end of the
iteration. (We’ll cover demonstrations in chapter 20, when we discuss adapting
and user acceptance.) If a feature fails the test, it’s put back into the list of features
and tasks.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

242	 CHAPTER 18 Delivering working software

18.3.2 Other considerations for development iterations

Here are a few items to note when reviewing this workflow:

■	 The developer will probably create unit tests incrementally for the code they’re
creating. Unit tests are usually created at the function or class level.

■	 It’s common for the customer or analyst to work with the tester to create the
functional tests. In an agile environment, the tester is sitting with the team and
can ask clarifying questions quickly.

■	 There are several ways to manage features that fail. You can put bugs on the
iteration backlog or hold a separate bug-triage meeting before putting the bug
into the work queue. We personally like the triage meeting. Much of the time,
we find that a bug isn’t a bug but a misinterpretation of the requirement or an
issue with the testing environment. Working bugs as a team can get to the root
cause quickly.

■	 Unit and functional tests are more common, but frequently we do other tests
for features and applications. We also do acceptance testing during the adapt
phase, and we may do usability and performance testing if we see the need.
(We’ll look at testing in detail in chapter 19.)

■	 You’ll formally reserve time to demonstrate the features after the iteration, but
you can also preview your work as you’re building it. An agile team plays this by
ear. If you spend too much time demonstrating, you can hurt your productivity.
We find that the best balance is to demonstrate or discuss areas that have high
requirements uncertainty, or when a feature is turning out to be technically
expensive. In these instances, you can demonstrate and discuss alternatives with
the customer.

This chapter covered the flow for a normal development cycle. Unfortunately devel
opment is rarely normal. We realize this, and we will discuss all of the complications
that can happen during development in chapter 20, “Adapting: reacting positively
to change.”

18.4 Key points
The key points from this chapter are as follows:

■	 Projects can be measured in terms of percentage of tasks complete, but the ulti
mate metric is the demonstration of working code.

■	 Books like this one can help you understand what agile is about through a case
study, but the main goal is to make sure the processes and exercises you use sup
port the agile principles.

■	 A mature organization can pull tasks from the project backlog as team mem
bers are available. Teams with specialists will have to do more planning for task
assignments.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Looking forward	 243

■	 Features are often dependent on each other, and you may need to iteratively
construct features in parallel.

■	 Work is a subjective term in an agile environment. Many times, you’ll spend more
time resolving issues and researching technology than you’ll spend on coding.

18.5 Looking forward
In this chapter, we discussed what development looks like in an agile environment. We
looked at testing from a high level and explained how testing fits into the overall flow.
In chapter 19, we’ll discuss testing in detail, looking at all the types of testing that can
occur during a software release.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Testing:
did you do it right?

 Cease dependence on inspection to achieve quality.
Eliminate the need for inspection on a mass basis by
building quality into the product in the first place.

—W. Edwards Deming

Greg’s career began in manufacturing. The company he started with focused on
using lean manufacturing techniques. Lean manufacturing focuses on eliminating
waste and improving process flow when building a product. One of the people who
influenced the creation of lean manufacturing was W. Edwards Deming, a noted
statistician and manufacturing consultant. In his book Out of the Crisis, Deming out
lines 14 points for management. One of those points appears at the beginning of
this chapter and has resonated with Greg his entire career.

Building quality into the product sounds clichéd and has been overused by many
marketing departments. But in an agile environment, the concept is real and tangi
ble. Consider the following.

 In an agile environment, you get the tester in the room before programming
begins. The tester and the whole team try to break the product’s design before you
start building. You do your best to understand the customer’s core needs before
244

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Unit testing	 245

beginning production. When you do start production, you demonstrate frequently
and try to prevent defects versus focusing on managing them.

 Related to this point, you try to mistake-proof the development process. Consider,
for example, two digital cameras that Ahmed owns. Both cameras have rechargeable
batteries. One camera lets Ahmed put the battery in two different ways; the only way
Ahmed can find out if he put it in correctly is to try to turn on the camera. The other
camera has a battery that is shaped so it will go in only one way—it’s impossible to put
it in incorrectly. The manufacturer has made the process mistake-proof. In agile, you
try to mistake-proof the process by integrating code continuously and automating test
ing devices. Advanced agile teams use Test Driven Development (TDD) to mistake-
proof the process, writing code until the test passes.

 To see how you can add agility to your testing process, let’s look at how Acme has
modified its approach to quality.

19.1 Unit testing
When Acme Media reviewed its existing processes, the company noted that the devel
opers already did unit testing. They began doing unit testing after a history of passing
nonworking code to the testers. As the development team learned more about agile
testing, they realized their unit testing process could be improved.

 Acme’s existing unit testing process meant the developers reviewed the requirements
and manually executed the code to see if it passed. Passed meant the developer didn’t
detect any code issues and that from their perspective the code functioned correctly.

 This was a good improvement for Acme, because it reduced issues for the testers
and increased their confidence in the code they received. This change also reduced
issues with code integration and breaking the builds.

More resources
Numerous excellent resources can help you with unit testing. One of our favorites is
The Art of Unit Testing by Roy Osherove. Roy focuses on three major principles: that
a test should be maintainable, trustworthy, and readable.

But Acme still had some issues. When a tester encountered a bug, it still took time for
the developer to find the issue. The developer would try to remember how they man
ually tested the code and then dig into the components to find the problem area.

 In the last few weeks, Acme’s development team has learned more about unit test
ing and how some teams create code to test the functions, procedures, and classes. To
agile teams, unit tests mean testing scripts that exercise the code and log errors. If
Acme follows this approach, it will gain additional benefits:

■	 Developers can get quicker feedback on code issues, making it much easier to
identify and repair the code.

■	 The unit tests can be used during refactoring, to make sure improvements or
changes to the code didn’t break the existing work.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

246	 CHAPTER 19 Testing: did you do it right?

■	 The unit tests can be automated because they’re actual code.
■	 The unit tests can be exercised by anyone on the team.
■	 The unit tests can be passed with the functional code during system integration

and make the integration test more robust.
■	 This work will be foundational to using TDD, if the team chooses to do so in the

future.

During agile training, Acme learned that some teams create their own unit testing sys
tem but that most teams use open source testing frameworks such as JUnit and NUnit.
Acme decides to use the pilot project as an opportunity to create true unit test scripts.
The Auctionator is an enhancement to the existing classifieds functionality, which
uses .Net technology; so one of the developers, Matt Lee, downloaded the product
during iteration 0 and started to get a feel for the tool (see listing 19.1).

 Matt will find out if creating unit tests provides the same benefits to Acme that he
learned about during training. He will write the tests after he creates the code, as
opposed to writing them in advance. As Matt becomes more familiar with unit tests,
he’ll increase his ability to use TDD in the future.

19.2 Integration testing
Acme Media is relatively happy with its existing integration process. All of the integra
tion tests are automated, and the team revisits the tests after every project/release.
Tests are added to exercise new functionality and removed for features that are no
longer used. The team also puts a lot of thought into identifying tested module inter
action across the system.

 After agile training, Acme identified a few weaknesses that it wanted to improve. In
the past, the team performed an integration build based on the capacity of the QA
team. At the start of a project, QA estimated how many features they could test at a
given time and requested project builds based on that capacity. The issue with this
process was that the team might go as long as a week before integrating their code and
a subsequent integration test. Several issues were usually uncovered during the build,
and it took a while to trace the root issues.

 Acme learned about continuous integration during agile training and understands
the value. Because the team is used to going 5 days before integrating, integrating
daily will be a big cultural shift. They also learned that another issue was concealed by
the fact that they built every 5 days: there was almost no automation of the build pro
cess. A build took from 4 to 6 hours and pulled a developer away from their work.

 Acme decided on a twofold attack on the integration issue. First, they will go to
more frequent builds, building every Tuesday and Thursday. Second, they will work
on increasing the automation of the build process. The team knows some places
where automation can be added, and they pursued those changes during iteration 0.

 The last change relates to unit testing. Matt Lee plans to pass his unit tests along
with his code during the builds. The QA team needs to make sure they have a process
in place to exercise the test code that Matt sends across.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

247 Functional testing
19.3 Functional testing
Related to integration testing, historically Acme Media tested features in groups
every 5 days. The QA team met with the development team and saw what features would
be delivered in the forthcoming build. They then pulled the functional specifications
and began documenting test cases and scripts. This approach had two issues.

 First, features weren’t delivered by priority—they were delivered by how quickly
they were completed. The first build for the project might be limited to low-priority
features. This issue was resolved by Acme’s new iterative planning process: the first
iteration now contains the most critical features, and subsequent iterations contain
the next-highest-priority work.

 The second issue was acclimation. In the past, the QA team was almost viewed as a
group outside of development. The first time they saw the features was after the func
tional requirements were complete. In Acme’s new agile model, the tester is in the room
during the feature-card exercise and during feature modeling. The tester can bring up
risks before the coding begins. In a way, this is early testing; you might even call it design
testing. The tester can influence how the feature is created and so reduce the chance
of bugs or issues with nonfunctional requirements, such as performance or up time.

 Acme’s QA team began creating test cases during iteration 0 and will continue to
do so until the last iteration is complete. Test cases are created in the order they will
be delivered in the iterations, with the highest-priority features’ test cases created first.
See figures 19.1 and 19.2.

 Acme performs functional testing as soon as a build is integrated. The team refers
to the integration build as a build verification test (BVT). If the code passes the rudimen
tary tests, then it’s in good enough shape to begin functional testing.

 In a perfect world, functional testing for each iteration would be complete at the
end of the iteration. In reality, a few features usually still need to be tested, and testing
for those can be wrapped up during the adapt week between iterations.

Figure 19.1 The complexity and criticality of your application determine how
detailed and formal your testing needs to be. In this instance, the team has gone
formal, documenting the expected results in detail.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

248 CHAPTER 19 Testing: did you do it right?
Figure 19.2 In this
instance, the team didn’t
need a formal test case,
and they listed the test
case in terms of a user
scenario.

Note that user-acceptance testing and nonfunctional testing are covered in chapter 21.

19.4 Exploratory testing
As we’ve mentioned throughout the book, Acme Media has a unique practice: a com
pany-wide bug stomp. In many circles, this is known as exploratory testing. Exploratory
testing is different than functional testing. Functional testing tries to make sure the
software does what it’s supposed to. Exploratory testing tries to make sure the software
doesn’t accidentally do things it isn’t supposed to do.

 For example, a few years ago Ahmed worked on a team that created an applica
tion, tested it internally, and then invited users from outside the company to test it.
The application was supposed to be functional without any online help or training for
the user. In this instance, the user was creating a new event listing: for example, infor
mation about a concert, such as the artist, the location, and the date and time. For the
test, users were told the application was for entering event information and to create a
fake event record. No other instructions were given.

 All the users began entering records, and nine out of ten had a consistent issue:
they couldn’t enter the event date in a format the application would accept. Every
user had to try to enter the date several times before the system accepted the record.

 Ahmed’s team researched the issue and uncovered the root cause. The company
standard for entering dates was mm/dd/yyyy. All the developers knew this, and so did
all the testers. Internally, no one had to think when entering a date—they knew the
correct format to use. But externally, real users didn’t know the standard, and they all
had different experiences for entering system dates. Because the user group had no
preconceived notions, they were able to expose this usability issue (see figure 19.3).
Licensed to Abner Lopez <ihackn3wton@gmail.com>

249 Test automation
Figure 19.3 A usability issue is
resolved by providing a format
for the user in the date field.

Usability testing is great for finding issues that may be blind spots for your team. If
you’ve been living with a feature since idea conception—which is true in an agile envi
ronment—you may not be able to objectively scrutinize the application.

 We can see an example of this at Acme

Media. Acme Media decided to send the Auc
tionator out for usability testing. Figure 19.4

indicates how organized the Auctionator site

was, as viewed by actual end users. The Acme

Media team had grown used to the site and

knew how to navigate to all the features. End

users still saw areas to improve, with 30 per
cent of the sample saying the site was at least

somewhat disorganized.

 We highly suggest that you use some
method of exploratory testing before releas
ing your product to the public.

19.5 Test automation
As we discussed in the introduction of this chapter, you want to prevent defects if pos
sible; and if you can’t prevent defects, you want to find them as early as possible to
ensure that your code is always in a deliverable state. To support this objective, let’s
look at test automation.

 Test automation is a widely discussed subject. The main question is always, “Does the
time I take to automate the tests provide return?” Many people find that automation is

Figure 19.4 Your team may be blind to how
the system is viewed by users. Usability testing
reveals what the end-user experience is like.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

250	 CHAPTER 19 Testing: did you do it right?
tedious to set up and that once it’s running, the tests need to be frequently changed,
especially if the tests are separate from the code. You’ll need to scrutinize your specific
situation, and your agile coach can help you recognize where automation can help.

 In our experience, we’ve followed a few basic tenets on automation.
 First, automation is a great tool for regressing code. If you’re performing build ver

ification tests with every build, it’s superb to automate tests for legacy code that is
already in place, to make sure new code doesn’t break the old code. In a perfect world
you could automate tests for features that are being built during a release, once they
have successfully passed all unit tests.

Automation to save money
Greg recently worked with a company that used offshore testing. The company out
sourced testing to a vendor that provided two onshore test leads and up to eight off
shore workers to support the actual testing. The onshore leads were in the room
during feature-card creation and had direct interaction with the customer. The on
shore leads also performed the build-verification tests.

The company encountered tough financial times, like many companies today, and de
cided to reduce its testing expense by eliminating one of the onshore leads. The de
velopment team knew how critical it was for the tester to be involved in feature
creation, but they realized QA interaction would be compromised now that there was
only one lead.

The team investigated automating the build-verification test to a point that it could be
run by the offshore testers, thereby leaving the onshore lead free to work with the
team during feature-card creation. After weeks of piloting and trying various tools, the
onshore QA lead was able to automate 95 percent of the build tests, and the offshore
team took over running them every night. QA still wasn’t able to attend every feature
discussion, but the loss of one test lead was minimized by automating the build test
and passing it to the offshore team.

Our main belief is that you should get return on automation, and it may not make
sense to automate every test. Acme Media has developed a practice of enhancing its
automated build-verification scripts at the conclusion of every release. A sampling of
representative scripts is added to the build test to make sure features in the new
release didn’t break existing features that were certified in the previous release. The
scripts that are automated meet the following criteria:

■	 The thread selected is a good test of the overall feature.
■	 The test can be automated. The sequence is consistent, so that it can be

automated.
■	 Automation doesn’t change the behavior of the software. Many times, automa

tion tools can’t emulate true user interaction.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Key points	 251
Acme Media is happy with its process for updating the build test at the end of each
release, but during the team’s next pilot they will test the ability to continuously
enhance the automated build test during the release. This will be another step toward
agility and will also provide more time for the QA team to do exploratory testing. (See
an example automation tool in figure 19.5.)

Figure 19.5 Tools such as HP QuickTest can make test automation easier.

Our last point related to automation is that you need to have a consistent environ
ment, consistent configuration, and consistent test data to support automated scripts.
You should create a process that lets you reset your test environment to a known con
figuration before testing begins.

19.6 Key points
The key points from this chapter are as follows:

■	 Do your best to create a process that minimizes the ability to create defects.
■	 Testing should begin as early as possible to minimize the impact a defect can

have downstream.
■	 A defect is harder to find if it’s been in the code for several builds.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

252	 CHAPTER 19 Testing: did you do it right?
■	 In a perfect world, you’d create unit tests before development starts. This is a
great goal, but it’s a reach for teams just becoming agile.

■	 If you can’t create unit tests first, at least consider automating them after
they’re complete. Automation will help with refactoring and regressing the
code with each build.

■	 You should have a goal to build every day, but move toward this goal in small
steps. Give your team time to acclimate to a more frequent build process.

■	 Just as you select which processes to use during a project, you must decide how
much testing is needed. Some applications, such as medical software, require
more stringent testing, whereas less-critical applications, such as checking out a
book from a library, may not require as much testing.

■	 Testing usually doesn’t conclude at the end of an iteration. Usually a few items
are still open that must be resolved. You need to close these items or clearly
document them before pursuing user acceptance of code.

■	 Functional testing tells you whether the code supports the requirements.
Exploratory testing tells you if the code accidentally supports a bad scenario or
has other issues if not used as designed.

19.7 Looking forward
When you complete development and testing, you’ll be ready to demonstrate the
completed work to your customer. During the demonstrations, you’ll make discover
ies, and you’ll need to adapt accordingly. In chapter 20, we’ll discuss adapting during
and at the conclusion of an iteration.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Part 7

Embracing change

General Dwight D. Eisenhower said, “The plan is useless; it’s the planning
that is important.” Eisenhower knew that you could plan all that you wanted to,
but something could and would still go wrong. It was more important to be able
to react and re-plan than it was to lay out the initial plan.

 This is not to say we do not create an initial plan in an agile environment, but
to say we understand that all possible scenarios cannot be anticipated and we
must have a process that allows us to triage issues and recover. We cannot lament
how the original plan did not work, but instead we must be able to re-plan and
continue to pursue success.

 In the following three chapters we will discuss adapting to change, learning
as we go, and ensuring successful delivery of our project along the way.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Adapting: reacting
positively to change
Take the world as it is, not as it ought to be.
—German proverb

So far, every chapter in this book has emphasized being agile and adapting to
change. Acme Media adapted to a revised product vision during feasibility and
reacted to feature discoveries during planning. In this chapter, we’ll discuss how to
react and adjust to information you discover during development iterations.

 No matter what methodology you use, you’ll always have to deal with issues and
challenges during development. Your advantage is that you’re expecting change
and you have tools and processes in place that support and embrace adaptation.

 Managing changes and decisions during development is still a difficult feat.
You’re trying to stay on schedule, meet the customer’s needs, and support nonfunc
tional requirements such as performance needs. Discoveries require diligent, col
laborative decision making. You’ll refine requirements, reprioritize the work, and
re-plan based on what you encounter.

 Teams that are new to agile often have questions about the timing of adapting.
Here are three common questions:
255

Licensed to Abner Lopez <ihackn3wton@gmail.com>

256	 CHAPTER 20 Adapting: reacting positively to change

■	 Can we adapt at any time? Yes, you can and do adapt at any time. We’ll discuss
this in detail in section 20.2.

■	 If we adapt all the time, how do we get any work done? This is a superb question.
Many anti-agile folks want to know how we get any work done if we spend all
our time talking about it instead of doing it. That is a fair question. The answer
is that there is a fine line between work labeled adapting and work labeled devel
opment. Are you adapting when you’re stuck on a technical constraint and
you’re Googling for a workaround? Are you performing development when you
refine requirements with a customer or analyst? At the end of the day, it’s all
work that supports delivering the correct solution to the customer. This will be
demonstrated in sections 20.2 and 20.3.

■	 How do we adapt at the end of an iteration? We’ll cover this question in sec-
tion 20.3. Acme Media will demonstrate a solid process for gathering feed
back at the end of an iteration and recalibrating the project based on the cus
tomer response.

Let’s start by discussing common reasons for adapting.

20.1 Common reasons for adapting
When you need to adapt, you go back to

one of the agile core principles: How can

you deliver the most important features early?

You still want to hit iteration delivery

dates, and you still want to hit your

deployment dates, but your main goal is

to deliver value as soon as you can within

the reality of your constraints. The com
mon reasons for adapting are illustrated

in figure 20.1.

 Here are some common issues that

come up during development and some

of the ways we’ve seen teams adapt

to them.

20.1.1 Feature is larger than expected

Frequently a feature will surprise you when you start developing it. The code takes
longer than expected, or you underestimated complexity. We also see this when teams
are working with an off-the-shelf application. Sometimes the software provider prom
ises functionality that isn’t quite there, and you have to figure out how to close the
gap. Here are some of the ways we’ve seen teams adapt to feature overrun:

■	 Work with the customer to prioritize the functionality in the feature and potentially reduce
the scope. Try to deliver the highest-priority functionality within the iteration
schedule.

Figure 20.1 Adapting occurs throughout an
iteration and following an iteration review by
the customer.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

257 Common reasons for adapting

■	 Accept the discovery and continue the work into the next iteration. Try to demonstrate
the state of the feature at the end of the iteration if possible, with a test harness
or limited user interface.

■	 Cancel the feature, and re-evaluate the feasibility of the project. If a feature is too
large, the cost may exceed the benefit, and the feature shouldn’t be pursued.
But if a critical feature is cancelled, the value of the project may be lost. The
team needs to reassess the project’s viability.

Another reason a feature could grow is that a customer begins to understand their
needs more and they need to refine their requirements. Let’s look at this issue in
more detail.

20.1.2 Customer refinement of requirements

This may be the most frequent reason to adapt. Similar to our bathroom-remodel
example in chapter 9, you frequently don’t know what you want until you see it. On
occasion, we’ve worked with teams that fought the customer during refinement dis
cussions. Because a refinement request could make the project run longer, these
teams worked hard to talk the customer out of the request.

 An agile team takes a different approach. You want to be good listeners and make
sure you understand the request. If the request will have an impact on your capacity,
you can adapt:

■	 Revisit the entire scope of the feature. Can other parts of the feature be sacrificed
for the refinement request?

■	 Delay other work. Explain the impact to the customer, and show them how
other work may be delayed or pushed into subsequent iterations.

When you kicked off your project, the customer provided their priorities in the
tradeoff matrix (schedule versus resources versus costs, and so on). You can use this
matrix to help the customer decide how to react to the change in requirements and
how to best triage the discovery.

20.1.3 The business need changes

The world doesn’t care about your project and goals. Frequently, the playing field will
reset during your project. Imagine what would happen if Craigslist decided to start
offering free auctions while Acme Media was building the Auctionator. How would
Acme Media adapt to this mid-project? Would the company cancel the project or
identify a feature that would still separate it from the competitor?

 Another example that comes to mind is desktop search functionality. Many people
started using Google’s desktop search utility a few years ago. The utility was superb
and free. It was a great marketing tool for the Google brand. We’re confident the folks
at Microsoft cringed at seeing Google invade their world and be successful. We believe
desktop search was a medium-priority feature at Microsoft, with no urgency to get it to
market. Google changed all that with its success; 2 months later, Microsoft released its
Licensed to Abner Lopez <ihackn3wton@gmail.com>

258	 CHAPTER 20 Adapting: reacting positively to change
own desktop search utility. We believe Microsoft adapted to the change in the compet
itive climate and reprioritized the feature midstream, moving it up to an earlier itera
tion/release.

 Here are some ways we see teams adapt to a change in the business climate:

■	 Reprioritize features, just like Microsoft did.
■	 Add a new feature.
■	 Cancel a feature. Sometimes a feature loses its value during a project.

In drastic situations, you may find that the need changes enough to cancel the entire
project.

20.1.4 A technical constraint is discovered

This issue is related to a feature being larger than expected. How many times have you
encountered a technical issue during a project? Perhaps a better question is, how
many times have you not encountered a technical issue?

 We’ve seen issues with performance, browser compatibility, security, and product
compatibility. The list of issues you can encounter is infinite.

 Here are some ways you can resolve technical constraints:

■	 Speak to software vendors for guidance.
■	 Look at blogs and internet postings where others have solved the issue.
■	 Research other technology options.
■	 Have a discussion with the experts within your company who may be able to

help.

If the issue can’t be resolved within the iteration, you can

■	 Ask the customer if you can remove the feature from the project.
■	 If the feature is of a critical or high priority, discuss extending the work into the

next iteration.
■	 Delay the feature for another iteration.
■	 Remove the functionality from the requirement that leads to the technical

constraint.

As we mentioned in chapter 18, dealing with technical constraints is a common part
of the development process.

20.1.5 A team member is unavailable

What do you do if a team member becomes unavailable during an iteration? What if
they’re sick, or they have to address a production issue? If you lose a team member, is
the iteration in jeopardy?

 If a team member misses a day or two, the team can frequently keep the iteration
intact. Other team members may be able to take on some of the work, or the work
may get reprioritized to work around the missing team member.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

259 Common reasons for adapting
 In a worst-case situation, an iteration may have to be stopped and restarted when
resources can re-engage. We’ve seen this happen for serious production issues, where
the majority of the team was tied up for days when a server or database went down.

20.1.6 A third party doesn’t deliver

As you may recall from chapter 16, third parties are the highest-risk area for any proj
ect. If you have an issue internally, you can triage however you like; but if you have an
issue with a third party, you have limited control.

 Note that third party means any group outside your project team. You may have lit
tle influence on groups that support your project. This is common in large companies
where individual groups control areas such as data centers, load balancers, system
monitoring, or shared infrastructure such as virtual machine environments.

 Your focus should be to work with third parties as early as possible to give you the
most time to resolve issues. But what do you do if they still don’t deliver?

 One option is to do the work yourself. Does the third party provide a service that
you can’t perform or choose not to because it isn’t a core competency? A few years
ago, Greg worked with a team that created an online advertisement site for travel busi
nesses. If you were a hotel, you could create your own website and advertise in a major
online travel directory. The team Greg worked with decided to outsource the applica
tion because they didn’t want to make a heavy technology investment. The travel
directory was a beta test for future directory models, and they didn’t want to create
code that had potential for being disposed. But after the project started, the vendor
came up short on critical requirements such as integration with the existing user-regis
tration application. Greg’s team was halfway through iteration 1 when they made a
decision to release the vendor and develop the travel directory in house.

20.1.7 Team throughput is lower than expected

We’ve discussed story points and how you can use them to determine your capacity for
an iteration. Even though your capacity estimate is based on real work, sometimes
you’ll underestimate the time needed to complete an iteration. This isn’t an excep
tion. Your velocity will fluctuate with each iteration. Over time, you’ll have more con
sistency, and your estimates will become more accurate; but there will always be
iterations that exceed or beat your estimate.

 For example, say you average 30 story points per iteration but only complete 20 in
a particular iteration. A few features are in a partial status or not started. What are
your options?

 You’re fighting two agile goals when you can’t complete all the work in an itera
tion. First, you’re trying to deliver the minimal level of functionality needed to
support a release. If you don’t complete all features, you probably don’t have a releas
able product.

 Second, you want to demonstrate status to customers and stakeholders at the end
of an iteration. That is difficult to do when features are incomplete.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

260	 CHAPTER 20 Adapting: reacting positively to change

 Here are three common strategies we see teams use when the work isn’t complete
by the target date:

■	 Continue the incomplete features into the next iteration. When you do this, you
should still demonstrate status of the incomplete work. You need to have a feel
for the work remaining so you can estimate it for the next iteration. You should
also get feedback from the customer. Anything you can demonstrate will help
you with this goal. Teams frequently create temporary user interfaces or test
harnesses to demonstrate status on incomplete features.

■	 Stretch the iteration. As a rule of thumb, this isn’t a good practice. The team will
give less respect to the deadline if it can always be stretched. But if this is your
last iteration, you must stretch the iteration or reach agreement on leaving out
features or pieces of their functionality.

■	 Remove the feature(s), or deliver them in a partial state. This is frequently a cus
tomer and team decision. The team outlines the repercussions for removing or
partial delivery, and the customer makes the call about what they want to do.
Partial delivery is usually an iffy proposition. If a feature is incomplete, it will
probably need some level of cleanup to be usable.

You may also wonder about determining capacity for the forthcoming iteration. If you
underestimate this iteration, what stops you from underestimating the next?

 Because your capacity estimate is based on real work, this release should be an
anomaly. The team will discuss this during the adapt week and see if a resource
change or other area has affected the accuracy of the running capacity estimate. At a
minimum, this low throughput iteration will be averaged into the existing capacity
algorithm, and your estimate for the next iteration will be lower.

20.2 Adapting during an iteration
We’ve seen two schools of thought about adapting during an iteration. One viewpoint
is that you can adapt for technical issues, but you don’t want a lot of customer interac
tion during the iteration because the customer will get confused by seeing a partial
product and won’t provide valuable input. Teams that take this approach also like to
provide a level of isolation for the development team. The developers are given a 2
week timeline to deliver a working product. The team feels that if the developers have
frequent customer interaction, they will lose momentum and miss the deadline.

 The second school of thought is that you embrace customer interaction in parallel
with dealing with technical issues. You demonstrate your work during the iteration,
ask the customer clarifying questions, and try to deliver the iteration on schedule.

 Which method is the best? If your customer is new to agile, you may be better off
going with the first method and gathering customer feedback during the adapt week.
You may also find that your development team is more productive if they can be iso
lated and allowed to focus on delivering code.

 But if you stop and look at this approach, you may wonder if we’re discussing an
agile process or a waterfall approach broken into iterations. If developers are isolated
Licensed to Abner Lopez <ihackn3wton@gmail.com>

261 Three ways Acme Media adapted during its first iteration

from the customer, how can you build the solution together? Your goal is to build the
desired solution on time. Meeting the deadline provides no value if the result is not
what the customer needs.

 We have empathy for teams when the customer is too involved and hurts the pro
cess more than helps it. We’ve seen this on occasion, and we believe it’s more about
training the customer than the fact that the customer is involved.

Should you hide the developers?
On occasion, we’ve supported having a developer work from home when they needed
uninterrupted focus. But over the last few years, we’ve seen developers adapt to a
collaborative environment and learn how to get their privacy while sitting with the proj
ect team. Some developers put on headphones to isolate themselves, and others set
their IM status to Busy.

We do a lot of interaction with developers by walking up and asking them if they have
a moment to discuss a feature. In the old days, everyone was polite and said “Sure.”
These days they frequently ask if we can come back later because they’re in the mid
dle of solving something. We like this new attitude. Although no one likes to hear “No,
I don’t have time to speak with you,” we like the fact that developers are performing
self-management and looking out for the project.

It reminds Greg of a manager he worked with 10 years ago. On occasion, the manager
got under a tight deadline and hung a sign on his cubicle entrance that read, “Unless
my cubicle is on fire, don’t disturb me!!” If you peeked inside his cube, you saw him
with headphones on, hammering away on the keyboard.

As much as agile is about collaborating, there are times where you need to give the
developers the privacy they need to bring home a solution.

We personally embrace customer involvement during an iteration. Just like the team,
the customer needs to be trained on how to be collaborative and productive. You can
achieve this over time.

20.3 Three ways Acme Media adapted during its first iteration
To illustrate adapting during an iteration, let’s return to Acme Media. We’ll start by
looking at a request to modify the search feature.

20.3.1 A change in feature scope

As you may recall from chapter 16, Ryan, the designer, noticed that the customer, Jay,
hadn’t requested the ability to filter searches by location. After a quick discussion, Jay
agrees that the filter is needed. Ryan feels the additional work can be completed with
minimal effort and the feature doesn’t need to be re-estimated. Ryan discusses the
change with the project team, and everyone agrees that the additional work is mini
mal and can be easily added to their existing tasks.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

262 CHAPTER 20 Adapting: reacting positively to change

20.3.2 An issue with performance

As you may recall from chapter 4, Acme Media had been burned by not performing
load testing on features in the past. During iteration 1, Matt, the developer, identifies
a potential load issue with the auction engine.

 Matt and Jay, the customer, estimate that as many as 100 people can be bidding on
an item concurrently. Matt uses the load-simulation tool to simulate concurrent bid
ding and notes that the server is maxing out at around 75 concurrent bidders.

 Matt creates a queuing process for the bids to minimize the impact to the end user,
but bids can take as long as 10 seconds to process when 100 people are bidding at the
same time.

 Matt researches various technical options and notes that he’s doing little caching
and that every request is going to disk. Matt finds that he can cache most of the bid
ding page, which reduces the peak response time to 5 seconds. Jay agrees to this per
formance level and doesn’t think it will be a usability issue. Jay will be happy if they get
as many as 100 people bidding at one time.

20.3.3 Underestimating the registration need

Acme Media wants to let potential buyers bid on items without creating an account.
They can bid by providing their email address, and by design the Auctionator will
encrypt their email address and store the bid. The encrypted email address will repre
sent the bidder ID during the auction.

 The issue is that the bidder has no idea what their encrypted ID is. If they view the
bid list for an item, they can’t tell if they’re the highest bidder. They only see an
encrypted string.

 Matt discusses this issue with Jay. They think of two options:

■ Email the bidder, and tell them their encrypted ID so they can recognize it.
■ Require registration to perform bidding.

The first option will work, but even then it may be hard for the buyer to discern their
encrypted bidding ID when viewing bid history.

 The second option is more palatable. Requiring registration for users will make it
easier to design the overall system and provide benefits to the user. The user won’t
have to submit their credentials for every bid if they’re registered and logged in. Jay,
the customer, agrees to this option, and the team pursues creating a system that
requires registration for bidding.

20.4 Adapting at the end of an iteration
When an iteration ends, you focus on four areas:

■ Demonstrating and gathering feedback
■ Re-evaluating priorities
■ Reviewing team performance and velocity
■ Re-planning

Let’s look at each of these in detail.

Licensed to Abner Lopez <ihackn3wton@gmail.com>

263 Adapting at the end of an iteration

20.4.1 Demonstrating and gathering feedback

Demonstrations can take many forms. The most common forms are as follows:

■	 Impromptu—This type of demonstration usually happens during development. A
developer or designer can show the customer working code, a proposed UI, or
anything where feedback will help guide the team. We also see informal presen
tations between team members during a project. For example, developers can
review early functionality with the team to discuss usability and performance.

■	 Structured—Greg was taught to use a more prearranged demonstration tech
nique at the end of an iteration. This format works well when you have a short
amount of time for review and you want to quickly gather feedback from many
customers and stakeholders.

■	 User Acceptance Testing (UAT)—This technique is great for getting focused feed
back from the customer. It also works well in a regulatory environment where
formal approval is required.

Which technique is best at the end of an iteration? Similar to the menu you use at the
start of a project, the team should make the call about the best way to demonstrate.
Smaller teams and smaller projects can probably go informal throughout the project.
As projects get larger and have more customers and stakeholders, it may be best to do
formal demonstrations in conjunction with User Acceptance Testing.

 Let’s consider Acme Media’s Auctionator project. The project has several stake
holders and one person playing the customer role. The project team is composed of
nine people. We consider this a medium-size project.

 When the Acme team reviews the project, they decide to present structured dem
onstrations and customer UAT at the end of the iterations, due to project size and the
number of people affected. The entire team and stakeholders will participate in the
formal 1-day review at the end of each iteration, and the analyst will lead a UAT session
with the customer in subsequent days. You’ll see this combination in action when
Acme goes through the demonstration cycle in section 20.5.2.

20.4.2 Re-evaluating priorities: what are your options?

In a perfect world, you’d go through the demonstration cycle, and the customer
would be 100 percent satisfied. In the real world, you’ll see some of the following:

■	 The identification of issues, both functional and technical
■	 Requests to modify features in progress
■	 Requests for new features
■	 Requests to decrease the scope of features

Managing and prioritizing all this information is a cerebral process. How do you
determine what is truly critical and what adds minimum value? What foundational
information can you use to help triage? You need to go back to the tradeoff matrix
that you created in chapter 11.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

264	 CHAPTER 20 Adapting: reacting positively to change

 In Acme’s case, the tradeoff matrix indicates that the schedule is fixed. The team
must meet their project date. They have light flexibility with their resources and high
flexibility with scope. They should focus on delivering the minimal amount of func
tionality needed to support the Auctionator. The date is critical, and they may
enhance the functionality with a future project or release.

 Reviewing priorities is critical to this triage process. The team needs a guiding
light, or they may get lost in a sea of potential options for each issue. With date being
the driving force, and knowing that adjusting resource levels won’t help much at the
end of an iteration, they need to focus on scope. What does the team have to deliver
to go live with the project? What is the minimal set of functionality they must deliver?

 Figure 20.2 illustrates this point.

Figure 20.2 When you
discover an issue, you have
many options. The team uses
their collaborative knowledge
to choose the best solution.

You have many options as you review issues within your team. Some common options
are as follows:

■	 Modify the requirements. This may sound unusual, but if you encounter a con
straint that can’t be realistically overcome, the customer may change their
requirements. This happens frequently when you’re constrained by a commer
cial software package and you don’t have the ability to modify it.

■	 Identify a workaround. In many applications, you can accomplish an objective
more than one way. For example, if you create a search engine and can’t get the
category functionality to work, the user may be able to perform a workaround
by entering a category title with their search string.

■	 Do nothing. You’ll often do nothing when an issue is low priority, such as a
barely noticeable cosmetic issue. There isn’t enough value in pushing out the
project to make a fix for a minor issue.

■	 Write additional code. Sometimes you have to edit or create more code to meet
basic need. This can be caused by identifying a missing critical requirement
during demonstrations.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

How Acme Media adapts during adapt week	 265

■	 Purchase a solution. In some cases, a missing requirement can’t be easily support
ed in house. You may have to buy some functionality to support the requirement.

■	 Defer the issue. Deferring is different than doing nothing. Sometimes you’ll
defer an issue until you see how forthcoming features relate to it. A feature that
is being delivered in subsequent iterations may remove the issue.

■	 Redesign. A requirement may change so completely that you can’t use any of
the work you completed during the iteration. You’ll need to revisit the design
and start coding from scratch. These types of changes are usually driven by a
change in the business environment rather than the customer.

NOTE	 As you review these ways to adapt to change during development, you
may be thinking, “I already do these.” That makes sense; these are
common ways to adapt regardless of whether you follow agile princi
ples. What is unique is that you identify the issues much earlier than
with classic techniques, and you highly involve the customer in the tri
age process.

Now, let’s look at another aspect of adapting: analyzing team performance during the
iteration.

20.4.3 Reviewing team performance and velocity

When you complete an iteration, you measure how many story points you’ve com
pleted. As mentioned in chapter 14, you continually measure the number of story
points you complete and add them into your running average. Your running average
is the number you use to determine capacity for the next iteration you pursue. For
this process to work, you must keep your iteration length consistent and the people on
your team the same. If you lose or gain a team member, you should begin recalculat
ing your run rate based on the team change.

 Acme Media didn’t have a running average for its first-ever iteration, but the team
estimated their story points so they could initiate the averaging process.

20.4.4 Re-planning and reacting

After you finish gathering feedback and reviewing team performance, you review
the existing plan for the next iteration and make appropriate changes. Your changes
are based on discoveries during development, feedback and testing at the end of
the iteration, team performance, and changes in the business climate. You may
remove features previously assigned to the iteration or add new features based on
your discoveries.

20.5 How Acme Media adapts during adapt week
In chapter 15, Acme Media decided on 2-week development iterations with 1 week for
adapting between iterations. Acme decided on the 1-week interval to allow time for
Licensed to Abner Lopez <ihackn3wton@gmail.com>

266	 CHAPTER 20 Adapting: reacting positively to change

maintenance of the current production environment and to provide a window of time
for feedback and User Acceptance Testing.

 In this section, Acme will do the following:

■	 Review the work that was completed during the iteration
■	 Demonstrate the work and gather feedback on it
■	 Perform user acceptance testing on the work
■	 Review the identified issues
■	 Reprioritize the work based on their findings
■	 Re-estimate new features identified
■	 Review velocity and determine capacity
■ Modify the iteration plan for iteration 2

Acme has outlined the following schedule for the adapt week:

■	 Monday—Team cleanup on features; complete testing
■	 Tuesday—Structured demonstration to customers, stakeholders, and the team

at large
■	 Wednesday/Thursday—UAT with Jay
■	 Thursday—Review discoveries from UAT; review team velocity
■	 Friday—Review and re-plan; update plan for iteration 2

Let’s rejoin Acme Media to see common of ways of adapting at the conclusion of an
iteration.

20.5.1 Reviewing the work completed

Acme Media assigned features to iteration 1, as shown in figure 20.3.
 Most of the features have been completely unit tested and are going through final

testing in QA. The auction engine is running late, and the team needs to find out if it’s
in a state where it can be demonstrated to customers and stakeholders.

 Matt the developer has just completed the final unit tests on the auction engine,
and he’s confident it will demonstrate all the functionality. The feature was delivered
late because he had to make architectural changes to support caching. (Caching is
required to support up to 100 concurrent bidders.)

A retrospective now?
In chapter 22, we’ll discuss retrospectives/lessons-learned sessions that you can hold
at the end of the project or between iterations. It’s a good idea to perform a quick
retrospective between iterations. These meetings are typically informal, and the team
can quickly identify areas to improve before the next iteration kicks off. To take this
even further, you may find that you need to stop during an iteration and review what
is going on, especially when feature delivery is running late or when major process
issues are being encountered.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

267 How Acme Media adapts during adapt week
Figure 20.3 The status of the work for iteration 1. Most of the features are going through their final
tests, but the auction engine is running late. It isn’t uncommon for a feature to run late during an iteration,
even with daily management. The main question is whether you can demonstrate all the features.

The first day of the adapt week involves reviewing all the features to make sure they’re
in a demonstrable state. Acme Media has been integrating and stabilizing the code
during the iteration, but it’s hard to envision the entire system until all the features
are complete.

20.5.2 Demonstrating the work

Acme Media dedicates half a day to presenting the iteration work to the customer,
stakeholders, and anyone in the company who wants to see the how the project is
going. Stakeholders include anyone with a vested interest in the project. (Typical
stakeholders include executives, support organizations, investors, and technical part
ners such as analytics.)

 Acme outlines a demonstration schedule during day 1 of their adapt week (see fig
ure 20.4).

 Acme creates a tentative schedule for the demonstrations so that stakeholders can
choose when to come by if they aren’t available for the entire day.

 You should note two items when reviewing Acme’s demonstration plan. First, the
plan is somewhat formal and structured. Acme decided to go with a more structured
demonstration because the project affected several areas. Second, this is a high-level
Licensed to Abner Lopez <ihackn3wton@gmail.com>

268 CHAPTER 20 Adapting: reacting positively to change

Figure 20.4 Acme Media demonstrates the iteration features during the team’s demo day.

The demonstration synchronizes the company on the current state of the project and provides

an opportunity for feedback. The entire team participates in the demonstration, with developers,

designers, project managers, and testers describing status from their perspective.

demonstration for stakeholders and customers. The team will perform a more
detailed demonstration when they perform UAT with the customer, Jay.

 One agile principle states, as complexity increases, the project will require higher levels of
ceremony. If the Auctionator project was smaller, the demonstration process could be
informal and include the UAT at the same time.

 Demonstration day is a special time for a project team. The team knows their work
is valuable because people want to see it and ask questions about it. The demonstra
tion also adds transparency to feature status. True status is evident to everyone.

20.5.3 Personality types and demonstrations

In the early days of software development, the only people who spoke in front of cus
tomers were managers and leads. Everyone else was a worker bee and did their job
silently back at their desk. Because these team members didn’t do presentations, man
agement usually worked with leads if they had feature questions.

 In the last few years, we’ve seen a change in this area. More and more worker bees
enjoy talking about their work and presenting to the team at large. This bodes well for
a collaborative environment. High interaction is required and desired in a high-per
formance agile team.

 But sometimes a reclusive worker really doesn’t want to present. We’ve seen these
folks forced to present, and they stutter, sweat, and stumble through their presenta
tions. Such individuals may become physically ill when asked to present. What do
you do if you’re trying to become agile and a team member isn’t cut out for high
social interaction?
Licensed to Abner Lopez <ihackn3wton@gmail.com>

269 How Acme Media adapts during adapt week

 You can work around a team member who doesn’t want to present. Another per
son who worked on the feature can present the feature, or two people can co-pres
ent. Another team member can lead the discussion, and they can both respond to
questions. Co-presenting frequently works well for people who dread public speak-
ing—it takes the pressure off them to lead the discussion, but they can still contrib
ute value.

20.5.4 Demonstrating incomplete features

There are two types of incomplete features: planned and unplanned. In a planned
scenario, you start the iteration knowing that you aren’t going to complete a feature
but that you’ll take the feature to a certain state. For example, Greg once worked with
a team that was creating a dynamic organizational-chart feature for their intranet. The
team released new software every 7 weeks, and they didn’t think it was possible to
deliver a solid product within that window of time. The team broke the feature into
three subfeatures that they delivered across three releases. In the first release, they
created mockups and performed usability testing. In the second release, they deliv
ered the product to the production environment. In the third release, they did refac
toring based on what they learned in the production environment. This refactoring
work included creating a web service to distribute the load across more servers and
improve the performance of the feature.

 In the unplanned scenario, you don’t complete your work by the end of the itera
tion date and the feature isn’t in a demonstrable state. What can you do? Here are
some options we’ve seen teams use:

■	 If the feature infrastructure is complete but the interface is missing, create a test harness to
exercise the feature’s inputs and outputs. A test harness can demonstrate the status
of the feature and verify that the coded logic is working correctly. There is
a good chance you can use existing unit tests to demonstrate the feature to
the customer.

■	 If the UI is complete, present it to the customer and simulate the fields being
populated. This demonstration can help identify usability issues.

■	 Demonstrate in the development or system integration environment. You may not con
sider a feature complete until it’s tested in a user acceptance environment, but
you can still use other environments to demonstrate and obtain feedback.

Acme Media uses the last option with the auction engine feature. The feature isn’t
built into the user acceptance environment when the demonstrations begin. Acme
demonstrates the feature from the system integration test (SIT) environment while
they build to the user acceptance environment.

 The most important thing to remember is that you need to demonstrate, period.
It’s easy to fall into a behavior where you never demonstrate features unless they’re
complete. You may worry that the customer can’t comprehend an incomplete feature
and will only ask questions about the missing components: if you take this approach,
Licensed to Abner Lopez <ihackn3wton@gmail.com>

270 CHAPTER 20 Adapting: reacting positively to change

you may erode sponsor and customer support. Everyone needs to see that you’re mak
ing progress toward delivery.

20.6 User Acceptance Testing
Acme Media chooses to do more detailed demonstrations with the customer after the
public demonstration. The additional testing allows the customer to ask more
detailed questions and try the features hands on. The testing is another validation of
feature completeness.

 When smaller project teams perform UAT, the whole team participates. Everyone
can hear the customer’s feedback and questions. This is the ultimate way to perform the
testing so you keep everyone on the project synchronized on the state of the system and
issues the customer may be encountering or the discovery of new requirements.

 As projects increase in size, it becomes more difficult to have everyone participate
in the testing. Team members may be pulled away for production issues; and it can be
hard to coordinate the testing with a large group in the room, even in a large team room.

 What Acme does—and what we’ve seen many larger teams do successfully—is have
an analyst lead the UAT. The analyst leads the customer through testing all the fea
tures and includes the team members who worked on each feature. For example, the
Auctionator has one analyst assigned to it: Rich Jenkins. Rich spends 2 days going over
the features with Jay as Jay tests them. As they test each feature, Rich invites the team
members who worked on the feature to join them; this usually includes the designer
and the developer.

 Although not everyone is required to attend UAT, the meeting is an open invitation
to everyone on the team. The acceptance testing is performed in an open area adjacent
to the team, and everyone is welcome to stop by and listen in on the testing discussion.

20.6.1 Acme Media’s UAT approach

Some teams treat UAT as a free-for-all. These teams turn the customer loose and
let them do whatever they like with the system in whatever sequence they desire.
Other teams are more formal with UAT and go through the features one by one to ver
ify functionality.

 Acme Media chooses a hybrid model. Rich leads Jay through testing and analysis of
each feature, but then he turns Jay loose on the system to look at any area he desires.

 On some features, such as the auction engine, Rich also uses a light functional spec
ification to help with the testing.

20.6.2 Output from Acme Media’s UAT

Acme schedules 2 days for UAT, but the team wraps up their work with Jay after a day
and a half. The issues shown in figure 20.5 are recorded at the end of the session.

 Acme Media identifies several potential issues but nothing that prevents the iteration
from being releasable. Issue 2 could be a distracting user experience, but the system is
functional and Acme can put text on the posting screen that tells sellers it takes 10 min
utes for items to display.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

271 Changes in the business climate
Figure 20.5 Acme Media identifies five issues during UAT. The team doesn’t identify any
showstoppers for the iteration, but they do identify areas that require additional research
and potential features for iteration 2.

Acme will also consider resolving the search-engine issue in iteration 2. The issue is a
potential feature for iteration 2 because they haven’t yet compared it to the other pri
orities for the iteration.

 Team agility comes into play in the way the team manages issues during an itera
tion. The team uses their experience to determine whether an issue can be fixed
quickly and immediately or if the scope of the work is large enough to qualify as a new
feature that should be pursued in a subsequent iteration. In the instance of issue 2,
Roy thinks the work and research may take a day or so, and he asks that the work be
treated as a new feature.

20.7 Changes in the business climate
One of the things we tout in an agile environment is delivering the project needed at
the end, not necessarily what was requested at the beginning. If the business climate
changes during your project, you react and adapt.

 Acme encounters a small change in business climate during iteration 1. One of
their competitors, Craigslist, decides to allow merchants to post their own auctions.
The merchants can label their auctions as being from a dealer, and they could also list
business information in the auction.

 Acme Media has to decide whether this change lowers the attractiveness of the
advertisement space they’re going to offer merchants. Will a merchant still pay for a
contextual advertisement if they can post auctions for free on Craigslist?

 Jay, the product manager, does a few hours of research on the change and notes
the following:
Licensed to Abner Lopez <ihackn3wton@gmail.com>

272	 CHAPTER 20 Adapting: reacting positively to change

■	 Craigslist merchant auctions will be more attractive to mom-and-pop busi
nesses. These types of businesses don’t have a budget to buy contextual advertis
ing, so there should be no effect on Acme’s business plan.

■	 Merchants can still post auctions on Acme’s auction system. The only difference
is that the auction won’t have an attribute that labels it as being from a dealer. A
user can’t limit a search to dealer auctions.

■	 Merchants can still list their business information in the description field on
Acme’s auctions.

Jay concludes that the impact is minimal and the team should stick with the same busi
ness plan and feature set.

20.8	 Reviewing the findings and revising
the plan for the next iteration
Acme is ready to plan for iteration 2 when UAT is complete. Re-planning requires
Acme to review the following information:

■	 Team velocity—How many story

points did they complete? How many

can they expect to complete in itera
tion 2?

■	 Demonstration feedback—Did the dem
onstration identify any new work?

■	 UAT—Did Jay identify anything that

needs to be addressed in iteration 2?

■	 Features originally slated for iteration 2 at

the start of the project —Are these fea
tures still valuable based on what the

team learned during iteration 1?

These variables are shown in figure 20.6.

 Let’s take a moment to look at each variable.

20.8.1	 Evaluating team velocity

Acme estimated that the features for iteration 1 were worth 19 story points. Table 20.1
shows the estimates for each feature.

Figure 20.6 After you complete your first
iteration, you use discoveries and evaluation of
team velocity to adjust your plan for iteration 2.

Register on the site 3

Place an item up for bid 3

Bid on an item 3

Auction engine 8

Search by category 2 Table 20.1 Acme Media measures actual
velocity for the first time by seeing how many Total 19

Feature Story points

features were completed in iteration 1.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

273 Reviewing the findings and revising the plan for the next iteration

The team completed all the features in iteration 1, so they can say they average 19
story points per 2-week iteration with the current project team. Based on this real-
world throughput number, Acme says their capacity for iteration 2 is 19 story points.

 Acme’s capacity estimate for iteration 2 is based on a low sample rate—only one
iteration—which marginalizes the reliability of the estimate. The capacity estimate will
become more reliable over time as Acme delivers more iterations and the capacity
estimate reflects an average.

 What would have happened if the team hadn’t completed all the features in itera
tion 1? For example, what if the search feature needed additional work? Would the
team include only a portion of the story points toward the completion total? There
isn’t a blanket rule for how to approach this issue, but we suggest the following:

■	 If a feature runs longer than expected due to additional scope, and the original
scope is complete, record the story points in the completion number.

■	 If the feature stayed closer to the original scope/vision, and it isn’t complete,
then don’t record the story points in the completion sum.

Agile is all about adapting, and there is fine line in saying original scope; but you do
have to consider the scope you envisioned when you created your original estimates.

20.8.2 New work identified during the iteration

Acme identifies one new feature that it wants to pursue in iteration 2: an issue with
search crawling. Because this feature is new, the team doesn’t have an estimate for it,
so they review it as a group against the criteria they used to estimate the other fea
tures. As you may recall from chapter 8, Acme used a story-point model to estimate
features. A feature represents 1, 2, 3, 5, or 8 story points.

 Roy, the developer, looks at the potential feature during customer UAT and thinks
the work will be easy but will take a day or so to perform. When Roy reviews other fea
tures for the iteration, he thinks the search-crawl work is a little easier than the search
by-category work. Searching by category is rated at 2 story points, so Roy suggests that
the crawl work be rated at 1 story point. The team agrees with Roy, and the feature will
be reviewed with other open features to see if it will make it into iteration 2.

20.8.3 Features originally slated for iteration 2

Acme outlined an overall release plan before they began working on the features. The
original plan called for two iterations, with the minimal feature set needed to go live
in iteration 1 and secondary priority features in iteration 2. You can see features origi
nally slated for iteration 2 in table 20.2.

Purchase an item immediately 2

Feature name (ability to) Story points

Table 20.2 The initial plan for iteration 2,
Flag problem postings 2 before the discoveries from iteration 1
Licensed to Abner Lopez <ihackn3wton@gmail.com>

274	 CHAPTER 20 Adapting: reacting positively to change

Contact the seller 3

Create alerts for item type 3

Receive help online 5

Record seller feedback 5

View seller information 2

Feature name (ability to) Story points

Table 20.2 The initial plan for iteration 2, before
Total 22

the discoveries from iteration 1 (continued)

You’ll notice that we say originally slated. These features were considered valuable to
the system before Acme started. Now the team needs to re-evaluate the features
against three criteria:

■	 Are these features still valuable based on what the team learned during itera
tion 1?

■	 Are these features the same priority as new work discovered during the demon
strations?

■ Will these features fit into the story-point capacity for the iteration?

Acme’s project team reviews the features after the demonstrations. Jay, the customer,
feels that all the features are still valuable. The goals of the project haven’t changed
significantly during iteration 1, and Jay doesn’t see a reason to pull any of the features
from the original iteration 2 plan.

 Acme also identified one new feature during the iteration: they need to do some
work to improve the speed of search crawls. How will this work compare in priority to
the original iteration 2 features?

 Jay and the team review the features and discuss how much impact the slow crawl
speed will have on users. They compare the impact to the value the other features pro
vide, and they determine that the ability to flag problem postings is of lower priority. If
they need to reduce the feature set for the iteration, they will pull the flag feature
before the search-crawl improvement feature.

 Do they need to remove anything? Their capacity for an iteration is 19 story points.
If they include all the features originally targeted for iteration 2 plus the search
enhancement, they will be at 23 story points (see table 20.3).

Purchase an item immediately 2

Flag problem postings 2

Contact the seller 3

Feature name (ability to) Story points

Table 20.3 A potential
Create alerts for item type 3 new plan for iteration 2
Licensed to Abner Lopez <ihackn3wton@gmail.com>

275 Reviewing the findings and revising the plan for the next iteration

Feature name (ability to) Story points

Receive help online

Record seller feedback

View seller information

Search-crawl enhancement

Total

5

5

2

1

Table 20.3 	 A potential new
23

plan for iteration 2 (continued)

Acme could accept the additional points and try to squeeze them in, but that would
be going against an agile principle. Agile is all about transparency and honesty. If you
start fudging your numbers and saying you can exceed your capacity estimates, you’ll
soon be exceeding team capacity on a daily basis, and overtime will become a norm
rather than an exception.

 Another option is to extend the iteration. If you make the iteration 12 days instead
of 10, will you have enough capacity? How will that affect the numbers you use to
determine your capacity? How will you average the story points that come out of an
iteration if the number of days isn’t constant?

 Another issue with modifying your iteration length is the effect on the team. A
project has many variables around it, and you’re flexing and adapting to all the discov
eries. If you can keep iteration length consistent, the team can develop rhythm and
not have to adapt to variable iteration length.

 Our suggestion for this dilemma is to assign only the number of features you esti
mate you can process in the iteration, and then make the other features sideline fea
tures. If the team has more capacity than they expected, because a feature is cancelled
or is completed more quickly than expected, they can pursue a sideline feature dur
ing the iteration.

 Acme Media takes the sideline approach and chooses the most important features
that will take up the 19 story points available (see table 20.4).

Table 20.4 	 Acme Media revises the plan for iteration 2 based on the
discoveries during iteration 1.

In or sideline? Feature name (ability to) Story points

In

Sideline 1

In

Sideline 2

In

In

Purchase an item immediately

Flag problem postings

Contact the seller

Create alerts for item type

Receive help online

Record seller feedback

2

2

3

3

5

5
Licensed to Abner Lopez <ihackn3wton@gmail.com>

276	 CHAPTER 20 Adapting: reacting positively to change

Table 20.4 	 Acme Media revises the plan for iteration 2 based on the

discoveries during iteration 1. (continued)

In or sideline? Feature name (ability to) Story points

In

In

View seller information

Search-crawl enhancement

Total In

2

1

18

Acme has completed its adapt week by creating a revised plan for iteration 2. The
team is ready to perform the last iteration and then switch to delivery mode.

20.9 Key points
The key points from this chapter are as follows:

■	 Regardless of methodology, most projects have to deal with features running
late, technical limitations, missing requirements, or a change in the business
environment.

■	 Agile teams adapt to discoveries by performing diligent and collaborative analy
sis of issues.

■	 Adapting happens throughout a project, not only after demonstrations and
feedback sessions.

■	 How you adapt is usually tied to the priorities identified in your tradeoff matrix.
■	 You’ll re-plan between iterations. The re-planning is based on customer feed

back, discoveries, and evaluation of team performance.
■	 Interacting with the customer can be stressful for team members who don’t typ

ically lead discussions. You’ll need to slowly develop presentation and interac
tion skills with team members who don’t have interaction experience.

■	 You’ll encounter a variety of potential issues during your projects: customer dis
coveries, technical constraints, changes in the business world, issues with third
parties, and occasional problems with the team.

■	 Adapting at the end of an iteration concludes by revising the plan for the forth
coming iteration. You review the issues, determine which features are still valu
able to the project, estimate your capacity, and create an iteration plan that
supports your capacity estimate.

20.10 Looking forward
In this chapter, we discussed adapting during and after an iteration. When all your
iterations are complete, you’ll perform final preparations and deploy your code to a
production environment. Deployment and delivery are covered in chapter 21.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Delivery:
bringing it all together
 At this point you may be thinking, “Why are you talking about delivery?” Isn’t
delivery easy in an agile environment? After all, you make sure each iteration
is production ready. If each iteration is deployable, deploying should be a piece
of cake.

 The fact that your code is in a deployable state is a plus; but in reality, releasing
code can be a major effort. In some environments, releasing code can be more
complicated than building code.

 For the purposes of this chapter, we’ll discuss delivery from the perspective of a
complete project or release. We’ll look at deploying a set of features with a synchro
nized delivery to the production environment. This type of deployment is common
277

Licensed to Abner Lopez <ihackn3wton@gmail.com>

278 CHAPTER 21 Delivery: bringing it all together
for teams that release on a synchronized schedule, or when you deliver a project with
several interdependent features. This is the case with the Auctionator for Acme
Media: several auction features work together to bring value to the end user, so they
must be deployed at the same time.

 When you build code, you’re working with a small group, and it’s easier to manage
the project. When you release the code, you’ll affect end users, customers, marketing,
support, stockholders, stakeholders, training teams, and help desks. In some compa
nies, a compliance group must be engaged to release the code.

 In this chapter, we’ll go through all the steps that Acme Media (and potentially
you) may go through when deploying a project. You’ll complete your testing, prepare
support groups, train end users, turn on your marketing plan, and deploy the code
into the production environment.

21.1 When to release
A production release can be triggered by a deadline, by a predetermined release
schedule, or when there is enough value. You may also release to production to per
form a beta test of a product or application.

 Let’s take a moment to look at the various constraints that may drive the release of
your product.

21.1.1 To support a constraint

Four common project constraints are customer deadlines, regulatory requirements,
resource limitations, and competitor-driven deadlines. Let’s look at each.
SUPPORTING A CUSTOMER CONTRACT

Although contracts and agile development aren’t the best of partners, you may still
find yourself working with a customer who requires a contract. In these instances,
you’ll still use your tradeoff matrix to help the customer understand the compromises
required to support the fixed date. You and your team will focus on delivering to
the date.

 One of the agile principles is Customer collaboration over contract negotiations. If you
follow this principle, your customer will pay you iteratively as you deliver value and as
they develop a better understanding of their needs.

 When we coach agile teams, we emphasize this point. Our clients agree with the
principle but often tell us that they work in a contractual environment and that there
is no easy way to leave that environment. They can collaborate with the customer dur
ing the project, but there is still a looming contract deadline.

 We’ve seen this in our own work experience. In our early years of work, a sales or
marketing group would make an outlandish commitment to a customer to secure a
sale; then they would come visit our development team and tell us about the miracle
we had to pull off.

 In recent years, we’ve worked on contractual projects, but the sales teams have be
come more collaborative and involve the development team in the estimation process.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

When to release 279

This helps the team buy into the project and also minimizes over-commitment and the
potential for creating a death-march project (a project destined to fail).
SUPPORTING A REGULATORY DEADLINE

Projects are often driven by the need to meet a compliance deadline. In recent years,
many companies have scrambled to deliver projects that support the Sarbanes-Oxley
Act. In 1999, we all scrambled to deliver systems that supported Y2K.

 In the past five years, we’ve worked on compliance projects for Basel II (control
over financial reporting and supporting processes), the Health Insurance Portability
and Accountability Act (HIPAA; integrity and confidentiality of health records), and
Hazard Analysis and Critical Control Point (HACCP). Regulatory compliance is a proj
ect reality for many teams.
SUPPORTING A FINANCIAL OR RESOURCE DEADLINE

Larger projects require a commitment of capital funds, and the fund commitment is
usually tied to a budget. In these instances, a project must be completed before the
funding expires.

 You may also find that you have a budgeted amount of time for the project
team. This is usually true of consulting resources or shared resources within your
company.
MEETING A DEADLINE FROM YOUR COMPETITION

One of the main strengths of agile is helping you quickly deploy functionality to catch
and overcome a competitor. You’ve seen this in action with the Acme Media case
study. Acme Media needed to catch its competitors before the company’s merchan
dise site became obsolete.

 Deadlines related to a competitor aren’t usually date specific but are focused on
delivering enough functionality and excitement to make customers reconsider your
product. Acme Media has followed this approach, and the first release of the Auction
ator will stop the bleeding; subsequent releases will allow Acme to separate itself from
the competition.

21.1.2 To meet a predetermined schedule

Many companies release new products on a regularly scheduled basis. Greg’s
current team releases a new product every 7½ weeks. The great thing about a regu
lar release schedule is it gives you one solid reference point in a world of mov-
ing parts. The team acclimates to the deployment cycle, and the customer knows
there is always another bus coming if a feature request doesn’t make it into the cur
rent release.

 A fixed-release schedule also works well with a product backlog. You can see an
example in figure 21.1.

 If you release products consistently, you’ll review the backlog consistently and
develop a rhythm for evaluating features and scoping the forthcoming release with
the customer.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

280 CHAPTER 21 Delivery: bringing it all together
Figure 21.1 Many teams follow a predetermined release schedule to provide rhythm for the team and
the customer. A predetermined schedule lets you schedule iterations in advance and also removes
customer anxiety when a feature isn’t completed in a given release. The customer knows the “bus
schedule” and can get their feature on the next bus.

21.1.3 When there is enough value

The preferred method for releasing any project is when your customer says there is
enough value to deploy. Because customers are highly involved in agile projects, they
can say whether enough value exists at the end of each iteration.

Why not release every iteration?
The potential complexity of releasing explains why teams seldom deploy each devel
opment iteration. Releasing each iteration can be expensive, and the cost of doing
so needs to be justified. The expenses can include additional labor and blocking cus
tomers from accessing the system during deployment.

The Acme Media team didn’t deploy their code at the end of iteration 1. Iteration 1
provided enough core features to support a minimal system, but Jay, the customer
advocate, wanted the team to spend two more weeks completing the secondary fea
tures so that a robust system could be deployed. From Jay’s perspective, they have
Licensed to Abner Lopez <ihackn3wton@gmail.com>

When to release 281

Why not release every iteration? (continued)
only one shot to get their customers back from the competitors, and Jay wants the
system to provide a solid user experience. The features provided in iteration 2 will
support that goal.

Acme Media also understands the expense of deploying. Although many of Acme’s
publishing systems support real-time deployment, the architecture of the Auctionator
is more complicated and requires a unique deployment plan and additional mecha
nisms for operations and support.

Some agile teams use charts to indicate how much value has been delivered. These
charts are a great visual for the team and help support common understanding of sta
tus, but determining whether there is enough value to deploy is a subjective exercise.
We frequently find that the customer makes the decision to deploy based on their per
spective of status as much as what our tools indicate.

21.1.4 To test the product

In theory, you don’t deploy until the product is stable, but in some cases you have to
deploy to validate stability. Sometimes you deploy to the production environment
because you can’t simulate the final experience within your test environments.
For example, how many companies can afford to have a load balancer in their test
environment? How well can a load simulator emulate a real user? How many PC con
figurations can you simulate in your test environment?

 All the tests you do before you go live try to emulate what will happen when you
deploy. But at the end of the day, there is no way to be 100 percent sure what will hap
pen until you put the code out there.

 In recent years, we’ve worked with many teams that understood this reality and
designed soft launch plans to test the code in production. Note that these teams didn’t
expose the functionality to all users but to a small subset who piloted the functionality
and provided feedback.

Making sure a constraint is real
Understanding constraints in detail often reveals that the constraint isn’t as demand
ing as you imagined. We’ll illustrate with a story from Greg.

Greg recently worked on an intranet application with his team. They were given a
deadline for turning a new application over to their customer, and they began deliver
ing iterations to prepare for deployment. As the deadline drew near, they identified a
shortcoming in the design for load balancing. The issue would make it impossible to
send email alerts to users. They revisited the design, came up with a workable solu
tion, implemented the design, and began testing. Unfortunately, this last-second
change cut into the team’s burn-in period. They wanted to run various performance
tests with the system before deployment, and they estimated a month for this work.
After the design change, they had only 2 weeks left.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

282	 CHAPTER 21 Delivery: bringing it all together

Making sure a constraint is real (continued)
The team spoke with the customer and found they had only one true deadline. Part
of the functionality the team was delivering was to support a feature that was being
lost when a vendor’s data center was shut down. If they could deliver that function
ality as scheduled, they could continue to burn in and test the system and then de
ploy all features 2 weeks later than scheduled. That is exactly what they did.

Companies like Microsoft do this for every major product release. They offer the
product to a beta group with limited support and noted risks, and then they review
the feedback that comes in. Subsequent releases involve major customers and larger
groups; then the product is released to the public at large.

21.2 Final testing
Although every iteration is a releasable subset of the product, you still have to com
plete final testing before deployment. Potential areas for final testing are as follows:

■	 Functional testing of the last development iteration —You test code as it’s iteratively
delivered during a development iteration, but you may still need time to com
plete functional testing of the final features.

■	 Final User Acceptance Testing (UAT) —Some teams must go through a customer
acceptance process before deployment. You may have to do this for regulatory
reasons or because of the way the software development lifecycle is managed in
your company.

■	 Final performance analysis —Many teams also do final performance testing before
releasing. The last iteration allows us to test performance across all features and
identify areas that may affect usability.

Before we look at each of these tests in detail, let’s discuss the relationship between
quality level and the release decision.

21.2.1 What about quality level?

We’ve sat through many bug-review meetings where we discuss bug criticality level,
potential workarounds, and how much the bug affects usability. We also estimate how
much work is required to fix the bug. If a bug will take more than a few minutes
of work, we label it a feature and then prioritize it with the other features in the cur
rent backlog.

 In the early days of software projects, we had hard rules like “We won’t deploy with
any level-3-severity bugs.” This was a nice rule, and we tried to follow it; but at every
release, push came to shove, and we had to make the call about whether to miss our
date or let some level-3 bugs go out with the deployment.

 We’d love to tell you how agile makes this decision easy, but even agile has limited
influence on the release decision. No matter what methodology you use, there will
always be questions about whether quality is good enough to allow deployment. The
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Final testing 283
good thing about agile is we have baked in quality with each iteration so there should
be fewer issues with the quality level.

 Related to this question, we’re amazed that we can still find articles on the internet
today that look at this quality-level question from a binary perspective. We recently
read an article by a person with a significant development background, who said they
would rather ship late than risk putting a buggy system into production. We appreci
ate this perspective and consider the thought noble, but we have trouble supporting it
from a real-world perspective. We’ve worked at several startups, where the difference
between shipping on time and delaying for improved quality can mean closing the
company doors. Customers may go somewhere else, and investors may pull funds.

 Conversely, we’ve worked on projects where the company wasn’t at risk, but we felt
pressure to release early and put out a product so buggy that it hurt our reputation
and affected future sales.

 Agile does help with this dilemma by directly involving the customer in the release
decision. You don’t have to guess what the customer would say; they tell you directly,
and that has an impact on your decision. In cases where the customer is represented
by a proxy, such as a product manager, the decision becomes more difficult. In these
instances, the project team and stakeholders focus on understanding each other’s
point of view and then reaching a consensus. On rare occasions, we’ve seen teams
truly split on what to do; in those cases, a person such as the platform owner makes
the call about whether to deploy.

21.2.2 Completing functional/usability testing

Although you test iterations as you go, you may do slightly different testing before
releasing. You may do tests outside of the team, such as usability testing and experi
mental testing. When you’re part of the team, you know the requirements, and you’re
always looking to test against that vision. People outside the team haven’t been pre-
programmed on what to expect and will find things you never thought of.

 Usability testing involves bringing in members of your target audience and watch
ing them use the application, frequently without instruction. The testers may be given
light instruction of the ultimate goal, but you try to turn them loose to see if they use
the system the way you intend them to. You do usability testing during iterations too,
but that testing may be limited to prototypes and workflow simulation.

 One of the interesting things about usability testing is you don’t always act on the
discoveries. For example, if a user will use a feature multiple times per day, you may
want to see how they adapt to a feature after using it several times.

 Acme Media also has a good way to do experimental testing with minimal expense.
As mentioned in chapter 20, they invite the entire company to join in a bug stomp.
The team prints out test scenarios and asks everyone to test a use case. If an employee
finds an issue, they email Jay, the product manager, who determines whether the sys
tem is acting as designed or whether the employee has discovered a true defect. This
exercise is also a great way to spread product knowledge throughout the organization.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

284	 CHAPTER 21 Delivery: bringing it all together
21.2.3 Completing the user acceptance process

Although you’ve demonstrated the product to the customer during each iteration, it
isn’t uncommon to have a final approval process prior to releasing. Common reasons
for final acceptance testing are as follows:

■	 This is the first time the customer has been able to view the entire system.
■	 The project is tied to a contract that necessitates validation of requirements.
■	 The demonstrations to date have been with a customer advocate, and there is a

desire to expose the system to a broader audience of end users.

Acceptance testing can follow many formats; see section 20.6 for more details.
 After the customer verifies functional requirements, you need to make sure non

functional requirements are also supported.

21.2.4 Validation of nonfunctional requirements

Before you release, you need to make sure the underlying system performs as
required. System requirements are frequently overlooked by the customer, and the
project team can coach the customer in determining nonfunctional requirements.

 System requirements don’t match up to a user story or specific functionality;
instead, they represent the overarching ability to support service requirements. For
example, Dairy Queen may have to support a user story where a customer orders and
receives an ice cream cone. The user story steps may include customer orders the cone,
employee creates the cone with the ice cream machine, and the employee delivers the cone. The
user story meets the needs of one user, but it doesn’t say how many ice cream cones
the system can support during a day. How many cones you must deliver in a day is an
example of a nonfunctional requirement.

 Nonfunctional requirements are as critical as the ability to support a specific user
story. If the system fails, you won’t be able to support any user stories.

 Experienced customers understand the importance of nonfunctional require
ments, usually because they have paid the price for not specifying them in the past.
These customers provide service-level requirements that are used to create a service-
level agreement (SLA). The SLA helps the customer and the team reach agreement
about realistic expectations of the system.

 Here are some common areas to validate before going live:

■	 System availability—How much downtime is acceptable for system maintenance
and system issues? If the system goes down, how long is acceptable? This num
ber is usually specified as a percentage, and this percentage maps to the num
ber of hours a system can be down in a given time period. Acme Media has a
platform availability target of 99.5 percent. This means the company’s sites can
be down for approximately 400 hours in a year.

Note that increasing uptime percentage usually increases platform expense.
For example, Acme Media feels it can support 99.5 percent uptime with its
existing platform. If Acme wanted to pursue an uptime of 99.9 percent, the
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Final testing	 285

company would have to double the number of servers used and implement
a complicated redundancy system. In effect, this would double the cost of
the infrastructure.

■	 Data-recovery requirements —If the system goes down, how much data can you
afford to lose? The metric for data recovery is Recovery Point Objective (RPO),
which is specified as the number of minutes of data that can be lost during a
failure. Acme Media determined that it can accept 10 minutes of data loss for
the Auctionator.

■	 Downtime for a given failure —System availability relates to how much time you can
be down for a given timeframe. Your Recovery Time Objective (RTO) specifies
how long you can be down for an individual failure. Many companies have a sec
ond environment they can switch to in case of a failure. The RTO usually ties to
how quickly you can switch to the Disaster Recovery (DR) environment. RTOs can
range from a few minutes to a few hours, depending on the criticality of the system
and how much money your company can invest in a recovery system and process.

■	 System response time —When a user requests a page, how long should it take for
the system to respond? How long is beyond your usability threshold?

■	 Maximum concurrent users supported —What is the maximum number of users that
can access the system at one time before performance begins to degrade? A
recent example is from the 2007 holiday shopping season. Macy’s website
couldn’t support the surge in traffic it received during the holiday season, and
potential customers were welcomed with a web page saying “We’ll be right with
you” (see figure 21.2).

■	 Archive and purging requirements —Over time, your system may become loaded
with historical transactions and other data. How long does this data have to be
available to the system? When you remove it from the system, do you have to
store it for a period of time because of regulatory or other requirements? Acme
Media doesn’t have a regulatory need to store the Auctionator transactions, but
the company thinks it will be prudent to keep the log files for 1 year in case
there are any questions.

Figure 21.2 Nonfunctional requirements, such as the maximum number of users that can be
supported, are just as important as the features themselves. Macy’s probably has a great user
experience behind this screen; too bad the system can’t take any more customers at this time.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

286	 CHAPTER 21 Delivery: bringing it all together

In many cases, nonfunctional requirements are determined by the company provid
ing the service (you) versus an individual customer. For example, Acme Media’s prod
uct manager identifies the nonfunctional requirements for Acme Media’s platform
based on what he feels will be acceptable to customers.

21.3 Preparing support groups and processes
Whether you use agile or not, all projects need to have support processes in place
before you go live. The main difference with agile projects is you think about mainte
nance and support starting on day 1 of the project. Agile teams often use a template to
record maintenance concerns along the way. Let’s look at an example.

21.3.1 The running maintenance and support worksheet

Acme Media labels its maintenance scratchpad the Maintenance and Support Work
sheet. The Acme team noted their first maintenance concerns when the product was
being examined for feasibility, and they recorded their final maintenance concerns
during the last development iteration.

 Some typical items recorded on a maintenance worksheet are as follows:

■	 Location of supporting documentation —Acme stores its support documentation on
a network drive.

■	 Marketing information —This information may include a marketing plan or other
information related to publicizing the application you’re about to release. Note
that marketing a project goes beyond external customers. If you’re delivering
an internally consumed application, you should still look for a way to advertise
it to your users. This may include discussions at user group meetings or a
notice/advertisement on your intranet.

■	 Known issues or limitations —What bugs or defects will be outstanding when you
go live? Document these for support people and to make sure they’re included
in your help documentation.

■	 Support for analytics —Many companies use an analytics tool such as Sage Analyst
or WebTrends.

■	 Supporting jobs and processes —What jobs need to run nightly, weekly, or at other
intervals to maintain the system? For example, the Auctionator requires a job
to send out nightly email alerts to users who want to be notified only one time
per day.

■	 Archiving —Production systems can become bloated with old data if they aren’t
purged frequently. Acme Media establishes a nightly job to archive transactions
that are 1 year or older.

■	 Search support —Many applications have a search engine tied to them. You may
want to update the search engine for the application or feature you’re about to
release.

Acme’s completed worksheet appears in table 21.1.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

287 Preparing support groups and processes

Table 21.1 Maintenance concerns are recorded through all phases of a project via the maintenance
worksheet.

Maintenance and Support Worksheet

Location for supporting documentation N:\acmemedia\open\Marketing\OLA

Marketing URLs http://www.acme-media.net/OLA

Known issues and limitations Defect #1211: Auction doesn’t refresh with Firefox v1.12

Redirects http://www.acme-media.net/merchandise to
http://www.acme-media.net/OLA

Analytics tracking This project should be tracked as a new channel called “online
auction service”

Support jobs Nightly archive of auctions older than 1 year
Email alert job for daily and weekly alerts

Support and help articles See help functionality delivered in iteration 2

Archiving Auctions older than 2 years to be stored in
/acmemedia_working/archive/auctions/

Search indexing Add keywords for quick hits on auction, classifieds, merchandise

Just like the other templates we’ve discussed in this book, you can use your worksheet
as a starting point and then modify it to match the maintenance areas you need to
track during a project.

21.3.2 Finalizing help materials and support processes

Acme Media treats its end-user help materials as a feature and delivers them in itera
tion 2. This is common with online web applications, where minimal user help is pro
vided. In other environments, you may have a person or team dedicated to technical
writing and the creation of support materials.

 Acme’s help desk also has an escalation path so they can pass an issue to the devel
opment team if the issue can’t be addressed with their help documentation. If the
issue isn’t severe, the help desk sends an email to the team. If the issue is severe, the
help desk has a call tree and can work their way through it until they can find a person
to work the issue.

21.3.3 Enabling system monitoring, and creating an escalation process

Most companies monitor their networks to make sure the infrastructure is up and run
ning. This includes monitoring database activity and server performance. In addition,
many companies have tools in place to measure the user experience, including page-
response time and application availability.

 Acme Media uses a tool for measuring and monitoring the user experience. This
tool, HP SiteScope, emulates a web browser and identifies potential issues before users
are affected. Acme modifies the configuration of SiteScope so it will monitor various
aspects of the Auctionator and trigger alerts to the team if potential issues are identified.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

288	 CHAPTER 21 Delivery: bringing it all together

 After you’ve established monitoring, you need to outline a process for managing
alerts. Acme Media has a standard triage process for alerts so the correct people are
notified if an alert is triggered by the Auctionator. Non-severe alerts go to the develop
ment team inbox. Critical alerts go to the development team and support team
inboxes, and the support team calls development if they don’t receive a response
within a specified period of time.

21.3.4 Enabling maintenance and background processes

Acme Media notes two jobs that need to run to support the Auctionator: the first job
archives auction transactions that are more than a year old, and the second sends out
alerts to potential buyers on a daily and weekly basis.

 The software projects you pursue may have many background process needs. In
addition to the ones Acme Media identified, you may need support jobs for expiring
content, data-warehouse population, reporting, refreshing content or data-search
crawling/indexing, or pre-building cache on your servers.

21.4 Communication and training
Agile development understands the importance of communication, and that is why
you put team members in close proximity to each other. It’s also important to commu
nicate with individuals who aren’t a direct part of the project team. Let’s look at a few
typical messages communicated during a project.

 Table 21.2 lists potential audiences and messages for a given project. To give you
context, we’ve listed the audiences and messages that Acme Media addresses during
the Auctionator project.

 Acme Media has a diverse group to communicate with, but you may have addi
tional groups unique to your project. For example, if you work in a regulated industry,
you may have to communicate to governing bodies such as the FDA and OSHA. You
may also need to create communications that validate Sarbanes-Oxley (SOX) compli
ance for your project.

Table 21.2 Acme Media outlines its training and communication plan before going live.

Audience Message or training needed

End users:
■	 Current users of the merchan

dise site
■	 Users lost to competitors

Paying customers:
■	 Merchants

■	 Notify users that the current site is being decommissioned
and that they can begin using the auction site, for free, on
September 21.

■	 We need to advertise the new auction service on our other
websites (news and travel). Marketing will also run a TV
advertisement.

■	 We need to notify merchants that they have a new, tar
geted advertising option.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

289 Ready to release

Table 21.2 Acme Media outlines its training and communication plan before going live. (continued)

Audience Message or training needed

■	 We need to train the sales team so they can sell auction
site advertising to merchants.

■	 Send a notice to all employees outlining why we’re doing
the project and when it goes live.

■	 Orient the help desk on the new functionality, alert them to
when we go live, and make sure they have a clear under
standing of where and how to route issues.

■	 Alert the network team so they can change DNS and add in
the new URLs for the auction system.

■	 Have the advertising team program the new advertise
ments to begin showing up on the Auctionator site when
we go live.

■	 Make sure the web analytics team has our new URLs and
the categories associated with them so we can analyze
traffic on the new auction site.

■	 Meet weekly with the sponsor to discuss status.

Internal employees and stakeholders:
■	 Internal sales team
■	 All employees
■	 Help desk
■	 Environment support

Support groups:
■	 Advertising support team
■	 Analytics

Stakeholders’ sponsor:
■	 CIO

The Auctionator is a medium-size project for Acme Media, so the communication
required is also at a medium level. Acme chooses the level of documentation needed
for each project based on variables such as audience size, project duration, and the
level of ceremony required. You should do the same on your projects.

21.5 Ready to release
Now that you have all the support areas and processes ready to go, you need to make
the final decision about going live and then plan the deployment steps in detail.

21.5.1 Deciding to go live

Although every iteration you deliver is deployable, teams often need to obtain
approval from customers, stakeholders, support groups, network teams, testers, and
change-management groups before deploying code to a production environment.

 We’ve covered common go-live criteria in this chapter. You’ll consider code stability,
outstanding defects, readiness of support groups, system performance, and user read
iness. You can analyze these areas from a statistical perspective, but the ultimate decision
may be based more on how you feel about the project than on empirical statistics.

 Acme Media analyzes the state of its project. The team, the customer, and the
sponsor all agree to go live, noting only one concern: the auction functionality
doesn’t work correctly with an older version of Firefox. The team reviews server-log
information and determines that few users have the old Firefox version. They also
Licensed to Abner Lopez <ihackn3wton@gmail.com>

290	 CHAPTER 21 Delivery: bringing it all together

note that the version isn’t included in their list of officially supported browsers. You
can see Acme Media’s implementation checklist in table 21.3.

 This discussion may seem simple for a go-live discussion, but it’s important to
remember that Acme Media is working in an agile environment now. The company
has been building and stabilizing the product with frequent builds and iterative cre
ation of features. Acme works to make each iteration solid, so a go-live conversation is
closer to a formality than a requirement. There shouldn’t be many surprises or
unknowns at this time.

 Now that you know you’re going forward, let’s plan the deployment steps.

Table 21.3 	 An implementation checklist helps everyone grasp the state of the project and contribute
to the go-live decision.

Questions Yes No

Have all the requirements in scope been met?

If not, has agreement been reached for those elements not satisfied?

Does the product support segregation of duties—the division of roles and responsibilities to
reasonably prevent a single individual from subverting a critical process?

Are there any business or regulatory changes that would prevent implementation of the
product(s) of this project?

Do you agree to accept all documented risks associated with deploying this product? This
may include potential risks to existing systems or business operations.

Do you understand the outstanding defects and their possible consequences as described
in the Technical Test Results (as applicable) and in the User Acceptance Testing results?

Are all employees who will use or support or be otherwise affected by the product(s) pre
pared for implementation?

Do you agree to move the product(s) into implementation?

Has all User Acceptance Testing been completed?

Have all business functions specific to this application been tested?

Have all SOX control tests relevant to this application been tested?

Have all nonfunctional tests been completed?

Has performance testing been completed, including load, stress, and capacity testing?

Has security testing been completed?

Has recoverability testing been completed?

Has usability testing been completed?

Have workarounds for known defects been documented and communicated to all affected
parties?

Have all the required Business Continuity (BC) / Disaster Recovery (DR) deliverables been
successfully completed?
Licensed to Abner Lopez <ihackn3wton@gmail.com>

291 Ready to release
21.5.2 Planning the deployment steps

You may remember that during the development iterations we discussed code com
pleteness. You make sure the code can be demonstrated, that it is tested, and that it
supports nonfunctional requirements. Many features also require you to design a pro
cess for their deployment. This process may require that you write scripts and config
ure the system to support the new feature. In our experience, deployment scripts and
processes are a part of the deliverables during a development iteration.

 When you deploy your iterations to the production environment, you need to cre
ate an overall process and sequence for deploying the features.

Yes, you can deploy instantly
You may be reading this chapter and thinking, “This is ridiculous. We release code
every few days!” We’re sure this is true for many people.

This chapter is focused on a medium-size project, and we’re implying a certain level
of ceremony to give you a feel for the options available during a deployment. We’ve
worked in environments where we deployed new features daily (an online newspaper),
and we’ve worked on projects where it took a year to deploy (software for medi-
cal devices).

Deploying quickly is a good thing. The sooner you get your code in place, the less chance
there is that you’ll miss the need or opportunity. But if you work on larger projects,
you may find interdependencies between features, and deploying may not make sense
until the bulk of these features are in place. We’re demonstrating this model with Acme
Media in hopes of helping you when deployment becomes more complex due to a larger
audience or dependencies on outside groups.

Many times your architecture will influence the process you use. This is true with Acme
Media. Acme developed its deployment process around two realities of the production
environment. Let’s look at the realities Acme Media had to take into consideration.

21.5.3 Deployment considerations

Acme Media developed its deployment plan around the realities of the company’s
environment. Let’s look at unique areas for Acme Media.
ARCHITECTURE

Acme’s architecture has two elements that influence the deployment plan:

■	 Disaster recovery —Acme maintains a DR environment to fail over to in case of an
emergency. This backup system is maintained in a data center across town.
Acme always deploys to the backup center first as an additional test of the code
and as a test of the deployment plan.

■	 Load balancer—Acme uses a load balancer to equalize the load across the com
pany’s servers and to ensure the site stays up if one server goes down. Acme uses
the server pool during deployment to allow the site to stay up while new code is
installed onto each server.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

292	 CHAPTER 21 Delivery: bringing it all together

SAFE WINDOW TO DEPLOY

Acme must also consider other variables when choosing the day and time for deploy
ment. The team goes over the following checklist to determine the best window:

■	 Holidays—Acme avoids deploying on holidays because support groups aren’t
available.

■	 Other deployments—The team chats with other departments to make sure they
aren’t doing deployments or infrastructure work that could block a deployment.

■	 Resource availability —Acme has to make sure the types of employees needed for
deployment aren’t on vacation or in training during the deployment window.

■	 Blackout windows—Acme has windows of time where deployments aren’t
allowed. These windows usually correspond to month-end or year-end financial
processing.

■	 User activity—Acme times releases so there is minimal affect on users. This
means avoiding peak usage windows in case an issue is encountered.

Although it doesn’t affect Acme Media, we’ve worked with teams that deploy only
when the customer is available to test the product in the production environment.
MIGRATION AND CONVERSION

The Acme Media team doesn’t have to worry about migrating or converting data
when they deploy, but they do have to create a plan for phasing out and decommis
sioning the old merchandise site.

21.5.4 Creating a deployment and backout plan

Acme Media creates deployment scripts and processes as a part of code delivery dur
ing the development iterations. The team reviews these scripts during deployment
planning and also lays out a logical sequence for running the scripts.

 Acme uses a collaborative process to create a deployment plan for each release.
Wendy, the project manager, organizes a meeting to discuss the timing for deploying
the code.

 In the spirit of being agile and productive, Acme doesn’t follow the same exact
process for each deployment. For example, the load-balancer architecture allows
Acme to deploy to the production environment without blocking user access to the
system. Individual servers can be removed from the load-balancer pool and then rein
serted after they’ve received the new code. When the team has a slight change to
make to the production environment, they do it during normal hours and without
splashing the site (see table 21.4).

 When the Acme team outlines the deployment plan for the Auctionator, they con
sider the complexity of the deployment scripts, the time needed to put the code into
production, and the risk associated with the deployment. They also consider the com
plexity of backing out the code if an issue is encountered. They decide to do a deploy
ment in the evening when website traffic is down, so that if an issue is encountered
there will be minimal impact to site visitors.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

293 Ready to release

Table 21.4 Acme Media’s deployment plan for the Auctionator

Time Activity Expected result Action
Go/no-go
decision

Owner

5:00PM Back up SQL Databases DBA verifies that Stop deployment. Aaron
7:45PM Server databases. backed up suc

cessfully.
database backup
is complete.

1:00PM Begin server pre- All servers Ensure servers QA confirms the Jim/Gina
4:00PM validation (restart)

of all servers.
restart success
fully.

are ping-able /
apps online.

functionality
works via BVT.

7:45PM Run SQL script,
and remove SQL
hardening.

Script runs suc
cessfully.

DBA verifies that
script completes
without errors.

Rerun script. Aaron

8:00PM Remove Set A pro
duction servers
from application
pool.

Set A servers
aren’t accessi
ble via FQDN .

Ensure all Set A
servers aren’t in
the load-balancer
pool.

Confirm all Set A
servers aren’t
accessible.

Jim/Gina

8:05PM Clean up and
deploy Auctionator
code to Set A pro
duction servers.

New Auctionator
code functioning.

Ensure correct
Auctionator ver
sion was installed
to each server.

QA confirms new
functionality
works as
expected.

Jim/Gina

8:50PM Add Set A produc
tion servers back
into application
pool.

New Auctionator
code functioning.

Ensure all Set A
servers are back
in the load-
balancer pool.

QA confirms new
Auctionator func
tionality works as
expected.

Jim/Gina

9:30PM Remove Set B pro
duction servers
from application
pool.

Set B servers
aren’t accessi
ble via FQDN.

Ensure all Set B
servers aren’t in
the load-balancer
pool.

Confirm all Set B
servers aren’t
accessible.

Jim

9:30PM Clean up and
deploy Auctionator
code to Set B pro
duction servers.

New Auctionator
code functioning.

Ensure correct
Auctionator ver
sion was installed
to each server.

QA confirms new
Auctionator func
tionality works as
expected.

Jim/Gina

9:35PM Apply redirects to
old merchandise
site URLs.

Verify redirects to
auction site.

Ryan

10:35PM Verify merchant
ads are serving
correctly.

Gina

12:10AM Reapply SQL hard
ening.

Gina/
Aaron

12:30AM All sets added
back in; announce
deployment.

Wendy
Licensed to Abner Lopez <ihackn3wton@gmail.com>

294 CHAPTER 21 Delivery: bringing it all together
Acme Media will also have a chance to test the deployment plan when the team
deploys the Auctionator to the DR environment.

21.5.5 Reducing risk with a pilot

Acme Media minimizes deployment risk by deploying to the DR environment first.
Many teams don’t have a DR environment and need another way to test with minimal
risk. For these teams, a pilot deployment or soft launch can start an iterative deploy
ment process.

 You can perform a pilot by deploying to your production environment but limiting
access to a small audience. The small audience provides feedback and is aware of the
risks that come from piloting, such as limited support and the possibility that their
data could be lost. A pilot is also frequently used on projects where quality is the num
ber-one priority.

21.6 Enough planning; let’s deploy
As we mentioned in an earlier sidebar, deployment can happen relatively quickly on
smaller projects or where the architecture lends itself to a quick process. The Auction
ator will take several hours to deploy, so the team will do it in a collaborative fashion.

 Acme Media’s team members sit relatively close together at their desks, but for
deployments they all go into a conference room and sit at a table face to face. This
setup allows the team to tell each other when they’re finished with a step during the
deployment. It also accelerates troubleshooting if an issue is encountered. The whole
team can hear the issue at once, and each team member can investigate the issue from
a different angle.

 If you saw the movie Apollo 13, you may remember the scene in which the crew
experienced an issue and alerted ground control. In real life, flight director Gene
Kranz asked each group to analyze the problem from their perspective. One person
investigated a potential sensor malfunction, another person looked to see if the issue
was consistent across all systems, and another person tried to figure out what was
going on by studying the biosensors on the astronauts.

 When we participate in deployments, we see similar troubleshooting methods
when we encounter an issue. For example, if a web page isn’t displaying correctly, the
user experience designer verifies that the stylesheet installed correctly, a network engi
neer verifies that the web servers are running, and an implementation engineer veri
fies that the database scripts run correctly.

 When Acme Media completes its deployment, Wendy sends out a notice to the
company so everyone can prepare to support the new application.

21.6.1 Celebrate!

Acme Media doesn’t have a history of celebrating deployments. Many of the com
pany’s projects never reached completion, or teams weren’t proud of the work they
did release.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Key points	 295
 The Auctionator is one of Acme’s best accomplishments. For once, Acme isn’t
deploying features that provide minimal value, and they’ve also hit their timeline for
deploying the critical features. Acme is also happy because the whole team agrees that
the project was valuable and worth pursuing.

 When you deliver a project like the Auctionator, you need to celebrate. Although a
lot of people say “it’s just work,” we all put a lot of personal effort into delivering a
project, and we take pride in what we’ve overcome and what we’ve delivered. It’s
important to celebrate the achievements of the team, the issues that were resolved,
and the fact that you delivered the functionality that was needed at the end. It’s also a
moment for management to tell employees that their work is valued and important.

 Every company has a different way of celebrating, whether it’s a party or an offsite
gathering. The critical piece of the celebration is timing: you should celebrate while
the project is still on everyone’s mind, before you shift to the next project. We’ve
worked on several projects where we couldn’t find time to celebrate at the end or
delayed the celebration for one reason or another. In those instances, the celebration
seemed a little hollow and staged, and we’d forgotten some of the hard work we per
formed and why we were entitled to a celebration.

 You’ve probably been to celebrations where a group of people congregated in a
corner and started whispering, “Why are we celebrating? Were we really successful?”
Many projects take off without clearly defining what success means. You may recall
that you avoid this issue by defining success when you go through the feasibility discus
sion guide, discussed in chapter 10. The celebration is a great time to revisit this list.

 Acme Media defined success as stopping the steady decline of customers to eBay
and Craigslist and increasing site revenue by adding merchant target advertising.
Acme celebrates a few days after deployment and doesn’t have significant data to
determine if customers are returning. But the company does have a list of merchants
who’ve signed contracts for targeted advertising. These merchants were pursued as
the project was being completed, and the initial number that signed up for the adver
tising program is in synch with the numbers Jay envisioned for the first month of the
new site.

21.7 Key points
The key points from this chapter are as follows:

■	 You create software in deployable units during each development iteration, but
you don’t deploy after every iteration because of the ceremony required to
release. Your environment may make it easy to deploy code, but many software
projects require training, communications, and final acceptance testing before
features can be released.

■	 Code can be released to support a deadline, according to a predetermined
release schedule, or when the team and customer agree there is enough value
to deploy.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

296	 CHAPTER 21 Delivery: bringing it all together
■	 For many companies, additional testing and validation must take place before
releasing. This can include final functional testing and testing of nonfunctional
requirements such as system response time.

■	 Many companies overlook validation of nonfunctional requirements. Such
companies frequently fail dramatically during a product release.

■	 Many projects require the creation of new processes and documentation for
support. You create the support processes and train your support team on them
before deployment.

■	 Many teams need to document their go-live plan, especially when deploying
new technology. This plan integrates the deployment and configuration steps
created during each iteration.

■	 You may find it valuable to iteratively roll out your project to the audience it’s
intended for. A pilot or beta group can assist with this iterative process and
reduce deployment risk.

■	 If your team doesn’t use a team room on a daily basis, establish one for the day
of deployment. Having everyone co-located during deployment helps resolve
issues quickly by collaboratively working the issues.

■	 Always celebrate your projects quickly after deployment. It’s easy to get dis
tracted once you go live, either due to go-live issues or pursuit of the next proj
ect. If you don’t celebrate, you’ll dilute your accomplishments and possibly
reduce team morale.

21.8 Looking forward
In this chapter, we discussed delivering and celebrating. You also need to stop and
reflect on what went well and what could be improved. You’ll do this with a project ret
rospective, which we’ll cover in chapter 22.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

The retrospective:
working together

 to improve
Insanity: Doing the same thing over and over again
and expecting different results.

—Albert Einstein

All agile methods, whether Scrum, Extreme Programming (XP), or custom, sup
port stopping to reflect on the process on a regular basis. A project retrospective
normalizes the team on the issues encountered and provides an opportunity for
improvement, which everyone desires.

The inherent flaw with retrospectives and postmortems is they often turn into
complaint sessions, and participants leave without a clear plan of attack. This chap
ter provides a process to eliminate these problems.

 First, you’ll give participants time to reflect on the project before the retrospec
tive meeting. Second, you’ll collect opinions from the team before the meeting,
aggregate the information, and publish the results back to the team to review
before the meeting. Finally, you’ll prioritize the issues identified during the retro
spective and post them prominently in the team work area.
297

Licensed to Abner Lopez <ihackn3wton@gmail.com>

298	 CHAPTER 22 The retrospective: working together to improve

 In this chapter, we’ll follow the Acme Media pilot team as they perform a project
retrospective for the first time. This retrospective will be the last step the pilot team
performs in testing the new process. When the retrospective is complete, the core
team will review all steps of the new process and then decide how to scale the method
ology across the rest of the organization.

 You’ve probably participated in a project postmortem or retrospective. We’ve par
ticipated in dozens of these meetings, and we’ve rarely seen them obtain optimum
results. We believe these meetings don’t go as well as possible for four reasons:

■	 The retrospective happens too late, and participants forget the issues
encountered.

■	 The participants don’t separate personal/performance issues from process issues.
■	 Participants aren’t provided enough time to gather their thoughts and

observations.
■	 The output of the meeting isn’t documented or followed up on.

Over the years, several people have given us advice about how to address these issues;
we’ll share them in this chapter.

22.1 Setting expectations for the retrospective
You can prepare your team for the retrospective by providing guidelines in advance. We
use the guidelines outlined in figure 22.1; they set expectations before you perform the
retrospective and get the team thinking about the process and not personal issues.

 Your retrospective will have two main objectives, and the guide encourages your
participants to start thinking about them:

■	 Identify what went poorly so you can address it.
■ Identify what went well so you can repeat it.

Acme Media’s development team will stay together for subsequent projects. When
they get a good feel for the behavior expected, they won’t need to review the guide
lines before every retrospective.

 Conversely, you’ll probably have folks from other departments or teams attend
your retrospectives on an ad hoc basis, depending on their level of involvement in the
project. Make sure you send the retrospective guidelines to newcomers every time.

NOTE	 You may wonder what is unique about retrospective behavior in an agile
environment versus a traditional environment. In our opinion, there is
no difference. No matter how you develop software, you should always
strive to be professional in the workplace, avoid blaming individuals, and
instead focus on enhancing the development process as a team.

Another critical item during the retrospective is to make it clear that you’re meeting to
review the process, not to measure whether the project was successful. You want to know
if you have an effective process when you review the project. You aren’t evaluating
whether the project is making money, whether your marketing assumptions were cor
rect, or whether you captured your target market. There is a time for such a review, but
the retrospective is focused on the methodology.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

299 Setting expectations for the retrospective
Figure 22.1 Retrospective guidelines. A retrospective may involve members outside of the normal
group, and the guidelines provide expectations and orientation for the meeting.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

300	 CHAPTER 22 The retrospective: working together to improve

22.2 Time to digest: a survey in advance
When team members understand what is expected in the retrospective, a project man
ager or other team member should survey the team before the retrospective meeting.
Surveying the team in advance gives them time to reflect on the project and consider
what went well and what can be improved. The survey can also be completed at the
convenience of the team member. As a rule of thumb, we like to send the survey out 3
days before the retrospective meeting and give participants 2 days to respond.

 Here are some items that make the survey a good tool for project analysis:

■	 Scoring—Team members must say whether they agree or disagree. Many surveys
allow a neutral answer, and many people choose the neutral answer to be safe. This
weakens your ability to determine whether you’re doing well or poorly in a given
area. Do allow N/A if a team member didn’t personally participate in a given area.

■	 Tailored questions —The questions are tailored to your environment. Acme Media
cares about project management, development, and delivery. Other companies
may want to focus on cost, speed, or efficiency.

■	 Allow supporting comments —The survey lets participants enter supporting com
ments on each question. These comments will help start the dialogue during
the retrospective meeting.

■	 Anonymity—Acme Media uses an online questionnaire tool that lets team mem
bers respond anonymously. As time goes on, the team will become more com
fortable about revealing their thoughts to each other, and anonymity will
become less of a need.

Figure 22.2 shows Acme Media’s survey.
 After the survey results are in, the facilitator can aggregate all the information into

a results page and email the results to the team before the retrospective meeting.
Team members enjoy reviewing the survey results before going in; the information
puts them in the right frame of mind for the meeting.

 This is a good time to point out why you do all of this prep work before the retro
spective meeting. You’ve probably attended such meetings and witnessed scenes like the
following. The facilitator gets everyone together and reorients the team on the project.
The facilitator asks people to list things that went well and things that went poorly. One
or two people speak up, and the facilitator writes their thoughts on a whiteboard and
asks other team members for their thoughts. Eventually, other team members start to
chip in as they recall events that happened during the project. With 10 minutes left in
the meeting, you start to get good commentary, and the facilitator rushes to get the
thoughts on the whiteboard and discuss root causes and potential solutions for the
issues. The most important part of the meeting is hurried, and the result is a marginal
list of items that went well or poorly. The team will rush to document corrective actions
when they should be thoughtful about identifying and resolving the root issues.

 The preparatory work we outline in this chapter should get your team engaged in
relevant conversation the minute the meeting starts so you don’t have to hurry docu
menting the main issues and what you’ll do to improve them on the subsequent project.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

301 Time to digest: a survey in advance
Figure 22.2 The project retrospective survey covers the main areas of the project. Acme Media chose
areas that meant the most to its environment. Your retrospective survey should cover the areas that
are important to your team, company, and customer.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

302 CHAPTER 22 The retrospective: working together to improve

22.3 Conducting the retrospective meeting
When the team has reviewed the survey, you can get them together for the retrospective
meeting. If you have a team room or shared area, you can conduct the survey there, but
sometimes it helps to find a conference room or other venue to pre- vent distractions.

 Most teams have limited time for the retrospective meeting and usually complete it
in 60 to 90 minutes. Because time is limited, you should discuss the most important
areas first. The most important items to focus on are things you’re doing well and things
you’re doing poorly. You can highlight these items in the survey so the team knows you’ll
begin with them (see figures 22.3 and 22.4).

Figure 22.3 The retrospective survey results. A facilitator highlights the areas the team should spend
the most time on during the meeting, focusing on areas where the team agrees they’re doing well, where
they have issues, and areas where they’re split. The Auctionator retrospective has 10 attendees, so each
row totals 10. Each vote equals one attendee.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

303 Conducting the retrospective meeting
Figure 22.4 Team members can add comments to their survey responses to support their evaluation of
a given area. The facilitator can use the comments to jumpstart the retrospective meeting if team
members don’t contribute initially.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

304	 CHAPTER 22 The retrospective: working together to improve
How frequently should you do a retrospective?
Acme Media chose to do a retrospective at the end of each project, but you may alter
the frequency to best support your needs. For example, the Scrum process suggests
a retrospective at the end of each sprint, which typically runs 30 days. The end of a
sprint may correlate to the end of a project, or it may only tie to one iteration of de
velopment work that will eventually support a completed project. Some teams choose
to do both: they have a small, quick retrospective after each iteration and then a more
detailed review at the end of the project.

You should also consider the size of your project when determining how often to do
the retrospective. If your project runs for 4 days and involves two people, a formal
retrospective may not be needed. Conversely, if you’re working on a project estimated
to run 6 to 12 months, you should identify logical times to stop and review the process.

It’s also good to analyze areas where the team is split. If half the team thinks you did
well understanding the customer’s needs and the other half doesn’t, you need to find
out where the difference in perception is coming from.

22.4 What to expect during the meeting
Retrospective meetings tend to take on a mind of their own. Similar to a weathervane
in a storm, when several team members are participating, the conversation can go
anywhere.

What about the facilitator?
Picking the correct person as facilitator helps the retrospective immensely. Good
characteristics for a facilitator are as follows:

■	 Has good communication skills.
■	 Has background in analysis or process control.
■	 Knows something about the project and its history.
■	 Doesn’t intimidate the team. For example, executives frequently have the

skills required, but they influence how the team responds.
■	 Has the team’s respect.

Facilitators are frequently ScrumMasters, project managers, agile coaches, or devel
opment managers. If the facilitator also worked on the project, they should wait until
the team has contributed to the discussion before sharing their own thoughts. This
helps the facilitator focus on facilitating and also ensures that the whole team con
tributes during the meeting.

Many teams try to find someone outside of the project to be the facilitator. This helps
maintain a neutral perspective on the issues as they’re discussed, but you may also
waste a lot of time orienting the facilitator.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

305 What to expect during the meeting

A project retrospective provides insight into the team’s maturity level. A mature team
jumps into dialogue immediately and begins to constructively analyze the issues that
occurred. The majority of the team participates in the discussions, and analysis of
issues doesn’t turn into attacks on individual performance.

 Conversely, an immature team is quiet and requires prodding from the facilitator.
Long periods of silence may occur until one person speaks up. Others may be uncom
fortable sharing their thoughts with the team at large. If your culture isn’t open, and
team members aren’t solicited for their opinion, it will take time for them to gain con
fidence that their thoughts won’t be shot down.

 Most teams fall somewhere in the middle. These teams have one or two members
who usually do all the talking, a handful of people who speak their mind on occasion,
and a few people who almost never speak. Acme Media falls into this category. To pro
vide contrast for your own team, you can see how the pilot team folks behave in
Acme’s retrospective in table 22.1.

 Although you have feedback from the team in advance of the meeting, you can
expect additional issues to come up when the group discusses the project together.

Table 22.1 A retrospective includes a variety of perspectives and personality types. A good facilitator
obtains constructive feedback from all participants and helps the team gel around
improvements that should be implemented.

Project role Name Retrospective behavior

Project Wendy Used to leading process improvements with the team. Wants to contrib
manager Johnson ute to every discussion during the retrospective. Wendy thinks about pro

cess issues every day and looks forward to the chance to review them in
detail at the retrospective. Wendy is careful to limit her contribution dur
ing Acme Media’s first retrospective so that other team members can
learn to contribute.

Developer Roy
Williams

Roy was a lead developer at Acme Media for a while and is part of the
core team. Roy has always been outspoken and doesn’t like his ideas to
be challenged. He contributes freely during the meeting, but the facilita
tor asks other team members for their thoughts after Roy speaks. Some
team members do speak up, and a few have different perspectives than
Roy. Over time, Roy will have to learn how to collaborate with the team
versus having them acquiesce to his ideas.

Developer Matt
Lee

Matt has a history of being the junior programmer. He’s been quiet in the
past but shares his thoughts when the facilitator queries him directly dur
ing the retrospective.

User Ryan Ryan is used to speaking in front of the team and has great skills for
experience Getty being an agile team member. Ryan frequently leads discussions with the

team and uses a whiteboard to illustrate designs with the team. He
leaves his ego at the door and does a great job of collaborating with the
team and aggregating ideas. Ryan speaks up during the meeting but pro
vides space for others to contribute. He also focuses on issues and
avoids personal attacks on others.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

306	 CHAPTER 22 The retrospective: working together to improve

Table 22.1 	 A retrospective includes a variety of perspectives and personality types. A good facilitator
obtains constructive feedback from all participants and helps the team gel around
improvements that should be implemented. (continued)

Project role Name Retrospective behavior

Quality Gina Testers have been second-class citizens at Acme Media for a while, and
assurance Wallace Gina had given up on suggesting ideas that were always disregarded. The

new agile process gives her hope, though, especially because testing
isn’t delayed until the end of the project. Gina contributes in depth during
the retrospective and finds that her previous suggestions are in line with
the new agile process they’re pursuing.

Operations Tom
Klein

Tom works in a department that doesn’t have plans for using an agile pro
cess. As a pilot-team member, he was trained on the new process, but he
doesn’t quite get agile yet. Tom is comfortable making suggestions,
though, and points out some areas for improvement in the deployment
process.

Requirements Rich
Jenkins

Rich is a by-the-book analyst and feels that everything should be docu
mented. During a discussion of missing requirements, Rich blames the
new agile process, saying that everything should be documented to pre
vent misunderstandings in the future. Rich believes the Sunday paper
shouldn’t go out until Monday if the quality isn’t perfect.

Architecture Keith
Gastaneau

Keith is a seasoned architect and has learned that agile methods are the
best way to deliver software. He takes a Socratic approach to the retro
spective and asks the team insightful questions.

Customer Jay
Fosberg

Jay acted as the customer advocate during the project and enjoyed the
respect that the customer title received with the new process. But Jay dis
cusses the fact that he may be too involved in the process, in that he was
invited to all team meetings and lost time for some of the other work he
needed to accomplish on his own.

What about personal performance issues?
We’ve participated in retrospectives where the project was affected by an individual’s
poor performance. In these instances, the team could use the meeting to humiliate
the employee and discuss how their performance hurt the team, but the retrospective
isn’t the place to criticize personal performance.

Employee performance should be addressed by management away from the team.
The whole team may realize where a person failed, and they can give the person feed
back during the project, but the retrospective isn’t meant to address personal perfor
mance issues.

A manager can dig deeper into the performance issue and may also know that the
issue relates to a personal issue the employee is experiencing. The manager can
create performance plans if needed and also provide a level of tolerance if the indi
vidual is experiencing personal problems related to their health, family issues, or sub
stance issues.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Converting the feedback into action 307

22.5 Converting the feedback into action
After all the issues are documented, the facilitator works with the team to prioritize
the issues. It may sound corny and a little like 1980s business philosophy, but the facil
itator works with the team to find the root cause of each issue. Similar to identifying a
customer’s root need, you must look at each issue and ask “Why?” several times.

 During the retrospective, Rich discusses the fact that he had a hard time testing
the bidding functionality. The facilitator and the team ask Rich if he didn’t look at the
feature card or if he didn’t listen when the customer discussed the feature. Rich said
he did listen, but the bidding functionality was complex and he couldn’t keep track of
all the permutations.

 After digging deeper into the issue, the team identifies two root issues. First, the
team isn’t creating feature cards at the correct level of detail. There are several flavors
of bidding, such as “buy now” and “expiring bids.” The team should have gone more
granular on the feature and created separate cards for the unique functionality of
each type of bid.

 Second, everyone assumed that feature cards were all you create in an agile envi
ronment. Because face-to-face is the most effective means of communication, the
team ran with feature cards and customer discussions. This model didn’t work well for
the bidding functionality when Jay, the customer, forgot some of the many business
rules involved. It also made it hard for Rich to envision an encompassing test plan.

 The team forgot one of their own rules: deciding the level of documentation
needed throughout the project. In retrospect, they should have created additional
documentation to support the bidding feature and its complexity so that it could be
tested thoroughly and to keep everyone in synch with the feature’s details.

 Acme Media identifies several additional issues from the project and then sets
about documenting action items for improving the process on the next project. Fig
ure 22.5 summarizes the findings and action items. Acme Media will review this list at
the end of the next project to see if the team has successfully addressed the key issues.

 This list will be reviewed at a subsequent retrospective to validate if the changes
were effective.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

308	 CHAPTER 22 The retrospective: working together to improve
Figure 22.5 A retrospective ends with a prioritized summary of the key issues and

action items to address them. Prioritization helps the team identify the changes that

need to happen immediately versus changes that will make a marginal difference in

performance.

22.6 Key points
The key points from this chapter are as follows:

■	 You should review your development process on a frequent basis to look for
areas to improve and as an act of preventive maintenance.

■	 You can perform retrospectives after every iteration or at the conclusion of each
project, with a goal of reviewing the process at least every 2 months.

■	 You need to do pre-work before the retrospective meeting to ensure success.
This pre-work includes setting expectations for participants and surveying par
ticipants before the retrospective meeting. The pre-work provides the founda
tion needed to ensure a successful meeting and the early exposure of any issues
you may have encountered.

■	 Use the pre-work to focus the meeting on the top areas to discuss. You’ll focus
on areas where the team is in consensus that there is an issue, where they agree
you’re doing well, and where the team is divided about how you’re doing.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Looking forward	 309
■	 The retrospective meeting requires a strong facilitator who works well with the
various personality types of the team. The facilitator makes sure that no one
person dominates and that introverts also express their opinions.

■	 The retrospective concludes with a list of prioritized improvements. The
improvements are put on display in a visible place: a team-room wall, a project
wiki site, or both. You’ll review the output at the subsequent retrospective to see
how well you addressed the issues identified.

22.7 Looking forward
At this point, we’ve taken our case study completely through a project, from concept
to delivery to retrospective. In chapter 23, we’ll discuss the next steps after a pilot proj
ect and logical ways to scale agile across larger companies.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Part 8

Moving forward

Chapter 22 concluded our case study. We followed Acme Media as it
researched agile development, created a new process that introduced agility,
and tested the new practices with a pilot project. Acme concluded its pilot with a
project retrospective, which is the last step in its new process.

 Similar to a project retrospective, Acme Media’s core team needs to perform
a retrospective on the new process, determining where it worked, where it needs
to be changed, and how to scale agility across the company. In this section we
will follow the core team as they review the pilot, and we will discuss how Acme
Media can move from project-level adoption to enterprise-level agility.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Licensed to Abner Lopez <ihackn3wton@gmail.com>

Extending
 the new process

 across your company

Creating a successful Scrum team is only the first step on the road to an Agile
company. In most enterprises today, you must create a successful product
portfolio delivered by distributed/outsourced teams. Even then, to win in a
market segment, an Agile approach to the enterprise product strategy is
needed to dramatically improve opportunity for success.

—Jeff Sutherland, co-creator of the Scrum development process

Chapter 22 concluded our case study as we wrapped up the project with a retro
spective. With the pilot under your belt, it’s time to look at what you’ve learned and
what you need to do to scale the new process across your company.

 As we’ve mentioned throughout the book, the pilot project may be all that is
needed for a smaller company to get started with agile, but larger companies will
need to do additional work to achieve enterprise-wide adoption. In this chapter,
we’ll help you continue with scaling by discussing common findings and how to
increase your agility level through the use of the Sidky Agile Measurement Index
313

Licensed to Abner Lopez <ihackn3wton@gmail.com>

314 CHAPTER 23 Extending the new process across your company
(SAMI). The SAMI will help you measure your current level of agility and determine
logical places to continue improving your process. The SAMI is similar to Capability
Maturity Model Integration (CMMI) in that it uses levels, but the purpose of the levels
is to help you measure where you are, not to act as a scoring mechanism.

What is CMMI?
Per the Software Engineering Institute at Carnegie Melon: “The Capability Maturity Mod
el Index is a process improvement approach that provides organizations with the es
sential elements of effective processes. It can be used to guide process improvement
across a project, a division, or an entire organization. CMMI helps integrate traditionally
separate organizational functions, set process improvement goals and priorities, pro
vide guidance for quality processes, and provide a point of reference for appraising
current processes.”

Let’s get started by looking at common findings at the conclusion of a pilot project.

23.1 Common findings after a pilot
Every company has a unique experience when moving to agile. But we’ve witnessed
some trends that tend to span almost all migrations. Let’s review some of the common
outputs from a pilot test.

23.1.1 Slower than the old process

We once worked with a project manager who had to create a weekly status report for
executive management. When the project manager began in her position, she had to
learn how the report was generated. First she had to make sure every department
entered their status information, then she had to run a query from the time-tracking
system, and then she had to aggregate the data into a Word document and export it to
Acrobat. When the project manager was trained, she wrote down every step to make
sure the report came out correctly. On average, the report took 4 hours to generate.
As the weeks passed, the project manager looked less at her notes and began to per
form the steps from memory. Her time went from 4 hours down to 1.

 Most teams doing an agile pilot will seem more like the 4-hour project report than
the 1-hour project report. During the pilot, team members flip through notes from
agile training, read books (like this one), and try to be agile more by process than by
feel. This is to be expected. You need to make sure everyone who is supporting your
move to agile understands that progress will be slower at first.

23.1.2 Confusion about the process

As mentioned in the previous section, many team members will be reading their
notes from training as you’re going through the pilot process. Team members usually
hear the training in different ways, and during the pilot these different perceptions
come out.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

315 Common findings after a pilot

 For example, one team member at Acme Media thought he heard the agile coach
say you should estimate features before prioritizing them, and another team member
heard that you should estimate after prioritizing. You’ll encounter similar examples
during your pilot.

 This confusion is a good thing, in that it brings questions to the surface and gives
your team a chance to normalize on what agile will mean in your company. In the pro
cess we’ve outlined, these questions are discussed weekly with the core team and your
agile coach during the pilot, and the group can reach consensus on the practices and
approaches you’ll use.

 The negative about this confusion is that it makes things somewhat chaotic and
provides ammo for anyone in your company who is looking for a reason to say agile
won’t work. In addition, your pilot project will be slowed down while the team stops to
figure out process issues and reach agreement about how things should be done. All
these things are normal: you should set expectations with your pilot team and your
sponsors that confusion is to be expected on the first few projects and that the process
will solidify and improve over time.

23.1.3 Team polarization

As your pilot concludes, your team may split into two camps: one that believes the
pilot was successful and agile should be used throughout the company, and another
that believes the pilot demonstrated that agile doesn’t work and provides no value.

 At the start of this book, we discussed agile detractors and how to involve them in
the process. This includes using their feedback to improve the process and giving
detractors a role in the migration. If your pilot concludes, and the detractors aren’t
embracing agile, you’ll need to investigate and find out why. You’ll have a difficult
time scaling agile if employees are split on whether to use it.

 Note that there is a difference between finding areas to improve and making a
blanket statement that agile doesn’t work. Your detractors will probably find areas
that need to be fixed during your pilot, which is a good thing; but if the detractors
are simply saying, “Agile doesn’t work,” you must address this via management
or coaching.

 We’re assuming your company has needs that drive the use of agile, such as tight
deadlines, volatile requirements, and the need to deliver what the customer really
requires. If this is true, then agile should work for you, especially if you’ve created a
process that recognizes and addresses the constraints of your environment.

 Some team members may never embrace agile, but they will accept it as a reality
and over time may be converted. Other team members may never buy in—agile may
be too radical a change for them. In these rare instances, we’ve seen employees leave
companies or management ask employees to leave.

23.1.4 Starting to feel agile

Your pilot will also turn guesses about what agile is like into reality. Every time some
thing new comes out, we all want to know more about it. Quite a few years ago, the
Licensed to Abner Lopez <ihackn3wton@gmail.com>

316 CHAPTER 23 Extending the new process across your company

new thing was XML—we all went to XML training and created a few applications that
used XML, and then we said “Ah, that’s what XML is.” The same thing is true of agile.

 Until you do a project with agile, it’s just a buzzword, hype, and conjecture. You
can read books like this one, take training, and enlist the help of a coach. But until
you do an agile project, you don’t know what agile means.

 As your pilot project wraps up, you and your team will discover what it means to
collaborate on decisions. You’ll understand what it takes to deliver in an incremental
manner. You’ll know what’s required to let the customer into your back office and
involve them in the development process.

 Perhaps the greatest benefit that will come from your pilot is that your team will
begin to reach agreement on what agile means. It isn’t important for you to agree with
the agile community or the authors of this book—it’s only important for you and your
team to reach agreement about what practices provide value in your environment.

 Finally, we’ll contradict ourselves for a moment. We’ve said you can’t tell some
one what agile is: they need to experience it. We—Ahmed and Greg—have different
backgrounds and agile experiences, but we both recognized one thing at the end of
our first agile project: we both thought, “This is how it’s supposed to be done.”
We’ve all worked on projects where we felt bad at the end and knew the process par
tially contributed to the issues. But when we concluded our first agile projects, we
felt that we were using a process that supports the realities of software development.
It felt good!

23.2 What the Acme Media team learned from their pilot
To better illustrate the findings from a pilot, let’s review what Acme Media learned at
the conclusion of the company’s pilot. We’ll analyze how Acme did in comparison to
the five agile enablers discussed in chapter 1. We’ll also compare how Acme did in
relation to the company’s goals for moving to a more agile process.

 The team that performed the pilot project performed a retrospective at the end.
The core team reviews the results from the pilot retrospective but also looks at the
pilot from a global perspective. The core team evaluates the pilot against the agile
enablers they were trained on and considers the best way to continue moving the com
pany to a better development process.

 To help you follow along, we’ll score Acme Media against the agile enablers. Scor
ing is definitely subjective, but it helps teams understand where they are and where
they can improve. We’ll score on a scale of 1 percent to 100 percent, where 100 per
cent represents perfect support of an agile principle.

23.2.1 Embracing change to deliver customer value

Acme Media delivers code iteratively now, which lets it adapt during projects. The
team holds daily meetings and catches issues more quickly so they have more time to
adapt. They don’t fully embrace change yet, but they understand that it’s a reality.

 Acme Media can improve in this area by
Licensed to Abner Lopez <ihackn3wton@gmail.com>

317 What the Acme Media team learned from their pilot

■	 Improving participation in the daily meetings —Acme’s project manager has to initi
ate many of the discussions, and the team eventually jumps in. In a perfect envi
ronment, the meetings will start quickly, with everyone discussing their personal
status, goals for the day, and roadblocks they have encountered.

■	 Learning which topics to discuss during the daily meetings —Many times, roadblocks
are worked in real time during the stand-up meeting, and the discussion per
tains to only one or two people in the group. These discussions also extend the
meetings beyond the 15 to 30 minutes allocated. As the Acme team matures,
they will learn when a discussion is relevant for the majority of the team and
when the troubleshooting discussion should be held by a smaller group after
the meeting.

In the area of embracing change, we score Acme Media’s team 20 percent before the
pilot and 50 percent after the pilot. The team still has a long way to go toward embrac
ing change, but they made good progress during the pilot.

23.2.2 Customer involvement and feedback

In the past Acme Media received feedback on the final product only as it went
through a customer acceptance process. Acme allocated some time for customer
requests that emerged from customer testing, but frequently serious shortcomings
were identified and release dates were pushed out.

 Acme Media’s new iterative approach let Jay, the customer, provide feedback as the
product was incrementally created and delivered. The team had time to identify and
triage issues earlier in the release. Jay explained his ideas to the team and worked with
the team to refine understanding of the requirements throughout development. This
helped the team break down the features into more discrete functions and remove
low-priority functions from the release. Jay’s involvement and availability helped the
team deliver the truly critical requirements and keep the delivery on schedule.

 Jay’s involvement also helped him identify requirements that he’d missed. As the
team prototyped and iteratively developed the features, Jay occasionally noticed a fea
ture he had overlooked. Some team members grumbled about scope creep, but many
of the items identified were critical and would have prevented deployment if they
hadn’t been included.

 The team can improve in this area by

■	 Becoming more comfortable showing code to the customer before it’s 100 percent
complete —The developers don’t like to provide qualifications when they demo,
to explain what is missing. They worry that the customer won’t focus on the
area being demonstrated and will instead be distracted by the missing function
ality. As the Acme team matures, this will become less of an issue, and the devel
opers will develop faith in demonstrating portions of a feature as opposed to all
the functionality. The customers will get more used to seeing code that is still
in development.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

318	 CHAPTER 23 Extending the new process across your company
■	 Improving their attitude toward customer change requests —Because Jay worked with the
team on a frequent basis, he often noticed requirements that he had missed ear
lier. Jay made discoveries throughout the project, as opposed to at the end. The
team wasn’t ready for these frequent findings and often complained about scope
creep and not being able to lock down features. As we mentioned in chapter 7,
you should do a thorough analysis in an agile environment so that obvious
requirements aren’t missed, but you must also understand that the customer may
not entirely understand what they need until the solution starts forming. As the
Acme Media team matures, this should become less of an issue. The team mem
bers will also get help from their coach and learn that customer discoveries are
real and a normal part of the development process—not an exception.

■	 Improving on getting internal feedback when they deliver internal features —During the
Auctionator project, the team created a support tool to help them measure sys
tem performance during high bidding periods. The team forgot that they were
a customer and didn’t take the feature through User Acceptance Testing
(UAT). After the feature was live and in production, they identified several
shortcomings with the utility. The team discussed this issue during the retro
spective and agreed that in the future, internal features will be treated the same
as paying customer features.

In this area, we score Acme Media’s team 10 percent before the pilot and 50 percent
after the pilot. The team has plenty of room for improvement, but the level of cus
tomer involvement increased significantly.

23.2.3 Planning and delivering software frequently

This is by far the area in which Acme Media improved the most. In the past, Acme
delivered late and frequently delivered functionality that wasn’t used by the customer.

 With the new process, Acme became crisp on the features that were critical for the
project and focused on delivering those features in the first iteration. Acme also did a
good job of discussing priorities during the project’s development period. If a team
member identified a function that didn’t appear to be critical, they discussed it with
Jay to see if the function should be delayed or deferred. This helped the team focus
on delivering the minimum, critical functionality.

 Although Acme improved, the team has one area to work on to ensure frequent
delivery: they must treat the end of an iteration as a milestone that must be adhered
to. In their first iteration, the development work ran late, and the team wanted to
extend the iteration. The team didn’t view this as an issue because the work from the
iteration was being queued but not deployed. They didn’t think there would be an
issue in pushing out the iteration by a day or two.

 For a mature agile team, it isn’t the end of the world to push out an iteration by a
day or so (although they rarely do). Customers can be notified, and more than likely
the schedule has enough slack to absorb the slip. But this is a terrible practice to get
Licensed to Abner Lopez <ihackn3wton@gmail.com>

319 What the Acme Media team learned from their pilot
into as a new team. If you view the iteration deadline as optional, you’ll start drifting
from the agile principle of just enough and reduce the urgency around your work. The
team needs to have discipline and support the iteration schedule.

 Acme had an excuse for the first iteration in that the team’s capacity planning was
a guess, but the second iteration was scheduled based on how many story points they
completed in the previous iteration. After the team gets a feel for their true capacity,
there should be fewer requests to extend iterations.

 In this area, we score Acme Media’s team 0 percent before the pilot and 50 percent
after the pilot. The team delivered usable software during the pilot, which was a major
improvement over previous projects.

23.2.4 Technical excellence

Acme Media made slight improvements in its pursuit of technical excellence. The
company’s original practices weren’t poor, but they lacked agility.

 Acme made strides in building more frequently. In the past, the team built once a
week. In the new agile model, the team attempted to do daily integrations, but they
were able to perform a build only every 2 to 3 days. This was an improvement, but the
delay in building complicated the ability to track down build issues.

 The team also improved by embracing the use of prototyping, proof of concept
(POC) work, and the use of other modeling tools. In the past, the team wanted to
jump straight into development and avoid performing any work that might be thrown
away. With the Auctionator, they found prototyping effective in demonstrating Jay’s
requirements back to him. They also pursued a POC test to verify their assumptions
about system performance before coding the bidding functionality.

 Acme’s last area of improvement related to architecture. In the past, Acme wanted
to create a perfect architecture for every project: an infrastructure that was flexible for
any perceivable need and scalable for any performance requirements. This approach
worked well on occasion, but many times the team spent so much time on the archi
tecture that application delivery was delayed. During the Auctionator project, the
team still focused on scalable architecture, but they time-boxed their work to be sure
they could deliver the application on time. This was a struggle for the team, and they
had many debates about when the architecture was good enough. The team will need
time to accept and appreciate this approach.

 To continue toward their goal of technical excellence, Acme Media will pursue
testing automation so they can get closer to achieving a daily build. The team will
also do a POC around test-driven development. Matt, the developer, has always
wanted to try TDD, and he’ll try to write his unit tests before coding on the next proj
ect. Matt will share his findings with all developers and hopes the team can move to
this disciplined practice.

 In this area, we score Acme Media’s team 40 percent before the pilot and 50 per
cent after the pilot.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

320 CHAPTER 23 Extending the new process across your company

23.2.5 Human-centric practices

Let’s start by looking at communication and collaboration. In the past, Acme Media
did most of its communications formally during a project. If an issue was encoun
tered, the project manager checked everyone’s schedule and found a day to sit down
and discuss it.

 With the new model and daily stand-up meetings, small subsets of team members
frequently gather immediately after the meeting and work out issues or design the
same day. This works well because the attendees don’t have to be refreshed about why
they’re at the meeting, and the resolution can be shared at the stand-up meeting the
next day if needed. A few team members still looked to Wendy to get them together
when a meeting is required, but 50 percent of the team like the new ownership and
call and facilitate meetings on their own.

 In support of the daily stand-up meetings, Wendy has created an intranet project-
status site that displays status by feature. In the past, Acme team members gleaned
Wendy’s all-encompassing project plan to find status on the areas they cared about.
The new web page lets the team easily see status by feature, and security is open so
they can add their own comments related to status. Wendy uses a projector during the
daily stand-up meetings to project the status of features and update them real time as
team members provide status. Team members can also review and update the page at
their workstations.

 Acme Media started down the path to team ownership by creating the core team
and involving team members in the move to agile. The company also ensured that a
few core team members were on the pilot team to see how well the process worked
and to record feedback from pilot team members.

 Acme also had a few employees who had used agile before. These folks had a lot of
input into the creation of Acme’s agile process and served as evangelists for the need
to move to a more agile methodology. Employees throughout Acme’s web division
also knew why the company was moving to agile. Everyone was aware that projects
were usually delivered late and that advertisers were looking at competitors who could
meet their needs in a timelier manner.

 During the pilot, Jay and Wendy kept the team focused on the agile practices. The
goal of the pilot was to create awareness of what agile was about. The pilot team wasn’t
forced to own the process, but they were encouraged to do so. Acme saw improve
ment in team participation, especially with the introduction of the daily stand-up
meetings. In the past, only managers met, and then they brought the work back to
their respective teams. The daily stand-up lets everyone ask questions and get a clear
understanding about requirements and project status. Acme can also make quicker
decisions because the customer is usually available for a discussion of scope, priorities,
or issues. In the past, the team didn’t communicate directly with the customer; they
would spin for days, trying to reach agreement about what was critical.

 Acme Media still has several items it can improve in this category:
Licensed to Abner Lopez <ihackn3wton@gmail.com>

321 What the Acme Media team learned from their pilot
■	 Taking ownership of the process —Although team participation improved during
the pilot, the team still lacks overall ownership of the process. As mentioned,
Wendy and Jay often have to initiate discussions or meetings around issues
or design. Some team members are used to having a boss get them together
to work out issues and designs. It doesn’t yet seem natural for everyone to
drive the project along with Wendy. This is expected during a pilot: the goal is
to create awareness and head down the road to buy-in of the new process.
After the team buys in, ownership will evolve over time, especially with good
coaching from managers and mentors. The team also needs to see a few peo
ple go out on a limb and not get grilled for speaking their opinion or assum
ing leadership.

■	 Addressing discipline issues —A few team members come into the daily stand-up
meeting late, which pushes out the meeting because everything has to be com
municated again. Acme’s managers will work with select team members and
explain to them why the stand-up meeting is critical and the repercussions of
their late arrival. The managers will also tie stand-up attendance into employee
goals for the year.

■	 Eliminating side discussions—Although it’s a minor issue, side meetings fre
quently take place within the stand-up meeting: two team members will begin
whispering to each other as other people are discussing status. Again, the man
agers at Acme will coach these employees and encourage them to wait until
after the meeting for their sidebar discussion.

■	 Documenting design decisions—In the past, Wendy always took meeting notes and
emailed them to the team. With Wendy not involved, some team members
don’t document their decisions and assume that all they need to do is discuss
the output during the stand-up meeting the next day. They’re half right. It’s
good to discuss the output at the stand-up meeting, but numerous decisions are
made during a project, and the team can become confused about agreements
over time. Team members don’t need to create formal notes every time they
meet, but in projects as complex as the Auctionator, they must record critical
decisions. Going forward, Acme will store these decisions on its intranet/proj
ect wiki site.

■	 Participating in the daily meetings —Some team members still needed to be
prompted to give their status, leading Wendy to frequently go around the room
and ask each team member for input. Certain team members may always be
reclusive and reserved, but in the long term, Acme wants the team to own the
process and speak up without being prompted.

Acme Media made good improvements with communication and collaboration. In
this area, we score Acme Media’s team 20 percent before the pilot and 50 percent
after the pilot.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

322	 CHAPTER 23 Extending the new process across your company

23.3 Next steps
After you finish the pilot project, where do you go next? Do you go for more pilot
projects, or do you mandate agile for all the teams working in the organization? As
you can see from the book so far, the pilot project usually brings out the benefits of
agile and at the same time highlights some of the challenges of using agile in your
environment. Your focus should be on taking advantage of the benefits that agile has
brought about and spreading those around the organization. The million-dollar ques
tion is, how do you do that?

 If you work for a small company, you may not need to have this discussion. You may
have only enough people for one project at a time, and your pilot may be the start of
using agile for all your projects. In addition, if your company never had a develop
ment process to start with, you may quickly move from a pilot to using agile on all of
your projects.

 But if you’re a medium- to large-size company with a legacy development process,
this chapter is for you. Continue reading to see the approach we suggest with larger
companies.

23.3.1 Spanning the chasm

The approach we’ll present in this chapter is based on Geoffrey Moore’s book Crossing
the Chasm. The book is based on the Technology Adoption Lifecycle, which is an inter
esting model for explaining the adoption of new ideas. Figure 23.1 shows the original
bell-shaped lifecycle.

Figure 23.1 The lifecycle
for new-idea adoption

In a nutshell, the model recognizes five categories of adopters:

■	 Innovators—Usually experimentalists who are interested in trying new things.
■	 Early adopters—Willing to take the risk and adopt a new technology because it

either addresses a direct need they have or proposes a new strategic opportu
nity for them.

■	 Early majority—Pragmatists, conservative, but still open to new ideas if they’re con
vinced. They usually prefer evolutionary change and are averse to taking risks.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Next steps	 323

■	 Late majority—Mainstream employees who are less comfortable with technology
change and are usually skeptical.

■	 Laggards —May never adopt a new technology.

The Technology Adoption Lifecycle explains how a new idea gains acceptance by pro
gressing through these five segments. Moore highlights in his book that cracks exist
between each of the segments of the lifecycle, but what is of most interest to us is the
chasm between the early adopters and the early majority (see figure 23.2).

Figure 23.2 The chasm
between early adopters
and the early majority

Table 23.1 (adapted from Geoghegan, 1994) illustrates the difference in mindset
between the early adopters and the early majority.

Table 23.1 The differences in the mentalities of early adopters and the early majority

Early adopters Early majority

Proponents of revolutionary change
Visionary users
Project oriented
Willing to take risks
Willing to experiment
Individually self-sufficient
Tend to communicate horizontally
(focused across disciplines)

Proponents of evolutionary change
Pragmatic users
Process oriented
Averse to taking risks
Look for proven applications
May require support
Tend to communicate vertically (focused
within a discipline)

Similarly, your journey to enterprise-wide agile must progress through these segments:
we believe that a gap exists in agile adoption between the early adopters and the early
majority. Let’s start by highlighting what we believe is the first stage of agile adoption.

 Let’s take a moment to look at each segment of the adoption curve and why it
takes more than pilot projects to move the enterprise to an agile mentality.
INNOVATORS: THE FIRST PILOT PROJECT

A pilot project basically maps to the first stage (the innovators; see figure 23.3). The
majority of this book has gone through the process of conducting a pilot project at
Acme Media and at your organization. Let’s quickly review.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

324 CHAPTER 23 Extending the new process across your company

Figure 23.3 A pilot
project initiates the move
to a more agile process.

You start with an initial readiness assessment to determine which agile practices are
suitable for your team. You begin injecting your current process with agile practices.
Then you select a pilot project and assemble a team around the project to test your
new agile process. The pilot project shows the benefits of using agile practices within
your team. In Acme Media’s case, the practices that were piloted succeeded and
showed benefit. It may be the case in your organization that some of the practices you
try during your pilot don’t succeed. Nevertheless, the next stage according to the
Technology Adoption Lifecycle is to move to the early adopters.
EARLY ADOPTERS: THE SECOND WAVE OF PILOT PROJECTS

In your journey to agile, the early adopters will map to a second wave of pilot projects.
The pilot projects in this wave have a direct need for the benefits that the first agile
pilot project exhibited (see figure 23.4).

 Your practice during this phase is to look at the first pilot project, use the lessons
learned to find out which practices worked, and then apply those practices to five or
six more pilot projects within the organization. For example, in one of the organiza
tions Ahmed coached, after finishing the first pilot project, the process-improvement
director was impressed with the quick time-to-market and pointed out a number of
projects in critical need of a shorter time-to-market. This new set of pilot projects
acted as a second testing ground for the agile practices injected into the organiza
tional software-development process.

Figure 23.4 Pilots
get you nearer to your
goal, but it takes more
than pilots to obtain
enterprise-wide adoption
in large companies.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Next steps 325
EARLY MAJORITY: THE BIGGEST HURDLE

According to Geoffrey Moore, moving from the early adopters to the early majority isn’t
as simple as adding more projects. As we highlighted earlier, a chasm exists between the
stages. This chasm maps to moving from a project-level agile adoption approach to an
organizational-wide, enterprise-level agile adoption approach (see figure 23.5).

Figure 23.5 Spanning the
chasm moves the company
from using agile on proj
ects to an agile mentality
across the board.

We’ve seen some organizations take the big-bang approach. After they have evidence that
the pilot project is successful, these companies mandate a company-wide agile transi
tion. Although this approach may work with certain organizations, we aren’t in favor of
it because of the high risk of chaos and resistance to the transition. This is like applying
the same methodology you used for pilot projects to the whole organization without
respecting the different mindsets between the early majority and the early adopters.

 Our approach to enterprise-level agile adoption is evolutionary change. This is
more in line with the mindset of the early majority. Instead of introducing all the agile
practices at once, you pick a small, coherent set of practices and introduce them to
the organization one step at a time. You should choose practices based on the fact that
they’re proven to be effective during your pilot and the agile value they will introduce.

 We suggest using a value-based roadmap to help you determine which set of prac
tices to initially use across the enterprise. Ahmed has created his own roadmap called
the Sidky Agile Measurement Index (SAMI). It highlights five agile values and guides
organizations to focus on introducing the practices that satisfy each level first. The
SAMI is discussed in detail in section 23.3.2.
THE LATE MAJORITY

These people need more time and will be skeptical until they see the majority of the
company using a new process. Initially, they will resist even the smallest incremental
changes; but after critical mass is reached, they will join in.
THE LAGGARDS

Some people will never adopt a new idea. You may have engineers who’ve been working
for the past 20 years in a certain way on legacy code. For these people, change isn’t an
option. But if you can reach the point where the new process is being used for more
than 90 percent of the portfolio, you should consider the move to agile successful.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

326 CHAPTER 23 Extending the new process across your company

23.3.2 Using the SAMI

The SAMI provides a framework for moving your enterprise to an agile mentality. Spe
cifically, the SAMI helps with enterprise adoption by doing the following:

■ Eliminating the random picking of practices
■ Ensuring the practices you pursue work well together
■ Focusing on instilling values, not just pushing practices into the organization
■ Helping avoid the phenomenon of teams adopting random practices

Figure 23.6 shows an example of the SAMI.
In its simplest form, the SAMI can be viewed as a set of levels or steps, where each

level represents one of the five essential agile values that an organization needs to
embrace. Many in the agile community are against using the term levels of agility
because it’s too similar to the levels of maturity in the Capability Maturity Model Inte
gration (CMMI). First, unlike the CMMI, the SAMI isn’t designed as a certification
framework or as a tool to rank organizations or give them an agile grade. The SAMI is
designed as a tool to guide an organization’s journey toward agility. Without delving
into the pros or cons of CMMI, there is little doubt that a step-by-step approach to
attaining any goal is beneficial. Partitioning the journey toward agility into steps, or

Figure 23.6 The SAMI can be used to lead an enterprise through an incremental process of
increasing agility.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Next steps 327

agile levels, is in tune with the agile philosophy of early and continuous delivery and itera
tive development. Instead of attempting to have an organization adopt agility in a single
step, the SAMI breaks down the delivery into five releases or levels, with each release
adding value to the organization. Another benefit of this step-based approach is that it
helps decrease the amount of chaos and resistance caused by major change initiatives
within organizations. Figure 23.7 shows the Virginia Satir change curve.

 The curve illustrates how change initiatives cause organizations to go through an
intense period of resistance and chaos. To reiterate from chapter 4, the Virginia Satir
change curve indicates that if an organization can go through this period of chaos
and resistance and embrace new transforming ideas, then the chaos will decrease and
performance will increase to a new level higher than the previous status quo. The risk
is that some organizations may not be able to handle these periods of chaos and
intense drop in performance. Consequently, instead of moving forward, they may fall
back to their old status quo.

In our experience, following the guidance provided by the SAMI approach to agile
adoption can reduce the all-at-once chaos by introducing incremental, step-by-step
change. More specifically, the SAMI breaks down the adoption of agile principles and
practices into steps or levels, with each level delivering a new value to the organization
and, subsequently, an increase in performance. By breaking down a major change ini
tiative into smaller, more manageable steps or levels, the resistance and chaos associ
ated with each step are smaller and shorter; hence, the consequent drop in
performance becomes more tolerable, and the probability of embracing the new pro
cess of agility becomes much higher.

 Let’s take a few moments to review the sections of the SAMI.

Figure 23.7 Virginia Satir change curve with an overlay of the SAMI change curve
Licensed to Abner Lopez <ihackn3wton@gmail.com>

328 CHAPTER 23 Extending the new process across your company

AGILE LEVELS

The first component of the SAMI is the agile levels or steps toward agility. The agile
levels are designed to represent the core values of agility as defined by the Agile Mani
festo, rather than the values or practices related to any particular agile methodology
like XP or Scrum.

 The search for the most appropriate sequence of agile levels required us to review
the Agile Manifesto and various other sources including books about agile develop
ment, articles, organizational change books, and even books about social change and
its causes. One book in particular was beneficial: The Tipping Point by Malcolm
Gladwell, which discusses the factors that cause new trends and social outbreaks to
emerge and spread. The three factors Gladwell identifies provide the inspiration for
the naming and ordering of values in the SAMI.

 Gladwell’s first factor relates to people and their importance in creating social out
breaks and trends. This factor maps easily to the agile value of enhancing communication
and collaboration. This finding, along with the fact that collaboration is mentioned in
the first and third statements of the Agile Manifesto, leads us to place this agile value
at the first level of the SAMI.

 The second factor Gladwell mentions concerns the content of the message being
spread. From this factor, we evolve the next three agile levels (evolutionary, inte
grated, and adaptive) and their associated values. The ordering of the associated
level/value pairs is determined by answering two questions: Which of these values will
have the biggest impact on moving an organization toward agility? And, are the agile
values dependent on each other, and if so, which one needs to be first?

 The answers to these questions lead to the conclusion that agile level 2 must reflect
an evolutionary approach to development and represent the agile value of delivering
software early and continuously. This decision is based on the fact that most agile software
practices depend on development being conducted in an evolutionary manner, rather
than following the big-bang approach.

Agile level 3 is assigned the agile value of developing high-quality, working software in
an efficient and integrated manner. It’s important to realize that an organization must
have an integrated development environment before it can realistically expect to be
able to respond effectively to change. More specifically, for the development process
to adapt to constant changes, the environment must be integrated and resilient to
ensure that no changes will jeopardize the quality of the product.

Because these qualities must exist within an environment before you can hope to
see the organization become adaptive, the integrated agile level has to precede the
adaptive level. As a result, agile level 4, adaptive, is assigned the agile value of responding
to change through multiple levels of feedback.

 Gladwell’s third factor, establishing a suitable environment for the trend to spread,
inspires us to map the fifth level of agility to the agile value of establishing a vibrant and
all-encompassing environment to sustain agility. Figure 23.8 illustrates the final sequence
of the five levels of agility.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Next steps 329
 Figure 23.8
Levels of agile maturity

Each of these agile levels is composed of a set of synergistic and complementary agile
practices that introduce and sustain the agile values touted at that level. Being organized
into levels, the agile practices and concepts help an organization incorporate new agile
values, which, in turn, leads to the realization of organizational goals and objectives.

 The process of populating each level with practices is guided by the second compo
nent of the SAMI, the agile principles.
AGILE PRINCIPLES

As you may recall from chapter 1, the most common goal for all companies is to
increase revenues and profits indefinitely. Most companies pursue the following five
strategies to reach this goal:

■ Retain customers
■ Deliver products while the need still exists
■ Motivate employees
■ Deliver what the market asks for
■ Pursue innovative products and processes

To take this approach one step further, what principles should a company adhere to?
We believe a company should adhere to the agile principles.

 Agile principles are the essential characteristics that must be reflected in a process
before it’s considered agile. For example, two key agile principles are human-centric,
which refers to the reliance on people and the interaction between them, and technical
excellence, which implies the use of procedures that produce and maintain the highest
quality of code possible. The Agile Manifesto also outlines 12 principles that charac
terize agile development processes. After a careful grouping and summarization,
we’ve identified 5 agile principles that capture the essence of the 12. These 5 princi
ples guide the population of each of the 5 agile levels:

■ Embrace change to deliver customer value.
■ Plan and deliver software frequently.
■ Human-centric.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

330 CHAPTER 23 Extending the new process across your company

■ Technical excellence.
■ Customer collaboration.

These principles guide the identification and incorporation of practices across all
agile levels and ensure that each agile level embodies the essential characteristics of
agility.

 Now that we have principles, we can discuss the practices that bring the principles
to life.

23.3.3 Agile practices

Agile practices are concrete activities and practical techniques that are used to
develop and manage software projects in a manner consistent with their associated
agile principles. For example, pair programming, user stories, and collaborative plan
ning are all agile practices. Because the agile levels are composed of agile practices,
they’re considered the basic building block of the SAMI. You can attain an agile level
only when you’ve fully adopted the agile practices associated with that level. After sur
veying the agile methodologies currently used in industry, we selected 40 distinct agile
practices to populate the SAMI. These practices, arranged in a table with the agile lev
els and principles, are illustrated earlier, in figure 23.6.

 That table is simply one instance of the SAMI. The SAMI doesn’t dictate which prac
tices should be placed at which level; this is up to the individual leading the adoption
effort. Each agile coach or consultant will have their own preference about which
practices are placed in each level. The kind of experiences gained from previous
adoption efforts can and should serve as a basis for formulating a better arrangement
of the practices within the agile levels. For example, Mike Cohn has suggested that
user stories be introduced in the first level of agility because, in his experience, they
enhance collaboration and communication between the stakeholders with regard to
requirements. Others suggest that pair programming be in the first level because it
helps to establish collaboration within teams. This diversity of opinions as to where to
place agile practices emphasizes an important factor in providing guidance in an agile
adoption effort: the adherence to agile values and principles when establishing the
levels is paramount, not the positions of the actual practices.

The intention behind the SAMI is to guide the agile adoption process, not to dic
tate it. But that reorganization must be guided by (and adhere to) the intent and phi
losophies that underlie the levels of agility and the agile principles.

 We contend that the SAMI provides an ideal basis from which to initiate value-
driven agile adoption. But how is the SAMI perceived by members of the agile commu
nity? You can see a quantitative summary of feedback provided by the agile commu
nity in the index. But in summary, the agile community recognizes the utility and
need for the SAMI and that it provides a value-based roadmap to agility.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Conclusion	 331
23.4 Key points
The key points from this chapter are as follows:

■	 Almost every agile pilot has these issues: the process may be slower, the team
struggles to normalize around the process, and agile cynics find reasons to stop
using agile.

■	 Almost every agile pilot provides the benefit of letting the team experience
agile and start understanding what the principles are all about.

■	 We’ve outlined what happened to Acme Media during its pilot, and the findings
we entered weren’t random. The benefits and issues that happened during the
pilot actually happened to real companies we’ve worked with. You should
expect to see similar issues and benefits with your pilot.

■	 If you work for a small company, the pilot may be your last test step before
going live with agile across your company. Your goals will focus on maturing
and on adding more agile practices as you mature. You can do this with the
help of an agile coach.

■	 If you work for a medium- to large-size company, you’ll need more than a pilot to
move agile across your enterprise. We suggest using a tool such as the Sidky Agile
Measurement Index (SAMI) to iteratively scale agile across large organizations.

■	 Similar to CMMI, the SAMI identifies levels of agility. But the purpose of the
SAMI is to help you become more agile. The SAMI isn’t meant to act as a scoring
device.

■	 The SAMI focuses on helping you reach higher levels of agility by suggesting sets
of complementary practices to use based on an assessment of your organization.

23.5 Conclusion
We’ve put the breadth of our experience into this book, and we hope that what we’ve
learned will help you, too. We also hope that you use this book as a reference after
reading it. We’ve made the chapters as granular as possible so you can use them as a
quick reference.

 We’d like to conclude with two of our key thoughts and beliefs.
 First, we aren’t agilists for the sake of being agile. We do embrace agile principles,

and we believe a process focused around agile principles is the best way to develop soft
ware today. But what we mainly care about is developing software by the most effective
means possible. Today, the most effective way is agile; tomorrow, 17 other individuals like
the Agile Alliance may meet in Snowbird, Utah, and identify an even better process. If
they do, we’ll listen. We’re dedicated to learning and improving every day.

 Second, keep your eye on the big picture: making money. As we demonstrated in
chapter 1, the agile principles tie directly to lowering costs and increasing revenues,
but we rarely hear people mention this critical point. You should always be able to
explain how your process ties to the bottom line.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

Licensed to Abner Lopez <ihackn3wton@gmail.com>

appendix A:
Readiness assessment

tables by practice

We identified a set of 20 or so common agile practices. Then we created a readiness-
assessment table for each of these practices. By creating a separate table for each practice,
we’ve given people the flexibility to assess their team/organization for one particular
practice without having to go through the assessment questions for all the other practices.
333

Licensed to Abner Lopez <ihackn3wton@gmail.com>

334 APPENDIX A Readiness assessment tables by practice

Table A.1 Adaptive planning

APN

Adaptive planning involves delaying the detail planning of the next iteration until immedi
ately before the start of the iteration. By delaying the planning to the last minute, the plan
can incorporate the latest feedback obtained about the product so far, including what was
learned from the previous iteration. Adaptive planning helps teams embrace change
because the focus shifts from adhering to a plan (which makes people less embracing of
change) to continuously planning based on the latest feedback obtained (which inherently
promotes the culture of welcoming change).

Various characteristics to be assessed to determine the team’s readiness for this practice Indicators

Management buy-in
Whether the team’s management is willing to base the planning for the next iteration on the
client’s feedback from the current (previous) iteration

APN_M1

Management buy-in
Whether the team’s management is willing to plan as late as possible for an iteration
(immediately before the iteration)

APN_M2

Indicators (questions) to be answered by the manager(s)

APN_M1

The plan for upcoming iteration may change based on customer feedback from the previ
ous or current iteration.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

APN_M2

You agree with developing the detailed plan for an iteration only after the conclusion of
the previous iteration.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Table A.2 Backlog (maintaining a list of all remaining features)

BLG

A product backlog is a list of all the work that needs to be done to complete the system
being built or enhanced based on the current knowledge of the system. This practice
includes the tasks for creating the backlog and controlling it consistently during the pro
cess by adding, removing, specifying, updating, and prioritizing the backlog items.

Various characteristics to be assessed to determine the team’s readiness for this practice Indicators

Management buy-in
Whether the team’s management is willing to maintain an up-to-date list of all the remaining
features for the project (backlog)

BLG_M1

Existence
Whether it is a common practice for teams to create and maintain an up-to-date list of all
the work that remains to be done for a project

BLG_M2
BLG_A1

Indicators (questions) to be answered by the manager(s)

You are willing to keep an up-to-date list of all the work that remains to be done for the
project.

BLG_M1
Strongly Tend to Neither Agree Tend to Strongly
Disagree Disagree nor Disagree Agree Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX A Readiness assessment tables by practice 335

Table A.2 Backlog (maintaining a list of all remaining features) (continued)

When working on a project, you keep an up-to-date list of all the work that remains to be
done.

BLG_M2
Strongly Tend to Neither Agree Tend to Strongly
Disagree Disagree nor Disagree Agree Agree

Indicators (questions) to be answered by the assessor(s)

After inspecting, the team has some mechanism by which all the remaining work in a
project is known at any point in time.

BLG_A1
Strongly Tend to Neither Agree Tend to Strongly
Disagree Disagree nor Disagree Agree Agree

Table A.3 Continuous customer feedback

CCF

This refers to any mechanism to elicit continuous customer feedback about the product.
This is important to ensure that the customer is satisfied with what is being developed
and that it meets their business needs and expectations. This is contrary to the practice
of gathering feedback after the product is completely developed.

Various characteristics to be assessed to determine the team’s readiness for this practice Indicators

Customer feedback existence
Whether the team has a method by which they gather continuous feedback/criticism from
the customer during the development process

CCF_M1,
CCF_M2

Developer buy-in
Whether the developers accept the fact that the customers are encouraged to continually
rethink their requirements

CCF_D1,
CCF_D2,
CCF_D3

Management buy-in
Whether the managers accept the fact that the customers are encouraged to continually
rethink their requirements

CCF_M3,
CCF_M4,
CCF_M5

Indicators (questions) to be answered by the manager(s)

CCF_M1

The customer should have the opportunity to give his/her feedback about the product
throughout the development process by means of interacting with a working piece of
software.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CCF_M2

The team has a method by which it gathers continuous feedback/criticism from the cus
tomer during the development process.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CCF_M3

Customers should be encouraged to regularly change their expectations for the product
being developed to ensure that the product satisfies their business priorities.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

336 APPENDIX A Readiness assessment tables by practice

Table A.3 Continuous customer feedback (continued)

CCF_M4

As the perception of what they need changes, customers are expected to articulate
those changes and so affect the product being built.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CCF_M5

The customer should give his/her feedback throughout the development process even if
it means that requirements must be changed.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Indicators (questions) to be answered by the developers

CCF_D1

Customers should be encouraged to regularly change their expectations for the product
being developed to ensure that the product satisfies their business priorities.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CCF_D2

The team has a method by which it gathers continuous feedback/criticism from the cus
tomer during the development process.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CCF_D3

The customer should give his/her feedback throughout the development process even if
it means that requirements must be changed.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Table A.4 Continuous delivery

CDL
This practice encourages dividing the development effort into releases and each release
into iterations. Continuous delivery promotes delivering the product in small iterations at
regular intervals.

Various characteristics to be assessed to determine the team’s readiness for this practice Indicators

Process definition existence
Whether the team has any process in place for development and isn’t relying on haphazard
and ad-hoc approaches to software development

CDL_A1
CDL_D1,
CDL_D2
CDL_M1,
CDL_M2

Lifecycle experience
Whether the team has previously used an incremental-iterative approach for developing
systems

CDL_M3,
CDL_M4
CDL_D3,
CDL_D4

Management buy-in
Whether management will be willing to use an iterative-incremental development approach

CDL_M5,
CDL_M6
Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX A Readiness assessment tables by practice 337

Table A.4 Continuous delivery (continued)

Management stress
Whether managers can handle the additional stress of overseeing the delivery of workable
iterations every 1–4 weeks

CDL_M7

Management competence
Whether managers understand the principles of incremental-iterative development

CDL_M7,
CDL_M9

Developer stress
Whether developers can handle the stress of delivering a workable iteration every 1–4
weeks

CDL_D5

Developer buy-in
Whether developers will be willing to use an iterative-incremental development approach

CDL_D6,
CDL_D7

Developer competence
Whether developers understand the principles of incremental-iterative development

CDL_D8,
CDL_D9

Indicators (questions) to be answered by the manager(s)

CDL_M1

There is a clear and known software development process in place for this team; soft
ware development isn’t ad hoc or haphazard.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CDL_M2

The software-development process consists of a clear set of activities. Each of these
activities has clear, standardized deliverables.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CDL_M3
Indicate how often you develop a project using an incremental-iterative approach.

Never Seldom Sometimes Usually Always

CDL_M4

It is a common practice for you to divide the system into mini-projects or phases. The
system is seldom developed as one large project.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
 Agree

Strongly
Agree

CDL_M5

The incremental-iterative approach has more benefits than the waterfall approach.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CDL_M6

You are willing to use the incremental-iterative approach to develop software.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CDL_M7

Delivering a working increment every 1–4 weeks will not cause you any additional stress.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

338 APPENDIX A Readiness assessment tables by practice

Table A.4 Continuous delivery (continued)

CDL_M8

No big up-front requirements-gathering and analysis should be conducted when using
the incremental-iterative approach. In other words, you don’t need to gather all the
requirements before you start developing software in an incremental-iterative approach.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

You fully understand the principles of the incremental-iterative development approach.

CDL_M9 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Indicators (questions) to be answered by the developers

CDL_D1

Software development in this team isn’t ad hoc or haphazard; there is a clear and known
process in place.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CDL_D2

Every project involves a clear set of activities. Each of these activities has clear, stan
dardized deliverables.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CDL_D3

Indicate how often you have worked on a project that was developed in an incremental-
iterative approach.

Never Seldom Sometimes Usually Always

CDL_D4

It is a common practice for you to divide the system into mini-projects or phases. The
system is seldom developed as one large project.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CDL_D5

Delivering a working increment every 1–4 weeks will not cause you any additional
stress.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CDL_D6

The incremental-iterative approach has more benefits than the waterfall approach.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CDL_D7

You are willing to do more integration (integrate after each iteration) in order to accom
modate the incremental-iterative development approach.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX A Readiness assessment tables by practice 339

Table A.4 Continuous delivery (continued)

CDL_D8

No big up-front requirements-gathering and analysis should be conducted when using
the incremental-iterative approach. In other words, you don’t need to gather all the
requirements before you start developing software in an incremental-iterative approach.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

You fully understand the principles of the incremental-iterative development approach.

CDL_D9 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Indicators (questions) to be answered by the assessor(s)

After observation of the team, you affirm that the team has a process it uses to develop
software. This process should include a set of activities with deliverables and standards.

CDL_A1
Strongly Tend to Neither Agree Tend to Strongly
Disagree Disagree nor Disagree Agree Agree

Table A.5 Client-driven iterations

CDI
The client determines the choice of the features for the next iteration. This makes the cli
ent in control and able to change the system based on whatever they perceive as the high
est business value to them.

Various characteristics to be assessed to determine the team’s readiness for this practice Indicators

Management buy-in
Whether managers are willing to give the customer the power to dictate the scope of the
iterations

CDI_M1 ,
CDI_M2,
CDI_M3

Indicators (questions) to be answered by the manager(s)

CDI_M1

As the perception of what they need changes, customers are expected to articulate
those changes by prioritizing the features they would like to see in the next iteration.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CDI_M2

Customers should be encouraged to regularly change their expectations for the product
being developed, to ensure that the product satisfies their business priorities.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CDI_M3

The customer should be given the authority to determine which features need to be
developed in the upcoming iteration.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

340 APPENDIX A Readiness assessment tables by practice

Table A.6 Continuous integration

CNI
The practice encourages members of the development team to integrate their work fre
quently. It is preferred that an automated build tool verify each integration in order to
detect any integration errors as quickly as possible.

Various characteristics to be assessed to determine the team’s readiness for this practice Indicators

Developer buy-in
Whether design is a continuous process or done once at the beginning of the development
process

CNI_D1,
CNI_D2,
CNI_D3

Software tools experience
Whether the developers are familiar with the tools that aid in continuous integration

CNI_D4,
CNI_D5

Indicators (questions) to be answered by the developers

CNI_D1

The usual time it takes to create a build of the system is

More than
1 hour

Under
1 hour

Under
15 minutes

Under
10 minutes

Under
5 minutes

CNI_D2

Instead of integrating the system at the end of the development effort, it is better to
regularly integrate the system throughout the whole development process.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CNI_D3

You are willing to integrate your software throughout the development process, even if it
means more work for you.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CNI_D4

You are comfortable and competent using a Software Configuration Management (SCM)
tool.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CNI_D5

You are comfortable and competent using a continuous-integration tool.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Table A.7 Coding standards

CGS This refers to a common language relative to the code syntax among all the developers. These
coding standards include naming conventions, formatting issues, and other best practices.

Various characteristics to be assessed to determine the team’s readiness for this practice Indicators

Developer buy-in
Whether the developers see the benefit and are willing to apply coding standards

CGS_D1,
CGS_D2

Coding standards existence
Whether any coding standards exist that are presently used

CGS_A1
Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX A Readiness assessment tables by practice 341

Table A.7 Coding standards (continued)

Indicators (questions) to be answered by the developers

CGS_D1

There should be a coding standard for development.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

CGS_D2

If the team has a coding standard, then developers should use it when coding, even in
crunch time.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Indicators (questions) to be answered by the assessor(s)

After observation or review of documents or other information, it is evident that the
team has a coding standard that it adheres to.

CGS_A1
Strongly Tend to Neither Agree Tend to Strongly
Disagree Disagree nor Disagree Agree Agree

Table A.8 Daily progress tracking

DPT
The team has a means by which they can stay informed on a daily basis about the status
of the iteration. During these meetings, team members discuss what they did the day
before, what they will do today, and any factors that might affect their progress.

Various characteristics to be assessed to determine the team’s readiness for this prac
tice

Indicators

Management buy-in
Whether management is willing to meet daily for progress updates

DPT_M1

Developer buy-in
Whether the developers are willing to meet daily for progress updates

DPT_D1

Project management
How often the team meets regularly to discuss the progress of a project

DPT_M2
DPT_D2

Indicators (questions) to be answered by the manager(s)

DPT_M1

You are willing to meet daily for the progress update of a project.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

DPT_M2

Indicate how often you meet with the rest of the team to discuss and update each other
on the progress of the project.

Less than
monthly

Monthly Every couple
of weeks

Weekly Daily/
Hourly
Licensed to Abner Lopez <ihackn3wton@gmail.com>

342 APPENDIX A Readiness assessment tables by practice

Table A.8 Daily progress tracking (continued)

Indicators (questions) to be answered by the developers

DPT_D1

You are willing to meet daily to check in and synchronize efforts with your team members.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

DPT_D2

Indicate how often you meet with the rest of the team to discuss and update each other
about the progress of the project.

Less than
monthly

Monthly Every couple
of weeks

Weekly Daily/
Hourly

Table A.9 Evolutionary requirements

EVR
Not all requirements are gathered at the beginning of the project; they evolve and change
over the lifecycle of the product. Requirements iteratively evolve instead of being fully
developed in one major specifications effort at the beginning of the project.

Various characteristics to be assessed to determine the team’s readiness for this practice Indicators

Existence of requirements engineering
Whether the team has an institutionalized procedure to gather requirements from its
clients

EVR_A1
EVR_M1,
EVR_M2

Experience with evolutionary requirements
Whether the team has developed projects using the evolutionary requirements

EVR_D1,
EVR_M3

Management uncertainty avoidance
Whether management can handle the uncertainty involved at the beginning of the require
ments-gathering phase and deciding on requirements and features as late as possible

EVR_M4,
EVR_M5,
EVR_M6

Management competence
Whether the managers can recognize high-level (architecturally influential) requirements
and differentiate them from detail requirements

EVR_M7,
EVR_M8

Management buy-in
Whether management is willing to accept changes from the customer and realize that all
changes are reversible

EVR_M6,
EVR_M9,
EVR_M1

Management buy-in
Whether management is willing to try evolutionary requirements instead of big up-front
requirements gathering

EVR_M1,
EVR_M2

Developer uncertainty avoidance
Whether developers can handle the uncertainty involved at the beginning of the require
ments-gathering phase and deciding on requirements and features as late as possible

EVR_D2,
EVR_D3

Developer buy-in
Whether the developers are willing to accept changes from the customer and realize that all
changes are reversible

EVR_D4,
EVR_D7,
EVR_D8
Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX A Readiness assessment tables by practice 343

Table A.9 Evolutionary requirements (continued)

Developer competence
Whether the developers can recognize high-level (architecturally influential) requirements
and differentiate them from detail requirements

EVR_D5,
EVR_D6

Indicators (questions) to be answered by the manager(s)

EVR_M1

The team is familiar with the procedures to gather requirements from clients.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

EVR_M2

In any project, requirements are always gathered from the customer in a structured
manner and not haphazardly.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

EVR_M3

Indicate how often you manage a project in which not all the requirements are known up
front and an evolutionary requirements approach is used.

Never Seldom Sometimes Usually Always

EVR_M4

You can start development of a project without knowing the exact requirements of the
whole project.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

EVR_M5

If circumstances dictate that not all the details are available before you start a project,
you do not mind the uncertainty.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

EVR_M6

You do not mind starting a project knowing that its requirements will change in the
future.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

EVR_M7

You can tell the difference between requirements that will influence the architecture
and design of a project and requirements that will not influence it.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

EVR_M8

In a project, you can recognize the high-level features that most probably will not
change versus detailed requirements that might change.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

EVR_M9

Throughout the project, the client has full right to change the requirements in order to
meet his/her business needs.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

344 APPENDIX A Readiness assessment tables by practice

Table A.9 Evolutionary requirements (continued)

Indicators (questions) to be answered by the developers

EVR_D1

Indicate how often you are involved in a project in which not all the requirements are
known up front and an evolutionary requirements approach is used.

Never Seldom Sometimes Usually Always

EVR_D2

You are willing start development of a project without knowing the exact requirements
of the whole project.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

EVR_D3

If circumstances dictate that not all the details are available before you start a project,
you do not mind the uncertainty.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

EVR_D4

You do not mind starting a project knowing that its requirements will evolve or change
in the future.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

EVR_D5

You can tell the difference between requirements that will influence the architecture
and design of a project and requirements that will not influence it.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

EVR_D6

In a project, you can recognize the high-level features that most probably will not
change versus detailed requirements that might change.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

EVR_D7

Throughout the project, the client has full right to change the requirements in order to
meet his/her business needs.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

EVR_D8

In order to deliver valuable software to clients, change should be welcomed and not con
strained.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Indicators (questions) to be answered by the assessor(s)

After observation or review of documents or other information, it is evident that the
team has a process it uses to gather requirements from its clients.

EVR_A1
Strongly Tend to Neither Agree Tend to Strongly
Disagree Disagree nor Disagree Agree Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX A Readiness assessment tables by practice 345

Table A.10 Empowered and motivated teams

EMT
Managers empower and equip their teams with the authority to make decisions on their
own. This authority helps motivate the team members, who believe that they can solve any
problems the team faces.

Various characteristics to be assessed to determine the team’s readiness for this practice Indicators

Developer authority
Whether management empowers teams with decision-making authority

EMT_M1,
EMT_M2
EMT_D1,
EMT_D2,
EMT_D3

Developer motivation
Whether people are treated in a way that motivates them

EMT_D4,
EMT_D5,
EMT_D6,
EMT_D7

Management trust
Whether managers trust and believe in the technical team in order to truly empower them

EMT_M2,
EMT_M3,
EMT_M4

Indicators (questions) to be answered by the project manager(s)

EMT_M1

You usually seek your subordinates’ opinions before making a decision.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

You frequently seek the input of your subordinates on technical issues.

EMT_M2 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

If needed, you do not mind granting your subordinates unregulated access to the customer.

EMT_M3 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

EMT_M4 You allow your subordinates to choose their own tasks for a project.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Indicators (questions) to be answered by the project manager(s)

EMT_D1

Your manager gives you the authority to make decisions without referring back to him/her.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Your manager seeks your input on technical issues.

EMT_D2 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

346 APPENDIX A Readiness assessment tables by practice

Table A.10 Empowered and motivated teams (continued)

EMT_D3

You usually participate in the planning process of the project you are working on.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

When in a group, you feel that your participation is important.

EMT_D4 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

The team values you and your expertise.

EMT_D5 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Your manager has high expectations of you.

EMT_D6 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

You are motivated by your job.

EMT_D7 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Table A.11 Pair programming

PPG

Pair programming is an agile practice that requires two software engineers to work in a
combined development effort at one workstation. Each member performs the action the
other isn’t currently doing; for example, while one types in unit tests, the other thinks
about the class that will satisfy the test.

Various characteristics to be assessed to determine the team’s readiness for this practice Indicators

Management buy-in
Whether management can see the benefit of pair programming

PPG_M1,
PPG_M2

Developer buy-in
Whether developers are willing to try pair programming

PPG_D1,
PPG_D2,
PPG_D3

Measuring productivity
What the team considers to be a measure of software productivity

PPG_M3

Team collaboration
Whether an atmosphere of assistance exists within the team

PPG_D4,
PPG_D5
PPG_M4

Indicators (questions) to be answered by the manager(s)

Pair programming increases productivity, contrary to what others may say about pair pro
gramming (that it decreases productivity by half).

PPG_M1
Strongly Tend to Neither Agree nor Tend to Strongly
Disagree Disagree Disagree Agree Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX A Readiness assessment tables by practice 347

Table A.11 Pair programming (continued)

PPG_M2

You encourage your development team to use pair programming.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

PPG_M3

Productivity is about how much customer value you can create per dollar spent, not
about how many lines of code or classes coded per dollar spent.

Strongly
Disagree

Tend to Dis
agree

Neither Agree nor
Disagree

Tend to
Agree

Strongly
Agree

An atmosphere of assistance exists in the team.

PPG_M4 Strongly
Disagree

Tend to
Disagree

Neither Agree nor
Disagree

Tend to
Agree

Strongly
Agree

Indicators (questions) to be answered by the developers

PPG_D1

Pair programming increases productivity, contrary to what others may say
gramming (that it decreases productivity by half).

about pair pro-

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

PPG_D2
Indicate how often you program in pairs.

Never Seldom Sometimes Usually Always

You are willing to program in pairs.

PPG_D3 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Helping other team members with their work is a waste of my time.

PPG_D4 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Whenever you need help, people are willing to help you.

PPG_D5 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Table A.12 Reflect, and tune the process (retrospectives)

RTP
This practice relates to holding retrospectives at regular intervals within the development
process to reflect and tune the process.

Various characteristics to be assessed to determine the team’s readiness for this practice Indicators

Developer buy-in
Whether developers are willing to commit to reflecting about and tuning the process after
each iteration and release

RTP_D1

Management buy-in
Whether management is willing to commit to reflecting about and tuning the process after
each iteration and release

RTP_M1
Licensed to Abner Lopez <ihackn3wton@gmail.com>

348 APPENDIX A Readiness assessment tables by practice

Table A.12 Reflect, and tune the process (retrospectives) (continued)

Process improvement capability
Whether the team can handle process change in the middle of the project

RTP_D2,
RTP_D3,
RTP_D4
RTP_M2,
RTP_M3,
RTP_M4

Indicators (questions) to be answered by the managers(s)

RTP_M1

You are willing to dedicate time after each iteration/release to review how the process
could be improved.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

RTP_M2

You are willing to undergo a process change even if it requires some extra work from the
team.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

RTP_M3

If there is a need for process change, that change should not be considered a burden on
the team even if significant process changes have been made previously during the project.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

RTP_M4

Process change in the middle of the project isn’t considered a disruption because the
process change is worth the benefit it will bring.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Indicators (questions) to be answered by the developers

RTP_D1

You are willing to dedicate time after each iteration/release to review how the process
could be improved.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

RTP_D2

You are willing to undergo a process change even if it requires some extra work from the
team.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

RTP_D3

If there is a need for process change, that change should not be considered a burden on
the team even if significant process changes have been made previously during the project.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

RTP_D4

Process change in the middle of the project isn’t considered a disruption because the
process change is worth the benefit it will bring.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX A Readiness assessment tables by practice 349

Table A.13 Self-organized teams

SOT

Self-organized teams are empowered by management to make decisions on their own with
out waiting for management approval. When the team is given a task, it becomes the
responsibility of the whole team, collectively, to finish it, not a specific person or a specific
role. Management treats self-organizing teams as one entity without distinguishing
between the individuals of the team.

Various characteristics to be assessed to determine the team’s readiness for this practice Indicators

Management buy-in
Whether management agrees to have self-organizing teams

SOT_M1

Management competence
Whether management is ready to treat the team as a true self-organizing team

SOT_M2,
SOT_M3,
SOT_M4,
SOT_M5

Developer buy-in
Whether the employees feel comfortable working as self-organizing teams

SOT_D1,
SOT_D2,
SOT_D3

Indicators (questions) to be answered by the manager(s)

SOT_M1

You agree that it is very important for the employees to work in teams where they can
divide the team tasks among themselves.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

SOT_M2

You trust that your employees can determine the best way to accomplish tasks by them
selves without your (management’s) interference.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

SOT_M3

You are willing to allow a self-organizing team to grow and not micromanage it.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

SOT_M4

Employees are competent and disciplined enough to work in self-organizing teams.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

SOT_M5

The team is an entity that has its knowledge, perspective, motivation, and expertise
and should be treated as a partner with management and the customer.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Indicators (questions) to be answered by the developers

You like to work on a team that management regards as one entity: addressing not indi
vidual team members in rewards or tasks but one team.

SOT_D1
Strongly Tend to Neither Agree Tend to Strongly
Disagree Disagree nor Disagree Agree Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

350 APPENDIX A Readiness assessment tables by practice

Table A.13 Self-organized teams (continued)

SOT_D2

You do not mind working without direct managerial supervision as long as you are on a
team that is treated as a partner with management.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

SOT_D3

You consider yourself competent and disciplined enough to work in a self-organizing
team.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Table A.14 Test Driven Development

TDD
TDD involves repeatedly writing a test first and then implementing only the code necessary
to pass the test. The developers create one test to define some small aspect of the prob
lem at hand. Then they create the simplest code that will make the test pass.

Various characteristics to be assessed to determine the team’s readiness for this practice Indicators

Developer competence
Whether the developers are competent and experienced with writing unit tests

TDD_D1,
TDD_D2,
TDD_D3

Developer buy-in
Whether the developers are motivated and willing to apply Test Driven Development

TDD_D4

Developer perception
Whether the developers think that Test Driven Development is a hard task

TDD_D5

Management buy-in
Whether management will encourage Test Driven Development and tolerate the learning curve

TDD_M1,
TDD_M2

Test automation
Whether the team has or can provide tools for creating and maintaining automated test suites

TDD_A1
TDD_M3

Indicators (questions) to be answered by the manager(s)

TDD_M1

Test Driven Development will produce better software with fewer bugs.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

TDD_M2

You are willing to tolerate the learning curve of the development team while they transi
tion to Test Driven Development.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

TDD_M3

The organization will be willing to provide software tools for creating and maintaining
automated test suites.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX A Readiness assessment tables by practice 351

Table A.14 Test Driven Development (continued)

Indicators (questions) to be answered by the developers

TDD_D1
Indicate how often you write unit tests for every function/method/class.

Never Seldom Sometimes Usually Always

You have no problems or challenges writing unit tests for functions/methods/classes.

TDD_D2 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

TDD_D3

The suite of unit tests that you write is comprehensive and usually encompasses all pos
sible test scenarios.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

You are willing to employ a test-driven approach to development.

TDD_D4 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

You think Test Driven Development is easy.

TDD_D5 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Indicators (questions) to be answered by the assessor(s)

After observation or review of the team’s software tools, it is evident that the team has
access to the tools for creating and maintaining automated test suites.

TDD_A1
Strongly Tend to Neither Agree Tend to Strongly
Disagree Disagree nor Disagree Agree Agree

Table A.15 Task volunteering

TSV
After the list of tasks has been generated, the project manager encourages people to vol
unteer and commit to tasks that they choose rather than have the manager assign the tasks
to them.

Various characteristics to be assessed to determine the team’s readiness for this practice Indicators

Management buy-in
Whether management will be willing to buy into and can see benefits from employees volun
teering for tasks instead of being assigned

TSV_M1,
TSV_M2

Developer buy-in
Whether developers are willing to see the benefits from volunteering for tasks

TSV_D1

Indicators (questions) to be answered by the project manager(s)

You allow your subordinates to choose their own tasks for a project.

TSV_M1 Strongly Tend to Neither Agree Tend to Strongly
Disagree Disagree nor Disagree Agree Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

352 APPENDIX A Readiness assessment tables by practice

Table A.15 Task volunteering (continued)

You believe that subordinates would perform better and be more effective if they were to
choose their own tasks.

TSV_M2
Strongly Tend to Neither Agree Tend to Strongly
Disagree Disagree nor Disagree Agree Agree

Indicators (questions) to be answered by the developers

You would do a better job choosing your own task on a project instead of being assigned
one by your manager.

TSV_D1
Strongly Tend to Neither Agree Tend to Strongly
Disagree Disagree nor Disagree Agree Agree

Table A.16 Unit tests

UNT

Unit tests are code procedures used to validate that individual units of source code are
working properly. A unit of source code is the smallest testable part of an application. For
example, in procedural programming, a unit may be a function or procedure, whereas in
object-oriented programming, the smallest unit is usually a class.

Various characteristics to be assessed to determine the team’s readiness for this practice Indicators

Developer buy-in
Whether developers are willing to write unit tests during the development process

UNT_D1,
UNT_D2,
UNT_D3

Developer competence
Whether the developers have the required competence and previous experience writing unit
tests

UNT_D4,
UNT_D5
UNT_M1

Management buy-in
Whether management accepts that developers will invest additional time to write unit tests
while coding

UNT_M2
UNT_M3

Indicators (questions) to be answered by the manager(s)

UT_M1

The developers are competent enough to write good unit tests for the methods and func
tions in the code.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

UT_M2

It is important for developers to write unit tests for their methods and functions while
they code, even if that will take additional time from them.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

Writing unit tests for code is as important as writing new code for more functionality.

UT_M2 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX A Readiness assessment tables by practice 353

Table A.16 Unit tests (continued)

Indicators (questions) to be answered by the developers

UT_D1

It is important to write unit tests for methods and functions while coding them even if
that will take additional time.

Never Seldom Sometimes Usually Always

Writing unit tests for code is as important as writing new code for more functionality.

UT_D2 Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

UT_D3

You are willing to commit to writing unit tests while you code for every method or func
tion in your code.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree

UT_D4
Indicate how often you write unit tests for every method or function in your code.

Never Seldom Sometimes Usually Always

UT_D5

You consider yourself competent enough to write good and comprehensive unit tests for
the methods and functions in your code.

Strongly
Disagree

Tend to
Disagree

Neither Agree
nor Disagree

Tend to
Agree

Strongly
Agree
Licensed to Abner Lopez <ihackn3wton@gmail.com>

appendix B:
Agile concepts from
a phase perspective

Many people learn software development from a phase perspective, performing
each phase in a series. Common phases are analysis, requirements, design, develop
ment, testing, and delivery. Agile software development isn’t performed in a series,
but it can be modeled in a serial fashion to make it easier to envision the process.

B.1 Overview of the phases
Let’s begin with a quick overview of the phases. Figure 1 shows all the phases and
their relationship to each other.

 At first glance, the diagram resembles a waterfall development process. In real
ity, it’s a diagram of an agile process. The gates help define the phases and also act
as circuit breakers for the project, supporting risk management in every phase.

 The gates also reflect an approval process: a go/no-go decision can be made at
each one. The approval process can be determined by your team and company.
The approval could be from a management group, sponsor, or product manager. It
could also be a project team decision.

 It’s important to note that the gateways are virtual. You won’t complete all of
your feasibility work before proceeding to planning, but you’ll do the majority of it
in the Feasibility phase. The Planning phase is similar: you’ll do the bulk of the
planning during the Planning phase, but you’ll do a lot more during development.
Feasibility and planning keep occurring until the moment the decision is made to
deploy functionality into a Production environment.

 As we continue our discussion, notice that each phase diagram lists tools that
can be used during the phase. We don’t discuss the tools in this overview; we discuss
them in detail during the course of the case study in the book’s chapters. Now let’s
examine the Feasibility phase.
354

Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX B Agile concepts from a phase perspective 355
Figure B.1 A project begins when an idea is determined to be viable during the Feasibility phase. The
Planning phase reviews the idea in detail to identify the features and priorities. The Development phase
is used to refine designs, develop code, and iteratively surface working code for demonstrations. When
development work is complete, the queued iterations are released to a Production environment during
the Deployment phase. Although you do the majority of feasibility and planning work at the beginning
of the project, you continue to evaluate value and re-plan until the project is delivered.

B.2 Feasibility: define and validate your vision
Phase objective: Determine if the idea has enough merit to justify going forward with
more detailed requirements, planning, funding, and staffing.

 Why are you here? Why are you doing this project? What is the value of this
request? The Feasibility phase pursues the answers to these questions and more. The
question that summarizes it all is, “Is there value in pursuing this request or idea?”

 Look at figure 2 to get a better understanding.
 The Feasibility phase begins with an idea or request. The idea can come from

within the team, a customer, or practically any source. The person who collects or
provides the idea bounces it off a supervisor or a management group that vets ideas. If
the idea is given approval for further investigation of feasibility, it’s assigned to a
group or person for further research. It may be given back to the person who pre
sented the idea.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

356 APPENDIX B Agile concepts from a phase perspective
Figure B.2 Many companies initialize a project without quantifying its value and goals. The Feasibility
phase eliminates this issue by measuring the value before you make a major investment in the project.
The team compares costs and benefits at the end of the phase and makes a go/no-go decision.

The person assigned to the request then makes a decision about whether they can do
the research on their own or if they need team members to help. To see it in practice,
let’s look at an idea within Acme Media.

 Wes Hunter, a business analyst, suggests that Acme start providing news alerts to
cell phones. He bounces the idea off the product manager for the news website and
receives a green light to go further with feasibility and research. Wes can see the busi
ness value of the feature and explains the value from a perspective of audience share
and competitive advantage, but he has no idea how wireless technology works or the
architecture that will be required to support it. Wes requests the assistance of the lead
architect to help him work through the high-level technical implications of pursuing
the idea. In this instance, the feasibility team is Wes and the lead architect.

 After the team or person has been identified, they continue the feasibility work.
This additional work may include the following:

■ Talking to customers
■ Performing a cost/benefit analysis
■ Looking at what competitors are doing in related areas
■ Researching whitepapers on the subject from industry experts
Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX B Agile concepts from a phase perspective 357
■ Checking compatibility with the current platform
■ Researching technology needs
■ Creating use cases to better understand the idea

The agile/lean concept of “just enough” applies here. You want just enough informa
tion to see if this idea is worth the effort required to create a plan for it.

 When the work is complete, it’s presented to the product manager or approving
body for discussion. The feasibility investigator presents high-level requirements, a
guess at project costs (funds and resources needed), risks identified during the
research, a list of benefits, and a ballpark timeline. The meeting is concluded with a
go/no-go decision.

 This decision only provides approval to continue the investigation and planning
for the idea—it isn’t a blessing to take the idea all the way through to delivery. Show-
stoppers can still be identified during planning and development, so an idea can be
cancelled at any time.

 The last step in the Feasibility phase is the assignment of a planning team. If one
person has been investigating an idea, they need a team to plan the idea after
approval. Employees can be assigned informally or officially by a manager or manage
ment group. Team members can come from all areas of the organization, but you
need representatives who have experience with the product. These team members will
help estimate features at the end of the phase.

 The team also needs the customer or a customer advocate to provide their input
during the prioritization that occurs throughout the phase. It’s desirable to have the
planning team follow the idea all the way through to deployment.

B.3 Planning: speculate and create a living plan
Phase objective: Break the idea into discrete pieces of functionality called features. Prior
itize the features, and assign them to iterations.

 The first step in the Planning phase is to orient all the planning-team members to
the idea. Frequently the planning team conducts an envisioning meeting to help
everyone synchronize on the idea’s benefits. The envisioning meeting can be viewed
as a marketing meeting. The team pretends they’re going to sell the idea to a cus
tomer. They identify the top three to five product highlights they would tell the cus
tomer about. In addition, they create a summary of key features that will be delivered.
The idea becomes a project during this exercise.

 Note that the Planning phase also continues the feasibility work. You’ve gathered
enough information to justify planning during feasibility; now you must refine your
financials based on the additional details gleaned during planning. See figure 3.

 After features are identified, the team goes through the feature-card exercise. In
this step, the features identified during envisioning are fleshed out just enough to pri
oritize them and sequence them into the order in which they would be developed.
The team also uses the prioritization as another feasibility check: if a feature comes
out of the feature-card exercise as a low priority, the team may choose to remove it
from the project.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

358 APPENDIX B Agile concepts from a phase perspective

Figure B.3 The Planning phase brings together the project team to quickly convert the idea into features.
Features are prioritized, sequenced, and estimated during this phase. The team creates an iteration plan
to initialize development. Note that planning isn’t a one-time event: it continues throughout the
development cycle as you adapt to changes and discoveries.

The team estimates the remaining features at a high level, identifying the major tasks
and resource types needed.

 The last step of this phase is to assign features to iterations. The iterations are
buckets of time in which the team develops features. A good timeframe for an itera
tion is 2 to 4 weeks. The team uses the previous estimates to determine which fea
tures will fit into the available iterations. Each iteration is structured so that it
provides value on its own. This allows deployment even if something prevents all the
iterations from being completed.

 The main deliverable from this phase is the iteration plan.

B.4 Development: exploration with a schedule
Phase objective: Create, test, and demonstrate features. Queue iterations for deployment.

 The Development phase begins with iteration 0. The iteration is so labeled
because no features are delivered during it: it’s used to put the necessary foundation
pieces, both business and technical, in place to start development. Some typical activi
ties are as follows:
Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX B Agile concepts from a phase perspective 359
■ Finalizing contracts with vendors
■ Initial architecture design
■ Preparing the environments (operating system, database, development tools)
■ Funding

Note that if you’re building on an existing platform with dedicated employees, you
may not need an iteration 0—you can begin development immediately after planning.

 When the first development iteration begins, the team refines the tasks they identi
fied during planning. This is common because the team provided only enough infor
mation to estimate the features during planning. After a project gets through the
planning gateway, the team knows it’s coming and begins doing detailed analysis of
the required work.

 The development done during an iteration doesn’t use a waterfall approach. The
process is one of collaborative development. The developers create code to the mini
mum specification and demonstrate it to the customer. At this time, the customer iden
tifies requirements the developers missed or issues with the initial requirements. The
developers may also identify technical issues. The developers and customer work
through these issues during the iteration, evolving the code until it supports what is
needed at the end of the iteration, not what was requested at the beginning. See figure 4.

Figure B.4 Development starts by establishing a foundation in iteration 0. Iteration 0 includes items
such as architectural design, environment preparation, and finalizing contracts. Development iterations
follow, delivering working code in subsets every 2 to 4 weeks. The working code is surfaced for a
demonstration and customer feedback. That feedback is incorporated during the planning cycle for the
next iteration. When all iterations are completed, the code is delivered to a Production environment.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

360	 APPENDIX B Agile concepts from a phase perspective
Testing occurs during an iteration and after. When an iteration is complete, the team
holds a review meeting to adapt (see the following section).

 Iterations are stored in Acceptance environments until all iterations are deemed
complete. At that time, all the work is deployed into the Production environment.

B.5 Adapt: react to new information
Phase objective: Review the output of an iteration, and re-plan based on discoveries.

 Adapting occurs informally throughout an agile project, but it happens formally
during the Development phase. The team performs an iteration review at the end of
each iteration for the following reasons:

■	 To demonstrate the state of the features assigned to the iteration
■	 To get feedback from the customers and stakeholders now that they can see the

feature
■	 To refine feature definitions based on feedback and better understanding (pri

orities change; feature definition and requirements become clearer)
■	 To incorporate any changes and new information that has been discovered

since the start of the iteration
■	 To evaluate the pace of feature development and adjust the next iteration

accordingly

Adapting is illustrated in figure 5.

Figure B.5 The Adapt phase surfaces working code for demonstrations and feedback. You use this
period to validate that you’re on target with the customer’s needs. You also use this timeframe to
evaluate the previous iteration. How much work are you putting through, versus what you estimated?
You plan the next iteration based on the velocity you recorded during the previous one.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX B Agile concepts from a phase perspective 361
When the review is complete, the project manager modifies the iteration plan based
on the new information, and the team proceeds into the next iteration.

B.6 Deployment: deliver, train, revisit, and close the project
Phase objective: Deliver code to the Production environment with all support needs in
place.

 The Deployment phase begins after the last iteration is complete. Typical tasks for
the Deployment phase are as follows:

■ Train support and operations on the forthcoming release.
■ Turn on your communication plan to employees and customers.
■ When applicable, enable the marketing plan.
■ Ensure that all pieces of the maintenance and support plans are in place.
■ Release the code into production.
■ Where applicable, perform post-release QA in the Production environment.
■ Perform a project retrospective with the team within 2 weeks of the release.

Delivery is illustrated in figure 6.
 In an agile methodology, you consider deployment needs throughout the previous

phases. Optimally, the work done during deployment includes tweaking and finalizing
the training, maintenance, marketing, and communication plans.

Figure B.6 When all iterations are complete, you kick into delivery mode. You train
employees, customers, and support networks before putting the code into a
Production environment. You also review the maintenance concerns you’ve recorded
during the project and make sure a maintenance plan is in place. After delivery, you
complete a project retrospective to review how effective the process is, and make
adjustments as needed.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

appendix C:
Agile process

 overview in text

Our book is loaded with diagrams and flowcharts, but we recognize that some peo
ple are more verbal than visual. To support this need we have documented one
example of an agile process from beginning to end in text format.

C.1 Feasibility phase
1 Project manager (PM) or any team member bounces idea off manager (may

go up to member of executive team).
2 PM gets go-ahead to explore further.
3 PM does initial requirements gathering (may include talking to customers,

examining available research, looking at competing sites, examining traffic
trends. The level of documentation is determined by team and business needs.

4 PM holds feasibility meeting with potential team to explore idea more:
5 PM presents overview of project concept, which may include draft of features

list.

a PM presents initial requirements, and team helps refine.
b Team discusses feasibility of the project, risks, and so on, and takes first

pass at project worksheet.
TOOL: Feasibility discussion guide

TOOL: Project worksheet *REQUIRED

Team completes elevator statement.
TOOL: Elevator statement

6 PM gets go-ahead from supervisor to move to Planning phase (may go up to
senior team).

c
362

Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX C Agile process overview in text	 363

C.2 Planning phase
1	 Project team holds envisioning meeting (PM may come in with initial drafts of

following items):

a Team refines elevator statement.

b Team does envision activity and creates features list.

c Team reviews and updates project worksheet.

TOOL: User scenarios or use cases
d Team completes operational worksheet.

TOOL: Operational worksheet *REQUIRED

e Team determines level of documentation according to team and business
needs.

2 Team carries out feature-card activity:
TOOL: Feature-card template

a Write down features (“ability to” statements) on cards or separate pieces of
paper. Include technical features.

b Prioritize features into rough iterations according to value to customer.
c For features in first few iterations, flesh out feature description and estimate

story points (days). (May be assisted by flipchart drawings, flow charts, rough
mockups, or listing major tasks associated with features. Drawings and notes
get everyone on the same page and can be saved for reference.)

d	 Refine iteration plan, considering details of features (risk, story points, and
so on).

e	 Create iteration plan:
TOOL: Iteration-plan worksheet
i Project may need iteration 0 for infrastructure, architecture design, or

other non-customer-facing features.
ii Use general guideline of 2 to 4 weeks per iteration.
iii Associate dates with each iteration, including time between iterations for

QA, for usability, and to review and adapt plan.

C.3 Development phase
1 Complete iteration 0 (if needed).

2 Work to complete iteration 1.

3 Perform daily stand-up meeting.

4 Perform QA and usability test if necessary.

5 Hold iteration-review meeting:

a Consider feedback from team, users, and customers.
b Incorporate any changes or new information that has arisen since start of

iteration.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

364 APPENDIX C Agile process overview in text

c Consider number of features achieved in last iteration. Use information to
target next iteration more realistically.

d Adapt/re-plan: reorganize iteration plan, taking new information into
consideration.

6 Work to complete next iteration.

C.4 Delivery phase
1 Training

2 Communication

3 Maintenance plan

4 Documentation distribution

5 Launch

6 Post-launch QA

7 Announcements and celebration

8 Retrospective

TOOL: Retrospective survey and discussion guide *REQUIRED
Licensed to Abner Lopez <ihackn3wton@gmail.com>

appendix D:
Example: determining
 process and document

 needs for a project

Throughout the book we have mentioned the need for the project team to deter
mine the documentation and processes required for each project. In the example
below we show an example from a real team. This team worked in a regulated envi
ronment and had to provide requirements traceability. Note that they revisited this
matrix at the start of each project to reach agreement on what the deliverables
would be. This matrix was originally one spreadsheet, but we have broken it into
two pages to make it easier to view within the book.

 Also note some unique terms used by this team: BRQs (Business
Requirements), FRQs (Functional Requirements), FS (Functional Specification),
and Ux (User Experience).
365

Licensed to Abner Lopez <ihackn3wton@gmail.com>

366 APPENDIX D Example: determining process and document needs for a project
Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX D Example: determining process and document needs for a project 367
Licensed to Abner Lopez <ihackn3wton@gmail.com>

appendix E:
Quantitative

feedback on the SAMI

We gathered feedback about the Sidky Agile Measurement Index (SAMI) by pre
senting it to 28 members of the agile community and eliciting feedback about its
objectives and its ability to achieve those objectives. We obtained this feedback dur
ing 90-minute personal visits with the participants (individually or in groups) that
included a presentation of the SAMI, discussion, and a period of time to complete
questionnaires. This appendix presents the results.

The questionnaire concerning the SAMI focuses on the index’s comprehensive
ness, practicality, and necessity, as well as whether the agile practices are placed at
appropriate levels (labeled Relevance in the graphs).

 Figure 1 indicates that more than 75 percent of the respondents either slightly
or strongly agree that the SAMI is comprehensive, practical, and necessary. This
indicates that there is indeed a need for structure and guidance about how to orga
nize these fundamental agile practices and concepts—and that the SAMI addresses
this need.

 But the response to the question of the agile practices’ relevance to the agile levels
in which they’re defined shows an agreement rate that drops below 50 percent, and
the rate of disagreement rises to approximately 37 percent; the remaining respon
dents neither agree nor disagree. This result is anticipated because we know that each
agile coach or consultant will prefer their own organization of the practices within
the levels based on their personal preferences and professional experiences.

Figure 2 summarizes the feedback obtained from participants who have more
than 6 years of experience in leading agile adoption efforts. The figure illustrates
that 80 percent of these experts strongly agree with the comprehensiveness of the
agile levels defined by SAMI; the remaining 20 percent neither agree nor dis
agree. There is 100 percent agreement with the practicality of the levels of agility,
368

Licensed to Abner Lopez <ihackn3wton@gmail.com>

APPENDIX E Quantitative feedback on the SAMI 369

Figure E.1 Overall
feedback about the SAMI

with 80 percent indicating strong support. Also, 80 percent agree with the necessity
of the levels of agility; only 20 percent slightly disagree. Regarding the relevance of
practices to levels, 60 percent agree that the practices are more or less in the right
levels; 20 percent chose to remain neutral until they studied the five levels more
thoroughly. The remaining 20 percent strongly disagree.

If you’re looking for a more in-depth analysis of the SAMI and the results attained
from this substantiation of the SAMI, we recommend that you read the Ph.D. disserta
tion in which the SAMI was presented. You can find the dissertation at http://
scholar.lib.vt.edu/theses/available/etd-05252007-110748/.

 In summary, the agile community recognizes the utility and need for the SAMI and
that it provides a value-based roadmap to agility.

Figure E.2 Feedback
about the SAMI from
agile experts with more
than six years of agile
adoption experience
Licensed to Abner Lopez <ihackn3wton@gmail.com>

http://scholar.lib.vt.edu/theses/available/etd-05252007-110748/
http://scholar.lib.vt.edu/theses/available/etd-05252007-110748/

Licensed to Abner Lopez <ihackn3wton@gmail.com>

resources

All URLs listed here were valid at the time of publishing. A complete list of references is
available from the publisher’s website at www.manning.com/BecomingAgile.

 Agile Alliance. http://www.agilealliance.org/.

 Agile Manifesto. http://agilemanifesto.org/.

 Anderson, Arthur, and Robert Hiebler. 1998. Best Practices: Building Your Business with Customer Focused

Solutions. New York, NY: Simon & Schuster.
 Christensen, Kurt. 2007. “Kent Beck on Agile Adoption & Values.” Toronto: InfoQ.com.

http://www.infoq.com/articles/kent-beck-interview-2006.
 Cohn, Mike. 2004. User Stories Applied: For Agile Software Development. Boston: Addison-Wesley

Professional.
 ———. 2005. Agile Estimating and Planning. Robert C. Martin Series. Upper Saddle River, NJ: Prentice

Hall PTR.
 Control Chaos. http://www.controlchaos.com/.
 Deutschman, Alan. 2007. “Inside the Mind of Jeff Bezos.” New York: Fast Company.

http://www.fastcompany.com/magazine/85/bezos_2.html.
 Doctor Agile. http://www.doctoragile.com/.
 Ehlrich, Dianne. 2009. HRD 408: Glossary of Terms. Chicago: Northern Illinois University.

http://www.neiu.edu/~dbehrlic/hrd408/glossary.htm.
 Extreme Programming. A Gentle Introduction. http://www.extremeprogramming.org/.
 Griffin, Em. 2009. A First Look at Communication Theory. Boston: McGraw-Hill Higher Education.
 Highsmith, Jim. 1999. Adaptive Software Development: A Collaborative Approach to Managing Complex

Systems. Boston: Addison-Wesley Professional.
 ———. 2004. Agile Project Management: Creating Innovative Products. Boston: Addison-Wesley

Professional.
 ———. 2007. “No More Self-Organizing Teams.” Arlington MA: Cutter Consortium.

http://blog.cutter.com/2007/09/13/no-more-self-organizing-teams/.
 Osherove, Roy. 2009. The Art of Unit Testing. Greenwich, CT: Manning Publications.
 Poppendieck, Mary, and Tom Poppendieck. 2006. Implementing Lean Software Development: From Concept

to Cash. Upper Saddle River, NJ: Addison-Wesley Professional.
 Scanlan, Larry. 2005. It’s all in the planning. San Francisco: BNET/CBS Interactive.

http://findarticles.com/p/articles/mi_m3257/is_11_59/ai_n15863428.
371

Licensed to Abner Lopez <ihackn3wton@gmail.com>

http://www.agilealliance.org/
http://agilemanifesto.org/
http://www.infoq.com/articles/kent-beck-interview-2006
http://www.controlchaos.com/
http://www.fastcompany.com/magazine/85/bezos_2.html
http://www.doctoragile.com/
http://www.neiu.edu/~dbehrlic/hrd408/glossary.htm
http://www.extremeprogramming.org/
http://blog.cutter.com/2007/09/13/no-more-self-organizing-teams/
http://findarticles.com/p/articles/mi_m3257/is_11_59/ai_n15863428
www.manning.com/BecomingAgile
http:InfoQ.com

372 RESOURCES

Surowiecki, James. 2005. The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How Collective
Wisdom Shapes Business, Economies, Societies, and Nations. New York: Doubleday.

 Twedt, Steve. 2007. “Quecreek Rescue Taught Some Valuable Lessons.” Pittsburgh: Pittsburgh Post-Gazette.
http://www.post-gazette.com/pg/07210/805297-357.stm.

 United States Air Force. 2006. “Coming to Terms.” National Security Personnel System.
http://www.af.mil/library/nsps-af/nspscomingtoterms.asp.
Licensed to Abner Lopez <ihackn3wton@gmail.com>

http://www.post-gazette.com/pg/07210/805297-357.stm
http://www.af.mil/library/nsps-af/nspscomingtoterms.asp

index

A

ability to’s 141

acceptance testing 242

acceptance tests 204

Acme Media

adapting

during adapt week 265–270

during an iteration 261

to business changes 271

assigning features to

iterations 200

case study 17–19

background 18

individuals 19

teams 19

core team 68

current process,

documenting 88

demonstrating 267

deployment

considerations 291

deployment plan 292

feasibility team, feedback

from 126

feature workflow,

modeling 206

lessons from pilot

project 316–321

need for agile 18

pilot team 137

project backlog 110

replanning 272–276

selecting pilot project

110–112

status, tracking 214

team skills 18

User Acceptance Testing 270

Adapt phase 101

adapt week, schedule 266

adapting

and replanning 265

at the end of an

iteration 262–265

common questions 255

common reasons for 256–260

during adapt week at Acme

Media 265–270

during an iteration 260

during an iteration at Acme

Media 261

issues and options 264

re-evaluating priorities 263

to business changes at Acme

Media 271

to change in business

needs 257

to losing a team member 258

to low throughput 259

to technical constraints 258

adoption

big-bang approach 325

evolutionary change 325

project-level to enterprise-

level 323–325

reducing risk of 44–46

agile 7–9

and compliance 74

and the bottom line 11–14

as a mindset 5–9

correct level 36

culture 74, 83

custom process 37

determining usefulness 12

enterprise-wide 323

goals 28–32

good characteristics for

adoption 38–39

knowledge, lack of 40

levels, and SAMI 328

maturity levels 325

mindset 82–86

packaged methods 32–35

practices 9, 330

reasons to pursue 59

reducing risk of adoption

44–46
agile coach 75–77

attributes 75

responsibilities 76

training core team 76

Agile Manifesto 6

and SAMI 328

agile principles 329

in practice 231

supporting during develop

ment and testing 231–237
alignment team 136–150
alternatives, working on, with

the customer 240

Andersen, Arthur 81

anonymity, on surveys 300

application, creating content to

test 240

approach

plan-driven vs.

value-driven 11

value-driven 10

373

Licensed to Abner Lopez <ihackn3wton@gmail.com>

374 INDEX

C

architecture

assessment, artifacts 224

vision 224

archive requirements,

validating 285

archiving 286

Archway Software

existing process 20

more agile process 21

optimal agile process 22

assessment tables 49

assignments 238

changing 239

automation

return on 250

to save money 250

B

background process,

enabling 288

backout plan 292

Beck, Kent 37

Bezos, Jeff 40

big-bang approach 325

blackout window 292

Boehm, Barry 44

bonus functionality 234

bottom line 11–14

brainstorm, organized 157

bug stomp 93, 248, 283

bug tracking 226

bugs

tracing 235

triage meeting 242

build, automatic 225

burn down chart 212

business climate, changes in 271

business need, changing 257

business people, working with

developers 232

Capability Maturity Model Inte
gration (CMMI) 326

capacity, calculating 273

career stage, of team

members 85

case study 18

individuals 19

introduction 17

teams 19

celebrations 294

change

adapting to 29

embracing 13

embracing at Quecreek 5

embracing during pilot 316

welcoming 234

chartering 140

chasm 325

CMMI, compared to SAMI 326

coach 76

attributes 75

training core team 76

coaching, need for 77

code

continuous integration

80, 235

starting from scratch 265

writing additional 264

Code Complete 37

Cohn, Mike 184, 188, 190, 330

collaboration, at Quecreek 5

committing 210

communication

face to face 232

plan 288

planning, and iteration 0 229

competitor, catching up

with 279

constraints

and your process 35

at Quecreek 4

supporting 278

verifying 281

content, creating, to test

application 240

continuous integration 235

contract, fixed-bid 41

conversation, as effective means

of communication 8

core team 66–72

approach to work 69

creating at Acme Media 68

example team 68

kickoff meeting 69–71

mentoring 76

need for 68

power and influence 66

related to the sponsor 71

role 71

team-member

characteristics 67

training 76

typical questions from 70

versus outside consulting 67

cowboy coding 61

Crossing the Chasm 322

culture, why changing is

difficult 74

custom process 37

customer

advocate, during pilot 110

availability 38, 165

collaboration 13

contract, supporting 278

contracts 5

feedback 235

interest in working software 8

involvement, during pilot 317

involving in triage 264

proxy 110

refining requirements 257

retention 12

satisfying 7, 232

working on alternatives

with 240

customer value, unrelenting

pursuit of 80

customization, avoiding 41

D

data testing 226

data-recovery requirements,

validating 285

death march 279

delivering software, percent

complete 230

and agile principles 231–237

delivery

accurate 12

consistent 234

timely 13

urgency of 38

Demings, Edward 244

demonstrating 242

at Acme Media 267

co-presenting 269

incomplete features 269

demonstrations

and team member

personalities 268

and user acceptance 270

impromptu 263

schedule 267

structured 263

technique, choosing 263

User Acceptance Testing 263

deployment

and holidays 292

blackout windows 292

Licensed to Abner Lopez <ihackn3wton@gmail.com>

INDEX 375

deployment (continued)

celebrating 294

collaborative 294

complexity 277

considerations 291

instant 291

pilot 294

plan 292

example at Acme

Media 292

safe window 292

steps, planning 291

Deployment phase 102

design options, reviewing 240

design testing 247

developers

hiding 261

working with business

people 7, 232

development

adapting to change during 29

and defects 242

and unit tests 241

beginning 237–239

distributed 40

environment, preparing 225

evolutionary approach 328

iterative 231

sustainable 8

what it really looks like 240

Development phase 100–101

development process, phases 91

disaster recovery 291

discipline, addressing 321

distractions, minimizing during

iterations 236

documentation

location of 286

necessary 239

of design decisions 321

required vs. optional 31

done, defining 204

Dr. Agile 48

E

early adopters 323

mapping to pilots 324

early majority 323

hurdles 325

elevator statement

creating 140–141

for Acme Media 141

email hell 232

environment

physical, and face-to-face

communication 233

preparation 225

escalation process 287

estimating, more efficient 29

estimation

and planning poker 190

at Acme Media 189

evolutionary change 325

executive

buy-in, getting via readiness

assessment 47

rewards for 62

showing agile value to 59

sponsor 63

support 58–65

executive team, communicating

with 62

exploratory testing 248

Extreme Programming (XP)

9, 34–35

characteristics 35

strengths 35

weaknesses 35

F

feasibility 115–135

alternate methods 134

analysis 124

and technical analysis 131

feedback, reacting to 127

go/no go decision 132

in the big picture 116–118

modifying original idea 126

summarizing pros and

cons 132

team

at Acme Media 119

choosing 119–121

feedback from 126

initial reaction 124

reviewing known

requirements 121–132

team checklist 119

team review of the modified

idea 131

tools to support 121

using wiki 134

when it isn’t an option 134

Feasibility phase 97–99

feature

adding screen details 208

complete, defining 204

completing 239–240

labeling as complete 238

larger than expected 256

prioritizing 28

workflow 206

feature card 28

correct amount of

information 156

example 154

example acceptance test 159

exercise 157

fields 154

structure 154–157

vs. technical design 160

feature cards 145, 153–169

and being lean 153

and common

understanding 157

and compliance 165

and customer availability 165

and customer discussions 153

and early risk

identification 156

and project complexity 165

compared to functional

specifications 163

compared to use cases 162

compared to user stories 161

creating 157–161

creating at Acme Media 158

customer interview

example 159

customer-focused 156

hard copy vs. electronic 166

limitations 164–166

reviewing as a group 160

secondary benefits 156

sorting 175

Feature Description

Document 142

Feature Driven Development

(FDD) 9

feature modeling 205–209

value of 209

feature shell 154

features 13, 117

and market impact 181

assigning to iterations 199

building in parallel 240

common understanding 144

considering

dependencies 200

dependencies 175

features (continued)

discovered during an

Licensed to Abner Lopez <ihackn3wton@gmail.com>

376 INDEX

iteration 273

festimating in detail 209

evaluating risk 175–177

grouping 178

high-priority 200

high-risk 200

identifying hidden 207

identifying tasks 209

incomplete 260

incomplete,

demonstrating 269

initial value assessment 174

introducing to team 141–142

minimum needed 175

outlining screens for 207

prioritizing 180

at Acme Media 172

by value 174

prioritizing, sequencing, and

grouping 171

removing from the

project 179

reviewing completeness at end

of iteration 266

sideline 275

technical vs. customer

facing 181

testing 241

work sequence 238

feedback

converting into action 307

early 235

Fibonacci scale 188

fixed-bid contract 41

functional specifications 164

compared to feature

cards 163

identifying 239

functional testing 247, 283

functional tests, creating 242

functionality, bonus 234

funding 226

G

Gladwell, Malcolm 328

go/no go decision 132

go-live checklist 290

go-live decision 289

groupthink 84

H

help materials, finalizing 287

Highsmith, Jim 30, 77

light-touch leadership 77

holidays and deployment 292

human-centric methods 13

human-centric practices

320–321

I

indicator 50

computing weight 54

weighted interval 54

individual performance 84–86

InfoQ 37

innovation 13

innovators, mapping to pilot

projects 323

integration testing 246

integration, continuous 235

interface testing, during itera

tion 0 228

issue, deferring 265

iteration

adapting at the end 262–265

adapting during 260

assigning features to 199

detailed estimates 212

end, as milestone 318

enhancing urgency 80

features discovered

during 273

incomplete work 259

initializing 197

keeping length constant 275

length 196

number, during pilot 199

reviewing work

completed 266

status, tracking 214

stretching 260

time between 197

typical tasks between 197

work sequence within 238

iteration 0 223

and completing contracts 224

and environment

preparation 225

and project funding 226

and the communication

plan 229

and the marketing plan 229

architectural assessment 224

cheating during 228

finalizing team members 227

length 196

preparing test content 226

project tools 226

starting the work early 228

iteration capacity 211

iteration plan and team

ownership 210

iteration planning

and acceptance tests 204

comparing estimates to

capacity 212

sharing information 212

iterative development 231

J

JUnit 246

K

kickoff meeting 201

core team 69–71

objectives 201

presenters 202

L

laggards 325

late majority 325

launch, soft 281

Lean 9

lean manufacturing 244

light-touch leadership 77

load balancer 291

load testing 226

requiring 93

LoadRunner 226

M

maintenance and support

worksheet 286

maintenance process,

enabling 288

manager

agile role model 79

in an agile environment

77–81

leading team to ownership 81

soft skills 78

vs. ScrumMaster 82

Licensed to Abner Lopez <ihackn3wton@gmail.com>

INDEX 377

manager (continued)

working with other

managers 78

working with stakeholders 79

marketing plan and

iteration 0 229

McConnell, Steve 37

mentality, plan-driven 10–11

methods, human-centric 13

Microsoft Project 212

migration

confusion about process
during 314

cost of 60

going too fast 41

less progress during 314

planning 292

risks of 61

starting to feel agile

during 315

team polarization during 315

your role 71

minimum functionality 170

Moore, Geoffrey 322

motivated team members 7

motivation, of team

members 84

N

nominal value, mapping result

range to 56

nonfunctional requirements,

validating 284–286

NUnit 246

O

objective statement 149

optimistic range 55

organizational characteristic 49

result range 55

Osherove, Roy 245

ownership

by the team 321

leading team to 81

P

people-dependent tasks 237

personal performance and

retrospective 306

personality types, and

demonstrations 268

pessimistic range 55

pilot

mapping to early

adopters 324

mapping to innovators 323

reducing risk with 294

pilot project 106

and external customers 110

and team ownership 321

breadth and depth 109

common findings after 316

confusion during 314

customer involvement,

evaluation 317

delivering frequently,

evaluation 318

duration 107

embracing change

evaluation 316

good, characteristics of

107–110

human-centric

evaluation 320–321

measured against the agile

enablers 316

next steps 322

number of iterations 199

priority 108

scoring to evaluate 316

selecting at Acme Media

110–112

size 107

slower than legacy

projects 314

starting to feel agile 315

subset of larger project 108

team polarization 315

technical excellence,

evaluation 319

too large 107

too small 107

using to identify

weaknesses 106

what Acme Media

learned 316–321

pilot team

concerns 139

feedback to the core

team 139

identifying 137–138

preparing 138–140

training on agile 139

plan-based approach vs.

value-driven approach 11

plan-driven mentality 10–11
planning

"just enough" 79

more efficient 29

Planning phase 99–100

planning poker 190

post-mortem. See retrospective

power distance 45

practice

conditional 91

existing, to keep 92

tying to agile principles 92

valuable, identifying 91–93

priorities

business 174

changing, consequences

of 28

clarifying 28

re-evaluating 263

problem, working 240

process

current

deciding what to keep

95–91
enhancing 94–103
understanding 88–94

defined vs. empirical 11

designing more agile 95

perfect, using for

reference 93

virtual phases 97–103

processes, required vs.

optional 31

product

envisioning 140

highlights 141

testing, during release 281

product backlog 171–181

production support 198

productivity, increasing during

transition 46

progress matrix 216

progress, working software as

primary measure 8

project

approving, approaches 133

delivering 30

feasibility, reevaluating 257

funding 226

kickoff meeting 202

medium-priority,

examples 108

objective statement 149

Licensed to Abner Lopez <ihackn3wton@gmail.com>

378 INDEX

project (continued)

status 29

tools for tracking 217–219

team, size and expense 133

time constraints 198

timeline, determining 198

project backlog 110

project cheating, starting work

early 228

Project Management Lifecycle

(PMLC) 30

project structure, correct level

of 30

project team

common vision 136

dedicated during an

iteration 227

defining and finalizing 227

large 40

minimizing distractions 236

project worksheet 146–150

feature highlights 149

issues and risks 149

just enough 148

milestones 149

objective statement 149

sections 148

stakeholders 149

technical considerations 149

user/customer benefits 149

proof of concept (POC) 319

prototyping 319

in iteration 0 228

purging requirements,

validating 285

Q

quality level 282

quality, building into

product 244

Quecreek 3–5

QuickTest 251

R

readiness assessment

and organizational

characteristics 49

calculating results 54–57

conducting 49–57

importance of 44

reviewing results 52–57

to reduce risk 44

to support productivity 47

using to get executive

buy-in 47

readiness-assessment table

49–52

Recovery Point Objective

(RPO) 285

Recovery Time Objective

(RTO) 285

redesign 265

regulatory deadline,

supporting 279

release 289–295

status, tracking 216

release plan 117

and iteration 0 length 196

delivery range 203

highly visible 199

pieces, defining 196–199

tools for creating 203

release planning

and development iteration

length 196

and feature priority 200

and overall timeline 198

and support groups 202

assigning features to

iterations 199

kickoff meeting 201

time between iterations 197

value in each iteration 200

release schedule 279

releasing software

and deployment

planning 292

and quality level 282

and resource deadlines 279

and support groups 286–288

every iteration 280

final product approval 284

for a compliance

deadline 279

reducing risk with a limited

pilot 294

to support a constraint 278

to test the product 281

triggers 278

validating performance 284

verifying non-functional

requirements 284–286

when there is enough

value 280

when to 278–282

replanning 265

at Acme Media 272–276

requirements

amount of

documentation 156

changing, welcoming 7, 234

customer refinement 257

evolving or volatile 38

fixed 11

modifying 264

nonfunctional,

validating 284–286

resource pool 137

resources, consistent 39

result range, mapping to nomi

nal value 56

retrospective

action items 307

and anonymity 300

and complaints 297

and personal

performance 306

and team dynamics 305

attendee thoughts at Acme

Media 305

between iterations 266

ensuring effectiveness 300

facilitator 304

frequency 304

meeting, what to expect

304–305

objectives of 298

prioritizing issues 307

related to project success 298

root-cause analysis 307

setting expectations for 298

survey questions 300

survey results 300

surveys 300

the meeting 302

revenue, increasing 12

reverse engineer 88–94

sticky notes for areas to

improve 95

time boxing 89

when to skip 103

with index cards 88

reward structure, for teams 84

risk

evaluating, for features

175–177

identifying early 156

risk management 30

roadblocks, overcoming 40

Rothman, Johanna 76

Licensed to Abner Lopez <ihackn3wton@gmail.com>

INDEX 379

S

Sage Analyst 286

SAMI. See Sidky Agile Measure

ment Index

Sarbanes-Oxley 279

SOX 165

Satir, Virginia 47

scalability, considering 81

schedule

highly visible 199

modifying 318

predetermined, meeting 279

scope

continuing during

development 240

revisiting after customer

refinement 257

scope creep 41

in an agile environment 236

scope drift 234

scoping, during iteration 0 228

screens

adding details 208

for features, outlining 207

Scrum 9, 32–34

characteristics 33

iteration, initializing 197

strengths 33

weaknesses 33

ScrumMaster

role 82

vs. manager 82

SDLC. See Software Develop
ment Lifecycle

search support 286

self-organizing teams 9

side discussions,

eliminating 321

sideline features 275

Sidky Agile Measurement Index

(SAMI) 314, 325–330

agile levels 328

agile practices 330

agile principles 329

compared to CMMI 326

sign-off 10

silo 39

simplicity 8

focusing on 234

simplicity in design 81

Six Sigma 64

smoke test 81

smoke testing 93

soft launch 281

soft skills 78

software

delivering frequently 13, 318

delivery, and agile

principles 231–237

working, as primary progress

measure 8

working, delivering

frequently 7

Software Development Lifecycle

(SDLC) 30

solution, purchasing 265

sponsor

executive 63

obtaining 63

role of 63

sprint, retrospective 197

stakeholders 149

working with managers 79

status

measuring 213–219

tools 226

tools for tracking 217–219

tracking 216

visibility 213–219

story points 187

at Acme Media 189

definition 187

related to tasks 189

related to work estimates 188

success, defining 204, 295

support groups 286–288

Surowiecki, James 185

survey

for retrospective 300

scoring 300

sustainable development 8

system availability,

validating 284

system monitoring,

enabling 287

system response time 285

T

tasks

assignments 238

not permanent 210

estimating 209

identifying 209

people-dependent 237

TDD. See Test Driven

Development

team 20–23

aligning 136–150

and groupthink 84

buy-in 28

capacity during iteration 198

capacity, calculating 273

culture and roles 83

immature 41

individual performance

84–86

introducing to project

features 141–142

large 40

leading to ownership 81

losing a member 258

minimizing distractions 236

motivation and rewards 84

one-time 41

polarization 315

production support for 198

reviewing performance and

velocity 265

selecting for feasibility vs.

regular projects 120

self-organizing 9

throughput, lower than

expected 259

tuning behavior of 9

with agile mindset 82–86

with specialized skill sets 41

team members

career stage 85

motivated 7

teamwork 39

technical constraint, adapting

to 258

technical excellence 8, 13, 233

best practices 80

during pilot 319

Technology Adoption

Lifecycle 322–325

categories 322

test

automation 226

content 226

creating content for 240

test cases, defining, during itera
tion 0 228

Test Driven Development

(TDD) 235

test harness 269

TestDirector 205

testing

and usability 248

automating 80

Licensed to Abner Lopez <ihackn3wton@gmail.com>

380 INDEX

testing (continued)

automation 249

complete system 282

early and often 235

exploratory testing 248

final 282–286

functional testing 247

functional/usability 283

integration testing 246

unit testing 245

when to automate 250

third party

completing contracts

with 224

that doesn't deliver 259

time constraint 198

projects without 200

time tracking, tools for 226

time-boxing 319

timeline, determining 198

Tipping Point, The 328

tracking time 226

tradeoff matrix 145–146

and adapting 263

and feature scope 146

and flexibility 146

and priorities 145

and resources 146

different spin 147

training

and iteration 0 228

need for 77

plan 288

suggested outline 76

transition, increasing productiv
ity during 46

triage 264

meeting 242

Turner, Richard 44

U

UAT. See User Acceptance

Testing

unit test

and development 241

creating 240

creating incrementally 242

example at Acme Media 246

unit testing 245

requiring 93

uptime percentage,

increasing 284

urgency to delivery 38

usability testing 283

use cases

compared to feature

cards 162

types 162

usefulness, delivering in every

iteration 200

User Acceptance Testing

(UAT) 263, 270–271

user stories

compared to feature

cards 161

defined 117

users, maximum number

supported 285

V

value, unrelenting pursuit of 80

value-driven approach 10

velocity

evaluating at Acme Media 272

reviewing 265

version control 225

VersionOne, agile survey 11

Virginia Satir change curve 46

and SAMI 327

virtual phases 116

W

waterfall lifecycle 20

waterfall model 100

weight of indicator 54

weighted interval 54

wiki, using in feasibility 134

work backlog 237

work, delaying after customer

refinement 257

workaround 264

workforce, motivated 13

workstation, setting up 226

Licensed to Abner Lopez <ihackn3wton@gmail.com>

123

SOFTWARE DEVELOPMENT

BECOMING AGILE ... in an imperfect world

Greg Smith Ahmed Sidky
Foreword by Mary Poppendieck

P
eople know about the benefits of agility but many have been
reluctant to make the transition themselves. This book will
help overcome the barriers that hold them back. Whether

you’re a small shop or part of a large corporation, you can benefi t
by learning the practices it recommends. They’ll make your dev
processes faster, more flexible, and more cost eff ective.

Becoming Agile addresses the real issues—including the needs of
executives, managers, and the development team during the
transition. It starts by helping you gauge how agile you already
are. Then, it shows you how to create a process that supports the
realities of your environment so you can transition gradually
to an agile way of working.

What’s Inside
Obtain team buy-in for the move to agile
Assess what practices you can pursue with low risk
Reach the right level of agility for your organization
Create an agile process within your specifi c constraints

Greg Smith is a Senior Project Manager, ScrumMaster, and an Agile
college instructor. Greg has helped teams become agile at
the start-up and enterprise level. Dr. Ahmed Sidky is an
experienced agile coach, helping agile teams around the world.
Called “Dr. Agile” for the creation of his readiness assessment tool
(doctoragile.com) and the Sidky Agile Measurement Index.

For online access to the authors, code samples, and a free ebook for
owners of this book, go to www.manning.com/BecomingAgile

M A N N I N G $44.99 / Can $56.99 [INCLUDING eBOOK]

“A thoughtful, practical set
 of steps ... to become agile.”
 —From the Foreword by
 Mary Poppendieck

“Makes agility rhyme with
 reality.”
 —Valentin Crettaz

 Web Architect, Consulthys

“This book is a necessity for
 teams looking to become
 agile...”
 —Randy Miller, Software Project

 Recovery Expert, Microsoft

“Th e first book I can give to
 anyone on an agile team,
 regardless of their role.”
 —Paul King, Director, ASERT

“A 5-star guide”
 —Robert Dempsey, CEO,

 Atlantic Dominion Solutions

SEE INSERT

ISBN 13: 978-1-933988-25-2
ISBN 10: 1-933988-25-8

5 4 4 9 9

9 7 8 1 9 3 3 9 8 8 2 5 2

www.manning.com/BecomingAgile
http:doctoragile.com

	Front Cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	About the graphics
	Author Online
	about the cover illustration
	Agile fundamentals and a supporting case study
	Moving to agile
	1.1 Is Agile just another process?
	1.1.1 The Agile Manifesto and related values
	1.1.2 The agile principles
	1.1.3 The agile practices

	1.2 A paradigm shift from a plan-driven mentality
	1.3 Agile and the bottom line
	1.4 How this book will help you become more agile
	1.5 Key points to remember
	1.6 Looking ahead

	The story of Acme Media
	2.1 Case study background and circumstances
	2.2 About the Acme Media teams
	2.3 About the individuals
	2.4 What does it look like when a team “becomes agile”?
	2.4.1 The existing process
	2.4.2 A process with more agility
	2.4.3 The ultimate process

	2.5 Key points to remember
	2.6 Looking ahead

	Getting started
	Are you ready for agile?
	3.1 What areas will you become more agile in?
	3.1.1 Increasing customer involvement
	3.1.2 Improving prioritization of features
	3.1.3 Increasing team buy-in and involvement
	3.1.4 Clarifying priorities and reminding everyone of the consequences of changing them
	3.1.5 Adapting to change during development
	3.1.6 Better understanding the project’s status
	3.1.7 More efficient planning and estimating
	3.1.8 Continuous risk management
	3.1.9 Delivering the project needed at the end
	3.1.10 Achieving the right level of project structure

	3.2 The different flavors of agile
	3.2.1 Scrum
	3.2.2 Extreme Programming

	3.3 Create your own flavor to become agile within your constraints
	3.3.1 Your goal: reach the right level of agility for your organization
	3.3.2 Characteristics that make agile easier to adopt
	3.3.3 Roadblocks that others have overcome

	3.4 Key points to remember
	3.5 Looking ahead

	The fitness test: all about readiness assessments
	4.1 The importance of readiness assessments
	4.2 Reducing the risks of agile adoption using assessments
	4.3 Increasing productivity during transitions
	4.4 Getting executive buy-in for agile adoption using readiness assessments
	4.5 Conducting readiness assessments
	4.5.1 Readiness-assessment tables
	4.5.2 Finding out the results

	4.6 Key points
	4.7 Looking ahead

	The importance of obtaining executive support
	5.1 Why should we pursue agile?
	5.2 The cost of migrating
	5.3 The risks in migrating
	5.4 Rewards for the executives
	5.5 Communicating frequently with your executive team
	5.6 The role of the sponsor
	5.7 Following Acme Media as the company obtains a sponsor
	5.8 Key points
	5.9 Looking forward

	Improving buy-in by creating a core team
	6.1 Who should be in the core team?
	6.2 Choosing the core team at Acme Media
	6.3 The kickoff meeting
	6.3.1 Tough questions
	6.3.2 Your role in the migration

	6.4 Key points
	6.5 Looking forward

	The mindset of an agile leader
	7.1 The role of an agile coach
	7.1.1 Attributes of a good coach
	7.1.2 Training and mentoring the core team

	7.2 Agile management: more shepherding, less directing
	7.2.1 Soft skills
	7.2.2 Working with other managers
	7.2.3 Working with stakeholders
	7.2.4 Demonstrating value
	7.2.5 Leading the team to ownership

	7.3 Creating a team with an agile mindset
	7.3.1 Culture and roles
	7.3.2 Characteristics that influence individual performance

	7.4 Key points
	7.5 Looking forward

	Injecting agility into your current process
	8.1 Understanding your current process
	8.1.1 Documenting the existing process with Acme Media
	8.1.2 Deciding what to keep: identifying existing valuable practices
	8.1.3 Another potential tool: documenting a perfect process

	8.2 Enhancing the existing process
	8.2.1 Deciding what to change at Acme Media
	8.2.2 Feasibility phase
	8.2.3 Planning phase
	8.2.4 Development phase
	8.2.5 Adapt phase
	8.2.6 Deployment phase

	8.3 Key points
	8.4 Looking forward

	Selecting a pilot project
	9.1 Characteristics of a good pilot
	9.1.1 A project you can complete in 2 to 8 weeks
	9.1.2 A medium-priority project
	9.1.3 A project that hits all phases and areas
	9.1.4 No external customers

	9.2 Evaluating projects at Acme Media
	9.2.1 Request backlog
	9.2.2 Selecting a pilot project: an example

	9.3 Key points
	9.4 Looking forward

	Kicking off
	Feasibility: is this project viable?
	10.1 Feasibility in the big picture
	10.2 Selecting a feasibility team
	10.2.1 Selecting feasibility team members at Acme Media

	10.3 Introducing the known requirements to the feasibility team
	10.3.1 What does a feasibility investigation look like?
	10.3.2 Analyzing an idea with the Feasibility Discussion Guide
	10.3.3 Feedback from the Acme Media feasibility team
	10.3.4 Modifying the idea during feasibility analysis
	10.3.5 Reacting to the feedback
	10.3.6 Team review of the modified concept
	10.3.7 Regrouping after technical analysis
	10.3.8 Summarizing the feasibility work

	10.4 The go/no go decision
	10.5 Alternate feasibility paths
	10.5.1 What people are talking about
	10.5.2 Feasibility for risk management vs. go/no go

	10.6 Key points
	10.7 Looking forward

	Aligning the pilot team with the project
	11.1 Identifying the pilot team
	11.2 Preparing the pilot team
	11.2.1 Ensure everyone is trained on agile
	11.2.2 Providing a mechanism for feedback

	11.3 Envisioning the product
	11.3.1 Creating an elevator statement
	11.3.2 Introduce the team to the features
	11.3.3 Common understanding of the features

	11.4 The tradeoff matrix
	11.5 Project worksheet
	11.5.1 Team members
	11.5.2 Objective statement
	11.5.3 Issues and risks
	11.5.4 Technical considerations
	11.5.5 Stakeholders
	11.5.6 User/customer benefits
	11.5.7 Highlights
	11.5.8 Major milestones
	11.5.9 Elevator statement

	11.6 Key points
	11.7 Looking forward

	Populating the product backlog
	Feature cards: a tool for “just enough” planning
	12.1 The structure of a feature card
	12.1.1 The right amount and type of information
	12.1.2 Additional feature-card benefits

	12.2 A team approach to creating feature cards
	12.2.1 Creating a feature card at Acme Media
	12.2.2 Reviewing the feature cards as a team

	12.3 Feature cards compared to…
	12.3.1 User stories
	12.3.2 Use cases
	12.3.3 Functional specifications

	12.4 Limitations in using feature cards
	12.4.1 Project complexity
	12.4.2 The customer isn’t available
	12.4.3 Compliance and traceability

	12.5 Hard-copy cards vs. electronic cards
	12.6 Key points
	12.7 Looking forward

	Prioritizing the backlog
	13.1 The art of prioritizing, sequencing, and grouping features
	13.2 Prioritizing the backlog at Acme Media
	13.2.1 Prioritizing by value
	13.2.2 Evaluating risk
	13.2.3 Grouping related features

	13.3 Other ways to prioritize features
	13.3.1 What about technical features?

	13.4 Key points
	13.5 Looking forward

	Estimating at the right level with the right people
	14.1 Contrasting traditional and agile estimation techniques
	14.2 The importance of whole-team estimation
	14.3 A step toward agility: estimating size, not effort
	14.3.1 Using story points for quick estimation
	14.3.2 Planning poker

	14.4 Estimating story points at Acme Media
	14.5 Key points
	14.6 Looking forward

	Enough information for scheduling
	Release planning: envisioning the overall schedule
	15.1 Defining the pieces of a release plan
	15.1.1 Iteration 0 length
	15.1.2 Development iteration length
	15.1.3 How long do you need between iterations?
	15.1.4 Determining the overall timeline

	15.2 Completing the release plan by assigning features to iterations
	15.2.1 Assigning features to iterations at Acme Media

	15.3 Communicating the release plan with a kickoff meeting
	15.4 Key points
	15.5 Looking forward

	Iteration planning: the nitty-gritty details
	16.1 Clearly defining the goals: what is “feature complete”?
	16.2 Using feature modeling to identify and estimate tasks
	16.2.1 Outlining the workflow for a feature
	16.2.2 Discovering new features
	16.2.3 Outlining the screens for a feature
	16.2.4 Adding details to a screen by considering user interaction
	16.2.5 Is modeling worth it?

	16.3 Identifying and estimating tasks
	16.4 Determining the hours available in an iteration
	16.5 Bringing estimates and capacity together to complete the plan
	16.6 Making status visible
	16.6.1 Visibility within an iteration
	16.6.2 Tracking release status
	16.6.3 Finding tools that work for you

	16.7 Key points
	16.8 Looking forward

	Building the product
	Start your engines: iteration 0
	17.1 Initial vision for the architecture
	17.2 Completing contracts with third parties
	17.3 Preparing environments and support tools
	17.4 Obtaining funding
	17.5 Finalizing and dedicating the project team
	17.6 Cheating: starting the work early
	17.7 Key points
	17.8 Looking forward

	Delivering working software
	18.1 Supporting the agile principles during development and testing
	18.1.1 Satisfy the customer through early and continuous delivery of valuable software
	18.1.2 Have business people and developers work together daily throughout the project
	18.1.3 Whenever possible, communicate face to face
	18.1.4 Pay attention to technical excellence and good design
	18.1.5 Focus on simplicity and the art of maximizing the amount of work not done
	18.1.6 Welcome changing requirements, even late in development
	18.1.7 Test early, and test often
	18.1.8 Continuously integrate code changes
	18.1.9 Obtain customer feedback as early as possible
	18.1.10 Minimize team distractions during development iterations

	18.2 Where to begin?
	18.2.1 Sequence within an iteration
	18.2.2 Making assignments

	18.3 Completing a feature
	18.3.1 What the work looks like
	18.3.2 Other considerations for development iterations

	18.4 Key points
	18.5 Looking forward

	Testing: did you do it right?
	19.1 Unit testing
	19.2 Integration testing
	19.3 Functional testing
	19.4 Exploratory testing
	19.5 Test automation
	19.6 Key points
	19.7 Looking forward

	Embracing change
	Adapting: reacting positively to change
	20.1 Common reasons for adapting
	20.1.1 Feature is larger than expected
	20.1.2 Customer refinement of requirements
	20.1.3 The business need changes
	20.1.4 A technical constraint is discovered
	20.1.5 A team member is unavailable
	20.1.6 A third party doesn’t deliver
	20.1.7 Team throughput is lower than expected

	20.2 Adapting during an iteration
	20.3 Three ways Acme Media adapted during its first iteration
	20.3.1 A change in feature scope
	20.3.2 An issue with performance
	20.3.3 Underestimating the registration need

	20.4 Adapting at the end of an iteration
	20.4.1 Demonstrating and gathering feedback
	20.4.2 Re-evaluating priorities: what are your options?
	20.4.3 Reviewing team performance and velocity
	20.4.4 Re-planning and reacting

	20.5 How Acme Media adapts during adapt week
	20.5.1 Reviewing the work completed
	20.5.2 Demonstrating the work
	20.5.3 Personality types and demonstrations
	20.5.4 Demonstrating incomplete features

	20.6 User Acceptance Testing
	20.6.1 Acme Media’s UAT approach
	20.6.2 Output from Acme Media’s UAT

	20.7 Changes in the business climate
	20.8 Reviewing the findings and revising the plan for the next iteration
	20.8.1 Evaluating team velocity
	20.8.2 New work identified during the iteration
	20.8.3 Features originally slated for iteration 2

	20.9 Key points
	20.10 Looking forward

	Delivery: bringing it all together
	21.1 When to release
	21.1.1 To support a constraint
	21.1.2 To meet a predetermined schedule
	21.1.3 When there is enough value
	21.1.4 To test the product

	21.2 Final testing
	21.2.1 What about quality level?
	21.2.2 Completing functional/usability testing
	21.2.3 Completing the user acceptance process
	21.2.4 Validation of nonfunctional requirements

	21.3 Preparing support groups and processes
	21.3.1 The running maintenance and support worksheet
	21.3.2 Finalizing help materials and support processes
	21.3.3 Enabling system monitoring, and creating an escalation process
	21.3.4 Enabling maintenance and background processes

	21.4 Communication and training
	21.5 Ready to release
	21.5.1 Deciding to go live
	21.5.2 Planning the deployment steps
	21.5.3 Deployment considerations
	21.5.4 Creating a deployment and backout plan
	21.5.5 Reducing risk with a pilot

	21.6 Enough planning; let’s deploy
	21.6.1 Celebrate!

	21.7 Key points
	21.8 Looking forward

	The retrospective: working together to improve
	22.1 Setting expectations for the retrospective
	22.2 Time to digest: a survey in advance
	22.3 Conducting the retrospective meeting
	22.4 What to expect during the meeting
	22.5 Converting the feedback into action
	22.6 Key points
	22.7 Looking forward

	Moving forward
	Extending the new process across your company
	23.1 Common findings after a pilot
	23.1.1 Slower than the old process
	23.1.2 Confusion about the process
	23.1.3 Team polarization
	23.1.4 Starting to feel agile

	23.2 What the Acme Media team learned from their pilot
	23.2.1 Embracing change to deliver customer value
	23.2.2 Customer involvement and feedback
	23.2.3 Planning and delivering software frequently
	23.2.4 Technical excellence
	23.2.5 Human-centric practices

	23.3 Next steps
	23.3.1 Spanning the chasm
	23.3.2 Using the SAMI
	23.3.3 Agile practices

	23.4 Key points
	23.5 Conclusion

	appendix A: Readiness assessment tables by practice
	appendix B: Agile concepts from a phase perspective
	B.1 Overview of the phases
	B.2 Feasibility: define and validate your vision
	B.3 Planning: speculate and create a living plan
	B.4 Development: exploration with a schedule
	B.5 Adapt: react to new information
	B.6 Deployment: deliver, train, revisit, and close the project

	appendix C: Agile process overview in text
	C.1 Feasibility phase
	C.2 Planning phase
	C.3 Development phase
	C.4 Delivery phase

	appendix D: Example: determining process and document needs for a project
	appendix E: Quantitative feedback on the SAMI
	resources
	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Back Cover

