

Hands-On Ensemble Learning
with Python

Build highly optimized ensemble machine learning models
using scikit-learn and Keras

George Kyriakides
Konstantinos G. Margaritis

BIRMINGHAM - MUMBAI

Hands-On Ensemble Learning with Python
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Devika Battike
Content Development Editor: Athikho Sapuni Rishana
Senior Editor: Martin Whittemore
Technical Editor: Utkarsha S. Kadam
Copy Editor: Safis Editing
Project Coordinator: Kirti Pisat
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Alishon Mendonsa

First published: July 2019

Production reference: 2300719

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-285-1

www.packtpub.com

http://www.packtpub.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
George Kyriakides is a Ph.D. researcher, studying distributed neural architecture search.
His interests and experience include the automated generation and optimization of
predictive models for a wide array of applications, such as image recognition, time series
analysis, and financial applications. He holds an M.Sc. in computational methods and
applications, and a B.Sc. in applied informatics, both from the University of Macedonia,
Thessaloniki, Greece.

Konstantinos G. Margaritis has been a teacher and researcher in computer science for
more than 30 years. His research interests include parallel and distributed computing, as
well as computational intelligence and machine learning. He holds an M.Eng. in electrical
engineering (Aristotle University of Thessaloniki, Greece), as well as an M.Sc. and a Ph.D.
in computer science (Loughborough University, UK). He is a professor at the Department
of Applied Informatics, University of Macedonia, Thessaloniki, Greece.

About the reviewers
Greg Walters has been involved with computers and computer programming since 1972.
Currently, he is extremely well versed in Visual Basic, Visual Basic .NET, Python, and SQL
using MySQL, SQLite, Microsoft SQL Server, Oracle, C++, Delphi, Modula-2, Pascal, C,
80x86 Assembler, COBOL, and Fortran. He is a programming trainer and has trained
numerous people on many pieces of computer software, including MySQL, Open Database
Connectivity, Quattro Pro, Corel Draw!, Paradox, Microsoft Word, Excel, DOS, Windows
3.11, Windows for Workgroups, Windows 95, Windows NT, Windows 2000, Windows XP,
and Linux. He is currently retired and, in his spare time, is a musician and loves to cook,
but he is also open to working as a freelancer on various projects.

Bhavesh Bhatt is a technology postgraduate at BITS Pilani with a keen interest in machine
learning, data science, and computer vision. He currently works as a data scientist at Fractal
Analytics. He has taught data science using the Python programming language to
hundreds of students in the classroom. Additionally, Bhavesh hosts a machine learning-
based educational YouTube channel with over 4,400 subscribers.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Introduction and Required Software Tools
Chapter 1: A Machine Learning Refresher 7

Technical requirements 7
Learning from data 8

Popular machine learning datasets 9
Diabetes 9
Breast cancer 9
Handwritten digits 11

Supervised and unsupervised learning 11
Supervised learning 12
Unsupervised learning 13

Dimensionality reduction 14
Performance measures 15

Cost functions 15
Mean absolute error 16
Mean squared error 16
Cross entropy loss 16

Metrics 16
Classification accuracy 17
Confusion matrix 17
Sensitivity, specificity, and area under the curve 18
Precision, recall, and the F1 score 19

Evaluating models 20
Machine learning algorithms 20

Python packages 20
Supervised learning algorithms 21

Regression 21
Support vector machines 24
Neural networks 25
Decision trees 26
K-Nearest Neighbors 29
K-means 29

Summary 31

Chapter 2: Getting Started with Ensemble Learning 33
Technical requirements 34
Bias, variance, and the trade-off 34

What is bias? 34
What is variance? 35

Table of Contents

[ii]

Trade-off 37
Ensemble learning 38

Motivation 38
Identifying bias and variance 40

Validation curves 40
Learning curves 43

Ensemble methods 45
Difficulties in ensemble learning 46

Weak or noisy data 46
Understanding interpretability 47
Computational cost 48
Choosing the right models 49

Summary 49

Section 2: Non-Generative Methods
Chapter 3: Voting 52

Technical requirements 52
Hard and soft voting 53

Hard voting 53
Soft voting 54

Python implementation 56
Custom hard voting implementation 56

Analyzing our results using Python 59
Using scikit-learn 61

Hard voting implementation 62
Soft voting implementation 63

Analyzing our results 66
Summary 69

Chapter 4: Stacking 71
Technical requirements 71
Meta-learning 72

Stacking 72
Creating metadata 73

Deciding on an ensemble's composition 75
Selecting base learners 75
Selecting the meta-learner 76

Python implementation 77
Stacking for regression 77
Stacking for classification 80
Creating a stacking regressor class for scikit-learn 83

Summary 88

Section 3: Generative Methods

Table of Contents

[iii]

Chapter 5: Bagging 91
Technical requirements 91
Bootstrapping 92

Creating bootstrap samples 92
Bagging 94

Creating base learners 95
Strengths and weaknesses 96

Python implementation 96
Implementation 97
Parallelizing the implementation 99

Using scikit-learn 100
Bagging for classification 101
Bagging for regression 103

Summary 104

Chapter 6: Boosting 106
Technical requirements 106
AdaBoost 107

Weighted sampling 107
Creating the ensemble 107
Implementing AdaBoost in Python 110
Strengths and weaknesses 113

Gradient boosting 114
Creating the ensemble 114

Further reading 117
Implementing gradient boosting in Python 117

Using scikit-learn 119
Using AdaBoost 119
Using gradient boosting 124

XGBoost 127
Using XGBoost for regression 127
Using XGBoost for classification 128
Other boosting libraries 129

Summary 130

Chapter 7: Random Forests 131
Technical requirements 131
Understanding random forest trees 132

Building trees 132
Illustrative example 133
Extra trees 135

Creating forests 136
Analyzing forests 136
Strengths and weaknesses 138

Using scikit-learn 138

Table of Contents

[iv]

Random forests for classification 138
Random forests for regression 140
Extra trees for classification 142
Extra trees regression 143

Summary 145

Section 4: Clustering
Chapter 8: Clustering 147

Technical requirements 147
Consensus clustering 148

Hierarchical clustering 148
K-means clustering 149

Strengths and weaknesses 150
Using scikit-learn 151
Using voting 156

Using OpenEnsembles 159
Using graph closure and co-occurrence linkage 161

Graph closure 162
Co-occurrence matrix linkage 164

Summary 166

Section 5: Real World Applications
Chapter 9: Classifying Fraudulent Transactions 168

Technical requirements 169
Getting familiar with the dataset 169
Exploratory analysis 171

Evaluation methods 173
Voting 173

Testing the base learners 174
Optimizing the decision tree 177
Creating the ensemble 178

Stacking 180
Bagging 182
Boosting 185

XGBoost 189
Using random forests 190
Comparative analysis of ensembles 193
Summary 194

Chapter 10: Predicting Bitcoin Prices 195
Technical requirements 195
Time series data 196

Bitcoin data analysis 198
Establishing a baseline 201

Table of Contents

[v]

The simulator 205
Voting 207

Improving voting 208
Stacking 209

Improving stacking 210
Bagging 210

Improving bagging 211
Boosting 212

Improving boosting 213
Random forests 215

Improving random forest 216
Summary 217

Chapter 11: Evaluating Sentiment on Twitter 219
Technical requirements 219
Sentiment analysis tools 220

Stemming 222
Getting Twitter data 223
Creating a model 224
Classifying tweets in real time 229
Summary 232

Chapter 12: Recommending Movies with Keras 233
Technical requirements 234
Demystifying recommendation systems 234
Neural recommendation systems 237
Using Keras for movie recommendations 240

Creating the dot model 241
Creating the dense model 245
Creating a stacking ensemble 247

Summary 250

Chapter 13: Clustering World Happiness 251
Technical requirements 251
Understanding the World Happiness Report 252
Creating the ensemble 257
Gaining insights 261
Summary 265

Another Book You May Enjoy 267

Index 269

Preface
Ensembling is a technique for combining two or more similar or dissimilar machine
learning algorithms to create a model that delivers superior predictive power. This book
will demonstrate how you can use a variety of weak algorithms to make a strong predictive
model.

With its hands-on approach, you'll not only get up to speed on the basic theory, but also the
application of various ensemble learning techniques. Using examples and real-world
datasets, you'll be able to produce better machine learning models to solve supervised
learning problems such as classification and regression. Later in the book, you'll go on to
leverage ensemble learning techniques such as clustering to produce unsupervised machine
learning models. As you progress, the chapters will cover different machine learning
algorithms that are widely used in the practical world to make predictions and
classifications. You'll even get to grips with using Python libraries such as scikit-learn and
Keras to implement different ensemble models.

By the end of this book, you will be well versed in ensemble learning and have the skills
you need to understand which ensemble method is required for which problem, in order to
successfully implement them in real-world scenarios.

Who this book is for
This book is for data analysts, data scientists, machine learning engineers, and other
professionals who are looking to generate advanced models using ensemble techniques.

What this book covers
Chapter 1, A Machine Learning Refresher, presents an overview of machine learning,
including basic concepts such as training/test sets, performance measures, supervised and
unsupervised learning, machine learning algorithms, and benchmark datasets.

Chapter 2, Getting Started with Ensemble Learning, introduces the concept of ensemble
learning, highlighting the problems that it solves as well as the problems that it poses.

Chapter 3, Voting, introduces the most simple ensemble learning technique, voting, while
explaining the difference between hard and soft voting. You will learn how to implement a
custom classifier, as well as use scikit-learn's implementation of hard/soft voting.

Preface

[2]

Chapter 4, Stacking, covers meta learning (stacking) a more advanced ensemble learning
method. After reading this chapter, you will be able to implement a stacking classifier in
Python to use with scikit-learn classifiers.

Chapter 5, Bagging, introduces bootstrap resampling and the first generative ensemble
learning technique, bagging. Furthermore, this chapter guides you through the process of
implementing the technique in Python, as well as how to use the scikit-learn
implementation.

Chapter 6, Boosting, touches on more advanced subjects in ensemble learning. This chapter
explains how popular boosting algorithms work and are implemented. Furthermore, it
presents XGBoost, a highly successful distributed boosting library.

Chapter 7, Random Forests, goes through the process of creating random decision trees by
subsampling the instances and features of a dataset. Moreover, this chapter explains how to
utilize an ensemble of random trees to create a random forest. Finally, this chapter presents
scikit-learn's implementations and how to use them.

Chapter 8, Clustering, introduces to the possibility of using ensembles for unsupervised
learning tasks, such as clustering. Furthermore, the OpenEnsembles Python library is
introduced, along with guidance on using it.

Chapter 9, Classifying Fraudulent Transactions, presents an application for the classification
of a real-world dataset, using ensemble learning techniques presented in earlier chapters.
The dataset concerns fraudulent credit card transactions.

Chapter 10, Predicting Bitcoin Prices, presents an application for the regression of a real-
world dataset, using ensemble learning techniques presented in earlier chapters. The
dataset concerns the price of the popular cryptocurrency Bitcoin.

Chapter 11, Evaluating Sentiment on Twitter, presents an application for evaluating the
sentiment of various tweets using a real-world dataset.

Chapter 12, Recommending Movies with Keras, presents the process of creating a
recommender system using ensembles of neural networks.

Chapter 13, Clustering World Happiness, presents the process of using an ensemble learning
approach to cluster data from the World Happiness Report 2018.

Preface

[3]

To get the most out of this book
This book is aimed at analysts, data scientists, engineers, and other professionals who have
an interest in generating advanced models that describe and generalize datasets of interest
to them. It is assumed that the reader has basic experience of programming in Python and
is familiar with elementary machine learning models. Furthermore, a basic understanding
of statistics is assumed, although key points and more advanced concepts are briefly
presented. Familiarity with Python's scikit-learn module would be greatly beneficial,
although it is not strictly required. A standard Python installation is required. Anaconda
Distribution (https://www.anaconda.com/distribution/) greatly simplifies the task of
installing and managing the various Python packages, although it is not necessary. Finally,
a good Integrated Development Environment (IDE) is extremely useful for managing your
code and debugging. In our examples, we usually utilize the Spyder IDE, which can be
easily installed through Anaconda.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest versions of the following:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for macOS
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python. In
case there's an update to the code, it will be updated on the existing GitHub repository.

https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python

Preface

[4]

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt-cdn.com/downloads/
9781789612851_ColorImages.pdf.

Code in action
Visit the following link to check out videos of the code being run: http://bit.ly/2GfnRrv.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

--- SECTION 6 ---
Accuracy of hard voting
print('-'*30)
print('Hard Voting:', accuracy_score(y_test, hard_predictions))

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Thus, the preferred approach is to utilize K-fold cross validation."

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612851_ColorImages.pdf
http://bit.ly/2GfnRrv
http://bit.ly/2GfnRrv
http://bit.ly/2GfnRrv
http://bit.ly/2GfnRrv
http://bit.ly/2GfnRrv
http://bit.ly/2GfnRrv
http://bit.ly/2GfnRrv
http://bit.ly/2GfnRrv
http://bit.ly/2GfnRrv

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Introduction and

Required Software Tools
This section is a refresher on basic machine learning concepts and an introduction to
ensemble learning. We will have an overview of machine learning and various concepts
pertaining to it, such as train and test sets, supervised and unsupervised learning, and
more. We will also learn about the concept of ensemble learning.

This section comprises the following chapters:

Chapter 1, A Machine Learning Refresher
Chapter 2, Getting Started with Ensemble Learning

1
A Machine Learning Refresher

Machine learning is a sub field of artificial intelligence (AI) focused on the aim of
developing algorithms and techniques that enable computers to learn from massive
amounts of data. Given the increasing rate at which data is produced, machine learning has
played a critical role in solving difficult problems in recent years. This success was the main
driving force behind the funding and development of many great machine learning
libraries that make use of data in order to build predictive models. Furthermore, businesses
have started to realize the potential of machine learning, driving the demand for data
scientists and machine learning engineers to new heights, in order to design better-
performing predictive models.

This chapter serves as a refresher on the main concepts and terminology, as well as an
introduction to the frameworks that will be used throughout the book, in order to approach
ensemble learning with a solid foundation.

The main topics covered in this chapter are the following:

The various machine learning problems and datasets
How to evaluate the performance of a predictive model
Machine learning algorithms
Python environment setup and the required libraries

Technical requirements
You will require basic knowledge of machine learning techniques and algorithms.
Furthermore, a knowledge of python conventions and syntax is required. Finally,
familiarity with the NumPy library will greatly help the reader to understand some custom
algorithm implementations.

A Machine Learning Refresher Chapter 1

[8]

The code files of this chapter can be found on GitHub:

 https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/
tree/master/Chapter01

Check out the following video to see the Code in Action: http://bit.ly/30u8sv8.

Learning from data
Data is the raw ingredient of machine learning. Processing data can produce information;
for example, measuring the height of a portion of a school's students (data) and calculating
their average (processing) can give us an idea of the whole school's height (information). If
we process the data further, for example, by grouping males and females and calculating
two averages – one for each group, we will gain more information, as we will have an idea
about the average height of the school's males and females. Machine learning strives to
produce the most information possible from any given data. In this example, we produced
a very basic predictive model. By calculating the two averages, we can predict the average
height of any student just by knowing whether the student is male or female.

The set of data that a machine learning algorithm is tasked with processing is called the
problem's dataset. In our example, the dataset consists of height measurements (in
centimeters) and the child's sex (male/female). In machine learning, input variables are
called features and output variables are called targets. In this dataset, the features of our
predictive model consist solely of the students' sex, while our target is the students' height
in centimeters. The predictive model that is produced and maps features to targets will be
referred to as simply the model from now on, unless otherwise specified. Each data point is
called an instance. In this problem, each student is an instance of the dataset.

When the target is a continuous variable (a number), it presents a regression problem, as
the aim is to regress the target on the features. When the target is a set of categories, it
presents a classification problem, as we try to assign each instance to a category or class.

Note that, in classification problems, the target class can be represented by a number; this
does not mean that it is a regression problem. The most useful way to determine whether it
is a regression problem is to think about whether the instances can be ordered by their
targets. In our example, the target is height, so we can order the students from tallest to
shortest, as 100 cm is less than 110 cm. As a counter example, if the target was their favorite
color, we could represent each color by a number, but we could not order them. Even if we
represented red as one and blue as two, we could not say that red is "before" or "less than"
blue. Thus, this counter example is a classification problem.

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01
http://bit.ly/30u8sv8
http://bit.ly/30u8sv8
http://bit.ly/30u8sv8
http://bit.ly/30u8sv8
http://bit.ly/30u8sv8
http://bit.ly/30u8sv8
http://bit.ly/30u8sv8
http://bit.ly/30u8sv8
http://bit.ly/30u8sv8

A Machine Learning Refresher Chapter 1

[9]

Popular machine learning datasets
Machine learning relies on data in order to produce high-performing models. Without data,
it's not even possible to create models. In this section, we'll present some popular machine
learning datasets, which we will utilize throughout this book.

Diabetes
The diabetes dataset concerns 442 individual diabetes patients and the progression of the
disease one year after a baseline measurement. The dataset consists of 10 features, which
are the patient's age, sex, body mass index (bmi), average blood pressure (bp), and six
measurements of their blood serum. The dataset target is the progression of the disease one
year after the baseline measurement. This is a regression dataset, as the target is a number.

 In this book, the dataset features are mean-centered and scaled such that the dataset sum of
squares for each feature equals one. The following table depicts a sample of the diabetes
dataset:

age sex bmi bp s1 s2 s3 s4 s5 s6 target
0.04 0.05 0.06 0.02 -0.04 -0.03 -0.04 0.00 0.02 -0.02 151
0.00 -0.04 -0.05 -0.03 -0.01 -0.02 0.07 -0.04 -0.07 -0.09 75
0.09 0.05 0.04 -0.01 -0.05 -0.03 -0.03 0.00 0.00 -0.03 141
-0.09 -0.04 -0.01 -0.04 0.01 0.02 -0.04 0.03 0.02 -0.01 206

Breast cancer
The breast cancer dataset concerns 569 biopsies of malignant and benign tumors. The
dataset provides 30 features extracted from images of fine-needle aspiration biopsies that
describe cell nuclei. The images provide information about the shape, size, and texture of
each cell nucleus. Furthermore, for each characteristic, three distinct values are provided.
The mean, the standard error, and the worst or largest value. This ensures that, for each
image, the cell population is adequately described.

A Machine Learning Refresher Chapter 1

[10]

The dataset target concerns the diagnosis, that is, whether a tumor is malignant or benign.
Thus, this is a classification dataset. The available features are listed as follows:

Mean radius
Mean texture
Mean perimeter
Mean area
Mean smoothness
Mean compactness
Mean concavity
Mean concave points
Mean symmetry
Mean fractal dimension
Radius error
Texture error
Perimeter error
Area error
Smoothness error
Compactness error
Concavity error
Concave points error
Symmetry error
Fractal dimension error
Worst radius
Worst texture
Worst perimeter
Worst area
Worst smoothness
Worst compactness
Worst concavity
Worst concave points
Worst symmetry
Worst fractal dimension

A Machine Learning Refresher Chapter 1

[11]

Handwritten digits
The MNIST handwritten digit dataset is one of the most famous image recognition datasets.
It consists of square images, 8 x 8 pixels, each containing a single handwritten digit. Thus,
the dataset features are an 8 by 8 matrix, containing each pixel's color in grayscale. The
target consists of 10 classes, one for each digit from 0 to 9. This is a classification dataset.
The following figure is a sample from the handwritten digit dataset:

Sample of the handwritten digit dataset

Supervised and unsupervised learning
Machine learning can be divided into many subcategories; two broad categories are
supervised and unsupervised learning. These categories contain some of the most popular
and widely used machine learning methods. In this section, we present them, as well as
some toy example uses of supervised and unsupervised learning.

A Machine Learning Refresher Chapter 1

[12]

Supervised learning
In examples such as those in the previous section, the data consisted of some features and a
target; no matter whether the target was quantitative (regression) or categorical
(classification). Under these circumstances, we call the dataset a labeled dataset. When we
try to produce a model from a labeled dataset in order to make predictions about unseen or
future data (for example, to diagnose a new tumor case), we make use of supervised
learning. In simple cases, supervised learning models can be visualized as a line. This line's
purpose is to either separate the data based on the target (in classification) or to closely
follow the data (in regression).

The following figure illustrates a simple regression example. Here, y is the target and x is
the dataset feature. Our model consists of the simple equation y=2x-5. As is evident, the line
closely follows the data. In order to estimate the y value of a new unseen point, we calculate
its value using the preceding formula. The following figure shows a simple regression with
y=2x-5 as the predictive model:

Simple regression with y=2x-5 as the predictive model

A Machine Learning Refresher Chapter 1

[13]

In the following figure, a simple classification problem is depicted. Here, the dataset
features are x and y, while the target is the instance color. Again, the dotted line is y=2x-5,
but this time we test whether the point is above or below the line. If the point's y value is
lower than expected (smaller), then we expect it to be orange. If it is higher (greater), we
expect it to be blue. The following figure is a simple classification with y=2x-5 as the
boundary:

Simple classification with y=2x-5 as boundary

Unsupervised learning
In both regression and classification, we have a clear understanding of how the data is
structured or how it behaves. Our goal is to simply model that structure or behavior. In
some cases, we do not know how the data is structured. In those cases, we can utilize
unsupervised learning in order to discover the structure, and thus information, within the
data. The simplest form of unsupervised learning is clustering. As the name implies,
clustering techniques attempt to group (or cluster) data instances. Thus, instances that
belong to the same cluster share many similarities in their features, while they are
dissimilar to instances that belong in separate clusters. A simple example with three
clusters is depicted in the following figure. Here, the dataset features are x and y, while
there is no target.

A Machine Learning Refresher Chapter 1

[14]

The clustering algorithm discovered three distinct groups, centered around the points (0, 0),
(1, 1), and (2, 2):

Clustering with three distinct groups

Dimensionality reduction
Another form of unsupervised learning is dimensionality reduction. The number of
features present in a dataset equals the dataset's dimensions. Often, many features can be
correlated, noisy, or simply not provide much information. Nonetheless, the cost of storing
and processing data is correlated with a dataset's dimensionality. Thus, by reducing the
dataset's dimensions, we can help the algorithms to better model the data.

Another use of dimensionality reduction is for the visualization of high-dimensional
datasets. For example, using the t-distributed Stochastic Neighbor Embedding (t-SNE)
algorithm, we can reduce the breast cancer dataset to two dimensions or components.
Although it is not easy to visualize 30 dimensions, it is quite easy to visualize two.

A Machine Learning Refresher Chapter 1

[15]

Furthermore, we can visually test whether the information contained within the dataset can
be utilized to separate the dataset's classes or not. The next figure depicts the two
components on the y and x axis, while the color represents the instance's class. Although we
cannot plot all of the dimensions, by plotting the two components, we can conclude that a
degree of separability between the classes exists:

Using t-SNE to reduce the dimensionality of the breast cancer dataset

Performance measures
Machine learning is a highly quantitative field. Although we can gauge the performance of
a model by plotting how it separates classes and how closely it follows data, more
quantitative performance measures are needed in order to evaluate models. In this section,
we present cost functions and metrics. Both of them are used in order to assess a model's
performance.

Cost functions
A machine learning model's objective is to model our dataset. In order to assess each
model's performance, we define an objective function. These functions usually express a
cost, or how far from perfect a model is. These cost functions usually utilize a loss function
to assess how well the model performed on each individual dataset instance.

A Machine Learning Refresher Chapter 1

[16]

Some of the most widely used cost functions are described in the following sections,
assuming that the dataset has n instances, the target's true value for instance i is ti and the
model's output is yi .

Mean absolute error
Mean absolute error (MAE) or L1 loss is the mean absolute distance between the target's
real values and the model's outputs. It is calculated as follows:

Mean squared error
Mean squared error (MSE) or L2 loss is the mean squared distance between the target's
real values and the model's output. It is calculated as follows:

Cross entropy loss
Cross entropy loss is used in models that output probabilities between 0 and 1, usually to
express the probability that an instance is a member of a specific class. As the output
probability diverges from the actual label, the loss increases. For a simple case where the
dataset consists of two classes, it is calculated as follows:

Metrics
Cost functions are useful when we try to numerically optimize our models. But as humans,
we need metrics that are useful and intuitive to understand and report. As such, there are a
number of metrics available that give insight into a model's performance. The most
common metrics are presented in the following sections.

A Machine Learning Refresher Chapter 1

[17]

Classification accuracy
The simplest and easiest to grasp of all, classification accuracy refers to the percentage of
correct predictions. In order to calculate accuracy, we divide the number of correct
predictions by the total number of instances:

In order for accuracy to hold any substantial value, the dataset must contain an equal
number of instances belonging to each class. If the dataset is unbalanced, accuracy will be
affected. For example, if a dataset consists of 90% class A and 10% class B, a model that
predicts each instance as class A will have 90% accuracy, although it will hold zero
predictive power.

Confusion matrix
In order to tackle the preceding problem, it is possible to utilize a confusion matrix.
Confusion matrices present the number of instances correctly or incorrectly predicted as
each possible class. In a dataset with only two classes (Yes and No), a confusion matrix has
the following form:

n = 200 Predicted: Yes Predicted: No
Target: Yes 80 70
Target: No 20 30

There are four cells, each corresponding to one of the following:

True Positives (TP): When the target belongs to the Yes class and the model
predicted Yes
True Negatives (TN): When the target belongs to the No class and the model
predicted No
False Positives (FP): When the target belongs to the No class and the model
predicted Yes
False Negatives (FN): When the target belongs to the Yes class and the model
predicted No

A Machine Learning Refresher Chapter 1

[18]

Confusion matrices provide information about the balance of the true and predicted classes.
In order to calculate the accuracy from a confusion matrix, we divide the sum of TP and TN
by the total number of instances:

Sensitivity, specificity, and area under the curve
Area under the curve (AUC) concerns binary classification datasets, and it depicts the
probability that the model will rank any given instance correctly. In order to define it, we
must first define sensitivity and specificity:

Sensitivity (True Positive Rate): Sensitivity is the percentage of positive
instances correctly predicted as positive, relative to all positive instances. It is
calculated as follows:

Specificity (False Positive Rate): Specificity is the percentage of negative
instances incorrectly predicted as positive, relative to all negative instances. It is
calculated as follows:

By iteratively computing (1-specificity) and sensitivity at specific intervals (for example, in
0.05 increments), we can see how the model behaves. The intervals concern the model's
output probability for each instance; for example, we first compute them for all instances
with an estimated probability of belonging to the Yes class of less than 0.05. Then, we re-
compute for all instances with an estimated probability of less than 0.1 and so on. The result
is depicted here:

A Machine Learning Refresher Chapter 1

[19]

Receiver operator characteristic curve

The straight line represents an equal probability of ranking an instance correctly or
incorrectly: a random model. The orange line (ROC curve) depicts the model's probability.
If the ROC curve is below the straight line, it means that the model performs worse than a
random, uninformed model.

Precision, recall, and the F1 score
Precision gauges how a model behaves by quantifying the percentage of instances correctly
classified as a specific class, relative to all instances predicted as the same class. It is
calculated as follows:

Recall is another name for sensitivity. The harmonic mean of precision and recall is called
the F1 score and is calculated as follows:

A Machine Learning Refresher Chapter 1

[20]

The reason to use the harmonic mean instead of a simple average is that the harmonic mean
is greatly affected by imbalances between the two values (precision and recall). Thus, if
either precision or recall is significantly smaller than the other, the F1 score will reflect this
imbalance.

Evaluating models
Although there are various metrics that indicate a model's performance, it is important to
carefully set the testing environment. One of the most important things is to split the
dataset into two parts. One part of the dataset will be utilized by the algorithm in order to
generate a model; the second part will be utilized to assess the model. These are usually
called the train and test set.

The train set is available to the algorithm to generate and optimize a model, using any cost
function. After the algorithm is finished, the produced model is tested on the test set, in
order to assess its predictive ability on unseen data. While the algorithm may produce a
model that performs well on the train set (in-sample performance), it may not be able to
generalize and perform as well on the test set (out-of-sample performance). This can be
attributed to many factors – covered in the next chapter. Some of the problems that
arise can be tackled with the use of ensembles. Nonetheless, if the algorithm is presented
with low-quality data, there is little that can be done to improve out-of-sample
performance.

In order to obtain a fair estimate, we sometimes iteratively split different parts of a dataset
into fixed-size train and test sets, say, 90% train and 10% test, until we have tested the
whole dataset. This is called K-fold cross validation. In the case of a 90% to 10% split, it is
called 10-fold cross validation, because we need to perform it 10 times in order to get an
estimate for the whole dataset.

Machine learning algorithms
There are a number of machine learning algorithms, for both supervised and unsupervised
learning. In this book, we will cover some of the most popular algorithms that can be
utilized within ensembles. In this chapter, we will go over the key concepts behind each
algorithm, the basic algorithms, and the libraries that implement them in Python.

A Machine Learning Refresher Chapter 1

[21]

Python packages
In order to leverage the power of any programming language, libraries are essential.
They provide a convenient and tested implementation of many algorithms. In this book, we
will be using Python 3.6 along with the following libraries: NumPy, for its excellent
implementation of numerical operators and matrices; Pandas, for its convenient data
manipulation methods; Matplotlib, to visualize our data; scikit-learn, for its excellent
implementations of various machine learning algorithms, and Keras to build neural
networks, utilizing its Pythonic, intuitive interface. Keras is an interface for other
frameworks, such as TensorFlow, PyTorch, and Theano. The specific versions of each
library used in this book are listed as follows:

numpy==1.15.1
pandas==0.23.4
scikit-learn==0.19.1
matplotlib==2.2.2
Keras==2.2.4

Supervised learning algorithms
The most common class of machine learning algorithm is supervised learning algorithms.
These concern problems where data has a known structure. This means that each data point
has a specific value related to it that we wish to model or predict.

Regression
Regression is one of the simplest machine learning algorithms. The Ordinary Least Squares
(OLS) regression of the form y=ax+b attempts to optimize the a and b parameters in order to
fit the data. It uses MSE as its cost function. As the name implies, it is able to solve
regression problems.

We can use the scikit-learn implementation of OLS to try and model the diabetes dataset
(the dataset is provided with the library):

--- SECTION 1 ---
Libraries and data loading
from sklearn.datasets import load_diabetes
from sklearn.linear_model import LinearRegression
from sklearn import metrics
diabetes = load_diabetes()

A Machine Learning Refresher Chapter 1

[22]

The first section deals with importing libraries and loading data. We use the
LinearRegression implementation that exists in the linear_model package:

--- SECTION 2 ---
Split the data into train and test set
train_x, train_y = diabetes.data[:400], diabetes.target[:400]
test_x, test_y = diabetes.data[400:], diabetes.target[400:]

The second section splits the data into a train and a test set. For this example, we used the
first 400 instances as the train set and the other 42 as the test set:

--- SECTION 3 ---
Instantiate, train and evaluate the model
ols = LinearRegression()
ols.fit(train_x, train_y)
err = metrics.mean_squared_error(test_y, ols.predict(test_x))
r2 = metrics.r2_score(test_y, ols.predict(test_x))

The next section instantiates a linear regression object with ols = LinearRegression().
It then optimizes the parameters, or fits the model with our training instances, using
ols.fit(train_x, train_y). Finally, by using the metrics package, we calculate the
MSE and R2 of our model, using the test data in Section 4:

--- SECTION 4 ---
Print the model
print('---OLS on diabetes dataset.---')
print('Coefficients:')
print('Intercept (b): %.2f'%ols.intercept_)
for i in range(len(diabetes.feature_names)):
 print(diabetes.feature_names[i]+': %.2f'%ols.coef_[i])
print('-'*30)
print('R-squared: %.2f'%r2, ' MSE: %.2f \n'%err)

The code's output is the following:

---OLS on diabetes dataset.---
Coefficients:
Intercept (b): 152.73
age: 5.03
sex: -238.41
bmi: 521.63
bp: 299.94
s1: -752.12
s2: 445.15
s3: 83.51
s4: 185.58
s5: 706.47

A Machine Learning Refresher Chapter 1

[23]

s6: 88.68

R-squared: 0.70 MSE: 1668.75

Another form of regression, logistic regression, attempts to model the probability that an
instance belongs to one of two classes. Again, it attempts to optimize the a and b
parameters in order to model p=1/(1+e-(ax+b)) . Once again, using scikit-learn and the breast
cancer dataset, we can create and evaluate a simple logistic regression. The following code
sections are similar to the preceding ones, but this time we'll use classification accuracy and
a confusion matrix rather than R2 as a metric:

--- SECTION 1 ---
Libraries and data loading
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_breast_cancer
from sklearn import metrics
bc = load_breast_cancer()

--- SECTION 2 ---
Split the data into train and test set
train_x, train_y = bc.data[:400], bc.target[:400]
test_x, test_y = bc.data[400:], bc.target[400:]

--- SECTION 3 ---
Instantiate, train and evaluate the model
logit = LogisticRegression()
logit.fit(train_x, train_y)
acc = metrics.accuracy_score(test_y, logit.predict(test_x))

--- SECTION 4 ---
Print the model
print('---Logistic Regression on breast cancer dataset.---')
print('Coefficients:')
print('Intercept (b): %.2f'%logit.intercept_)
for i in range(len(bc.feature_names)):
 print(bc.feature_names[i]+': %.2f'%logit.coef_[0][i])
print('-'*30)
print('Accuracy: %.2f \n'%acc)
print(metrics.confusion_matrix(test_y, logit.predict(test_x)))

A Machine Learning Refresher Chapter 1

[24]

The test classification accuracy achieved with this model is 95%, which is quite good.
Furthermore, the confusion matrix that follows here indicates that the model does not try to
take advantage of class imbalances. Later in this book, we will learn how to further increase
the classification accuracy with the use of ensemble methods. The following table shows the
logit model confusion matrix:

n = 169 Predicted: Malignant Predicted: Benign
Target: Malignant 38 1

Target: Benign 8 122

Support vector machines
Support vector machines or SVMs use a subset of training data, specifically data points near
the edge of each class, in order to define a separating hyperplane (in two dimensions, a
line). These edge cases are called support vectors. The goal of an SVM is to find the
hyperplane that maximizes the margin (distance) between the support vectors (depicted in
the following figure). In order to classify nonlinear separable classes, SVMs use the kernel
trick to map data in a higher dimensional space, where it can become linearly separable:

SVM margins and support vectors

If you want to learn more about the kernel trick, this is a good starting
point: https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_
kernel_trick.

https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick

A Machine Learning Refresher Chapter 1

[25]

In scikit-learn, an SVM is implemented under sklearn.svm, both for regression with
sklearn.svm.SVR and classification with sklearn.svm.SVC. Once again, we'll test the
algorithm's potential using scikit-learn and the code utilized in the regression examples.
Using an SVM with a linear kernel on the breast cancer dataset results in 95% accuracy and
the following confusion matrix:

n = 169 Predicted: Malignant Predicted: Benign
Target: Malignant 39 0

Target: Benign 9 121

On the diabetes dataset, by fine-tuning the C parameter to 1,000 during the (svr =
SVR(kernel='linear', C=1e3)) object instantiation, we are able to achieve an R2 of
0.71 and an MSE of 1622.36, marginally better than the logit model.

Neural networks
Neural networks, inspired by the way biological brains are connected, consist of many
neurons, or computational modules, organized in layers. Data is provided at the input layer
and predictions are produced at the output layer. All intermediate layers are called hidden
layers. Neurons that belong to the same layer are not connected to each other, only to
neurons that belong in other layers. Each neuron can have multiple inputs, where each
input is multiplied by a specific weight and the sum of multiplied inputs is passed to an
activation function that defines the neuron's output. Common activation functions include
the following:

Sigmoid Tanh ReLU Linear

The network's goal is to optimize each neuron's weights, such that the cost function is
minimized. Neural networks can be either used for regression, where the output layer
consists of a single neuron, or classification, where it consists of many neurons, usually
equal to the number of classes. There are a number of optimizing algorithms or optimizers
available for neural networks. The most common is stochastic gradient descent or SGD. The
main idea is that the weights are updated based on the direction and magnitude (first
derivative) of the error's gradient, multiplied by a factor called the learning rate.

Variations and extensions have been proposed that take into account the second derivative,
adapt the learning rate, or use the momentum of previous weight changes to update the
weights.

A Machine Learning Refresher Chapter 1

[26]

Although the concept of neural networks has existed for a long time, recently their
popularity has greatly increased with the advent of deep learning. Modern architectures
consist of convolutional layers, where each layer's weights consist of matrices, and the
output is calculated by sliding the weight matrix onto the input. Another type of layers,
max pooling layers, calculates the output as the maximum input element again by sliding a
fixed-size window onto the input. Recurrent layers retain information about their previous
states. Finally, fully connected layers are traditional neurons, as described previously.

Scikit-learn implements traditional neural networks, under the sklearn.neural_network
package. Once again, using the preceding examples, we'll try to model the diabetes and
breast cancer datasets. On the diabetes dataset, we'll use MLPRegressor with Stochastic
Gradient Descent (SGD) as the optimizer, with mlpr = MLPRegressor(solver='sgd').
Without any further fine-tuning, we achieve an R2 of 0.64 and an MSE of 1977. On the breast
cancer dataset, using the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS)
optimizer, with mlpc = MLPClassifier(solver='lbfgs'), we get a classification
accuracy of 93% and a competent confusion matrix. The following table shows the neural
network confusion matrix for the breast cancer dataset:

n = 169 Predicted: Malignant Predicted: Benign
Target: Malignant 35 4

Target: Benign 8 122

A very important note on neural networks: the initial weights of a
network are randomly initialized. Thus, the same code can perform
differently if it is executed several times. In order to ensure non-random
(non-stochastic) execution, the initial random state of the network must be
fixed. The two scikit-learn classes implement this feature through the
random_state parameter in the object constructor. In order to set the
random state to a specific seed value, the constructor must be called as
follows: mlpc = MLPClassifier(solver='lbfgs',
random_state=12418).

Decision trees
Decision trees are less of a black box than other machine learning algorithms. They can
easily explain how they produce a prediction, which is called interpretability. The main
concept is that they produce rules by splitting the training set using the provided features.
By iteratively splitting the data, a tree form is produced, thus this is where their name
derives from. Let's consider a dataset where the instances are individual persons deciding
on their vacations.

A Machine Learning Refresher Chapter 1

[27]

The dataset features consist of the person's age and available money, while the target is
their preferred destination, one of either Summer Camp, Lake, or Bahamas. A possible
decision tree model is depicted in the following figure:

Decision tree model for the vacation destination problem

As is evident, the model can explain how it produces any predictions. The way that the
model itself is built is by trying to select the feature and threshold that maximize the
information produced. Roughly, this means that the model will try to iteratively split the
dataset in a way that separates the greatest number of remaining instances.

Although intuitive to understand, decision trees can produce unreasonable models, with
the extreme being the generation of so many rules that, eventually, each rule combination
leads to a single instance. In order to avoid such models, we can restrict the model by
requiring that it does not exceed a specific depth (maximum number of consecutive rules),
or that each node has at least a minimum number of instances before it can be further split.

A Machine Learning Refresher Chapter 1

[28]

In scikit-learn, decision trees are implemented under the sklearn.tree package, with
DecisionTreeClassifier and DecisionTreeRegressor. In our examples, using
DecisionTreeRegressor with dtr = DecisionTreeRegressor(max_depth=2), we
achieve an R2 of 0.52 and an MSE of 2655. On the breast cancer dataset, using dtc =
DecisionTreeClassifier(max_depth=2), we achieve 89% accuracy and the following
confusion matrix:

n = 169 Predicted: Malignant Predicted: Benign
Target: Malignant 37 2

Target: Benign 17 113

Although not the best-performing algorithm so far, we can clearly see how each individual
was classified, by exporting the tree to the graphviz format with export_graphviz(dtc,
feature_names=bc.feature_names, class_names=bc.target_names,

impurity=False):

The decision tree generated for the breast cancer dataset

A Machine Learning Refresher Chapter 1

[29]

K-Nearest Neighbors
k-Nearest Neighbors (k-NN) is a relatively simple machine learning algorithm. Each
instance is classified by comparing it to its K-nearest examples as the majority class. In
regression, the average value of neighbors is used. Scikit-learn's implementation lies within
the sklearn.neighbors package of the library. As it is the naming convention of the
library, KNeighborsClassifier implements the classification and
KNeighborsRegressor implements the regression version of the algorithm. Using them in
our examples, the regressor generates an R2 of 0.58 with an MSE of 2342, while the classifier
achieves 93% accuracy. The following table shows the k-NN confusion matrix for the breast
cancer dataset:

n = 169 Predicted: Malignant Predicted: Benign
Target: Malignant 37 2

Target: Benign 9 121

K-means
K-means is a clustering algorithm that presents similarities to k-NN. A number of cluster
centers are produced, and each instance is assigned to its nearest cluster. After all instances
are assigned to a cluster, the centroid of the cluster becomes the new center, until the
algorithm converges to a stable solution. In scikit-learn, this algorithm is implemented in
sklearn.cluster.KMeans. We can try to cluster the first two features of the breast cancer
dataset: the mean radius and the texture of the FNA imaging.

First, we load the required data and libraries, while retaining only the first two features of
the dataset:

--- SECTION 1 ---
Libraries and data loading
import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_breast_cancer
from sklearn.cluster import KMeans
bc = load_breast_cancer()
bc.data=bc.data[:,:2]

A Machine Learning Refresher Chapter 1

[30]

Then, we fit the cluster on the data. Note that we don't have to split the data into train and
test sets:

--- SECTION 2 ---
Instantiate and train
km = KMeans(n_clusters=3)
km.fit(bc.data)

Following that, we create a two-dimensional mesh and cluster every point, in order to plot
the cluster areas and boundaries:

--- SECTION 3 ---
Create a point mesh to plot cluster areas
Step size of the mesh.
h = .02
Plot the decision boundary. For that, we will assign a color to each
x_min, x_max = bc.data[:, 0].min() - 1, bc.data[:, 0].max() + 1
y_min, y_max = bc.data[:, 1].min() - 1, bc.data[:, 1].max() + 1
Create the actual mesh and cluster it
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max,
h))
Z = km.predict(np.c_[xx.ravel(), yy.ravel()])
Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1)
plt.clf()
plt.imshow(Z, interpolation='nearest',
 extent=(xx.min(), xx.max(), yy.min(), yy.max()),
 aspect='auto', origin='lower',)

Finally, we plot the actual data, color-mapped to its respective clusters:

 --- SECTION 4 ---
Plot the actual data
c = km.predict(bc.data)
r = c == 0
b = c == 1
g = c == 2
plt.scatter(bc.data[r, 0], bc.data[r, 1], label='cluster 1')
plt.scatter(bc.data[b, 0], bc.data[b, 1], label='cluster 2')
plt.scatter(bc.data[g, 0], bc.data[g, 1], label='cluster 3')
plt.title('K-means')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.xlabel(bc.feature_names[0])
plt.ylabel(bc.feature_names[1])

A Machine Learning Refresher Chapter 1

[31]

`()
plt.show()

The result is a two-dimensional image with color-coded boundaries of each cluster, as well
as the instances:

K-means clustering of the first two features of the breast cancer dataset

Summary
In this chapter, we presented the basic datasets, algorithms, and metrics that we will use
throughout the book. We talked about regression and classification problems, where
datasets have not only features but also targets. We called these labeled datasets. We also
talked about unsupervised learning, in the form of clustering and dimensionality reduction.
We introduced cost functions and model metrics that we will use to evaluate the models
that we generate. Furthermore, we presented the basic learning algorithms and Python
libraries that we will utilize in the majority of our examples.

A Machine Learning Refresher Chapter 1

[32]

In the next chapter, we will introduce the concepts of bias and variance, as well as the
concept of ensemble learning. Some key points to remember are as follows:

We try to solve a regression problem when the target variable is a continuous
number and its values have a meaning in terms of magnitude, such as speed,
cost, blood pressure, and so on. Classification problems can have their targets
coded as numbers, but we cannot treat them as such. There is no meaning in
trying to sort colors or foods based on the number they are assigned during a
problem's encoding.
Cost functions are a way to quantify how far away a predictive model is from
modelling data perfectly. Metrics provide information that is easier for humans
to understand and report.
All of the algorithms presented in this chapter have implementations for both
classification and regression problems in scikit-learn. Some are better suited to
particular tasks, at least without tuning their hyper parameters. Decision trees
produce models that are easily interpreted by humans.

2
Getting Started with Ensemble

Learning
 Ensemble learning involves a combination of techniques that allows multiple machine
learning models, called base learners (or, sometimes, weak learners), to consolidate their
predictions and output a single, optimal prediction, given their respective inputs and
outputs.

In this chapter, we will give an overview of the main problems that ensembles try to solve,
namely, bias and variance, as well as the relationship between them. This will help us
understand the motivation behind identifying the root cause of an under-performing model
and using an ensemble to address it. Furthermore, we will go over the basic categories of
the methodologies available, as well as the difficulties we can expect to encounter when
implementing ensembles.

The main topics covered in this chapter are the following:

Bias, variance, and the trade-off between the two
The motivation behind using ensemble learning
Identifying the root cause of an under-performing model
Ensemble learning methods
Difficulties in applying ensemble learning successfully

Getting Started with Ensemble Learning Chapter 2

[34]

Technical requirements
You will require basic knowledge of machine learning techniques and algorithms.
Furthermore, a knowledge of python conventions and syntax is required. Finally,
familiarity with the NumPy library will greatly help the reader to understand some custom
algorithm implementations.

The code files of this chapter can be found on GitHub:

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/
master/Chapter02

Check out the following video to see the Code in Action: http://bit.ly/2JKkWYS.

Bias, variance, and the trade-off
Machine learning models are not perfect; they are prone to a number of errors. The two
most common sources of errors are bias and variance. Although two distinct problems, they
are interconnected and relate to a model's available degree of freedom or complexity.

What is bias?
Bias refers to the inability of a method to correctly estimate the target. This does not only
apply to machine learning. For example, in statistics, if we want to measure a population's
average and do not sample carefully, the estimated average will be biased. In simple terms,
the method's (sampling) estimation will not closely match the actual target (average).

In machine learning, bias refers to the difference between the expected prediction and its
target. Biased models cannot properly fit the training data, resulting in poor in-sample
performance and out-of-sample performance. A good example of a biased model arises
when we try to fit a sine function with a simple linear regression. The model cannot fit the
sine function, as it lacks the required complexity to do so. Thus, it will not be able to
perform well in-sample or out-of-sample. This problem is called underfitting. A graphical
example is illustrated in the following figure :

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02
http://bit.ly/2JKkWYS
http://bit.ly/2JKkWYS
http://bit.ly/2JKkWYS
http://bit.ly/2JKkWYS
http://bit.ly/2JKkWYS
http://bit.ly/2JKkWYS
http://bit.ly/2JKkWYS
http://bit.ly/2JKkWYS
http://bit.ly/2JKkWYS

Getting Started with Ensemble Learning Chapter 2

[35]

 A biased linear regression model for sine function data

The mathematical formula for bias is the difference between the target value and the
expected prediction:

What is variance?
Variance refers to how much individuals vary within a group. Again, variance is a concept
from statistics. Taking a sample from a population, variance indicates how much each
individual's value differs from the mean.

In machine learning, variance refers to the model's variability or sensitivity to data changes.
This means that high-variance models can generally fit the training data well and so
achieve high in-sample performance, but perform poorly out-of-sample. This is due to the
model's complexity. For example, a decision tree can have high variance if it creates a rule
for every single instance in the training dataset. This is called overfitting. The following
figure depicts a decision tree trained on the preceding dataset. Blue dots represent the
training data and orange dots represent the test data.

Getting Started with Ensemble Learning Chapter 2

[36]

As is evident, the model fits the training data perfectly but does not perform on the test
data so well:

A high-variance decision tree model on the sine function

The mathematical formula for variance is depicted as follows:

Essentially, this is the standard formula for population variance, assuming that our
population is comprised of our models, as they have been produced by the machine
learning algorithm. For example, as we saw earlier in Chapter 1, A Machine Learning
Refresher, neural networks can have different training outcomes, depending on their initial
weights. If we consider all the neural networks with the same architecture, but different
initial weights, by training them, we will have a population of different models.

Getting Started with Ensemble Learning Chapter 2

[37]

Trade-off
Bias and variance are two of the three major components that comprise a model's error. The
third is called the irreducible error and can be attributed to inherent randomness or
variability in the data. The total error of a model can be decomposed as follows:

As we saw earlier, bias and variance stem from the same source: model complexity. While
bias arises from too little complexity and freedom, variance thrives in complex models.
Thus, it is not possible to reduce bias without increasing variance and vice versa.
Nevertheless, there is an optimal point of complexity, where the error is minimized as bias
and variance are at an optimal trade-off point. When the model's complexity is at this
optimal point (the red dotted line in the next figure), then the model performs best both in-
sample and out-of-sample. As is evident in the next figure, the error can never be reduced
to zero.

Furthermore, although some may think that it is better to reduce the bias, even at the cost of
increased variance, it is clear that the model would not perform better, even if it was
unbiased, due to the error that variance inevitably induces:

Bias-variance trade-off and its effect on the error

Getting Started with Ensemble Learning Chapter 2

[38]

The following figure depicts the perfect model, with a minimum amount of combined bias
and variance, or reducible error. Although the model does not fit the data perfectly, this is
due to noise that is inherent in the dataset. If we try to fit the training data better, we will
induce overfitting (variance). If we try to simplify the model further, we will induce
underfitting (bias):

Perfect model for our data, a sine function

Ensemble learning
Ensemble learning involves a collection of machine learning methods aimed at improving
the predictive performance of algorithms by combining many models. We will analyze the
motivation behind using such methods to solve problems that arise from high bias and
variance. Furthermore, we will present methods that allow the identification of bias and
variance in machine learning models, as well as basic classes of ensemble learning methods.

Motivation
Ensemble learning aims to solve the problems of bias and variance. By combining many
models, we can reduce the ensemble's error, while retaining the individual models'
complexities. As we saw earlier, there is a certain lower limit imposed on each model error,
which is related to the model complexity.

Getting Started with Ensemble Learning Chapter 2

[39]

Furthermore, we mentioned that the same algorithm can produce different models, due to
the initial conditions, hyperparameters, and other factors. By combining different, diverse
models, we can reduce the expected error of the group, while each individual model
remains unchanged. This is due to statistics, rather than pure learning.

In order to better demonstrate this, let's consider an ensemble of 11 base learners for a
classification, each with a probability of misclassification (error) equal to err=0.15 or 15%.
Now, we want to create a simple ensemble. We always assume that the output of most base
learners is the correct answer. Assuming that they are diverse (in statistics, uncorrelated),
the probability that the majority of them is wrong is 0.26%:

As is evident, the more base learners we add to the ensemble, the more accurate the
ensemble will be, under the condition that each learner is uncorrelated to the others. Of
course, this is increasingly difficult to achieve. Furthermore, the law of diminishing returns
applies. Each new uncorrelated base learner contributes less to the overall error reduction
than the previously added base learner. The following figure shows the ensemble error
percentage for a number of uncorrelated base learners. As is evident, the greatest reduction
is applied when we add two uncorrelated base learners:

The relation between the number of base learners and the ensemble error

Getting Started with Ensemble Learning Chapter 2

[40]

Identifying bias and variance
Although bias and variance have theoretical formulas, it is difficult to calculate their actual
values. A simple way to estimate them empirically is with learning and validation curves.

Validation curves
Validation curves refer to an algorithm's achieved performance, given different
hyperparameters. For each hyperparameter value, we perform k-fold cross validations and
store the in-sample performance and out-of-sample performance. We then calculate and
plot the mean and standard deviation of in-sample and out-of-sample performance for each
hyperparameter value. By examining the relative and absolute performance, we can gauge
the level of bias and variance in our model.

Borrowing the KNeighborsClassifier example from Chapter 1, A Machine Learning
Refresher, we modify it in order to experiment with different neighbor numbers. We start by
loading the required libraries and data. Notice that we import validation_curve from
sklearn.model_selection. This is scikit-learn's own implementation of validation
curves:

--- SECTION 1 ---
Libraries and data loading
import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import validation_curve
from sklearn.neighbors import KNeighborsClassifier
bc = load_breast_cancer()

Next, we define our features and targets (x and y), as well as our base learner. Furthermore,
we define our parameter search space with param_range = [2,3,4,5] and use
validation_curve. In order to use it, we must define our base learner, our features,
targets, the parameter's name that we wish to test, as well as the parameter's values to test.
Furthermore, we define the cross-validation's K folds with cv=10, as well as the metric that
we wish to calculate, with scoring="accuracy":

--- SECTION 2 ---
Create in-sample and out-of-sample scores
x, y = bc.data, bc.target
learner = KNeighborsClassifier()
param_range = [2,3,4,5]
train_scores, test_scores = validation_curve(learner, x, y,
 param_name='n_neighbors',

https://cdp.packtpub.com/hands_on_ensemble_learning_with_python/wp-admin/post.php?post=25&action=edit#post_24

Getting Started with Ensemble Learning Chapter 2

[41]

 param_range=param_range,
 cv=10,
 scoring="accuracy")

Afterward,we calculate the mean and standard deviation for both in-sample performance
(train_scores) as well as out-of-sample performance (test_scores):

--- SECTION 3 ---
Calculate the average and standard deviation for each hyperparameter
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)

Finally, we plot the means and deviations. We plot the means as curves, using plt.plot.
In order to plot the standard deviations, we create a transparent rectangle surrounding the
curves, with a width equal to the standard deviation at each hyperparameter value point.
This is achieved with the use of plt.fill_between, by passing the value points as the
first parameter, the lowest rectangle's point as the second parameter, and the highest point
as the third. Furthermore, alpha=0.1 instructs matplotlib to make the rectangle
transparent (combining the rectangle's color with the background in a 10%-90% ratio,
respectively):

Sections 3 and 4 are adapted from the scikit-learn examples found https:/
/scikit-learn.org/stable/auto_examples/model_selection/plot_
validation_curve.html.

--- SECTION 4 ---
Plot the scores
plt.figure()
plt.title('Validation curves')
Plot the standard deviations
plt.fill_between(param_range, train_scores_mean - train_scores_std,
 train_scores_mean + train_scores_std, alpha=0.1,
 color="C1")
plt.fill_between(param_range, test_scores_mean - test_scores_std,
 test_scores_mean + test_scores_std, alpha=0.1, color="C0")

Plot the means
plt.plot(param_range, train_scores_mean, 'o-', color="C1",
 label="Training score")
plt.plot(param_range, test_scores_mean, 'o-', color="C0",
 label="Cross-validation score")
plt.xticks(param_range)
plt.xlabel('Number of neighbors')

https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html

Getting Started with Ensemble Learning Chapter 2

[42]

plt.ylabel('Accuracy')
plt.legend(loc="best")
plt.show()

The script finally outputs the following. As the curves close the distance between them, the
variance generally reduces. The further away they both are from the desired accuracy
(taking into account the irreducible error), the bias increases.

Furthermore, the relative standard deviations are also an indicator of variance:

Validation curves for K-Nearest-Neighbors, 2 to 5 neighbor

The following table presents the bias and variance identification based on validation
curves:

Great Small
Distance between curves High Variance Low Variance

Distance from desired accuracy High Bias Low Bias
Relative rectangle area ratio High Variance Low Variance

Bias and variance identification based on validation curves

Getting Started with Ensemble Learning Chapter 2

[43]

Learning curves
Another way to identify bias and variance is to generate learning curves. Like validation
curves, we generate a number of in-sample and out-of-sample performance statistics with
cross-validation. Instead of experimenting with different hyperparameter values, we utilize
different amounts of training data. Again, by examining the means and standard deviations
of in-sample and out-of-sample performance, we can get an idea about the amount of bias
and variance inherent in our models.

Scikit-learn implements learning curves in the sklearn.model_selection module as
learning_curve. Once again, we will use the KNeighborsClassifier example from
Chapter 1, A Machine Learning Refresher. First, we import the required libraries and load the
breast cancer dataset:

--- SECTION 1 ---
Libraries and data loading
import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_breast_cancer
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import learning_curve
bc = load_breast_cancer()

Following that, we define the amount of training instances that will be used at each cross-
validation set with train_sizes = [50, 100, 150, 200, 250, 300], instantiate the
base learner, and call learning_curve. The function returns a tuple of the train set sizes,
the in-sample performance scores, and out-of-sample performance scores. The function
accepts the base learner, the dataset features and targets, and the train set sizes as
parameters in a list with train_sizes=train_sizes and the number of cross-validation
folds with cv=10:

--- SECTION 2 ---
Create in-sample and out-of-sample scores
x, y = bc.data, bc.target
learner = KNeighborsClassifier()
train_sizes = [50, 100, 150, 200, 250, 300]
train_sizes, train_scores, test_scores = learning_curve(learner, x,
y, train_sizes=train_sizes, cv=10)

Getting Started with Ensemble Learning Chapter 2

[44]

Again, we calculate the mean and standard deviation of in-sample and out-of-sample
performance:

--- SECTION 3 ---
Calculate the average and standard deviation for each hyperparameter
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)

Finally, we plot the means and standard deviations as curves and rectangles, as we did
before:

--- SECTION 4 ---
Plot the scores
plt.figure()
plt.title('Learning curves')
Plot the standard deviations
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
 train_scores_mean + train_scores_std, alpha=0.1,
 color="C1")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
 test_scores_mean + test_scores_std, alpha=0.1, color="C0")

Plot the means
plt.plot(train_sizes, train_scores_mean, 'o-', color="C1",
 label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="C0",
 label="Cross-validation score")

plt.xticks(train_sizes)
plt.xlabel('Size of training set (instances)')
plt.ylabel('Accuracy')
plt.legend(loc="best")
plt.show()

The final output is depicted as follows. The model seems to reduce its variance for the first
200 training samples. After that, it seems that the means diverge, as well as the standard
deviation of the cross-validation score increasing, thus indicating an increase in variance.

Note that, although both curves have above 90% accuracy for training sets with at least 150
instances, this does not imply low bias. Datasets that are highly separable (good quality
data with low noise) tend to produce such curves—no matter what combination of
algorithms and hyperparameters we choose. Moreover, noisy datasets (for example,
instances with the same features that have different targets) will not be able to produce
high accuracy models—no matter what techniques we use.

Getting Started with Ensemble Learning Chapter 2

[45]

Thus, bias must be measured by comparing the learning and validation curves to a desired
accuracy (one that is considered achievable, given the dataset quality), rather than its
absolute value:

Learning curves for K-Nearest-Neighbors, 50 to 300 training instances

Ensemble methods
Ensemble methods are divided into two major classes or taxonomies: generative and non-
generative methods. Non-generative methods are focused on combining the predictions of
a set of pretrained models. These models are usually trained independently of one another,
and the ensemble algorithm dictates how their predictions will be combined. Base
classifiers are not affected by the fact that they exist in an ensemble.

In this book, we will cover two main non-generative methods: voting and stacking. Voting,
as the name implies(see Chapter 3, Voting), refers to techniques that allow models to vote
in order to produce a single answer, similar to how individuals vote in national elections.
The most popular (most voted for) answer is selected as the winner. Chapter 4, Stacking, on
the other hand, refers to methods that utilize a model (the meta-learner) that learns how to
best combine the base learner's predictions. Although stacking entails the generation of a
new model, it does not affect the base learners, thus it is a non-generative method.

Getting Started with Ensemble Learning Chapter 2

[46]

Generative methods, on the other hand, are able to generate and affect the base learners
that they use. They can either tune their learning algorithm or the dataset used to train
them, in order to ensure diversity and high model performance. Furthermore, some
algorithms can induce randomness in models, in order to further enforce diversity.

The main generative methods that we will cover in this book are bagging, boosting, and
random forests. Boosting is a technique mainly targeting biased models. Its main idea is to
sequentially generate models, such that each new model addresses biases inherent in the
previous models. Thus, by iteratively correcting previous errors, the final ensemble has a
significantly lower bias. Bagging aims to reduce variance. The bagging algorithm resamples
instances of the training dataset, creating many individual and diverse datasets, originating
from the same dataset. Afterward, a separate model is trained on each sampled dataset,
forcing diversity between the ensemble models. Finally, Random Forests, is similar to
bagging, in that it resamples from the training dataset. Instead of sampling instances, it
samples features, thus creating even more diverse trees, as features strongly correlated to
the target may be absent in many trees.

Difficulties in ensemble learning
Although ensemble learning can greatly increase the performance of machine learning
models, it comes at a cost. There are difficulties and drawbacks in correctly implementing
it. Some of these difficulties and drawbacks will now be discussed.

Weak or noisy data
The most important ingredient of a successful model is the dataset. If the data contains
noise or incomplete information, there is not a single machine learning technique that will
generate a highly performant model.

Let's illustrate this with a simple example. Suppose we study populations (in the statistical
sense) of cars and we gather data about the color, shape, and manufacturer. It is difficult to
generate a very accurate model for either variable, as a lot of cars are the same color and
shape but are made by a different manufacturer. The following table depicts this sample
dataset.

Getting Started with Ensemble Learning Chapter 2

[47]

The best any model can do is achieve 33% classification accuracy, as there are three viable
choices for any given feature combination. Adding more features to the dataset can greatly
improve the model's performance. Adding more models to an ensemble cannot improve
performance:

Color Shape Manufacturer
Black Sedan BMW
Black Sedan Audi
Black Sedan Alfa Romeo
Blue Hatchback Ford
Blue Hatchback Opel
Blue Hatchback Fiat

Car dataset

Understanding interpretability
By employing a large number of models, interpretability is greatly reduced. For example, a
single decision tree can easily explain how it produced a prediction, by simply following
the decisions made at each node. On the other hand, it is difficult to interpret why an
ensemble of 1,000 trees predicted a single value. Moreover, depending on the ensemble
method, there may be more to explain than the prediction process itself. How and why did
the ensemble choose to train these specific models. Why did it not choose to train other
models? Why did it not choose to train more models?

When the model's results are to be presented to an audience, especially a not-so-highly-
technical audience, simpler but more easily explainable models may be a better solution.

Getting Started with Ensemble Learning Chapter 2

[48]

Furthermore, when the prediction must also include a probability (or confidence level),
some ensemble methods (such as boosting) tend to deliver poor probability estimates:

Interpretability of a single tree versus a 1000

Computational cost
Another drawback of ensembles is the computational cost they impose. Training a single
neural network is computationally expensive. Training a 1000 of them requires a 1000 times
more computational resources. Furthermore, some methods are sequential by nature. This
means that it is not possible to harness the power of distributed computing. Instead, each
new model must be trained when the previous model is completed. This imposes time
penalties on the model's development process, on top of the increased computational cost.

Getting Started with Ensemble Learning Chapter 2

[49]

Computational costs do not only hinder the development process; when the ensemble is
put into production, the inference time will suffer as well. If the ensemble consists of 1,000
models, then all of those models must be fed with new data, produce predictions, and then
those predictions must be combined in order to produce the ensemble output. In latency-
sensitive settings (financial exchanges, real-time systems, and so on), sub-millisecond
execution times are expected, thus a few microseconds of added latency can make a huge
difference.

Choosing the right models
Finally, the models that comprise the ensemble must possess certain characteristics. There
is no point in creating any ensemble from a number of identical models. Generative
methods may produce their own models, but the algorithm used as well as its initial
hyperparameters are usually selected by the analyst. Furthermore, the model's achievable
diversity depends on a number of factors, such as the size and quality of the dataset, and
the learning algorithm itself.

A single model that is similar in behavior to the data-generating process will usually
outperform any ensemble, both in terms of accuracy as well as latency. In our bias-variance
example, the simple sine function will always outperform any ensemble, as the data is
generated from the same function with some added noise. An ensemble of many linear
regressions may be able to approximate the sine function, but it will always require more
time to train and execute. Furthermore, it will not be able to generalize (predict out-of-
sample) as well as the sine function.

Summary
In this chapter, we presented the concepts of bias and variance, as well as the trade-off
between them. They are essential in understanding how and why a model may under-
perform, either in-sample or out-of-sample. We then introduced the concept and
motivation of ensemble learning, how to identify bias and variance in models, as well as
basic categories of ensemble learning methods. We presented ways to measure and plot
bias and variance, using scikit-learn and matplotlib. Finally, we talked about the difficulties
and drawbacks of implementing ensemble learning methods. Some key points to remember
are the following.

Getting Started with Ensemble Learning Chapter 2

[50]

High-bias models usually have difficulty performing well in-sample. This is also called
underfitting. It is due to the model's simplicity (or lack of complexity). High-variance
models usually have difficulty generalizing or performing well out-of-sample, while they
perform reasonably well in-sample. This is called overfitting. It is usually due to the
model's unnecessary complexity. The bias-variance trade-off refers to the fact that as the
model's complexity increases, its bias decreases, while its variance increases. Ensemble
learning aims to address high bias or variance, by combining the predictions of many
diverse models. These models are usually called base-learners. For model selection,
validation curves indicate how a model performs in-sample and out-of-sample for a given
set of hyperparameters. Learning curves are the same as validation curves but instead of a
set of hyperparameters, they use different train set sizes. Substantial distance between the
train and test curves indicates high variance. A big rectangle area around the test curve also
indicates high variance. A substantial distance between both curves from the target
accuracy indicates high bias. Generative methods have control over the generation and
training of their base learners; non-generative methods do not. Ensemble learning can have
a negligible or negative impact on performance when data is poor or models are correlated.
It can impact negatively on the interpretability of models and the computational resources
required.

 In the next chapter, we will present the Voting ensemble, as well as how to use it for both
regression and classification problems.

2
Section 2: Non-Generative

Methods
In this section, we will cover the simplest methods of ensemble learning.

This section comprises the following chapters:

Chapter 3, Voting
Chapter 4, Stacking

3
Voting

The most intuitive of all ensemble learning methods is majority voting. It is intuitive, as the
aim is to output the most popular (or most voted for) of the base learner's predictions. This
chapter covers the basic theory as well as practical implementations concerning majority
voting. By the end of this chapter, you will be able to do the following:

Understand majority voting
Understand the difference between hard and soft majority voting and their
respective strengths and weaknesses
Implement both versions in Python
Utilize the voting technique to improve the performance of classifiers on the
breast cancer dataset

Technical requirements
You will require basic knowledge of machine learning techniques and algorithms.
Furthermore, a knowledge of python conventions and syntax is required. Finally,
familiarity with the NumPy library will greatly help the reader to understand some custom
algorithm implementations.

The code files of this chapter can be found on GitHub:

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/
master/Chapter03

Check out the following video to see the Code in Action: http://bit.ly/2M52VY7.

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter03
http://bit.ly/2M52VY7
http://bit.ly/2M52VY7
http://bit.ly/2M52VY7
http://bit.ly/2M52VY7
http://bit.ly/2M52VY7
http://bit.ly/2M52VY7
http://bit.ly/2M52VY7
http://bit.ly/2M52VY7
http://bit.ly/2M52VY7

Voting Chapter 3

[53]

Hard and soft voting
Majority voting is the simplest ensemble learning technique that allows the combination of
multiple base learner's predictions. Similar to how elections work, the algorithm assumes
that each base learner is a voter and each class is a contender. The algorithm takes votes
into consideration in order to elect a contender as the winner. There are two main
approaches to combining multiple predictions with voting: one is hard voting and the other
is soft voting. We present both approaches here.

Hard voting
Hard voting combines a number of predictions by assuming that the most voted class is the
winner. In a simple case of two classes and three base learners, if a target class has at least
two votes, it becomes the ensemble's output, as shown in the following diagram.
Implementing a hard voting classifier is as simple as counting the votes for each target
class:

Voting with two classes and three base learners

For example, let's say that there are three different base learners, who are predicting
whether a sample belongs to one of three classes with a certain probability (Table 1).

Voting Chapter 3

[54]

In the following table, each learner predicts the probability that the instance belongs to a
certain class:

Class A Class B Class C
Learner 1 0.5 0.3 0.2
Learner 2 0 0.48 0.52
Learner 3 0.4 0.3 0.3

Assigned class probabilities

In this example, class A has two votes, while class C has only one. According to hard
voting, class A will be the prediction of the ensemble. It's a fairly robust method of
combining many base learners, although it doesn't take into account that some classes may
be chosen by a base learner only because they are marginally better than the others.

Soft voting
Soft voting takes into account the probability of the predicted classes. In order to combine
the predictions, soft voting calculates the average probability of each class and assumes that
the winner is the class with the highest average probability.In the simple case of three base
learners and two classes, we must take into consideration the predicted probability for each
class and average them across the three learners:

Soft voting with two classes and three base learners

Voting Chapter 3

[55]

Using our previous example, and by taking the average of each column for Table 1, we can
expand it, adding a row for the average probability.

The following table shows the predicted probabilities for each class by each learner, as well
as the average probability:

Class A Class B Class C
Learner 1 0.5 0.3 0.2
Learner 2 0 0.48 0.52
Learner 3 0.4 0.3 0.3
Average 0.3 0.36 0.34

Predicted probabilities for each class by each learner, as well as the average probability

As we can see, class A has an average probability of 0.3, class B has an average probability
of 0.36, and class C has an average probability of 0.34, making class B the winner. Note that
class B is not selected by any base learner as the predicted class, but by combining the
predicted probabilities, class B arises as the best compromise between the predictions.

In order for soft voting to be more effective than hard voting, the base classifiers must
produce good estimates regarding the probability that a sample belongs to a specific class.
If the probabilities are meaningless (for example, if they are always 100% for one class and
0% for all others), soft voting could be even worse than hard voting.

A note on voting: it is impossible to have a perfect voting system, as has
been proved by Dr. Kenneth Arrow with his impossibility theorem.
Nonetheless, certain types of voting systems can better reflect the
preferences of a population. Soft voting better reflects the individual
learner's preferences, as it takes into account the rating (probabilities)
instead of the ranking (predicted class).

For more on the impossibility theorem, see A difficulty in the concept of
social welfare. Arrow, K.J., 1950. Journal of political economy, 58(4),
pp.328-346.

Voting Chapter 3

[56]

Python implementation
The simplest way to implement hard voting in Python is to use scikit-learn to create base
learners, train them on some data, and combine their predictions on test data. In order to do
so, we will go through the following steps:

Load the data and split it into train and test sets1.
Create some base learners2.
Train them on the train data3.
Produce predictions for the test data4.
Combine predictions using hard voting5.
Compare the individual learner's predictions as well as the combined predictions6.
with the ground truth (actual correct classes)

Although scikit-learn has implementations for voting, by creating a custom
implementation, it will be easier to understand how the algorithm works. Furthermore, it
will enable us to better understand how to process and analyze a base learner's outputs.

Custom hard voting implementation
In order to implement a custom hard voting solution, we will use three base learners: a
Perceptron (a neural network with a single neuron), a Support Vector Machine (SVM),
and a Nearest Neighbor. These are contained in the sklearn.linear_model,
sklearn.svm, and sklearn.neighbors packages. Furthermore, we will use the argmax
function from NumPy. This function returns the index of an array's (or array-like data
structure) element with the highest value. Finally, accuracy_score will calculate the
accuracy of each classifier on our test data:

--- SECTION 1 ---
Import the required libraries
from sklearn import datasets, linear_model, svm, neighbors
from sklearn.metrics import accuracy_score
from numpy import argmax
Load the dataset
breast_cancer = datasets.load_breast_cancer()
x, y = breast_cancer.data, breast_cancer.target

Voting Chapter 3

[57]

We then instantiate our base learners. We hand-picked their hyperparameters to ensure
that they are diverse in order to produce a well-performing ensemble. As breast_cancer
is a classification dataset, we use SVC, the classification version of SVM, along
with KNeighborsClassifier and Perceptron. Furthermore, we set the random state
of Perceptron to 0 in order to ensure the reproducibility of our example:

--- SECTION 2 ---
Instantiate the learners (classifiers)
learner_1 = neighbors.KNeighborsClassifier(n_neighbors=5)
learner_2 = linear_model.Perceptron(tol=1e-2, random_state=0)
learner_3 = svm.SVC(gamma=0.001)

We split the data into train and test sets, using 100 instances for our test set and train our
base learners on the train set:

--- SECTION 3 ---
Split the train and test samples
test_samples = 100
x_train, y_train = x[:-test_samples], y[:-test_samples]
x_test, y_test = x[-test_samples:], y[-test_samples:]

Fit learners with the train data
learner_1.fit(x_train, y_train)
learner_2.fit(x_train, y_train)
learner_3.fit(x_train, y_train)

By storing each base learner's prediction in predictions_1, predictions_2, and
predictions_3, we can further analyze and combine them into our ensemble. Note that
we trained each classifier individually; additionally, as well as that each classifier produces
predictions for the test data autonomously. As mentioned in Chapter 2, Getting Started with
Ensemble Learning, this is the main characteristic of non-generative ensemble methods:

#--- SECTION 4 ---
Each learner predicts the classes of the test data
predictions_1 = learner_1.predict(x_test)
predictions_2 = learner_2.predict(x_test)
predictions_3 = learner_3.predict(x_test)

Voting Chapter 3

[58]

Following the predictions, we combine the predictions of each base learner for each test
instance. The hard_predictions list will contain the ensemble's predictions (output). By
iterating over every test sample with for i in range(test_samples), we count the
total number of votes that each class has received from the three base learners. As the
dataset contains only two classes, we need a list of two elements: counts = [0 for _ in
range(2)]. In # --- SECTION 3 ---, we stored each base learner's predictions in an
array. Each one of those array's elements contains the index of the instance's predicted class
(in our case, 0 and 1). Thus, we increase the corresponding element's value
in counts[predictions_1[i]] by one to count the base learner's vote.
Then, argmax(counts) returns the element (class) with the highest number of votes:

--- SECTION 5 ---
We combine the predictions with hard voting
hard_predictions = []
For each predicted sample
for i in range(test_samples):
 # Count the votes for each class
 counts = [0 for _ in range(2)]
 counts[predictions_1[i]] = counts[predictions_1[i]]+1
 counts[predictions_2[i]] = counts[predictions_2[i]]+1
 counts[predictions_3[i]] = counts[predictions_3[i]]+1
 # Find the class with most votes
 final = argmax(counts)
 # Add the class to the final predictions
 hard_predictions.append(final)

Finally, we calculate the accuracy of the individual base learners as well as the ensemble
with accuracy_score, and print them on screen:

--- SECTION 6 ---
Accuracies of base learners
print('L1:', accuracy_score(y_test, predictions_1))
print('L2:', accuracy_score(y_test, predictions_2))
print('L3:', accuracy_score(y_test, predictions_3))
Accuracy of hard voting
print('-'*30)
print('Hard Voting:', accuracy_score(y_test, hard_predictions))

Voting Chapter 3

[59]

The final output is as follows:

L1: 0.94
L2: 0.93
L3: 0.88

Hard Voting: 0.95

Analyzing our results using Python
The final accuracy achieved is 1% better than the best of the three classifiers (the k-Nearest
Neighbors (k-NN) classifier). We can visualize the learner's errors in order to examine why
the ensemble performs in this specific way.

First, we import matplotlib and use a specific seaborn-paper plotting style
with mpl.style.use('seaborn-paper'):

--- SECTION 1 ---
Import the required libraries
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.style.use('seaborn-paper')

Then, we calculate the errors by subtracting our prediction from the actual target. Thus, we
get a -1 each time the learner predicts a positive (1) when the true class is negative (0), and a
1 when it predicts a negative (0) while the true class is positive (1). If the prediction is
correct, we get a zero (0):

--- SECTION 2 ---
Calculate the errors
errors_1 = y_test-predictions_1
errors_2 = y_test-predictions_2
errors_3 = y_test-predictions_3

For each base learner, we plot the instances where they have predicted the wrong class. Our
aim is to scatter plot the x and y lists. These lists will contain the instance number (the
x list) and the type of error (the y list). With plt.scatter, we can specify the coordinates
of our points using the aforementioned lists, as well as specify how these points are
depicted. This is important in order to ensure that we can simultaneously visualize all the
errors of the classifiers as well as the relationship between them.

Voting Chapter 3

[60]

The default shape for each point is a circle. By specifying the marker parameter, we can
alter this shape. Furthermore, with the s parameter, we can specify the marker's size. Thus,
the first learner (k-NN) will have a round shape of size 120, the second learner (Perceptron)
will have an x shape of size 60, and the third learner (SVM) will have a round shape of size
20. The if not errors_*[i] == 0 guard ensures that we will not store correctly
classified instances:

--- SECTION 3 ---
Discard correct predictions and plot each learner's errors
x=[]
y=[]
for i in range(len(errors_1)):
 if not errors_1[i] == 0:
 x.append(i)
 y.append(errors_1[i])
plt.scatter(x, y, s=120, label='Learner 1 Errors')

x=[]
y=[]
for i in range(len(errors_2)):
 if not errors_2[i] == 0:
 x.append(i)
 y.append(errors_2[i])
plt.scatter(x, y, marker='x', s=60, label='Learner 2 Errors')

x=[]
y=[]
for i in range(len(errors_3)):
 if not errors_3[i] == 0:
 x.append(i)
 y.append(errors_3[i])
plt.scatter(x, y, s=20, label='Learner 3 Errors')

 Finally, we specify the figure's title and labels, and plot the legend:

plt.title('Learner errors')
plt.xlabel('Test sample')
plt.ylabel('Error')
plt.legend()
plt.show()

Voting Chapter 3

[61]

As the following shows, there are five samples where at least two learners predict the
wrong class. These are the 5 cases out of the 100 that the ensemble predicts wrong, as the
most voted class is wrong, thus producing a 95% accuracy. In all other cases, two out of
three learners predict the correct class, thus the ensemble predicts the correct class as it is
the most voted:

Learner errors on the test set

Using scikit-learn
The scikit-learn library includes many ensemble learning algorithms, including voting. In
order to implement hard voting, we will follow the same procedure as we did previously,
except this time, we will not implement the individual fitting, predicting, and voting
ourselves. Instead, we will use the provided implementation, which enables quick and easy
training and testing.

Voting Chapter 3

[62]

Hard voting implementation
Similarly to our custom implementation, we import the required libraries, split our train
and test data, and instantiate our base learners. Furthermore, we import scikit-
learn's VotingClassifier voting implementation from the sklearn.ensemble package,
as follows:

--- SECTION 1 ---
Import the required libraries
from sklearn import datasets, linear_model, svm, neighbors
from sklearn.ensemble import VotingClassifier
from sklearn.metrics import accuracy_score
Load the dataset
breast_cancer = datasets.load_breast_cancer()
x, y = breast_cancer.data, breast_cancer.target

Split the train and test samples
test_samples = 100
x_train, y_train = x[:-test_samples], y[:-test_samples]
x_test, y_test = x[-test_samples:], y[-test_samples:]

--- SECTION 2 ---
Instantiate the learners (classifiers)
learner_1 = neighbors.KNeighborsClassifier(n_neighbors=5)
learner_2 = linear_model.Perceptron(tol=1e-2, random_state=0)
learner_3 = svm.SVC(gamma=0.001)

Following the above code, we instantiate the VotingClassifier class, passing as a
parameter a list of tuples with the names and objects of our base classifiers. Note that
passing the parameters outside of a list will result in an error:

--- SECTION 3 ---
Instantiate the voting classifier
voting = VotingClassifier([('KNN', learner_1),
 ('Prc', learner_2),
 ('SVM', learner_3)])

Voting Chapter 3

[63]

Now, having instantiated the classifier, we can use it in the same way as any other
classifier, without having to tend to each base learner individually. The following two
sections execute the fitting and prediction for all base learners as well as the calculation of
the most voted class for each test instance:

--- SECTION 4 ---
Fit classifier with the training data
voting.fit(x_train, y_train)

--- SECTION 5 ---
Predict the most voted class
hard_predictions = voting.predict(x_test)

Finally, we can print the accuracy of the ensemble:

--- SECTION 6 ---
Accuracy of hard voting
print('-'*30)
print('Hard Voting:', accuracy_score(y_test, hard_predictions))

This is the same as our custom implementation:

Hard Voting: 0.95

Note that VotingClassifier will not fit the objects that you pass as
parameters, but will, instead, clone them and fit the cloned objects. Thus,
if you try to print the accuracy of each individual base learner on the test
set, you will get NotFittedError, as the objects that you have access to
are, in fact, not fitted. This is the only drawback of using scikit-learn's
implementation over a custom one.

Soft voting implementation
Scikit-learn's implementation allows for soft voting as well. The only requirement is that
the base learners implement the predict_proba function. In our example, Perceptron
does not implement the function at all, while SVC only produces probabilities when it is
passed the probability=True argument. Having these limitations in mind, we swap our
Perceptron with a Naive Bayes classifier implemented in the sklearn.naive_bayes
package.

Voting Chapter 3

[64]

To actually use soft voting, the VotingClassifier object must be initialized with the
voting='soft' argument. Except for the changes mentioned here, the majority of the
code remains the same. Load the libraries and datasets, and produce a train/test split as
follows:

--- SECTION 1 ---
Import the required libraries
from sklearn import datasets, naive_bayes, svm, neighbors
from sklearn.ensemble import VotingClassifier
from sklearn.metrics import accuracy_score
Load the dataset
breast_cancer = datasets.load_breast_cancer()
x, y = breast_cancer.data, breast_cancer.target

Split the train and test samples
test_samples = 100
x_train, y_train = x[:-test_samples], y[:-test_samples]
x_test, y_test = x[-test_samples:], y[-test_samples:]

Instantiate the base learners and voting classifier. We use a Gaussian Naive Bayes
implemented as GaussianNB. Note that we use probability=True in order for the
GaussianNB object to be able to produce probabilities:

--- SECTION 2 ---
Instantiate the learners (classifiers)
learner_1 = neighbors.KNeighborsClassifier(n_neighbors=5)
learner_2 = naive_bayes.GaussianNB()
learner_3 = svm.SVC(gamma=0.001, probability=True)

--- SECTION 3 ---
Instantiate the voting classifier
voting = VotingClassifier([('KNN', learner_1),
 ('NB', learner_2),
 ('SVM', learner_3)],
 voting='soft')

Voting Chapter 3

[65]

We fit both VotingClassifier and the individual learners. We want to analyze our
results, and, as mentioned earlier, the classifier will not fit the objects that we pass as
arguments, but will instead clone them. Thus, we have to manually fit our learners as
follows:

--- SECTION 4 ---
Fit classifier with the training data
voting.fit(x_train, y_train)
learner_1.fit(x_train, y_train)
learner_2.fit(x_train, y_train)
learner_3.fit(x_train, y_train)

We predict the test set's targets using both the voting ensemble and the individual learners:

--- SECTION 5 ---
Predict the most probable class
hard_predictions = voting.predict(x_test)

--- SECTION 6 ---
Get the base learner predictions
predictions_1 = learner_1.predict(x_test)
predictions_2 = learner_2.predict(x_test)
predictions_3 = learner_3.predict(x_test)

Finally, we print the accuracy of each base learner and the soft voting ensemble's accuracy:

--- SECTION 7 ---
Accuracies of base learners
print('L1:', accuracy_score(y_test, predictions_1))
print('L2:', accuracy_score(y_test, predictions_2))
print('L3:', accuracy_score(y_test, predictions_3))
Accuracy of hard voting
print('-'*30)
print('Hard Voting:', accuracy_score(y_test, hard_predictions))

The final output is as follows:

L1: 0.94
L2: 0.96
L3: 0.88

Hard Voting: 0.94

Voting Chapter 3

[66]

Analyzing our results
As is evident, the accuracy achieved by soft voting is 2% worse than the best learner and on
par with the second-best learner. We would like to analyze our results similarly to how we
analyzed the performance of our hard voting custom implementation. But as soft voting
takes into account the predicted class probabilities, we cannot use the same approach.
Instead, we will plot the predicted probability for each instance to be classified as positive
by each base learner as well as the average probability of the ensemble.

Again, we import matplotlib and set the plotting style:

--- SECTION 1 ---
Import the required libraries
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.style.use('seaborn-paper')

We calculate the ensemble's errors with errors = y_test-hard_predictions and get
the predicted probabilities of each base learner with
the predict_proba(x_test) function. All base learners implement this function, as it is a
requirement for utilizing them in a soft voting ensemble:

--- SECTION 2 ---
Get the wrongly predicted instances
and the predicted probabilities for the whole test set
errors = y_test-hard_predictions

probabilities_1 = learner_1.predict_proba(x_test)
probabilities_2 = learner_2.predict_proba(x_test)
probabilities_3 = learner_3.predict_proba(x_test)

Following this, for each wrongly classified instance, we store the predicted probability that
the instance belongs to in class 0. We also implement this for each base learner, as well as
their average. Each probabilities_* array, is a two-dimensional array. Each row
contains the predicted probability that the corresponding instance belongs to class 0 or class
1. Thus, storing one of the two is sufficient. In the case of a dataset with N classes, we
would have to store at least N-1 probabilities in order to get a clear picture:

--- SECTION 2 ---
Store the predicted probability for
each wrongly predicted instance, for each base learner
as well as the average predicted probability
#
x=[]
y_1=[]
y_2=[]

Voting Chapter 3

[67]

y_3=[]
y_avg=[]

for i in range(len(errors)):
 if not errors[i] == 0:
 x.append(i)
 y_1.append(probabilities_1[i][0])
 y_2.append(probabilities_2[i][0])
 y_3.append(probabilities_3[i][0])
 y_avg.append((probabilities_1[i][0]+
 probabilities_2[i][0]+probabilities_3[i][0])/3)

Finally, we plot the probabilities as bars of different widths with plt.bar. This ensures
that any overlapping bars will still be visible. The third plt.bar argument dictates the
bar's width. We scatter plot the average probability as a black 'X' and ensure that it will be
plotted over any bar with zorder=10. Finally, we plot a threshold line at 0.5 probability
with plt.plot(y, c='k', linestyle='--'), ensuring that it will be a black dotted line
with c='k', linestyle='--'. If the average probability is above the line, the sample is
classified as positive, as follows:

--- SECTION 3 ---
Plot the predicted probaiblity of each base learner as
a bar and the average probability as an X
plt.bar(x, y_1, 3, label='KNN')
plt.bar(x, y_2, 2, label='NB')
plt.bar(x, y_3, 1, label='SVM')
plt.scatter(x, y_avg, marker='x', c='k', s=150,
 label='Average Positive', zorder=10)

y = [0.5 for x in range(len(errors))]
plt.plot(y, c='k', linestyle='--')

plt.title('Positive Probability')
plt.xlabel('Test sample')
plt.ylabel('probability')
plt.legend()
plt.show()

Voting Chapter 3

[68]

The preceding code outputs the following:

Predicted and average probabilities for the test set

As we can see, only two samples have an extreme average probability (sample 22 with p =
0.98 and 67 with p = 0.001). The other four are quite close to 50%. For three out of these four
samples, SVM seems to assign a very high probability to the wrong class, thus greatly
affecting the average probability. If SVM did not overestimate the probability of these
samples as much, the ensemble could well out perform each individual learner. For the two
extreme cases, nothing can be done, as all three learners agree on the miss classification. We
can try to swap our SVM for another k-NN with a significantly higher number of
neighbors. In this case, (learner_3 =
neighbors.KNeighborsClassifier(n_neighbors=50)), we can see that the
ensemble's accuracy is greatly increased. The ensemble's accuracies and errors are as
follows:

L1: 0.94
L2: 0.96
L3: 0.95

Hard Voting: 0.97

Voting Chapter 3

[69]

Take a look at the following screenshot:

Predicted and average probabilities for the test set with two k-NNs

Summary
In this chapter, we presented the most basic ensemble learning method: voting. Although it
is quite simple, it can prove to be effective and an easy way to combine many machine
learning models. We presented hard and soft voting, a custom implementation for hard
voting, and scikit-learn implementations for both hard and soft voting. Finally, we
presented a way to analyze the ensemble's performance by plotting each base learner's
errors using matplotlib. The chapter's key points are summarized below.

Voting Chapter 3

[70]

Hard voting assumes that the most voted class is the winner. Soft voting assumes that the
class with the highest average probability is the winner. Soft voting requires that the base
classifiers predict the probability of each class for every instance with a relatively high
accuracy. Scikit-learn implements voting ensembles using the VotingClassifier
class. An array of tuples in the form of [(learner_name, learner_object),…] is
passed to VotingClassifier. The VotingClassifier does not train the objects passed
as arguments. Instead, a copy is generated and trained. The default mode of
VotingClassifier implements hard voting. To use soft voting, pass
the voting='soft' argument to the constructor. Soft voting requires that the base learners
return probabilities for each prediction. If a base learner greatly takes over or
underestimates the probabilities, the ensemble's predictive ability will suffer.

In the next chapter, we will discuss about another non-generative method, Stacking, and
how it can be utilized in both regression and classification problems.

4
Stacking

Stacking is the second ensemble learning technique that we will study. Together with
voting, it belongs to the non-generative methods class, as they both use individually trained
classifiers as base learners.

In this chapter, we will present the main ideas behind stacking, its strengths and
weaknesses, and how to select base learners. Furthermore, we will go through the processes
of implementing stacking for both regression and classification problems with scikit-learn.

The main topics covered in this chapter are as follows:

The methodology of stacking and using a meta-learner to combine predictions
The motivation behind using stacking
The strengths and weaknesses of stacking
Selecting base learners for an ensemble
Implementing stacking for regression and classification problems

Technical requirements
You will require basic knowledge of machine learning techniques and algorithms.
Furthermore, a knowledge of python conventions and syntax is required. Finally,
familiarity with the NumPy library will greatly help the reader to understand some custom
algorithm implementations.

Stacking Chapter 4

[72]

The code files of this chapter can be found on GitHub:

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/
master/Chapter04

Check out the following video to see the Code in Action: http://bit.ly/2XJgyD2.

Meta-learning
Meta-learning is a broad machine learning term. It has a number of meanings, but it
generally entails utilizing metadata for a specific problem in order to solve it. Its
applications range from solving a problem more efficiently, to designing entirely new
learning algorithms. It is a growing research field that has recently yielded impressive
results by designing novel deep learning architectures.

Stacking
Stacking is a form of meta-learning. The main idea is that we use base learners in order to
generate metadata for the problem's dataset and then utilize another learner called a meta-
learner, in order to process the metadata. Base learners are considered to be level 0 learners,
while the meta learner is considered a level 1 learner. In other words, the meta learner is
stacked on top of the base learners, hence the name stacking.

A more intuitive way to describe the ensemble is to present an analogy with voting. In
voting, we combined a number of base learners' predictions in order to increase their
performance. In stacking, instead of explicitly defining the combination rule, we train a
model that learns how to best combine the base learners' predictions. The meta-learner's
input dataset consists of the base learners' predictions (metadata), as shown in figure:

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter04
http://bit.ly/2XJgyD2
http://bit.ly/2XJgyD2
http://bit.ly/2XJgyD2
http://bit.ly/2XJgyD2
http://bit.ly/2XJgyD2
http://bit.ly/2XJgyD2
http://bit.ly/2XJgyD2
http://bit.ly/2XJgyD2
http://bit.ly/2XJgyD2

Stacking Chapter 4

[73]

Stacking ensemble data flow, from original data to the base learners, creating metadata for the meta-learner

Creating metadata
As mentioned earlier, we need metadata in order to both train and operate our ensemble.
During the operation phase, we simply pass the data from our base learners. On the other
hand, the training phase is a little more complicated. We want our meta-learner to discover
strengths and weaknesses between our base learners. Although some would argue that we
could train the base learners on the train set, predict on it, and use the predictions in order
to train our meta-learner, this would induce variance. Our meta-learner would discover the
strengths and weaknesses of data that has already been seen (by the base learners). As we
want to generate models with decent predictive (out-of-sample) performance, instead of
descriptive (in-sample) capabilities, another approach must be utilized.

Stacking Chapter 4

[74]

Another approach would be to split our training set into a base learner train set and a meta-
learner train (validation) set. This way, we would still retain a true test set where we can
measure the ensemble's performance. The drawback of this approach is that we must
donate some of the instances to the validation set. Furthermore, both the validation set size
and the train set size will be smaller than the original train set size. Thus, the preferred
approach is to utilize K-fold cross validation. For each K, the base learners will be trained
on the K-1 folds and predict on the Kth fold, generating 100/K percent of the final training
metadata. By repeating the process K times, one for each fold, we will have generated
metadata for the whole training dataset. The process is depicted in the following diagram.
The final result is a set of metadata for the whole dataset, where the metadata is generated
on out-of-sample data (from the perspective of the base learners, for each fold):

Creating metadata with five-fold cross-validation

Stacking Chapter 4

[75]

Deciding on an ensemble's composition
We described stacking as an advanced form of voting. Similarly to voting (and most
ensemble learning techniques for that matter), stacking is dependent on the diversity of its
base learners. If the base learners exhibit the same characteristics and performance
throughout the problem's domain, it will be difficult for the meta-learner to
dramatically improve their collective performance. Furthermore, a complex meta-learner
will be needed. If the base learners are diverse and exhibit different performance
characteristics in different domains of the problem, even a simple meta-learner will be able
to greatly improve their collective performance.

Selecting base learners
It is generally a good idea to mix different learning algorithms, in order to capture both
linear and non-linear relationships between the features themselves, as well as the target
variable. Take, for example, the following dataset, which exhibits both linear and non-linear
relationships between the feature (x) and the target variable (y). It is evident that neither a
single linear nor a single non-linear regression will be able to fully model the data. A
stacking ensemble with a linear and non-linear regression will be able to greatly
outperform either of the two models. Even without stacking, by hand-crafting a simple
rule, (for example "use the linear model if x is in the spaces [0, 30] or [60, 100], else use the
non-linear") we can greatly outperform the two models:

Combination of x=5 and x-squared for the example dataset

Stacking Chapter 4

[76]

Selecting the meta-learner
Generally, the meta-learner should be a relatively simple machine learning algorithm, in
order to avoid overfitting. Furthermore, additional steps should be taken in order to
regularize the meta-learner. For example, if a decision tree is used, then the tree's maximum
depth should be limited. If a regression model is used, a regularized regression (such as
elastic net or ridge regression) should be preferred. If there is a need for more complex
models in order to increase the ensemble's predictive performance, a multi-level stack
could be used, in which the number of models and each individual model's complexity
reduces as the stack's level increases:

Level stacking ensemble. Each level has simpler models than the previous level

Stacking Chapter 4

[77]

Another really important characteristic of the meta-learner should be the ability to handle
correlated inputs and especially to not make any assumptions about the independence of
features from one another, as naive Bayes classifiers do. The inputs to the meta-learner
(metadata) will be highly correlated. This happens because all base learners are trained to
predict the same target. Thus, their predictions will come from an approximation of the
same function. Although the predicted values will vary, they will be close to each other.

Python implementation
Although scikit-learn does implement most ensemble methods that we cover in this book,
stacking is not one of them. In this section, we will implement custom stacking solutions for
both regression and classification problems.

Stacking for regression
Here, we will try to create a stacking ensemble for the diabetes regression dataset. The
ensemble will consist of a 5-neighbor k-Nearest Neighbors (k-NN), a decision tree limited
to a max depth of four, and a ridge regression (a regularized form of least squares
regression). The meta-learner will be a simple Ordinary Least Squares (OLS) linear
regression.

First, we have to import the required libraries and data. Scikit-learn provides a convenient
method to split data into K-folds, with the KFold class from
the sklearn.model_selection module. As in previous chapters, we use the first 400
instances for training and the remaining instances for testing:

--- SECTION 1 ---
Libraries and data loading
from sklearn.datasets import load_diabetes
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.model_selection import KFold
from sklearn import metrics
import numpy as np
diabetes = load_diabetes()

train_x, train_y = diabetes.data[:400], diabetes.target[:400]
test_x, test_y = diabetes.data[400:], diabetes.target[400:]

Stacking Chapter 4

[78]

In the following code, we instantiate the base and meta-learners. In order to have ease of
access to the individual base learners later on, we store each base learner in a list, called
base_learners:

--- SECTION 2 ---
Create the ensemble's base learners and meta-learner
Append base learners to a list for ease of access
base_learners = []
knn = KNeighborsRegressor(n_neighbors=5)

base_learners.append(knn)
dtr = DecisionTreeRegressor(max_depth=4 , random_state=123456)

base_learners.append(dtr)
ridge = Ridge()

base_learners.append(ridge)
meta_learner = LinearRegression()

After instantiating our learners, we need to create the metadata for the training set. We split
the training set into five folds by first creating a KFold object, specifying the number of
splits (K) with KFold(n_splits=5), and then calling KF.split(train_x). This, in turn,
returns a generator for the train and test indices of the five splits. For each of these splits,
we use the data indicated by train_indices (four folds) to train our base learners and
create metadata on the data corresponding to test_indices. Furthermore, we store the
metadata for each classifier in the meta_data array and the corresponding targets in the
meta_targets array. Finally, we transpose meta_data in order to get a (instance, feature)
shape:

--- SECTION 3 ---
Create the training metadata

Create variables to store metadata and their targets
meta_data = np.zeros((len(base_learners), len(train_x)))
meta_targets = np.zeros(len(train_x))

Create the cross-validation folds
KF = KFold(n_splits=5)
meta_index = 0
for train_indices, test_indices in KF.split(train_x):
 # Train each learner on the K-1 folds
 # and create metadata for the Kth fold
 for i in range(len(base_learners)):
 learner = base_learners[i]
 learner.fit(train_x[train_indices], train_y[train_indices])
 predictions = learner.predict(train_x[test_indices])

Stacking Chapter 4

[79]

 meta_data[i][meta_index:meta_index+len(test_indices)] = \
 predictions

 meta_targets[meta_index:meta_index+len(test_indices)] = \
 train_y[test_indices]
 meta_index += len(test_indices)

Transpose the metadata to be fed into the meta-learner
meta_data = meta_data.transpose()

For the test set, we do not need to split it into folds. We simply train the base learners on
the whole train set and predict on the test set. Furthermore, we evaluate each base learner
and store the evaluation metrics, in order to compare them with the ensemble's
performance. As this is a regression problem, we use R-squared and Mean Squared Error
(MSE) as evaluation metrics:

--- SECTION 4 ---
Create the metadata for the test set and evaluate the base learners
test_meta_data = np.zeros((len(base_learners), len(test_x)))
base_errors = []
base_r2 = []
for i in range(len(base_learners)):
 learner = base_learners[i]
 learner.fit(train_x, train_y)
 predictions = learner.predict(test_x)
 test_meta_data[i] = predictions

 err = metrics.mean_squared_error(test_y, predictions)
 r2 = metrics.r2_score(test_y, predictions)

 base_errors.append(err)
 base_r2.append(r2)

test_meta_data = test_meta_data.transpose()

Now, that we have the metadata for both the train and test sets, we can train our meta-
learner on the train set and evaluate on the test set:

--- SECTION 5 ---
Fit the meta-learner on the train set and evaluate it on the test set
meta_learner.fit(meta_data, meta_targets)
ensemble_predictions = meta_learner.predict(test_meta_data)

err = metrics.mean_squared_error(test_y, ensemble_predictions)
r2 = metrics.r2_score(test_y, ensemble_predictions)

--- SECTION 6 ---
Print the results

Stacking Chapter 4

[80]

print('ERROR R2 Name')
print('-'*20)
for i in range(len(base_learners)):
 learner = base_learners[i]
 print(f'{base_errors[i]:.1f} {base_r2[i]:.2f}
{learner.__class__.__name__}')
print(f'{err:.1f} {r2:.2f} Ensemble')

We get the following output:

ERROR R2 Name

2697.8 0.51 KNeighborsRegressor
3142.5 0.43 DecisionTreeRegressor
2564.8 0.54 Ridge
2066.6 0.63 Ensemble

As is evident, r-squared has improved by over 16% from the best base learner (ridge
regression), while MSE has improved by almost 20%. This is a considerable improvement.

Stacking for classification
Stacking is a viable method for both regression and classification. In this section, we will
use it to classify the breast cancer dataset. Again, we will use three base learners. A 5-
neighbor k-NN, a decision tree limited to a max depth of 4, and a simple neural network
with 1 hidden layer of 100 neurons. For the meta-learner, we utilize a simple logistic
regression.

Again, we load the required libraries and split the data into a train and test set:

--- SECTION 1 ---
Libraries and data loading
from sklearn.datasets import load_breast_cancer
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import KFold
from sklearn import metrics
import numpy as np
bc = load_breast_cancer()

train_x, train_y = bc.data[:400], bc.target[:400]
test_x, test_y = bc.data[400:], bc.target[400:]

Stacking Chapter 4

[81]

We instantiate the base learners and the meta-learner. Note that MLPClassifier has
a hidden_layer_sizes =(100,) parameter, which specifies the number of neurons for
each hidden layer. Here, we have a single layer of 100 neurons:

--- SECTION 2 ---
Create the ensemble's base learners and meta-learner
Append base learners to a list for ease of access
base_learners = []

knn = KNeighborsClassifier(n_neighbors=2)
base_learners.append(knn)

dtr = DecisionTreeClassifier(max_depth=4, random_state=123456)
base_learners.append(dtr)

mlpc = MLPClassifier(hidden_layer_sizes =(100,),
 solver='lbfgs', random_state=123456)
base_learners.append(mlpc)

meta_learner = LogisticRegression(solver='lbfgs')

Again, using KFolds, we split the train set into five folds in order to train on four folds and
generate metadata for the remaining fold, repeated five times. Note that we
use learner.predict_proba(train_x[test_indices])[:,0] in order to get the
predicted probability that the instance belongs to in the first class. Given that we have only
two classes, this is sufficient. For N classes, we would have to either save N-1 features or
simply use learner.predict, in order to save the predicted class:

--- SECTION 3 ---
Create the training metadata

Create variables to store metadata and their targets
meta_data = np.zeros((len(base_learners), len(train_x)))
meta_targets = np.zeros(len(train_x))

Create the cross-validation folds
KF = KFold(n_splits=5)
meta_index = 0
for train_indices, test_indices in KF.split(train_x):
 # Train each learner on the K-1 folds and create
 # metadata for the Kth fold
 for i in range(len(base_learners)):
 learner = base_learners[i]

 learner.fit(train_x[train_indices], train_y[train_indices])
 predictions = learner.predict_proba(train_x[test_indices])[:,0]

Stacking Chapter 4

[82]

 meta_data[i][meta_index:meta_index+len(test_indices)] = predictions

 meta_targets[meta_index:meta_index+len(test_indices)] = \
 train_y[test_indices]
 meta_index += len(test_indices)

Transpose the metadata to be fed into the meta-learner
meta_data = meta_data.transpose()

Then, we train the base classifiers on the train set and create metadata for the test set, as
well as evaluating their accuracy with metrics.accuracy_score(test_y,
learner.predict(test_x)):

--- SECTION 4 ---
Create the metadata for the test set and evaluate the base learners
test_meta_data = np.zeros((len(base_learners), len(test_x)))
base_acc = []
for i in range(len(base_learners)):
 learner = base_learners[i]
 learner.fit(train_x, train_y)
 predictions = learner.predict_proba(test_x)[:,0]
 test_meta_data[i] = predictions

 acc = metrics.accuracy_score(test_y, learner.predict(test_x))
 base_acc.append(acc)
test_meta_data = test_meta_data.transpose()

Finally, we fit the meta-learner on the train metadata, evaluate its performance on the test
data, and print both the ensemble's and the individual learner's accuracy:

--- SECTION 5 ---
Fit the meta-learner on the train set and evaluate it on the test set
meta_learner.fit(meta_data, meta_targets)
ensemble_predictions = meta_learner.predict(test_meta_data)

acc = metrics.accuracy_score(test_y, ensemble_predictions)

--- SECTION 6 ---
Print the results
print('Acc Name')
print('-'*20)
for i in range(len(base_learners)):
 learner = base_learners[i]
 print(f'{base_acc[i]:.2f} {learner.__class__.__name__}')
print(f'{acc:.2f} Ensemble')

Stacking Chapter 4

[83]

The final output is as follows:

Acc Name

0.86 KNeighborsClassifier
0.88 DecisionTreeClassifier
0.92 MLPClassifier
0.93 Ensemble

Here, we can see that the meta-learner was only able to improve the ensemble's
performance by 1%, compared to the best performing base learner. If we try to utilize the
learner.predict method to generate our metadata, we see that the ensemble actually
under performs, compared to the neural network:

Acc Name

0.86 KNeighborsClassifier
0.88 DecisionTreeClassifier
0.92 MLPClassifier
0.91 Ensemble

Creating a stacking regressor class for scikit-
learn
We can utilize the preceding code in order to create a reusable class that orchestrates the
ensemble's training and prediction. All scikit-learn classifiers use the standard fit(x, y)
and predict(x) methods, in order to train and predict respectively. First, we import the
required libraries and declare the class and its constructor. The constructor's argument is a
list of lists of scikit-learn classifiers. Each sub-list contains the level's learners. Thus, it is
easy to construct a multi-level stacking ensemble. For example, a three-level ensemble can
be constructed with StackingRegressor([[l11, l12, l13],[l21, l22], [l31]
]). We create a list of each stacking level's size (the number of learners) and also create
deep copies of the base learners. The classifier in the last list is considered to be the meta-
learner:

All of the following code, up to (not including) Section 5 (comment
labels), is part of the StackingRegressor class. It should be properly
indented if it is copied to a Python editor.

--- SECTION 1 ---
Libraries
import numpy as np

Stacking Chapter 4

[84]

from sklearn.model_selection import KFold
from copy import deepcopy

class StackingRegressor():
 # --- SECTION 2 ---
 # The constructor
 def __init__(self, learners):
 # Create a list of sizes for each stacking level
 # And a list of deep copied learners
 self.level_sizes = []
 self.learners = []
 for learning_level in learners:
 self.level_sizes.append(len(learning_level))
 level_learners = []
 for learner in learning_level:
 level_learners.append(deepcopy(learner))
 self.learners.append(level_learners)

In following the constructor definition, we define the fit function. The only difference
from the simple stacking script we presented in the preceding section is that instead of
creating metadata for the meta-learner, we create a list of metadata, one for each stacking
level. We save the metadata and targets in the meta_data, meta_targets lists and use
data_z, target_z as the corresponding variables for each level. Furthermore, we train
the level's learners on the metadata of the previous level. We initialize the metadata lists
with the original training set and targets:

 # --- SECTION 3 ---
 # The fit function. Creates training metadata for every level
 # and trains each level on the previous level's metadata
 def fit(self, x, y):
 # Create a list of training metadata, one for each stacking level
 # and another one for the targets. For the first level,
 # the actual data is used.
 meta_data = [x]
 meta_targets = [y]
 for i in range(len(self.learners)):
 level_size = self.level_sizes[i]

 # Create the metadata and target variables for this level
 data_z = np.zeros((level_size, len(x)))
 target_z = np.zeros(len(x))

 train_x = meta_data[i]
 train_y = meta_targets[i]

 # Create the cross-validation folds
 KF = KFold(n_splits=5)

Stacking Chapter 4

[85]

 meta_index = 0
 for train_indices, test_indices in KF.split(x):
 # Train each learner on the K-1 folds and create
 # metadata for the Kth fold
 for j in range(len(self.learners[i])):

 learner = self.learners[i][j]
 learner.fit(train_x[train_indices],
 train_y[train_indices])
 predictions = learner.predict(train_x[test_indices])

 data_z[j][meta_index:meta_index+len(test_indices)] = \
 predictions

 target_z[meta_index:meta_index+len(test_indices)] = \
 train_y[test_indices]
 meta_index += len(test_indices)

 # Add the data and targets to the metadata lists
 data_z = data_z.transpose()
 meta_data.append(data_z)
 meta_targets.append(target_z)

 # Train the learner on the whole previous metadata
 for learner in self.learners[i]:
 learner.fit(train_x, train_y)

Finally, we define the predict function, which creates metadata for each level for the
provided test set, using the same logic as was used in fit (storing each level's metadata).
The function returns the metadata for each level, as they are also the predictions of each
level. The ensemble's output can be accessed with meta_data[-1]:

 # --- SECTION 4 ---
 # The predict function. Creates metadata for the test data and returns
 # all of them. The actual predictions can be accessed with
 # meta_data[-1]
 def predict(self, x):

 # Create a list of training metadata, one for each stacking level
 meta_data = [x]
 for i in range(len(self.learners)):
 level_size = self.level_sizes[i]

 data_z = np.zeros((level_size, len(x)))

 test_x = meta_data[i]

Stacking Chapter 4

[86]

 # Create the cross-validation folds
 KF = KFold(n_splits=5)
 for train_indices, test_indices in KF.split(x):
 # Train each learner on the K-1 folds and create
 # metadata for the Kth fold
 for j in range(len(self.learners[i])):

 learner = self.learners[i][j]
 predictions = learner.predict(test_x)
 data_z[j] = predictions

 # Add the data and targets to the metadata lists
 data_z = data_z.transpose()
 meta_data.append(data_z)

 # Return the meta_data the final layer's prediction can be accessed
 # With meta_data[-1]
 return meta_data

If we instantiate StackingRegressor with the same meta-learner and base learners as our
regression example, we can see that it performs exactly the same! In order to access
intermediate predictions, we must access the level's index plus one, as the data in
meta_data[0] is the original test data:

--- SECTION 5 ---
Use the classifier
from sklearn.datasets import load_diabetes
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression, Ridge
from sklearn import metrics
diabetes = load_diabetes()

train_x, train_y = diabetes.data[:400], diabetes.target[:400]
test_x, test_y = diabetes.data[400:], diabetes.target[400:]

base_learners = []

knn = KNeighborsRegressor(n_neighbors=5)
base_learners.append(knn)

dtr = DecisionTreeRegressor(max_depth=4, random_state=123456)
base_learners.append(dtr)

ridge = Ridge()
base_learners.append(ridge)

meta_learner = LinearRegression()

Stacking Chapter 4

[87]

Instantiate the stacking regressor
sc = StackingRegressor([[knn,dtr,ridge],[meta_learner]])

Fit and predict
sc.fit(train_x, train_y)
meta_data = sc.predict(test_x)

Evaluate base learners and meta-learner
base_errors = []
base_r2 = []
for i in range(len(base_learners)):
 learner = base_learners[i]
 predictions = meta_data[1][:,i]
 err = metrics.mean_squared_error(test_y, predictions)
 r2 = metrics.r2_score(test_y, predictions)
 base_errors.append(err)
 base_r2.append(r2)

err = metrics.mean_squared_error(test_y, meta_data[-1])
r2 = metrics.r2_score(test_y, meta_data[-1])

Print the results
print('ERROR R2 Name')
print('-'*20)
for i in range(len(base_learners)):
 learner = base_learners[i]
 print(f'{base_errors[i]:.1f} {base_r2[i]:.2f}
 {learner.__class__.__name__}')
print(f'{err:.1f} {r2:.2f} Ensemble')

The results match with our previous example's result:

ERROR R2 Name

2697.8 0.51 KNeighborsRegressor
3142.5 0.43 DecisionTreeRegressor
2564.8 0.54 Ridge
2066.6 0.63 Ensemble

Stacking Chapter 4

[88]

In order to further clarify the relationships between the meta_data and self.learners
lists, we graphically depict their interactions as follows. We initialize meta_data[0] for the
sake of code simplicity. While it can be misleading to store the actual input data in the
meta_data list, it avoids the need to handle the first level of base learners in a different
way than the rest:

The relationships between each level of meta_data and self.learners

Summary
In this chapter, we presented an ensemble learning method called stacking (or stacked
generalization). It can be seen as a more advanced method of voting. We first presented the
basic concept of stacking, how to properly create the metadata, and how to decide on the
ensemble's composition. We presented one regression and one classification
implementation for stacking. Finally, we presented an implementation of an ensemble class
(implemented similarly to scikit-learn classes), which makes it easier to use multi-level
stacking ensembles. The following are some key points to remember from this chapter.

Stacking Chapter 4

[89]

Stacking can consist of many levels. Each level generates metadata for the next. You
should create each level's metadata by splitting the train set into K folds and iteratively
train on K-1 folds, while creating metadata for the Kth fold. After creating the metadata,
you should train the current level on the whole train set. Base learners must be diverse. The
meta-learner should be a relatively simple algorithm that is resistant to overfitting. If
possible, try to induce regularization in the meta-learner. For example, limit the maximum
depth if you use a decision tree or use a regularized regression. The meta-learner should be
able to handle correlated inputs relatively well. You should not be afraid to add under-
performing models to the ensemble, as long as they introduce new information to the
metadata (that is, they handle the dataset differently from the other models). In the next
chapter, we will introduce the first generative ensemble method, Bagging.

3
Section 3: Generative Methods

In this section, we will cover more advanced ensemble learning methods.

This section comprises the following chapters:

Chapter 5, Bagging
Chapter 6, Boosting
Chapter 7, Random Forests

5
Bagging

Bagging, or bootstrap aggregating, is the first generative ensemble learning technique that
this book will present. It can be a useful tool to reduce variance as it creates a number of
base learners by sub-sampling the original train set. In this chapter, we will discuss the
statistical method on which bagging is based, bootstrapping. Next, we will present bagging,
along with its strengths and weaknesses. Finally, we will implement the method in Python,
as well as use the scikit-learn implementation, to solve regression and classification
problems.
The main topics covered in this chapter are as follows:

The bootstrapping method from computational statistics
How bagging works
Strengths and weaknesses of bagging
Implementing a custom bagging ensemble
Using the scikit-learn implementation

Technical requirements
You will require basic knowledge of machine learning techniques and algorithms.
Furthermore, a knowledge of python conventions and syntax is required. Finally,
familiarity with the NumPy library will greatly help the reader to understand some custom
algorithm implementations.

The code files of this chapter can be found on GitHub:

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/
master/Chapter05

Check out the following video to see the Code in Action: http://bit.ly/2JKcokD.

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter05
http://bit.ly/2JKcokD
http://bit.ly/2JKcokD
http://bit.ly/2JKcokD
http://bit.ly/2JKcokD
http://bit.ly/2JKcokD
http://bit.ly/2JKcokD
http://bit.ly/2JKcokD
http://bit.ly/2JKcokD
http://bit.ly/2JKcokD

Bagging Chapter 5

[92]

Bootstrapping
Bootstrapping is a resampling method. In statistics, resampling entails the use of many
samples, generated from an original sample. In machine learning terms, the sample is our
training data. The main idea is to use the original sample as the population (the whole
domain of our problem) and the generated sub-samples as samples.

In essence, we are simulating how a statistic would behave if we collected many samples
from the original population, as shown in the following diagram:

A representation of how resampling works

Creating bootstrap samples
In order to create bootstrap samples, we resample with replacement (each instance may be
selected multiple times) from our original sample. This means that a single instance can be
selected multiple times. Suppose we have data for 100 individuals. The data contains the
weight and height of each individual. If we generate random numbers from 1 to 100 and
add the corresponding data to a new dataset, we have essentially created a bootstrap
sample.

Bagging Chapter 5

[93]

In Python, we can use numpy.random.choiceto create a sub-sample of a given size. We
can try to create bootstrap samples and estimates about the mean and standard deviation of
the diabetes dataset. First, we load the dataset and libraries and print the statistics of our
sample, as in the following example:

--- SECTION 1 ---
Libraries and data loading
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_diabetes

diabetes = load_diabetes()

--- SECTION 2 ---
Print the original sample's statistics
target = diabetes.target

print(np.mean(target))
print(np.std(target))

We then create the bootstrap samples and statistics and store them in bootstrap_stats.
We could store the whole bootstrap samples, but it is not memory-efficient to do so.
Furthermore, we only care about the statistics, so it makes sense only to store them. Here,
we create 10,000 bootstrap samples and statistics:

--- SECTION 3 ---
Create the bootstrap samples and statistics
bootstrap_stats = []
for _ in range(10000):
 bootstrap_sample = np.random.choice(target, size=len(target))
 mean = np.mean(bootstrap_sample)
 std = np.std(bootstrap_sample)
 bootstrap_stats.append((mean, std))
bootstrap_stats = np.array(bootstrap_stats)

We can now plot the histograms of the mean and standard deviation, as well as calculate
the standard error (that is, the standard deviation of the statistic's distributions) for each:

--- SECTION 4 ---
plot the distributions
plt.figure()
plt.subplot(2,1,1)
std_err = np.std(bootstrap_stats[:,0])
plt.title('Mean, Std. Error: %.2f'%std_err)
plt.hist(bootstrap_stats[:,0], bins=20)

plt.subplot(2,1,2)

Bagging Chapter 5

[94]

std_err = np.std(bootstrap_stats[:,1])
plt.title('Std. Dev, Std. Error: %.2f'%std_err)
plt.hist(bootstrap_stats[:,1], bins=20)
plt.show()

We get the output shown in the following diagram:

Bootstrap distributions for mean and standard deviation

Note that due to the inherent randomness of the process (for which instances will be
selected for each bootstrap sample), the results may vary each time the procedure is
executed. A higher number of bootstrap samples will help to stabilize the results.
Nonetheless, it is a useful technique to calculate the standard error, confidence intervals,
and other statistics without making any assumptions about the underlying distribution.

Bagging
Bagging makes use of bootstrap samples in order to train an array of base learners. It then
combines their predictions using voting. The motivation behind this method is to produce
diverse base learners by diversifying the train sets. In this section, we discuss the
motivation, strengths, and weaknesses of this method.

Bagging Chapter 5

[95]

Creating base learners
Bagging applies bootstrap sampling to the train set, creating a number of N bootstrap
samples. It then creates the same number N of base learners, using the same machine
learning algorithm. Each base learner is trained on the corresponding train set and all base
learners are combined by voting (hard voting for classification, and averaging for
regression). The procedure is depicted as follows:

Creating base learners through bagging

Bagging Chapter 5

[96]

By using bootstrap samples with the same size as the original train set, each instance has a
probability of 0.632 of appearing in any given bootstrap sample. Thus, in many cases, this
type of bootstrap estimate is referred to as the 0.632 bootstrap estimate. In our case, this
means that we can use the remaining 36.8% of the original train set in order to estimate the
individual base learner's performance. This is called the out-of-bag score, and the 36.8% of
instances are called out-of-bag instances.

Strengths and weaknesses
Bagging is usually utilized with decision trees as its base learners, but it can be used with
any machine learning algorithm. Bagging reduces variance greatly and it has been proved
that it is most effective when unstable base learners are used. Unstable learners generate
models with great inter-model variance, even when the respective train sets vary only
slightly. Furthermore, bagging converges as the number of base learners grows. Similar to
estimating a bootstrap statistic, by increasing the number of base learners, we also increase
the number of bootstrap samples. Finally, bagging allows for easy parallelization, as each
model is trained independently.

The main disadvantage of bagging is the loss of interpretability and transparency of our
models. For example, using a single decision tree allows for great interpretability, as the
decision of each node is readily available. Using a bagging ensemble of 100 trees makes the
individual decisions less important, while the collective predictions define the ensemble's
final output.

Python implementation
To better understand the process of creating the ensemble, as well as its merits, we will
implement it in Python using decision trees. In this example, we will try to classify the
MNIST dataset of handwritten digits. Although we have used the cancer dataset for
classification examples up until now, it contains only two classes, while the number of
examples is relatively small for effective bootstrapping. The digits dataset contains a
considerable number of examples and is also more complex, as there is a total of 10 classes.

Bagging Chapter 5

[97]

Implementation
For this example, we will use 1500 instances as the train set, and the remaining 297 as the
test set. We will generate 10 bootstrap samples, and consequently 10 decision-tree models.
We will then combine the base predictions using hard voting:

We load the libraries and data as shown in the following example:1.

--- SECTION 1 ---
Libraries and data loading
from sklearn.datasets import load_digits
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
import numpy as np
digits = load_digits()

train_size = 1500
train_x, train_y = digits.data[:train_size],
digits.target[:train_size]
test_x, test_y = digits.data[train_size:],
digits.target[train_size:]

We then create our bootstrap samples and train the corresponding models. Note,2.
that we do not use np.random.choice. Instead, we generate an array of indices
with np.random.randint(0, train_size, size=train_size), as this will
enable us to choose both the features and the corresponding targets for each
bootstrap sample. We store each base learner in the base_learners list, for ease
of access later on:

--- SECTION 2 ---
Create our bootstrap samples and train the classifiers

ensemble_size = 10
base_learners = []

for _ in range(ensemble_size):
 # We sample indices in order to access features and targets
 bootstrap_sample_indices = np.random.randint(0, train_size,
size=train_size)
 bootstrap_x = train_x[bootstrap_sample_indices]
 bootstrap_y = train_y[bootstrap_sample_indices]
 dtree = DecisionTreeClassifier()
 dtree.fit(bootstrap_x, bootstrap_y)
 base_learners.append(dtree)

Bagging Chapter 5

[98]

Next, we predict the targets of the test set with each base learner and store their3.
predictions as well as their evaluated accuracy, as shown in the following code
block:

--- SECTION 3 ---
Predict with the base learners and evaluate them

base_predictions = []
base_accuracy = []
for learner in base_learners:
 predictions = learner.predict(test_x)
 base_predictions.append(predictions)
 acc = metrics.accuracy_score(test_y, predictions)
 base_accuracy.append(acc)

Now that we have each base learner's predictions in base_predictions, we can4.
combine them with hard voting, as we did in Chapter 3, Voting, for individual
base learners. Furthermore, we evaluate the ensemble's accuracy:

Combine the base learners' predictions

ensemble_predictions = []
Find the most voted class for each test instance
for i in range(len(test_y)):
 counts = [0 for _ in range(10)]
 for learner_predictions in base_predictions:
 counts[learner_predictions[i]] =
counts[learner_predictions[i]]+1
 # Find the class with most votes
 final = np.argmax(counts)
 # Add the class to the final predictions
 ensemble_predictions.append(final)

ensemble_acc = metrics.accuracy_score(test_y, ensemble_predictions)

Finally, we print the accuracy of each base learner, as well as the ensemble's5.
accuracy, sorted in ascending order:

--- SECTION 5 ---
Print the accuracies
print('Base Learners:')
print('-'*30)
for index, acc in enumerate(sorted(base_accuracy)):
 print(f'Learner {index+1}: %.2f' % acc)
print('-'*30)
print('Bagging: %.2f' % ensemble_acc)

Bagging Chapter 5

[99]

The final output is shown in the following example:

Base Learners:

Learner 1: 0.72
Learner 2: 0.72
Learner 3: 0.73
Learner 4: 0.73
Learner 5: 0.76
Learner 6: 0.76
Learner 7: 0.77
Learner 8: 0.77
Learner 9: 0.79
Learner 10: 0.79

Bagging: 0.88

It is evident that the ensemble's accuracy is almost 10% higher than the best-performing
base model. This is a considerable improvement, especially if we take into account that this
ensemble consists of identical base learners (considering the machine learning method
used).

Parallelizing the implementation
We can easily parallelize our bagging implementation using from concurrent.futures
import ProcessPoolExecutor. This executor allows the user to spawn a number of
tasks to be executed and executes them in parallel processes. It only needs to be passed a
target function and its parameters. In our example, we only need to create functions out of
code sections (sections 2 and 3):

def create_learner(train_x, train_y):
 # We sample indices in order to access features and targets
 bootstrap_sample_indices = np.random.randint(0, train_size,
size=train_size)
 bootstrap_x = train_x[bootstrap_sample_indices]
 bootstrap_y = train_y[bootstrap_sample_indices]
 dtree = DecisionTreeClassifier()
 dtree.fit(bootstrap_x, bootstrap_y)
 return dtree

def predict(learner, test_x):
 return learner.predict(test_x)

Bagging Chapter 5

[100]

Then, in the original sections 2 and 3, we modify the code as follows:

Original Section 2
with ProcessPoolExecutor() as executor:
 futures = []
 for _ in range(ensemble_size):
 future = executor.submit(create_learner, train_x, train_y)
 futures.append(future)

for future in futures:
 base_learners.append(future.result())

Original Section 3
base_predictions = []
 base_accuracy = []
 with ProcessPoolExecutor() as executor:
 futures = []
 for learner in base_learners:
 future = executor.submit(predict, learner, test_x)
 futures.append(future)

for future in futures:
 predictions = future.result()
 base_predictions.append(predictions)
 acc = metrics.accuracy_score(test_y, predictions)
 base_accuracy.append(acc)

The executor returns an object (in our case future), which contains the results of our
function. The rest of the code remains unchanged with the exception that it is enclosed in
if __name__ == '__main__' guard, as each new process will import the whole script.
This guard prevents them from re-executing the rest of the code. As our example is small,
with six processes available, we need to have at least 1,000 base learners to see any
considerable speedup in the execution times. For a fully working version, please refer to
'bagging_custom_parallel.py' from the provided codebase.

Using scikit-learn
Scikit-learn has a great implementation of bagging for both regression and classification
problems. In this section, we will go through the process of using the provided
implementations to create ensembles for the digits and diabetes datasets.

Bagging Chapter 5

[101]

Bagging for classification
Scikit-learn's implementation of bagging lies in the sklearn.ensemble package.
BaggingClassifier is the corresponding class for classification problems. It has a
number of interesting parameters, allowing for greater flexibility. It can use any scikit-learn
estimator by specifying it with base_estimator. Furthermore, n_estimators dictates the
ensemble's size (and, consequently, the number of bootstrap samples that will be
generated), while n_jobs dictates how many jobs (processes) will be used to train and
predict with each base learner. Finally, if set to True, oob_score calculates the out-of-bag
score for the base learners.

Using the actual classifier is straightforward and similar to all other scikit-learn estimators.
First, we load the required data and libraries, as shown in the following example:

--- SECTION 1 ---
Libraries and data loading
from sklearn.datasets import load_digits
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn import metrics

digits = load_digits()

train_size = 1500
train_x, train_y = digits.data[:train_size], digits.target[:train_size]
test_x, test_y = digits.data[train_size:], digits.target[train_size:]

We then create, train, and evaluate the estimator:

--- SECTION 2 ---
Create the ensemble
ensemble_size = 10
ensemble = BaggingClassifier(base_estimator=DecisionTreeClassifier(),
 n_estimators=ensemble_size,
 oob_score=True)

--- SECTION 3 ---
Train the ensemble
ensemble.fit(train_x, train_y)

--- SECTION 4 ---
Evaluate the ensemble
ensemble_predictions = ensemble.predict(test_x)

ensemble_acc = metrics.accuracy_score(test_y, ensemble_predictions)

Bagging Chapter 5

[102]

--- SECTION 5 ---
Print the accuracy
print('Bagging: %.2f' % ensemble_acc)

The final achieved accuracy is 88%, the same as our own implementation. Furthermore, we
can access the out-of-bag score through ensemble.oob_score_, which in our case is equal
to 89.6%. Generally, the out-of-bag score slightly overestimates the out-of-sample predictive
capability of the ensemble, which is what we observe in this example.

In our examples, we chose an ensemble_size of 10. Suppose we would like to test how
different ensemble sizes affect the ensemble's performance. Given that the bagging classifier
accepts the size as a constructor's parameter, we can use validation curves from Chapter
2, Getting Started with Ensemble Learning, to conduct the test. We test 1 to 39 base learners,
with a step of 2. We observe an initial decrease in bias and variance. For ensembles with
more than 20 base learners, there seems to be zero benefit in increasing the ensemble’s size.
The results are depicted in the following diagram:

Validation curves for 1 to 39 base learners

Bagging Chapter 5

[103]

Bagging for regression
For regression purposes, we will use the BaggingRegressor class from the same
sklearn.ensemble package. We will also instantiate a single
DecisionTreeRegressor to compare the results. We start by loading the libraries and
data, as usual:

--- SECTION 1 ---
 # Libraries and data loading
 from sklearn.datasets import load_diabetes
 from sklearn.tree import DecisionTreeRegressor
 from sklearn.ensemble import BaggingRegressor
 from sklearn import metrics
 import numpy as np
 diabetes = load_diabetes()

np.random.seed(1234)

train_x, train_y = diabetes.data[:400], diabetes.target[:400]
test_x, test_y = diabetes.data[400:], diabetes.target[400:]

We instantiate the single decision tree and the ensemble. Note that we allow for a relatively
deep decision tree, by specifying max_depth=6. This allows the creation of diverse and
unstable models, which greatly benefits bagging. If we restrict the maximum depth to 2 or 3
levels, we will see that bagging does not perform better than a single model. Training and
evaluating the ensemble and the model follows the standard procedure:

--- SECTION 2 ---
Create the ensemble and a single base learner for comparison
estimator = DecisionTreeRegressor(max_depth=6)
ensemble = BaggingRegressor(base_estimator=estimator,
n_estimators=10)

--- SECTION 3 ---
Train and evaluate both the ensemble and the base learner
ensemble.fit(train_x, train_y)
ensemble_predictions = ensemble.predict(test_x)

estimator.fit(train_x, train_y)
single_predictions = estimator.predict(test_x)

ensemble_r2 = metrics.r2_score(test_y, ensemble_predictions)
ensemble_mse = metrics.mean_squared_error(test_y, ensemble_predictions)

single_r2 = metrics.r2_score(test_y, single_predictions)
single_mse = metrics.mean_squared_error(test_y, single_predictions)

Bagging Chapter 5

[104]

--- SECTION 4 ---
Print the metrics
print('Bagging r-squared: %.2f' % ensemble_r2)
print('Bagging MSE: %.2f' % ensemble_mse)
print('-'*30)
print('Decision Tree r-squared: %.2f' % single_r2)
print('Decision Tree MSE: %.2f' % single_mse)

The ensemble can greatly outperform the single model, by producing both higher R-
squared and lower mean squared error (MSE). As mentioned earlier, this is due to the fact
that the base learners are allowed to create deep and unstable models. The actual results of
the two models are provided in the following output:

 Bagging r-squared: 0.52
 Bagging MSE: 2679.12

 Decision Tree r-squared: 0.15
 Decision Tree MSE: 4733.35

Summary
In this chapter, we presented the main concept of creating bootstrap samples and
estimating bootstrap statistics. Building on this foundation, we introduced bootstrap
aggregating, or bagging, which uses a number of bootstrap samples to train many base
learners that utilize the same machine learning algorithm. Later, we provided a custom
implementation of bagging for classification, as well as the means to parallelize it. Finally,
we showcased the use of scikit-learn's own implementation of bagging for regression and
classification problems.

The chapter can be summarized as follows. Bootstrap samples are created by resampling
with replacement from the original dataset. The main idea is to treat the original sample as
the population, and each subsample as an original sample. If the original dataset and the
bootstrap dataset have the same size, each instance has a probability of 63.2% of being
included in the bootstrap dataset (sample). Bootstrap methods are useful for calculating
statistics such as confidence intervals and standard error, without making assumptions
about the underlying distribution. Bagging generates a number of bootstrap samples to
train each individual base learner. Bagging benefits unstable learners, where small
variations in the train set induce great variations in the generated model. Bagging is a
suitable ensemble learning method to reduce variance.

Bagging Chapter 5

[105]

Bagging allows for easy parallelization, as each bootstrap sample and base learner can be
generated, trained, and tested individually. As with all ensemble learning methods, using
bagging reduces the interpretability and motivation behind individual predictions.

In the next chapter, we will introduce the second generative method, Boosting.

6
Boosting

The second generative method we will discuss is boosting. Boosting aims to combine a
number of weak learners into a strong ensemble. It is able to reduce bias, but also variance.
Here, weak learners are individual models that perform slightly better than random. For
example, in a classification dataset with two classes and an equal number of instances
belonging to each class, a weak learner will be able to classify the dataset with an accuracy
of slightly more than 50%.

In this chapter, we will present two classic boosting algorithms, Gradient Boosting and
AdaBoost. Furthermore, we will explore the use of scikit-learn implementations for
classification and regression. Finally, we will experiment with a recent boosting algorithm
and its implementation, XGBoost.

The main topics covered are as follows:

The motivation behind using boosting ensembles
The various algorithms
Leveraging scikit-learn to create boosting ensembles in Python
Utilizing the XGBoost library for Python

Technical requirements
You will require basic knowledge of machine learning techniques and algorithms.
Furthermore, a knowledge of python conventions and syntax is required. Finally,
familiarity with the NumPy library will greatly help the reader to understand some custom
algorithm implementations.

The code files of this chapter can be found on GitHub:

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/
master/Chapter06

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter06

Boosting Chapter 6

[107]

Check out the following video to see the Code in Action: http://bit.ly/2ShWstT.

AdaBoost
AdaBoost is one of the most popular boosting algorithms. Similar to bagging, the main idea
behind the algorithm is to create a number of uncorrelated weak learners and then combine
their predictions. The main difference with bagging is that instead of creating a number of
independent bootstrapped train sets, the algorithm sequentially trains each weak learner,
assigns weights to all instances, samples the next train set based on the instance's weights,
and repeats the whole process. As a base learner algorithm, usually decision trees
consisting of a single node are used. These decision trees, with a depth of a single level, are
called decision stumps.

Weighted sampling
Weighted sampling is the sampling process were each candidate has a corresponding
weight, which determines its probability of being sampled. The weights are normalized, in
order for their sum to equal one. Then, the normalized weights correspond to the
probability that any individual will be sampled. For a simple example with three
candidates, assuming weights of 1, 5, and 10, the following table depicts the normalized
weights and the corresponding probability that any candidate will be chosen.

Candidate Weight Normalized weight Probability
1 1 0.0625 6.25%
2 5 0.3125 31.25%
3 10 0.625 62.50%

Instance weights to probabilities

Creating the ensemble
Assuming a classification problem, the AdaBoost algorithm can be described on a high-
level basis, from its basic steps. For regression purposes, the steps are similar:

Initialize all of the train set instance's weights equally, so their sum equals 1.1.
Generate a new set by sampling with replacement, according to the weights.2.
Train a weak learner on the sampled set.3.

http://bit.ly/2ShWstT
http://bit.ly/2ShWstT
http://bit.ly/2ShWstT
http://bit.ly/2ShWstT
http://bit.ly/2ShWstT
http://bit.ly/2ShWstT
http://bit.ly/2ShWstT
http://bit.ly/2ShWstT
http://bit.ly/2ShWstT

Boosting Chapter 6

[108]

Calculate its error on the original train set.4.
Add the weak learner to the ensemble and save its error rate.5.
Adjust the weights, increasing the weights of misclassified instances and6.
decreasing the weights of correctly classified instances.
Repeat from Step 2.7.
The weak learners are combined by voting. Each learner's vote is weighted,8.
according to its error rate.

The whole process is depicted in the following diagram:

The process of creating the ensemble for the nth learner

Boosting Chapter 6

[109]

In essence, this makes each new classifier focus on the instances that the previous learners
could not handle correctly. Assuming a binary classification problem, we may start with a
dataset that looks like the following diagram:

Our initial dataset

Here, all weights are equal. The first decision stump decides to partition the problem space
as follows. The dotted line represents the decision boundary. The two black + and - symbols
denote the sub-space that the decision stump classifies every instance as positive or
negative, respectively. This leaves two misclassified instances. These instance weights will
be increased, while all other weights will be decreased:

The first decision stump's space partition and errors

By creating another dataset, where the two misclassified instances are dominant (they may
be included several times, as we sample with replacement and their weights are larger than
the other instances), the second decision stump partitions the space, as follows:

Boosting Chapter 6

[110]

The second decision stump's space partition and errors

Finally, after repeating the process for a third decision stump, the final ensemble has
partitioned the space as depicted in the following diagram:

The final ensemble's partition of the problem space

Implementing AdaBoost in Python
In order to better understand how AdaBoost works, we will present a basic implementation
in Python. We will use the breast cancer classification dataset for this example. As always,
we first load the libraries and data:

--- SECTION 1 ---
Libraries and data loading
from copy import deepcopy

Boosting Chapter 6

[111]

from sklearn.datasets import load_breast_cancer
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
import numpy as np
bc = load_breast_cancer()
train_size = 400
train_x, train_y = bc.data[:train_size], bc.target[:train_size]
test_x, test_y = bc.data[train_size:], bc.target[train_size:]
np.random.seed(123456)

We then create the ensemble. First, we declare the ensemble's size and the base learner
type. As mentioned earlier, we use decision stumps (decision trees only a single level deep).

Furthermore, we create a NumPy array for the data instance weights, the learners' weights,
and the learners' errors:

--- SECTION 2 ---
Create the ensemble
ensemble_size = 3
base_classifier = DecisionTreeClassifier(max_depth=1)
Create the initial weights
data_weights = np.zeros(train_size) + 1/train_size
Create a list of indices for the train set
indices = [x for x in range(train_size)]
base_learners = []
learners_errors = np.zeros(ensemble_size)
learners_weights = np.zeros(ensemble_size)

For each base learner, we will create a deepcopy of the original classifier, train it on a
sample dataset, and evaluate it. First, we create the copy and sample with replacement from
the original test set, according to the instance's weights:

Create each base learner
for i in range(ensemble_size):
 weak_learner = deepcopy(base_classifier)
 # Choose the samples by sampling with replacement.
 # Each instance's probability is dictated by its weight.
 data_indices = np.random.choice(indices, train_size, p=data_weights)
 sample_x, sample_y = train_x[data_indices], train_y[data_indices]

Boosting Chapter 6

[112]

We then fit the learner on the sampled dataset and predict on the original train set. We use
the predictions to see which instances are correctly classified and which instances are
misclassified:

 # Fit the weak learner and evaluate it
 weak_learner.fit(sample_x, sample_y)
 predictions = weak_learner.predict(train_x)
 errors = predictions != train_y
 corrects = predictions == train_y

In the following, the weighted errors are classified. Both errors and corrects are lists of
Booleans (True or False), but Python handles them as 1 and 0. This allows us to multiply
element-wise with data_weights. The learner's error is then calculated with the average
weighted error:

 # Calculate the weighted errors
 weighted_errors = data_weights*errors
 # The base learner's error is the average of the weighted errors
 learner_error = np.mean(weighted_errors)
 learners_errors[i] = learner_error

Finally, the learner's weight can be calculated as half the natural logarithm of the weighted
accuracy over the weighted error. In turn, we can use the learner's weight to calculate the
new data weights. For erroneously classified instances, the new weight equals the natural
exponent of the old weight times the learner's weight. For correctly classified instances, the
negative multiple is used instead. Finally, the new weights are normalized and the base
learner is added to the base_learners list:

 # The learner's weight
 learner_weight = np.log((1-learner_error)/learner_error)/2
 learners_weights[i] = learner_weight
 # Update the data weights
 data_weights[errors] = np.exp(data_weights[errors] * learner_weight)
 data_weights[corrects] = np.exp(-data_weights[corrects] *
learner_weight)
 data_weights = data_weights/sum(data_weights)
 # Save the learner
 base_learners.append(weak_learner)

Boosting Chapter 6

[113]

In order to make predictions with the ensemble, we combine each individual prediction
through a weighted majority voting. As this is a binary classification problem, if the
weighted average is more than 0.5, the instance is classified as 0; otherwise, it's
classified as 1:

--- SECTION 3 ---
Evaluate the ensemble
ensemble_predictions = []
for learner, weight in zip(base_learners, learners_weights):
 # Calculate the weighted predictions
 prediction = learner.predict(test_x)
 ensemble_predictions.append(prediction*weight)
 # The final prediction is the weighted mean of the individual
predictions
 ensemble_predictions = np.mean(ensemble_predictions, axis=0) >= 0.5
 ensemble_acc = metrics.accuracy_score(test_y, ensemble_predictions)

--- SECTION 4 ---
Print the accuracy
print('Boosting: %.2f' % ensemble_acc)

The final accuracy achieved by this ensemble is 95%.

Strengths and weaknesses
Boosting algorithms are able to reduce both bias and variance. For a long time, they were
considered immune to overfitting, but in fact they can overfit, although they are extremely
robust. One possible explanation is that the base learners, in order to classify outliers, create
very strong and complicated rules that rarely fit other instances. In the following diagram,
an example is depicted. The ensemble has generated a set of rules in order to correctly
classify the outlier, but the rules are so strong that only an identical example (that is, with
the exact same feature values) could fit into the sub-space defined by the rules:

Boosting Chapter 6

[114]

Generated rules for an outlier

One disadvantage of many boosting algorithms is that they are not easily parallelized, as
the models are created in a sequential fashion. Furthermore, they pose the usual problems
of ensemble learning techniques, such as reduction in interpretability and additional
computational costs.

Gradient boosting
Gradient boosting is another boosting algorithm. It is a more generalized boosting
framework compared to AdaBoost, which also makes it more complicated and math-
intensive. Instead of trying to emphasize problematic instances by assigning weights and
resampling the dataset, gradient boosting builds each base learner on the previous learner's
errors. Furthermore, gradient boosting uses decision trees of varying depths. In this section,
we will present gradient boosting, without delving much into the math involved. Instead,
we will present the basic concepts, as well as a custom Python implementation.

Creating the ensemble
The gradient boosting algorithm (for regression purposes) starts by calculating the mean of
the target variable for the train set and uses it as an initial prediction. Then, it calculates the
difference of each instance's target from the prediction (mean), in order to calculate the
error. These errors are also called pseudo-residuals.

Boosting Chapter 6

[115]

Following that, it creates a decision tree that tries to predict the pseudo-residuals. By
repeating this process, a number of times, the whole ensemble is created. Similar to
AdaBoost, gradient boosting assigns a weight to each tree. Contrary to AdaBoost, this
weight does not depend on the tree's performance. Instead, it is a constant term, which is
called learning rate. Its purpose is to increase the ensemble's generalization ability, by
restricting its over-fitting power. The algorithm's steps are as follows:

Define the learning rate (smaller than 1) and the ensemble's size.1.
Calculate the train set's target mean.2.
Using the mean as a very simple initial prediction, calculate each instance's target3.
difference from the mean. These errors are called pseudo-residuals.
Build a decision tree, by using the original train set's features and the pseudo-4.
residuals as targets.

Make predictions on the train set, using the decision tree (we try to predict the5.
pseudo-residuals). Multiply the predicted values by the learning rate.
Add the multiplied values to the previously stored predicted values. Use the6.
newly calculated values as predictions.
Calculate the new pseudo-residuals using the calculated predictions.7.
Repeat from Step 4 until the desired ensemble size is achieved.8.

Note that in order to produce the final ensemble's predictions, each base learner's
prediction is multiplied by the learning rate and added to the previous learner's prediction.
The calculated mean can be regarded as the first base learner's prediction.

At each step s, for a learning rate lr, the prediction is calculated as follows:

The residuals are calculated as the difference from the actual target value t:

The whole process is depicted in the following diagram:

Boosting Chapter 6

[116]

Steps to create a gradient boosting ensemble

Boosting Chapter 6

[117]

Further reading
As this is a hands-on book, we will not go further into the mathematical aspect of the
algorithm. Nonetheless, for the mathematically curious or inclined, we recommend the
following papers. The first is a more regression-specific framework, while the second is
more general:

Friedman, J.H., 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics, pp.1189-1232.
Mason, L., Baxter, J., Bartlett, P.L. and Frean, M.R., 2000. Boosting algorithms as
gradient descent. In Advances in neural information processing systems (pp. 512-518).

Implementing gradient boosting in Python
Although gradient boosting can be complex and mathematically intensive, if we focus on
conventional regression problems, it can be quite simple. In order to demonstrate this, we
present a custom implementation in Python, using standard scikit-learn decision trees. For
our implementation, we will use the diabetes regression dataset. First, we load the libraries
and data, and set the seed for NumPy's random number generator:

--- SECTION 1 ---
Libraries and data loading
from copy import deepcopy
from sklearn.datasets import load_diabetes
from sklearn.tree import DecisionTreeRegressor
from sklearn import metrics
import numpy as np
diabetes = load_diabetes()
train_size = 400
train_x, train_y = diabetes.data[:train_size], diabetes.target[:train_size]
test_x, test_y = diabetes.data[train_size:], diabetes.target[train_size:]
np.random.seed(123456)

Following this, we define the ensemble's size, learning rate, and the Decision Tree's
maximum depth. Furthermore, we create a list to store the individual base learners, as well
as a NumPy array to store the previous predictions.

Boosting Chapter 6

[118]

As mentioned earlier, our initial prediction is the train set's target mean. Instead of defining
a maximum depth, we could also define a maximum number of leaf nodes by passing the
max_leaf_nodes=3 argument to the constructor:

--- SECTION 2 ---
Create the ensemble
Define the ensemble's size, learning rate and decision tree depth
ensemble_size = 50
learning_rate = 0.1
base_classifier = DecisionTreeRegressor(max_depth=3)
Create placeholders for the base learners and each step's prediction
base_learners = []
Note that the initial prediction is the target variable's mean
previous_predictions = np.zeros(len(train_y)) + np.mean(train_y)

The next step is to create and train the ensemble. We start by calculating the pseudo-
residuals, using the previous predictions. We then create a deep copy of the base learner
class and train it on the train set, using the pseudo-residuals as targets:

Create the base learners
for _ in range(ensemble_size):
 # Start by calculating the pseudo-residuals
 errors = train_y - previous_predictions
 # Make a deep copy of the base classifier and train it on the
 # pseudo-residuals
 learner = deepcopy(base_classifier)
 learner.fit(train_x, errors)
 predictions = learner.predict(train_x)

Finally, we use the trained base learner in order to predict the pseudo-residuals on the train
set. We multiply the predictions by the learning rate and add them to our previous
predictions. Finally, we append the base learner to the base_learners list:

 # Multiply the predictions with the learning rate and add the results
 # to the previous prediction
 previous_predictions = previous_predictions + learning_rate*predictions
 # Save the base learner
 base_learners.append(learner)

Boosting Chapter 6

[119]

In order to make predictions with our ensemble and evaluate it, we use the test set's
features in order to predict pseudo-residuals, multiply them by the learning rate, and add
them to the train set's target mean. It is important to use the original train set's mean as a
starting point, because each tree predicts deviation from that original mean:

--- SECTION 3 ---
Evaluate the ensemble
Start with the train set's mean
previous_predictions = np.zeros(len(test_y)) + np.mean(train_y)
For each base learner predict the pseudo-residuals for the test set and
add them to the previous prediction,
after multiplying with the learning rate
for learner in base_learners:
 predictions = learner.predict(test_x)
 previous_predictions = previous_predictions + learning_rate*predictions

--- SECTION 4 ---
Print the metrics
r2 = metrics.r2_score(test_y, previous_predictions)
mse = metrics.mean_squared_error(test_y, previous_predictions)
print('Gradient Boosting:')
print('R-squared: %.2f' % r2)
print('MSE: %.2f' % mse)

The algorithm is able to achieve an R-squared value of 0.59 and an MSE of 2253.34 with this
particular setup.

Using scikit-learn
Although for educational purposes it is useful to code our own algorithms, scikit-learn has
some very good implementations for both classification and regression problems. In this
section, we will go through the implementations, as well as see how we can extract
information about the generated ensembles.

Using AdaBoost
Scikit-learn's Adaboost implementations exist in the sklearn.ensemble package, in the
AdaBoostClassifier and AdaBoostRegressor classes.

Boosting Chapter 6

[120]

Like all scikit-learn classifiers, we use the fit and predict functions in order to train the
classifier and predict on the test set. The first parameter is the base classifier that the
algorithm will use. The algorithm="SAMME" parameter forces the classifier to use a
discrete boosting algorithm. For this example, we use the hand-written digits recognition
problem:

--- SECTION 1 ---
Libraries and data loading
import numpy as np

from sklearn.datasets import load_digits
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn import metrics

digits = load_digits()
train_size = 1500
train_x, train_y = digits.data[:train_size], digits.target[:train_size]
test_x, test_y = digits.data[train_size:], digits.target[train_size:]
np.random.seed(123456)

--- SECTION 2 ---
Create the ensemble
ensemble_size = 200
ensemble = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),
 algorithm="SAMME",
 n_estimators=ensemble_size)

--- SECTION 3 ---
Train the ensemble
ensemble.fit(train_x, train_y)

--- SECTION 4 ---
Evaluate the ensemble
ensemble_predictions = ensemble.predict(test_x)
ensemble_acc = metrics.accuracy_score(test_y, ensemble_predictions)

--- SECTION 5 ---
Print the accuracy
print('Boosting: %.2f' % ensemble_acc)

Boosting Chapter 6

[121]

This results in an ensemble with 81% accuracy on the test set. One advantage of using the
provided implementation is that we can access and plot each individual base learner's
errors and weights. We can access them through ensemble.estimator_errors_ and
ensemble.estimator_weights_, respectively. By plotting the weights, we can gauge
where the ensemble stops to benefit from additional base learners. By creating an ensemble
of 1,000 base learners, we see that from approximately the 200 base learners mark, the
weights are stabilized. Thus, there is little point in adding more than 200. This is further
confirmed by the fact that the ensemble of size 1,000 achieves an 82% accuracy, a small
increase over the 81% achieved with 200 base learners:

Base learner weights for an ensemble of 1,000 base learners

Boosting Chapter 6

[122]

The regression implementation adheres to the same principles. Here, we test the algorithm
on the diabetes dataset:

--- SECTION 1 ---
Libraries and data loading
from copy import deepcopy
from sklearn.datasets import load_diabetes
from sklearn.ensemble import AdaBoostRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn import metrics

import numpy as np

diabetes = load_diabetes()

train_size = 400
train_x, train_y = diabetes.data[:train_size], diabetes.target[:train_size]
test_x, test_y = diabetes.data[train_size:], diabetes.target[train_size:]

np.random.seed(123456)

--- SECTION 2 ---
Create the ensemble
ensemble_size = 1000
ensemble = AdaBoostRegressor(n_estimators=ensemble_size)

--- SECTION 3 ---
Evaluate the ensemble
ensemble.fit(train_x, train_y)
predictions = ensemble.predict(test_x)

--- SECTION 4 ---
Print the metrics
r2 = metrics.r2_score(test_y, predictions)
mse = metrics.mean_squared_error(test_y, predictions)

print('Gradient Boosting:')
print('R-squared: %.2f' % r2)
print('MSE: %.2f' % mse)

Boosting Chapter 6

[123]

The ensemble generates an R-squared of 0.59 and an MSE of 2256.5. By plotting the weights
of the base learners, we see that the algorithm has stopped early, due to negligible
improvement in predictive power, after the 151st base learner. This is indicated by the zero
valued weights in the plot. Furthermore, by printing the length of
ensemble.estimators_, we observe that its length is only 151. This is the equivalent of
the base_learners list in our implementation:

Base learner weights for the regression Adaboost

Boosting Chapter 6

[124]

Using gradient boosting
Scikit-learn also implements gradient boosting regression and classification. They too are
included in the ensemble package, under GradientBoostingRegressor and
GradientBoostingClassifier, respectively. The two classes store the errors at each
step, in the train_score_ attribute of the object. Here, we present an example for the
diabetes regression dataset. The train and validation processes follow the scikit-learn
standard, using the fit and predict functions. The only parameter that needs to be
specified is the learning rate, which is passed to the GradientBoostingRegressor
constructor through the learning_rate parameter:

--- SECTION 1 ---
Libraries and data loading
from sklearn.datasets import load_diabetes
from sklearn.ensemble import GradientBoostingRegressor
from sklearn import metrics
import numpy as np
diabetes = load_diabetes()
train_size = 400
train_x, train_y = diabetes.data[:train_size], diabetes.target[:train_size]
test_x, test_y = diabetes.data[train_size:], diabetes.target[train_size:]
np.random.seed(123456)

--- SECTION 2 ---
Create the ensemble
ensemble_size = 200
learning_rate = 0.1
ensemble = GradientBoostingRegressor(n_estimators=ensemble_size,
 learning_rate=learning_rate)

--- SECTION 3 ---
Evaluate the ensemble
ensemble.fit(train_x, train_y)
predictions = ensemble.predict(test_x)

--- SECTION 4 ---
Print the metrics
r2 = metrics.r2_score(test_y, predictions)
mse = metrics.mean_squared_error(test_y, predictions)
print('Gradient Boosting:')
print('R-squared: %.2f' % r2)
print('MSE: %.2f' % mse)

Boosting Chapter 6

[125]

The ensemble achieves an R-squared of 0.44 and an MSE of 3092. Furthermore, if we use
matplotlib to plot ensemble.train_score_, we can see that diminishing returns appear
after around 20 base learners. If we further analyze the errors, by calculating the
improvements (difference between base learners), we see that after 25 base learners there
are cases where adding a base learner worsens the performance.

Although on average the performance continues to increase, after 50 base learners there is
no significant improvement. Thus, we repeat the experiment, with ensemble_size = 50,
yielding an R-squared of 0.61 and an MSE of 2152:

Errors and differences for gradient boost regression

Boosting Chapter 6

[126]

For the classification example, we use the hand-written digit classification dataset. Again,
we define the n_estimators and learning_rate parameters:

--- SECTION 1 ---
Libraries and data loading
import numpy as np

from sklearn.datasets import load_digits
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn import metrics

digits = load_digits()

train_size = 1500
train_x, train_y = digits.data[:train_size], digits.target[:train_size]
test_x, test_y = digits.data[train_size:], digits.target[train_size:]

np.random.seed(123456)
--- SECTION 2 ---
Create the ensemble
ensemble_size = 200
learning_rate = 0.1
ensemble = GradientBoostingClassifier(n_estimators=ensemble_size,
 learning_rate=learning_rate)

--- SECTION 3 ---
Train the ensemble
ensemble.fit(train_x, train_y)

--- SECTION 4 ---
Evaluate the ensemble
ensemble_predictions = ensemble.predict(test_x)

ensemble_acc = metrics.accuracy_score(test_y, ensemble_predictions)

--- SECTION 5 ---
Print the accuracy
print('Boosting: %.2f' % ensemble_acc)

Boosting Chapter 6

[127]

The accuracy achieved with the specific ensemble size is 89%. By plotting the errors and
their differences, we see that there are again diminishing returns, but there are no cases
where performance significantly drops. Thus, we do not expect a predictive performance
improvement by reducing the ensemble size.

XGBoost
XGBoost is a boosting library with parallel, GPU, and distributed execution support. It has
helped many machine learning engineers and data scientists to win Kaggle.com
competitions. Furthermore, it provides an interface that resembles scikit-learn's interface.
Thus, someone already familiar with the interface is able to quickly utilize the library.
Additionally, it allows for very fine control over the ensemble's creation. It supports
monotonic constraints (that is, the predicted value should only increase or decrease,
relative to a specific feature), as well as feature interaction constraints (for example, if a
decision tree creates a node that splits by age, it should not use sex as a splitting feature for
all children of that specific node). Finally, it adds an additional regularization parameter,
gamma, which further reduces the overfitting capabilities of the generated ensemble. The
corresponding paper is Chen, T. and Guestrin, C., 2016, August. Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining (pp. 785-794). ACM.

Using XGBoost for regression
We will present a simple regression example with XGBoost, using the diabetes dataset. As
it will be shown, its usage is quite simple and similar to the scikit-learn classifiers. XGBoost
implements regression with XGBRegressor. The constructor has a respectably large
number of parameters, which are very well-documented in the official documentation. In
our example, we will use the n_estimators, n_jobs, max_depth, and learning_rate
parameters. Following scikit-learn's conventions, they define the ensemble size, the number
of parallel processes, the tree's maximum depth, and the learning rate, respectively:

--- SECTION 1 ---
Libraries and data loading
from sklearn.datasets import load_diabetes
from xgboost import XGBRegressor
from sklearn import metrics
import numpy as np
diabetes = load_diabetes()
train_size = 400
train_x, train_y = diabetes.data[:train_size], diabetes.target[:train_size]
test_x, test_y = diabetes.data[train_size:], diabetes.target[train_size:]

Boosting Chapter 6

[128]

np.random.seed(123456)

--- SECTION 2 ---
Create the ensemble
ensemble_size = 200
ensemble = XGBRegressor(n_estimators=ensemble_size, n_jobs=4,
 max_depth=1, learning_rate=0.1,
 objective ='reg:squarederror')

The rest of the code evaluates the generated ensemble, and is similar to any of the previous
examples:

--- SECTION 3 ---
Evaluate the ensemble
ensemble.fit(train_x, train_y)
predictions = ensemble.predict(test_x)

--- SECTION 4 ---
Print the metrics
r2 = metrics.r2_score(test_y, predictions)
mse = metrics.mean_squared_error(test_y, predictions)
print('Gradient Boosting:')
print('R-squared: %.2f' % r2)
print('MSE: %.2f' % mse)

XGBoost achieves an R-squared of 0.65 and an MSE of 1932.9, the best performance out of
all the boosting methods we tested and implemented in this chapter. Furthermore, we did
not fine-tune any of its parameters, which further displays its modeling power.

Using XGBoost for classification
For classification purposes, the corresponding class is implemented in XGBClassifier.
The constructor's parameters are the same as the regression implementation. For our
example, we use the hand-written digit classification problem. We set the n_estimators
parameter to 100 and n_jobs to 4. The rest of the code follows the usual template:

--- SECTION 1 ---
Libraries and data loading
from sklearn.datasets import load_digits
from xgboost import XGBClassifier
from sklearn import metrics
import numpy as np
digits = load_digits()
train_size = 1500
train_x, train_y = digits.data[:train_size], digits.target[:train_size]

Boosting Chapter 6

[129]

test_x, test_y = digits.data[train_size:], digits.target[train_size:]
np.random.seed(123456)

--- SECTION 2 ---
Create the ensemble
ensemble_size = 100
ensemble = XGBClassifier(n_estimators=ensemble_size, n_jobs=4)

--- SECTION 3 ---
Train the ensemble
ensemble.fit(train_x, train_y)

--- SECTION 4 ---
Evaluate the ensemble
ensemble_predictions = ensemble.predict(test_x)
ensemble_acc = metrics.accuracy_score(test_y, ensemble_predictions)

--- SECTION 5 ---
Print the accuracy
print('Boosting: %.2f' % ensemble_acc)

The ensemble correctly classifies the test set with 89% accuracy, also the highest achieved
for any boosting algorithm.

Other boosting libraries
Two other boosting libraries that are gaining popularity are Microsoft's LightGBM and
Yandex' CatBoost. Both of these libraries can match (and even outperform) XGBoost, under
certain circumstances. Nonetheless, XGBoost is the best of all three out of the box, without
the need of fine-tuning and special data treatment.

Boosting Chapter 6

[130]

Summary
In this chapter, we presented one of the most powerful ensemble learning techniques,
boosting. We presented two popular boosting algorithms, AdaBoost and gradient boosting.
We presented custom implementations for both algorithms, as well as usage examples for
the scikit-learn implementations. Furthermore, we briefly presented XGBoost, a library
dedicated to regularized, distributed boosting. XGBoost was able to outperform all other
methods and implementations on both regression as well as classification problems.

AdaBoost creates a number of base learners by employing weak learners (slightly better
than random guessing). Each new base learner is trained on a weighted sample from the
original train set. Weighted sampling from a dataset assigns a weight to each instance and
then samples from the dataset, using the weights in order to calculate the probability that
each instance will be sampled.

The data weights are calculated based on the previous base learner's errors. The base
learner's error is also used to calculate the learner's weight. The base learners' predictions
are combined through voting, using each learner's weight. Gradient boosting builds its
ensemble by training each new base learner using the previous prediction's errors as a
target. The initial prediction is the train dataset's target mean. Boosting methods cannot be
parallelized in the degree that bagging methods can be. Although robust to overfitting,
boosting methods can overfit.

In scikit-learn, AdaBoost implementations store the individual learners' weights, which can
be used to identify the point where additional base learners do not contribute to the
ensemble's predictive power. Gradient Boosting implementations store the ensemble's error
at each step (base learner), which can also help to identify an optimal number of base
learners. XGBoost is a library dedicated to boosting, with regularization capabilities that
further reduce the overfitting ability of the ensembles. XGBoost is frequently a part of
winning machine learning models in many Kaggle competitions.

7
Random Forests

Bagging is generally used to reduce variance of a model. It achieves it by creating an
ensemble of base learners, each one trained on a unique bootstrap sample of the original
train set. This forces diversity between the base learners. Random Forests expand on
bagging by inducing randomness not only on each base learner's train samples, but in the
features as well. Furthermore, their performance is similar to boosting techniques, although
they do not require as much fine-tuning as boosting methods.

In this chapter, we will provide the basic background of random forests, as well as discuss
the strengths and weaknesses of the method. Finally, we will present usage examples, using
the scikit-learn implementation. The main topics covered in this chapter are as follows:

How Random Forests build their base learners
How randomness can be utilized in order to build better random forest
ensembles
The strengths and weaknesses of Random Forests
Utilizing scikit-learn's implementation for regression and classification

Technical requirements
You will require basic knowledge of machine learning techniques and algorithms.
Furthermore, a knowledge of python conventions and syntax is required. Finally,
familiarity with the NumPy library will greatly help the reader to understand some custom
algorithm implementations.

The code files of this chapter can be found on GitHub:

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/
master/Chapter07

Check out the following video to see the Code in Action: http://bit.ly/2LY5OJR.

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter07
http://bit.ly/2LY5OJR
http://bit.ly/2LY5OJR
http://bit.ly/2LY5OJR
http://bit.ly/2LY5OJR
http://bit.ly/2LY5OJR
http://bit.ly/2LY5OJR
http://bit.ly/2LY5OJR
http://bit.ly/2LY5OJR
http://bit.ly/2LY5OJR

Random Forests Chapter 7

[132]

Understanding random forest trees
In this section, we will go over the methodology of building a basic random forest tree.
There are other methods that can be employed, but they all strive to achieve the same goal:
diverse trees that serve as the ensemble's base learners.

Building trees
As mentioned in Chapter 1, A Machine Learning Refresher, create a tree by selecting at each
node a single feature and split point, such that the train set is best split. When an ensemble
is created, we wish the base learners to be as uncorrelated (diverse) as possible.

Bagging is able to produce reasonably uncorrelated trees by diversifying each tree's train
set through bootstrapping. But bagging only diversifies the trees by acting on one axis: each
set's instances. There is still a second axis on which we can introduce diversity, the features.
By selecting a subset of the available features during training, the generated base learners
can be even more diverse. In random forests, for each tree and at each node, only a subset
of the available features is considered when choosing the best feature/split point
combination. The number of features that will be selected can be optimized by hand, but
one-third of all features for regression problems and the square root of all features are
considered to be a good starting point.

The algorithm's steps are as follows:

Select the number of features m that will be considered at each node1.
For each base learner, do the following:2.

Create a bootstrap train sample1.
Select the node to split2.
Select m features randomly3.
Pick the best feature and split point from m4.
Split the node into two nodes5.
Repeat from step 2-2 until a stopping criterion is met, such as6.
maximum tree depth

Random Forests Chapter 7

[133]

Illustrative example
In order to better illustrate the process, let's consider the following dataset, indicating
whether a second shoulder dislocation has occurred after the first (recurrence):

Age Operated Sex Recurrence
15 y m y
45 n f n
30 y m y
18 n m n
52 n f y

Shoulder dislocation recurrence dataset

In order to build a Random Forest tree, we must first decide the number of features that
will be considered in each split. As we have three features, we will use the square root of 3,
which is approximately 1.7. Usually, we use the floor of this number (we round it down to
the closest integer), but as we want to illustrate the process, we will use two features in
order to better demonstrate it. For the first tree, we generate a bootstrap sample. The second
row is an instance that was chosen twice from the original dataset:

Age Operated Sex Recurrence
15 y m y
15 y m y
30 y m y
18 n m n
52 n f y

The bootstrap sample

Random Forests Chapter 7

[134]

Next, we create the root node. First, we randomly select two features to consider. We
choose operated and sex. The best split is given for operated, as we get a leaf with 100%
accuracy and one node with 50% accuracy. The resulting tree is depicted as follows:

The tree after the first split

Next, we again select two features at random and the one that offers the best split. We now
choose operated and age. As both misclassified instances were not operated, the best split is
offered through the age feature.

Thus, the final tree is a tree with three leaves, where if someone is operated they have a
recurrence, while if they are not operated and are over the age of 18 they do not:

Note that medical research indicates that young males have the highest
chance for shoulder dislocation recurrence. The dataset here is a toy
example that does not reflect reality.

Random Forests Chapter 7

[135]

The final decision tree

Extra trees
Another method to create trees in a Random Forest ensemble is Extra Trees
(extremely randomized trees). The main difference with the previous method is that the
feature and split point combination does not have to be the optimal. Instead, a number of
split points are randomly generated, one for each available feature. The best split point of
those generated is selected. The algorithm constructs a tree as follows:

Select the number of features m that will be considered at each node and the1.
minimum number of samples n in order to split a node
For each base learner, do the following:2.

Create a bootstrap train sample1.
Select the node to split (the node must have at least n samples)2.
Select m features randomly3.
Randomly generate m split points, with values between the minimum4.
and maximum value of each feature
Select the best of these split points5.
Split the node into two nodes and repeat from step 2-2 until there are6.
no available nodes

Random Forests Chapter 7

[136]

Creating forests
By creating a number of trees using any valid randomization method, we have essentially
created a forest, hence the algorithm's name. After generating the ensemble's trees, their
predictions must be combined in order to have a functional ensemble. This is usually
achieved through majority voting for classification problems and through averaging for
regression problems. There are a number of hyperparameters associated with Random
Forests, such as the number of features to consider at each node split, the number of trees in
the forest, and the individual tree's size. As mentioned earlier, a good starting point for the
number of features to consider is as follows:

The square root of the number of total features for classification problems
One-third of the number of total features for regression problems

The total number of trees can be fine-tuned by hand, as the ensemble's error converges to a
limit when this number increases. Out-of-bag errors can be utilized to find an optimal
value. Finally, the size of each tree can be a deciding factor in overfitting. Thus, if
overfitting is observed, the tree size should be reduced.

Analyzing forests
Random Forests provide information about the underlying dataset that most of other
methods cannot easily provide. A prominent example is the importance of each individual
feature in the dataset. One method to estimate feature importance is to use the Gini index
for each node of each tree and compare each feature's cumulative value. Another method
uses the out-of-bag samples. First, the out-of-bag accuracy is recorded for all base learners.
Then, a single feature is chosen and its values are shuffled in the out-of-bag samples. This
results in out-of-bag sample sets with the same statistical properties as the original sets, but
any predictive power that the chosen feature might have is removed (as there is now zero
correlation between the selected feature's values and the target). The difference in accuracy
between the original and the partially random dataset is used as measure for the selected
feature's importance.

Random Forests Chapter 7

[137]

Concerning bias and variance, although random forests seem to cope well with both, they
are certainly not immune. Bias can appear when the available features are great in number,
but only few are correlated to the target. When using the recommended number of features
to consider at each split (for example, the square root of the number of total features), the
probability that a relevant feature will be selected can be small. The following graph shows
the probability that at least one relevant feature will be selected, as a function of relevant
and irrelevant features (when the square root of the number of total features is considered
at each split):

Probability to select at least one relevant feature as a function of the number of relevant and irrelevant features

The Gini index measures the frequency of incorrect classifications,
assuming that a randomly sampled instance would be classified according
to the label distribution dictated by a specific node.

Random Forests Chapter 7

[138]

Variance can also appear in Random Forests, although the method is sufficiently resistant
to it. Variance usually appears when the individual trees are allowed to grow fully. We
have previously mentioned that as the number of trees increases, the error approximates a
certain limit. Although this claim still holds true, it is possible that the limit itself overfits
the data. Restricting the tree size (by increasing the minimum number of samples per leaf
or reducing the maximum depth) can potentially help in such circumstances.

Strengths and weaknesses
Random Forests are a very robust ensemble learning method, able to reduce both bias and
variance, similar to boosting. Furthermore, the algorithm's nature allows it to be fully
parallelized, both during training, as well as during prediction. This is a considerable
advantage over boosting methods, especially when large datasets are concerned.
Furthermore, they require less hyperparameter fine-tuning, compared to boosting
techniques, especially XGBoost.

The main weaknesses of random forests are their sensitivity to class imbalances, as well as
the problem we mentioned earlier, which involves a low ratio of relevant to irrelevant
features in the train set. Furthermore, when the data contains low-level non-linear patterns
(such as in raw, high-resolution image recognition), Random Forests usually are
outperformed by deep neural networks. Finally, Random Forests can be computationally
expensive when very large datasets are used combined with unrestricted tree depth.

Using scikit-learn
scikit-learn implements both conventional Random Forest trees, as well as Extra Trees. In
this section, we will provide basic regression and classification examples with both
algorithms, using the scikit-learn implementations.

Random forests for classification
The Random Forests classification class is implemented in RandomForestClassifier,
under the sklearn.ensemble package. It has a number of parameters, such as the
ensemble's size, the maximum tree depth, the number of samples required to make or split
a node, and many more.

Random Forests Chapter 7

[139]

In this example, we will try to classify the hand-written digits dataset, using the Random
Forest classification ensemble. As usual, we load the required classes and data and set the
seed for our random number generator:

--- SECTION 1 ---
Libraries and data loading
from sklearn.datasets import load_digits
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
import numpy as np

digits = load_digits()

train_size = 1500
train_x, train_y = digits.data[:train_size], digits.target[:train_size]
test_x, test_y = digits.data[train_size:], digits.target[train_size:]

np.random.seed(123456)

Following this, we create the ensemble, by setting
the n_estimators and n_jobs parameters. These parameters dictate the number of trees
that will be generated and the number of parallel jobs that will be run. We train the
ensemble using the fit function and evaluate it on the test set by measuring its achieved
accuracy:

--- SECTION 2 ---
Create the ensemble
ensemble_size = 500
ensemble = RandomForestClassifier(n_estimators=ensemble_size, n_jobs=4)

--- SECTION 3 ---
Train the ensemble
ensemble.fit(train_x, train_y)

--- SECTION 4 ---
Evaluate the ensemble
ensemble_predictions = ensemble.predict(test_x)

ensemble_acc = metrics.accuracy_score(test_y, ensemble_predictions)

--- SECTION 5 ---
Print the accuracy
print('Random Forest: %.2f' % ensemble_acc)

Random Forests Chapter 7

[140]

The classifier is able to achieve an accuracy of 93%, which is even higher than the
previously best-performing method, XGBoost (Chapter 6, Boosting). We can visualize the
approximation of the error limit we mentioned earlier, by plotting validation curves (from
Chapter 2, Getting Started with Ensemble Learning) for a number of ensemble sizes. We test
for sizes of 10, 50, 100, 150, 200, 250, 300, 350, and 400 trees. The curves are depicted in the
following graph. We can see that the ensemble approaches a 10-fold cross-validation error
of 96%:

Validation curves for a number of ensemble sizes

Random forests for regression
Scikit-learn also implements random forests for regression purposes in the
RandomForestRegressor class. It is also highly parameterizable, with hyper-parameters
concerning both the ensemble as a whole, as well as the individual trees. Here, we will
generate an ensemble in order to model the diabetes regression dataset. The code follows
the standard procedure of loading libraries and data, creating the ensemble and calling the
fit and predict methods, along with calculating the MSE and R-squared values:

--- SECTION 1 ---
Libraries and data loading

Random Forests Chapter 7

[141]

from copy import deepcopy
from sklearn.datasets import load_diabetes
from sklearn.ensemble import RandomForestRegressor
from sklearn import metrics

import numpy as np

diabetes = load_diabetes()

train_size = 400
train_x, train_y = diabetes.data[:train_size], diabetes.target[:train_size]
test_x, test_y = diabetes.data[train_size:], diabetes.target[train_size:]

np.random.seed(123456)

--- SECTION 2 ---
Create the ensemble
ensemble_size = 100
ensemble = RandomForestRegressor(n_estimators=ensemble_size, n_jobs=4)

--- SECTION 3 ---
Evaluate the ensemble
ensemble.fit(train_x, train_y)
predictions = ensemble.predict(test_x)

--- SECTION 4 ---
Print the metrics
r2 = metrics.r2_score(test_y, predictions)
mse = metrics.mean_squared_error(test_y, predictions)

print('Random Forest:')
print('R-squared: %.2f' % r2)
print('MSE: %.2f' % mse)

The ensemble is able to produce an R-squared of 0.51 and an MSE of 2722.67 on the test set.
As the R-squared and MSE on the train set are 0.92 and 468.13 respectively, it is safe to
assume that the ensemble overfits. This is a case where the error limit overfits, and thus we
need to regulate the individual trees in order to achieve better results. By reducing the
minimum number of samples required to be at each leaf node (increased to 20, from the
default value of 2) through min_samples_leaf=20, we are able to increase R-squared to
0.6 and reduce MSE to 2206.6. Furthermore, by increasing the ensemble size to 1000, R-
squared is further increased to 0.61 and MSE is further decreased to 2158.73.

Random Forests Chapter 7

[142]

Extra trees for classification
Apart from conventional Random Forests, scikit-learn also implements Extra Trees. The
classification implementation lies in the ExtraTreesClassifier, in
the sklearn.ensemble package. Here, we repeat the hand-written digit recognition
example, using the Extra Trees classifier:

--- SECTION 1 ---
Libraries and data loading
from sklearn.datasets import load_digits
from sklearn.ensemble import ExtraTreesClassifier
from sklearn import metrics
import numpy as np

digits = load_digits()

train_size = 1500
train_x, train_y = digits.data[:train_size], digits.target[:train_size]
test_x, test_y = digits.data[train_size:], digits.target[train_size:]

np.random.seed(123456)
--- SECTION 2 ---
Create the ensemble
ensemble_size = 500
ensemble = ExtraTreesClassifier(n_estimators=ensemble_size, n_jobs=4)

--- SECTION 3 ---
Train the ensemble
ensemble.fit(train_x, train_y)

--- SECTION 4 ---
Evaluate the ensemble
ensemble_predictions = ensemble.predict(test_x)

ensemble_acc = metrics.accuracy_score(test_y, ensemble_predictions)

--- SECTION 5 ---
Print the accuracy
print('Extra Tree Forest: %.2f' % ensemble_acc)

Random Forests Chapter 7

[143]

As you may notice, the only difference with the previous example is the switch
from RandomForestClassifier to ExtraTreesClassifier. Nonetheless, the ensemble
achieves an even higher test accuracy score of 94%. Once again, we create validation curves
for a number of ensemble sizes, depicted as follows. The 10-fold cross validation error limit
for this ensemble is approximately at 97%, which further confirms that it outperforms the
conventional Random Forest approach:

Extra Trees validation curves for a number of ensemble sizes

Extra trees regression
Finally, we present the regression implementation of Extra Trees, implemented
in ExtraTreesRegressor. In the following code, we repeat the previously presented
example of modeling the diabetes dataset, using the regression version of Extra Trees:

--- SECTION 1 ---
Libraries and data loading
from copy import deepcopy
from sklearn.datasets import load_diabetes
from sklearn.ensemble import ExtraTreesRegressor

Random Forests Chapter 7

[144]

from sklearn import metrics

import numpy as np

diabetes = load_diabetes()

train_size = 400
train_x, train_y = diabetes.data[:train_size], diabetes.target[:train_size]
test_x, test_y = diabetes.data[train_size:], diabetes.target[train_size:]

np.random.seed(123456)

--- SECTION 2 ---
Create the ensemble
ensemble_size = 100
ensemble = ExtraTreesRegressor(n_estimators=ensemble_size, n_jobs=4)

--- SECTION 3 ---
Evaluate the ensemble
ensemble.fit(train_x, train_y)
predictions = ensemble.predict(test_x)

--- SECTION 4 ---
Print the metrics
r2 = metrics.r2_score(test_y, predictions)
mse = metrics.mean_squared_error(test_y, predictions)

print('Extra Trees:')
print('R-squared: %.2f' % r2)
print('MSE: %.2f' % mse)

Similar to the classification examples, Extra Trees outperform conventional random forests
by achieving a test R-squared of 0.55 (0.04 better than Random Forests) and an MSE of
2479.18 (a difference of 243.49). Still, the ensemble seems to overfit, as it perfectly predicts
in-sample data. By setting min_samples_leaf=10 and the ensemble size to 1000, we are
able to produce an R-squared of 0.62 and an MSE of 2114.

Random Forests Chapter 7

[145]

Summary
In this chapter, we discussed Random Forests, an ensemble method utilizing decision trees
as its base learners. We presented two basic methods of constructing the trees: the
conventional Random Forests approach, where a subset of features is considered at each
split, as well as Extra Trees, where the split points are chosen almost randomly. We
discussed the basic characteristics of the ensemble method. Furthermore, we presented
regression and classification examples using the scikit-learn implementations of Random
Forests and Extra Trees. The key points of this chapter that summarize its contents are
provided below.

Random Forests use bagging in order to create train sets for their base learners. At each
node, each tree considers only a subset of the available features and computes the optimal
feature/split point combination. The number of features to consider at each point is a hyper-
parameter that must be tuned. Good starting points are as follows:

The square root of the total number of parameters for classification problems
One-third of the total number of parameters for regression problems

Extra trees and random forests use the whole dataset for each base learner. In extra trees
and random forests, instead of calculating the optimal feature/split-point combination of
the feature subset at each node, a random split point is generated for each feature in the
subset and the best is selected. Random forests can give information regarding the
importance of each feature. Although relatively resistant to overfitting, random forests are
not immune to it. Random forests can exhibit high bias when the ratio of relevant to
irrelevant features is low. Random forests can exhibit high variance, although the ensemble
size does not contribute to the problem. In the next chapter, we will present ensemble
learning techniques that can be applied to unsupervised learning methods (clustering).

4
Section 4: Clustering

In this section, we will cover the use of ensembles for clustering applications.

This section comprises the following chapters:

Chapter 8, Clustering

8
Clustering

One of the most widely used unsupervised learning methods is clustering. Clustering aims
to uncover structure in unlabeled data. The aim is to group together data instances, such
that there is great similarity between instances of the same cluster, and little similarity
between instances of different clusters. As with supervised learning methods, clustering
can benefit from combining many base learners. In this chapter, we present k-means; a
simple and widely used clustering algorithm. Furthermore, we discuss how ensembles can
be used to improve the algorithm's performance. Finally, we use OpenEnsembles, a scikit-
learn compatible Python library that implements ensemble clustering. The main topics
covered in this chapter are as follows:

How the K-means algorithm works
Its strengths and weaknesses
How ensembles can improve its performance
Utilizing OpenEnsembles to create clustering ensembles

Technical requirements
You will require basic knowledge of machine learning techniques and algorithms.
Furthermore, a knowledge of python conventions and syntax is required. Finally,
familiarity with the NumPy library will greatly help the reader to understand some custom
algorithm implementations.

The code files of this chapter can be found on GitHub:

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/
master/Chapter08

Check out the following video to see the Code in Action: http://bit.ly/2YYzniq.

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter08
http://bit.ly/2YYzniq
http://bit.ly/2YYzniq
http://bit.ly/2YYzniq
http://bit.ly/2YYzniq
http://bit.ly/2YYzniq
http://bit.ly/2YYzniq
http://bit.ly/2YYzniq
http://bit.ly/2YYzniq
http://bit.ly/2YYzniq

Clustering Chapter 8

[148]

Consensus clustering
Consensus clustering is an alias for ensemble learning when it is applied to clustering
methods. In clustering, each base learner assigns a label to each instance, although it is not
conditioned on a specific target. Instead, the base learner generates a number of clusters
and assigns each instance to a cluster. The label is the cluster itself. As will be demonstrated
later, two base learners, produced by the same algorithm, can generate different clusters.
Thus, it is not as straightforward to combine their cluster predictions as it is to combine
regression or classification predictions.

Hierarchical clustering
Hierarchical clustering initially creates as many clusters as there are instances in the
dataset. Each cluster contains only a single instance. Following this, it repeatedly finds the
two clusters with the minimum distance between them (for example, the Euclidean
distance), and merges them together into a new cluster. The process ends when there is
only a single cluster. The method's output is a dendrogram, which indicates how instances
are hierarchically organized. An example is depicted in the following figure:

Dendrogram example

Clustering Chapter 8

[149]

K-means clustering
K-means is a relatively simple and effective way to cluster data. The main idea is that by
starting with a number of K points as the initial cluster centers, each instance is assigned to
the nearest cluster center. Then, the centers are re-calculated as the mean point of their
respective members. This process repeats until the cluster centers no longer change. The
main steps are as follows:

Select the number of clusters, K1.
Select K random instances as the initial cluster centers2.
Assign each instance to the closest cluster center3.
Re-calculate the cluster centers as the mean of each cluster's members4.
If the new centers differ from the previous, go back to Step 35.

A graphical example is depicted as follows. After four iterations, the algorithm converges:

The first four iterations on a toy dataset. Stars represent the cluster centers

Clustering Chapter 8

[150]

Strengths and weaknesses
K-means is a simple algorithm, both to understand, as well as to implement. Furthermore,
it usually converges relatively fast, requiring small computing power. Nonetheless, it has
some disadvantages. The first one is its sensitivity to the initial conditions. Depending on
the examples chosen as the first cluster centers, it can require more iterations in order to
converge. For example, in the following diagram we present three initial points that put the
algorithm at a disadvantage. In fact, in the third iteration, two cluster centers happen to
coincide:

An example of unfortunate initial cluster centers

Clustering Chapter 8

[151]

Thus, the algorithm does not produce clusters deterministically. Another major problem is
the number of clusters. This is a parameter that the data analyst must choose. There are
usually three different solutions to this problem. The first concerns problems where some
prior knowledge about the problem exists. Such examples are datasets where there is a
need to uncover the structure of something that is known, for example, what is the driving
factor behind athletes who improve their performance during a season, given their
statistics? In this example, a sports coach could advise that athletes actually either improve
drastically, stay the same, or deteriorate. Thus, the analyst could choose 3 as the number of
clusters. Another possible solution is to experiment with different values of K, and measure
the appropriateness of each value. This approach does not require any prior knowledge
about the problem domain, but introduces the problem of measuring the appropriateness
of each solution. We will see how we can solve these problems in the rest of this chapter.

Using scikit-learn
The scikit-learn has a number of clustering techniques available for use. Here, we briefly
present how to use K-means. The algorithm is implemented in the KMeans class, which is
contained in the sklearn.cluster package. This package contains all the clustering
algorithms that are available in scikit-learn. In this chapter, we will use mainly K-means, as
it is one of the most intuitive algorithms. Furthermore, the techniques used in this chapter
can be applied to almost any clustering algorithm. For this experiment, we will try to
cluster breast cancer data, in order to explore the possibility of distinguishing malignant
cases from benign cases. In order to better visualize the results, we will first perform a t-
Distributed Stochastic Neighbor Embedding (t-SNE) decomposition, and use the two-
dimensional embeddings as features. In order to proceed, we first load the required data
and libraries, as well as set the seed for the NumPy random number generator:

You can read more about t-SNE at https://lvdmaaten.github.io/tsne/.

import matplotlib.pyplot as plt
import numpy as np

from sklearn.cluster import KMeans
from sklearn.datasets import load_breast_cancer
from sklearn.manifold import TSNE

np.random.seed(123456)

bc = load_breast_cancer()

https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/

Clustering Chapter 8

[152]

Following this, we instantiate t-SNE, and transform our data. We plot the data in order to
visually inspect and examine the data structure:

data = tsne.fit_transform(bc.dataa)
reds = bc.target == 0
blues = bc.target == 1
plt.scatter(data[reds, 0], data[reds, 1], label='malignant')
plt.scatter(data[blues, 0], data[blues, 1], label='benign')
plt.xlabel('1st Component')
plt.ylabel('2nd Component')
plt.title('Breast Cancer dataa')
plt.legend()

The preceding code generates the following plot. We observe two distinct areas. The area
populated by the blue points denotes embedding values that imply a high risk that the
tumor is malignant:

Plot of the two embeddings (components) of the breast cancer data

Clustering Chapter 8

[153]

As we have identified that there exists some structure in the data, we will try to use K-
means clustering in order to model it. By intuition, we assume that two clusters would
suffice, as we try to separate two distinct regions, and we know that there are two classes in
the dataset. Nonetheless, we will also experiment with four and six clusters, as they might
provide more insight on the data. We will measure the percentage of each class assigned to
each cluster, in order to gauge their quality. We do this by populating the classified
dictionary. Each key corresponds to a cluster. Each key also points to a second dictionary,
where the number of malignant and benign cases are recorded for the specific cluster.
Furthermore, we plot the cluster assignments, as we want to see how the data is distributed
among the clusters:

plt.figure()
plt.title('2, 4, and 6 clusters.')
for clusters in [2, 4, 6]:
 km = KMeans(n_clusters=clusters)
 preds = km.fit_predict(data)
 plt.subplot(1, 3, clusters/2)
 plt.scatter(*zip(*data), c=preds)

classified = {x: {'m': 0, 'b': 0} for x in range(clusters)}

for i in range(len(data)):
 cluster = preds[i]
 label = bc.target[i]
 label = 'm' if label == 0 else 'b'
 classified[cluster][label] = classified[cluster][label]+1

print('-'*40)
for c in classified:
 print('Cluster %d. Malignant percentage: ' % c, end=' ')
 print(classified[c], end=' ')
 print('%.3f' % (classified[c]['m'] /
 (classified[c]['m'] + classified[c]['b'])))

Clustering Chapter 8

[154]

The results are depicted on the following table and figure:

Cluster Malignant Benign Malignant percentage
2 clusters

0 206 97 0.68
1 6 260 0.023

4 clsuters
0 2 124 0.016
1 134 1 0.993
2 72 96 0.429
3 4 136 0.029

6 clusters
0 2 94 0.021
1 81 10 0.89
2 4 88 0.043
3 36 87 0.0293
4 0 78 0
5 89 0 1

Distribution of malignant and benign cases among the clusters

We observe that the algorithm is able to separate the instances belonging to each class quite
effectively, even though it has no information about the labels:

Cluster assignment of each instance; 2, 4, and 6 clusters

Clustering Chapter 8

[155]

Furthermore, we see that as we increase the number of clusters, the instances assigned to
dominantly malignant or benign clusters does not increase, but the regions are better
separated. This enables greater granularity and a more accurate prediction of probability
that a selected instance belongs to either class. If we repeat the experiment without
transforming the data, we get the following results:

Cluster Malignant Benign Malignant percentage
2 clusters

0 82 356 0.187
1 130 1 0.992

4 clusters
0 6 262 0.022
1 100 1 0.99
2 19 0 1
3 87 94 0.481

6 clusters
0 37 145 0.203
1 37 0 1
2 11 0 1
3 62 9 0.873
4 5 203 0.024
5 60 0 1

Clustering results on the data without t-sne transform

There are also two metrics that can be used in order to determine cluster quality. For data
where the ground truth is known (essentially, labeled data), homogeneity measures the rate
by which each cluster is dominated by a single class. For data where the ground truth is not
known, the silhouette coefficient measures the intra-cluster cohesiveness and the inter-
cluster separability. These metrics are implemented in scikit-learn under the metrics
package, by the silhouette_score and homogeneity_score functions. The two metrics
for each method are depicted in the following table. Homogeneity is higher for the
transformed data, but the silhouette score is lower.

Clustering Chapter 8

[156]

This is expected, as the transformed data has only two dimensions, thus making the
possible distance between the instances themselves smaller:

Metric Clusters Raw data Transformed data
Homogeneity 2 0.422 0.418

4 0.575 0.603
6 0.620 0.648

Silhouette 2 0.697 0.500
4 0.533 0.577
6 0.481 0.555

Homogeneity and silhouette scores for clusterings of the raw and transformed data

Using voting
Voting can be utilized in order to combine different clusterings of the same dataset. It is
similar to voting for supervised learning, as each model (base learner) contributes to the
final result with a vote. Here arises a problem of linking two clusters originating from two
different clusterings. As each model will produce different clusters with different centers,
we have to link similar clusters originating from different models. This is accomplished by
linking together clusters that share the greatest number of instances. For example, assume
that the following table and figure clusterings have occurred for a particular dataset:

Three distinct clustering results

Clustering Chapter 8

[157]

The following table depicts each instance's cluster assignments for the three different
clusterings.

Instance 1 2 3 4 5 6 7 8 9 10
Clustering 1 0 0 2 2 2 0 0 1 0 2
Clustering 2 1 1 2 2 2 1 0 1 1 2
Clustering 3 0 0 2 2 2 1 0 1 1 2

Cluster membership of each instance

Using the preceding mapping, we can calculate the co-association matrix for each instance.
This matrix indicates how many times a pair of instances has been assigned to the same
cluster:

Instances 1 2 3 4 5 6 7 8 9 10
1 3 3 0 0 0 2 2 1 2 0
2 3 3 0 0 0 2 2 1 2 0
3 0 0 3 3 3 0 0 0 0 3
4 0 0 3 3 3 0 0 0 0 3
5 0 0 3 3 3 0 0 0 0 3
6 2 2 0 0 0 3 1 0 3 0
7 2 2 0 0 0 1 3 0 1 0
8 1 1 0 0 0 0 0 3 2 0
9 2 2 0 0 0 3 1 2 3 0

10 0 0 3 3 3 0 0 0 0 3

Co-association matrix for the previous example

By dividing each element with the number of base learners in the ensemble, and clustering
together samples that have a value greater than 0.5, we get the following cluster
assignments:

Instance 1 2 3 4 5 6 7 8 9 10
Voting clustering 0 0 1 1 1 0 0 0 0 1

The voting cluster memberships

Clustering Chapter 8

[158]

As it is evident, the clustering is more stable. Furthermore, it is apparent that two clusters
are sufficient for this dataset. By plotting the data and their cluster membership, we can see
that there are two distinct groups, which is exactly what the voting ensemble was able to
model, although each base learner generated three distinct cluster centers:

Final cluster memberships for the voting ensemble

Clustering Chapter 8

[159]

Using OpenEnsembles
OpenEnsembles is a Python library that is dedicated to ensemble methods for clustering. In
this section, we will present its usage and utilize it in order to cluster some of our example
datasets. In order to install the library, the pip install openensembles command must
be executed in the Terminal. Although it leverages scikit-learn, its interface is different. One
major difference is that data must be passed as a data class, implemented by
OpenEnsembles. The constructor has two input parameters: a pandas DataFrame which
contains the data, and a list which contains the feature names:

--- SECTION 1 ---
Libraries and data loading
import openensembles as oe
import pandas as pd
import sklearn.metrics

from sklearn.datasets import load_breast_cancer

bc = load_breast_cancer()

--- SECTION 2 ---
Create the data object
cluster_data = oe.data(pd.DataFrame(bc.data), bc.feature_names)

In order to create a cluster ensemble, a cluster class object is created, passing the data
as the parameter:

ensemble = oe.cluster(cluster_data)

In this example, we will calculate the homogeneity score for a number of K values and
ensemble sizes. In order to add a base learner to the ensemble, the cluster method of the
cluster class must be called. The method accepts as arguments, source_name, which
denotes the source data matrix name, algorithm. This dictates what algorithm the base
learners will utilize, output_name, which will be the dictionary key for accessing the
results of the specific base learner and K, the number of clusters for the specific base learner.
Finally, in order to compute the final cluster memberships through majority voting, the
finish_majority_vote method must be called. The only parameter that must be
specified is the threshold value:

--- SECTION 3 ---
Create the ensembles and calculate the homogeneity score
for K in [2, 3, 4, 5, 6, 7]:
 for ensemble_size in [3, 4, 5]:
 ensemble = oe.cluster(cluster_data)
 for i in range(ensemble_size):

Clustering Chapter 8

[160]

 name = f'kmeans_{ensemble_size}_{i}'
 ensemble.cluster('parent', 'kmeans', name, K)

preds = ensemble.finish_majority_vote(threshold=0.5)
print(f'K: {K}, size {ensemble_size}:', end=' ')
print('%.2f' % sklearn.metrics.homogeneity_score(
 bc.target, preds.labels['majority_vote']))

It is evident that five clusters produce the best results for all three ensemble sizes. The
results are summarized in the following table:

K Size Homogeneity
2 3 0.42
2 4 0.42
2 5 0.42
3 3 0.45
3 4 0.47
3 5 0.47
4 3 0.58
4 4 0.58
4 5 0.58
5 3 0.6
5 4 0.61
5 5 0.6
6 3 0.35
6 4 0.47
6 5 0.35
7 3 0.27
7 4 0.63
7 5 0.37

OpenEnsembles majority vote cluster homogeneity for the breast cancer dataset

Clustering Chapter 8

[161]

If we transform the data into two embeddings with t-SNE, and repeat the experiment, we
get the following homogeneity scores:

K Size Homogeneity
2 3 0.42
2 4 0.42
2 5 0.42
3 3 0.59
3 4 0.59
3 5 0.59
4 3 0.61
4 4 0.61
4 5 0.61
5 3 0.61
5 4 0.61
5 5 0.61
6 3 0.65
6 4 0.65
6 5 0.65
7 3 0.66
7 4 0.66
7 5 0.66

Majority vote cluster homogeneity for the transformed breast cancer dataset

Using graph closure and co-occurrence linkage
Two other methods that can be used to combine cluster results are graph closure and co-
occurrence linkage. Here, we demonstrate how to use OpenEnsembles to create both types
of ensembles.

Clustering Chapter 8

[162]

Graph closure
Graph closure creates a graph from the co-occurrence matrix. Every element (instance pair)
is treated as a node. Pairs that have a higher value than the threshold are connected by an
edge. Following this, a clique formation occurs, according to a specified size (specified by
the number of nodes in the clique). Cliques are subsets of the graph's nodes, such that every
two nodes of the clique are neighbors. Finally, the cliques are combined to form unique
clusters. In OpenEnsembles, it is implemented by the finish_graph_closure function, in
the cluster class. The clique_size parameter determines the number of nodes in each
clique. The threshold parameter determines the minimum co-occurrence that a pair must
have in order to be connected by an edge in the graph. Similar to the previous example, we
will use graph closure in order to cluster the breast cancer dataset. Notice that the only
change in the code will be the usage of finish_graph_closure, instead of
finish_majority_vote. First, we load the libraries and the dataset, and create the
OpenEnsembles data object:

--- SECTION 1 ---
Libraries and data loading
import openensembles as oe
import pandas as pd
import sklearn.metrics

from sklearn.datasets import load_breast_cancer

bc = load_breast_cancer()

--- SECTION 2 ---
Create the data object
cluster_data = oe.data(pd.DataFrame(bc.data), bc.feature_names)

Then, we create the ensemble and use graph_closure in order to combine the cluster
results. Notice that the dictionary key also changes to 'graph_closure':

--- SECTION 3 ---
Create the ensembles and calculate the homogeneity score
for K in [2, 3, 4, 5, 6, 7]:
 for ensemble_size in [3, 4, 5]:
 ensemble = oe.cluster(cluster_data)
 for i in range(ensemble_size):
 name = f'kmeans_{ensemble_size}_{i}'
 ensemble.cluster('parent', 'kmeans', name, K)

preds = ensemble.finish_majority_vote(threshold=0.5)
print(f'K: {K}, size {ensemble_size}:', end=' ')
print('%.2f' % sklearn.metrics.homogeneity_score(
 bc.target, preds.labels['majority_vote']))

Clustering Chapter 8

[163]

The effect of K and the ensemble size on the clustering quality is similar to majority voting,
although it does not achieve the same level of performance. The results are depicted in the
following table:

K Size Homogeneity
2 3 0.42
2 4 0.42
2 5 0.42
3 3 0.47
3 4 0
3 5 0.47
4 3 0.58
4 4 0.58
4 5 0.58
5 3 0.6
5 4 0.5
5 5 0.5
6 3 0.6
6 4 0.03
6 5 0.62
7 3 0.63
7 4 0.27
7 5 0.27

Homogeneity for graph closure clustering on the raw breast cancer data

Clustering Chapter 8

[164]

Co-occurrence matrix linkage
Co-occurrence matrix linkage treats the co-occurrence matrix as a distance matrix between
instances, and utilizes the distances in order to perform hierarchical clustering. The
clustering stops when there is no element on the matrix with a value greater than the
threshold. Again, we repeat the example. We use the finish_co_occ_linkage function to
utilize co-occurrence matrix linkage with threshold=0.5, and use the
'co_occ_linkage' key to access the results:

--- SECTION 1 ---
Libraries and data loading
import openensembles as oe
import pandas as pd
import sklearn.metrics

from sklearn.datasets import load_breast_cancer

bc = load_breast_cancer()

--- SECTION 2 ---
Create the data object
cluster_data = oe.data(pd.DataFrame(bc.data), bc.feature_names)

--- SECTION 3 ---
Create the ensembles and calculate the homogeneity score
for K in [2, 3, 4, 5, 6, 7]:
 for ensemble_size in [3, 4, 5]:
 ensemble = oe.cluster(cluster_data)
 for i in range(ensemble_size):
 name = f'kmeans_{ensemble_size}_{i}'
 ensemble.cluster('parent', 'kmeans', name, K)
 preds = ensemble.finish_co_occ_linkage(threshold=0.5)
 print(f'K: {K}, size {ensemble_size}:', end=' ')
 print('%.2f' % sklearn.metrics.homogeneity_score(
 bc.target, preds.labels['co_occ_linkage']))

Clustering Chapter 8

[165]

The following table summarizes the results. Notice that it outperforms the other two
methods. Furthermore, the results are more stable, and less time is required to execute it
than either of the other two methods:

K Size Homogeneity
2 3 0.42
2 4 0.42
2 5 0.42
3 3 0.47
3 4 0.47
3 5 0.45
4 3 0.58
4 4 0.58
4 5 0.58
5 3 0.6
5 4 0.6
5 5 0.6
6 3 0.59
6 4 0.62
6 5 0.62
7 3 0.62
7 4 0.63
7 5 0.63

Homogeneity results for co-occurrence cluster linkage on the raw breast cancer dataset

Clustering Chapter 8

[166]

Summary
In this chapter, we presented the K-means clustering algorithm and clustering ensemble
methods. We explained how majority voting can be used in order to combine cluster
assignments from an ensemble, and how it can outperform the individual base learners.
Furthermore, we presented the OpenEnsembles Python library, which is dedicated to
clustering ensembles. The chapter can be summarized as follows.

K-means creates K clusters, and assigns instances to each cluster by iteratively considering
the cluster center to be the mean of its members. It can be sensitive to the initial conditions,
and the selected number of clusters. Majority voting can help to overcome the algorithm's
disadvantages. Majority voting clusters together instances that have a high co-
occurrence. Co-occurrence matrices show how frequently a pair of instances has been
assigned to the same cluster by the same base learner. Graph closure uses co-occurrence
matrices in order to create graphs, and clusters the data based on cliques. Co-occurrence
linkage uses a specific clustering algorithm, hierarchical (agglomerative) clustering, by
treating the co-occurrence matrix as a pairwise distance matrix. In the next chapter, we will
try to utilize all the ensemble learning techniques that we have covered in this book, in
order to classify fraudulent credit card transactions.

5
Section 5: Real World

Applications
In this section, we will cover the use of ensemble learning for a wide array of real-world
machine learning tasks.

This section comprises the following chapters:

Chapter 9, Classifying Fraudulent Transactions
Chapter 10, Predicting Bitcoin Prices
Chapter 11, Evaluating Sentiment on Twitter
Chapter 12, Recommending Movies with Keras
Chapter 13, Clustering World Happiness

9
Classifying Fraudulent

Transactions
In this chapter, we will attempt to classify fraudulent transactions in a dataset concerning
credit card transactions from European card holders that occurred during September 2013.
The main problem in this dataset is the extremely small number of fraudulent transactions,
compared to the dataset's size. These types of datasets are called unbalanced, as there are
unequal percentages of each label. We will try to create ensembles that can classify our
particular dataset, which contains a small number of fraudulent transactions.

In this chapter we will cover the following topics:

Getting familiar with the dataset
Exploratory analysis
Voting
Stacking
Bagging
Boosting
Using random forests
Comparative analysis of ensembles

Classifying Fraudulent Transactions Chapter 9

[169]

Technical requirements
You will require basic knowledge of machine learning techniques and algorithms.
Furthermore, a knowledge of python conventions and syntax is required. Finally,
familiarity with the NumPy library will greatly help the reader to understand some custom
algorithm implementations.

The code files of this chapter can be found on GitHub:

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/
master/Chapter09

Check out the following video to see the Code in Action: http://bit.ly/2ShwarF.

Getting familiar with the dataset
The dataset was originally utilized in the PhD thesis of Andrea Dal Pozzolo, Adaptive
Machine learning for credit card fraud detection ULB MLG, and has since been
released by its authors for public use
(www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata). The dataset contains more
than 284,000 instances, but only 492 instances of fraud (almost 0.17%).

Its target class value is 0 if the transaction was not a fraud, and 1 if it was. The dataset's
features are a number of principal components, as the dataset has been transformed using
Principle Components Analysis (PCA), in order to retain the confidentiality of the data.
The dataset's features are comprised of 28 PCA components, as well as the transaction’s
amount and the time elapsed from the first transaction in the dataset. Descriptive statistics
about the dataset are provided as follows:

Feature Time V1 V2 V3 V4
count 284,807 284,807 284,807 284,807 284,807
mean 94,813.86 1.17E-15 3.42E-16 -1.37E-15 2.09E-15

std 47,488.15 1.96 1.65 1.52 1.42
min 0.00 -56.41 -72.72 -48.33 -5.68
max 172,792.00 2.45 22.06 9.38 16.88

Feature V5 V6 V7 V8 V9
count 284,807 284,807 284,807 284,807 284,807
mean 9.60E-16 1.49E-15 -5.56E-16 1.18E-16 -2.41E-15

std 1.38 1.33 1.24 1.19 1.10

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter09
http://bit.ly/2ShwarF
http://bit.ly/2ShwarF
http://bit.ly/2ShwarF
http://bit.ly/2ShwarF
http://bit.ly/2ShwarF
http://bit.ly/2ShwarF
http://bit.ly/2ShwarF
http://bit.ly/2ShwarF
http://bit.ly/2ShwarF
http://bit.ly/2ShwarF
http://di.ulb.ac.be/map/adalpozz/pdf/Dalpozzolo2015PhD.pdf
http://di.ulb.ac.be/map/adalpozz/pdf/Dalpozzolo2015PhD.pdf
http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata

Classifying Fraudulent Transactions Chapter 9

[170]

min -113.74 -26.16 -43.56 -73.22 -13.43
max 34.80 73.30 120.59 20.01 15.59

Feature V10 V11 V12 V13 V14
count 284,807 284,807 284,807 284,807 284,807
mean 2.24E-15 1.67E-15 -1.25E-15 8.18E-16 1.21E-15

std 1.09 1.02 1.00 1.00 0.96
min -24.59 -4.80 -18.68 -5.79 -19.21
max 23.75 12.02 7.85 7.13 10.53

Feature V15 V16 V17 V18 V19
count 284,807 284,807 284,807 284,807 284,807
mean 4.91E-15 1.44E-15 -3.80E-16 9.57E-16 1.04E-15

std 0.92 0.88 0.85 0.84 0.81
min -4.50 -14.13 -25.16 -9.50 -7.21
max 8.88 17.32 9.25 5.04 5.59

Feature V20 V21 V22 V23 V24
count 284,807 284,807 284,807 284,807 284,807
mean 6.41E-16 1.66E-16 -3.44E-16 2.58E-16 4.47E-15

std 0.77 0.73 0.73 0.62 0.61
min -54.50 -34.83 -10.93 -44.81 -2.84
max 39.42 27.20 10.50 22.53 4.58

Feature V25 V26 V27 V28 Amount
count 284,807 284,807 284,807 284,807 284,807
mean 5.34E-16 1.69E-15 -3.67E-16 -1.22E-16 88.34962

std 0.52 0.48 0.40 0.33 250.12
min -10.30 -2.60 -22.57 -15.43 0.00
max 7.52 3.52 31.61 33.85 25,691.16

Descriptive statistics of the credit card transaction dataset

Classifying Fraudulent Transactions Chapter 9

[171]

Exploratory analysis
One important characteristic of the dataset is that there are no missing values, as it is
indicated by the count statistic. All features have the same number of values. Another
important aspect is that most features are normalized. This is due to the PCA applied to the
data. PCA normalizes the data before decomposing it into principal components. The only
two features not normalized are the Time and Amount features. The following histogram
for each feature is depicted:

Histograms for the dataset's features

It is interesting to examine more closely the Time and Amount of each transaction. In the
Time histogram, we notice a sudden drop in transaction frequency between 75,000 and
125,000 seconds after the first transaction (around 13 hours). This is probably due to daily
time cycles (for example, during the night, when most stores are closed). The histogram for
each transaction's amount is provided as follows in the logarithmic scale. It is evident that
most transactions concern small amounts, with the average being almost €88.00:

Classifying Fraudulent Transactions Chapter 9

[172]

Histogram for amount, logarithmic scale for y-axis

In order to avoid problems with uneven distribution of weights between features, we will
standardize the features Amount and Time. Algorithms that employ distance metrics for
example (such as K-Nearest Neighbors), can under perform when features are not scaled
correctly. The standardized features' histograms are provided as follows. Note that
standardization transforms the variables in order to have a mean value close to 0 and
standard deviation of 1:

Standardized amount histogram

Classifying Fraudulent Transactions Chapter 9

[173]

The following plot depicts the histogram for standardized time. We can see that it does not
affect the drop in transactions during the night time:

Standardized time histogram

Evaluation methods
As our dataset is highly skewed (that is, it has a high degree of class imbalance), we cannot
utilize accuracy in order to evaluate our models. This is due to the fact that by classifying
all instances as non-frauds, we can achieve an accuracy of 99.82%. Certainly, this number
does not represent an acceptable performance, as we are unable to detect any fraudulent
transactions. Thus, in order to evaluate our models, we will use recall (the percentage of
frauds we detected) and F1 score, a weighted average between recall and precision (a
measure of how many of the transactions predicted as fraudulent were indeed fraudulent).

Voting
In this section, we will try to classify the dataset by using voting ensembles. For our initial
ensemble, we will utilize a Naive Bayes classifier, a logistic regression, and a decision tree.
This will be implemented in two parts, first by testing each base learner itself and then
combining the base learners into an ensemble.

Classifying Fraudulent Transactions Chapter 9

[174]

Testing the base learners
To test the base learners, we will benchmark the base learners by themselves, which will
help us gauge how well they perform on their own. In order to do so, first, we load the
libraries and dataset and then split the data with 70% in the train set and 30% in the test set.
We use pandas in order to easily import the CSV. Our goal is to train and evaluate each
individual base learner before we train and evaluate the ensemble as a whole:

--- SECTION 1 ---
Libraries and data loading
import numpy as np
import pandas as pd

from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn import metrics

np.random.seed(123456)
data = pd.read_csv('creditcard.csv')
data.Time = (data.Time-data.Time.min())/data.Time.std()
data.Amount = (data.Amount-data.Amount.mean())/data.Amount.std()

Train-Test slpit of 70%-30%
x_train, x_test, y_train, y_test = train_test_split(
data.drop('Class', axis=1).values, data.Class.values, test_size=0.3)

After loading the libraries and data, we train each classifier and print the required metrics
from the sklearn.metrics package. F1 score is implemented by the f1_score function
and recall is implemented by the recall_score function. The decision tree is restricted to
a maximum depth of three (max_depth=3), in order to avoid overfitting:

--- SECTION 2 ---
Base learners evaluation
base_classifiers = [('DT', DecisionTreeClassifier(max_depth=3)),
 ('NB', GaussianNB()),
 ('LR', LogisticRegression())]

for bc in base_classifiers:
 lr = bc[1]
 lr.fit(x_train, y_train)

 predictions = lr.predict(x_test)
 print(bc[0]+' f1', metrics.f1_score(y_test, predictions))
 print(bc[0]+' recall', metrics.recall_score(y_test, predictions))

Classifying Fraudulent Transactions Chapter 9

[175]

The results are depicted in the following table. As is evident, the decision tree outperforms
the other three learners. Naive Bayes has a higher recall score, but its F1 score is
considerably worse, compared to the decision tree:

Learner Metric Value
Decision Tree F1 0.770

Recall 0.713
Naive Bayes F1 0.107

Recall 0.824
Logistic Regression F1 0.751

Recall 0.632

We can also experiment with the number of features present in the dataset. By plotting their
correlation to the target, we can filter out features that present low correlation to the target.
This table depicts each feature's correlation to the target:

Correlation between each variable and the target

Classifying Fraudulent Transactions Chapter 9

[176]

By filtering any feature with a lower absolute value than 0.1, we hope that the base learners
will be able to better detect the fraudulent transactions, as the dataset's noise will be
reduced.

In order to test our theory, we repeat the experiment, but remove any columns from the
DataFrame where the absolute correlation is lower than 0.1, as indicated by fs =
list(correlations[(abs(correlations)>threshold)].index.values).

Here, fs holds all column names with a correlation greater than the indicated threshold:

--- SECTION 3 ---
Filter features according to their correlation to the target
np.random.seed(123456)
threshold = 0.1

correlations = data.corr()['Class'].drop('Class')
fs = list(correlations[(abs(correlations)>threshold)].index.values)
fs.append('Class')
data = data[fs]

x_train, x_test, y_train, y_test = train_test_split(data.drop('Class',
axis=1).values, data.Class.values, test_size=0.3)

for bc in base_classifiers:
 lr = bc[1]
 lr.fit(x_train, y_train)

 predictions = lr.predict(x_test)
 print(bc[0]+' f1', metrics.f1_score(y_test, predictions))
 print(bc[0]+' recall', metrics.recall_score(y_test, predictions))

Again, we present the results in the following table. As we can see, the decision tree has
increased its F1 score, while reducing its recall. Naive Bayes has improved on both metrics,
while the logistic regression model has become considerably worse:

Learner Metric Value
Decision Tree F1 0.785

Recall 0.699
Naive Bayes F1 0.208

Recall 0.846
Logistic Regression F1 0.735

Recall 0.610

Performance metrics for the three base learners for the filtered dataset

Classifying Fraudulent Transactions Chapter 9

[177]

Optimizing the decision tree
We can try to optimize the tree's depth in order to maximize F1 or recall. In order to do so,
we will experiment with depths in the range of [3, 11] on the train set.

The following graph depicts the F1 score and recall for the various maximum depths, both
for the original and filtered datasets:

Test metrics for various tree depths

Here, we observe that for a maximum depth of 5, F1 and recall are optimized for the
filtered dataset. Furthermore, recall is optimized for the original dataset as well. We will
continue with a maximum depth of 5 as trying to further optimize the metrics can lead to
overfitting, especially since the number of instances relevant to the metrics is extremely
small. Furthermore, with a maximum depth of 5, there is an improvement both in F1, as
well as in recall, when the filtered dataset is used.

Classifying Fraudulent Transactions Chapter 9

[178]

Creating the ensemble
We can now proceed and create the ensemble. Again, we will first evaluate the ensemble on
the original dataset, and then proceed to test it on the filtered dataset. The code is similar to
the previous example. First, we load the libraries and data, and create train and test splits as
follows:

--- SECTION 1 ---
Libraries and data loading
import numpy as np
import pandas as pd

from sklearn.ensemble import VotingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn import metrics

np.random.seed(123456)
data = pd.read_csv('creditcard.csv')
data.Time = (data.Time-data.Time.min())/data.Time.std()
data.Amount = (data.Amount-data.Amount.mean())/data.Amount.std()

Train-Test slpit of 70%-30%
x_train, x_test, y_train, y_test = train_test_split(
 data.drop('Class', axis=1).values, data.Class.values, test_size=0.3)

After loading the required libraries and data, we create our ensemble, and then train and
evaluate it. Finally, we repeat the experiment as follows with reduced features by filtering
out features with low correlations to the target variable:

--- SECTION 2 ---
Ensemble evaluation
base_classifiers = [('DT', DecisionTreeClassifier(max_depth=5)),
 ('NB', GaussianNB()),
 ('ensemble', LogisticRegression())]

ensemble = VotingClassifier(base_classifiers)
ensemble.fit(x_train, y_train)

print('Voting f1', metrics.f1_score(y_test, ensemble.predict(x_test)))
print('Voting recall', metrics.recall_score(y_test,
ensemble.predict(x_test)))

--- SECTION 3 ---

Classifying Fraudulent Transactions Chapter 9

[179]

Filter features according to their correlation to the target
np.random.seed(123456)
threshold = 0.1

correlations = data.corr()['Class'].drop('Class')
fs = list(correlations[(abs(correlations)>threshold)].index.values)
fs.append('Class')
data = data[fs]

x_train, x_test, y_train, y_test = train_test_split(
 data.drop('Class', axis=1).values, data.Class.values, test_size=0.3)

ensemble = VotingClassifier(base_classifiers)
ensemble.fit(x_train, y_train)

print('Voting f1', metrics.f1_score(y_test, ensemble.predict(x_test)))
print('Voting recall', metrics.recall_score(y_test,
ensemble.predict(x_test)))

The following table summarizes the results. For the original dataset, voting provides a
model with a better combination of F1 and recall, compared to any single classifier.

Still, the decision tree with a maximum depth of 5 slightly outperforms it in F1 score, while
Naive Bayes is able to recall a greater percentage of fraudulent transactions:

Dataset Metric Value
Original F1 0.822

Recall 0.779
Filtered F1 0.828

Recall 0.794

Voting results for both datasets

We can try to further diversify our ensemble by also including two additional Decision
Trees, with maximum depth of three and eight, respectively. This boosts the ensemble’s
performance to the following numbers.

Classifying Fraudulent Transactions Chapter 9

[180]

Although the performance remains the same for the filtered dataset, the ensemble is able to
perform better in the original dataset. Especially for the F1 metric, it is able to outperform
all other dataset/model combinations:

Dataset Metric Value
Original F1 0.829

Recall 0.787
Filtered F1 0.828

Recall 0.794

Voting results for both datasets with two additional decision trees

Stacking
We can also try to stack the base learners, instead of using Voting. First, we will try to stack
a single decision tree with depth five, a Naive Bayes classifier, and a logistic regression. As
a meta-learner, we will use a logistic regression.

The following code is responsible for loading the required libraries and data, training, and
evaluating the ensemble on the original and filtered datasets. We first load the required
libraries and data, while creating train and test splits:

--- SECTION 1 ---
Libraries and data loading
import numpy as np
import pandas as pd

from stacking_classifier import Stacking
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import LinearSVC
from sklearn.model_selection import train_test_split
from sklearn import metrics

np.random.seed(123456)
data = pd.read_csv('creditcard.csv')
data.Time = (data.Time-data.Time.min())/data.Time.std()
data.Amount = (data.Amount-data.Amount.mean())/data.Amount.std()

Train-Test slpit of 70%-30%
x_train, x_test, y_train, y_test = train_test_split(
 data.drop('Class', axis=1).values, data.Class.values, test_size=0.3)

Classifying Fraudulent Transactions Chapter 9

[181]

After creating our train and test splits, we train and evaluate our ensemble on the original
dataset, as well as a reduced-features dataset as follows:

--- SECTION 2 ---
Ensemble evaluation
base_classifiers = [DecisionTreeClassifier(max_depth=5),
 GaussianNB(),
 LogisticRegression()]
ensemble = Stacking(learner_levels=[base_classifiers,
 [LogisticRegression()]])

ensemble.fit(x_train, y_train)
print('Stacking f1', metrics.f1_score(y_test, ensemble.predict(x_test)))
print('Stacking recall', metrics.recall_score(y_test,
ensemble.predict(x_test)))

--- SECTION 3 ---
Filter features according to their correlation to the target
np.random.seed(123456)
threshold = 0.1
correlations = data.corr()['Class'].drop('Class')
fs = list(correlations[(abs(correlations) > threshold)].index.values)
fs.append('Class')
data = data[fs]
x_train, x_test, y_train, y_test = train_test_split(data.drop('Class',
axis=1).values,
 data.Class.values,
test_size=0.3)
ensemble = Stacking(learner_levels=[base_classifiers,
 [LogisticRegression()]])
ensemble.fit(x_train, y_train)
print('Stacking f1', metrics.f1_score(y_test, ensemble.predict(x_test)))
print('Stacking recall', metrics.recall_score(y_test,
ensemble.predict(x_test)))

As it is seen in the following resultant table, the ensemble achieves a slightly better F1 score
on the original dataset, but worse recall score, compared to the voting ensemble with the
same base learners:

Dataset Metric Value
Original F1 0.823

Recall 0.750
Filtered F1 0.828

Recall 0.794

Stacking ensemble performance with three base learners

Classifying Fraudulent Transactions Chapter 9

[182]

We can further experiment with different base learners. By adding two decision trees with
maximum depths of three and eight, respectively (same with the second Voting setup),
observe how stacking exhibits the same behavior. It outperforms on the F1 score and
underperforms on the recall score for the original dataset.

On the filtered dataset, the performance remains on par with Voting. Finally, we
experiment with second level of base learners, consisting of a Decision Tree with depth two
and a linear support vector machine, which performs worse than the five base learners'
setup:

Dataset Metric Value
Original F1 0.844

Recall 0.757
Filtered F1 0.828

Recall 0.794

Performance with five base learners

The following table depicts the results for the stacking ensemble with an additional level of
base learners. As it is evident, it performs worse than the original ensemble.

Dataset Metric Value
Original F1 0.827

Recall 0.757
Filtered F1 0.827

Recall 0.772

Performance with five base learners on level 0 and two on level 1

Bagging
In this section, we will classify the dataset using bagging. As we have previously shown,
decision trees with maximum depth of five are optimal thus, we will use these trees for our
bagging example.

Classifying Fraudulent Transactions Chapter 9

[183]

We would like to optimize the ensemble's size. We will generate validation curves for the
original train set by testing sizes in the range of [5, 30]. The actual curves are depicted here
in the following graph:

Validation curves for the original train set, for various ensemble sizes

We observe that variance is minimized for an ensemble size of 10, thus we will utilize
ensembles of size 10.

The following code loads the data and libraries (Section 1), splits the data into train and test
sets, and fits and evaluates the ensemble on the original dataset (Section 2) and the reduced-
features dataset (Section 3):

--- SECTION 1 ---
Libraries and data loading
import numpy as np
import pandas as pd

from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics

np.random.seed(123456)
data = pd.read_csv('creditcard.csv')

Classifying Fraudulent Transactions Chapter 9

[184]

data.Time = (data.Time-data.Time.min())/data.Time.std()
data.Amount = (data.Amount-data.Amount.mean())/data.Amount.std()
Train-Test slpit of 70%-30%
x_train, x_test, y_train, y_test = train_test_split(
 data.drop('Class', axis=1).values,
data.Class.values, test_size=0.3)

After creating our train and test splits, we train and evaluate our ensemble on the original
dataset, as well as a reduced-features dataset as follows:

--- SECTION 2 ---
Ensemble evaluation
ensemble = BaggingClassifier(n_estimators=10,
base_estimator=DecisionTreeClassifier(max_depth=5))
ensemble.fit(x_train, y_train)
print('Bagging f1', metrics.f1_score(y_test, ensemble.predict(x_test)))
print('Bagging recall', metrics.recall_score(y_test,
ensemble.predict(x_test)))
--- SECTION 3 ---
Filter features according to their correlation to the target
np.random.seed(123456)
threshold = 0.1
correlations = data.corr()['Class'].drop('Class')
fs = list(correlations[(abs(correlations)>threshold)].index.values)
fs.append('Class')
data = data[fs]
x_train, x_test, y_train, y_test = train_test_split(
 data.drop('Class', axis=1).values,
data.Class.values, test_size=0.3)
ensemble = BaggingClassifier(n_estimators=10,
base_estimator=DecisionTreeClassifier(max_depth=5))
ensemble.fit(x_train, y_train)

print('Bagging f1', metrics.f1_score(y_test, ensemble.predict(x_test)))
print('Bagging recall', metrics.recall_score(y_test,
ensemble.predict(x_test)))

Classifying Fraudulent Transactions Chapter 9

[185]

Using bagging ensembles with trees of a maximum depth of 5 and 10 trees per ensemble,
we are able to achieve the following F1 and recall scores. It outperforms both stacking and
voting in both datasets on all metrics, with one exception. The F1 score for the original
dataset is slightly worse than stacking (0.843 compared to 0.844):

Dataset Metric Value
Original F1 0.843

Recall 0.787
Filtered F1 0.831

Recall 0.794

Bagging performance for the original and filtered datasets

Although we have concluded that a maximum depth of 5 is optimal for a single decision
tree, it does restrict the diversity of each tree. By increasing the maximum depth to 8, we
are able to achieve an F1 score of 0.864 and a recall score of 0.816 on the filtered dataset, the
best performance up to now.

Nonetheless, performance on the original dataset suffers, confirming that the features that
we removed were, indeed, noise, as the trees are now able to model in-sample noise, and
thus, their out-of-sample performance suffers:

Dataset Metric Value
Original F1 0.840

Recall 0.772
Filtered F1 0.864

Recall 0.816

Boosting
As we move on, we will start to utilize generative methods. The first generative method we
will experiment with is boosting. We will first try to classify the datasets using AdaBoost.
As AdaBoost resamples the dataset based on misclassifications, we expect that it will be
able to handle our imbalanced dataset relatively well.

Classifying Fraudulent Transactions Chapter 9

[186]

First, we must decide on the ensemble's size. We generate validation curves for a number of
ensemble sizes depicted as follows:

Validation curves of various ensemble sizes for AdaBoost

As we can observe, 70 base learners provide the best trade-off between bias and variance.
As such, we will proceed with ensembles of size 70.

The following code implements the training and evaluation for AdaBoost:

--- SECTION 1 ---
Libraries and data loading
import numpy as np
import pandas as pd
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
from sklearn import metrics

np.random.seed(123456)
data = pd.read_csv('creditcard.csv')
data.Time = (data.Time-data.Time.min())/data.Time.std()
data.Amount = (data.Amount-data.Amount.mean())/data.Amount.std()
Train-Test slpit of 70%-30%
x_train, x_test, y_train, y_test = train_test_split(
 data.drop('Class', axis=1).values, data.Class.values, test_size=0.3)

Classifying Fraudulent Transactions Chapter 9

[187]

We then train and evaluate our ensemble, using 70 estimators and a learning rate of 1.0:

--- SECTION 2 ---
Ensemble evaluation
ensemble = AdaBoostClassifier(n_estimators=70, learning_rate=1.0)
ensemble.fit(x_train, y_train)
print('AdaBoost f1', metrics.f1_score(y_test, ensemble.predict(x_test)))
print('AdaBoost recall', metrics.recall_score(y_test,
ensemble.predict(x_test)))

We reduce the number of features, by selecting only features with high correlation with
respect to the target. Finally, we repeat the procedure of training and evaluating the
ensemble:

--- SECTION 3 ---
Filter features according to their correlation to the target
np.random.seed(123456)
threshold = 0.1
correlations = data.corr()['Class'].drop('Class')
fs = list(correlations[(abs(correlations)>threshold)].index.values)
fs.append('Class')
data = data[fs]
x_train, x_test, y_train, y_test = train_test_split(
 data.drop('Class', axis=1).values, data.Class.values, test_size=0.3)
ensemble = AdaBoostClassifier(n_estimators=70, learning_rate=1.0)
ensemble.fit(x_train, y_train)
print('AdaBoost f1', metrics.f1_score(y_test, ensemble.predict(x_test)))
print('AdaBoost recall', metrics.recall_score(y_test,
ensemble.predict(x_test)))

The results are depicted in the following table. As it is evident, it does not perform as well
as our previous models:

Dataset Metric Value
Original F1 0.778

Recall 0.721
Filtered F1 0.794

Recall 0.721

Performance of AdaBoost

Classifying Fraudulent Transactions Chapter 9

[188]

We can try to increase the learning rate to 1.3, which seems to improve overall
performance. If we further increase it to 1.4, we notice a drop in performance. If we increase
the number of base learners to 80, we notice an increase in performance for the filtered
dataset, while the original dataset seems to trade recall for F1 performance:

Dataset Metric Value
Original F1 0.788

Recall 0.765
Filtered F1 0.815

Recall 0.743

Performance of AdaBoost, learning_rate=1.3

Dataset Metric Value
Original F1 0.800

Recall 0.765
Filtered F1 0.800

Recall 0.735

Performance of AdaBoost, learning_rate=1.4

Dataset Metric Value
Original F1 0.805

Recall 0.757
Filtered F1 0.805

Recall 0.743

Performance of AdaBoost, learning_rate=1.4, ensemble_size=80

Classifying Fraudulent Transactions Chapter 9

[189]

We can, in fact, observe a Pareto front of F1 and Recall, which is directly linked to the
learning rate and number of base learners present in the ensemble. The front is depicted in
the following graph:

Pareto front of F1 and Recall for AdaBoost

XGBoost
We will also try to classify the dataset using XGBoost. As XGBoost uses trees of a maximum
depth of three, we expect that it will outperform AdaBoost without any fine-tuning. Indeed,
XGBoost is able to achieve better performance in both datasets and for all metrics (as shown
in the following table), compared to most previous ensembles:

Dataset Metric Value
Original F1 0.846

Recall 0.787
Filtered F1 0.849

Recall 0.809

XGBoost out-of-the-box performance

Classifying Fraudulent Transactions Chapter 9

[190]

By increasing the maximum depth of each tree to five, the ensemble is able to perform even
better, yielding the following results:

Dataset Metric Value
Original F1 0.862

Recall 0.801
Filtered F1 0.862

Recall 0.824

Performance with max_depth=5

Using random forests
Finally, we will employ a random forest ensemble. Once again, using validation curves, we
will determine the optimal ensemble size. From the following graph, we conclude that 50
trees provide the least possible variance in our model, thus we proceed with ensemble size
50:

Validation curves for random forest

Classifying Fraudulent Transactions Chapter 9

[191]

We provide the training and validation code as follows, as well as the achieved
performance for both datasets. The following code is responsible for loading the required
libraries and data, and training and evaluating the ensemble on the original and filtered
datasets. We first load the required libraries and data, while creating train and test splits:

--- SECTION 1 ---
Libraries and data loading
import numpy as np
import pandas as pd

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
from sklearn import metrics

np.random.seed(123456)
data = pd.read_csv('creditcard.csv')
data.Time = (data.Time-data.Time.min())/data.Time.std()
data.Amount = (data.Amount-data.Amount.mean())/data.Amount.std()
np.random.seed(123456)
data = pd.read_csv('creditcard.csv')
data.Time = (data.Time-data.Time.min())/data.Time.std()
data.Amount = (data.Amount-data.Amount.mean())/data.Amount.std()
Train-Test slpit of 70%-30%
x_train, x_test, y_train, y_test = train_test_split(
 data.drop('Class', axis=1).values, data.Class.values, test_size=0.3)

We then train and evaluate the ensemble, both on the original dataset, as well as on the
filtered dataset:

--- SECTION 2 ---
Ensemble evaluation
ensemble = RandomForestClassifier(n_jobs=4)
ensemble.fit(x_train, y_train)
print('RF f1', metrics.f1_score(y_test, ensemble.predict(x_test)))
print('RF recall', metrics.recall_score(y_test, ensemble.predict(x_test)))

--- SECTION 3 ---
Filter features according to their correlation to the target
np.random.seed(123456)
threshold = 0.1
correlations = data.corr()['Class'].drop('Class')
fs = list(correlations[(abs(correlations)>threshold)].index.values)
fs.append('Class')
data = data[fs]
x_train, x_test, y_train, y_test = train_test_split(
 data.drop('Class', axis=1).values, data.Class.values, test_size=0.3)
ensemble = RandomForestClassifier(n_jobs=4)

Classifying Fraudulent Transactions Chapter 9

[192]

ensemble.fit(x_train, y_train)
print('RF f1', metrics.f1_score(y_test, ensemble.predict(x_test)))
print('RF recall', metrics.recall_score(y_test, ensemble.predict(x_test)))

Dataset Metric Value
Original F1 0.845

Recall 0.743
Filtered F1 0.867

Recall 0.794

Random forest performance

As our dataset is highly skewed, we can speculate that changing the criterion for a tree’s
split to entropy would benefit our model. Indeed, by specifying criterion='entropy' in
the constructor (ensemble = RandomForestClassifier(n_jobs=4)), we are able to
increase the performance on the original dataset to an F1 score of 0.859 and a Recall score of
0.786, two of the highest scores for the original dataset:

Dataset Metric Value
Original F1 0.859

Recall 0.787
Filtered F1 0.856

Recall 0.787

Performance with entropy as the splitting criterion

Classifying Fraudulent Transactions Chapter 9

[193]

Comparative analysis of ensembles
As we experimented with a reduced feature dataset, where we removed features without a
strong correlation to the target variable, we would like to provide the final scores for
the best parameters of each method. In the following graph, the results are depicted, sorted
in ascending order. Bagging seems to be the most robust method when applied to the
filtered dataset. XGBoost is the second best alternative, providing decent F1 and Recall
scores when applied to the filtered dataset as well:

F1 scores

Recall scores, depicted in the following plot, show the clear advantage XGBoost has on this
metric over the other methods, as it is able to outperform all others for both the original and
filtered datasets:

Classifying Fraudulent Transactions Chapter 9

[194]

Recall scores

Summary
In this chapter, we explored the possibility of detecting fraudulent transactions using
various ensemble learning methods. While some performed better than others, due to the
dataset's nature, it is difficult to produce good results without resampling the dataset in
some way (either over-sampling or under-sampling).

We were able to show how to use each ensemble learning method and how to explore the
possibility of fine-tuning its respective parameters in order to achieve better performance.
In the next chapter, we will try to leverage ensemble learning techniques in order to predict
Bitcoin prices.

10
Predicting Bitcoin Prices

Bitcoin and other cryptocurrencies have attracted the attention of many parties over the
years, mainly due to their explosion in price levels, as well as the business opportunities
that blockchain technologies offer. In this chapter, we will attempt to predict the next day's
Bitcoin (BTC) price using historical data. There are many sources that offer cryptocurrency's
historical price data. We will use Yahoo finance data, available at
https://finance.yahoo.com/quote/BTC-USD/history/. In this chapter, we will focus on
predicting future prices and leveraging that knowledge to invest in bitcoin.

The following topics will be covered in this chapter:

Time series data
Voting
Stacking
Bagging
Boosting
Random forests

Technical requirements
You will require basic knowledge of machine learning techniques and algorithms.
Furthermore, a knowledge of python conventions and syntax is required. Finally,
familiarity with the NumPy library will greatly help the reader to understand some custom
algorithm implementations.

The code files of this chapter can be found on GitHub:

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/
master/Chapter10

Check out the following video to see the Code in Action: http://bit.ly/2JOsR7d.

https://finance.yahoo.com/quote/BTC-USD/history/
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter10
http://bit.ly/2JOsR7d
http://bit.ly/2JOsR7d
http://bit.ly/2JOsR7d
http://bit.ly/2JOsR7d
http://bit.ly/2JOsR7d
http://bit.ly/2JOsR7d
http://bit.ly/2JOsR7d
http://bit.ly/2JOsR7d
http://bit.ly/2JOsR7d

Predicting Bitcoin Prices Chapter 10

[196]

Time series data
Time series data is concerned with data instances in which each instance relates to a specific
point in time or interval. How often we measure the variable of choice defines the time
series' sampling frequency. For example, atmospheric temperature differs throughout the
day and throughout the year. We can choose to measure the temperature every hour, so we
have an hourly frequency, or we can choose to measure it each day, so we have a daily
frequency. In finance, it is not unusual to have frequencies that are between major time
intervals; this could be every 10 minutes (10m frequency) or every 4 hours (4h frequency).
Another interesting characteristic of time series is that there is usually a correlation between
instances that refer to proximal time points.

This is called autocorrelation. For example, the atmospheric temperature cannot vary by a
great magnitude between consecutive minutes. Furthermore, this enables us to utilize
earlier data points to predict future data points. An example of temperatures (an average of
3 hours) for Athens and Greece for the years 2016–2019 is provided in figure. Notice how
most temperatures are relatively close to the previous day's temperature, even though there
are variations. Furthermore, we see a repeating pattern of hot and cold months (seasons),
which is called seasonality:

Temperatures for Athens, Greece 2016–2019

Predicting Bitcoin Prices Chapter 10

[197]

To examine the level of correlation between different points in time, we utilize the
autocorrelation function (ACF). ACF measures the linear correlation between a data point
and previous points (called lags). In the following figure, the ACF for the temperature data
(resampled as the month's average) is provided. It indicates a strong positive correlation
with the first lag. This means that a month's temperature cannot deviate much from the
previous month, which is logical. For example, December and January are cold months,
and usually, their average temperatures are closer than December and March, for example.
Furthermore, there is a strong negative correlation between lags 5 and 6, indicating that a
cold winter results in a hot summer and vice versa:

ACF for the temperature data

Predicting Bitcoin Prices Chapter 10

[198]

Bitcoin data analysis
Bitcoin data is very different from temperature data. Temperatures have more or less the
same value for the same month of each year. This indicates that the distribution of
temperatures does not change over time. Time series that exhibit this behavior are called
stationary. This allows for relatively easy modeling with time series analysis tools, such as
auto regressive (AR), moving average (MA), and auto regressive integrated moving
average (ARIMA) models. Financial data is usually non-stationary, as seen in the daily
Bitcoin close data, depicted in figure. This means that the data does not exhibit the same
behavior throughout its entire history, but instead its behavior varies.

Financial data usually provides open (the first price for the day), high (the
highest price for the day), low (the lowest price for the day), and close (the
last price for the day) values.

There are clear trends in the data (time intervals where the price, on average, increases or
decreases), as well as heteroskedasticity (variable variance over time). One way to identify
stationarity is to study the ACF function.If there is a very strong correlation between lags of
a very high order that do not decay, the time series is most probably non-stationary. The
ACF for the BTC data is also provided, showing weakly decaying correlations:

BTC/USD prices for mid-2014 to present

Predicting Bitcoin Prices Chapter 10

[199]

The following figure depicts the ACF for BTC. We can clearly see that the correlations do
not drop for very high lag values:

ACF for BTC data

Take a look at the following formula:

Where p is the percentage change, tn is the price at time n, and tn-1 is the price at time n-1.
By applying the transformation to the data, we get a time series that is stationary, but less
correlated.

Predicting Bitcoin Prices Chapter 10

[200]

The following figure shows the plots for the data, and the ACF and the average 30-day
standard deviation are provided:

Transformed data

Rolling 30-day standard deviation and ACF for transformed data

Predicting Bitcoin Prices Chapter 10

[201]

Establishing a baseline
In order to establish a baseline, we will try to model the data using linear regression.
Although it is a time series, we will not directly take time into account. Instead, we will
utilize sliding windows of size S to generate features at each time point and use those
features to predict the next point. Next, we will move the window one step forward in time
to include the true value of the data point we predicted and discard the oldest data point
inside the window. We will continue this process until all data points have been predicted.
This is called walk-forward validation. One drawback is that we cannot predict the first S
data points, as we do not have enough data to generate features for them. Another point of
concern is that we need to re-train the model L-S times, in which L is the total number of
points in the time series. A graphical representation of the first two steps is provided in the
following figure:

Walk-forward validation procedure, first two steps. The procedure continues for the whole time series.

Predicting Bitcoin Prices Chapter 10

[202]

First, we load the required libraries and data from the BTC-USD.csv file. We also set the
seed for a NumPy random number generator:

import numpy as np
import pandas as pd
from simulator import simulate
from sklearn import metrics
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
np.random.seed(123456)
lr = LinearRegression()
data = pd.read_csv('BTC-USD.csv')

We then clean the data by removing entries that contain NaN values, using
data.dropna(), parse the dates using pd.to_datetime, and set the dates as an index.
Finally, we calculate the percentage differences of Close values (and discard the first value,
as it is a NaN) and save the Pandas series' length:

data = data.dropna()
data.Date = pd.to_datetime(data.Date)
data.set_index('Date', drop=True, inplace=True)
diffs = (data.Close.diff()/data.Close).values[1:]

diff_len = len(diffs)

We have created a function that generates the features at each data point. Features are
essentially the different percentages at previous lags. Thus, to fill a dataset's feature with
values, we only have to shift the data forward by as many points as the lags indicate. Any
features that do not have available data to calculate lags, will have a value of zero. The
following figure shows a toy example of a time series containing the numbers 1, 2, 3, and 4:

How lag features are filled

Predicting Bitcoin Prices Chapter 10

[203]

The actual function, to fill lag t, selects all of the data from the time series except for the last
t and places it in the corresponding feature, starting from index t. We chose to use the past
20 days as there does not seem to be any significant linear correlations after that point.
Furthermore, we scale the features and targets by a factor of 100 and round them to 8
decimal points. This is important, as it allows the reproducibility of results. If the data is not
rounded, overflow errors introduce stochasticity to the results, as shown in the following:

def create_x_data(lags=1):
 diff_data = np.zeros((diff_len, lags))

for lag in range(1, lags+1):
 this_data = diffs[:-lag]
 diff_data[lag:, lag-1] = this_data

return diff_data

REPRODUCIBILITY
x_data = create_x_data(lags=20)*100
y_data = diffs*100

Finally, we execute the walk-forward validation. We chose a training window of 150 points,
which equates to roughly 5 months. Given the data's nature and volatility, it provides a
good trade-off between having a large enough train set and capturing recent market
behaviors. A larger window would include market conditions that no longer reflect reality.
A shorter window would provide too little data and would be prone to overfitting. We
measure our model's predictive quality by utilizing the mean squared error between our
predictions and the original percentage differences:

window = 150
preds = np.zeros(diff_len-window)
for i in range(diff_len-window-1):
 x_train = x_data[i:i+window, :]
 y_train = y_data[i:i+window]
 lr.fit(x_train, y_train)
 preds[i] = lr.predict(x_data[i+window+1, :].reshape(1, -1))

print('Percentages MSE: %.2f'%metrics.mean_absolute_error(y_data[window:],
preds))

Predicting Bitcoin Prices Chapter 10

[204]

Simple linear regression might produce an MSE of 18.41. We could also attempt to
reconstruct the time series by multiplying each data point by (1 + prediction) to get the next
predicted point. Furthermore, we could attempt to take advantage of the dataset's nature
and simulate trading activity. Each time the prediction is greater than +0.5% change, we
invest 100 USD in buying Bitcoins. If we have Bitcoins in our possession and the prediction
is lower than -0.5%, we sell the Bitcoins at the current market close. To assess the quality of
our model as a trading strategy, we utilize a simplified Sharpe ratio, which is calculated as
the ratio of mean returns (percentage profits) over the standard deviation of the returns.
Higher Sharpe values indicate a better trading strategy. The formula utilized here is
calculated as follows. Usually, an alternative safe return percentage is subtracted from the
expected return, but as we only want to compare the models we will generate with each
other, we'll omit it:

When utilized as a trading strategy, linear regression is able to produce a Sharpe value of
0.19. The following figure indicates the trades and profits generated by our model. The blue
triangles indicate time points at which the strategy bought Bitcoins worth 100 USD and the
red triangles indicate the time points at which it sold the previously bought Bitcoins:

Profits and entry/exit points of our model

Predicting Bitcoin Prices Chapter 10

[205]

In the rest of this chapter, we will try to improve the MSE and Sharpe values by utilizing
the ensemble methods we presented in the previous chapters.

The simulator
Here, we'll provide a brief explanation of how the simulator works. It is implemented as a
function that accepts our standard Pandas DataFrame data and the model's predictions as
inputs. First, we'll define the buying threshold and the stake size (how much money we
invest in each buy), as well as placeholder variables. The variables will be used to store the
true and predicted time series, as well as the profits of our model (balances). Furthermore,
we define the buy_price variable, which stores the price at which we bought the Bitcoins.
If the price is 0, we assume that we do not hold any Bitcoins. The buy_points and
sell_points lists indicate the points in time when we bought or sold the Bitcoins and are
used only for plotting. Furthermore, we store the starting index, which is equivalent to the
sliding window's size as shown in the following example:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

from sklearn import metrics

def simulate(data, preds):
 # Constants and placeholders
 buy_threshold = 0.5
 stake = 100

true, pred, balances = [], [], []

buy_price = 0
 buy_points, sell_points = [], []
 balance = 0

start_index = len(data)-len(preds)-1

Predicting Bitcoin Prices Chapter 10

[206]

Next, for each point, we store the actual and predicted values. If the predicted value is
greater than 0.5 and we do not hold any Bitcoins, we buy 100 USD worth of Bitcoins. If the
predicted value is less than -0.5 and we have already bought Bitcoins, we sell them at the
current close value. We add the current profit (or loss) to our balances, cast the true and
predicted values as NumPy arrays, and produce the plots:

Calculate predicted values
 for i in range(len(preds)):

last_close = data.Close[i+start_index-1]
 current_close = data.Close[i+start_index]

Save predicted values and true values
 true.append(current_close)
 pred.append(last_close*(1+preds[i]/100))

 # Buy/Sell according to signal
 if preds[i] > buy_threshold and buy_price == 0:
 buy_price = true[-1]
 buy_points.append(i)

elif preds[i] < -buy_threshold and not buy_price == 0:
 profit = (current_close - buy_price) * stake/buy_price
 balance += profit
 buy_price = 0
 sell_points.append(i)

balances.append(balance)
 true = np.array(true)
 pred = np.array(pred)

Create plots
 plt.figure()

plt.subplot(2, 1, 1)
 plt.plot(true, label='True')
 plt.plot(pred, label='pred')
 plt.scatter(buy_points, true[buy_points]+500, marker='v',
 c='blue', s=5, zorder=10)
 plt.scatter(sell_points, true[sell_points]-500, marker='^'
 , c='red', s=5, zorder=10)
 plt.title('Trades')

plt.subplot(2, 1, 2)
 plt.plot(balances)
 plt.title('Profit')
 print('MSE: %.2f'%metrics.mean_squared_error(true, pred))

Predicting Bitcoin Prices Chapter 10

[207]

 balance_df = pd.DataFrame(balances)

pct_returns = balance_df.diff()/stake
 pct_returns = pct_returns[pct_returns != 0].dropna()

 print('Sharpe: %.2f'%(np.mean(pct_returns)/np.std(pct_returns)))

Voting
We will try to combine three basic regression algorithms by voting to improve the MSE of
the simple regression. To combine the algorithms, we will utilize the average of their
predictions. Thus, we code a simple class that creates a dictionary of base learners and
handles their training and prediction averaging. The main logic is the same as with the
custom voting classifier we implemented in Chapter 3, Voting:

import numpy as np
from copy import deepcopy

class VotingRegressor():

Accepts a list of (name, classifier) tuples
 def __init__(self, base_learners):
 self.base_learners = {}
 for name, learner in base_learners:
 self.base_learners[name] = deepcopy(learner)

 # Fits each individual base learner
 def fit(self, x_data, y_data):
 for name in self.base_learners:
 learner = self.base_learners[name]
 learner.fit(x_data, y_data)

The predictions are stored in a NumPy matrix, in which each row corresponds to a single
instance and each column corresponds to a single base learner. The row-averaged values
are the ensemble's output, as shown here:

Generates the predictions
 def predict(self, x_data):

Create the predictions matrix
 predictions = np.zeros((len(x_data), len(self.base_learners)))

names = list(self.base_learners.keys())

For each base learner

Predicting Bitcoin Prices Chapter 10

[208]

 for i in range(len(self.base_learners)):
 name = names[i]
 learner = self.base_learners[name]

Store the predictions in a column
 preds = learner.predict(x_data)
 predictions[:,i] = preds

Take the row-average
 predictions = np.mean(predictions, axis=1)
 return predictions

We chose to utilize a support vector machine, a K-Nearest Neighbors Regressor, and a
linear regression as a base learners, as they provide diverse learning paradigms. To utilize
the ensemble, we first import the required modules:

import numpy as np
import pandas as pd

from simulator import simulate
from sklearn import metrics
from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from voting_regressor import VotingRegressor

Next, in the code we presented earlier, we replace the lr =
LinearRegression() line with the following:

base_learners = [('SVR', SVR()),
 ('LR', LinearRegression()),
 ('KNN', KNeighborsRegressor())]

lr = VotingRegressor(base_learners)

By adding the two additional regressors, we are able to reduce the MSE to 16.22 and
produce a Sharpe value of 0.22.

Improving voting
Although our results are better than linear regression, we can further improve them by
removing the linear regression, thus, leaving the base learners as follows:

base_learners = [('SVR', SVR()), ('KNN', KNeighborsRegressor())]

Predicting Bitcoin Prices Chapter 10

[209]

This further improves the MSE, reducing it to 15.71. If we utilize this model as a trading
strategy, we can achieve a Sharpe value of 0.21; considerably better than simple linear
regression. The following table summarizes our results:

Metric SVR-KNN SVR-LR-KNN
MSE 15.71 16.22

Sharpe 0.21 0.22

Voting ensemble results

Stacking
Moving on to more complex ensembles, we will utilize stacking to combine basic
regressors more efficiently. Using StackingRegressor from Chapter 4, Stacking, we will
try to combine the same algorithms as we did with voting. First, we modify the predict
function of our ensemble (to allow for single-instance prediction) as follows:

 # Generates the predictions
 def predict(self, x_data):

Create the predictions matrix
 predictions = np.zeros((len(x_data), len(self.base_learners)))

names = list(self.base_learners.keys())

For each base learner
 for i in range(len(self.base_learners)):
 name = names[i]
 learner = self.base_learners[name]

Store the predictions in a column
 preds = learner.predict(x_data)
 predictions[:,i] = preds

Take the row-average
 predictions = np.mean(predictions, axis=1)
 return predictions

Predicting Bitcoin Prices Chapter 10

[210]

Again, we modify the code to use the stacking regressor, as follows:

base_learners = [[SVR(), LinearRegression(), KNeighborsRegressor()],
 [LinearRegression()]]
lr = StackingRegressor(base_learners)

In this setup, the ensemble yields a model with an MSE of 16.17 and a Sharpe value of 0.21.

Improving stacking
Our results are slightly worse than the final Voting ensemble, so we will attempt to
improve them by removing the linear regression, as we did with the voting ensemble. By
doing so, we can slightly improve our model, achieving an MSE of 16.16 and a Sharpe value
of 0.22. Comparing it to voting, stacking is slightly better as part of an investing strategy
(the same Sharpe value and a slightly better MSE), although it is unable to achieve the same
level of predictive accuracy. Its results are summarized in the following table:

Metric SVR-KNN SVR-LR-KNN
MSE 16.17 16.16

Sharpe 0.21 0.22

Stacking results

Bagging
Usually, when fitting predictive models onto financial data, variance is our main problem.
Bagging is a very useful tool to counter variance; thus, we hope that it will be able to
produce better performing models compared to simple voting and stacking. To utilize
bagging, we will use scikit's BaggingRegressor, presented in Chapter 5, Bagging. To
implement it in our experiment, we simply call it using lr = BaggingRegressor()
instead of the previous regressors. This results in an MSE of 19.45 and a Sharpe of 0.09. The
following figure depicts the profits and trades that our model generates:

Predicting Bitcoin Prices Chapter 10

[211]

Bagging profits and trades

Improving bagging
We can further improve bagging as its performance is worse than any previous model.
First, we can experiment with shallow trees, which will further reduce variance in the
ensemble. By utilizing trees with a maximum depth of 3, using lr =
BaggingRegressor(base_estimator=DecisionTreeRegressor(max_depth=3)), we
can improve the model's performance, generating an MSE of 17.59 and a Sharpe value of
0.15. Further restricting the trees' growth to max_depth=1, allows the model to achieve an
MSE of 16.7 and a Sharpe value of 0.27. If we examine the model's trading plots, we observe
a reduction in the number of trades, as well as a considerable improvement in performance
during periods in which Bitcoin's price significantly drops. This indicates that the model
can filter noise from actual signals more efficiently.

Predicting Bitcoin Prices Chapter 10

[212]

The reduction in variance has indeed helped our model to improve its performance:

Final Bagging profits and trades

The following table summarizes the results for the various bagging models we tested:

Metric DT_max_depth=1 DT_max_depth=3 DT
MSE 16.70 17.59 19.45

Sharpe 0.27 0.15 0.09

Table 3: Bagging results

Boosting
One of the most powerful ensemble learning techniques is boosting. It allows complicated
models to be generated. In this section, we will utilize XGBoost to model our time series
data. As there are many degrees of freedom (hyperparameters) when modeling with
XGBoost, we expect some level of fine-tuning to be needed to achieve satisfactory results.
By replacing our example's regressor with lr = XGBRegressor(), we can utilize XGBoost
and fit it onto our data. This results in an MSE of 19.20 and a Sharpe value of 0.13.

Predicting Bitcoin Prices Chapter 10

[213]

Figure depicts the profits and trades generated by the model. Although the Sharpe value is
lower than for other models, we can see that it continues to generate profit, even during
periods in which the Bitcoin price drops:

Trades generated by the Boosting model

Improving boosting
Due to the out-of-sample performance and the frequency at which boosting is bought and
sold, we can assume it is overfitting the training data. Therefore, we'll will try to regularize
its learning. The first step is to limit the maximum depth of individual trees. We start by
imposing an upper limit of 2, using max_depth=2. This slightly improves our model,
yielding an MSE of 19.14 and a Sharpe value of 0.17. Further limiting the overfitting
capabilities of the model by using only 10 base learners (n_estimators=10), the model
achieves additional improvement.

Predicting Bitcoin Prices Chapter 10

[214]

The MSE of the model is reduced to 16.39 and the Sharpe value is increased to 0.21. Adding
an L1 regularization term of 0.5 (reg_alpha=0.5) only reduces the MSE to 16.37. We have
come to a point where further fine-tuning will not contribute much performance to our
model. At this point, our regressor looks like this:

lr = XGBRegressor(max_depth=2, n_estimators=10, reg_alpha=0.5)

Given the capabilities of XGBoost, we will try to increase the amount of information
available to the model. We will increase the available feature lags to 30 and add a rolling
mean of the previous 15 lags to the features. To do this, we modify the feature creation
section of the code as follows:

def create_x_data(lags=1):
 diff_data = np.zeros((diff_len, lags))
 ma_data = np.zeros((diff_len, lags))

 diff_ma =
(data.Close.diff()/data.Close).rolling(15).mean().fillna(0).values[1:]
 for lag in range(1, lags+1):
 this_data = diffs[:-lag]
 diff_data[lag:, lag-1] = this_data

 this_data = diff_ma[:-lag]
 ma_data[lag:, lag-1] = this_data
 return np.concatenate((diff_data, ma_data), axis=1)

x_data = create_x_data(lags=30)*100
y_data = diffs*100

This increases the trading performance of our model, achieving a Sharpe value of 0.32—the
highest of all of the models, while it also increases its MSE to 16.78. The trades generated by
this model are depicted in figure and in the table that follows. It is interesting to note that
the number of buys has greatly reduced, a behavior that bagging also exhibited when we
managed to improve its performance as an investment strategy:

Predicting Bitcoin Prices Chapter 10

[215]

Final boosting model performance

Metric md=2/ne=10/reg=0.5+data md=2/ne=10/reg=0.5 md=2/ne=10 md=2 xgb
MSE 16.78 16.37 16.39 19.14 19.20

Sharpe 0.32 0.21 0.21 0.17 0.13

Metrics for all boosting models

Random forests
Finally, we will utilize random forests to model our data. Although we expect that the
ensemble to be able to utilize the information from additional lags and the rolling average,
we will start with only 20 lags and the return percentages as inputs. Thus, our initial
regressor is simply RandomForestRegressor(). This results in a model that does not
perform very well. Its MSE is 19.02 and its Sharpe value is 0.11.

Predicting Bitcoin Prices Chapter 10

[216]

The following figure depicts the trades that the model generates:

Trades of random forest model

Improving random forest
In an attempt to improve our model, we try to restrict its overfitting capabilities, imposing a
maximum depth of 3 for each tree. This results in considerable performance improvement
as the model achieves an MSE of 17.42 and a Sharpe value of 0.17. Further restricting the
maximum depth to 2 improves the MSE score slightly more to 17.13, but reduces its Sharpe
value to 0.16. Finally, increasing the ensemble's size to 50, using n_estimators=50,
produces a considerably better model, with an MSE of 16.88 and a Sharpe value of 0.23. As
we have only used the original feature set (20 lags of return percentages), we wish to also
experiment with the expanded dataset we utilized in the boosting section. By adding the
15-day rolling average, as well as increasing the number of available lags to 30, the model
can increase its Sharpe value to 0.24, although its MSE also increases to 18.31. The trades
generated by the model are depicted in figure:

Predicting Bitcoin Prices Chapter 10

[217]

Random forest's results with the expanded dataset

The model's results are summarized in the following table:

Metric md=2/ne=50+data md=2/ne=50 md=2 md=3 RF
MSE 18.31 16.88 17.13 17.42 19.02

Sharpe 0.24 0.23 0.16 0.17 0.11

Metrics for all random forest models

Summary
In this chapter, we tried to model historical Bitcoin prices using all of the ensemble methods
presented in earlier chapters of this book. As with most datasets, there are many decisions
that affect a model's quality. Data preprocessing and feature engineering are some of the
most important factors, especially when the dataset's nature does not allow direct modeling
of the data. Time series datasets fall into this category, in which the construction of
appropriate features and targets is required. By transforming our non-stationary time series
to stationary, we improved the algorithm's ability to model the data.

Predicting Bitcoin Prices Chapter 10

[218]

To assess the quality of our models, we used the MSE of return percentages, as well as the
Sharpe ratio (in which we assumed that the model was utilized as a trading strategy). When
MSE is concerned, the best performing ensemble proved to be the simple voting ensemble.
The ensemble consisted of an SVM and KNN regressor, without any hyperparameter fine-
tuning, achieving an MSE of 15.71. As a trading strategy, XGBoost proved to be the best
ensemble, achieving a Sharpe value of 0.32. Although not exhaustive, this chapter has
explored the possibilities and techniques used in time series modeling using ensemble
learning methods.

In the next chapter, we will leverage the capabilities of ensemble learning methods, in order
to predict the sentiment of various tweets.

11
Evaluating Sentiment on Twitter

Twitter is a highly popular social network with over 300 million monthly active users. The
platform has been developed around short posts (limited to a number of characters;
currently, the limit is 280 characters). The posts themselves are called tweets. On average,
6000 tweets are tweeted every second, which equates to around 200 billion tweets per year.
This constitutes a huge amount of data that contains an equal amount of information. As is
obvious, it is not possible to analyze this volume of data by hand. Thus, automated
solutions have been employed, both by Twitter and third parties. One of the hottest topics
involves a tweet's sentiment, or how the user feels about the topic that they tweets.
Sentiment analysis comes in many flavors. The most common approach is a positive or
negative classification of each tweet. Other approaches involve a more complex analysis of
positive and negative emotions, such as anger, disgust, fear, happiness, sadness, and
surprise. In this chapter, we will briefly present some sentiment analysis tools and
practices. Following this, we will cover the basics of building a classifier that leverages
ensemble learning techniques in order to classify tweets. Finally, we will see how we can
classify tweets in real time by using Twitter's API.

We will cover the following topics in this chapter:

Sentiment analysis tools
Getting Twitter data
Creating a model
Classifying tweets in real time

Technical requirements
You will require basic knowledge of machine learning techniques and algorithms.
Furthermore, a knowledge of python conventions and syntax is required. Finally,
familiarity with the NumPy library will greatly help the reader to understand some custom
algorithm implementations.

Evaluating Sentiment on Twitter Chapter 11

[220]

The code files of this chapter can be found on GitHub:

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/
master/Chapter11

Check out the following video to see the Code in Action: http://bit.ly/2XSLQ5U.

Sentiment analysis tools
Sentiment analysis can be implemented in a number of ways. The easiest to both implement
and understand are lexicon-based approaches. These methods leverage the use of lists
(lexicons) of polarized words and expressions. Given a sentence, these methods count the
number of positive and negative words and expressions. If there are more positive
words/expressions, the sentence is labeled as positive. If there are more negative than
positive words/expressions, the sentence is labeled as negative. If the number of positive
and negative words/expressions are equal, the sentence is labeled as neutral. Although this
approach is relatively easy to code and does not require any training, it has two major
disadvantages. First, it does not take into account interactions between words. For example,
not bad, which is actually a positive expression, can be classified as negative, as it is
composed of two negative words. Even if the expression is included in the lexicon under
positive, the expression not that bad may not be included. The second disadvantage is that
the whole process relies on good and complete lexicons. If the lexicon omits certain words,
the results can be very poor.

Another approach is to train a machine learning model in order to classify sentences. In
order to do so, a training dataset has to be created, where a number of sentences are labeled
as positive or negative by human experts. This process indirectly uncovers a hidden
problem in (and also indicates the difficulty of) sentiment analysis. Human analysts agree
on 80% to 85% of the cases. This is partly due to the subjective nature of many expressions.
For example, the sentence Today the weather is nice, yesterday it was bad, can be either
positive, negative, or neutral. This depends on intonation. Assuming that the bold word is
intonated, Today the weather is nice, yesterday it was bad is positive. Today the weather is nice,
yesterday it was bad is negative, while Today the weather is nice, yesterday it was bad is actually
neutral (a simple observation of a change in the weather).

You can read more about the problem of disagreement between human
analysts in sentiment classification at: https://www.lexalytics.com/
lexablog/sentiment-accuracy-quick-overview.

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter11
http://bit.ly/2XSLQ5U
http://bit.ly/2XSLQ5U
http://bit.ly/2XSLQ5U
http://bit.ly/2XSLQ5U
http://bit.ly/2XSLQ5U
http://bit.ly/2XSLQ5U
http://bit.ly/2XSLQ5U
http://bit.ly/2XSLQ5U
http://bit.ly/2XSLQ5U
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview
https://www.lexalytics.com/lexablog/sentiment-accuracy-quick-overview

Evaluating Sentiment on Twitter Chapter 11

[221]

In order to create machine learning features from text data, usually, n-grams are created. N-
grams are sequences of n words extracted from each sentence. For example, the sentence
"Hello there, kids" contains the following:

1-grams: "Hello", "there,", "kids"
2-grams: "Hello there,”, "there, kids"
3-grams: "Hello there, kids"

In order to create numeric features for a dataset, a single feature is created for each unique
N-gram. For each instance, the feature's value depends on the number of times it appears in
the sentence. For example, consider the following toy dataset:

Sentence Polarity
My head hurts Positive

The food was good food Negative
The sting hurts Positive

That was a good time Negative

A sentiment toy dataset

Assume that we will only use 1-grams (unigrams). The unique unigrams contained in the
dataset are: "My", "head", "hurts", "The", "food", "was", "good", "sting", "That", "a", and
"time". Thus, each instance has 11 features. Each feature corresponds to a single n-gram (in
our case, a unigram). Each feature’s value equals the number of appearances of the
corresponding n-gram in the instance. The final dataset is depicted in the following table:

My Head Hurts The Food Was Good Sting That A Time Polarity
1 1 1 0 0 0 0 0 0 0 0 Positive
0 0 0 1 2 1 1 0 0 0 0 Negative
0 0 1 1 0 0 0 1 0 0 0 Positive
0 0 0 0 0 1 1 0 1 1 1 Negative

The extracted features dataset

Evaluating Sentiment on Twitter Chapter 11

[222]

Usually, each instance is normalized, so each feature represents the relative frequency,
rather than the absolute frequency (count), of each n-gram. This method is called Term
Frequency (TF). The TF dataset is depicted as follows:

My Head Hurts The Food Was Good Sting That A Time Polarity
0.33 0.33 0.33 0 0 0 0 0 0 0 0 Positive

0 0 0 0.2 0.4 0.2 0.2 0 0 0 0 Negative
0 0 0.33 0.33 0 0 0 0.33 0 0 0 Positive
0 0 0 0 0 0.2 0.2 0 0.2 0.2 0.2 Negative

The TF dataset

In the English language, some terms exhibit a really high frequency, while contributing
little towards the expression’s sentiment. In order to account for this fact, Inverse
Document Frequency (IDF) is employed. IDF puts more emphasis on infrequent terms. For
N instances with K unique unigrams, the IDF of unigram u, which is present in M instances,
is calculated as follows:

The following table depicts the IDF-transformed dataset:

My Head Hurts The Food Was Good Sting That A Time Polarity
0.6 0.6 0.3 0 0 0 0 0 0 0 0 Positive
0 0 0 0.3 0.6 0.3 0.3 0 0 0 0 Negative
0 0 0.3 0.3 0 0 0 0.6 0 0 0 Positive
0 0 0 0 0 0.3 0.3 0 0.6 0.6 0.6 Negative

The IDF dataset

Stemming
Stemming is another practice usually utilized in sentiment analysis. It is the process of
reducing words to their root. This lets us handle words that originate from the same root as
a single unigram. For example, love, loving, and loved will be all handled as the same
unigram, love.

Evaluating Sentiment on Twitter Chapter 11

[223]

Getting Twitter data
There are a number of ways to gather Twitter data. From web scraping to using custom
libraries, each one has different advantages and disadvantages. For our implementation, as
we also need sentiment labeling, we will utilize the Sentiment140 dataset
(http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip). The reason that
we do not collect our own data is mostly due to the time we would need to label it. In the
last section of this chapter, we will see how we can collect our own data and analyze it in
real time. The dataset consists of 1.6 million tweets, containing the following 6 fields:

The tweet's polarity
A numeric ID
The date it was tweeted
The query used to record the tweet
The user's name
The tweet's text content

For our models, we will only need the tweet's text and polarity. As can be seen in the
following graph, there are 800,000 positive (with a polarity 4) and 800,000 negative (with a
polarity 0) tweets:

Polarity distribution

http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip

Evaluating Sentiment on Twitter Chapter 11

[224]

Here, we can also verify the statement we made earlier about word frequencies. The
following graph depicts the 30 most common words in the dataset. As is evident, none of
them bears any sentiment. Thus, an IDF transform would be more beneficial to our models:

The 30 most common words in the dataset and the number of occurrences of each

Creating a model
The most important step in sentiment analysis (as is the case with most machine learning
problems) is the preprocessing of our data. The following table contains 10 tweets,
randomly sampled from the dataset:

id text
44 @JonathanRKnight Awww I soo wish I was there to see...

143873 Shaking stomach flipping........god i hate thi...
466449 why do they refuse to put nice things in our v...

Evaluating Sentiment on Twitter Chapter 11

[225]

1035127 @KrisAllenmusic visit here
680337 Rafa out of Wimbledon Love Drunk by BLG out S...
31250 It's official, printers hate me Going to sul...

1078430 @_Enigma__ Good to hear
1436972 Dear Photoshop CS2. i love you. and i miss you!
401990 my boyfriend got in a car accident today !
1053169 Happy birthday, Wisconsin! 161 years ago, you ...

An outline of 10 random samples from the dataset

We can immediately make the following observations. First, there are references to other
users, for example, @KrisAllenmusic. These references do not provide any information
about the tweet's sentiment. Thus, during preprocessing, we will remove them. Second,
there are numbers and punctuation. These also do not contribute to the tweet’s sentiment,
so they must also be removed. Third, some letters are capitalized while others are not. As
capitalization does not alter the word’s sentiment, we can choose to either convert all letters
to lowercase or to convert them to uppercase. This ensures that words such as LOVE, love,
and Love will be handled as the same unigram. If we sample more tweets, we can identify
more problems. There are hashtags (such as #summer), which also do not contribute to the
tweet’s sentiment. Furthermore, there are URL links (for example https://www.packtpub.
com/eu/) and HTML attributes (such as & which corresponds to &). These will also be
removed during our preprocessing.

In order to preprocess our data, first, we must import the required libraries. We will use
pandas; Python's built-in regular expressions library, re; punctuation from string; and
the Natural Language Toolkit (NLTK). The nltk library can be easily installed either
through pip or conda as follows:

import pandas as pd
import re
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from string import punctuation

https://www.packtpub.com/eu/
https://www.packtpub.com/eu/
https://www.packtpub.com/eu/
https://www.packtpub.com/eu/
https://www.packtpub.com/eu/
https://www.packtpub.com/eu/
https://www.packtpub.com/eu/
https://www.packtpub.com/eu/
https://www.packtpub.com/eu/
https://www.packtpub.com/eu/
https://www.packtpub.com/eu/

Evaluating Sentiment on Twitter Chapter 11

[226]

After loading the libraries, we load the data, change the polarity from [0, 4] to [0, 1], and
discard all fields except for the text content and the polarity:

Read the data and assign labels
labels = ['polarity', 'id', 'date', 'query', 'user', 'text']
data = pd.read_csv("sent140.csv", names=labels)

Keep only text and polarity, change polarity to 0-1
data = data[['text', 'polarity']]
data.polarity.replace(4, 1, inplace=True)

As we saw earlier, many words do not contribute to a tweet's sentiment, although they
frequently appear in text. Search engines handle this by removing such words, which are
called stop words. NLTK has a list of the most common stop words that we are going to
utilize. Furthermore, as there are a number of stop words that are contractions (such as
"you're" and "don't") and tweets frequently omit single quotes in contractions, we expand
the list in order to include contractions without single quotes (such as "dont"):

Create a list of stopwords
stops = stopwords.words("english")
Add stop variants without single quotes
no_quotes = []
for word in stops:
 if "'" in word:
 no_quotes.append(re.sub(r'\'', '', word))
stops.extend(no_quotes)

We then define two distinct functions. The first function, clean_string, cleans the tweet
by removing all elements we discussed earlier (such as references, hashtags, and so on). The
second function removes all punctuation or stop word and stems each word, by utilizing
NLTK's PorterStemmer:

def clean_string(string):
 # Remove HTML entities
 tmp = re.sub(r'\&\w*;', '', string)
 # Remove @user
 tmp = re.sub(r'@(\w+)', '', tmp)
 # Remove links
 tmp = re.sub(r'(http|https|ftp)://[a-zA-Z0-9\\./]+', '', tmp)
 # Lowercase
 tmp = tmp.lower()
 # Remove Hashtags
 tmp = re.sub(r'#(\w+)', '', tmp)
 # Remove repeating chars
 tmp = re.sub(r'(.)\1{1,}', r'\1\1', tmp)
 # Remove anything that is not letters
 tmp = re.sub("[^a-zA-Z]", " ", tmp)

Evaluating Sentiment on Twitter Chapter 11

[227]

 # Remove anything that is less than two characters
 tmp = re.sub(r'\b\w{1,2}\b', '', tmp)
 # Remove multiple spaces
 tmp = re.sub(r'\s\s+', ' ', tmp)
 return tmp

def preprocess(string):
 stemmer = PorterStemmer()
 # Remove any punctuation character
 removed_punc = ''.join([char for char in string if char not in
punctuation])
 cleaned = []
 # Remove any stopword
 for word in removed_punc.split(' '):
 if word not in stops:
 cleaned.append(stemmer.stem(word.lower()))
 return ' '.join(cleaned)

As we would like to compare the performance of the ensemble with the base learners
themselves, we will define a function that will evaluate any given classifier. The two most
important factors that will define our dataset are the n-grams we will use and the number
of features. Scikit-learn has an implementation of an IDF feature extractor, the
TfidfVectorizer class. This allows us to only utilize the top M most frequent features, as
well as define the n-gram range we will use, through the max_features and ngram_range
parameters. It creates sparse arrays of features, which saves a great deal of memory, but the
results must be converted to normal arrays before they can be processed by scikit-learn's
classifiers. This is achieved by calling the toarray() function.
Our check_features_ngrams function accepts the number of features, a tuple of
minimum and maximum n-grams, and a list of named classifiers (a name, classifier tuple).
It extracts the required features from the dataset and passes them to the nested
check_classifier. This function trains and evaluates each classifier, as well as exports
the results to the specified file, outs.txt:

def check_features_ngrams(features, n_grams, classifiers):
 print(features, n_grams)

 # Create the IDF feature extractor
 tf = TfidfVectorizer(max_features=features, ngram_range=n_grams,
 stop_words='english')

 # Create the IDF features
 tf.fit(data.text)
 transformed = tf.transform(data.text)
 np.random.seed(123456)

 def check_classifier(name, classifier):

Evaluating Sentiment on Twitter Chapter 11

[228]

 print('--'+name+'--')

 # Train the classifier
 x_data = transformed[:train_size].toarray()
 y_data = data.polarity[:train_size].values
 classifier.fit(x_data, y_data)
 i_s = metrics.accuracy_score(y_data, classifier.predict(x_data))

 # Evaluate on the test set
 x_data = transformed[test_start:test_end].toarray()
 y_data = data.polarity[test_start:test_end].values
 oos = metrics.accuracy_score(y_data, classifier.predict(x_data))

 # Export the results
 with open("outs.txt","a") as f:
 f.write(str(features)+',')
 f.write(str(n_grams[-1])+',')
 f.write(name+',')
 f.write('%.4f'%i_s+',')
 f.write('%.4f'%oos+'\n')

 for name, classifier in classifiers:
 check_classifier(name, classifier)
Finally, we test for n-grams in the range of [1, 3] and for the top 500,
1000, 5000, 10000, 20000, and 30000 features.

Create csv header
with open("outs.txt","a") as f:
 f.write('features,ngram_range,classifier,train_acc,test_acc')
Test all features and n-grams combinations
for features in [500, 1000, 5000, 10000, 20000, 30000]:
 for n_grams in [(1, 1), (1, 2), (1, 3)]:
 # Create the ensemble
 voting = VotingClassifier([('LR', LogisticRegression()),
 ('NB', MultinomialNB()),
 ('Ridge', RidgeClassifier())])
 # Create the named classifiers
 classifiers = [('LR', LogisticRegression()),
 ('NB', MultinomialNB()),
 ('Ridge', RidgeClassifier()),
 ('Voting', voting)]
 # Evaluate them
 check_features_ngrams(features, n_grams, classifiers)

Evaluating Sentiment on Twitter Chapter 11

[229]

The results are depicted in the following diagram. As is evident, as we increase the number
of features, the accuracy increases for all classifiers. Furthermore, if the number of features
is relatively small, unigrams outperform combinations of unigrams and bigrams/trigrams.
This is due to the fact that the most frequent expressions are not sentimental. Finally,
although voting exhibits a relatively satisfactory performance, it is not able to outperform
logistic regression:

Results of voting and base learners

Classifying tweets in real time
We can use our model in order to classify tweets in real time using Twitter’s API. In order
to simplify things, we will make use of a very popular wrapper library for the API, tweepy
(https://github.com/tweepy/tweepy). Installation is easily achieved with pip install
tweepy. The first step to accessing Twitter programmatically is to generate relevant
credentials. This is achieved by navigating to https://apps.twitter.com/ and selecting
Create an app. The application process is straightforward and should be accepted quickly.

https://github.com/tweepy/tweepy
https://github.com/tweepy/tweepy
https://github.com/tweepy/tweepy
https://github.com/tweepy/tweepy
https://github.com/tweepy/tweepy
https://github.com/tweepy/tweepy
https://github.com/tweepy/tweepy
https://github.com/tweepy/tweepy
https://github.com/tweepy/tweepy
https://github.com/tweepy/tweepy
https://github.com/tweepy/tweepy
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/

Evaluating Sentiment on Twitter Chapter 11

[230]

Using tweepy's StreamListener, we will define a class that listens for incoming tweets,
and as soon as they arrive, it classifies them and prints the original text and predicted
polarity. First, we will load the required libraries. As a classifier, we will utilize the voting
ensemble we trained earlier. First, we load the required libraries. We need the json library,
as tweets are received in the JSON format; parts of the tweepy library; as well as the scikit-
learn components we utilized earlier. Furthermore, we store our API keys in variables:

import pandas as pd
import json
from sklearn.ensemble import VotingClassifier
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression, RidgeClassifier
from sklearn.naive_bayes import MultinomialNB
from tweepy import OAuthHandler, Stream, StreamListener
Please fill your API keys as strings
consumer_key="HERE,"
consumer_secret="HERE,"

access_token="HERE,"
access_token_secret="AND HERE"

We then proceed to create and train our TfidfVectorizer and VotingClassifier with
30,000 features and n-grams in the [1, 3] range:

Load the data
data = pd.read_csv('sent140_preprocessed.csv')
data = data.dropna()
Replicate our voting classifier for 30.000 features and 1-3 n-grams
train_size = 10000
tf = TfidfVectorizer(max_features=30000, ngram_range=(1, 3),
 stop_words='english')
tf.fit(data.text)
transformed = tf.transform(data.text)
x_data = transformed[:train_size].toarray()
y_data = data.polarity[:train_size].values
voting = VotingClassifier([('LR', LogisticRegression()),
 ('NB', MultinomialNB()),
 ('Ridge', RidgeClassifier())])
voting.fit(x_data, y_data)

Evaluating Sentiment on Twitter Chapter 11

[231]

We then proceed with defining our StreamClassifier class, responsible for listening for
incoming tweets and classifying them as they arrive. It inherits the StreamListener class
from tweepy. By overriding the on_data function, we are able to process tweets as they
arrive through the stream. The tweets arrive in JSON format, so we first parse them with
json.loads(data), which returns a dictionary, and then extract the text using the "text"
key. We can then extract the features using the fitted vectorizer and utilize the features
in order to predict its polarity:

Define the streaming classifier
class StreamClassifier(StreamListener):
 def __init__(self, classifier, vectorizer, api=None):
 super().__init__(api)
 self.clf = classifier
 self.vec = vectorizer
 # What to do when a tweet arrives
 def on_data(self, data):
 # Create a json object
 json_format = json.loads(data)
 # Get the tweet's text
 text = json_format['text']
 features = self.vec.transform([text]).toarray()
 print(text, self.clf.predict(features))
 return True
 # If an error occurs, print the status
 def on_error(self, status):
 print(status)

Finally, we instantiate StreamClassifier, passing as arguments, the trained voting
ensemble and TfidfVectorizer and authenticate using the OAuthHandler. In order to
start the stream, we instantiate a Stream object with the OAuthHandler and
StreamClassifier objects as parameters and define the keywords we want to track with
filter(track=['Trump']). In this case, we track tweets that contain the keyword
'Trump' as shown here:

Create the classifier and authentication handlers
classifier = StreamClassifier(classifier=voting, vectorizer=tf)
auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)

Listen for specific hashtags
stream = Stream(auth, classifier)
stream.filter(track=['Trump'])

Evaluating Sentiment on Twitter Chapter 11

[232]

That's it! The preceding code now tracks any tweet containing the keyword Trump and
predicts its sentiment in real time. The following table depicts some simple tweets that were
classified:

Text Polarity
RT @BillyBaldwin: Only two things funnier than my brothers impersonation of

Trump. Your daughters impersonation of being an honest, decent… Negative

RT @danpfeiffer: This is a really important article for Democrats to read. Media
reports of Trump’s malfeasance is only the start. It's the… Positive

RT @BillKristol: "In other words, Trump had backed himself, not Mexico, into a
corner. They had him. He had to cave. And cave he did. He go… Positive

RT @SenJeffMerkley: That Ken Cuccinelli started today despite not being
nominated is unacceptable. Trump is doing an end run around the Sen… Negative

Example of tweets being classified

Summary
In this chapter, we discussed the possibility of using ensemble learning in order to classify
tweets. Although a simple logistic regression can outperform ensemble learning techniques,
it is an interesting introduction to the realm of natural language processing and the
techniques that are used in order to preprocess the data and extract useful features. In
summary, we introduced the concepts of n-grams, IDF feature extraction, stemming, and
stop word removal. We discussed the process of cleaning the data, as well as training a
voting classifier and using it to classify tweets in real time using Twitter's API.

In the next chapter, we will see how ensemble learning can be utilized in the design of
recommender systems, with the aim of recommending movies to a specific user.

12
Recommending Movies with

Keras
Recommendation systems are an invaluable tool. They are able to increase both customer
experience and a company's profitability. Such systems work by recommending items that
users will probably like, based on other items they have already liked. For example, when
shopping for a smartphone on Amazon, accessories for that specific smartphone will be
recommended. This improves the customer's experience (as they do not need to search for
accessories), while it also increases Amazon's profits (for example, if the user did not know
that there are accessories available for sale).

In this chapter, we will cover the following topics:

Demystifying recommendation systems
Neural recommendation systems
Using Keras for movie recommendations

In this chapter, we will utilize the MovieLens dataset (available
at http://files.grouplens.org/datasets/movielens/ml-latest-small.zip) in order to
create a movie recommendation system using the Keras deep learning framework and
ensemble learning techniques.

We would like to thank the GroupLens members for giving us permission
to use their data in this book. For more information about the data, please
read the following relevant paper:

F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets:
History and Context. ACM Transactions on Interactive Intelligent Systems
(TiiS) 5, 4, Article 19 (December 2015), 19 pages.

The paper is available at: http://dx.doi.org/10.1145/2827872

http://files.grouplens.org/datasets/movielens/ml-latest-small.zip
http://dx.doi.org/10.1145/2827872

Recommending Movies with Keras Chapter 12

[234]

Technical requirements
You will require basic knowledge of machine learning techniques and algorithms.
Furthermore, a knowledge of python conventions and syntax is required. Finally,
familiarity with the NumPy library will greatly help the reader to understand some custom
algorithm implementations.

The code files of this chapter can be found on GitHub:

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/
master/Chapter12

Check out the following video to see the Code in Action: http://bit.ly/2NXZqVE.

Demystifying recommendation systems
Although the inner workings of recommendation systems may seem intimidating at first,
they are actually quite intuitive. Let's take an example of various movies and users. Each
user has the option to rate a movie on a scale of 1 to 5. The recommendation system will try
to find users with similar preferences to a new user, and will then recommend movies that
the new user will probably like, as similar users also like them. Let's take the following
simple example, consisting of four users and six movies:

User Interstellar 2001: A Space
Odyssey The Matrix Full Metal

Jacket Jarhead Top Gun

U0 5 4 2 1
U1 1 4 4 3
U2 4 4 1
U3 4 5 5 4

Ratings for each movie from each user

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter12
http://bit.ly/2NXZqVE
http://bit.ly/2NXZqVE
http://bit.ly/2NXZqVE
http://bit.ly/2NXZqVE
http://bit.ly/2NXZqVE
http://bit.ly/2NXZqVE
http://bit.ly/2NXZqVE
http://bit.ly/2NXZqVE
http://bit.ly/2NXZqVE

Recommending Movies with Keras Chapter 12

[235]

As is evident, each user has rated a number of movies, although not all users watched the
same movies and each user liked different movies. If we want to recommend a movie to
user two (U2), we must first find the most similar users. We can then make predictions in a
k-Nearest Neighbor (k-NN) fashion, using the K most similar users. Of course, we can see
that the user probably likes sci-fi films, but we need a quantitative method to measure it. If
we treat each user's preferences as a vector, we have four vectors of six elements. We can
then compute the cosine between any two vectors. If the vectors align perfectly, the cosine
will be 1, indicating a perfect equality. If the vectors are completely opposite, it will be -1,
indicating a perfect disagreement between the two users' preferences. The only problem
that arises is the fact that not all movies have been rated by each user. We can fill empty
entries with zeros, in order to compute the cosine similarities. The following graph shows
the cosine similarities between the users:

Cosine similarities between users

Recommending Movies with Keras Chapter 12

[236]

We notice that users U0 and U3 exhibit a high level of similarity with U2. The problem is
that U0 also exhibits high similarity with U1, although their ratings are complete opposites.
This is due to the fact that we fill any non-rated movie with 0, meaning all users who have
not watched a movie agree that they do not like it. This can be remedied by first subtracting
the mean of each user's ratings from their ratings. This normalizes the values and centers
them around 0. Following this, we assign 0 to any movie the user has not yet rated. This
indicates that the user is indifferent toward this movie and the user's mean rating is not
altered. By computing the centered cosine similarity, we get the following values:

Centered cosine similarities between users

Recommending Movies with Keras Chapter 12

[237]

We can now see that U2 is similar to U0 and U3, while U1 and U0 are quite dissimilar. In
order to compute a prediction about movies that U2 has not seen, but that the nearest K
neighbors have seen, we will compute the weighted average for each movie, using the
cosine similarities as weights. We only do this for movies that all similar users have rated,
but that the target user has not rated yet. This gives us the following predicted ratings. If
we were to recommend a single movie to U2, we would recommend 2001: A Space Odyssey,
a sci-fi film, as we speculated earlier:

Interstellar 2001: A Space Odyssey The Matrix Full Metal Jacket Jarhead Top Gun
- 4.00 - 3.32 2.32 -

Predicted ratings for user U2

This recommendation method is called collaborative filtering. When we search for similar
users, as we did in this small example, it is called user-user filtering. We can also apply this
method to search for similar items by transposing the ratings table. This is called item-item
filtering, and it usually performs better in real-world applications. This is due to the fact
that items usually belong to more well-defined categories, when compared to users. For
example, a movie can be an action movie, a thriller, a documentary, or a comedy with little
overlap between the genres. A user may like a certain mix of those categories; thus, it is
easier to find similar movies, rather than similar users.

Neural recommendation systems
Instead of explicitly defining similarity metrics, we can utilize deep learning techniques in
order to learn good representations and mappings of the feature space. There are a number
of ways to employ neural networks in order to build recommendation systems. In this
chapter, we will present two of the simplest ways to do so in order to demonstrate the
ability to incorporate ensemble learning into the system. The most important piece that we
will utilize in our networks is the embedding layer. These layer types accept an integer
index as input and map it to an n-dimensional space. For example, a two-dimensional
mapping could map 1 to [0.5, 0.5]. Utilizing these layers, we will be able to feed the user's
index and the movie's index to our network, and the network will predict the rating for the
specific user-movie combination.

Recommending Movies with Keras Chapter 12

[238]

The first architecture that we will test consists of two embedding layers, where we will
multiply their outputs using a dot product, in order to predict the user's rating of the
movie. The architecture is depicted in the following diagram. Although it is not a
traditional neural network, we will utilize backpropagation in order to train the parameters
of the two embedding layers:

Simple dot product architecture

The second architecture is a more traditional neural network. Instead of relying on a
predefined operation to combine the outputs of the embedding layers (the dot product), we
will allow the network to find the optimal way to combine them. Instead of a dot product,
we will feed the output of the embedding layers to a series of fully-connected (dense)
layers. The architecture is depicted in the following diagram:

Recommending Movies with Keras Chapter 12

[239]

The fully connected architecture

In order to train the networks, we will utilize the Adam optimizer, and we will use the
mean squared error (MSE) as a loss function. Our goal will be to predict the ratings of
movies for any given user as accurately as possible. As the embedding layers have a
predetermined output dimension, we will utilize a number of networks with different
dimensions in order to create a stacking ensemble. Each individual network will be a
separate base learner, and a relatively simple machine learning algorithm will be utilized in
order to combine the individual predictions.

Recommending Movies with Keras Chapter 12

[240]

Using Keras for movie recommendations
In this section, we will utilize Keras as a deep learning framework in order to build our
models. Keras can easily be installed by using either pip (pip install keras) or conda
(conda install -c conda-forge keras). In order to build the neural networks, we
must first understand our data. The MovieLens dataset consists of almost 100,000 samples
and 4 different variables:

userId: A numeric index corresponding to a specific user
movieId: A numeric index corresponding to a specific movie
rating: A value between 0 and 5
timestamp: The specific time when the user rated the movie

A sample from the dataset is depicted in the following table. As is evident, the dataset is
sorted by the userId column. This can potentially create overfitting problems in our
models. Thus, we will shuffle the data before any split happens. Furthermore, we will not
utilize the timestamp variable in our models, as we do not care about the order in which
the movies were rated:

userId movieId rating timestamp
1 1 4 964982703
1 3 4 964981247
1 6 4 964982224
1 47 5 964983815
1 50 5 964982931

A sample from the dataset

By looking at the distribution of ratings on the following graph, we can see that most
movies were rated at 3.5, which is above the middle of the rating scale (2.5). Furthermore,
the distribution shows a left tail, indicating that most users are generous with their ratings.
Indeed, the first quartile of the ratings spans from 0.5 to 3, while the other 75% of the
ratings lie in the 3-5 range. In other words, a user only rates 1 out of 4 movies with a value
of less than 3:

Recommending Movies with Keras Chapter 12

[241]

Ratings' distribution

Creating the dot model
Our first model will consist of two embedding layers, one for the movie index and one for
the user index, as well as their dot product. We will use the keras.layers package, which
contains the necessary layer implementations, as well as the Model implementation from
the keras.models package. The layers that we will utilize are as follows:

TheInput layer, which is responsible for creating Keras tensors from more
conventional Python data types
The Embedding layer, which is the implementation of embedding layers
The Flatten layer, which transforms any Keras n-dimensional tensor to a single
dimensional tensor
The Dot layer, which implements the dot product

Recommending Movies with Keras Chapter 12

[242]

Furthermore, we will utilize train_test_split and metrics from sklearn:

from keras.layers import Input, Embedding, Flatten, Dot, Dense, Concatenate
from keras.models import Model
from sklearn.model_selection import train_test_split
from sklearn import metrics

import numpy as np
import pandas as pd

Apart from setting the random seed of numpy, we define a function that loads and
preprocesses our data. We read the data from the .csv file, drop the timestamp, and
shuffle the data by utilizing the shuffle function of pandas. Furthermore, we create a
train/test split of 80%/20%. We then re-map the dataset's indices in order to have
consecutive integers as indices:

def get_data():
 # Read the data and drop timestamp
 data = pd.read_csv('ratings.csv')
 data.drop('timestamp', axis=1, inplace=True)

 # Re-map the indices
 users = data.userId.unique()
 movies = data.movieId.unique()
 # Create maps from old to new indices
 moviemap={}
 for i in range(len(movies)):
 moviemap[movies[i]]=i
 usermap={}
 for i in range(len(users)):
 usermap[users[i]]=i

 # Change the indices
 data.movieId = data.movieId.apply(lambda x: moviemap[x])
 data.userId = data.userId.apply(lambda x: usermap[x])

 # Shuffle the data
 data = data.sample(frac=1.0).reset_index(drop=True)

 # Create a train/test split
 train, test = train_test_split(data, test_size=0.2)

 n_users = len(users)
 n_movies = len(movies)

 return train, test, n_users, n_movies
train, test, n_users, n_movies = get_data()

Recommending Movies with Keras Chapter 12

[243]

In order to create the network, we first define the movie part of the input. We create an
Input layer, which will act as the interface to our pandas dataset by accepting its data and
transforming it into Keras tensors. Following this, the layer's output is fed into the
Embedding layer, in order to map the integer to a five-dimensional space. We define the
number of possible indices as n_movies (first parameter), and the number of features as
fts (second parameter). Finally, we flatten the output. The same process is repeated for the
user part:

fts = 5

Movie part. Input accepts the index as input
and passes it to the Embedding layer. Finally,
Flatten transforms Embedding's output to a
one-dimensional tensor.
movie_in = Input(shape=[1], name="Movie")
mov_embed = Embedding(n_movies, fts, name="Movie_Embed")(movie_in)
flat_movie = Flatten(name="FlattenM")(mov_embed)

Repeat for the user.
user_in = Input(shape=[1], name="User")
user_inuser_embed = Embedding(n_users, fts, name="User_Embed")(user_in)
flat_user = Flatten(name="FlattenU")(user_inuser_embed)

Finally, we define the dot product layer, with the two flattened embeddings as inputs. We
then define Model by specifying the user_in and movie_in (Input) layers as inputs, and
the prod (Dot) layer as an output. After defining the model, Keras needs to compile it in
order to create the computational graph. During compilation, we define the optimizer and
loss functions:

Calculate the dot-product of the two embeddings
prod = Dot(name="Mult", axes=1)([flat_movie, flat_user])

Create and compile the model
model = Model([user_in, movie_in], prod)
model.compile('adam', 'mean_squared_error')

Recommending Movies with Keras Chapter 12

[244]

By calling model.summary(), we can see that the model has around 52,000 trainable
parameters. All of these parameters are in the Embedding layers. This means that the
network will only learn how to map the user and movie indices to the five-dimensional
space. The function's output is as follows:

The model's summary

Finally, we fit the model to our train set and evaluate it on the test set. We train the network
for ten epochs in order to observe how it behaves, as well as how much time it needs to
train itself. The following code depicts the training progress of the network:

Train the model on the train set
model.fit([train.userId, train.movieId], train.rating, epochs=10,
verbose=1)

Evaluate on the test set
print(metrics.mean_squared_error(test.rating,
 model.predict([test.userId, test.movieId])))

Recommending Movies with Keras Chapter 12

[245]

Take a look at the following screenshot:

Training progress of the dot product network

The model is able to achieve an MSE of 1.28 on the test set. In order to improve the model,
we could increase the number of features each Embedding layer is able to learn, but the
main limitation is the dot product layer. Instead of increasing the number of features, we
will give the model the freedom to choose how to combine the two layers.

Creating the dense model
In order to create the dense model, we will substitute the Dot layer with a series of Dense
layers. Dense layers are classic neurons, where each neuron gets, as input, all the outputs
from the previous layer. In our case, as we have two Embedding layers, we must first
concatenate them using the Concatenate layer, and then feed them to the first Dense
layer. These two layers are also included in the keras.layers package. Thus, our model
definition will now look like this:

Movie part. Input accepts the index as input
and passes it to the Embedding layer. Finally,
Flatten transforms Embedding's output to a
one-dimensional tensor.
movie_in = Input(shape=[1], name="Movie")
mov_embed = Embedding(n_movies, fts, name="Movie_Embed")(movie_in)
flat_movie = Flatten(name="FlattenM")(mov_embed)

Recommending Movies with Keras Chapter 12

[246]

Repeat for the user.
user_in = Input(shape=[1], name="User")
user_inuser_embed = Embedding(n_users, fts, name="User_Embed")(user_in)
flat_user = Flatten(name="FlattenU")(user_inuser_embed)

Concatenate the Embedding layers and feed them
to the Dense part of the network
concat = Concatenate()([flat_movie, flat_user])
dense_1 = Dense(128)(concat)
dense_2 = Dense(32)(dense_1)
out = Dense(1)(dense_2)

Create and compile the model
model = Model([user_in, movie_in], out)
model.compile('adam', 'mean_squared_error')

By adding these three Dense layers, we have increased the number of trainable parameters
from almost 52,000 to almost 57,200 (an increase of 10%). Furthermore, each step now needs
almost 210 microseconds, which increased from 144 us (a 45% increase), as is evident from
the training progression and summary, as depicted in the following diagrams:

Summary of the dense model

Recommending Movies with Keras Chapter 12

[247]

Training progression of the dense model

Nonetheless, the model now achieves an MSE 0.77 , which is 60% of the original dot-
product model. Thus, as this model outperforms the previous model, we will utilize this
architecture for our stacking ensemble. Moreover, as each network has a higher degree of
freedom, it has a higher probability of diversifying from other base learners.

Creating a stacking ensemble
In order to create our stacking ensemble, we will utilize three dense networks, with
embeddings consisting of 5, 10, and 15 features as base learners. We will train all networks
on the original train set and utilize them to make predictions on the test set. Furthermore,
we will train a Bayesian ridge regression as a meta learner. In order to train the regression,
we will use all but the last 1,000 samples of the test set. Finally, we will evaluate the
stacking ensemble on these last 1,000 samples.

Recommending Movies with Keras Chapter 12

[248]

First, we will create a function that creates and trains a dense network with n number of
embedding features, as well as a function that accepts a model as input and return its
predictions on the test set:

def create_model(n_features=5, train_model=True, load_weights=False):
 fts = n_features

 # Movie part. Input accepts the index as input
 # and passes it to the Embedding layer. Finally,
 # Flatten transforms Embedding's output to a
 # one-dimensional tensor.
 movie_in = Input(shape=[1], name="Movie")
 mov_embed = Embedding(n_movies, fts, name="Movie_Embed")(movie_in)
 flat_movie = Flatten(name="FlattenM")(mov_embed)

 # Repeat for the user.
 user_in = Input(shape=[1], name="User")
 user_inuser_embed = Embedding(n_users, fts, name="User_Embed")(user_in)
 flat_user = Flatten(name="FlattenU")(user_inuser_embed)

 # Concatenate the Embedding layers and feed them
 # to the Dense part of the network
 concat = Concatenate()([flat_movie, flat_user])
 dense_1 = Dense(128)(concat)
 dense_2 = Dense(32)(dense_1)
 out = Dense(1)(dense_2)

 # Create and compile the model
 model = Model([user_in, movie_in], out)
 model.compile('adam', 'mean_squared_error')
 # Train the model
 model.fit([train.userId, train.movieId], train.rating, epochs=10,
verbose=1)

 return model

def predictions(model):
 preds = model.predict([test.userId, test.movieId])
 return preds

Recommending Movies with Keras Chapter 12

[249]

We will then create and train our base learners and meta learner in order to predict on the
test set. We combine all three models' predictions in a single array:

Create base and meta learner
model5 = create_model(5)
model10 = create_model(10)
model15 = create_model(15)
meta_learner = BayesianRidge()

Predict on the test set
preds5 = predictions(model5)
preds10 = predictions(model10)
preds15 = predictions(model15)
Create a single array with the predictions
preds = np.stack([preds5, preds10, preds15], axis=-1).reshape(-1, 3)

Finally, we train the meta learner on all but the last 1,000 test samples and evaluate the base
learners, as well as the whole ensemble, on these last 1,000 samples:

Fit the meta learner on all but the last 1000 test samples
meta_learner.fit(preds[:-1000], test.rating[:-1000])

Evaluate the base learners and the meta learner on the last
1000 test samples
print('Base Learner 5 Features')
print(metrics.mean_squared_error(test.rating[-1000:], preds5[-1000:]))
print('Base Learner 10 Features')
print(metrics.mean_squared_error(test.rating[-1000:], preds10[-1000:]))
print('Base Learner 15 Features')
print(metrics.mean_squared_error(test.rating[-1000:], preds15[-1000:]))
print('Ensemble')
print(metrics.mean_squared_error(test.rating[-1000:],
meta_learner.predict(preds[-1000:])))

The results are depicted in the following table. As is evident, the ensemble is able to
outperform the individual base learners on unseen data, achieving a lower MSE than any
individual base learner:

Model MSE
Base Learner 5 0.7609
Base Learner 10 0.7727
Base Learner 15 0.7639

Ensemble 0.7596

Results for individual base learners and the ensemble

Recommending Movies with Keras Chapter 12

[250]

Summary
In this chapter, we briefly presented the concept of recommendation systems and how
collaborative filtering works. We then presented how neural networks can be utilized in
order to avoid explicitly defining rules that dictate how unrated items would be rated by a
user, using embedding layers and dot products. Following that, we showed how the
performance of these models can be improved if we allow the networks to learn how to
combine the embedding layers themselves. This gives the models considerably higher
degrees of freedom without drastically increasing the number of parameters, leading to
considerable increases in performance. Finally, we showed how the same
architecture—with variable numbers of embedding features—can be utilized in order to
create base learners for a stacking ensemble. In order to combine the base learners, we
utilized a Bayesian ridge regression, which resulted in better results than any individual
base learner.

This chapter serves as an introduction to the concept of using ensemble learning techniques
for deep recommendation systems, rather than a fully detailed guide. There are many more
options that can lead to considerable improvements in the system. For example, the usage
of user descriptions (rather than indices), additional information about each movie (such as
genre), and different architectures, can all greatly contribute to performance improvements.
Still, all these concepts can greatly benefit from the usage of ensemble learning techniques,
which this chapter adequately demonstrates.

In the next and final chapter, we will use ensemble learning techniques in order to cluster
data from the World Happiness Report as we try to uncover patterns in the data.

13
Clustering World Happiness

In the final chapter of this book, we will look at utilizing ensemble cluster analysis in order
to explore relationships in reported happiness around the world. In order to do so, we will
leverage the OpenEnsembles library. First, we will present the data and its purpose. We
will then construct our ensemble. Finally, we will try to gain more knowledge about
structures and relationships within our data.

The following are the topics that we will cover in this chapter:

Understanding the World Happiness Report
Creating the ensemble
Gaining insights

Technical requirements
You will require basic knowledge of machine learning techniques and algorithms.
Furthermore, a knowledge of python conventions and syntax is required. Finally,
familiarity with the NumPy library will greatly help the reader to understand some custom
algorithm implementations.

Clustering World Happiness Chapter 13

[252]

The code files of this chapter can be found on GitHub:

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/
master/Chapter13

Check out the following video to see the Code in Action: http://bit.ly/2ShFsUm.

Understanding the World Happiness Report
The World Happiness Report is a survey of happiness in individual countries. It started
from a United Nations meeting about well-being and happiness around the world. The
survey generates happiness rankings using data from the Gallup World Poll, where people
rate their overall quality of life (the variable containing the evaluations is the life ladder
variable). The data can be found on the World Happiness Report website under the
downloads section (https://worldhappiness.report/ed/2019/). Apart from the Life
Ladder, the dataset also contains a number of other factors. The ones we will focus on are
as follows:

Log GDP per capita
Social support
Healthy life expectancy at birth
Freedom to make life choices
Generosity
Perceptions of corruption
Positive affect (average of happiness, laughter, and enjoyment)
Negative affect (average of worry, sadness, and anger)
Confidence in national government
Democratic quality (how democratic the government is)
Delivery quality (how effective the government is)

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter13
http://bit.ly/2ShFsUm
http://bit.ly/2ShFsUm
http://bit.ly/2ShFsUm
http://bit.ly/2ShFsUm
http://bit.ly/2ShFsUm
http://bit.ly/2ShFsUm
http://bit.ly/2ShFsUm
http://bit.ly/2ShFsUm
http://bit.ly/2ShFsUm
http://bit.ly/2ShFsUm
https://worldhappiness.report/ed/2019/
https://worldhappiness.report/ed/2019/
https://worldhappiness.report/ed/2019/
https://worldhappiness.report/ed/2019/
https://worldhappiness.report/ed/2019/
https://worldhappiness.report/ed/2019/
https://worldhappiness.report/ed/2019/
https://worldhappiness.report/ed/2019/
https://worldhappiness.report/ed/2019/
https://worldhappiness.report/ed/2019/
https://worldhappiness.report/ed/2019/
https://worldhappiness.report/ed/2019/

Clustering World Happiness Chapter 13

[253]

We can see how each one of these factors affects the life ladder by examining them on
scatter plots. The following diagram depicts the scatter plots between each factor (x axis)
and the life ladder (y axis):

Scatter plots of the various factors against the Life Ladder

Clustering World Happiness Chapter 13

[254]

As is evident, Log GDP per capita and Healthy life expectancy at birth have the strongest
positive and linear correlations with the life ladder. Democratic quality, Delivery quality,
Freedom to make life choices, Positive affect, and Social support also exhibit positive
correlations to the life ladder. Negative affect and Perceptions of corruption show
negative correlations, while Confidence in national government does not indicate any
significant correlation. By examining the Pearson's correlation coefficient (r) of each factor
to the Life Ladder, we are able to confirm our visual findings:

Factor Correlation coefficient (r)
Log GDP per capita 0.779064

Social support 0.702461
Healthy life expectancy at birth 0.736797

Freedom to make life choices 0.520988
Generosity 0.197423

Perceptions of corruption -0.42075
Positive affect 0.543377

Negative affect -0.27933
Confidence in national government -0.09205

Democratic quality 0.614572
Delivery quality 0.70794

Correlation coefficient of each factor to the life ladder

Over the years, a total of 165 individual countries have been studied. The countries are
organized in 10 different regions, according to their geographic location. The distribution of
countries to each region for the latest report can be seen in the following pie chart. As is
evident, Sub-Saharan Africa, Western Europe, and Central and Eastern Europe contain the
most countries. This does not imply that these regions have the highest populations. It
simply implies that these regions have the greatest number of separate countries:

Clustering World Happiness Chapter 13

[255]

Distribution of countries to each region for 2018

Finally, it would be interesting to see how the Life Ladder progresses throughout the years.
The following boxplot shows the Life Ladder's progression from 2005 to 2018. What we
notice is that 2005 was a year with exceedingly high scores, while all other years are
approximately the same. Given that there is not a global event that may explain this
anomaly, we assume that something in the data collection process has influenced it:

Boxplots of the Life Ladder for the various years

Clustering World Happiness Chapter 13

[256]

Indeed, if we examine the number of countries surveyed each year, we can see that 2005 has
a very small number of countries compared to other years. There are only 27 countries for
2005, while 2006 has 89 countries. The number continues to increase up until 2011, when it
stabilizes:

Year Number of countries
2005 27
2006 89
2007 102
2008 110
2009 114
2010 124
2011 146
2012 142
2013 137
2014 145
2015 143
2016 142
2017 147
2018 136

Number of countries surveyed each year

If we only consider the initial 27 countries, the boxplots show the expected outcome. There
are some fluctuations in the mean and deviation results; however, on average, the life
ladder values are distributed around the same values. Furthermore, if we compare the
average values with those of the previous boxplot, we see that, on average, these 27
countries are happier than the rest of the countries that were later added to the dataset:

Clustering World Happiness Chapter 13

[257]

Boxplots for just the 27 countries that were part of the original 2005 dataset

Creating the ensemble
In order to create the ensemble, we will utilize the openensembles library that we
presented in Chapter 8, Clustering. As our dataset does not contain labels, we cannot use
the homogeneity score in order to evaluate our clustering models. Instead, we will use the
silhouette score, which evaluates how cohesive each cluster is and how separate different
clusters are. First, we must load our dataset, which is provided in the WHR.csv file. The
second file that we load, Regions.csv, contains the region that each country belongs to.
We will utilize the data from 2017, as 2018 has a lot of missing data (for example, Delivery
quality and Democratic quality are completely absent). We will fill any missing data using
the median of the dataset. For our experiment, we will utilize the factors we presented
earlier. We store them in the columns variable, for ease of reference. We then proceed to
generate the OpenEnsembles data object:

import matplotlib.pyplot as plt
import numpy as np
import openensembles as oe
import pandas as pd

from sklearn import metrics

https://cdp.packtpub.com/hands_on_ensemble_learning_with_python/wp-admin/post.php?post=36&action=edit#post_31

Clustering World Happiness Chapter 13

[258]

Load the datasets
data = pd.read_csv('WHR.csv')
regs = pd.read_csv('Regions.csv')

DATA LOADING SECTION START
Use the 2017 data and fill any NaNs
recents = data[data.Year == 2017]
recents = recents.dropna(axis=1, how="all")
recents = recents.fillna(recents.median())

Use only these specific features
columns = ['Log GDP per capita',
 'Social support', 'Healthy life expectancy at birth',
 'Freedom to make life choices', 'Generosity',
 'Perceptions of corruption','Positive affect', 'Negative affect',
 'Confidence in national government', 'Democratic Quality',
 'Delivery Quality']

Create the data object
cluster_data = oe.data(recents[columns], columns)
DATA LOADING SECTION END

In order to create our K-means ensemble, we will test a number of K values and a number
of ensemble sizes. We will test K values of 2, 4, 6, 8, 10, 12, and 14, and ensembles of size 5,
10, 20, and 50. In order to combine the individual base clusters, we will utilize co-
occurrence linkage, as this was the most stable out of the three algorithms in Chapter 8,
Clustering. We will store the results in the results dictionary, in order to process them later.
Finally, we will create a pandas DataFrame from the results dictionary and arrange it in a
two-dimensional array, in which each row corresponds to a certain K value and each
column corresponds to a certain ensemble size:

np.random.seed(123456)
results = {'K':[], 'size':[], 'silhouette': []}
Test different ensemble setups
Ks = [2, 4, 6, 8, 10, 12, 14]
sizes = [5, 10, 20, 50]
for K in Ks:
 for ensemble_size in sizes:
 ensemble = oe.cluster(cluster_data)
 for i in range(ensemble_size):
 name = f'kmeans_{ensemble_size}_{i}'
 ensemble.cluster('parent', 'kmeans', name, K)

 preds = ensemble.finish_co_occ_linkage(threshold=0.5)
 print(f'K: {K}, size {ensemble_size}:', end=' ')
 silhouette = metrics.silhouette_score(recents[columns],
 preds.labels['co_occ_linkage'])

Clustering World Happiness Chapter 13

[259]

 print('%.2f' % silhouette)
 results['K'].append(K)
 results['size'].append(ensemble_size)
 results['silhouette'].append(silhouette)

results_df = pd.DataFrame(results)
cross = pd.crosstab(results_df.K, results_df['size'],
results_df['silhouette'], aggfunc=lambda x: x)

The results are depicted in the following table. As is evident, the silhouette score decreases
as K increases. Furthermore, there seems to be a certain stability for K values up to six. Still,
our data was fed to the clustering ensemble without any preprocessing. Thus, the distance
metric can be dominated by features whose values are greater than others:

Size
K 5 10 20 50

2 0.618 0.618 0.618 0.618
4 0.533 0.533 0.533 0.533
6 0.475 0.475 0.475 0.475
8 0.396 0.398 0.264 0.243
10 0.329 0.248 0.282 0.287
12 0.353 0.315 0.327 0.350
14 0.333 0.309 0.343 0.317

Results from the experimentation of different K values and ensemble sizes

In order to exclude the possibility that some features dominate over others, we will repeat
the experiment by using normalized features, as well as t-Distributed Stochastic
Neighbor Embedding (t-SNE) transformed features. First, we will test the normalized
features. We must first subtract the mean and then divide by the standard deviation of each
feature. This is easily achieved by using the standard pandas functions, as follows:

DATA LOADING SECTION START

Use the 2017 data and fill any NaNs
recents = data[data.Year == 2017]
recents = recents.dropna(axis=1, how="all")
recents = recents.fillna(recents.median())

Use only these specific features
columns = ['Log GDP per capita',
 'Social support', 'Healthy life expectancy at birth',
 'Freedom to make life choices', 'Generosity',
 'Perceptions of corruption','Positive affect', 'Negative affect',

Clustering World Happiness Chapter 13

[260]

 'Confidence in national government', 'Democratic Quality',
 'Delivery Quality']

Normalize the features by subtracting the mean
and dividing by the standard deviation
normalized = recents[columns]
normalized = normalized - normalized.mean()
normalized = normalized / normalized.std()

Create the data object
cluster_data = oe.data(recents[columns], columns)
DATA LOADING SECTION END

We then test the same K values and ensemble sizes. As the following table shows, the
results are quite similar to the original experiment:

Size
K 5 10 20 50

2 0.618 0.618 0.618 0.618
4 0.533 0.533 0.533 0.533
6 0.475 0.475 0.475 0.475
8 0.393 0.396 0.344 0.264
10 0.311 0.355 0.306 0.292
12 0.346 0.319 0.350 0.350
14 0.328 0.327 0.326 0.314

Silhouette scores for the normalized data

Finally, we repeat the experiment with t-SNE as a preprocessing step. First, we import t-
SNE with from sklearn.manifold import t_sne. In order to preprocess the data, we
call the fit_transform function of TSNE, as shown in the following code excerpt. Note
that oe.data now has [0, 1] as column names, since t-SNE, by default, only creates two
components. Thus, our data will have only two columns:

DATA LOADING SECTION START

Use the 2017 data and fill any NaNs
recents = data[data.Year == 2017]
recents = recents.dropna(axis=1, how="all")
recents = recents.fillna(recents.median())

Use only these specific features
columns = ['Log GDP per capita',
 'Social support', 'Healthy life expectancy at birth',

Clustering World Happiness Chapter 13

[261]

 'Freedom to make life choices', 'Generosity',
 'Perceptions of corruption','Positive affect', 'Negative affect',
 'Confidence in national government', 'Democratic Quality',
 'Delivery Quality']

Transform the data with TSNE
tsne = t_sne.TSNE()
transformed = pd.DataFrame(tsne.fit_transform(recents[columns]))
Create the data object
cluster_data = oe.data(transformed, [0, 1])

DATA LOADING SECTION END

The results are depicted in the following table. We can see that t-SNE outperforms the other
two approaches for some values. We are especially interested in 10 as the K value, due to
the fact that there are 10 regions in the dataset. In the next section, we will try to gain
insights into the data, using a K value of 10 and an ensemble size of 20:

Size
K 5 10 20 50

2 0.537 0.537 0.537 0.537
4 0.466 0.466 0.466 0.466
6 0.405 0.405 0.405 0.405
8 0.343 0.351 0.351 0.351
10 0.349 0.348 0.350 0.349
12 0.282 0.288 0.291 0.288
14 0.268 0.273 0.275 0.272

Silhouette scores for t-SNE transformed data

Gaining insights
In order to gain further insights into our dataset's structure and relationships, we will use
the t-SNE approach, with ensembles of size 20 and base k-Nearest Neighbors (k-NN)
clusterers with a K value of 10. First, we create and train the cluster. Then, we add the
cluster assignments to the DataFrame as an additional pandas column. We then calculate
the means for each cluster and create a bar plot for each feature:

DATA LOADING SECTION START

Use the 2017 data and fill any NaNs

Clustering World Happiness Chapter 13

[262]

recents = data[data.Year == 2017]
recents = recents.dropna(axis=1, how="all")
recents = recents.fillna(recents.median())

Use only these specific features
columns = ['Log GDP per capita',
 'Social support', 'Healthy life expectancy at birth',
 'Freedom to make life choices', 'Generosity',
 'Perceptions of corruption','Positive affect', 'Negative affect',
 'Confidence in national government', 'Democratic Quality',
 'Delivery Quality']

Transform the data with TSNE
tsne = t_sne.TSNE()
transformed = pd.DataFrame(tsne.fit_transform(recents[columns]))
Create the data object
cluster_data = oe.data(transformed, [0, 1])

DATA LOADING SECTION END

Create the ensemble
ensemble = oe.cluster(cluster_data)
for i in range(20):
 name = f'kmeans_{i}-tsne'
 ensemble.cluster('parent', 'kmeans', name, 10)

Create the cluster labels
preds = ensemble.finish_co_occ_linkage(threshold=0.5)

Add Life Ladder to columns
columns = ['Life Ladder', 'Log GDP per capita',
 'Social support', 'Healthy life expectancy at birth',
 'Freedom to make life choices', 'Generosity',
 'Perceptions of corruption','Positive affect', 'Negative affect',
 'Confidence in national government', 'Democratic Quality',
 'Delivery Quality']
Add the cluster to the dataframe and group by the cluster
recents['Cluster'] = preds.labels['co_occ_linkage']
grouped = recents.groupby('Cluster')
Get the means
means = grouped.mean()[columns]
Create barplots
def create_bar(col, nc, nr, index):
 plt.subplot(nc, nr, index)
 values = means.sort_values('Life Ladder')[col]
 mn = min(values) * 0.98
 mx = max(values) * 1.02
 values.plot(kind='bar', ylim=[mn, mx])

Clustering World Happiness Chapter 13

[263]

 plt.title(col[:18])

Plot for each feature
plt.figure(1)
i = 1
for col in columns:
 create_bar(col, 4, 3, i)
 i += 1
plt.show()

The bar plots are depicted in the following diagram. The clusters are sorted according to
their average Life Ladder value, in order to easily make comparisons between the
individual features. As we can see, clusters 3, 2, and 4 have comparable average happiness
(Life Ladder). The same can be said for clusters 6, 8, 9, 7, and 5. We could argue that the
ensemble only needs 5 clusters, but, by closely examining the other features, we see that
this is not the case:

Bar plots of cluster means for each feature

Clustering World Happiness Chapter 13

[264]

By looking at Healthy life expectancy and Freedom to make life choices, we see that clusters 3
and 4 are considerably better than 2. In fact, if we examine every other feature, we see that
clusters 3 and 4 are, on average, more fortunate than cluster 2. Maybe it is interesting to see
how the individual countries are distributed among each cluster. The following table
depicts the cluster assignments. Indeed, we see that clusters 2, 3, and 4 involve countries
that have had to recently overcome difficulties that were not captured in our features. In
fact, these are some of the most war-torn areas of the world. From a sociological point of
view, it is extremely interesting that these war-torn and troubled regions seem to have the
most confidence in their governments, despite exhibiting extremely negative democratic
and delivery qualities:

N Countries

1 Cambodia, Egypt, Indonesia, Libya, Mongolia, Nepal, Philippines, and
Turkmenistan

2
Afghanistan, Burkina Faso, Cameroon, Central African Republic, Chad, Congo

(Kinshasa), Guinea, Ivory Coast, Lesotho, Mali, Mozambique, Niger, Nigeria, Sierra
Leone, and South Sudan

3 Benin, Gambia, Ghana, Haiti, Liberia, Malawi, Mauritania, Namibia, South Africa,
Tanzania, Togo, Uganda, Yemen, Zambia, and Zimbabwe

4 Botswana, Congo (Brazzaville), Ethiopia, Gabon, India, Iraq, Kenya, Laos,
Madagascar, Myanmar, Pakistan, Rwanda, and Senegal

5 Albania, Argentina, Bahrain, Chile, China, Croatia, Czech Republic, Estonia,
Montenegro, Panama, Poland, Slovakia, United States, and Uruguay

6 Algeria, Azerbaijan, Belarus, Brazil, Dominican Republic, El Salvador, Iran, Lebanon,
Morocco, Palestinian Territories, Paraguay, Saudi Arabia, Turkey, and Venezuela

7 Bulgaria, Hungary, Kuwait, Latvia, Lithuania, Mauritius, Romania, Taiwan Province
of China

8
Armenia, Bosnia and Herzegovina, Colombia, Ecuador, Honduras, Jamaica, Jordan,
Macedonia, Mexico, Nicaragua, Peru, Serbia, Sri Lanka, Thailand, Tunisia, United

Arab Emirates, and Vietnam

9 Bangladesh, Bolivia, Georgia, Guatemala, Kazakhstan, Kosovo, Kyrgyzstan,
Moldova, Russia, Tajikistan, Trinidad and Tobago, Ukraine, and Uzbekistan

10

Australia, Austria, Belgium, Canada, Costa Rica, Cyprus, Denmark, Finland, France,
Germany, Greece, Hong Kong S.A.R. of China, Iceland, Ireland, Israel, Italy, Japan,

Luxembourg, Malta, Netherlands, New Zealand, Norway, Portugal, Singapore,
Slovenia, South Korea, Spain, Sweden, Switzerland, and United Kingdom

Cluster assignments

Clustering World Happiness Chapter 13

[265]

Starting with to cluster 1, we see that the happiness of people in these countries is
considerably better than the previous clusters. This can be attributed to a better life
expectancy (less wars), better GDP per capita, social support, generosity, and freedom to
make choices regarding life changes. Still, these countries are not as happy as they could be,
mainly due to problems with democratic quality and delivery quality. Nonetheless, their
confidence in their governments are second only to the previous group of clusters we
discussed. Clusters 6, 8, and 9 are more or less on the same level of happiness. Their
differences are in GDP per capita, life expectancy, freedom, generosity, and confidence. We
can see that cluster 6 has, on average, stronger economies and life expectancy, although
people's freedom, generosity, and the government's efficiency seem to be lacking. Clusters 8
and 9 are less economically sound, but seem to have a lot more freedom and better
functioning governments. Moreover, their generosity, on average, is greater than cluster 6.
Moving on to clusters 7 and 5, we see that they, too, are close in terms of happiness. These
are countries where we see a positive democratic and delivery quality, with sufficient
freedom, economic strength, social support, and a healthy life expectancy. These are
developed countries, where people, on average, live a prosperous life without fear of dying
from economic, political, or military causes. The problems in these countries are mainly the
perception of corruption, people's confidence in their governments, and the efficiency of the
governments. Finally, cluster 10 contains countries that are better in almost every aspect,
compared to the rest of the world. These countries have, on average, the highest GDP per
capita, life expectancy, generosity, and freedom, while having sufficiently high confidence
in their national governments and low perceptions of corruption. These could be
considered the ideal countries to live in, given a compatible cultural background.

Summary
In this chapter, we presented the World Happiness Report data, providing a description of
the data's purpose, as well as describing the data's properties. In order to gain further
insights into the data, we utilized cluster analysis, leveraging ensemble techniques. We
used co-occurrence matrix linkage in order to combine the cluster assignments of different
base clusters. We tested various setups, with different ensemble sizes and numbers of
neighbors, in order to provide a k-NN ensemble. After identifying that a t-SNE
decomposition with a K value of 10 and 20 base clusters can be utilized, we analyzed the
cluster assignments. We found that countries reporting the same happiness levels can, in
fact, have different profiles. The most unhappy countries were, on average, developing
countries who have to overcome many problems, concerning both their economies, and, in
certain cases, wars. It is interesting that these countries had the most confidence in their
governments, although these same governments are reported as dysfunctional. Countries
that belong to clusters of medium happiness have either strong economies, but little
freedom, or vice versa.

Clustering World Happiness Chapter 13

[266]

Developed countries with strong economies and life quality, but who perceive their
governments as corrupt, are not able to achieve the highest happiness scores possible.
Finally, the only countries that do not think their governments are corrupt have the
strongest economies, democratic and delivery quality, and life expectancy. These are mostly
countries in the European Union or the European Economic Area, along with Canada,
Australia, New Zealand, Japan, South Korea, Costa Rica, Israel, Hong Kong, and Iceland.

In this book we have covered most ensemble learning techniques. After a short refresher on
machine learning, we discussed about the main problems that arise from machine learning
models. These problems are bias and variance. Ensemble learning techniques usually try to
address these problems, through generative and non generative methods. We discussed
both non-generative methods, such as Voting and Stacking, as well as generative methods,
such as Bagging, Boosting, and Random Forests. Furthermore, we presented methods that
can be utilized in order to create clustering ensembles, such as Majority Voting, Graph
Closure, and Co-occurrence Linkage. Finally, we dedicated some chapters to specific
applications, in order to show how some real-world problems should be handled. If there is
a point that needs to be highlighted in this book, then it is that the data quality has a bigger
impact on any particular model's performance than the algorithm used to create the model.
Thus, ensemble learning techniques, such as any machine learning technique, should be
used in order to address algorithmic weaknesses (of previously generated models) rather
than poor data quality.

Another Book You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Ensemble Machine Learning Cookbook
Vijayalakshmi Natarajan, Dipayan Sarkar

ISBN: 9781789136609

Understand how to use machine learning algorithms for regression and
classification problems
Implement ensemble techniques such as averaging, weighted averaging, and
max-voting
Get to grips with advanced ensemble methods, such as bootstrapping, bagging,
and stacking
Use Random Forest for tasks such as classification and regression
Implement an ensemble of homogeneous and heterogeneous machine learning
algorithms
Learn and implement various boosting techniques, such as AdaBoost, Gradient
Boosting Machine, and XGBoost

https://www.packtpub.com/big-data-and-business-intelligence/ensemble-machine-learning-cookbook

Another Book You May Enjoy

[268]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
AdaBoost
 about 107
 ensemble, creating 107, 108, 109, 110
 implementing, in Python 110, 112, 113
 strengths 113, 114
 using 119, 120, 121, 122, 123
 weaknesses 113, 114
 weighted sampling 107
artificial intelligence (AI) 7
Auto Regressive (AR) 198
auto regressive integrated moving average

(ARIMA) 198
autocorrelation 196
Autocorrelation Function (ACF) 197

B
bagging
 about 94, 182, 184, 185, 210
 base learners, creating 95, 96
 for classification 101, 102
 for regression 103, 104
 improving 211, 212
 strengths 96
 weaknesses 96
base learners
 selecting 75
 testing 174, 175, 176
baseline
 establishing 201, 202, 203, 204, 205
bias 34
bias and variance
 identifying 40
 identifying, with learning curves 43, 44, 45
 identifying, with validation curves 40, 42
Bitcoin data analysis 198, 199

blood pressure (bp) 9
body mass index (bmi) 9
boosting
 about 185, 186, 187, 188, 189, 212, 213
 improving 213, 214
 XGBoost 189
bootstrapping
 about 92
 bootstrap samples, creating 92, 93, 94

C
classification accuracy 17
co-occurrence linkage
 using 161
co-occurrence matrix linkage
 about 164, 165
collaborative filtering 237
confusion matrix
 about 17
 False Negatives (FN) 17
 False Positives (FP) 17
 True Negatives (TN) 17
 True Positives (TP) 17
consensus clustering
 about 148
 hierarchical clustering 148
 K-means clustering 149
 scikit-learn, using 151, 152, 153, 155
 voting, using 156, 157, 158
cost functions
 cross entropy loss 16
 mean absolute error (MAE) 16
 mean squared error (MSE) 16
cross entropy loss 16

[270]

D
data
 learning 8
 machine learning datasets 9
dataset 169
decision stumps 107
decision tree
 optimizing 177
decision trees 26, 27, 28
Delivery quality 257
Democratic quality 257
dense model
 creating 245, 247
dimensionality reduction 14, 15
dot model
 creating 241, 242, 243, 244, 245

E
ensemble learning, difficulties
 about 46
 computational cost 48, 49
 interpretability 47
 noisy data 46, 47
 right models, selecting 49
ensemble learning
 about 38
 bias and variance, identifying 40
 motivation 38, 39
ensemble methods
 generative method 45, 46
 non-generative method 45, 46
ensemble's composition
 about 75
 base learners, selecting 75
 meta learner, selecting 76, 77
ensemble
 comparative analysis 193
 creating 257, 259, 260, 261
evaluation method 173
exploratory analysis
 about 171, 172, 173
 evaluation method 173
Extra Trees
 about 135

 implementing, for classification with scikit-learn
142, 143

 implementing, for regression with scikit-learn
143, 144

G
gradient boosting
 about 114
 ensemble, creating 114, 115, 117
 implementing, in Python 117, 118, 119
 using 124, 125, 126, 127
graph closure
 about 162, 163
 using 161

H
hard voting 53, 54
hidden layers 25
hierarchical clustering 148

I
insights
 obtaining 261, 263, 264, 265
interpretability 26
Inverse Document Frequency (IDF) 222
item-item filtering 237

K
K-fold cross validation 20, 74
K-Means 29, 31
K-means clustering
 about 149
 advantages 150, 151
 disadvantages 150, 151
K-Nearest Neighbors (KNN) 29, 59, 77, 235, 261
Keras, used for movie recommendations
 about 240
 dense model, creating 245, 247
 dot model, creating 241, 242, 243, 244, 245
 stacking ensemble, creating 247, 248, 249
kernel trick
 reference link 24

[271]

L
lags 197
learning rate 115
Limited-memory

Broyden–Fletcher–Goldfarb–Shanno (LBFGS)
26

M
machine learning algorithms
 about 20
 Python packages 21
 supervised learning algorithms 21
machine learning datasets
 about 9
 breast cancer dataset 9, 10
 diabetes dataset 9
 handwritten digits dataset 11
majority voting 52
mean absolute error (MAE) 16
mean squared error (MSE) 16, 239
Mean Squared Error (MSE) 79
meta-learner
 selecting 76, 77
meta-learning
 about 72
 stacking 72
metadata
 creating 73
metrics 16
 area under the curve (AUC) 18
 F1 score 19
 precision 19
 recall 19
 sensitivity 18
 specificity 18
model
 creating 224, 226, 227, 229
 evaluating 20
Moving Average (MA) 198

N
Natural Language Toolkit (NLTK) 225
neural networks 25, 26
neural recommendation systems 237, 238, 239

O
OpenEnsembles
 co-occurrence linkage, using 161
 graph closure, using 161
 using 159, 160, 161
Ordinary Least Squares (OLS) 21, 77
out-of-bag instances 96
out-of-bag score 96
overfitting 35

P
Perceptron 56
performance measures
 about 15
 classification accuracy 17
 confusion matrix 17
 cost functions 15
 metrics 16
 models, evaluating 20
Principle Components Analysis (PCA) 169
problem's dataset 8
pseudo-residuals 114
Python implementation
 about 77, 96, 97, 98, 99
 ensemble, stacking for classification 80, 81, 83
 ensemble, stacking for regression 77, 78, 80
 parallelizing 99, 100
 stacking regressor class, creating for scikit-learn

83, 88
Python packages 21
Python
 AdaBoost, implementing in 110, 112, 113
 gradient boosting, implementing in 117, 118,

119

 hard voting, implementation 56, 57
 hard voting, implementing 58
 implementing 56
 used, for analyzing results 59, 60, 61

R
Random Forest trees
 about 132
 Extra Trees 135
 illustrative example 133, 134

[272]

 trees, building 132
Random Forests
 about 215
 analyzing 136, 137, 138
 creating 136
 implementing, for classification with scikit-learn

138, 139, 140
 implementing, for regression with scikit-learn

140, 141
 improving 216, 217
 strengths 138
 using 190, 191
 weaknesses 138
recommendation systems
 demystifying 234, 235, 236, 237
regression 21, 23

S
scikit-learn library
 hard voting, implementation 62, 63
 results, analyzing 66, 67, 68
 soft voting, implementation 63, 64, 65
 using 61
scikit-learn, examples
 reference link 41
scikit-learn
 AdaBoost, using 119, 120, 121, 122, 123
 bagging, for classification 101, 102
 bagging, for regression 103, 104
 gradient boosting, using 124, 125, 126, 127
 stacking regressor class, creating for 83, 88
 used, for implementing Extra Trees for

classification 143
 used, for implementing Extra Trees for

regression 143, 144
 used, for implementing Random Forests for

classification 138, 139, 140, 142
 used, for implementing Random Forests for

regression 140, 141
 using 100, 119, 138, 151, 152, 153, 155
seasonality 196
sensitivity 18
sentiment analysis tools
 about 220, 221
 stemming 222

Sharpe ratio 204
simulator 205, 206
soft voting 53, 54, 55
specificity 18
stacking ensemble
 creating 247, 248, 249
stacking
 about 71, 72, 180, 181, 182, 209
 improving 210
stationary 198
Stochastic Gradient Descent (SGD) 26
supervised learning 11, 12, 13
supervised learning algorithms
 about 21
 decision trees 26, 27, 28
 K-Means 29, 31
 K-Nearest Neighbors (KNN) 29
 neural networks 25
 regression 21, 23
 Support Vector Machine (SVM) 24, 25
Support Vector Machine (SVM) 24, 25, 56
support vectors 24

T
t-Distributed Stochastic Neighbor Embedding (t-

SNE) 259
 about 151
 reference link 151
Term Frequency (TF) 222
time series data
 about 196, 197
 baseline, establishing 201, 202, 203, 204, 205
 Bitcoin data analysis 198, 199
 simulator 205, 206
trade-off 34, 37, 38
tweets
 classifying, in real time 229, 230, 231, 232
Twitter data
 obtaining 223, 224
Twitter
 reference link 229

U
unsupervised learning
 about 11, 13, 14

 dimensionality reduction 14, 15
user-user filtering 237

V
variance 34, 35, 36
voting ensembles
 about 173
 base learners, testing 174, 175, 176
 creating 178, 179, 180
 decision tree, optimizing 177
voting
 about 207, 208
 improving 208
 using 156, 157, 158

W
World Happiness Report
 about 252, 253, 254, 255, 256
 download link 252
 factors 252

X
XGBoost 189
 about 127
 boosting libraries 129
 using, for classification 128, 129
 using, for regression 127, 128

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Introduction and Required Software Tools
	Chapter 1: A Machine Learning Refresher
	Technical requirements
	Learning from data
	Popular machine learning datasets
	Diabetes
	Breast cancer
	Handwritten digits

	Supervised and unsupervised learning
	Supervised learning
	Unsupervised learning
	Dimensionality reduction

	Performance measures
	Cost functions
	Mean absolute error
	Mean squared error
	Cross entropy loss

	Metrics
	Classification accuracy
	Confusion matrix
	Sensitivity, specificity, and area under the curve
	Precision, recall, and the F1 score

	Evaluating models

	Machine learning algorithms
	Python packages
	Supervised learning algorithms
	Regression
	Support vector machines
	Neural networks
	Decision trees
	K-Nearest Neighbors
	K-means

	Summary

	Chapter 2: Getting Started with Ensemble Learning
	Technical requirements
	Bias, variance, and the trade-off
	What is bias?
	What is variance?
	Trade-off

	Ensemble learning
	Motivation
	Identifying bias and variance
	Validation curves
	Learning curves

	Ensemble methods

	Difficulties in ensemble learning
	Weak or noisy data
	Understanding interpretability
	Computational cost
	Choosing the right models

	Summary

	Section 2: Non-Generative Methods
	Chapter 3: Voting
	Technical requirements
	Hard and soft voting
	Hard voting
	Soft voting

	Python implementation
	Custom hard voting implementation
	Analyzing our results using Python

	Using scikit-learn
	Hard voting implementation
	Soft voting implementation
	Analyzing our results

	Summary

	Chapter 4: Stacking
	Technical requirements
	Meta-learning
	Stacking
	Creating metadata

	Deciding on an ensemble's composition
	Selecting base learners
	Selecting the meta-learner

	Python implementation
	Stacking for regression
	Stacking for classification
	Creating a stacking regressor class for scikit-learn

	Summary

	Section 3: Generative Methods
	Chapter 5: Bagging
	Technical requirements
	Bootstrapping
	Creating bootstrap samples

	Bagging
	Creating base learners
	Strengths and weaknesses

	Python implementation
	Implementation
	Parallelizing the implementation

	Using scikit-learn
	Bagging for classification
	Bagging for regression

	Summary

	Chapter 6: Boosting
	Technical requirements
	AdaBoost
	Weighted sampling
	Creating the ensemble
	Implementing AdaBoost in Python
	Strengths and weaknesses

	Gradient boosting
	Creating the ensemble
	Further reading

	Implementing gradient boosting in Python

	Using scikit-learn
	Using AdaBoost
	Using gradient boosting

	XGBoost
	Using XGBoost for regression
	Using XGBoost for classification
	Other boosting libraries

	Summary

	Chapter 7: Random Forests
	Technical requirements
	Understanding random forest trees
	Building trees
	Illustrative example
	Extra trees

	Creating forests
	Analyzing forests
	Strengths and weaknesses

	Using scikit-learn
	Random forests for classification
	Random forests for regression
	Extra trees for classification
	Extra trees regression

	Summary

	Section 4: Clustering
	Chapter 8: Clustering
	Technical requirements
	Consensus clustering
	Hierarchical clustering
	K-means clustering
	Strengths and weaknesses

	Using scikit-learn
	Using voting

	Using OpenEnsembles
	Using graph closure and co-occurrence linkage
	Graph closure
	Co-occurrence matrix linkage

	Summary

	Section 5: Real World Applications
	Chapter 9: Classifying Fraudulent Transactions
	Technical requirements
	Getting familiar with the dataset
	Exploratory analysis
	Evaluation methods

	Voting
	Testing the base learners
	Optimizing the decision tree
	Creating the ensemble

	Stacking
	Bagging
	Boosting
	XGBoost

	Using random forests
	Comparative analysis of ensembles
	Summary

	Chapter 10: Predicting Bitcoin Prices
	Technical requirements
	Time series data
	Bitcoin data analysis
	Establishing a baseline
	The simulator

	Voting
	Improving voting

	Stacking
	Improving stacking

	Bagging
	Improving bagging

	Boosting
	Improving boosting

	Random forests
	Improving random forest

	Summary

	Chapter 11: Evaluating Sentiment on Twitter
	Technical requirements
	Sentiment analysis tools
	Stemming

	Getting Twitter data
	Creating a model
	Classifying tweets in real time
	Summary

	Chapter 12: Recommending Movies with Keras
	Technical requirements
	Demystifying recommendation systems
	Neural recommendation systems
	Using Keras for movie recommendations
	Creating the dot model
	Creating the dense model
	Creating a stacking ensemble

	Summary

	Chapter 13: Clustering World Happiness
	Technical requirements
	Understanding the World Happiness Report
	Creating the ensemble
	Gaining insights
	Summary

	Another Book You May Enjoy
	Index

