

Learning Linux Shell Scripting
Second Edition

Leverage the power of shell scripts to solve real-world
problems

Ganesh Naik

BIRMINGHAM - MUMBAI

Learning Linux Shell Scripting
Second Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Shrilekha Inani
Content Development Editor: Priyanka Deshpande
Technical Editor: Prashant Chaudhari
Copy Editor: Safis Editing
Project Coordinator: Virginia Dias
Proofreader: Safis Editing
Indexer: Aishwarya Gangawane
Graphics: Tom Scaria
Production Coordinator: Nilesh Mohite

First published: December 2015
Second edition: May 2018

Production reference: 1150518

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-319-7

www.packtpub.com

http://www.packtpub.com

I wish to dedicate this book to my Gurudev, His Holiness Dr. Jayant Balaji Athavale. I
wish to express gratitude for his guidance, which I have received on how to become good
human being, good professional, and a seeker on the path of spiritual progress.
 - Ganesh Sanjiv Naik

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Ganesh Naik is an author, consultant, and corporate trainer for embedded Android,
embedded Linux, IoT, and machine learning related product development. He has more
than 20 years, professional experience and project accomplishment in information
technology. He has worked as a corporate trainer for the Indian Space Research
Organization, Intel, GE, Samsung, Motorola, Penang Skills Development Center, and
various companies in Singapore and India. He has started a company called Levana
Technologies, which works with organizations for consulting and training activities.

I would like to thank my wife, Vishalakshi, for providing valuable suggestions, support,
and continuous motivation. Also, my colleague, Mansi Joshi, who provided feedback from
a technical perspective.

A big thanks to the entire team at Packt: Shrilekha Inani, Priyanka Deshpande, and
Prashant Chaudhari, for providing me with very positive and motivating support
throughout the book.

About the reviewer
Shawn Soloman is a technology veteran with a wide range of skill sets from 20+ years in
the technology field. While working in the ISP, VoIP, educational, open source
development and disaster recovery fields, his skill set has adapted and broadened over
the years.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started and Working with Shell Scripting 7
Comparison of shells 8
Tasks done by the shell 9
Working in the shell 9
Learning basic Linux commands 10
Our first script – Hello World 11
When not to use scripts 13
Various directories 14
Working with permissions 20

Changing file permissions 20
The chmod command 21

Technique one – the symbolic method 21
Technique two – the numeric method 21

Setting umask 21
Setuid 22
Setgid 22
Sticky bit 23

Summary 23

Chapter 2: Drilling Deep into Process Management, Job Control, and
Automation 24

Introducing process basics 24
Monitoring processes using ps 27
Process management 30
Process monitoring tools – top, iostat, and vmstat 33
Understanding "at" 37
Understanding crontab 38
Summary 40

Chapter 3: Using Text Processing and Filters in Your Scripts 41
Text filtering tools 41

Head and tail 42
The diff command 43
The cut command 44
The paste command 45
The join command 46
The uniq command 46

Table of Contents

[ii]

The comm command 47
The tr command 48
The sort command 49

IO redirection 49
File descriptors 49
Redirection 50
Brace expansion 53

Pattern matching with the vi editor 55
Pattern searching using grep 57
Summary 59

Chapter 4: Working with Commands 60
Learning shell interpretation of commands 60

Checking and disabling shell internal commands 62
The exit status 63

Command substitution 64
Command separators 66

Command1; command2 66
Command grouping 67

Logical operators 68
Command1 & command2 68
Command1 && command2 68
Command1 || command2 68

Pipes 70
Summary 71

Chapter 5: Exploring Expressions and Variables 72
Understanding variables 72
Working with environment variables 74

The local variable and its scope 77
Exporting variables 78

Working with read-only variables 80
Working with command-line arguments (special variables, set and
shift, getopt) 81

Understanding set 82
Understanding shift 85

Resetting positional parameters 87
Understanding getopts 87
Understanding default parameters 89
Working with arrays 90

Creating an array and initializing it 90
Accessing array values 91

Summary 93

Chapter 6: Neat Tricks with Shell Scripting 94

Table of Contents

[iii]

Interactive shell scripts – reading user input 94
Summarizing the read command with options 97

The here document and the << operator 97
The here operator with the sort command 99

The here operator with the wc command 99
The utility ed and here operator 101
A script for sending messages to all logged-in users 101
Using the << here operator for FTP usage and data transfer 102

Turning off variable substitution 103
The here string and the <<< operator 103
File handling 104

Introducing file handling 104
Using exec to assign a file descriptor (fd) to file 104

Understanding the opening, writing, and closing of a file 105
Understanding reading from a file 106
Understanding reading and writing to a file 106
Using the read command on a file descriptor (fd) 107
Reading from one file and writing to another file 107

Displaying the file descriptor information from the /proc folder 109
File handling - reading line by line 109

Summarizing usage of the exec command 111
Debugging 111

Debugging mode – disabling the shell (option -n) 112
Debugging mode - displaying commands (option -v) 113
Debugging mode – the tracing execution (option -x) 115
Using the set command 118

Summary of debugging options for the set command 119
The vi editor setting for debugging 119

Good practices for Shell scripts 120
Summary 121

Chapter 7: Performing Arithmetic Operations in Shell Scripts 122
Using a declare command for arithmetic 123

Listing integers 124
Using the let command for arithmetic 124
Using the expr command for arithmetic 126

Using an arithmetic expansion 128
Binary, octal, and hex arithmetic operations 132
Floating-point arithmetic 133
Summary 135

Chapter 8: Automating Decision-Making in Scripts 136
Checking the exit status of commands 137
Understanding the test command 138

Using the test command 138
Using the test command with double brackets 139

Table of Contents

[iv]

String comparison options for the test command 139
Numerical comparison operators for the test command 141
File test options for the test command 145
File-testing binary operators 146
Logical test operators 147

Conditional constructs – if else 148
Numerical handling if constructs 150
Using the exit command and the ? variable 151
String handling with the if construct 152
Checking for null values 155
File handling with the if command 156
Multiple test commands and if constructs 159
The if/elif/else command 162
The null command 163

Switching case 164
Implementing simple menus with select 170
Summary 174

Chapter 9: Automating Repetitive Tasks 175
Looping with the for command 175
Exiting from the current loop iteration with the continue command 180
Exiting from a loop with a break 182
Working with the do – while loop 184
Using until 187
Piping the output of a loop to a Linux command 190
Running loops in the background 190
The IFS and loops 191
Summary 192

Chapter 10: Working with Functions 193
Understanding functions 193

Displaying functions 197
Removing functions 198

Passing arguments or parameters to functions 198
Sharing the data with many functions 202
Declaring local variables in functions 202
Returning information from functions 204

Returning a word or string from a function 206
Running functions in the background 206

Command source and period (.) 207
Creating a library of functions 208
Summary 208

Chapter 11: Using Advanced Functionality in Scripts 209
Understanding signals and traps 209

Table of Contents

[v]

Using the trap command 211
Ignoring signals 212

Resetting signals 212
Listing traps 213

Using traps inside a function 213
Running scripts or processes even if the user logs out 215
Creating dialog boxes with the dialog utility 215

Creating a message box (msgbox) 216
Creating a message box (msgbox) with a title 216
The yes/no box (yesno) 217
The input box (inputbox) 219
The textbox (textbox) 220
A password box 221
The checklist box (checklist) 222
The menu box (menu) 222
The radiolist box (radiolist) 224
The progress meter box (gauge) 225

Summary 226

Chapter 12: System Startup and Customizing a Linux System 227
System startup, inittab, and run levels 227

The kernel startup and init process 227
Understanding run levels 229
System initialization boot scripts 230

User initialization scripts 231
System-wide setting scripts 231
User level settings – default files 232

Summary 234

Chapter 13: Pattern Matching and Regular Expressions with sed and
awk 235

The basics of regular expressions 235
sed – non-interactive stream editor 236

Understanding sed 237
Addressing in sed 238
How to modify a file with sed 239
Printing – the p command 240
Deleting – the d command 241
Substitution – the s command 243
Range of selected lines the comma 244
Multiple edits – the e command 245
Reading from files – the r command 246
Writing to files – the w command 247
Appending – the a command 247
Inserting – the i command 248

Table of Contents

[vi]

Changing – the c command 249
Transform – the y command 249
Quit – the q command 250
Holding and getting – the h and g commands 251
Holding and exchanging – the h and x commands 251
sed scripting 252

Using awk 254
The meaning of awk 254
Using awk 254

Input from files 255
Input from commands 256
How awk works 257
awk commands from within a file 259
Records and fields 259

Records 260
The record separator 260
The $0 variable 260
The NR variable 261

Fields 261
Field separators 262

The input field separator 262
Patterns and actions 263

Patterns 263
Actions 264

Regular expressions 264
Writing the awk script file 265
Using variables in awk 266
Decision-making using an if statement 267
Using the for loop 268
Using the while loop 268
Using the do while loop 269

Summary 270

Chapter 14: Taking Backup and Embedding Other Languages in Shell
Scripts 271

Backup of files from command line 271
Backup command rsync 272
Backup across the network 274
Automating backup activity 275

Embedding other language codes or scripts in Bash shell scripts 275
Embedding other language code in Bash shell script 276
Sending output to Bash Script 277
Storing other language output to Bash variable 277
Sending data to an embedded language code 278
Using data from file by embedded language 278
Sending user input to the embedded code 278

Table of Contents

[vii]

Embedding Python code in Bash shell Script 278
Embedding Ruby code 280
Embedding other language code in Bash – comparative study 280

Summary 282

Chapter 15: Database Administration Using Shell Scripts 283
Introduction to database administration 283
Working with a MySQL Database 284

Checking the version of MySQL database 284
Creating a database 284
Show databases 285
Creating a user 285
Creating a table in MySQL 286
Inserting data into table 287
Retrieving data from the table 288
Updating data 289
Deleting data 289
Altering a table 290
Describing a table 290
Drop the table 291
Drop the database 292

Working with Oracle Database 292
Switching to an Oracle user 292
Creating a user in Oracle SQL command line 293
The Grant statement 293
The Define command 294
Predefined variables 294
Create user through a shell script 295
Creating a table 296
Inserting the data into table 297
Retrieving data from a table 298
Update the data 299
Delete the data 300
Drop the table 301

Summary 302

Other Books You May Enjoy 303

Index 306

Preface
Shell scripts are an essential part of any modern operating system, such as Unix, Linux, or
Windows. The scripting language and its syntax may vary from OS to OS, but the
fundamental principles remain the same. I first encountered Linux shell scripts during the
development of embedded Linux product development. Shell scripts initialized the
complete product, from basic booting procedure to the user logging, to the complete
operating system being initialized. Another situation was automation of regular activities
such as build and release management of the source codes of very complex products, where
more than 10,000 files were part of the single project. Similarly, another very common
requirement is, automatic routine administration activities.

Initially, I learned scripts to solve practical problems and customize pre-existing products.
This book is a summary of what I have learned over the years about Linux shell scripting
through project development work, consultancy, and corporate training and Q&A sessions.

In this book, we will learn the very basics of shell scripting to real-world complex,
customized automation. By the end of the book, the reader will be able to confidently use
their own shell scripts for the real-world problems out there. The idea is to be as practical as
possible and give the reader the look and feel of what real-world scripting looks like.

This book covers the GNU Bourne Again Shell (BASH) scripting. You can use the
knowledge gained by reading this book for any shell of any of the UNIX flavors or Linux
distributions. You may need to take care of few syntax changes if you are working in other
shells, such as Korn or similar. You should be able to read this book cover to cover, or just
pick it up and read anything you find interesting. But, perhaps most importantly, if you
have a question about how to solve a particular problem or you need a hint, you will find it
easy to find the right solution—or something close enough—to save your time and energy.

Preface

[2]

Who this book is for
This book is for readers who are proficient at working with Linux and who want to learn
about shell scripting to improve their efficiency and practical skills. The following are few
examples where we can use the skills we learned in this book:

Shell scripting for automating tasks such as taking periodic backup
System administration
Database maintenance and backup
Test processing and report generation
Customization of system initialization
Embedded Linux product developments

What this book covers
Chapter 1, Getting Started and Working with Shell Scripting, introduces different ways to
write and run shell scripts. We'll also learn ways to handle files and directories, as well as
working with permissions.

Chapter 2, Drilling Deep into Process Management, Job Control, and Automation, speaks about
basic process management. We will learn about command ps and also about job
management using commands such as jobs, fg, bg, kill, and pkill. Later on, we will learn
about process monitoring tools top, iostat, vmstat, and sar.

Chapter 3, Using Text Processing and Filters in Your Scripts, speaks about using more, less,
head, and tail commands. We will also learn about text processing tools such as cut, paste,
comm, and uniq. We will learn what is a standard input, output, and standard error. Later
on, we will learn about meta-characters and pattern matching using VI and grep.

Chapter 4, Working with Commands, explains how shell interprets any command entered on
the command line. We will also learn about command substitution, separators, and pipes in
detail.

Chapter 5, Exploring Expressions and Variables, speaks about variables in general and
environment variables in particular. This includes how to export environment variables,
set, shift, read-only variables, command-line arguments, and create and handle arrays.

Chapter 6, Neat Tricks with Shell Scripting, talks about debugging, here operator, and
interactive shell scripts for taking input from keyboard and file handling.

Preface

[3]

Chapter 7, Performing Arithmetic Operations in Shell Scripts, covers performing arithmetic
operations in various ways such as using declare, let, expr, and arithmetic expressions. We
will also learn about representing numbers in different bases such as hex, octal, and binary.
The chapter also covers using bc utility for performing floating point or fractional
arithmetic.

Chapter 8, Automating Decision Making in Scripts, talks about using decision making in
scripts by working with Test, if-else, and switching case. We will also learn about how to
use select with for loop along with the menu.

Chapter 9, Automating Repetitive Tasks, speaks about repeating tasks such as doing routine
administration activities using the for loop, while loop, and do while loop. We will also
learn how control loops using break statement and continue statement.

Chapter 10, Working with Functions, speaks about functions in shell scripts. We will learn
how to define and display functions, and further how to remove the function from the
shell. We will also learn about passing arguments to functions, sharing data between
functions, declaring local variables in a function, returning result from a function, and
running functions in the background. We will finally learn about using source and .(dot)
commands. We will use these commands for using the library of functions.

Chapter 11, Using Advanced Functionality in Scripts, covers using traps and signals. We will
also learn about creating menus with the help of dialog utility.

Chapter 12, System Start-up and Customizing a Linux System, speaks about the Linux system
start-up, from power on until user login and how to customize a Linux system
environment.

Chapter 13, Pattern Matching and Regular Expressions with sed and awk, talks about regular
expressions and using sed (stream editor) and awk for text processing. We will learn how
to use various commands and options along with a lot of examples for using sed and awk.

Chapter 14, Taking Backup and Embedding Other Languages in Shell Scripts, speaks about
taking backup locally as well as across the network. We will also learn about automating it
using crontab. We will learn about embedding other languages in bash scripts such as
Python, Ruby, and Pearl.

Chapter 15, Database Administration Using Shell Scripts, talks about how to write and
execute MySQL commands in a shell script as well as how to write and execute Oracle
commands in a shell script. By using learnings from this chapter, we will be able to
automate frequently required database administration tasks.

Preface

[4]

To get the most out of this book
Any computer that has Linux OS installed in it will be sufficient for learning all the topics
discussed in this book. For the first edition, we used Ubuntu Linux distribution. For this
second edition, we have used CentOS Linux distribution. I have personally tested all the
commands and scripts in Ubuntu 16.04, as well as in the CentOS 7.0 distribution.

During the course, if you find that any particular utility is not installed in Ubuntu or any
Debian-based distribution, then enter the following command to install that utility:

$ sudo apt-get update
$ sudo apt-get install package-name

A good internet connection should be available for the preceding commands to run.

In CentOS or any other rpm-based distribution, enter the following commands:

$ sudo yum update
$ sudo yum install package-name

If the internet is connected, then using these commands you can install any command or
utility that is not already installed.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Learning- ​Linux- ​Shell- ​Scripting- ​Second- ​Edition. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalogue of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

#!/bin/bash
This is comment line
echo "Hello World"
ls
date

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

#!/bin/bash
This is comment line
echo "Hello World"
ls
date

Any command-line input or output is written as follows:

 $ bash hello.sh

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/Learning-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Getting Started and Working

with Shell Scripting
If you work with Linux, you will come across the shell. It's usually the first program you
work with. Graphical user interface (GUI) usage has become very popular due to its ease
of use. Those who want to take advantage of the power of Linux will use the shell program
by default:

The shell is a program that provides the user with direct interaction with the
operating system. Let's understand the stages in the evolution of the Linux
operating system. Linux was developed as a free and open source substitute for
the Unix OS. The chronology was as follows: The Unix operating system was
developed by Ken Thomson and Dennis Ritchie in 1969. It was released in 1970.
They rewrote Unix using C language in 1972.
In 1991, Linus Torvalds developed the Linux kernel for the free
operating system.

In this chapter, we will cover the following topics:

Comparison of shells
Working in shell
Learning basic Linux commands
Our first script—Hello World

Compiler and interpreter–differences in processes
When not to use scripts
Various directories
Working more effectively with shell–basic commands
Working with permissions

Getting Started and Working with Shell Scripting Chapter 1

[8]

Comparison of shells
Initially, the Unix OS used a shell program called the Bourne shell. Then, eventually, many
more shell programs were developed for different flavors of Unix. The following is some
brief information about different shells:

sh—Bourne shell
csh—C shell
ksh—Korn shell
tcsh—enhanced C shell
bash—GNU Bourne Again shell
zsh—extension to bash, ksh, and tcsh
pdksh—extension to ksh

A brief comparison of various shells is presented in the following table:

Feature Bourne C TC Korn Bash
Aliases no yes yes yes yes
Command-line editing no no yes yes yes
Advanced pattern matching no no no yes yes
Filename completion no yes yes yes yes
Directory stacks (pushd and popd) no yes yes no yes
History no yes yes yes yes
Functions yes no no Yes yes
Key binding no no yes no yes
Job control no yes yes yes yes
Spelling correction no no yes no yes
Prompt formatting no no yes no yes

What we see here is that, generally, the syntax of all these shells is 95% similar.
In this book, we are going to follow Bash shell programming.

Getting Started and Working with Shell Scripting Chapter 1

[9]

Tasks done by the shell
Whenever we type any text in the shell Terminal, it is the responsibility of the shell
(/bin/bash) to execute the command properly. The activities done by the shell are as
follows:

Reading text and parsing the entered command
Evaluating meta-characters, such as wildcards, special characters,
or history characters
Process io-redirection, pipes, and background processing
Signal handling
Initializing programs for execution

We will discuss the preceding topics in the subsequent chapters.

Working in the shell
Let's get started by opening the Terminal, and we will familiarize ourselves with the bash
shell environment:

Open the Linux Terminal and type in:1.

 $ echo $SHELL
 /bin/bash

The preceding output in the Terminal says that the current shell is /bin/bash,2.
such as the Bash shell:

 $ bash -version
 GNU bash, version 4.3.48(1)-release (x86_64-pc-linux-gnu)
 Copyright (C) 2013 Free Software Foundation, Inc.
 License GPLv3+: GNU GPL version 3 or later
http://gnu.org/licenses/gpl.html

 This is free software; you are free to change and redistribute it.
 There is NO WARRANTY, to the extent permitted by law.

Getting Started and Working with Shell Scripting Chapter 1

[10]

Hereafter, we will use the word Shell to signify the Bash shell only. If we intend to use
any other shell, then it will be specifically mentioned by name, such as KORN and other
similar shells.

In Linux, filenames in lowercase and uppercase are different; for example, the files Hello
and hello are two distinct files. This is unlike Windows, where case does
not matter.

As far as possible, avoid using spaces in filenames or directory names such as:

Wrong filename—Hello World.txt

Correct filename—Hello_World.txt or HelloWorld.txt

This will make certain utilities or commands fail or not work as expected, for example, the
make utility.

While typing in filenames or directory names of the existing files or folders, use the tab
completion feature of Linux. This will make working with Linux faster.

Learning basic Linux commands
The following table lists a few basic Linux commands:

Command Description
$ ls This command is used to check the content of the directory.
$ pwd This command is used to check the present working directory.

$ mkdir work
We will work in a separate directory called work in our home
directory. Use this command to create a new directory called
work in the current folder.

$ cd work
This command will change our working directory to the newly
created work directory.

$ pwd
This command can be used to verify whether we moved to the
expected directory.

$ touch hello.sh
This command is used to create a new empty file called
hello.sh in the current folder.

$ cp hello.sh bye.sh
This command is used to copy one file into another file.
This will copy hello.sh as bye.sh.

Getting Started and Working with Shell Scripting Chapter 1

[11]

$ mv bye.sh
welcome.sh

This command is used to rename a file. This will rename
bye.sh as welcome.sh.

$ ll This command will display detailed information about files.

$ mv welcome.sh
.welcome.sh
$ ls

Let's see some magic. Rename the file using the mv command
and run the ls command.
Now, the ls command will not display our file .welcome.sh.
The file is hidden. Any file or directory name starting with
. (dot) becomes hidden.

$ ls -a This command is used to display hidden files.
$ rm .welcolme.sh This command is used to delete the file.

If we delete any file from the GUI, such as the GUI, then it will be moved to the
/home/user/.local/share/Trash/files/ all deleted files folder.

Our first script – Hello World
Since we have learned basic commands in the Linux OS, we will now write our first shell
script called hello.sh. You can use any editor of your choice, such as vi, gedit, nano,
emacs, geany, and other similar editors. I prefer to use the vi editor:

Create a new hello.sh file as follows:1.

#!/bin/bash
This is comment line
echo "Hello World"
ls
date

Save the newly created file.2.

The #!/bin/bash line is called the shebang line. The combination of the characters # and !
is called the magic sequence. The shell uses this to call the intended shell, such as
/bin/bash in this case. This should always be the first line in a shell script.

Getting Started and Working with Shell Scripting Chapter 1

[12]

The next few lines in the shell script are self-explanatory:

Any line starting with # will be treated as a comment line. An exception to this
would be the first line with #!/bin/bash
The echo command will print Hello World on the screen
The ls command will display directory content in the console
The date command will show the current date and time

We can execute the newly created file with the following commands:

Technique one:

 $ bash hello.sh

Technique two:

 $ chmod +x hello.sh

By running any of the preceding commands, we are adding executable permissions
to our newly created file. You will learn more about file permissions later in this chapter:

 $./hello.sh

By running the preceding command, we are executing hello.sh as the executable file.
With technique one, we passed a filename as an argument to the bash shell.

The output of executing hello.sh will be as follows:

 Hello World
 hello.sh
 Sun Jan 18 22:53:06 IST 2015

Since we have successfully executed our first script, we will proceed to develop a more
advanced script, hello1.sh. Please create the new hello.sh script as follows:

 #!/bin/bash
 # This is the first Bash shell
 # Scriptname : Hello1.sh
 # Written by: Ganesh Naik
 echo "Hello $LOGNAME, Have a nice day !"
 echo "You are working in directory `pwd`."
 echo "You are working on a machine called `uname -o`."
 echo "List of files in your directory is :"
 ls # List files in the present working directory
 echo "Bye for now $LOGNAME. The time is `date +%T`!"

Getting Started and Working with Shell Scripting Chapter 1

[13]

The output of executing hello.sh will be as follows:

 Hello student, Have a nice day !.
 Your are working in directory /home/student/work.
 You are working on a machine called GNU/Linux.
 List of files in your directory is :
 hello1.sh hello.sh
 Bye for now student. The time is 22:59:03!

You will learn about the LOGNAME, uname, and other similar commands as we go through
the book.

Compiler and interpreter – differences
in process
In any program development, the following are the two options:

Compilation: Using a compiler-based language, such as C, C++, Java, and other
similar languages
Interpreter: Using interpreter-based languages, such as Bash shell scripting.

When we use a compiler-based language, we compile the complete source code and, as a
result of compilation, we get a binary executable file. We then execute the binary to check
the performance of our program.

On the other hand, when we develop the shell script, such as an interpreter-based program,
every line of the program is input to the Bash shell. The lines of shell script are executed
one by one sequentially. Even if the second line of a script has an error, the first line will be
executed by the shell interpreter.

When not to use scripts
Shell scripts have certain advantages over compiler-based programs, such as C or C++
language. However, shell scripting has certain limitations as well.

The following are the advantages:

Scripts are easy to write
Scripts are quick to start and easy for debugging
They save time in development

Getting Started and Working with Shell Scripting Chapter 1

[14]

Tasks of administration are automated
No additional setup or tools are required for developing or testing
shell scripts

The following are the limitations of shell scripts:

Every line in shell script creates a new process in the operating system. When we
execute the compiled program, such as a C program, it runs as a single process
for the complete program.
Since every command creates a new process, shell scripts are slow compared to
compiled programs.
Shell scripts are not suitable if heavy math operations are involved.
There are problems with cross-platform portability.

We cannot use shell scripts in the following situations:

Where extensive file operations are required
Where we need data structures, such as linked lists or trees
Where we need to generate or manipulate graphics or GUIs
Where we need direct access to system hardware
Where we need a port or socket I/O
Where we need to use libraries or interface with legacy code
Where proprietary, closed source applications are used (shell scripts put the
source code right out in the open for the entire world to see)

Various directories
We will explore the directory structure in Linux so that it will be useful later on:

/bin/: This contains commands used by a regular user.
/boot/: The files required for the operating system startup are stored here.
/cdrom/: When a CD-ROM is mounted, the CD-ROM files are accessible here.
/dev/: The device driver files are stored in this folder. These device driver files
will point to hardware-related programs running in the kernel.
/etc/: This folder contains configuration files and startup scripts.

Getting Started and Working with Shell Scripting Chapter 1

[15]

/home/: This folder contains a home folder of all users, except the administrator.
/lib/: The library files are stored in this folder.
/media/: External media, such as a USB pen drive, are mounted in this folder.
/opt/: The optional packages are installed in this folder.
/proc/: This contains files that give information about the kernel and every
process running in the OS.
/root/: This is the administrator's home folder.
/sbin/: This contains commands used by the administrator or root user.
/usr/: This contains secondary programs, libraries, and documentation about
user-related programs.
/var/: This contains variable data, such as HTTP, TFTP, logs, and others.
/sys/: This dynamically creates the sys files.

Working more effectively with
Shell – basic commands
Let's learn a few commands that are required very often, such as man, echo, cat, and
similar:

Enter the following command. It will show the various types of manual pages
displayed by the man command:

 $ man man

From the following table, you can get an idea about various types of man pages
for the same command:

Section number Subject area
1 User commands
2 System calls
3 Library calls
4 Special files
5 File formats
6 Games
7 Miscellaneous

Getting Started and Working with Shell Scripting Chapter 1

[16]

8 System admin
9 Kernel routines

We can enter the man command to display the corresponding manual pages
as follows:

 $ man 1 command
 $ man 5 command

Suppose we need to know more about the passwd command, which is used for
changing the current password of a user. You can type the command as follows:

 $ man command
 man -k passwd // show all pages with keyword
 man -K passwd // will search all manual pages content for pattern
"passwd"
 $ man passwd

This will show information about the passwd command:

 $ man 5 passwd

The preceding command will give information about the file passwd, which is
stored in the /etc/ folder, such as /etc/passwd.

We can get brief information about the command as follows:

 $ whatis passwd

Output:

 passwd (1ssl) - compute password hashes
 passwd (1) - change user password
 passwd (5) - the password file

Every command we type in the Terminal has an executable binary program file
associated with it. We can check the location of a binary file as follows:

 $ which passwd
 /usr/bin/passwd

Getting Started and Working with Shell Scripting Chapter 1

[17]

The preceding line tells us that the binary file of the passwd command is located
in the /usr/bin/passwd folder.

We can get complete information about the binary file location, as well as the
manual page location of any command, with the following:

 $ whereis passwd

The output will be as follows:

 passwd: /usr/bin/passwd /etc/passwd /usr/bin/X11/passwd
/usr/share/man/man1/passwd.1.gz /usr/share/man/man1/passwd.1ssl.gz
/usr/share/man/man5/passwd.5.gz

Change the user login and effective username:

 $ whoami

This command displays the username of the logged in user:

 $ su

The su (switch user) command will make the user the administrator but you
should know the administrator's password. The sudo (superuser do) command
will run the command with administrator privileges. The user should have been
added to the sudoers list.

 # who am i

This command will show the effective user who is working at that moment.

 # exit

Many a times, you might need to create new commands from existing
commands. Sometimes, existing commands have complex options to remember.
In such cases, we can create new commands as follows:

 $ alias ll='ls -l'
 $ alias copy='cp -rf'

To list all declared aliases, use the following command:

 $ alias

To remove an alias, use the following command:

 $ unalias copy

Getting Started and Working with Shell Scripting Chapter 1

[18]

We can check operating system details, such as UNIX/Linux or the distribution
that is installed with the following command:

 $ uname

Output:

 Linux

This will display the basic OS information (Unix name)

Linux kernel version information will be displayed by the following:

 $ uname -r

Output:

 3.13.0-32-generic

To get all the information about a Linux machine, use the following command:

 $ uname -a

Output:

 Linux localhost.localdomain 3.10.0-693.el7.x86_64 #1 SMP Tue Aug 22
21:09:27 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux

The following commands will give you more information about the Linux
distribution:

 $ cat /proc/version // detailed info about distribution
 $ cat /etc/*release
 # lsb_release -a
 .

The cat command is used for reading files and is displayed on the standard
output.

Getting Started and Working with Shell Scripting Chapter 1

[19]

Sometimes, we need to copy a file or directory to many places. In such situations,
instead of copying the original file or directory again and again, we can create
soft links. In Windows, it is a similar feature to creating
a shortcut.

 $ ln -s file file_link

To learn about the type of file, you can use the command file. In Linux, various
types of file exist. Some examples are as follows:

Regular file (-)
Directory (d)
Soft link (l)
Character device driver (c)
Block device driver (b)
Pipe file (p)
Socket file (s)

We can get information about a file using the following command:

 $ file file_name

Printing some text on screen for showing results to the user, or to ask for details
is an essential activity.
The following command will create a new file called file_name using the cat
command:

 $ cat > file_name
 line 1
 line 2
 line 3
 < Cntrl + D will save the file >

But this is very rarely used, as many powerful editors already exist, such as vi or
gedit.
The following command will print Hello World on the console. The echo
command is very useful for shell script writers:

 $ echo "Hello World"

 $ echo "Hello World" > hello.sh

Getting Started and Working with Shell Scripting Chapter 1

[20]

The echo command with > overwrites the content of the file. If the content
already exists in the file, it will be deleted and new content added. In situations
where we need to append the text to the file, then we can use the echo command
as follows:

 $ echo "Hello World" >> hello.sh will append the text

The following command will copy the Hello World string to the hello.sh file:
The following command will display the content of the file on screen:

 $ cat hello.sh

Working with permissions
The following are the types of permissions:

Read permission: The user can read or check the content of the file
Write permission: The user can edit or modify the file
Execute permission: The user can execute the file

Changing file permissions
The following are the commands for changing file permissions:

To check the file permission, enter the following command:

 $ ll file_name

The file permission details are as seen in the following diagram:

Getting Started and Working with Shell Scripting Chapter 1

[21]

In the preceding diagram, as we can see, permissions are grouped in owner-user, group,
and other users' permissions. Permissions are of three types–read, write, and execute. As
per the requirement, we may need to change the permissions of the various files.

The chmod command
We can change the file or directory permissions in the following two ways:

Technique one – the symbolic method
The following command will add the read/write and execute permissions to the file
wherein u is for user, g is for group, and o is for others:

 $ chmod ugo+rwx file_name

Alternatively, you can use the following command:

 $ chmod +rwx file_name

Technique two – the numeric method
The following command will change the file permissions using the octal technique:

 $ chmod 777 file_name

The file permission 777 can be understood as 111 111 111, which corresponds
to the rwx.rwx.rwx permissions.

Setting umask
We will see how Linux decides the default permissions of the newly created file or folder:

 $ umask
 0002

Getting Started and Working with Shell Scripting Chapter 1

[22]

The meaning of the preceding output is that, if we create a new directory, then, from the
permissions of +rwx, the permission 0002 will be subtracted. This means that for a newly
created directory, the permissions will be 775, or rwx rwx r-x. For a newly created file,
the file permissions will be rw- rw- r--. By default, for any newly created text file, the
execute bit will never be set. Therefore, the newly created text file and the directory will
have different permissions, even though umask is the same.

Setuid
Another very interesting functionality is the setuid feature. If the setuid bit is set for a
script, then the script will always run with the owner's privileges, irrespective of which
user is running the script. If the administrator wants to run a script written by him by other
users, then he can set this bit.

Consider either of the following situations:

 $ chmod u+s file_name
 $ chmod 4777 file

The file permissions after any of the preceding two commands will be drwsrwxrwx.

Setgid
Similar to setuid, the setgid functionality gives the user the ability to run scripts with a
group owner's privileges, even if it is executed by any other user:

 $ chmod g+s filename

Alternatively, you can use the following command:

 $ chmod 2777 filename

File permissions after any of the preceding two commands will be drwxrwsrwtx.

Getting Started and Working with Shell Scripting Chapter 1

[23]

Sticky bit
The sticky bit is a very interesting functionality. Let's say, in the administration department,
there are 10 users. If one folder has been set with sticky bit, then all other users can copy
files to that folder. All users can read the files, but only the owner of the respective file can
edit or delete the file. Other users can only read, but not edit or modify, the files if the sticky
bit is set:

 $ chmod +t filename

Alternatively, you can use the following command:

 $ chmod 1777

File permissions after any of the preceding two commands will be drwxrwxrwt.

Summary
In this chapter, you learned different ways to write and run shell scripts. You also learned
ways to handle files and directories, as well as work with permissions.

In the next chapter, you will learn about process management, job control,
and automation.

2
Drilling Deep into Process

Management, Job Control, and
Automation

In the last chapter, we introduced ourselves to the Bash shell environment in Linux. You
learned basic commands and wrote your first shell script as well.

You also learned about process management and job control. This information will be very
useful for system administrators in automation and in terms of solving many problems.

In this chapter, we will cover the following topics:

Monitoring processes with ps
Job management–working with fg, bg, jobs, and kill
Exploring at and crontab

Introducing process basics
A running instance of a program is called a process. A program stored in the hard disk or
pen drive is not a process. When that stored program starts executing, then we say that
process has been created and is running.

Let's very briefly understand the Linux operating system boot-up sequence:

In PCs, initially, the BIOS chip initializes system hardware, such as PCI bus, and1.
display device drivers.
Then the BIOS executes the boot loader program.2.

Drilling Deep into Process Management, Job Control, and Automation Chapter 2

[25]

The boot loader program then copies the kernel in the memory and, after basic3.
checks, it calls a kernel function start_kernel().
The kernel then initializes the OS and creates the first process called init.4.
You can check the presence of this process with the following command:5.

 $ ps -ef

Every process in the OS has one numerical identification associated with it. It is6.
called a process ID. The process ID of the init process is 1. This process is the
parent process of all user space processes.
In the Linux OS, every new process is created by a system call called fork().7.
Therefore, every process has a process ID, as well as the parent process ID.8.
We can see the complete process tree using the following command:9.

 $ pstree

You can see the very first process as init, as well as all other processes with a complete
parent and child relation between them. If we use the $ps -ef command, then we can see
that the init process is owned by the root and its parent process ID is 0. This means that
there is no parent for init:

Drilling Deep into Process Management, Job Control, and Automation Chapter 2

[26]

Therefore, with the exception of the init process, all other processes are created by some
other process. The init process is created by the kernel itself.

The following are the different types of processes:

Orphan process: If, by some chance, the parent process is terminated, then the
child process becomes an orphan process. The process that created the parent
process, such as the grandparent process, becomes the parent of the orphan child
process. As a last resort, the init process becomes the parent of the orphan
process.
Zombie process: Every process has one data structure called the process control
table. This is maintained in the operating system. This table contains information
about all the child processes created by the parent process. If, by chance, the
parent process is sleeping or is suspended due to some reason or other and the
child process is terminated, then the parent process cannot receive the
information about the child process termination. In such cases, the child process
that has been terminated is called the zombie process. When the parent process
awakes, it will receive a signal regarding the child process termination and the
process control block data structure will be updated. The child process
termination is then completed.
Daemon process: Until now, we have started every new process in a Bash
Terminal. Therefore, if we print any text with the $ echo command, it will be
printed in the Terminal itself. There are certain processes that are not associated
with any Terminal. Such a process is called a daemon process. These processes
are running in the background. An advantage of the daemon process is that it is
immune to the changes happening to the Bash shell that has created it. When we
want to run certain background processes, such as a DHCP server, then the
daemon process is very useful.

Drilling Deep into Process Management, Job Control, and Automation Chapter 2

[27]

Monitoring processes using ps
We have used the ps command in the introduction. Let's learn more about it:

To list the processes associated with our current Bash shell Terminal, enter the
following command:

 $ ps

To list processes, along with the parent process ID associated with the current
Terminal, enter the following command:

 $ ps -f

We can see the process ID in the PID column and the parent process ID, in the
PPID column in the preceding output.

To list processes with the parent process ID along with the process state, enter
the following command:

 $ ps -lf

Drilling Deep into Process Management, Job Control, and Automation Chapter 2

[28]

In the preceding output, the column with S (state) shows the current state of a
process, such as R for running and S for suspended state.

To list all the processes running in the operating system, including the system
processes, enter the following command:

 $ ps -ef

The process names in [] are kernel threads. If you are interested in more options
for the ps command, you can use the following command:

 $ man ps

To find a particular process, you can use the following command:

 $ ps -ef | grep "process_name"

The command with grep will display the process with process_name.

Drilling Deep into Process Management, Job Control, and Automation Chapter 2

[29]

If we want to terminate the running process, enter the following command:

 $ kill pid_of_process_to_be_killed

Many a time, if the process is not killed by the $ kill command, you may need
to pass additional options to ensure that the required process is killed, which is
shown as follows:

 $ kill -9 pid_of_process_to_be_killed

We can terminate the process with the name of a process, instead of using the
process ID, as follows:

 $ pkill command_name
 $ pkill sleep

Or:

 $ pkill -9 command_name

Drilling Deep into Process Management, Job Control, and Automation Chapter 2

[30]

To know more about various flags of kill, enter the following command:

 $ kill -l

This displays all the signals or software interrupts used by the operating system.
When we enter the $ kill command, the operating system sends the SIGTERM
signal to the process.
If the process is not killed by this command, then we enter the following
command:

 $ kill -9 process_name

This sends SIGKILL to the process to be killed.

Process management
Since we have understood the command to check processes, we will learn more about
managing different processes.

In a Bash shell, when we enter any command or start any program, it starts
running in the foreground. In such a situation, we cannot run more than one
command in the foreground. We need to create many Terminal windows for
starting many processes. If we need to start many processes or programs from
the same Terminal, then we will need to start them as background processes.
If we want to start a process in the background, then we need to append the
command in the Bash shell by &.
If I want to start my Hello program as the background process, then the
command would be as follows:

 $ Hello &

If we terminate any command by &, then it starts running as the
background process.

Drilling Deep into Process Management, Job Control, and Automation Chapter 2

[31]

For example, we will issue a simple sleep command, which creates a new process. This
process sleeps for the duration, which is mentioned in the integer value next to the sleep
command:

The following command will make the process sleep for 10,000 seconds. This1.
means we will not be able to run any other command from the same Terminal:

 $ sleep 10000

Now, you can press the Ctrl + C key combination to terminate the process created2.
by the sleep command.

Now, use the following command:3.

 $ sleep 10000 &

The preceding command will create a new process, which will be put to
sleep for 10000 seconds; but this time, it will start running in the
background. Therefore, we will be able to enter the next command in the
Bash Terminal.

Since the newly created process is running in the background, we can enter new4.
commands very easily in the same Terminal window:

 $ sleep 20000 &
 $ sleep 30000 &
 $ sleep 40000 &

To check the presence of all the processes, enter the following command:5.

 $ jobs

Drilling Deep into Process Management, Job Control, and Automation Chapter 2

[32]

The jobs command lists all the processes running in the Terminal, including
foreground and background processes. You can clearly see their status as
running, suspended, or stopped. The numbers in [] show the job ID.
The + sign indicates which command will receive fg and bg commands by
default. We will study them in the following topics.

If you want to make any existing background process run in the foreground, then6.
use the following command:

 $ fg 3

The preceding command will make the job number 3 run in the foreground
instead of the background.

If we want to make the process stop executing and get it suspended, then
press Ctrl + Z. This key combination makes the foreground process stop
executing. Please note that the process has stopped, but is not terminated.

Drilling Deep into Process Management, Job Control, and Automation Chapter 2

[33]

To make the stopped process continue running in the background, use the7.
following command:

 $ bg job_number
 $ bg 3

The preceding command will make suspended job process number 3 run in
the background.

If you wish to terminate the process, you can use the job ID or process ID as8.
follows:

 $ jobs -l // This will list jobs with pid
 $ kill pid // or
 $ kill %job_id // This will kill job
 $ kill %3

Process monitoring tools – top, iostat, and
vmstat
We can view the native performance of various processes in an OS by using the following
tools:

To view a dynamic real-time view of the running processes in an OS, use the
following command:

 $ top

Drilling Deep into Process Management, Job Control, and Automation Chapter 2

[34]

An explanation of the top command generated output is as follows:

The $top command displays a lot of information about the running system.

The first line of the display is shown as follows:

The description of fields in the first line is as follows:

Current time
System uptime
Number of users logged in
Load average of 5, 10, and 15 minutes, respectively

Drilling Deep into Process Management, Job Control, and Automation Chapter 2

[35]

The second line is shown as follows:

This line shows the summary of tasks or processes. It shows the total number of all the
processes, which includes the total number of running, sleeping, stopped, and zombie
processes. The third line is shown as follows:

This line shows information about CPU usage as a % in different modes as follows:

* us (user): CPU usage in % for running (un-niced) user processes
* sy (system): CPU usage in % for running kernel processes
* ni (niced): CPU usage in % for running niced user processes
* wa (IO wait): CPU usage in % waiting for IO completion
* hi (hardware interrupts): CPU usage in % for serving hardware
interrupts
* si (software interrupts): CPU usage in % for serving software interrupts
* st (time stolen): CPU usage in % for time stolen for this VM by
the hypervisor

The fourth line is shown as follows:

This line provides information about memory usage. It shows the physical memory that is
used, free, available, and used for buffers. The next line shows the swap memory that is
available, used, free, and cached.

After this line, we see the table of values with the following columns:

PID: This is the ID of the process
USER: This is the user that is the owner of the process
PR: This is the priority of the process
NI: This is the NICE value of the process
VIRT: This is the virtual memory used by the process
RES: This is the physical memory used for the process

Drilling Deep into Process Management, Job Control, and Automation Chapter 2

[36]

SHR: This is the shared memory of the process
S: This indicates the status of the process: S = sleep, R = running, and Z = zombie
(S)
%CPU: This is the % of CPU used by this process
%MEM: This is the % of RAM used by the process
TIME+: This is the total time of activity of this process
COMMAND: This is the name of the process

Let's take a look at the performance monitoring tools iostat, vmstat, and sar:

To view the statistics of the CPU and the input/output device's utilization, use
the following command:

 $ iostat

 $ iostat -c

Shows only CPU statistics

 $ iostat -d

Shows only disk statistics

To view the virtual memory statistics, use the following command:

 $vmstat

 $ vmstat -s

Drilling Deep into Process Management, Job Control, and Automation Chapter 2

[37]

This shows various event counters and memory statistics

 $ vmstat -t 1 5

Runs for every one second stop after executing for five intervals

 $ sar -u 2 3

This will show the CPU activity report three times every 2 seconds:

Understanding "at"
Many a time, we need to schedule a task for a future time, say in the evening at 8 p.m. on a
specific day. We can use the at command in such a situation.

Sometimes, we need to repeat the same task at a specific time, periodically, every day, or
every month. In such situations, we can use the crontab command.

Let's learn more about the use of the at command. To use the at command, the syntax is as
follows:

 $ at time date

The following are examples of the at command:

The Ctrl + D command will save the at job. The task will be executed at 11.15
A.M. This command will log messages to the log.txt file at 11.15 a.m.:

 $ at 11.15 AM
 at > echo "Hello World" > $HOME/log.txt
 at > Control + D

The following command will send an email on March 31, 2015, at 10 A.M.:

 $ at 10am mar 31 2015
 at> echo "taxes due" | mail jon
 at> ^D

Drilling Deep into Process Management, Job Control, and Automation Chapter 2

[38]

The following command will make the task run on May 20 at 11 A.M.:

 $ at 11 am may 20

All the jobs that are scheduled by the at command can be listed using the
following command:

 $ atq

To remove a specific job listed by the atq command, we can use the following
command:

 $ atrm job-id

Understanding crontab
If we need to run a specific task repetitively, then the solution is to use crontab. The
syntax of the command is as follows:

 $ crontab -e

This will open a new editor. The following diagram is the syntax to add tasks. The fields to
use for repeating tasks at a particular time are explained here:

Finally, to save the jobs, use the following:

 Press Esc then type :wq

The preceding operations will save the job and quit crontab.

The following are a few examples of the crontab command:

Use the following command to run a script every hour at the fifth minute, every
day:

 5 * * * * $HOME/bin/daily.job >> $HOME/tmp/out 2>&1

Use the following command to run 5 minutes after midnight every day:

 5 0 * * * $HOME/bin/daily.job >> $HOME/tmp/out 2>&1

Use the following command to run at 2.15 p.m. on the first of every month–the
output is mailed to Paul:

 15 14 1 * * * $HOME/bin/monthly

Drilling Deep into Process Management, Job Control, and Automation Chapter 2

[39]

Use the following command to run at 10 P.M. on weekdays, and send the email
to ganesh@abc.com:

 0 22 * * 1-5 sendmail ganesh@abc.com < ~/work/email.txt

The sendmail utility is used for sending emails. We can also use the mail utility
as follows:

 sendmail user@example.com < /tmp/email.txt

The following commands are self-explanatory from the text of the echo
command:

 23 0-23/2 * * * echo "run 23 minutes after midn, 2 am, 4 am,
everyday"
 5 4 * * sun echo "run at 5 minutes after 4 am every Sunday"

The following are a few more crontab command examples:

Min Hour Day /
month Month Day /

week Execution time

45 0 5 1,6,12 * 00:45 hrs on the fifth day of January, June, and
December.

0 18 * 10 1-5 6.00 P.M. every weekday (Monday-Friday), only in
October.

0 0 1,10,15 * * Midnight on the first, tenth, and fifteenth days of the
month.

5,10 0 10 * 1 At 12.05 and 12.10 every Monday, and on the tenth
day of every month.

We can add macros in the crontab file. Use the following to restart my_program after each
reboot:

 @reboot /bin/my_program
 @reboot echo `hostname` was rebooted at `date` | mail -s "Reboot
notification" ganesh.admin@some-corp.com

Drilling Deep into Process Management, Job Control, and Automation Chapter 2

[40]

The following is a summary of a few more macros:

Entry Description Equivalent To
@reboot Run once at start-up None
@weekly Run once a week 0 0 * * 0

@daily Run once a day 0 0 * * *

@midnight (same as @daily) 0 0 * * *

@hourly Run once an hour 0 * * * *

Summary
In this chapter, we studied basic process management. You learned about the ps command.
Using commands such as jobs, fg, bg, kill, and pkill, we studied job management.
Later on, you learned about the top, iostat, and vmstat process monitoring tools.

In the next chapter, you will learn about standard input/output, various meta–characters,
and text filters used in shell scripting.

3
Using Text Processing and

Filters in Your Scripts
In the last chapter, you studied basic process management. You learned about the ps
command. You also studied job management by using commands such as jobs, fg, bg,
kill, and pkill, as well as various other tools, such as top, iostat, and vmstat. In this
chapter, we will cover the following topics:

Using more, less, head, and tail
Using diff, cut, paste, comm, and uniq
Working with grep
Understanding standard input, standard output, and standard error
Understanding various meta-characters and their usage

Text filtering tools
Normally, shell scripting involves report generation, which will include processing various
text files and filtering their output to finally produce the desired results. Let's start
discussing the two Linux commands, namely more and less:

more: Sometimes we get a very large output on the screen for certain commands,
which cannot be viewed completely in one screen. In such cases, we can use the
more command to view the output text one page at a time. Add | more after the
command, as follows:

 $ ll /dev | more

The | is called a pipe. You will learn more about it in the next chapters. In
this command, pressing the spacebar will move the output on the screen one
page at a time, or pressing Enter will move the screen one line at a time.

Using Text Processing and Filters in Your Scripts Chapter 3

[42]

less: Instead of more, if you use less, it will show a screen containing the full
text all at once. We can move forward as well as backward. This is a very useful
text-filtering tool.

The syntax usage is as follows:

 $ command | less
 e.g. $ ll /proc | less

This command will show a long directory listing of the /proc folder. Let's say that we want
to see whether the cpuinfo file is present in the directory. Just press the arrow key up or
down to scroll through the display. With the more command, you cannot scroll backward.
You can move forward only. With page up and down key presses, you can move forward
or backward one page at a time, which is very fast. In addition to scrolling forward or
backward, you can search for a pattern using /for forward search and ? for backward
search. You can use N for repeating the search in a forward or backward direction.

Head and tail
For testing the next few commands, we will need a file with a sequence of numbers from 1
to 100. For this, use the following command:

 $ seq 100 > numbers.txt

The preceding command creates a file with the numbers 1 to 100 on separate lines. The
following example shows the usage of the head command:

 $ head numbers.txt // will display 10 lines
 $ head -3 numbers.txt // will show first 3 lines
 $ head +5 numbers.txt // will show from line 5. In few shells this
command may not work

The following example shows the usage of the tail command:

 $ tail numbers.txt // will display last 10 lines
 $ tail -5 numbers.txt // will show last 5 lines
 $ tail +15 numbers.txt // will show from line 15 onwards. In few
shells this may not work

To print lines 61 to 65 from numbers.txt into file log.txt, type the following:

 $ head -65 numbers.txt | tail -5 > log.txt

Using Text Processing and Filters in Your Scripts Chapter 3

[43]

The diff command
The diff command is used to find differences between two files. Let's see a few examples
to find out its usage. The content of file1 is as follows:

I go for shopping on Saturday
I rest completely on Sunday
I use Facebook & Twitter for social networking

The content of file2 is as follows:

Today is Monday.
I go for shopping on Saturday
I rest completely on Sunday
I use Facebook & Twitter for social networking

Type the diff command:

 $ diff file1 file2

The output will be this:

 0a1
 > Today is Monday

In the output, 0a1 tells us that line number 1 is added in file2. Let's see another example
with line deletion. The content of file1 is as follows:

Today is Monday
I go for shopping on Saturday
I rest completely on Sunday
I use Facebook & Twitter for social networking

The content of file2 is as follows:

Today is Monday
I go for shopping on Saturday
I rest completely on Sunday

Type the diff command:

 $ diff file1 file2

The output is as follows:

 4d3
 < I use Facebook & Tweeter for social networking.

Using Text Processing and Filters in Your Scripts Chapter 3

[44]

In the output, 4d3 tells us that line number 4 is deleted in file2. Similarly, the c command
will show us changes to a file as well.

The cut command
The cut command is used to extract specified columns/characters of a piece of text, which
is given as follows:

-c: Specifies the filtering of characters
-d: Specifies the delimiter for fields
-f: Specifies the field number

The following are a few examples that show the usage of the cut command:

Using the next command, from the /etc/passwd file, fields 1 and 3 will be
displayed. The display will contain the login name and user ID. We use the -d:
option to specify that the field or columns are separated by a colon (:):

 $ cut -d: -f1,3 /etc/passwd

Using Text Processing and Filters in Your Scripts Chapter 3

[45]

Using this command, from the /etc/passwd file, the fields 1 to 5 will be
displayed. The display will contain the login name, encrypted password, user ID,
group ID, and user name:

 $ cut -d: -f1-5 /etc/passwd

This command will show characters 1 to 3 and 8 to 12 from the emp.lst file:

 $ cut -c1-3,8-12 /home/student/emp.lst

The output of the date command is sent as an input to the cut command and
only the first three characters are printed on screen, which is shown as follows:

 $ date | cut -c1-3
 Mon

The paste command
Using this utility, we can paste two files horizontally; for example, file_1 will become the
first column and file_2 will become the second column:

 $ paste file_1 file_2

Using Text Processing and Filters in Your Scripts Chapter 3

[46]

The join command
Consider two files, namely one.txt and two.txt:

The content of one.txt is as follows:

1 India
2 UK
3 Canada
4 US
5 Ireland

The content of two.txt is as follows:

1 New Delhi
2 London
3 Toronto
4 Washington
5 Dublin

In this case, for both the files, the common fields are the fields that have serial numbers that
are the same in both files. We can combine both files using the following command:

 $ join one.txt two.txt

The output will be as follows:

 1 India New Delhi
 2 UK London
 3 Canada Toronto
 4 US Washington
 5 Ireland Dublin

The uniq command
The following are a few examples showing the usage of the uniq command:

This command removes duplicate adjacent lines from the file:

 $ cat test
 aa
 aa
 cc
 cc
 bb
 bb

Using Text Processing and Filters in Your Scripts Chapter 3

[47]

 yy
 zz
 $ uniq test

This output removes the duplicate adjacent lines from test file, shown as
follows:

 aa
 cc
 bb
 yy
 zz

The next command only prints duplicate lines:

 $ uniq -d test

Output:

 aa
 cc
 bb

The following command prints the number of occurrences of all elements on an
individual line:

 $ uniq -c test

Output:

 2 aa
 2 cc
 2 bb
 1 yy
 1 zz

The comm command
The comm command shows the lines unique to file_1 and file_2 along with the common
lines in them. We can use various options while using the command in the scripts:

 $ cat file_1
 Barack Obama
 David Cameron
 Narendra Modi
 $ cat file_2

Using Text Processing and Filters in Your Scripts Chapter 3

[48]

 Barack Obama
 Angela Markel
 Vladimir Putin
 $ comm --nocheck-order file_1 file_2
 Barack Obama
 David Cameron
 Engela Merkel
 Narendra Modi
 Vladimir Putin

In the preceding example, we can see the following:

The first column shows the unique lines in file_1
The second column shows the unique lines in file_2
The last column shows the content common to both files

The output shows that the unique lines in file_1 are David Cameron and Narendra
Modi. The unique lines in the second file are Engela Merkel and Vladimir Putin. The
common name in both the files is Barack Obama, which is displayed in the third column.

The tr command
The tr command is a Linux utility for text processing, such as translating, deleting, or
squeezing repeated characters, which is shown as follows:

 $ tr '[a-z]' '[A-Z]' < filename

This will translate the lowercase characters to uppercase:

 $ tr '|' '~' < emp.lst

This will squeeze multiple spaces into a single space:

 $ ls -l | tr -s " "

In this example, the -s option squeezes multiple contiguous occurrences of the character
into a single char. Additionally, the -d option can remove characters.

Using Text Processing and Filters in Your Scripts Chapter 3

[49]

The sort command
This command sorts the contents of a text file, line by line. The options are as follows:

-n: Sorts as per the numeric value
-d: Sorts as per the dictionary meaning
-h: Compares as per the human-readable numbers (for example, 1K 2G)
-r: Sorts in the reverse order
-t: Option to specify a delimiter for fields
+num: Specifies sort field numbers
-knum: Specifies sort field numbers
$ sort -k4 sample.txt: This will sort according to the fourth field

Sr Examples of command usage Explanation
1 sort sample.txt Alphabetically sorts the lines

2 sort -u sample.txt Duplicate entries are sorted

3 sort -r sample.txt Reverse sort

4 sort -n -k3 sample.txt Numerical sort of the third field

IO redirection
You will learn the very useful concept of I/O redirection in this section.

File descriptors
All I/O–including files, pipes, and sockets - are handled by the kernel via a mechanism
called the file descriptor. A file descriptor is a small, unsigned integer, which is an index
into a file-descriptor table maintained by the kernel, and used by the kernel to reference
open files and I/O streams. Each process inherits its own file-descriptor table from its
parent. The first three file descriptors are 0, 1, and 2. File descriptor 0 is standard input
(stdin), 1 is standard output (stdout), and 2 is standard error (stderr). When you open
a file, the next available descriptor is 3, and it will be assigned to the new file.

Using Text Processing and Filters in Your Scripts Chapter 3

[50]

Redirection
When a file descriptor is assigned to something other than a terminal, this is called I/O
redirection. The shell performs the redirection of output to a file by closing the standard
output file descriptor 1 (the Terminal) and then assigning that descriptor to the file. When
redirecting standard input, the shell closes file descriptor 0 (the Terminal) and assigns that
descriptor to a file. The Bash shells handle errors by assigning a file to file descriptor 2.The
following command will take input from the sample.txt file:

 $ wc < sample.txt

The preceding command will take content from the sample.text file. The wc command
will print the number of lines, words, and characters in the sample.txt file. This
command will redirect output to be saved in the log.txt file:

 $ echo "Hello world" > log.txt

This command will append the Hello World text to the log.txt file:

 $ echo "Welcome to Shell Scripting" >> log.txt

The single > will overwrite or replace the existing text in the log file, and double >> will
append the text to the log file. Let's see a few more examples:

 $ tr '[A-Z]' '[a-z]' < sample.txt

The preceding tr command will read text from the sample.txt file. The tr command will
convert all uppercase letters to lowercase letters and will print the converted text on screen:

 $ ls > log.txt
 $ cat log.txt

The output of the command is as follows:

 dir_1
 sample.txt
 extra.file

In this example command, ls sends directory content to file log.txt. Whenever we want
to store the result of the command in the file, we can use the preceding example.

 $ date >> log.txt
 $ cat log.txt

Using Text Processing and Filters in Your Scripts Chapter 3

[51]

The output is as follows:

 dir_1
 dir_2
 file_1
 file_2
 file_3
 Sun Sept 17 12:57:22 PDT 2004

In the preceding example, we redirect and append the result of the date command to the
log.txt file.

 $ gcc hello.c 2> error_file

The gcc is a C language compiler program. If an error is encountered during compilation,
then it will be redirected to error_file. The > character is used for a success result and 2>
is used for error-result redirection. We can use error_file for debugging purposes:

 $ find . -name "*.sh" > success_file 2> /dev/null

In the preceding example, we redirect output or success results to success_file, and
errors to /dev/null. /dev/null is used to destroy the data, which we do not want to be
shown on screen.

 $ find . -name "*.sh" &> log.txt

The preceding command will redirect both output and errors to log.txt.

 $ find . -name "*.sh" > log.tx 2>&1

The preceding command will redirect the result to log.txt and send errors to where the
output goes, such as log.txt.

 $ echo "File needs an argument" 1>&2

The preceding command will send standard output to the standard error. This will merge
the output with the standard errors. A summary of all I/O redirection commands is as
follows:

< sample.txt The command will take input from sample.txt

> sample.txt The success result will be stored in sample.txt

>> sample.txt The successive outputs will be appended to sample.txt

2> sample.txt The error results will be stored in sample.txt

2>> sample.txt The successive error outputs will be appended to sample.txt

Using Text Processing and Filters in Your Scripts Chapter 3

[52]

&> sample.txt This will store successes and errors, such as in sample.txt

>& sample.txt
This will store successes and errors, such as in sample.txt (the
same as the previous example)

2>&1 This will redirect an error to where output goes
1>&2 This will redirect output to where errors go
>| This overrides noclobber when redirecting the output

<> filename
This uses the file as both standard input and output if a device file
(from /dev)

cat xyz > success_file
2> error_file

This stores success and failure in different files

The following is the summary of various meta-characters:

Char Meaning Example Possible output

*
Matches with zero or
multiple numbers of any
character

$ ls -l *.c file*
Sample.c, hello.c,
file1, file_2, filebc

? Matches any single character $ ls -l file? filea, fileb, file1

[..] Matches with any single
character within the bracket $ ls -l file[abc] filea, fileb, filec

; Command separator $cat filea; date
Displays the content of filea,
and displays the current date
and time

| Pipe between two commands $ cat filea | wc -l
Prints the number of lines in
filea

()

Groups commands; is used
when the output of the
command group has to be
redirected

$ (echo
"***x.c***";cat
x.c)>out

Redirects the content of x.c
with a heading ***x.c*** to
the file out

Using Text Processing and Filters in Your Scripts Chapter 3

[53]

Run the following command:

 $ touch filea fileb filec fileab filebc filead filebd filead
 $ touch file{1,2,3}

Try out the following command:

 $ ls s*
 $ ls file
 $ ls file[abc]
 $ ls file[abc][cd]
 $ ls file[^bc]
 $ touch file file1 file2 file3 ... file20
 $ ls ?????
 file1
 file2
 file3
 $ ls file*
 file file1 file10 file2 file3
 $ ls file[0-9]
 file1 file2 file3
 $ ls file[0-9]*
 file1 file10 file2 file3
 $ ls file[!1-2]
 file3

Brace expansion
Curly braces allow you to specify a set of characters from which the shell automatically
forms all possible combinations. To make this work, the characters to be combined with the
given string must be specified as a comma-separated list with no spaces:

 $ touch file{1,2,3}
 $ ls

Using Text Processing and Filters in Your Scripts Chapter 3

[54]

 $ mkdir directory{1,2,3}{a,b,c}
 $ ls

 $ touch file{a..z}
 $ ls

The following is the summary of various I/O-redirection and logical operators:

Using Text Processing and Filters in Your Scripts Chapter 3

[55]

For example:

 $ ls || echo "Command un-successful"
 $ ls a abcd || echo "Command un-successful"

These commands will print Command un-successful if the ls command is unsuccessful.

Pattern matching with the vi editor
To learn about pattern matching, we will ensure that the pattern that we will search for is
highlighted when the pattern searched for is found. The configuration file for vi is
/etc/vimrc.In the vi editor, use the following commands for various options:

Sr. Commands Description
1 :set hlsearch Highlights the search pattern

2 :se[t] showmode Shows when you are in insert mode

3 :se[t] ic Ignores case when searching

4 :set noic Shows a case-sensitive search

The user should open the file in vi, press the Esc button so that it enters command mode,
and then type colon, followed by these commands. The following are the commands for
pattern search and replace:

Sr. Commands Description

1 /pat
This searches for the pattern pat and places the cursor where the pattern
occurs

2 / This repeats the last search

3 :%s/old/new/g Globally, all the occurrences of old will be replaced by new

4 :#,#s/old/new/g
#,# should be replaced with the numbers of the two lines (say between line
numbers 3 and 6), for example, 3,6s/am/was/g

The following is an example of a regular expression for replacing Tom with David:

:1,$s/tom/David/g // from line 1 to end ($), replace tom by
David
:1,$s/<[tT]om>/David/g // start and end of word < >

Using Text Processing and Filters in Your Scripts Chapter 3

[56]

This is another example of a regular expression. Create the love.txt file, as follows:

Man has love for Art
World is full of love
Love makes world wonderful
love looove lve
love
Love love lover loves
I like "Unix" more than DOS
I love "Unix"/
I said I love "Unix"
I love "unix" a lot

Use the following commands for testing pattern-searching facilities:

Command Description
:set hlsearch This will highlight the search pattern, when it is found

/love/
This will highlight any text matching with love. Use n for forward
and N for backward in the next search

/^love/ This will highlight the line starting with love

/love$/ This will highlight the line ending with love

/^love$/ This will highlight a line containing only the word love

/l.ve/ This will highlight any character match for .

/o*ve/ This will highlight love, loooove, and lve

/[Ll]ove/ This will search for patterns Love and love
/ove[a-z]/ This will highlight any matching character in the a to z range

/ove[^a-zA-Z0-9" "]/ Except for alpha-numeric characters, this will match punctuation
marks such as , ; : and similar

:%s/unix/Linux/g This will replace unix with Linux

:1,$s/unix/Linux/g This will replace unix with Linux from line 1 to the end ($)

:1,$s/<[uU]nix>/Linux/g This will start and end of word < >

/^[A-Z]..$ This will highlight a line starting with an uppercase letter, two chars
and then end of line

/^[A-Z][a-z]*3[0-5]/ This will highlight any line ending with 30 to 35

/[a-z]* ./ This will highlight any line with lowercase and ending with .

Using Text Processing and Filters in Your Scripts Chapter 3

[57]

Pattern searching using grep
The command g/RE/p stands for globally search for the regular expression (RE) and print
the line. The return statuses are 0 for success, 1 for pattern not found, and 2 for file not
found:

 $ ps -ef | grep root

The preceding command will show all processes running currently whose user ID is root.

 $ ll /proc | grep "cpuinfo"

The preceding command will show the file with the name cpuinfo from the /proc
directory.

 $ grep -lir "text" * // show only file names containing text
//
 $ grep -ir "text" dir_name // show lines of files //

We will try the following commands on file love.txt:

Meta-character Function Example Description

^ Beginning-of-line anchor '^mango'
Will display all lines beginning with
mango

$ End-of-line anchor 'mango'$'
Will display all lines ending with
mango

. Matches a single character 'm..o'
Will display lines containing m,
followed by two characters, followed
by an o

* Matches zero or more characters
preceding the asterisk '*mango'

Will display lines with zero or more
spaces, followed by the pattern
mango

[] Matches a single character in
the set '[Mm]ango'

Will display lines containing Mango
or mango

[^] Matches a single character not
in the set '[^A-M]ango'

Will display lines not containing a
character in the range A through M,
followed by ango

< Beginning-of-word anchor '<mango'
Will display lines containing a word
that begins with mango

> End-of-word anchor 'mango>'
Will display lines containing a word
that ends with mango

Using Text Processing and Filters in Your Scripts Chapter 3

[58]

We will create a new file sample.txt, as follows:

Apple Fruit 5 4.5

Potato Vegetable 4 .5

Onion Vegetable .3 8

Guava Fruit 5 1.5

Almonds Nuts 1 16

Tomato Vegetable 3 6

Cashew Nuts 2 12

Mango Fruit 6 6

Watermelon Fruit 5 1

We will try the following commands on the sample.txt file:

Sr.
no. Command Description

1 grep Fruit sample.txt This will show all lines with pattern Fruit

2 grep Fruit G*
This searches for pattern Fruit in all files starting with
G

3 grep '^M' sample.txt This searches for all lines starting with M

4 grep '6$' sample.txt This searches for lines ending with 6

5 grep '1..' sample.txt This displays lines containing 1 and any character after it

6 grep '.6' sample.txt This shows lines containing 6

7 grep '^[AT]' sample.txt This searches for lines starting with A or T

8 grep '[^0-9]' sample.txt This searches for lines that contain at least one alphabetic
character

9
grep '[A-Z][A-Z] [A-Z]'
sample.txt

This searches for word containing an uppercase letter,
uppercase letter, space, and uppercase letter

10 grep '[a-z]{8}' sample.txt This displays all lines in which there are at least eight
consecutive lowercase letters

11 grep '<Fruit' sample.txt
This displays all lines containing a word starting with
Fruit. The < is the beginning-of-word anchor

Using Text Processing and Filters in Your Scripts Chapter 3

[59]

12 grep '<Fruit>' sample.txt
This displays the line if it contains the word Fruit. The
< is the beginning-of-word anchor and the > is the end-
of-word anchor

13
grep '<[A-Z].*o>'
sample.txt

This displays all lines containing a word starting with an
uppercase letter, followed by any number of characters
and ending in o

14 grep -n '^south' sample.txt This displays line numbers also

15 grep -i 'pat' sample.txt This displays the results of a case-insensitive search

16
grep -v 'Onion' sample.txt
> tempmv temp sample.txt

This deletes the line containing the pattern

17 grep -l 'Nuts' * This lists files containing the pattern

18 grep -c 'Nuts' sample.txt This prints the number of lines where the pattern is
present

19 grep -w 'Nuts' sample.txt This counts where the whole world pattern is present, not
as a part of a word

Summary
In this chapter, you have learned about using the more, less, head, and tail commands,
and text processing tools such as cut, paste, comm, and uniq. You also have learned what
standard input, standard output, and standard errors are. Finally, you have learned about
meta-characters, and pattern matching using vi and grep. In the next chapter, you will learn
about analysing the shell interpretation of commands, and you will learn about working
with command substitution, command separators, and pipes.

4
Working with Commands

In the last chapter, you learned about using more, less, head, and tail commands, and
text processing tools such as diff, cut, paste, comm, and uniq. You learned what
standard input, output, and standard error are. You also learned about metacharacters and
pattern matching using vi and grep.

In this chapter, you will learn the following topics:

Learning shell interpretation of commands
Working with command substitution
Working with command separators
Working with pipes

Learning shell interpretation of commands
When we log in, the $ sign will be visible in the shell Terminal (# prompt if you are logged
in as the root or administrator). The Bash shell runs scripts as the interpreter. Whenever we
type a command, the Bash shell will read them as a series of words (tokens). Each word is
separated by a space (), semicolon (;), or any other command delimiter. We terminate the
command by pressing the Enter key. This will insert a newline character at the end of the
command. The first word is taken as a command, then consecutive words are treated as
options or parameters.

The shell processes the command line as follows:

If applicable, the substitution of history commands
Converting the command line into tokens and words
Updating the history
Processing quotes

Working with Commands Chapter 4

[61]

Defining functions and substitution of aliases
Setting up of pipes, redirection, and background
Substitution of variables (such as $name and $user) is performed
Command substitution (echocal and echodate) is performed
Globing is performed (filename substitution, such as ls *)
Execution of the command

The sequence of execution of different types of commands will be as follows:

Aliases (l, ll, egrep, and similar)
Keywords (for, if, while, and similar)
Functions (user-defined or shell-defined functions)
The builtin commands (bg, fg, source, cd, and similar)
Executable external commands and scripts (command from the bin and sbin
folder)

Whenever a command is typed in a shell or terminal, the complete command will be
tokenized, and then shell will check if the command is an alias.

Aliases, keywords, functions, and builtin commands are executed in the current shell
and, therefore their execution is fast compared to executable external commands or scripts.
Executable external commands will have a corresponding binary file or shell script file in
the file system, which will be stored in any folder. The shell will search for the binary file or
script of a command by searching in the PATH environment variable. If we want to know
what type of command it is, such as if it is an alias, a function, or internal command, it can
be found out by the type builtin command, which is shown as follows:

 $ type mkdir
 mkdir is /usr/bin/mkdir
 $ type cd
 cd is a shell builtin
 $ type ll
 ll is aliased to `ls -l --color=auto'
 $ type hello
 hello is a function
 hello ()
 {
 echo "Hello World !";
 }
 $ type for
 for is a shell keyword

Working with Commands Chapter 4

[62]

Checking and disabling shell internal commands
Bash provides a few builtin commands to change the sequence of command-line
processing. We can use these builtin commands to change the default behaviour of
command-line processing.

The builtin command will disable aliases and functions for the command that
follows the command. The shell will search for the external command and the
builtin command will search for the command passed as an argument, as
follows:

 $ command ls

This will facilitate the ignoring of aliases and functions and the external ls
command will execute.

The builtin command will work as follows:

 $ builtin BUILT-IN

This will ignore aliases and functions from the shell environment and only
builtin commands and external commands will be processed.

The break builtin command will work as follows:

 $ builtin -n break

This will disable the builtin break and the external break command will be
processed.

To display all shell builtin commands, give the command as follows:

 $ enable

The output on the screen will show the following as shell internal commands:

. command eval history pwd test

.. compgen exec jobs read times

[complete exit kill readarray trap

alias compopt export let readonly true

bg continue false local return type

bind declare fc logout set, unset typeset

Working with Commands Chapter 4

[63]

break dirs fg mapfile shift ulimit

builtin disown getopts popd shopt umask

caller echo hash printf source unalias

cd enable help pushd suspend wait

The shell builtin command can be disabled as follows:

 $ enable -n built-in-command

For example: $ enable -n test
In this case, in my shell, if we have to test an external command, then, instead of
the internal test command, the external test command will be executed.

The exit status
In shell scripting, we need to check if the last command has successfully executed or not,
for example, whether a file or directory is present or not. As per the result, our shell script
will continue processing.

For this purpose, the bash shell has one status variable ?. The status of the last command
execution is stored in ?. The range of numerical values stored in ? will be from 0 to 255. If
successful in execution, then the value will be 0; otherwise, it will be non-zero, which is as
follows:

 $ ls
 $ echo $?
 0

Here, zero as the return value indicates success.

In the next case, we see the following:

 $ ls /root
 ls: cannot open directory /root: Permission denied
 $ echo $?
 2

Working with Commands Chapter 4

[64]

Here, a non-zero value indicates an error in the last command execution.

In the next case, we see:

 $ find / -name hello.c
 $ echo $?

The return value will indicate if the hello.c file is present or not!

Command substitution
On a keyboard, there is one interesting key, the backward quote, `. This key is normally
situated below the Esc key. If we place text between two successive backquotes, then echo
will execute those as commands instead of processing them as plain text.

Alternate syntax for $(command) is the backtick character `, which we can see as follows:

 $(command) or `command`

For example:

We need to use proper double quotes, as follows:

 $ echo "Hello, whoami"

The next command will print the text as it is; such as Hello, whoami:

 Hello, whoami

Use proper double quotes and single backquotes:

 $ echo "Hello, `whoami`."
 Hello, student

When we enclose whoami text in the ` characters, the same text that was printed
as plain text will run as a command, and command output will be printed on the
screen.

Use proper double quotes:

 $ echo "Hello, $(whoami)."
 Hello, student.

This is the same as earlier.

Working with Commands Chapter 4

[65]

Another example:

 echo "Today is date"

Output:

 Today is date

A similar example:

 /

Another example is:

 echo "Today is $(date)"

The output is:

 Today is Fri Mar 20 15:55:58 IST 2015

Furthermore, similar examples include:

 $ echo $(cal)

In this example, new lines are lost.

Another example includes:

 $ echo "$(cal)"

Here, the display is properly formatted.

Working with Commands Chapter 4

[66]

Next, the nesting of commands is as follows:

 $ pwd
 /home/student/work
 $ dirname="$(basename $(pwd)) "
 $ echo $dirname

This command shows us that the base directory for the current directory is student.

Command separators
Commands can also be combined in such a way that they are executed in a
particular sequence.

Command1; command2
A command line can consist of multiple commands. Each command is separated by a
semicolon, and the command line is terminated with a newline. The exit status is that of the
last command in the chain of commands.

The first command is executed, and the second one is started as soon as the first one has
finished:

 $ w; date

Output:

 $ w ; date > whoandwhen

Working with Commands Chapter 4

[67]

Output from the date command will be redirected to the whoandwhen file.

In the preceding example, we can see that when we put multiple commands on the same
line, but separated by the ; command, then those commands execute sequentially one by
one:

 $ date; who am i
 Tue Mar 10 23:21:38 PDT 201
 student pts/0 2015-03-10 23:12 (:0.0)

In the preceding example, the date command is executed first and the who am I
command will be executed next. Both the commands are typed on the same lines, separated
by the ; command.

Command grouping
Commands may also be grouped so that all of the output is either piped to another
command or redirected to a file:

 $ (ls; pwd; date) > outputfile

The output of each of the commands is sent to the file, outputfile. The spaces inside the
parentheses are necessary:

 $ (w ; date) > whoandwhen

The output of the w command and date will be redirected to the whoandwhen file:

 $ (echo "***x.c***";cat x.c) > log.txt

Output:

This redirects the content of x.c with a heading ***x.c*** to the file out:

 $ (pwd; ls; date) > log.txt

Output:

This redirects the output of commands pwd, ls, and date in the log.txt file.

Working with Commands Chapter 4

[68]

Logical operators
Let's now take a look at logical operators.

Command1 & command2
The first command is started in the background to continue until it has finished;
immediately after starting the first command, the second command is started and it
will run in the foreground:

 $ find / -name "*.z" & ls
 ---------------- -----
 Command1 command2

In the preceding example, the first command, find, will start running in the background
and, while the find command is running in the background, the ls command will start
running in the foreground.

Command1 && command2
The second command is only started if the first command is successful. To achieve this, the
shell checks the exit (return) status of the first command and starts the second command
only if and when that exit status is found to be 0:

 $ ls /home/ganesh && echo "Command executed successfully"
 Since we are working as user ganesh,
 $ ls /root && echo "Command executed successfully"

Since we are working as a normal user, we cannot access the /root directory. Therefore,
nothing will be printed on screen.

Command1 || command2
The second command is only started if the first command fails. The shell checks
the exit status of the first command and starts the second command only if that
exit status is not equal to 0:

 $ ls /root || echo "Command execution failed"

Working with Commands Chapter 4

[69]

Example:

 $ ls || echo "command ls failed"

In the preceding example, if ls runs successfully, then echo will not be called. If the ls
command fails, such as $ ls /root, and if the user is not the root, then ls will fail and the
echo command will print command ls failed.

When && or || are used, the exit status of the first command is checked first, and then the
decision to perform the next will be taken.

For example:

 $ ls
 $ echo $?
 0
 $ ls /root
 ls: /root: Permission denied
 $ echo $?
 1
 $ tar cvzf /dev/st0 /home /etc | | mail -s "Something went wrong with
the backup" root

If we give the command as follows:

 $ cd /home/student/work/temp/; rm -rf *

Initially, the shell will change to the /home/student/work/temp folder, and then it will
delete all files and folders.

If we enter the command as follows:

 cd /backup/ol/home/student/work/temp/ && rm * -rf

This will first change to the required folder, and then the rm command will be called for
deletion. The problem with ; is that even if the shell fails to change to the required folder,
the rm command will execute and it will delete all the files and folders from your original
folder. This will be really dangerous.

For example:

 $ [["a" = "b"]]; echo ok
 ok

Working with Commands Chapter 4

[70]

In this case, the [[]] expression will evaluate to false. Since the semicolon will not check
the status of the earlier command, ok will be printed even if the first [[]] expression fails.

 $ [["a" = "b"]] && echo ok

In this case, the [[]] expression will evaluate to false. As the first expression is false, the
"&&" operator will not proceed to execute the next command.

In this case, ok will be printed only if [[]] is true.

Pipes
We have already used pipes in many earlier sections. It is a tool for inter-process
communication:

 $ command_1 | command_2

In this case, the output of command_1 will be sent as an input to command_2. The limitation
is that the communication is half duplex. This means the data can flow in only one
direction. Normally, for inter-process communication, you need to open files and then get
the file descriptor. This will be used to write to the pipe file. Again, we need to create a
Fifo file with special commands. The preceding technique simplifies this process. We only
need to insert | in between the two processes. The operating system creates one
intermediate buffer. This buffer is used for storing the data from one command and will be
used again for the second command.

A simple example is as follows:

 $ who | wc

The preceding simple command will carry out three different activities. First, it will copy
the output of the who command to the temporary file. Then the wc command will read the
temporary file and display the result. Finally, the temporary file will be deleted.

Normally, there will be two processes. The first command is the writer process. The second
process is the reader process. The writer process will write to temp_file and the reader
will read from temp_file. Examples of writer processes are ps, ls, and date. Examples of
reader processes are wc, cat, grep, and sort.

Working with Commands Chapter 4

[71]

Summary
In this chapter, you learned about how the shell interprets any command entered on the
command line. We also studied command substitution and separators in detail.

In the next chapter, you will learn about variables and environment variables. You will also
learn about how to export environment variables, and then you will learn about read-only
variables, command-line arguments, and arrays.

5
Exploring Expressions and

Variables
In the last chapter, you learned about how shell interprets any command that is entered
into the Terminal or the command line. We also studied command substitution and
separators in detail.

In this chapter, we will cover following topics:

Working with environment variables
Exporting variables
Working with read-only variables
Working with command-line arguments (special variables, set and shift, and
getopt)
Working with arrays

Understanding variables
Let's learn about creating variables in a shell.

Declaring variables in Linux is very easy. We just need to use the variable name and
initialize it with the required content.

$ person="Ganesh Naik"

Exploring Expressions and Variables Chapter 5

[73]

To get the content of the variable, we need to add the prefix $ before the variable, for
example:

 $ echo person
 person
 $ echo $person
 Ganesh Naik

The unset command can be used to delete the declared variable:

$ a=20$ echo a unset a

The unset command will clear or remove the variable from the shell environment as well.

Here, the set command will show all variables declared in the shell:

$ person="Ganesh Naik"$ echo $person$ set

Here, using the declare command with the -x option will make it an environmental or
global variable. We will find out more about environmental variables in the next section.

$ declare -x variable=value

Here, the env command will display all environmental variables:

$ env

Whenever we declare a variable, that variable will be available in the current Terminal
or shell. This variable will not be available to any other Terminal or shell:

variable=value

Let's write a shell script, as follows:

#!/bin/bash
This script clears the window, greets the user,
and displays the current date and time.

clear # Clear the window
echo "SCRIPT BEGINS"
echo "Hello $LOGNAME!" # Greet the user
echo

echo "Today's date and time:"
date # Display current date and time
echo # Will print empty line

Exploring Expressions and Variables Chapter 5

[74]

my_num=50
my_day="Sunday"

echo "The value of my_num is $my_num"
echo "The value of my_day is $my_day"
echo

echo "SCRIPT FINISHED!!"
echo

Let's see the effect of $, "", '' on variable behavior:

#!/bin/bash

planet="Earth"

echo $planet
echo "$planet"
echo '$planet'
echo $planet

exit 0

The output is as follows:

Earth
Earth
$planet
$planet

From the preceding script's execution, we can observe that $variable and "$ variable"
can be used to display the content of the variable. But if we use '$variable' or
$variable, then the special functionality of the $ symbol is not available. The $ symbol is
used as a simple text character instead of utilizing its special functionality of getting the
variable's content.

Working with environment variables
Environmental variables are inherited by any subshells or child processes, for example,
HOME, PATH. Every shell Terminal has a memory area called the environment. Shell keeps
all details and settings in the environment. When we start a new Terminal or shell, this
environment is created every time.

Exploring Expressions and Variables Chapter 5

[75]

We can view the environment variables with the following command:

$ env

Or we can use this:

$ printenv

The output of the $ env command is as follows:

The list of environment variables will be quite extensive. I advise you to browse through
the complete list. We can change the content of any of these environment variables.

Environmental variables are defined in a Terminal or shell. They will be available in any
subshells or child shells created from the current shell Terminal. You will learn about these
activities in the next few sections. You have already learned that every command in a shell
creates a new subshell from the current shell.

Exploring Expressions and Variables Chapter 5

[76]

The following is a brief summary of a few environmental variables:

Variable Description
HOME The user's home directory
PATH The search path for commands
PWD Current working directory

IFS
The internal field separator; that is, the character that separates individual
arguments from one another

PS1 The primary shell prompt
PS2 The secondary shell prompt
PS3 The tertiary shell prompt (see select)
? The exit status or (return value) of the most recent child process
$ The process ID of the current shell itself
The number of arguments passed to the shell

0-9
Argument 0 (usually the command itself), argument 1, and so on, as passed to
the shell

*
All arguments (with the exception of argument 0) as separate words or
arguments

@
All arguments (with the exception of argument 0) as separate words or
arguments

Whenever any user logs in, the /etc/profile shell script is executed.

For every user, the .bash_profile Shell script is stored in the home folder. The complete
path or location is /home/user_name/.profile.

Whenever a new Terminal is created, every new Terminal will execute script .bashrc,
which is located in the home folder of every user.

Exploring Expressions and Variables Chapter 5

[77]

The local variable and its scope
In the current shell, we can create and store user-defined variables. These may contain
characters, digits, and _. A variable should not start with a digit. Normally, for
environment variables, uppercase characters are used.

If we create a new variable, it will not be available in the subshells. The newly created
variable will be available only in the current shell. If we run a Shell script, then the local
variables will not be available in the commands called by the Shell script. Shell has one
special variable, $$. This variable contains the process ID of the current shell.

Let's try a few commands:

This is the process ID of the current shell:

$ echo $$1234

We declare the variable name and initialize it:

$ name="Ganesh Naik"$ echo $nameGanesh Naik

This command will create a new subshell:

$ bash

This is the process ID of the newly created subshell:

$ echo $$1678

From the following, nothing will be displayed, as the local variables from the parent shell
are not inherited in the newly created child shell or subshell:

$ echo $name

We will exit the subshell and return to the original shell Terminal:

$ exit

This is the process ID of the current shell or parent shell:

$ echo $$1234

This displays the presence of the variable in the original shell or parent shell:

$ echo $nameGanesh Naik

Exploring Expressions and Variables Chapter 5

[78]

Variables created in the current shell will not be available in a subshell or child shell. If we
need to use a variable in a child shell as well, then we need to export it using the export
command.

Exporting variables
We can use the export command to make variables available in the child process or
subshell. But if we declare new variables in the child process and export it in the child
process, the variable will not be available in parent process. The parent process can export
variables to a child, but the child process cannot export variables to the parent process.

Whenever we create a Shell script and execute it, a new shell process is created and the
Shell script runs in that process. Any exported variable values are available to the new shell
or to any sub-process.

We can export any variable as follows:

$ export NAME

Or we can use this:

$ declare -x NAME

Let's try to understand the concept of exporting the variable, using the following example:

$ PERSON="Ganesh Naik"$ export PERSON$ echo $PERSONGanesh Naik$ echo $$515

The process ID of the current shell or parent shell is 515.

This will start a subshell:

$ bash

This is the process ID of new or sub-shell:

$ echo $$526

Let us check the presence of variables:

$ echo $PERSONGanesh Naik$ PERSON="Author"$ echo $PERSONAuthor$ exit

This will terminate the subshell, and it will be placed in the parent shell:

$ echo $$
515

Exploring Expressions and Variables Chapter 5

[79]

This displays the presence of the variable in the original shell or parent shell:

$ echo $PERSONGanesh Naik

Let's write a shell script to use the concept we have learned:

Ubuntu Timezone files location : /usr/share/zoneinfo/
redhat "/etc/localtime" instead of "/etc/timezone"
In Redhat
ln -sf /usr/share/zoneinfo/America/Los_Angeles /etc/localtime

export TZ=America/Los_Angeles
echo "Your Timezone is = $TZ"
date
export TZ=Asia/Tokyo
echo "Your Timezone is = $TZ"
date

unset TZ

echo "Your Timezone is = $(cat /etc/timezone)"
For Redhat or Fedora /etc/localtime
date

The date command checks the TZ environmental variable. We initialized the TZ for
Los_Angeles, then to Tokyo, and, finally, we removed it. We can see the difference in the
date command output.

Let's write another Shell script to study the parent and child process, and the export of
variables.

Create the export1.sh shell script:

#!/bin/bash
foo="The first variable foo"
export bar="The second variable bar"
./export2.sh

Create another shell script export2.sh

Exploring Expressions and Variables Chapter 5

[80]

#!/bin/bash
echo "$foo"
echo "$bar"

The shell script export1.sh runs as a parent process and export2.sh is started as a child
process of export1.sh. We can clearly see that variable bar, which was exported, is
available in the child process, but the variable foo, which was not exported, is not available
in the child process.

Working with read-only variables
During shell scripting, we may need a few variables, which cannot be modified. This may
be needed for security reasons. We can declare variables as read-only by using the
following read-only command:

$ readonly currency=Dollars

Let's try to remove the variable:

$ unset currencybash: unset: currency: cannot unset: readonly variable

If we try to change or remove the read-only variable in the script, it will give the following
error:

#!/bin/bash
AUTHOR="Ganesh Naik"
readonly AUTHOR
AUTHOR="John"

This will produce the following result:

/bin/sh: AUTHOR: This variable is read only.

Another technique is as follows:

declare -r variable=1
echo "variable=$variable"
((var1++))

Exploring Expressions and Variables Chapter 5

[81]

The output after execution of the script is this:

line 4: variable: readonly variable

Working with command-line arguments
(special variables, set and shift, getopt)
Command-line arguments are required for the following reasons:

They inform the utility, or they command which file or group of files to process
(reading/writing of files)
Command-line arguments tell the command/utility which option to use

Check out the following command line:

[student@localhost ~]$ my_program arg1 arg2 arg3

If my_command is a bash shell script, then we can access every command-line positional
parameter inside the script, as follows:

$0 would contain "my_program" # Command
$1 would contain "arg1" # First parameter
$2 would contain "arg2" # Second parameter
$3 would contain "arg3" # Third parameter

The following is a summary of the positional parameters:

$0 Shell-script name or command
$1-$9 Positional parameters 1-9
${10} Positional parameter 10
$# Total number of parameters
$* Evaluates for all the positional parameters
$@ Same as $*, except when double quoted
"$*" Displays all parameters as "$1 $2 $3", and so on
"$@" Displays all parameters as "$1" "$2" "$3", and so on

Exploring Expressions and Variables Chapter 5

[82]

Let's create a script parameter.sh, as follows:

#!/bin/bash
echo "Total number of parameters are = $#"
echo "Script name = $0"
echo "First Parameter is $1"
echo "Second Parameter is $2"
echo "Third Parameter is $3"
echo "Fourth Parameter is $4"
echo "Fifth Parameter is $5"
echo "All parameters are = $*"

Then, as usual, give execute permission to the script and then execute it:

./parameter.sh London Washington Delhi Dhaka Paris

The output is as follows:

Total number of parameters are = 5Command is = ./parameter.shFirst
Parameter is LondonSecond Parameter is WashingtonThird Parameter is
DelhiFourth Parameter is DhakaFifth Parameter is ParisAll parameters are =
London Washington Delhi Dhaka Paris

Understanding set
Many times, we may not pass arguments to the command line, but we may need to set
parameters internally inside the script.

We can declare parameters with the set command, as follows:

$ set USA Canada UK France$ echo $1USA$ echo $2Canada$ echo $3UK$ echo
$4France

We can use this inside the set_01.sh script, as follows:

#!/bin/bash
set USA Canada UK France
echo $1
echo $2
echo $3
echo $4

Run the script as this:

$./set.sh

Exploring Expressions and Variables Chapter 5

[83]

The output is as follows:

USACanadaUKFrance

Following is a summary of the declare options:

Option Meaning
-a An array is created
-f Displays the function names and definitions
-F Displays only the function names
-i Makes the variables integer types
-r Makes the variables read-only
-x Exports the variables

Type in the following commands:

set One Two Three Four Five
echo $0 # This will show command
echo $1 # This will show first parameter
echo $2echo $* # This will list all parameters
echo $# # This will list total number of parameters
echo ${10} ${11} # Use this syntax for parameters for 10th and #
11th parameters

Let's write script set_02.sh, as follows:

#!/bin/bash
echo The date is $(date)
set $(date)
echo The month is $2
exit 0

The output is as follows:

Exploring Expressions and Variables Chapter 5

[84]

In the script $(date), the command will execute, and the output of that command will be
used as $1, $2, $3, and so on. We have used $2 to extract the month from the output.

Let's write script set_03.sh, as follows:

#!/bin/bash

echo "Executing script $0"
echo $1 $2 $3

set eins zwei drei
echo "One two three in German are:"
echo "$1"
echo "$2"
echo "$3"

textline="name phone address birthdate salary"
set $textline
echo "$*"
echo 'At this time $1 = '$1' and $4 = '$4''

The output is as follows:

Executing script ./hello.sh

One two three in German are:
eins
zwei
drei

name phone address birthdate salary
At this time $1 = name and $4 = birthdate

Exploring Expressions and Variables Chapter 5

[85]

In this script, the output shows:

Initially, when the set is not called, then $1, $2, and $3 do not contain any1.
information.
Then, we set $1 to $3 as GERMAN numerals in words.2.
Then, we set $1 to $5 as the name, phone number, address, date of birth, and3.
salary, respectively.

Understanding shift
Using shift, we can change the parameter to which $1 and $2 are pointing to the next
variable.

Create script shift_01.sh, as follows:

#!/bin/bash
echo "All Arguments Passed are as follow : "
echo $*
echo "Shift By one Position :"
shift
echo "Value of Positional Parameter $ 1 after shift :"
echo $1
echo "Shift by Two Positions :"
shift 2
echo "Value of Positional Parameter $ 1 After two Shifts :"
echo $1

Execute the following command:

$ chmod +x shift_01.sh$./shift_01.sh One Two Three Four

The output is as follows:

[student@localhost ~]$./shift_01.sh One Two Three Four
All arguments passed are as follows:
One Two Three Four
Shift by one position.
Here, the value of the positional parameter $1 after shift is:
Two
Shift by two positions.
The value of the positional parameter $1 after two shifts:
Four

Exploring Expressions and Variables Chapter 5

[86]

We can see that, initially, $1 was One. After the shift, $1 will be pointing to Two. Once the
shift has been done, the value in position 1 is always destroyed and is inaccessible.

Create script shift_02.sh, as follows:

#!/bin/bash

echo '$#: ' $#
echo '$@: ' $@
echo '$*: ' $*
echo
echo '$1 $2 $9 $10 are: ' $1 $2 $9 $10
echo

shift
echo '$#: ' $#
echo '$@: ' $@
echo '$*: ' $*
echo
echo '$1 $2 $9 are: ' $1 $2 $9

shift 2
echo '$#: ' $#
echo '$@: ' $@
echo '$*: ' $*
echo
echo '$1 $2 $9 are: ' $1 $2 $9

echo '${10}: ' ${10}

Exploring Expressions and Variables Chapter 5

[87]

From this script's execution, the following output is shown:

Initially, $1 to $13 were numerical values 1 to 13, respectively.1.
When we called the command shift, it then$1 shifted to number 2, and all2.
$numbers were shifted accordingly.
When we called the command shift 2, then $1 shifted to number 4 and all3.
$numbers were shifted accordingly.

Resetting positional parameters
In certain situations, we may need to reset original positional parameters.

Let's try the following:

$ set Alan John Dennis

This will reset the positional parameters.

Now $1 is Alan, $2 is John, and $3 is Dennis.

Inside scripts, we can save positional parameters in a variable, as follows:

oldargs=$*

Then, we can set new positional parameters.

In addition, we can bring back our original positional parameters, as follows:

set $oldargs

Understanding getopts
Command-line parameters passed along with commands are also
called positional parameters. Many times, we need to pass options such as -f and -v along
with a positional parameter.

Let's look at an example for passing the -x or-y options along with commands.

Exploring Expressions and Variables Chapter 5

[88]

Write shell script getopt.sh, as follows:

#!/bin/bash

USAGE="usage: $0 -x -y"

while getopts :xy: opt_char
do
 case $opt_char in
 x)
 echo "Option x was called."
 ;;
 y)
 echo "Option y was called. Argument called is $OPTARG"
 ;;
 ?)
 echo "$OPTARG is not a valid option."
 echo "$USAGE"
 ;;
 esac
done

Execute this program:

$./getopt.sh

You will learn about the switch and case statements in the next chapters. In this script, if
option -x is passed, a case statement for x will be executed. If the -y option is passed, then
a case statement for -y will be executed. If no option is passed, there will not be any output
on the screen.

Let us run script with different options::

$./getopt.sh -x

The output is as follows:

Option y was called. Argument called is my_file.
$./getopt.sh -x -y my_file
Output:
Option x was called.
Option y was called. Argument called is my_file.
$./getopt.sh -y my_file -x
Output:
Option y was called. Argument called is my_file.
Option x was called.

Exploring Expressions and Variables Chapter 5

[89]

Understanding default parameters
Many times, we may pass certain parameters from the command line, but, sometimes, we
may not pass any parameters at all. We may need to initialize certain default values to
certain variables.

We will review this concept through the following script.

Create script default_argument_1.sh, as follows:

#!/bin/bash
MY_PARAM=${1:-default}
echo $MY_PARAM

Execute the script and check the output:

$ chmod +x default_argument_1.sh One$./default_argument_1.sh OneOne$
./default_argument_1.shdefault

Create another default_argument_2.sh script:

#!/bin/bash
variable1=$1
variable2=${2:-$variable1}
echo $variable1
echo $variable2

The output is as follows:

We executed the script two times:

When we passed two arguments, then variable1 was $1 and variable2 was1.
$2.
In the second case, when we passed only one argument, then $1 was taken as the2.
default argument for $2. Therefore, variable1 was used as the default for
variable2. If we do not give a second parameter, then the first parameter is
taken as the default for the second parameter.

Exploring Expressions and Variables Chapter 5

[90]

Working with arrays
An array is a list of variables. For example, we can create an array called FRUIT, which will
contain the names of many fruits. The array does not have a limit on how many variables it
may contain. It can contain any type of data. The first element in an array will have the
index value of 0:

[student@localhost ~]$ FRUITS=(Mango Banana Apple)
[student@localhost ~]$ echo ${FRUITS[*]}
Mango Banana Apple
[student@localhost ~]$ echo $FRUITS[*]
Mango[*]
[student@localhost ~]$ echo ${FRUITS[2]}
Apple
[student@localhost ~]$ FRUITS[3]=Orange
[student@localhost ~]$ echo ${FRUITS[*]}
Mango Banana Apple Orange

Creating an array and initializing it
You will now learn about creating an array in the Bash shell.

If the array name is FRUIT, then we can create an array, as follows:

FRUIT[index]=value

Index is the integer value. It should be 0 or any positive integer value.

We can also create an array, as follows:

$ declare -a array_name$ declare -a arrayname=(value1 value2 value3)

This is an example:

$ declare -a fruit=('Mango' 'Banana' 'Apple' 'Orange' 'Papaya')
$ declare -a array_name=(word1 word2 word3 ...)
$ declare -a fruit=(Pears Apple Mango Banana Papaya)
$ echo ${fruit[0]}
Pears
$ echo ${fruit[1]}
Apple
$ echo "All the fruits are ${fruit[*]}"
 All the fruits are Pears Apple Mango Banana Papaya
$ echo "The number of elements in the array are ${#fruit[*]}"
 The number of elements in the array are 5

Exploring Expressions and Variables Chapter 5

[91]

$ unset fruit
or
$ unset ${fruit[*]}

Accessing array values
Once we have initialized an array, we can access it, as follows:

${array_name[index]}

Create script array_01.sh, as follows:

#!/bin/bash

FRUIT[0]="Pear"
FRUIT[1]="Apple"
FRUIT[2]="Mango"
FRUIT[3]="Banana"
FRUIT[4]="Papaya"
echo "First Index: ${FRUIT[0]}"
echo "Second Index: ${FRUIT[1]}"

The output is as follows:

$ chmod +x array_01.sh$./array_01.shFirst Index: PearSecond Index: Apple

To display all the items from the array, use the following commands:

${FRUIT[*]}${FRUIT[@]}

Create script array_02.sh, as follows:

#!/bin/bash
FRUIT[0]="Pear"
FRUIT[1]="Apple"
FRUIT[2]="Mango"
FRUIT[3]="Banana"
FRUIT[4]="Papaya"
echo "Method One : ${FRUIT[*]}"
echo "Method Two : ${FRUIT[@]}"

Exploring Expressions and Variables Chapter 5

[92]

The output is as follows:

$ chmod +x array_02.sh$./ array_02.shMethod One : Pear Apple Mango Banana
PapayaMethod Two : Pear Apple Mango Banana Papaya

Let's see a few more examples:

$ city[4]=Tokyo

The fourth member of the array, city, is assigned the value Tokyo. Since it is the only
element in the array, the array size will be 1.

$ echo ${city[*]}Tokyo

The size of the array city is 1, since any other member of the array is not yet initialized.

${city[*]} will display the only element of the array city:

$ echo ${city[0]}

city[0] has no value, and neither does city[1] and city[2].

$ echo ${city[4]}Tokyo

city[4] has the city name of Tokyo.

Assign the array countries, as follows:

$ countries=(USA [3]=UK [2]=Spain)

The array countries are assigned USA at index 0, UK at index 3, and Spain at index 2. We
can observe here that it does not matter in which sequence we initialize the members of the
array. They need not be given in a particular sequence.

The first element of the countries array is printed using the following:

$ echo ${countries[*]}
USA Spain UK
$ echo ${countries[0]}
USA

Identify the country at index 1., as follows:

$ echo ${countries[1]}$ echo ${countries[*]}
USA Spain UK
$ echo ${countries[0]}
USA

Exploring Expressions and Variables Chapter 5

[93]

Identify the country at index 1., as follows:

$ echo ${countries[1]}

There is nothing stored in countries [1].

Use the following to identify the country at index 2:

$ echo ${countries[2]}Spain

The third element of the countries array, countries [2], was assigned as Spain.

Use the following to identify the country at index 3:

$ echo ${countries[3]}
UK

The fourth element of the countries array, countries [3], was assigned as UK.

Summary
In this chapter, you have learned about variables and environment variables. You have also
learned about how to export environment variables, set, shift, read-only variables,
command-line arguments, and about creating and handling arrays.

In the next chapter, you will learn about debugging, the here operator, interactive Shell
scripts for taking input from a keyboard, and file handling.

6
Neat Tricks with Shell Scripting

In the last chapter, you learned about shell and environment variables. You also learned
how to export environment variables, read-only variables, command-line arguments, and
create/handle arrays.

In this chapter, we will cover the following topics:

Interactive shell scripts and reading from the keyboard
Using the here operator (<<) and here string (<<<)
File handling
Enabling debugging
Syntax checking
Shell tracing

Interactive shell scripts – reading user input
The read command is a built-in shell command for reading data from a file or keyboard.

The read command receives the input from the keyboard or a file until it receives a
newline character. Then, it converts the newline character into a null character:

Read a value and store it in the variable, shown as follows:1.

 read variable
 echo $variable

This will receive text from the keyboard. The received text will be stored in
the variable.

Neat Tricks with Shell Scripting Chapter 6

[95]

Whenever we need to display the prompt with certain text, we use the -p option.2.
The option -p displays the text that is placed after -p on the screen:

#!/bin/bash
following line will print "Enter value: " and then read data
The received text will be stored in variable value
read -p "Enter value : " value

This is the output:

 Enter value : abcd

If the variable name is not supplied next to the read command, then the received3.
data or text will be stored in a special built-in variable called REPLY. Let's write a
simple read_01.sh script, shown as follows:

#!/bin/bash
echo "Where do you stay ?"
read # we have not supplied any option or variable
echo "You stay in $REPLY"

Save the file, give the permission to execute, and run the script as follows:

 $ chmod u+x read_01.sh
 $

This is the output:

 "Where do you stay?"
 Mumbai
 "You stay at Mumbai"

We will write the script read_02.sh. This script prompts the user to enter their4.
first and last name to greet the user with their full name:

#!/bin/bash
echo "Enter first Name"
read FIRSTNAME
echo "Enter Last Name"
read LASTNAME
NAME="$FIRSTNAME $LASTNAME"
echo "Name is $NAME"

Neat Tricks with Shell Scripting Chapter 6

[96]

For reading text and storing in multiple variables, the syntax is as follows:5.

 $ read value1 value2 value3

Let's write the shell script, read_03.sh, shown as follows:

#!/bin/bash
echo "What is your name?"
read fname mname lname
echo "Your first name is : $fname"
echo "Your middle name is : $mname"
echo "Your last name is : $lname"

Save the file, give the permission to execute, and run the script as follows:

What is your name?
Ganesh Sanjiv Naik
"Your first name is : Ganesh"
"Your middle name is : Sanjiv"
"Your last name is : Naik"

Let's learn about reading a list of words and storing them in an array:6.

#!/bin/bash
echo -n "Name few cities? "
read -a cities
echo "Name of city is ${cities[2]}."

Save the file, give the permission to execute, and run the script as follows:

Name few cities? Delhi London Washington Tokyo
Name of city is Washington.

In this case, the list of cities is stored in the array of cities. The elements in the
array are here:

 cities[0] = Delhi
 cities[1] = London
 cities[2] = Washington
 cities[3] = Tokyo

The index of the array starts with 0, and, in this case, it ends at 3. In this case,
four elements are added to the cities[] array.

Neat Tricks with Shell Scripting Chapter 6

[97]

If we want the user to press the Enter key, then we can use the read command7.
along with one unused variable, shown as follows:

 Echo "Please press enter to proceed further "
 read temp
 echo "Now backup operation will be started ! "

Summarizing the read command with options
The following table summarizes various read command-related options that you learned in
the previous sections:

Format Meaning

read
This command will read text from a keyboard and store the
received text in a built-in variable REPLY.

read value
This reads text from a keyboard or standard input and stores it into
the variable value.

read first last
This will read the first word in a variable first and the remaining
text of the line in a variable last. The first word is separated by
white space from the remaining words in the line.

read -e
This is used in interactive shells for command-line editing. If vi
editor is used, then vi commands can be used.

read -a
array_name

This will store a list of words received in an array.

read -r line Text with a backslash can be received here.

read -p prompt
This will print the prompt and wait for the user input.
The received text will be stored in the variable REPLY.

The here document and the << operator
This is a special type of block of text or code. It is also a <indexentry content="<special form
of I/O redirection. It can be used to feed the command list to an interactive program.

Neat Tricks with Shell Scripting Chapter 6

[98]

The syntax of the usage of the here document or the << operator is as follows:

 command << HERE
 text1
 text 2....
 HERE

This tells the shell that the command should receive the data from a current source, such as
the here document, until the pattern is received. In this case, the pattern is HERE. We have
used the delimiter, HERE. We can use any other word as the delimiter, such as quit or finish.
All the text reads up to the pattern, or the HERE text is used as an input for a command. The
text or file received by the command is called the Here document:

 $ cat << QUIT
 > first input line
 > ...
 > last input line
 > QUIT

The block of text inserted after and before QUIT will be treated as a file. This content will be
given as input to the cat command. We will also see more examples with various other
commands, such as sort, wc, and similar.

Let's write the script here_01.sh:

#!/bin/bash
cat << quit
 Command is $0
 First Argument is $1
 Second Argument is $2
quit

Save the file, give execute permissions, and run the script as follows:

 $ chmod here_01.sh
 $./here_01.sh Monday Tuesday

This will be output:

 Command is here_01.sh
 First Argument is Monday
 Second Argument is Tuesday

Neat Tricks with Shell Scripting Chapter 6

[99]

The text block created in the preceding script between the quit words is called the here
document. We can treat this here document as a separate document. It can also be
treated as multiple line input redirected to a Shell script.

Let's learn a few more sample programs.

The here operator with the sort command
Let's write a script for using the sort command along with the here document:

Write the script here_02.sh as follows:1.

#!/bin/bash
sort << EOF
cherry
mango
apple
banana
EOF

Save the file, give the permission to execute, and run the script as follows:2.

 $ chmod u+x here_02.sh
 $./here_02.sh

The output is here:3.

 apple
 banana
 cherry
 mango

In this script, the here document is enclosed between the EOF pattern. We have used the
here document to supply text to the sort command.

The here operator with the wc command
Let's write a script for using the wc command along with the here document:

Create a Shell script, here_03.sh:1.

#!/bin/bash
wc -w << EOF
There was major earthquake

Neat Tricks with Shell Scripting Chapter 6

[100]

On April 25, 2015
in Nepal.
There was huge loss of human life in this tragic event.
EOF

Save the file, give the permission to execute, and run the script as follows:2.

 $ chmod u+x here_03.sh
 $./here_03.sh

The output is here:3.

 21

In this script, we have used the here document as an input for the wc command to
calculate the number of words:

 Tape backup using << here operator

Let's write a script for taking the tape backup by using the tar command and the here
document:

Let's write the script here_04.sh:1.

#!/bin/bash
We have used tar utility for archiving home folder on tape
tar -cvf /dev/st0 /home/student 2>/dev/null

store status of tar operation in variable status
[$? -eq 0] && status="Success" || status="Failed"

Send email to administrator
mail -s 'Backup status' ganesh@levanatech.com << End_Of_Message
The backup job finished.
End date: $(date)
Status : $status
End_Of_Message

Save the file, give the permission to execute, and run the script as follows:2.

 $ chmod u+x here_04.sh
 $./here_04.sh

This script uses the tar command to archive the home folder in the tape device, and then it
sends mail to an administrator using the mail command. We have used the here
document to feed data into the mail command.

Neat Tricks with Shell Scripting Chapter 6

[101]

The utility ed and here operator
The ed utility is a basic type of editor. We can edit text files using this editor:

Write the script here_05.sh:1.

#!/bin/bash
flowers.txt contains the name of flowers
cat flowers.txt
ed flowers.txt << quit
,s/Rose/Lily/g
w
q
quit
cat flowers.txt

Save the file, give the permission to execute, and run the script as follows:2.

 $ chmod u+x here_05.sh
 $./here_05.sh

The output is here:3.

 Aster, Daffodil, Daisy, Jasmin, Lavender, Rose, Sunflower
 59
 59
 Aster, Daffodil, Daisy, Jasmin, Lavender, Lily, Sunflower

In this script, we have passed the here document to a utility for editing the flowers.txt
file. We replaced the word Rose with Lily.

A script for sending messages to all logged-in users
All users who are logged in will receive the message using the wall command:

Write the script here_06.sh:1.

#!/bin/bash
wall utility is used for sending message to all logged in users
wall << End_Of_Message
Tomorrow, on Friday evening, we will be celebrating
Birthday of few of our colleagues.
All are requested to be present in cafeteria by 3.30 PM.
 John
End_Of_Message
echo "Message sent"

Neat Tricks with Shell Scripting Chapter 6

[102]

Save the file, give the permission to execute, and run the script as follows:2.

 $ chmod u+x here_06.sh
 $./here_06.sh

The wall command is used to send messages to the logged-in users. All users that are
logged in will receive the message.

Using the << here operator for FTP usage and data
transfer
FTP is a commonly used <indexentry content="here document:<protocol to transfer data on
websites. FTP stands for File Transfer Protocol. The following steps show the <indexentry
content="here document:<usage of FTP and data transfer:

Write the here_07.sh script:1.

#!/bin/bash
Checking number of arguments passed along with command
if [$# -lt 2]
then
 echo "Error, usage is:"
 echo "ftpget hostname filename [directory]."
 exit -1
fi
hostname=$1
filename=$2
directory="." # Default value
if [$# -ge 3]
then
 directory=$3
fi
ftp << End_Of_Session
open $hostname
cd $directory
get $filename
quit
End_Of_Session
echo "FTP session ended."

Save the file, give the permission to execute, and run the script as follows:2.

 $ chmod u+x here_07.sh
 $./here_07.sh ftp.somehost.com index.html WWW

Neat Tricks with Shell Scripting Chapter 6

[103]

For a successful execution of the script, we need to set up an autologin for the ftp
command. The here operator does not work well when the ftp command asks for a
username and password.

Turning off variable substitution
Enter the following script to see how to avoid a variable substitution in these files:

Save the script under the name here_no.sh, shown as follows:1.

filename="test1"
cat <<'Quoted_End_Marker'
When we add quotes before and after here
Document marker, we can include variables
Such as $USER, $PATH, $name and similar
Quoted_End_Marker

When you run this script, you will see output like the following:2.

 $ bash here_no.sh

Here is the output:3.

When we add quotes before and after here
Document marker, we can include variables
Such as $USER, $PATH, $name and similar

This script uses an ordinary here file, but it turns off the variable substitution. Otherwise,
you would see the values of $HOME, $filename, and $USER in the output instead of the
literal text. All of this is done by magically enclosing the end marker, Quoted_End_Marker,
in quotes at the original reference. Do not enclose the marker in quotes at the end of the
here file.

The here string and the <<< operator
The here string is used for input redirection from <indexentry content="<<text or a
variable. Input is mentioned on the same line within single quotes ('').

Neat Tricks with Shell Scripting Chapter 6

[104]

The syntax is as follows:

 $ command <<< 'string'

Let's see the following example, hereString_01.sh:1.

#!/bin/bash
wc -w <<< 'Good Morning and have a nice day !'

Save the file, give the permission, and run the script as follows:2.

 $ chmod u+x hereString_01.sh
 $./hereString_01.sh

Here is the output:3.

 8

In this example, the string Good Morning and have a nice day ! is called as the here
string.

File handling
In this section, you will learn about handling files for reading and writing. In Chapter 8,
Automating Decision-Making in Scripts, you will learn about checking various attributes of
files along with decision-making constructs, such as if, case, and similar.

Introducing file handling
The exec command is very interesting. Whenever we run any command in a shell, a new
subshell or process gets created, and the command runs in this newly created process.
When we run any command as an argument to the exec command, exec will replace the
current shell with the command to be executed. It does not create or spawn a new process
to run the command.

Using exec to assign a file descriptor (fd) to file
In the Bash shell environment, every process has three files opened by default. These are
standard input, display, and error. The file descriptors associated with them are 0, 1, and 2
respectively. In the Bash shell, we can assign the file descriptor to any input or output file.
These are called file descriptors.

Neat Tricks with Shell Scripting Chapter 6

[105]

The syntax for declaring output.txt as output is as follows:

 exec fd > output.txt

This command will declare the number fd as an output file descriptor.

The syntax for closing the file is as follows:

 exec fd<&-

To close fd, which is 5, enter the following:

 exec 5<&-

We will try to understand these concepts by writing scripts.

Understanding the opening, writing, and closing
of a file
Let's understand the opening, closing, and writing of a file.

Write a Shell script file_01.sh, shown as follows:

#!/bin/bash
We will open file for writing purpose
We are assigning descriptor number 3 for file sample_out.txt
exec 3> sample_out.txt

We are sending output of command "echo" to sample_out.txt file
echo "This is a test message for sample_out.txt file" >&3

Run command date & store output in file sample_out.txt
date >&3

Closing file with file descriptor 3
exec 3<&-

Save the file, give the permission to execute, and run the script as follows:

 $ chmod u+x file_01.sh
 $./file_01.sh
 $ cat sample_out.txt

Neat Tricks with Shell Scripting Chapter 6

[106]

This should produce the following output:

 This is a test message for sample_out.txt file
 Tue Sep 29 23:19:22 IST 2015

Understanding reading from a file
Let's write a script to read from a file:

Write the script file_02.sh, shown as follows:

#!/bin/bash
We will open file sample_input.txt for reading purpose.
We are assigning descriptor 3 to the file.
exec 3< sample_input.txt

cat <&3
Closing file
exec 3<&-

Save the file, give the permission to execute, and run the script as follows:

 $ chmod u+x file_02..sh

We will create the sample_input.txt file as follows:

 $ echo "Hello to All" > sample_input.txt

Run the script and check the result:

 $./file_02.sh

This should produce the following output:

 Hello to All

Understanding reading and writing to a file
In the earlier examples, we opened the file either for reading or writing. Now we will see
how to open the file for reading and writing purposes:

 exec fd<> fileName

If the file descriptor number is not specified, then 0 will be used in its place. The file will be
created if it does not exist. This procedure is useful for updating files.

Neat Tricks with Shell Scripting Chapter 6

[107]

Let's understand the following script.

Write the shell script file_03.sh as follows:

#!/bin/bash
file_name="sample_out.txt"
We are assing fd number 3 to file.
We will be doing read and write operations on file
exec 3<> $file_name

Writing to file
echo """
 Do not dwell in the past,
 do not dream of the future,
 concentrate the mind on the present moment. - Buddha
""" >&3
closing file with fd number 3
exec 3>&-

Using the read command on a file descriptor (fd)
We can use the read command to get data from a file to store it in variables.
The procedure for using the read command to get a text from a file is as follows:

 read -u fd variable1 variable2 ... variableN

Reading from one file and writing to another file
Now we will see how to read from one file and write to another. Let's write the
file_04.sh script as follows:

#!/bin/bash
We are assigning descriptor 3 to in_file.txt
exec 3< in_file.txt
We are assigning descriptor 4 to out_file.txt
exec 4> out_file.txt

We are reading first line of input.txt
read -u 3 line

echo $line

echo "Writing content of in_file.txt to out_file.txt"
echo "Line 1 - $line " >&4

Neat Tricks with Shell Scripting Chapter 6

[108]

Closing both the files
exec 3<&-
exec 4<&-

Save the file, give the permission to execute, and run the script as follows:

 $ chmod u+x file_04.sh
 $ echo "Sun is at the centre of Solar System." > in_file.txt
 $ cat in_file.txt

This should produce the following outputs:

 Sun is at the centre of Solar System.
 $./file_04.sh

 Sun is at the centre of Solar System.
 Writing content of in_file.txt to out_file.txt
 $ cat out_file.txt

 Line 1 - Sun is at the center of Solar System.

In this example, we read the complete line in the variable line and we use the same
variable to write it to another file.

Let's write one more script, file_05.sh, to get the hostname and addresses:

#!/bin/sh

cd /etc/hosts hosts2

grep -v '^#' hosts2 > hosts3

exec 3< hosts3 # opening hosts3 as input file

exec 4> hostsfinal # opening hostsfinal as output file

read <& 3 address1 name_1 extra_info
read <& 3 address2 name_2 extra_info

echo $name_1 $address1 >& 4
echo $name_2 $address2 >& 4

exec 3<&- # Closing hosts3
exec 4<&- # Closing hostsfinal

In this script, we used the variables address1, name_1, extra_info, address2, and
name_2 to store useful information.

Neat Tricks with Shell Scripting Chapter 6

[109]

Displaying the file descriptor information from the /proc
folder
We will write the script to display the actual file descriptors associated with the file.

Let's write the file_06.sh script, shown as follows:

#!/bin/bash
we are assigning file descriptor 3 to input file test.txt
exec 3< test.txt
we are assigning file descriptor 4 to output.txt
exec 4> output.txt
we are using read command to read line from file
read -u 3 line
echo "Process id of current process is $$"
my_pid=$$
echo "Currently following files are opened by $0 script :"
ls -l /proc/$my_pid/fd

We are closing both files test.txt and output.txt
exec 3<&-
exec 4>&-

File handling - reading line by line
You will learn how to use the while loop and the read command to read a file line by line.
You will learn more about the while loop in the upcoming chapters.

Let's write the file_07.sh script, as follows:

#!/bin/bash
echo "Enter the name of file for reading"
read file_name
exec<$file_name
while read var_line
do
 echo $var_line
done

For executing the preceding script, we will need to create a file with some text in it. Then,
we can pass this filename for reading purposes.

Neat Tricks with Shell Scripting Chapter 6

[110]

Executing the command and storing the results in
a file
The following is the syntax for storing the output of a command in a file:

 Command >& fd
 ./script >& fd

The following is the illustrative example script, file_08.sh:

#!/bin/bash
exec 4> output.txt
cat /proc/cpuinfo >&4
exec 3<&-

Save the file, give the permission to execute, and run the script as follows:

 $ chmod u+x file_08.sh
 $./file_08.sh

Here's the output:

In this example, we have executed the command cat /proc/cpuinfo and we have stored
the output in the file, output.txt.

Neat Tricks with Shell Scripting Chapter 6

[111]

Summarizing usage of the exec command
The following is a summary of the exec command for using various file
handling-related operations:

Command What it does

exec command This command will replace shell and execute it. Therefore, it will not
return to its original shell, which started it.

exec > data.txt This opens data.txt for writing standard output.
exec < data.txt This opens data.txt for reading standard input.
exec 3< data.txt This opens data.txt for reading with descriptor 3.
sort <&3 This will sort the data.txt file.
exec 4> data.txt This opens data.txt for writing with descriptor 4.
ll >&4 The output of ll is redirected to data.txt.
exec 6<&5 This makes fd 6 a copy of fd 5.
exec 4<&- This closes fd 4.

Debugging
In the very old days of computer technology, the initial problems with computers were due
to real insects. Due to this, fault finding was later called finding the bug. Therefore, the
process of finding and fixing the problems in computers was called debugging.

The process of debugging involves the following:

Finding out what has gone wrong
Fixing the problem

In the actual debugging process, you need to do the following:

Understand the error message and find out what the problem is with the script.
Find the error location in the script.

Neat Tricks with Shell Scripting Chapter 6

[112]

Locate the line number from the error message. The following are a few error
messages:

debug_sp: line 11: [7: command not found]

file: line 6: unexpected EOF while looking for
matching `"'

These messages inform the user about the line numbers of the
script that contain errors.

Correct the issue or problematic part of code. We may have to read the line
as well as look backward from this line number for any possible reason for the
error.

Debugging mode – disabling the shell (option -n)
In the Bash shell, the -n option is a shortcut for noexec (as in no execution). This option
tells the shell not to run the commands. Instead, the shell just checks for syntax errors.

We can test the script as follows:

 $ bash -n hello.sh

The -n option will tell the Bash shell to check the syntax in the Shell script but not to
execute the Shell script.

Another way to do this is as follows:

#!/bin/bash -n
We have modified shebang line.

In this case, we can test the Shell script as follows:

 $ chmod u+x hello.sh
 $./hello.sh

This option is safe, since the shell commands are not executed. We can catch incomplete if,
for, while, case, and similar programming constructs as well as many more syntactical
errors.

Neat Tricks with Shell Scripting Chapter 6

[113]

Let's write debug_01.sh:

#!/bin/bash
echo -n "Commands in bin directory are : $var"

for var in $(ls)
do
 echo -n -e "$var "
do
no error if "done" is typed instead of "do"

Save the file, give the permission to execute, and run the script as follows:

 $ chmod u+x debug_01.sh
 $./debug_01.sh

This should produce the following output:

 Commands in bin directory are : ./hello.sh: line 7: syntax error near
unexpected token `do'
 ./hello.sh: line 7: `do'
 $ bash -n debug_01.sh

This should produce the following output:

 hello.sh: line 7: syntax error near unexpected token `do'
 hello.sh: line 7: `do'

Debugging mode - displaying commands (option
-v)
The -v option tells the shell to run in verbose mode. In practice, this means that the shell
will echo each command prior to executing the command. This will be useful in locating the
line of script that has created an error.

We can enable the script execution with the -v option as follows:

 $ bash -v hello.sh

Another way is by modifying the shebang line as follows:

#!/bin/bash -v

Neat Tricks with Shell Scripting Chapter 6

[114]

In this case, we can run the script with the -v option as follows:

 $ chmod u+x hello.sh
 $./hello.sh

Let's write the debug_02.sh script as follows:

#!/bin/bash
echo "Hello $LOGNAME"
echo "Today is `date`
echo "Your present working directory is $PWD
echo Good-bye $LOGNAME

Save the file, give the permission to execute, and run the script as follows:

 $ chmod u+x debug_02.sh
 $./debug_02.sh

This should produce the following output:

 Hello student
 Today is Fri May 1 00:18:52 IST 2015
 Your present working directory is /home/student/work
 Good-bye student

Let's enable the -v option for debugging, and run the script again as follows:

 $ bash -v debug_02.sh

This should produce the following output:

#!/bin/bash
echo "Hello $LOGNAME"
"Hello student"
echo "Today is `date`
date
"Today is Fri May 1 00:18:52 IST 2015
echo "Your present working directory is $PWD
"Your present working directory is /home/student/work
echo Good-bye $LOGNAME
Good-bye student

Neat Tricks with Shell Scripting Chapter 6

[115]

Debugging mode – the tracing execution (option -
x)
The -x option, short for xtrace or execution trace, tells the shell to echo each command
after performing the substitution steps. Thus, we will see the value of variables and
commands.

We can trace the execution of the Shell script as follows:

 $ bash -x hello.sh

Instead of the previous way, we can modify the shebang line as follows:

#!/bin/bash -x

Let's test the earlier debug_01.sh script as follows:

 $ bash -x hello.sh

Output:

 $ bash -x debug_02.sh
 + echo Hello student
 Hello student
 + date
 + echo The date is Fri May 1 00:18:52 IST 2015
 The date is Fri May 1 00:18:52 IST 2015
 + echo Your home shell is /bin/bash
 Your home shell is /bin/bash
 + echo Good-bye student
 Good-bye student

Let's try the following programs with the -n, -v, -f, and -x options. Here's a sample
program,-debug_03.sh:

#!/bin/bash
echo "Total number of parameters are = $#"
echo "Script name = $0"
echo "First Parameter is $1"
echo "Second Parameter is $2"
echo "All parameters are = $*"
echo "File names starting with f* in current folder are :"
ls f*

Neat Tricks with Shell Scripting Chapter 6

[116]

Save the file, give the permission to execute, and run the script as follows:

 $ chmod u+x debug_03.sh
 $./debug_03.sh One Two

This should produce the following output:

 "Total number of parameters are = 2"
 "Script name = ./debug_03.sh"
 "First Parameter is India"
 "Second Parameter is Delhi"
 "All parameters are = India Delhi"
 "File names starting with debug_02.sh debug_03.sh in current folder
are: "
 debug_02.sh debug_03.sh

Let's test the same script with the -n option, which will check for syntax errors:

 $ bash -n debug_03.sh One Two

Let's test the same script with the -v option:

 $ bash -v debug_03.sh One Two

This should produce the following output:

 #!/bin/bash
 echo "Total number of parameters are = $#"
 "Total number of parameters are = 2"
 echo "Script name = $0"
 "Script name = debug_03.sh"
 echo "First Parameter is $1"
 "First Parameter is India"
 echo "Second Parameter is $2"
 "Second Parameter is Delhi"
 echo "All parameters are = $*"
 "All parameters are = India Delhi"
 echo "File names starting with d* in current folder are :"
 "File names starting with debug_02.sh debug_03.sh in current folder
are: "
 ls d*
 debug_02.sh debug_03.sh

Let us test the same script with the -x option:

 $ bash -x debug_03.sh One Two

Neat Tricks with Shell Scripting Chapter 6

[117]

This should produce the following output:

 + echo $'342200234Total' number of parameters are = $'2342200235'
 "Total number of parameters are = 2"
 + echo $'342200234Script' name = $'debug_03.sh342200235'
 "Script name = debug_03.sh"
 + echo $'342200234First' Parameter is $'India342200235'
 "First Parameter is India"
 + echo $'342200234Second' Parameter is $'Delhi342200235'
 "Second Parameter is Delhi"
 + echo $'342200234All' parameters are = India $'Delhi342200235'
 "All parameters are = India Delhi"
 + echo $'342200234File' names starting with debug_02.sh debug_03.sh in
 current folder are $':342200234'
 "File names starting with debug_02.sh debug_03.sh in current folder
are: "
 + ls debug_02.sh debug_03.sh
 debug_02.sh debug_03.sh

Let's test one more program, which will give a syntax error during the -n and -x options
debugging. Write the debug_04.sh Shell script as follows:

#!/bin/bash
echo "Commands in bin directory are : $var"

for var in $(ls)
do
 echo -n -e "$var "
do

Save the file, give the permission to execute, and run the script as follows:

 $ chmod u+x debug_04.sh
 $ bash -n debug_04.sh

This should produce the following output:

 debug_04.sh: line 7: syntax error near unexpected token `do'
 debug_04.sh: line 7: `do'

The preceding program has a syntax error on line number 7. The word do has an error. We
need to change word do to done.

Neat Tricks with Shell Scripting Chapter 6

[118]

Summarizing the debugging options for the
Bash shell
The following is a summary of various debugging options used for debugging, such as -x,
-v, and -n with their details:

 $ bash -n script_name // interpretation without execution
 $ bash -v script_name // Display commands in script
 $ bash -x script_name // Trace the execution of script
 $ bash -xv script_name // Enable options x and v for debugging
 $ bash +xv script_name //Disable options x and v for debugging

Using the set command
Most of the time, we invoke the debugging mode from the first line of script. This
debugging mode will remain active until the last line of code. But many times, we may
need to enable debugging for a particular section of script. By using the set command, we
can enable and disable debugging at any point in our shell script:

 set -x
 section of script
 set +x

Consider the following script:

#!/bin/bash

str1="USA"
str2="Canada";

[$str1 = $str2]
echo $?

Set -x

[$str1 != $str2]
echo $?

[-z $str1]
echo $?

Set +x

[-n $str2]

Neat Tricks with Shell Scripting Chapter 6

[119]

echo $?

Exit 0

In this case, the debugging will be enabled after the set -x and will be disabled immediately
after the set +x.

Summary of debugging options for the set command
The following table summarizes the various options for the set command:

Short notation Result

set -f
Disables globing. In this case, the filename expansions using wildcards or
meta-characters will be disabled.

set -v This will print the shell script lines as they are read by the shell.

set -x
This option will display each line after the variable substitution and
command expansion, but before execution by the shell. This option is often
called shell tracing.

set -n This reads all commands and checks the syntax, but does not execute them.

The vi editor setting for debugging
For general debugging, we can use the vi editor along with certain options.

During debugging, many times we search for a pattern throughout the complete document.
It is preferable to highlight the searched item. We will enable search pattern highlighting by
using the following command in the vi editor when the document is opened:

 :set hlsearch
 :set ic

We can even modify the vi editor configuration file-.exrc or .vimrc so that we need not
give the previous command again and again.

Neat Tricks with Shell Scripting Chapter 6

[120]

Good practices for Shell scripts
If we follow certain good practices, then we will face errors. Even if errors are found, these
will be easier to debug:

Clear and tidy the script.1.
Try to properly indent the programming constructs, such as if, for, while, and2.
other similar loops:

 if [$rate -lt 3]
 then
 echo "Sales tax rate is too small."
 fi

Do not put multiple commands on the same line by using ;.3.
Use descriptive variable names, such as salary, instead of sa. In very complex4.
Shell scripts, non-descriptive variable names will make debugging very difficult.
Store the file and directory names in variables instead of typing them again and5.
again. If any change is required in the directory path, then making the change in
the variable at one place will be sufficient:

 WORKING_DIR=$HOME/work
 if [-e $WORKING_DIR]
 then
 # Do something....
 fi

Use comments for an easier understanding of the script. This will make6.
debugging easier to others. If it contains tricky or complex commands, then, even
after a few months, we will need comments to understand our own script. A cute
little trick today may become a challenge tomorrow.
Print informative error messages. Write simpler scripts. Use simpler if, case, for,7.
and or functions. It has been practically observed that if scripts are simpler, then
such scripts are easy to maintain over a long period of time, such as a few years.
Test the script again and again with various test scenarios and test cases. Check8.
for all possibilities of human error, such as bad input, insufficient arguments,
non-existent files, and similar possibilities.

Neat Tricks with Shell Scripting Chapter 6

[121]

Summary
In this chapter, you learned about debugging, the here operator, interactive shell scripts for
taking input from the keyboard, and file handling.

In the next chapter, you will learn about arithmetic and various operations, such as
addition, subtraction, multiplication, division, and the extraction of the modulus of
numerical variables.

7
Performing Arithmetic

Operations in Shell Scripts
In the last chapter, you learned about debugging, the here operator, interactive shell
scripts for taking input from the keyboard, and file handling.

In this chapter, we will cover the following arithmetic operations topics:

Addition
Subtraction
Multiplication
Division
Modulus

We can perform arithmetic operations in various ways, such as using declare, let, expr,
and arithmetic expressions. You will also learn about representing numbers in different
bases, such as binary, octal, and hex.

Performing Arithmetic Operations in Shell Scripts Chapter 7

[123]

Using a declare command for arithmetic
Whenever we declare any variable, by default, this variable stores the string type
of data. We cannot do arithmetic operations on them. We can declare a variable as
an integer by using the declare command. Such variables are declared as integers;
if we try to assign a string to them, then bash assigns 0 to these variables.

Bash will report an error if we try to assign fractional values (floating points) to integer
variables.

We can create an integer variable called value, shown as follows:

 $ declare -i value

We tell the shell that the variable value is of type integer. Otherwise, the shell treats all
variables as character strings:

If we try to assign the name string to the integer variable value, then the value
variable will be assigned the 0 value by the Bash shell:

 $ value=name
 $ echo $value
 0

We need to enclose numbers between double quotes, otherwise we should not
use a space in arithmetic expressions:

 $ value=4 + 4
 bash: +: command not found

When we remove white spaces, the error also gets removed, and the arithmetic
operation takes place:

 $ value=4+4
 $ echo $value
 8

We can perform a multiplication operation as follows:

 $ value=4*3
 $ echo $value
 12
 $ value="4 * 5"
 $ echo $value
 20

Performing Arithmetic Operations in Shell Scripts Chapter 7

[124]

Since we have enclosed numbers in "", the multiplication operation is
performed. Due to double quotes (""), the * operator was not used as a wildcard
(*):

 $ value=5.6
 bash: 5.6: syntax error: invalid arithmetic operator (error token is
".6").

Since we have declared the value variable as an integer variable, when we initialize the
variable with a floating point number, the error gets displayed by the Bash shell.

Listing integers
If we want to see all declared integer variables along with their values, then we must give
the following command:

 $ declare -i

This should produce the following output:

 declare -ir BASHPID=""
 declare -ir EUID="1001"
 declare -i HISTCMD=""
 declare -i LINENO=""
 declare -i MAILCHECK="60"
 declare -i OPTIND="1"
 declare -ir PPID="1966"
 declare -i RANDOM=""
 declare -ir UID="1001"

Using the let command for arithmetic
We can use the bash built-in command let for performing arithmetic operations.
To get more information about let, type the following:

 $ help let

Performing Arithmetic Operations in Shell Scripts Chapter 7

[125]

This should produce the following output of this command:

Let's start using the let command:

 $ value=6
 $ let value=value+1
 $ echo $value
 7
 $ let "value=value+4"
 $ echo $value
 11
 $ let "value+=1"
 #above expression evaluates as value=value+1
 $ echo $value
 12

A summary of operators available with the let command follows:

Operation: Operator
Unary minus: -
Unary plus: +
Logical NOT: !
Bitwise NOT (negation): ~
Multiply: *

Performing Arithmetic Operations in Shell Scripts Chapter 7

[126]

Divide: /
Remainder: %
Subtract: -
Add: +

Prior to Bash 2.x, the following operators were not available:

Bitwise left shift: <<
Bitwise right shift: >>
Equal to and not equal to: ==, !=
Comparison operators: <=, >=, <, >
Bitwise AND: &
Bitwise OR: |
Bitwise exclusive OR: ^
Logical AND: &&
Logical OR: ||
Assignment and shortcut assignment: = *=/= %= -= += >>= <<= &= |= ^=

Using the expr command for arithmetic
We can use the expr command for arithmetic operations. The expr command
is an external command; the binary of the expr command is stored in the folder called
/usr/bin/expr.

Perform an addition operation as follows:

 $ expr 40 + 2
 42

Perform a subtraction operation as follows:

 $ expr 42 - 2
 40

Perform a division operation as follows:

 $ expr 40 / 10
 4

Performing Arithmetic Operations in Shell Scripts Chapter 7

[127]

Perform a modulus (getting remainder) operation as follows:

 $ expr 42 % 10
 2
 $ expr 4 * 10
 expr: syntax error

With the expr command, we cannot use * for multiplication. We need to use *
for multiplication:

 $ expr "4 * 10"
 4 * 10
 $ expr 4 * 10
 40

We will write a simple script to add two numbers. Write the shell script,
arithmetic_01.sh as follows:

!/bin/bash
x=5
y=2
z=`expr $x + $y`
echo $z

Test the script as follows:

$ chmod +x arithmetic_01.sh
$./arithmetic_01.sh

This is the output:

 7

Let's write a script to perform all the basic arithmetic operations. Write the Shell script
called arithmetic_02.sh as follows:

#!/bin/bash
var1=30
var2=20
echo `expr $var1 + $var2` # Arithmetic Addition
echo `expr $var1 - $var2` # Arithmetic Subtraction
echo `expr $var1 * $var2` # Arithmetic Multiplication
echo `expr $var1 / $var2` # Arithmetic Division
echo `expr $var1 % $var2` # Arithmetic Modular Division
 # (Remainder)

Performing Arithmetic Operations in Shell Scripts Chapter 7

[128]

Let us test the script:

 $ chmod +x arithmetic_02.sh
 $./arithmetic_02.sh

This is the output:

 50
 10
 600
 1
 10

Using an arithmetic expansion
We can use two different ways for evaluating arithmetic expressions:

 $((expression))
 $[expression]

Learn arithmetic operations using the preceding mentioned arithmetic expansion:

 $ a=10
 $ b=20
 $ c=$((a + b))
 $ echo $c

During arithmetic operations, we may need to find the square or cube of any given number.
These operations are called exponent operations. We can perform exponent operations as
follows:

 $ a=5
 $ b=3
 $ expo=$[$a ** $b] # This is equivalent to ab
 $ echo $expo
 125

This is the result of the 53 operations:

Another way to do arithmetic expansions is as follows:

 $ B=10
 $ A=$[B + 10]
 $ echo $A
 20
 $ echo $[3 + 4 - 5]

Performing Arithmetic Operations in Shell Scripts Chapter 7

[129]

 2
 $ echo $[3 + 4 * 5]
 23

Arithmetic multiplication has precedence over addition. Therefore, 4*5 was performed
first, and the addition of 3+20 was performed later on:

 $ echo $[(3 + 4) * 5]
 35
 $ echo $((3 + 4))
 7
 $ echo $((6 / 0))
 bash: 6/0: division by 0 (error token is "0")

We will use many of the preceding arithmetic techniques for doing the same addition
operation and check the result.

Let's write an interactive script called arithmetic_03.sh as follows:

#!/bin/bash
echo "Enter first value"
read number_1
echo "Enter second value"
read number_2
total=`expr $number_1 + $number_2`
echo $total
sum=$(($number_1 + $number_2))
echo "sum is "$sum
echo "Sum is $[$number_1+$number_2]"

Let us test the script:

 $ chmod +x arithmetic_03.sh
 $./arithmetic_03.sh

Output:

 Enter first value
 10
 Enter second value
 5
 15
 Sum is 15
 Sum is 15

The preceding Shell script shows that even if we use any of the previous techniques, the
result remains the same.

Performing Arithmetic Operations in Shell Scripts Chapter 7

[130]

Let's write a shell script called arithmetic_04.sh as follows:

#!/bin/bash
Interactive Shell Script Demonstrating Arithmetic Operators
echo "Enter First value"
read number_1
echo "Enter Second value"
read number_2
echo $(($number_1 + $number_2))
echo $(($number_1 / $number_2)) # Division of two numbers

Let's test the program as follows:

 $ chmod +x arithmetic_04.sh
 $./arithmetic_04.sh

This should produce the following output:

 Enter First value
 10
 Enter Second value
 5
 15
 2

We will write one more script with a different technique. Let's write the Shell script
arithmetic_05.sh as follows:

#!/bin/bash
Script is For Demonstrating Arithmetic
var1=10
var2=20
echo $(($var1+$var2)) # Adding Two Values
echo $(($var1-$var2)) # Subtract Two Values
echo $(($var1*$var2)) # Multiply Two Values
echo $(($var1%$var2)) # Remainder

Let's test the program here:

 $ chmod +x arithmetic_05.sh
 $./arithmetic_05.sh

This should produce the following output:

 30
 -10
 200
 10

Performing Arithmetic Operations in Shell Scripts Chapter 7

[131]

We will write a script to add five numbers that are passed from a command line. Let's write
the Shell script, arithmetic_06.sh as follows:

#!/bin/bash
Write a shell script which will receive 5 numbers from command line
and print their sum.
echo "Sum of Five Numbers is:" $(($1 + $2 + $3 + $4 + $5))

Let's test the program:

 $ chmod +x arithmetic_06.sh
 $./arithmetic_06.sh 10 20 30 40 50

This should produce the following output:

 Sum of Five Numbers is: 150

Let's write the Shell script, arithmetic_07.sh as follows for finding the cube, quotient,
and remainder:

#!/bin/bash

x=99

((cube = x * x * x))
((quotient = x / 5))
((remainder = x % 5))

echo "The cube of $x is $cube."
echo "The quotient of $x divided by 5 is $quotient."
echo "The remainder of $x divided by 5 is $remainder."

Note the use of parenthesis to controlling arithmetic operator
precedence evaluation.
((y = 2 * (quotient * 5 + remainder)))
echo "Two times $x is $y."

Let's test the program:

 $ chmod +x arithmetic_07.sh
 $./arithmetic_07.sh

This should produce the following output:

 The cube of 99 is 970299.
 The quotient of 99 divided by 5 is 19.
 The remainder of 99 divided by 5 is 4.
 Two times 99 is 198.

Performing Arithmetic Operations in Shell Scripts Chapter 7

[132]

Binary, octal, and hex arithmetic operations
Integer values can be represented in decimal, binary, octal, or hex numeric notations. By
default, integer values are represented in decimal notation. Binary numbers have base 2.
Octal numbers use base 8. Hexadecimal numbers use base 16. We will learn about various
notations with examples in this section.

This is the syntax:

variable=base#number-in-that-base

Let's understand the preceding syntax with examples:

Decimal representation:

 $ declare -i x=21
 $ echo $x
 21

Binary representation:

 $ x=2#10101
 $ echo $x
 21

Octal representation:

 $ declare -i x
 $ x=8#25
 $ echo $x
 21

Hexadecimal representation:

 $ declare -i x
 $ x=16#15
 $ echo $x
 21

In the preceding examples, we displayed the decimal 21 value in binary, octal,
and hexadecimal representations.

Performing Arithmetic Operations in Shell Scripts Chapter 7

[133]

Floating-point arithmetic
In the Bash shell, we can only perform integer arithmetic. If we want to perform arithmetic
involving a floating point or fractional values, then we will need to use various other
utilities, such as awk, bc, and similar.

Let's see an example of using the utility called bc:

 $ echo "scale=2; 15 / 2" | bc
 7.50

For using the bc utility, we need to configure a scale parameter. Scale is the number of
significant digits to the right of the decimal point. We have told the bc utility to calculate 15
/ 2, and then display the result with the scale of 2.

Another example is the following:

 $ bc
 ((83.12 + 32.13) * 37.3)
 4298.82

Many things can be done with the bc utility, such as all types of arithmetic operations
including binary and unary operations; it has many defined mathematical functions. It has
its own programming syntax.

You can get more information about the bc utility at: http:/ ​/​www. ​gnu.​org/ ​software/ ​bc/ ​.

Let's look at using awk for floating-point arithmetic:

 $ result=`awk -v a=3.1 -v b=5.2 'BEGIN{printf "%.2fn",a*b}'`
 $ echo $result
 16.12

You will be learning more about awk programming in the coming chapters. Therefore, we
will not get into a detailed discussion of awk in this session.

Let's write a few more Shell scripts using the arithmetic programming skills we have
learned so far.

Let's write the Bash shell script arithmetic_08.sh to determine whether an input integer
is even or odd:

#!/bin/bash
echo "Please enter a value"
read x

http://www.gnu.org/software/bc/
http://www.gnu.org/software/bc/
http://www.gnu.org/software/bc/
http://www.gnu.org/software/bc/
http://www.gnu.org/software/bc/
http://www.gnu.org/software/bc/
http://www.gnu.org/software/bc/
http://www.gnu.org/software/bc/
http://www.gnu.org/software/bc/
http://www.gnu.org/software/bc/
http://www.gnu.org/software/bc/
http://www.gnu.org/software/bc/
http://www.gnu.org/software/bc/
http://www.gnu.org/software/bc/

Performing Arithmetic Operations in Shell Scripts Chapter 7

[134]

y=`expr $x % 2`
if test $y -eq 0
then
 echo "Entered number is even"
else
 echo "Entered number is odd"
fi

Let's test the program:

 $ chmod +x arithmetic_08.sh
 $./arithmetic_08.sh
 Output:
 "Enter a number"
 5
 "Number is odd"
 "Enter a number"
 6
 "Number is even"

Let's write the script arithmetic_09.sh to find the length of an input string:

#!/bin/bash
echo "Please Enter the String:"
read str
len=`echo $str | wc -c`
let len=len-1
echo "length of string = $len"

Let's test the script:

 $ chmod +x arithmetic_09.sh
 $./arithmetic_09.sh

This should produce the following output:

 Enter String:
 Hello World
 length of string = 11

Let's write a script to calculate the area and circumference of a rectangle and circle.

Write the shell script arithmetic_10.sh as follows:

#!/bin/bash
echo "Please enter the length, width and radius"
read length width radius
areaRectangle=`expr $length * $width `

Performing Arithmetic Operations in Shell Scripts Chapter 7

[135]

temp=`expr $length + $width `
perimeterRect=`expr 2 * $temp`
areaCircle=`echo 3.14 * $radius * $radius | bc`
circumferenceCircle=`echo 2 * 3.14 * $radius | bc`
echo "Area of rectangle = $areaRectangle"
echo "Perimeter of Rectangle = $perimeterRect."
echo "Area of circle = $areaCircle."
echo "Circumference of circle = $circumferenceCircle"
echo

Let's test the program:

 $ chmod +x arithmetic_10.sh
 $./arithmetic_10.sh

This should produce the following output:

 Enter the length, width and radius
 5 10 5
 Area of rectangle = 50
 Perimeter of Rectangle = 30
 Area of circle = 78.50
 Circumference of circle = 31.40

Summary
In this chapter, you learned about performing arithmetic operations in various ways, such
as using declare, let, expr, and arithmetic expressions. You also learned about
representing numbers in different bases such as hex, octal, and binary. You learned about
using the bc utility to perform floating-point or fractional arithmetic.

In the next chapter, you will learn about automatic decision-making by working with tests
and using if-else, case, select, for, while, and do while. You will also learn to
control loops using break and continue statements.

8
Automating Decision-Making in

Scripts
In the last chapter, you learned about performing arithmetic operations in various ways,
such as using declare, let, expr, and arithmetic expressions. You also learned about
representing numbers in different bases, such as hex, octal, and binary, and using the bc
utility for performing floating point or fractional arithmetic.

In real-world scripts, it is not just a sequential execution of commands, we need to check
certain conditions or proceed according to certain logic, and then the script should continue
executing. This is precisely what we do with automation. Automation refers to performing
tasks, the sequence of which will change according to changes in the programming
environment. A simple example would be to check whether a directory is present; if
present, then change to that directory. Otherwise create a new directory and proceed. All
these activities come under decision-making in shell scripts.

In this chapter, we will cover the following topics:

Working with test
Using if-else
Switching case
Using select

Automating Decision-Making in Scripts Chapter 8

[137]

Checking the exit status of commands
Automation using shell scripts involves checking whether an earlier command executed
successfully, whether a file is present, and so on. You will learn various constructs such as
if, case, and so on, where we will need to check whether certain conditions are true or
false. Accordingly, our script should conditionally execute various commands.

Let's enter the following command:

 $ ls

Using the Bash shell, we can check whether the preceding command executed successfully
as follows:

 $ echo $?

The preceding command will return 0 if the ls command executed successfully. The result
will be non-zero, such as 1 or 2 or any other non-zero number, if the command has failed.
The Bash shell stores the status of the last command execution in a variable. If we need to
check the status of the last command execution, then we should check the content of the
variable.

Let's take the following example:

 $ x=10
 $ y=20
 $ ((x < y))
 $ echo $?
 0

This indicates that the $((x < y)) expression has executed successfully.

Let's look at the same concept in the case of string handling:

 $ name=Ganesh
 $ grep "$name" /etc/passwd
 Ganesh:9ZAC5G:6283:40:Ganesh Naik:/home/ganesh:/bin/sh
 $ echo $?
 0

Automating Decision-Making in Scripts Chapter 8

[138]

Since the user Ganesh has already been created on the computer, the string Ganesh was
found in the /etc/passwd file.

 $ name=John
 $ grep "$name" /etc/passwd
 $ echo $?
 1 # non zero values means error

Since the user John was not found in the /etc/passwd file, the grep command returned a
non-zero value. In scripts, we can use this during automation.

Understanding the test command
Let's now understand the test command.

Using the test command
Let's look at the following example to check the content or value of expressions:

 $ test $name=Ganesh
 $ echo $?
 0 if success and 1 if failure.

In the preceding example, we want to check whether the content of the variable name is the
same as Ganesh and ?. To check this, we have used the test command. The test
command will store the result of the comparison in the ? variable.

We can use the following syntax for the preceding test command. In this case, we used [
] instead of the test command. We've enclosed the expression to be evaluated in square
brackets:

 $ [[$name = Ganesh]] # Brackets replace the test command
 $ echo $?
 0

During the evaluation of expressions by test, we can even use wildcard expressions:

 $ [[$name = [Gg]?????]]
 $ echo $?
 0

Automating Decision-Making in Scripts Chapter 8

[139]

Therefore, we can either use the test command or square brackets for checking or
evaluating expressions. Since word splitting will be performed on variables, if we are using
text with white spaces, then we will need to enclose the text inside double quotes, " ".

Using the test command with double brackets
Let's consider a case where we want to check whether there is the name Ganesh and
whether his friend is John. In this case, we will have multiple expressions to be checked
using the AND operator, &&. In such a case, we can use the following syntax:

 $ [[$name == Ganesh && $friend == "John"]]

Another way to do this is as follows:

 [$name == Ganesh] && [$friend == "John"]

We used double brackets in the preceding expressions.

Here, we want to evaluate multiple expressions on the same command line. We can use the
preceding syntax with AND (&&) or OR (||) logical operators.

String comparison options for the test command
The following is a summary of various options for string comparison using test, which is
taken from the Bash reference manual available at http://www.gnu.org/software/bash/:

Test operator Tests true if
-n string True if the length of string is non-zero.
-z string True if the length of string is zero.
string1 != string2 True if the strings are not equal.
string1 == string2
string1 = string2

True if the strings are equal.

string1 > string2 True if string1 sorts after string2 lexicographically.
string1 < string2 True if string1 sorts before string2 lexicographically.

http://www.gnu.org/software/bash/

Automating Decision-Making in Scripts Chapter 8

[140]

If we want to check whether the length of a string is non-zero, then we can check it
as follows:

 test -n $string or [-n $string]
 echo $?

If the result is 0, then we can conclude that the string length is non-zero. If the content of ?
is non-zero, then the string is 0 in length.

Let's write a shell script, test01.sh, for learning various string operations:

#!/bin/bash

str1="Ganesh"
str2="Mumbai";
str3=

[$str1 = $str2] # Will Check Two Strings Are Equal Or Not
echo $?

[$str1 != $str2] # Will Check Two Strings Are Not Equal
echo $?

[-n $str1] # Will confirm string length is greater than zero
echo $?

[-z $str3] # Will Confirm length of String is Zero
echo $?

Let's test the following program:

 $ chmod +x test01.sh
 $./test01.sh

The following will be the output after executing the preceding commands:

 1
 0
 0
 0

Let's write an interactive shell script, test02.sh, to get names from the user and then
compare whether both are the same:

#!/bin/bash
echo "Enter First name"

Automating Decision-Making in Scripts Chapter 8

[141]

read name1
echo "Enter Second name"
read name2
[$name1 = $name2] # Check equality of two names
echo $?
[-n $name2] # Check String Length is greater than Zero
echo $?

Let's test the following program:

 $ chmod +x test02.sh
 $./test02.sh

The following will be the output after executing the preceding commands:

 Enter First name
 LEVANA
 Enter Second name
 TECHNOLOGIES
 1
 0

Numerical comparison operators for the test
command
The following is the summary of various options for numerical comparison using test:

Test Operator Tests True If
[integer_1 -eq integer_2] integer_1 is equal to integer_2
[integer_1 -ne integer_2] integer_1 is not equal to integer_2
[integer_1 -gt integer_2] integer_1 is greater than integer_2
[integer_1 -ge integer_2] integer_1 is greater than or equal to integer_2
[integer_1 -ge integer_2] integer_1 is less than integer_2 .
[integer_1 -le integer_2] integer_1 is less than or equal to integer_2

Automating Decision-Making in Scripts Chapter 8

[142]

Let's write the shell script, test03.sh, for learning the various numerical test operators'
usage:

#!/bin/bash

num1=10
num2=30

echo $(($num1 < $num2)) # compare for less than
[$num1 -lt $num2] # compare for less than
echo $?
[$num1 -ne $num2] # compare for not equal
echo $?
[$num1 -eq $num2] # compare for equal to
echo $?

Let's test the following program:

 $ chmod +x test03.sh
 $./test03.sh

The following will be the output after executing the preceding commands:

 1
 0
 0
 1

Let's write the script, test04.sh, for interactively asking the user for three numbers and
then testing those numbers for various comparisons:

#!/bin/bash
echo "Please enter 1st First Number"
read num1
echo "Please enter 2nd Number"
read num2
echo "Please enter 3rd Number"
read num3
[[$num1 > $num2]] # compare for greater than
echo $?
[[$num1 != $num2]] # compare for not equal to
echo $?
[[$num2 == $num3]] # compare for equal to
echo $?
[[$num1 && $num2]] # Logical And Operation
echo $?
[[$num2 || $num3]] # Logical OR Operation
echo $?

Automating Decision-Making in Scripts Chapter 8

[143]

Let's test the following program:

 $ chmod +x test04.sh
 $./test04.sh

The following will be the output after executing the preceding commands:

 Please enter 1st First Number
 10
 Please enter 2nd Number
 20
 Please enter 3rd Number
 30
 1
 0
 1
 0
 0

Let's write the script test05.sh for using string and numerical test operations:

#!/bin/bash
Var1=20
Var2=30
Str1="Accenture"
FileName="TestStringOperator"

test $Var1 -lt $Var2 # Test for Less Than
echo $?
test $Var1 -gt $Var2 # Test For Greater Than
echo $?
test -n $Str1 # Test for String Having Length Greater Than 0
echo $?
test -f $FileName # Test for File Attributes
echo $?

Let's test the following program:

 $ chmod +x test05.sh
 $./test05.sh

The following will be the output after executing the preceding commands:

 0
 1
 0
 1

Automating Decision-Making in Scripts Chapter 8

[144]

We used the test operation for the file in this script. It will check whether the file is present.
You will learn more about it in the following section.

Now we will write the script test06.sh using the test command interactively, ask the user
for data, and then perform numerical, as well as string comparison, operations:

#!/bin/bash
echo "Please enter 1st Number"
read num1
echo "Please enter 2nd Number"
read num2
echo
test $num1 -eq $num2 # Test for Equal
echo $?
test $num1 -ne $num2 # Test for Not Equal
echo $?
test $num1 -ge $num2 # Test for Greater Than Equal
echo $?

echo "Please enter 1st String"
read Str1
echo "Please enter 2nd String"
read Str2

test $Str1 = $Str2 # Test for Two Strings Are Equal
echo $?
test -z $Str1 # Test for The Length Of The String Is > 0
echo $?
test $Str2 # Test for The String Is Not NULL
echo $?

Let's test the following program:

 $ chmod +x test06.sh
 $./test06.sh

The following will be the output after executing the preceding commands:

 Please enter 1st Number
 10
 Please enter 2nd Number
 20
 1
 0
 1
 Please enter 1st String
 LEVANA

Automating Decision-Making in Scripts Chapter 8

[145]

 Please enter 2nd String
 TECHNOLOGIES
 1
 1
 0

Depending on the value of $? in the preceding output, we can decide whether the
operation returned true or false. We will use this in if, case, and similar decision-
making, as well as in looping, activities.

File test options for the test command
The following are the various options for file-handling operations using the test command:

-c file_name Check whether file is character special file
-d file_name Check whether directory exists
-e file_name Check whether file exists
-f file_name Check whether file is a regular file and not a directory
-G file_name Check whether file exists and is owned by the effective group ID
-g file_name Check whether file has Set-group-ID set
-k file_name Check whether file has Sticky bit set
-L file_name Check whether file is symbolic link
-p file_name Check whether file is a named pipe
-O file_name Check whether file exists and is owned by the effective user ID
-r file_name Check whether file is readable
-S file_name Check whether file is a socket
-s file_name Check whether the file has non-zero size
-t file_name Check whether the file has fd (file descriptor) and is open in a terminal
-u file_name Check whether the file has Set-user-ID bit set

Automating Decision-Making in Scripts Chapter 8

[146]

File-testing binary operators
The following are various options for binary file operations using test, which is taken from
the Bash reference manual available at http://www.gnu.org/software/bash/:

Test Operator Tests True If
[file_1 -nt file_2] Check whether file_1 is newer than file_2
[file_1 -ot file_2] Check whether file_1 is older than file_2

[file_1 -ef file_2]
Check whether file_1 and file_2 have the same device or
inode numbers

Let's write the script test07.sh to test the basic file attributes, such as whether it is a file or
folder and whether it has a file size bigger than 0. The output will be different depending
on whether the case file is present:

#!/bin/bash
Check whether file is Directory
[-d work]
echo $?
Check that is it a File
[-f test.txt]
echo $?
Check whether File has size greater than 0
[-s test.txt]
echo $?

Let us test the program:

 $ chmod +x test07.sh
 $./test07.sh

The following will be the output after executing the preceding commands:

 1
 1
 1
 $ mkdir work
 $ touch test.txt
 $./test07.sh
 0
 0
 1

http://www.gnu.org/software/bash/

Automating Decision-Making in Scripts Chapter 8

[147]

We executed the script with and without the directory and text.txt file.

The following script, test08.sh, is checking the file permissions such as read, write, and
execute permissions:

#!/bin/bash
Check whether File has Read Permission
[-r File2]
echo $?
Check whether File Has Write Permission
[-w File2]
echo $?
Check whether File Has Execute Permission
[-x File2]
echo $?

Let's test the program:

 $ touch File2
 $ ls -l File2
 -rw-rw-r-- 1 student student 0 Jun 23 22:37 File2
 $ chmod +x test08.sh
 $./test08.sh

The following will be the output after executing the preceding commands:

 0
 0
 1

Logical test operators
The following are the various options for logical operations using test, which is taken from
the Bash reference manual available at http://www.gnu.org/software/bash/:

Test Operator Tests True If
[string_1 -a string_1] Both string_1 and string_2 are true

[string_1 -o string_2] Either string_1 or string_2 is true

[! string_1] Not a string_1 match

[[pattern_1 && pattern_2]] Both pattern_1 and pattern_2 are true

[[pattern_1 || pattern_2]] Either pattern_1 or pattern_2 is true

[[! pattern]] Not a pattern match

http://www.gnu.org/software/bash/

Automating Decision-Making in Scripts Chapter 8

[148]

We can use the test operator for strings along with pattern matching as follows:

$ name=Ganesh
$ [[$name == [Gg]anesh]] # Wildcards allowed
$ echo $?
0

The following is an example for multiple strings with the && logical operator:

$ name=Ganesh; friend=Anil
$ [[$name == [Gg]anesh && $friend == "Lydia"]]
$ echo $?
1

The following is the script with the test command along with the extended pattern
matching enabled:

$ shopt -s extglob # we are enabling extended pattern matching
$ city=Kannur
$ [[$city == [Kk]a+(n)ur]]
$ echo $?
0

In the given expressions, we are checking the equality of strings. It tests whether the city
name starts with K or k, followed by a, one or more n characters, u, and r.

Conditional constructs – if else
We use the if expression to check the pattern or command status and accordingly we can
make certain decisions to execute scripts or commands.

The syntax of the if conditional is as follows:

 if command
 then
 command
 command
 fi

Automating Decision-Making in Scripts Chapter 8

[149]

From the preceding syntax, we can clearly understand the working of the if conditional
construct. Initially, if will execute the command. If the result of command execution is true
or 0, then all the commands that are enclosed between then and fi will be executed. If the
status of command execution after if is false or non-zero, then all the commands after
then will be ignored and the control of execution will directly go to fi.

Let's learn another variation of if constructs.

Syntax:

 if command
 then
 command
 command
 else
 command
 fi

In the preceding case, if the command after if is successfully executed or the status
variable ? content is 0, then all the commands after then will be executed. If the result of
the command is a failure or non-zero, then all the commands after else will be executed.

For numeric or string expression evaluations using if, the syntax is as follows:

 if [string/numeric expression]
 then
 command
 fi

Alternatively, use the following syntax:

 if [[string expression]]
 then
 command
 fi

Alternatively, use the following syntax:

 if ((numeric expression))
 then
 command
 fi

Automating Decision-Making in Scripts Chapter 8

[150]

A simple example of checking the status of the last command executed using the if
construct is as follows:

#!/bin/bash
if [$? -eq 0]
then
 echo "Command was successful."
else
 echo "Command was successful."
fi

Whenever we run any command, the exit status of the command will be stored in the ?
variable. The preceding construct will be very useful in checking the status of the last
command.

Numerical handling if constructs
Let's learn about using the if construct for numerical decision-making.

We can use the test command for finding which variable contains the smaller value:

$ X=10
$ y=20
$ ((x < y))
$ echo $?
0
The result 0 shows that x is smaller than y.

In the shell script if_01.sh, we can use the test command along with the if construct for
checking the equality of variables with numerical values as follows:

#!/bin/bash
a=100
if [$a -eq 100]
then
 echo "a is equal to $a"
else
 echo "a is not equal"
fi

Automating Decision-Making in Scripts Chapter 8

[151]

Let's test the following program:

 $ chmod +x if_01.sh
 $./if_01.sh

The following will be the output after executing the preceding commands:

 a is equal to 100

Use the script if_02.sh to check which product is costly. The script is
as follows:

#!/bin/bash
echo "Enter the cost of product a"
read a
echo "Enter the cost of product b"
read b

if [$a -gt $b]
then
 echo " a is greater"
else
 echo " b is greater"
fi

Let's test the following program:

 $ chmod +x if_02.sh
 $./if_02.sh

The following will be the output after executing the preceding commands:

 Enter the cost of product a
 100
 Enter the cost of product b
 150
 b is greater
 $

Using the exit command and the ? variable
If we need to terminate the shell script and come back to the command line, then we can
use the exit command. The syntax is very simple:

exit 0

Automating Decision-Making in Scripts Chapter 8

[152]

The given command will terminate the shell script and return to the command line. It will
store the 0 value in the ? status variable. We can use any value between 0 and 255. Value 0
means success, and any other non-zero value means an error. We can use these values to
indicate error information.

The script to check the value of a parameter that is passed along with the command (either
less than 0 or greater than 30) is as follows. This will save us from using the nested if
statement:

#!/bin/bash
if (($1 < 0 || $1 > 30))
 then
 echo "mdays is out of range"
 exit 2
fi

The test command used in the preceding expression for OR can be written as follows:

 [$1 -lt 0 -o $1 -gt 30]

String handling with the if construct
Let's learn about using string-related checking using the if expression.

The following script, if_03.sh, will check the equality of two strings:

echo "Enter the first string to compare"
read name1
echo "Enter the Second string to compare"
read name2

if ["$name1" == "$name2"]
then
 echo "First string is equal to Second string"
else
 echo "Strings are not same"
fi

Automating Decision-Making in Scripts Chapter 8

[153]

Let's test the following program:

 $ chmod +x if_03.sh
 $./if_03.sh

The following will be the output after executing the preceding commands:

$./ if_03.sh
Enter the first string to compare
LEVANA
Enter the Second string to compare
TECHNOLOGIES
Strings are not same
$./ if_03.sh

The following will be the output after executing the preceding commands:

Enter the first string to compare
LEVANA
Enter the Second string to compare
LEVANA
First string is equal to Second string
$

We will write the script for performing various other string operations using a test. Let's
write the script if_04.sh to compare two strings for various attributes:

#!/bin/bash

str1="Ganesh"
str2="Naik"

if [$str1 = $str2]
then
 echo "Two Strings Are Equal"
fi

if [$str1 != $str2]
then
 echo "Two Strings are not equal"
fi

if [$str1]
then
 echo "String One Has Size Greater Than Zero"
fi

if [$str2]

Automating Decision-Making in Scripts Chapter 8

[154]

then
 echo "String Two Has Size Greater Than Zero"
fi

Let's test the following program:

 $ chmod +x if_04.sh
 $./if_04.sh

The following will be the output after executing the preceding commands:

 Two Strings are not equal
 String One Has Size Greater Than Zero
 String Two Has Size Greater Than Zero

If we want to verify whether the entered password is valid, then script if_05.sh will be as
follows:

#!/bin/bash
stty -echo # password will not be printed on screen
read -p "Please enter a password :" password
if test "$password" == "Abrakadabra"
then
echo "Password is matching"
fi
stty echo

Let's test the following program:

 $ chmod +x if_05.sh
 $./if_05.sh

The following will be the output after executing the preceding commands:

 $./if_05.sh
 Please enter a password : levana
 $./if_05.sh
 Please enter a password : Abrakadabra
 Password is matching
 $

Automating Decision-Making in Scripts Chapter 8

[155]

Checking for null values
Many a time we need to check the value of variable, such as whether it is null. The null
value means zero value. If we want to create the string with the null value, then we should
use double quotes ("") while declaring it:

if ["$string" = ""]
then
echo "The string is null"
fi

We can even use [! "$string"] or [-z "$string"] for null checking of strings.

Let's write the script if_08.sh, which will search for the entered person's name and tell us
whether the user is on the computer system:

#!/bin/bash
read -p "Enter a user name : " user_name

try to locate username in in /etc/passwd
#
grep "^$user_name" /etc/passwd > /dev/null

status=$?

if test $status -eq 0
then
 echo "User '$user_name' is found in /etc/passwd."
else
 echo "User '$user_name' is not found in /etc/passwd."
fi

Let's test the following program:

 $ chmod +x if_08.sh
 $./if_08.sh

The following will be the output after executing the preceding commands:

 Enter a user name : ganesh
 User 'ganesh' is not found in /etc/passwd.

In the preceding script, we are searching for the username in the /etc/passwd file. If a
person's name is not found in the /etc/passwd file, then we can conclude that the
username has not been created in the system.

Automating Decision-Making in Scripts Chapter 8

[156]

Let's write a script to check the disk space being used. The script will print a warning if 90
percent or more of the disk space is used on one of the mounted partitions.

The shell script if_09.sh for solving the disk filesystem usage warning will be as follows:

#!/bin/bash
df -h | grep /dev/sda1 | cut -c 35-36 > log.txt
read usage < log.txt
if [$usage -gt 80]
then
 echo "Warning - Disk file system has exceeded 80% !"
 echo "Please move extra data to backup device."
else
 echo "Good - You have enough disk space to continue working !"
fi

Let's test the following program:

 $ chmod +x if_09.sh
 $./if_09.sh

If the preceding program does not work, due to some hardware differences, then make the
following changes to the script:

Check to see whether your partition for storage is sda1, sda2, or any other by1.
entering the $df -h command.
Check whether the % disk utilization value is at character count 35 and 36. If not,2.
then make changes in the code accordingly.

Using the df command, we get the disk filesystem usage information. The grep command
is filtering the hard disk partition, which contains our data. Then, we filter the disc %
utilization number and store that value in the log.txt file. Using the read command, we
read the % utilization and store it in the usage variable. Later on, using the if command,
we check and warn the user if the % utilization is greater than 80.

File handling with the if command
You have already learned about how to use the test command for checking various file
operations such as checking the file's permissions and similar other attributes. A
command's task in any script is to check whether the file or folder is present or not. Then,
accordingly, we need to proceed. We will see how to use the if command along with the
test command.

Automating Decision-Making in Scripts Chapter 8

[157]

Use the simple script if_10.sh to check whether the file exists or not in the current
directory as follows:

#!/bin/bash
read filename
if test -e $filename
then
 echo "file exists"
else
 echo " file does not exist"
fi

Let's test the program as follows:

 $ chmod +x if_10.sh
 $./if_10.sh

The following will be the output after executing the preceding commands:

 sample.txt
 file does not exist
 $ touch sample.txt
 $./if_10.sh
 sample.txt
 file exists

First, we checked without the file. Then, we created a file with the touch command. We can
very easily check for the presence of the file.

Let's learn how to use the if command to check various file attributes, such as whether it
exists, whether it has file permissions to read, write, execute, and similar by writing script
if_11.sh as follows:

#!/bin/bash
echo "$1 is: "
if ! [-e $1]
then
 echo "..Do not exists"
 exit
else
 echo "file is present"
fi

if [-x $1]
then
 echo "..Executable"
fi

Automating Decision-Making in Scripts Chapter 8

[158]

if [-r $1]
then
 echo "..Readable"
fi

if [-w $1]
then
 echo "..Writable"
fi

Let's test the following program:

 $ chmod +x if_11.sh
 $./if_11.sh sample.txt

This should be the output:

 sample.txt is:
 "file is present"
 ..Readable
 ..Writable

The shell script if_12.sh for performing the file copy operation and then checking
whether the copy operation was successful will be as follows:

#!/bin/bash
file1="File1"
file2="File2"
if cp $file1 $file2
then
 echo "Copy Command Executed Successfully"
 echo "Content of file named Fil1 copied in another file named File2"
else
 echo "Some problem in command execution"
fi

Let's test the program:

 $ chmod +x if_12.sh
 $./if_12.sh

The following will be the output after executing the preceding commands:

 $ touch File1
 $./if_12.sh
 Copy Command Executed Successfully
 Content of file named Fil1 copied in another file named File2

Automating Decision-Making in Scripts Chapter 8

[159]

Multiple test commands and if constructs
These type of constructs enable us to execute the second command depending on the
success or failure of the first command:

command1 && command2
command1 || command2

Let's write script if_13.sh. In this script, we will ask the user to input two numbers. Then,
the if statement will evaluate two expressions. If both are true, then the command after
then will be executed; otherwise, commands after else will be called:

#!/bin/bash
echo "Enter the first number"
read val_a
echo "Enter the Second number"
read val_b

if [$val_a == 1] && [$val_b == 10]
then
 echo "testing is successful"
else
 echo "testing is not successful"
fi

Let's test the program:

 $ chmod +x if_13.sh
 $./if_13.sh

The following will be the output after executing the preceding commands:

 Enter the first number
 10
 Enter the Second number
 20
 testing is not successful
 $./if_13.sh
 Enter the first number
 1
 Enter the Second number
 10
 testing is successful

Automating Decision-Making in Scripts Chapter 8

[160]

Sometimes, we may need to enter a command to check whether the file has the execute
permission ? If it is executable, then the file should be executed. The script for such a
requirement will be as follows:

test -e file && . file.

Let's learn one more example of && and multiple expressions using the test command. In
the following script, if_14.sh, we will check whether file_one is present, then we will
print Hello and then immediately we will check whether file_two is present. Then we
will print there on the screen:

#!/bin/bash

touch file_one
touch file_two

if [-f "file_one"] && echo "Hello" && [-f file_two] && echo "there"
then
 echo "in if"
else
 echo "in else"
fi
exit 0

Let's test the program:

 $ chmod +x if_14.sh
 $./if_14.sh

The following will be the output after executing the preceding commands:

 Hello
 there
 in if

The following script, if_15.sh, will check file permissions such as read, write, and execute
in the same if command using multiple && with the test command:

#!/bin/bash
echo "Please enter file name for checking file permissions"
read file
if [[-r $file && -w $file && -x $file]]
then
 echo "The file has read, write,and execute permission"
fi

Automating Decision-Making in Scripts Chapter 8

[161]

Let's test the program:

 $ chmod +x if_15.sh
 $ touch sample.txt
 $ chmod +rwx sample.txt
 $./if_15.sh
 sample.txt

The following will be the output after executing the preceding commands:

 The file has read, write, and execute permissions.

Till now, we have seen multiple expressions using the && logical operator. Now we will see
one example with the OR (||) logical operator. In the following script, if_16.sh, we will
check the existence of file_one and then we will print Hello on the screen. If the first
expression of file checking fails, then the second expression of echo will be executed:

#!/bin/sh
if [-f file_one] || echo "Hello"
then
 echo "In if"
else
 echo "In else"
fi

Let's test the program:

 $ chmod +x if_16.sh
 $./if_16.sh

The following will be the output after executing the preceding commands:

 hello
 In if
 $ touch file_one
 $./if_16.sh

This is the output:

 In if

We checked in the preceding script whether file_one is absent or present.

Automating Decision-Making in Scripts Chapter 8

[162]

The if/elif/else command
Sometimes, we need to make a decision on multiple situations or options, such as whether a
city is the capital of a country, the state capital, a major city, or a small town. In such
situations where, depending on various options, we need to execute different commands,
if/else or if/elif/else decision-making commands are useful.

Using the if/elif/else commands, we can have multiple decision-making processes. If
the if command succeeds, the command after then will be executed. If it fails, the
command after the elif statement will be tested. If that statement succeeds, then
statements under the elif are executed. However, suppose none of the elif conditions
are true, then statements after the else command are executed. Here, the else block is
executed by default. The fi statement will close the if/elif/else command.

The syntax of decision-making using the if elif construct is as follows:

If expression_1
then
 Command

elif
 expression_2
then
 Command

elif
 expression_3
then
 Command

else
 Command

fi

Let's write script if_18.sh as follows. In this script, we are checking whether the directory
with a given name exists or not. If this fails, then we are checking whether the file with the
given name exists. Even if this fails, then we will inform the user that neither the file nor the
directory exists with the given name:

#!/bin/bash
echo "Kindly enter name of directory : "
read file

if [[-d $file]]

Automating Decision-Making in Scripts Chapter 8

[163]

then
 echo "$file is a directory"
elif [[-f $file]]
 then
 echo "$file is a file."
 else
 echo "$file is neither a file nor a directory. "
fi

Let's test the program:

 $ chmod +x if_18.sh
 $./if_18.sh

The following will be the output after executing the preceding commands:

 $./if_18.sh
 Kindly enter name of directory :
 File1
 File1 is a file.
 $ mkdir dir1
 $./if_18.sh
 Kindly enter name of directory :
 dir1
 dir1 is a directory
 $./if_18.sh
 Kindly enter name of directory :
 File007
 File007 is neither a file nor a directory.

The null command
In many situations, we may need a command that does nothing and returns a success status
such as 0. In such cases, we can use the null command. It is represented by a colon (:). For
example, in the if loop, we do not want to add any command if it is successful, but we
have certain commands to execute if it fails. In such situations, we can use the null
command. This is illustrated in the following if_19.sh script. If we want to loop for ever,
then the null command can be used in the for loop:

#!/bin/bash
city=London
if grep "$city" city_database_file >& /dev/null
then
 :
else

Automating Decision-Making in Scripts Chapter 8

[164]

 echo "City is not found in city_database_file "
 exit 1
fi

Let's test the program:

 $ chmod +x if_19.sh
 $./if_19.sh

The following will be the output after executing the preceding commands:

 City is not found in city_database_file

We can observe from the preceding script that the colon is a null command and it does
nothing.

Switching case
Apart from simple branches with if, it is also possible to process multiple decision-making
operations using the case command. In a case statement, the expression contained in a
variable is compared with a number of expressions, and for each expression matched, a
command is executed.

It is possible to have multiple branches using the if/elif/else commands. But if more
than two or three elif commands are used, then code becomes very complex. When all the
different conditions are depending on a single variable, in such cases, the esac statement is
used. The interpreter checks the value of the case variable against value1, value2,
value3, and so on, till the match is found. If the value is matched, then all the statements
after that case value are executed till the double semicolon is reached. If nothing is
matched, then statements after esac are executed. Wildcard characters and pipes (vertical
bar for ORing two values) are allowed in the case statement.

A case statement has the following structure:

case variable in
 value1)
 command(s)
 ;;
 value2)
 command(s)
 ;;
 *)
 command(s)

Automating Decision-Making in Scripts Chapter 8

[165]

 ;;
esac

For illustrating the switch case scripting example, we will write the case_01.sh script as
follows. We will ask the user to enter any number from the range 1-9. We will check the
entered number with the case command. If a user enters any other number, then we will
display the error by displaying the Invalid key message:

#!/bin/bash

echo "Please enter any number from 1 to 9"
read number

case $number in
 1) echo "ONE"
 ;;
 2) echo "TWO"
 ;;
 3) echo "Three"
 ;;
 4) echo "FOUR"
 ;;
 5) echo "FIVE"
 ;;

Automating Decision-Making in Scripts Chapter 8

[166]

 6) echo "SIX"
 ;;
 7) echo "SEVEN"
 ;;
 8) echo "EIGHT"
 ;;
 9) echo "NINE"
 ;;
 *) echo "SOME ANOTHER NUMBER"
 ;;
esac

Let's test the program:

 $ chmod +x case_01.sh
 $./case_01.sh

The following will be the output after executing the preceding commands:

 Please enter any number from 1 to 9
 5
 FIVE

Sometimes, in the shell script we may need to ask for an email address from the user. In
such situations, we need to verify whether the address is correct. We can use the case
command to validate the correct email address as follows:

#!/bin/bash
case $1 in
@.com) echo "valid email address"
 ;;
*) echo "invalid string"
 ;;
esac

Let's test the program:

 $ chmod +x case_02..sh
 $./case_02.sh abc@gmail.com

Automating Decision-Making in Scripts Chapter 8

[167]

The following will be the output after executing the preceding commands if the email
address is correct:

 valid email address
 $./case_02.sh abc.com

The following will be the output after executing the preceding commands if the email
address is not correct:

 invalid string

If, inside the script we need to provide file operations such as copy, move, or delete, then
we can use the case command for such scripts. The script case_03.sh for file operations
is as follows:

#!/bin/bash
echo "Press 1 for copy or 2 for move or 3 for removing the file"
read num
case $num in
1) echo "We are going to do copy operation"
echo " Enter Source file name"
read source
echo " Enter destination file name"
read destination
cp $source $destination
;;
2) echo "We are going to do move operation"
echo " Enter Source file name"
read source
echo "Enter destination file name"
read destination
mv $source $destination ;;
3) echo "We are going to remove the file"
echo " Enter the name of file to remove"
read source
rm $source ;;
*) echo "invalid key"
esac

Let's test the program:

 $ chmod +x case_03.sh
 $./case_03.sh

Automating Decision-Making in Scripts Chapter 8

[168]

The following will be the output after executing the preceding commands:

 Press 1 for copy or 2 for move or 3 for removing the file
 1
 We are going to do copy operation
 Enter Source file name
 File1
 Enter destination file name
 File4

In this shell script case_04.sh, we will ask the user to enter the day of the week. Inside the
script, we will detect the text entered and print a detailed description of the day such as
First Day is Monday and similar on the screen. Note that we are able to perform pattern
matching for the uppercase and lowercase in the case statement:

#!/bin/bash
echo "Enter Day Of The Week"
read day

case $day in
 [mM][oO][nN][dD][aA][yY])
 echo "First Day is Monday"
 ;;
 [tT][uU][eE][sS][dD][aA][yY])
 echo "Second Day Tuesday"
 ;;
 [wW][eE][dD][nN][eE][sS][dD][aA][yY])
 echo "Third Day Wednesday"
 ;;
 [tT][hH][uU][rR][sS][dD][aA][yY])
 echo " Fourth Day Thursday"
 ;;
 [fF][rR][iI][dD][aA][yY])
 echo "Fifth Day Friday"
 ;;
 [sS][aA][tT][uU][rR][dD][aA][yY])
 echo "Sixth Day Saturday"
 ;;
 [sS][uU][nN][dD][aA][yY])
 echo "Seventh Day Sunday"
 ;;
 *)
 echo "Invalid Day of Week"
 ;;
 esac

Automating Decision-Making in Scripts Chapter 8

[169]

Let's test the program:

 $ chmod +x case_04.sh
 $./case_04.sh

The following will be the output after executing the preceding commands:

 $./case_04.sh
 Enter Day Of The Week
 Monday
 First Day is Monday
 $./case_04.sh
 Enter Day Of The Week
 Thursday
 Fourth Day Thursday

We write the script case_05.sh for printing days in the current month. We will use the
date command in the script for finding the current month:

#!/bin/bash
mth=$(date +%m)

case $mth in
02)
 echo "February usually has 28 days."
 echo "If it is a leap year, it has 29 days."
 ;;

04|06|09|11)
 echo "The current month has 30 days."
 ;;

*)
 echo "The current month has 31 days."
 ;;
 esac

Let's test the program:

 $ chmod +x case_05.sh
 $./case_05.sh

The following will be the output after executing the preceding commands:

 The current month has 30 days.

Automating Decision-Making in Scripts Chapter 8

[170]

Implementing simple menus with select
With the Bash shell, it is possible to create simple menus with the help of the built-in
select command.

The syntax of select is as follows:

 PS3=prompting-text
 select VARIABLE in item1 item2 item3
 do
 commands
 done

The advantage of a menu with select is that we can have an endless loop with it. We can
have a condition in which we exit the loop.

In the following script, select_01.sh, we show the menu with five options including a,
bc, def, ghi, and jkl. The script will execute the command inside do and done:

#!/bin/bash
select var1 in a bc def ghi jkl
do
echo "Present value of var1 is $var1
done

Let's test the program:

 $ chmod +x select_01.sh
 $./select_01.sh

The following will be the output after executing the preceding commands:

 1) a
 2) bc
 3) def
 4) ghi
 5) jkl
 #? 2
 "Present value of var1 is bc
 #? 4
 "Present value of var1 is ghi
 #? 5
 "Present value of var1 is jkl
 #?
 Press ^C to quit

Automating Decision-Making in Scripts Chapter 8

[171]

We can implement the case command inside the do and done part of the select menu.
The syntax will be as follows:

 PS3=prompting text
 select VARIABLE in item1 item2 item3
 do
 case VARIABLE in
 value1) command1 ; ;
 value2) command2 ; ;
 esac
 done

In the following script, select_02.sh, we used the case command inside do and done.
This gives us many convenient features. Due to select, we get endless such as continuous
loop. In case the if option entered is quit, then it exits the continuous loop:

#!/bin/bash
PS3="please select any one : "
select var in a b quit
do
case $var in
 a) echo option is a ;;
 b) echo option is b ;;
 quit) exit ;;
 *) echo option is default ;;
esac
done

Let's test the program:

 $ chmod +x select_02.sh
 $./select_02.sh

The following will be the output after executing the preceding commands:

 1) a
 2) b
 3) quit
 please select any one : 1
 option is a
 please select any one : 2
 option is b
 please select any one : 3

Automating Decision-Making in Scripts Chapter 8

[172]

In the following script, select_03.sh, we use a case statement with numerical options 1,
2, 3, 4, and an option for an invalid choice:

#!/bin/bash
PS3="Please enter one of the option"
select var in 1 2 3 4
do
case $var in
 1) echo "One is selected";;
 2) echo "Two is selected";;
 3) echo "Two is selected";;
 4) echo "Two is selected";;
 *) echo "not a proper option";;
esac
done

Let's test the program:

 $ chmod +x select_03.sh
 $./select_03.sh

The following will be the output after executing the preceding commands:

 1) 1
 2) 2
 3) 3
 4) 4
 Please enter one of the option : 1
 "One is selected"
 Please enter one of the option : 2
 "Two is selected
 Please enter one of the option : 3
 "Three is selected
 Please enter one of the option : 4
 "Four is selected
 Please enter one of the option : 8
 "not a proper option"
 Please enter one of the option :

In the case statement, we can add many choices to select the same command. Here is an
example of the script select_04.sh as follows:

#!/bin/bash
PS3="Please select one of the above:"
select COMPONENT in comp1 comp2 comp3 all none
do
case $COMPONENT in

Automating Decision-Making in Scripts Chapter 8

[173]

comp1|comp2|comp3) echo "comp1 or comp2 co comp3 selected" ;;
all) echo "selected all"
;;
none) break ;;
*) echo "ERROR: Invalid selection, $REPLY." ;;
esac
done

Let's test the program:

 $ chmod +x select_04.sh
 $./select_04.sh

The following will be the output after executing the preceding commands:

 1) comp1
 2) comp2
 3) comp3
 4) all
 5) none
 Please select one of the above:

The script select_05.sh is used to inform the user about calorie information in fruits, as
follows:

#!/bin/bash
PS3="Enter the number for your fruit choice: "

select fruit in apple orange banana peach pear "Quit Menu"
do
 case $fruit in
 apple)
 echo "An apple has 80 calories."
 ;;

 orange)
 echo "An orange has 65 calories."
 ;;

 banana)
 echo "A banana has 100 calories."
 ;;

 peach)
 echo "A peach has 38 calories."
 ;;

 pear)

Automating Decision-Making in Scripts Chapter 8

[174]

 echo "A pear has 100 calories."
 ;;

 "Quit Menu")
 break
 ;;

 *)
 echo "You did not enter a correct choice."
 ;;
 esac
done

Let's test the program:

 $ chmod +x select_05.sh
 $./select_05.sh

The following will be the output after executing the preceding commands:

 1) apple 3) banana 5) pear
 2) orange 4) peach 6) Quit Menu
 Enter the number for your fruit choice: 1
 An apple has 80 calories.
 Enter the number for your fruit choice: 2
 An orange has 65 calories.
 Enter the number for your fruit choice: 3
 A banana has 100 calories.
 Enter the number for your fruit choice: 4
 A peach has 38 calories.
 Enter the number for your fruit choice: 5
 A pear has 100 calories.
 Enter the number for your fruit choice: 6

Summary
In this chapter, you learned about using decision-making in scripts by working with Test,
if-else, and switching case. We also learned how to implement simple menus with
select.

In the next chapter, you will learn about looping in scripts by working with For, While,
and until loops. You will also learn how to control loops using the break statement and
continue statement.

9
Automating Repetitive Tasks

In the previous chapter, you learned about using decision making in scripts by working
with Test, if-else, and switching case. You also learned how to implement simple
menus with select.

In this chapter, we will cover the following topics:

Working with the for loop
Working with the while loop
Controlling loops:

The continue statement
The break statement

Looping with the for command
For iterative operations, the bash shell uses three types of loops: for, while, and until.
Using the for looping command, we can execute a set of commands for a finite number of
times for every item in a list. In the for loop command, the user-defined variable is
specified. After the in command, the keyword list of values can be specified. The user-
defined variable will get the value from that list, and all statements between do and done
get executed until it reaches the end of the list.

The purpose of the for loop is to process a list of elements. It has the following syntax:

for variable in element1 element2 element3
do
commands
done

Automating Repetitive Tasks Chapter 9

[176]

The simple script with the for loop could be as follows:

for command in clear date cal
do
 sleep 1
 $command
Done

In the preceding script, the commands clear, date, and cal will be called one after
another. The sleep command will be called before every command for one second.

If we need to loop continuously or infinitely, then the following is the syntax:

for ((;;))
do
 command
done

Let's write a simple for_01.sh script. In this script, we will print the var variable 10
times:

#!/bin/bash
for var in {1..10}
do
 echo $var
done

Let's test the program:

 $ chmod +x for_01.sh
 $./for_01.sh

The following will be the output after executing the preceding commands:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

Automating Repetitive Tasks Chapter 9

[177]

The following for_02.sh script uses the C programming style syntax:

#!/bin/bash
max=10
for ((i=1; i<=max; i++))
do
echo -n "$i " # one case with echo without -n option
done

Let's test the program:

 $ chmod +x for_02.sh
 $./for_02.sh

The following will be the output after executing the preceding commands:

 $./for_02.sh # OUTPUT with -n option
 1 2 3 4 5 6 7 8 9 10
 $./for_02.sh # OUTPUT without -n option
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

In the next for_03.sh script, we will be processing a list of numbers, which are listed next
to the in keyword:

#!/bin/bash
for var in 11 12 13 14 15 16 17 18 19 20
do
 echo $var
done

Let's test the program:

 $ chmod +x for_03.sh
 $./for_03.sh

Automating Repetitive Tasks Chapter 9

[178]

The following will be the output after executing the preceding commands:

 $./for_03.sh
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

In the following for_04.sh script, we create user11 to user20, along with their home
directory:

#!/bin/bash
for var in user{11..20}
do
 useradd -m $var
 passwd -d $var
done

Let's test the program:

 $ chmod +x for_04.sh
 $ sudo ./for_04.sh

After executing the preceding command, user11 to user20 will be created with their
home folders in the /home/ folder.
You need to be a root user or administrator to run this script.

In the for_05.sh script, we will be passing command-line parameters. All the command-
line parameters will be available as the $* inside script:

#!/bin/sh
for var in $*
do
 echo "command line contains: $var"
done

Let's test the program:

 $ chmod +x for_05.sh
 $./for_05.sh 1 2 3 4 5 6

Automating Repetitive Tasks Chapter 9

[179]

The following will be the output after executing the preceding commands:

 command line contains: 1
 command line contains: 2
 command line contains: 3
 command line contains: 4
 command line contains: 5
 command line contains: 6

In the next for_06.sh script, we are passing a list of words, such as the names of fruits.
Inside the script, we are printing the information of the variable:

#!/bin/bash
create fruits.txt => Apple Mango Grapes Pears Banana Orange Pineapple
for var in `cat fruits.txt`
do
 echo "var contains: $var"
done

Let's test the program:

 $ chmod +x for_06.sh
 $./for_06.sh

The following will be the output after executing the preceding commands:

 var contains: Apple
 var contains: Mango
 var contains: Grapes
 var contains: Pears
 var contains: Banana
 var contains: Orange
 var contains: Pineapple

Using the for_07.sh script, we generate a list of files with the ls shell command. This will
be the list of filenames. In the for loop, the following list of files will be printed:

#!/bin/bash
echo -n "Commands in bin directory are : $var"
for var in $(ls /bin/*)
do
 echo -n -e "$var t"
done

Let's test the program:

 $ chmod +x for_07.sh
 $./for_07

Automating Repetitive Tasks Chapter 9

[180]

The following will be the output after executing the preceding commands:

 This will print the content of /bin/ directory.

For taking a backup of the files, we can write the for_08.sh script as follows:

#!/bin/bash
for filename in *.c
do
 echo "Copying $filename to $filename.bak"
 cp $filename $filename.bak
done

Let's test the program:

 $ chmod +x for_08.sh
 $ touch 1.c 2.c
 $./for_08.sh

The following will be the output after executing the preceding commands:

 "Copying 1.c to 1.c.bak"
 "Copying 2.c to 2.c.bak"

Exiting from the current loop iteration with
the continue command
Using the continue command, it is possible to exit from the current iteration of the loop
and resume the next iteration of the loop. We use the for, while, or until commands for
loop iterations.

The following is the for_09.sh script for the loop with the continue command to skip a
certain part of the loop commands:

#!/bin/bash
for x in 1 2 3
do
 echo before $x
 continue 1
 echo after $x
done
exit 0

Automating Repetitive Tasks Chapter 9

[181]

Let's test the program:

$ chmod +x for_09.sh
$./for_09.sh

The following will be the output after executing the preceding commands:

 before 1
 before 2
 before 3

The following is the for_10.sh script in which we will check all files and directories. If the
file is found, we will print the name. If the directory is found, we will skip further
processing with the continue command. Take care that any of your useful files with the
name sample* are not in the testing directory before testing this script:

#!/bin/bash
rm -rf sample*
echo > sample_1
echo > sample_2
mkdir sample_3
echo > sample_4

for file in sample*
do
 if [-d "$file"]
 then
 echo "skipping directory $file"
 continue
 fi
 echo file is $file
done
rm -rf sample*
exit 0

Let's test the program:

 $ chmod +x for_10.sh
 $./for_10.sh

The following will be the output after executing the preceding commands:

 file is sample_1
 file is sample_2
 skipping directory sample_3
 file is sample_4

Automating Repetitive Tasks Chapter 9

[182]

In the following for_11.sh script, we are checking the backup of files in the /MP3/ folder.
If the file is not found in the folder, we are copying it to the folder for backup purposes. We
can implement incremental backup scripts using this functionality:

#!/bin/bash
for FILE in 'ls *.mp3'
do
 if test -e /MP3/$FILE
 then
 echo "The file $FILE exists."
 continue
 fi
 cp $FILE /MP3
done

Let's test the program:

 $ chmod +x for_11.sh
 $./for_11.sh

If the file exists in the MP3 folder, then the loop will continue to check the next file.
If the file backup is not present in the MP3 folder, then the file will be copied to it.

Exiting from a loop with a break
In the previous section, we discussed about how continue can be used to exit from the
current iteration of a loop. The break command is another way to introduce a new
condition within a loop. Unlike continue, however, it causes the loop to be terminated
altogether if the condition is met.

In the for_12.sh script, we check the directory's content. If the directory is found, then we
are exiting the loop and displaying the message that the first directory is found:

#!/bin/bash
rm -rf sample*
echo > sample_1
echo > sample_2
mkdir sample_3
echo > sample_4

for file in sample*
do
 if [-d "$file"]; then
 break;

Automating Repetitive Tasks Chapter 9

[183]

 fi
done

echo The first directory is $file
rm -rf sample*
exit 0

Let's test the program, as follows:

 $ chmod +x for_12.sh
 $./for_12.sh

The following will be the output after executing the preceding commands:

 The first directory is sample_3

In the for_13.sh script, we ask the user to enter any number. We print the square of the
numbers in the while loop. If a user enters the number 0, then we use the break command
to exit the loop:

#!/bin/bash
typeset -i num=0
while true
do
 echo -n "Enter any number (0 to exit): "
 read num junk

 if ((num == 0))
 then
 break
 else
 echo "Square of $num is $((num * num))."
 fi
done

echo "script has ended"

Let's test the program:

 $ chmod +x for_13.sh
 $./for_13.sh

Automating Repetitive Tasks Chapter 9

[184]

The following will be the output after executing the preceding commands:

 Enter any number (0 to exit): 1
 Square of 1 is 1.
 Enter any number (0 to exit): 5
 Square of 5 is 25.
 Enter any number (0 to exit): 0

Working with the do – while loop
Similar to the for command, while is also the command for loop operations. The
command next to while is evaluated. If it is successful or 0, then the commands inside do
and done are executed.

The purpose of a loop is to test a certain condition or expression and execute a given
command while the condition is true (the while loop) or until the condition becomes
true (the until loop):

while condition
do
commands
done

until condition
do
commands
done

The following is the while_01.sh script in which we read a file and display its
content:

#!/bin/bash
file=/etc/resolv.conf
while IFS= read -r line # IFS : inter field separator
do
 # echo line is stored in $line
 echo $line
done < "$file"

Let's test the program:

 $ chmod +x while_01.sh
 $./while_01.sh

Automating Repetitive Tasks Chapter 9

[185]

The following will be the output after executing the preceding commands:

 nameserver 192.168.168.2
 search localdomain

In the following while_02.sh script, we are printing numbers 1-10 on the screen using
the while loop:

#!/bin/bash
declare -i x
x=0
while [$x -le 10]
do
 echo $x
 x=$((x+1))
done

Let's test the program:

 $ chmod +x while_02.sh
 $./while_02.sh

The following will be the output after executing the preceding commands:

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

In the following while_03.sh script, we ask the user to input the test. If the input of the
text is quit, then we terminate the loop; otherwise, we print the text on the screen:

#!/bin/bash
INPUT=""
while ["$INPUT" != quit]
do
 echo ""
 echo 'Enter a word (quit to exit) : '
 read INPUT
 echo "You typed : $INPUT"
done

Automating Repetitive Tasks Chapter 9

[186]

Let's test the program:

 $ chmod +x while_03.sh
 $./while_03.sh

The following will be the output after executing the preceding commands:

 Enter a word (quit to exit) :
 GANESH
 You typed : GANESH
 Enter a word (quit to exit) :
 Naik
 You typed : Naik
 Enter a word (quit to exit) :
 quit
 You typed : quit

In the following while_04.sh script, we print the content of variable num on screen. We
are starting with the value of 1. In the loop, we increment the value of the num variable by
1. When the value of the variable num reaches 6, then the while loop is terminated:

#!/bin/bash
num=1
while ((num < 6))
do
 echo "The value of num is: $num"
 ((num = num + 1)) # let num=num+1
done
echo "Done."

Let's test the program:

 $ chmod +x while_04.sh
 $./while_04.sh

The following will be the output after executing the preceding commands:

 The value of num is: 1
 The value of num is: 2
 The value of num is: 3
 The value of num is: 4
 The value of num is: 5
 Done.

Automating Repetitive Tasks Chapter 9

[187]

The while_05.sh script prints a series of odd numbers on screen. We are passing a total
number of odd numbers required as command-line parameters:

#!/bin/bash
count=1
num=1
while [$count -le $1]
do
 echo $num
 num=`expr $num + 2`
 count=`expr $count + 1`
done

Let's test the program:

 $ chmod +x while_05.sh
 $./while_05.sh 5

The following will be the output after executing the preceding commands:

 1
 3
 5
 7
 9

Using until
The until command is similar to the while command. The given statements in the loop
are executed as long as they evaluate the condition as true. As soon as the condition
becomes false, then the loop is exited.

The syntax is as follows:

until command
do
 command(s)
done

Automating Repetitive Tasks Chapter 9

[188]

In the following until_01.sh script, we are printing the numbers 0-9 on screen.
When the value of variable x becomes 10, then the until loop stops executing:

#!/bin/bash
x=0
until [$x -eq 10]
do
 echo $x
 x=`expr $x + 1`
done

Let's test the program:

 $ chmod +x until_01.sh
 $./until_01.sh

The following will be the output after executing the preceding commands:

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

In the following until_02.sh script, we ask the user to input text. We are printing text
entered on the screen. When the user enters the text quit, the until loop ends the
iterations:

#!/bin/bash
INPUT=""
until ["$INPUT" = quit]
do
 echo ""
 echo 'Enter a word (quit to exit) : '
 read INPUT
 echo "You typed : $INPUT"
done

Automating Repetitive Tasks Chapter 9

[189]

Let's test the program:

 $ chmod +x until_02.sh
 $./until_02.sh

The following will be the output after executing the preceding commands:

 Enter a word (quit to exit) :
 Ganesh
 You typed : Ganesh
 Enter a word (quit to exit) :
 Naik
 You typed : Naik
 Enter a word (quit to exit) :
 quit
 You typed : quit

In the following until_03.sh script, we are passing the username as a
the command-line parameter to the script. When required, the user logs in the grep
command, and they will find it from the output of the who command. Then, the until loop
will stop iterations and provide information on screen about the user login:

#!/bin/bash
until who | grep "$1" > /dev/null
do
 sleep 60
done
echo -e \a
echo "***** $1 has just logged in *****"
exit 0

Let's test the program:

 $ chmod +x until_03.sh
 $./until_03.sh User10

The following will be the output after executing the preceding commands:

 "***** User10 has just logged in *****"

This message will be displayed when user10 has logged in to the server.

Automating Repetitive Tasks Chapter 9

[190]

Piping the output of a loop to a Linux
command
If we need to redirect the output of a loop to any other Linux command such as sort, we
can even redirect the loop output to be stored in the file:

The following is an example of source code for_14.sh:

#!/bin/bash
for value in 10 5 27 33 14 25
do
 echo $value
done | sort -n

Let's test the program:

 $ chmod +x for_14.sh
 $./for_14.sh

The following will be the output after executing the preceding commands:

 5
 10
 14
 25
 27
 33

In the preceding script, the for loop iterates through a list of numbers that is unsorted. The
numbers are printed in the body of the loop, which are enclosed between the do and done
commands. Once the loop is complete, the output is piped to the sort command, which, in,
turn performs a numerical sort and prints the result on screen.

Running loops in the background
In certain situations, the script with loops may take a lot of time to complete. In such
situations, we may decide to run the script containing loops in the background so that we
can continue other activities in the same terminals. The advantage of this will be that the
Terminal will be free to give the next commands.

Automating Repetitive Tasks Chapter 9

[191]

The following for_15.sh script is the technique to run a script with loops in
the background:

#!/bin/bash
for animal in Tiger Lion Cat Dog
do
 echo $animal
 sleep 1
done &

Let's test the program:

 $ chmod +x for_15.sh
 $./for_15.sh

The following will be the output after executing the preceding commands:

 Tiger
 Lion
 Cat
 Dog

In the preceding script, the for loop will process the animals Tiger, Lion, Cat, and Dog
sequentially. The variable animal will be assigned the animal names one after another. In
the for loop, the commands to be executed are enclosed between do and done. The
ampersand after the done keyword will make the for loop run in the background. The
script will run in the background till the for loop is complete.

The IFS and loops
The shell has one environment variable, which is named the Internal Field Separator
(IFS). This variable indicates how the words are separated on the command line. The IFS
variable is, normally or by default, a whitespace (''). The IFS variable is used as a word
separator (token) for the for command. In many documents, IFS can be any one of the
white spaces, :, |, :, or any other desired character. This will be useful while using
commands such as read, set, and for. If we are going to change the default IFS, then it is
a good practice to store the original IFS in a variable.

Later on, when we have done our required tasks, then we can assign the original character
back to IFS.

Automating Repetitive Tasks Chapter 9

[192]

In the following for_16.sh script, we are using : as the IFS character:

#/bin/bash
cities=Delhi:Chennai:Bangaluru:Kolkata
old_ifs="$IFS" # Saving original value of IFS
IFS=":"
for place in $cities
do
 echo The name of city is $place
done

Let's test the program:

 $ chmod +x for_16.sh
 $./for_16.sh

The following will be the output after executing the preceding commands:

 The name of city is Delhi
 The name of city is Chennai
 The name of city is Bangaluru
 The name of city is Kolkata

By default, the original inter-field separator is a whitespace. We have saved the original IFS
in the old_ifs variable. We assigned a colon : and an IFS in the script. Therefore, we can
use : as an inter-field separator in our test file or text string.

Summary
In this chapter, you learned about looping in scripts by working with for, while, and
until loops. In order to repeat tasks, such as processing lists, you learned about using the
for, while and dowhile loop. You also learned how to control loops using the break and
continue statements.

In the next chapter, you will learn about writing new functions and calling them, sharing
data between functions, passing parameters to functions, and creating a library of
functions.

10
Working with Functions

In the last chapter, you learned about using decision-making in scripts by working with
test, if-else, and switch case. We also used select for loop with menu.
For repeated tasks, such as processing lists, you learned to use the for and while loops
and the dowhile. You also learned about how to control loops using the break and
continue statements.

In this chapter, you will learn the following topics:

Writing a new function and calling
Sharing data between functions
Passing parameters to functions
Creating a library of functions

Understanding functions
We human beings, in our day-to-day lives, are helped by people who have certain
knowledge or skills, such as doctors, lawyers, and barbers. This helps our lives to be more
organized and comfortable so that we need not learn every skill in this world. We take
advantage of skills that have already been acquired by other people. The same thing applies
to software development as well. If we use code or scripts that have already been
developed, this will save our time and energy.

In real-world scripts, we break down big tasks or scripts into smaller logical tasks. This
modularization of scripts helps in the better development and understanding of code.
Functions can be called the smaller logical blocks inside the shell script.

Working with Functions Chapter 10

[194]

The advantages of functions are as follows:

If the script is very big, then understanding it becomes very difficult. Using
functions, we can easily understand complex script through logical blocks
or functions.
When a big and complex script is divided into functions, then it becomes easy to
develop and test the script.
If a certain part of code is repeated again and again in the big script, then using
functions to replace repetitive code is very practical, such as checking whether
the file or directory is present or not.
We define functions for specific tasks or activities. Such functions can be called as
commands in scripts.

Functions can be defined on a command line or inside scripts. The syntax for defining
functions on a command line is as follows:

 functionName { command_1; command_2; . . . }

We could also use this:

 functionName() { command_1; command_2; . . }

In single-line functions, every command should end with a semicolon.

Let's write a very simple function to illustrate the preceding syntax:

 $ hello() { echo 'Hello world!';}

We can use the previously defined function as follows:

 $ hello

This should produce the following output:

 Hello world!

The syntax of the function declaration inside the shell script is as follows:

function_name() {
 block of code
}

Working with Functions Chapter 10

[195]

An alternate function syntax is mentioned here:

function function_name
{
 block of code
}

Functions should be defined at the beginning of a script.

We can add this function in the shell script function_01.sh as follows:

#!/bin/bash
hello()
{
 echo "Executing function hello"
}
echo "Script has started now"
hello
echo "Script will end"

Test the script as follows:

 $ chmod +x function_01.sh
 $./function_01.sh

This should produce the following output:

 Script has started now
 Executing function hello
 Script will end

We can modify the preceding script and create function_02.sh with some more
functionality, shown as follows:

#!/bin/bash
function greet()
{ echo "Hello $LOGNAME, today is $(date)"; }
greet

Test the script as follows:

 $ chmod +x function_02.sh
 $./function_02.sh

This should produce the following output:

 Hello ganesh, today is Sun Jul 5 22:47:23 PDT 2015

Working with Functions Chapter 10

[196]

The system init functions are placed in the /lib/lsb/init-functions folder in the
Linux operating system:

The script function_03.sh has a function for listing the present working directory and
listing all the files in the current directory, as follows:

#!/bin/bash
function_lister ()
{
 echo "Your present working directory is `pwd`"
 echo "Your files are:"
 ls
}
function_lister

Test the script as follows:

 $ chmod +x function_03.sh
 $./function_03.sh

This should produce the following output:

 Your present working directory is /home/student/Desktop/test
 Your files are:
 01.sh 02.sh 03.sh

The script function_04.sh with a function to pause the script until users press any key is
as follows:

#!/bin/bash
pause: causes a script to take a break
pause()
{
echo "To continue, hit RETURN."
read q
}
pause

Test the script as follows:

 $ chmod +x function_04.sh
 $./function_04.sh

Output:

 To continue, hit RETURN.
 (after hitting any key it resumes)

Working with Functions Chapter 10

[197]

The script function_05.sh with a function to print the previous day is as follows:

#!/bin/bash
yesterday()
{
date --date='1 day ago'
}
yesterday

Test the script as follows:

 $ chmod +x function_05.sh
 $./function_05.sh

This should produce the following output:

 Sat Jul 4 22:52:24 PDT 2015

The function to convert lowercase letters into uppercase letters is shown in
function_06.sh as follows:

#!/bin/bash
function convert_upper()
{
echo $1 | tr 'abcdefghijklmnopqrstuvwxyz'
 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
}
convert_upper "ganesh naik - embedded android and linux training"

Test the script as follows:

 $ chmod +x function_06.sh
 $./function_06.sh

This should produce the following output:

 GANESH NAIK - EMBEDDED ANDROID AND LINUX TRAINING

Displaying functions
If you want to see all the declared functions in the shell environment, then enter the
following command:

 $ declare -f

Working with Functions Chapter 10

[198]

If you want to see a particular function, then here is the command:

 $ declare -f hello

This should produce the following output:

 hello ()
 {
 echo 'Hello world!'
 }

Removing functions
If we no longer need the function in the shell, then we use the following command:

 $ unset -f hello
 $ declare -f hello # Check the function in shell environment.

Nothing will be displayed on the screen, as the hello function is removed from the shell
environment with the unset command.

Passing arguments or parameters to
functions
In certain situations, we may need to pass arguments or parameters to functions.
In such situations, we can pass arguments as follows.

Calling the script with command-line parameters is as follows:

 $ name arg1 arg2 arg3 . . .

Let's type a function as follows:

 $ hello() { echo "Hello $1, let us be a friend."; }

Call the function in the command line as follows:

 $ hello Ganesh

This should produce the following output:

 Hello Ganesh, let us be a friend

Working with Functions Chapter 10

[199]

Let's write the script function_07.sh. In this script, we pass command-line parameters to
the script as well as the function:

#!/bin/bash
quit()
{
 exit
}
ex()
{
 echo $1 $2 $3
}
ex Hello hai bye # Function ex with three arguments
ex World # Function ex with one argument
echo $1 # First argument passed to script
echo $2 # Second argument passed to script
echo $3 # Third argument passed to script
quit
echo foo

Test the script as follows:

 $ chmod +x function_07.sh
 $./function_07.sh One Two Three

This should produce the following output:

 Hello hi bye
 World
 One
 Two
 Three

We can observe from the output that the parameters passed to the function are local to the
function. In global scope, the command-line parameters to the script are available as $1, $2,
$3, and more.

Another example script, called function_08.sh, to pass multiple arguments to the
function is as follows:

#!/bin/bash
countries()
{
let us store first argument $1 in variable temp
temp=$1
echo "countries(): $0 = $0" # print command
echo "countries(): $1 = $1" # print first argument

Working with Functions Chapter 10

[200]

echo "countries(): total number of args passed = $#"
echo "countries(): all arguments ($*) passed = -"$*""
}

Call function with one argument
echo "Calling countries() for first time"
countries USA

Call function with three arguments
echo "Calling countries() second time "
countries USA India Japan

Test the script as follows:

 $ chmod +x function_08.sh
 $./function_08.sh

This should produce the following output:

 Calling countries() for first time
 countries(): $0 = ./hello.sh
 countries(): $1 = USA
 countries(): total number of args passed = 1
 countries(): all arguments ($*) passed = -"USA"
 Calling countries() second time
 countries(): $0 = ./hello.sh
 countries(): $1 = USA
 countries(): total number of args passed = 3
 countries(): all arguments ($*) passed = -"USA India Japan"

We can create a function that could create a new directory and change to it during the
execution of the program. The script function_09.sh is as follows:

#!/bin/bash
mcd: mkdir + cd; creates a new directory and
changes into that new directory
mcd ()
{
 mkdir $1
 cd $1
}
mcd test1

The preceding script will create the test1 folder in the current folder and change the path
to the test1 folder.

Working with Functions Chapter 10

[201]

A common task in many scripts is to ask users to input an answer as either Yes or No. In
such situations, the following script, function_10.sh would be very useful:

#!/bin/bash
yesno ()
{
 while true
 do
 echo "$*"
 echo "Please answer by entering yes or no : "
 read reply
 case $reply in
 yes)
 echo "You answered Yes"
 return 0
 ;;
 no)
 echo "You answered No"
 return 1
 ;;
 *)
 echo "Invalid input"
 ;;
 esac
 done
 }
yesno

Test the script as follows:

 $ chmod +x function_10.sh
 $./function_10.sh

This should produce the following output:

 Please answer by entering yes or no:
 yes
 "You answered Yes"
 $./function_10.sh
 Please answer by entering yes or no:
 no
 "You answered No"

Working with Functions Chapter 10

[202]

Sharing the data with many functions
We can create variables that may contain strings or numerical values. These global
variables can be accessed by all the functions inside a script.

A simple script called function_11.sh with functions is as follows:

#!/bin/bash
We will define variable temp for sharing data with function
temp="/temp/filename"

remove_file()
{
 echo "removing file $temp..."
}
remove_file

Test the script as follows:

 $ chmod +x function_11.sh
 $./function_11.sh

This should produce the following output:

 removing file /temp/filename...

Declaring local variables in functions
Whenever we declare a variable in a script, it is accessible to all functions. The variable is
global by default. If the variable is modified by any line of script or any function,
it will be modified in global scope. This may create problems in certain situations.
We will see this problem in the following script, function_12.sh:

#!/bin/bash
name="John"
hello()
{
 name="Maya"
 echo $name
}
echo $name # name contains John
hello # name contains Maya
echo $name # name contains Maya

Working with Functions Chapter 10

[203]

Test the script as follows:

 $ chmod +x function_12.sh
 $./function_12.sh

This should produce the following output:

 John
 Maya
 Maya

To make a variable local, we declare it as follows:

 local var=value
 local varName

Let's write the script function_13.sh as follows:

#!/bin/bash
name="John"
hello()
{
 local name="Mary"
 echo $name
}
echo $name # name contains John
hello # name contains Mary
echo $name # name contains John

Test the script as follows:

 $ chmod +x function_13.sh
 $./function_13.sh

Output:

 John
 Mary
 John

Working with Functions Chapter 10

[204]

The local command can only be used within a function. The local keyword limits the
scope of the variable to the function. In the previous script, we initially declared the name
variable; it has global scope. This name variable has the content John. Then, we have
declared the local variable name in the hello function. This local variable name is
initialized to Mary. Then, outside of the hello function, we again access the global variable
name, which has the content John.

Returning information from functions
You have learned to pass command-line parameters to functions. Similarly, the function
can return integers as a return value. Normally, functions return either TRUE or FALSE. In
certain cases, the function can return integer values, such as 5 or 10, as well.

The syntax is:

 return N

When the function calls the command return, the function exits with the value specified by
N.

If the function does not call the command return, then the exit status returned is
that of the last command executed in the function. If what we need is the status
of the last command executed in the function, then we need not return any value from the
function. This is illustrated in the following script, function_14.sh:

#!/bin/bash
is_user_root() { [$(id -u) -eq 0]; }
is_user_root && echo "You are root user, you can go ahead."
|| echo "You need to be administrator to run this script"

Test the script as follows:

 $ chmod +x function_14.sh
 $./function_14.sh

If you are a root user, then the output will be as follows:

 You are root user, you can go ahead.

If you are a normal user, then the output will be as follows:

 You need to be administrator to run this script

Working with Functions Chapter 10

[205]

A modified version of the previous script is function_15.sh:

#!/bin/bash
declare -r TRUE=0
declare -r FALSE=1

is_user_root()
{
[$(id -u) -eq 0] && return $TRUE || return $FALSE
}
is_user_root && echo "You can continue" || echo "You need to be root to run
this script."

Test the script as follows:

 $ chmod +x function_15.sh
 $./function_15.sh

This should produce the following output:

 You need to be root to run this script.

Let's see the script in which the function returns a value:

#!/bin/bash
yes_or_no()
{
echo "Is your name $*?"
while true
do
echo -n "Please reply yes or no :"
read reply
case $reply in
Y | y | yes) return 0;;
N | n | no) return 1;;
*) echo "Invalid answer"
esac
done
}

if yes_or_no $1
then
echo"Hello $1 "
else
echo"name not provided"
fi

Working with Functions Chapter 10

[206]

Test the script as follows:

 $ chmod +x function_16.sh
 $./function_16.sh Ganesh

This should produce the following output:

 Is your name Ganesh?
 Please reply yes or no : yes
 Hello Ganesh

Returning a word or string from a function
In shell scripts, functions cannot return a word or string from a function. If we need to pass
data to a script then we will have to store it in a global variable. We can even use echo or
print to send data to a pipe or redirect it to the log file.

Running functions in the background
We have already seen in previous chapters that to run any command in the background, we
have to terminate the command using &:

 $ command &

Similarly, we can make the function run in the background by appending & after the
function call. This will make the function run in the background so that the Terminal will
be free:

#!/bin/bash
dobackup()
{
 echo "Started backup"
 tar -zcvf /dev/st0 /home >/dev/null 2>& 1
 echo "Completed backup"
}
dobackup &
echo -n "Task...done."
echo

Test the script as follows:

 $ chmod +x function_17.sh
 $./function_17.sh

Working with Functions Chapter 10

[207]

This should produce the following output:

 Task...done.
 Started backup
 Completed backup

Command source and period (.)
Normally, whenever we enter a command, the new process gets created. If we want to
make functions from the script to be made available in the current shell, then we need a
technique that will run the script in the current shell instead of creating a new shell
environment. The solution to this problem is using either the source or . commands.

The commands, source and ., can be used to run the shell script in the current shell instead
of creating a new process. This helps with declaring functions and variables in the current
shell.

The syntax is as follows:

 $ source filename [arguments]

Or you can use the following:

 $. filename [arguments]
 $ source functions.sh

Or you could use this:

 $. functions.sh

If we pass command-line arguments, these will be handled inside a script as $1, $2, and
more:

 $ source functions.sh arg1 arg2

Or you could enter the following:

 $./path/to/functions.sh arg1 arg2

The source command does not create a new shell. It runs the shell scripts in the current
shell so that all the variables and functions will be available in the current
shell for usage.

Working with Functions Chapter 10

[208]

Creating a library of functions
If we want to create our own library of functions, then we can create a script and add all the
functions into this script. We can make all the functions from our script functions.sh
available in the current shell by calling source or the period . command.

The procedure to load all functions into the current shell is as follows:

 $ country USA

Since the country function is not a part of the shell environment, this command will give
an error:

 $. functions.sh

Or it could display this one:

 $ source functions.sh
 $ country USA India Japan

This will execute the country function along with the parameter, USA India Japan.

We can even load a script containing library functions inside another script as follows:

#!/bin/bash
. /../my-libray.sh
call_library_functions();

We have called the library function script my-library.sh inside another script.
This will define all the functions within the script my-library.sh available in the current
script environment.

Summary
In this chapter, you learned about the functions in shell scripts. You also learned about
defining and displaying functions and removing the functions from a shell. In addition to
this, you learned about passing arguments to functions, sharing data between functions,
declaring local variables in functions, returning results from functions, and running
functions in the background. And, finally, you learned about using the source and . (dot)
commands. We used these commands to use the library of functions.

In the next chapter, you will learn about using traps and signals. You will also learn
about creating menus with the help of the dialog utility.

11
Using Advanced Functionality

in Scripts
In the last chapter, you learned about using functions in shell scripts and defining,
displaying, and removing functions from the shell. You also learned about passing
arguments to functions, sharing data between functions, declaring local variables in
functions, returning results from functions, and running functions in the background. At
the end, you learned about using source and . commands. You used these commands for
using a library of functions.

In this chapter, you will learn the following topics:

Understanding signals and traps
Graphical menu development using the dialog utility

Understanding signals and traps
Two types of interrupts exist in the Linux operating system: hardware interrupts and
software interrupts. Software interrupts are called signals or traps. Software interrupts are
used for inter-process synchronizations.

Signals are used to notify us about a certain event occurrence or to initiate a certain activity.

We use software signals many times. For example, if any command does not respond after
being typed, then you might have entered Ctrl + C. This sends a SIGINT signal to the
process, and the process is terminated. In certain situations, we may want the program to
perform a certain activity instead of terminating it using Ctrl + C. In such cases, we can use
the trap command to ignore a signal or to associate our desired function with that signal.

Using Advanced Functionality in Scripts Chapter 11

[210]

In operating systems, software interrupts or signals are generated when the process
attempts to divide a number by zero or sometimes due to power failure, system hang up,
illegal instruction execution, or invalid memory access.

The action, performed by a few signals, terminates the process. We can configure the shell
to make the following responses:

Catch the signal and execute user-defined programs
Ignore the signal
Suspend the process (similar to Ctrl + Z)
Continue the process, which was suspended earlier

Enter either of the following commands to get the full list of all signals:

 $ kill -l
 $ trap -l

Output:

If we want to know which keys are used for particular signals, then we enter the following
command:

 $ stty -a

The following is a list of a few of the standard signals that a process can use:

Number Name Description Action
0 EXIT The shell exits. Termination
1 SIGHUP The terminal has been disconnected. Termination
2 SIGINT The user presses Ctrl + C. Termination

Using Advanced Functionality in Scripts Chapter 11

[211]

Number Name Description Action
3 SIGQUIT The user presses Ctrl + \. Termination
4 SIGILL This gives an illegal hardware instruction. Program error
5 SIGTRAP This is produced by the debugger. Program error

8 SIGFPE
This gives an arithmetical error, such as division by
zero. Program error

9 SIGKILL This cannot be caught or ignored. Termination

We can send either of the kill signals to a process with PID # 1234 as follows:

 kill -9 1234
 kill -KILL 1234
 kill -SIGKILL 1234

As we can see, we can use a signal number or a signal name along with the process ID. By
default, the kill command sends signal number 15 to the process. Using the kill
command, we can send the desired signal to any specific process.

We can suspend a process using the Ctrl + Z signal as follows:

 $ kill -19 pid

Ctrl + Z or SIGTSTP will suspend the process.

We can restart the suspended process by sending the SIGCONT signal.

 $ kill -18 pid

The signal number of SIGCONT is 18.

Using the trap command
If a signal or software interrupt is generated while the script is running, then we can define
what action is performed by that interrupt handler using the trap command. The trap
command helps us in re-assigning the system response to a particular signal through the
user-defined function or commands.

Using Advanced Functionality in Scripts Chapter 11

[212]

The syntax to use the trap command is either of the following:

 $ trap 'command; command' signal-name
 $ trap 'command; command' signal-number

The usage as per the preceding syntax is as follows:

 trap 'echo "You pressed Control key" ' 0 1 2 15

This will print the message You pressed Control key, when any of the signals SIGINT,
SIGHUP, or SIGTERM are received by the process:

 trap 'rm file.tmp; echo "file.tmp is deleted" ' INT TERM HUP

When any of the SIGINT, SIGTERM, or SIGHUP signals arrive, then they will delete the
file.tmp file and print the message.

While using the trap command, if the command string is surrounded by double quotes,
then the command substitution and variable substitution will be done during the trap
command execution. If the command string is enclosed in single quotes then the
command substitution and variable substitution will be done when the signal is detected.

Ignoring signals
If we want the shell to ignore certain signals, then we can call the trap command followed
by a pair of empty quotes as a command. Those signals will be ignored by the shell process
shown by either of the following commands:

 $ trap " " 2 3 20
 $ trap " " INT QUIT TSTP

The signals 2 (SIGINT), 3 (SIGQUIT), and 20 (SIGTSTP) will be ignored by the shell
process.

Resetting signals
If we want to reset the signal behavior to the original default action, then we need to call
the trap command followed by the signal name or number as shown in the following
examples, respectively:

 $ trap TSTP
 $ trap 20

Using Advanced Functionality in Scripts Chapter 11

[213]

This will reset the default action of signal 20 (SIGTSTP). The default action is to suspend
the process (Ctrl + Z).

Listing traps
Let's reassign our function to signals with the trap command:

 $ trap 'echo "You pressed Control key" ' 0 1 2 15

If we do not pass any arguments after the trap command, then it lists all reassigned signals
along with their functions.

We can list all the assigned signal lists with the following command:

 $ trap

Output:

 trap -- 'echo "You pressed Control key" ' EXIT
 trap -- 'echo "You pressed Control key" ' SIGHUP
 trap -- 'echo "You pressed Control key" ' SIGINT
 trap -- 'echo "You pressed Control key" ' SIGTERM

Using traps inside a function
If we use the trap command inside a function in the script, then the reassigned signal
behavior will become global inside a script. We can check this effect in the following script
example.

Let's write shell script trap_01.sh as follows:

#!/bin/bash
trap "echo caught signal SIGINT" SIGINT
trap "echo caught signal SIGQUIT" 3
trap "echo caught signal SIGTERM" 15
while :
do
 sleep 50
done

Using Advanced Functionality in Scripts Chapter 11

[214]

Let's test the program as follows:

 $ chmod +x trap_01.sh
 $./trap_01.sh

Output:

 ^Ccaught signal SIGINT
 ^Quit (core dumped)
 caught signal SIGQUIT

Let's write one more trap_02.sh shell script as follows:

#!/bin/bash

trap "echo caught signal SIGINT" SIGINT
trap "echo caught signal SIGQUIT" 3
trap "echo caught signal SIGTERM" 15
trap "echo caught signal SIGTSTP" TSTP

echo "Enter any string (type 'bye' to exit)."
while true
do
 echo "Rolling...c"
 read string
 if ["$string" = "bye"]
 then
 break
 fi
done
echo "Exiting normally"

Let's test the program as follows:

 $ chmod +x trap_02.sh
 $./trap_02.sh

Output:

 Enter any string (type 'bye' to exit).
 Rolling...c
 ^Ccaught signal SIGINT
 bye
 Exiting normally

Using Advanced Functionality in Scripts Chapter 11

[215]

Running scripts or processes even if the
user logs out
Sometimes, we may need our script to run even after we log out, such as when making a
backup and similar activities. In this case, even if we log out, the system is powered on and
running. In such situations, we can use the nohup command. The nohup command
prevents the process from terminating by using the SIGHUP signal.

The nohup command makes our script run without attaching it to a Terminal. Therefore, if
we use the echo command to print text on the Terminal it will not be printed in a Terminal,
since the script is not attached to a Terminal. In such cases, we need to redirect the output
to the file, or nohup will automatically redirect the output to a nohup.out file.

Therefore, if we need to run a process, even if we log out, we need to use the nohup
command as follows:

 $ nohup command &

The example is as follows:

 $ nohup sort emp.lst &

This will run a program to sort the emp.lst file in the background.

 $ nohup date &

Creating dialog boxes with the dialog utility
The dialog utility is used to create a basic-level graphical user interface. We can use this in
shell script to create very useful programs.

To install the dialog utility in Debian or Ubuntu Linux, enter the following command:

 $ sudo apt-get update
 $ sudo apt-get install l dialog

Using Advanced Functionality in Scripts Chapter 11

[216]

Similarly, enter the following command to install the utility dialog in CentOS or Red Hat
Linux:

 $ sudo yum install dialog

The typical syntax of the dialog command is as follows:

 $ dialog --common-options --boxType "Text" Height Width
 --box-specific-option

The common-options utility is used to set the background color, title, and so on in dialog
boxes.

The option details are as follows:

Text: The caption or contents of the box
Height: The height of the dialog box
Width: The width of the dialog box

Creating a message box (msgbox)
To create a simple message box, we can use the following command:

 $ dialog --msgbox "This is a message." 10 50

Creating a message box (msgbox) with a title
Enter the following command to create a message box with the following title:

$ dialog --title "Hello" --msgbox 'Hello world!' 6 20

Using Advanced Functionality in Scripts Chapter 11

[217]

The option details are as follows:

--title "Hello": This will set the title of the message box to "Hello"
--msgbox 'Hello world!': This will set the content of the message box to
"Hello world!"

6: This will set the height of the message box
20: This will set the width of message box:

The message box has a Hello title with content Hello World! It has a single OK button. We
can use this message box to inform the user about any events or information. The user will
have to press Enter to close this message box. If the content is large for a message box, then
the dialog utility will provide the scrolling of the message.

The yes/no box (yesno)
If we need to obtain a yes or no answer from the user, we can use the following options
along with the dialog command:

 $ dialog --yesno "Would you like to continue?" 10 50

Using Advanced Functionality in Scripts Chapter 11

[218]

We can have the same yes/no dialog box with a title as follows:

 $ dialog --title "yesno box" --yesno "Would you like to continue?" 10
50

Let's write the dialog_01.sh shell script as follows:

#!/bin/bash
dialog --title "Delete file"
--backtitle "Learning Dialog Yes-No box"
--yesno "Do you want to delete file "~/work/sample.txt"?" 7 60

Selecting "Yes" button will return 0.
Selecting "No" button will return 1.
Selecting [Esc] will return 255.
result=$?
case $result in
 0) rm ~/work/sample.txt
 echo "File deleted.";;
 1) echo "File could not be deleted.";;
 255) echo "Action Cancelled - Presssed [ESC] key.";;
esac

Let's test the following program:

 $ chmod +x dialog_01.sh
 $./dialog_01.sh

Using Advanced Functionality in Scripts Chapter 11

[219]

Output:

The input box (inputbox)
Whenever we want to ask a user to input text via the keyboard, in such situations, the
inputbox option is useful. While entering text via the keyboard, we can use keys such as
Delete, Backspace, and the arrow cursor keys for editing. If the input text is larger than the
input box, the input field will be scrolled. Once the OK button is pressed, the input text can
be redirected to a text file:

 # dialog --inputbox "Please enter something." 10 50
 2> /tmp/tempfile
 VAR=`cat ~/work/output.txt

Let's write the dialog_02.sh shell script to create an input box as follows:

#!/bin/bash
result="output.txt"

Using Advanced Functionality in Scripts Chapter 11

[220]

>$ $result # Create empty file
dialog --title "Inputbox Demo"
--backtitle "Learn Shell Scripting"
--inputbox "Please enter your name " 8 60 2>$result

response=$?
name=$(<$result)
case $response in
0) echo "Hello $name"
 ;;
1) echo "Cancelled."
 ;;
255) echo "Escape key pressed."
esac
rm $result

Let's test the following program:

 $ chmod +x dialog_02.sh
 $./dialog_02.sh

Output:

 "Hello Ganesh Naik"

The textbox (textbox)
If we want to display the contents of the file in a textbox inside the menu created by a
dialog, then enter the following command:

 $ dialog --textbox /etc/passwd 10 50

Using Advanced Functionality in Scripts Chapter 11

[221]

We are displaying the /etc/passwd file in the textbox with the previous command.

A password box
Many times, we need a password from the user. In this case, the password should not be
visible on the screen. The password box option is perfect for this purpose.

If we want to display an entered password as a string of ****, then we will need to add the
--insecure option.

We will need to redirect the inserted password to a file.

Let's write dialog_03.sh shell script to receive the password as follows:

#!/bin/bash
creating the file to store password
result="output.txt 2>/dev/null"

delete the password stored file, if program is exited pre-maturely.
trap "rm -f output.txt" 2 15

dialog --title "Password"
--insecure
--clear
--passwordbox "Please enter password" 10 30 2> $result

reply=$?

case $reply in
 0) echo "You have entered Password : $(cat $result)";;
 1) echo "You have pressed Cancel";;
 255) cat $data && [-s $data] || echo "Escape key is pressed.";;
esac

Using Advanced Functionality in Scripts Chapter 11

[222]

Let's test the following program:

 $ chmod +x dialog_03.sh
 $./dialog_03.sh

Output:

 You have entered Password : adcd1234

The checklist box (checklist)
In this case, we can present the user with a choice to select one or multiple options from a
list:

dialog --checklist "This is a checklist" 10 50 2
"a" "This is one option" "off"
"b" "This is the second option" "on"

The menu box (menu)
Usually, a program or shell script may be required to perform multiple types of tasks. In
such cases, the menu box option is very useful. This option will display a list of choices for
the user. Then, the user may select an option of their own choice. Our script should execute
the desired option.

Each menu has two fields, a tag and an item string. In the next example menu demo, we
have tags such as date, calendar, and editor. A description of a tag is called an item string.

Using Advanced Functionality in Scripts Chapter 11

[223]

Let's write the dialog_04.sh shell script to create a menu as follows:

#!/bin/bash
Declare file to store selected menu option
RESPONSE=menu.txt
Declare file to store content to display date and cal output
TEMP_DATA=output.txt
vi_editor=vi
trap and delete temp files
trap "rm $TEMP_DATA; rm $RESPONSE; exit" SIGHUP SIGINT SIGTERM

function display_output(){
 dialog --backtitle "Learning Shell Scripting" --title "Output" --clear
--msgbox "$(<$TEMP_DATA)" 10 41
}

function display_date(){
 echo "Today is `date` @ $(hostname -f)." >$TEMP_DATA
 display_output 6 60 "Date and Time"
}

function display_calendar(){
 cal >$TEMP_DATA
 display_output 13 25 "Calendar"
}

We are calling infinite loop here
while true
do

Show main menu
dialog --help-button --clear --backtitle "Learn Shell Scripting"
--title "[Demo Menubox]"
--menu "Please use up/down arrow keys, number keysn
1,2,3.., or the first character of choicen
as hot key to select an option" 15 50 4
Calendar "Show the Calendar"
Date/time "Show date and time"
Editor "Start vi editor"
Exit "Terminate the Script" 2>"${RESPONSE}"

menuitem=$(<"${RESPONSE}")

Start activity as per selected choice
case $menuitem in
 Calendar) display_calendar;;
 Date/time) display_date;;

Using Advanced Functionality in Scripts Chapter 11

[224]

 Editor) $vi_editor;;
 Exit) echo "Thank you !"; break;;
esac
done
Delete temporary files
[-f $TEMP_DATA] && rm $TEMP_DATA
[-f $RESPONSE] && rm $RESPONSE

Let's test the following program:

 $ chmod +x dialog_04.sh
 $./dialog_04.sh

Output:

The radiolist box (radiolist)
If you want the user to select only one option out of many choices, then radiolist is a
suitable option:

dialog --radiolist "This is a selective list, where only one
option can be chosen" 10 50 2
"a" "This is the first option" "off"
"b" "This is the second option" "on"

Using Advanced Functionality in Scripts Chapter 11

[225]

Radio buttons are not square but round, as can be seen in the following screenshot:

The progress meter box (gauge)
The progress meter displays a meter at the bottom of the box. This meter indicates the
percentage of the process completed. New percentages are read from standard input, one
integer per line. This meter is updated to reflect each new percentage.

Let's write the dialog_05.sh shell script to create a progress meter as follows:

#!/bin/bash
declare -i COUNTER=1
{
 while test $COUNTER -le 100
 do
 echo $COUNTER
 COUNTER=COUNTER+1
 sleep 1
 done
 } | dialog --gauge "This is a progress bar" 10 50 0

Let's test the following program:

 $ chmod +x dialog_05.sh
 $./dialog_05.sh

Using Advanced Functionality in Scripts Chapter 11

[226]

Output:

Customization of dialog with the configuration file.

We can customize dialog using the ~/.dialogrc configuration file. The default file
location is $HOME/.dialogrc.

To create the .dialogrc configuration file, enter the following command:

 $ dialog --create-rc ~/.dialogrc

We can customize the output of the dialog utility by changing any of the configuration
parameters defined in the .dialogrc file.

Summary
In this chapter, you learned about using traps and signals. You also learned about
creating menus with the help of the dialog utility.

In the next chapter, you will learn about Linux system startup, from power-on to
login/logout of the user, and how to customize a Linux system environment.

12
System Startup and

Customizing a Linux System
In the last chapter, you learned about using traps and signals. You also learned about
creating menus with the help of the dialog utility.

In this chapter, you will learn about Linux system startup, from power-on to user login,
and how to customize a Linux system environment.

System startup, inittab, and run levels
When we power on the Linux system, shell scripts are run one after another
and the Linux system is initialized. These scripts start various services, daemons, databases,
and applications, as well as mount discs. Even during the shutting down of the system,
certain shell scripts are executed so that important system data and information can be
saved to the disk and the applications are properly shut down. These are called boot,
startup, and shutdown scripts. These scripts are copied during installation of the Linux
operating system in your computer. As a developer or administrator, understanding these
scripts may help you in understanding and debugging the Linux system. If required, you
can customize these scripts if the need arises.

The kernel startup and init process
In our computers, there is one EPROM chip called the BIOS, which is situated on the
motherboard or main board of our computers. When we power-on, the processor starts
executing a program from the BIOS. The program in the BIOS does a power-on-self-test,
checking memory and other peripherals. Then the BIOS program initializes the basic
hardware required for PC operation, such as initializing the PCI bus, video devices, and
similar.

System Startup and Customizing a Linux System Chapter 12

[228]

Finally, the BIOS checks the boot device sequence and queries the first boot device. This
BIOS program then reads the master boot record of the first boot device, which is normally
a hard disk, USB device, or DVD. Once the BIOS reads the master boot record of the first
boot device, then the boot loader is started. The boot loader reads the kernel binary and
copies it to the RAM memory. The boot loader checks if the kernel binary is clean and not
corrupt. If the integrity check is good then it uncompresses the kernel in the RAM. The
bootloader then calls the start_kernel() function, which is a part of kernel source code.
Once the start_kernel() function is called, the kernel is started.

The kernel then initializes its subsystems, such as process management, filesystem, device
drivers, memory management, network management, and similar other modules of the
kernel. Then, it mounts the root file system, and the kernel creates the first process called
init. This init process reads the /etc/inittab file. In inittab, the run level
information is stored. As per this information, the operating system is initialized by the
init process.

The typical /etc/inittab content will be as follows:

 $ cat /etc/inittab

Here is the output:

 # inittab is no longer used when using systemd.
 #
 # ADDING CONFIGURATION HERE WILL HAVE NO EFFECT ON YOUR SYSTEM.
 #
 # Ctrl-Alt-Delete is handled by /usr/lib/systemd/system/ctrl-alt-
del.target
 #
 # systemd uses 'targets' instead of runlevels. By default, there are
two main targets:
 #
 # multi-user.target: analogous to runlevel 3
 # graphical.target: analogous to runlevel 5
 #
 # To view current default target, run:
 # systemctl get-default
 #
 # To set a default target, run:
 # systemctl set-default TARGET.target
 #

System Startup and Customizing a Linux System Chapter 12

[229]

In the preceding line, the number 5 after ID specifies that the system should be started in
run level 5. It means that the system should be started in X11, such as a graphical user
interface. We will study more about run levels in the next section.

Nowadays, various Linux distributions, including CentOS, have replaced the init process
with the systemd daemon program, which initializes Linux by starting processes and
services in parallel instead of serial execution.

The process ID of the systemd process is always 1, since it is the first process created by the
kernel.

systemd reads the file linked by /etc/systemd/system/default.target to determine
the default system target. The default system target is equivalent to the run level. Then, as
per the desired run level, system initialization is continued.

Understanding run levels
There are seven run levels. The system will be started in run level 1 to 5. Run level 0 is used
for shutting down the system. Run level 6 is used for rebooting the system. The graphical
user interface is started in run level 5. The following is the summary of the different run
levels:

Sr. No. Run level
number Description

1 0 Halting the system
2 1 Single-user mode
3 2 Multi-user mode
4 3 Multi-user with network support
5 4 Not used
6 5 Graphical user interface with multi-user and networking support
7 6 Rebooting the system

We need to be in the root-user mode to use the init command.

System Startup and Customizing a Linux System Chapter 12

[230]

If we give the following command, then the system will shut down:

 # init 0

To reboot the system, use the following command:

 # init 6

If the system is running in the command-line mode, and you want to start your server in
the graphical user mode, then use the following command:

 # init 5

System initialization boot scripts
In the Linux system, the following folders will be present in the /etc/ folder:

Sr. No. Folder name Description
1 rc0.d/ The scripts called during shutting down
2 rc1.d/ The run level 1 scripts
3 rc2.d/ The run level 2 scripts
4 rc3.d/ The run level 3 scripts
5 rc4.d/ The run level 4 scripts
6 rc5.d/ The run level 5 scripts
7 rc6.d/ The run level 6 scripts
8 rcS.d/ The scripts called during boot-up, before every run level
9 rc.local The final script called after run level initialization

Every run level folder will have script names starting with either S or K. When starting the
system, the scripts with names starting with S are called one after another. When shutting
down, all the script names starting with K are called one after another.

For example, if the system has to be started in run level 5, then initially all the scripts from
the rcS.d folder will be called, then all the scripts from rc5.d will be called. Finally, the
rc.local script will be called.

System Startup and Customizing a Linux System Chapter 12

[231]

The content of /etc/rc.local is as follows:

 $ cat /etc/rc.local

Here is the output:

 #!/bin/bash
 # THIS FILE IS ADDED FOR COMPATIBILITY PURPOSES
 #
 # It is highly advisable to create own systemd services or udev rules
 # to run scripts during boot instead of using this file.
 #
 # In contrast to previous versions due to parallel execution during
boot
 # this script will NOT be run after all other services.
 #
 # Please note that you must run 'chmod +x /etc/rc.d/rc.local' to ensure
 # that this script will be executed during boot.
 touch /var/lock/subsys/local
 exit 0

We can add our customization commands before the exit 0 line in the preceding
rc.local script.

Before any user is logged in, the previously mentioned scripts will be called. After this, user
login initialization will be started. This is explained in the following sections.

User initialization scripts
So far, we have seen different scripts that initialize the operating system prior to a user
login. Once the basic operating system is initialized, the user login process starts. This
process is explained in the following topics.

System-wide setting scripts
In the /etc/ folder, the following files are related to the user level initialization:

/etc/profile: A few distributions will have an additional folder called
/etc/profile.d/. All the scripts from the profile.d folder will be executed.
/etc/bash.bashrc.

System Startup and Customizing a Linux System Chapter 12

[232]

The preceding scripts are called by every user, including root and normal users. Initially,
the /etc/profile script will be called. This script initializes system-wide environment
settings. A few distributions will have the /etc/profile.d/ folder. SUSE Linux has an
additional /etc/profile.local script. The scripts in this folder will also be called. Then,
the /etc/bash.bashrc script will be executed.

User level settings – default files
Scripts in the /etc/ folder will be called for all users. Particular, user-specific initialization
scripts are located in the HOME folder of each user. These are as follows:

$HOME/.bash_profile: This contains user-specific bash environment default
settings. This script is called during the login process.
$HOME/.bash_login: This contains the second user environment initialization
script called during the login process.
$HOME/.profile: If present, this script internally calls the .bashrc script file.
$HOME/.bashrc: This is an interactive shell or terminal initialization script.

All the preceding script names start with a dot. These are hidden files. We will need to give
the ls -a command to view these files.

Non-login shells

Whenever we create a new shell Terminal, such as when we press the Ctrl + Alt + T key
combination, or we start a Terminal from the applications tab, then the Terminal that is
created is called the interactive shell Terminal. We use this Terminal to interact with the
operating system. This is not the login shell, which is created during the boot-up process,
but this is an interactive shell Terminal that gives us the CLI prompt for entering the
commands to execute.

Whenever we create an interactive Bash Terminal, shell scripts from /etc/profile and
similar are not called, only the ~/.bashrc script is called. This happens every time we
create a new interactive shell terminal. If we want environment customization for every
newly created interactive shell Terminal, we need to customize the .bashrc script from the
home folder of the user.

System Startup and Customizing a Linux System Chapter 12

[233]

If you check the content of $HOME/.bashrc, you will observe the following:

The .bashrc script is setting the prompt
It initializes the environmental variables, HISTCONTROL, HISTSIZE, and
HISTFILESIZE

It customizes the output of the less command
It creates various alias commands such as grep, fgrep, egrep, ll, la, l,
and similar

If we customize .bashrc, such as adding new alias commands or declaring a new function
or environment variables, then we should execute .bashrc for it to take
effect. The following are two ways to run the .bashrc script so that the environment of the
current shell will also be updated as per the customization done in the .bashrc script:

 $ source .bashrc
 $. .bashrc

Please note the usage of .(dot) two occasions, the first time for the command .(dot) and the
second time in the script name, which we want to call.

With these two techniques, the child shell is not created but the .bashrc script runs in the
current shell environment. Therefore, all updated or newly created environment variables
become part of the current shell environment.

Every user's home folder has one more script called .bash_logout. This script is called or
executed when the user exits from the login shell.

If the system user is an embedded system developer, and is interested in adding or
modifying the device's driver-related commands, then they will have to make changes in
the /etc/rc*.d folder scripts, or they may have to modify the /etc/rc.local script.

If the administrator wants to modify the environment for all users, then they will have to
modify the /etc/profile and /etc/bash_bashrc scripts.

If we want to customize the environment related to a particular user, then the scripts
located in the user's home folder, such as $HOME/.profile, $HOME/bash_profile, and
$HOME/bash_login scripts, should be modified.

If the user wants to customize only the interactive shell Terminal environment, then they
will have to customize the $HOME/.bashrc script.

System Startup and Customizing a Linux System Chapter 12

[234]

If you are working in system administration, then I would suggest you learn
about the /etc/fstab file and its editing. This file is used for configuring mount points
and how file systems are mounted.

Summary
In this chapter, you learned about Linux system startup, from power-on to user login, and
how to customize a Linux system environment.

In the next chapter, you will learn about using stream editor (sed) and awk for text
processing.

13
Pattern Matching and Regular
Expressions with sed and awk

In the previous chapter, you learned about a Linux system's startup process, from power-
on to user login, and how to customize a Linux system environment.

In this chapter, we will cover the following topics:

Understanding regular expressions
Stream editor (sed) for text processing
Using awk for text processing

The basics of regular expressions
A sequence of characters that have certain patterns of text (with meta-characters) that are
searched for in a larger text file are called regular expressions:

 $ ll /proc | grep cpuinfo

In the preceding command, the grep utility will search for the cpuinfo text in all lines of
input text and will print lines that have the cpuinfo text.

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[236]

Utilities such as grep, sed, and awk use regular expressions for filtering text and then
apply various processing commands as required by the user. The lines that do not match
the pattern will be rejected. The following diagram explains the same concept:

In Chapter 3, Using Test Processing and Filters in Your Scripts, you learned about
the basics of regular expressions and pattern matching using the vi editor and
the grep utility.

sed – non-interactive stream editor
The stream editor (sed) is a very popular non-interactive stream editor. Normally,
whenever we edit files using the vi editor, we need to open the file using the vi command,
then we interact with the file to see the content of the file on screen, then edit it, and then
save the file. Using sed, we can type commands on the command line and sed will make
the changes to the text file. sed is a non-destructive editor. sed makes the changes to the
file and displays the content on screen. If we want to save the changed file, then we need to
redirect the output of sed to the file.

The procedure to install sed is shown here.

For Ubuntu or any Debian-based distributions, enter the following command:

 $ apt-get install sed

For Red Hat or any rpm-based distribution enter the following command:

 $ yum install sed

To check the version of sed, enter the following command:

 $ sed -V

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[237]

Otherwise, enter this command:

 $ sed --version
 GNU sed version 3.02

Understanding sed
Whenever you use sed commands on a text file, sed reads the first line of the file and
stores it in a temporary buffer called pattern space. sed processes this pattern space buffer
as per commands given by the user. Then, it prints the output on screen. This line from the
pattern space is then removed and the next line of the file is loaded in the pattern space. In
this way, it processes all the lines one by one. This line-by-line processing is continued till
the last line of the file. As the sed commands are processed in the temporary buffer or
pattern space, the original line is not modified. Therefore, we say sed is a non-destructive
buffer:

Understanding regular expression usage
in sed
While using sed, regular expressions are enclosed in forward slashes, as grep and sed use
regular expressions and meta-characters for searching patterns in the file. An example of
this would be the following:

 sed -n '/Regular_Expression/p' filename
 sed -n '/Mango/p' filename

This will print lines matching the Mango pattern:

 sed -n 's/RE/replacement string/' filename
 sed -n 's/Mango/Apple/p' filename

This will find the line containing the Mango pattern and then the Mango pattern will be
replaced by the Apple text. This modified line will be shown on screen and the original file
will be unchanged.

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[238]

The following is a summary of various meta-characters and their usage in sed:

Meta-character Function
^ This is the beginning-of-line anchor
$ This is the end-of-line anchor
. This matches one character, but not the newline character
* This matches zero or more characters
[] This matches one character in the set
[^] This matches one character not in the set
(..) This saves matched characters

& This saves the search string so it can be remembered in the replacement
string

< This is the beginning-of-word anchor
> This is the end-of-word anchor
x{m} This is the repetition of the character x:m times
x{m,} This means at least m times
x{m,n} This means between m and n times

Addressing in sed
We can specify which line or number of lines the pattern search and commands are to be
applied on while using the sed commands. If line numbers are not specified, then the
pattern search and commands will be applied to all lines of the input file.

The line numbers on which commands are to be applied are called the address. The address
can be a single line number or range of lines in which the starting number of the line and
the ending number of the range will be separated by commas. Ranges can be composed of
numbers, regular expressions, or a combination of both.

The sed commands specify actions such as printing, removing, replacing, and so on.

The syntax is as follows:

 sed 'command' filename(s)

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[239]

Here is an example:

 $ cat myfile | sed '1,3d'

You could also use the following:

 sed '1,3d' myfile

This will delete lines 1 to 3:

 sed -n '/[Aa]pple/p' item.list

If the Apple or apple pattern is found in the item.list file, then those lines will be
printed on screen and the original myfile file will be unchanged.

To negate the command, the exclamation character (!) can be used.

Here's an example:

 sed '/Apple/d' item.list

This tells sed to delete all the lines containing the Apple pattern.

Consider the following example:

 sed '/Apple/!d' item.list

This will delete all the lines except the line containing the Apple pattern.

How to modify a file with sed
sed is a non-destructive editor. This means the output of sed is displayed on screen but the
original file is unchanged. If we want to modify the file, then we can redirect the output of
the sed command to the file. Deleting lines is illustrated in the following examples:

 $ sed '1,3d' datafile > tempfile
 $ mv tempfile newfile

In this example, we have deleted lines 1 to 3 and stored the output in tempfile. Then, we
have to rename tempfile to newfile.

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[240]

Printing – the p command
By default, the action of the sed command is to print the pattern space, such as every line
that is copied into the buffer, and then print the result of processing it. Therefore, the sed
output will consist of all lines along with the processed line by sed. If we do not want the
default pattern space line to be printed, then we need to give the -n option. Therefore, we
should use the -n option and the p command together to see the result of the sed processed
output.

Here is an example:

 $ cat country.txt

The output is as follows:

 Country Capital ISD Code
 USA Washington 1
 China Beijing 86
 Japan Tokyo 81
 India Delhi 91
 $ sed '/USA/p' country.txt

The output is as follows:

 Country Capital ISD Code
 USA Washington 1
 USA Washington 1
 China Beijing 86
 Japan Tokyo 81
 India Delhi 91

All the lines from the file are printed by default and the lines with the USA pattern are also
printed:

 $ sed -n '/USA/p' country.txt

The output is as follows:

 USA Washington 1

As we have given the -n option, sed has suppressed default printing of all lines from the
country file but has printed the line that contains the text pattern USA.

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[241]

Deleting – the d command
The d command is used to delete lines. After sed copies a line from a file and puts it into a
pattern buffer, it processes commands on that line, and, finally, displays the contents of the
pattern buffer on screen. When the d command is issued, the line currently in the pattern
buffer is removed and not displayed, as follows:

 $ cat country.txt
 Country Capital ISD Code
 USA Washington 1
 China Beijing 86
 Japan Tokyo 81
 India Delhi 91
 $ sed '3d' country.txt

The output is as follows:

 Country Capital ISD Code
 USA Washington 1
 Japan Tokyo 81
 India Delhi 91

Here is the explanation.

The output will contain all the lines except the third line. The third line is deleted by the
following command:

 $ sed '3,$d' country.txt

The output is as follows:

 Country Capital ISD Code
 USA Washington 1

This will delete the third line to the last line. The dollar sign in the address indicates the last
line. The comma is called a range operator:

 $ sed '$d' country.txt

The output is as follows:

 Country Capital ISD Code
 USA Washington 1
 China Beijing 86
 Japan Tokyo 81

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[242]

Here is the explanation.

This deletes the last line. All lines except lines will be displayed.

Here is an example:

 $ sed '/Japan/d' country.txt

The output is as follows:

 Country Capital ISD Code
 USA Washington 1
 China Beijing 86
 India Delhi 91

The line containing the Japan pattern is deleted. All other lines are printed:

 $ sed '/Japan/!d' country.txt

The output is as follows:

 Japan Tokyo 81

This has deleted all the lines that do not contain Japan.

Let's see a few more examples with the delete command.

This will delete line 4 and the next five lines:

 $ sed '4,+5d'

This will keep lines 1 to 5 and delete all the other lines:

 $ sed '1,5!d'

This will delete lines 1, 4, 7, and so on:

 $ sed '1~3d'

Starting from 1, every third line step increments. The number that follows the tilde is what
is called the step increment. The step increment indicates the following:

 $ sed '2~2d'

This will delete every other line, starting with line 2.

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[243]

Substitution – the s command
If we want to substitute some text with new text, then we can use commands. After the
forward slash, the regular expression is enclosed and then the text to be substituted is
placed. If the g option is used, then substitution will happen globally, meaning that it will
be applied to the full document. Otherwise, only the first instance will be substituted:

 $ cat shopping.txt

The output is as follows:

 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6
 Orange 2 .8 1.6
 Papaya 2 1.5 3
 Chicken 3 5 15
 Cashew 1 10 10
 $ sed 's/Cashew/Almonds/g' shopping.txt

The output is as follows:

 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6
 Orange 2 .8 1.6
 Papaya 2 1.5 3
 Chicken 3 5 15
 Almonds 1 10 10

The s command has replaced Cashew with Almonds. The g flag at the end indicates that the
substitution is to be applied globally. Otherwise, it will be applied to the first pattern match
only.

The following substitution command will replace two-digit numbers at the end of the line
with .5 appended to them:

 $ sed 's/[0-9][0-9]$/&.5/' shopping.txt

The output is as follows:

 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6
 Orange 2 .8 1.6
 Papaya 2 1.5 3
 Chicken 3 5 15.5
 Cashew 1 10 10.5

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[244]

The ampersand in the search pattern represents the exact pattern found. This will be
replaced by the exact pattern with .5 appended to it.

Range of selected lines the comma
To use sed effectively, we should be clear about how to define range. Range is typically
two addresses in a file as follows:

Range with numbers:

'6d': range of line 6
'3,6d': range from line 3 to 6

Range with pattern:

'/pattern1/,/pattern2/

This will specify the range of all the lines between pattern1 and pattern2. We
can even specify the range with a combination of both, that is, '/pattern/,6'.
This will specify the range of lines between the pattern and line 6.

As mentioned, we can specify the range as numbers, pattern, or a combination
of both, as shown here.

 $ cat country.txt
 Country Capital ISD Code
 USA Washington 1
 China Beijing 86
 Japan Tokyo 81
 India Delhi 91
 $ sed -n '/USA/,/Japan/p' country.txt

The output is as follows:

 USA Washington 1
 China Beijing 86
 Japan Tokyo 81

In this example, all the lines between addresses starting with USA and until the pattern
Japan will be printed on screen, as shown here.

 $ sed -n '2,/India/p' country.txt

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[245]

The output is as follows:

 USA Washington 1
 China Beijing 86
 Japan Tokyo 81
 India Delhi 91

In this example, line 2 to the pattern India, are printed on screen as shown here.

 $ sed '/Apple/,/Papaya/s/$/** Out of Stock **/' shopping.txt

The output is as follows:

 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6** Out of Stock **
 Orange 2 .8 1.6** Out of Stock
**
 Papaya 2 1.5 3** Out of Stock
**
 Chicken 3 5 15
 Cashew 1 10 10

In this example, for all the lines between the Apple and Papaya patterns, the end of line
will be replaced by the ** Out of Stock ** string.

Multiple edits – the e command
If we need to perform multiple editing with the same command, then we can use
the -e command. Each edit command should be separated by the -e command.
sed will apply each editing command separated by -e on the pattern space before loading
the next line in the pattern space:

 $ cat shopping.txt

The output is as follows:

 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6
 Orange 2 .8 1.6
 Papaya 2 1.5 3
 Chicken 3 5 15
 Cashew 1 10 10

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[246]

This is an example:

 sed -e '5d' -e 's/Cashew/Almonds/' shopping.txt

The output is as follows:

 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6
 Orange 2 .8 1.6
 Papaya 2 1.5 3
 Almonds 1 10 10

Initially, the command for deleting the fifth line is called, then, the next substitution
command to replace Cashew with Almonds is processed.

Reading from files – the r command
If we need to insert text from another file into a file, processed by sed, then we can use the
r command. We can insert text from another file to the specified location:

Here is an example:

 $ cat new.txt

The output will be:

 Apples are out of stock

 $ sed '/Apple/r new.txt' shopping.txt

The output is as follows:

 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6

 Apples are out of stock

 Orange 2 .8 1.6
 Papaya 2 1.5 3
 Chicken 3 5 15
 Cashew 1 10 10

This command has added the content of the new.txt file after the line containing the
Apple pattern.

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[247]

Writing to files – the w command
The sed command for writing is w. Using this command, we can write lines from one file to
another file.

Here is an example:

 $ cat new.txt

The output is as follows:

 new is a empty file
 $ sed -n '/Chicken/w new.txt' shopping.txt
 $ cat new.txt
 Chicken 3 5 15

After the w command, we specify the file to which we will perform the write operation. In
this example, the line containing the Chicken pattern is written to the new.txt file.

Appending – the a command
The a command is used for appending. When the append command is used, it appends the
text after the line in the pattern space in which the pattern is matched. The backslash should
be placed immediately after the a command. On the next line, the text to be appended is to
be placed.

Here is an example:

 $ cat shopping.txt

The output is as follows:

 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6
 Orange 2 .8 1.6
 Papaya 2 1.5 3
 Chicken 3 5 15
 Cashew 1 10 10
 $ sed '/Orange/a
 **** Buy one get one free offer on this item ! ****' shopping.txt

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[248]

The output is as follows:

 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6
 Orange 2 .8 1.6
 **** Buy one get one free offer on this item ! ****
 Papaya 2 1.5 3
 Chicken 3 5 15
 Cashew 1 10 10

The new text **** Buy one get one free offer on this item ! **** is
appended after the line containing the Orange pattern.

Inserting – the i command
The i command is used for inserting text above the current pattern space line. When we
use the append command, new text is inserted after the current line, which is in the pattern
buffer. In this similar-to-append command, the backslash is inserted after the i command.

Here is an example:

 $ cat shopping.txt
 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6
 Orange 2 .8 1.6
 Papaya 2 1.5 3
 Chicken 3 5 15
 Cashew 1 10 10
 $ sed '/Apple/i
 New Prices will apply from Next month ! ' shopping.txt

The output is as follows:

 Product Quantity Unit_Price Total_Cost
 New Prices will apply from Next month !
 Apple 2 3 6
 Orange 2 .8 1.6
 Papaya 2 1.5 3
 Chicken 3 5 15
 Cashew 1 10 10

In this example, the new text, New Prices will be applied from next month! is
inserted before the line containing the Apple pattern. Please check the i command and the
backslash following it.

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[249]

Changing – the c command
The c command is the change command. It allows sed to modify or change existing text
with new text. The old text is overwritten with the new:

 $ cat shopping.txt

The output is as follows:

 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6
 Orange 2 .8 1.6
 Papaya 2 1.5 3
 Chicken 3 5 15
 Cashew 1 10 10

Here is an example:

 $ sed '/Papaya/c
 Papaya is out of stock today !' shopping.txt

The output is as follows:

 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6
 Orange 2 .8 1.6
 Papaya is out of stock today !
 Chicken 3 5 15
 Cashew 1 10 10

In this example, the line containing the expression Papaya is changed to the new line,
Papaya is out of stock today!.

Transform – the y command
The transform command is similar to the Linux tr command. The characters are translated
according to the character sequence given. For example, y/ABC/abc/ will convert
lowercase abc into uppercase ABC.

Here is an example:

 $ cat shopping.txt

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[250]

The output will be:

 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6
 Orange 2 .8 1.6
 Papaya 2 1.5 3
 Chicken 3 5 15
 Cashew 1 10 10
 $ sed '2,4y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRS
 TUVWXYZ/' shopping.txt

The output will be:

 Product Quantity Unit_Price Total_Cost
 APPLE 2 3 6
 ORANGE 2 .8 1.6
 PAPAYA 2 1.5 3
 Chicken 3 5 15
 Cashew 1 10 10

In this example, for lines 2, 3, and 4, all the lowercase letters are converted to uppercase
letters.

Quit – the q command
The q command is used for quitting the sed processing without proceeding to the next
line:

 $ cat shopping.txt

The output will be as follows:

 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6
 Orange 2 .8 1.6
 Papaya 2 1.5 3
 Chicken 3 5 15
 Cashew 1 10 10

Here is an example:

 $ sed '3q' shopping.txt

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[251]

The output will be as follows:

 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6
 Orange 2 .8 1.6

In this example, after printing the first to third lines, sed quits further processing.

Holding and getting – the h and g commands
We have already seen that sed has a pattern buffer. sed has one more type of buffer called
a holding buffer. With the h command, we can inform sed to store the pattern buffer in the
holding buffer. Whenever we need the line that is stored in the pattern buffer, we can get it
with the g command, that is, get the buffer.

Here is an example:

 $ sed -e '/Product/h' -e '$g' shopping.txt

The output is as follows:

 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6
 Orange 2 .8 1.6
 Papaya 2 1.5 3
 Chicken 3 5 15
 Cashew 1 10 10
 Product Quantity Unit_Price Total_Cost

In this example, the line containing the Product pattern is stored in the holding buffer by
the h command. Then, the next editing command asks sed to get the line from the holding
buffer when the last line of the file is reached. It then appends the line from the holding
buffer after the last line of the file.

Holding and exchanging – the h and x commands
This is an exchange command. By using this command, we can exchange the holding buffer
with the current line in the pattern buffer.

Here is an example:

 $ sed -e '/Apple/h' -e '/Cashew/x' shopping.txt

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[252]

The output is as follows:

 Product Quantity Unit_Price Total_Cost
 Apple 2 3 6
 Orange 2 .8 1.6
 Papaya 2 1.5 3
 Chicken 3 5 15
 Apple 2 3 6

In this example, the line with the Apple pattern is stored in the holding buffer. When the
pattern with Cashew is found, that line will be exchanged with the holding buffer.

sed scripting
The sed script file contains a list of sed commands in a file. To inform sed about our script
file, we should use the -f option before the script filename. If the sed commands are not
separated by a new line, then every command should be separated by a colon ":". We
should make sure that there aren't any trailing whitespaces after any of the commands in
the sed script file; otherwise, sed will give an error. sed takes each line in the pattern
buffer and then it will process all commands on that line. After this line is processed, the
next line will be loaded in the pattern buffer. For the continuation of any sed command
that cannot be fitted on one line, we need to add one backslash at the end of the line to
inform it of the continuation.

Here is an example:

 $ cat shopping1.txt

The output is as follows:

 Product Quantity Unit_Price
 Apple 200 3
 Orange 200 .8
 Papaya 100 1.5
 Chicken 65 5
 Cashew 50 10
 April, third week
 $ cat stock

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[253]

The output is as follows:

 # This is my first sed script by :
 1i
 Stock status report
 /Orange/a
 Fresh Oranges are not available in this season.
 Fresh Oranges will be available from next month
 /Chicken/c
 **
 We will not be stocking this item for next few weeks.
 **
 $d

Enter the following command:

 $ sed -f stock shopping1.txt

The output is as follows:

 Stock status report
 Product Quantity Unit_Price
 Apple 200 3
 Orange 200 .8
 Fresh Oranges are not available in this season.
 Fresh Oranges will be available from next month
 Papaya 100 1.5
 **
 We will not be stocking this item for next few weeks.
 **
 Cashew 50 10

In this script, the following processing has taken place:

The comment line starts with the pound (#) sign.1.
The command 1i informs sed to insert the next text before line number 1.2.
The command /Orange/a informs sed to append the next text after the line3.
containing the Orange pattern.
The command /Chicken/c informs sed to replace the line containing the4.
Chicken pattern by the next line.
The last command, $d, tells sed to delete the last line of the input file.5.

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[254]

Using awk
awk is a program that has its own programming language for performing data-processing
and generating reports.

The GNU version of awk is gawk.

awk processes data, which can be received from a standard input, input file, or as the
output of any other command or process.

awk processes data similar to sed, line by line. It processes every line for the specified
pattern and performs specified actions. If the pattern is specified, then all the lines
containing specified patterns will be displayed. If pattern is not specified, then the
specified actions will be performed on all the lines.

The meaning of awk
The name of the program awk is made from the initials of the three authors of the language,
namely Alfred Aho, Peter Weinberger, and Brian Kernighan. It is not very clear why they
selected the name awk instead of kaw or wak!

Using awk
The following are different ways to use awk:

Syntax while using only pattern:

 $ awk 'pattern' filename

In this case, all the lines containing pattern will be printed.

Syntax using only action:

 $ awk '{action}' filename

In this case, action will be applied to all lines.

Syntax using pattern and action:

 $ awk 'pattern {action}' filename

In this case, action will be applied on all the lines containing pattern.

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[255]

As seen previously, the awk instruction consists of patterns, actions, or a combination of
both.

Actions will be enclosed in curly brackets. Actions can contain many statements separated
by a semicolon or a newline.

awk commands can be on the command line or in the awk script file. The input lines could
be received from a keyboard, pipe, or file.

Input from files
Let's see a few examples of using the preceding syntax using input from files:

 $ cat people.txt

The output is as follows:

 Bill Thomas 8000 08/9/1968
 Fred Martin 6500 22/7/1982
 Julie Moore 4500 25/2/1978
 Marie Jones 6000 05/8/1972
 Tom Walker 7000 14/1/1977

Enter the following command:

 $ awk '/Martin/' people.txt

The output is as follows:

 Fred Martin 6500 22/7/1982

This prints a line containing the Martin pattern.

Here is an example:

 $ cat people.txt

The output is as follows:

 Bill Thomas 8000 08/9/1968
 Fred Martin 6500 22/7/1982
 Julie Moore 4500 25/2/1978
 Marie Jones 6000 05/8/1972
 Tom Walker 7000 14/1/1977

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[256]

Enter the following command:

 $ awk '{print $1}' people.txt

The output is as follows:

 Bill
 Fred
 Julie
 Marie
 Tom

This awk command prints the first field of all the lines from the people.txt file:

 $ cat people.txt

The output is as follows:

 Bill Thomas 8000 08/9/1968
 Fred Martin 6500 22/7/1982
 Julie Moore 4500 25/2/1978
 Marie Jones 6000 05/8/1972
 Tom Walker 7000 14/1/1977

Here is an example:

 $ awk '/Martin/{print $1, $2}' people.txt
 Fred Martin

This prints the first and second field of the line that contains the Martin pattern.

Input from commands
We can use the output of any other Linux command as an input to the awk program. We
need to use the pipe to send an output of another command as the input to the awk
program.

The syntax is as follows:

 $ command | awk 'pattern'
 $ command | awk '{action}'
 $ command | awk 'pattern {action}'

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[257]

Here is an example:

 $ cat people.txt | awk '$3 > 6500'

The output is as follows:

 Bill Thomas 8000 08/9/1968
 Tom Walker 7000 14/1/1977

This prints all lines where field 3 is greater than 6500.

Here is an example:

 $ cat people.txt | awk '/1972$/{print $1, $2}'

The output is as follows:

 Marie Jones

This prints fields 1 and 2 of the lines that ends with the 1972 pattern:

 $ cat people.txt | awk '$3 > 6500 {print $1, $2}'

This prints fields 1 and 2 of the lines where the third field is greater than 6500.

How awk works
Let's understand how the awk program processes every line. We will consider a simple file,
sample.txt:

 $ cat sample.txt
 Happy Birth Day
 We should live every day.

Let's consider the following awk command:

 $ awk '{print $1, $3}' sample.txt

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[258]

The following diagram shows how awk will process every line in memory:

An explanation of the preceding diagram is as follows:

awk reads a line from the file and puts it into an internal variable called $0. Each
line is called a record. By default, every line is terminated by a new line.
Then, every record or line is divided into separate words or fields. Every word is
stored in numbered variables $1, $2, and so on. There can be as many as 100
fields per record.
awk has an internal variable called internal field separator (IFS). IFS is normally
whitespace. Whitespace includes tabs and spaces. The fields will be separated by
IFS. If we want to specify any other IFS, such as colon (:) in the /etc/passwd
file, then we will need to specify it in the awk command line.

When awk checks an action as '{print $1, $3}', it tells awk to print the first and third
fields. Fields will be separated by a space. The command is as follows:

 $ awk '{print $1, $3}' sample.txt

The output will be as follows:

 Happy Day
 We live

An explanation of the output is as follows:

There is one more internal variable called Output Field Separator (OFS). This is
normally space. This will be used for separating fields while printing as output.
Once the first line is processed, awk loads the next line in $0 and it continues as
discussed earlier.

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[259]

awk commands from within a file
We can put awk commands in a file. We will need to use the -f option before using the awk
script filename to use the awk script file for all processing instructions. awk will copy the
first line from the data file to be processed in $0, and then it will apply all processing
instructions on that record. Then, it will discard that record and load the next line from the
data file. This way, it will proceed till the last line of the data file. If the action is not
specified, the pattern-matching lines will be printed on screen. If the pattern is not
specified, then the specified action will be performed on all lines of the data file.

This is an example:

 $ cat people.txt
 Bill Thomas 8000 08/9/1968
 Fred Martin 6500 22/7/1982
 Julie Moore 4500 25/2/1978
 Marie Jones 6000 05/8/1972
 Tom Walker 7000 14/1/1977
 $ cat awk_script
 /Martin/{print $1, $2}

Enter the following command:

 $ awk -f awk_script people.txt

The output is as follows:

 Fred Martin

The awk command file contains the Martin pattern and it specifies the action of printing
fields 1 and 2 of the line, matching the pattern. Therefore, it has printed the first and second
fields of the line containing the Martin pattern.

Records and fields
Every line terminated by the new line is called a record and every word separated by a
whitespace is called a field. We will learn more about them in this section.

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[260]

Records
awk does not see the file as one continuous stream of data; it processes the file line by line.
Each line is terminated by a newline character. It copies each line in an internal buffer,
called a record.

The record separator
By default, a new line or carriage return is an input record separator and output record
separator. The input record separator is stored in the built-in variable RS, and the output
record separator is stored in ORS. We can modify the ORS and RS, if required.

The $0 variable
The entire line that is copied into the buffer, such as a record, is called $0.

Take the following command, for example:

 $ cat people.txt

The output is will be as follows:

 Bill Thomas 8000 08/9/1968
 Fred Martin 6500 22/7/1982
 Julie Moore 4500 25/2/1978
 Marie Jones 6000 05/8/1972
 Tom Walker 7000 14/1/1977
 $ awk '{print $0}' people.txt

The output is as follows:

 Bill Thomas 8000 08/9/1968
 Fred Martin 6500 22/7/1982
 Julie Moore 4500 25/2/1978
 Marie Jones 6000 05/8/1972
 Tom Walker 7000 14/1/1977

This has printed all the lines of the text file. Similar results can be seen with the following
command:

 $ awk '{print}' people.txt

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[261]

The NR variable
awk has a built-in variable called NR. It stores the record number. Initially, the value stored
in NR is 1. Then, it will be incremented by one for each new record.

Take, for example, the following command:

 $ cat people.txt

The output will be:

 Bill Thomas 8000 08/9/1968
 Fred Martin 6500 22/7/1982
 Julie Moore 4500 25/2/1978
 Marie Jones 6000 05/8/1972
 Tom Walker 7000 14/1/1977
 $ awk '{print NR, $0}' people.txt
 The output will be:
 1 Bill Thomas 8000 08/9/1968
 2 Fred Martin 6500 22/7/1982
 3 Julie Moore 4500 25/2/1978
 4 Marie Jones 6000 05/8/1972
 5 Tom Walker 7000 14/1/1977

This has printed every record, such as $0 with a record number, which is stored in NR.
That is why we see 1, 2, 3, and so on before every line of output.

Fields
Every line is called a record, and every word in a record is called a field. By default, words
or fields are separated by whitespace, that is, Space or Tab. awk has an internal built-in
variable called NF, which will keep track of field numbers. Typically, the maximum field
number will be 100 and will depend on implementation. The following example has five
records and four fields.

 $1 $2 $3 $4
 Bill Thomas 8000 08/9/1968
 Fred Martin 6500 22/7/1982
 Julie Moore 4500 25/2/1978
 Marie Jones 6000 05/8/1972
 Tom Walker 7000 14/1/1977
 $ awk '{print NR, $1, $2, $4}' people.txt

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[262]

The output will be:

 1 Bill Thomas 08/9/1968
 2 Fred Martin 22/7/1982
 3 Julie Moore 25/2/1978
 4 Marie Jones 05/8/1972
 5 Tom Walker 14/1/1977

This has printed the record number and field numbers 1, 2, and so on, on the screen.

Field separators
Every word is separated by whitespace. We will learn more about them in this section.

The input field separator
We have already discussed that an input field separator is a whitespace by default. We can
change this IFS to other values on the command line or by using the BEGIN statement. We
need to use the -F option to change the IFS.

This is an example:

 $ cat people.txt

The output will be as follows:

 Bill Thomas:8000:08/9/1968
 Fred Martin:6500:22/7/1982
 Julie Moore:4500:25/2/1978
 Marie Jones:6000:05/8/1972
 Tom Walker:7000:14/1/1977
 $ awk -F: '/Marie/{print $1, $2}' people.txt

The output will be as follows:

 Marie Jones 6000

We have used the -F option to specify colon (:) as IFS instead of the default, IFS. Therefore,
it has printed field 1 and 2 of the records in which the Marie pattern was matched. We can
even specify more than one IFS on the command line as follows:

 $ awk -F'[:t]' '{print $1, $2, $3}' people.txt

This will use Space, colon, and Tab characters as the inter field separator or IFS.

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[263]

Patterns and actions
While executing commands using awk, we need to define patterns and actions. Let's learn
more about them in this section.

Patterns
awk uses patterns to control the processing of actions. When a pattern or regular expression
is found in the record, an action is performed, or if no action is defined then awk simply
prints the line on the screen.

This is an example:

 $ cat people.txt

The output will be:

 Bill Thomas 8000 08/9/1968
 Fred Martin 6500 22/7/1982
 Julie Moore 4500 25/2/1978
 Marie Jones 6000 05/8/1972
 Tom Walker 7000 14/1/1977
 $ awk '/Bill/' people.txt

The output will be:

 Bill Thomas 8000 08/9/1968

In this example, when the Bill pattern is found in the record, that record is printed on
screen:

 $ awk '$3 > 5000' people.txt

The output will be:

 Bill Thomas 8000 08/9/1968
 Fred Martin 6500 22/7/1982
 Marie Jones 6000 05/8/1972
 Tom Walker 7000 14/1/1977

In this example, when field 3 is greater than 5000, that record is printed on the screen.

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[264]

Actions
Actions are performed when the required pattern is found in a record. Actions are enclosed
in curly brackets ({ and }). We can specify different commands in the same curly brackets,
but those should be separated by a semicolon.

The syntax is as follows:

pattern{ action statement; action statement; .. }
 or
pattern
{ action statement
 action statement
}

The following example gives a better idea:

 $ awk '/Bill/{print $1, $2 ", Happy Birth Day !"}' people.txt

This is the output:

 Bill Thomas, Happy Birth Day !

Whenever a record contains the Bill pattern, awk performs the action of printing field 1,
field 2, and prints the message Happy Birth Day.

Regular expressions
A regular expression is a pattern enclosed in forward slashes. A regular expression can
contain meta-characters. If the pattern matches any string in the record, then the condition
is true and any associated action, if mentioned, will be executed. If no action is specified,
then the record is simply printed on the screen.

Meta-characters used in awk regular expressions are as follows:

Meta-character What it does
. A single character is matched
* Zero or more characters are matched
^ The beginning of the string is matched
$ The end of the string is matched
+ One or more of the characters are matched
? Zero or one of the characters are matched

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[265]

[ABC] Any one character in the set of characters A, B, or C is matched
[^ABC] Any one character not in the set of characters A, B, or C is matched
[A-Z] Any one character in the range from A to Z is matched
a|b Either a or b is matched
(AB)+ One or more sets of AB; such as AB, ABAB, and so on is matched
* A literal asterisk is matched

&
This is used to represent the replacement string when it is found in the
search string

In the following example, all lines containing the regular expression Moore will be searched
and the matching record's field 1 and 2 will be displayed on the screen:

 $ awk '/Moore/{print $1, $2}' people.txt

The output is as follows:

 Julie Moore

Writing the awk script file
Whenever we need to write multiple patterns and actions in a statement, then it is more
convenient to write a script file. The script file will contain patterns and actions. If multiple
commands are on the same line, then those should be separated by a semicolon; otherwise,
we need to write them on separate lines. The comment line will start by using the pound (#)
sign.

Here is an example:

 $ cat people.txt

The output is as follows:

 Bill Thomas 8000 08/9/1968
 Fred Martin 6500 22/7/1982
 Julie Moore 4500 25/2/1978
 Marie Jones 6000 05/8/1972
 Tom Walker 7000 14/1/1977

(The awk script)

 $ cat report

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[266]

The output is as follows:

/Bill/{print "Birth date of " $1, $2 " is " $4}
/^Julie/{print $1, $2 " has a salary of $" $3 "."}
/Marie/{print NR, $0}

Enter the following command:

 $ awk -f report people.txt

The output will be as follows:

 Birth date of Bill Thomas is 08/9/1968
 Julie Moore has a salary of $4500.
 4 Marie Jones 6000 05/8/1972

In this example, the awk command is followed by the -f option, which specifies the script
file as a record and then processes all the commands in the text file, people.txt.

In this script, the regular expression Bill is matched, then we print text, field 1, field 2, and
then the birth date information. If the regular expression Julie is matched at the start of
the line, then print her salary information. If the regular expression Marie is matched, then
print the record number NR and print the complete record.

Using variables in awk
We can simply declare a variable in the awk script, even without any initialization.
Variables can be of type string, number, floating type, and so on. There is no type
declaration required such as in C programming. awk will find out the type of variable by its
right-hand side data type during initialization or its usage in the script.

Uninitialized variables will have the value 0 or strings will have a value null such as "",
depending on how it is used inside scripts:

 name = "Ganesh"

The variable name is of the string type:

 j++

The variable j is a number. Variable j is initialized to zero and it is incremented
by one:

 value = 50

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[267]

The value variable is a number with an initial value of 50.

The technique to modify the string type variable to the number type is as follows:

 name + 0

The technique to modify the number type variable to the string type is as follows:

 value " "

User-defined variables can be made up of letters, digits, and underscores. The variable
cannot start with a digit.

Decision-making using an if statement
In awk programming, the if statement is used for decision-making. The syntax is as
follows:

if (conditional-expression)
 action1
else
 action2

If the condition is true, then action1 will be performed, else action2 will be performed.
This is very similar to C programming if constructs.

An example of using the if statement in the awk command is as follows:

 $ cat person.txt

The output is as follows:

 Bill Thomas 8000 08/9/1968
 Fred Martin 6500 22/7/1982
 Julie Moore 4500 25/2/1978
 Marie Jones 6000 05/8/1972
 Tom Walker 7000 14/1/1977
 $ awk '{
 if ($3 > 7000) { print "person with salary more than 7000 is n", $1, "
" , $2;}
 }' people.txt

The output is as follows:

 person with salary more than 7000 is
 Bill Thomas

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[268]

In this example, field 3 is checked to see whether it is greater than 7000 for any record.
If field 3 is greater than 7000 for any record, then the action of printing the name of the
person and value of the third record will be done.

Using the for loop
The for loop is used for doing certain actions repetitively. The syntax is as follows:

for(initialization; condition; increment/decrement)
actions

Initially, a variable is initialized then the condition is checked. If it is true, then the action or
actions enclosed in curly brackets are performed. Then, the variable is incremented or
decremented. Again, the condition is checked. If the condition is true, then actions are
performed; otherwise, the loop is terminated.

An example of the awk command with the for loop is as follows:

 $ awk '{ for(i = 1; i <= NF; i++) print NF,$i }' people.txt

Initially, the i variable is initialized to 1. Then, the condition is checked to see whether i is
less than NF. If true, then the action of printing NF and the field is performed. Then i is
incremented by one. Again, the condition is checked to see whether it is true or false. If
true, then it will perform actions again; otherwise, it will terminate the looping activity.

Using the while loop
Similar to C programming, awk has a while loop for doing tasks repeatedly. while will
check for the condition. If the condition is true, then actions will be performed. If a
condition is false, then it will terminate the loop.

The syntax is as follows:

 while(condition)
 actions

An example of using the while construct in awk is as follows:

 $ cat people.txt
 $ awk '{ i = 1; while (i <= NF) { print NF, $i ; i++ } }' people.txt

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[269]

NF is the number of fields in the record. The variable i is initialized to 1. Then, while i is
smaller or equal to NF, the print action will be performed. The print command will print
fields from the record from the people.txt file. In the action block, i is incremented by
one. The while construct will perform the action repeatedly until i is less than or equal to
NF.

Using the do while loop
The do while loop is similar to the while loop; but the difference is, even if the condition
is true, at least once the action will be performed unlike the while loop.

The syntax is as follows:

do
action
while (condition)

After the action or actions are performed, the condition is checked again. If the condition is
true, then the action will be performed again; otherwise, the loop will be terminated.

The following is an example of using the do while loop:

 $ cat awk_script
 BEGIN {
 do {
 ++x
 print x
 } while (x <= 4)
 }
 $ awk -f awk_script
 1
 2
 3
 4
 5

In this example, x is incremented to 1 and the value of x is printed. Then, the condition is
checked to see whether x is less than or equal to 4. If the condition is true, then the action is
performed again.

Pattern Matching and Regular Expressions with sed and awk Chapter 13

[270]

Summary
In this chapter, you learned about regular expressions and about using sed and awk for text
processing. You learned various commands and the usage of options along with a lot of
examples for using sed and awk. In this example, the value of x is set in the body of the
loop using the auto-increment operator. The body of the loop is executed once and the
expression is evaluated.

14
Taking Backup and Embedding

Other Languages in Shell
Scripts

In the previous chapter, you learned about regular expressions and using sed and awk for
text processing. You learned various commands and the usage of options, along with a lot
of examples for using sed and awk.

In this chapter, we will cover the following topics:

Taking backup of local or remote data
Automating database administration

Backup of files from command line
In IT or our day-to-day computer industry activities, taking backup is one of the most
important activities. Previously, offices were required to keep important paper in a safe
place; but if a fire breaks out, then everything is finished. In the digital world, taking
backup makes our life easier and safeguards us against data loss.

There are many software tools available on the market for taking software backups. We will
study one of the most popular software backup command-line utilities, rsync.

Taking Backup and Embedding Other Languages in Shell Scripts Chapter 14

[272]

Backup command rsync
The command-line utility rsync is the most widely used backup command in Linux for
backing up or synchronizing data. This utility was developed in 1996 by Andrew Tridgell
and Paul Mackerras.

This utility is mostly installed in all popular Linux distributions. If it is not installed, then
run the following commands:

For CentOS or Red Hat:

 # yum install rsync

For Debian or Ubuntu

 # apt-get install rsync

rsync is a powerful utility. It can copy or synchronize files in the same computer or across
the network in another continent-based computer over the internet.

The basic syntax for using rsync is as follows:

 $ rsync -options source_folder destination_folder

Let us consider that you want to copy from /home/student/data_folder to your
mounted USB pen drive /media/usb_drive/data_folder. Then, the backup command
would be:

For CentOS or Red Hat:

 $ sudo rsync -a /home/student/test
/run/media/student/name_of_drive/test

For Debian or Ubuntu:

 $ sudo rsync -a /home/student/test /media/student/ name_of_drive /test

The preceding command will copy a test folder to your mounted USB pen drive. Of course,
you will need to check the exact path for the mounted pen drive. As per the volume label of
the pen drive, the exact path of the destination folder may change. We have used the -r
option from recursively copying folder with all of its subfolders and files.

Taking Backup and Embedding Other Languages in Shell Scripts Chapter 14

[273]

If we want to ensure that in the source folder, a certain file or folder is deleted, then
corresponding files or folders should be deleted from the destination backup folder as well,
and for that we need to use the -delete option.

If we want to backup symbolic link files along with ownership, file permissions, and time
stamps, then we should use option -a.

Then, the updated command would be:

For CentOS or Red Hat:

 $ sudo rsync -a -delete /home/student/test
/run/media/student/ganesh/test

For Debian or Ubuntu:

 $ sudo rsync -a -delete /home/student/test /media/student/ganesh/test

If want to observe the progress of the backup, then add the -v option.

For CentOS or Red Hat:

 $ sudo rsync -av -delete /home/student/test
/run/media/student/ganesh/test

For Debian or Ubuntu:

 $ sudo rsync -av -delete /home/student/test /media/student/ganesh/test

If file sizes are very big and you want to compress the files and then take a backup, then
simply add the -z option. This will save network bandwidth if you are going to transfer
GB-or TB-sized data.

For CentOS or Red Hat:

 $ sudo rsync -avz -delete /home/student/test
/run/media/student/ganesh/test

For Debian or Ubuntu:

 $ sudo rsync -avz -delete /home/student/test /media/student/ganesh/test

Taking Backup and Embedding Other Languages in Shell Scripts Chapter 14

[274]

By default, rsync deletes any partially transferred files if the backup operation is
interrupted. If we want to keep partially transferred files, then we need to add the -P
option. The updated backup command will be as follows:

For CentOS or Red Hat:

 $ sudo rsync -avzP -delete /home/student/test
/run/media/student/ganesh/test

For Debian or Ubuntu:

 $ sudo rsync -avzP -delete /home/student/test
/media/student/ganesh/test

Backup across the network
For taking backup across the network, we will need to install the ssh protocol package.
Normally, it will already be installed. If it is not installed, then use the following command:

For CentOS or Red Hat

 # sudo yum install ssh

For Debian or Ubuntu:

 # sudo apt-get install ssh

The command to synchronize data from across the network to your local folder will be as
follows:

 $ rsync -avzP --delete -e ssh user@ip_address:source-folder
/destination-folder

Look at the following example:

 $ rsync -avzP --delete -e ssh student@192.168.10.55:
/home/student/data-folder /home/student/data-folder

If we want to synchronize local folders to a remote computer, then the command would be
as follows:

 $ rsync -avzP --delete -e ssh source-folder
user@ip_address:destination-folder

Taking Backup and Embedding Other Languages in Shell Scripts Chapter 14

[275]

The actual command would be as follows:

 $ rsync -avzP --delete -e ssh /home/student/data-folder
 student@192.168.10.55:/home/student/data-folder

You will need to replace the username and IP address of the destination PC with the
required username and password.

If the remote PC has been configured with port forwarding, such as when we have to use
port number 12345 while using the ssh command, then the rsync command will be as
follows:

 $ rsync -avzP --delete -e 'ssh -p 12345' student@192.168.10.55:
/home/student/data-folder /home/student/data-folder

Automating backup activity
If you want to automate taking backup activity every day at 7.30 pm, then you will need to
use the crontab functionality. We have already studied this utility in Chapter 2, Drilling
Deep into Process Management, Job control, and Automation.

You will need to enter the crontab -e command and enter the rsync command in it.

For regular backup at 7.30 pm every day, enter the following line in the crontab editor:

 30 19 * * * rsync -avz -delete /home/student/data-folder
/media/usb_drive/data-folder

The preceding command will back up data at 30 minutes past 19 hours or 7 pm every day.

I suggest you keep one backup of important data locally and one copy remotely. Local copy
backup should be undertaken more frequently, and remote backup less frequently. Of
course, you will need to decide backup frequency according to the importance of the data
and your business requirements.

Embedding other language codes or scripts
in Bash shell scripts
There is a way to embed other language scripts or code in Bash Script. In this section, you
will learn about it.

Taking Backup and Embedding Other Languages in Shell Scripts Chapter 14

[276]

Embedding other language code in Bash
shell script
We may need to include other language scripts in Bash for certain reasons such as the fact
that a certain complex task is already coded in another language. For example, storing the
values for pi; other languages could be better at getting the precise value of pi due to their
library functions. Let us assume that the user knows Lua language scripting. Then,
embedding Lua language script in Bash would be undertaken as follows:

 $ export PI=$(lua -e "print(string.format('%f', math.pi))")

The preceding line will inform Bash to save the output of Lua code in variable PI. In this
example, the -e option to Lua informs Lua interpreter to execute next code. The Lua code
will be enclosed in quotes.

The procedure to embed other language code is to call that language command itself,
followed by the -c or -e options. We will study the -c and -e options later on in this
section.

In certain cases, such as Python, we may need to type version of python as well, for
example, Python (for Python 2.x version) or Python 3 (for Python 3.x version).

Please ensure that the embedding of other languages code should only be done if it is really
necessary. Bash cannot do the certain tasks efficiently, but other languages can do it better
way such as complex mathematical calculations and plotting of graphs using python. Every
language has certain good points as well as limitations.

The syntax to embed other language code is similar for all languages. The parameter passed
will only differentiate between -c or -e, depending on a particular language. At the end of
this chapter, a summary is given. You may refer to the table for finding an option for
embedding language of your choice.

While embedding other languages, we must take care about escape characters, which will
be read by Bash scripts. The following example is to be avoided:

 perl -e 'print "Hello I am Perl Script.n" '

In the preceding code line, .n will be interpreted differently by Bash than expected. We
should make it as .n. Then, Bash will interpret it correctly as we have escaped n properly.

The updated code will be seen as follows:

 perl -e "print "Hello I am PerlScript.n""

Taking Backup and Embedding Other Languages in Shell Scripts Chapter 14

[277]

While embedding other language code, we should take care of quotes, backslashes, dollar
signs, and a few other characters.

Sending output to Bash Script
There are many ways to send or receive data from embedded code. Other language-
embedded code can send data to Bash using piping, saving, writing, or printing. Other
language-embedded code can receive data through variables, files, user input, or pipes.

The following is an example of other language code sending output to Bash using pipe:

 ksh -c "ls" | cat > ./save_to_file

In the preceding command, ksh is sending directory content to bash by pipe, which will be
stored in the file.

We can eliminate the use of pipe from the preceding example as follows:

 ksh -c "ls" > ./save_to_file

As we have eliminated the use of pipe, the preceding command has become more efficient.
It is better to eliminate the middleman if possible.

Storing other language output to Bash variable
To save the output of other language code in Bash, the example is as follows:

 $ result=$(python3 -c "print(10+15)")

In the preceding example code, we have embedded python3 code in bash shell. The output
of the print command which addition of two numbers will be stored in a bash variable
result.

If we want to print the output of embedded language code directly on screen, then the
example code is as follows:

 $ python3 -c "print(Hello World)"

Taking Backup and Embedding Other Languages in Shell Scripts Chapter 14

[278]

Sending data to an embedded language code
If we want to send data to the embedded language script, then one way is to send it via
variable content. Look at the following example:

 $ export location="/etc"; ksh -c "ls $location"

In the preceding example, we are initializing a variable location with the path or folder
name. When shell executes the ksh command, it will pass path as content of $location.
Then, ksh will print the content of the directory required.

Using data from file by embedded language
If we want the embedded language to open a file and use its contents for further
processing, then follow this example. We have used the python3 way of opening and
reading the contents of a file:

 $ python3 -c "import sys, io; DATA = open('/home/student/sample.txt',
'r').read()" | sed -e "s|Hello|Bye|g" | less

In the preceding command-line code, the python3 command is opening and reading
contents of a file. Then, it sends the content to the file to bash shell command sed by pipe.
Sed replaces text Hello from file to Bye, and finally, it is displayed on screen by the less
command.

Sending user input to the embedded code
If we want to send user-entered keyboard data directly to embedded code, then we should
use the embedded language input-related command:

 $ ksh -c "read INPUT; echo "You_typed_'$INPUT'""

This would allow the code to accept input from users. It waits for a user to type and hit
Enter. After pressing Enter, this line would prints You_typed_Hello there.

Embedding Python code in Bash shell Script
Nowadays, Python is a popular scripting language, especially in data science and
automation. You can integrate Python code very easily in bash scripts. We have used here
doc for this purpose.

Taking Backup and Embedding Other Languages in Shell Scripts Chapter 14

[279]

Let's write the shell script embed_01.sh as follows:

#!/bin/bash
function now_date_time
{
python - <<START
import datetime
value = datetime.datetime.now()
print (value)
START
}
now_date_time
Date_Time=$(now_date_time)
echo "Date and time now = $Date_Time"

Let's test the program as follows:

 $ chmod +x embed_01.sh
 $./ embed_01.sh

The output is as follows:

 2018-04-27 01:53:58.719905
 Date and time now = 2018-04-27 01:53:58.770123

Let's see an example of using bash variables in embedded Python code.

Let's write the shell script embed_02.sh as follows:

#!/bin/bash
export price=100
 python - <<END
 import os
 print "price:", os.environ['price']
 END
 cost=200 python - <<END
 import os
 print "cost:", os.environ['cost']
 END

Let's test the program as follows:

 $ chmod +x embed_02.sh
 $./ embed_02.sh

Taking Backup and Embedding Other Languages in Shell Scripts Chapter 14

[280]

The output is as follows:

 price: 100
 cost: 200

Embedding Ruby code
You can run Ruby code from a bash shell script. In this case, you will have one bash script
and a Ruby script. You can simply call the Ruby script from within the Bash shell script.

If you want to combine both scripts in one script, then we will need to use the << heredoc
functionality of Bash shell.

Let's write the embed_03.sh script:

#!/usr/bin/env sh
 echo "This is bashScript!"
 /usr/bin/env rubyScript <<-EndOfRuby
 puts 'This is ruby!'
 EndOfRuby

Let's test the program:

 $ chmod +x embed_03.sh
 $./ embed_03.sh

The output is as follows:

 This is bashScript!
 This is rubyScript!

Embedding other language code in Bash –
comparative study
Most of languages allow other code from languages in their code. However, there are
certain advantages as well as disadvantages.

Taking Backup and Embedding Other Languages in Shell Scripts Chapter 14

[281]

The advantages are as follows:

More functionality and variety
Efficient code (if properly used)
Useful for programmers because they can implement or reuse algorithms or
functionality from a different language. Different languages have diff strong
points.

The disadvantages are as follows:

Execution is slow (if implementation improperly)
Programmers need to know many languages
Different language tools need to be installed
Code becomes fragmented, sometimes difficult to understand

A summary of commands for embedding other
programming languages
A summary of the commands used for embedding various other programming languages
is as follows:

Programming language Command for embedding script or code
ash ash -c ""

ruby ruby -e ""

jruby jruby -e ""

rubyjs rubyjs -e ""

python python -c ""

python3 python3 -c ""

jython jython -c ""

cython cython -c ""

perl perl -e ""

csh csh -c ""

tcsh tcsh -c ""

mksh mksh -c ""

ksh ksh -c ""

Taking Backup and Embedding Other Languages in Shell Scripts Chapter 14

[282]

zsh zsh -c ""

dash dash -c ""

coffee coffee -e ""

lua lua -e ""

scilab scilab -e ""

Summary
In this chapter, you learned about taking local backups as well as across a network. You
also learned about automating backups using crontab. You learned about embedding other
languages in bash scripts, such as Python, Ruby, and Perl.

In the next chapter, you will learn how database administration can be done using shell
scripting.

15
Database Administration Using

Shell Scripts
In the previous chapter, you learned about taking backup of local as well as across the
network. You also learned about embedding other languages in bash scripts, such as
Python, Ruby, Pearl.

In this chapter, we will cover the following topics:

Automating MySQL database administration using shell scripts
Automating Oracle Database administration using shell scripts

Introduction to database administration
Databases are used in computer programs to store information that will be needed
repeatedly, such as user's information in bank accounts, where all the data related to bank
users is stored in databases. In this chapter, you will be learning how to automate two very
popular databases—MySQL and Oracle. Nowadays, many graphical user interface
programs are available for database administration, but when we want to automate
administrative tasks, we need to use shell scripts.

Database Administration Using Shell Scripts Chapter 15

[284]

Working with a MySQL Database
In this section, you will learn about automating MySQL database administration. Let's start
with very basic activities, as discussed in the following topics.

Checking the version of MySQL database
We will initially start by checking which version of MySQL is installed. With this script, we
will ensure that MySQL is properly installed and we are able to communicate with it with
root privileges. This script will report us the database version of MySQL. It executes a
SELECT VERSION() query to get the value of the database version. Let's create the script
mysql_01.sh:

#!/bin/bash
mysql -u root -pTraining2@^ <<MY_QUERY
SELECT VERSION();
MY_QUERY

Save the program and execute it as follows:

 $ chmod +x mysql_01.sh
 $./mysql_01.sh

The output will be:

 VERSION()
 5.7.22

Creating a database
In this section, you will learn about a creating new database in MySQL. We are going to use
this database throughout this chapter. Create the script mysql_02.sh to create the
database:

#!/bin/bash
mysql -u root -pTraining2@^ <<MY_QUERY
create database testdb;
MY_QUERY

Now save the program and run it as follows:

 $ chmod +x mysql_02.sh $./mysql_02.sh

Database Administration Using Shell Scripts Chapter 15

[285]

Show databases
To see all of the databases, we are going to use the command show databases. Create the
script mysql_03.sh to see all of the databases:

#!/bin/bash
mysql -u root -pTraining2@^ <<MY_QUERY
show databases;
MY_QUERY

Save the script and run it as follows:

 $ chmod +x mysql_03.sh
 $./mysql_03.sh

The output will be:

 Database
 information_schema
 mysql
 performance_schema
 sys
 testdb

Creating a user
Next, you will learn about creating a new user using the MySQL command inside shell
script. The CREATE USER command creates a new user and we set a password for the
newly created user. The command GRANT ALL ON provides privileges to make changes to
database by newly created user.

In the next script, we will create a user and we will also grant all of the privileges on the
database. Let's create the script mysql_04.sh to create a user:

#!/bin/bash
mysql -u root -pTraining2@^ <<MY_QUERY
CREATE USER 'user1'@'localhost' IDENTIFIED BY 'Test623@!@!';
GRANT ALL ON testdb.* TO 'user1'@'localhost';
select user from mysql.user;
MY_QUERY

Save the script and run it as follows:

 $ chmod +x mysql_04.sh
 $./mysql_04.sh

Database Administration Using Shell Scripts Chapter 15

[286]

The output will be:

 user
 mysql.session
 mysql.sys
 root
 user1

If you want to grant the privileges on all of the databases, then you just have to put * on
database name. Then, the Grant query will be as follows:

 GRANT ALL ON *.* TO 'user1'@'localhost';

In the preceding program, we have created one user named as user1 and have granted
privileges to user1 on our testdb database.

From now onward, we are going to use the testdb database. Therefore, we will add use
testdb; query to every shell script.

Creating a table in MySQL
We have successfully created a database named testdb and a user named user1, and have
also granted all of the privileges on the testdb database.

Now we will create a table. Create the script mysql_05.sh to list the table:

#!/bin/bash
mysql -u user1 -pTest623@! <<MY_QUERY
use testdb;
show tables;
MY_QUERY

Now save the program and run it as follows:

 $ chmod +x mysql_05.sh
 $./mysql_05.sh

The preceding command will not show presence of any table, as we only just have created
our database.

Database Administration Using Shell Scripts Chapter 15

[287]

Now, we are going to create a table named Authors. Create the script mysql_06.sh to
create a table named Authors:

#!/bin/bash
mysql -u user1 -pTest623@! <<MY_QUERY
use testdb;
CREATE TABLE Authors(Id INT PRIMARY KEY AUTO_INCREMENT, Name VARCHAR(25));
MY_QUERY

Now save the program and run it as follows:

 $ chmod +x mysql_06.sh
 $./mysql_06.sh

The output will be:

 Tables_in_testdb
 Authors

Now check whether your table has been created by executing the mysql_05.sh script:

 $./mysql_05.sh

The output will be:

 Tables_in_testdb
 Authors

Inserting data into table
Now we will insert some data into our Authors table. We will use insert into query to
insert the data. Create the script 7_insert_into_Authors.sh to insert the data:

#!/bin/bash
mysql -u user1 -pTest623@! <<MY_QUERY
use testdb;
Insert into Authors(NAME)values('William Shakespeare');
Insert into Authors(NAME)values('Charles Dickens');
Insert into Authors(NAME)values('Jane Austen');
Insert into Authors(NAME)values('George Orwell');
Insert into Authors(NAME)values('Oscan Wilde');
MY_QUERY

Database Administration Using Shell Scripts Chapter 15

[288]

Now save the program and run it as follows:

 $ chmod +x mysql_07.sh
 $./mysql_07.sh

After executing this script, records will have been successfully inserted. To check this you
will need to use the command select.

Retrieving data from the table
To retrieve data from a table, we use the select statement. We can retrieve all of the
records from the table, or we can retrieve a specific record using the select statement.

To retrieve all of the records from the table, we have to use * in the select statement. So,
the query will be as follows:

 select * from table_name;

Create the script mysql_08.sh to get all of the records from the table:

#!/bin/bash
mysql -u user1 -pTest623@! <<MY_QUERY
use testdb;
select * from Authors;
MY_QUERY

Now save the program and run it as follows:

 $ chmod +x mysql_08.sh
 $./mysql_08.sh

The output will be:

 Id Name
 1 William Shakespeare
 2 Charles Dickens
 3 Jane Austen
 4 George Orwell
 5 Oscan Wilde

Database Administration Using Shell Scripts Chapter 15

[289]

Updating data
If we want to modify or replace the content of any row of a table, then we need to use
the UPDATE command. We can modify single or multiple fields of a table.

Create mysql_09.sh to update the name of specified Id:

#!/bin/bash
mysql -u user1 -pTest623@! <<MY_QUERY
use testdb;
UPDATE Authors SET Name = 'Mansi Joshi' WHERE Id = 1;
select * from Authors;
MY_QUERY

Now, save the program and run it as follows:

 $ chmod +x mysql_09.sh
 $./mysql_09.sh

The output will be:

 Id Name
 1 Mansi Joshi
 2 Charles Dickens
 3 Jane Austen
 4 George Orwell
 5 Oscan Wilde

Deleting data
If the need arises to delete a row, or multiple rows of a table because the data has become
obsolete, then we have to use the DELETE command. When we want to make large-scale
deletions in a table, this command is very handy.

Now, create the script mysql_10.sh to delete the record:

#!/bin/bash
mysql -u user1 -pTest623@! <<MY_QUERY
use testdb;
DELETE FROM Authors WHERE Name = 'Mansi Joshi';
select * from Authors;
MY_QUERY

Database Administration Using Shell Scripts Chapter 15

[290]

Now, save the program and run it as follows:

 $ chmod +x mysql_10.sh
 $./mysql_10.sh

The output will be:

 Id Name
 2 Charles Dickens
 3 Jane Austen
 4 George Orwell
 5 Oscan Wilde

Altering a table
If we want to modify a table's basic structure, such as, adding an extra column, then we
need to use the Alter command. When we need to put more information related to table
objective, using this command, we can add extra column. We can use this command to
modify table as well as database also.

In the next script, we are going to alter the table. Create the script mysql_11.sh to alter the
table definition:

#!/bin/bash
mysql -u user1 -pTest623@! <<MY_QUERY
use testdb;
ALTER TABLE Authors
ADD ADDRESS VARCHAR(25);
MY_QUERY

In this shell script, we have added a new field named ADDRESS using ALTER command.

Now save the program and run it as follows:

 $ chmod +x mysql_11.sh
 $./mysql_11.sh

Describing a table
If we need to know more about the overall information or query the execution plan of an
entire table, we need to use the DESCRIBE command.

Database Administration Using Shell Scripts Chapter 15

[291]

We will create the script mysql_12.sh to obtain the table structure:

#!/bin/bash
mysql -u user1 -pTest623@! <<MY_QUERY
use testdb;
desc Authors;
MY_QUERY

Save the script and run it as follows:

 $ chmod +x mysql_12.sh
 $./mysql_12.sh

The output will be:

 Field Type Null Key Default Extra
 Id int(11) NO PRI NULL auto_increment
 Name varchar(25) YES NULL
 ADDRESS varchar(25) YES NULL

Drop the table
If we want to remove any particular table from a database, then we need to use the DROP
TABLE command. This command will remove the table definition along with all related
partition information.

Now we will create the script mysql_13.sh to drop the table:

#!/bin/bash
mysql -u user1 -pTest623@! <<MY_QUERY
use testdb;
DROP TABLE Authors;
MY_QUERY

Save the program and run it as follows:

 $ chmod +x mysql_13.sh
 $./mysql_13.sh

After executing this script, your table will have been deleted. To check whether your table
has been deleted, run this same script again, and you will get the following error message:

ERROR 1051 (42S02) at line 3: Unknown table 'testdb.Authors'

This means that your table has successfully been deleted.

Database Administration Using Shell Scripts Chapter 15

[292]

Drop the database
If you want to delete the database itself, then the DROP DATABASE command will delete the
complete database along with all of the tables inside it.

Now, we will create the script mysql_14.sh to drop the database:

#!/bin/bash
mysql -u user1 -pTest623@! <<MY_QUERY
DROP DATABASE testdb;
MY_QUERY

Now, save the program and run it as follows:

 $ chmod +x mysql_14.sh
 $./mysql_14.sh

After executing this script, your database will have been deleted. To check this, run this
same script again, and you will get the following error message:

ERROR 1008 (HY000) at line 2: Can't drop database 'testdb'; database
doesn't exist

Working with Oracle Database
Oracle is one of the most widely used databases. In this section, you will learn about
automating Oracle Database administration. Let's start with very basic activities, as
discussed in the following sections.

Switching to an Oracle user
First, run the following command to log in as an oracle user:

 $ su - oracle

In this case, the user was a student and after running this command, the user will be
oracle.

Database Administration Using Shell Scripts Chapter 15

[293]

Now, log in to your Oracle Database by running the following command:

 $ sqlplus sys as sysdba

Enter the password you set earlier when installing Oracle. After the successful execution of
this command, you will get the SQL> prompt:

[oracle@localhost work]$ sqlplus sys as sysdba

SQL*Plus: Release 11.2.0.1.0 Production on Mon Apr 30 12:02:53 2018

Copyright (c) 1982, 2009, Oracle. All rights reserved.

Enter password:
Connected to an idle instance.

SQL>

Creating a user in Oracle SQL command line
To create a new user account in Oracle, issue the CREATEUSER command. We are going to
create a user in Sqlplus command line, and we will use this user in all of our shell scripts.

To create a user, run the following command:

 SQL> create user user1 identified by Test123;

You will get the following output:

 User created.

The Grant statement
We can provide the newly created user with privileges by using the GRANT command.
GRANT is a very powerful command with many options. It will provide privileges to user
while accessing database:

 SQL> grant connect, resource to user1;

You will get the following output:
 Grant succeeded.

Database Administration Using Shell Scripts Chapter 15

[294]

The Define command
We can use the DEFINE command to create user-specific variables or we can modify
predefined variables. This command assigns a CHAR value to the specified variable. It can
assign a value to single or multiple variables.

Predefined variables
During the installation of SQL*Plus, eight variables are created and initialized. We will
refer to them as predefined variables.

Variables Description
_CONNECT_IDENTIFIER Identifier of connection if available.
_DATE Current date
_EDITOR Information of editor used by EDIT command.
_O_RELEASE Detailed release number of Oracle Database.
_O_VERSION Version of installed Oracle database.
_PRIVILEGE Current users privilege level
_SQLPLUS_RELEASE Details of installed SQL*Plus component.
_USER Name of the user
Let's create the script oracle_01.sh to get information about the predefined variables:

#!/bin/bash

sqlplus user1/Test123 <<MY_QUERY
define
MY_QUERY

Save the script and run as follows:
[oracle@localhost work]$ chmod +x oracle_01.sh
[oracle@localhost work]$./oracle_01.sh

The output will be:

[oracle@localhost work]$./oracle_01.sh

SQL*Plus: Release 11.2.0.1.0 Production on Mon Apr 30 17:19:29 2018

Copyright (c) 1982, 2009, Oracle. All rights reserved.

Database Administration Using Shell Scripts Chapter 15

[295]

Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit
Production
With the Partitioning, OLAP, Data Mining and Real Application Testing
options

SQL> SQL> DEFINE _DATE = "30-APR-18" (CHAR)
DEFINE _CONNECT_IDENTIFIER = "orcl" (CHAR)
DEFINE _USER = "USER1" (CHAR)
DEFINE _PRIVILEGE = "" (CHAR)
DEFINE _SQLPLUS_RELEASE = "1102000100" (CHAR)
DEFINE _EDITOR = "ed" (CHAR)
DEFINE _O_VERSION = "Oracle Database 11g Enterprise Edition Release
11.2.0.1.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real Application Testing
options" (CHAR)
DEFINE _O_RELEASE = "1102000100" (CHAR)

Create user through a shell script
To create a new user, you must log in to SQL as a system user. To create a new user
account, we are going to write the CREATEUSER command.

We grant all of the privileges to a user in the same script. Let's create the script
oracle_02.sh to create a user and grant them privileges:

#!/bin/bash

sqlplus system/Training2 <<MY_QUERY
set serveroutput on;

create user demo_user identified by userdemo;
grant connect, resource to demo_user;

MY_QUERY

Save the script and run it as follows:

 $ chmod +x oracle_02.sh
 $./oracle_02.sh

Database Administration Using Shell Scripts Chapter 15

[296]

The output will be:

 SQL*Plus: Release 11.2.0.1.0 Production on Mon Apr 30 17:44:50 2018
 Copyright (c) 1982, 2009, Oracle. All rights reserved.
 Connected to:
 Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit
Production
 With the Partitioning, OLAP, Data Mining and Real Application Testing
options
 SQL> SQL> SQL>
 User created.
 SQL>
 Grant succeeded.
 SQL>

Creating a table
We have successfully created a user and granted them all of the privileges. Now we will
create a table.

Create the script oracle_03.sh to create a table named Writers:

#!/bin/bash

sqlplus user1/Test123 <<MY_QUERY
set serveroutput on;
create table Writers(Id NUMBER(5) PRIMARY KEY, Name VARCHAR(25));
MY_QUERY

Save the script and run it as follows:

 $ chmod +x oracle_03.sh
 $./oracle_03.sh

The output will be:

 SQL*Plus: Release 11.2.0.1.0 Production on Mon Apr 30 17:52:06 2018
 Copyright (c) 1982, 2009, Oracle. All rights reserved.
 Connected to:
 Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit
Production
 With the Partitioning, OLAP, Data Mining and Real Application Testing
options
 SQL> SQL>
 Table created.
 SQL>

Database Administration Using Shell Scripts Chapter 15

[297]

Inserting the data into table
Now we will insert some data into our Writers table. We will be using insert into query to
insert the data. Create a script oracle_04.sh to insert the data:

#!/bin/bash
sqlplus user1/Test123 <<MY_QUERY
set serveroutput on;
INSERT INTO Writers VALUES(101, 'ABCD');
INSERT INTO Writers VALUES(102, 'EFGH');
INSERT INTO Writers VALUES(103, 'IJKL');
INSERT INTO Writers VALUES(104, 'MNOP');
INSERT INTO Writers VALUES(105, 'WXYZ');
MY_QUERY

Save the script and run it as follows:

 $ chmod +x oracle_04.sh
 $./oracle_04.sh

The output will be:

 SQL*Plus: Release 11.2.0.1.0 Production on Mon Apr 30 18:02:13 2018
 Copyright (c) 1982, 2009, Oracle. All rights reserved.
 Connected to:
 Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit
Production
 With the Partitioning, OLAP, Data Mining and Real Application Testing
options
 SQL> SQL>
 1 row created.
 SQL>
 1 row created.
 SQL>
 1 row created.
 SQL>
 1 row created.
 SQL>
 1 row created.
 SQL>

Database Administration Using Shell Scripts Chapter 15

[298]

Retrieving data from a table
To retrieve data from a table, we use the select statement. We can retrieve all of the
records from a table, or we can retrieve a specific record using select statement.

To retrieve all of the records from the table, we use * in the select statement. So the query
will be as follows:

 select * from table_name;

Create the script oracle_05.sh to get all of the records from the table:

#!/bin/bash

sqlplus user1/Test123 <<MY_QUERY
set serveroutput on;

select * from Writers;
MY_QUERY

Save the script and run as follows:
 $ chmod +x oracle_05.sh
 $./oracle_05.sh

The output will be:

 SQL*Plus: Release 11.2.0.1.0 Production on Mon Apr 30 18:05:36 2018
 Copyright (c) 1982, 2009, Oracle. All rights reserved.
 Connected to:
 Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit
Production
 With the Partitioning, OLAP, Data Mining and Real Application Testing
options
 SQL> SQL> SQL>
 ID NAME
 ---------- -------------------------
 101 ABCD
 102 EFGH
 103 IJKL
 104 MNOP
 105 WXYZ
 SQL>

Database Administration Using Shell Scripts Chapter 15

[299]

Update the data
If we want to update a single field or many fields of a row from a particular table, then we
need to use the UPDATE command. It can modify single or multiple fields at a time.

Create oracle_06.sh to update the name of the specified ID:

#!/bin/bash

sqlplus user1/Test123 <<MY_QUERY
set serveroutput on;
UPDATE Writers SET Name = 'demoname' WHERE Id = 101;
select * from Writers;

MY_QUERY

Save the script and run it as follows:

 $ chmod +x oracle_06.sh
 $./oracle_06.sh

The output will be:

 SQL*Plus: Release 11.2.0.1.0 Production on Mon Apr 30 18:08:52 2018
 Copyright (c) 1982, 2009, Oracle. All rights reserved.
 Connected to:
 Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit
Production
 With the Partitioning, OLAP, Data Mining and Real Application Testing
options
 SQL> SQL> SQL>
 1 row updated.
 SQL> SQL>
 ID NAME
 ---------- -------------------------
 101 demoname
 102 EFGH
 103 IJKL
 104 MNOP
 105 WXYZ
 SQL>

Database Administration Using Shell Scripts Chapter 15

[300]

Delete the data
If we want to delete single or multiple rows from a table, then we need to use the DELETE
command. We can delete single or multiple rows at a time. This is useful for deleting
obsolete data.

Now, create the script oracle_07.sh to delete the record:

#!/bin/bash
sqlplus user1/Test123 <<MY_QUERY
set serveroutput on;
DELETE FROM Writers WHERE Name = 'demoname';
select * from Writers;
MY_QUERY

Save the script and run it as follows:

 $ chmod +x oracle_07.sh
 $./oracle_07.sh

The output will be:

 SQL*Plus: Release 11.2.0.1.0 Production on Mon Apr 30 18:11:07 2018
 Copyright (c) 1982, 2009, Oracle. All rights reserved.
 Connected to:
 Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit
Production
 With the Partitioning, OLAP, Data Mining and Real Application Testing
options
 SQL> SQL> SQL>
 1 row deleted.
 SQL> SQL>
 ID NAME
 ---------- -------------------------
 102 EFGH
 103 IJKL
 104 MNOP
 105 WXYZ
 SQL>

Database Administration Using Shell Scripts Chapter 15

[301]

Drop the table
If we want to remove a table along with its definition, data, and partitions, then we need to
use the DROP command. This command will delete complete table along with its data and
partitions information.

Now we will create a script oracle_08.sh to drop the table:

#!/bin/bash

sqlplus user1/Test123 <<MY_QUERY
set serveroutput on;

drop table Writers;
select * from Writers;

MY_QUERY

After executing this script, your table gets deleted. We have written the select statement
to check whether the table gets deleted or not.

Save the script and run it as follows:

 $ chmod +x oracle_08.sh
 $./oracle_08.sh

The output will be:

 SQL*Plus: Release 11.2.0.1.0 Production on Mon Apr 30 18:15:53 2018
 Copyright (c) 1982, 2009, Oracle. All rights reserved.
 Connected to:
 Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 64bit
Production
 With the Partitioning, OLAP, Data Mining and Real Application Testing
options
 SQL> SQL> SQL>
 Table dropped.
 SQL> select * from Writers
 *
 ERROR at line 1:
 ORA-00942: table or view does not exist
 SQL>

We get table or view does not exist error, which means our table has been deleted
successfully.

Database Administration Using Shell Scripts Chapter 15

[302]

Summary
In this chapter, you learned how to write and execute MySQL commands in a shell script,
as well as how to write and execute Oracle commands in a shell script. Using what you
have learned from this chapter, you will be able to automate frequently required database
administration tasks.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Bash
Giorgio Zarrelli

ISBN: 978-1-78439-687-9

Understand Bash right from the basics and progress to an advanced level
Customise your environment and automate system routine tasks
Write structured scripts and create a command-line interface for your scripts
Understand arrays, menus, and functions
Securely execute remote commands using ssh
Write Nagios plugins to automate your infrastructure checks
Interact with web services, and a Slack notification script
Find out how to execute subshells and take advantage of parallelism
Explore inter-process communication and write your own daemon

https://www.packtpub.com/networking-and-servers/mastering-bash

Other Books You May Enjoy

[304]

Mastering Linux Shell Scripting - Second Edition
Mokhtar Ebrahim, Andrew Mallett

ISBN: 978-1-78899-055-4

Make, execute, and debug your first Bash script
Create interactive scripts that prompt for user input
Foster menu structures for operators with little command-line experience
Develop scripts that dynamically edit web configuration files to produce a new
virtual host
Write scripts that use AWK to search and reports on log files
Draft effective scripts using functions as building blocks, reducing maintenance
and build time
Make informed choices by comparing different script languages such as Python
with BASH

https://www.packtpub.com/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition

Other Books You May Enjoy

[305]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
actions 264
address 238
appending 247
arithmetic expression
 using 128, 129, 131
arithmetic
 declare command, using for 123
 expr command, using for 126, 127
 let command, using for 124, 126
arrays
 creating 90
 initializing 90
 values, accessing 91, 92
 working with 90
at command 37, 38
awk
 about 254
 actions 263
 commands input, using 256
 commands, placing 259
 field 259
 files input, using 255
 for loop, using 268
 if statement, used for decision-making 267
 patterns 263
 records 259
 script file, writing 265
 using 254
 variables, using 266
 while loop, using 268
 working 257

B
backup
 across network 274

 activity automating 275
 obtaining, from command line 271
 rsync command 272
bash shell environment 9, 10
Bash Shell scripts
 data, sending to embedded language code 278
 data, using from file by embedded language 278
 language codes, embedding 275, 280
 language output, storing to variable 277
 output, sending 277
 programming languages commands, summary

281

 Python code, embedding 278
 Ruby code, embedding 280
 user input, sending to embedded code 278
bc utility
 reference 133
binary operations 132
BIOS 227
Bourne shell 8
break command
 used, for exiting from loop 182
builtin command 62

C
chmod command 21
comm command 47
command separators
 about 66
 semicolon 66
command substitution 64, 66
command-line arguments
 set 82, 84
 shift, using 85, 87
 working with 81
commands

[307]

 grouping 67
compiler 13
continue command
 loop iteration, exiting 180
crontab 38, 39
cut command
 using 44

D
daemon process 26
database administration 283
debugging
 about 111
 Bash shell options, summarizing 118
 commands, displaying 113
 execution, tracing 115, 117
 set command 118
 Shell scripts, best practices 120
 shell, disabling 112
declare command
 using, for arithmetic 123
default parameters 89
dialog boxes
 checklist box 222
 creating, with dialog utility 215
 input box 219
 menu box 222
 message box, creating 216
 message box, creating with title 216
 password box 221
 progress meter box 225
 radiolist box 224
 textbox 220
 yes/no dialog box 217
diff command
 using 43, 45
do while loop
 using 269
 working with 184, 186

E
echo command 20
environment variables
 exporting 78, 80

 local variable 77
 local variable, scope 77
 working with 74, 76
exit status 63
 checking 137
expr command
 using, for arithmetic 126, 127

F
field 259
 about 261
 field separator 262
 input field separator 262
file descriptor 49
file handling
 about 104
 command, executing 110
 exec command, usage 111
 exec, used for assigning file descriptor (fd) 104
 file descriptor information, displaying from /proc

folder 109
 file, closing 105
 file, opening 105
 file, reading 106, 107
 file, reading from 106
 file, reading line by line 109
 file, writing 105, 106, 107
 read command, using on file descriptor (fd) 107
 results, storing in file 110
file permissions
 execute permission 20
 modifying 20
 modifying, with numeric method 21
 modifying, with symbolic method 21
 read permissions 20
 setgid functionality 22
 setuid feature 22
 sticky bit 23
 unmask, setting 21
 working with 20
 writer permission 20
File Transfer Protocol (FTP) 102
floating-point arithmetic 133, 134
for command
 looping 175, 178, 180

[308]

for loop
 using 268
functions
 about 193, 196, 197
 arguments, passing 198
 command source 207
 data, sharing 202
 displaying 197
 executing 206
 information, returning 204
 library, creating 208
 local variables, declaring 202
 parameters, passing 198
 period (.) 207
 removing 198
 string, returning 206
 trap command, using 213
 word, returning 206

G
getopts 87
grep
 used, for pattern searching 57

H
head command
 using 42
Hello World shell script 11, 12
here document
 about 97
 here operator, with sort command 99
 here operator, with wc command 99
 utility ed 101
 variable substitution, avoiding 103
 wall command, used for sending message to

logge-in users 101
here string 103
hex operation 132
holding buffer 251

I
I/O redirection
 about 49, 50, 53
 brace expansion 53, 55

 file descriptors 49
if else expression
 ? variable, using 151
 about 148
 exit command, using 151
 file handling, with if command 156, 158
 if constructs, numerical handling 150
 if/elif/else command 162
 multiple test commands 159
 null command 163
 null values, checking 155
 string, handling with if construct 152
init process 227
integers
 listing 124
Internal Field Separator (IFS) 191, 258
interpreter 13

J
join command 46

K
kernel startup 227
kill command 30

L
let command
 using, for arithmetic 124, 126
Linux command
 loop output, piping 190
Linux
 boot-up sequence 24
 directory structure 14
local variable
 about 77
 declaring, in functions 202
 scope 77
logical operators
 & 68
 && 68
 || 68
loop iteration
 exiting, with continue command 180
loop

[309]

 about 191
 executing, in background 190
 exiting, with break 182
 output, piping to Linux command 190
looping
 with for command 175, 178, 180

M
man command 15
menus
 implementing, with select command 170, 172,

174

MySQL Database
 creating 284
 data, deleting 289
 data, inserting into table 287
 data, retrieving from table 288
 data, updating 289
 DESCRIBE command, using 290
 displaying 285
 dropping 292
 table, altering 290
 table, creating 286
 table, dropping 291
 user, creating 285
 working with 284

N
null values
 checking 155

O
octal operation 132
Oracle Database
 data, deleting 300
 data, inserting into table 297
 data, retrieving from table 298
 data, updating 299
 Grant Statement 293
 predefined variables 294
 table, creating 296
 table, dropping 301
 user, creating in command line 293
 user, creating through shell script 295

 user, switching 292
 working with 292
orphan process 26
Output Field Separator (OFS) 258

P
passwd command 16
paste command
 using 45
pattern matching
 with vi editor 55
pattern searching
 grep, using 57
pattern space 237
patterns 263
pipes 70
positional parameters 87
process monitoring tools
 about 33
 iostat 35, 36
 top 34
 vmstat 36
process
 basics 24, 25
 daemon process 26
 executing, after user logout 215
 managing 30, 31, 32, 33
 monitoring, ps used 27
 orphan process 26
 terminating 29
 zombie process 26
ps command
 used, for monitoring processes 27

R
range 244
read-only variables
 working with 80
record
 $0 variable 260
 about 259, 260
 fields 261
 NR variable 261
 record separator 260

[310]

regular expression
 about 235, 264
 do while loop, using 269
 using, in sed 237
rsync command
 using, for backup 272
run levels 229

S
scripts
 executing, after user logout 215
set command
 about 82, 84, 118
 debugging options 119
 vi editor setting, for debugging 119
setgid functionality 22
setuid feature 22
shell internal commands
 checking 62
 disabling 62
shell script
 advantages 13
 avoiding 14
 limitations 14
 writing 11, 12
shell
 about 7
 bash shell environment 9, 10
 basic commands 15, 16, 17, 19, 20
 command interpretation 60, 61
 comparing 8
 Linux commands 10
 tasks 9
shift
 positional parameters, resetting 87
 using 85, 87
signals and traps 209
signals
 avoiding 212
 resetting 212
sort command 49
step increment 242
sticky bit functionality 23
stream editor (sed)
 a command, used for appending files 247

 about 237
 addressing 238
 c command, used for modifying files 249
 d command 241
 e command 245
 g command 251
 h command 251
 i command, used for inserting commands 248
 non-interactive stream editor 236
 p command 240
 q command, used for quitting 250
 r command, used for reading files 246
 range 244
 regular expressions usage 237
 s command 243
 scripting 252
 using, for file modification 239
 w command, used for writing files 247
 y command, used for transforming files 249
switching case 164, 168, 169
system boot scripts
 initialization 230

T
tail command
 using 42
test command
 about 138
 binary operators, file testing 146
 file test options 145
 logical test operators 147
 numerical comparison operators 141, 145
 string comparison options 139, 141
 using 138
 using, with double brackets 139
text filtering
 comm command 47
 cut command 44, 45
 diff command, using 43
 head command, using 42
 join command 46
 paste command, using 45
 sort command 49
 tail command, using 42
 tools 41

 tr command 48
 uniq command, using 46
tr command 48
transform command 249
trap command
 listing 213
 using 211
 using, in function 213

U
uniq command
 using 46
unmask
 setting 21
until command
 using 187
user input
 read command, options 97
 reading 94, 96

user scripts
 initialization 231
 system-wide settings 231
 user level settings 232, 233

V
variables
 creating 72, 74
verbose mode 113
vi editor
 used, for pattern matching 55

W
while loop
 using 268

Z
zombie process 26

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started and Working with Shell Scripting
	Comparison of shells
	Tasks done by the shell
	Working in the shell
	Learning basic Linux commands
	Our first script – Hello World
	When not to use scripts
	Various directories
	Working with permissions
	Changing file permissions
	The chmod command
	Technique one – the symbolic method
	Technique two – the numeric method

	Setting umask
	Setuid
	Setgid
	Sticky bit

	Summary

	Chapter 2: Drilling Deep into Process Management, Job Control, and Automation
	Introducing process basics
	Monitoring processes using ps
	Process management
	Process monitoring tools – top, iostat, and vmstat
	Understanding "at"
	Understanding crontab
	Summary

	Chapter 3: Using Text Processing and Filters in Your Scripts
	Text filtering tools
	Head and tail
	The diff command
	The cut command
	The paste command
	The join command
	The uniq command
	The comm command
	The tr command
	The sort command

	IO redirection
	File descriptors
	Redirection
	Brace expansion

	Pattern matching with the vi editor
	Pattern searching using grep
	Summary

	Chapter 4: Working with Commands
	Learning shell interpretation of commands
	Checking and disabling shell internal commands
	The exit status

	Command substitution
	Command separators
	Command1; command2
	Command grouping

	Logical operators
	Command1 & command2
	Command1 && command2
	Command1 || command2

	Pipes
	Summary

	Chapter 5: Exploring Expressions and Variables
	Understanding variables
	Working with environment variables
	The local variable and its scope
	Exporting variables

	Working with read-only variables
	Working with command-line arguments (special variables, set and shift, getopt)
	Understanding set
	Understanding shift
	Resetting positional parameters

	Understanding getopts
	Understanding default parameters
	Working with arrays
	Creating an array and initializing it
	Accessing array values

	Summary

	Chapter 6: Neat Tricks with Shell Scripting
	Interactive shell scripts – reading user input
	Summarizing the read command with options

	The here document and the << operator
	The here operator with the sort command
	The here operator with the wc command
	The utility ed and here operator
	A script for sending messages to all logged-in users
	Using the << here operator for FTP usage and data transfer

	Turning off variable substitution

	The here string and the <<< operator
	File handling
	Introducing file handling
	Using exec to assign a file descriptor (fd) to file

	Understanding the opening, writing, and closing of a file
	Understanding reading from a file
	Understanding reading and writing to a file
	Using the read command on a file descriptor (fd)
	Reading from one file and writing to another file
	Displaying the file descriptor information from the /proc folder
	File handling - reading line by line

	Summarizing usage of the exec command

	Debugging
	Debugging mode – disabling the shell (option -n)
	Debugging mode - displaying commands (option -v)
	Debugging mode – the tracing execution (option -x)
	Using the set command
	Summary of debugging options for the set command
	The vi editor setting for debugging

	Good practices for Shell scripts

	Summary

	Chapter 7: Performing Arithmetic Operations in Shell Scripts
	Using a declare command for arithmetic
	Listing integers

	Using the let command for arithmetic
	Using the expr command for arithmetic
	Using an arithmetic expansion

	Binary, octal, and hex arithmetic operations
	Floating-point arithmetic
	Summary

	Chapter 8: Automating Decision-Making in Scripts
	Checking the exit status of commands
	Understanding the test command
	Using the test command
	Using the test command with double brackets
	String comparison options for the test command
	Numerical comparison operators for the test command
	File test options for the test command
	File-testing binary operators
	Logical test operators

	Conditional constructs – if else
	Numerical handling if constructs
	Using the exit command and the ? variable
	String handling with the if construct
	Checking for null values
	File handling with the if command
	Multiple test commands and if constructs
	The if/elif/else command
	The null command

	Switching case
	Implementing simple menus with select
	Summary

	Chapter 9: Automating Repetitive Tasks
	Looping with the for command
	Exiting from the current loop iteration with the continue command
	Exiting from a loop with a break
	Working with the do – while loop
	Using until
	Piping the output of a loop to a Linux command
	Running loops in the background
	The IFS and loops
	Summary

	Chapter 10: Working with Functions
	Understanding functions
	Displaying functions
	Removing functions

	Passing arguments or parameters to functions
	Sharing the data with many functions
	Declaring local variables in functions
	Returning information from functions
	Returning a word or string from a function

	Running functions in the background
	Command source and period (.)

	Creating a library of functions
	Summary

	Chapter 11: Using Advanced Functionality in Scripts
	Understanding signals and traps
	Using the trap command
	Ignoring signals
	Resetting signals
	Listing traps

	Using traps inside a function
	Running scripts or processes even if the user logs out
	Creating dialog boxes with the dialog utility
	Creating a message box (msgbox)
	Creating a message box (msgbox) with a title
	The yes/no box (yesno)
	The input box (inputbox)
	The textbox (textbox)
	A password box
	The checklist box (checklist)
	The menu box (menu)
	The radiolist box (radiolist)
	The progress meter box (gauge)

	Summary

	Chapter 12: System Startup and Customizing a Linux System
	System startup, inittab, and run levels
	The kernel startup and init process
	Understanding run levels
	System initialization boot scripts

	User initialization scripts
	System-wide setting scripts
	User level settings – default files

	Summary

	Chapter 13: Pattern Matching and Regular Expressions with sed and awk
	The basics of regular expressions
	sed – non-interactive stream editor
	Understanding sed
	Addressing in sed
	How to modify a file with sed
	Printing – the p command
	Deleting – the d command
	Substitution – the s command
	Range of selected lines the comma
	Multiple edits – the e command
	Reading from files – the r command
	Writing to files – the w command
	Appending – the a command
	Inserting – the i command
	Changing – the c command
	Transform – the y command
	Quit – the q command
	Holding and getting – the h and g commands
	Holding and exchanging – the h and x commands
	sed scripting

	Using awk
	The meaning of awk
	Using awk
	Input from files

	Input from commands
	How awk works
	awk commands from within a file
	Records and fields
	Records
	The record separator
	The $0 variable
	The NR variable

	Fields
	Field separators
	The input field separator

	Patterns and actions
	Patterns
	Actions

	Regular expressions
	Writing the awk script file
	Using variables in awk
	Decision-making using an if statement
	Using the for loop
	Using the while loop
	Using the do while loop

	Summary

	Chapter 14: Taking Backup and Embedding Other Languages in Shell Scripts
	Backup of files from command line
	Backup command rsync
	Backup across the network
	Automating backup activity

	Embedding other language codes or scripts in Bash shell scripts
	Embedding other language code in Bash shell script
	Sending output to Bash Script
	Storing other language output to Bash variable
	Sending data to an embedded language code
	Using data from file by embedded language
	Sending user input to the embedded code
	Embedding Python code in Bash shell Script
	Embedding Ruby code
	Embedding other language code in Bash – comparative study

	Summary

	Chapter 15: Database Administration Using Shell Scripts
	Introduction to database administration
	Working with a MySQL Database
	Checking the version of MySQL database
	Creating a database
	Show databases
	Creating a user
	Creating a table in MySQL
	Inserting data into table
	Retrieving data from the table
	Updating data
	Deleting data
	Altering a table
	Describing a table
	Drop the table
	Drop the database

	Working with Oracle Database
	Switching to an Oracle user
	Creating a user in Oracle SQL command line
	The Grant statement
	The Define command
	Predefined variables
	Create user through a shell script
	Creating a table
	Inserting the data into table
	Retrieving data from a table
	Update the data
	Delete the data
	Drop the table

	Summary

	Other Books You May Enjoy
	Index

