


Microservices 
Communication  
in .NET Using gRPC

A practical guide for .NET developers to build efficient 
communication mechanism for distributed apps

Fiodar Sazanavets

BIRMINGHAM—MUMBAI



Microservices Communication in .NET  
Using gRPC
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means, without the prior written permission of the publisher, 
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information 
presented. However, the information contained in this book is sold without warranty, either express 
or implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held 
liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies 
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing 
cannot guarantee the accuracy of this information.

Group Product Manager: Richa Tripathi
Publishing Product Manager: Sathya Mohan
Senior Editor: Rohit Singh
Content Development Editor: Kinnari Chohan
Technical Editor: Maran Fernandes
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Sejal Dsilva
Production Designer: Prashant Ghare
Marketing Coordinator: Sonakshi Bubbar

First published: January 2022
Production reference: 2170222

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-643-8

www.packt.com

http://www.packt.com


To my mother, Liliya Sazanavets, and to the memory of my father, Dzmirty 
Sazanavets, who sadly isn't with us anymore, for their sacrifices and for 

making me the person I am today. To my wife, Olga Sazanavets, who has 
always inspired and supported me in all of my endeavors.

– Fiodar Sazanavets



Contributors

About the author
Fiodar Sazanavets is an experienced lead software developer. His main areas of expertise 
are ASP.NET, SQL Server, Azure, Docker, Internet of Things, microservices architecture, 
and various frontend technologies.

Fiodar built his software engineering experience while working in a variety of industries, 
including water engineering, financial, railway, and defense. He has played a leading role 
in various projects and, as well as writing software, his duties have included performing 
architectural tasks.

Fiodar is passionate about teaching other people programming skills. He has published a 
number of programming courses on various online platforms.

I want to thank all the people who have supported and mentored me 
throughout my career, including Dikaios Papadogkonas, Vache Chek, Ian 
Turner, Paul Eccleston, Frank Lawrence, and all the other people I have 

worked or collaborated with.



About the reviewer
James Carter is a self-taught software developer located in the Midlands, UK. He is 
especially passionate about microservice-driven architectures and building large-scale 
cloud-based platforms. He is currently working at CSL Group doing just that – building  
a scalable IoT platform that will be capable of handling millions of devices.

In just 5 years of being a developer, James has developed a large range of skills in this area, 
from gRPC to Docker, building on solid expertise in Linux and Windows systems.

Besides developing software, James enjoys running and maintaining his home lab, 
comprising many servers and pieces of networking equipment, as well as spending time 
with his family and two cats, Oreo and Kitkat.





Table of Contents

Preface

Section 1: Basics of gRPC on .NET

1
Creating a Basic gRPC Application on ASP.NET Core

Technical requirements 4
Introduction to gRPC 4
gRPC on ASP.NET Core 6
Using gRPC in your own distributed 
ASP.NET Core application 6

Preparing your system 6
Setting up your environment on Windows 7
Setting up your environment on Mac 9
Setting up your environment on Linux 10
Downloading the .NET SDK (all 
operating systems) 11

Setting up a gRPC server 11
Initializing an ASP.NET Core project via 
an IDE 12
Adding gRPC server components to an 
ASP.NET Core project 16
Adding some code to use gRPC 
components 20

Setting up a gRPC client 22
Initializing the project for the  
client application 23

Adding gRPC client components to the 
application 24
Applying gRPC client components to 
the code 27

Understanding how proto files 
generate C# code 29
Where is auto-generated code stored? 30
Modifying Protobuf namespaces 31

Sharing a proto file between 
the client and the server 34
Creating a shared class library 34
Adding shared gRPC components to 
the class library 35
Sharing gRPC dependencies between 
different projects 37

Running a gRPC service on Mac 39
Configuring server-side components 39
Modifying the client-side configuration 39

Summary 40
Questions 40
Further reading 42



viii  Table of Contents

2
When gRPC Is the Best Tool and When It Isn't

Technical requirements 44
Why gRPC is a great tool for 
microservices 44
Setting up a solution and shared 
dependencies 45
Setting up the status manager 
microservice 49
Setting up a REST API gateway service 55
Launching the distributed application 62

How gRPC can be a good 
tool for asynchronous 
communication  64
Adding client-streaming and server-
streaming gRPC endpoints 64
Configuring the gRPC client for 
asynchronous communication 68

Testing asynchronous gRPC endpoints 72

Why gRPC is not the best tool 
for browsers 74
Setting up a Blazor WebAssembly  
gRPC client 74
Modifying the gRPC server to enable 
gRPC-Web 79
Launching the gRPC-Web application 80

Where SignalR would beat gRPC 81
Setting up a SignalR application 81
Adding a SignalR client and launching 
the application 83

Summary 88
Questions 89
Further reading 90

3
Protobuf – the Communication Protocol of gRPC

Technical requirements 92
The RPC types supported  
by gRPC 92
The RPC types that Protobuf supports 93
Making comments in Protobuf 95

Reviewing the native Protobuf 
data types 95
Integer data types 97
Non-integer numeric types 101
Non-numeric data types 102
Enums 104
Nested messages 106

Using collections in Protobuf 109
Repeated fields 109
Map fields 111

Using special keywords in 
Protobuf 113
How the oneof keyword can make 
communication more efficient 114
Customizing the behavior with the 
option keyword 117

Referencing other proto files 121
Importing external proto packages 121
Referencing internal proto files 122
Using proto files as relays 124



Table of Contents  ix

Summary 125
Questions 126

Further reading 127

Section 2: Best Practices of Using gRPC

4
Performance Best Practices for Using gRPC on .NET

Technical requirements 132
Why you need to reuse a gRPC 
channel  132
Setting up the server application 133
Setting up the client application 137
Comparing the performance of 
different client types 146

How to not get held up by  
a concurrent stream limit 149
Configuring connection concurrency 
on the gRPC client 149
Comparing the performance between 
a single connection and multiple 
connections 152

Ensuring that your connection 
remains alive 153
Setting up keep-alive pings on the 
gRPC client 153

When streaming is better than 
individual calls 154
Setting up a bi-directional streaming 
RPC 155
Monitoring the performance of the bi-
directional streaming call 158

Using binary payloads to 
decrease the  
data's size 160
Adding binary fields to Protobuf 160

Summary 164
Questions 164
Further reading 165

5 
Applying Versioning to the gRPC API

Technical requirements 168
Why an API versioning strategy 
is important 168
Creating a server application 169
Implementing the server-side gRPC 
components 170
Creating the gRPC client application 172

Implementing the gRPC client logic 173
Verifying that the client can talk to  
the server 174

What the sequence numbers in 
the proto file represent 176
Modifying the Protobuf definition in 
the server application 177



x  Table of Contents

Modifying the Protobuf definition in 
the client application 178
Launching modified applications 179

Why you must not modify 
existing fields in future 
Protobuf versions 181
Modifying Protobuf definitions on the 
client side 183
Launching the applications 183
Making further changes to the client 
application 185
Re-launching the applications 186

How to deprecate old, unused 
fields in gRPC 187
Applying the reserved keyword to the 
server-side Protobuf interface 187
Testing the application 189

How to factor in API versioning 
at the design stage 190
Adding multiple Protobuf versions to 
the server application 191
Allowing the server application to use 
multiple Protobuf versions 192
Making the gRPC client 
implementation version-specific 194
Making a gRPC call to a versioned 
endpoint 195

Summary 196
Questions 197
Further reading 198

6
Scaling a gRPC Application

Technical requirements 200
Introduction to load balancing 200
Adding shared gRPC dependencies 201
Creating a shared library for server-
side application instances 202
Creating multiple instances of the 
server-side application 204
Creating a client application 205
Running a load-balanced application 214

Client-side load balancing  
with gRPC 216
Updating the NuGet package 216
Enabling client-side load balancing 
components 217

Enabling a DNS resolver for the  
load balancer 219
Using a static resolver for the load 
balancer 221
Creating custom load balancers  
and resolvers 224

Proxy load balancing with gRPC 230
Building a web application to act  
as a proxy 230
Launching the HTTP/2 proxy 233

Summary 235
Questions 235
Further reading 236



Table of Contents  xi

Section 3: In-Depth Look at gRPC on .NET

7
Using Different Call Types Supported by gRPC

Technical requirements 242
Making unary calls on gRPC 242
Setting up shared gRPC dependencies 243
Creating server-side implementations 
of the Protobuf definitions 245
Building the gRPC client 251
Applying different types of client-side 
call implementations 255
Using gRPC dependencies in the client 
application 260
Testing different types of unary call 
endpoints 262

Streaming data from the client 265
Adding a client-streaming call to the 
server application 266
Adding client logic for a client-
streaming gRPC call 267

Reading streams from the 

server 269
Adding a server-streaming RPC  
to Protobuf 269
Setting up a server-streaming call on 
the server side 270
Making a server-streaming call from  
a gRPC client 273

Enabling bi-directional 
streaming 274
Enabling server-side components for 
bi-directional streaming 275
Adding a client-side implementation of 
a bi-directional streaming call 276
Testing how to stream gRPC calls 278

Summary 280
Questions 281
Further reading 282

8
Using Well-Known Types to Make Protobuf More Handy

Technical requirements 284
Using nullable types in Protobuf 285
Setting up a gRPC server application 286
Examining auto-generated code for 
wrapper fields 287
Adding logic to gRPC server application 292
Setting up shared dependencies 294
Setting up the gRPC client 296
Running the application 298

Using dates and times  
in Protobuf 299
Adding timestamp and duration to  
the server 300
Applying changes to the gRPC client 
and launching the app 301

Exchanging empty messages 303
Adding the Empty data type to the 
server-side application 303
Applying an Empty object on the client 305



xii  Table of Contents

Using loosely typed fields in  
a Protobuf message 308
Adding Any and Value data types to 
the gRPC server 308
Populating the Any and Value fields 
from the gRPC client 313

Summary 317
Questions 317
Further reading 319

9
Securing gRPC Endpoints in Your ASP.NET Core Application 
with SSL/TLS

Technical requirements 322
Configuring the gRPC client 
and server for unencrypted 
communication 323
The role of TLS certificates 323
Setting up a gRPC service application 325
Removing TLS on both HTTP/1.1  
and HTTP/2 329
Exposing Protobuf definitions to clients 330
Building the client for gRPC 
communication 333
Adding the remaining client logic 336

Creating and trusting a self-
signed certificate 339
The basics of a TLS certificate 339
Trusting a default development 
certificate 340
Creating a self-signed certificate on 

Windows using PowerShell 341
Creating a self-signed certificate on 
Unix using OpenSSL 344
Applying a certificate on ASP.NET Core 345
Testing custom certificates and HTTPS 
redirection 348

Applying certificate 
authentication on the gRPC 
client and server 351
Configuring the gRPC server for 
certificate authentication 352
Enabling certificate authentication on 
the gRPC client 355
Testing certificate authentication 356

Summary 358
Questions 358
Further reading 359

10
Applying Authentication and Authorization to gRPC 
Endpoints

Technical requirements 362
Setting up the authentication 
backend 363
OpenID Connect and OAuth flow 364

Configuring IdentityServer4 366
Adding SSO users, roles, and clients 369
Forcing login redirect on a web 
application 372



Table of Contents  xiii

Restricting gRPC endpoints to 
authenticated users 378
Setting up shared gRPC dependencies 378
Setting up the gRPC server 380
Enabling gRPC client functionality 386

Restricting endpoints to 
authorized users only 391
Configuring SSO provider to insert  
role claim into the JWT 392

Applying different authorization  
rules to different gRPC endpoints 395
Applying gRPC client changes 397

Summary 401
Questions 401
Further reading 403

11
Using Logging, Metrics, and Debugging in gRPC on .NET

Technical requirements 406
Debugging gRPC client 
components inside a .NET 
application 407
Setting up shared gRPC dependencies 407
Adding a gRPC service application and 
getting it to display detailed errors 409
Adding a gRPC client with additional 
debugging capabilities 413
Viewing gRPC error information on  
the client 421

Debugging gRPC server 
components inside a .NET 
application 423
Viewing the debug output on the gRPC 
server console 427

Applying logs to gRPC 429
Configuring a logger on the gRPC client 430
Applying a logger on the gRPC server 433
Testing our log output 435

Applying metrics to gRPC 438
Configuring metrics on the gRPC server 439
Enabling metric collection on the  
gRPC client 440
Viewing gRPC metrics 442

Summary 444
Questions 445
Further reading 446

Assessments
Index
Other Books You May Enjoy





Preface
This book explains how to use all the fundamental components of gRPC on .NET. As 
well as covering the core technical functionality of gRPC, this book also explains the best 
practices of using it.

gRPC is an efficient mechanism of communication over the web that was originally 
developed by Google. It has now been accepted as one of the web standards. As it runs 
over HTTP/2, it is much faster than the standard HTTP communication. gRPC is 
especially suitable for facilitating direct communication between microservices inside a 
distributed application.

RPC stands for remote procedure call, so applying it in the code to call endpoints on 
a remote server is just as easy as calling functions and methods inside an application. 
gRPC is standardized, so it's possible to find a suitable implementation of it in any 
modern programming language. Your distributed application does not have to have every 
component written in the same language. All services will still work together, regardless of 
which language they are written in.

Developers working with .NET will be able to put their knowledge to work with this practical 
guide to using gRPC. This book provides a hands-on approach to the implementation and 
the associated methodologies and will have you up and running and productive in no time. 
You'll start with the fundamentals of gRPC and how to use it inside .NET apps. Along with 
learning technical details, you'll explore best practices for performance and more. Next, you'll 
focus on scaling a gRPC app. Finally, you'll use different call types that gRPC supports and 
apply authentication and authorization to gRPC endpoints.

By the end of this book, you will be able to use gRPC in .NET applications to enable direct 
communication between microservices.



xvi     Preface

Who this book is for
.NET developers who work with microservices and are looking for efficient solutions to 
facilitate communication between the services will find this book useful. Anyone who 
knows the fundamentals of .NET Core, is somewhat familiar with the microservices 
architecture, but doesn't necessarily know anything about gRPC should be able to 
consume the content of the book.

What this book covers
Chapter 1, Creating a Basic gRPC Application on ASP.NET Core, explains how to build  
a basic ASP.NET Core server application that uses gRPC. We will also build a basic 
console application that will act as a gRPC client.

Chapter 2, When gRPC Is the Best Tool and When It Isn't, outlines use cases where gRPC is 
the best tool for the job. It will also cover some scenarios where other tools would be more 
suitable than gRPC.

Chapter 3, Protobuf – the Communication Protocol of gRPC, takes you through the 
structure of Protobuf – the communication protocol that gRPC uses. You will be shown 
the basic structure of a proto file – a file that defines the interface that both the client 
and the server use to communicate with each other. All native data types available with 
Protobuf will be covered, along with other structural components of the protocol.

Chapter 4, Performance Best Practices of Using gRPC on .NET, explains how to apply gRPC 
inside the code in the most efficient way possible. You will learn a few ways to make your 
gRPC communication as fast as it can be.

Chapter 5, How to Apply Versioning to the gRPC API, emphasizes the importance of 
applying a good versioning strategy to your server-side gRPC endpoints, also known as 
application programming interfaces (APIs). You will also learn some techniques for 
making API versioning easy.

Chapter 6, Scaling a gRPC Application, explains how microservices are supposed to be 
designed in such a way that they can easily be scaled. An assumption of microservices 
architecture is that it should be possible to add new instances of any given microservices 
when needed, especially when they are stateless. As gRPC has been primarily designed to 
enable communication between microservices, it needs to be scalable too.

Chapter 7, Using All Different Call Types That gRPC Supports, covers the four different 
types of calls – unary, client-streaming, server-streaming, and bi-directional  
streaming – that gRPC supports.



Preface     xvii

Chapter 8, Using Well-Known Types to Make Protobuf More Handy, explains that 
since native Protobuf data types don't perfectly map to data types commonly used in 
programming languages, Google has created a library of so-called well-known types to 
make this process easier. This enables developers to send requests without payloads, use 
nullable fields, work with dates, and exchange loosely-typed payloads.

Chapter 9, Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS, 
explains that just like any standard HTTP endpoint, gRPC endpoints can be secured with 
SSL or TLS encryption and made accessible via the HTTPS protocol. This chapter will 
show you how to enable this encryption and protocol.

Chapter 10, Applying Authentication and Authorization to gRPC Endpoints, explains that, 
if needed, gRPC endpoints can be made accessible only to authenticated users or users 
with specific permissions. This chapter shows how to enable this functionality for gRPC 
endpoints on .NET.

Chapter 11, Using Logging, Metrics, and Debugging in gRPC on .NET, explains that it's 
important to be able to identify problems with an application while it is being developed. 
It's also important to monitor what the application is doing once it's been deployed. This 
chapter shows how to do all of these things. You will learn how to debug an application 
that's under development and how to use logging and metrics inside an application that 
has already been deployed.

To get the most out of this book
You need to be somewhat familiar with C#, the .NET platform, ASP.NET Core, and web 
development in general. You need to have a suitable IDE or code editor installed on your 
machine. However, if you don't have one installed, instructions on how to do so will be 
provided in the first chapter.

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code from the book's GitHub repository (a link is available in the next 
section). Doing so will help you avoid any potential errors related to the copying and 
pasting of code.



xviii     Preface

Please note that there will be some differences between .NET 5 and .NET 6 
implementations. However, where they are present, the text will mention it.

Also, some of the functionality described in the book will not work on macOS due to the 
absence of some fundamental features on the OS. However, when such cases occur, clear 
workaround instructions will be provided.

The book assumes that the reader is already somewhat familiar with ASP.NET Core and 
C#. These concepts are outside the scope of the book.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Microservices-Communication-in-.
NET-Using-gRPC. If there's an update to the code, it will be updated in the GitHub 
repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Code in Action
The Code in Action videos for this book can be viewed at https://bit.ly/3lXSruD.

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803236438_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "This class library project will be called GrpcDependencies."

https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC
https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC
https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC
https://github.com/PacktPublishing/
https://bit.ly/3lXSruD
https://static.packt-cdn.com/downloads/9781803236438_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803236438_ColorImages.pdf


Preface     xix

A block of code is set as follows:

enum ClientStatus {

  OFFLINE = 0;

  ONLINE = 1;

  BUSY = 2;  

}

Any command-line input or output is written as follows:

dotnet add GrpcBlazorClient.csproj package Grpc.Net.Client

dotnet add GrpcBlazorClient.csproj package Google.Protobuf

dotnet add GrpcBlazorClient.csproj package Grpc.Tools

dotnet add GrpcBlazorClient.csproj package Grpc.Net.Client.Web

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at 
customercare@packtpub.com and mention the book title in the subject of  
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata and fill in  
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise  
in and you are interested in either writing or contributing to a book, please visit 
authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com


xx     Preface

Share Your Thoughts
Once you've read Microservices Communication in .NET Using gRPC, we'd love to hear 
your thoughts! Please click here to go straight to the Amazon review page for this book 
and share your feedback.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.

https://packt.link/r/1-803-23643-4


Section 1:  
Basics of gRPC  

on .NET

This part teaches how to build a basic .NET application that uses gRPC. The chapters 
cover the most fundamental parts of gRPC functionality. After completing this part, you 
will know how to enable gRPC inside an ASP.NET Core application and how to connect 
to it from external applications. This part contains the following chapters:

• Chapter 1, Creating a Basic gRPC Application on ASP.NET Core

• Chapter 2, When gRPC Is the Best Tool and When It Isn't

• Chapter 3, Protobuf – the Communication Protocol of gRPC





1
Creating a Basic 

gRPC Application on 
ASP.NET Core

In this chapter, we will learn how to build a basic ASP.NET Core server application that 
uses gRPC. We will also build a basic console application that will act as a gRPC client.

The main objectives of this chapter are to introduce you to gRPC and to show you how 
easy it is to set up and use as a communication mechanism between separate services 
inside a distributed application. This would especially be relevant in a microservice 
architecture, where many different services act as one application with many moving 
components. You will see that using gRPC for communication between separate 
applications is almost as easy as calling methods inside the same application.

In this chapter, we will cover the following topics:

• Introduction to gRPC

• Preparing your system

• Setting up a gRPC server

• Setting up a gRPC client



4     Creating a Basic gRPC Application on ASP.NET Core

• Understanding how Proto files generate C# code

• Sharing a Proto file between the client and the server

• Running a gRPC service on Mac

By the end of this chapter, you will have learned how to set up all the fundamental gRPC 
components on .NET and how to use them on both the client and server side. You will 
have also learned how to efficiently share protocol definitions between the client and  
the server.

Technical requirements
To follow the instructions in this chapter, you will need the following:

• A computer with either Windows, Mac, or Linux installed

• A supported IDE or code editor (Visual Studio, Visual Studio Code, or JetBrains 
Rider)

• .NET 5 SDK

The instructions for how to set up an SDK and IDE/code editor will be provided 
later in this chapter for all the supported operating systems. The code files for this 
chapter are available on GitHub at https://github.com/PacktPublishing/
Microservices-Communication-in-.NET-Using-gRPC/tree/main/
Chapter-01.

Please visit the following link to check the CiA videos: https://bit.ly/3dQ78eM

Introduction to gRPC
gRPC is a communication mechanism that was first introduced by Google, primarily to 
enable self-contained components within a distributed application, such as microservices, 
to communicate with each other easily. It was first made publicly available in 2016. Since 
then, it has been widely adopted by developers. Official libraries for it were written in the 
most popular programming languages.

RPC in gRPC stands for Remote Procedure Calls. And, as the name suggests, its primary 
intention is to enable separate applications to call procedures inside each other's code 
remotely via the network.

https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-01
https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-01
https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-01
https://bit.ly/3dQ78eM


Introduction to gRPC     5

Inside a single application, you would define your callable components (procedures, 
functions, or methods, depending on the language). By doing that, you can call them 
from any place within the same application. This means that you call the components of 
third-party libraries that you import into your application as they become part of your 
application once imported. But with an RPC mechanism in place, the code that calls your 
callable components doesn't have to be inside the same application as those components. 
So long as separate applications are hosted on the same network, they can be set up to call 
each other's endpoints in the code.

gRPC just happens to be the most widely adopted RPC mechanism. As well as being easy 
to set up compared to the alternatives, it's also very fast. Its communication protocol, 
known as Protocol Buffer, or Protobuf, enables very efficient message serialization while 
messages are in transit.

On top of this, gRPC runs on HTTP/2, which has many performance benefits over its 
predecessor, HTTP/1.1. Some of those benefits include multiplexing (working with 
multiple streams of data in a single request), header compression (which reduces message 
size), and server push (which enables messages to be sent from the server to a connected 
client without an explicit response from the client). gRPC utilizes these features, but it 
requires HTTP/2 protocol to be enabled on the network it's running on.

The key benefits of gRPC include the following:

• Highly performant due to the utilization of HTTP/2 features and a lightweight 
messaging mechanism.

• Multiple connection options instead of just a standard request/response mechanism 
available with bare HTTP.

• Easy and intuitive to set up with built-in code generators.

• Easy to write code against due to it having a strongly typed API schema that was 
designed to be highly readable.

• Widely adopted by developers with many existing libraries and code samples 
available.

• It is the de facto standard mechanism for direct communication between 
microservices.

• Official implementations are available on most of the popular programming 
languages and frameworks.

• Can enable communication between applications written in different languages.

• Has an in-built mechanism for hassle-free API versioning.



6     Creating a Basic gRPC Application on ASP.NET Core

gRPC on ASP.NET Core
While gRPC has been publicly available since 2016, until 2019, it was only available on 
ASP.NET Core via third-party libraries, such as the Grpc.Core NuGet package. But with 
the release of ASP.NET Core 3.0, it was made available as one of the core components of 
the framework itself.

This has significantly simplified the process of setting up gRPC inside ASP.NET Core 
applications. As well as there being less boilerplate code to write, there is now better 
integration between gRPC and the .NET runtime, which improves the stability of the 
application.

On top of this, there are now pre-defined project templates available in Visual Studio IDE 
and the dotnet CLI (command-line interface) environment to allow you to initialize your 
projects with gRPC components that have already been enabled.

gRPC, along with existing features of ASP.NET Core, made it incredibly easy to build 
distributed applications by using a microservice architecture. The standard gRPC 
components are very easy to add to your application and the standard .NET build process 
will auto-generate all the relevant code for you.

As well as this, proto files, which, in gRPC, are used to define communication contracts, 
can be shared between the client and the server applications by using the standard library 
referencing mechanism of .NET, so the same proto file doesn't have to be duplicated in 
a separate project. Proto files can be stored in a reference library that both the client and 
the server applications use. Then, both of them can be updated simultaneously with the 
same copy of the communication contract so that no mismatches or incompatibility will 
accidentally be introduced.

Using gRPC in your own distributed ASP.NET Core 
application
We will start with the most fundamental part – step-by-step instructions on how to set up 
an ASP.NET Core application as a gRPC server and how to set up a .NET client that can 
talk to it.

Preparing your system
To be able to use gRPC on ASP.NET Core, you will need an integrated development 
environment (IDE) or a code editor that has full .NET support. You will also need the 
latest software development kit (SDK) version of .NET, which, at the time of writing,  
is .NET 5.



Preparing your system     7

Other than these components, you don't need anything else to start developing a gRPC 
application for .NET. It's already included in the framework. And whenever you need an 
add-on library, you will be instructed on how to obtain it.

Because .NET is an OS-independent framework, you can write applications for it on either 
Windows, Mac, or Linux. However, your setup steps will be slightly different, so please 
follow the section that is relevant to your system.

Setting up your environment on Windows
On Windows, you have three main options regarding an IDE for .NET. They are listed 
here in order of preference, based on how many features they have and how easy they are 
to use:

• JetBrains Rider

• Microsoft Visual Studio

• Visual Studio Code

Rider is a fully functioning IDE. Compared to the other options, it has many additional 
tools. It's also easier to optimize and configure.

The downside of Rider is that it's only available as a paid-for premium, although a 30-day 
free trial is available for new users.

To download Rider, navigate to https://www.jetbrains.com/rider/
download/ and follow the setup instructions provided:

Figure 1.1 – JetBrains Rider download page

https://www.jetbrains.com/rider/download/
https://www.jetbrains.com/rider/download/


8     Creating a Basic gRPC Application on ASP.NET Core

Alternatively, you can download Visual Studio. It's the official IDE for .NET from 
Microsoft. And, unlike Rider, it has a free tier version known as Community Edition.

To download the latest version of Visual Studio (Visual Studio 2019, at the time of 
writing), go to https://visualstudio.microsoft.com/downloads/:

Figure 1.2 – Microsoft Visual Studio download page

Lastly, there is Visual Studio Code, which, despite sounding similar to Visual Studio, is 
a completely different product. While Visual Studio is a fully-fledged IDE, Visual Studio 
Code is merely a code editor.

However, despite being just a code editor, it's still a powerful tool that you can develop 
your code in. And it's highly configurable, so you will be able to use it to write code in 
many different languages, not just the ones that are specific to .NET.

The advantage of Visual Studio Code over either Visual Studio or Rider is that it's 
lightning-fast. Because it's just an editor that lacks many tools that IDEs have, it has far 
fewer things to load and run in the background.

The disadvantage of using Visual Studio Code over either Visual Studio or Rider is that, 
as a code editor, it lacks some basic features that are typically embedded into an IDE. For 
example, you will not be able to compile your project without integrating the editor with 
some add-on tool or using the CLI.

https://visualstudio.microsoft.com/downloads/


Preparing your system     9

Visual Studio Code can be obtained via https://code.visualstudio.com/
download:

Figure 1.3 – Visual Studio Code download page

Once you have downloaded your preferred IDE, you can proceed with its installation.

Setting up your environment on Mac
On Mac, you have three main options regarding an IDE for .NET. They are listed here  
in their order of preference, based on how many features they have and how easy they  
are to use:

• JetBrains Rider

• Microsoft Visual Studio for Mac

• Visual Studio Code

Rider is a fully functioning IDE. Compared to the alternative options, it has many 
additional tools. It's also easier to optimize and configure.

The downside of Rider is that it's only available as a paid-for premium, although a 30-day 
free trial is available for new users.

To download Rider, navigate to https://www.jetbrains.com/rider/
download/ and follow the setup instructions provided.

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://www.jetbrains.com/rider/download/
https://www.jetbrains.com/rider/download/


10     Creating a Basic gRPC Application on ASP.NET Core

Alternatively, you can download Visual Studio for Mac. It's the official IDE for .NET from 
Microsoft. And, unlike Rider, it can be downloaded for free.

To download the latest version of Visual Studio for Mac, go to https://
visualstudio.microsoft.com/vs/mac.

Lastly, there is Visual Studio Code, which, despite sounding similar to Visual Studio for 
Mac, is a completely different product. While Visual Studio for Mac is a fully-fledged IDE, 
Visual Studio Code is merely a code editor.

However, despite being just a code editor, it's still a powerful tool for developing your 
code. And it's highly configurable, so you will be able to use it to write code in many 
different languages, not just the ones that are specific to .NET.

The advantage of Visual Studio Code over either Visual Studio for Mac or Rider is that it's 
lightning-fast. Because it's just an editor that lacks many tools that IDEs have, it has far 
fewer things to load and run in the background.

The disadvantage of using Visual Studio Code over either Visual Studio for Mac or Rider 
is that, as a code editor, it lacks some basic features that are embedded into an IDE. For 
example, you will not be able to compile your project without integrating the editor with 
some add-on tool or using the CLI.

Visual Studio Code can be obtained via https://code.visualstudio.com/
download.

Setting up your environment on Linux
On Linux, you have two main options regarding an IDE for .NET. They are listed here  
in their order of preference, based on how many features they have and how easy they  
are to use:

• JetBrains Rider

• Visual Studio Code

Rider is a fully functioning IDE. Compared to the alternative options, it has many 
additional tools. It's also easier to optimize and configure.

The downside of Rider is that it's only available as a paid-for premium, although a 30-day 
free trial is available for new users.

To download Rider, navigate to https://www.jetbrains.com/rider/
download/ and follow the setup instructions provided.

https://visualstudio.microsoft.com/vs/mac
https://visualstudio.microsoft.com/vs/mac
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://www.jetbrains.com/rider/download/
https://www.jetbrains.com/rider/download/


Setting up a gRPC server     11

Lastly, there is Visual Studio Code, which is a highly configurable code editor, so you 
will be able to use it to write code in many different languages, not just the ones that are 
specific to .NET.

The advantage of Visual Studio Code over Rider is that it's lightning-fast. Because it's just 
an editor that lacks many tools that IDEs have, it has far fewer things to load and run in 
the background.

The disadvantage of using Visual Studio Code over Rider is that, as a code editor, it lacks 
some basic features that are embedded into an IDE. For example, you will not be able to 
compile your project without integrating the editor without some add-on tool or using  
the CLI.

Visual Studio Code can be obtained via https://code.visualstudio.com/
download. 

With this, our IDE setup is complete.

Downloading the .NET SDK (all operating systems)
Lastly, to write .NET applications, you will need to download the .NET platform.

There are two versions of it: runtime and SDK. As a developer, you will need the SDK. The 
runtime is only suitable for running .NET applications that have already been compiled; it 
cannot be used to write application code and compile applications.

The .NET SDK can be obtained via the following link. Please use the latest full release 
version. Further instructions are available at https://dotnet.microsoft.com/
download/dotnet.

Now that your environment has been set up, you can start building an ASP.NET Core 
application with basic gRPC capabilities.

Setting up a gRPC server
Now that your environment has been set up, you are ready to create your gRPC  
server application.

There are several ways to proceed. Regardless of whether you've chosen to use the IDE or 
CLI, you will be able to use the gRPC project template to initialize your application code, 
with all the gRPC capabilities already pre-defined. However, in real-life scenarios, you 
may want to add gRPC capabilities to an existing hosted web service. Therefore, we will 
go through the process of creating a bare-bones ASP.NET Core application and then add 
gRPC capabilities to it.

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://dotnet.microsoft.com/download/dotnet
https://dotnet.microsoft.com/download/dotnet


12     Creating a Basic gRPC Application on ASP.NET Core

Initializing an ASP.NET Core project via an IDE
If you are using an IDE (Rider, Visual Studio, or Visual Studio for Mac), the process of 
initializing a new ASP.NET Core project is the same. When you launch the IDE, you will 
be presented with the option to create a new project. Click on this option and, from the 
list of templates, choose Web App.

This template will be called slightly differently, depending on what IDE you are using. For 
example, on Visual Studio for Windows, multiple templates represent an ASP.NET Core 
web application. For this project, any of them would be suitable. However, since you will 
only be using basic ASP.NET Core features, you should choose the most basic template. 
On the Windows version of Visual Studio, it is called ASP.NET Core Web App:

Figure 1.4 – Web App project template in Visual Studio 2019



Setting up a gRPC server     13

JetBrains Rider will have a similar project template name with some variations, depending 
on the version. However, if you are using Visual Studio for Mac, the project template that 
you need will be called Web Application:

Figure 1.5 – Web Application template on Visual Studio for Mac



14     Creating a Basic gRPC Application on ASP.NET Core

Once you select the template, you will be asked for the project's name. I have called mine 
BasicGrpcService. You can give yours any name, but for the convenience of following 
the instructions, you should give your project the same name:

Figure 1.6 – Naming your project

When you're asked which framework version you would like to use, select the latest one, 
which, at the time of writing, is .NET 5.

Also, if you are asked for the authentication type, select None. If you have the Configure 
for HTTPS option, make sure that it's selected. Leave the remaining settings as-is and 
click on Create:



Setting up a gRPC server     15

Figure 1.7 – Runtime selection and ensuring HTTPS is enabled

At this point, a solution should have been created with an ASP.NET Core project inside it.

Initializing an ASP.NET Core project via the dotnet CLI
If you don't have access to an IDE or if you prefer to work with the command line, you can 
create the project via the dotnet CLI, which will be available on any system that has the 
.NET 5 SDK installed. To do so, navigate to the folder that you want to place your project 
in and execute the following command:

dotnet new webapp -o BasicGrpcService

Finally, since you have selected to enable HTTPS (which is recommended for gRPC), you 
will need to install and trust the development HTTPS certificate for .NET.

If you are using a Mac, then you will not be able to configure the HTTPS on gRPC 
endpoints, so you will need to enable HTTP too. The instructions on how to do so are 
available in the Running a gRPC service on Mac section.



16     Creating a Basic gRPC Application on ASP.NET Core

If you are using an IDE, such as Visual Studio or Rider, the process of installing and 
trusting the development certificate will happen automatically. You will receive a prompt 
when you launch your application via the IDE for the first time. Otherwise, you can 
configure the certificate via a CLI command.

To do so on Windows or Mac, you can execute the following command inside your 
project folder:

dotnet dev-certs https --trust

On Linux, this command may not work, as different Linux distributions have completely 
different mechanisms for trusting self-signed HTTPS certificates. If you are using Linux, 
you will need to obtain this information from the documentation that's specific to the 
distribution you are using.

Congratulations! You now have a functioning ASP.NET Core application that you can 
start adding gRPC server components to.

Adding gRPC server components to an ASP.NET  
Core project
Because you have initially chosen a basic ASP.NET Core application template, your project 
file (BasicGrpcService.csproj) should only contain the most basic markup,  
such as this:

<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>

    <TargetFramework>net5.0</TargetFramework>

  </PropertyGroup>

</Project>

Now, we will need to modify it to add gRPC components. First, we will run the following 
command from the project folder to install the required NuGet package:

dotnet add BasicGrpcService.csproj package Grpc.AspNetCore

Here, we have added a NuGet package reference to the Grpc.AspNetCore library.  
This library adds all the necessary components to enable gRPC inside an ASP.NET  
Core application.



Setting up a gRPC server     17

There is also another element that you may not be familiar with if you haven't used gRPC 
inside an ASP.NET Core application before. It's called Protobuf and its role is to tell the 
application which protocol buffer files are available for writing code against. This element 
will ensure that the right code snippets are generated inside your application.

You will need to add the following markup snippet to the BasicGrpcService.
csproj file to enable this:

<ItemGroup>

  <Protobuf Include="Protos\greeter.proto"

    GrpcServices="Server" />

</ItemGroup>

Your file will look similar to this:

<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>

    <TargetFramework>net5.0</TargetFramework>

  </PropertyGroup>

  <ItemGroup>

    <Protobuf Include="Protos\greeter.proto"

      GrpcServices="Server" />

  </ItemGroup>

  <ItemGroup>

    <PackageReference Include="Grpc.AspNetCore"

      Version="2.34.0" />

  </ItemGroup>

</Project>

Please note that the Protobuf element has the GrpcServices attribute set to Server. 
We've done this to tell our compiler that we only expect our application to act as a server 
while using the greeter.proto file from inside the Protos folder. This will ensure 
that only server-related classes will be generated by the compiler.

You can choose the Client role as well. In this case, it's only the client-side components 
that will be generated from our proto file. But since we are building the server-side 
application right now, it's certainly not the right role to choose.

Also, you can choose to omit the GrpcServices attribute completely. In this case, you 
will be able to generate both server-side and client-side components for your code.



18     Creating a Basic gRPC Application on ASP.NET Core

Next, we will need to add a proto file that defines the communication mechanism between 
the client and the server. To do so, create a Protos folder inside your project folder and 
place the greeter.proto file inside it with the following content:

syntax = "proto3";

option csharp_namespace = "BasicGrpcService";

 package greeter;

 

// The greetings manager service definition.

service GreetingsManager {

  // Request the service to generate a greeting message.

  rpc GenerateGreeting (GreetingRequest) returns

    (GreetingResponse);

}

 

// The request message definition containing the name to be 

  addressed in the greeting message.

message GreetingRequest {

  string name = 1;

}

 

// The response message definition containing the greeting  
  text.

message GreetingResponse {

  string greetingMessage = 1;

}

This is a very bare-bones proto file. It's the equivalent of a Hello World application as it's 
only there to demonstrate the very basic functionality to a complete beginner.

We will cover the format of the proto file in more detail later. For now, let's go through the 
basics by using this example.

The first element is syntax. In our case, its value is set to proto3. There were several 
iterations of the gRPC communication protocol and the current one is the third iteration. 
Due to this, we have explicitly specified it here, as some applications may otherwise 
assume that this file represents an older version of the protocol.



Setting up a gRPC server     19

Then, we have the csharp_namespace option. This option is specific to the C# 
language as it's the language that we will be working with. It tells our compiler what 
namespace it should use while generating classes based on these proto definitions. So, the 
server and client classes that are based on the service elements of the proto file will be 
under the namespace defined here.

Next, we have the package element. package in Protobuf is conceptually similar to C# 
namespaces, but it's intended for Protobuf rather than the code that gets generated from 
it. package allows one proto definition to reference other definitions, just like the C# 
class can reference external libraries by using namespaces.

Next, we have the service definition. A single proto file can have lots of these. But 
essentially, a single proto service represents a single client or server class in the code.

Inside the server, rpc definitions represent remotely called procedures, which are 
equivalent to C# methods. Each of those definitions has a unique name, a single message 
definition as its parameter (the request message), and a single message definition as its 
return object (the response message).

The RPC definition must always have a single request and a single response. You cannot 
have RPC without putting anything into the parameters or its return statement. Nor can 
you specify multiple message definitions in either of those places.

However, there are ways of sending or returning empty messages in gRPC calls. Even 
though a message definition must be specified, it doesn't need to have any fields.

Likewise, there are multiple ways of sending or receiving multiple messages. First, both 
the client and the server can stream messages, which will enable the system to send or 
receive multiple messages of the same schema rather than one. Also, each message can 
have other messages as data types in its fields. It can also use collections, which allows it to 
put multiple messages of the same kind into a single field.

Messages are defined by the message keyword in a proto file. The closest equivalent in 
C# is basic classes or structs that are used for data transfer.

Each message can have zero or any number of data fields. Each data field is defined by its 
data type (which we will cover in more detail in Chapter 3, Protobuf – the Communication 
Protocol of gRPC), unique name, and unique sequence number. For example, this is the 
only data field that we will use inside GreetingRequest:

string name = 1;

The sequence number at the end must start with 1 and be unique for each field. These 
sequence numbers simplify the process of API versioning in gRPC, which we will cover in 
more detail in Chapter 3, Protobuf – the Communication Protocol of gRPC.



20     Creating a Basic gRPC Application on ASP.NET Core

Finally, our example contains multiple comments, which, just like in C#, start with //. 
They are completely ignored by the compiler.

Adding some code to use gRPC components
Now, we are ready to start modifying our application so that it can use the gRPC 
components that we have added.

First, you will need to create a Services folder inside your project folder. Then, we must 
add a file to it and name it GreetingsManagerService.cs. Then, we must put the 
following content into this file:

using System.Threading.Tasks;

using Grpc.Core;

namespace BasicGrpcService

{

     public class GreetingsManagerService : 

       GreetingsManager.GreetingsManagerBase

    {

        public override Task<GreetingResponse> 

          GenerateGreeting(GreetingRequest request,

            ServerCallContext context)

        {

            return Task.FromResult(new GreetingResponse

            {

                GreetingMessage = "Hello " + request.Name

            });

        }

    }

}

Please note that, at this stage, you may receive a compiler error. If you do, it will persist 
until you build the application. But don't worry about it for now.

This class represents the server-side logic that is defined by the GreetingsManager 
service, which we specified in the greeter.proto file. The basic code 
placeholders are auto-generated from the proto file and, in our case, are placed in the 
GreetingsManager.GreetingsManagerBase class, which our class extends. Then, 
we just need to override the methods from this class to apply our custom logic.



Setting up a gRPC server     21

The override of the GenerateGreeting task is the representation of the 
GenerateGreeting RPC, which is defined inside the GreetingsManagerer 
service in the greeter.proto file. However, you may have noticed that it doesn't 
match the definition. Yes – as the proto file has specified, it accepts a parameter of the 
GreetingRequest type and returns an object of the GreetingResponse type. 
However, it also has an additional input parameter of the ServerCallContext type.

Well, this parameter is nothing but a collection of metadata that was populated by the 
client sending the request. It contains information such as the username and connection 
state. It plays a similar role to HttpContext, which is used by the HTTP endpoints 
(MVC, REST API, and so on) of ASP.NET Core.

This code is very simple. When a client calls this method, the Name property of the 
GreetingRequest input parameter is read. This value is inserted at the end of the 
Hello text. So, for example, if the name is John, the output would be Hello John. 
Then, this value is inserted into the GreetingMessage property of a newly initialized 
instance of the GreetingResponse object, which is returned to the calling client.

Next, we will need to modify our Startup class to register the 
GreetingsManagererService class as a valid gRPC endpoint. To do so, first, 
add the following line inside the ConfigureServices method. If you are using 
.NET 6 project template, there will be no Startup class. And neither will there be 
ConfigureServices method. So, you will just need to apply the following code to the 
main body of Program.cs class, replacing services with builder.Services. And 
it will need to be placed before the Build event:

services.AddGrpc();

Next, add the following code inside the call to app.UseEndpoints, inside the 
Configure method:

endpoints.MapGrpcService<GreetingsManagerService>();

Finally, inside your Properties folder in the root of your project folder, locate the 
profiles element and replace its content with the following:

"profiles": {

    "BasicGrpcService": {

      "commandName": "Project",

      "dotnetRunMessages": "true",

      "launchBrowser": false,

      "applicationUrl": 



22     Creating a Basic gRPC Application on ASP.NET Core

        "http://localhost:5000;https://localhost:5001",

      "environmentVariables": {

        "ASPNETCORE_ENVIRONMENT": "Development"

      }

    }

  }

That's it – our gRPC server has been fully configured. Now, you can launch your 
application and see if it works correctly. If it does, you should see some console output, 
and the application shouldn't throw any visible errors:

Figure 1.8 – Console output from the gRPC server

With this, we have set up our gRPC server. Now, let's move on to the next step and set up 
a gRPC client that can talk to it.

Setting up a gRPC client
Now, we will add a basic gRPC client that will be able to communicate with our service  
via gRPC. This will be a basic console application. The process will consist of the  
following steps:

1. Initialize the console application project.
2. Add some gRPC client dependencies to the project.
3. Add some code to connect to the gRPC client.

Once you've followed these steps, your basic console application will be able to send 
requests to the gRPC server and receive responses from it.



Setting up a gRPC client     23

Initializing the project for the client application
If you are using an IDE, you can add a new project to your solution. The template that you 
will need is called Console Application or Console Project, depending on which IDE 
you're using. However, you need to make sure that you don't choose the .NET Framework 
version of the template, which will be clearly labeled. Likewise, make sure that you select 
the C# template as the IDE may present you with options for other languages too:

Figure 1.9 – Console Application template on Visual Studio 2019

As console application is a very basic application type; there won't be any complex setup 
options to select while creating the project. You can leave all the default options selected. 
Let's call our new project BasicGrpcClient.



24     Creating a Basic gRPC Application on ASP.NET Core

If you are using a code editor and CLI instead of a fully-fledged IDE, you can create 
the project by executing a dotnet CLI command. Please ensure that you execute this 
command from the folder where the BasicGrpcService project folder is located. 
It will create the new project folder at the same level inside of your filesystem that your 
original project folder is located at. The command will be as follows:

dotnet new console -o BasicGrpcClient

Adding gRPC client components to the application
Now, to make your console application act as a gRPC client, you will need to add some 
NuGet references to your project. You can do so by executing the following commands 
inside your BasicGrpcClient project folder:

dotnet add BasicGrpcClient.csproj package Grpc.Net.Client

dotnet add BasicGrpcClient.csproj package Google.Protobuf

dotnet add BasicGrpcClient.csproj package Grpc.Tools

Once the packages have been installed, the content of your BasicGrpcClient.
csproj file should be similar to this:

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>

    <OutputType>Exe</OutputType>

    <TargetFramework>net5.0</TargetFramework>

  </PropertyGroup>

  <ItemGroup>

    <PackageReference Include="Google.Protobuf"

      Version="3.17.3" />

    <PackageReference Include="Grpc.Net.Client"

      Version="2.38.0" />

    <PackageReference Include="Grpc.Tools" Version="2.38.1">

      <IncludeAssets>runtime; build; native; contentfiles; 

        analyzers; buildtransitive</IncludeAssets>

      <PrivateAssets>all</PrivateAssets>

    </PackageReference>



Setting up a gRPC client     25

  </ItemGroup>

</Project>

Next, we will need to add the following section to the project file, which references the 
proto file we will be using to communicate with the server:

  <ItemGroup>

    <Protobuf Include="Protos\greeter.proto"

      GrpcServices="Client" 

      />

  </ItemGroup>

This will make our project file look like this:

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>

    <OutputType>Exe</OutputType>

    <TargetFramework>net5.0</TargetFramework>

  </PropertyGroup>

  <ItemGroup>

    <PackageReference Include="Google.Protobuf"

      Version="3.17.3" />

    <PackageReference Include="Grpc.Net.Client"

      Version="2.38.0" />

    <PackageReference Include="Grpc.Tools" Version="2.38.1">

      <IncludeAssets>runtime; build; native; contentfiles; 

        analyzers; buildtransitive</IncludeAssets>

      <PrivateAssets>all</PrivateAssets>

    </PackageReference>

  </ItemGroup>

  <ItemGroup>

    <Protobuf Include="Protos\greeter.proto"

      GrpcServices="Client" />



26     Creating a Basic gRPC Application on ASP.NET Core

  </ItemGroup>

</Project>

This is similar to what we've done with the server application. But this time, we are telling 
our application to only generate code for the client components. This is why we have set 
the GrpcServices attribute to Client.

Because we will be connecting to the server we created previously, we need a proto file 
with package, service, rpc, and message definitions that are identical to what we 
had in our server-side proto file. However, our C# namespace can be different.

Therefore, what you'll need to do next is create a Protos folder inside your 
BasicGrpsClient project folder. Then, you must insert the greeter.proto file into 
this folder and ensure it has the following content:

syntax = "proto3";

option csharp_namespace = "BasicGrpcClient";

 package greeter;

 

// The greetings manager service definition.

service GreetingsManager {

  // Request the service to generate a greeting message.

  rpc GenerateGreeting (GreetingRequest) returns 

    (GreetingResponse);

}

 

// The request message definition containing the name to be 

  addressed in the greeting message.

message GreetingRequest {

  string name = 1;

}

 

// The response message definition containing the greeting  
  text.

message GreetingResponse {



Setting up a gRPC client     27

  string greetingMessage = 1;

}

Please note that this file is identical to the one we have in our server application project, 
except for the csharp_namespace element. This element is used by the gRPC tools 
inside your specific .NET project and it does not affect compatibility between the server 
and client versions of the proto file. However, the rest of the elements must be the same for 
the communication system to recognize that it's meant to be the same interface.

Some differences are tolerated (which we will talk about when we cover API versioning 
in Chapter 5, How to Apply Versioning to the gRPC API). But the fundamental structure of 
your standard gRPC element definitions must match.

Applying gRPC client components to the code
In your BasicGrpcClient project, locate the Program.cs class and change its 
content to the following:

using System;

using System.Threading.Tasks;

using Grpc.Net.Client;

namespace BasicGrpcClient

{

    class Program

    {

        static async Task Main()

        {

             // The port number(5001) must match the port of 

             the gRPC server.

            using var channel = 

            GrpcChannel.ForAddress("https://localhost:5001");

            var client = new 

            GreetingsManager.GreetingsManagerClient(channel);

            var reply = await client.GenerateGreetingAsync(

            new GreetingRequest { Name = "BasicGrpcClient" });

            Console.WriteLine("Greeting: " + reply.

              GreetingMessage);

            Console.WriteLine("Press any key to exit...");



28     Creating a Basic gRPC Application on ASP.NET Core

            Console.ReadKey();

        }

    }

}

Please note that the highlighted URL represents the HTTPS access point to the  
gRPC server. This will not be available if you are running your software on Mac.  
The workaround to this is described in the Running a gRPC service on Mac section of  
this chapter.

This code does the following:

1. First, it initializes the gRPC channel for the hardcoded address of https://
localhost:5001. Please note that this is the same address that we defined in the 
launchSettings.json file in the BasicGrpcService project. But in a real 
commercial application, this will be configurable rather than hardcoded.

2. Then, it uses this channel to initialize a new instance of the gRPC client that  
was generated by the GreetingsManager service definition in our  
greeter.proto file.

3. Next, it calls the GenerateGreetingAsync method of the client object 
with a new instance of GreetingRequest that has its Name property set to 
BasicGrpcClient. Please note that it represents the GenerateGreeting 
rpc definition from the proto file, but the Async part has been added to the name. 
This is because, in .NET, each gRPC procedure is represented by synchronous and 
asynchronous methods on the client side. The async version returns an awaitable 
task, so the calling code can be set to do something else while we are waiting for 
the reply. The synchronous version, which has the same name as the original rpc 
definition but without "Async" at the end, blocks execution of the calling code until 
the result has been received.

4. From this call, we receive an instance of GreetingResponse.
5. Then, we read the value of its GreetingMessage field and print it in the console.
6. Finally, the console prompts the user to press any key to exit.

Now, you can launch both of your applications and see how they communicate with each 
other. It's better to launch the server application first to make sure that it has fully loaded 
before the client application tries to communicate with it.



Understanding how proto files generate  C# code     29

The simplest way to launch both applications is to open two instances of the command-
line window (cmd, PowerShell, or Terminal, depending on your operating system and 
your preferences). In one command-line window, navigate to the BasicGrpcService 
project folder and execute the following command:

dotnet run

This will build and run the server application for you. Once it's showing the output  
that indicates that the gRPC server is running, open the other instance of the  
command-line window, navigate to the BasicGrpcClient project folder, and execute 
the same command.

You should receive the following output, which indicates that the client was able to 
successfully call the method on the server via the network:

Figure 1.10 – Console output from the gRPC client application

Now, if you re-examine the code from your client and your server, you will see that it 
looks almost as if you are calling the code from inside the same application. And that's 
precisely what makes gRPC so easy to use.

In both the applications that we covered, you saw how relevant code is automatically 
generated from proto files. In certain scenarios, it would be useful to know how this 
mechanism works. This is what we will have a look at now.

Understanding how proto files generate  
C# code
Normally, you wouldn't need to worry about how C# classes are generated from proto 
files. The compiler does it all for you. But occasionally, there may be a problem with the 
process. Therefore, it would be useful to know how to find the generated code and what 
the expected output should be.



30     Creating a Basic gRPC Application on ASP.NET Core

Where is auto-generated code stored?
At this point, you know that the .NET compiler generates code from the proto files. This 
can then be referenced from inside your application code. And you can also get it to share 
the same namespace as your application. But despite the ability of this code to  
inter-operate with your application code, it's not part of your application.

The auto-generated code is placed in the obj folder inside your project folder. The 
purpose of this folder is to store intermediate resources that are required to compile 
your application. Since auto-generated classes aren't part of your main application, but 
your application cannot be compiled without them, they are placed alongside other 
intermediate files in this folder.

More precisely, the location of those auto-generated files is as follows. This represents the 
path on the Windows system. For a Unix-based system, such as macOS or Linux, replace 
back-slashes (\) with forward-slashes (/):

{your project folder}\obj\{build configuration}\{framework 

  name}\Ptotos

So, for our BasicGrpcService project, which is based on .NET 5's built-in Debug 
mode, the path would be as follows:

BasicGrpcService\obj\Debug\net5.0\Ptotos

For each proto file that you reference in your project, a pair of files containing C# code 
will be generated:

• {PascalCase proto file name}.cs

• {PascalCase proto file name}Grpc.cs

The {PascalCase proto file name}.cs file contains a C# representation of the 
proto messages that your services use, while {PascalCased proto file name}
Grpc.cs contains a C# representation of the services themselves, whether it's overridable 
base classes for the server or ready-made classes for the client.

In our example, which uses the greeter.proto file, we would end up with two files 
with the following names:

• Greeter.cs

• GreeterGrpc.cs



Understanding how proto files generate C# code      31

The content of those auto-generated files would be similar to the following:

Figure 1.11 – An example of auto-generated gRPC C# code

You can examine the structure of these files if you like. Now, let's learn how making 
changes to the namespaces in Protobuf will affect the auto-generated code.

Modifying Protobuf namespaces
So far, we have been using the csharp_namespace option inside our proto files to 
set the namespaces of auto-generated code classes to the same root namespace that our 
application uses. But it doesn't have to be this way. You can set the namespaces in auto-
generated code to absolutely anything.

You can also omit the csharp_namespace option entirely. If you do so, the namespace 
that will be applied to your auto-generated code will be the PascalCase version of the 
package name that's specified in the package element of the proto file.

In our case, since the package is called greeter, the C# namespace that's generated from 
it will be Greeter.



32     Creating a Basic gRPC Application on ASP.NET Core

Now, go ahead and remove the csharp_namespace element from both the client and 
server versions of the greeter.proto file. Both copies of the files should now look  
as follows:

syntax = "proto3";

 package greeter;

 

// The greetings manager service definition.

service GreetingsManager {

  // Request the service to generate a greeting message.

  rpc GenerateGreeting (GreetingRequest) returns 

    (GreetingResponse);

}

 

// The request message definition containing the name to be 

  addressed in the greeting message.

message GreetingRequest {

  string name = 1;

}

 

// The response message definition containing the greeting 

  text.

message GreetingResponse {

  string greetingMessage = 1;

}

Now, if you try to compile the projects, they will show errors. What you need to do is add 
a using statement to both the client and the server code referencing this namespace.

The content of the GreetingsManagerService.cs file inside the 
BasicGreeterService project should now look as follows:

using System.Threading.Tasks;

using Greeter;

using Grpc.Core;

namespace BasicGrpcService

{



Understanding how proto files generate C# code      33

     public class GreetingsManagerService : 

       GreetingsManager.GreetingsManagerBase

    {

        public override Task<GreetingResponse> 

          GenerateGreeting(GreetingRequest 

            request, ServerCallContext context)

        {

            return Task.FromResult(new GreetingResponse

            {

                GreetingMessage = "Hello " + request.Name

            });

        }

    }

}

The content of the Program.cs file inside the BasicGreeterClient project should 
now look as follows:

using System;

using System.Threading.Tasks;

using Greeter;

using Grpc.Net.Client;

namespace BasicGrpcClient

{

    class Program

    {

        static async Task Main()

        {

             // The port number(5001) must match the port of 

             the gRPC server.

             using var channel = 

               GrpcChannel.ForAddress("https://

                 localhost:5001");

             var client = new 

               GreetingsManager.

                 GreetingsManagerClient(channel);



34     Creating a Basic gRPC Application on ASP.NET Core

             var reply = await client.GenerateGreetingAsync(

             new GreetingRequest { Name = "BasicGrpcClient" });

             Console.WriteLine("Greeting: " + 

               reply.GreetingMessage);

             Console.WriteLine("Press any key to exit...");

             Console.ReadKey();

        }

    }

}

Now, you know how easy it is to regenerate relevant code after making changes to the 
Protobuf definition. At this point, you have two copies of the greeter.proto file that 
are identical.

At this stage, you may be wondering whether having separate copies of this file would 
violate the don't repeat yourself (DRY) principle, which is a commonly accepted best 
practice when writing software. Will any problems occur if you update one of these files 
while forgetting to update the other? Isn't it possible to keep a single shared copy of the file 
that both the client and the server use?

Fortunately, you can share the same file between multiple applications in .NET. Let's have 
a look at how.

Sharing a proto file between the client and  
the server
In .NET, if you want to share common functionality between different applications, you 
would put this functionality into a class library and then add this library to all the projects 
that need to use it. The good news is that you can do the same with proto files. To share 
this between applications, you can just add it to a class library and then add the class 
library as a reference.

Let's do this with our client and server projects.

Creating a shared class library
Inside the folder that holds both the BasicGrpcService and BasicGrpcClient 
project folders, create a new class library project and call it GrpcDependencies.



Sharing a proto file between the client and the server      35

If you are using an IDE, you can add a project by choosing the Class Library 
template. Please ensure that .NET 5 is selected as the framework. Otherwise, keep all other 
options as-is.

If you prefer to use a CLI, you can execute the following command inside the folder 
hosting your existing projects to create a class library:

dotnet new classlib -o GrpcDependencies

Please note that, with a class library that is shared between projects, it would be more 
convenient to manage them if you have all these projects, including the class library itself, 
added to a solution.

If you have been using an IDE up to this point with all the default options selected, unless 
specified otherwise, you probably have the solution set up and all of your projects will 
already be a part of it.

If this is what your setup already looks like, you can skip to the next section. Otherwise, 
you can execute the following command inside the folder that hosts all your project 
folders to create a solution file:

dotnet new sln

This will create a file with the .sln extension that has the same name as the folder that 
hosts it.

Now, you can add all your projects to the folder by executing the following commands:

dotnet sln add GrpcDependencies/GrpcDependencies.csproj

dotnet sln add BasicGrpcService/BasicGrpcService.csproj

dotnet sln add BasicGrpcClient/BasicGrpcClient.csproj

You should now have a solution set up and all projects added to it. If you choose the 
build solution option, all the projects will be built together. You no longer have to 
build them individually.

Adding shared gRPC components to the class library
Since you now have a shared library for storing proto files, you no longer need to store a 
copy of the greeter.proto file in every project that uses it. You just need to store one 
copy in the class library itself.

So, copy the entire proto folder from either the BasicGrpcService or 
BasicGrpcClient folder into the GrpcDependencies folder.



36     Creating a Basic gRPC Application on ASP.NET Core

Next, we will need to add the right NuGet dependencies to our GrpcDependencies 
class library. The dependencies that we used to reference our client and server projects will 
only need to be referenced in the class library, so our dependency tree will be kept clean.

To add the required dependencies, execute the following CLI commands inside the 
GrpcDependencies folder:

dotnet add GrpcDependencies.csproj package Grpc.Net.Client

dotnet add GrpcDependencies.csproj package Google.Protobuf

dotnet add GrpcDependencies.csproj package Grpc.Tools

dotnet add GrpcDependencies.csproj package Grpc.AspNetCore

Please note that these are the standard NuGet packages that are used by both the 
gRPC client and server. Because our shared class library will be used by both types of 
applications, we need both sets of dependencies.

Now, add a proto reference to your GrpcDependencies.csproj file. We will amend 
the GrpcServices element to this as we need to be able to build both the client and 
server gRPC components from the class library. Therefore, the markup block that we need 
to add to the project file will look like this:

  <ItemGroup>

    <Protobuf Include="Protos\greeter.proto" />

  </ItemGroup>

Finally, remove any other greet.proto file references from your project file, which 
could have been auto-generated when you copied the file into the project folder.

Now, the content of your GrpcDependencies.csproj file should look similar to this:

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>

    <TargetFramework>net5.0</TargetFramework>

  </PropertyGroup>

  <ItemGroup>

    <PackageReference Include="Google.Protobuf" 

      Version="3.17.3" />

    <PackageReference Include="Grpc.Net.Client" 

      Version="2.38.0" />



Sharing a proto file between the client and the server      37

    <PackageReference Include="Grpc.Tools" Version="2.38.1">

      <IncludeAssets>runtime; build; native; contentfiles; 

        analyzers; buildtransitive</IncludeAssets>

      <PrivateAssets>all</PrivateAssets>

    </PackageReference>

    <PackageReference Include="Grpc.AspNetCore" 

      Version="2.34.0" />

  </ItemGroup>

  <ItemGroup>

    <Protobuf Include="Protos\greeter.proto" />

  </ItemGroup>

</Project>

Now, we are ready to use this class library in our applications.

Sharing gRPC dependencies between different 
projects
First, you will need to reference the newly created class library from both the 
BasicGrpcService.csproj and BasicGrpcClient.csproj files. To do so, add 
the following section to both of the files:

  <ItemGroup>

    <ProjectReference 

      Include="..\GrpcDependencies\GrpcDependencies.csproj" />

  </ItemGroup>

Now, you can remove all the gRPC-related NuGet dependencies from both of those files. 
All of them are present in the shared class library, so when you reference the class library, 
all of those dependencies will be implicitly referenced too.

After cleaning up your project files, the BasicGrpcService.csproj file should look 
similar to this:

<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>

    <TargetFramework>net5.0</TargetFramework>



38     Creating a Basic gRPC Application on ASP.NET Core

  </PropertyGroup>

  <ItemGroup>

    <ProjectReference 

      Include="..\GrpcDependencies\GrpcDependencies.csproj" />

  </ItemGroup>

</Project>

The content of the BasicGrpcClient.csproj file should be very similar and look  
like this:

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>

    <OutputType>Exe</OutputType>

    <TargetFramework>net5.0</TargetFramework>

  </PropertyGroup>

  <ItemGroup>

    <ProjectReference 

      Include="..\GrpcDependencies\GrpcDependencies.csproj" />

  </ItemGroup>

</Project>

Please note that the only differences between the two project files are the SDK type and 
the output type, which represent different types of applications.

Now, to verify that all the dependencies have been set up successfully, build your 
solution and ensure there aren't any build errors. If it builds successfully, launch your 
BasicGrpcService project, followed by the BasicGrpcClient project, to ensure 
that everything still works correctly.

The applications are expected to produce the same output that they did previously. 
However, this time, a single copy of the proto file will be shared between them, so you no 
longer run the risk of making two copies of the file incompatible while updating them.

Another important thing to note is that, just like any other class library, a library 
containing proto files can be published as a NuGet package.



Running a gRPC service on Mac     39

Running a gRPC service on Mac
At the time of writing, you cannot apply TLS while running gRPC Server on Mac. This 
is because of missing Application Layer Protocol Negotiation (ALPN) support on the 
operating system. So, to make it work, you need to enable HTTP access to the server 
instead of HTTPS.

Configuring server-side components
First, you need to enable an unencrypted endpoint HTTP/2 endpoint inside your 
application. To do so, open the Program.cs file inside your gRPC server project. Then, 
add the following using statement on top of it:

using Microsoft.AspNetCore.Server.Kestrel.Core;

Then, inside the Main method (which is the entry point into the application), add the 
following block of code inside the call to the ConfigureWebHostingDefaults 
method:

webBuilder.ConfigureKestrel(options =>

{

    options.ListenLocalhost(<port number>, o => o.Protocols =

    HttpProtocols.Http2);

});

Replace <port number> with the actual port number of the HTTP endpoint, which can 
be found under the applicationUrl key in the launchSettings.json file, which 
is located in the Properties folder of the project.

Once you've done this, your application will be ready to accept insecure HTTP/2 requests 
on the specified port number.

Modifying the client-side configuration
Because TLS doesn't work on the server, you won't be able to send requests to it via the 
HTTPS endpoint. So, while creating the GrpcChannel object in the client application, 
you will need to pass the HTTP URL into it. The specific URL can be found under the 
applicationUrl key in the launchSettings.json file, which is located in the 
Properties folder of the gRPC server project.



40     Creating a Basic gRPC Application on ASP.NET Core

Summary
In this chapter, we learned how to set up both the gRPC client and the server. We did 
so by manually adding gRPC capabilities to our .NET projects instead of creating new 
projects from the gRPC template. For our server, we started with a standard ASP.NET 
Core project template, while our client used the most basic Console Application template.

We had a look at how the gRPC compiler generates code from Protobuf files and how that 
auto-generated code is affected by changes that are made to the content of those files.

Finally, we covered the process of sharing the same proto file between different 
applications via a shared class library so that you, as a developer, would not accidentally 
apply incompatible Protobuf definitions to your client and the server.

In the next chapter, we will have a more detailed look at the use cases of gRPC. Although 
it's a great communication protocol, it has its limitations, and it's not the best solution 
for every situation. So, you will learn when it's best to use gRPC and when alternative 
solutions might be better.

Questions
Answer the following questions to test your knowledge of this chapter:

1. Please select the false statement:

A.  In Protobuf, a service is defined by the service keyword, while its methods are 
defined by the rpc keyword.

B. You cannot have a Protobuf message definition without any fields.

C.  A Protobuf message can have collections of objects and can use other message 
definitions as field types.

D.  You have to specify a request object in a response object inside a gRPC method 
definition and you can only use a single object type in each of those.

2. Which platforms can you run a .NET implementation of gRPC on?

A. Windows, Linux, and macOS

B. Windows and macOS only

C. Unix-based (macOS and Linux) only

D. Windows only



Questions     41

3. How do you enable server-side gRPC components in .NET applications?

A.  So long as you reference the Grpc.AspNetCore NuGet package, it will be 
automatically enabled for you.

B.  You just need to add a proto file to your project; the compiler will do everything 
else for you.

C.  You need to define a proto element inside the project file. It can be blank or you 
can set its GrpcServices attribute to either Server or Both.

D.  You need to define a proto element inside the project file and you must set its 
GrpcServices attribute to Server.

4. After adding the relevant proto files to your server-side application project, what 
modifications do you need to make to your code?

A.  You just need to override the methods from the auto-generated C# code files 
with your functionality.

B.  You need to modify the auto-generated C# classes and add your functionality  
to them.

C.  You need to create a new class that inherits from the auto-generated base class, 
add gRPC to your application services via the ConfigureServices method 
of the Startup class, and then register the newly created class as one of the 
endpoints in your middleware.

D.  The system will generate all the required code for you. You just need to fill the 
methods with your logic.

5. Can the .NET implementation of the .NET client call RPCs both synchronously and 
asynchronously?

A. It can only call methods synchronously.

B. It can only call methods asynchronously.

C.  There is both a synchronous and asynchronous version of each method that's 
generated for the client to use.

D.  All auto-generated methods are asynchronous, but you can change the 
implementation to make them synchronous.



42     Creating a Basic gRPC Application on ASP.NET Core

Further reading
To learn more about the topics that were covered in this chapter, take a look at the 
following resources:

• The official ASP.NET Core gRPC documentation: https://docs.microsoft.
com/en-us/aspnet/core/grpc/

• C# code generation documentation: https://developers.google.com/
protocol-buffers/docs/reference/csharp-generated

• Troubleshooting gRPC on .NET Core: https://docs.microsoft.com/
en-us/aspnet/core/grpc/troubleshoot

https://docs.microsoft.com/en-us/aspnet/core/grpc/
https://docs.microsoft.com/en-us/aspnet/core/grpc/
https://developers.google.com/protocol-buffers/docs/reference/csharp-generated
https://developers.google.com/protocol-buffers/docs/reference/csharp-generated
https://docs.microsoft.com/en-us/aspnet/core/grpc/troubleshoot
https://docs.microsoft.com/en-us/aspnet/core/grpc/troubleshoot


2
When gRPC Is the 

Best Tool and When 
It Isn't

In this chapter, we will cover use cases for Google Remote Procedure Call (gRPC). We 
will use sample applications to demonstrate why gRPC is a great tool to be used in some 
scenarios but isn't the best one for other scenarios.

The main objective of this chapter is to demonstrate how convenient it is to use gRPC 
for microservices architecture and asynchronous communication, but you will also be 
shown how inconvenient it is to use gRPC in a browser or on any platform that doesn't 
support the HyperText Transfer Protocol 2 (HTTP/2) protocol. You will also be shown 
alternative technologies you can use when gRPC is not the best answer.

We will cover the following topics in this chapter:

• Why gRPC is a great tool for microservices

• How gRPC can be a good tool for asynchronous communication

• Why gRPC is not the best tool for browsers

• Where SignalR would beat gRPC



44     When gRPC Is the Best Tool and When It Isn't

By the end of this chapter, you will have learned how to decide whether or not to use 
gRPC in a particular situation. You will have also learned what to do if gRPC doesn't 
appear to be the best solution for your particular case.

Technical requirements
To follow the instructions in this chapter, you will need the following:

• A computer with either a Windows, Mac, or Linux operating system

• A supported integrated development environment (IDE) or code editor (Visual 
Studio, Visual Studio Code (VS Code), or JetBrains Rider)

• The .NET 5 software development kit (SDK)

• A self-signed development HTTP Secure (HTTPS) certificate that is enabled on 
your machine

Instructions on how to set all of these up were provided in the previous chapter. 
You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/Microservices-Communication-in-.NET-Using-
gRPC/tree/main/Chapter-02.

Please visit the following link to check the CiA videos: https://bit.ly/3EXh2Y2

Why gRPC is a great tool for microservices
gRPC has been primarily developed to facilitate direct real-time communication (RTC) 
between microservices in a distributed application. Therefore, microservices architecture 
is where gRPC is often the most convenient tool to use.

To verify this assumption, we will build a solution that resembles a real-life distributed 
application consisting of microservices, each of which plays a distinct role. Our 
distributed application will consist of two microservices, as follows:

• A backend service that manages status information on connected clients

• A public-facing REpresentational State Transfer (REST) application 
programming interface (API) gateway that communicates with this service

Both of these will share a Protocol Buffers (Protobuf) definition via a class library.

https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-02
https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-02
https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-02
https://bit.ly/3EXh2Y2


Why gRPC is a great tool for microservices     45

The status manager service will maintain a collection of key-value pairs representing the 
client name and its status. Any connected client will be able to perform the following 
operations via gRPC:

• Update status information on a particular client.

• Retrieve status information about a particular client.

• Retrieve a full list of all client statuses.

In a real-world scenario, this service might be hosted on a private network and hidden 
from the public. Therefore, we will have another service acting as a REST API gateway 
that will talk to the status manager that, in a real-life scenario, would be hosted on the 
same private network but also exposed to the public internet, which could be done via 
port mapping or other techniques.

This API gateway service will act as a gRPC client. It will accept HTTP requests and 
translate them into gRPC calls. It will then convert Protobuf messages into standard 
JavaScript Object Notation (JSON) and return them back to the client.

Setting up a solution and shared dependencies
Let's create a solution and call it GrpcMicroserviceSample. If you are using an IDE 
such as Visual Studio or Rider, you will be able to do so while creating your first project 
from the relevant template. If you are using the dotnet command-line interface (CLI), 
you can instead create a folder named GrpcMicroserviceSample and execute the 
following command inside of it to initialize the solution:

dotnet new sln

Then, inside this solution folder, you will need to create a class library that will contain 
shared gRPC client and server dependencies. This class library project will be called 
GrpcDependencies. If you are using the command line, execute the following 
command inside your solution folder to create it:

dotnet new classlib -o GrpcDependencies

Inside the GrpcDependencies project folder, create a folder called Protos, then 
create a status.proto file inside this folder. Inside this file, we will first add a standard 
syntax reference, the package name, and the definition of our service, as follows:

syntax = "proto3";

package status;



46     When gRPC Is the Best Tool and When It Isn't

service StatusManager {

  rpc GetAllStatuses (ClientStatusesRequest) returns (stream 

    ClientStatusResponse);

  rpc GetClientStatus (ClientStatusRequest) returns

    (ClientStatusResponse);

  rpc UpdateClientStatus (ClientStatusUpdateRequest) returns 

    (ClientStatusUpdateResponse);

}

Following that, we will add definitions of the messages, as follows:

message ClientStatusesRequest {

}

message ClientStatusRequest {

  string clientName = 1;

}

message ClientStatusResponse {

  string clientName = 1;

  ClientStatus status = 2;

}

message ClientStatusUpdateRequest {

  string clientName = 1;

  ClientStatus status = 2;

}

message ClientStatusUpdateResponse {

  bool success = 1;

}



Why gRPC is a great tool for microservices     47

Finally, we are introducing a new data type that we need for our models— enum, as 
illustrated in the following code snippet:

enum ClientStatus {

  OFFLINE = 0;

  ONLINE = 1;

  BUSY = 2;  

}

Inside this proto file, you will see some new components that we have not covered before. 
First of all, you see a new definition type—enum. This is used as a field type in some of the 
message definitions.

This is just a standard enumeration, equivalent to a C# enum. It can be defined as an 
independent object (as we have done in our example), or its definition can be nested 
inside a message definition. You would do the former if you wanted to use the same 
enum definition in different messages, while you would use the latter if it's only a specific 
message definition that is meant to use a specific enum type.

The values inside an enum object are expected to have sequential numeric values starting 
from zero.

We will cover enums in more detail in the next chapter, which is dedicated to data types 
supported by Protobuf.

The other new keyword that we haven't seen before is stream, which is located before the 
return message of GetAllStatuses rpc of the StatusManager service. A stream is 
one of the ways of transferring a collection, rather than a single object, in gRPC between 
the client and the server. A stream is also something that can facilitate asynchronous 
communication, which we will cover later in this chapter.

We will examine streaming and non-streaming gRPC calls in more detail in Chapter 7, 
Using Different Call Types that gRPC Supports.

Also, in this proto file, we have an example of a message definition with no fields: 
ClientStatusesRequest. It has been placed there to demonstrate that, while it's 
mandatory to have a message definition in a remote procedure call (RPC), both as an 
input parameter and a return value, the definition itself can be empty.



48     When gRPC Is the Best Tool and When It Isn't

Once we've added our Protobuf definition, we just need to add all relevant dependencies 
to the class library project definition. The simplest way to do it would be to replace the 
original content of the GrpcDependencies.csproj file with the following code:

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>

    <TargetFramework>net5.0</TargetFramework>

  </PropertyGroup>

  <ItemGroup>

    <PackageReference Include="Google.Protobuf"

      Version="3.17.3" />

    <PackageReference Include="Grpc.Net.Client"

      Version="2.38.0" />

    <PackageReference Include="Grpc.Tools" Version="2.38.1">

      <IncludeAssets>runtime; build; native; contentfiles; 

        analyzers; buildtransitive</IncludeAssets>

      <PrivateAssets>all</PrivateAssets>

    </PackageReference>

    <PackageReference Include="Grpc.AspNetCore"

      Version="2.34.0" />

  </ItemGroup>

  <ItemGroup>

    <Protobuf Include="Protos\status.proto" />

  </ItemGroup>

</Project>

You can update the version numbers of the NuGet packages if new releases have been 
made available.

Now, build the project to verify that there are no compilation errors. Then, if you have 
been using the dotnet CLI instead of a fully-fledged IDE, add the project to the solution  
by executing the following command inside the GrpcMicroserviceSample  
solution folder:

dotnet sln add GrpcDependencies/GrpcDependencies.csproj



Why gRPC is a great tool for microservices     49

Now, we will set up our status manager microservice project that will act as a gRPC server.

Setting up the status manager microservice
Inside the solution folder, create a project named StatusMicroservice by using 
a standard gRPC Service project template. If you are using the dotnet CLI, run the 
following command from the GrpcMicroserviceSample solution folder to do so:

dotnet new grpc -o StatusMicroservice

It will be created with a Protos folder and a sample gRPC server class inside the 
Services folder. You will not need any of these as you will be using the class library we 
created earlier for all of your gRPC dependencies.

To add those dependencies, replace the content of the StatusMicroservice.csproj 
file with the following code:

<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>

    <TargetFramework>net5.0</TargetFramework>

  </PropertyGroup>

  <ItemGroup>

    <ProjectReference 

      Include="..\GrpcDependencies\GrpcDependencies.csproj">

      <GlobalPropertiesToRemove></GlobalPropertiesToRemove>

    </ProjectReference>

  </ItemGroup>

</Project>

Then, completely remove the Protos folder from the project. We will not need the 
standard greet.proto file for this exercise.

Next, add a ClientStatus.cs file to the root of our project folder. It will be an enum 
with the following content:

namespace StatusMicroservice

{

    public enum ClientStatus

    {



50     When gRPC Is the Best Tool and When It Isn't

        OFFLINE = 0,

        ONLINE = 1,

        BUSY = 2,

    }

}

Then, add a StateStore.cs file that will contain the in-memory state. This file should 
have a StatusMicroservice namespace and import a System.Collections.
Generic package via a using statement. In this file, we will place an interface alongside 
our class. The interface should look like this:

public interface IStateStore

{

    IEnumerable<(string ClientName, ClientStatus ClientStatus)> 

      GetAllStatuses();

    ClientStatus GetStatus(string clientName);

    bool UpdateStatus(string clientName, ClientStatus status);

}

Next, we will add a class that implements this interface. Its constructor and private 
members should look like this: 

internal class StateStore : IStateStore

{

    private Dictionary<string, ClientStatus> statuses;

    public StateStore()

    {

        statuses = new Dictionary<string, ClientStatus>();

    }

}

Finally, we will insert all required methods to implement the interface. The content of the 
GetAllStatuses method will look like this:

    public IEnumerable<(string ClientName, ClientStatus 

      ClientStatus)> GetAllStatuses()

    {

        var returnedStatuses = new List<(string ClientName, 



Why gRPC is a great tool for microservices     51

          ClientStatus ClientStatus)>();

        foreach (var record in statuses)

        {

            returnedStatuses.Add((record.Key, record.Value));

        }

        return returnedStatuses;

    }

The GetStatus method will look like this:

    public ClientStatus GetStatus(string clientName)

    {

        if (!statuses.ContainsKey(clientName))

        {

            return ClientStatus.OFFLINE;

        }

        return statuses[clientName];

    }

And the UpdateStatus method will have the following implementation:

public bool UpdateStatus(string clientName, ClientStatus 

  status)

    {

        statuses[clientName] = status;

        return true;

    }

This example shows a class that implements an interface. Even though it's not strictly 
essential to have an interface instead of just a concrete class, we are mimicking the 
structure of a real-world microservices application. Therefore, we are applying the same 
best practices (for example, SOLID principles), as we would in a real commercial project.



52     When gRPC Is the Best Tool and When It Isn't

In a real-world application, having an interface would allow us to replace the 
implementation when needed—for example, we can mock the implementation while 
writing unit tests and inject the mocked instance into the classes that are being tested.

After this, add a file named StatusManagerService.cs to the Services folder. The 
class inside of it needs to have the following package imports: 

using System.Threading.Tasks;

using Grpc.Core;

using Status;

The class should import an IStateStore instance via its constructor, as follows:

public class StatusManagerService : StatusManager.

  StatusManagerBase

{

    private readonly IStateStore stateStore;

    public StatusManagerService(IStateStore stateStore)

    {

        this.stateStore = stateStore;

    }

}

And then, there should be a method corresponding to every remote procedure call 
(RPC) defined in the proto file. The implementation of the GetAllStatuses RPC will 
look like this:

public override async Task GetAllStatuses(ClientStatusesRequest 

request, IServerStreamWriter<ClientStatusResponse> 

  responseStream, 

ServerCallContext context)

    {

        foreach (var record in stateStore.GetAllStatuses())

        {

            await responseStream.WriteAsync(new 

              ClientStatusResponse

            {

                ClientName = record.ClientName,



Why gRPC is a great tool for microservices     53

                Status = (Status.ClientStatus)record.

                  ClientStatus

            });

        }

    }

The GetClientStatus implementation will look like this:

    public override Task<ClientStatusResponse> 

    GetClientStatus(ClientStatusRequest request,

      ServerCallContext 

      context)

    {

        return Task.FromResult(new ClientStatusResponse

        {

            ClientName = request.ClientName,

            Status = (Status.ClientStatus)stateStore.

              GetStatus(request.ClientName)

        });

    }

Finally, the content of the UpdateClientStatus method will be as shown here:

public override Task<ClientStatusUpdateResponse> 

UpdateClientStatus(ClientStatusUpdateRequest request, 

ServerCallContext context)

        {

            return Task.FromResult(new 

              ClientStatusUpdateResponse

            {

                Success = stateStore.UpdateStatus(request.

                  ClientName

                  , (ClientStatus)request.Status)

            });

        }



54     When gRPC Is the Best Tool and When It Isn't

Please note that the GetAllStatuses method is different in its structure from the other 
methods. This is because it's a server-streaming method. We will cover those in Chapter 7, 
Using Different Call Types that gRPC Supports. For now, all you need to know is that it will 
return a collection to your client rather than a single object.

This example shows how we insert the IStateStore interface into a class that needs it 
instead of its concrete implementation. This allows us to insert any class that implements 
this interface into the constructor. Choosing a concrete class to insert will be handled by 
our dependency injection (DI) mechanism.

Once this file has been created, please make sure that any other files are removed from the 
Services folder; otherwise, they may throw compilation errors later.

Now, we will need to register the new gRPC endpoint in our Startup class  
(or Program.cs file if you are using .NET 6 templates). This is also where we register 
services for DI. To register the newly created endpoint, please add the following line inside 
the call to the UseEndpoints method, which you will find inside the Configure 
method of the Startup class:

endpoints.MapGrpcService<StatusManagerService>();

Then, we will use an inbuilt DI mechanism by adding this line to the 
ConfigureServices method (or the main body of the Program.cs file before the 
Build event if you are using .NET 6):

services.AddSingleton<IStateStore, StateStore>();

After executing this line, any class that isn't explicitly instantiated and has a constructor 
parameter of the IStateStore type will be given an instance of the StateStore class, 
and it will always be the same instance because we are registering it as a singleton.

There is an additional step you will need to perform to the gRPC service application if 
you intend to host it on a Mac operating system. This can be found in the Running a gRPC 
service on Mac section of Chapter 1, Creating a Basic gRPC Application on ASP.NET Core.

In ASP.NET Core, controllers, gRPC services, background worker services, and some 
other standard class types would always accept construction parameters from DI systems 
as they are never instantiated explicitly in the code.

Finally, if you have been using the dotnet CLI and haven't yet added this new project to 
the solution, add it by executing the following command from inside the solution folder:

dotnet sln add StatusMicroservice/StatusMicroservice.csproj

Now, we will add a REST API gateway that will act as a gRPC client.



Why gRPC is a great tool for microservices     55

Setting up a REST API gateway service
You will now need to add a project to your GrpcMicroserviceSample 
solution by using the ASP.Core Web API template. We will call this project 
ApiGateway. If you are using the dotnet CLI, run the following command from the 
GrpcMicroserviceSample folder:

dotnet new webapi -o ApiGateway

In this case, you will then also need to add it to the solution by executing the following 
command:

dotnet sln add ApiGateway/ApiGateway.csproj

Both HyperText Markup Language (HTML) web pages and REST APIs use the HTTP 
protocol. However, unlike web pages, REST APIs are headless, which means they are not 
built with the user interface (UI), thus making them difficult to use in a browser. But we 
can make the process easy by adding Swagger (OpenAPI) components to our application. 
Once added, those components will create a web page that will allow us to manipulate any 
of our REST API endpoints via standard page controls (textboxes, drop-down fields,  
and buttons).

To enable these components, we will need to add an NSwag.AspNetCore 
NuGet package to our ApiGateway project. Then, since the API gateway will be 
acting as a gRPC client in the backend, we will also need to add a reference to the 
GrpcDependencies project we created earlier. Once done, the content of the 
ApiGateway.csproj file is expected to look similar to this:

<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>

    <TargetFramework>net5.0</TargetFramework>

  </PropertyGroup>

  <ItemGroup>

    <PackageReference Include="NSwag.AspNetCore" 

      Version="13.12.1" />

  </ItemGroup>

  <ItemGroup>



56     When gRPC Is the Best Tool and When It Isn't

    <ProjectReference 

      Include="..\GrpcDependencies\GrpcDependencies.csproj" />

  </ItemGroup>

</Project>

Next, we will add a ClientStatus.cs file to the ApiGateway project folder. It 
will be the same enum we used in StatusMicroservice but it will be intended for 
consumption by public clients. So, the content of the file will look like this:

namespace ApiGateway

{

    public enum ClientStatus

    {

        OFFLINE = 0,

        ONLINE = 1,

        BUSY = 2,

    }

}

We will then need to add a model from which we will be generating the JSON that will be 
sent back to the clients of the REST API. For this, create a ClientStatusModel.cs file 
in the root of the project with the following content:

namespace ApiGateway

{

    public class ClientStatusModel

    {

        public string Name { get; set; }

        public ClientStatus Status { get; set; }

    }

}

Now, we will add a GrpcStatusClient.cs file that will be a wrapper around our 
gRPC client functionality. We will first add all required dependencies to this file by putting 
the following statements on top of it: 

using System;

using System.Collections.Generic;

using System.Threading.Tasks;



Why gRPC is a great tool for microservices     57

using Grpc.Core;

using Grpc.Net.Client;

using Status;

Next, we will add an ApiGateway namespace, and inside of it, we will add an interface 
with the following method definitions:

public interface IGrpcStatusClient

{

    Task<IEnumerable<ClientStatusModel>> GetAllStatuses();

    Task<ClientStatusModel> GetClientStatus(string clientName);

    Task<bool> UpdateClientStatus(string clientName, 

      ClientStatus 

      status);

}

This will enable us to use the dependency inversion principle (DIP) in any place that will 
use the gRPC client wrapper. We will then add a class that implements both this interface 
and IDisposable, as follows:

internal class GrpcStatusClient : IGrpcStatusClient, 

  IDisposable

{

    private readonly GrpcChannel channel;

    private readonly StatusManager.StatusManagerClient client;

    public GrpcStatusClient(string serverUrl)

    {

        channel = GrpcChannel.ForAddress(serverUrl);

         client = new StatusManager.

           StatusManagerClient(channel);

    }

}



58     When gRPC Is the Best Tool and When It Isn't

Here, we are setting up the gRPC channel and the client based on the gRPC server 
Uniform Resource Locator (URL) provided. Next, we will need to implement an 
IGrpcStatusClient interface to make the gRPC client callable from the outside. Our 
GetAllStatuses method will have some stream-processing logic, as illustrated in the 
following code snippet:

public async Task<IEnumerable<ClientStatusModel>> 

  GetAllStatuses()

{

    var statuses = new List<ClientStatusModel>();

    using var call = client.GetAllStatuses(new 

      ClientStatusesRequest());

    while (await call.ResponseStream.MoveNext())

    {

        var currentStatus = call.ResponseStream.Current;

        statuses.Add(new ClientStatusModel

        {

            Name = currentStatus.ClientName,

            Status = (ClientStatus)currentStatus.Status

        });

    }

    return statuses;

}

The implementation of GetClientStatus is a simple unary method that translates a 
gRPC message into our own custom model, as follows:

public async Task<ClientStatusModel> GetClientStatus(string 

  clientName)

{

    var response = await client.GetClientStatusAsync(new 

      ClientStatusRequest

    {

        ClientName = clientName



Why gRPC is a great tool for microservices     59

    });

    return new ClientStatusModel

    {

        Name = response.ClientName,

        Status = (ClientStatus)response.Status

    };

}

And we apply similar principles to the implementation of the UpdateClientStatus 
method, as follows:

public async Task<bool> UpdateClientStatus(string clientName, 

ClientStatus status)

{

    var response = await client.UpdateClientStatusAsync(new 

      ClientStatusUpdateRequest

    {

        ClientName = clientName,

        Status = (Status.ClientStatus)status

    });

    return response.Success;

}

Finally, we need to implement an IDisposable interface by running the following code:

public void Dispose()

{

    channel.Dispose();

}

The class will implement an interface that will be used as a constructor parameter in any 
class that needs to use it, and because the GrpcChannel instance needs to be disposed of 
when the class is no longer used, we need to get the class to implement an IDisposable 
interface. If we don't dispose of GrpcChannel, we may have a memory leak—a portion 
of memory not being freed even when the application is no longer running on the 
machine.



60     When gRPC Is the Best Tool and When It Isn't

We will now add a controller that will use this gRPC client wrapper class. In 
the ApiGateway project folder, locate the Controllers folder and insert 
a StatusController.cs file into it. The namespace of the file should be 
ApiGateway.Controllers as per ASP.NET Core conventions, and we will need to 
add the following mandatory namespace references:

using System.Collections.Generic;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

We will add the standard REST API controller attributes to the class definition and we will 
pass an instance of the gRPC client wrapper via the constructor, as follows:

[ApiController]

[Route("[controller]")]

public class StatusController : ControllerBase

{

    private readonly IGrpcStatusClient client;

    public StatusController(IGrpcStatusClient client)

    {

        this.client = client;

    }

}

Finally, we will add the following endpoint methods to our controller class:

[HttpGet]

public async Task<IEnumerable<ClientStatusModel>> 

  GetAllStatuses()

{

    return await client.GetAllStatuses();

}

[HttpGet("{clientName}")]

public async Task<ClientStatusModel> GetClientStatus(string 

  clientName)

{



Why gRPC is a great tool for microservices     61

    return await client.GetClientStatus(clientName);

}

[HttpPost("{clientName}/{status}")]

public async Task<bool> UpdateClientStatus(string clientName, 

  ClientStatus status)

{

    return await client.UpdateClientStatus(clientName, status);

}

This is just a standard ASP.NET Core Web API controller that has a REST-equivalent 
method for every RPC we have defined in our Protobuf file. Once added, we will be able 
to call HTTP endpoints of our application via this URL, as follows:

{base URL}/status

But the problem with it is that it's a headless API, so we wouldn't be able to easily 
access these endpoints via a browser. Normally, we would need software such as 
Fiddler or Postman to send any custom HTTP requests to REST APIs. However, 
because we have added NSwag.AspNetCore, we will have a web page that will give 
us access to all of these endpoints. We just need to register certain components in 
our application's Startup class (or inside Program.cs file if you are using .NET 6 
templates, while applying appropriate modifications to the code shown next). Inside the 
ConfigureServices method, we need to enable Swagger functionality by including 
the following line of code:

services.AddOpenApiDocument();

Then, we actually add all required Swagger functionality to the middleware pipeline by 
having the following two lines inside the Configure methods. These lines should be 
placed anywhere before the call to UseRouting:

app.UseOpenApi();

app.UseSwaggerUi3();

In the ConfigureServices method, we are also adding dependency mapping so that 
our gRPC client wrapper can be passed to the controller that needs to use it. This is done 
on the following line:

services.AddSingleton<IGrpcStatusClient>(p => new 

  GrpcStatusClient(Configuration["ServerUrl"]));



62     When gRPC Is the Best Tool and When It Isn't

But this time, we are instantiating a GrpcStatusClient class with a concrete 
constructor parameter that we take from the ServerUrl field of the settings. We do 
this because it's a primitive data type and, therefore, it cannot be registered inside the DI 
container. So, we need to specify it explicitly.

But to get the value, we need to add a ServerUrl field to the appsettings.json file 
in the root of our project, which would look like this:

"ServerUrl": "https://localhost:35095"

The value of the field represents the URL or StatusMicroservice application. 
It is taken from the applicationUrl field of the launchSettings.json 
file of the application, which is located inside the Properties folder in the 
StatusMicroservice project folder. If there is more than one URL, we want  
the one that uses the HTTPS protocol. However, if we are running our gRPC server 
application on a Mac operating system, we would need to select the HTTP URL due  
to the limitations of the operating system. For example, the previous value was taken from 
a launchSettings.json file that had the following content:

{

  "profiles": {

    "StatusMicroservice": {

      "commandName": "Project",

      "applicationUrl": "http://localhost:3638;https://

        localhost:35095",

      "environmentVariables": {

        "ASPNETCORE_ENVIRONMENT": "Development"

      }

    }

  }

}

Now, we are set to launch our distributed application and see it in action.

Launching the distributed application
To launch our applications and get them to talk to each other, we need to open two 
instances of a CLI of your choice (Terminal, PowerShell, Command Prompt (CMD), and 
so on). One of them should be pointing at the StatusMicroservice folder, while the 
other one should be pointing at the ApiGateway folder.



Why gRPC is a great tool for microservices     63

First, launch the following command inside your StatusMicroservice folder:

dotnet run

Then, once the microservice is up and running, launch the same command inside the 
ApiGateway folder.

Now, you can navigate to the Swagger page of the API gateway to test its endpoints. To 
do so, firstly obtain the HTTPS URL of the application from the applicationUrl 
field in the ApiGateway section of the launchSettings.json file. This file is 
located inside the Properties folder in the ApiGateway project. Paste this URL into 
the browser and add /swagger to the address. For example, if the URL is https://
localhost:21123, then the Swagger address will be https://localhost:21123/
swagger.

You should now see a friendly UI that allows you to operate all REST API endpoints, as 
illustrated in the following screenshot:

Figure 2.1 – Swagger page for ApiGateway



64     When gRPC Is the Best Tool and When It Isn't

Now, you can see how relatively easy it is to enable direct RTC between microservices 
by using gRPC. We've seamlessly integrated the internal gRPC communication channel 
with a publicly accessible REST API, but you can also use gRPC for asynchronous long-
running background tasks. In the next section, we will see how this can be achieved.

How gRPC can be a good tool for asynchronous 
communication 
In distributed applications, it's common for one microservice to outsource a large chunk 
of work to another microservice in an asynchronous fashion. Perhaps the task would 
take a relatively long time to execute, so you wouldn't want to wait for a response. All you 
would be interested in is that the task has been successfully initiated.

gRPC allows you to do this. Streaming calls, which we covered earlier, aren't only suitable 
to pass collections—they can also be used for asynchronous task execution.

In the following example, we will add another service to our StatusMicroservice 
application. This service will use two streaming endpoints and will mimic the execution 
of long-running tasks of two different types. We will then add a new controller to our 
ApiGateway project to initiate asynchronous communication with the server.

Adding client-streaming and server-streaming gRPC 
endpoints
First, we will add another proto service definition to our Protos folder inside the 
GrpcDependencies project. This will be a worker.proto file with the following 
content:

syntax = "proto3";

package worker;

service JobManager {

  rpc SendJobs (stream SendJobsRequest) returns 

    (SendJobsResponse);

  rpc TriggerJobs (TriggerJobsRequest) returns (stream 

    TriggerJobsResponse);

}



How gRPC can be a good tool for asynchronous communication      65

message SendJobsRequest {

    int32 jobId = 1;

    string jobDescription = 2;

}

message SendJobsResponse {

  bool completed = 1;

}

message TriggerJobsRequest {

  int32 jobsCount = 1;

}

message TriggerJobsResponse {

  int32 jobSequence = 1;

  string jobMessage = 2;

}

Please note that we have two RPCs defined in the JobManager service. SendJobs is 
a client-streaming RPC as it has a stream keyword placed before the input parameter. 
TriggerJobs, on the other hand, is a server-streaming RPC, and the stream keyword 
placed before the return type indicates this.

We will need to register this new Protobuf definition in our GrpcDependencies.
csproj file by adding the following line of code inside the ItemGroup element that 
contains a Protobuf reference to status.proto:

<Protobuf Include="Protos\worker.proto" />

Now, we will add a service definition that will implement this proto file. We will do 
this by placing a JobManagerService.cs file inside the Services folder of the 
StatusMicroservice project.

First, we will add the necessary package imports to the file, as follows:

using System;

using System.Threading.Tasks;

using Grpc.Core;

using Worker;



66     When gRPC Is the Best Tool and When It Isn't

Then, we will add a class definition by inheriting from the class that has been 
autogenerated from our proto file, as follows:

namespace StatusMicroservice

{

    public class JobManagerService : JobManager.JobManagerBase

    {

    }

}

We will then add the following override for our server-streaming TriggerJobs method:

public override async Task TriggerJobs(TriggerJobsRequest 

  request, 

IServerStreamWriter<TriggerJobsResponse> responseStream, 

ServerCallContext context)

{

    for (var i = 0; i < request.JobsCount; i++)

    {

        await Task.Delay(TimeSpan.FromSeconds(2));

        await responseStream.WriteAsync(new TriggerJobsResponse

        {

            JobSequence = i + 1,

            JobMessage = "Job executed successfully"

        });

    }

}

Then, we will add an override for our client-streaming SendJobs method, as follows:

public override async Task<SendJobsResponse> 

SendJobs(IAsyncStreamReader<SendJobsRequest> requestStream, 

ServerCallContext context)

{

    while (await requestStream.MoveNext())

    {

        Console.WriteLine($"Job Id: {requestStream.Current.



How gRPC can be a good tool for asynchronous communication      67

          JobId}. 

          Job description: {requestStream.Current.

            JobDescription}");

        await Task.Delay(TimeSpan.FromSeconds(2));

    }

    return new SendJobsResponse

    {

        Completed = true

    };

}

This service mimics long-running tasks that the gRPC client has asked it to perform.

In the TriggerJobs method, we are simply told how many jobs to trigger. Perhaps 
there is already a list of the jobs waiting in the queue on the server, so we are telling the 
application how many of them we want to get executed.

In our code, we are mimicking job execution by waiting 2 seconds. Then, we place  
a description of the successfully executed job in the server stream.

Essentially, when a client makes a call to this RPC, a channel between the client and the 
server is opened and the client gets instantly notified of any new item that is placed on the 
server stream. So, in this case, the client will be updated on every successfully executed job 
at an interval of 2 seconds.

SendJobs is similar, but it utilizes the client stream. This method simulates a scenario 
where a list of specific job descriptions is sent to the server. Once again, every job takes 2 
seconds to execute. However, this time, the client doesn't get notified of its execution, only 
getting notified when all jobs have been successfully processed. But because, just as in the 
first case, the process is long-running, the client is expected to keep the communication 
channel open and receive the response in an asynchronous manner.

We will now need to register our new service inside the Startup class of the 
StatusMicroservice project. To do so, just add the following line of code 
inside the app.UseEndpoints() call next to the line where you have registered 
StatusManagerService as the gRPC endpoint:

endpoints.MapGrpcService<JobManagerService>();

Next, we will configure the right client inside the ApiGateway project.



68     When gRPC Is the Best Tool and When It Isn't

Configuring the gRPC client for asynchronous 
communication
Our REST API gateway needs a suitable JSON model that will be able to convert it (the 
gateway) into a SendJobsRequest gRPC message. This will be achieved by placing  
a JobModel.cs file in the root of the ApiGateway project with the following content:

namespace ApiGateway

{

    public class JobModel

    {

        public int JobId { get; set; }

        public string JobDescription { get; set; }

    }

}

Then, we will add a wrapper for our client. This will be achieved by placing a 
GrpcJobsClient.cs file in the root of the ApiGateway project. We will first add the 
necessary namespace imports, as follows:

using System;

using System.Collections.Generic;

using System.Threading.Tasks;

using Grpc.Core;

using Grpc.Net.Client;

using Worker;

Then, we will place the following interface inside the namespace definition:

public interface IGrpcJobsClient

{

    Task SendJobs(IEnumerable<JobModel> jobs);

    Task TriggerJobs(int jobCount);

}

We will add our class definition and set up our gRPC client in the constructor, as follows:

internal class GrpcJobsClient : IGrpcJobsClient, IDisposable

{

    private readonly GrpcChannel channel;



How gRPC can be a good tool for asynchronous communication      69

    private readonly JobManager.JobManagerClient client;

    public GrpcJobsClient(string serverUrl)

    {

        channel = GrpcChannel.ForAddress(serverUrl);

        client = new JobManager.JobManagerClient(channel);

    }

}

We will then add a client-side implementation of our client-streaming method, as follows:

public async Task SendJobs(IEnumerable<JobModel> jobs)

{

    using var call = client.SendJobs();

    foreach (var job in jobs)

    {

        await call.RequestStream.WriteAsync(new SendJobsRequest

        {

            JobId = job.JobId,

            JobDescription = job.JobDescription

        });

    }

    await call.RequestStream.CompleteAsync();

    await call;

}

Then, we will add an implementation of the server-streaming method, as follows:

public async Task TriggerJobs(int jobCount)

{

    using var call = client.TriggerJobs(new TriggerJobsRequest 

      { 

      JobsCount = jobCount });

    while (await call.ResponseStream.MoveNext())

    {



70     When gRPC Is the Best Tool and When It Isn't

        Console.WriteLine($"Job sequence: 

          {call.ResponseStream.Current.JobSequence}. Job 

            description: {call.ResponseStream.Current.

              JobMessage}");

        await Task.Delay(TimeSpan.FromSeconds(2));

    }

}

Finally, we will implement an IDisposable interface to dispose of the gRPC channel 
object once we are done with it, as follows:

public void Dispose()

{

    channel.Dispose();

}

In the SendJobs method, this class will place all the job descriptions in the client stream 
and will then wait until the service has processed them all. In the TriggerJobs method, 
the client will send the original request to the server, then it will write into the console the 
content of each item that gets placed into the stream by the server. Again, this call will not 
be complete until the stream is closed.

Now, we will register this client, making it available for our REST API to access. To do so, 
add the following line of code anywhere inside the ConfigureServices method of the 
Startup class:

services.AddSingleton<IGrpcJobsClient>(p => new 

GrpcJobsClient(Configuration["ServerUrl"]));

Finally, we will add a new controller to our application. Inside the Controllers folder, 
we will create a JobsController.cs file with the following content:

using System.Collections.Generic;

using Microsoft.AspNetCore.Mvc;

namespace ApiGateway.Controllers

{

    [ApiController]

    [Route("[controller]")]

    public class JobsController : ControllerBase



How gRPC can be a good tool for asynchronous communication      71

    {

        private readonly IGrpcJobsClient client;

        public JobsController(IGrpcJobsClient client)

        {

            this.client = client;

        }

        [HttpPost("")]

        public void SendJobs([FromBody] IEnumerable<JobModel> 

          jobs)

        {

            _ = client.SendJobs(jobs);

        }

        [HttpPost("{jobsCount}")]

        public void TriggerJobs(int jobsCount)

        {

            _ = client.TriggerJobs(jobsCount);

        }

    }

}

Here, we have an API endpoint for each of our RPC methods. In both cases, we don't care 
whether all the jobs have been executed successfully. After all, there may be many jobs 
that will take a long time to run, which will cause our HTTP client to time out. Instead,  
we just make sure that the jobs are triggered. It's up to the backend to actually take care of 
the execution.

In our case, we trigger asynchronous tasks without awaiting them by assigning return 
values of our client wrapper methods to _. This is done to explicitly let our compiler know 
that we don't want to wait for the outcome of the task, and we just want to move on.

Of course, we could just execute either a SendJobs or TriggerJobs method without 
assigning its return value to anything, but in this case, our IDE wouldn't know that it 
was intentional. It wouldn't know whether we actually wanted to skip the wait for the 
task's outcome or if we've just forgotten to put the await keyword, so it may warn us by 
highlighting the code.



72     When gRPC Is the Best Tool and When It Isn't

We are now fully set up. Now, let's see asynchronous gRPC communication in action.

Testing asynchronous gRPC endpoints
As before, we will open the CLI in both the ApiGateway and StatusMicroservice 
project folders and run the following command:

dotnet run

When both applications are up and running, we will open a browser and navigate to 
the Swagger page of the ApiGateway application. You are now expected to see Jobs 
controller endpoints, as illustrated in the following screenshot:

Figure 2.2 – Swagger page with new endpoints

Now, if you try the first endpoint, which corresponds to the SendJobs RPC and fills up 
the request body with sample data, you should start seeing job-status entries appearing in 
the command-line terminal of StatusMicroservice at regular intervals, as illustrated 
in the following screenshot:



How gRPC can be a good tool for asynchronous communication      73

Figure 2.3 – Job-status entries in StatusMicroservice terminal

Now, if you execute the second endpoint on the Swagger page and get it to trigger  
a random number of jobs, you will start seeing entries appearing in the ApiGateway 
terminal at regular intervals, as illustrated in the following screenshot:

Figure 2.4 – Job-status entries in ApiGateway terminal



74     When gRPC Is the Best Tool and When It Isn't

However, even though it took a while to execute all the jobs, in both cases the HTTP 
response was returned from the API immediately. So, this clearly demonstrates how gRPC 
communication channels can be used asynchronously.

Though gRPC is a great tool for both synchronous and asynchronous communication, 
it's not the best tool for all web-based communication types—for example, for use in 
browsers. We will now see why this is the case.

Why gRPC is not the best tool for browsers
The key reason why gRPC is not the best tool for browsers is that it relies on HTTP/2. 
While modern browsers support HTTP/2, they don't support all of its features, but some 
of those unsupported features are precisely the features that gRPC needs.

To work around these limitations, a browser-specific implementation has been developed. 
This is known as gRPC-Web.

However, even this implementation is not perfect. It comes with the following limitations 
that, arguably, nullify the utility of gRPC:

• The communication between the client and the server is enabled by a proxy to 
ensure that the data is compatible with HTTP/1.1; therefore you won't get any 
benefits associated with HTTP/2.

• It does not support client-streaming calls.

• It requires additional cross-origin resource sharing (CORS) policy configuration 
on the server, which may be easy to miss.

• Both the client and the server require additional setup steps.

Now, to demonstrate that gRPC is not necessarily the most convenient tool to use 
in a browser, we will set up a Blazor WebAssembly project as a gRPC client. Just as 
with standard JavaScript, Blazor WebAssembly runs in the browser and has the same 
limitations as any other browser-based code.

Setting up a Blazor WebAssembly gRPC client
We will now create a .NET application that you can run in the browser after being 
compiled to WebAssembly. We could have used a standard JavaScript application instead, 
but since we have already been using .NET with our gRPC examples, we will continue to 
do so to minimize unnecessary cognitive load from learning new technology. In .NET, the 
Blazor project template allows you to compile code for execution in browsers.



Why gRPC is not the best tool for browsers     75

In the root of GrpcMicroserviceSample, execute the following command to create  
a Blazor WebAssembly project:

dotnet new blazorwasm -o GrpcBlazorClient

Because client-side Blazor cannot use server-side ASP.NET Core framework components, 
you will not be able to use a GrpcDependencies assembly, as it contains a reference to 
the server-side gRPC library. Therefore, you will need to create a Protos folder in the 
GrpcBlazorClient project folder and copy the status.proto file there. After that, 
add the following section to the GrpcBlazorClient.csproj file:

<ItemGroup>

  <Protobuf Include="Protos\status.proto" />

</ItemGroup>

Next, add all necessary client-side NuGet dependencies by executing the following 
commands from inside the GrpcBlazorClient project folder:

dotnet add GrpcBlazorClient.csproj package Grpc.Net.Client

dotnet add GrpcBlazorClient.csproj package Google.Protobuf

dotnet add GrpcBlazorClient.csproj package Grpc.Tools

dotnet add GrpcBlazorClient.csproj package Grpc.Net.Client.Web

Please note that as well as adding the standard gRPC client packages, we have added the 
Grpc.Net.Client.Web package. This package is necessary for converting HTTP/2 
gRPC responses from the server into HTTP/1.1 data that the client can understand.

Next, copy the ClientStatus.cs, ClientStatusModel.cs, and 
GrpcStatusClient.cs files from the root of the ApiGateway project to the root of 
the GrpcBlazorClient project. After you've done this, open each of the copied files 
and change the namespace from ApiGateway to GrpcBlazorClient.

Next, we will modify our client channel so that it can actually use gRPC-Web. To do this, 
add the following using statement to the GrpcStatusClient.cs file inside the 
GrpcBlazorClient project:

using System.Net.Http;

using Grpc.Net.Client.Web;



76     When gRPC Is the Best Tool and When It Isn't

Then, inside the same file, change your constructor definition to the following:

public GrpcStatusClient(string serverUrl)

{

    channel = GrpcChannel.ForAddress(serverUrl, new 

      GrpcChannelOptions

    {

        HttpHandler = new GrpcWebHandler(new 

          HttpClientHandler())

    });

    client = new StatusManager.StatusManagerClient(channel);

}

This adds an HTTP handler to the channel so that gRPC communication will be 
converted to standard HTTP/1.1 communication that the browser client will be able  
to understand.

We will now need to create a page that will use our new gRPC-Web client. To do so, 
replace the content of the Index.razor file inside the Pages folder.

Inside this file, we will first add the path at which this page will be accessed in the browser. 
After that, we will inject the service that we depend on. We do this by running the 
following code:

@page "/"

@inject IGrpcStatusClient Client

We will then add buttons that will trigger various gRPC actions, as follows:

<div class="row" style="padding-top: 50px;">

    <div class="col-md-4">

        <div>

            <div>

                <label for="clientName">Client Name</label>

                <input @bind="clientName" type="text" 

                  id="clientName" name="clientName" />

            </div>

            <button @onclick="() => SetStatus(1)"



Why gRPC is not the best tool for browsers     77

               disabled="@(string.

                 IsNullOrWhiteSpace(clientName))" 

                 >Set Status Online</button>

            <button @onclick="() => SetStatus(0)" 

              disabled="@(string.

                IsNullOrWhiteSpace(clientName))" 

                >Set Status Offline</button>

            <button @onclick="() => SetStatus(2)" 

              disabled="@(string.

                IsNullOrWhiteSpace(clientName))" 

                >Set Status Busy</button>

        </div>

    </div>

Then, we will add a panel that will display data that we will receive from the server,  
as follows:

    <div class="col-md-7">

        <p>Client Statuses</p>

        <div>

            @foreach (var status in statuses)

            {

                <div>@status</div>

            }

        </div>

        <button @onclick="GetStatuses">Get All Client 

          Statuses</button>

    </div>

</div>

All of our C# code will go into the following section, which we will place immediately 
below the markup:

@code {

    private string clientName = string.Empty;

    private List<string> statuses = new List<string>();



78     When gRPC Is the Best Tool and When It Isn't

    private async Task SetStatus(int status)

    {

        await Client.UpdateClientStatus(clientName, 

          (ClientStatus)status);

        await GetStatuses();

    }

    private async Task GetStatuses()

    {

        var newStatuses = await Client.GetAllStatuses();

        statuses = new List<string>();

        foreach (var status in newStatuses)

        {

            statuses.Add($"Client name: {status.Name}; status: 

              {status.Status}");

        }

        StateHasChanged();

    }

}

We have a simple web page that allows us to update client statuses and obtain the latest 
client status data from the gRPC server.

Finally, we need to register our gRPC client dependency. To do so, add the following line 
of code to the Main method of the Program class of the project:

builder.Services.AddSingleton<IGrpcStatusClient>(p => new 

GrpcStatusClient("https://localhost:35095"));

Make sure that this line goes before the following line of code:

await builder.Build().RunAsync();

In this example, we are hardcoding the URL because, with client-side Blazor, all settings 
that we have are visible to the user if they decide to view the page source. This might be 
acceptable for URLs but will definitely not be acceptable for sensitive private data such as 
secrets. Therefore, it's generally a better practice to recompile and redistribute the Blazor 
WebAssembly application when settings change, while populating the actual setting values 
in the code by an automated process.



Why gRPC is not the best tool for browsers     79

The URL that we are using is the public HTTPS URL configured in the 
launchSettings.json file of the StatusMicroservice project.

Our client application is fully configured. Now, we can add the necessary modifications to 
our server application.

Modifying the gRPC server to enable gRPC-Web
What makes gRPC-Web difficult to use is that it's not enough to merely set up the relevant 
client components for it. We also need to modify our server to make it compatible with 
gRPC-Web.

gRPC-Web requires a proxy that will be able to translate between standard HTTP requests 
and gRPC, which, in a way, defeats the purpose of gRPC. Firstly, you cannot use a highly 
efficient Protobuf communication protocol. Secondly, you have to perform additional 
setup steps for enable even the most basic gRPC functionality.

We will now make the necessary changes to our StatusMicroservice application 
to demonstrate this in action. We will start by adding a Grpc.AspNetCore.Web 
NuGet reference to our StatusMicroservice project. We can do so by executing the 
following command from inside our project folder:

dotnet add StatusMicroservice.csproj package Grpc.AspNetCore.

  Web

Now, we will need to enable gRPC-Web components in the code. Because our calls will 
be done from a remote client over HTTP, we will need to tell our application to accept 
CORS requests with specific headers. To do so, we will add the following code into the 
ConfigureServices method of the Startup class:

services.AddCors(o => o.AddPolicy("AllowAnyGrpcWeb", builder =>

            {

                builder.AllowAnyOrigin()

                       .AllowAnyMethod()

                       .AllowAnyHeader()

                       .WithExposedHeaders("Grpc-Status", 

                         "Grpc-Message", "Grpc-Encoding", 

                           "Grpc-Accept-Encoding");

            }));



80     When gRPC Is the Best Tool and When It Isn't

Then, we will add both the CORS configuration and the gRPC-Web proxy to our request 
pipeline. To do so, locate the app.UseRouting(); line in the Configure method of 
the Startup class (or the main body of the Program.cs file on .NET 6 template) and 
add the following two lines of code immediately after this:

app.UseGrpcWeb();

app.UseCors();

Finally, we will need to tell our application that a specific gRPC endpoint can be reached 
by gRPC-Web requests. To do so, we will replace this line of code:

endpoints.MapGrpcService<StatusManagerService>();

The preceding line of code will be replaced with the following code:

endpoints.MapGrpcService<StatusManagerService>().

  EnableGrpcWeb().Req

ireCors("AllowAnyGrpcWeb");

Now, we are ready to launch the application.

Launching the gRPC-Web application
Open a command-line terminal inside both the StatusMicroservice and 
GrpcBlazorClient project folders and execute a dotnet run command.

Once both applications are up, you can open the browser at the address configured inside 
the GrpcBlazorClient project settings (https://localhost:5001 by default) 
and see gRPC-Web in action, as illustrated in the following screenshot:

Figure 2.5 – Blazor WebAssembly using gRPC-Web

You can now appreciate why gRPC is not the best tool to be used in browsers. Setting it up 
involves a lot of hassle and you don't get all the gRPC benefits in return.

Luckily, .NET has other tools that will allow you to achieve the functionality in a browser 
equivalent to gRPC with minimal effort. SignalR is perhaps the best of such tools.



Where SignalR would beat gRPC     81

Where SignalR would beat gRPC
SignalR is an ASP.NET Core library that enables real-time two-way communication 
between the client and the server. It can do everything that gRPC can do (making 
requests, receiving responses, streaming data to and from the client, and streaming data 
from the server). But in addition to this, it can also send data from the server to the client 
without receiving a request first.

Because SignalR runs over HTTP/1.1, it requires a persistent connection and it uses  
a fairly verbose JSON payload, so perhaps it's not the best tool to be used in the backend 
of a distributed microservice application. But it's ideal for browsers and it's relatively 
effortless to set up too, as we will see now.

Setting up a SignalR application
Create an ASP.NET Razor Pages project by executing the following command. This 
command can be executed from any folder of your choice, as this will be a standalone 
application:

dotnet new webapp -o SignalrApplication

SignalR is already embedded in ASP.NET Core, so you won't have to add any extra 
dependencies.

Now, we will add the server-side SignalR functionality in a so-called SignalR hub. To do 
so, create a Hubs folder inside your project and add a JobsHub.cs file to it with the 
following content:

using System;

using System.Collections.Generic;

using System.Runtime.CompilerServices;

using System.Threading;

using System.Threading.Tasks;

using Microsoft.AspNetCore.SignalR;

namespace SignalrApplication.Hubs

{

    public class JobsHub : Hub

    {

    }

}



82     When gRPC Is the Best Tool and When It Isn't

We will then start adding methods to the hub. SendSingleJob receives a single 
response and returns it back to the caller, as illustrated in the following code snippet:

public async Task SendSingleJob(string jobDescription)

{

    await Clients.Caller.SendAsync("ReceiveMessage", $"Job 

      executed successfully. Description: {jobDescription}");

}

StreamJobs receives a stream of data from the client, as illustrated in the following  
code snippet:

public async Task StreamJobs(IAsyncEnumerable<int> stream)

{

    var jobsCount = 0;

    await foreach (var item in stream)

    {

        Console.WriteLine($"Job {item} executed succesfully");

        jobsCount++;

    }

    await Clients.Caller.SendAsync("ReceiveMessage", 

      $"{jobsCount} 

      jobs executed successfully.");

}

TriggerJobs gets initiated by the client and then sends a stream of data back to it, as 
illustrated in the following code snippet:

public async IAsyncEnumerable<string> TriggerJobs(

int jobsCount,

[EnumeratorCancellation]

CancellationToken cancellationToken)

{

    for (var i = 0; i < jobsCount; i++)

    {

        cancellationToken.ThrowIfCancellationRequested();

        yield return $"Job {i} executed succesfully";



Where SignalR would beat gRPC     83

        await Task.Delay(2000, cancellationToken);

    }

}

We have the following three methods here:

• SendSingleJob receives a single response and returns it back to the caller.

• StreamJobs receives a stream of data from the client.

• TriggerJobs gets initiated by the client and then sends a stream of data  
back to it.

We will now need to enable our SignalR components inside our Startup class, or 
Program.cs file if you are using .NET 6 template, with appropriate modifications of the 
following code samples. But first, we will need to add a reference to our hub namespace by 
adding the following using statement on top of the Startup.cs file:

using SignalrApplication.Hubs;

Then, we will need to enable SignalR by adding the following line of code to the 
ConfigureServices method:

services.AddSignalR();

Finally, we need to register the hub endpoint by adding the following line of code inside 
the call to the UseEndpoints method:

endpoints.MapHub<JobsHub>("/jobsHub");

Now, we are ready to start adding client components.

Adding a SignalR client and launching the application
Locate the Index.cshtml file inside the Pages folder and replace its content with  
the following:

@page

@model IndexModel

@{ ViewData["Title"] = "Home page"; }

<div class="row" style="padding-top: 50px;">

    <div class="col-md-6">



84     When gRPC Is the Best Tool and When It Isn't

        <div class="control-group">

            <div>

                <label for="job-description">Job 

                  description:</label>

                <input type="text" id="job-description" 

                  name="job-description" />

            </div>

            <button id="btn-send-single">Send Single Job

              </button>

        </div>

        <div class="control-group">

            <div>

                <label for="jobs-to-send">Number of jobs to 

                  send:</label>

                <input type="text" id="jobs-to-send" 

                  name="jobs-to-send" />

            </div>

            <button id="btn-send-multiple">Send Multiple 

              Jobs</button>

        </div>

        <div class="control-group">

            <div>

                <label for="jobs-to-trigger">Number of jobs to 

                  trigger:</label>

                <input type="text" id="jobs-to-trigger" 

                  name="jobs-to-trigger" />

            </div>

            <button id="btn-trigger-multiple">Trigger Multiple  

              Jobs</button>

        </div>

    </div>

    <div class="col-md-7">

        <p>Responses from the server:</p>

        <pre id="signalr-message-panel"></pre>



Where SignalR would beat gRPC     85

    </div>

</div>

<script src="https://cdnjs.cloudflare.com/ajax/libs/microsoft-

  signalr/3.1.7/signalr.min.js"></script>

Please note that there is a script element at the bottom of the preceding code block. 
This is where we are adding the SignalR JavaScript library.

After this, locate the site.js file in the wwwroot/js folder and delete any content 
that's already present in it.

In this file, we will start by initializing a SignalR connection by adding the following code:

const connection = new signalR.HubConnectionBuilder()

    .withUrl("/jobsHub")

    .configureLogging(signalR.LogLevel.Information)

    .build();

Then, we will register an event. Whenever a SignalR hub on the server sends a message to 
the ReceiveMessage endpoint on the client, an addMessage JavaScript function will 
be executed. The code is illustrated in the following snippet:

connection.on("ReceiveMessage", (message) => 

  addMessage(message));

function addMessage(message) {

    $('#signalr-message-panel').prepend($('<div />').

      text(message));

}

We will then make one of our HTML buttons send a message to the SendSingleJob 
endpoint on our server-side hub by running the following code:

$('#btn-send-single').click(function () {

    var jobDescription = $('#job-description').val();

    connection.invoke("SendSingleJob", jobDescription).

      catch(err => 

      console.error(err.toString()));

});



86     When gRPC Is the Best Tool and When It Isn't

Then, we will make another button send a stream to the StreamJobs endpoint,  
as follows: 

$('#btn-send-multiple').click(function () {

    var numberOfJobs = parseInt($('#jobs-to-send').val(), 10);

    var subject = new signalR.Subject();

    

    var iteration = 0;

    var intervalHandle = setInterval(() => {

        iteration++;

        subject.next(iteration);

        if (iteration === numberOfJobs) {

            clearInterval(intervalHandle);

            subject.complete();

        }

    }, 2000);

    connection.send("StreamJobs", subject);

});

Then, we will make another button trigger a server-side stream from the TriggerJobs 
endpoint and subscribe to it, as follows:

$('#btn-trigger-multiple').click(function () {

    var numberOfJobs = parseInt($('#jobs-to-trigger').val(), 

      10);

    connection.stream("TriggerJobs", numberOfJobs)

        .subscribe({

            next: (message) => addMessage(message)

        });

});

Finally, we will add some error handling to our SignalR connection object and will start 
the connection, as follows:

async function start() {

    try {

        await connection.start();



Where SignalR would beat gRPC     87

        console.log('connected');

    } catch (err) {

        console.log(err);

        setTimeout(() => start(), 5000);

    }

};

connection.onclose(async () => {

    await start();

});

start();

Here, we are registering an event handler for the ReceiveMessage call from the server. 
We are also associating various SignalR calls with the buttons on our page, and then we 
instantiate a SignalR connection to the server.

We can now launch our application by executing a dotnet run command inside our 
project folder and opening it in the browser (https://localhost:5001 by default), 
which will take us to the following screen:

Figure 2.6 – SignalR client in action



88     When gRPC Is the Best Tool and When It Isn't

This application demonstrates how SignalR allows us to do everything that we could do 
with gRPC but do so in a browser. Also, it shows us that, for browser-based applications, 
SignalR is much more effortless to set up than gRPC-Web. And, unlike gRPC-Web, 
SignalR is capable of performing client-streaming calls.

SignalR is also the technology that is used by server-side Blazor to allow the in-browser 
components to communicate with the server, and server-side Blazor is another tool that 
will allow you to enable gRPC-like functionality in the browser.

The main advantage of using server-side Blazor over pure SignalR is that you won't have 
to learn JavaScript. You can write all of your code in C# and it will be automatically 
converted into in-browser code and markup.

The main disadvantage of server-side Blazor is that it can only be used to communicate 
with the backend of the same application that has served you the web page. Unlike  
pure SignalR, it cannot be configured to communicate with any arbitrary service on  
the network.

We will not cover server-side Blazor in detail here, but you will be able to find 
documentation on it in the Further reading section.

Summary
In this chapter, we saw how the gRPC communication mechanism is most suitable to 
be used for direct communication between microservices, as it uses a highly efficient 
Protobuf messaging protocol over HTTP/2. As well as making synchronous request-
response calls, gRPC is capable of asynchronously streaming data both ways between the 
client and the server.

gRPC cannot work in browsers as it requires HTTP/2, which browsers don't fully support. 
However, a gRPC-Web implementation has been created specifically to enable gRPC  
in the browser. However, gRPC-Web still has severe limitations, as it requires many  
setup steps, is much less efficient than standard gRPC, and doesn't support  
client-streaming calls.

A good alternative to gRPC-Web for browsers is SignalR, which is already embedded in 
ASP.NET Core. It supports bi-directional messaging (both singular and streaming) and 
takes minimal effort to set up.

After reading this chapter, you should know how to apply gRPC as a communication 
mechanism between ASP.NET Core microservices. You also now know how to implement 
gRPC-like functionality in the browser when gRPC itself is not the best solution.



Questions     89

In the next chapter, we will have a more detailed look at the data types that are supported 
by gRPC Protobuf out of the box. We will cover all of the embedded data types and 
explain how each of them gets converted to C#.

Questions
1. Can gRPC support asynchronous calls?

A. No, it only supports synchronous calls.
B. Yes, by utilizing streaming.
C. Yes, but only by using async/await on the client.
D. Yes, but only on gRPC-Web.

2. Can you use gRPC inside a browser?

A. Not at all.
B. Yes, it just works out of the box.
C. Yes, but only via gRPC-Web.
D. Yes, but it only works with a Blazor client.

3. Which one of the following is NOT a limitation of gRPC-Web?

A. Server-streaming calls
B. Client-streaming calls
C. Having to convert messages to HTTP/1.1
D. Having to use a proxy

4. Do you need to make additional modifications to enable gRPC-Web if you already 
have gRPC enabled?

A. No, the framework will automatically convert gRPC to gRPC-Web.
B. Yes, both on the server and the client.
C. Yes, but only on the client.
D. Yes, but only on the server.



90     When gRPC Is the Best Tool and When It Isn't

5. What can SignalR do that gRPC can't?

A. Bi-directional streaming
B. Client-streaming calls
C. Asynchronous calls
D. Calls from the server to the client without a request from the client

Further reading
• Core concepts, architecture, and lifecycle: https://grpc.io/docs/what-is-

grpc/core-concepts/

• The state of gRPC in the browser by Johan Brandhorst: https://grpc.io/blog/
state-of-grpc-web/

• Introduction to ASP.NET Core SignalR: https://docs.microsoft.com/
en-us/aspnet/core/signalr/introduction

• ASP.NET Core Blazor hosting models: https://docs.microsoft.com/
en-us/aspnet/core/blazor/hosting-models

https://grpc.io/docs/what-is-grpc/core-concepts/
https://grpc.io/docs/what-is-grpc/core-concepts/
https://grpc.io/blog/state-of-grpc-web/
https://grpc.io/blog/state-of-grpc-web/
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models
https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models


3
Protobuf – the 

Communication 
Protocol of gRPC

We briefly covered the structure of a proto file in Chapter 1, Creating a Basic gRPC 
Application on ASP.NET Core. In Chapter 1, Creating a Basic gRPC Application on ASP.
NET Core, we also had a look at the most basic type of remote procedure call (RPC), the 
unary call, which is equivalent to a standard HTTP request-response call. Then, we briefly 
covered streaming gRPC calls in Chapter 2, When gRPC Is the Best Tool and When It Isn't.

In this chapter, we will take an in-depth look at Protobuf – the communication protocol 
that is used by gRPC. We will also cover the structure and the syntax of a proto file.

Although the Protobuf protocol was designed to be as intuitive as possible, it's not always 
obvious how to use some of its components most optimally. Additionally, some Protobuf 
features are not very well known, despite their usefulness.

The objective of this chapter is to go through all of the built-in components of a proto file, 
explain how they are used, and demonstrate how they get translated into C# code.



92     Protobuf – the Communication Protocol of gRPC

We will cover the following topics:

• The types of RPCs available with gRPC

• The built-in Protobuf data types

• How these data types get converted to C# data types

• How to use collections in Protobuf messages

• Special keywords in the Protobuf protocol

• How to reference other proto files from a proto file

By the end of this chapter, you will have learned how to use all of the built-in features  
of the Protobuf protocol and how to optimize proto definitions for the most efficient  
data transfer.

Technical requirements
To follow the instructions in this chapter, you will need the following:

• A computer with a Windows, Mac, or Linux operating system

• A supported IDE or code editor (Visual Studio, Visual Studio Code, or JetBrains 
Rider)

• The .NET 5 software development kit (SDK)

• A self-signed development HTTPS certificate enabled on your machine

For instructions on how to set up these prerequisites, please refer to Chapter 1, Creating  
a Basic gRPC Application on ASP.NET Core.

All of the code samples used in this chapter can be found in this book's GitHub 
repository: https://github.com/PacktPublishing/Microservices-
Communication-in-.NET-Using-gRPC/tree/main/Chapter-03

The RPC types supported by gRPC
We will start by creating a solution from a standard gRPC Service template. We will call 
our project IndepthProtobuf. To create this project, execute the following command:

dotnet new grpc -o IndepthProtobuf

https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-03
https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-03


The RPC types supported by gRPC     93

Now, we are ready to make modifications to our project to examine all the relevant 
Protobuf features.

The RPC types that Protobuf supports
Since we already have the greet.proto file placed in the Protos directory of our 
IndepthProtobuf project, and because we already have a basic implementation of the 
service represented by this file, we won't be replacing any existing functionality. Instead, 
we will add to it.

To make a start, we will replace the content of the greet.proto file with the following:

syntax = "proto3";

option csharp_namespace = "IndepthProtobuf";

package greet;

service Greeter {

  rpc SayHello (HelloRequest) returns (HelloReply); 

    // Unary RPC

  rpc RequestManyHellos (stream HelloRequest) returns 

    (HelloReply);

  // Client-streaming RPC

  rpc SayManyHellos (HelloRequest) returns (stream HelloReply); 

  // Server-streaming RPC

  rpc RequestAndSayManyHellos (stream HelloRequest) returns 

    (stream HelloReply); // Bi-directional streaming RPC

}

message HelloRequest {

  string name = 1; // Name of the client to say hello to

}

message HelloReply {

  string message = 1;

}



94     Protobuf – the Communication Protocol of gRPC

In this proto file, we have left the original SayHello rpc definition inside the Greeter 
service intact. But we have also added three additional rpc definitions to it, all of which 
reuse the same request and response objects.

The original SayHello rpc is a standard unary call. It receives a single request object 
and returns a single response object. A unary RPC call consists of an rpc keyword, the 
custom name of the RPC, and the request object type name in brackets, followed by the 
returns keyword, which is then followed by the name of the response object type in 
brackets. These are all of the components of a unary call. There aren't any additional 
keywords in use.

A newly added RequestManyHellos rpc is a client-streaming call. This is 
determined by the stream keyword being placed in front of the request message  
type name in brackets, but keyword needs to be present before the response message  
type name.

A client-streaming call allows you to send many instances of a specific message type  
to the server while only accepting a single response message once the entire stream  
of request messages has been processed. Using a client-streaming call allows you to  
keep the communication channel open for some time. Any new message placed in  
the stream by the client will be readable by the server immediately. However, the client 
would only expect the response to come when there are no further messages to be placed 
in the stream.

The messages can be added to the stream by the client in quick succession, or there can  
be some latency between the messages. Streaming gRPC calls are designed to be kept  
open for as long as necessary.

The SayManyHellos rpc is the opposite of RequestManyHellos, as it has the 
stream keyword next to the response object rather than the request object. This means 
that the client needs to trigger this endpoint by sending an initial singular request to it. 
After this request, many instances of the response message are sent back to the client. 
The client is notified that the stream has been closed as soon as the server-side method is 
complete.

Until then, the stream can be kept open for a configurable amount of time, which we will 
cover in Chapter 7, Using Different Call Types that gRPC Supports.

The final rpc definition that we have added, RequstAndSayManyHellos, has the 
stream keyword next to both the request and response objects. This is known as a 
bi-directional streaming call, and it works like a combination of the client-streaming and 
server-streaming calls.



Reviewing the native Protobuf data types     95

Making comments in Protobuf
Just like in your code, you can add any arbitrary, non-executable text to your proto files as 
comments. The comments are there purely to explain the code better. They don't have any 
effect whatsoever on the execution of the code.

Protobuf supports two types of comments, which will be familiar to anyone who has used 
the C# programming language.

If you put a double forward-slash (//) on any line, the rest of the line will be treated as 
a single-line comment. This is where you can put any arbitrary text. The following is an 
example of a single-line comment:

// This is a single line comment

It can occupy the whole line or can be placed after any executable code. We have examples 
of the latter next to our RPC and message field definitions in the code example in the 
previous section. For instance, the HelloRequest message has the following after its 
definition:

string name = 1; // Name of the client to say hello to

Multi-line comments are also supported by Protobuf. They are prefixed by /*. Any 
content that follows this combination of characters will be treated as a comment until the 
closing combination (*/) is found. An example of a multi-line comment would be the 
following:

/* This is

a multiline comment */

We have now covered the basic structure of a proto file and had a look at every RPC type 
that the Protobuf protocol supports. Now, let's have a look at the built-in data types that 
are available with Protobuf.

Reviewing the native Protobuf data types
We will need to modify our greet.proto file further. Let's add the following section at 
the bottom of it:

message BasicTypes {

  int32 int_field = 1;

  int64 long_field = 2;

  uint32 unsigned_int_field = 3;



96     Protobuf – the Communication Protocol of gRPC

  uint64 unsigned_long_field = 4;

  sint32 signed_int_field = 5;

  sint64 signed_long_field = 6;

  fixed32 fixed_int_field = 7;

  fixed64 fixed_long_field = 8;

  sfixed32 signed_fixed_int_field = 9;

  sfixed64 signed_fixed_long_field = 10;

  float float_field = 11;

  double double_field = 12;

  bool boolean_field = 13;

  string string_field = 14;

  bytes bytes_field = 15;

}

This message definition, alongside the enum section that we have added, provides all of 
the basic built-in data types available in Protobuf. We have named each field after the data 
type it represents to make it easy to demonstrate each data type in action.

Please note that each field name uses the snake_case naming style (that is, the name 
consists of only lowercase letters and the words are separated by underscores). This is  
a universal convention that is independent of the Protobuf standard. When snake_case  
is used, any language-specific Protobuf compiler will apply standard naming conventions 
to the field names while converting the content of a proto file into code. For example, 
int_field would be converted into PascalCase (IntField) if used with C#, but 
camelCase (intField) if used with Java.

However, individual implementations of the Protobuf compiler can apply the correct 
naming conventions to field names even if snake_case conventions aren't applied. For 
example, if we apply camelCase field names, where we start the name with the lowercase 
letter and then start any new word with an uppercase letter, it will still be correctly 
converted into a PascalCase name in C#. We used some examples of this in Chapter 2, 
When gRPC Is the Best Tool and When It Isn't.

Please also note the sequence numbers after each field. This number is an integer and each 
one of them must be unique. These numbers are handy for API versioning, which we will 
cover in Chapter 5, How to Apply Versioning to the gRPC API.

Let's now go over the data types and see how each one gets converted to C# code.



Reviewing the native Protobuf data types     97

Integer data types
Among the various data types, there are a few that are considered integer data types. We'll 
go through these in this section.

The int32 and int64 data types
The int32 and int64 data types are represented by the following fields:

int32 int_field = 1;

int64 long_field = 2;

The equivalent data types in C# would be int (Int32) and long (Int64). The int32 
type is an integer data type that consists of 32 bits, while the int64 field is an integer data 
type consisting of 64 bits. Both accept positive and negative numbers. The only difference 
between them is the size of the number they can store.

The following C# code is generated from these fields, which can be viewed in the Greet.
cs file in the obj/{Build configuration}/{Framework version}/Protos 
folder within the project folder:

Figure 3.1 – Code generated from the int32 and int64 fields



98     Protobuf – the Communication Protocol of gRPC

But there is one key difference between the Protobuf and C# implementations of 
these data types. In C#, int and long will always occupy 32 and 64 bits of memory, 
respectively. In Protobuf, however, they will occupy as many bytes as needed to store  
a specific numeric value, up to either 32 or 64 bits. Protobuf has been designed to be  
very efficient. So, if you are using small numbers, those will use less storage than  
large numbers.

The uint32 and uint64 data types
The uint32 and uint64 data types are represented by the following fields:

uint32 unsigned_int_field = 3;

uint64 unsigned_long_field = 4;

These are the equivalent of the uint and ulong data types in C#.

Figure 3.2 – A uint32 and uint64 C# implementation

These are unsigned integers, which means that they don't support negative values. But 
because they use the same number of bytes as their standard-integer counterparts, they 
can store much higher positive number values.

Just like int32 and int64, uint32 and uint64 will only use as many bytes in a 
Protobuf message as are strictly needed for storing a specific value.



Reviewing the native Protobuf data types     99

The sint32 and sint64 data types
In our examples, the sint32 and sint64 data types are represented by the  
following fields:

sint32 signed_int_field = 5;

sint64 signed_long_field = 6;

Just like ordinary integer data types, these can store both positive and negative values. In 
C#, they are converted into a standard int and a standard long data type, respectively.

Figure 3.3 – sint32 and sint64 representations in C#

But why do we even need separate data types for storing signed integral numbers if we 
already have int32 and int64? Well, this is just another way to optimize Protobuf 
messages. Even though sint32 and sint64 support both positive and negative values, 
they encode negative values more efficiently than int32 and int64. So, use signed 
integers when the numbers you are dealing with are likely to be negative. Otherwise, use 
ordinary integers.



100     Protobuf – the Communication Protocol of gRPC

The fixed32 and fixed64 data types
The fixed32 and fixed64 data types are also unsigned integer data types, which are 
represented by the following fields:

fixed32 fixed_int_field = 7;

fixed64 fixed_long_field = 8;

They are different from uint32 and uint64 by being specifically intended for storing 
large numbers. The fixed32 and fixed64 data types always occupy 32 and 64 bits, 
respectively. They are fixed in size, and this is the reason they are called fixed. But they do 
encode large numbers more efficiently than regular int data types.

In C#, unsigned integers are always fixed in size. Therefore, these data types are 
represented by uint and ulong.

Figure 3.4 – fixed32 and fixed64 representations in C#

The name fixed is intuitively associated with just positive numeric values, so the fact that 
these data types don't support negative values needs to be memorized.



Reviewing the native Protobuf data types     101

The sfixed32 and sfixed64 data types
The sfixed32 and sfixed64 data types are represented by the following fields:

sfixed32 signed_fixed_int_field = 9;

sfixed64 signed_fixed_long_field = 10;

In C#, they are represented by ordinary int and long data types.

Figure 3.5 – sfixed32 and sfixed64 representations in C#

These are signed, fixed-width fields. They are primarily designed for processing  
multi-digit negative numbers.

These were all types of integers available with Protobuf. Now, let's have a look at other  
data types.

Non-integer numeric types
For non-integer numeric data types, we have the float and double data types.



102     Protobuf – the Communication Protocol of gRPC

The float and double data types
The float and double data types are numbers that can store decimal points. The only 
difference between them is how much storage space they use. The more storage space, the 
greater the precision. The float data type occupies 4 bytes (32 bits), while the double 
data type occupies 8 bytes (64 bits).

C# has equivalent data types with the same names, as follows:

Figure 3.6 – Protobuf float and double data types converted to C#

We have now covered all of the built-in numeric data types available in Protobuf. Please 
note that none of them can be set to null. The default value for all of them is 0.

We will now move on to the other data types that Protobuf supports.

Non-numeric data types
The next data types are for non-numeric values. In this section, we will have a look  
at them.



Reviewing the native Protobuf data types     103

The bool data type
The bool data type contains a Boolean true or false value. In Protobuf, it cannot be 
set to null. The default value is false if it's not set explicitly.

In our BasicTypes message definition example, bool is represented by the following 
field:

bool boolean_field = 13;

C# has a fully equivalent bool data type.

The string data type
The string data type stores text. Just like any other built-in data type in Protobuf, it 
cannot be null. The default value is an empty string.

This is an example of a string field:

string string_field = 14;

In C#, on the other hand, the equivalent string data type can be set to null. Therefore, 
the C# code that's generated from a string Protobuf field has a null check on it.

Figure 3.7 – A C# representation of a Protobuf string field with a null check

Without this check, there would have been nothing in our code to prevent us from putting 
a null value into this field, resulting in an error.

The bytes data type
The bytes data type represents an array of bytes. In our example, it's represented by the 
following field:

bytes bytes_field = 15;



104     Protobuf – the Communication Protocol of gRPC

Although a common way to process a byte array in C# is to have a collection of 
individual byte object entities, this is not how it's done by a C# code generator.  
Instead, it's converted to the ByteString type from the Google.Protobuf .NET 
library. However, this type has extension methods to convert to and from a standard  
byte array. This will be demonstrated in Chapter 4, Performance Best Practices for Using 
gRPC on .NET.

Figure 3.8 – A C# representation of the bytes data type

Because C# allows any custom class or struct type to be null, but Protobuf doesn't allow it 
for its built-in types, there is a null check in the generated code.

We have now covered all of the primitive types supported by Protobuf. Let's now move on 
to a more advanced topic – enums and nested messages.

Enums
Let's now add the following enum fields and the enum definition inside the BasicTypes 
message definition:

InternalEnum internal_enum_field = 16;

ExternalEnum external_enum_field = 17;

enum InternalEnum {

  NONE = 0;

  SINGLE = 1;

  MANY = 2;

}



Reviewing the native Protobuf data types     105

After this, add the following enum definition anywhere outside the BasicTypes 
message definition:

enum ExternalEnum {

  NONE = 0;

  SINGLE = 1;

  MANY = 2;

}

The enum is an enumeration that is used for defining categories. It can have any number 
of name-value pairs. Each name can be any custom text consisting of alphanumeric 
characters. The value for each name is an integer number. We can use any value, but we 
must have an entry with 0, as this is the default value of an enum.

Because we have enum types in C#, we get an enum definition generated in the code from 
our Protobuf enum.

Figure 3.9 – C# code generated from a Protobuf enum definition

But there are two types of enum definitions – internal and external. An internal enum 
definition is defined inside the message definition. And even though it can be referenced 
from the outside (as we will see in a minute), it can only be referenced by its basic name 
from inside the same message definition where it's defined.

This is how we represent it in our example:

InternalEnum internal_enum_field = 16;

An external enum definition, on the other hand, can be referenced from any message 
in our proto file, as it's defined at the root level and not inside of any specific message 
definition. This is an example of its usage:

ExternalEnum external_enum_field = 17;



106     Protobuf – the Communication Protocol of gRPC

Now, we will have a closer look at Protobuf message definitions and how the internal 
components of one message definition can be referenced in another message 
definition.

Nested messages
We will now modify our HelloReply message definition so that it will look like this:

message HelloReply {

  string message = 1;

  BasicTypes basic_types_field = 2;

  BasicTypes.InternalEnum internal_enum_field = 3;

  ExternalEnum external_enum_field = 4;

  NestedMessage nested_message_field = 5;

  message NestedMessage {

    

  }

}

The first field with the string type and the message name was originally present in the 
message definition. We haven't modified it.

The field with the sequence number 2 is an example of how you can use message 
definitions as the data types of fields inside other message definitions. This is similar to 
how you can use classes or structs as data types inside other classes or structs in C#:

Figure 3.10 – Code generated from a field that uses a message definition as its data type

Next, we have an example of how to use an enum that is defined inside another message 
definition. This is what we have previously referred to as an internal enum definition.

BasicTypes.InternalEnum internal_enum_field = 3;



Reviewing the native Protobuf data types     107

Even if an enum definition is defined internally inside a particular message, you can still 
use it in another message. You just need to specify the fully qualified name of it, including 
the name of the message definition type. In this case, because the message type (where 
we have originally defined the InternalEnum type) is called BasicTypes, our fully 
qualified name of the enum type will be BasicTypes.InternalEnum.

C# also supports nested types. But an important thing to note is that when C# code 
is generated from Protobuf, the fully qualified name of the nested object will not be 
{default Proto namespace}.{top-level type name}.{nested type}. 
It will actually be {default Proto namespace}.{top-level type name}.
Types.{nested type}.

Therefore, for our InternalEnum reference that is nested inside BasicTypes, 
which belongs to the IndepthProtobuf namespace, the fully qualified name will 
be IndepthProtobuf.BasicTypes.Types.InternalEnum, as shown in the 
following figure:

Figure 3.11 – Using the fully qualified names of nested enums in C#

Next, we have a field that references an enum defined at the root level of the proto 
package:

ExternalEnum extternal_enum_field = 4;

We've placed this field there purely to demonstrate how an externally defined enum can be 
shared between a message definition in the same proto file. We just specify the name of 
the type without having to fully qualify it.

Finally, we have another message defined inside our HelloReply message:

message NestedMessage {

    

}



108     Protobuf – the Communication Protocol of gRPC

As you can see, we haven't added any fields to it – we have done this to demonstrate that 
empty message definitions are still supported by Protobuf.

Just like with nested and non-nested enums, to reference a nested message as a field data 
type inside the message that it's been defined in, we just specify its basic name, as we 
have done in this field:

NestedMessage nested_message_field = 5;

However, to reference it from the outside, we will need to specify the fully qualified name, 
including the name of the message definition that this type is nested in. In our case, it 
will be HelloReply.NestedMessage.

In C#, the fully qualified namespace will also contain the Types word before the 
nested type name. So, in this instance, the name will become HelloReply.Types.
NestedMessage:

Figure 3.12 – A C# representation of a nested message definition

Essentially, nested message definitions are analogous to nested enum definitions:

• You don't need to fully qualify the name of the type when it's inside the type it has 
been defined in.

• You need to fully qualify the name of the type when it's used outside the type it's 
been defined in.

• In C#, nested types aren't placed directly inside the class that represents their parent 
in Protobuf. Instead, public static partial class Types is created 
where the nested object is placed.

This covers all of the basic data types available in Protobuf. We have also covered how to 
use nesting. Now, we will have a look at how to use different types of collections available 
in Protobuf.



Using collections in Protobuf     109

Using collections in Protobuf
Protobuf supports two types of collections: repeated fields and maps. Repeated fields are 
analogous to arrays or lists in C#. They represent a collection of singular objects. Maps are 
analogous to dictionaries in C#. They represent a collection of key-value pairs.

Repeated field collections can contain any data type, but you cannot use additional 
keywords inside of them. For example, you cannot have an equivalent of a multi-
dimensional array by having a repeated keyword inside a repeated field.

Map fields can use any data type as a value, but its key needs to be either any of the 
integer types or a string. It cannot be a bytes, enum, float, or double data type, or 
any custom message type. Neither its key, its value, nor the whole field itself can be 
repeated. Let's discuss each type further in the next subsections.

Repeated fields
Inside the greet.proto file, add the following fields to the NestedMessage 
definition:

repeated string string_collection = 1;

repeated int32 int_collection = 2;

repeated BasicTypes object_collection = 3;

repeated ExternalEnum enum_collection = 4;

These fields demonstrate that any data type, regardless of whether it's built-in or custom, 
can be used as the data type for a repeated field.

In C#, a repeated field is represented by the RepeatedField<T> class of the 
Google.Protobuf.Collections namespace, where T is the data type of the items 
inside the collection. This class is similar to commonly used collection types from the 
System library of C#, such as List<T> from the System.Collections.Generic 
namespace. Both implement IList<T>, IEnumerable<T>, and ICollection<T> 
interfaces, so they have the same public methods for manipulating the collection.



110     Protobuf – the Communication Protocol of gRPC

When C# code gets generated from a Protobuf definition, repeated fields become 
read-only, as can be seen in the following figure. Each field gets initialized once as an 
encapsulated private field. The public property then only comes with a getter  
and doesn't have a setter.

Figure 3.13 – A representation of repeated fields in C#

Making repeated fields read-only is done to make C# code as safe as possible. The 
default value for a repeated field in Protobuf is an empty collection. In C#, an empty 
collection is precisely what's created from a repeated field definition. You cannot 
replace it with a different collection, which may be set to null. You can only add items to 
the existing collection.

Let's have a look at how to use it in the code. In the Services folder, locate the 
GreeterService.cs file and replace the definition of the SayHello method with  
the following:

public override Task<HelloReply> SayHello(HelloRequest request,

  ServerCallContext context)

{

    var message = new HelloReply

    {

        Message = "Hello " + request.Name,

        NestedMessageField = new HelloReply.Types.

          NestedMessage()

    };



Using collections in Protobuf     111

    return Task.FromResult(message);

}

Because we cannot manually initialize RepeatedField types in our C# representations 
of Protobuf messages, we must initialize the message itself before we can manipulate the 
collection. Therefore, we have separated the initialization of the HelloReply message 
from the return statement. But because the repeated fields we are interested in are 
inside a NestedMessage type, we need to initialize this type too, as we have done in the 
following example.

Now, we will insert the following code before the return statement:

message.NestedMessageField.StringCollection.Add("entry 1");

message.NestedMessageField.StringCollection.Add(new 

  List<string>

{

    "entry 2",

    "entry 3"

});

In the preceding example, we have two examples of adding items to a collection:

• Adding a single entry

• Adding a collection of entries

Other than that, the collection can be manipulated just like any other collection in C#. 
You can remove items from it, you can clear the entire collection, or you can clone the 
whole collection into a separate variable.

Map fields
Add the following fields to the NestedMessage definition in greet.proto:

map<string, string> string_to_string_map = 5;

map<int64, string> int_to_string_map = 6;

map<sfixed32, BasicTypes> signedfixed_to_object_map = 7;

map<uint64, ExternalEnum> unsignedint_to_enum_map = 8;



112     Protobuf – the Communication Protocol of gRPC

These fields have been added to demonstrate the various data types that can be used as 
keys and values in a Protobuf map. Please note that we only have string and integer 
types as keys, while we also have message and enum types as values.

In C#, a Protobuf map is represented by the MapField<TKey, TValue> class of the 
Google.Protobuf.Collections namespace. The TKey and TValue represent any 
data type that can be the key or the value, respectively.

Just like RepeatedField, MapField representations are made read-only in C#:

Figure 3.14 – MapField representations in C#

The MapField class represents the standard C# collection interfaces (IEnumerbale, 
ICollection, and so on). But it also represents IDictionary<TKey, TValue>, 
so it can be used just like the standard Dictionary<TKey, TValue> class from the 
System.Collection.Generics namespace. You can add whole key-value pair 
entries to it and also set a value by specifying a particular key.

To see some examples of how to use MapField in C#, add the following code before the 
return statement of the SayHello method inside the GreeterService class:

message.NestedMessageField.StringToStringMap.Add("entry 1", 

  "value 1");

message.NestedMessageField.StringToStringMap.Add(new 

  Dictionary<string, string>

{

    { "entry 2", "value 2" },

    { "entry 3", "value 3" }

});



Using special keywords in Protobuf     113

message.NestedMessageField.StringToStringMap["entry 4"] = 

  "value 4";

In this example, we have demonstrated three different ways of adding items to a 
MapField collection:

• As a singular key-value pair

• As a collection of key-value pairs

• Specifying a key and setting its value

Please note that each key needs to be unique. If you try to add a key-value pair with a key 
that already exists, an error will be thrown.

However, when you specify the key and square brackets and set its value by using the 
equality operator (==), as we have in the last example, it will work regardless of whether 
the key already exists or not. If the key doesn't exist, it will be added. However, if the key 
already exists, the entry will be overwritten with the new value.

So far, we have covered all of the inbuilt data types in Protobuf and collections. But 
Protobuf also supports some special keywords. Some of them will be analogous to what's 
used in various programming languages. However, there are also some that are unique to 
Protobuf. And this is what we will have a look at next.

Using special keywords in Protobuf
Protobuf has a range of special keywords that we haven't covered so far. Some of them are 
only used on rare occasions. For example, you may have to use special keywords to make 
your proto files compatible with an older version of Protobuf. We will not cover those in 
this chapter.

There are also some other Protobuf features that are only useful in a very narrow range 
of circumstances, such as using extensions and defining custom options. These will not be 
covered either due to their limited usefulness.

However, there are also some keywords that are very useful and accessible. The most 
prominent of them are oneof and option. These are the keywords that we will focus  
on now.



114     Protobuf – the Communication Protocol of gRPC

How the oneof keyword can make communication 
more efficient
Inside the greet.proto file, we will modify the BasicTypes message definition. 
First, we will replace the fields with the sequence numbers from 1 to 10 with  
the following:

oneof whole_number_field {

    int32 int_field = 1;

    int64 long_field = 2;

    uint32 unsigned_int_field = 3;

    uint64 unsigned_long_field = 4;

    sint32 signed_int_field = 5;

    sint64 signed_long_field = 6;

    fixed32 fixed_int_field = 7;

    fixed64 fixed_long_field = 8;

    sfixed32 signed_fixed_int_field = 9;

    sfixed64 signed_fixed_long_field = 10;

  }

Then, we will replace the fields with the sequence numbers from 11 to 17 with  
the following:

oneof mixed_field {

    float float_field = 11;

    double double_field = 12;

    bool boolean_field = 13;

    string string_field = 14;

    bytes bytes_field = 15;

    InternalEnum internal_enum_field = 16;

    ExternalEnum external_enum_field = 17;

  }

So, as you may have noticed, we haven't really changed any fields or their data types. We 
have simply wrapped two bundles of fields in a code block that started with the oneof 
keyword and an arbitrary name.

This keyword means that only one of these fields will be set. If you set the value of one of 
the fields and then set the value for another field in the same oneof block, the first field 
that you've set will be unset.



Using special keywords in Protobuf     115

The benefit of using oneof is that the message will be smaller when it is being 
transferred. The only field in a oneof block that has any size is the one that has been set 
last. And if such a block consists of many fields, the saving in terms of bandwidth usage 
will be significant.

In the previous example, we have deliberately chosen two different variations of a 
oneof field to demonstrate that there are no restrictions on which data types you can 
put together. In the first example, the whole_number_field oneof block, we have 
placed different types of integers together. But in our second example, the mixed_field 
oneof block, we have fields with completely different data types together. Some of them 
are inbuilt scalar data types, while others are custom messages and enums.

However, oneof doesn't support collections, so you can't place a repeated or map field 
inside a oneof block. Neither can you use any other keywords in your fields, such as 
option, a keyword we will have a look at shortly.

Even though the oneof keyword is placed at a field level inside a message definition, 
it's not really a field. When a proto file is translated into code, all the fields inside a oneof 
block are still accessible at the normal field level in the object that gets generated. But 
there is also some additional logic that gets added to make sure that only one of the fields 
is used.

In C#, oneof gets represented by an enum where there is a value for every field inside the 
original oneof block:

Figure 3.15 – A C# enum representation of a oneof block "whole_number_field"

The name of an enum generated from a oneof field will have the following structure:

{PascalCase version of the oneof block name}OneOfField



116     Protobuf – the Communication Protocol of gRPC

There is also a private field of this enum type that is stored inside the class definition 
that represents the message where the oneof block was originally defined. It holds the 
value of the last field that has been populated.

Setting the value of a property that represents a particular field from a oneof block will 
set the value of the private enum field to the enum value that corresponds to the property 
that has just been set. While attempting to retrieve the value of the property, the getter 
will first check whether the enum has been set to the value that corresponds to this 
property. Otherwise, it will just return a default value for this data type:

Figure 3.16 – Using a oneof enum inside a getter and setter

This private enum field is also used inside the class constructor. When a Protobuf message 
is received, the C# representation of it will set the correct field from a oneof block based 
on the information it receives from the message. This is done via a switch statement, as 
shown in the following figure:

Figure 3.17 – The use of a oneof enum in a class constructor



Using special keywords in Protobuf     117

When we use any of the fields from a oneof block inside our own code, they are used 
just like any normal fields and properties in a C# class. For example, if we place the 
following block of code before the return statement inside the SayHello method of 
the GreeterService class, this will still be valid:

message.BasicTypesField = new BasicTypes

{

    IntField = 1

};

However, if you then set another field from the same oneof block, the value you've given 
to IntField will not be used.

Customizing the behavior with the option keyword
We have already seen an example of the option keyword when we were setting the C# 
namespace, as we are using the following line inside the greet.proto file:

option csharp_namespace = "IndepthProtobuf";

This directive will override the default package name when generating C# code and will 
apply a custom namespace of IndepthProtobuf to any packages it generates. But there 
are also other modifications you can do by using the option keyword.

In Protobuf, option can be applied in three different scopes:

• Global scope

• Message-level scope

• Field-level scope

Let's discuss each scope in detail in the following subsections.

Global-level options
The previous example of ssharp_namespace is a global option, as it's placed at the file 
level. Usually, this option will contain a directive that is relevant to a specific programming 
language. As we are using C#, we have used a directive that is specific to C#. However, if 
you intend to use gRPC clients and/or servers written in other languages, here are some of 
the other directives you can use:

• java_package

• java_outer_classname



118     Protobuf – the Communication Protocol of gRPC

• go_package

• optimize_for

Message-level options
The message-level options are placed inside of the message and enum definitions at the 
same levels as their fields (or enum values). These options will modify the behavior of an 
entire message or enum.

To see an example of such an option, we will modify the ExternalEnum definition to be 
as follows:

enum ExternalEnum {

  option allow_alias = true;

  NONE = 0;

  SINGLE = 1;

  FEW = 2;

  MANY = 2;

}

Here, we have applied the allow_alias option by setting it to true. With this option 
enabled, we can assign the same value to multiple enum names. But why would we want  
to do this?

To the running code, enums are just representations of numbers. So, in this example, 
FEW is no different from MANY, as they both have a value of 2. However, the reason we 
use names in enums is to make them readable to people who read our code. And from 
a human perspective, there might be a benefit of knowing a distinct scenario where a 
particular type of situation occurs.

In the previous example, it could be that the exact amount that the enum refers to doesn't 
make a difference to the downstream logic when it's above 1. However, the system that 
sends the data may need to have two distinct categories depending on the amount.

Another example would be a disconnection. To the downstream system, any type of 
disconnection is treated the same. However, to the client, there is a difference between an 
on-demand disconnection and a disconnection due to failure. So, in this case, it will make 
sense to have two distinct enum aliases that share the same enum value.



Using special keywords in Protobuf     119

In C#, such an enum will use the OriginalName attribute from the Google.
Protobuf.Reflection package for each of its values with the property of 
PreferredAlias set to false on all but one of the entries that share the same 
numeric value:

Figure 3.18 – A C# representation of a Protobuf enum with the allow_alias option enabled

Field-level options
Finally, there are also field-level options in Protobuf. These are placed after the sequence 
number next to a relevant field, but before the semicolon (;). In this case, you don't have 
to use the option keyword. You can just apply any option directly by wrapping it in 
square brackets ([]).

One of the most commonly used field-level options in Protobuf is deprecated. Let's see 
how this gets applied.

In the HelloReply message definition in our greet.proto file, locate nested_
message_field and replace it with the following:

NestedMessage nested_message_field = 5 [deprecated = true];

When the code gets generated, it will apply ObsoleteAttribute to the property that 
represents this field:

Figure 3.19 – A C# representation of the deprecated option being set to true



120     Protobuf – the Communication Protocol of gRPC

If we use an IDE or a relevant code styling extension for our code editor, a warning will 
be generated whenever we attempt to use this field. If we have a look at the code in our 
GreeterService class, every instance of this field is highlighted to warn us that it has 
been deprecated:

Figure 3.20 – Visual Studio showing the deprecation warning

These are the most used Protobuf options, and they are the only ones that most developers 
will ever need.

Protobuf allows you to specify your own custom options, but this is reserved for very 
specific use cases. Therefore, we will not cover this here. But you will find a link to the 
relevant documentation in the Further reading section of this chapter.

There are also reserved keywords that we haven't covered. But, since these are mainly 
intended for enabling easy updates to proto file definitions, we will fully cover their use in 
Chapter 5, How to Apply Versioning to the gRPC API.

Now, we will cover how to reference other proto files from a proto file and how to create 
Protobuf libraries – that is, proto file definitions specifically intended to be referenced.



Referencing other proto files     121

Referencing other proto files
In any programming language, you can create reusable bundles of code and package them 
up into libraries that can be referenced by any application. In .NET, for example, you can 
create a project of a Class Library type that you can reference from your main application 
project. Or, if such a library is meant to be accessible by other projects that aren't part of 
your solution, you can publish it as a NuGet package.

Similar principles are available in Protobuf. You can reference other proto files from 
inside your proto file. Another similarity between Protobuf and any major programming 
language is that you can add references to both internal and external proto files. We will 
have a look at how to apply them both.

Just like you would use namespaces in C# to import external libraries, you use the 
equivalent in Protobuf. The package directive in a proto file is what sets the name of the 
Protobuf package. Then, if any other proto file will need to reference this package, it will 
use this package name as a prefix to refer to the message, enum, and service types 
defined in this package. For example, if the package name inside our greet.proto file is 
greet and we have a HelloReply message defined inside the proto file, then any other 
proto file that will reference greet.proto will have to use a fully qualified name to refer 
to the HelloReply object (that is, greet.HelloReply).

Importing external proto packages
Importing either an internal or external package in proto files is done via the import 
directive. You would put this directive before the package directive on top of the proto 
file. The format would be as follows:

import "{path to proto file}"

We will now import one of the proto files from Google's collection of so-called well-known 
types, which we will examine in more detail in Chapter 8, Using Well-Known Types to 
Make Protobuf More Handy. But for now, we will import a package representing one of its 
data types, Any.

We will start by adding the following directive above our package directive inside the 
greet.proto file:

import "google/protobuf/any.proto";

This is a path to the any.proto file that contains the data type we need. It will be 
recognized by the Protobuf compiler, as the paths to the packages published by Google are 
pre-configured in the gRPC tools.



122     Protobuf – the Communication Protocol of gRPC

We will now use this field in one of our messages. Inside the HelloReply message 
definition, add the following field after the last field:

google.protobuf.Any external_reference_field = 6;

As you can see, we are specifying the fully qualified data type name. The data type is called 
Any, and it comes from the google.protobuf package.

In this case, because the package was intended to be used by gRPC clients and servers 
written in any language, it doesn't have any language-specific package name or namespace 
directive. Therefore, when the code is generated, the C# namespace is created by applying 
the camelCase format to the original package name, as per C# naming conventions:

Figure 3.21 – An imported external Protobuf object translated to C#

This is how external proto files can be referenced. Now, we will create some internal proto 
files and then see how to reference them.

Referencing internal proto files
Create a reference.proto file in the Protos folder of your project and populate it 
with the following content:

syntax = "proto3";

option csharp_namespace = "IndepthProtobuf.Reference";

package greet.reference;

message ReferenceMessage {

  string description = 1;

}



Referencing other proto files     123

We are adding a package with the ReferenceMessage definition. As this proto file has 
no service definitions, the file is intended to be used purely as a reference package.

When we reference this file inside other proto files, we will need to use the greet.
reference package name to use the ReferenceMessage definition. However, when 
the C# code gets generated, the namespace of the class that represents the message will be 
IndepthProtobuf.Reference, as we have specified in the csharp_namespace 
option.

We will need to ensure that the reference.proto file is recognized by our project. To 
do so, we will locate the ItemGroup section inside of IndepthProtobuf.csproj 
that contains the Protobuf reference to the greet.proto file and replace it with  
the following:

<ItemGroup>

  <Protobuf Include="Protos\greet.proto" GrpcServices="Server" 

    />

  <Protobuf Include="Protos\reference.proto" 

    GrpcServices="Server" />

</ItemGroup>

Now, we will import this file into our greet.proto file. We will do so by adding the 
following directive before the package directive:

import "Protos/reference.proto";

This is a Unix-style path to the file relative to the root of the project.

Now, we will use a custom data type from the reference.proto file. We do so by 
adding the following field to the HelloReply message definition:

greet.reference.ReferenceMessage internal_reference_field = 7;



124     Protobuf – the Communication Protocol of gRPC

The fully-qualified name of the ReferenceMessage custom data type uses the original 
Protobuf package name, which is greet.reference. But the C# code generated from 
it uses the namespace defined in the csharp_namespace option directive in the 
reference.proto file:

Figure 3.22 – A namespace conversion for a package with the csharp_namespace option

So, the process of importing internal and external Protobuf packages is broadly the same. 
But there is one additional handy feature that Protobuf has when working with internal 
packages. If you need to move the reference package to another location for whatever 
reason, you can still do so without changing any code inside the file that imports  
the package.

Using proto files as relays
If you move your proto file to a different location (for example, to make it accessible by 
other projects), you may still do so without changing any code in the proto files that 
reference it. However, you will still need to make some changes to enable this.

We will start by creating another file inside our Protos folder, which we will call new.
proto. And then we will copy the entire content from the reference.proto file.

Please note that we will still need our reference.proto file to be exactly where it was 
before. We will just need to change its content to make the file act purely as a relay. We will 
do so by replacing its content with the following:

syntax = "proto3";

option csharp_namespace = "IndepthProtobuf.Reference";

import public "Protos/new.proto";

package greet.reference;



Summary     125

The directive that makes this file act as a relay for new.proto is import public. 
With this directive in place, the reference.proto file will act as if the content of the 
new.proto file is its own content. So, anything that imports reference.proto will 
implicitly import new.proto. And this is why, as long as you don't change anything in 
the proto file that you have moved, every proto file that used to import the content from 
the old proto file will still be valid.

The final change that we need to make is to add a new.proto reference to our 
IndepthProtobuf.csproj file so that it's recognized by the internal gRPC tools:

<ItemGroup>

  <Protobuf Include="Protos\greet.proto" GrpcServices="Server" 

    />

  <Protobuf Include="Protos\reference.proto" 

    GrpcServices="Server" />

  <Protobuf Include="Protos\new.proto" GrpcServices="Server" />

</ItemGroup>

If your code doesn't compile after making these changes, you may need to delete the 
.vs, obj, and bin folders from your project folder and try again. But other than this, 
everything is expected to work as before, and identical code is expected to be generated.

Summary
In this chapter, you learned how to use all of the core structural components of Protobuf. 
You now know all of the rpc types supported by Protobuf. You also learned all of the 
possible ways of annotating your Protobuf elements with comments.

You learned about all of the inbuilt data types in Protobuf and how they get converted 
to C# data types. We covered all of the types of integers available in Protobuf and how to 
choose the right data type depending on what kind of values it's intended to represent. We 
also covered other scalar types, such as bool, string, and float. In addition to this, 
you learned how to use nested message and enum definitions.

You also learned how to use two types of collections in Protobuf – repeated fields and 
maps – and learned that the former is used for creating collections of single values, while 
the latter is used for creating a dictionary-like collection of key-value pairs. You also 
learned which data types and keywords aren't compatible with Protobuf collections.



126     Protobuf – the Communication Protocol of gRPC

We also covered the use of the keywords that are unique to Protobuf. You learned how to 
create bundles of mutually exclusive fields by using the oneof keyword. You also learned 
how to modify the default behavior of Protobuf objects by adding the option directive at 
the file, message, and field levels.

Finally, you learned how to reference other proto files from a single proto file, both 
internally and externally. You now also know how to use a proto file as a relay for another 
proto file if one has been moved elsewhere, so your original code can remain unchanged.

We have now completed an overview of gRPC and its messaging protocol, Protobuf. In the 
next part of the book, we will cover some best practices for using gRPC in ASP.NET Core 
applications. In the next chapter, we will have a look at the techniques you can apply to 
optimize the performance of this communication mechanism. 

Questions
1. What is the equivalent of the fixed64 data type in C#?

A. long
B. ulong

C. int
D. uint

2. What is the difference between int32 and fixed32?

A. The int32 data type will have only as many bytes allocated as necessary, while 
fixed32 always occupies 4 bytes.

B. There is no difference. Two data types exist purely for backward compatibility.
C. The int32 data type only accepts positive numbers, while fixed32 accepts 

negative numbers.
D. The int32 data type accepts only whole numbers, while fixed32 accepts 

decimal point numbers.

3. How do you create a multi-dimensional array in Protobuf?

A. Apply the repeated repeated keyword to the field.
B. There is no way of creating anything that resembles a multi-dimensional array 

in Protobuf.
C. Create a repeated field of a message that itself has a repeated field.
D. You can only do it if you apply a custom option.



Further reading     127

4. What happens if you assign a value on a field within a oneof block if another field 
has already been set?

A. A compiler error is thrown.
B. The original field gets unset, and the new field gets set.
C. The original field remains set, and nothing happens to the new field.
D. A runtime error is thrown.

5. How can you keep your main proto file unchanged if you must move one of the files 
that it references?

A. You will have no choice but to change the import directive.
B. The only option is to move all your files to the same location and change the 

references in the csproj file.
C. You will have no choice but to change both your proto file and your code.
D. You can keep the original proto file that is specified in the import directive but 

get it to import the new proto file via the import public directive.

Further reading
• The official Protobuf language guide:

https://developers.google.com/protocol-buffers/docs/proto3

• Specifying custom options in Protobuf:

https://developers.google.com/protocol-buffers/docs/
proto#extensions

https://developers.google.com/protocol-buffers/docs/proto#extensions
https://developers.google.com/protocol-buffers/docs/proto#extensions




Section 2:  
Best Practices of 

Using gRPC

This part covers best practices of using gRPC. It will show you how to use it in the most 
optimal way in code, how to scale it, and how to apply API versioning. The following 
chapters will be covered in this part:

• Chapter 4, Performance Best Practices of Using gRPC on .NET

• Chapter 5, How to Apply Versioning to the gRPC API

• Chapter 6, Scaling a gRPC Application





4
Performance Best 

Practices for Using 
gRPC on .NET

Since gRPC is often used for processing large volumes of data inside a distributed 
application, this communication mechanism must be optimized for the best performance. 
In this chapter, we will cover some best practices when it comes to using gRPC on  
ASP.NET Core to optimize its performance as much as possible.

If you don't know how to optimize gRPC for the best performance, you are running the 
risk of not being able to cope with the volume of data that your application is intended to 
process. Alternatively, you may need to scale your application out, which would require 
you to use additional software and hardware resources. If you are running your application 
under a cloud subscription, such as Microsoft Azure or Amazon AWS, unnecessarily 
scaling your application out will probably cost you some additional money. This is why it's 
important to use gRPC to its maximum potential before scaling out is required.

In this chapter, we will cover the following topics:

• Why you need to reuse a gRPC channel
• How to not get held up by a concurrent stream limit



132     Performance Best Practices for Using gRPC on .NET

• Ensuring that your connection remains alive
• When streaming is better than individual calls
• Using binary payloads to decrease the data's size

By the end of this chapter, you will have learned how to fine-tune your gRPC client and 
server applications to make them suitable for optimally handling large amounts of data.

Technical requirements
To follow the instructions in this chapter, you will need the following:

• A computer with either the Windows, Mac, or Linux operating system installed
• A supported IDE or code editor (Visual Studio, Visual Studio Code, or JetBrains Rider)
• .NET 5 SDK
• A self-signed development HTTPS certificate enabled on the machine

The instructions for how to set all of these up were provided in Chapter 1, Creating a Basic 
gRPC Application on ASP.NET Core.

All of the code samples used in this chapter can be found in this book's GitHub repository:  
https://github.com/PacktPublishing/Microservices-
Communication-in-.NET-Using-gRPC/tree/main/Chapter-04

Please visit the following link to check the CiA videos: https://bit.ly/3m1Eg7I

Why you need to reuse a gRPC channel 
When you connect the gRPC client to the server, you do so via a configurable channel. 
When the channel is opened, the following things happen:

1. A socket is opened
2. The TCP connection is established
3. Transport Layer Security (TLS) is negotiated and applied
4. An HTTP/2 connection is started

Once these steps have been completed, gRPC calls can be made to the server.

Because opening a channel requires all these steps to take place, which represent multiple 
roundtrips to the server, it's better to reuse the channel while you can. If you already have 
an existing channel open, you can start making gRPC calls on it right away. However, if you 
recreate the channel every time you make a call, you will need to perform all these steps every 
single time. If you need to make many calls, this may slow down your system substantially.

https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-04
https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-04
https://bit.ly/3m1Eg7I


Why you need to reuse a gRPC channel      133

In C#, the gRPC channel is represented by the GrpcChannel class from the  
Grpc.Net.Client namespace. An object of this type needs to be reused rather  
than an implementation of the gRPC client. 

The gRPC client's implementation is nothing but a thin layer of abstraction around 
the Protobuf definition. It's there merely to provide strongly typed representations of 
the Protobuf RPCs that you can call. All the heavy lifting is done by GrpcChannel. 
Therefore, it doesn't matter if we reuse the client object or instantiate a new one every  
time we need to make a call. What matters is that we reuse the channel if we can.

Let's set up some gRPC server and client applications to see how the channel object can  
be reused.

Setting up the server application
First, we need to create a solution that will hold both our client and server applications, 
along with their shared gRPC dependencies. To do so, we'll create a folder called 
GrpcBestPractices and run the following command inside it to create a solution 
with the same name:

dotnet new sln

Then, while still in the same folder, we will create a gRPC service application by executing 
the following command:

dotnet new grpc -o PerformanceService

Then, we will add the newly created project to the solution by executing the following 
command:

dotnet sln add PerformanceService/PerformanceService.csproj

Now, we will add a console application that will hold the shared gRPC dependencies 
between the client and the server.

Adding a library with shared Protobuf dependencies
We can create a shared library project by executing the following command:

dotnet new classlib -o GrpcDependencies

We can add this project to our solution by executing the following command:

dotnet sln add GrpcDependencies/GrpcDependencies.csproj



134     Performance Best Practices for Using gRPC on .NET

Now, let's add all the required NuGet dependencies to our shared class library project.  
We can do so by navigating to the GrpcDependencies project folder and executing  
the following commands:

dotnet add GrpcDependencies.csproj package Grpc.Net.Client

dotnet add GrpcDependencies.csproj package Google.Protobuf

dotnet add GrpcDependencies.csproj package Grpc.Tools

dotnet add GrpcDependencies.csproj package Grpc.AspNetCore

Now, we will add a Protobuf definition to our shared library. To do so, we will 
create a Protos folder inside the GrpcDependencies project folder and add a 
performance.proto file to it. The content of this file will be as follows:

syntax = "proto3";

package performance;

service Monitor {

  rpc GetPerformance (PerformanceStatusRequest) returns 

    (PerformanceStatusResponse);

}

message PerformanceStatusRequest {

  string client_name = 1;

}

message PerformanceStatusResponse {

    double cpu_percentage_usage = 1;

    double memory_usage = 2;

    int32 processes_running = 3;

    int32 active_connections = 4;

}

It's a simple service definition with a single unary RPC called GetPerformance. The 
service that we are building is emulating a performance monitor. It receives a request with 
a client name, and it returns performance statistics, including CPU and memory usage, the 
number of active processes that are running, and the number of active connections.



Why you need to reuse a gRPC channel      135

But don't worry. We won't have to be monitoring a actual system. We are purely emulating 
these statistics for demonstration purposes.

To finish off our reference library, we need to insert the following section anywhere inside 
the <Project> element in the GrpcDependencies.csproj file:

<ItemGroup>

    <Protobuf Include="Protos\performance.proto" />

</ItemGroup>

This project now contains all the gRPC dependencies that both the server and the client 
applications need. Therefore, it's no longer essential to have them explicitly defined in 
either of those projects.

Now, we will add this library to our server project while removing all the redundant 
dependencies from it.

Adding a shared Protobuf library to the server project
Inside GrpcBestPractices, navigate to the PerformanceService project folder 
and replace the content of the PerformanceService.csproj file with the following:

<Project Sdk="Microsoft.NET.Sdk.Web">

  <PropertyGroup>

    <TargetFramework>net5.0</TargetFramework>

  </PropertyGroup>

  <ItemGroup>

    <ProjectReference 

      Include="..\GrpcDependencies\GrpcDependencies.csproj" />

  </ItemGroup>

</Project>

Now that all the necessary dependencies are in place, we are ready to implement the 
server-side components for our solution. But first, we need to remove the auto-generated 
gRPC service implementation for the default greet.proto file. As we no longer use  
this file, we will need to remove the GreeterService.cs file from the Services 
folder inside the PerformanceService project folder. Otherwise, we will get  
a compiler error.



136     Performance Best Practices for Using gRPC on .NET

Implementing server-side gRPC components
Once we've deleted all the redundant files, we can put the PerformanceMonitor.cs 
file in its place. The content of this file will be as follows:

using System;

using System.Threading.Tasks;

using Grpc.Core;

using Performance;

 

namespace PerformanceService

{

    public class PerformanceMonitor : Monitor.MonitorBase

    {

        public override Task<PerformanceStatusResponse> 

          GetPerformance(PerformanceStatusRequest request, 

            ServerCallContext context)

        {

            var randomNumberGenerator = new Random();

 

            return Task.FromResult(new 

              PerformanceStatusResponse

            {

                CpuPercentageUsage = 

                  randomNumberGenerator.NextDouble() * 100,

                MemoryUsage = randomNumberGenerator.

                  NextDouble() * 100,

                ProcessesRunning = randomNumberGenerator.

                  Next(),

                ActiveConnections = randomNumberGenerator.

                  Next()

            });

        }

    }

}



Why you need to reuse a gRPC channel      137

Essentially, the implementation of the GetPerformance RPC accepts a request from 
the client and returns a single response with emulated performance statistics. All of these 
statistics are completely random numbers.

Now, we need to register this gRPC service implementation. To do so, we need to open 
the Startup.cs file inside the project folder and, inside the Configure method, 
locate a call to UseEndpoints. If you are using .NET 6 template, this call will be located 
in the main body of Program.cs class. Inside this call, locate the line with a call to 
MapGrpcService. We will replace this line with the following code:

endpoints.MapGrpcService<PerformanceMonitor>();

Note
If you are running your server-side application on a Mac, you will need to 
apply some modifications to it. Instructions on how to do so can be found in 
the Running a gRPC service on a Mac section of Chapter 1, Creating a Basic 
gRPC Application on ASP.NET Core.

Now, you can compile the application to ensure that we have added all the components 
correctly and haven't missed anything. If so, we are ready to start adding our client 
application.

Setting up the client application
Our client application will be a standard ASP.NET Core web API. To create it from  
a relevant template, open your command-line terminal inside the GrpcBestPractices 
solution folder and execute the following command:

dotnet new webapi -o ApiGateway

Next, we will add it to our solution by executing the following command:

dotnet sln add ApiGateway/ApiGateway.csproj

After this, we will add all the required gRPC dependencies to our project. We will also 
add a NuGet package to give us access to Swagger. So, we will replace the content of 
ApiGateway.csproj with the following:

<Project Sdk="Microsoft.NET.Sdk.Web">

 

  <PropertyGroup>

    <TargetFramework>net5.0</TargetFramework>



138     Performance Best Practices for Using gRPC on .NET

  </PropertyGroup>

 

  <ItemGroup>

    <PackageReference Include="NSwag.AspNetCore" 

      Version="13.12.1" />

  </ItemGroup>

 

  <ItemGroup>

    <ProjectReference 

      Include="..\GrpcDependencies\GrpcDependencies.csproj" />

  </ItemGroup>

 

</Project>

The API endpoints of the application will return a JSON representation of the 
PerformanceStatusResponse message from our performance.proto file. We 
will also measure how long it takes to execute various types of calls. Therefore, the return 
object will also contain a field to store the time in milliseconds.

To represent the response object, we will create a ResponseModel.cs file in the root of 
our ApiGateway project and populate it with the following content:

using System.Collections.Generic;

 

namespace ApiGateway

{

    public class ResponseModel

    {

        public List<PerformanceStatusModel> PerformanceStatuses 

          { 

          get; } = new();

        public double RequestProcessingTime { get; set; }

 

        public class PerformanceStatusModel

        {

            public double CpuPercentageUsage { get; set; }

            public double MemoryUsage { get; set; }

            public int ProcessesRunning { get; set; }



Why you need to reuse a gRPC channel      139

            public int ActiveConnections { get; set; }

        }

    }

}

To demonstrate the importance of reusing a gRPC channel, we will set up three different 
types of clients in our application.

The first one will be a wrapper class, where a new client object is created every time 
a new call is made, but the channel remains active until the wrapper object is disposed 
of. This wrapper class will be inside the GrpcPerformanceClient.cs file, which we 
will place in the root of the ApiGateway project folder. Inside this file, we will place all 
the required using statements, namespace, and the class definition. So, it will look as 
follows initially:

using System;

using System.Threading.Tasks;

using Grpc.Net.Client;

using Performance;

 

namespace ApiGateway

{ 

    internal class GrpcPerformanceClient

    {

    }

}

Inside the namespace, we will add the interface definition for our class:

public interface IGrpcPerformanceClient

{

    Task<ResponseModel.PerformanceStatusModel> 

      GetPerformanceStatus(string clientName);

}



140     Performance Best Practices for Using gRPC on .NET

Next, we will add a constructor to our class, which will set the client channel when it's 
initialized:

private readonly GrpcChannel channel;

 

public GrpcPerformanceClient(string serverUrl)

{

    channel = GrpcChannel.ForAddress(serverUrl);

}

After this, we will ensure that our class implements both the 
IGrpcPerformanceClient and IDisposable interfaces. The class needs to 
implement the method that we have defined in the interface. Likewise, we need to ensure 
that we dispose of the channel once an instance of this class is destroyed. Therefore, we 
will change the class definition line to the following:

internal class GrpcPerformanceClient : IGrpcPerformanceClient, 

IDisposable

Now, let's implement the IGrpcPerformanceClient interface by adding the following 
method to our class:

public async Task<ResponseModel.PerformanceStatusModel> 

  GetPerformanceStatus(string clientName)

{

    var client = new Monitor.MonitorClient(channel);

 

    var response = await client.GetPerformanceAsync(new 

      PerformanceStatusRequest

    {

        ClientName = clientName

    });

 

    return new ResponseModel.PerformanceStatusModel

    {

        CpuPercentageUsage = response.CpuPercentageUsage,

        MemoryUsage = response.MemoryUsage,

        ProcessesRunning = response.ProcessesRunning,

        ActiveConnections = response.ActiveConnections



Why you need to reuse a gRPC channel      141

    };

}

Then, we will implement an IDisposable interface by adding the following method to 
the class:

public void Dispose()

{

    channel.Dispose();

}

Now, we need to register this wrapper class alongside our other dependencies. So, we  
will apply some changes to the Startup.cs file,  (or Program.cs file if you are on a 
.NET 6 template), which is located within the root of the ApiGateway project folder.

First, we will ensure that the class imports all the necessary namespaces. The full collection 
of using statements should be as follows:

using System;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.Extensions.Configuration;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Hosting;

using Performance;

Then, we will ensure that we inject all the necessary dependencies into our code by placing 
the following content inside the ConfigureServices method. If you are using .NET 
6 template, the following code will go into the main body of Program.cs file before the 
Build event. And you will need to replace services with builder.Services:

services.AddControllers();

services.AddOpenApiDocument();

services.AddSingleton(Configuration);

services.AddSingleton<IGrpcPerformanceClient>(p => new 

  GrpcPerformanceClient(Configuration["ServerUrl"]));

services.AddGrpcClient<Monitor.MonitorClient>(o =>

{

    o.Address = new Uri(Configuration["ServerUrl"]);

});



142     Performance Best Practices for Using gRPC on .NET

Here, we are adding API controllers. Then, we are adding Swagger dependencies so 
that we can generate web pages based on REST API endpoints. Then, we are making the 
application configuration available to the other classes (we will need this to instantiate 
gRPC clients on demand). After this, we are registering an instance of our wrapper class 
that we have just created.

The final registration method, AddGrpcClient, is an in-built way to register  
a gRPC client inside the ASP.NET Core application without using any custom  
wrapper. If we have this registration call, then we can inject the client type (in this case, 
Monitor.MonitorClient) into the constructors of our controllers and it will get 
resolved to a functioning instance. This makes client registration more convenient. 
However, as we will see later, outsourcing client registration to the underlying framework 
doesn't necessarily improve its performance.

Next, we will need to add Swagger elements to our pipeline. To do so, we will place the 
following lines into the configure method. They will need to be placed anywhere before 
the calls to UseRouting and UseHttpsRedirection:

app.UseOpenApi();

app.UseSwaggerUi3();

As you may have noticed, we have inserted the value of the ServerUrl element 
from our configuration. So, we will need to add it to our appsetting.json file. 
The value of the element will be the secure (HTTPS) application URL we defined 
in the applicationUrl element of the launchSettings.json file from the 
PerformanceService project. However, if you are running the gRPC service 
application on a Mac, you will need to use the HTTP URL. In my case, the URL is 
https://localhost:5001. So, let's add the following field to the appsettings.
json file of the ApiGateway project:

"ServerUrl": "https://localhost:5001"

Also, since we are adding a Swagger page to our project, we can make things easier for us 
by enabling automatic navigation to this page whenever the application is launched. To do 
so, open the launchSettings.json file in the ApiGateway project and replace the 
values of all the launchUrl elements with swagger.

Now, we are ready to add the controller that will provide the interface between the gRPC 
client and the outside world. Before we do this, we will remove any existing files from the 
Controllers folder inside the ApiGateway project. We won't need them anymore. 
Then, we will create the PerformanceController.cs file inside this folder.



Why you need to reuse a gRPC channel      143

We will start by populating this file with the basic ASP.NET Core Web API controller 
structure:

using System.Diagnostics;

using System.Threading.Tasks;

using Grpc.Net.Client;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Extensions.Configuration;

using Performance;

 

namespace ApiGateway.Controllers

{

    [ApiController]

    [Route("[controller]")]

    public class PerformanceController : ControllerBase

    {

    }

}

Then, we will add the constructor and the private fields:

private readonly Monitor.MonitorClient factoryClient;

private readonly IGrpcPerformanceClient clientWrapper;

private readonly string serverUrl;

 

public PerformanceController(Monitor.MonitorClient 

  factoryClient,

    IGrpcPerformanceClient clientWrapper,

    IConfiguration configuration)

{

    this.factoryClient = factoryClient;

    this.clientWrapper = clientWrapper;

    serverUrl = configuration["ServerUrl"];

}



144     Performance Best Practices for Using gRPC on .NET

Here, we are inserting a dependency of IGrpcPerformanceClien – the gRPC client 
wrapper that we created earlier. We are also inserting the Monitor.MonitorClient 
instance, which we registered via AddGrpcClient in the Startup class (or  
Program.cs file, depending on your platform version). Finally, we are inserting 
configuration so that we can store the URL of the gRPC server for later.

Now, let's add three endpoints that have identical logical flows but use different gRPC 
client types. We will start by adding an endpoint that uses the client that was created by  
the internal factory method of ASP.NET Core. This method will look as follows:

[HttpGet("factory-client/{count}")]

public async Task<ResponseModel> 

  GetPerformanceFromFactoryClient(int count)

{

    var stopWatch = Stopwatch.StartNew();

    var response = new ResponseModel();

    for (var i = 0; i < count; i++)

    {

        var grpcResponse = await 

          factoryClient.GetPerformanceAsync(new 

            PerformanceStatusRequest { ClientName = 

              $"client {i + 1}" });

        response.PerformanceStatuses.Add(new 

          ResponseModel.PerformanceStatusModel

        {

            CpuPercentageUsage = grpcResponse.

              CpuPercentageUsage,

            MemoryUsage = grpcResponse.MemoryUsage,

            ProcessesRunning = grpcResponse.ProcessesRunning,

            ActiveConnections = grpcResponse.ActiveConnections

        });

    }

    response.RequestProcessingTime = stopWatch.

      ElapsedMilliseconds;

    return response;

}



Why you need to reuse a gRPC channel      145

What we have done here is accept a parameter containing a count of the gRPC calls we 
are about to make. Then, we generate that many gRPC requests on the client that we have 
inserted into our controller directly. The client is expected to reuse the channel, but we 
don't know how else it has been configured internally.

Now, let's add an endpoint that uses the gRPC client wrapper, which will have the 
following content:

[HttpGet("client-wrapper/{count}")]

public async Task<ResponseModel> 

  GetPerformanceFromClientWrapper(int 

  count)

{

    var stopWatch = Stopwatch.StartNew();

    var response = new ResponseModel();

 

    for (var i = 0; i < count; i++)

    {

        var grpcResponse = await 

          clientWrapper.GetPerformanceStatus($"client 

            {i + 1}");

        response.PerformanceStatuses.Add(grpcResponse);

    }

 

    response.RequestProcessingTime = stopWatch.

      ElapsedMilliseconds;

    return response;

}

The principle here is the same, but we are making all the gRPC calls via the wrapper that 
we created previously. Here, we have full control over the gRPC client. We are reusing the 
same channel between the calls but are creating a new client for every call.

Finally, we will add a method where we will be recreating a new instance of the gRPC 
channel and the client every time we make a gRPC call:

[HttpGet("initialized-client/{count}")]

public async Task<ResponseModel> 

  GetPerformanceFromNewClient(int 



146     Performance Best Practices for Using gRPC on .NET

  count)

{

    var stopWatch = Stopwatch.StartNew();

    var response = new ResponseModel();

 

    for (var i = 0; i < count; i++)

    {

        using var channel = GrpcChannel.ForAddress(serverUrl);

        var client = new Monitor.MonitorClient(channel); 

        var grpcResponse = await client.GetPerformanceAsync(new 

          PerformanceStatusRequest { ClientName = 

            $"client {i + 1}" });

        response.PerformanceStatuses.Add(new 

          ResponseModel.PerformanceStatusModel

        {

            CpuPercentageUsage = grpcResponse.

              CpuPercentageUsage,

            MemoryUsage = grpcResponse.MemoryUsage,

            ProcessesRunning = grpcResponse.ProcessesRunning,

            ActiveConnections = grpcResponse.ActiveConnections

        });

    }

      response.RequestProcessingTime = stopWatch.

        ElapsedMilliseconds;

      return response;

}

Here, we are, once again, making a specified number of gRPC calls. However, we are also 
creating a new channel and a new client for every call.

Now, we are in a position to launch our application and see which of the endpoints 
performs best.

Comparing the performance of different client types
First, we need to launch the application that represents the gRPC server. To do so, execute 
the dotnet run command from the PerformanceService project folder. Then, 
execute the same command from the ApiGateway project folder.



Why you need to reuse a gRPC channel      147

Once both applications are running, navigate to the API gateway's Swagger page in 
your browser. The address will be the secure URL from the launchUrl element of the 
launchSettings.json file of the ApiGateway project, followed by the /swagger 
path. For example, the URL that I have in my launchSettings file is https://
localhost:36670. Therefore, the web page I need to access will be located at 
https://localhost:36670/swagger.

You will be presented with visual representations of all three endpoints that we have added 
to the controller:

Figure 4.1 – Swagger representation of PerformanceController

Now, let's try each endpoint with the same count parameter to see how they perform. 
Let's pick up a relatively high number – for example, 1,000 – and see how long it takes to 
process the request on each of the endpoints.

The best-performing endpoint will be the one that uses a client wrapper. This is where we 
have full control over the client and we reuse the same channel:

Figure 4.2 – A request on the client-wrapper endpoint taking just over 15 seconds 



148     Performance Best Practices for Using gRPC on .NET

Unsurprisingly, the endpoint that creates a new gRPC channel for every call has 
performed worse. Unlike the client wrapper endpoint, which took approximately 15 
seconds to execute, the endpoint that uses a new channel for every call took approximately 
25 seconds:

Figure 4.3 – A request on the initialized-client endpoint taking around 25 seconds

However, the surprising outcome was that the client that was created by the framework 
had the worst performance. Even though it used the same channel for all its calls, it 
probably wasn't configured optimally by the framework:

Figure 4.4 – A request on the factory-client endpoint taking around 50 seconds

The conclusion is that reusing the gRPC channel on your client does improve 
performance. However, if you want to get the best performance, you need to control how 
you create your client as much as possible. You can outsource this task to the framework, 
which will mean that there will be less code to write. However, what you gain in 
convenience might be lost in terms of performance.



How to not get held up by a concurrent  stream limit     149

Reusing the gRPC channel on your client is just one of the ways of improving 
performance. There is also a limit on the number of streams that can be used at the same 
time inside the same server connection. And if this limit is exceeded, any additional calls 
need to be queued. But there is a way to work around this, which we will have a look at in 
the next section.

How to not get held up by a concurrent  
stream limit
The HTTP/2 connection that gRPC relies on has a limit on concurrent streams on a 
connection that can be applied at the same time. If this limit is exceeded, the subsequent 
calls cannot be made right away. They have to be queued.

The default concurrent connection limit is normally set to 100 streams. This can be 
configured on the server; however, this approach is not recommended. This can introduce 
separate performance issues, such as connection packet loss, resulting in all the TCP calls 
to the server being blocked. There can also be a conflict between different threads trying to 
write to the same connection.

The recommended way to work around this concurrent stream limit is to configure your 
client channel to open additional connections when the concurrency limit is exceeded. 
And this is easy enough to achieve using the .NET implementation of the gRPC client.

Configuring connection concurrency on the gRPC 
client
In this section, we will create a new controller with two endpoints that are identical to 
each other except for one detail: the gRPC client that's used by one endpoint will have  
a default single-connection configuration applied, while the other client will be configured 
to open additional connections when needed.

In our ApiGateway project folder, place the ConcurrencyController.cs file 
inside the Controllers folder. First, let's add the following content to this file:

using System.Collections.Generic;

using System.Diagnostics;

using System.Net.Http;

using System.Threading.Tasks;

using Grpc.Net.Client;

using Microsoft.AspNetCore.Mvc;



150     Performance Best Practices for Using gRPC on .NET

using Microsoft.Extensions.Configuration;

using Performance;

 

namespace ApiGateway.Controllers

{

    [ApiController]

    [Route("[controller]")]

    public class ConcurrencyController : ControllerBase

    {

    }

}

Now, let's add the private member and the constructor to the class:

private readonly string serverUrl;

 

public ConcurrencyController(IConfiguration configuration)

{

    serverUrl = configuration["ServerUrl"];

}

Following this, we will add an endpoint that uses a standard gRPC client to make the 
specified number of concurrent gRPC calls to the server:

[HttpGet("single-connection/{count}")]

public ResponseModel GetDataFromSingleConnection(int count)

{

    using var channel = GrpcChannel.ForAddress(serverUrl);

    var stopWatch = Stopwatch.StartNew();

    var response = new ResponseModel();

    var concurrentJobs = new List<Task>();

    for (var i = 0; i < count; i++)

    {

        var client = new Monitor.MonitorClient(channel);

        concurrentJobs.Add(Task.Run(() =>

        {

            client.GetPerformance(new PerformanceStatusRequest 

              { 



How to not get held up by a concurrent stream limit      151

              ClientName = $"client {i + 1}" });

        }));

    }

 

    Task.WaitAll(concurrentJobs.ToArray());

    response.RequestProcessingTime = stopWatch.

      ElapsedMilliseconds;

    return response;

}

We create this concurrency by generating as many tasks that are specified in the count 
parameter as quickly as possible.

Finally, we will add another endpoint, which has very similar logic but one notable 
difference, as highlighted in the following code block:

[HttpGet("multiple-connections/{count}")]

public ResponseModel GetDataFromMultipleConnections(int count)

{

    using var channel = GrpcChannel.ForAddress(serverUrl, new 

      GrpcChannelOptions

    {

        HttpHandler = new SocketsHttpHandler

        {

            EnableMultipleHttp2Connections = true,

        }

    });

    var stopWatch = Stopwatch.StartNew();

    var response = new ResponseModel();

    var concurrentJobs = new List<Task>();

    for (var i = 0; i < count; i++)

    {

        concurrentJobs.Add(Task.Run(() =>

        {

            var client = new Monitor.MonitorClient(channel);

            client.GetPerformance(new PerformanceStatusRequest 

              { 

              ClientName = $"client {i + 1}" });



152     Performance Best Practices for Using gRPC on .NET

        }));

    }

    Task.WaitAll(concurrentJobs.ToArray());

    response.RequestProcessingTime = stopWatch.

      ElapsedMilliseconds;

    return response;

}

In this case, when we are creating the channel, we are passing the 
GrpcChannelOptions object into it. Inside this object, we are setting a custom 
HttpHandler. To allow our client to open additional connections when needed, we are 
setting this field to a new instance of SocketsHttpHandler. Then, we are setting its 
EnableMultipleHttp2Connections field to true.

This is all we need to do to make our client open additional HTTP/2 connections when 
needed. Now, let's launch our application and test it.

Comparing the performance between a single 
connection and multiple connections
We will launch both of our applications by running the dotnet run command inside 
both the PerformanceService and ApiGateway project folders. Then, we will 
navigate to the Swagger page of the ApiGateway application, where we should be able  
to see our new concurrency controller endpoints:

Figure 4.5 – The ConcurrencyController endpoints on the Swagger page



Ensuring that your connection remains alive     153

This time, it may not be enough to run each endpoint once because when you use a high 
number, creating so many tasks may have a performance overhead. This is why, if you run 
each endpoint once, you may get overlapping numbers. However, this is still perhaps the 
simplest demonstration of concurrent calls. And, as such, it will still take advantage of 
multiple connection settings.

The best way to test the performance difference between these two endpoints is to run 
each of them multiple times and check the average. In my case, after running each 
endpoint 50 times, the average request processing time for a single-connection 
endpoint was around 35 seconds, while it was 30 seconds for a multiple-
connections one. That's not a huge difference, but it's still significant. Therefore, 
it makes sense to apply the EnableMultipleHttp2Connections setting to 
HttpHandler of the gRPC client if you expect many concurrent calls to be made by it.

Ensuring that your connection remains alive
Your application, which acts as a gRPC client, might experience prolonged periods of 
idleness where no gRPC calls are made to the server. In this period, your connection 
to the server may get interrupted. Therefore, while reusing a gRPC channel is good for 
performance, you need to ensure that the channel can still be used every time you need to 
rely on it.

Fortunately, ensuring that the connection remains alive is relatively easy to implement. To 
some extent, this functionality will already be configured by default. But you can also fine-
tune it to suit your needs.

Setting up keep-alive pings on the gRPC client
Inside the ConcurrencyController class of the ApiGateway application, locate 
the GetDataFromMultipleConnections method. Inside this method, replace the 
initialization of the channel variable with the following code:

using var channel = GrpcChannel.ForAddress(serverUrl, new 

  GrpcChannelOptions

{

    HttpHandler = new SocketsHttpHandler

    {

        PooledConnectionIdleTimeout = 

          System.Threading.Timeout.InfiniteTimeSpan,

        KeepAlivePingDelay = TimeSpan.FromSeconds(60),

        KeepAlivePingTimeout = TimeSpan.FromSeconds(30),



154     Performance Best Practices for Using gRPC on .NET

        EnableMultipleHttp2Connections = true,

    }

});

We have retained the client's ability to create new HTTP/2 connections whenever the 
concurrent stream limit is exceeded. However, we have also added several options to  
fine-tune keep-alive pings to make sure that the connection remains active.

The PooledConnectionIdleTimeout setting controls how long a connection can be 
idle before it can be considered reusable. In our case, we have set it to an infinite time to 
keep the connection reserved.

KeepAlivePingDelay is a setting that controls the interval at which keep-alive pings 
are sent to the server. These pings are lightweight requests. Their purpose is to keep the 
connection active. In this case, they are sent every 60 seconds.

KeepAlivePingTimeout is a setting that controls the time window that the response 
from the keep-alive ping is expected to be received within. If nothing is received within 
this time window after sending the ping, the client will close the connection. The default 
value is 20 seconds, but in this example, we are setting it to 30 seconds.

The main performance benefit of correctly applied keep-alive ping settings is that these 
pings will keep your connection fresh. Your client will still work if you use it once the 
connection has been closed, but it will require establishing a new connection, which is 
almost equivalent to creating a new channel. And this is where the performance penalty 
comes from when you submit the first request after a period of inactivity.

But if the connection was kept alive all this time, it has already been fully prepared for 
you. When you make the first request after a period of inactivity, the client will not have to 
establish a new connection. You will be able to use a fully functioning connection in the 
same way as if the period of inactivity didn't happen at all.

So, reusing your channels, opening additional connections for concurrent calls, and 
configuring keep-alive pings will improve your performance to an extent. But there 
is a way to improve your performance by an order of magnitude if you need to create 
communication-heavy applications. This is what we will have a look at now.

When streaming is better than individual calls
So far, we have only had one RPC in our solution. This was a unary RPC, 
GetPerformance, which is where we've been sending a single response message and 
retrieving a single request message. Having a unary RPC is acceptable in scenarios where 
it's only meant to be called occasionally. 



When streaming is better than individual calls     155

However, we haven't been using it this way. We have been bombarding this endpoint with 
many repeated calls. And this is precisely the type of situation where a unary RPC is not 
the best tool for the job. A bi-directional streaming RPC would be a better option as it will 
improve our performance significantly.

Setting up a bi-directional streaming RPC
Let's open the performance.proto file, which resides inside the Protos folder of the 
GrpcDependencies project. Now, add the following RPC to the Monitor service 
definition:

rpc GetManyPerformanceStats (stream PerformanceStatusRequest) 

  returns (stream PerformanceStatusResponse);

This RPC uses the same request and response messages as GetPerformance, but it uses 
both of those inside streams.

Now, we need to implement this RPC definition on the server side. To do so, open the 
PerformanceMonitor class of the PerformanceService project and add the 
following method to it:

public override async Task 

  GetManyPerformanceStats(IAsyncStreamReader<PerformanceStatus

    Request> requestStream,IServerStreamWriter<Performance

      StatusResponse> responseStream, ServerCallContext 

        context)

{

    while (await requestStream.MoveNext())

    {

        var randomNumberGenerator = new Random();

        await responseStream.WriteAsync(new 

          PerformanceStatusResponse

        {

            CpuPercentageUsage = randomNumberGenerator.

              NextDouble() 

              * 100,

            MemoryUsage = randomNumberGenerator.NextDouble() * 

              100,

            ProcessesRunning = randomNumberGenerator.Next(),

            ActiveConnections = randomNumberGenerator.Next()



156     Performance Best Practices for Using gRPC on .NET

        });

    }

}

In this method, we are doing a similar thing to what we have been doing in the 
GetPerformance method. But instead of just accepting a single request and sending 
back a single response, we read all the messages from the request stream. Then, for each of 
those, we write a response message into the response stream.

The principle remains the same – we process the request messages in the same order as 
they come in and we produce a response for every request. But we no longer have to make 
separate gRPC calls to process multiple messages.

Now, let's make the necessary changes to our client. First, in the 
GrpcPerformanceClient.cs file of the ApiGateway project, add the following 
using statements to the top of the file:

using System.Collections.Generic;

using Grpc.Core;

Following this, add the following method signature to the IGrpcPerformanceClient 
interface:

Task<IEnumerable<ResponseModel.PerformanceStatusModel>> 

GetPerformanceStatuses(IEnumerable<string> clientNames);

Now, we need to implement this method inside the GrpcPerformanceClient class. 
We will start by adding the method definition:

public async Task<IEnumerable<ResponseModel.

  PerformanceStatusModel>> 

GetPerformanceStatuses(IEnumerable<string> clientNames)

{

}

Now, let's create a gRPC client from the existing channel and open a streaming call:

var client = new Monitor.MonitorClient(channel);

using var call = client.GetManyPerformanceStats();

var responses = new List<ResponseModel.

  PerformanceStatusModel>();



When streaming is better than individual calls     157

Following this, we will create an asynchronous task that will listen for any response 
messages being placed on the server stream. We will convert each of these messages into 
ResponseModel.PerformanceStatusModel and add it to the list of responses as 
soon as we receive it:

var readTask = Task.Run(async () =>

{

    await foreach (var response in 

      call.ResponseStream.ReadAllAsync())

    {

        responses.Add(new ResponseModel.PerformanceStatusModel

        {

            CpuPercentageUsage = response.CpuPercentageUsage,

            MemoryUsage = response.MemoryUsage,

            ProcessesRunning = response.ProcessesRunning,

            ActiveConnections = response.ActiveConnections

        });

    }

});

Then, we must populate the client stream with a list of request messages that correspond 
to the collection of client names that we have received as the method parameter:

foreach (var clientName in clientNames)

{

    await call.RequestStream.WriteAsync(new 

      PerformanceStatusRequest

    {

        ClientName = clientName

    });

}

Finally, we will close the client stream, wait for all the messages to be extracted from the 
response stream, and return the collection of responses to the caller.

Now, let's create an endpoint inside our PerformanceController class that will use 
this method.



158     Performance Best Practices for Using gRPC on .NET

First, ensure that your PerformanceController.cs file contains the following 
using statement:

using System.Collections.Generic;

Then, add the following method to the class:

[HttpGet("streaming-call/{count}")]

public async Task<ResponseModel> 

  GetPerformanceFromStreamingCall(int 

  count)

{

    var stopWatch = Stopwatch.StartNew();

    var response = new ResponseModel();

    var clientNames = new List<string>();

 

    for (var i = 0; i < count; i++)

    {

        clientNames.Add($"client {i + 1}");

    }

 

    response.PerformanceStatuses.AddRange(await 

      clientWrapper.GetPerformanceStatuses(clientNames));

    response.RequestProcessingTime = stopWatch.

      ElapsedMilliseconds;

    return response;

}

This endpoint takes the same parameter as the other endpoints in this controller and 
returns the same object type. But this time, we are just making a single RPC call and 
populating the request stream with multiple messages. Let's see how it performs compared 
to making a unary call multiple times.

Monitoring the performance of the bi-directional 
streaming call
Launch both the PerformanceService and ApiGateway applications and navigate 
to the Swagger page of ApiGateway. You should be able to see the new streaming-
call endpoint on the Performance controller:



When streaming is better than individual calls     159

Figure 4.6 – The Swagger representation of PerformanceController with the streaming-call endpoint

Now, we will run this endpoint with the count parameter set to 1,000, as we did with the 
other endpoints before this:

Figure 4.7 – A request on the streaming-call endpoint taking around 3 seconds

Our call was fully processed in just over 3 seconds. This is five times faster than our 
previous fastest call, although we have submitted the same number of requests and have 
received the same number of response objects.

So, if you expect your gRPC application to process a large number of messages regularly 
– create streaming RPCs for them. They are faster than individual unary calls by a large 
margin.

There is also a modification you can apply to your Protobuf messages to transfer them 
faster due to the reduced bandwidth that they would require. This is what we will have  
a look at next.



160     Performance Best Practices for Using gRPC on .NET

Using binary payloads to decrease the  
data's size
If you want to minimize a Profobuf message's size while fitting as much data as possible 
into it, you can convert your data into a binary form. In Protobuf, there is a bytes data 
type that exists specifically for this.

Even though this data type is represented by the ByteString type from the  
Google.Protobuf library in C#, there are multiple ways of inserting a standard byte 
array into the fields of this type, which makes it compatible with any byte-processing 
functionality available in C#.

Let's have a look at various ways of writing data into this field and reading data from it.

Adding binary fields to Protobuf
In the GrpcDependencies project, open the performance.proto file inside the 
Protos folder and add the following fields to the PerformanceStatusResponse 
message definition:

bytes data_load_1 = 5;

bytes data_load_2 = 6;

Now, let's apply some modifications to the PerformanceMonitor class from the 
PerformanceService project. First, we will add the following using statement to the 
top of the file containing the class:

using Google.Protobuf;

Because both of the public endpoint methods will use similar functionality, we will 
refactor the class. First, we will add the following private method to it:

private PerformanceStatusResponse GetPerformaceResponse()

{

    var randomNumberGenerator = new Random();

    var dataLoad1 = new byte[100];

    var dataLoad2 = new byte[100];

    randomNumberGenerator.NextBytes(dataLoad1);

    randomNumberGenerator.NextBytes(dataLoad2);

    return new PerformanceStatusResponse

    {



Using binary payloads to decrease the data's size      161

        CpuPercentageUsage = randomNumberGenerator.NextDouble() 

          * 100,

        MemoryUsage = randomNumberGenerator.NextDouble() * 100,

        ProcessesRunning = randomNumberGenerator.Next(),

        ActiveConnections = randomNumberGenerator.Next(),

        DataLoad1 = UnsafeByteOperations.UnsafeWrap(dataLoad1),

        DataLoad2 = ByteString.CopyFrom(dataLoad2)

    };

}

Now, we will change both public endpoint methods to the following:

public override Task<PerformanceStatusResponse> 

  GetPerformance(PerformanceStatusRequest request, 

    ServerCallContext 

    context)

{

    return Task.FromResult(GetPerformaceResponse());

}

 

public override async Task 

  GetManyPerformanceStats(IasyncStreamReader

    <PerformanceStatusRequest> requestStream, 

      IServerStreamWriter

      <PerformanceStatusResponse> 

responseStream, ServerCallContext context)

{

    while (await requestStream.MoveNext())

    {

        await responseStream.

          WriteAsync(GetPerformaceResponse());

    }

}

So, to populate the two bytes fields that we've added, we are generating two byte arrays, 
each with a length of 100, and populating those with randomly generated bytes.



162     Performance Best Practices for Using gRPC on .NET

Then, we are using two different methods to write the data from these two byte arrays 
into the bytes fields:

• UnsafeByteOperations.UnsafeWrap, which is similar to adding the 
byte array to a ByteString field by reference. It's not merely the data that gets 
copied. If you do anything to the original byte array after you've added it this way, 
modifying this array may corrupt the data. The advantage of using this method is 
that it's faster than copying.

• ByteString.CopyFrom copies the original array into the ByteString field. 
This method is safer but slower.

Now, let's modify our client so that it can read the data.

First, we will add the following field to the PerformanceStatusModel class, which is 
nested inside the ResponseModel class of the ApiGateway project:

public byte[] DataLoad1 { get; set; }

public byte[] DataLoad2 { get; set; }

Now, let's make some changes to the GrpcPerformanceClient class so that it can read 
the bytes data from the newly added fields. But first, we will need to add the following 
using statement to the top of the file containing the class:

using System.Runtime.InteropServices;

Now, let's add the following private method to the class:

private ResponseModel.PerformanceStatusModel 

ReadResponse(PerformanceStatusResponse response)

{

    return new ResponseModel.PerformanceStatusModel

    {

        CpuPercentageUsage = response.CpuPercentageUsage,

        MemoryUsage = response.MemoryUsage,

        ProcessesRunning = response.ProcessesRunning,

        ActiveConnections = response.ActiveConnections,

        DataLoad1 = response.DataLoad1.ToByteArray(),

        DataLoad2 = 

          MemoryMarshal.TryGetArray(response.DataLoad2.Memory,

            out var segment) ? segment.Array : 



Using binary payloads to decrease the data's size      163

              response.DataLoad2.Memory.ToArray()

    };

}

Here, once again, we have two different ways of converting ByteString into  
a byte array:

• ToByteArray will convert ByteString into a byte array.

• MemoryMarshal.TryGetArray will try to obtain a specific array segment. If 
this fails, we can try to convert the read-only memory segment of the ByteString 
object into the byte array by calling the ToArray method.

Now, we can apply this private method to both of our public methods. In the 
GetPerformanceStatus method, change the return statement to the following:

return ReadResponse(response);

In the GetPerformanceStatuses method, replace the statement that starts with 
responses.Add with the following code:

responses.Add(ReadResponse(response));

Now, we can get this data on our Swagger page:

Figure 4.8 – The HTTP response data with byte array fields

Even though we used raw bytes in this example, any kind of data can be packaged into this 
binary format. C# has a lot of in-built tools for working with bytes and converting them 
into other data types.



164     Performance Best Practices for Using gRPC on .NET

Summary
In this chapter, you learned that reusing existing gRPC channels is good for performance, 
while performance isn't affected by reusing a client object. You also saw that even though 
it's convenient to outsource the process of creating a gRPC client to the framework, this 
isn't necessarily good for performance. Therefore, for optimal performance, it's better to 
control how the client is created as much as possible.

We covered the fact that there is a streaming limit on active HTTP/2 connections. But you 
also learned that there is a setting that allows you to create a new connection from your 
gRPC client when this limit is about to be exceeded.

Then, we covered how to keep the gRPC connection between the client and the server 
alive while you aren't actively using it. This allows you to start using it as soon as you need 
it without having to reestablish it.

After that, we learned how using bi-directional streaming instead of unary calls improves 
the processing speed by an order of magnitude when repeated calls need to be made.

Finally, we covered how to transfer binary data in Protobuf messages, which significantly 
reduces the message's size and minimizes the bandwidth usage.

In the next chapter, we will cover the best practices surrounding gRPC API versioning. 
You will learn how to update your server-side API in such a way that it doesn't break the 
existing clients.

Questions
1. For the best performance in terms of gRPC communication, which of the following 

client-side objects would you need to reuse?

A. Client
B. Channel
C. Both the client and the channel
D. Neither

2. What is the default concurrent stream limit on the HTTP/2 connection?

A. 1,000
B. 10
C. 100
D. 1



Further reading     165

3. What happens if no data is received within the timeout window after sending  
a keep-alive ping?

A. The connection is terminated
B. The next ping is sent
C. The connection is marked as idle
D. This configuration parameter is made redundant

4. How do you define a bi-directional streaming call in Protobuf?

A. Apply the stream keyword before the rpc keyword
B. Apply the stream keyword after the rpc keyword
C. Apply the stream keyword before the input parameter
D. Apply the stream keyword before both the input and output parameters

5. When shouldn't you use UnsafeByteOperations.UnsafeWrap to populate 
ByteString?

A. When you intend to modify the original byte array after this call
B. You should be able to use it in any situation
C. When you haven't made a copy of the original array
D. When you want higher performance

Further reading
• Performance best practices for gRPC: https://docs.microsoft.com/

en-us/aspnet/core/grpc/performance.

https://docs.microsoft.com/en-us/aspnet/core/grpc/performance
https://docs.microsoft.com/en-us/aspnet/core/grpc/performance




5 
Applying Versioning 

to the gRPC API
So far, we have had a look at the uses of gRPC in ASP.NET Core where both the client 
and server applications are present in the same solution and rely on the same reference 
library. When this is the case and the applications at both ends of gRPC communication 
are in the same repository, then those components are probably meant to be deployed 
together. This is where API versioning is not critical, as you can simply apply Protobuf 
changes to both the client and server at the same time. Even if these are breaking changes, 
only the applications from the same repository will be affected.

But not all gRPC implementations are like this. Quite often, your client and your server 
will be in different repositories and will be deployed as separate components. It might 
even be the case that the client and the server are developed by separate teams or even 
separate organizations. Just like with a REST API, your server might have a public gRPC 
endpoint that any authorized client should be able to access.

This is where API versioning becomes critically important. If you make updates to 
your server, these changes should not cause the existing clients to break or behave in an 
unexpected manner. Luckily, Protobuf has been designed for easy API versioning. And 
this is what we will have a look at in this chapter.



168     Applying Versioning to the gRPC API

We will cover the following topics:

• Why an API versioning strategy is important

• What the sequence numbers in the proto file represent

• Why you must not modify existing fields in future Protobuf versions

• How to deprecate old, unused fields in gRPC

• How to factor in API versioning at the design stage

By the end of this chapter, you will have learned how to apply API versioning so that you 
can make changes to the gRPC server without breaking any of its existing clients.

Technical requirements
To follow the instructions in this chapter, you will need the following: 

• A computer with a Windows, Mac, or Linux operating system 

• A supported IDE or code editor (Visual Studio, Visual Studio Code, or  
JetBrains Rider) 

• The .NET 5 software development kit (SDK) (or newer) 

• A self-signed development HTTPS certificate enabled on your machine 

For instructions on how to set up all of these prerequisites, please refer to Chapter 1, 
Creating a Basic gRPC Application on ASP.NET Core.

All of the code samples used in this chapter can be found in this book's GitHub 
repository:

https://github.com/PacktPublishing/Microservices-
Communication-in-.NET-Using-gRPC/tree/main/Chapter-05

Please visit the following link to check the CiA videos: https://bit.ly/3pT2hPA

Why an API versioning strategy is important
We will begin by setting up two applications. We will pretend that these two applications 
are developed by different teams and they don't have access to shared gRPC dependencies. 
This setup will be done to demonstrate why API versioning is so important.

For convenience, while using an IDE, you may add these applications to the same 
solution. But this is not necessary, as these applications will not share any dependencies.

https://bit.ly/3pT2hPA


Why an API versioning strategy is important     169

Creating a server application
We will start by executing the following command to create an ASP.NET Core application 
based on the gRPC Service template:

dotnet new grpc -o GrpcServer

In the GrpcServer project folder that has been created, we will remove the default 
greet.proto file from the Protos folder. Then, we will place the stats.proto file 
in there with the following service definition:

syntax = "proto3";

 

package stats;

 

service Status {

  rpc GetStatus (StatusRequest) returns (StatusResponse);

}

The definition of the StatusRequest message will be as follows:

message StatusRequest {

  string client_name = 1;

  string client_description = 2;

  bool ready = 3;

  bool authorized = 4;

}

And the definition of the StatusResponse message should be as follows:

message StatusResponse {

  string server_name = 1;

  string server_description = 2;

  int32 number_of_connections = 3;

  double cpu_usage = 4;

  double memory_usage = 5;

  uint64 errors_logged = 6;

  uint32 catastrophic_failures_logged = 7;

  bool active = 8;  

}



170     Applying Versioning to the gRPC API

Essentially, our server application will receive some basic information from a client and 
will send back its performance statistics, such as memory usage, the number of errors 
logged, and so on. Of course, all of these measurements will be mocked, as the scope of 
this exercise is purely gRPC communication and not the collection of any internal metrics.

This newly added file will need to be registered in the server role in the project. To do so, 
we need to ensure that the following section is added to the GrpcServer.csproj file:

<ItemGroup>

  <Protobuf Include="Protos\stats.proto" GrpcServices="Server" 

    />

</ItemGroup>

We are now ready to implement the server-side components of this Protobuf definition.

Implementing the server-side gRPC components
Since we have removed the default greet.proto file, we need to remove the 
GreeterService.cs file from the Services folder of the GrpcServer project. We 
will also need to remove the line that references the GreeterService class from our 
Startup.cs file (or Program.cs file if you are using .NET 6 template). Otherwise, our 
code won't compile.

Once we have done this, we will create a StatusService.cs file in the Services 
folder. The file will contain a class definition with the following namespace imports:

using System;

using System.Threading.Tasks;

using Grpc.Core;

using Stats;

 

namespace GrpcServer

{

    public class StatusService : Stats.Status.StatusBase

    {

    }

}



Why an API versioning strategy is important     171

The class will have the following override method, which will output the details of the 
request into the console:

public override Task<StatusResponse> GetStatus(StatusRequest 

  request, ServerCallContext context)

{

    Console.WriteLine($"Client name is {request.ClientName}");

    Console.WriteLine($"Client description is 

      {request.ClientDescription}");

    Console.WriteLine($"Is client ready? {request.Ready}");

    Console.WriteLine($"Is client authorized? 

     {request.Authorized}");

 }

At the end of the method, we will insert the following block, which will return a response 
object populated by some randomized values:

var randomNumberGenerator = new Random();

 

return Task.FromResult(new StatusResponse

{

    ServerName = "TestServer",

    ServerDescription = "This is a test server that is used for 

      generating status metrics",

    NumberOfConnections = randomNumberGenerator.Next(),

    CpuUsage = randomNumberGenerator.NextDouble() * 100,

    MemoryUsage = randomNumberGenerator.NextDouble() * 100,

    ErrorsLogged = (ulong)randomNumberGenerator.Next(),

    CatastrophicFailuresLogged = (uint)randomNumberGenerator.

      Next(),

    Active = true

});

Now, we will need to register this gRPC service implementation as an endpoint. To do so, 
add the following line to the expression inside the app.UseEndpoints call, which is 
inside the Configure method in the Startup class (or the main body of Program.cs 
class for .NET 6):

endpoints.MapGrpcService<StatusService>();



172     Applying Versioning to the gRPC API

Note
If you are running your server-side application on a Mac, you will need to 
apply some modifications to it. The instruction on how to do so can be found 
in the Running a gRPC service on Mac section of Chapter 1, Creating a Basic 
gRPC Application on ASP.NET Core.

Now, we are ready to configure the client that will communicate with our gRPC server 
application.

Creating the gRPC client application
Our client application will be nothing more than a basic console app, as we will be 
focusing purely on gRPC communication. We will create the application project by 
executing the following command in any folder outside of any of our .NET project folders:

dotnet new console -o GrpcClient

We will then add all NuGet packages to the project that are required for the gRPC client 
implementation. This will be done by executing the following commands from inside the 
GrpcClient project folder:

dotnet add GrpcClient.csproj package Grpc.Net.Client

dotnet add GrpcClient.csproj package Google.Protobuf

dotnet add GrpcClient.csproj package Grpc.Tools

After we've added all the dependencies, we will create a Protos folder in the 
GrpcClient project folder. We will then copy the stats.proto file from the 
Protos folder of the GrpcServer project to this newly created Protos folder in the 
GrpcClient project. Once done, we need to register this Protobuf definition in the 
GrpcClient.csproj file by adding the following section to it:

<ItemGroup>

  <Protobuf Include="Protos\stats.proto" GrpcServices="Client" 

    />

</ItemGroup>

There is an important reason why we copied the proto file instead of getting two 
applications to share it. This is what we will probably have to do in real life too – when the 
client is developed separately from the server.



Why an API versioning strategy is important     173

Of course, even in this case, you may have a separate class library that holds the proto files 
that both your client and your server will reference, even if they are completely separate 
from each other. For example, you may have the class library published as a NuGet 
package on a NuGet feed that both the client and the server can access.

This will only work if both the client and the server are .NET applications. However, if 
your gRPC server is meant to be accessible to external clients, it's unreasonable to assume 
that all of those clients will be built on the same technology stack. The developers of the 
client application will know the API specification (in this case, a Protobuf definition), 
and it will be up to them to choose the technology to build the client on. Therefore, 
when you make your gRPC API available to the outside, the best way to share the API 
specifications is to publish the proto files, which the developers can copy into their own 
client applications. And this is what we are emulating here.

Now, we will need to implement the client logic.

Implementing the gRPC client logic
To make it simple, all of our client-side gRPC logic will be placed into the entry point 
method of the Program.cs file of the GrpcClient application. First, we will add all of 
the required namespace references to the class by placing the following using statements 
at the top of the file:

using System;

using System.Threading.Tasks;

using Grpc.Net.Client;

Then, replace the content of the Main method of the Program class with the  
following lines:

Console.WriteLine("Please enter gRPC server address:");

var serverUrl = Console.ReadLine();

 

var client = new 

  Stats.Status.StatusClient(GrpcChannel.ForAddress(serverUrl));

 

Console.WriteLine("Please enter client name:");

var clientName = Console.ReadLine();

 

Console.WriteLine("Please enter client description:");

var clientDescription = Console.ReadLine();



174     Applying Versioning to the gRPC API

We have added an interactive script, where we specified the address of the gRPC server 
to connect to. Next, we type in the name and the description of our client, which will be 
placed into the request object during the gRPC call.

We then create the request object and make a call to the server:

var response = await client.GetStatusAsync(new Stats.

  StatusRequest

{

    ClientName = clientName,

    ClientDescription = clientDescription,

    Ready = true,

    Authorized = true

});

Finally, we print out the data we received from the server in the console:

Console.WriteLine($"Server name: {response.ServerName}");

Console.WriteLine($"Server description: 

  {response.ServerDescription}");

Console.WriteLine($"Number of connections: 

  {response.NumberOfConnections}");

Console.WriteLine($"CPU usage: {response.CpuUsage}");

Console.WriteLine($"Memory usage: {response.MemoryUsage}");

Console.WriteLine($"Errors logged: {response.ErrorsLogged}");

Console.WriteLine($"Catastrophic failures logged: 

  {response.CatastrophicFailuresLogged}");

Console.WriteLine($"Active: {response.Active}");

 

Console.ReadKey();

Now, we will launch both of our applications to verify that they are working correctly.

Verifying that the client can talk to the server
We will first need to launch our server application. To do so, execute the dotnet  
run command from the GrpcServer project folder. Then, once our server is 
running and is ready to start accepting calls, we execute the same command from the 
GrpcClient folder.



Why an API versioning strategy is important     175

Once the console application is launched, you will be asked to provide the address of 
your gRPC server application, which can be found in the applicationUrl field of 
the launchSettings.json file that is located in the Properties folder of the 
GrpcServer project. It should be https://localhost:5001 by default. However, 
if you are running the gRPC service application on Mac, you would need to use the HTTP 
version, which is http://localhost:5000 by default.

Following this, you will be asked to provide the name of the client and its description, 
both of which can be any arbitrary text.

Once you have provided those, you should see the following response from the server in 
your console window if your setup has worked correctly.

Figure 5.1 – The server response logged in the client console window

Once the connection has been verified from the client side, you can now also verify that 
the server application has printed the client data into its own console:

Figure 5.2 – Client request data being printed to the server console



176     Applying Versioning to the gRPC API

So, we have established that both of our client and server applications are working 
correctly, despite having independent copies of the Protobuf definition. But to make  
sure the applications can communicate with each other, we rely on these copies to  
match each other.

In our example, because the client and the server use independent copies of the proto 
file, there is nothing that stops either copy from being modified to such an extent that it 
becomes incompatible with the other. And this is what may happen in a real-life scenario.

Developers of the server applications don't have control over what the developers of the 
client application are doing. And the developers of the client application don't have access 
to the code of the server applications. So, if the team maintaining the server application 
needs to update the Protobuf definition, the copy of the proto files that the client uses will 
become outdated.

Depending on the complexity of the server application and how many client applications 
are using it, bringing all clients up to date may take a relatively long time. And until this 
happens, the existing clients are expected to still function correctly. And this is precisely 
why you need to apply the API versioning strategy.

The good news is that the Protobuf protocol was designed from the outset to make API 
versioning as painless as possible. The sequence numbers next to the fields in the Protobuf 
message definitions are there to help with this task.

What the sequence numbers in the proto file 
represent
What makes Protobuf different from any other communication protocols or data storage 
formats is that each field, in its objects, has an equality sign (==) at the end, followed by a 
unique integer number. The equality sign followed by a numeric value is how you would 
normally assign a numeric value to a variable, but in Protobuf, it represents a unique 
sequence number of the field.

The reason these sequence numbers exist is that they are the only field identifiers that 
are used when the message is being transferred between the client and the server. The 
Protobuf messaging format has been designed to be as efficient as possible. Using arbitrary 
byte arrays to represent human-readable field names isn't very efficient. Instead, using 
numeric identifiers is the simplest way of both keeping track of each unique field and 
keeping the data payload size as small as possible.



What the sequence numbers in the proto file represent     177

Another feature that makes Protobuf so efficient is that you don't have to set every single 
field in each message. If you don't explicitly set the value of any given field, the field will 
simply be omitted from the message.

Each data type has its default value. And when the gRPC middleware in your application 
receives a message with a field missing, it will simply assign the default value to this field. 
The application that consumes this message will not see that any of the fields in it haven't 
been populated.

Also, when there are sequence numbers in a particular message payload that aren't 
defined in the proto file of the consuming application, no error is thrown. Instead, these 
are simply ignored.

These behavioral characteristics make the sequence numbers in the message definitions 
so useful for API versioning. If you add any new fields to the Protobuf definition on the 
server side, they will not be relevant to the old client and will simply be ignored.

Likewise, if any field is removed from message on the server-side Protobuf definition, 
old clients will still be able to consume data from the server. The client will still see this 
field, but the field will always contain the default value for its data type.

We still have to be careful in this situation though. If the consuming application did 
expect something other than the default value, it may be a breaking behavior change. 
Nevertheless, at the very least, adding or removing fields in a Protobuf definition of one 
application would not cause its interface to be incompatible with the other application that 
was designed to communicate with it.

Now, we will make some changes to the Protobuf definition on both the client and server 
applications and see whether they still work afterward.

Modifying the Protobuf definition in the server 
application
Let's open the stats.proto file in the Protos folder of the GrpcServer application 
and make some changes to it.

Let's pretend that we no longer care how many errors were logged by the server 
application. And we also realize that having an active flag is redundant because the server 
just wouldn't respond if it was not active. But we also want to know whether or not the 
server is busy, which we didn't previously have a metric for.



178     Applying Versioning to the gRPC API

So, we remove the errors_logged and active fields from the StatusResponse 
message definition and we add the busy field to it with a new sequence number. Our 
StatusResponse message definition in the server application will now look like this:

message StatusResponse {

  string server_name = 1;

  string server_description = 2;

  int32 number_of_connections = 3;

  double cpu_usage = 4;

  double memory_usage = 5;

  uint32 catastrophic_failures_logged = 7;

  bool busy = 9;

}

Now, we will need to modify the logic inside the StatusService class. We will change 
the return statement in the GetStatus method to the following:

return Task.FromResult(new StatusResponse

{

    ServerName = "TestServer",

    ServerDescription = "This is a test server that is used for 

      generating status metrics",

    NumberOfConnections = randomNumberGenerator.Next(),

    CpuUsage = randomNumberGenerator.NextDouble() * 100,

    MemoryUsage = randomNumberGenerator.NextDouble() * 100,

    CatastrophicFailuresLogged = (uint)randomNumberGenerator.

      Next(),

    Busy = true

});

Now, we will make some changes to our client too. But not the ones we have applied on 
the server.

Modifying the Protobuf definition in the client 
application
Let's pretend that the developers of the client application are unaware of the changes that 
have been applied on the server. But, at the same time, they have realized that one of the 
fields in the StatusRequest message definition is redundant.



What the sequence numbers in the proto file represent     179

Why does the client need to explicitly tell the server that it's ready when the fact that the 
client could connect to the server already implies that it's ready? So, we will remove the 
ready field from the StatusRequest message definition of the stats.proto file 
that's located in the Protos folder of the GrpcClient project. The message definition 
should now look like this:

message StatusRequest {

  string client_name = 1;

  string client_description = 2;

  bool authorized = 4;

}

To make sure that the code of the client application still compiles, we need to remove all 
the references to the field that no longer exists in the message definition. We only had 
one, and it was being applied during the request to the server. So, in the Main method of 
the Program class, modify the statement that makes the request so that it looks like this:

var response = await client.GetStatusAsync(new Stats.

  StatusRequest

{

    ClientName = clientName,

    ClientDescription = clientDescription,

    Authorized = true

});

Now, we will launch our applications to see how their behavior has changed.

Launching modified applications
Execute the dotnet run command from the GrpcServer project folder. Then, 
once the server application is up and running, execute the same command from the 
GrpcClient folder.

In the console window of the client application, enter the server application address 
followed by any arbitrary client name and client description. Now, you will be able to see 
how both of the applications behave.



180     Applying Versioning to the gRPC API

You will see in your client console window that the number of errors reported by the 
server is 0, while the server also appears to be inactive. This is because the errors_
logged and active fields have been removed from the StatusReponse message 
definition on the server side, so they are populated with default values (which happen to 
be false for bool and 0 for uint64). Your console window will look similar to this:

Figure 5.3 – The Errors logged and Active fields on the client side being populated with default values

Our server application is unaware that the active field is no longer used in the 
StatusRequest message definition on the client. But it hasn't been removed from the 
corresponding message definition on the server. So it just gets populated with the default 
value of false, as can be seen in the following console output:

Figure 5.4 – The Active field of the StatusRequest message definition  
being populated with the default value of false



Why you must not modify existing fields in future Protobuf versions     181

This demonstrates that the removal and addition of fields in your Protobuf message 
definitions is the safest way to update your gRPC API. Neither of these changes will make 
the interface incompatible with the old applications that use it. Removed fields will be 
populated with default values, while additional fields will be ignored.

Of course, this doesn't make API updates 100% safe. Therefore, it's up to developers 
to verify whether any specific changes will result in unintended behavior. From the 
application's perspective, the concept of no data may be treated differently from 0, an 
empty string, or a Boolean value of false. So, we need to be mindful of the fact that 
removing a field from the Protobuf definition of one application may completely change 
the meaning of the message to the application that communicates with it.

Well-known types from the Google library will allow you to easily distinguish between 
no data and any specific value. We will cover these types in Chapter 8, Using Well-Known 
Types to Make Protobuf More Handy. But even with these types applied, you need to make 
sure that any given field doesn't have a special meaning in the application that consumes 
the message.

As well as adding or removing fields, you can make modifications to the existing fields 
when updating Protobuf definitions. However, this is rarely a good idea – let's see why.

Why you must not modify existing fields in 
future Protobuf versions
Protobuf doesn't prevent you from changing data types on your fields. But not all data 
types are compatible with each other. If you change the data type of just one of your 
fields to a data type that isn't compatible with it, you will make your whole interface 
incompatible with the existing clients.

In the following list, each bullet contains the data types that can be interchanged with  
each other:

• int32, uint32, int64, uint64, and bool

• int32, uint32, int64, uint64, and enum values

• sint32 and sint64

• string and bytes, but only if the bytes value uses UTF-8 encoding

• fixed32 and sfixed32

• fixed64 and sfixed64



182     Applying Versioning to the gRPC API

However, just because you can change the data type of a field, it doesn't mean that you 
should. For example, what would happen if you sent a negative value as int32, but 
consumed it as a positive-only uint32 data type on the other side? The original value 
cannot be held into the destination's data type. So how will it be modified?

What would happen if you sent a large int64 value and consumed it as int32? The 
target data type won't be able to store such a large value, so it will have to truncate it, 
potentially breaking your logic.

The same arguments can be applied to all data type conversions. Every one of these 
conversions may cause a situation where data is either lost or it is altered to such an extent 
that it's no longer useful. This is why, despite the fact that you can convert certain data 
types without breaking the interface, you shouldn't do so unless absolutely necessary and 
you know that the risk of such action is low.

The same applies to field names. We have already established that the actual  
human-readable field names from message definitions are not used during 
communication. And this is what allows us to change the field names. As long as  
the sequence number of the field stays the same and it has the same (or a compatible)  
data type, the interface will still work.

The same can be applied to the names of message or enum definitions. Even though 
you don't apply specific numeric identifiers to the definitions of these objects, from the 
perspective of Protobuf, they are simply object placeholders. And as long as their structure 
remains the same, they will still be correctly interpreted by the consuming application.

But, once again, because the option to change field names and message names exists, it 
doesn't mean that you should use it. By changing the name, you may change the verbal 
meaning of it. And you may make it harder for yourself to update your application once 
the new version of the Protobuf definition has been published.

What you cannot make changes to in Protobuf are rpc names. Each RPC is represented 
as a path in an HTTP URL, so its name must match. Otherwise, if your client and server 
implementations of Protobuf have different names specified for the same RPC, you will 
get an UNIMPLEMENTED error code.

We will now make some changes to our application to see how it behaves if we modify 
some Protobuf fields at one end, but leave them unmodified at the other end.



Why you must not modify existing fields in future Protobuf versions     183

Modifying Protobuf definitions on the client side
Open the stats.proto file in the Protos folder of the GrpcClient project. In this 
file, change the sequence number of the authorized field in the StatusRequest 
message definition from 4 to 3. Let's pretend that a new developer has joined a team and 
they don't fully understand what the sequence numbers are for. The developer sees that 
the numbers aren't sequential, so they make them sequential again.

Your message definition should now look like this:

message StatusRequest {

  string client_name = 1;

  string client_description = 2;

  bool authorized = 3;

}

Now, we will modify some fields in the StatusResponse message definition. We 
will change the data type of the number_of_connections field from int32 to 
uint32. Then, we will set the data types of the errors_logged and catastrophic_
failures_logged fields to int32. Your StatusResponse message definition 
should now look like this:

message StatusResponse {

  string server_name = 1;

  string server_description = 2;

  uint32 number_of_connections = 3;

  double cpu_usage = 4;

  double memory_usage = 5;

  int32 errors_logged = 6;

  int32 catastrophic_failures_logged = 7;

  bool active = 8;  

}

Let's launch our applications and see what effect these changes have.

Launching the applications
After executing the dotnet run command in both the GrpcServer and 
GrpcClient project folders and typing the required information in the console window 
of the client app, you should expect to see that the applications are able to communicate 
with one another.



184     Applying Versioning to the gRPC API

The client was able to read the data from the server, even where the data types of the fields 
were different. This can be seen in the following console output:

Figure 5.5 – The successful conversion between signed and unsigned int data types

However, an interesting thing happens when we look at the console window of the server 
application. It seems to think that the client application had its ready field populated, 
even though this field no longer exists on the client. Moreover, the server read the value of 
the authorized field as false, even when the client had set it to true.

Figure 5.6 – The server reading the value of the authorized field of the  
client as the value of the ready field

So, how is this even possible? Well, the answer is simple. Because field names are irrelevant 
to gRPC communication, we haven't really assigned a value to the authorized field on 
the client. We have merely reinstated the field with the sequence number of 3 and changed 
the label on it from ready to authorized. But our code on the client side didn't change 
at all, as all of the field names that we used were already present in the code that was 
generated from the proto file.



Why you must not modify existing fields in future Protobuf versions     185

However, the server sees it differently. We have retained the original StatusRequest 
structure on the server with both the ready and authorized fields present. And 
ready happens to be the label of the field with the sequence number of 3, which was 
populated by the client.

This demonstrates why you should avoid modifying definitions of individual fields in 
Protobuf. A subtle change may cause the client and the server to get lost in translation. 
When we thought that we were sending the authorized attribute to the server, this is 
not what the server saw.

Now, we will make a further change to our client to eliminate any misunderstanding 
between it and the server.

Making further changes to the client application
In the stats.proto file of the GrpcClient project, rename the authorized field of 
the StatusRequest message definition to allowed and change its sequence number 
back to 4. Your message definition should now look like this:

message StatusRequest {

  string client_name = 1;

  string client_description = 2;

  bool allowed = 4;

}

After this, we will need to make a change to our code to make sure it still compiles.  
In the Main method of the Program class, replace the gRPC request statement with  
the following:

var response = await client.GetStatusAsync(new Stats.

  StatusRequest

{

    ClientName = clientName,

    ClientDescription = clientDescription,

    Allowed = true

});

Now, let's see whether our applications can still intercommunicate after all these changes.



186     Applying Versioning to the gRPC API

Re-launching the applications
After launching both applications, the server application was still able to read the value of 
the authorized field, even though it was renamed to allowed on the client side:

Figure 5.7 – The server reading the value from the authorized field,  
despite its name being different on the client

In our experiment, we have confirmed that changing the human-readable name of 
a Protobuf message field doesn't affect its functionality, even if the name doesn't 
match any field names of the proto file on the other side. Nevertheless, the fact that the 
applications can still communicate with each other actually represents a risk that we 
need to be mindful of, as we saw when we changed the sequence number of the original 
authorized field.

This is why it's important to know what sequence numbers in Protobuf represent. And 
this is why it's important not to modify fields when updating your interface unless it's 
absolutely necessary.

There is also another problem in Protobuf we need to be aware of. We may modify our 
interface definition by removing some fields, which, as we have already established, won't 
be a breaking change. But what if somebody who was not aware of the original fields joins 
our team and adds completely new fields with the old sequence numbers? If there are still 
some clients that used the old interface with the original fields, they will no longer be able 
to communicate with the server. 

The chances are that the old fields will be incompatible with the new fields, which will 
make the whole interface incompatible and prevent any communication from happening. 
But even if those fields happened to have compatible data types, their meaning would be 
different, so it still may be a breaking behavioral change for the existing clients.



How to deprecate old, unused fields in gRPC     187

In the next section, you will learn how to mitigate this problem. In a similar way, the 
same technique can minimize the chances of somebody accidentally changing sequence 
numbers on the existing fields.

How to deprecate old, unused fields in gRPC
To prevent anyone from inserting fields into proto files with the same sequence numbers 
as the ones of the fields that have been removed, you can use the reserved keyword. To 
use it, you just need to place it into your message definition at the same level that you 
put your fields in.

To specify the field sequence numbers that you don't want anyone to use, you just place 
them after the reserved keyword. If you need to specify multiple sequence numbers, 
you just separate them by a comma. Otherwise, you can specify a sequential range by 
using the to keyword. For example, if you use 6 to 12, all sequence numbers starting 
from 6 and ending with 12 will be unavailable. If you try to use them, you will receive an 
error when trying to generate code from the proto file.

There is also another way that you can use the reserved keyword. Instead of specifying 
field sequence numbers, you can specify field names. If you do so, you will not be able to 
use these field names in any of the fields.

However, as field names are purely there to provide human-readable field definitions, this 
approach is less useful than reserving field sequence numbers. Even though it will stop 
you from using specific field names, it will not stop you from accidentally inserting fields 
with the same sequence numbers as the ones that have already been removed.

Nevertheless, we will have a look at both approaches.

Applying the reserved keyword to the server-side 
Protobuf interface
In our stats.proto file in the Protos folder of the GrpcServer project, we will 
remove the busy field with the sequence number 9 from the StatusResponse 
message definition. Perhaps we have decided that this field is redundant, as we can 
establish how busy the server is by looking at its CPU and memory usage data.

We also found out the server_description field isn't really useful on the client side. 
So, we will remove this field too.



188     Applying Versioning to the gRPC API

Now, we will add two reserved blocks to our message definition. The first one will 
contain the field sequence numbers 6, 8, and 9. It will look like this:

reserved 6,8 to 9;

The second reserved block will specify the server_description field by name:

reserved "server_description";

Your message definition should now look like this:

message StatusResponse {

  string server_name = 1;

  int32 number_of_connections = 3;

  double cpu_usage = 4;

  double memory_usage = 5;

  uint32 catastrophic_failures_logged = 7;

  reserved 6,8 to 9;

  reserved "server_description";

}

Now, if you try to add the following field to your message definition, the errors shown in 
Figure 5.8 will be displayed if you try to compile the project:

string server_description = 6;

The errors will be displayed as follows:

Figure 5.8 – Error messages during an attempt to use reserved fields

Let's now remove this field.

But another thing that we need to do to get our project to compile is to remove all the 
unwanted fields from the code. To do so, go to the StatusService class and replace the 
return statement of the GetStatus method with the following:

return Task.FromResult(new StatusResponse

{

    ServerName = "TestServer",

    NumberOfConnections = randomNumberGenerator.Next(),



How to deprecate old, unused fields in gRPC     189

    CpuUsage = randomNumberGenerator.NextDouble() * 100,

    MemoryUsage = randomNumberGenerator.NextDouble() * 100,

    CatastrophicFailuresLogged = (uint)randomNumberGenerator.

      Next()

});

We are now ready to test it with our client to see what changes in behavior it caused.

Testing the application
As usual, we will execute the dotnet run command in both the GrpcServer and 
GrpcClient projects. If we then fill in the required details in the console window of the 
client application, we will see that we are no longer receiving a server_description 
field from the server. The value of this field is blank.

Figure 5.9 – No server_description field is returned to the client

This shows how the reserved keyword acts as a safety mechanism against accidental 
field insertions while not altering any other gRPC behavior.

So far, we have gone through the techniques you can use in gRPC to ensure that you  
don't introduce any breaking changes when updating your interface. But, as we have 
already covered, those only apply to the interface itself. You can still cause breaking 
behavioral changes.

Also, if you keep updating your application on a regular basis, you will probably 
eventually encounter a situation where you will need to introduce some breaking changes.

Even though the techniques that we have covered will minimize problems during API 
updates, the best way to deal with API versioning is to factor it in at the design stage. You 
can design your application in such a way that making updates to it will be easy. This 
way, you will never accidentally introduce breaking behavioral changes. And introducing 
breaking interface changes will become easy.



190     Applying Versioning to the gRPC API

This is what we will cover in the next section.

How to factor in API versioning at the  
design stage
There are some standard ways of applying versioning to REST APIs. Usually, you will 
have some subpath in your URL that contains the version number. This way, you can 
host several different versions of the API simultaneously. And your clients will never 
communicate with the wrong version, as the version number will be written into the 
address that they submit requests to.

For example, you may have a URL like this:

https://example.com/status/v1

In this example, v1 would represent the API version number. Then, if you need to update 
your API, you will not modify the original endpoints. Instead, you will host another 
version of it at the address that ends with v2. This way, the functionality of the existing 
clients will not change at all, as nothing in the backend that they are talking to would have 
changed. And this is why you don't have to worry about your new API being compatible 
with the old clients.

The same principles can be applied to gRPC. After all, gRPC is simply a middleware 
wrapper around the HTTP protocol. It still uses standard HTTP addresses. If you examine 
the console window of a server-side gRPC application, you will see that every gRPC call is 
just a POST request to a specific address. And this address will have the following pattern:

{base URL}/{Protobuf package name}.{Protobuf service name}/{rpc 

  name}

This is precisely why, in order to make the gRPC client compatible with the server, at the 
very least, the following details in the Protobuf definitions should match exactly:

• gRPC package name

• Service name

• RPC name



How to factor in API versioning at the design stage      191

Therefore, if we are to apply API versioning at the design stage, it would be a good practice 
to specify the version identifier in the package statement of a proto file. Likewise, by 
convention, your proto file name should be the same as your package name. So, if you 
have changed your package name from stats to stats.v1, a good practice would be to 
also change the name of the file from stats.proto to stats.v1.proto.

If you don't specify additional namespace modifiers in your proto files, such as csharp_
namespace, different Protobuf versions will be placed into different namespaces of the 
generated code. Therefore, you can maintain multiple versions of a Protobuf definition 
and run them in parallel inside the same application.

Let's now see what this might look like in practice.

Adding multiple Protobuf versions to the server 
application
As we have modified our stats.proto file since the beginning of this chapter, we will 
pretend that we are now on version two of it. Therefore, inside the Protos folder of 
the GrpcServer project, we will rename the file stats.v2.proto. And we will also 
change the package definition inside this file to the following:

package stats.v2;

Now, we will make a copy of this file and rename it stats.v1.proto. Its package 
name will also be changed to stats.v1.

In the stats.v1.proto file, we will restore the StatusResponse message definition 
to its original state. But we will mark all fields that don't exist in the second version as 
deprecated. So, our message definition will now look like this:

message StatusResponse {

  string server_name = 1;

  string server_description = 2 [deprecated = true];

  int32 number_of_connections = 3;

  double cpu_usage = 4;

  double memory_usage = 5;

  uint64 errors_logged = 6 [deprecated = true];

  uint32 catastrophic_failures_logged = 7;

  bool active = 8 [deprecated = true];

}



192     Applying Versioning to the gRPC API

We will now need to ensure that both of our proto files are registered in the project. To do 
so, we need to open the GrpcServer.csproj file and add the following section to it:

<ItemGroup>

  <Protobuf Include="Protos\stats.v1.proto" 

    GrpcServices="Server" />

  <Protobuf Include="Protos\stats.v2.proto" 

    GrpcServices="Server" />

</ItemGroup>

There should be no other Protobuf elements in this file and no references to any other 
proto files.

Now, we will need to make some changes to our code to allow it to use both API versions.

Allowing the server application to use multiple 
Protobuf versions
After applying these changes, our StatusService class – the representation of the 
Protobuf service – will no longer compile, as the classes it inherits from are no longer 
present in its original namespace. So, we will need to update the namespace references.

But first, we will rename the StatusService.cs file to StatusServiceV2.cs. And 
we will rename the class inside it from StatusService to StatusServiceV2.

Then, we will need to update all the namespace references. To do so, we will replace the 
existing using statements inside the file with the following:

using System;

using System.Threading.Tasks;

using Grpc.Core;

using Stats.V2;

Then, we will change the line with the class definition to the following:

public class StatusServiceV2 : Stats.V2.Status.StatusBase

Now, we have a service implementation of version two of our Protobuf. Let's implement 
version one too. To do so, we will copy the StatusServiceV2.cs class and rename the 
newly created file to StatusServiceV1.cs.

Inside this file, we will replace the class name with StatusServiceV1. Then, we will 
also replace all V2 namespace references with V1.



How to factor in API versioning at the design stage      193

Finally, because stats.v1.proto has more fields in the StatusResponse 
message definition than stats.v2.proto, we will apply these additional fields 
to the return object. The return statement inside the GetStatus method of the 
StatusServiceV1 class will be as follows:

return Task.FromResult(new StatusResponse

{

    ServerName = "TestServer",

    ServerDescription = "This is a test server that is used for 

      generating status metrics",

    NumberOfConnections = randomNumberGenerator.Next(),

    CpuUsage = randomNumberGenerator.NextDouble() * 100,

    MemoryUsage = randomNumberGenerator.NextDouble() * 100,

    ErrorsLogged = (ulong)randomNumberGenerator.Next(),

    CatastrophicFailuresLogged = (uint)randomNumberGenerator.

      Next(),

    Active = true

});

Now, we need to register both services as gRPC endpoints. To do so, we will need to open 
the Startup class (or Program.cs file if you are using .NET 6 template) and locate the 
line that contains this statement:

endpoints.MapGrpcService<StatusService>();

We will need to replace it with the following:

endpoints.MapGrpcService<StatusServiceV1>();

endpoints.MapGrpcService<StatusServiceV2>();

Now, we have two implementations of the Status gRPC service. But because we have 
changed our namespace, neither of them will be compatible with the existing client.

Assuming we are running our application on localhost, our old service implementation 
was accessible via the https://localhost:5001/stats.Status/ URL.

But now, we have two separate URLs for the separate service implementations:

• https://localhost:5001/stats.v1.Status/

• https://localhost:5001/stats.v2.Status/



194     Applying Versioning to the gRPC API

So, we need to apply some changes to our client to make it compatible with the server 
once again.

Making the gRPC client implementation version-
specific
We will pretend that we have an old version of the client that talks to version one of the 
server API. To do so, we will need to rename the stats.proto file in the Protos 
folder of the GrpcCleint project to stats.v1.proto. And then we will change the 
package name inside this file to stats.v1.

We then need to verify that the following section is present inside the GrpcClient.
csproj file:

<ItemGroup>

  <Protobuf Include="Protos\stats.v1.proto" 

  GrpcServices="Client" />

</ItemGroup>

There should be no other Protobuf elements present in the file and no references to any 
other proto files. Then, we need to update the namespaces inside the code. There are only 
two places in the Main method of the Program class where we need to do this.

The line where we are instantiating a client variable needs to be replaced with  
the following:

var client = new 

  Stats.V1.Status.StatusClient(GrpcChannel.

    ForAddress(serverUrl));

Then, the statement where we are making a gRPC request needs to be replaced with the 
following:

var response = await client.GetStatusAsync(new 

  Stats.V1.StatusRequest

{

    ClientName = clientName,

    ClientDescription = clientDescription,

    Allowed = true

});



How to factor in API versioning at the design stage      195

Now, we are ready to test our application to see whether it can still reach the server.

Making a gRPC call to a versioned endpoint
As we have done multiple times, we will execute the dotnet run command inside the 
GrpcServer project folder and, once the application is up and running, we'll execute the 
same command in the GrpcClient project folder.

After filling in all the details in the console window of the client application, we can see 
that all the fields in the server response have been populated, which confirms that we have 
been able to reach version one of the endpoint. The console will display an output similar 
to the following:

Figure 5.10 – The fields from the stats.v1 Protobuf definitions are present in the server response

Additionally, if we look at the server-side console, we can confirm that it was the URL 
associated with the v1 endpoint that the request was submitted to:

Figure 5.11 – The server logs indicating that the v1 gRPC endpoint has been triggered



196     Applying Versioning to the gRPC API

So, we have confirmed that behavioral changes associated with version two of the Protobuf 
definition, such as the removal of certain fields, will not affect any clients that have been 
pre-configured to communicate with version one. In fact, it would be impossible for 
the client to communicate with other versions of the endpoint, even by accident. From 
the perspective of gRPC middleware, those versions are represented by different gRPC 
packages, which this client wasn't configured to use.

This example demonstrates that, by far, the easiest way to apply API versioning to your 
gRPC applications is to implement an API versioning strategy at the design stage. This 
way, you will have much more freedom when updating your API. If you do it correctly, 
then you will not be running the risk of breaking any compatibility with the existing 
clients. Old clients and new clients will be able to work with your server application  
in parallel.

Summary
In this chapter, you have learned why API versioning in gRPC is important when using 
public endpoints or clients that have been developed by external teams. You now know 
that the sequence numbers of Protobuf fields are used as field identifiers during the 
transit of the message, while human-readable field names are simply labels. However, 
despite the fact that changing the field name to any arbitrary value will not break interface 
compatibility, modifying the existing fields in any way is still not a good practice.

You have learned that the safest way to change a Protobuf definition without causing 
compatibility issues is to either remove some fields or add new fields with new sequence 
numbers. Any fields that haven't been populated will be populated with default values by 
gRPC middleware. Any fields that don't exist in a Protobuf definition will be ignored if 
they are present in the message.

You are now aware that to prevent anyone from accidentally adding new fields with the 
same sequence numbers as the fields that have been removed, a good practice is to use the 
reserved keyword to specify all the sequence numbers that aren't to be used.

But, as you have learned, the easiest way to apply API versioning in gRPC is to factor in 
an API versioning strategy at the design stage. This way, you can create multiple distinct 
versions of gRPC services and each client will only be talking to a specific version.

In the next chapter, you will learn the best practices for scaling your gRPC application. 
Scaling is important when your distributed application is expected to handle a large 
amount of data or deal with large numbers of simultaneous requests. The gRPC 
framework has a number of ways of achieving this, and we will cover them all.



Questions     197

Questions
1. What would happen if you changed the name of one of your fields in the Protobuf 

message definition on your client but not on the server?

A. It will make the interface incompatible with the server.
B. It will throw an error unless you also change the sequence number.
C. It will not affect the functionality.
D. The server will associate the value with the wrong field.

2. Which of these data types cannot be interchanged?

A. Bytes and string
B. sfixed32 and int32
C. uint64 and int32
D. uint64 and bool

3. What would happen if you removed a field from a Protobuf response message 
definition on the server, but not on the client?

A. It will be populated with the default value on the client.
B. It will make the client incompatible with the server.
C. The client will have mismatching field values.
D. No error will be thrown, but the client will not be able to interpret the data.

4. What's the best way to prevent new fields from being accidentally reinstated with 
the sequence numbers of the old fields that have been removed?

A. Only add sequence numbers that are bigger than the last one.
B. Maintain up-to-date documentation.
C. Use the reserved keyword, followed by a list of the removed field names.
D. Use the reserved keyword, followed by the sequence numbers of the  

removed fields.



198     Applying Versioning to the gRPC API

5. What's the best way of minimizing the risk of breaking changes during the gRPC 
API update?

A. Never modifying the data types of the fields
B. Never modifying the names of the fields
C. Using separate Protobuf definitions for separate API versions
D. Using the reserved keyword

Further reading
• Versioning gRPC services:

https://docs.microsoft.com/en-us/aspnet/core/grpc/
versioning

• Protobuf Language Guide, Updating a Message Type:

https://developers.google.com/protocol-buffers/docs/
proto3#updating

• Protobuf Language Guide, Reserved Fields:

https://developers.google.com/protocol-buffers/docs/
proto3#reserved

https://docs.microsoft.com/en-us/aspnet/core/grpc/versioning
https://docs.microsoft.com/en-us/aspnet/core/grpc/versioning
https://developers.google.com/protocol-buffers/docs/proto3#updating
https://developers.google.com/protocol-buffers/docs/proto3#updating
https://developers.google.com/protocol-buffers/docs/proto3#reserved
https://developers.google.com/protocol-buffers/docs/proto3#reserved


6
Scaling a gRPC 

Application
If you expect your web application to support a high number of connections, running  
a single instance of it will not be enough. You will have to scale it.

There are two types of scaling you can do – scaling up and scaling out. Scaling up is when 
you add more hardware to the machine running the server-side components of your 
application. This is a pure hardware solution and it has its limits. Therefore, we will not 
cover it in this chapter.

Scaling out, on the other hand, is when you run multiple instances of the same 
application, so any particular instance of it will not be overwhelmed by an excessive 
number of connections. The connections will be distributed evenly between the running 
instances.

The ability to easily scale out granular components of a distributed application is one of 
the main purposes of microservices architecture. This is what we will cover in this chapter.

To evenly distribute incoming connections between multiple instances of an application, 
you would need a load balancer. In this chapter, we will focus on how to apply different 
types of load balancing in the context of gRPC.



200     Scaling a gRPC Application

We will cover the following topics:

• Introduction to load balancing
• Client-side load balancing with gRPC
• Proxy load balancing with gRPC

By the end of this chapter, you will have learned how to evenly distribute incoming 
connections between multiple instances of a gRPC service so that you can prevent 
excessive latency and bottlenecks.

Technical requirements
To follow the instructions in this chapter, you will need the following:  

• A computer with either a Windows, Macintosh, or Linux operating system  
• A supported IDE or code editor (Visual Studio, Visual Studio Code, or  

JetBrains Rider)  
• A .NET 5 SDK  
• A self-signed development HTTPS certificate enabled on the machine  

The instructions on how to set all of these up were provided in Chapter 1, Creating a 
Basic gRPC Application on ASP.NET Core. All the code samples used in this chapter 
can be found at https://github.com/PacktPublishing/Microservices-
Communication-in-.NET-Using-gRPC/tree/main/Chapter-06.

Please visit the following link to check the CiA videos: https://bit.ly/3IKF76x

Introduction to load balancing
When you have multiple instances of the same service running in the backend of your 
server, you will need to implement some kind of a gateway that will decide which 
particular instance any particular client would connect to. This gateway software would 
need to have a logic that will decide which specific instance any specific client connection 
will need to go to. This is what load balancing is.

A load balancer is a piece of software that is positioned between the client and the server-
side application instances. It can be a component of the client application itself, or it can 
be a proxy that the client communicates directly with.

But regardless of what type of load balancer you use, its operation principles will be the 
same. When it receives the instruction from the client to send a request to the server, it 
will decide which specific server-side endpoints the request should go to.

https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-06
https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-06
https://bit.ly/3IKF76x


Introduction to load balancing     201

We will now build a basic distributed application to demonstrate the fundamental 
principles of load balancing.

Adding shared gRPC dependencies
We will first create a solution that will contain all our projects: 

1. To do so, create a folder called GrpcLoadBalancing. Then, run the following 
command inside this folder:

dotnet new sln

2. Now, we create a class library that will contain all our gRPC dependencies. To do so, 
execute the following command inside the solution folder:

dotnet new classlib -o GrpcDependencies

3. We now add this project to our solution by executing the following command:

dotnet sln add GrpcDependencies/GrpcDependencies.csproj

4. Next, we navigate to the GrpcDependencies project folder. From there, we 
execute the following commands to add necessary NuGet packages to the project:

dotnet add GrpcDependencies.csproj package Grpc.Net.

  Client 

dotnet add GrpcDependencies.csproj package Google.

  Protobuf 

dotnet add GrpcDependencies.csproj package Grpc.Tools 

dotnet add GrpcDependencies.csproj package Grpc.

  AspNetCore 

5. Next, we create the Protos folder inside the GrpcDependencies project  
folder and add the data_processor.proto file to it. The content of the file  
is as follows:

syntax = "proto3";

package data_processor;

service Ingestor {

    rpc ProcessData (DataRequest) returns 

      (DataResponse);



202     Scaling a gRPC Application

}

message DataRequest {

    int32 id = 1;

    string name = 2;

    string description = 3;

}

message DataResponse {

    bool success = 1;

}

6. Finally, we register this file inside the GrpcDependencies.csproj file by 
adding the following markup to it:

<ItemGroup>

  <Protobuf Include="Protos\data_processor.proto" />

</ItemGroup>

Now, we create another class library that will contain all the server-side logic that will be 
shared between gRPC service instances.

Creating a shared library for server-side application 
instances
We now navigate back to the GrpcLoadBalancing solution folder. From there, we 
execute the following command to create a new class library project:

dotnet new classlib -o GrpcServerCommon

Next, we add this new project to the solution by executing the following command:

dotnet sln add GrpcServerCommon/GrpcServerCommon.csproj

Next, we will navigate to GrpcServerCommon project folder. From there, we will open 
the GrpcServerCommon.csproj file and add the following markup snippet to it:

<ItemGroup>

  <ProjectReference Include="..



Introduction to load balancing     203

    \GrpcDependencies\GrpcDependencies.csproj" />

</ItemGroup>

This project now references the class library that contains all shared gRPC dependencies. 
So, we are ready to start adding custom logic to our library. To do so, create an 
IngestorService.cs file in the project folder. The content of the file will be  
as follows:

using System;

using System.Threading.Tasks;

using DataProcessor;

using Grpc.Core;

namespace GrpcServerCommon

{

    public class IngestorService : Ingestor.IngestorBase

    {

        public override Task<DataResponse> 

          ProcessData(DataRequest request, 

            ServerCallContext context)

        {

            Console.WriteLine($"Object id: {request.Id}");

            Console.WriteLine($"Object name: 

              {request.Name}");

            Console.WriteLine($"Object description: 

              {request.Description}");

            return Task.FromResult(new DataResponse

            {

                Success = true

            });

        }

    }

}

Essentially, we receive a request object from the client, print out the data from the request 
object, and return a response object back with the value of the Success field set to true.

Now, we are ready to create multiple instances of the server-side gRPC application.



204     Scaling a gRPC Application

Creating multiple instances of the server-side 
application
In a real-life scenario, you would create a single application and then launch multiple 
instances of it to scale it. But in our case, we will be creating two identical applications 
to mimic this process. This way, it will be much simpler to demonstrate the principle of 
load balancing in action. You will just be able to launch both of these applications from 
your solution at the same time, and you won't have to do any additional configuration or 
complex orchestration that you would have to do in a real-life scenario.

This is precisely why we moved the core logic into a class library. We want our web 
application projects to be as lightweight as possible. We will start by creating the  
first application: 

1. To do so, navigate to the GrpcLoadBalancing solution folder and execute the 
following command:

dotnet new web -o GrpcServer1

2. Next, add this project to the solution by executing the following command:

dotnet sln add  GrpcServer1/GrpcServer1.csproj

3. After this, navigate to the GrpcServer1 project folder and modify 
the GrpcServer1.csproj file by registering a reference to the 
GrpcServerCommon project in it. This can be achieved by adding the following 
markup snippet:

<ItemGroup>

    <ProjectReference Include="..\GrpcServerCommon

      \GrpcServerCommon.csproj" />

</ItemGroup>

4. Now, your server application will be able to use all the server-side gRPC logic. We 
just need to register the endpoint in its Startup class (or Program.cs file if you 
have .NET 6 project template). To do so, add the following using statement on top 
of the Startup.cs or Program.cs file as per your .NET version:

using GrpcServerCommon;

5. Then, add the following line to the ConfigureServices method:

Services.AddGrpc();



Introduction to load balancing     205

6. After this, add the following line inside the call of the app.UseEndpoints:

endpoints.MapGrpcService<IngestorService>();

Important Note
If you are running your server-side application on a Macintosh, you will need 
to apply some modifications to it. The instruction on how to do so can be 
found in the Running gRPC Service on Mac section in Chapter 1, Creating  
a Basic gRPC Application on ASP.NET Core.

Your first instance of the server-side application is now ready to start accepting requests 
from the connected clients. We now need to create a second instance.

To do so, create another project inside the GrpcLoadBalancing solution folder via the 
following command:

dotnet new web -o GrpcServer2

After this, finalize it by following the same process you did to prepare the GrpcServer1 
project. Repeat the steps from 2 to 5, but this time, use GrpcServer2 as the project 
name. Don't forget to make an additional modification to the project if you intend to run 
it on Macintosh.

Now, you have two identical web application projects in your solution that can run as two 
instances of the same gRPC service application. They will be absolutely identical in their 
functionality. The only difference would be their access URLs, which would have been 
auto-generated by the dotnet new command. Because the project-creation process 
allocates randomized port numbers to ASP.NET Core projects, it is unlikely that there will 
be any port clash between these projects and any of your existing applications running on 
the machine. But if the clash does occur, you can change those endpoints by modifying 
the URLs listed under the applicationUrl key of the launchSettings.json file 
that can be found in the Properties folder inside the project folder.

Now, we are ready to create the client application.

Creating a client application
Our client application will be a web API web application. It will receive REST API HTTP 
requests and those will trigger gRPC requests to one of our gRPC service application 
instances.



206     Scaling a gRPC Application

First, we create a new project by running the following command from the 
GrpcLoadBalancing solution folder:

dotnet new webapi -o ApiGateway

We then add the project to the solution by executing the following command:

dotnet sln add ApiGateway/ApiGateway.csproj

Next, we navigate to the ApiGateway project folder and register the shared class library 
as a dependency by adding the following snippet inside the ApiGateway.csproj file:

<ItemGroup>

  <ProjectReference Include="..\GrpcDependencies

    \GrpcDependencies.csproj" />

</ItemGroup>

Next, we install the Swagger library to the project by running the following command:

dotnet add ApiGateway.csproj package NSwag.AspNetCore 

Now, we are ready to start adding logic to our application.

Adding backend components
The first class we add will be the representation of the REST API response that the 
application will return to the HTTP clients. We will create the ApiResponse.cs file 
inside the ApiGateway project folder. The content of this file will be as follows:

namespace ApiGateway

{

    public class ApiResponse

    {

        public int DataItemsProcessed { get; set; }

        public double RequestProcessingTime { get; set; }

    }

}



Introduction to load balancing     207

Then, we add a wrapper for our gRPC client objects. To do so, we add the 
GrpcClientWrapper.cs file to the ApiGateway project folder. The file will have the 
following using statements:

using System;

using System.Collections.Generic;

using System.Threading.Tasks;

using DataProcessor;

using Grpc.Net.Client;

Then, we add the namespace and the interface definition to this file:

namespace ApiGateway

{

    public interface IGrpcClientWrapper

    {

        Task<int> SendDataViaStandardClient(int 

          requestCount);

        Task<int> SendDataViaLoadBalancer(int 

          requestCount);

    }

}

Below the interface definition, we add a class definition that will be implementing this 
interface, along with its constructor and private methods:

internal class GrpcClientWrapper : IGrpcClientWrapper, 

IDisposable

{

    private int currentChannelIndex = 0;

    private readonly GrpcChannel standardChannel;

    private readonly List<GrpcChannel> roundRobinChannels;

 

    public GrpcClientWrapper(List<string> addresses)

    {

        roundRobinChannels = new List<GrpcChannel>();

        standardChannel = 

          GrpcChannel.ForAddress(addresses[0]);

 



208     Scaling a gRPC Application

        foreach (var address in addresses)

        {

            roundRobinChannels.Add(GrpcChannel.ForAddress( 

              address));

        }

    }

}

Essentially, we are creating three gRPC channels. One will be reserved for a client that 
doesn't use load balancing, while the two other channels that are added to the list are there 
to demonstrate the basic principles of load balancing.

We then add a method that will use a single client without any load balancing applied:

public async Task<int> SendDataViaStandardClient(int 

requestCount)

{

    var count = 0;

 

    for (var i = 0; i < requestCount; i++)

    {

        var client = new 

          Ingestor.IngestorClient(standardChannel);

        await client.ProcessDataAsync

          (GenerateDataRequest(i));

        count++;

    }

 

    return count;

}

This method will accept an arbitrary number as a parameter and then make as many 
gRPC calls as the number specifies. Then, we add another method that demonstrates the 
principles of load balancing:

public async Task<int> SendDataViaLoadBalancer(int 

requestCount)

{

    var count = 0;



Introduction to load balancing     209

 

    for (var i = 0; i < requestCount; i++)

    {

        var client = new Ingestor.IngestorClient

          (roundRobinChannels[GetCurrentChannelIndex()]);

        await 

          client.ProcessDataAsync(GenerateDataRequest(i));

        count++;

    }

 

    return count;

}

This method is similar, but this time, the calls get alternated between two different 
endpoints. This is done in a round-robin fashion, which means that endpoints are always 
called in the same sequence.

This is how the most basic load balancing logic works. Instead of sending all the requests 
to the same server application instance, the calls are evenly spread between multiple 
instances. So each instance will receive only half as many calls. This will help to prevent 
the instance from reaching its maximum capacity.

We then add the private method to perform the actual sequence selection:

private int GetCurrentChannelIndex()

{

    if (currentChannelIndex == roundRobinChannels.Count - 

      1)

        currentChannelIndex = 0;

    else

        currentChannelIndex++;

 

    return currentChannelIndex;

}

But we also need to add the method that will generate the response object:

private DataRequest GenerateDataRequest(int index)

{

    return new DataRequest



210     Scaling a gRPC Application

    {

        Id = index,

        Name = $"Object {index}",

        Description = $"This is an object with the index of 

          {index}."

    };

}

Finally, we need to add a method to dispose of the gRPC channels to prevent the locking 
up of available resources:

public void Dispose()

{

    standardChannel.Dispose();

 

    foreach (var channel in roundRobinChannels)

    {

        channel.Dispose();

    }

}

You may have noticed that this class violates the single responsibility principle. There is 
no relationship between load-balanced and non-load-balanced clients. That means that 
there is low cohesion between the methods that use them, which would make them good 
candidates to be moved into separate classes.

However, this is intentional. Both methods have been placed into the same class because 
this way of setting up the solution requires far less code. But in a real-life scenario,  
you would need to follow the accepted standards and place these two methods into 
separate classes.

Adding the controller
We now create a controller that will generate our REST API endpoints. To do so, add the 
DataController.cs file to the Controllers folder of the ApiGateway project 
folder. The class definition, along with all its namespace imports, will look as follows:

using System.Diagnostics;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;



Introduction to load balancing     211

 

namespace ApiGateway.Controllers

{

    [ApiController]

    [Route("[controller]")]

    public class DataController : ControllerBase

    {

        private readonly IGrpcClientWrapper clientWrapper;

 

        public DataController(IGrpcClientWrapper 

          clientWrapper)

        {

            this.clientWrapper = clientWrapper;

        }

    }

}

We then add an endpoint method for triggering a gRPC client that doesn't use any  
load balancing:

[HttpPost("standard-client/{count}")]

public async Task<ApiResponse> 

PostDataViaStandardClient(int count)

{

    var stopWatch = Stopwatch.StartNew();

    var processedCount = await 

      clientWrapper.SendDataViaStandardClient(count);

 

    return new ApiResponse

    {

        DataItemsProcessed = processedCount,

        RequestProcessingTime = 

          stopWatch.ElapsedMilliseconds

    };

}



212     Scaling a gRPC Application

Then, we add an endpoint method that triggers a load-balanced client:

[HttpPost("load-balancer/{count}")]

public async Task<ApiResponse> PostDataViaLoadBalancer(int 

count)

{

    var stopWatch = Stopwatch.StartNew();

    var processedCount = await 

      clientWrapper.SendDataViaLoadBalancer(count);

 

    return new ApiResponse

    {

        DataItemsProcessed = processedCount,

        RequestProcessingTime = 

          stopWatch.ElapsedMilliseconds

    };

}

After this, we need to register all relevant dependencies in the Startup class  
(or Program.cs file) of the ApiGateway project.

Registering required dependencies
All of our custom gRPC components have now been added. We have also added all the 
relevant REST API endpoints. Now, we need to register our custom components inside 
the dependency injection system to make them accessible to any classes that need to use 
them. Also, we need to apply Swagger dependencies to make our REST API accessible via 
a browser: 

1. First, we need to make sure that the Startup class of the ApiGateway  
(or Program.cs file if you are on .NET 6) project has all of the following using 
statements:

using System.Collections.Generic;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.Extensions.Configuration;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Hosting;



Introduction to load balancing     213

2. Then, we register the gRPC client dependency by adding the following code to the 
ConfigureServices method:

var addresses = Configuration.

  GetSection("ServerAddresses").Get<List

  <string>>();

services.AddSingleton<IGrpcClientWrapper>(new 

  GrpcClientWrapper(addresses));

3. Then, we add Swagger dependencies. To do so, we place this line anywhere inside 
the ConfigureServices method. If you are using .NET 6 project template,  
this code will need to be inserted into the main body of Program.cs file  
before the Build event, while services would need to be replaced with 
builder.Services:

services.AddOpenApiDocument();

4. Then, we add these lines anywhere in the Configure method before the call to 
app.UseRouting():

app.UseOpenApi();

app.UseSwaggerUi3();

5. If there is an existing call to app.UseSwagger() inside the Configure method 
that has been added by the template, remove it. This came from another Swagger 
library, which will be in conflict with yours.

6. Finally, we will need to add the URLs of our server application instances to the 
appsetting.json file of the ApiGateway project. This is done by adding the 
following section to it:

"ServerAddresses": [

   "https://localhost:6992",

   "https://localhost:46785"

]

The URLs presented here can be found under the applicationUrl key in the 
launchSettings.json files from the GrpcServer1 and GrpcServer2 projects. 
Normally, you would use an HTTPS URL. However, if you are running your gRPC server 
applications on a Macintosh, you would not be able to use TLS with it. So, in this case, use 
an HTTP URL.

Now, we are ready to run our applications to see how load balancing works.



214     Scaling a gRPC Application

Running a load-balanced application
To launch all instances of the application, you will first need to navigate to the 
GrpcServer1 project folder and execute the dotnet run command. Then, do the 
same from the GrpcServer2 project folder. Finally, once both applications are up 
and their console output indicates that they are ready to receive calls, execute the same 
command from the ApiGateway folder.

If you navigate to the HTTPS address specified under the applicationUrl key of 
launchSettings.json file of the ApiGateway project and then add the /swagger 
path to this URL, you will be presented with the following page, which displays both of 
the endpoints:

Figure 6.1 – Swagger page of the ApiGateway application

If you then execute the standard-client endpoint with an arbitrary value of the 
count parameter, you will see that all of the requests will go to only one of the available 
gRPC server application instances. You will expect only one console window to be filled 
with sequential data from the client, while the console window of the other instance 
would remain empty, as shown here:



Introduction to load balancing     215

Figure 6.2 – Only one gRPC service instance receives requests

However, if you submit a request to a load-balancer endpoint, you will see that both 
instances receive the requests. But, as shown here, the requests aren't duplicated. Instead, 
different requests go to different instances of the server-side application:

Figure 6.3 – The requests are evenly distributed between both instances of the gRPC service application

If both of these gRPC service application instances were connected to the same backend 
system, as they would be in real life, then it wouldn't matter whether it's not the same 
application instance that receives all the data. All the data will still reach its intended 
destination.



216     Scaling a gRPC Application

But because requests get evenly distributed between multiple instances, there isn't any 
single application instance that can become a bottleneck. Adding only one instance 
increases the number of simultaneous requests the system can handle without slowing 
down by an order of magnitude. Adding any subsequent instances increases this capacity 
even further. This is why load balancing is so important when the application is intended 
to interact with many simultaneous connections.

But this was only a very basic representation of load-balancing logic. Next, we will have  
a look at some in-built mechanisms for performing client load balancing that are available 
in the gRPC libraries for .NET.

Client-side load balancing with gRPC
Client-side load balancing is similar in principle to the example that we previously looked 
at. This is where the client decides which server endpoints to connect to. Then, client-side 
gRPC middleware connects to those endpoints directly.

gRPC .NET libraries have inbuilt components that enable client-side load balancing. But, 
at the time of writing, those are only available in preview. Therefore, we need to update 
one of our NuGet packages to a prerelease version.

The caveat is that the specific code implementations may change once the feature is fully 
released. But even if this happens, the principles of applying it will remain the same.

Updating the NuGet package
All the client-side load balancing components are available in the Grpc.Net.Client 
NuGet package, but they are only available in the package versions that have a pre-release 
tag. However, since by default the dotnet CLI command will apply the latest full-release 
version, we need to rerun this command while explicitly defining the version we want.

The earliest package version where client-side load balancing was made available is 
2.39.0-pre1. However, any later version with a pre tag will have this feature too.

At the time of writing, 2.40.0-pre1 was the latest version. However, this is just an 
example. You need to make sure that the pre-release version that you choose is higher 
than the version of your existing Grpc.Net.Client package. Otherwise, you will 
get a package downgrade error and your code won't compile. To apply this, you need to 
navigate to the GrpcDependencies project folder and execute the following command:

dotnet add package Grpc.Net.Client -v 2.40.0-pre1



Client-side load balancing with gRPC     217

If the command has executed successfully, you should see the following entry inside the 
GrpcDependencies.csproj file:

<PackageReference Include="Grpc.Net.Client" 

Version="2.40.0-pre1" />

Important
Because, at the time of writing, client-side load balancing was only available 
in pre-release version of the package, some of its implementation details 
may change before the feature is fully released. Therefore the actual API may 
become different from the code samples demonstrated here. However, the 
overall principle are likely to remain the same.

Now, we are ready to start registering the relevant components in the gRPC client application.

Enabling client-side load balancing components
Some of the load-balancing components we are about to implement require an instance of 
IServiceProvider – the same object that is used for the inbuilt dependency injection 
mechanism in ASP.NET Core. This implementation (and all the dependencies it contains) 
is automatically passed to any object that the dependency injection system knows. For 
this to work, the class that the object is constructed from needs to have an instance of 
IServiceProvider as one of its interface parameters. Also, that class needs to be 
registered without an explicit call to its constructor.

To make our GrpcClientWrapper class inside the ApiGateway project compatible 
with this mechanism, we need to change its constructor. So, we replace the existing one 
with the following:

public GrpcClientWrapper(IConfiguration configuration, 

  IServiceProvider serviceProvider)

{

    this.serviceProvider = serviceProvider;

    roundRobinChannels = new List<GrpcChannel>();

 

    var addresses = 

      configuration.GetSection("ServerAddresses")

        .Get<List<string>>();

    standardChannel = GrpcChannel.ForAddress(addresses[0]);

 



218     Scaling a gRPC Application

    foreach (var address in addresses)

    {

        roundRobinChannels.Add

          (GrpcChannel.ForAddress(address));

    }

}

We need to add the following private field to the class:

private readonly IServiceProvider serviceProvider;

We also need to add the following using statements to the top of the file, as we will need 
this later:

using Grpc.Core;

using Grpc.Net.Client.Configuration;

using Microsoft.Extensions.Configuration;

The rest of the structure remains the same. But because we no longer have a generic 
collection of primitive string data types as a constructor parameter, we no longer 
have to explicitly call the constructor when registering the class instance. All required 
parameters will be resolved automatically.

Now, we need to change the structure of the ConfigureServices method in the 
Startup class of the ApiGateway project. The easiest way would be to replace its 
content with the following:

services.AddControllers();

services.AddOpenApiDocument();

services.AddSingleton(Configuration);

services.AddSingleton<IGrpcClientWrapper, 

GrpcClientWrapper>();

If you are using .NET 6 project template, you will need to insert these lines in Program.
cs file in the place of all the lines that start with builder.Services and modify the 
code accordingly. We no longer need to resolve values from the application settings, as we 
are now doing it inside the constructor of the GrpcClientWrapper class. But we will 
need to add the instance of an IConfiguration object to our dependency injection 
system, which we are doing by passing the Configuration variable to it via the 
AddSingleton method.

Now, we are ready to add different types of load balancers to our application.



Client-side load balancing with gRPC     219

Enabling a DNS resolver for the load balancer
Selection of a specific resolver for the client-side load balancer is done when the 
GrpcChannel object is instantiated. The resolver type is selected by applying a URL 
schema. But instead of the protocol (HTTP, HTTPS, TCP, WS, and so on), you provide 
the name of the resolver type. And if this is a type the system knows about, you will have  
a specific type of object that will resolve all relevant endpoints for load balancing.

The first resolver type we will have a look at is the DNS resolver, which can be selected by 
specifying the following URI while creating a gRPC channel:

dns://{DNS host name}

The DNS hostname will represent a key in the DNS table accessible by your machine. All 
endpoints that match this key will be returned, and this will be your list of addresses of the 
available gRPC service instances.

Client-side load balancing is available in the full release versions of the client NuGet 
package that were written for .NET 6, so you don't need to download a pre-release version 
to use this feature. If you use "dns" protocol in the URI parameter and point it at a valid 
DNS endpoint, it will be able to discover all relevant addresses automatically.

Configuring DNS on your machine is very OS-specific and is beyond the scope of this 
book. Also, if you do it incorrectly, you may end up not being able to access anything on 
the web. But links to some instructions will be provided in the Further reading section of 
this chapter if you want to try it.

However, as it's one of the inbuilt resolvers available with the standard gRPC client NuGet 
package, we will still cover it here. And to demonstrate its implementation, we will add the 
following code to the GrpcClientWrapper class:

public async Task<int> SendDataViaDnsLoadBalancer(int 

requestCount)

{

    using var channel = 

      GrpcChannel.ForAddress("dns://myhost", new 

        GrpcChannelOptions

    {

        Credentials = ChannelCredentials.SecureSsl,

        ServiceProvider = serviceProvider,

        ServiceConfig = new ServiceConfig { 

          LoadBalancingConfigs = { new PickFirstConfig() } 



220     Scaling a gRPC Application

        }

    });

 

    var client = new Ingestor.IngestorClient(channel);

    var count = 0;

    for (var i = 0; i < requestCount; i++)

    {

        await 

          client.ProcessDataAsync(GenerateDataRequest(i));

        count++;

    }

 

    return count;

}

In the preceding example, myhost is just an arbitrary hostname that we expect to 
be present in the DNS table. When we are defining GrpcChannelOptions, we are 
specifying Credentials as ChannelCredentials.SecureSsl. However, this 
is only applicable if the endpoints that we will be accessing are protected by TLS and 
use HTTPS protocol. Otherwise, you would use ChannelCredentials.Insecure 
credentials. This will be applicable if the server-side gRPC applications are running on  
a Macintosh.

Next, we are specifying the load-balancing config. We can manually populate various 
values, but we can also just use the inbuilt PickFirstConfig class. With this setting 
applied, the client doesn't evenly distribute the load between different server instances. 
Instead, it just stays connected to the first instance it was able to successfully connect to. 
But if it can't connect to any specific instance within a particular period of time, it will try 
to connect to a different one.

This type of load balancing is more reactive than proactive. Instead of evenly distributing 
the load from the start, it attempts to add the load to a service that's already under  
a high load.

The rest of the logic is identical to what we had in the other methods of the client wrapper 
class. Now, we need to add the signature of this method to the IGrpcClientWrapper 
interface by adding the following line to it:

Task<int> SendDataViaDnsLoadBalancer(int requestCount);



Client-side load balancing with gRPC     221

Finally, we can add the following endpoint method to the DataController class:

[HttpPost("dns-load-balancer/{count}")]

public async Task<ApiResponse> 

PostDataViaDnsLoadBalancer(int count)

{

    var stopWatch = Stopwatch.StartNew();

    var processedCount = await 

      clientWrapper.SendDataViaDnsLoadBalancer(count);

 

    return new ApiResponse

    {

        DataItemsProcessed = processedCount,

        RequestProcessingTime = 

          stopWatch.ElapsedMilliseconds

    };

}

Now, we will have a look at another inbuilt load balancer available with the gRPC client 
NuGet package.

Using a static resolver for the load balancer
Another type of load balancer resolver that's available in the gRPC client NuGet package 
is a static resolver. But unlike the DNS resolver, you need to configure it and register it in 
the dependency injection system before you can use it.

The static resolver doesn't attempt to retrieve any endpoints based on a hostname listed 
in DNS records. Instead, it will have a preconfigured list of endpoints. But the rest of its 
functionality is identical.

We will register an instance of the static resolver and populate it with entries from the 
application settings. To do so, we add the following snippet to the ConfigureServices 
method of the Startup class of the ApiGateway project (or the main body of the 
Program.cs file if you are using .NET 6 template):

var addresses = Configuration.GetSection("ServerAddresses").

  Get<List<string>>();  

services.AddSingleton<ResolverFactory>

    (new StaticResolverFactory(addr => addresses



222     Scaling a gRPC Application

        .Select(a => new DnsEndPoint(a.Replace("//", 

          string.Empty).Split(':')[1], 

            int.Parse(a.Split(':')[2])))

                    .ToArray()));

We also need the following using statements to make it work:

using Grpc.Net.Client.Balancer;

using System.Net;

This will register an instance of the StaticResolverFactory class and create 
an endpoint for every URL entry we have in the ServerAddresses section of the 
appsetting.json file. In our case, because we have them as fully qualified URIs, 
we will need to remove the protocol and split the hostname from the port number. This 
is because a pure hostname and port number are the constructor parameters of the 
DnsEndPoint class, which the static resolver uses to represent the endpoints. Whether 
the protocol is HTTP or HTTPS will be controlled at the time when the gRPC channel is 
created by using either Insecure or SecureSsl as the channel credential configuration.

Now, we can start using the static load balancer resolver inside a gRPC client. To do so, we 
will add the following method to the GrpcClientWrapper class:

public async Task<int> SendDataViaStaticLoadBalancer(int 

requestCount)

{

    using var channel = 

      GrpcChannel.ForAddress("static://localhost", new 

        GrpcChannelOptions

    {

        Credentials = ChannelCredentials.SecureSsl,

        ServiceProvider = serviceProvider,

        ServiceConfig = new ServiceConfig { 

          LoadBalancingConfigs = { new RoundRobinConfig() } 

        }

    });

 

    var client = new Ingestor.IngestorClient(channel);

    var count = 0;

    for (var i = 0; i < requestCount; i++)

    {



Client-side load balancing with gRPC     223

        await 

          client.ProcessDataAsync(GenerateDataRequest(i));

        count++;

    }

 

    return count;

}

The implementation is almost identical to the DNS resolver, but we are using the static 
keyword in the gRPC channel URI instead of dns. In this case, the hostname can be 
absolutely anything, as it's purely a label for our convenience. It doesn't actually represent 
a real hostname.

The only major difference is that we have used a different load-balancing configuration 
here. We have applied RoundRobinConfig. This class will make our load balancer work 
similar to the primitive load-balancing mechanism we have previously built ourselves.  
It will make endpoint requests in a round-robin fashion.

To be able to use this newly added method, we need to add the signature of this method 
to the IGrpcClientWrapper interface and then add the following endpoint method to 
our DataController class:

[HttpPost("static-load-balancer/{count}")]

public async Task<ApiResponse> 

PostDataViaStaticLoadBalancer(int count)

{

    var stopWatch = Stopwatch.StartNew();

    var processedCount = await 

      clientWrapper.SendDataViaStaticLoadBalancer(count);

 

    return new ApiResponse

    {

        DataItemsProcessed = processedCount,

        RequestProcessingTime = 

          stopWatch.ElapsedMilliseconds

    };

}

But those are not the only types of endpoint resolvers and load balancers you can use with 
your gRPC clients. You can also create custom resolvers and custom load balancers.



224     Scaling a gRPC Application

Creating custom load balancers and resolvers
What if we wanted to read endpoint URIs from a file on the disk? Or what if we could 
query a specific website to retrieve the list of the endpoints? Well, with available 
components, you can achieve either of these.

All existing resolvers inherit from the Resolver base class, and you can write your own 
resolvers to do the same.

As an example, we will create a resolver that will read from a file on the disk. To do so, we 
will add the addresses.txt file to the ApiGateway application project.

The content of the file will be the addresses of the gRPC server applications without 
the protocol and with the hostname and the port number separated by whitespace. 
For example, if your addresses are https://localhost:6992 and https://
localhost:46785, the content of this file will be as follows:

localhost 6992

localhost 46785

To make sure that this file is moved into the application folder during the build, we will 
add the following snippet to the ApiGateway.csproj file:

<ItemGroup>

  <None Update="addresses.txt">

    <CopyToOutputDirectory>Always</CopyToOutputDirectory>

  </None>

</ItemGroup>

Now, we are ready to create the resolver. To do so, we create the DiskResolver.cs 
file inside our ApiGateway application folder. The namespace imports and the general 
structure of the file will be as follows:

using Grpc.Net.Client.Balancer;

using System;

using System.Collections.Generic;

using System.IO;

using System.Net;

using System.Threading;

using System.Threading.Tasks;

 

namespace ApiGateway



Client-side load balancing with gRPC     225

{

    public class DiskResolver : Resolver

    {

        private readonly Uri _address;

        private Action<ResolverResult> _listener;

 

        public DiskResolver(Uri address)

        {

            _address = address;

        }

}

Now, we can add logic to it that will read the file from the disk and extract endpoint 
addresses from it:

public override Task RefreshAsync(CancellationToken 

  cancellationToken)

{

    var addresses = new List<DnsEndPoint>();

 

    foreach (var line in File.ReadLines(_address.Host))

    {

        var addresComponents = line.Split(' ');

        addresses.Add(new DnsEndPoint(addresComponents[0], 

          int.Parse(addresComponents[1])));

    }

 

    _listener(ResolverResult.ForResult(addresses, 

      serviceConfig: null));

 

    return Task.CompletedTask;

}



226     Scaling a gRPC Application

Then, we need to add a method that will start the resolver:

public override void Start(Action<ResolverResult> listener)

{

    _listener = listener;

}    

But this is not all. Inside the same file, we need to put a resolver factory class. This is the 
class that will map our newly created resolver to a disk keyword in the URI schema. It 
will look like this:

public class DiskResolverFactory : ResolverFactory

{

    public override string Name => "disk";

 

    public override Resolver Create(ResolverOptions 

      options)

    {

        return new DiskResolver(options.Address);

    }

}

But what if, as well as being unsatisfied with existing resolvers, we also aren't satisfied with 
the existing load-balancer rules? What if we want the load balancer to access endpoints at 
random? Well, we can do this too.

We add the RandomizedBalancer.cs file to the ApiGateway project folder. The 
basic structure of the class inside the file will be as follows:

using Grpc.Net.Client.Balancer;

using Microsoft.Extensions.Logging;

using System;

using System.Collections.Generic;

 

namespace ApiGateway

{

    public class RandomizedBalancer : 

      SubchannelsLoadBalancer

    {



Client-side load balancing with gRPC     227

        public RandomizedBalancer(IChannelControlHelper 

          controller, ILoggerFactory loggerFactory)

           : base(controller, loggerFactory)

        {

        }

    }

 }

Then, we add the following class inside the RandomizedBalancer class.  
This is a nested class with the private access modifier:

private class RandomizedPicker : SubchannelPicker

{

    private readonly IReadOnlyList<Subchannel> 

      _subchannels;

    private readonly Random _randomNumberGenerator;

 

    public RandomizedPicker(IReadOnlyList<Subchannel> 

      subchannels)

    {

        _subchannels = subchannels;

        _randomNumberGenerator = new Random();

    }

 

    public override PickResult Pick(PickContext context)

    {

        return 

          PickResult.ForSubchannel(_subchannels

            [_randomNumberGenerator.Next

              (0, _subchannels.Count)]);

    }

}

After this, we add the necessary override method that uses this class:

protected override SubchannelPicker 

  CreatePicker(IReadOnlyList<Subchannel> readySubchannels)

{



228     Scaling a gRPC Application

    return new RandomizedPicker(readySubchannels);

}

Finally, we add the following factory class to the same file at the same level that 
RandomizedBalancer is positioned at:

public class RandomizedBalancerFactory : 

LoadBalancerFactory

{

    public override string Name => "randomized";

 

    public override LoadBalancer Create(LoadBalancerOptions 

      options)

    {

        return new RandomizedBalancer(options.Controller, 

          options.LoggerFactory);

    }

}

Now, we need to register both the resolver and the load balancer in the 
ConfigureServices method of the Startup class (or the main body of the 
Program.cs file if you are using .NET 6 template):

services.AddSingleton<ResolverFactory, DiskResolverFactory>();

services.AddSingleton<LoadBalancerFactory, 

  RandomizedBalancerFactory>();

Now we can use them both by adding the following method to the 
GrpcClientWrapper class:

public async Task<int> SendDataViaCustomLoadBalancer(int 

requestCount)

{

    using var channel = 

      GrpcChannel.ForAddress("disk://addresses.txt", new 

        GrpcChannelOptions

    {

        Credentials = ChannelCredentials.SecureSsl,

        ServiceProvider = serviceProvider,



Client-side load balancing with gRPC     229

        ServiceConfig = new ServiceConfig { 

          LoadBalancingConfigs = { new 

            LoadBalancingConfig("random") } }

            });

    var client = new Ingestor.IngestorClient(channel);

    var count = 0;

    for (var i = 0; i < requestCount; i++)

    {

        await 

          client.ProcessDataAsync(GenerateDataRequest(i));

        count++;

    } 

    return count;

}

To access the custom resolver we've created, we use disk as the resolver name. Then, we 
specify the file path, which, in our case, is addresses.txt, as the file is located in the 
same folder where the compiled application is.

Now, to use it from the outside, we need to add the signature of this method to the 
IGrpcClientWrapper interface and add the following method to DataController:

[HttpPost("custom-load-balancer/{count}")]

public async Task<ApiResponse> 

  PostDataViaCustomLoadBalancer(int count)

{

    var stopWatch = Stopwatch.StartNew();

    var processedCount = await 

      clientWrapper.SendDataViaCustomLoadBalancer(count);

 

    return new ApiResponse

    {

        DataItemsProcessed = processedCount,

        RequestProcessingTime = 

          stopWatch.ElapsedMilliseconds

    };

}



230     Scaling a gRPC Application

Even though client-side load balancing is effective, it's not always a viable solution. Quite 
often, the client wouldn't know the addresses of the individual endpoints. But fortunately, 
there is a solution for this. Load balancing can be done by a proxy running on a server.

Proxy load balancing with gRPC
Proxy load balancing is the most popular type of load balancing used by standard web 
applications. With it in place, the client doesn't know the exact addresses of individual 
endpoints. It only knows the address of a single endpoint that the proxy is hosted on. And 
it's the job of the proxy to then redirect the request to the actual endpoints.

Large-scale user-facing applications would use this type of load balancing. Because 
web applications like Facebook or YouTube would not be able to support the number 
of requests they receive if they just ran as a single instance, they have to be scaled out 
and run as many duplicate instances. The number of these instances may change as the 
number of requests changes. Also, the instances may get moved to different hardware if 
the original machine fails, which regularly happens in data centers.

As the user, you would never be expected to know the ever-changing list of the endpoint 
addresses. All you have to do is type a standard address in the browser. And this is 
precisely how the proxy works. When you type the address, it resolves to the IP address of 
the proxy, and it's then the proxy that redirects the request to the actual application.

And you can do exactly the same type of load balancing with gRPC. The only caveat is that 
you would need a proxy that supports HTTP/2. But luckily, there are several that do.  
A few examples would be Envoy, Linkerd, and YARP.

But there are several more. All you need to do is to check whether any particular product 
supports HTTP/2.

But to demonstrate how proxy load balancing works, we will build our own. Luckily, we 
will have to do minimal work, as the bulk of load-balancing logic has already been added 
to the YARP NuGet package.

Building a web application to act as a proxy
We navigate to the GrpcLoadBalancing solution folder and execute the following 
command to create an empty ASP.NET Core application project:

dotnet new web -o Http2Proxy



Proxy load balancing with gRPC     231

Then, we add the new project to the solution by executing the following command:

dotnet sln add Http2Proxy/Http2Proxy.csproj

Next, we navigate to the Http2Proxy project folder and add the Yarp.ReverseProxy 
NuGet package. At the time of writing, this NuGet package was available in preview only. 
Therefore, you would need to specify the version while running the command:

dotnet add package Yarp.ReverseProxy -v 1.0.0-

  preview.12.21451.3

If you are using an IDE, you can find the latest version via the NuGet package manager.

Next, we add the necessary dependency to the Startup class of the Http2Proxy 
application, or Program.cs file if it's based on .NET 6 template. First, we need to ensure 
that the following using statements are present:

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.Extensions.Configuration;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Hosting;

Next, we need to make sure that the application configuration is passed to the class, as it 
may not be for an empty ASP.NET Core application by default. To do so, we need to make 
sure that the following property and the following constructor are present:

public IConfiguration Configuration { get; }

 

public Startup(IConfiguration configuration)

{

    Configuration = configuration;

}

Next, we register the reverse proxy by adding this to the ConfigureServices method:

var proxyBuilder = services.AddReverseProxy();

proxyBuilder.LoadFromConfig(Configuration.GetSection("Rever

  seProxy"));



232     Scaling a gRPC Application

Then, inside the Configure method, we replace the call to app.UseEndpoints with 
the following:

app.UseEndpoints(endpoints =>

{

    endpoints.MapReverseProxy();

});

Now, we need to configure our proxy to talk to specific endpoints. To do so, add the 
following section to the appsettings.json file:

"ReverseProxy": {

  "Routes": {

    "route1": {

      "ClusterId": "cluster1",

      "Match": {

        "Path": "{**catch-all}"

      },

    }

  },

  "Clusters": {

    "cluster1": {

      "Destinations": {

        "cluster1/destination1": {

          "Address": "https://localhost:6992"

        },

        "cluster1/destination2": {

          "Address": "https://localhost:46785"

        }

      }

    }

  }

}

Here, we are adding a cluster of endpoints. The cluster has two destinations, which contain 
the addresses of the GrpcServer1 and GrpcServer2 applications. Normally, you 
would use HTTPS addresses, but if you are running those applications on a Macintosh, 
then you would use HTTP addresses.



Proxy load balancing with gRPC     233

Finally, we modify the launchSettings.json file that is located inside the 
Properties folder of the Http2Proxy project. Because it's no longer a normal web 
application, we need to prevent it from automatically running in the browser. And we 
won't use IIS Express. To enable these changes, replace the content of this file with  
the following:

{

  "profiles": {

    "Http2Proxy": {

      "commandName": "Project",

      "dotnetRunMessages": "true",

      "launchBrowser": false,

      "applicationUrl": 

        "https://localhost:5001;http://localhost:5000",

      "environmentVariables": {

        "ASPNETCORE_ENVIRONMENT": "Development"

      }

    }

  }

}

Now, our proxy application is ready to act as a load balancer. We will just need to 
configure the client application to connect to it. To do so, just replace the first entry in the 
ServerAddresses section of the appsettings.json file from the ApiGateway 
project folder with the address of the Http2Proxy application. If you are running the 
Http2Proxy application on a Macintosh, use the HTTP address; otherwise, use the 
HTTPS one.

Launching the HTTP/2 proxy
To launch the application, execute the dotnet run command from inside the 
GrpcServer1, GrpcServer2, Http2Proxy, and ApiGateway application folders. 
Then, open the Swagger page of ApiGateway application in the browser and execute the 
standard-client endpoint with an arbitrarily defined value of the count parameter.



234     Scaling a gRPC Application

Now, if you look at the console output of the GrpcServer1 and GrpcServer2 
applications, you will see that requests have been distributed between both of them. This 
can be seen on the following screenshot:

Figure 6.4 – Proxy load balancing has distributed requests between two instances

As we have demonstrated, both client-side and proxy load balancers work well. The choice 
of the load balancer type would depend on the situation.

If you need to run a load balancer on an internal network, then perhaps client-side load 
balancing would be the best. With it, you would not have to add additional components, 
such as services that are acting as proxies.

But if you expect clients to connect to your network from the outside, then proxy load 
balancing would be better suited. The clients won't have to know the addresses of all of 
your endpoints. All they need to know is a single address that will take them to the proxy.



Summary     235

Summary
In this chapter, you have learned that load balancing is needed when the number of 
connections you expect to receive would exceed what a single instance of an application 
would be able to handle. Load balancing is performed by having several instances of the 
application and distributing requests between them.

You saw multiple ways that load balancing can be done. A common way is to call the 
endpoints in a round-robin fashion. But it's also possible to get the load balancer to 
connect to the first available endpoint and maintain the connection for as long as it can.

You now know that client-side load balancing is performed by getting the client to directly 
connect to the individual endpoints. In order to obtain these addresses, the gRPC client 
would need to use a resolver.

You have also learned that proxy load balancing is performed by a proxy service on the 
server that the client connects to. For gRPC, you can use any proxy that supports HTTP/2.

And now we have completed the section about gRPC best practices. Next, we will start 
going into various gRPC concepts in depth. In the next chapter, we will cover different 
types of gRPC calls in more detail. You will also learn how to apply various configuration 
options to them.

Questions
1. Why would you need load balancing?

A. To improve the application performance
B. To split queries into smaller sub-queries
C. To split a large number of requests between multiple instances of the application
D. To protect your server-side components from hacking

2. How is client-side load balancing done?

A. By sending requests to a server endpoint, which then redirects the call
B. By getting the server hostname resolved into a list of IP addresses
C. By getting the list of individual endpoint addresses and calling them directly
D. By trying to call all addresses specified in the local DNS configuration



236     Scaling a gRPC Application

3. Which one of these is a valid type of load balancing?

A. Connecting to endpoints in a round-robin fashion
B. Connecting to the first available endpoint
C. Connecting to endpoints at random
D. All of the above

4. How does a proxy load balancer work?

A. The client connects to the proxy endpoint and the proxy redirects it to 
individual application instances.

B. The client requests the full list of addresses from the proxy and connects directly 
to them.

C. The client obtains the address of the server that will contain the list of endpoints 
it will connect to.

D. The client requests a single address to the endpoint that it will connect to next.

5. What's required to enable proxy load balancing with gRPC?

A. Protobuf on the proxy
B. GRPC middleware on the proxy
C. Support for HTTP/2
D. An SSL certificate on the proxy

Further reading
• gRPC client-side load balancing: https://docs.microsoft.com/en-us/

aspnet/core/grpc/loadbalancing

• Envoy proxy: https://www.envoyproxy.io/

• Linkerd proxy: https://linkerd.io/

• YARP reverse proxy: https://microsoft.github.io/reverse-proxy/

• DNS fundamentals: https://www.thegeekstuff.com/2013/12/
dns-basics/

https://docs.microsoft.com/en-us/aspnet/core/grpc/loadbalancing
https://docs.microsoft.com/en-us/aspnet/core/grpc/loadbalancing
https://www.envoyproxy.io/
https://linkerd.io/
https://microsoft.github.io/reverse-proxy/
https://www.thegeekstuff.com/2013/12/dns-basics/
https://www.thegeekstuff.com/2013/12/dns-basics/


Further reading     237

• Local DNS configuration on the Macintosh: https://markinns.com/
archive/how-to-setup-a-local-dns-host-file-on-mac-os-x.
html

• Local DNS configuration on Windows: https://helpdeskgeek.com/
networking/edit-hosts-file/

• Local DNS configuration on Linux: https://www.thegeekstuff.
com/2014/01/install-dns-server/

https://markinns.com/archive/how-to-setup-a-local-dns-host-file-on-mac-os-x.html
https://markinns.com/archive/how-to-setup-a-local-dns-host-file-on-mac-os-x.html
https://markinns.com/archive/how-to-setup-a-local-dns-host-file-on-mac-os-x.html
https://helpdeskgeek.com/networking/edit-hosts-file/
https://helpdeskgeek.com/networking/edit-hosts-file/
https://www.thegeekstuff.com/2014/01/install-dns-server/
https://www.thegeekstuff.com/2014/01/install-dns-server/




Section 3:  
In-Depth Look at 

gRPC on .NET

This part delves deeper into gRPC functionality on .NET. It covers all supported types 
of gRPC calls, gRPC security, and different ways of debugging gRPC applications. This 
section comprises the following chapters:

• Chapter 7, Using Different Call Types That gRPC Supports

• Chapter 8, Using Well-Known Types to Make Protobuf More Handy

• Chapter 9, Securing gRPC Endpoints in Your ASP.NET Core Application with  
SSL/TLS

• Chapter 10, Applying Authentication and Authorization to gRPC Endpoints

• Chapter 11, Using Logging, Metrics, and Debugging in gRPC on .NET





7
Using Different  

Call Types Supported 
by gRPC

In the previous chapters, we covered several ways you can make a gRPC call to and from  
a .NET application. In this chapter, we will have an in-depth look at how to make these 
calls and what happens in the background when these calls are made.

In this chapter, you will not only learn how to make the different types of calls that are 
available with gRPC, but you will also learn what happens in the background while these 
calls are being made. We will cover how Protobuf RPC definitions are resolved by gRPC 
middleware into paths that are understood by the HTTP protocol, as well as how gRPC 
middleware deals with errors.

You will also learn how to apply various configuration options, both to the gRPC channel 
and to individual calls. Finally, you will learn how to extract metadata from gRPC calls, 
both on the client and the server.



242     Using Different Call Types Supported by gRPC 

In this chapter, we will cover the following topics:

• Making unary calls on gRPC

• Streaming data from the client

• Reading streams from the server

• Enabling bi-directional streaming

By the end of this chapter, you will have learned how to use all the available gRPC call 
types optimally and how to prevent unintentional errors while using them.

Technical requirements
To follow the instructions in this chapter, you will need the following:

• A computer with either Windows, Mac, or Linux installed

• A supported IDE or code editor (Visual Studio, Visual Studio Code,  
or JetBrains Rider)  

• .NET 5 SDK  

• A self-signed development HTTPS certificate that's enabled on your machine  

The instructions on how to set all of these up were provided in Chapter 1, Creating  
a Basic gRPC Application on ASP.NET Core. All the code samples for this chapter can 
be found at https://github.com/PacktPublishing/Microservices-
Communication-in-.NET-Using-gRPC/tree/main/Chapter-07.

Please visit the following link to check the CiA videos: https://bit.ly/3m5o8SR

Making unary calls on gRPC
In this section, we will learn how to make the most basic gRPC call—a unary call. Even 
though we have used this call type in previous chapters, we will look into it in more 
detail here. You will learn the difference between blocking and non-blocking unary call 
implementations on .NET, as well as how to work with its metadata.

We will also provide examples of unary calls that cover other fundamental aspects of 
gRPC and its .NET implementation. For example, you will learn how the URI path to 
RPCs gets constructed based on whether or not you use the package keyword inside  
a Protobuf definition. You will also learn how to extract metadata from the requests and 
responses, both on the client and the server.

https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-07
https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-07
https://bit.ly/3m5o8SR


Making unary calls on gRPC     243

But first, we will set up our solution.

Setting up shared gRPC dependencies
We will place all of our projects into the same solution with shared dependencies.  
Let's get started:

1. To create the solution, create the GrpcCallTypes folder. Then, execute the 
following command inside it:

dotnet new sln

2. Then, execute the following command inside the solution folder to create a class 
library that will hold all shared dependencies:

dotnet new classlib -o GrpcDependencies

3. Next, add this project to the solution by executing the following command:

dotnet sln add GrpcDependencies/GrpcDependencies.csproj

4. After this, navigate to the GrpcDependencies project folder and add all the 
necessary NuGetDependencies by executing the following commands:

dotnet add GrpcDependencies.csproj package Grpc.Net.

  Client 

dotnet add GrpcDependencies.csproj package Google.

  Protobuf 

dotnet add GrpcDependencies.csproj package Grpc.Tools 

dotnet add GrpcDependencies.csproj package Grpc.

  AspNetCore

We are now ready to start adding Protobuf definitions. But this time, we will do something 
unusual – we will add three files with almost identical content. The only difference 
between them will be in the way they use the package keyword. We will do this later 
to demonstrate how the .NET implementations of the Protobuf definitions are generated 
under different scenarios. You will also learn how the package attribute (or its absence) 
affects the URI path to the RPC endpoint.



244     Using Different Call Types Supported by gRPC 

The first definition will have the package keyword, but no csharp_namespace. The 
second definition will have no package keyword; it will have the csharp_namespace 
attribute instead. The third package will have neither. The following steps show you how 
these files can be set up:

1. We will start by creating the Protos folder inside the GrpcDependencies 
project folder. Next, we will place the device_management.proto file in this 
folder. In this file, we must define the service:

syntax = "proto3";

package device_management;

 

service DeviceManager {

    rpc UpsertDeviceStatus (DeviceDetails) returns 

      (UpsertDeviceResponse);

    rpc GetDevice (GetDeviceRequest) returns 

      (DeviceDetails);

}

2. Then, we must add the message and enum definitions:

message DeviceDetails {

    int32 device_id = 1;

    string name = 2;

    string description = 3;

    DeviceStatus status = 4; 

}

 

message GetDeviceRequest {

    int32 device_id = 1;

}

 

message UpsertDeviceResponse {

    bool success = 1;

}

enum DeviceStatus {

    OFFLINE = 0;

    ONLINE = 1;

    BUSY = 2;



Making unary calls on gRPC     245

    ERRORED = 3;

}

3. Now, we must copy this file and rename the copy device_management_cs_
namespace.proto. In this file, we will replace the package definition with the 
following code:

option csharp_namespace = "GrpcDependencies.Protos";

4. After this, make another copy of the device_management.proto file and call  
it device_management_no_package.proto. Inside this file, we will remove 
the package directive altogether.

5. Next, we will register all of these Protobuf definitions by inserting this section into 
the GrpcDependencies.csproj file:

<ItemGroup>

  <Protobuf Include="Protos\device_management.proto" />

  <Protobuf 

  Include="Protos\device_management_cs_namespace.proto"

    />

  <Protobuf 

    Include="Protos\device_management_no_package.proto" 

      />

</ItemGroup>

Now, we are ready to start creating server-side implementations of all three Protobuf 
definitions we have added.

Creating server-side implementations of the  
Protobuf definitions
Inside the GrpcCallTypes solution folder, we will create a project based on the gRPC 
template. Then, we will link this project to the class library we have created and create 
implementations of the Protobuf definitions we have added to it. Let's get started:

1. Execute the following command to create a project from the gRPC service template:

dotnet new grpc -o DeviceManagerService



246     Using Different Call Types Supported by gRPC 

2. Then, add it to the solution by executing the following command:

dotnet sln add DeviceManagerService/DeviceManagerService.

  csproj

3. Now, navigate to the DeviceManagerService project folder and 
link the shared class library to it by adding the following snippet to the 
DeviceManagerService.csproj file:

<ItemGroup>

  <ProjectReference 

    Include="..\GrpcDependencies\GrpcDependencies.csproj" 

      />

</ItemGroup>

Now, we can remove the direct gRPC NuGet references from this file since we 
have already defined them in the class library. Once we've done this, we can add 
the implementation for our Protobuf definitions. We will start by placing the 
ManagerService.cs file in the Services folder. The class definition inside the 
file will look as follows:

using System;

using System.Threading.Tasks;

using Grpc.Core;

 

namespace DeviceManagerService.Services

{

    public class ManagerService : 

      DeviceManagement.DeviceManager.DeviceManagerBase

    {

    }

}

This is the implementation for the device_management.proto file. Now,  
we can add the implementation of the UpsertDeviceStatus rpc to this class, 
as follows:

public override Task<DeviceManagement.

  UpsertDeviceResponse> 

UpsertDeviceStatus(DeviceManagement.DeviceDetails 

  request, 



Making unary calls on gRPC     247

  ServerCallContext context)

{

    Console.WriteLine($"DeviceManagerService triggered. 

      Peer: 

      {context.Peer}. Host: {context.Host}.");

    Console.WriteLine($"Device id: {request.DeviceId}, 

      Name: 

      {request.Name}, Description: {request.Description}, 

        Status {request.Status}.");

 

    return Task.FromResult(new 

      DeviceManagement.UpsertDeviceResponse

    {

        Success = true

    });

}

We will not include the implementation of GetDevice rpc. We've done this on 
purpose so that we can demonstrate what will happen if the client attempts to make a call 
to this endpoint later. But for now, let's examine the server-side implementation of a unary 
gRPC call on .NET.

A unary call will always be an override of a method that has been added to  
auto-generated code by gRPC tools on .NET. The format of the method signature will 
always be as follows:

public override Task<{return message type}> {RPC name}({request 

  message type} request, ServerCallContext context)

Of course, just like with any C# Task, you can add the async keyword to it if you intend 
to use the await keyword inside the method. Both the return object and the input 
message types will vary, depending on the rpc definition in Protobuf. But there will 
always be an input parameter of the ServerCallContext type. This is the parameter 
that contains the metadata of the request.

This object will contain information such as the request headers, if any were applied. Some 
standard metadata fields are represented by class properties. For example, you can extract 
information about logged-in users.



248     Using Different Call Types Supported by gRPC 

In the preceding example, we are extracting peer and host information from the context 
parameter. The former represents the address of the client, while the latter represents the 
address of the host running the application. We output this information to the console. 
Then, we output the data from the input message itself. Let's continue:

1. First, we will copy this file and name the copy ManagerServiceCsNamespace.
cs. We will change the class signature inside the file to the following since we are 
now implementing the device_management_cs_namespace.proto file:

public class ManagerServiceCsNamespace : 

GrpcDependencies.Protos.DeviceManager.DeviceManagerBase

2. Then, we will replace the implementation of the UpsertDeviceStatus rpc with 
the following:

public override Task<GrpcDependencies.Protos.

  UpsertDeviceResponse> 

  UpsertDeviceStatus(GrpcDependencies.Protos.

  DeviceDetails 

    request, ServerCallContext context)

{

    Console.WriteLine($"ManagerServiceCsNamespace 

      triggered. 

      Peer: {context.Peer}. Host: {context.Host}.");

    Console.WriteLine($"Device id: {request.DeviceId}, 

      Name: 

      {request.Name}, Description: {request.Description}, 

        Status {request.Status}.");

 

    return Task.FromResult(new 

      GrpcDependencies.Protos.UpsertDeviceResponse

    {

        Success = true

    });

}



Making unary calls on gRPC     249

3. Next, we will make another copy of the ManagerService.cs file and rename  
it ManagerServiceNoPackage.cs. Inside this file (which is the 
implementation of device_management_no_package.proto), we will 
change the class signature to the following:

public class ManagerServiceNoPackage : DeviceManager.

  DeviceManagerBase

4. Then, we will replace the implementation of the UpsertDeviceStatus rpc with 
the following:

public override Task<UpsertDeviceResponse> 

UpsertDeviceStatus(DeviceDetails request, 

  ServerCallContext 

  context)

{

    Console.WriteLine($"ServiceNoPackage triggered. Peer: 

      {context.Peer}. Host: {context.Host}.");

    Console.WriteLine($"Device id: {request.DeviceId}, 

      Name: 

      {request.Name}, Description: {request.Description}, 

        Status {request.Status}.");

 

    return Task.FromResult(new UpsertDeviceResponse

    {

        Success = true

    });

}

Please note that we haven't used any additional namespace imports in this file. 
This is because the service and message implementations won't have any 
namespaces in auto-generated code if they represent a Protobuf definition that has 
neither package nor csharp_namespace defined.



250     Using Different Call Types Supported by gRPC 

5. Now, we have all implementations of all three Protobuf definitions we created 
previously. Let's make them accessible to the clients. To do so, we need to make 
sure that the Startup class inside the DeviceManagerService project (or 
Program.cs file if you are using .NET 6 template) has the following using 
statements specified:

using DeviceManagerService.Services;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Hosting;

6. Then, we will need to add the following statements inside the call to app.
UseEndpoints:

endpoints.MapGrpcService<ManagerService>();

endpoints.MapGrpcService<ManagerServiceCsNamespace>();

endpoints.MapGrpcService<ManagerServiceNoPackage>();

We now have an application with three almost identical gRPC service implementations. 
However, they are based on Protobuf definitions with different package configurations, 
so there are differences in how they can be accessed by gRPC clients. Each service 
implementation will input its class name into the console. So, we will now be able to build 
a client and see if we can reliably reach the service we want to reach.

Note
If you are running your server-side application on a Mac, you will need to 
make some modifications to it. The instructions on how to do so can be found 
in the Running the gRPC service on Mac section of Chapter 1, Creating a Basic 
gRPC Application on ASP.NET Core.



Making unary calls on gRPC     251

Building the gRPC client
Our gRPC client will be a standard ASP.NET Core web API application. As we did 
previously, we will add Swagger dependencies to it to make all the API endpoints 
accessible via a standard browser. Let's get started:

1. First, we must navigate to the GrpcCallTypes solution folder and execute the 
following command to create a project from the Web API template:

dotnet new webapi -o ApiGateway

2. Then, we must add this project to the solution by executing the following command:

dotnet sln add ApiGateway/ApiGateway.csproj

3. Next, we must navigate to the ApiGateway project folder and insert the following 
snippet into the ApiGateway.csproj file to link it to the class library that 
contains all the shared dependencies:

<ItemGroup

 <ProjectReference 

   Include="..\GrpcDependencies\GrpcDependencies.csproj" 

     />

</ItemGroup>

4. Next, we must add the Swagger dependency to the project by executing the 
following command:

dotnet add ApiGateway.csproj package NSwag.AspNetCore

5. Next, we must create a class that will represent the API response and request object. 
We will create the DeviceDetails.cs file inside the ApiGateway project 
folder. The content of this file is as follows:

namespace ApiGateway

{

    public class DeviceDetails

    {

        public int Id { get; set; }

        public string Name { get; set; }

        public string Description { get; set; }

        public DeviceStatus Status { get; set; }

 



252     Using Different Call Types Supported by gRPC 

    }

 

    public enum DeviceStatus

    {

        OFFLINE = 0,

        ONLINE = 1,

        BUSY = 2,

        ERRORED = 3

    }

}

Please note that the class and enum names have been intentionally chosen to 
be the same as the corresponding message and enum names from the Protobuf 
definitions. This was done to demonstrate how any potential naming conflicts 
are resolved by C# when we are dealing with auto-generated gRPC abstractions 
that don't use namespaces, such as the ones that are based on the device_
management_no_package.proto file.

6. Now, we must add the ClientType.cs file to the root of the ApiGateway 
project. It will be an enum that allows us to select a specific client implementation:

namespace ApiGateway

{

    public enum ClientType

    {

        PackageName,

        NoPackage,

        CsNamespace

    }

}

7. Next, we must add a class that will act as a wrapper for gRPC clients that are based 
on different Protobuf definitions. The file will be called GrpcClientWrapper.
cs and it will be placed in the root of the ApiGateway project folder. This file will 
have the following using statements and the following namespace definition:

using System;

using System.Threading.Tasks;

using Grpc.Core;

using Grpc.Net.Client;



Making unary calls on gRPC     253

using Microsoft.Extensions.Configuration;

 

namespace ApiGateway

{

}

8. Now, we must place the following interface definition inside the namespace:

public interface IGrpcClientWrapper

{

    DeviceDetails GetDevice(ClientType clientType, int 

      deviceId);

    bool UpsertDeviceStatus(ClientType clientType, 

      DeviceDetails details);

    Task<bool> UpsertDeviceStatusAsync(ClientType 

      clientType, DeviceDetails details);

}

9. Next, we must add a class that will implement this interface. This class will reuse the 
same gRPC channel for all its calls since all Protobuf implementations are hosted by 
the same server-side application:

internal class GrpcClientWrapper : IGrpcClientWrapper, 

IDisposable

{

    private readonly GrpcChannel channel;

 

    public GrpcClientWrapper(IConfiguration 

      configuration)

    {

        channel = GrpcChannel.ForAddress(configuration

          ["ServerUrl"], new GrpcChannelOptions

        {

            Credentials = ChannelCredentials.SecureSsl,

        });

    }

}



254     Using Different Call Types Supported by gRPC 

Please note that we are using GrpcChannelOptions as one of the constructor 
parameters for the channel. We've done this to demonstrate how the gRPC channel  
can be configured.

We are applying the Credential options and setting them to 
ChannelCredentials.SecureSsl, which will ensure that the channel will only 
be able to connect to HTTPS endpoints. This option is relevant so long as the machine 
hosting your gRPC service application can support TLS or SSL (which will not be the case 
with a Mac, so you will need to remove this option if you are running your setup on  
a Mac). However, you also have the following options that you can apply to your channel:

• CompressionProviders: This option allows you to customize how message 
compression is performed.

• HttpClient: You can reuse an HttpClient instance as the client for gRPC 
communication. This option allows you to set such a client. There might be some 
valid reasons to reuse an existing HTTP client. For example, it might have  
already been pre-populated with request headers you want to reuse, such as 
authentication tokens.

• DisposeHttpClient: If you are using a custom instance of HttpClient, 
this option, when set to true, will dispose of this instance when the instance of 
GrpcChannel is disposed of.

• HttpHandler: This option allows you to apply some custom middleware logic 
that will be triggered when gRPC calls are made. For example, you may want to 
record some metrics for every gRPC response you receive. Using an HTTP handler 
will allow you to apply the code for it in one central place.

• LoggerFactory: This allows you to apply custom loggers to gRPC calls. We will 
cover this in more detail in Chapter 11, Using Logging, Metrics, and Debugging in 
gRPC on .NET.

• MaxReceiveMessageSize: This option controls the maximum size of a single 
message that can be received from the server. By default, it's set to 4 megabytes. 
Setting it to null will remove this limit.

• MaxSendMessageSize: This option limits the size of the request message. The 
default value is null, which means that there is no limit.

There are also some other options available, but at the time of writing, they are marked as 
experimental APIs that are subject to being changed or removed. Therefore, we will not 
cover them here.



Making unary calls on gRPC     255

Applying different types of client-side call 
implementations
Now, let's get back to building the rest of our class since we need implementations for both 
the IGrpcClientWrapper and IDisposable interfaces:

1. To implement the IDisposable interface, we must add the following method, 
where we will dispose of the channel:

public void Dispose()

{

    channel.Dispose();

}

2. Then, we must add a private method that will be used by a number of our 
public methods:

private DeviceDetails GetDeviceDetails(int id, string 

  name, 

string description, DeviceStatus status)

{

    return new DeviceDetails

    {

        Id = id,

        Name = name,

        Description = description,

        Status = status

    };

}

3. After this, we must add an implementation of the GetDevice method from the 
IGrpcClientWrapper interface:

public DeviceDetails GetDevice(ClientType clientType, int 

  deviceId)

{

    switch(clientType)

    {

    }

}



256     Using Different Call Types Supported by gRPC 

4. The switch statement will be populated by the following cases:

case ClientType.PackageName:

    var packageClient = new DeviceManagement.

      DeviceManager.

      DeviceManagerClient(channel);

    var packageResponse = packageClient.GetDevice(new 

      DeviceManagement.GetDeviceRequest { DeviceId = 

        deviceId 

        });

    return GetDeviceDetails(packageResponse.DeviceId, 

      packageResponse.Name, packageResponse.Description, 

        (DeviceStatus)packageResponse.Status);

case ClientType.CsNamespace:

    var csNamespaceClient = new 

      GrpcDependencies.Protos.DeviceManager.

        DeviceManagerClient(channel);

    var csNamespaceResponse = csNamespaceClient.

      GetDevice(new 

      GrpcDependencies.Protos.GetDeviceRequest 

        { DeviceId = deviceId });

    return GetDeviceDetails(csNamespaceResponse.DeviceId, 

      csNamespaceResponse.Name, csNamespaceResponse

        .Description, (DeviceStatus)

          csNamespaceResponse.Status);

default:

    var client = new 

      DeviceManager.DeviceManagerClient(channel);

    var response = client.GetDevice(new GetDeviceRequest 

      { 

      DeviceId = deviceId });

    return GetDeviceDetails(response.DeviceId, response.

      Name, 

      response.Description, (DeviceStatus) response.

        Status);



Making unary calls on gRPC     257

5. Now, we must add the implementation of the UpsertDeviceStatus method. 
First, we will add the method definition:

public bool UpsertDeviceStatus(ClientType clientType, 

DeviceDetails details)

{

        switch (clientType)

        {

        }

}

6. Then, we will add the following case block to our switch statement:

case ClientType.PackageName:

    var packageClient = new 

      DeviceManagement.DeviceManager.

        DeviceManagerClient(channel);

    var packageResponse = packageClient.

      UpsertDeviceStatus(new 

      DeviceManagement.DeviceDetails

    {

        DeviceId = details.Id,

        Name = details.Name,

        Description = details.Description,

        Status = (DeviceManagement.DeviceStatus)details.

          Status

     });

     return packageResponse.Success;

7. Then, we will add a case block for ClientType.CsNamespace:

case ClientType.CsNamespace:

    var csNamespaceClient = new 

      GrpcDependencies.Protos.DeviceManager

        .DeviceManagerClient(channel);

    var csNamespaceResponse = 

      csNamespaceClient.UpsertDeviceStatus(new 

        GrpcDependencies.Protos.DeviceDetails

    {



258     Using Different Call Types Supported by gRPC 

        DeviceId = details.Id,

        Name = details.Name,

        Description = details.Description,

        Status = (GrpcDependencies.Protos.DeviceStatus)

            details.Status

    });

    return csNamespaceResponse.Success;

8. After this, we will add the default case:

default:

    var client = new 

      DeviceManager.DeviceManagerClient(channel);

    var response = client.UpsertDeviceStatus(new 

      global::DeviceDetails

    {

        DeviceId = details.Id,

        Name = details.Name,

        Description = details.Description,

        Status = (global::DeviceStatus)details.Status

    });

    return response.Success;

This is a good example of how the .NET compiler resolves naming conflicts. We have the 
DeviceDetails class and the DeviceStatus enum defined in the local namespace. 
However, they are also defined without any namespaces in auto-generated code for  
gRPC implementations.

Having the same names in gRPC and REST API objects is not uncommon as those 
objects often have the same meaning. But the .NET compiler is capable of dealing with 
situations where an object with the same name exists in the local namespace and outside 
of any namespace. When you're specifying the object name without fully qualifying it, 
the compiler will assume that you mean the object that exists in the local namespace. 
The object that doesn't have a namespace then needs to be qualified by applying the 
global:: prefix to it.



Making unary calls on gRPC     259

Now, let's add the implementation of the UpsertDeviceStatusAsync method. It will 
be similar to the previous method, but it will be using an asynchronous version of the 
gRPC calls:

1. The method can be defined as follows:

public async Task<bool> UpsertDeviceStatusAsync(ClientType 

clientType, DeviceDetails details)

{

    switch (clientType)

    {

    }

}

2. The first case block inside the switch statement will look as follows:

case ClientType.PackageName:

    var packageClient = new DeviceManagement.

      DeviceManager .DeviceManagerClient(channel);

    var packageResponseCall =  

      packageClient.UpsertDeviceStatusAsync(new 

        DeviceManagement.DeviceDetails

    {

        DeviceId = details.Id,

        Name = details.Name,

        Description = details.Description,

        Status = (DeviceManagement.DeviceStatus)details.

          Status

    });

    var packageResponse = await 

      packageResponseCall.ResponseAsync;

    return packageResponse.Success;

Now, you can add blocks for the ClientType.CsNamespace and default 
cases to use asynchronous calls on the CsNamespace and NoPackage clients, 
respectively, as per the examples from the UpsertDeviceStatus method.



260     Using Different Call Types Supported by gRPC 

We now have two methods that make a unary call to the same gRPC endpoint; that is, 
UpsertDeviceStatus. However, one implementation uses synchronous blocking 
calls, while the other implementation uses asynchronous calls and waits for the results 
to be available. The .NET gRPC client implementation of unary calls gives us this choice 
by generating code for both of these call types. The blocking synchronous call will be the 
same as the original rpc name, while a non-blocking asynchronous call will have the 
Async suffix added to its name.

Other than one call being blocking while the other being non-blocking, there is also 
another significant difference between them. Blocking calls will always return just the 
response message. However, the asynchronous version can also give us metadata that's 
been sent by the server.

There are two ways to use the asynchronous call – await it as it's being made or store it in  
a variable. If we await the call as its being made, it will work similarly to awaiting  
a standard asynchronous Task. However, implementations of unary gRPC calls don't use 
Task. They use AsyncUnaryCall, which gives us more options.

If we store the call in a variable, as we did in the preceding example, we can retrieve 
the output message from it at any time by awaiting the ResponseAsync property of 
the object. However, if we also need the metadata, we can extract it by awaiting on the 
ResponseHeadersAsync property.

With that, we have completed the wrapper for all of our client implementations.  
Now, let's register this class and add a controller that will use it.

Using gRPC dependencies in the client application
First, we will apply all the necessary configurational changes to the Startup class of the 
ApiGateway application, or Program.cs file if you have created the project from  
.NET 6 template:

1. Replace the content of the ConfigureServices method with the following.  
If you are using .NET 6 template, you would need to place this code before the Build 
event and replace services with builder.Services:

services.AddOpenApiDocument();

services.AddSingleton(Configuration);

services.AddSingleton<IGrpcClientWrapper, 

  GrpcClientWrapper>();

services.AddControllers();



Making unary calls on gRPC     261

2. Then, place the following lines anywhere at the beginning of the Configure 
method:

app.UseOpenApi();

app.UseSwaggerUi3();

3. If the template already contains a line stating app.UseSwagger();, remove it. 
This will cause conflicts with the components from the NSwag library.

4. To complete the configuration, we will need to add the following section to the 
appsettings.json file:

"ServerUrl": "https://localhost:5001"

The value will be https://localhost:5001 by default. However, if you are using  
a Mac, you will need to use http://localhost:5000. These URLs can be found 
inside the launchSettings.json file of the DeviceManagerService project.

Now, let's add the controller that we will be able to call:

1. Add the DeviceController.cs class to the Controllers folder. Add the 
following content to the file:

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

 

namespace ApiGateway.Controllers

{

    [ApiController]

    [Route("[controller]")]

    public class DevicesController : ControllerBase

    {

        private readonly IGrpcClientWrapper 

          clientWrapper;

 

        public DevicesController(IGrpcClientWrapper 

          clientWrapper)

        {

            this.clientWrapper = clientWrapper;

        }

    }

}



262     Using Different Call Types Supported by gRPC 

2. Then, add the following endpoint methods to the class:

[HttpGet("{clientType}/{deviceId}")]

public DeviceDetails GetDevice(ClientType clientType, int 

  deviceId)

{

    return clientWrapper.GetDevice(clientType, deviceId);

}

 

[HttpPost("{clientType}")]

public async Task PostDeviceStatus(ClientType clientType, 

  [FromBody] DeviceDetails deviceDetails, [FromQuery] 

    bool 

    async = false)

{

     if (async)

        await clientWrapper.UpsertDeviceStatusAsync

          (clientType, deviceDetails);

    else

        clientWrapper.UpsertDeviceStatus(clientType, 

          deviceDetails);

        

}

Now that both our client and server applications have been completed, we are ready to 
start testing them.

Testing different types of unary call endpoints
We will launch both the DeviceManagerService and ApiGateway applications by 
executing the dotnet run command in each of those folders. Then, you will be able  
to open the Swagger page for the ApiGateway application in your browser, which can  
be accessed by writing the base application URL into the address bar, followed by the  
/swagger path.



Making unary calls on gRPC     263

First, we will call the GetDevice API endpoint, which corresponds to a gRPC 
method that we haven't implemented on the server. Calling this method will give us an 
Unimplemented error. This error will have also been thrown if we hadn't registered the 
server-side endpoint. Unimplemented is the error that is thrown if the client was able to 
successfully connect to the server, but the path couldn't be resolved as any specific RPC. 
The Swagger page is expected to produce an output similar to the following:

Figure 7.1 – Unimplemented gRPC error returned while attempting  
to reach a non-existent server endpoint

Then, we can call the PostDeviceStatus endpoint. If we specify the client with an 
index of 0, which is based on the device_management.proto file, we are expected 
to receive an HTTP status code indicating success. In the console of the gRPC service 
application, we can see the full path that was called, as shown in the following screenshot:

Figure 7.2 – Console output from the gRPC service application showing the full URL of the request

Under the default configuration, a URL pointing at a gRPC endpoint will have the 
following structure:

{base URL}/{gRPC package name}.{gRPC service name}/{gRPC rpc 

  name}



264     Using Different Call Types Supported by gRPC 

However, if no package name was specified in a Protobuf file, then the URL will be  
as follows:

{base URL}/{gRPC service name}/{gRPC rpc name}

This creates a conflict for us as we have two Protobuf files with identical object names. 
There was no conflict while generating the code as one of them had the csharp_
namespace directive, while the other one didn't. This ensured that the code was 
generated with completely different fully qualified names. But how would these services 
behave if we were to attempt to make a gRPC call to them?

The short answer is that the gRPC middleware will throw an error. If the path that's 
specified by the gRPC client can match more than one object, you will receive an 
Unknown error code. The output on the Swagger page will look similar to the following:

Figure 7.3 – An unknown gRPC error is returned when the specified path  
matches multiple gRPC endpoints

However, an interesting thing will happen if you open the Startup class of the 
DeviceManagementService project, or Program.cs file if you are using .NET 
6 template, and remove the MapGrpcService statement, which registers either 
ManagerServiceCsNamespace or ManagerServiceNoPackage. Then, if you 
execute the PostDeviceStatus endpoint from the Swagger page, selecting either 1 or 
2 as the client type index (NoPackage or CsNamespace, respectively) will route the call 
to the same service – the remaining service that is still mapped.



Streaming data from the client     265

In the following example, we have an unregistered ManagerServiceNoPackage 
service. Both implementations of the client that were based on Protobuf files without the 
package definition have successfully reached the ManagerServiceCsNamespace 
service. This is because even though the client implementations were based on different 
Protobuf definitions, they produced identical URLs and the objects that they worked with 
had identical structures. Here is the console output from the gRPC service application that 
demonstrates this:

Figure 7.4 – Two separate gRPC client implementations that generate identical URLs  
that will reach the same endpoint

So, when you make a gRPC call, remember that the middleware will construct a URL to 
reach the server. You also need to make sure that the endpoint that's specified in the URL 
is only implemented once.

But gRPC is not only limited to unary calls. You can also use it to stream data. This is what 
we will talk about next, starting with the client-streaming call type.

Streaming data from the client
Another type of call that gRPC supports is the client-streaming call. With this call, a client 
can send a stream of messages while the server still returns only a single message as  
the response.

For the remainder of this chapter, we will only be using client and server implementations 
of the device_management.proto file. The other Protobuf files are now redundant as 
they have already served their purpose to demonstrate how gRPC middleware resolves the 
URL path and how it deals with conflicts.



266     Using Different Call Types Supported by gRPC 

Adding a client-streaming call to the server application
We will start by adding a new client-streaming rpc to the service definition inside  
a Protobuf definition. Then, we will implement this rpc as a C# method in the gRPC 
service application:

1. Add the following rpc to the DeviceManager service definition inside the 
device_management.proto file, which is located in the GrpcDependencies 
project:

rpc UpsertDeviceStatuses (stream DeviceDetails) returns 

(UpsertDeviceResponse);

2. Now, add the following method to the ManagerService class inside the 
DeviceManagerService project:

public override async Task<DeviceManagement.

  UpsertDeviceResponse> Upsert

  DeviceStatuses(IAsyncStreamReader<DeviceManagement.

    Device

    Details> requestStream, ServerCallContext context)

{

    await foreach (var status in requestStream.

      ReadAllAsync())

    {

        Console.WriteLine($"Device id: {status.DeviceId}, 

          Name: {status.Name}, Description: 

            {status.Description}, Status {status.

              Status}.");

    }

 

    return new DeviceManagement.UpsertDeviceResponse

    {

        Success = true

    };

}

Here is the breakdown of what we've done. In the proto file, we have defined  
a client-streaming call by placing the stream keyword before the request message,  
while the response message was still defined as singular.



Streaming data from the client     267

The server-side implementation of a client-streaming method has the following signature. 
As we did previously, we can also use the async keyword in the signature if we wish to 
use the await keyword inside the method, as we did in the preceding example:

public override Task<{response message name}> {RPC 

  name}(IAsyncStreamReader<request message name> requestStream, 

    ServerCallContext context)

Inside this method, there are two ways we can extract individual messages from the 
requestStream parameter. First, we can call the ReadAllAsync method in  
a foreach loop, where we will need to await on foreach, as we did in the previous 
example. Alternatively, we can call the MoveNext method inside a while loop and 
access each message by using the Current property. The MoveNext method will return 
true if there are still items in the stream and return false if there aren't any. It will also 
move the iterator to the next item so that the Current property will be referring to it.

In the preceding example, we are simply iterating through all the request objects, printing 
their data to the console, and returning a response object once we have processed all of the 
objects. Next, we will add some client logic that will call this method.

Adding client logic for a client-streaming gRPC call
Let's add a new method to the gRPC client wrapper class. Then, we will add a REST API 
endpoint to call this method:

1. Add the following using statement to the top of the file:

using System.Collections.Generic;

2. Add the following method signature to the IGrpcClientWrapper interface in 
the ApiGateway project:

Task<bool> 

UpsertDeviceStatusesAsync(IEnumerable<DeviceDetails> 

  devices);

3. Then, add the following method implementation to the GrpcClientWrapper 
class:

public async Task<bool> 

UpsertDeviceStatusesAsync(IEnumerable<DeviceDetails> 

  devices)

{



268     Using Different Call Types Supported by gRPC 

    var client = new DeviceManagement.DeviceManager

      .DeviceManagerClient(channel);

    using var call = client.UpsertDeviceStatuses();

    foreach (var device in devices)

    {

        await call.RequestStream.WriteAsync(new 

          DeviceManagement.DeviceDetails

        {

            DeviceId = device.Id,

            Name = device.Name,

            Description = device.Description,

            Status = (DeviceManagement.DeviceStatus) 

              device.Status

        });

    }

    await call.RequestStream.CompleteAsync();

    var response = await call;

    return response.Success;

}

4. After, add the following endpoint method to the DevicesController class:

[HttpPost("")]

public async Task PostDeviceStatuses([FromBody] 

IEnumerable<DeviceDetails> deviceDetails)

{

    await clientWrapper.UpsertDeviceStatusesAsync

      (deviceDetails);

}

Here, a collection of device status objects are being posted to the API endpoint. Then, we 
created an instance of AsyncClientStreamingCall by calling the implementation 
of the UpsertDeviceStatuses method on the client. For each item in the device's 
status collection, we are creating an implementation of the DeviceDetails Protobuf 
message and immediately placing it on the stream by calling the WriteAsync method on 
the RequestStream property of the AsyncClientStreamingCall object instance. 
As soon as we do that, this message becomes available to the server application, which 
consumes the stream.



Reading streams from the server     269

Then, we closed the stream by calling the CompleteAsync method on the 
RequestStream property. Then, we await for the AsyncClientStreamingCall 
instance to extract the response object from it.

Reading streams from the server
A server-streaming gRPC call is the opposite of the client-streaming one. The client sends 
a singular object in its request. This is what will trigger the server stream to open. While 
the stream is open, multiple response objects can be sent to the client.

Server streaming is frequently used to retrieve a collection of items from a server.  
This is what we will use it for in the following example.

Adding a server-streaming RPC to Protobuf
First, we will add a server-streaming rpc to the Protobuf definition. In the following example, 
we will use an empty request object, which is one of the so-called well-known types that we 
will cover in Chapter 8, Using Well-Known Types to Make Protobuf More Handy:

1. Add the following import statement above the package directive in the device_
management.proto file in the GrpcDependencies project:

import "google/protobuf/empty.proto";

2. Then, add the following rpc definition to the DeviceManager service:

rpc GetAllStatuses (google.protobuf.Empty) returns 

  (stream DeviceDetails);

In this example, we have imported a Protobuf definition of the Empty message type from 
the Google library of well-known types. This will allow us to send a request that doesn't 
contain any data in it. The server-streaming rpc definition can be identified by the 
presence of the stream keyword in front of the response object, while it's absent in front 
of the request object.



270     Using Different Call Types Supported by gRPC 

Setting up a server-streaming call on the server side
Now, let's implement the server-streaming call on the server. But before we do that, we 
will add an object that will store the in-memory cache of device status objects. This will 
allow us to test the insertion functionality alongside the retrieval functionality:

1. Add the DeviceStatusCache.cs file to the root of the 
DeviceManagerService project. The file will contain the following  
interface definition:

using System.Collections.Generic;

 

namespace DeviceManagerService

{

    public interface IDeviceStatusCache

    {

        void UpsertDeviceDetail(DeviceManagement.

          DeviceDetails 

          status);

        List<DeviceManagement.DeviceDetails> 

          GetAllDeviceDetails();

    }

}

2. Then, add the following class to implement it:

internal class DeviceStatusCache : IDeviceStatusCache

{

    private readonly List<DeviceManagement.DeviceDetails> 

      deviceStatuses;

 

    public DeviceStatusCache()

    {

        deviceStatuses = new 

          List<DeviceManagement.DeviceDetails>();

    }

 

    public List<DeviceManagement.DeviceDetails> 

      GetAllDeviceDetails()



Reading streams from the server     271

    {

        return deviceStatuses;

    }

 

    public void 

      UpsertDeviceDetail(DeviceManagement.DeviceDetails 

        status)

    {

        deviceStatuses.Add(status);

    }

}

3. Now, let's register this class in the dependency injection system by adding the 
following statement to the ConfigureServices method of the Startup class. 
If you are using .NET 6 template, this statement will need to go into the main body 
of Program.cs file and modified accordingly:

services.AddSingleton<IDeviceStatusCache, 

  DeviceStatusCache>();

4. Then, add the following constructor and the private field to the 
ManagerService class:

private readonly IDeviceStatusCache deviceStatusCache;

public ManagerService(IDeviceStatusCache 

  deviceStatusCache)

{

    this.deviceStatusCache = deviceStatusCache;

}

5. Next, we will add the following using statement above the class:

using Google.Protobuf.WellKnownTypes;

6. Then, we will add the following line anywhere inside the UpsertDeviceStatus 
method, before the return statement:

deviceStatusCache.UpsertDeviceDetail(request);



272     Using Different Call Types Supported by gRPC 

7. Now, we will add the following line inside the foreach loop of the 
UpsertDeviceStatuses method:

deviceStatusCache.UpsertDeviceDetail(status);

8. Now, let's add the implementation of the GetAllStatuses rpc, as follows:

public override async Task GetAllStatuses(Empty request, 

IServerStreamWriter<DeviceManagement.DeviceDetails> 

responseStream, ServerCallContext context)

{

    foreach (var device in 

      deviceStatusCache.GetAllDeviceDetails())

    {

        if (DateTime.UtcNow.AddSeconds(1) > context.
Deadline)

            break;

        await responseStream.WriteAsync(device);

        await Task.Delay(500);

    }

}

The method signature of the server-side server-streaming RPC implementation  
is as follows:

public override Task {RPC name}({request message type} 

request, IServerStreamWriter<{response message type}> 

responseStream, ServerCallContext context)

It doesn't have a return type (other than a plain Task) since the client will receive 
every message as soon as it gets written into the response stream.

In the preceding example, we also demonstrated how to use an important per-call 
configuration option – deadline. Deadline is a time value that the call is expected to 
complete. If the call hasn't been completed by the deadline, the call will be terminated 
and an error will be returned. The deadline configuration parameter can be accessed with 
any gRPC call type, but it's especially relevant for the calls that deal with streams, as these 
types of calls are more likely to deal with large volumes of data that take a long time  
to process.



Reading streams from the server     273

Because the deadline can be accessed on the server, it can be used to make sure that at 
least some data is returned instead of the whole call being terminated. In the preceding 
code, we added a condition that will stop processing the stream when it is within 1 second 
of the deadline. We also added a delay to make it easier to test the deadline logic.

Making a server-streaming call from a gRPC client
In our ApiGateway project, we will add a client implementation of the server-streaming 
RPC. Then, we will add an API endpoint to call it:

1. First, we need to add the following using statement to the 
GrpcClientWrapper.cs file:

using Google.Protobuf.WellKnownTypes;

2. Then, we must add the following method signature to the IGrpcClientWrapper 
interface:

Task<IEnumerable<DeviceDetails>> GetAllDevices(int 

deadlineSeconds = 0);

3. Now, let's add the implementation of this method to the GrpcClientWrapper 
class. First, we will create an instance of AsynServerStreamingCall. We will 
do so by passing the request object into it. But this time, we will also apply the 
optional deadline parameter:

public async Task<IEnumerable<DeviceDetails>> 

GetAllDevices(int deadlineSeconds = 0)

{

    var client = new DeviceManagement.DeviceManager.

      DeviceManagerClient(channel);

    DateTime? deadline = deadlineSeconds > 0 ? 

      DateTime.UtcNow.AddSeconds(deadlineSeconds) : null;

    var call = client.GetAllStatuses(new Empty(), 

      deadline: 

      deadline);

}



274     Using Different Call Types Supported by gRPC 

4. We will complete this method by reading it from the response stream:

var devices = new List<DeviceDetails>();

while (await call.ResponseStream.MoveNext())

{

    var device = call.ResponseStream.Current;

    devices.Add(GetDeviceDetails(device.DeviceId, device.

      Name, 

      device.Description, (DeviceStatus)device.Status));

}

return devices;

5. Then, we will add the following method to the DevicesController class:
[HttpGet("")]

public async Task<IEnumerable<DeviceDetails>> 

  GetAllDevices([FromQuery] int deadlineSeconds = 0)

{

    return await clientWrapper.

      GetAllDevices(deadlineSeconds);

}

Now, we can insert the data into an in-memory cache and retrieve it. We can also verify 
how our server-streaming call behaves if we adjust the deadlineSeconds value. 
So long as there aren't any processes that interfere with your deployment and create 
additional latency, you should expect the GetAllDevices endpoint to always return 
data. However, the quantity of data you receive is expected to vary, depending on the 
deadline's duration.

With that, we have covered how gRPC can be used to stream data either from the client 
to the server or from the server to the client. But it's also possible to stream data in both 
directions at the same time. This is what we will cover next.

Enabling bi-directional streaming
We have now reached the final type of gRPC call—a bi-directional streaming RPC. As the 
name suggests, this RPC can have both client-initiated and server-initiated streams – and 
those streams don't necessarily have to depend on one another.



Enabling bi-directional streaming     275

Enabling server-side components for bi-directional 
streaming
As we did previously, first, we will add a bi-directional rpc to the relevant proto file. 
Then, we will add the method's implementation to our C# code:

1. First, we will add the following rpc definition to the DeviceManager service 
definition in the device_management.proto file, which is located in the 
GrpcDependencies project:

rpc UpdateAndConfirmBatch (stream DeviceDetails) returns 

(stream DeviceDetails);

2. Add the following method signature to the IDeviceStatusCache interface of 
the DeviceManagerService project:

DeviceManagement.DeviceDetails GetDevice(int deviceId);

3. Add the following method implementation to the DeviceStatusCache class:

public DeviceManagement.DeviceDetails GetDevice(int 

  deviceId)

{

    return deviceStatuses.FirstOrDefault(d => d.DeviceId 

      == deviceId);

}

4. Now, add the following implementation of this method to the ManagerService 
class inside the DeviceManagerService project:

public override async Task 

UpdateAndConfirmBatch(IAsyncStreamReader

<DeviceManagement.Devi

  ceDetails> requestStream, IServerStreamWriter

    <DeviceManagement.DeviceDetails> responseStream, 

      ServerCallContext context)

{

    await foreach (var device in requestStream.

      ReadAllAsync())

    {

        deviceStatusCache.UpsertDeviceDetail(device);



276     Using Different Call Types Supported by gRPC 

        var newDevice = 

          deviceStatusCache.GetDevice(device.DeviceId);

 

        if (newDevice is not null)

            await responseStream.WriteAsync(newDevice);

        await Task.Delay(500);

    }

}

In a proto file, a bi-directional streaming rpc can be identified by the stream keyword, 
which is next to both the request and response message definitions. The method signature 
of the C# implementation of a bi-directional streaming method is as follows:

public override Task {RPC name}(IAsyncStreamReader<{request 

  message name}> requestStream, IServerStreamWriter<{response 

    message name}> 

responseStream, ServerCallContext context)

In this example, we are inserting multiple DeviceDetails objects into the memory 
cache and, for each of them, we query the cache to verify that it has been inserted 
successfully. This is an example of using a bi-directional stream in a request-response 
fashion. For each read of the client stream, there is a write into the server stream.  
But it doesn't have to be like this. The streams can be made completely independent of 
each other.

We have also added a delay to the method. It was placed there so you can see what 
happens if a gRPC call exceeds a deadline.

Adding a client-side implementation of a bi-directional 
streaming call
Now, let's update the gRPC client wrapper inside the ApiGateway project and add  
a REST API endpoint to call the bi-directional streaming method:

1. In the IGrpcClientWrapper interface, add the following method signature:

Task<IEnumerable<DeviceDetails>> 

UpdateAndConfirmBatch(IEnumerable<DeviceDetails> devices, 

  int 

deadlineSeconds = 0);



Enabling bi-directional streaming     277

2. Then, add the implementation of this method to the GrpcClientWrapper class. 
First, create an instance of the client and initiate a bi-directional streaming call:

public async Task<IEnumerable<DeviceDetails>> 

UpdateAndConfirmBatch(IEnumerable<DeviceDetails> devices, 

  int 

  deadlineSeconds = 0)

{

    var client = new DeviceManagement.DeviceManager.

      DeviceManagerClient(channel);

    DateTime? deadline = deadlineSeconds > 0 ? 

      DateTime.UtcNow.AddSeconds(deadlineSeconds) : null;

    var call = client.UpdateAndConfirmBatch(deadline: 

      deadline);

 

}

3. Next, add a task that will listen to the server stream and populate a local collection 
variable from it:

var outputDevices = new List<DeviceDetails>();

var readTask = Task.Run(async () =>

{

    await foreach (var device in 

      call.ResponseStream.ReadAllAsync())

    {

        outputDevices.Add(GetDeviceDetails(device.

          DeviceId, device.Name, device.Description, 

            (DeviceStatus) device.Status));

    }

});

4. Then, populate the request stream:

foreach (var device in devices)

{

    await call.RequestStream.WriteAsync(new 

      DeviceManagement.DeviceDetails

    {



278     Using Different Call Types Supported by gRPC 

        DeviceId = device.Id,

        Name = device.Name,

        Description = device.Description,

        Status = (DeviceManagement.DeviceStatus)device.

          Status

    });

}

5. We will complete the method by closing the request stream and waiting for the 
response stream listener to finish:

await call.RequestStream.CompleteAsync();

await readTask;

return outputDevices;

6. Finally, add the following endpoint method to the DevicesController class:

[HttpPost("batch")]

public async Task<IEnumerable<DeviceDetails>> 

  PostDeviceStatusBatch(

            [FromBody] IEnumerable<DeviceDetails> 

              deviceDetails,

            [FromQuery] int deadlineSeconds = 0)

{

    return await clientWrapper.UpdateAndConfirmBatch

      (deviceDetails, deadlineSeconds);

}

Now, we can launch our application and see how the streaming methods operate.  
We will also be able to see how they deal with deadline configuration.

Testing how to stream gRPC calls
Let's launch our applications by executing the dotnet run command in both the 
DeviceManagerService and ApiGateway project folders. By doing this, we can see 
how the deadline parameter affects the execution of the call.



Enabling bi-directional streaming     279

We don't have any deadline-handling logic in the backend of the 
UpdateAndConfirmBatch gRPC call. So, if we call the POST Devices/batch 
endpoint via the Swagger page with a collection of input values while setting the 
deadlineSeconds parameter to 1, we expect to receive a DeadlineExceeded error, 
as shown in the following screenshot:

Figure 7.5 – The DeadlineExceeded error is displayed if the gRPC call could not be completed  
before the deadline

However, if we insert a collection of device statuses via the POST Devices/ endpoint, 
we will still be able to retrieve them via the GET Devices/ endpoint. It just won't be the 
full collection if we set a short deadline. For example, setting the deadline to 2 seconds 
causes the endpoint to return two out of the four items that are stored in the cache,  
as shown in the following screenshot:

Figure 7.6 – A deadline of 2 seconds prevented the full collection from being returned

This is because the gRPC method that was called, GetAllStatuses, had  
deadline-handling logic in the backend. And instead of just terminating the call and 
returning no data, it returned as much data as it could.



280     Using Different Call Types Supported by gRPC 

With that, we have covered the different types of gRPC calls in detail. Now,  
let's summarize what we have learned.

Summary
In this chapter, you learned that gRPC supports four types of calls – unary, client 
streaming, server streaming, and bi-directional streaming. You learned that in a Protobuf 
definition, the type of the call is controlled by the stream keyword or a lack thereof.

We looked at the server-side method signatures that are used for implementing gRPC calls 
of different kinds. Each of these signatures includes the context parameter, as well as the 
actual request and response data. This parameter is used for extracting metadata from the 
call, which may include user information and request headers.

You also learned that a gRPC channel can be configured by using the 
GrpcChannelOptions object. This object allows you to restrict the message's size, 
reuse HttpClient, apply any custom middleware logic, and more.

We also looked at what happens when multiple gRPC implementations correspond to the 
same HTTP path. If those paths have identical service and rpc names, an error will be 
returned. If you don't implement any specific gRPC method in the server-side application, 
the gRPC middleware will also return an error.

You then learned that individual gRPC calls can have a deadline configured. The call will 
fail if the deadline is exceeded. However, because the deadline can be accessed by the 
server-side implementations of RPCs, you can use it on the server to make sure that  
a valid result is always returned before the deadline is exceeded.

In the next chapter, we will look at how to use the so-called well-known types from the 
Google Protobuf library so that you can easily handle nullable objects, empty messages, 
and other data types that aren't available in Protobuf natively, such as date and  
time representations.



Questions     281

Questions
Answer the following questions to test your knowledge of this chapter:

1. Can you use Protobuf with no package defined?

A. No
B. Yes
C. Only if there is a csharp_namespace directive
D. Only if you import another Protobuf definition

2. How can you extract response metadata from a unary gRPC call?

A. It's not possible.
B. Only when you make blocking synchronous calls.
C. Only when you make asynchronous calls.
D. When you make either a synchronous or an asynchronous call.

3. What exception will be thrown if there is a clash between server-side Protobuf 
implementations?

A. Unknown
B. NotFound
C. Unimplemented
D. Unresolved

4. What is the deadline parameter used for in a gRPC call?

A. To set the delay on the call
B. To let the server know the client's preferences regarding the response duration
C. To set a strict timeout on the call's completion time
D. To synchronize the clocks between the server and the client

5. How do you define a bi-directional streaming call in Protobuf?

A. By using the stream keyword before the request message definition
B. By using the stream keyword before the response message definition
C. By using the stream keyword before the RPC name
D. By using the stream keyword between both the request and response  

message definitions



282     Using Different Call Types Supported by gRPC 

Further reading
To learn more about the topics that were covered in this chapter, take a look at the 
following resources:

• ASP.NET Core gRPC call types: https://docs.microsoft.com/en-us/
aspnet/core/grpc/client

• gRPC for .NET Configuration: https://docs.microsoft.com/en-us/
aspnet/core/grpc/configuration

• gRPC and Deadlines: https://grpc.io/blog/deadlines/

https://docs.microsoft.com/en-us/aspnet/core/grpc/client
https://docs.microsoft.com/en-us/aspnet/core/grpc/client
https://docs.microsoft.com/en-us/aspnet/core/grpc/configuration
https://docs.microsoft.com/en-us/aspnet/core/grpc/configuration
https://grpc.io/blog/deadlines/


8
 Using Well-Known 

Types to Make 
Protobuf More 

Handy
We learned in Chapter 3, Protobuf – the Communication Protocol of gRPC, that data types 
that are native to Protobuf cannot be null and must have the default value. The default 
value will be applied if you don't explicitly set the value in the code. For example, the 
default value for the string data type is an empty string value. The default value for 
any of the integer data types is 0. The default value for bool is false.

This presents a problem. Sometimes, you will be in a situation where you will need 
to distinguish between a value that has been deliberately set and a value that was 
automatically set to the default. For example, the count of 0 has a different meaning than 
"no data." Likewise, Boolean false has a very different meaning from "no answer has 
been given."



284      Using Well-Known Types to Make Protobuf More Handy

Luckily, there is a neat solution to this problem. Protobuf has access to a library of 
so-called "well-known types." This library provides you with a collection of wrapper  
data types that make the standard Protobuf data types nullable. The default value of  
a nullable data type is null. And this is what makes them ideal for the scenarios where 
it's important to know the difference between the absence of data and any value that has 
been deliberately assigned.

But the library of well-known types doesn't stop there. It also provides you with 
commonly used data types that aren't natively available in Protobuf. These include 
representations of dates and time durations.

These libraries also give you a mechanism of putting an empty message in either the 
request or the response. Finally, it has a mechanism of applying any arbitrary message type 
to a field without having to write a complex oneof block.

We will cover the following topics:

• Using nullable types in Protobuf

• Using dates and times in Protobuf

• Exchanging empty messages

• Using loosely-types fields in a Protobuf message

By the end of this chapter, you will have learned how to make your Protobuf definitions 
much more flexible without having to make them excessively complex and less readable.

Technical requirements
To follow the instructions in this chapter, you will need the following:

• A computer with either a Windows, Macintosh, or Linux operating system

• A supported IDE or code editor (Visual Studio, Visual Studio Code, or  
JetBrains Rider)

• .NET 5 SDK (or later)

• A self-signed development HTTPS certificate enabled on the machine

The instructions on how to set all of these up were provided in Chapter 1, Creating a Basic 
gRPC Application on ASP.NET Core.



Using nullable types in Protobuf     285

All code samples used in this chapter can be found at https://github.com/
PacktPublishing/Microservices-Communication-in-.NET-Using-
gRPC/tree/main/Chapter-08.

Please visit the following link to check the CiA videos: https://bit.ly/3ywE4Ta

Using nullable types in Protobuf
Natively, there are no nullable data types in Protobuf. Any primitive non-message data 
type, such as string or int32, has a default value. The default value will be used if the 
field hasn't been deliberately set to anything. Therefore, if a field of a particular data type 
in Protobuf returns its default value, it's not easy to determine whether this value was set 
deliberately or whether the field hasn't been set to anything at all.

The proto2 version of Protobuf dealt with this option by having the optional 
keyword. However, this keyword was removed from the proto3 syntax.

Another way of determining whether or not a particular field has been deliberately set is 
by using a oneof block. For example, such a block may have two fields, one carrying the 
value we are interested in and one telling us whether this value has been set. If the second 
field is set, then we know that the original field hasn't been set.

But this solution creates some issues. If you have multiple fields of this sort, then your 
Protobuf definition may be excessively complex and difficult to follow. Therefore, Google 
has introduced a much more elegant solution – having wrappers for native data types in 
its importable library.

Wrappers are message definitions that encapsulate a primitive data type. So, because 
a message field, unlike a primitive data type, can be set to null, any field that has such 
message definition as its data type is nullable. And because there is a primitive value 
inside the message, this value can still be transmitted when needed.

But these message wrapper definitions aren't treated like any standard message 
definition by the language-specific Protobuf compilers. When you use these fields in the 
code, you won't have to create a new object and then set a field on it. Instead, the field will 
be resolved to a nullable data type specific to that language.

For example, if you use an Int32Value data type on one of your message fields, the C# 
representation of that type won't be a class called Int32Value. It would actually be an 
int? data type, which is a nullable version of int.

Wrapper data type names are written in the following format:

{PascalCase name of the original primitive data type}Value

https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-08
https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-08
https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-08
https://bit.ly/3ywE4Ta


286      Using Well-Known Types to Make Protobuf More Handy

The full list includes the following:

• DoubleValue

• FloatValue

• Int64Value

• UInt64Value

• Int32Value

• UInt32Value

• BoolValue

• StringValue

• BytesValue

All of these are available in the google/protobuf/wrappers.proto Protobuf 
package, which needs to be imported into your own Protobuf definition before you can 
start using them. We will now create a sample application that uses these nullable types.

Setting up a gRPC server application
As previously, we will create a solution, which we will then populate with gRPC server 
application, gRPC client application, and a library that contains shared dependencies:

1. We will create a GrpcWellKnownTypes folder and instantiate a solution with the 
same name inside of it by executing the following command:

dotnet new sln

2. We will then instantiate a gRPC service project inside this folder by executing the 
following command:

dotnet new grpc -o GrpcServiceApp

3. Next, we will add this project to the solution by executing the following command:

dotnet sln add GrpcServiceApp/GrpcServiceApp.csproj

4. We are now ready to add well-known nullable types to our Protobuf definition. By 
default, our GrpcServiceApp project was created with the greet.proto file 
inside the Protos folder. We will open this file and add the following statement 
after the syntax = "proto3"; line:

import "google/protobuf/wrappers.proto";



Using nullable types in Protobuf     287

5. Now, we can use nullable types inside our message definitions. We will use all  
of the available types by replacing the content of the HelloReply message with 
the following:

message HelloReply {

  google.protobuf.StringValue message = 1;

  google.protobuf.UInt32Value message_processed_count = 

    2;

  google.protobuf.UInt64Value message_length_in_bytes = 

    3;

  google.protobuf.Int32Value message_length_in_letters = 

    4;

  google.protobuf.Int64Value milliseconds_to_deadline = 

    5;

  google.protobuf.FloatValue seconds_to_deadline = 6;

  google.protobuf.DoubleValue minutes_to_deadline = 7;

  google.protobuf.BoolValue last_name_present = 8;

  google.protobuf.BytesValue message_bytes = 9;

}

We have now added representations of all wrapper fields to the Protobuf definition. Now, 
we can build the application and have a look at how these fields are represented in C#.

Examining auto-generated code for wrapper fields
If we open the Greet.cs file that should have been placed inside the Protos folder in 
the obj folder of the GrpcWellKnownTypes project, we can have a look at the code 
that has been generated for our HelloReply message definition that is populated  
by wrapper data types of every kind. Let's first examine the representation of the  
following field:

google.protobuf.StringValue message = 1;



288      Using Well-Known Types to Make Protobuf More Handy

This field is represented by string data type in C#, which makes it no different from  
a regular string Protobuf field. This is because the string type in C# is nullable 
already. This can be seen in the following screenshot:

Figure 8.1 – C# representation of a StringValue field

Next, let's have a look at C# code for the following field:

google.protobuf.UInt32Value message_processed_count = 2;

As the following screenshot shows, the UInt32Value data type is represented by the 
uint? data type in C#, which is a nullable version of uint:

Figure 8.2 – C# representation of UInt32Value data type

We will then move on to the following field:

google.protobuf.UInt64Value message_length_in_bytes = 3;



Using nullable types in Protobuf     289

As the following screenshot demonstrates, the UInt64Value data type is represented by 
ulong?, which is a nullable version of ulong:

Figure 8.3 – C# representation of the UInt64Value data type

Next, we will examine the following field:

google.protobuf.Int32Value message_length_in_letters = 4;

In C#, the Int32Value data type is represented by the int? data type – a nullable 
version of int. This can be seen on the following screenshot:

Figure 8.4 – C# representation of the Int32Value data type

Next, let's examine the following field:

google.protobuf.Int64Value milliseconds_to_deadline = 5;



290      Using Well-Known Types to Make Protobuf More Handy

C# representation of this data type would be long? – a nullable version of long. It can 
be confirmed by looking at this code:

Figure 8.5 – C# representation of the Int64Value data type

Then, we move on to the data types containing floating-point numbers. We will first 
examine the following field:

google.protobuf.FloatValue seconds_to_deadline = 6;

As demonstrated by the following screenshot, in C# this field is represented by a nullable 
float data type:

Figure 8.6 – C# representation of the FloatValue data type

It's the same principle for the following field:

google.protobuf.DoubleValue minutes_to_deadline = 7;



Using nullable types in Protobuf     291

As the following screenshot demonstrates, the DoubleValue data type is represented by 
a nullable double in C#:

Figure 8.7 – C# representation of the DoubleValue data type

Next, we will have a look at the nullable Boolean, which is represented by this field:

google.protobuf.BoolValue last_name_present = 8;

C# uses a nullable bool data type to represent BoolValue. This can be seen in the 
following screenshots:

Figure 8.8 – C# representation of the BoolValue data type

Finally, we have reached the following BytesValue field:

google.protobuf.BytesValue message_bytes = 9;



292      Using Well-Known Types to Make Protobuf More Handy

As the following screenshot demonstrates, C# representation of it is not different from the 
representation of the standard bytes data type. This is because ByteString is a class, 
which is always nullable in C#:

Figure 8.9 – C# representation of the ByteString data type

We have now had a look at representations of all nullable wrapper data types in C#. Next, 
we will add some logic to our application to see how these fields are used inside our code.

Adding logic to gRPC server application
We will now add a service to our GrpcWellKnownTypes project that keeps count 
of how many requests have been processed. Then, we will modify the server-side 
implementation of our Protobuf definition to use this service so that we can populate all 
the fields that we have added to the message response:

1. Add the MessageCounter.cs file to the GrpcWellKnownTypes project folder 
and populate it with the following content:

namespace GrpcServiceApp

{

    public class MessageCounter

    {

        private uint messageCount = 0;

 

        public uint IncrementCount()

        {

            messageCount++;

            return messageCount;

        }

    }

}



Using nullable types in Protobuf     293

2. Register this class in the dependency injection container by adding the following 
line to the ConfigureServices method of the Startup class:

services.AddSingleton<MessageCounter>();

3. Ensure that the GreeterService.cs file inside the Services folder has the 
following using statements:

using System;

using System.Text;

using System.Threading.Tasks;

using Grpc.Core;

4. Add a constructor and the following private field to the GreeterService class:

private readonly MessageCounter counter;

 

public GreeterService(MessageCounter counter)

{

    this.counter = counter;

}

5. Replace the content of the SayHello method with the following:

if (!string.IsNullOrWhiteSpace(request.Name))

{

    var message = "Hello " + request.Name;

    var timeToDeadline = context.Deadline - DateTime.

      UtcNow;

    var messageBytes = Encoding.ASCII.GetBytes(message);

 

    return Task.FromResult(new HelloReply

    {

        Message = message,

        MessageProcessedCount = counter.IncrementCount(),

        MessageLengthInBytes = (ulong)messageBytes.

          Length,

        MessageLengthInLetters = message.Length,

        MillisecondsToDeadline = timeToDeadline.

          Milliseconds,



294      Using Well-Known Types to Make Protobuf More Handy

        SecondsToDeadline = 

          (float)timeToDeadline.TotalSeconds,

        MinutesToDeadline = timeToDeadline.TotalMinutes,

        LastNamePresent = request.Name.Split(' ').Length 

          > 1,

        MessageBytes = Google.Protobuf.ByteString.

          CopyFrom(messageBytes)

    });

}

return Task.FromResult(new HelloReply());

The application is now looking at the content of the request message and populates the 
response accordingly. If we receive a blank string as the name field of the request, we just 
return an empty response. Otherwise, we populate each field of the response.

Now, let's move the dependencies to a shared library so that we won't need to duplicate 
the Protobuf definition in our gRPC client project.

Setting up shared dependencies
We will create a class library inside our solution, which will contain all gRPC references 
alongside the shared Protobuf definition.

1. Execute the following command inside the GrpcWellKnownTypes solution 
folder to create the class library:

dotnet new classlib -o GrpcDependencies

2. Add this project to the solution by executing the following command:

dotnet sln add GrpcDependencies/GrpcDependencies.csproj

3. Next, add all relevant NuGet packages to the class library by executing the following 
command inside the GrpcDependencies project folder:

dotnet add GrpcDependencies.csproj package Grpc.Net.

  Client 

dotnet add GrpcDependencies.csproj package Google.

  Protobuf 

dotnet add GrpcDependencies.csproj package Grpc.Tools 



Using nullable types in Protobuf     295

dotnet add GrpcDependencies.csproj package Grpc.

  AspNetCore

4. We will next create the Protos folder inside the GrpcDependencies 
project folder and will move the greet.proto file there from the 
GrpcServiceApp project. We will then register this Protobuf definition inside the 
GrpcDependencies.csproj file by adding the following snippet to it:

<ItemGroup>

  <Protobuf Include="Protos\greet.proto" />

</ItemGroup>

5. Next, we will reference this newly created class library from the 
GrpcServiceApp.csproj file. We will also remove any redundant gRPC 
NuGet dependencies from this file. After doing this, the content of your 
GrpcServiceApp.csproj file should look similar to this:

<Project Sdk="Microsoft.NET.Sdk.Web">

 

  <PropertyGroup>

    <TargetFramework>net5.0</TargetFramework>

  </PropertyGroup>

 

  <ItemGroup>

    <ProjectReference Include=

      "..\GrpcDependencies\GrpcDependencies.csproj" />

  </ItemGroup>

</Project>

We can verify our setup by rebuilding the GrpcServiceApp project. Because we haven't 
changed the csharp_namespace directive inside the greet.proto file, our code is 
expected to compile without any further changes.

Important Note
If you are running your server-side application on a Macintosh, you will need 
to apply some modifications to it. The instruction on how to do so can be 
found in the Running a gRPC Service on Mac section of Chapter 1, Creating  
a Basic gRPC Application on ASP.NET Core.



296      Using Well-Known Types to Make Protobuf More Handy

Next, we will set up the gRPC client. We will then use it to see how nullable data types are 
handled by the logic that we've placed in our code.

Setting up the gRPC client
This time, for the sake of simplicity, our gRPC client will be a basic console application:

1. Execute the following command inside the GrpcWellKnownTypes solution 
folder to create the console application project:

dotnet new console -o GrpcClient

2. Add the project to the solution by executing the following command:

dotnet sln add GrpcClient/GrpcClient.csproj

3. Reference the shared class library from the console application by adding the 
following snippet to the GrpcClient.csproj file:

<ItemGroup>

  <ProjectReference Include=

    "..\GrpcDependencies\GrpcDependencies.csproj" />

</ItemGroup>

4. Now, open the Program.cs class and ensure that the following using statements 
are applied:

using System;

using GrpcServiceApp;

using Grpc.Net.Client;

using System.Threading.Tasks;

5. Change the signature of Main method inside Program class to the following:

static async Task Main()

6. Insert the following content into the method:

Console.WriteLine("Please enter the gRPC service URL.");

var url = Console.ReadLine();

using var channel = GrpcChannel.ForAddress(url);

var client = new Greeter.GreeterClient(channel);

 



Using nullable types in Protobuf     297

var proceed = true;

 

while (proceed)

{

}

 

Console.WriteLine("Press any key to exit...");

Console.ReadKey();

7. Insert the following code into the while statement:

Console.WriteLine("Please enter the name.");

var name = Console.ReadLine();

var reply = await client.SayHelloAsync( new HelloRequest 

  { 

  Name = name }, deadline: DateTime.UtcNow.

    AddMinutes(1));

Console.WriteLine("Message: " + reply.Message);

Console.WriteLine("Messages processed: " + 

  reply.MessageProcessedCount);

Console.WriteLine("Message length in bytes: " + 

  reply.MessageLengthInBytes);

Console.WriteLine("Message length in letters: " + 

  reply.MessageLengthInLetters);

Console.WriteLine("Milliseconds to deadline: " + 

  reply.MillisecondsToDeadline);

Console.WriteLine("Seconds to deadline: " + 

  reply.SecondsToDeadline);

Console.WriteLine("Minutes to deadline: " + 

  reply.MinutesToDeadline);

Console.WriteLine("Last name present: " + 

  reply.LastNamePresent);

Console.WriteLine("Message bytes: " + reply.

  MessageBytes);

We are now ready to run our application and see how it performs with different inputs.



298      Using Well-Known Types to Make Protobuf More Handy

Running the application
To launch the applications, execute dotnet run command in GrpcServiceApp 
folder. Then do the same in GrpcClient folder. Once the console application is up 
and running, you will be prompted to type the URL of the gRPC service, which can be 
found in the launchSettings.json file of the GrpcServiceApp project. It should 
be https://localhost:5001 by default. However, if you are using Mac, it will be 
http://localhost:5000.

Once the application is up and running, you will be able to apply any custom value to the 
name field of the request object. We do so when by typing the value in the console when 
prompted. And we will get a response object with all of its fields populated, as can be seen 
on the following screenshot:

Figure 8.10 – Console output when the name is provided

However, when we don't provide the name, all the fields in our response object will be set 
to null and show as blank in the console. This can be seen in the following screenshot:



Using dates and times in Protobuf     299

Figure 8.11 – Console output when no name is provided

And this concludes our overview of nullable wrapper data types in Protobuf. Next, we will 
have a look at data types related to dates and times, which are also missing from the native 
Protobuf syntax.

Using dates and times in Protobuf
Date and time values are frequently used by software developers. So are data types 
representing durations. But they are completely missing from Protobuf.

There are some workarounds that can be applied. For example, we can transfer an integer 
value that represents a number of milliseconds from a specific date. Alternatively, we can 
construct our own message definitions that store days, months, years, hours, minutes, 
and seconds. But these workarounds are not necessarily easy to implement. For example, 
if we choose to represent a date as milliseconds only, there is no guarantee that both the 
client and the server use the same date as the standard origin. Likewise, if we opt to use 
a custom message definition, we will need to write additional code to convert it into 
proper date and time data in both the client and the server applications.



300      Using Well-Known Types to Make Protobuf More Handy

Luckily, Google's library of well-known types has a much better solution for it. It has two 
data types to represent time – Timestamp and Duration. Timestamp represents  
a point in time. It consists of all recognizable date and time components – hours, days, 
years, and so on. It is equivalent to either DateTime or DateTimeOffset in C#. 
Duration also contains a recognizable date and time components. But it represents  
a difference between two points in time rather than a single date/time value. In C#, the 
closest equivalent is TimeSpan. And, just like subtracting one DateTime value from 
another will give you a TimeSpan in C#, subtracting one Timestamp value from 
another will give you a Duration.

We will now add both of these data types to our application. You will then be able to 
examine them more closely.

Adding timestamp and duration to the server
We will first add the necessary import statements and fields to our Protobuf definition. 
Then, we will populate these fields in our server-side gRPC application.

1. Open greet.proto file in GrpcDependencies project and add the following 
import statements to it:

import "google/protobuf/duration.proto";

import "google/protobuf/timestamp.proto";

2. Then, add the following field to the HelloRequest message definition:

google.protobuf.Timestamp request_time_utc = 2;

3. Now, add the following fields to HelloReply message definition:

google.protobuf.Timestamp response_time_utc = 10;

google.protobuf.Duration call_processing_duration = 11;

4. We will now slightly change the implementation of SayHello method in 
GreeterService class of GrpcServiceApp project. Replace the list of local 
variables before the first return statement with the following:

var message = "Hello " + request.Name;

var currentTime = DateTime.UtcNow;

var timeToDeadline = context.Deadline - currentTime;

var messageBytes = Encoding.ASCII.GetBytes(message);



Using dates and times in Protobuf     301

5. Then, add the following field assignment to the response class initialization inside 
the return statement (don't forget to add a comma at the end of the previous  
field assignment):

ResponseTimeUtc = Timestamp.FromDateTime(currentTime),

CallProcessingDuration = Timestamp.

  FromDateTime(currentTime) - request.RequestTimeUtc

6. To make it compile, we will need to add the following using statement to the class:

using Google.Protobuf.WellKnownTypes;

Here, we have provided an example of how we can populate Timestamp and 
Duration fields from C# code. These are represented in C# by classes of the same 
names. But they can be easily populated from the standard TimeSpan, DateTime, and 
DateTimeOffset data types from the System library.

Timestamp can be populated from DateTime or DateTimeOffset by using either 
the FromDateTime or FromDateTimeOffset static method respectively. Duration 
can be populated from TimeSpan by using the FromTimeSpan static method, but it can 
also be calculated by subtracting one Timestamp value from another.

Next, we will set up our client and test our application.

Applying changes to the gRPC client and launching  
the app
We will make slight modifications to our client. Then, we will see how Timestamp and 
Duration values are represented inside the console:

1. In the Main method of the Program class of GrpcClient project, add the 
following using statement:

using Google.Protobuf.WellKnownTypes;

2. Then, replace the call to the SayHelloAsync method on the client object with the 
following:

var reply = await client.SayHelloAsync(

  new HelloRequest { Name = name, RequestTimeUtc = 

    Timestamp.FromDateTime(DateTime.UtcNow) }, deadline: 

      DateTime.UtcNow.AddMinutes(1));



302      Using Well-Known Types to Make Protobuf More Handy

3. Then, add the following lines to the block of console outputs:

Console.WriteLine("Call processing duration: " + 

  reply.CallProcessingDuration);

Console.WriteLine("Response time UTC: " + 

  reply.ResponseTimeUtc);

We have finished adding Timestamp and Duration to both our client and our server. 
Next, we will launch both of these applications to see how this data is processed.

After launching both of the applications, specifying the address of the gRPC server, and 
entering an arbitrary name, we can see console output similar to the one displayed in the 
following screenshot:

Figure 8.12 – Console output now includes Timestamp and Duration

As we can see, both Timestamp and Duration are written in a nice human-readable 
format. This is because both of them have an implementation of the ToString method 
in C#, which gets called automatically when they are used in a string context. And it's 
this method that is set to output the values in a nice human-readable format.

Next, we will have a look at how to use empty requests and responses in Protobuf, which 
can be really convenient in certain use cases.



Exchanging empty messages     303

Exchanging empty messages
Each remote procedure call in gRPC must have a request and a response message defined. 
You cannot have an RPC that doesn't accept an input parameter or doesn't return an 
output object. However, there are many use cases where either a request parameter or  
a response object would be redundant. For example, if you would want to retrieve a full 
unfiltered collection of data, you wouldn't need to specify the request attributes. Likewise, 
if you want to submit a new entry to the server, you probably won't expect to receive any 
data back. All you'll need is a basic confirmation that your action was successful.

When you use standard HTTP, both of these actions are easily achievable. A simple 
GET request that contains only a URL path and no parameters can be made to obtain an 
unfiltered collection of data. Likewise, when you submit a PUT, POST, PATCH, or DELETE 
request, you won't usually receive any data back (although in some situations you could). 
All you will usually care about is that your action was successful. And this would be 
indicated by an HTTP response code in the correct range (200 to 204).

But luckily, on gRPC, even though you must define both a message request and 
response, you don't necessarily need to have any fields in either of them. A completely 
empty message definition is still a valid message definition according to Protobuf. 
Therefore, if you really don't need to use any specific parameters in any given situation, 
you can just create a message definition with no fields.

But there is an even better way than creating your own empty message definition. There 
is already the Empty data type that is available via the Google library of well-known 
types. The disadvantage of using a custom empty message definition is that there is no 
guarantee that someone would not misunderstand the intention behind it and wouldn't 
add some fields to it in the future. But if you use the Empty type from the library of  
well-known types, the intention behind it will be clear to everyone using the code.

Next, we will make some changes to our application to demonstrate the usage of the 
Empty data type.

Adding the Empty data type to the server-side 
application
We will start by adding some rpc definitions to our Protobuf file. Then, we will 
implement these RPCs on the server side:

1. In the greet.proto file inside the GrpcDependencies project, we will add the 
following import statement:

import "google/protobuf/empty.proto";



304      Using Well-Known Types to Make Protobuf More Handy

2. Then, add the following two rpc definitions to the Greeter service:

rpc GetMessageProcessedCount (google.protobuf.Empty) 

  returns 

  (MessageCount);

rpc SynchronizeMessageCount (MessageCount) returns 

  (google.protobuf.Empty);

3. Then, add the following message definition to the file:

message MessageCount {

  uint32 count = 1;

}

4. We will now modify the MessageCounter class inside the GrpcServiceApp 
project. We will add the following two methods to it:

public uint GetCurrentCount()

{

    return messageCount;

}

 

public void UpdateCount(uint count)

{

    messageCount = count;

}

5. Next, we will make some changes to the GreeterService class. We will first  
add the implementation of GetMessageProcessedCount that has an  
empty request:

public override Task<MessageCount> 

  GetMessageProcessedCount(Empty request, 

    ServerCallContext 

    context)

{

    return Task.FromResult(new MessageCount

    {

       Count = counter.GetCurrentCount()



Exchanging empty messages     305

    });

}

6. Then, we will add the implementation of SynchronizeMessageCount that has 
an empty response:

public override Task<Empty> 

  SynchronizeMessageCount(MessageCount request, 

    ServerCallContext context)

{

    counter.UpdateCount(request.Count);

    return Task.FromResult(new Empty());

}

So, here is what we've done. Previously, the count of processed messages was incremented 
every time the SayHello RPC was called, but it only happened if the name attribute was 
provided. Also, there was no way to retrieve the count without incrementing it.

Now, we have added an RPC specifically to retrieve the count. Because there is only 
one kind of count, we don't really need to specify anything in the request parameters. 
Therefore, we are using an empty request.

We have also added an RPC to update the count. For example, our client might count 
every message and not just the ones that had the name parameter defined. In this case, 
it may tell our server what the count should be updated to. And because we only care 
that this action is successful, we don't need any data in the server response. Therefore the 
response is empty.

Now, we will modify our client so that it can interact with our new RPCs.

Applying an Empty object on the client
We will now modify our gRCP client console application so that it won't be limited to only 
a single action. We will be able to choose which RPC to call:

1. At the beginning of the while loop inside the Main method of the Program class 
of the GrpcClient project, add the following prompt:

Console.WriteLine("Which acion you would like to take?");

Console.WriteLine("1 - get a greeting.");

Console.WriteLine("2 - Receive message count");



306      Using Well-Known Types to Make Protobuf More Handy

Console.WriteLine("3 - Update message count");

 

 var action = Console.ReadLine();

2. Then, immediately after this, add the following switch statement:

switch (action)

{

    case "1":

        break;

    case "2":

        var couterResponse = await client.

          GetMessageProcessed

          CountAsync(new Empty());

        Console.WriteLine("Message processed count: " + 

          couterResponse.Count);

        break;

    case "3":

        Console.WriteLine("Please type new message 

          count:");

        var messageCount = Console.ReadLine();

        await client.SynchronizeMessageCountAsync(new 

          MessageCount { Count = uint.Parse(messageCount) 

            });

        Console.WriteLine("Message count successfully 

          updated to " + messageCount);

        break;

    default:

         Console.WriteLine("Invalid selection option.");

         break;

}

3. Then, cut and paste all the lines starting with Console.WriteLine("Please 
enter the name."); and ending with Console.WriteLine("Response 
time UTC: " + reply.ResponseTimeUtc); inside the case "1" 
condition.



Exchanging empty messages     307

And this concludes our client setup. We can now launch our applications and verify 
that both of our new gRPC endpoints work correctly. As the following screenshot 
demonstrates, we should be able to update the message count to any arbitrary 
number. Then, this will be the number the server will return to us:

Figure 8.13 – gRPC console output indicating that both of our newly added endpoints are working

To recap, you would use an empty request in a situation where there you cannot (or don't 
want to) apply a specific configuration to your query. For example, this will apply when 
you would want to retrieve a complete and unfiltered collection of items. Likewise, it 
would apply if there is only one kind of value that the endpoint can return (only one count 
value, as per the preceding example, or any other type of unconfigurable data).

An empty response is appropriate when you are performing an operation that creates, 
updates, or deletes some record or multiple records. All you would want in this case is that 
the operation was successful. And for this, an absence of errors in the response would  
be sufficient.

Next, you will learn what to do if the data type of any particular Protobuf field cannot be 
known in advance. The library of well-known types has an answer for this situation too.



308      Using Well-Known Types to Make Protobuf More Handy

Using loosely typed fields in a Protobuf 
message
So far, we have only used examples of strongly typed Protobuf definitions, which means 
that, if we have set the data type of any particular field, it cannot just dynamically change 
to a different data type. Yes, some data types are compatible with each other. For example, 
you can send an int32 value to an int64 field. But what you can't do is send a string 
value where int64 is expected.

But there might be cases where you will need the ability to change the data type of a 
variable depending on the situation. For example, this could be relevant when your system 
is expected to interoperate with loosely typed programming languages, such as JavaScript 
or PHP, or schema-less messaging formats, such as JSON.

Even C# has this capability, despite being a strongly typed language. In C#, there is a data 
type called dynamic. It can change to any data type depending on requirements.

Luckily, this is possible with gRPC too. There are two data types that allow you to do just 
that, Any and Value. If a Protobuf field uses the Any data type, its value can be set to any 
message definition. The Value data type, on the other hand, is used for basic data types, 
such as string, bool, and numeric types. 

Without using either of these data types, you would probably be limited to either using 
byte arrays or writing excessively complex oneof statements. It will also be up to you to 
write complete logic to convert the data into its intended types. But these two well-known 
types have a range of convenient properties that will make your job much easier. We will 
now apply them both in our application.

Adding Any and Value data types to the gRPC server
We will first add some additional fields to our Protobuf definition. Then, we will modify 
our server-side logic to demonstrate how these data types are used in C#:

1. Add the following import statements to the greet.proto file in the 
GrpcDependencies project:

import "google/protobuf/any.proto";

import "google/protobuf/struct.proto";

2. Now, add the following two fields to the HelloRequest message definition:

google.protobuf.Any payload = 3;

google.protobuf.Value additional_payload = 4;



Using loosely typed fields in a Protobuf message     309

3. Add the following message definitions at the bottom of the file:

message IntegerPayload {

  uint32 value = 1;

}

 

message DoublePayload {

  double value = 1;

}

 

message BooleanPayload {

  bool value = 1;

}

 

message CollectionPayload {

    repeated string list = 1;

    map<string, string> dictionary = 2;

}

4. We will now add the following lines at the beginning of the SayHello method of 
the GreeterService class of the GrpcServiceApp project:

Console.WriteLine($"Payload type is: {request.Payload?.

  TypeUrl ?? "No payload provided"}");

 

var payloadExtracted = request.Payload is null;

5. Below it, we will add the following condition, which will check whether we have 
been provided with an integer payload:

if (!payloadExtracted && request.Payload.

  Is(IntegerPayload.Descriptor))

{

    Console.WriteLine($"Extracted the following integer 

      value from the payload: {request.Payload.Unpack

        <IntegerPayload>().Value}" );

    Console.WriteLine($"Extracted the following integer 

      value from the additional payload: {Convert.ToInt32



310      Using Well-Known Types to Make Protobuf More Handy

        (request.AdditionalPayload.NumberValue)}");

    payloadExtracted = true;

}

6. Then, we will add the following condition, which will check whether we have 
received a double payload:

if (!payloadExtracted && request.Payload.TryUnpack

  <DoublePayload>(out var doublePayload))

{

    Console.WriteLine($"Extracted the following double 

      value from the payload: {doublePayload.Value}");

    Console.WriteLine($"Extracted the following double 

      value from the additional payload: 

        {request.AdditionalPayload.NumberValue}");

    payloadExtracted = true;

}

7. After this, we will add the following condition, which will check whether we 
received a Boolean payload:

if (!payloadExtracted && request.Payload.TryUnpack

  <BooleanPayload>(out var booleanPayload))

{

    Console.WriteLine($"Extracted the following Boolean 

      value from the payload: {booleanPayload.Value}");

    Console.WriteLine($"Extracted the following Boolean 

      value from the additional payload: 

        {request.AdditionalPayload.BoolValue}");

    payloadExtracted = true;

}



Using loosely typed fields in a Protobuf message     311

8. Finally, there is another condition, to check for a collection payload:

if (!payloadExtracted && request.Payload.Is

  (CollectionPayload.Descriptor))

{

    var primaryPayload = 

      request.Payload.Unpack<CollectionPayload>();

    var secondaryPayload = 

      request.AdditionalPayload.StructValue;

 

    foreach (var item in primaryPayload.List)

    {

        Console.WriteLine($"Item extracted from the list 

          in the primary payload: {item}");

    }

 

    foreach (var item in primaryPayload.Dictionary)

    {

        Console.WriteLine($"Item extracted from the 

          dictionary in the primary payload: key - {item.

            Key}, value - {item.Value}");

    }

 

    foreach (var field in secondaryPayload.Fields)

    {

        Console.WriteLine($"Item extracted from the 

          fields in the secondary payload: key - {field.

            Key}, value - {field.Value.StringValue}");

    }

}



312      Using Well-Known Types to Make Protobuf More Handy

In this example, we are processing Any and Value types simultaneously for the sake 
of simplicity. We had additional two fields added to the HelloRequest message – 
payload and additional_payload. The former is of the Any type, while the latter 
is of the Value type. Please note that, while the Any data type comes from the any.
proto file of the google/protobuf namespace, the Value data type comes from the 
struct.proto definition.

We have added some message definitions purely for the sake of demonstrating how 
the Any data type works, and we have applied multiple conditional statements to it to 
demonstrate the different ways this data type can be read.

In its original state, the Any data type has two fields – TypeUrl and Value. TypeUrl is 
a string that contains the fully qualified name of the message definition that it holds. The 
Value field holds the actual data as a collection of bytes.

In C#, we are extracting the data from the Any data type by calling the Unpack<T> 
method on it, where T is the type that we are trying to extract. We can call Unpack 
directly if we know the data type we expect, or we can call TryUnpack<T> if we aren't 
sure about the data type. We can also check whether or not the field contains a message 
of a particular type by calling the Is method on the Any data type, which takes the static 
Descriptor property of the message type as its parameter.

The Value field works differently. To extract a specific data type from it, we need to call 
a corresponding static method on the class that represents the Value type in C#. The 
following options are available: 

• NullValue: Represents null

• NumberValue: Equivalent to double

• StringValue: Represents string

• BoolValue: Represents bool

• ListValue: Represents a collection of Value items

• StructValue: Struct data type, which is equivalent to a dictionary

In this context, the Struct data type is very different from the struct keyword 
available in C#. The Struct data type from the Google.Protobuf library is  
a collection of dynamically typed fields, where the field name (which can also be seen  
as a dictionary key) is a string, while the field value is the Value data type. In the 
preceding example, we are unpacking a Struct object and outputting all of its keys and 
values into the console.



Using loosely typed fields in a Protobuf message     313

Our server-side part of the application is now complete. Next, we will modify our client 
to populate the payload and additional_payload fields in the HelloRequest 
message.

Populating the Any and Value fields from the gRPC 
client
We will add some logic to our gRPC client console application to populate the Any and 
Value fields. Then, we will launch both of our applications to see whether the server 
interprets the data correctly:

1. In the Main method of the Program class of the GrpcClient application, locate 
the following lines:

Console.WriteLine("Please enter the name.");

var name = Console.ReadLine();

2. Underneath them, insert the following:

Console.WriteLine("Please enter the payload type:");

Console.WriteLine("1 - integer");

Console.WriteLine("2 - double");

 Console.WriteLine("3 - boolean");

Console.WriteLine("4 - collection");

 

var payloadType = Console.ReadLine();

 

Any payload = null;

Value additionalPayload = null;

3. Immediately after this, insert the following switch block:

switch (payloadType)

{

    case "1":

        payload = Any.Pack(new IntegerPayload() { Value = 

          1 });

        additionalPayload = Value.ForNumber(1);

        break;

    case "2":



314      Using Well-Known Types to Make Protobuf More Handy

        payload = Any.Pack(new DoublePayload() { Value = 

          1.5 });

        additionalPayload = Value.ForNumber(1.5);

        break;

    case "3":

        payload = Any.Pack(new BooleanPayload() { Value = 

          true });

        additionalPayload = Value.ForBool(true);

        break;

    case "4":

        break;

    default:

        Console.WriteLine("No payload value provided.");

        break;

}

4. Then, insert the following logic under the case "4" statement:

var collection = new List<string> { "item1", "item2", 

  "item3" };

var dictionary = new Dictionary<string, string> { { "1", 

  "item1" }, { "2", "item2" }, { "3", "item3" } };

 

var collectionPayload = new CollectionPayload();

 

collectionPayload.List.Add(collection);

collectionPayload.Dictionary.Add(dictionary);

 

payload = Any.Pack(collectionPayload);

additionalPayload = Value.ForStruct(new Struct

{

    Fields =

        {

             ["1"] = Value.ForString("item1"),

             ["2"] = Value.ForString("item2")

        }

});



Using loosely typed fields in a Protobuf message     315

5. Now, replace the call to the client.SayHelloAsync method with the following:

var reply = await client.SayHelloAsync(

            new HelloRequest

            {

                Name = name,

                RequestTimeUtc = 

                  Timestamp.FromDateTime(DateTime.

                    UtcNow),

                Payload = payload,

                AdditionalPayload = additionalPayload

            }, deadline: DateTime.UtcNow.AddMinutes(1));

Let's quickly overview what we have done. To populate a field that has the Any data 
type, what you need to do is call the static Pack method on the Any class. Any class that 
implements the IMessage interface (which would be any class that represents a Protobuf 
message definition) would be a suitable parameter.

To populate a field of Value type, we need to call a static method on the Value class that 
corresponds to this data type. The following methods are available:

• ForNull: Allows you to set the field to null

• ForNumber: Allows you to set the field to double

• ForString: Allows you to set the field to string

• ForBool: Allows you to set the field to bool

• ForList: Allows you to set the field to a collection of Value items

• ForStruct: Allows you to use the Struct data type in the field

We now know both how to write data into loosely typed Protobuf fields and how to then 
read it from them. If we will now launch our applications, we will be able to see whether 
the data sent by the client gets correctly interpreted by the server.



316      Using Well-Known Types to Make Protobuf More Handy

From the following screenshot of the server-side console, we can see that we have been 
able to extract the correct types of payload from both the Any and Value fields:

Figure 8.14 – gRPC server has correctly extracted data from the Any and Value fields

The following screenshot demonstrates that, when we populate our loosely typed payload 
fields with collections of items, the server was also able to successfully extract the correct 
data from them:

Figure 8.15 – Collections from the Any and Value fields were also correctly processed

We have now completed the overview of loosely typed fields in Protobuf messages. Let's 
now summarize everything we've covered in this chapter.



Summary     317

Summary
In this chapter, you have learned that it's possible to use nullable data types in Protobuf 
messages. Even though nullable data types aren't natively available in Protobuf, they can 
be added to it by importing wrapper data types from Google's library of well-known types.

You have also learned that although there is no native support for time and duration data 
in Protobuf, there are Timestamp and Duration data types that have been designed 
specifically for this purpose. These data types need to be imported into your Protobuf 
definitions individually.

You now also know that although it is possible to create a Protobuf message definition 
with no fields, the library of well-known types already has a standardized message 
definition specifically to be used as an empty object. Unsurprisingly, it is called Empty.

We have also covered two ways you can use loosely typed fields in Protobuf. There is the 
Any data type, which you can use to assign any arbitrary message definition to a field. 
There is also the Value type, which allows you to assign any primitive type to a field.

With the help of the examples that we used, you can probably now appreciate how much 
well-known types simplify the process of writing the code. With the help of various helper 
methods, there is a convenient way you can convert any of these data types into objects 
that you can use in your code.

And this concludes the chapter on well-known types. In the next chapter, we will have  
a detailed look at how to enable and disable encrypted communication while using gRPC, 
which is an important topic from the perspective of cybersecurity. You will learn how to 
use any custom TLS certificate in gRPC, as well as create your own.

Questions
1. Which proto file do you need to import to use the BoolValue data type?

A. google/protobuf/boolvalue.proto.
B. google/protobuf/value.proto.
C. goggle/protobuf/wrappers.proto.
D. google/protobuf/wellknowntypes.proto.



318      Using Well-Known Types to Make Protobuf More Handy

2. Which of the following does not exist among well-known types in Protobuf?

A. Int32Value.
B. Int64Value.
C. Fixed64Value.
D. UInt32Value.

3. Which of the following statements is incorrect?

A. Duration is equivalent to DateTimeOffset.
B. Timespan is equivalent to DateTimeOffset.
C. Timespan is equivalent to DateTime.
D. Duration is equivalent to TimeSpan.

4. Which of these scenarios is suitable for using the Empty message in an RPC 
response?

A. When updating data.
B. When inserting data.
C. When deleting data.
D. All of the above.

5. How would you unpack a string value from a field of Any type?

A. Any.SringValue.
B. Any.ForString.
C. The Any data type cannot store strings.
D. Any.Unpack<string>.



Further reading     319

Further reading
• Protocol Buffers well-known types: https://developers.google.com/

protocol-buffers/docs/reference/google.protobuf

• google/protobuf/wrappers.proto Protobuf definition: https://
github.com/protocolbuffers/protobuf/blob/master/src/
google/protobuf/wrappers.proto

• google/protobuf/empty.proto Protobuf definition: https://github.
com/protocolbuffers/protobuf/blob/master/src/google/
protobuf/empty.proto

• google/protobuf/timestamp.proto Protobuf definition: https://
github.com/protocolbuffers/protobuf/blob/master/src/
google/protobuf/timestamp.proto

• google/protobuf/duration.proto Protobuf definition: https://
github.com/protocolbuffers/protobuf/blob/master/src/
google/protobuf/duration.proto

• google/protobuf/any.proto Protobuf definition: https://github.com/
protocolbuffers/protobuf/blob/master/src/google/protobuf/
any.proto

• google/protobuf/struct.proto Protobuf definition: https://github.
com/protocolbuffers/protobuf/blob/master/src/google/
protobuf/struct.proto

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/wrappers.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/wrappers.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/wrappers.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/empty.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/empty.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/empty.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/timestamp.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/timestamp.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/timestamp.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/duration.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/duration.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/duration.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/any.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/any.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/any.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/struct.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/struct.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/struct.proto




9
Securing gRPC 

Endpoints in Your 
ASP.NET Core 

Application with 
SSL/TLS

In this chapter, we will learn how to secure your ASP.NET Core gRPC service application 
with SSL/TLS certificates. We briefly touched on this topic in Chapter 1, Creating a Basic 
gRPC Application on ASP.NET Core, where we saw how to use the .NET command-line 
interface (CLI) to create a self-signed development certificate. We also saw how this 
allows you to map your hosted application to a port that is accessible via HTTPS.

However, a self-signed development certificate is not something you would want to use 
in production. In a real-life scenario, you would want to protect your application with 
a bespoke certificate that has been issued by a recognized certification authority. This 
chapter will cover how such certificates work in detail.



322     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

We will cover the following topics:

• Configuring the gRPC client and server for unencrypted communication

• Creating and trusting a self-signed certificate

• Applying certificate authentication on the gRPC client and server

By the end of this chapter, you will have learned how an ASP.NET Core gRPC service 
application can be hosted for both HTTP/2 and HTTP/1.1 with no TLS enabled. You 
will also have learned how to create and sign your own TLS certificate with custom data. 
Finally, you will have learned how to use any custom certificate to secure your gRPC 
service application.

Technical requirements
To follow the instructions in this chapter, you will need the following:   

• A computer with either a Windows or Linux operating system (OS)  
(or a Windows or Linux virtual machine (VM) if you are using macOS)

• A supported integrated development environment (IDE) or code editor (Visual 
Studio, Visual Studio Code, or JetBrains Rider)

• The .NET 5 software development kit (SDK)

Note
Due to the lack of Application-Layer Protocol Negotiation (ALPN) support 
on macOS, it won't be possible to secure HTTP/2 ports with TLS on Macs. 
Therefore, if you are a Mac user, you will not be able to follow some of the 
instructions from this chapter. However, you will be able to implement the 
code samples if you set up either a Windows or Linux VM on your Mac. 

The instructions on how to set all of these up were provided in Chapter 1, Creating  
a Basic gRPC Application on ASP.NET Core. All of the code samples used in this chapter 
can be found at https://github.com/PacktPublishing/Microservices-
Communication-in-.NET-Using-gRPC/tree/main/Chapter-09.

Please visit the following link to check the CiA videos: https://bit.ly/3DVcy2F

https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-09
https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-09
https://bit.ly/3DVcy2F


Configuring the gRPC client and server for unencrypted communication     323

Configuring the gRPC client and server for 
unencrypted communication
Before we start talking about the process of securing gRPC endpoints with a custom 
certificate, we will cover the base case – that is, how to set up your application to run 
without any such certificate. This is useful for real-life scenarios, as even though gRPC  
was originally intended to primarily run over TLS, there are situations where using  
a certificate just adds unnecessary overhead. For example, if a gRPC endpoint represents  
a microservice that is only ever hosted on your internal network and is never exposed  
to the public internet, encrypting the communication within it (and going through the 
entire process of obtaining a valid certificate from a certification authority) might not  
be necessary.

Likewise, it's not necessary to use encryption when you are writing the software on 
your development machine. Even though a project created from the gRPC service 
.NET template will have encryption enabled by default and will work with a self-signed 
development certificate created by the dotnet CLI, it will not work on Mac. An attempt 
to bind an HTTPS port for a gRPC endpoint will fail. Therefore, if you intend for 
your software to run on any development machine, it makes sense to apply additional 
configuration to your project so that it doesn't even attempt to use HTTPS when 
development mode is applied.

But before we go through the process of configuring gRPC for communication without 
TLS, let's briefly remind ourselves what TLS is used for.

The role of TLS certificates
TLS stands for Transport Layer Security. It is a successor to the Secure Sockets Layer 
(SSL) protocol. Even though SSL is now deprecated and isn't being used to secure modern 
applications, it is very common to hear the terms TLS and SSL used interchangeably. Even 
some parts of the inbuilt .NET libraries mention SSL where it should more accurately be 
TLS. This is why – even though it is technically incorrect – we have included SSL in some 
headings within this chapter.

Server certificates
TLS is a protocol that is designed to encrypt communication between the client and the 
server. In TLS, the data is transferred as a collection of seemingly random bytes that only 
the intended recipient can decrypt. If the message is intercepted, it would be meaningless 
to the entity that has intercepted it. This is why TLS (and the corresponding HTTPS, 
which stands for Hypertext Transfer Protocol Secure) is always used for the transfer of 
sensitive information such as personal details.



324     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

The encryption for TLS is achieved by using cryptographic keys. There are two types of 
keys that are stored by the server application – a public key and a private key. A public key 
is given to the client that wants to communicate with the server. The client can then use it 
to encrypt the data. But the same key cannot be used to decrypt the data. This can only be 
done by the private key, which the server application never shares with anyone.

The keys have been designed in such a way that it's impossible to calculate the private  
key even if you know the public key. And this is what makes the communication  
channel secure.

Now that we understand how encryption keys are used, we can assess the role of the 
certificate. No TLS communication is possible without one. The digital certificate (also 
known as a public key certificate) is a digital document that stores the public key and 
proves its ownership. The certificate includes information such as the hostname, which 
tells the connected client that the certificate definitely belongs to the correct server and 
hasn't been forged.

And here is where the certification authority (CA) has its role to play. A CA is a third-
party organization that is universally recognized as a valid provider of certificates. The 
reason why a digital signature from such an organization is necessary is that it is not 
difficult to create your own digital signature. So, if the client connects to an endpoint that 
is protected by a self-signed certificate, there is no guarantee that such a certificate wasn't 
forged by a malicious agent. But if the certificate has been signed by a CA, it is guaranteed 
that you are dealing with a real certificate that has been issued specifically to protect the 
domain that you are connecting to.

Client certificates
So far, we have covered server-side certificates. But client-side certificates can also be used 
in TLS. Their purpose, however, is slightly different. And, unlike server-side certificates, 
they don't necessarily need to be signed by a third-party CA.

Client-side certificates contain information about the client that is trying to connect to 
the server. They are used for authentication to prove that the client is what it says it is. 
They are rarely used for browser-based clients because such clients store authentication 
information in the browser cache and cookies. However, client certificates are useful with 
remote procedure calls (RPCs).



Configuring the gRPC client and server for unencrypted communication     325

In this chapter, we will cover both server-side and client-side certificates. But by now, you 
can probably appreciate that despite the benefits of enabling encryption, TLS certificates 
create quite a lot of overhead in terms of setup. This means they would affect the 
performance of your application, as additional computation would be required to encrypt 
and decrypt messages. This is why it is useful to know how to run your applications 
without using TLS, which we will demonstrate in the next section.

Setting up a gRPC service application
In this section, we will set up a gRPC service application that will be accessible via both 
HTTP/1.1 and HTTP/2 without encryption. Our application will be expected to work on 
any OS, including macOS.

The reason why we need both HTTP/1.1 and HTTP/2 access is that we will be exposing 
our proto files to the clients over standard REST API endpoints, and these endpoints will 
require HTTP/1.1 to function. Please complete the following steps:

1. Run the following command to create a project based on the gRPC service template:

dotnet new grpc -o UserInfoManager

2. Inside the project folder that was created, open the Protos folder and create  
a users.proto file with the following content:

syntax = "proto3";

package users;

import "google/protobuf/empty.proto";

import "google/protobuf/timestamp.proto";

service UserManager {

    rpc GetAllUsers (google.protobuf.Empty) returns 

      (stream UserInfo);

}

message UserInfo {

    string first_name = 1;

    string surname = 2;

    string gender = 3;

    google.protobuf.Timestamp date_of_birth = 4;

    string nationality = 5;

    AddressInfo address = 6; 



326     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

}

message AddressInfo {

    string first_line = 1;

    string town = 2;

    string postcode_or_zip_code = 3;

    string country = 4;

}

3. The gRPC service application will deliver personal user information to the client 
as a stream. This data will originate from the UserDataCache class inside the 
UserInfoManager project. So, we will place a UserDataCache.cs file into the 
root of the project folder. The initial file structure will be as follows:

using System;

using System.Collections.Generic;

using Google.Protobuf.WellKnownTypes;

using Users;

 

namespace UserInfoManager

{

    public class UserDataCache

    {

        private readonly List<UserInfo> users;

 

        public UserDataCache()

        {

            users = new List<UserInfo>();

        }

 

        public IEnumerable<UserInfo> GetUsers()

        {

            return users;

        }

    }

}



Configuring the gRPC client and server for unencrypted communication     327

4. We can now add as many entries to the list of users as we want. To do so, we can 
start adding entries at the end of our constructor block in the following way:

users.Add(new UserInfo

{

    FirstName = "John",

    Surname = "Smith",

    Gender = "M",

    DateOfBirth = 

      Timestamp.FromDateTime(DateTime.UtcNow

        .AddYears(-20)),

    Nationality = "English",

    Address = new AddressInfo

    {

        FirstLine = "51 Park Lane",

        PostcodeOrZipCode = "SW2 5BL",

        Town = "London",

        Country = "UK"

    }

});

5. We can now add the UserInfoService.cs file to the Services folder inside 
our project. The content of the file will be as follows:

using System.Threading.Tasks;

using Google.Protobuf.WellKnownTypes;

using Grpc.Core;

using Users;

 

namespace UserInfoManager.Services

{

    public class UserInfoService : 

      UserManager.UserManagerBase

    {

        private readonly UserDataCache userDataCache;

        public UserInfoService(UserDataCache 

          userDataCache)

        {



328     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

            this.userDataCache = userDataCache;

        }

        public override async Task GetAllUsers(Empty 

          request, IServerStreamWriter<UserInfo>

            responseStream, ServerCallContext context)

        {

            foreach (var item in 

              userDataCache.GetUsers())

            {

                await responseStream.WriteAsync(item);

            }

        }

    }

}

6. Now, we need to register all of the components that we have added. First, we will 
need to add the following markup to the UserInfoManager.csproj file:

<ItemGroup>

  <Protobuf Include="Protos\users.proto" 

    GrpcServices="Server" />

</ItemGroup>

7. Then, we will add the following statement to the ConfigureServices method 
of the Startup class. Alternatively, if we are using .NET 6 project template, we 
will add this statement to Program.cs file before the Build event and replace 
services with builder.Services:

services.AddSingleton<UserDataCache>();

8. Finally, we will add the following statement inside the call to app.UseEndpoints 
in the Startup class (or in the main body of Program.cs file if we are using 
.NET 6, replacing endpoints with app):

endpoints.MapGrpcService<UserInfoService>();



Configuring the gRPC client and server for unencrypted communication     329

We have now registered our custom endpoints and our application is already 
pre-configured to use gRPC without TLS. To verify this, we can open the 
appsetting.json file. Inside the Kestrel section, it will have a section called 
EndpointDefaults. This section will have an entry called Protocols, which should 
be set to Http2. This will mean that both HTTP and HTTPS ports will work with gRPC. 
However, there are some caveats.

This configuration wouldn't work on macOS, as it will still attempt to bind an HTTPS 
port for gRPC and fail. As a workaround, you can remove the HTTPS URL from the 
launchSettings.json file. But there is an additional caveat.

This time, we have decided to share Protobuf definitions with the clients via REST API 
endpoints. And in order for these to work, we need to have HTTP/1.1 available. To do 
so, we could just change the Protocols value to Http1AndHttp2. But there is an 
additional caveat to this. gRPC on ASP.NET Core is set up in such a way that if you 
use the Http1AndHttp2 option, both protocol versions will work with the HTTPS 
endpoint. However, any HTTP calls will use HTTP/1.1, which will make the gRPC 
endpoints unreachable. Therefore, we will need to apply some additional configurations to 
accommodate these caveats.

Removing TLS on both HTTP/1.1 and HTTP/2
The best way to enable both HTTP/1.1 and HTTP/2 communication in your ASP.NET 
Core application is to explicitly assign a specific protocol to each specific port. If you 
assign only HTTP/1.1 to a port, you won't be able to use this port for gRPC. However, it 
will still be fully accessible by any HTTP client, including your browser. If you assign only 
HTTP/2 to a specific port, this port will not be accessible by normal HTTP clients. But 
you will be able to enable unencrypted gRPC communication via this port.

Configuring different ports for different protocol versions can be done via configuration. 
But we can also do it directly in the code, which will override the configuration. In our 
case, we will use port 5000 for unencrypted gRPC communication. And we will dedicate 
port 5002 to unencrypted HTTP communication. To do so, we will open the Program 
class inside the UserInfoManager project and replace the CreateHostBuilder 
method with the following. If you are using .NET 6, the ConfigureKestrel  
method will need to be placed after builder.WebHost.UseKestrel call in 
Program.cs file.:

public static IHostBuilder CreateHostBuilder(string[] args) =>

    Host.CreateDefaultBuilder(args)

        .ConfigureWebHostDefaults(webBuilder =>

        {



330     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

            webBuilder.ConfigureKestrel(options =>

            {

                options.ListenLocalhost(5002, o => 

                    o.Protocols =

                    HttpProtocols.Http1);

                options.ListenLocalhost(5000, o => 

                    o.Protocols =

                    HttpProtocols.Http2);         

            });

            webBuilder.UseStartup<Startup>();

        });

To make it work, we need to include the following using statement in the class:

using Microsoft.AspNetCore.Server.Kestrel.Core

We have added two listeners, both of which are listening on the default IP address of the 
host machine, which is 127.0.0.1 and is also associated with the localhost domain. 
This is done by calling the ListenLocalhost method. And then, we are associating 
ports 5002 and 5000 with HTTP/1.1 and HTTP/2, respectively.

Please note that our setup would still work if we associated Http1AndHttp2 with port 
5002. In this case, the unencrypted request would be routed to HTTP/1.1 by default. 
However, it is mandatory to restrict the gRPC port to HTTP/2 to prevent the same from 
happening.

Next, we will create a REST API endpoint to demonstrate why both HTTP/1.1 and 
HTTP/2 ports had to be enabled in our gRPC service application in the previous sections.

Exposing Protobuf definitions to clients
Our application will be exposing its Protobuf definitions so that the clients can always 
get up-to-date information on the schema that the server expects. If you are using 
Visual Studio on Windows as your IDE, you will be able to automate the process of 
synchronizing your client with the service application, as will be demonstrated later. But 
first, we will need to perform the following steps:

1. Add the following line to the ConfigureServices method of the Startup 
class of your application (or relevant section of Program.cs file if you are using 
.NET 6 template):

services.AddControllers();



Configuring the gRPC client and server for unencrypted communication     331

2. Insert the following statement into the app.UseEndpoints call:

endpoints.MapControllers();

3. Create a Controllers folder inside the project and place a 
ProtosController.cs file into the folder. The content of the file should be  
as follows:

using System.IO;

using System.Linq;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Mvc;

 

namespace UserInfoManager.Controllers

{

    [Route("[controller]")]

    [ApiController]

    public class ProtosController : ControllerBase

    {

 

        private readonly string baseDirectory;

 

        public ProtosController(IWebHostEnvironment 

          webHost)

        {

            baseDirectory = webHost.ContentRootPath;

        } 

    }

}



332     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

4. Add the following method to the Controller class:

[HttpGet("")]

public ActionResult GetAll()

{

    return 

      Ok(Directory.GetFiles($"{baseDirectory}/Protos")

        .Select(Path.GetFileName));

}

5. Then, add the following method:

[HttpGet("{protoName}")]

public async Task<ActionResult> GetFileContent(string 

  protoName)

{

    var filePath = 

      $"{baseDirectory}/Protos/{protoName}";

 

    if (System.IO.File.Exists(filePath))

        return Content(await 

          System.IO.File.ReadAllTextAsync(filePath));

 

    return NotFound();

}

We have now added two endpoints. One of them lists all of the available proto files in our 
application. The other one returns the content of a selected proto file as plain text. Both of 
them use the GET HTTP verb. Therefore, they both can be accessed via a normal browser.

We can now launch our application by executing the dotnet run command inside 
the project folder. If we have configured everything correctly, the following content is 
expected to be displayed if you enter http://localhost:5002/protos/users.
proto in your browser address bar:



Configuring the gRPC client and server for unencrypted communication     333

Figure 9.1 – The content of the users.proto file displayed in a browser window

By performing this action, we have verified that we can use this endpoint to extract the 
Protobuf definition and build a client with it. And this is precisely what we will do next. 
Keep this application running, as you will need it to build the client.

Building the client for gRPC communication
Execute the following command to build a new project from the Console 
Application template:

dotnet new console -o UserManagementClient

Your next action will depend on which IDE you use. At the time of writing, only Visual 
Studio for Windows has the option of pulling a gRPC reference from the server and 
building the client based on it. However, if you use a different IDE, a similar option may 
be available for it.



334     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

Configuring the gRPC client via a service reference
The following series of steps apply if the option of adding a gRPC service reference is 
available for the IDE that you are using. Depending on the IDE, the exact labels in the 
context menu may vary:

1. Right-click on the UserManagementClient project. Then, click Add and select 
Service Reference…, as demonstrated in the following screenshot:

Figure 9.2 – Selecting the Service Reference… option in the context menu

2. Select gRPC as the service type, as demonstrated in the following screenshot:

Figure 9.3 – Selecting the gRPC service type



Configuring the gRPC client and server for unencrypted communication     335

3. Select the URL option, enter http://localhost:5002/protos/users.
proto into the field, and select Client as the role, as demonstrated in the following 
screenshot:

Figure 9.4 – The final setup screen for the service reference

If you then click Next and wait for the process to finish, you should expect  
a copy of the users.proto file to be generated inside the Protos folder in 
the UserManagementClient project. At this point, all necessary NuGet 
packages will be installed, and the proto file will be automatically registered in your 
UserManagementClient.csproj file.

If your IDE or code editor doesn't have the ability to import gRPC service references, then 
you will have to go through this process manually. We will describe how to do this in the 
next section.

Configuring the gRPC client manually
If you can't auto-generate gRPC client bindings based on a published web service 
definition, you can follow these steps to set up your client:

1. From the UserManagementClient project folder, run the following commands 
to install all of the necessary NuGet packages:

dotnet add UserManagementClient.csproj

   package Grpc.Net.ClientFactory

dotnet add UserManagementClient.csproj 

  package Google.Protobuf 

dotnet add UserManagementClient.csproj 

  package Grpc.Tools 



336     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

2. Create a Protos folder inside the UserManagementClient project 
folder and copy the users.proto file into it from the Protos folder of the 
UserInfoManager project.

3. Add the following markup to the UserManagementClient.csproj file:

<ItemGroup>

  <Protobuf Include="Protos\users.proto" 

    GrpcServices="Client">

    

  <SourceUri>http://localhost:5000/protos/users.proto

    </SourceUri>

  </Protobuf>

</ItemGroup>

And that's it – our client project now has all of the required dependencies. And our 
project setup is identical to what it would have been if we had auto-generated the binding 
from the service reference.

Please note that the Protobuf reference inside the project file contains the SourceUri 
element. This element holds the address of the original service reference. Other than that, 
it can be ignored.

We are now ready to complete our gRPC client setup and make an unencrypted call from 
it to our gRPC server.

Adding the remaining client logic
Our client project consists of a single functional class: Program. This is the class that we 
will need to modify:

1. Ensure that the following using statements are referenced by our class:

using Google.Protobuf.WellKnownTypes;

using Grpc.Core;

using Grpc.Net.Client;

using System;

using System.Threading.Tasks;

using Users;



Configuring the gRPC client and server for unencrypted communication     337

2. Change the Main method signature to the following:

static async Task Main()

3. Replace the content of the Main method with the following:

Console.WriteLine("Please enter the gRPC service 

  URL.");

var url = Console.ReadLine();

using var channel = GrpcChannel.ForAddress(url);

var client = new 

  UserManager.UserManagerClient(channel);

 

 using var call = client.GetAllUsers(new Empty());

 

while (await call.ResponseStream.MoveNext())

{

}

 

Console.ReadKey();

Insert the following code into the while loop:

var user = call.ResponseStream.Current;

 

Console.WriteLine("User details extracted");

Console.WriteLine($"First name: {user.FirstName}");

Console.WriteLine($"Surname: {user.Surname}");

 Console.WriteLine($"Gender: {user.Gender}");

Console.WriteLine($"Date of birth: 

  {user.DateOfBirth.ToDateTime():yyyy-MM-dd}");

Console.WriteLine($"Nationality: {user.Nationality}");

Console.WriteLine($"Address: 

  {user.Address.FirstLine}");

 Console.WriteLine($"Postcode or Zip code: 

  {user.Address.PostcodeOrZipCode}");

Console.WriteLine($"Town: {user.Address.Town}");

Console.WriteLine($"Country: {user.Address.Country}");

Console.WriteLine(string.Empty);



338     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

The console application will prompt us to enter the URL of the gRPC server endpoint. 
And if there is an unencrypted endpoint that we can use, the URL will work even if we use 
HTTP instead of HTTPS.

Prior to .NET 5, there was an additional configuration that you needed to apply on the 
gRPC client. Before you initialized the client, you needed to add the following statement:

AppContext.SetSwitch( "System.Net.Http.SocketsHttpHandler

  .Http2UnencryptedSupport", true);

But .NET 5 has removed the need to do this. On .NET 5 and later, unencrypted URLs 
will work by default, as long as the server supports them. We can test this by launching 
our console application and entering http://localhost:5000 as our URL. If you 
remember, 5000 is the port number we've assigned to HTTP/2 on the server. And, as can 
be seen in the following screenshot, it will work without us having to apply any additional 
parameters:

/

Figure 9.5 – The gRPC client was able to successfully make an unencrypted call

And because we have overridden the default configuration, there is no attempt by the 
server to apply TLS on any HTTP/2 port. This means that our application is expected to 
work equally well on any OS, including macOS.

But even though unencrypted communication is perfect for an OS-independent 
development environment, it is not something you would want to do in most production 
scenarios. This is why you need to know how to apply digital certificates to your 
applications. But before you can do this, we need to create a suitable certificate, and this is 
what we will cover next.



Creating and trusting a self-signed certificate     339

Creating and trusting a self-signed certificate
There are many different ways of creating TLS certificates for your web application. But 
regardless of the method you use, the principles remain the same.

For gRPC, all the principles of applying a certificate are identical to those for an ordinary 
web application that is accessible via HTTP/1.1. We even use the same kind of file to 
encrypt communication between the endpoints.

However, in an ASP.NET application, the application of the certificate differs depending 
on the kind of server you want to host your application on. Applying a certificate on IIS 
would be different from applying one on Kestrel. But even on the same type of server, 
there are still different ways to apply a certificate. For example, just like the HTTP port 
mappings we covered in the previous section, you can reference the certificate directly in 
the code, or you can reference it in the application settings.

Covering all of the different ways of applying certificates on all types of servers is 
beyond the scope of this chapter. Here, we will show a limited number of examples, but 
the general principles will be the same, regardless of how you choose to configure the 
certificates.

The basics of a TLS certificate
In this chapter, we will not go into the advanced details of how TLS certificates work. 
However, we will cover enough information for you to be confident applying certificates 
on your hosted web applications and troubleshooting the most frequent problems  
with them.

In order for your application to work with a TLS certificate, both the client machine and 
the server machine need to trust it. In our case, we will probably be running both the 
client and the server on the same machine, so getting the machine to trust any specific 
certificate will make the certificate trusted by both applications.

Trusting a certificate is important. By default, if an untrusted certificate is used, the client 
applications will either warn you when an attempt is made to connect to an endpoint 
protected by such a certificate, or it will refuse to connect. This is done to make sure that 
you aren't sharing data with potentially malicious applications.

In general, there are two ways of trusting a certificate. If the certificate is signed by  
a recognized CA, it will be trusted automatically. However, if you want to use a self-signed 
certificate that you have created yourself, you can also configure it to be trusted. In this 
scenario, it needs to be explicitly added to the list of trusted certificates. And this needs to 
happen for both the client and the server. Usually, this is done at the machine level, but it's 
also possible to get a specific application to trust a specific certificate.



340     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

A certificate doesn't just store the encryption keys and the signature of the relevant CA. 
It also contains metadata, such as the name of the host that the certificate was assigned 
to, the certificate's expiry date, a hexadecimal string representing the certificate's identity 
(known as a thumbprint), the certificate's common name (known as a subject), and other 
pieces of information. These metadata fields can be used to confirm that the certificate is 
still valid and hasn't been revoked.

Usually, your server certificate can be exported into a file with the .pfx extension. This 
file contains a full certificate chain with all the metadata, but it also contains both the 
public and private keys. This is why such a file needs to be securely stored on the server 
and never shared with a client.

There are also other file extensions associated with TLS certificates, for example, the .cer 
and .crt extensions represent a file that contains a public key and the minimum amount 
of metadata needed to prove that the certificate is valid. This file can be shared with 
clients.

You can have many different certificates on the server and choose a specific one to  
encrypt your web application. Next, we will have a look at how you can create and trust  
a self-signed certificate.

Trusting a default development certificate
In Chapter 1, Creating a Basic gRPC Application on ASP.NET Core, we looked at an 
example of how to trust a development certificate that comes with the .NET SDK.  
If you are on either a Windows or Linux machine, all you have to do is run the following 
command:

dotnet dev-certs https --trust

On Linux, there are additional steps you will need to apply to trust a development 
certificate. Those are distribution-specific – that is, the steps you will need to take on 
Fedora would be different from those you would need to follow on Ubuntu. And as there 
are several different Linux distributions available, covering them all would be beyond the 
scope of this chapter. However, the links to the relevant documentation will be provided 
in the Further reading section.



Creating and trusting a self-signed certificate     341

If you want to configure your application to use a specific certificate file, you can also do 
this with a development certificate. The dotnet dev-certs tool allows you to export 
the certificate into files of different formats. For example, this is a command you can use 
to export the certificate into a .pfx file that will reside inside the folder that you are 
running the command from:

dotnet dev-certs https -ep UserInfoManager.pfx -p password

The -ep parameter represents the path to the file. The -p parameter represents a 
certificate password. It is recommended that your .pfx file is protected by a strong 
password so that only approved applications can use it.

But the dotnet dev-certs tool abstracts away some important steps of certificate 
creation. It applies some default settings, such as assigning the certificate to the 
localhost domain. With these settings, the certificate will only be valid if you use the 
specified domain. For example, it will not work if you try to send an HTTPS request to 
the 127.0.0.1 IP address directly, which is the IP address that the localhost domain 
represents. There are some other tools you can use to apply even more customizations to  
a certificate and even create a production-grade certificate.

Creating a self-signed certificate on Windows using 
PowerShell
If you are a Windows user, the easiest way to create a self-signed certificate is via 
PowerShell. To do so, you will need to run PowerShell as an administrator. Then, we  
can navigate to the folder that we want to export the certificate into and apply the 
following steps:

1. Create a new certificate by executing the following command:

New-SelfSignedCertificate -DnsName "localhost", 

"localhost" -CertStoreLocation "cert:\LocalMachine\My" 

-NotAfter (Get-Date).AddYears(20) -FriendlyName 

"localhost-client" -KeyUsageProperty All -KeyUsage 

CertSign, CRLSign, DigitalSignature



342     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

2. This will create a certificate in the machine storage and associate it with 
the localhost domain. The certificate will be known under the name of 
localhost-client and will be valid for 20 years from today. If the command 
executes successfully, we will get the certificate thumbprint output on the screen:

Figure 9.6 – The certificate thumbprint and subject



Creating and trusting a self-signed certificate     343

3. We will need the thumbprint for later. But for now, let's create the certificate 
password by executing the following command:

$password = ConvertTo-SecureString -String "password" 

-Force –AsPlainText

4. This command will create a password object with the value of password and 
store it as plain text. Next, we will export the certificate into a .pfx file by executing 
the following command. Please note that you need to replace the {thumbprint} 
placeholder with the actual thumbprint. With the output we received previously, 
this would be 6682C8B7A8D8C600AB74B8DE3A7726B2E72C358E. But your 
own output will be unique:

Get-ChildItem -Path cert:\localMachine\my\{thumbprint} 

| Export-PfxCertificate -FilePath UserInfoManager.pfx 

-Password $password

5. We will also create a certificate file, which we can then import to our trusted  
root folder:

Export-Certificate -Cert 

cert:\localMachine\my\{thumbprint} -FilePath 

UserInfoManager.crt

6. We will then trust the certificate by importing it into a trusted root. This can be 
done via the following command:

Import-Certificate -FilePath UserInfoManager.pfx -

CertStoreLocation 'Cert:\LocalMachine\Root'

We have now created a .pfx file with the same name that we previously created by 
running the dotnet dev-certs command. We have also added the certificate to 
our trusted root. Now, we will briefly go through the process of creating a self-signed 
certificate on the Unix OS, which applies to both macOS and Linux.



344     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

Creating a self-signed certificate on Unix using 
OpenSSL
OpenSSL is a command-line tool that is available on any OS, including Windows. 
Normally, if you are using Git for source control, OpenSSL is already included with it. You 
can verify its presence by typing the following command in your terminal:

openssl help

If you don't happen to have it installed, you can obtain the documentation on how to 
install it from its official GitHub repository, which can be found at https://github.
com/openssl/openssl.

Once the tool is available, we can complete the following steps to create a self-signed 
certificate:

1. Execute the following command to create the certificate and the key. Please note 
that the .crt and .key filenames should be the same as the name of the domain 
that you are assigning the certificate to:

openssl req -x509 -newkey rsa:4096 -sha256 -days 365 

  -nodes 

-keyout localhost.key -out localhost.crt -subj 

"/CN=localhost" -extensions v3_ca -extensions v3_req

2. You will need to enter the certificate password when prompted. Then, export the 
certificate chain into a .pfx file by using the following command:

openssl pkcs12 -export -out UserInfoManager.pfx -inkey 

localhost.key -in localhost.crt

If you are on Windows, trusting the certificate can be done by running the same  
Import-Certificate PowerShell command we described previously. However, 
instructions for how to trust certificates on Unix-based OSes will be provided in the 
Further reading section.

In the next section, we will go over the process of applying a specific trusted .pfx file to 
enable TLS on the gRPC server.

https://github.com/openssl/openssl
https://github.com/openssl/openssl


Creating and trusting a self-signed certificate     345

Applying a certificate on ASP.NET Core

Note
The remaining instructions in this chapter cannot be implemented on macOS. 
Therefore, if you are using a Mac as your development machine, you will 
need to set up either a Linux or a Windows VM on it to be able to follow the 
instructions.

We will now modify our gRPC server application so that it will apply a custom self-signed 
certificate that we have created and subsequently enforce HTTPS. This means that if an 
attempt is made to connect to an unencrypted HTTP endpoint, it will be redirected to  
a dedicated HTTPS port. To do this, we will complete the following steps:

1. First, we need to add the following using statement to the Startup class in our 
UserInfoManager project, or Program.cs file if we are using .NET 6 template:

using System.Net;

2. We will then add the following statement anywhere before the app.
UseRouting() call in the Configure method of the Startup class (or the 
main body of Program.cs file on .NET 6):

app.UseHttpsRedirection();

3. This statement will ensure that whenever a call is made from a client to an 
unencrypted HTTP endpoint, it will be redirected to an encrypted HTTPS 
port. However, it will not currently work, as we don't have an HTTPS endpoint 
configured. We will need to tell the application which port to redirect the request to. 
To do this, we add the following snippet to the ConfigureServices method of 
the Startup class:

services.AddHttpsRedirection(options =>

{

    options.RedirectStatusCode = 

      (int)HttpStatusCode.PermanentRedirect;

    options.HttpsPort = 5001;

});



346     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

4. However, our redirection logic still will not work because we don't have any 
listeners configured for port 5001. To configure one, we will need to move 
into the Program class of the same application. In there, inside the call to the 
ConfigureKestrel method, we will need to add the following statement:

options.ListenAnyIP(5001, o => o.UseHttps());

5. We will then need to add the following using statement to the class:

using System.Security.Cryptography.X509Certificates;

6. Finally, we need to tell our application to use a specific .pfx file as the HTTPS 
certificate. To do so, we need to insert the following statement at the beginning of 
the call to the ConfigureKestrel method:

options.ConfigureHttpsDefaults(o =>

{

    o.ServerCertificate =

        new X509Certificate2("UserInfoManager.pfx", 

          "password");

});

7. This call assumes that we have a UserInfoManager.pfx file inside the 
folder that has the executable of our application in it. It also assumes that the 
certificate password is password. To make it work, we will need to create 
the UserInfoManager.pfx file by using any method we have previously 
covered and get our system to trust it. Then, we will need to place the file inside 
the UserInfoManager project folder and apply the following setting to the 
UserInfoManager.csproj file:

<ItemGroup>

  <None Update="UserInfoManager.pfx">

<CopyToOutputDirectory>PreserveNewest

  </CopyToOutputDirectory>

  </None>

</ItemGroup>

This setting will ensure that the file is copied into the output folder of our project 
whenever the code is compiled into the executable assemblies unless an up-to-date version 
of this file is already present inside the output folder.



Creating and trusting a self-signed certificate     347

There are also other ways we could have applied a certificate in our application. For 
example, instead of doing it directly in the code, we could have done it inside one of the 
configuration files. Or we could have done it at even a higher level – that is, in the settings 
of the server that hosts our application.

For example, we could have inserted the following entry into the appsettings.json 
file to enable the HTTPS port:

"https_port": 5001

Or, we could have applied the following Kestrel settings in that file:

"Kestrel": {

    "Endpoints": {

        "Http": {

            "Url": "http://localhost:5000" 

        },

        "Https": {

            "Url": https://localhost:5001,

            "Certificate": { 

            "Path": "UserInfoManager.pfx ",

            "Password": "password"

        }

    }

}

Also, we have only demonstrated the Kestrel example in this instance, and different server 
types will have different configurations.

In a nutshell, there are many different ways to configure TLS on ASP.NET Core 
applications. There is no right or wrong way of doing it. Instead, the way you'll choose to 
configure it will depend on your needs and/or personal preferences.

But the principles will remain the same, regardless of how you have chosen to configure 
TLS. When the client application sends a request to your server, it will be able to do so 
via an encrypted HTTPS channel. And it will be the certificate of your choice that will 
provide the encryption.



348     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

There is no difference between applying TLS to the standard HTTP/1.1 endpoints and 
applying it to gRPC – the principles are the same. In the preceding example, the same 
configuration will control both. We can now test both the HTTP/1.1 and HTTP/2 
endpoints to make sure that both direct HTTPS requests and requests redirected from 
HTTP work correctly.

Testing custom certificates and HTTPS redirection
To ensure that our TLS configuration has been applied correctly, we will launch the 
UserInfoManager project in debug mode inside your IDE. Then, open a browser and 
enter the following URL:

https://localhost:5001/protos/users.proto

If the TLS certificates have been configured correctly, you should expect to see an output 
similar to the following screenshot:

Figure 9.7 – The Protobuf definition displayed via an HTTPS endpoint



Creating and trusting a self-signed certificate     349

Then, if you replace the URL with http://localhost:5002/protos/users.
proto, you should expect to see it redirected back to https://localhost:5001/
protos/users.proto. This will confirm that HTTPS redirection works as expected 
for HTTP/1.1 communication.

Next, we will verify that the certificate we configured works for gRPC too. To do so, 
we will need to launch the UserManagementClient application by executing the 
dotnet run command inside its project folder. When the application has started 
and you have been prompted to enter the URL of the gRPC server, enter https://
localhost:5001. This should give you an output similar to that in the following 
screenshot:

Figure 9.8 – The gRPC client is able to make a call on an HTTPS endpoint

Next, we will test whether HTTPS redirection works with gRPC. To do so, we will launch 
the client application again. This time, we will input http://localhost:5000 as the 
URL. But before we do so, we will place a breakpoint anywhere inside the GetAllUsers 
method from the UserInfoService class of the UserInfoManager application.



350     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

So, if we launch the client application and enter http://localhost:5000 as the URL 
when prompted, we will be able to examine the Host property of the context object to 
confirm that the request has been redirected to the HTTPS port, which is 5001. This is 
how it should look in your IDE:

Figure 9.9 – The Host property of the context parameter confirms that HTTPS redirection took place

Then, if we allow the code to continue executing, we will see the standard results in the 
terminal of the client application, which should be similar to the ones displayed here:

Figure 9.10 – The standard results are delivered to the client when the HTTP URL is entered



Applying certificate authentication on the gRPC client and server     351

This concludes our demonstration of TLS on the server. But the server is not the only 
place where you can apply for certificates. You can also do this on the client, and this is 
what we will cover next.

Applying certificate authentication on the 
gRPC client and server
We have already established that on the server, security certificates are used for enabling 
TLS. That means a trusted certificate confirms to the client that it is safe to exchange keys 
with the server. This is how secure communication can be established between the client 
and the server.

But the same types of certificates can be used by clients too. However, their purpose is 
different from the server certificates. Client certificates are used for authentication. That 
means they are there to confirm that the client is allowed to access the server application.

To ensure that the client can be trusted, the certificate that the client shows to the server 
needs to be trusted by the server too. But this time, it's not necessary to get a CA involved 
to sign the certificate. For example, it is safe to use a certificate that has been issued by the 
server as the client certificate. The server will already trust it, and it will then be able to 
confirm that the data from the certificate matches the other data that the client sends.

Certificate authentication is especially relevant to gRPC because it is primarily used 
in RPC scenarios. In these scenarios, it will normally be another software application 
calling the server, rather than a human user. And this is why, instead of getting the client 
application to authenticate with a username and password in the way a human user 
would, it might be simpler to use a certificate that stays with the application – either 
permanently, or until it is revoked.

To enable certificate authentication, we need to apply the relevant configuration to the 
server. Then, we will need to configure the client to use a certificate.



352     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

Configuring the gRPC server for certificate 
authentication
We will now apply some changes to the UserInfoManager application to enable 
certificate authentication. To do so, we will complete the following steps:

1. Inside the call to the ConfigureHttpsDefaults method in the Program class, 
add the following statement:

o.ClientCertificateMode = 

  ClientCertificateMode.RequireCertificate;

2. This will ensure that clients will require a certificate. Now, open the Startup class 
(or Program.cs file if you are on .NET 6) and ensure that it contains all of the 
following using statements:

using Microsoft.AspNetCore.Authentication.Certificate;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Hosting;

using System;

using System.Net;

using System.Security.Claims;

using System.Threading.Tasks;

using UserInfoManager.Services;

3. We will now add some event handlers for certificate authentication. To do so, 
add the following block into the ConfigureServices method (or insert the 
statement into Program.cs file if you are on .NET 6, while applying appropriate 
modifications, as per prior examples):

services.AddAuthentication(CertificateAuthentication

  Defaults.AuthenticationScheme)

    .AddCertificate(options =>

    {

    })

    .AddCertificateCache();



Applying certificate authentication on the gRPC client and server     353

4. We will now add the following option to the AddCertificate call to ensure that 
we accept any type of certificates, including self-signed certificates:

options.AllowedCertificateTypes = 

  CertificateTypes.All;

5. Next, we will add the event handlers into the same call, which will be as follows:

options.Events = new CertificateAuthenticationEvents

{

    OnCertificateValidated = context =>

    {

    },

    OnAuthenticationFailed = context =>

    {

    },

};

6. The OnCertificateValidated event will be triggered when the client 
certificate has passed validation. We will populate this event handler with the 
following content, where we will be logging some data extracted from the certificate 
and using some of its other data as a claim principle, which we will need for 
authentication:

var claims = new[]

{

    new Claim(ClaimTypes.Name,

        context.ClientCertificate.Subject,

        ClaimValueTypes.String,

         context.Options.ClaimsIssuer)

};

 

context.Principal = new ClaimsPrincipal(

    new ClaimsIdentity(claims, context.Scheme.Name));

 

Console.WriteLine($"Client certificate thumbprint 

  {context.ClientCertificate.Thumbprint}");

Console.WriteLine$"Client certificate subject: 

  {context.ClientCertificate.Subject}");



354     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

context.Success();

return Task.CompletedTask;

7. The OnAuthenticationFailed event will be fired when the validation of  
a certificate fails. We will populate its body with the following:

context.NoResult();

context.Response.StatusCode = 403;

context.Response.ContentType = "text/plain";

context.Response.WriteAsync(context.Exception.ToString

  ()).Wait();

return Task.CompletedTask;

8. To make it work, we will need to add the following call to the Configure method. 
It should go anywhere before the app.UseRouting(); line:

app.UseAuthentication();

9. Finally, to see how the information extracted from the certificate has populated the 
context parameter of a gRPC method, we will insert the following block of code 
at the beginning of the GetAllUsers method in the UserInfoService class:

Console.WriteLine($"Client authenticated: 

  {context.AuthContext.IsPeerAuthenticated}");

 

 if (context.AuthContext.IsPeerAuthenticated)

{

    Console.WriteLine($"Auth property name: 

     {context.AuthContext.PeerIdentityPropertyName}");

    Console.WriteLine($"Auth property value: 

      {context.AuthContext.Properties.FirstOrDefault()

        ?.Value}");

}

What we are doing here is confirming whether or not the client has been authenticated. 
Then we extract and log the properties that the client has been authenticated with.

Of course, we could do much more with certificate authentication on the server side. We 
could add custom event handlers and extra validation logic. But this example is sufficient 
to demonstrate its basic principles.



Applying certificate authentication on the gRPC client and server     355

Now, we will go ahead and configure our client for certificate authentication. Then, we will 
verify that it all works as we expect it to.

Enabling certificate authentication on the gRPC client
Our client project, UserManagementClient, will only require a small number of 
alterations, as per the following steps:

1. Create a self-signed certificate by using either PowerShell or OpenSSL and export 
the UserManagementClient.pfx file. Ensure that the target domain of the 
certificate (for example, the subject) is localhost. Set the certificate as trusted. 
Please note that certificates generated by the dotnet dev-certs tool will not 
work as client authentication certificates.

2. Copy the .pfx file into the UserManagementClient project folder and add the 
following snippet to the UserManagementClient.csproj file:

<ItemGroup>

  <None Update="UserManagementClient.pfx">

    <CopyToOutputDirectory>PreserveNewest</CopyToOutput

  Directory>

  </None>

</ItemGroup>

3. Add the following using statements to the Program class inside the project:

using System.Net.Http;

using System.Security.Cryptography.X509Certificates;

4. Add the following block of code just before the channel variable is instantiated:

var certificate = new 

  X509Certificate2("UserManagementClient.pfx", 

    "password");

var handler = new HttpClientHandler();

handler.ClientCertificates.Add(certificate);

5. Replace the instantiation of the channel variable with the following:

using var channel = GrpcChannel.ForAddress(url, new 

  GrpcChannelOptions

{



356     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

    HttpHandler = handler

});

And that's it – we can now test our application to see if the certificate authentication  
works correctly.

Testing certificate authentication
We will first launch the UserInfoManager application by executing the dotnet run 
command inside its project folder. Then, we will execute the same command inside the 
UserManagementClient project folder.

When prompted, we will enter https://localhost:5001 into the console of the 
gRPC client application. If everything has been configured correctly, we should see results 
similar to those in the console in the following screenshot:

Figure 9.11 – The gRPC call results when a client certificate is applied

Then, to verify that the server has been able to successfully validate the certificate, we 
will need to look at the server console. There, you should be able to see the information 
that gets logged when the validation event is fired. This will look similar to the following 
screenshot:



Applying certificate authentication on the gRPC client and server     357

Figure 9.12 – The client certificate information logged by the server-side validation event

Then, we can verify that the gRPC call context has been successfully populated with the 
information extracted from the client certificate. If so, there will be entries in the console 
similar to the following:

Figure 9.13 – The client certificate information successfully added to the gRPC call context



358     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

And this concludes our chapter on using TLS to secure gRPC endpoints. Now, let's 
summarize what we have learned.

Summary
In this chapter, you have learned that TLS is used for securing HTTP endpoints, including 
the HTTP/2 endpoints used by gRPC. This is achieved with the use of HTTPS, which is 
enabled by digital security certificates.

You have learned that in order for the certificates to work, they need to be trusted by both 
the server and the client machines. Typically, this will be achieved by getting the certificate 
signed by a CA. However, it can also be achieved by explicitly marking the certificate as 
trusted on the machine.

You have learned that there are several tools that you can use to generate and trust 
certificates. These include PowerShell (which is Windows-only) and OpenSSL (which is 
OS-independent). We also discussed the dotnet dev-certs tool, which is available 
with the dotnet CLI. This is simpler to use than other tools, but it's not suitable for all 
scenarios.

You have also learned that security certificates aren't used only on the server side – they 
are used on the client side too. However, clients use them for different purposes, for 
example, as an authentication tool.

Authentication is something we have briefly touched on in this chapter. In the next 
chapter, we will cover authentication in more depth, and we will also cover the difference 
between authentication and authorization.

Questions
1. What would you use to encrypt HTTP communication between a client and  

a server?

A. SSL
B. TLS
C. gRPC
D. Bearer tokens



Further reading     359

2. Why can't you use the Http1AndHttp2 configuration for an unsecure gRPC port?

A. You can use Http1AndHttp2 for an unsecure gRPC port.
B. The port uses either HTTP/1.1 or HTTP/2 and you cannot have both.
C. With this configuration, unsecure requests are routed to HTTP/1.1.
D. You cannot use unsecure gRPC ports at all.

3. Which of the following tools can be used to generate a self-signed certificate?

A. PowerShell
B. The .NET CLI
C. OpenSSL
D. All of the above

4. What is the difference between .pfx and .crt files?

A. They are interchangeable.
B. They belong to different operating systems.
C. A .crt file stores the complete certificate chain, while a .pfx file only stores 

the public key and any related metadata.
D. A .pfx file stores the complete certificate chain, while a .crt file only stores 

the public key and any related metadata.

5. What is a client certificate used for?

A. For authentication
B. To store the public key of the server's certificate
C. To encrypt the server response
D. To encrypt server-sent events

Further reading
• Enforce HTTPS in ASP.NET Core: https://docs.microsoft.com/en-us/

aspnet/core/security/enforcing-ssl

• Configure endpoints for the ASP.NET Core Kestrel web server: https://docs.
microsoft.com/en-us/aspnet/core/fundamentals/servers/
kestrel/endpoints

https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl
https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel/endpoints
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel/endpoints
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel/endpoints


360     Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS

• Configure certificate authentication in ASP.NET Core: https://docs.
microsoft.com/en-us/aspnet/core/security/authentication/
certauth

• Generate self-signed certificates with the .NET CLI: https://docs.
microsoft.com/en-us/dotnet/core/additional-tools/self-
signed-certificates-guide

• OpenSSL documentation: https://www.openssl.org/docs/

• Making CA certificates available to Linux command-line tools: https://www.
redhat.com/sysadmin/ca-certificates-cli

• Importing the root CA certificate to Debian and Ubuntu: https://help.f-
secure.com/product.html?business/threatshield/latest/
en/task_9B68ADC2A12A4CC591A7B0271B57A499-threatshield-
latest-en

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/certauth
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/certauth
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/certauth
https://docs.microsoft.com/en-us/dotnet/core/additional-tools/self-signed-certificates-guide
https://docs.microsoft.com/en-us/dotnet/core/additional-tools/self-signed-certificates-guide
https://docs.microsoft.com/en-us/dotnet/core/additional-tools/self-signed-certificates-guide
https://www.openssl.org/docs/
https://www.redhat.com/sysadmin/ca-certificates-cli
https://www.redhat.com/sysadmin/ca-certificates-cli
https://help.f-secure.com/product.html?business/threatshield/latest/en/task_9B68ADC2A12A4CC591A7B0271B57A499-threatshield-latest-en
https://help.f-secure.com/product.html?business/threatshield/latest/en/task_9B68ADC2A12A4CC591A7B0271B57A499-threatshield-latest-en
https://help.f-secure.com/product.html?business/threatshield/latest/en/task_9B68ADC2A12A4CC591A7B0271B57A499-threatshield-latest-en
https://help.f-secure.com/product.html?business/threatshield/latest/en/task_9B68ADC2A12A4CC591A7B0271B57A499-threatshield-latest-en


10
Applying 

Authentication and 
Authorization to 
gRPC Endpoints

Authentication and authorization are very important topics in any type of application 
development. Almost any public-facing application will have at least some of its 
functionality restricted to only specific users, as you wouldn't want an anonymous user to 
gain access to sensitive information.

There are many different types of sensitive information that you would want to restrict 
access to. Personal information of registered users is one example; so is the history of their 
personal communication with other users; so is any financial information.

There are many examples of this on the public web. No social media platform would allow 
you to publish content or contact other users until you have logged in with a username 
and password. Neither would an online banking app grant you access to the account 
information without verifying who you are.



362     Applying Authentication and Authorization to gRPC Endpoints

Because Google Remote Procedure Call (gRPC) endpoints are routinely used to provide 
access to all kinds of sensitive data, it is important to know how to ensure that only known 
and authorized users can use them, and this is where authentication and authorization 
come into play.

In the previous chapter, we have already had a look at how to enable gRPC client 
authentication by using Transport Layer Security (TLS) certificates, but this type of 
authentication would not be suitable in every scenario. The certificate will tell the server 
that the client is authorized to connect to it, but what if the client is being used by an 
anonymous user? This is why it is important to know how to restrict access to gRPC 
endpoints.

We will cover the following topics in this chapter:

• Setting up the authentication backend

• Restricting gRPC endpoints to authenticated users

• Restricting endpoints to authorized users only

By the end of this chapter, you will have learned the difference between authentication and 
authorization and how to apply both in the context of gRPC on ASP.NET Core. You will 
also have learned how to set up your own single sign-on (SSO) system and use it to share 
authorization metadata between different applications of your ecosystem so that users 
don't have to log in separately to access separate applications.

Technical requirements
To follow the instructions in this chapter, you will need the following:

• A computer with either a Windows, Mac, or Linux operating system 

• A supported integrated development environment (IDE) or code editor (Visual 
Studio, Visual Studio Code (VS Code), or JetBrains Rider)

• The .NET 5 software development kit (SDK)

• A self-signed development HyperText Transfer Protocol Secure (HTTPS) 
certificate enabled on the machine 

Instructions on how to set all of these up were provided in Chapter 1, Creating a Basic 
gRPC Application on ASP.NET Core. All the code samples used in this chapter can 
be found at https://github.com/PacktPublishing/Microservices-
Communication-in-.NET-Using-gRPC/tree/main/Chapter-10.

Please visit the following link to check the CiA videos: https://bit.ly/3pXmFim

https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-10
https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-10
https://bit.ly/3pXmFim


Setting up the authentication backend     363

Setting up the authentication backend
There are multiple ways of setting up the authentication backend of your application. It's 
common to see the user data being stored inside the main application itself. However, this 
approach is not scalable. The users stored directly inside the application will only be valid 
within the context of this application. So, if your estate has multiple applications, it will be 
problematic to authorize all of them with a single login.

An alternative approach is to use a separate authorization provider that all applications 
will integrate with. This way, when the user logs in, a token is issued to the user that is 
then stored in the session. Then, this user is free to access any other application until they 
log out or the token expires due to inactivity. This system is known as SSO.

When you use SSO, your authentication information will not be stored in any of the 
user-facing applications. Instead, there will be a dedicated application that will act as an 
authentication provider. All other applications will be registered on it as clients, and every 
time the user logs in, it will be the SSO application that authenticates the user and returns 
the token.

There are several ways of enabling an SSO, but the de facto standard for web-based 
applications is to use a combination of OpenID Connect and Open Authorization 
(OAuth). OpenID Connect is used for authentication, while OAuth is used for 
authorization. The differences between these two concepts are outlined here:

• Authentication verifies that the user is who they claim to be

• Authorization ensures that a specific user is allowed to access a specific resource

The user is authenticated when they are able to prove they are who they say they are. One 
of the most common ways to do this is to enter a username and password, the latter of 
which—in theory—is supposed to be known only to the user. So, the user is authenticated 
if the username matches a record on the system and the user is able to provide secret 
information that is supposed to be only known to them.

There are also other security procedures, such as multi-factor authentication (MFA). 
This is where the user is asked to provide more details about themselves, such as a 
temporary numeric code that is sent to their device. MFA is beyond the scope of this 
chapter, however.



364     Applying Authentication and Authorization to gRPC Endpoints

Authorization refers to when the user record has specific attributes that allow them to 
access a specific resource. For example, users may be given roles, such as User and 
Admin. There might be some resource that only the user with the Admin role is allowed 
to access. In this case, if an authenticated user without such a role attempts to access  
the resource, the system would know who the user is but the user would not be  
granted access.

On the web, it is typical to receive a 401 (Unauthorized) HTTP response code for 
an unauthenticated user and 403 (Forbidden) for an authenticated user that doesn't 
have permission to access a particular resource.

We will set up an SSO provider, but before we do, let's have a brief look at how OpenID 
Connect and OAuth work.

OpenID Connect and OAuth flow
OpenID Connect and OAuth are actually related. OAuth is a protocol that was developed 
to specify a pattern for granting authorization. However, it didn't specify how to 
authenticate the user, and that is what OpenID Connect was developed for.

OpenID Connect and OAuth work in tandem. There are multiple ways they can be used, 
but a typical flow looks like this:

1. If the user is not authenticated, the application redirects the user to the login page of 
the SSO provider, while passing client information in the request.

2. The user enters their credentials. If the login is successful, the SSO provider 
redirects the client back to the original application with a one-time access  
code (OTAC).

3. The code is sent back to the SSO provider, which returns a JavaScript Object 
Notation (JSON) Web Token (JWT) to the application.

4. If necessary, the web server uses the token to retrieve additional information about 
the user. But otherwise, the user is now authenticated and the token can be shared 
between relevant applications.



Setting up the authentication backend     365

The following diagram provides a visualization of this flow:

Figure 10.1 – OpenID Connect flow

A JWT is a Base64-encoded string that, when decoded, consists of three JSON parts:  
a header, a payload, and a signature. Those elements are separated by full stops inside the 
encoded string.

The header contains an encryption algorithm and the token type, which will typically be 
HS256 and JWT respectively. Its structure will look similar to this:

{

  "alg": "HS256",

  "typ": "JWT"

}

The payload contains all relevant information about the user that the system needs to 
determine whether or not the user is allowed to access any particular resource. The fields 
inside the JSON payload object are known as claims. Some claims are standard, such as 
aud (audience) or iat (issued at time). However, any custom claims can be used too.  
It's the claims in the JWT payload that indicate whether or not a user is authorized to use 
a resource—for example, they may contain roles the users are assigned to.



366     Applying Authentication and Authorization to gRPC Endpoints

A payload would look similar to this. However, in a real-life scenario, it will probably 
contain way more fields than this:

{

  "sub": "1234567890",

  "name": "John Smith",

  "iat": 1516239022

}

A signature is used for verification of the token. The SSO provider will have a so-called 
secret associated with a client application: an arbitrary string of characters that only the 
application will know. Without the secret, it will not be possible to obtain a matching 
signature, which is how the application knows that the token was issued by a valid SSO 
provider. The formula for calculating the signature is shown here:

HMAC_SHA256(  secret,  base64urlEncoding(header) + '.' + 

  base64urlEncoding(payload))

The secret parameter is the value of the secret string that is used for SHA256 encoding. 
The other parameters are a combination of a Base64-encoded header and a payload linked 
together by a period character.

This concludes our overview of how a JWT works for authorization. We will now build 
an SSO provider to enable authentication and authorization for the gRPC service we will 
build later.

Configuring IdentityServer4
There are many SSO providers that we can choose from. Some of them are premium with 
expensive enterprise-grade licenses, while others are free and open source. In our case, 
we will be using IdentityServer4, which is free and open source. Moreover, unlike other 
providers, it's built entirely on .NET, so we won't have to install any additional SDKs.

But the choice of an SSO provider isn't important. OpenID Connect and OAuth are 
standard protocols that all major SSO solutions use. Different providers will differ in terms 
of user interface (UI) and configuration, but they will work in exactly the same way. In 
fact, you can replace one SSO provider with another and, as long as you have configured 
it to run on the same domain, have the clients with the same identifiers (IDs), and make 
it produce the same claims in the JWT, chances are that your applications will still work 
the same way as before. Therefore, the principles that we will use to build SSO based on 
IdentityServer4 will be equally applicable to other providers, such as Keycloak and Okta.



Setting up the authentication backend     367

IdentityServer4 is easy to deploy because a number of .NET project templates were already 
provided for it. All we will have to do is install a relevant template, create a project from it, 
and reconfigure it to meet our needs, as follows:

1. Install the collection of IdentityServer4 templates by running the following 
command:

dotnet new -i IdentityServer4.Templates

2. We will need a solution for our projects to make the process easier. To create a 
solution, first, create a GrpcAuthentication folder. Then, open a terminal 
inside this folder and execute the following command:

dotnet new sln

3. We will need an instance of IdentityServer4 with a web-based management 
UI to make it as easy to configure as possible. To create such a project, we will run 
the following command inside the solution folder:

dotnet new is4admin -o AuthProvider

4. Now, from the solution folder, execute the following command to add the project to 
the solution:

dotnet sln add AuthProvider\AuthProvider.csproj

5. We will now need to configure our authentication provider to use HTTPS, as it will 
be then easier for the clients to access it without having to add extra configuration. 
To do so, open the launchSettings.json file in the Properties folder of the 
AuthProvider project. Ensure that the applicationUrl entry has an HTTP 
Uniform Resource Locator (URL) listed and that it comes first in the list. The entry 
should look like this:

"applicationUrl": 

  https://localhost:5001;http://localhost:5000

6. Next, we will need to open the env.js file that can be found in the wwwroot/
admin/assets folder and replace all URLs in there with the HTTP URL we 
inserted into the launchSettings.json file previously. Then, we will launch 
the application by executing a dotnet run command inside its project folder.



368     Applying Authentication and Authorization to gRPC Endpoints

7. To verify that the application works, we can navigate to the HTTP URL we set 
previously, followed by the /admin path. In the preceding example, it would 
be https://localhost:5001/admin. If everything has been configured 
correctly, the following page should be displayed and no error messages should  
be shown:

Figure 10.2 – IdentityServer4 admin page



Setting up the authentication backend     369

The admin page will attempt to connect to various backend components asynchronously, 
so it will display errors if anything hasn't been configured correctly. But if there are no 
errors, all you will need to do is click Start. This will take you to the management screen 
where you can start adding data.

Adding SSO users, roles, and clients
To make our authentication provider work, we will need to add roles, users, and clients. 
We will start with roles, as follows:

1. In the admin UI, click on the Roles tab. Then, click on Add Role, enter User as the 
role name, and click Save.

2. Do the same for the Admin role. After you've done that, you should have the 
following roles listed:

Figure 10.3 – User and Admin roles are listed alongside the default reserved role



370     Applying Authentication and Authorization to gRPC Endpoints

3. Now, navigate to the Users tab and click on the Add User button. Fill in the form 
with any details of your choice. Then, click Save & Configure.

4. On the screen that appears, navigate to the Roles tab (but not the one in the 
header). You should now be able to see all the roles listed on the left. To assign the 
user the role of the User, select the role from the list and click on the button with 
the arrow pointing right, as demonstrated in the following screenshot:

Figure 10.4 – Role assignment screen on IdentityServer4



Setting up the authentication backend     371

5. Now, navigate back to the Users section by clicking on the Users tab on top of the 
screen. Repeat Steps 3 and 4 to create a new user, but this time, assign the Admin 
role to the user.

6. Create another user and assign both Admin and User roles to them.
7. Create another user and assign no roles to them.
8. We will next create a client. To do so, click on the Clients tab and then click on Add 

Client. We will first select Web App and click Start. On the next screen, we will fill 
in the form with the following details:

• Client ID: userFacingApp

• Display Name: User Facing App

9. We will set our callback URL to https://localhost:44349/signin-oidc 
and click Next. On the next screen, we will leave the logout URL blank and  
click Next.

10. On the next screen, we will set the Shared Secret value to 
userFacingAppSecret. We made this value easy to work with. However, in a 
real-life scenario, this should be some string that is hard to guess. We will need to 
click Add to get the secret added, and then we'll click Next.

11. On the next screen, we will assign profile and openid to the client and click 
Next. We will leave all other settings as default and keep clicking Next until we see  
a screen with a Save button. This is the button we will click to save the profile.

Our SSO provider has now been fully configured, and because it's a stateful application 
that saves data in a local database, it will keep all the data stored even if we bring the 
application down. The next time the application is brought up, it will have the same state 
as before.

Next, we will create a web application that will use the SSO provider. We need an 
application with a UI, so we will use ASP.NET Core MVC. We will force this application 
to redirect the user to the SSO provider if the user hasn't been authenticated.



372     Applying Authentication and Authorization to gRPC Endpoints

Forcing login redirect on a web application
We will create a new project based on a Model-View-Controller (MVC) template. 
Then, we will add all necessary dependencies to it so that it can use an SSO redirection 
mechanism. Finally, we will modify the application so that it can connect to our SSO 
provider. Follow these next steps:

1. In the solution folder, run the following command to create a new project from the 
MVC template:

dotnet new mvc -o UserFacingApp

2. Add the project to the solution by executing the following command:

dotnet sln add UserFacingApp\UserFacingApp.csproj

3. We will now need to add a NuGet package that will allow us to enable OpenID 
Connect middleware in our application so that we won't have to do the 
authentication flow manually. To do so, run the following command from the 
UserFacingApp project folder:

dotnet add UserFacingApp.csproj package 

Microsoft.AspNetCore.Authentication.OpenIdConnect

4. We will now open the Startup.cs file (or the Program.cs file if you are using 
a .NET Core project template) inside the project and ensure that all of the following 
using statements are present:

using System.IdentityModel.Tokens.Jwt;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.Extensions.Configuration;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Hosting;

5. Then, insert the following code into the ConfigureServices method. If you 
are using a .NET 6 project template, you will just need to insert it into the main 
body anywhere before the Build event and replace services with builder.
Services:

JwtSecurityTokenHandler.DefaultMapInboundClaims = 

  false;

 



Setting up the authentication backend     373

services.AddAuthentication(options =>

{

    options.DefaultScheme = "Cookies";

    options.DefaultChallengeScheme = "oidc";

})

.AddCookie("Cookies")

.AddOpenIdConnect("oidc", options =>

{

    options.Authority = "https://localhost:5001";

    options.ClientId = "userFacingApp";

    options.ClientSecret = "userFacingAppSecret";

    options.ResponseType = "code";

    options.CallbackPath = "/signin-oidc";

    options.SaveTokens = true;

});

An important point to remember is that, in a real-life scenario, these values will be 
in a configuration file rather than hardcoded, but we didn't do that here to make the 
demonstration of the key concepts simpler.

This code will add middleware for authentication based on OpenID Connect, and 
this will store the token inside a cookie. The options under AddOpenIdConnect 
represent the configuration we have applied to the SSO application. Authority 
represents the base URL of our SSO application. ClientId represents the ID of the 
client we have configured. ClientSecret is the secret we have added to the client. 
ResponseType with the value of code tells the middleware to use a one-time 
code (OTC) after the redirection to retrieve the token. CallbackPath represents 
the path in the current application that the SSO application will redirect to after 
successful authentication. It needs to match one of the redirection URLs defined in 
the client configuration on IdentityServer4. Finally, we tell the middleware to save 
the token by setting the SaveToken option to true.

6. We will now add the middleware to the pipeline. To do so, add the following lines of 
code in the Configure method (or in the main body of the code if you are using 
.NET 6) after the app.UseRouting() call:

app.UseAuthentication();

app.UseAuthorization();



374     Applying Authentication and Authorization to gRPC Endpoints

7. Now, to force our application to redirect to the SSO login screen, we will need to 
replace the logic inside the UseEndpoints call with the following code:

endpoints

.MapDefaultControllerRoute()

.RequireAuthorization();

8. We will now modify our HomeController class, which is located inside the 
Controllers folder of the application. First, we will add the following using 
statements to it:

using Microsoft.AspNetCore.Authentication;

using Microsoft.AspNetCore.Authentication.Cookies;

9. Then, add the following code before the return statement inside the Index 
method:

var accessToken = await 

  HttpContext.GetTokenAsync("access_token");

Console.WriteLine($"Access token: {accessToken}");

10. Next, add the following method to the controller:

public IActionResult LogOut()

{

    return new SignOutResult(new[]

    {

    CookieAuthenticationDefaults.AuthenticationScheme,

      "oidc"

    });

}

This will log the user out by clearing the authentication cookies, but we will need  
a link to this action method. To do so, we need to open the _Layout.cshtml file 
located in the Shared folder inside the Views folder. Locate the ul element with 
the class attribute set to navbar-nav flex-grow-1 and add the following 
HyperText Markup Language (HTML) to it after the existing li items:

<li class="nav-item">

    <a class="nav-link text-dark" asp-area="" asp-

     controller="Home" asp-action="LogOut">Log Out</a>

</li>



Setting up the authentication backend     375

11. Finally, open the launchSettings.json file inside the Properties folder 
and ensure that the HTTPS URL is set to https://localhost:44349. This is 
the base URL of the redirect URL that we have used inside the client configuration 
of the SSO application. If, for some reason, you can't use this particular port, then 
change it in both the launchSettings.json file of the current application and 
the client configuration of the SSO application.

We have now set up an SSO along with a user-facing application that can use it. We 
will now test our setup. If we launch both applications by executing the dotnet run 
command inside the corresponding project folders and then navigate to the URL of the 
MVC application, we should be redirected to the login screen of the SSO application, 
which should look like this:

Figure 10.5 – IdentityServer4 login screen



376     Applying Authentication and Authorization to gRPC Endpoints

After successful login with any of the registered credentials, you should be redirected to 
the home page of your MVC application. Also, if you have a look at the console output of 
the application, you should see an access token similar to this:

Figure 10.6 – Access token in the console of MVC application

We can now decode the token and have a look at its header and payload. To do so, we 
can visit the https://jwt.io site and paste the token into the Encoded section. You 
should then see something similar to this:

https://jwt.io


Setting up the authentication backend     377

Figure 10.7 – Decoded JWT

We can also test the logout functionality by going back to the home page of the MVC 
application and clicking the Log Out tab. You should be redirected to the logout page 
of IdentityServer4. Then, entering the base URL of the MVC application will redirect us 
back to the login screen, and this demonstrates the OpenID Connect flow in action. If we 
configure our SSO client to connect to the SSO provider and its configuration matches 
the client configuration in the SSO application, we can force the client application to 
automatically redirect to the authentication screen provided by the SSO application. If the 
user has been successfully authenticated, we can then retrieve a JWT, which we can store 
in a cookie.



378     Applying Authentication and Authorization to gRPC Endpoints

The token will be valid until we either log out by clearing the cookie or the token expires. 
But while it is valid, the user remains authenticated and we don't get redirected to the 
login screen.

In the preceding examples, we have also demonstrated how we can extract the JWT with 
our backend code, and this is precisely what will allow us to authenticate into a protected 
gRPC application, which we will have a look at next.

Restricting gRPC endpoints to authenticated 
users
gRPC is primarily designed for the backend; therefore, in most cases, it won't be possible 
to redirect to an SSO login. There simply won't be a UI that we will be able to do it from.

But because the OpenID Connect workflow obtains a token that is then stored in 
the application, we can simply reuse this token to get the user-facing application to 
authenticate into the gRPC application that it needs to communicate with. We will now 
demonstrate how to do this.

Setting up shared gRPC dependencies
We will start by creating a library that both the client and the server will share. As we did 
in the previous chapters, we will do so to ensure that both the client and the server use 
identical Protocol Buffers (Protobuf) definitions. Follow these next steps:

1. Navigate to the GrpcAuthentication solution folder and execute the following 
command to create a class library project:

dotnet new classlib -o GrpcDependencies

2. Add this project to the solution by executing the following command:

dotnet sln add 

GrpcDependencies\GrpcDependencies.csproj

3. Next, navigate to the GrpcDependencies project folder and add the relevant 
NuGet packages by executing the following command:

dotnet add GrpcDependencies.csproj package 

Grpc.Net.Client

dotnet add GrpcDependencies.csproj package 

Google.Protobuf



Restricting gRPC endpoints to authenticated users     379

dotnet add GrpcDependencies.csproj package Grpc.Tools

dotnet add GrpcDependencies.csproj package 

Grpc.AspNetCore

4. We will then create a Protos folder inside the project folder and place  
a secrets.proto file there with the following package and service 
definitions:

syntax = "proto3"; 

 

package secrets;

 

service SecretStore {

rpc GetSecret(GetSecretRequest) returns 

  (GetSecretResponse);

}

5. We will then add the relevant message definitions, as follows:

message GetSecretRequest {

int32 id = 1;

}

 

message GetSecretResponse {

oneof payload {

SecretData data = 1;

string error_message = 2;

}

}

 

message SecretData {

int32 id = 1;

string title = 2;

string description = 3;

SecretLevel level = 4;

}

 

enum SecretLevel {



380     Applying Authentication and Authorization to gRPC Endpoints

RESTRICTED = 0;

SECRET = 1;

TOP_SECRET = 2;

}

6. This service will return a payload containing some secret information that only 
authorized users will be able to access. We will need to register this file inside 
GrpcDependencies.csproj by adding the following code to it:

<ItemGroup>

  <Protobuf Include="Protos\secrets.proto" />

</ItemGroup>

We have now added a library with shared gRPC dependencies that both the client and the 
server will use. Now, we are ready to set up the gRPC server application.

Setting up the gRPC server
We will now add a gRPC service project with an endpoint that will only be accessible by 
authenticated users. Follow these next steps:

1. Navigate back to the GrpcAuthentication solution folder and execute the 
following command to create a new gRPC service project:

dotnet new grpc -o SecretsManager

2. We will then add the project to the solution by executing the following command:

dotnet sln add SecretsManager\SecretsManager.csproj

3. We now need to add a library that will enable us to add JWT middleware to our 
application. To do so, navigate to the SecretsManager project folder and execute 
the following command:

dotnet add SecretsManager.csproj package 

Microsoft.AspNetCore.Authentication.JwtBearer

4. Now, we will open the SecretsManager.csproj file and add the following  
code to it:

<ItemGroup>

  <ProjectReference Include="..\GrpcDependencies



Restricting gRPC endpoints to authenticated users     381

    \GrpcDependencies.csproj" />

</ItemGroup>

5. We can also remove the existing reference to Grpc.AspNetCore NuGet package 
from the project file, as this package will be implicitly referenced via the reference to 
the GrpcDependencies project.

6. We will now add a SecretsCache.cs file to the project with the following 
content:

using Secrets;

using System.Collections.Generic;

using System.Linq;

 

namespace SecretsManager

{

    public class SecretsCache

    {

        private readonly List<SecretData> secrets;

 

        public SecretsCache()

        {

            secrets = new List<SecretData>();

        }

 

        public SecretData GetSecret(int id)

        {

            return secrets.FirstOrDefault(s => s.Id == 

              id);

        }

    }

}

7. We will then need to populate the secrets list with the initial data. To do so, we 
can add the following code into the constructor:

secrets.Add(new SecretData

{

    Id = 1,



382     Applying Authentication and Authorization to gRPC Endpoints

    Title = "Undercover Operative",

    Description = "We have an undercover operative in 

      Northern Alaska",

    Level = SecretLevel.Restricted

});

secrets.Add(new SecretData

{

    Id = 2,

    Title = "Ship Position",

    Description = "The current ship's coordinates are 

      54.55, 4.9",

    Level = SecretLevel.Secret

});

secrets.Add(new SecretData

{

    Id = 3,

    Title = "Bioweapon",

    Description = "A bioweapon has been in development 

      since 2009",

    Level = SecretLevel.TopSecret

 });

8. Now, we will add SecretsManagerService.cs to the Secrets folder of the 
project. The content of the file will be as follows:

using Grpc.Core;

using Microsoft.AspNetCore.Authorization;

using Secrets;

using System;

using System.Threading.Tasks;

 

namespace SecretsManager

{

    [Authorize]

    public class SecretsManagerService : 

      SecretStore.SecretStoreBase

    {



Restricting gRPC endpoints to authenticated users     383

        private readonly SecretsCache secretsCache;

        

        public SecretsManagerService(SecretsCache 

          secretsCache)

        {

            this.secretsCache = secretsCache;

        }

    }

}

Please note that we have the Authorize attribute on top of the class signature. 
This attribute, if specified without any additional parameters, will restrict access to 
all endpoints in the class to only those users who have successfully authenticated. 
We can also place the attribute on an individual endpoint, which will restrict access 
to only this specific endpoint. It's the same attribute that is used in action methods 
of the controllers and inside the SignalR hub.

9. We will then add the GetSecret RPC implementation method to the class, which 
will look like this:

public override Task<GetSecretResponse> 

  GetSecret(GetSecretRequest request, ServerCall

    Context context)

{

    var secret = secretsCache.GetSecret(request.Id);

 

    if (secret is not null)

        return Task.FromResult(new GetSecretResponse

        {

            Data = secret

        });

    return Task.FromResult(new GetSecretResponse

    {

        ErrorMessage = $"No secret found for id 

          {request.Id}."

    });        

}



384     Applying Authentication and Authorization to gRPC Endpoints

10. We will then need to apply some changes to the Startup class (or the Program.
cs file if you are using a .NET 6 project template). First, we need to make sure that 
the class has the following using statement:

using Microsoft.IdentityModel.Tokens;

11. Next, we will add the JWT authentication middleware. To do so, we will insert the 
following code into the ConfigureServices method. If you are using a .NET 6 
template, services will need to be replaced with builder.Services and the 
code will need to be inserted before the Build event:

services.AddAuthentication("Bearer")

    .AddJwtBearer("Bearer", options =>

    {

        options.Authority = "https://localhost:5001";

        options.TokenValidationParameters = new 

          TokenValidationParameters

        {

            ValidateAudience = false

        };

   });

Here, we are specifying the authority, which is the URL of our SSO application. 
Then, we are switching off audience validation. This is because the intended 
audience of the token is the user-facing MVC application. So, we need to make sure 
that the token still works if passed into the current application.

12. After this, we have a choice. Since we already have the Authorize attribute 
on our SecretsManagerService class, we can add blank authorization 
middleware by adding a services.AddAuthorization(); statement to 
the ConfigureServices method. But to make it clearer, we can also add 
authorization middleware that explicitly states that only authenticated users are 
allowed access. To do so, we will add the following statement:

services.AddAuthorization(options =>

{

    options.AddPolicy("GrpcAuth", policy =>

    {

        policy.RequireAuthenticatedUser();

    });

});



Restricting gRPC endpoints to authenticated users     385

13. Next, we will need to insert the following statements into the Configure method 
(or, for .NET 6, the main body of the file after the Build event) after the app.
UseRouting call:

app.UseAuthentication();

app.UseAuthorization();

14. We will then need to register our gRPC service implementation by adding the 
following statement to the UseEndpoints call:

endpoints.MapGrpcService<SecretsManagerService>();

15. Optionally, we can force the endpoint to use the authorization policy that we 
defined earlier by modifying the registration call, as follows:

endpoints.MapGrpcService<SecretsManagerService>()

    .RequireAuthorization("GrpcAuth");

16. Finally, we will need to change the application ports in the project to make 
sure that they don't clash with other applications. To do so, we will open the 
launchSettings.json file and will replace the applicationUrl entry with 
the following code:

"applicationUrl": "",

Note
If you are running your server-side application on a Mac, you will need to 
apply some modifications to it. Instructions on how to do so can be found in 
the Running a gRPC service on a Mac section of Chapter 1, Creating a Basic 
gRPC Application on ASP.NET Core.

We are now ready to enable relevant changes on the UserFacingApp project, which will 
act as our gRPC client.



386     Applying Authentication and Authorization to gRPC Endpoints

Enabling gRPC client functionality
We will now open the UserFacingApp project and make all the necessary changes to 
it to make it act as a gRPC client and to make it pass an authorization token to the gRPC 
server. Follow these next steps:

1. We will first need to add shared gRPC dependencies to the project by adding the 
following code to the UserFacingApp.csproj file:

<ItemGroup>

  <ProjectReference Include="..\GrpcDependencies

    \GrpcDependencies.csproj" />

</ItemGroup>

2. We will then need to create a model for one of our views. To do so, insert a 
SecretDetails.cs file into the Models folder with the following content:

namespace UserFacingApp.Models

{

    public class SecretDetails

    {

        public int Id { get; set; }

        public string Title { get; set; }

        public string Description { get; set; }

        public string SecretLevel { get; set; }

    }

}

3. Next, we will insert a GrpcClientWrapper.cs file into the root of the project 
and add the following content to it:

using Grpc.Core;

using Secrets;

using System;

using System.Threading.Tasks;

using UserFacingApp.Models;

 

namespace UserFacingApp

{

public class GrpcClientWrapper



Restricting gRPC endpoints to authenticated users     387

    {

private readonly SecretStore.SecretStoreClient client;

public GrpcClientWrapper(SecretStore.SecretStoreClient 

  client)

        {

this.client = client;

        }

 

    }

}

4. Next, we will add a method to the class that makes a call to the gRPC server and 
applies the authorization token to the header while doing so, as follows:

public async Task<SecretDetails> GetSecret(int id, 

  string accessToken)

{

   var metadata = new Metadata

   {

        { "Authorization", $"Bearer {accessToken}" }

    };

    var request = new GetSecretRequest

    {

        Id = id

    };

 

    var response = await 

      client.GetSecretAsync(request, metadata);

 

    if (string.IsNullOrEmpty(response.ErrorMessage))

        return new SecretDetails

        {

            Id = response.Data.Id,

            Title = response.Data.Title,

            Description = response.Data.Description,

            SecretLevel = 

              response.Data.Level.ToString()



388     Applying Authentication and Authorization to gRPC Endpoints

        };

 

    throw new Exception(response.ErrorMessage);

}

This method adds an Authorization header. The value of the header consists of 
the authorization type and the attribute that is used for authorization. In our case, 
we are using an authorization token, which is also known as a bearer token. In this 
case, we need to use Bearer as the authorization type. Then, we will just add the 
JWT that we have received from the SSO application.

5. This time, we will inject a gRPC client from an inbuilt factory. To do so, we will 
need to add the following using statement to the Startup class of the project (or 
the Program.cs file if you are using .NET 6):

using Secrets;

6. Then, we will add the following dependency injection (DI) registration statements 
to the ConfigureServices method. The client address is the address of the 
SecretsManager application we set up previously:

services.AddGrpcClient<SecretStore.SecretStoreClient>(

  o =>

{

    o.Address = new Uri("");

});

services.AddSingleton<GrpcClientWrapper>();

7. We will now insert a gRPC client wrapper into our HomeController class. To 
do so, we will add it as a private field and will replace the class constructor with the 
following code:

private readonly GrpcClientWrapper clientWrapper;

 

public HomeController(GrpcClientWrapper clientWrapper)

{

    this.clientWrapper = clientWrapper;

}



Restricting gRPC endpoints to authenticated users     389

8. We will now add the following action method, where we will use the gRPC client 
wrapper class:

public async Task<IActionResult> Details(int id)

{

    var accessToken = await 

      HttpContext.GetTokenAsync("access_token");

    var secretDetails = await 

      clientWrapper.GetSecret(id, accessToken);

    return View(secretDetails);

}

9. We will now need to add a view for this method. To do so, add a Details.
cshtml file to the Home folder of the Views folder with the following content:

@model UserFacingApp.Models.SecretDetails 

 

@{

    ViewData["Title"] = "Secret Details";

}

 

<h1>@ViewData["Title"]</h1>

 

<p><b>ID: </b> @Model.Id</p>

<p><b>Title: </b> @Model.Title</p>

<p><b>Description: </b> @Model.Description</p>

<p><b>Secret Level: </b> @Model.SecretLevel</p>

10. Then, replace the content of the Index.cshtml file with the following code:

@{

    ViewData["Title"] = "Home Page";

}

 

<div class="text-center">

    <h1 class="display-4">Please enter the id of the 

      secret you want to view:</h1>

    <form asp-action="Details" method="get">



390     Applying Authentication and Authorization to gRPC Endpoints

        <p>

            <input type="text" name="Id" />

            <input type="submit" value="Submit" />

        </p>

    </form>

</div>

We are now ready to launch our applications and see how the authorization token is 
passed through to the gRPC service. After executing the dotnet run command inside 
all project folders except GrpcDependencies, we can open the MVC application in the 
browser and log in by using any of the available credentials. We should then be greeted by 
the following page:

Figure 10.8 – New home page of the MVC application



Restricting endpoints to authorized users only     391

If we enter the value of 1, the page should change to the following:

Figure 10.9 – Screen showing successfully obtained data from gRPC

However, if you change your client code and don't pass the authorization token to the 
gRPC call, you will receive a 401 HTTP error instead of this page.

We have demonstrated how authentication works on gRPC, but now, we will go further 
and apply authorization to it too.

Restricting endpoints to authorized users only
User authorization is based on claims that are present in the payload of a JWT. We can  
use any claims for authorization, including any custom ones. For example, we can use  
a standard role claim to restrict endpoints to only those clients that have specific roles 
defined inside this claim, or we can just create a custom claim based on the combination 
of various fields in the object that represents the user. For example, we may add  
a particular claim to the payload of the token if the user has a specific role and also 
belongs to a specific organization. Then, on the server side, we can configure an 
authorization policy based on this claim.



392     Applying Authentication and Authorization to gRPC Endpoints

There are many ways you can apply authorization in gRPC on ASP.NET Core, so we 
won't be able to cover them all in this chapter. We will focus on the standard role-based 
authorization. However, the general principles demonstrated in the following examples 
will be applicable to different types of authorization.

But before we apply authorization to our gRPC endpoints, we will need to make 
some changes to our SSO application because, as you may recall from Figure 10.6, 
IdentityServer4 doesn't insert a role claim into the JWT payload by default.

Configuring SSO provider to insert role claim into  
the JWT
In order for our IdentityServer4 implementation to insert user roles into the JWT on 
successful authentication, we will need to add some custom code to it. So, we will need 
to stop any running instances of our application and apply the following changes to the 
AuthProvider project:

1. Insert a UserProfileService.cs file into the root of the project folder and add 
the following using statements to it:

using AuthProvider.Models;

using IdentityModel;

using IdentityServer4.Extensions;

using IdentityServer4.Models;

using IdentityServer4.Services;

using Microsoft.AspNetCore.Identity;

using System;

using System.Linq;

using System.Security.Claims;

using System.Threading.Tasks;

2. Then, we will add the following class body:

namespace AuthProvider

{

    public class UserProfileService : IProfileService

    {

      private readonly 

        IUserClaimsPrincipalFactory<ApplicationUser> 

          claimsFactory;



Restricting endpoints to authorized users only     393

      private readonly UserManager<ApplicationUser> 

        usersManager;

 

      public UserProfileService(

          UserManager<ApplicationUser> usersManager,

          IUserClaimsPrincipalFactory<ApplicationUser> 

            claimsFactory)

        {

            this.usersManager = usersManager;

            this.claimsFactory = claimsFactory;

        }

 

    }

}

3. Next, we will implement the interface by first adding the following method to it:

public async Task 

GetProfileDataAsync(ProfileDataRequestContext context)

{

    var subject = context.Subject.GetSubjectId();

    var user = await 

      usersManager.FindByIdAsync(subject);

    var claimsPrincipal = await 

      claimsFactory.CreateAsync(user);

    var claimsList = claimsPrincipal.Claims.ToList();

    claimsList = claimsList.Where(c => context

      .RequestedClaimTypes.Contains(c.Type)).ToList();

 

    if (usersManager.SupportsUserRole)

    {

        foreach (var roleName in await 

          usersManager.GetRolesAsync(user))

        {

            claimsList.Add(new 

              Claim(JwtClaimTypes.Role, roleName));

        }



394     Applying Authentication and Authorization to gRPC Endpoints

    }

    context.IssuedClaims = claimsList;

}

4. This method contains the logic to add a role claim to the token, but we will also 
need to add the following method as it's also defined in the interface:

public async Task IsActiveAsync(IsActiveContext 

  context)

{

    var subject = context.Subject.GetSubjectId();

    var user = await 

      usersManager.FindByIdAsync(subject);

    context.IsActive = user != null;

}

5. Next, we will need to register this class in the DI container of the Startup class 
(or the Program.cs file if we are using .NET 6). To do so, we will first add the 
following using statement to the class:

using IdentityServer4.Services;

6. Then, we will add the following line at the end of the ConfigureServices 
method (or just before the Build event if you are using .NET 6):

services.AddScoped<IProfileService, 

UserProfileService>();

It is important that we add this registration at the very end of the method; otherwise, it 
will be overwritten by the default implementation.

Next, we will add rpc definitions to our Protobuf. This will be needed so that we can 
apply different authorization rules to different endpoints.



Restricting endpoints to authorized users only     395

Applying different authorization rules to different 
gRPC endpoints
We will first make some changes to the secrets.proto file. Then, we will add the  
new endpoints to the server-side code and apply authorization to them. Follow these  
next steps:

1. Add the following import statement to the secrets.proto file in the 
GrpcDependencies project:

import "google/protobuf/empty.proto";

2. Add the following rpc definitions to the SecretStore service:

rpc GetSecretsCount (google.protobuf.Empty) returns 

  (SecretsCount);

rpc InsertSecret (SecretData) returns 

  (google.protobuf.Empty);

3. Now, add the following message definition:

message SecretsCount {

    int32 count = 1;

}

4. We are now ready to add the implementations of these new RPCs to our 
SecretsManagerService class of the SecretsManager application project. 
But first, we will need to add the following methods to the SecretsCache class:

public int GetCount()

{

    return secrets.Count;

 }

 

public void InsertSecret(SecretData data)

{

    data.Id = secrets.Max(s => s.Id);

    secrets.Add(data);

 }



396     Applying Authentication and Authorization to gRPC Endpoints

5. Then, add the following using statement to it:

using Google.Protobuf.WellKnownTypes;

6. Then, add the following method to the class:

[AllowAnonymous]

public override Task<SecretsCount> 

  GetSecretsCount(Empty request, ServerCallContext 

    context)

{

    return Task.FromResult(new SecretsCount

    {

        Count = secretsCache.GetCount()

    });

}

The AllowAnonymous attribute allows clients to access this endpoint without any 
authorization token even if class-wide authorization was enabled. In our case, the 
endpoint is merely returning the count of secrets, which we don't deem to be 
sensitive information.

7. Next, we will add the following method to the class:

[Authorize(Roles = "Admin")]

public override Task<Empty> InsertSecret(SecretData 

  request, ServerCallContext context)

{

    secretsCache.InsertSecret(request);

    return Task.FromResult(new Empty());

}

We are restricting access to this endpoint to only those users that have the 
role of Admin. We could also specify multiple roles by separating them with 
commas. Also, we could restrict access by Policy (as with GrpcAuth, which 
we have specified in the Startup class) or AuthenticationScheme (as with 
Bearer, Cookie, oidc, and so on). We could, for example, define a custom 
policy that requires specific claims by calling the RequireClaim method on the 
AuthorizationPolicyBuilder object while registering the policy in the 
Startup class.



Restricting endpoints to authorized users only     397

8. We will finish off by adding the following attribute to the GetSecret method:

[Authorize(Roles = "User")]

So, we now have three gRPC endpoints. The endpoint that returns secret information is 
restricted to those who have been assigned the role of User. The endpoint that allows you 
to insert a new secret is restricted to only those who have the role of Admin. And there 
is an unrestricted endpoint that can be accessed by absolutely anyone, even if they aren't 
authenticated at all.

The roles of Admin and User are independent of each other, so if the JWT contains only 
one of those roles, only one of these endpoints will be accessible. We will shortly see this 
principle in action. Let's make the necessary changes to the client to do so.

Applying gRPC client changes
We will now open the UserFacingApp project. We will first modify the gRPC client 
wrapper class. Then, we will add all necessary action methods to the controller and the 
corresponding views. Follow these next steps:

1. We will need to add the following using statement to the GrpcClientWrapper 
class:

using Google.Protobuf.WellKnownTypes;

2. Then, add the following method to it:

public async Task<int> GetSecretsCount()

{

    var response = await 

      client.GetSecretsCountAsync(new Empty());

    return response.Count;

}

3. Please note that we aren't passing the authorization token to the gRPC call, but we 
will pass one in the following method that we will add next:

public async Task InsertSecret(SecretDetails details, 

  string accessToken)

{

    var metadata = new Metadata

    {

        { "Authorization", $"Bearer {accessToken}" }



398     Applying Authentication and Authorization to gRPC Endpoints

    };

 

    var secret = new SecretData

    {

        Title = details.Title,

        Description = details.Description,

        Level = (SecretLevel)System.Enum.Parse

          (typeof(SecretLevel), details.SecretLevel)

    };

 

    await client.InsertSecretAsync(secret, metadata);

}

4. We will then add the following methods to the HomeController class:

public IActionResult Add()

{

    return View();

}

 

[HttpPost]

public async Task<IActionResult> Add(SecretDetails 

  details)

{

    var accessToken = await 

      HttpContext.GetTokenAsync("access_token");

    await clientWrapper.InsertSecret(details, 

      accessToken);

    return RedirectToAction("Index");

}

5. These methods will correspond with the view that will allow us to insert a new 
secret and the POST action that gets triggered when we submit the form. We 
will also have the action method for getting the secret count, as illustrated in the 
following code snippet:

public async Task<IActionResult> Count()

{



Restricting endpoints to authorized users only     399

    ViewData["Count"] = await 

      clientWrapper.GetSecretsCount();

    return View();

}

6. We will then add the corresponding views. First, we will add an Add.cshtml file 
to the Home folder inside the Views folder. Its content will be as follows:

@model UserFacingApp.Models.SecretDetails 

 

@{

    ViewData["Title"] = "Add New Secret";

}

 

<h1>@ViewData["Title"]</h1>

 

<form asp-controller="Home" asp-action="Add" 

  method="post">

    Title:  <input asp-for="Title" /> <br />

    Description: <input asp-for="Description" /><br />

    Description: <select data-val="true" 

      id="SecretLevel" name="SecretLevel">

        <option value="Restricted">Restricted</option>

        <option value="Secret">Secret</option>

        <option value="TopSecret">Top Secret</option>

    </select><br />

    <button type="submit">Submit</button>

</form>

7. Then, we will add a Count.cshtml file with the following content:

@model UserFacingApp.Models.SecretDetails 

@{

    ViewData["Title"] = "Secret Count";

}

 

<h1>@ViewData["Title"]</h1>

<p><b>@ViewData["Count"]</b></p>



400     Applying Authentication and Authorization to gRPC Endpoints

8. Finally, we will insert the following markup into the Index.cshtml file 
immediately after the closing form tag:

<br />

<a class="nav-link text-dark" asp-area="" asp-

  controller="Home" asp-action="Count">Get secrets 

    count</a>

<br />

<a class="nav-link text-dark" asp-area="" asp-

  controller="Home" asp-action="Add">Add a new 

    secret</a>

We can now launch all of our applications by executing the dotnet run command 
inside all three of our ASP.NET Core project folders. By then using different logins, we can 
check whether we can access various gRPC endpoints. If we just want to navigate to the 
Count view, we should be able to do so with absolutely any user. We should be able to see 
content on the page similar to this, regardless of which login we use:

Figure 10.10 – AllowAnonymous endpoint will return data to any user



Summary     401

On the other hand, if you try to either access secret details with a login that doesn't have  
a User role or insert a secret with a login that doesn't have an Admin role, you will get  
a 403 HTTP code returned.

This concludes our summary of applying authentication and authorization to gRPC 
endpoints. Let's summarize what we have learned.

Summary
In this chapter, you have learned the fundamental principles of authentication 
and authorization and how to apply both to gRPC endpoints. You now know that 
authentication is when the user proves that they are who they claim to be, while 
authorization is making sure that the user has the necessary permissions to access  
a resource.

You have learned how a separate application can act as an SSO provider to allow you to 
authenticate a user into all applications inside your ecosystem. You have learned how the 
OpenID Connect protocol is used to authenticate the user into a relevant application, 
while OAuth is used for user authorization.

You have learned that a JWT contains a JSON payload object that describes the user 
so that the protected application can tell whether the user is who they claim to be and 
whether they have the necessary permissions. A JWT is validated by a signature to protect 
it from forgery.

And this concludes the chapter on applying authentication and authorization on gRPC 
endpoints. In the next and final chapter, we will have a look at how to trace events in your 
gRPC application by applying logs and metrics to it.

Questions
1. What is authentication used for?

A. To ensure that only users with specific permissions can access the application

B. To ensure that a user is who they claim to be

C.  To ensure that only users that have specific roles are allowed to access the 
application

D. To ensure that only users that have an email address can access the system



402     Applying Authentication and Authorization to gRPC Endpoints

2. What is authorization used for?

A. To ensure that only users with specific permissions can access the application

B. To ensure that a user is who they claim to be

C.  To ensure that only users that have specific roles are allowed to access the 
application

D. To ensure that only users that have an email address can access the system
3. Which of the following statements is true?

A. OpenID Connect is used for authorization

B. OAuth is used for authentication

C. OpenID Connect is used for authentication

D. All of the above
4. Which parts does a JWT consist of?

A. Header, body, and footer

B. Header, payload, and footer

C. Header, payload, and signature

D. Payload and signature
5. What is a claim in a JWT payload?

A. An encrypted signature

B. Any JSON field in the payload

C. Any field in a JSON payload with a singular value

D. Specific reserved JSON fields



Further reading     403

Further reading
• IdentityServer4 documentation: https://identityserver4.readthedocs.

io/en/latest/

• OpenID Connect documentation: https://openid.net/connect/

• OAuth documentation

• Understanding OAuth 2.0 and OpenID Connect: https://blog.runscope.
com/posts/understanding-oauth-2-and-openid-connect

• Overview of ASP.NET Core authentication: https://docs.microsoft.com/
en-us/aspnet/core/security/authentication

• What is multifactor authentication and how does it work?: https://
searchsecurity.techtarget.com/definition/multifactor-
authentication-MFA

https://identityserver4.readthedocs.io/en/latest/
https://identityserver4.readthedocs.io/en/latest/
https://openid.net/connect/
https://blog.runscope.com/posts/understanding-oauth-2-and-openid-connect
https://blog.runscope.com/posts/understanding-oauth-2-and-openid-connect
https://docs.microsoft.com/en-us/aspnet/core/security/authentication
https://docs.microsoft.com/en-us/aspnet/core/security/authentication
https://searchsecurity.techtarget.com/definition/multifactor-authentication-MFA
https://searchsecurity.techtarget.com/definition/multifactor-authentication-MFA
https://searchsecurity.techtarget.com/definition/multifactor-authentication-MFA




11
Using Logging, 

Metrics, and 
Debugging in gRPC 

on .NET
We have reached the final chapter of the book, and it covers a very important topic that 
will help you to identify problems easily if something in your gRPC application isn't 
working as expected when you are writing it. Also, you will learn how to monitor your 
application once it's up and running. This will allow you to identify any issues early and 
respond to them proactively rather than reactively.

We will start by going through various debugging techniques you can use on both the gRPC 
client and server. Of course, to debug your own code, all you have to do is place breakpoints 
in it. However, during the development of gRPC applications, you may encounter situations 
where it's not your own code that is generating an issue. Therefore, we will need to be able to 
extract as much information from the gRPC middleware as we can.



406     Using Logging, Metrics, and Debugging in gRPC on .NET

But once your application is up and running, you would want to know what it's doing. 
Otherwise, you wouldn't be able to diagnose any problems that may arise with it. This is 
why you need to capture various pieces of information in the logs, especially details of any 
errors that happen inside your application's logic.

Finally, you might want to collect other data to use for various types of analytics. For 
example, you might want to know how many requests your application receives, how 
many errors occur inside of it, and how long it takes for the requests to get processed. This 
is where the concept of metrics comes in.

In this chapter, we will cover all of these concepts. We will go through the following topics:

• Debugging gRPC client components inside a .NET application

• Debugging gRPC server components inside a .NET application

• Applying logs to gRPC

• Applying metrics to gRPC

By the end of this chapter, you will have learned how to diagnose unexpected behavior 
and any other problems when developing your gRPC application. You will also have 
learned how to monitor your application once it's up and running by getting it to write 
data into logs and by getting it to generate metrics.

Technical requirements
To follow the instructions in this chapter, you will need the following: 

• A computer with a Windows, Mac, or Linux operating system (OS) 

• A supported integrated development environment (IDE) or code editor (for 
example, Visual Studio, Visual Studio Code, or JetBrains Rider) 

• The .NET 5 software development kit (SDK) 

• A self-signed development HTTPS certificate enabled on your machine 

The instructions on how to set all of these up were provided in Chapter 1, Creating a 
Basic gRPC Application on ASP.NET Core. All of the code samples used in this chapter 
can be found at https://github.com/PacktPublishing/Microservices-
Communication-in-.NET-Using-gRPC/tree/main/Chapter-11.

Please visit the following link to check the CiA videos: https://bit.ly/3m3Wkht

https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-11
https://github.com/PacktPublishing/Microservices-Communication-in-.NET-Using-gRPC/tree/main/Chapter-11
https://bit.ly/3m3Wkht


Debugging gRPC client components inside a .NET application     407

Debugging gRPC client components inside a 
.NET application
We all know how to debug our own code. We can place breakpoints on the line we want to 
see the behavior of. We can get the code to output to the console. We can get it to output 
to a file.

But what if we need to debug a third-party library? What if it's not our own code that 
doesn't behave as expected and we need to know why? After all, unless you try to 
decompile the library or try to get hold of its source code, its internal code is inaccessible 
to us. But even if we could get hold of the source code, it would be cumbersome to apply it 
to our own solution.

Luckily, gRPC libraries on .NET allow you to debug their internal middleware. If you are 
getting some unexpected behavior from them, you will be able to capture their actions and 
see what they are trying to do.

We will now go through the techniques you can apply to obtain as much debugging 
information from gRPC components as possible. We will start with the gRPC client side. 
To debug gRPC from the client side, we will need to configure the server application to 
return detailed errors from it. This will allow us to identify the source of the problem 
down to the individual line. Then, we will apply interceptors to our client, which will allow 
us to intercept any type of communication event, log any relevant information from it, 
and handle any exceptions that may be thrown by the gRPC middleware.

Setting up shared gRPC dependencies
As we've done in the previous chapters, we will add a class library that will contain all of 
the gRPC dependencies we will need, and we will do this both on the server and the client 
side. This class library will then be used by both of the applications:

1. Create a folder called GrpcAnalytics anywhere on your machine and initiate a 
solution by running the following command inside of it:

dotnet new sln

2. In the solution folder, execute the following command to create a class library 
project:

dotnet new classlib -o GrpcDependencies



408     Using Logging, Metrics, and Debugging in gRPC on .NET

3. Then, execute the following command to add the project to the solution:

dotnet sln add 

GrpcDependencies/GrpcDependencies.csproj

4. Now, navigate to the GrpcDependencies project folder. Execute the following 
command to add the necessary NuGet package. This will be the only package that we 
will need, as it already references all of the other gRPC libraries that we will be using:

dotnet add GrpcDependencies.csproj package 

Grpc.AspNetCore

5. Create a Protos folder inside the project folder and add a iot_analytics.
proto file to it with the following content:

syntax = "proto3";

 

import "google/protobuf/empty.proto";

package iot_analytics;

 

service IotStatusManager {

rpc GetAllStatuses (google.protobuf.Empty) returns 

  (stream LocationStatusResponse);

rpc GetLocationStatus (LocationStatusRequest) returns 

  (LocationStatusResponse);

}

message LocationStatusRequest {

int32 location_id = 1;

}

 

message LocationStatusResponse {

int32 location_id = 1;

string location_name = 2;

string device_serial_number = 3;

int64 total_requests = 4;

int64 total_errors = 5;

}



Debugging gRPC client components inside a .NET application     409

6. To finish off our class library, we will add the following block to the 
GrpcDependencies.csproj file:

<ItemGroup>

    <Protobuf Include="Protos\iot_analytics.proto" />

</ItemGroup>

So, as the name of our Protobuf suggests, we will pretend that we are monitoring 
the status of Internet of Things (IoT) devices. Next, we will build our gRPC service 
application and configure it so that the client will receive as much debugging information 
from it as possible.

Adding a gRPC service application and getting it to 
display detailed errors
In this example, we will intentionally make one of the remote procedure calls (RPCs) 
throw an error to see what information the client will receive. We will be able to see how 
this information changes depending on whether detailed errors have been enabled on the 
server. Here's how it's done:

1. We will navigate back to our GrpcAnalytics solution folder and execute the 
following command to create a new gRPC service project:

dotnet new grpc -o IotDeviceManager

2. We will then add this project to the solution by running the following command:

dotnet sln add 

IotDeviceManager/IotDeviceManager.csproj

3. Then, we will navigate to our project folder and add the reference to the 
class library we created earlier by inserting the following section into the 
IotDeviceManager.csproj file:

<ItemGroup>

  <ProjectReference Include="..\GrpcDependencies\

    GrpcDependencies.csproj" />

</ItemGroup>

4. Also, because the class library already has a reference to the gRPC library that we 
need, we can remove any direct NuGet references from the IotDeviceManager.
csproj file.



410     Using Logging, Metrics, and Debugging in gRPC on .NET

5. We will then add a LocationDataCache.cs file to our project. The initial 
content of the file will be as follows:

using IotAnalytics;

using System;

using System.Collections.Generic;

using System.Linq;

 

namespace IotDeviceManager

{

    public class LocationDataCache

    {

        private readonly List<LocationStatusResponse> 

          statuses;

 

        public LocationDataCache()

        {

            statuses = new 

              List<LocationStatusResponse>();

        }

6. We will then add the following public methods to the class:

        public IEnumerable<LocationStatusResponse> 

          GetAllStatuses()

        {

            return statuses;

        }

 

        public LocationStatusResponse GetStatus(int 

          locationId)

        {

            return statuses.FirstOrDefault(s => 

              s.LocationId == locationId);

        }

    }

}



Debugging gRPC client components inside a .NET application     411

7. We can pre-populate the statuses collection by inserting the following code into 
the constructor:

var random = new Random();

 

for (var i = 0; i < 100; i++)

{

    statuses.Add(new LocationStatusResponse

    {

        LocationId = i + 1,

        LocationName = $"Location {i}",

        DeviceSerialNumber = $"{i}{i}{i}-DEMO-{i * 

          20}",

        TotalRequests = random.Next(1000, 1000000),

        TotalErrors = random.Next(1000)

    });

}

8. Next, we will add the gRPC service implementation to the Services 
folder of the project. The file we will insert into the folder will be called 
IotStatusManagerService.cs and it will have the following content:

using Google.Protobuf.WellKnownTypes;

using Grpc.Core;

using IotAnalytics;

using System.Threading.Tasks;

 

namespace IotDeviceManager.Services

{

    public class IotStatusManagerService : 

      IotStatusManager.IotStatusManagerBase

    {

        private readonly LocationDataCache dataCache;

 

        public IotStatusManagerService

         (LocationDataCache dataCache)

        {



412     Using Logging, Metrics, and Debugging in gRPC on .NET

            this.dataCache = dataCache;

        }

    }

}

9. Then, we will add rpc implementations as follows:

public override async Task GetAllStatuses(Empty 

  request, IServerStreamWriter<LocationStatusResponse> 

    responseStream, ServerCallContext context)

{

    foreach (var status in dataCache.GetAllStatuses())

    {

        await responseStream.WriteAsync(status);

    }

}

 

public override Task<LocationStatusResponse> 

  GetLocationStatus(LocationStatusRequest request, 

    ServerCallContext context)

{

    throw new Exception("This call is not ready 

      yet.");

}

10. So, this is where we have deliberately made one of the rpc implementations throw 
an error to see what will happen if the client tries to call it. Next, we will open the 
Startup class (or the Program.cs file if you are using .NET 6 project templates). 
In this file, we will add the following variable to indicate whether we are using the 
development environment:

private readonly bool isDevelopment = 

  Environment.GetEnvironmentVariable(

    "ASPNETCORE_ENVIRONMENT") == "Development";



Debugging gRPC client components inside a .NET application     413

11. Then, replace the content of the ConfigureServices method with the 
following. If you are using .NET 6, you will need to apply this code to the 
builder.Services property inside the main body of the code, and you will 
need to delete the existing builder.Services.AddGrpc call:

services.AddGrpc(options =>

{

    options.EnableDetailedErrors = isDevelopment;

});

services.AddSingleton<LocationDataCache>();

services.AddSingleton<TracingInterceptor>();

So, we have enabled detailed errors if the code is running on the development 
environment. Otherwise, the server would be expected to produce only the 
standard error information, without revealing too many details.

12. We will then need to register our newly added gRPC service implementation by 
adding the following statement to the UseEndpoints call:

endpoints.MapGrpcService<IotStatusManagerService>();

Note
If you are running your server-side application on a Mac, you will need to 
apply some modifications to it. The instruction on how to do so can be found 
in the Running a gRPC Service on a Mac section in Chapter 1, Creating a Basic 
gRPC Application on ASP.NET Core.

And now we have everything we need on the server side. Let's now build the client and 
add some extra debugging capabilities to it.

Adding a gRPC client with additional debugging 
capabilities
When an error comes from gRPC middleware on ASP.NET Core, it will throw an 
exception of the RpcException type. Of course, such an exception doesn't necessarily 
come from the internal components of gRPC libraries. We are free to throw this type of 
exception ourselves. But unless we throw an exception of this type manually, the only 
place it will be generated is in the internal gRPC middleware. And this is why – in order 
to diagnose the problem that originates inside the middleware – we need to catch an 
exception of this type.



414     Using Logging, Metrics, and Debugging in gRPC on .NET

We will now add a gRPC client and apply global exception handling to it. This means 
we won't have to catch it for every individual gRPC call. We will do this by applying 
the so-called interceptors. Also, once the client is completed, we will be able to see what 
happens with and without the EnableDetailedErrors option being set to true on 
the server:

1. First, we will navigate back to our GrpcAnalytics solution folder and run the 
following command to create a new ASP.NET Core Web API project:

dotnet new webapi -o IotApiGateway

2. We will then add the project to the solution by executing the following command:

dotnet sln add IotApiGateway/IotApiGateway.csproj

3. Then, we will open our project folder and insert the following markup into the 
IotApiGateway.csproj file:

<ItemGroup>

  <ProjectReference Include="..\GrpcDependencies\

    GrpcDependencies.csproj" />

</ItemGroup>

4. These are all of the dependencies we need. We will leave any existing NuGet 
dependencies as they are. Next, we will add a gRPC interceptor to the project. The 
interceptor will reside in the TracingInterceptor.cs file that will be placed 
into the root of the project folder. Its content will be as follows:

using Grpc.Core;

using Grpc.Core.Interceptors;

using System;

using System.Threading.Tasks;

 

namespace IotApiGateway

{

    public class TracingInterceptor : Interceptor

    {

    }

}



Debugging gRPC client components inside a .NET application     415

5. This is a custom class that will override the logic inside the standard gRPC 
interceptor that is run by the middleware. This class will allow us to trigger custom 
logic whenever a gRPC call of a particular type is made. We will add examples of 
interceptor methods for all call types. The first one is a blocking unary call, which 
will be as follows:

public override TResponse BlockingUnaryCall<TRequest, 

  TResponse>(TRequest request, ClientInterceptor

    Context<TRequest, TResponse> context, 

      BlockingUnaryCallContinuation<TRequest,

        TResponse> continuation)

{

    try

    {

        return continuation(request, context);

    }

    catch (RpcException ex)

    {

        Console.WriteLine(ex);

        throw;

    }

}

6. The continuation parameter allows us to call the next step in the 
middleware. And because the call is blocking, we can just return the result of the 
continuation call. It will throw an exception if there is a problem with the 
connection. Next, we will add a method for an async unary call:

public override AsyncUnaryCall<TResponse> 

  AsyncUnaryCall<TRequest, TResponse>(Trequest

     request, ClientInterceptorContext<TRequest, 

       TResponse> context, AsyncUnaryCallContinuation

         <TRequest, TResponse> continuation)

{

    var call = continuation(request, context);

    return new 



416     Using Logging, Metrics, and Debugging in gRPC on .NET

      AsyncUnaryCall<TResponse>(HandleCallResponse

      (call.ResponseAsync), call.ResponseHeadersAsync, 

       call.GetStatus, call.GetTrailers,call.Dispose);

}

7. In this case, because the call is asynchronous, we won't be able to just catch the 
exception by calling the continuation parameter. Instead, we can attach  
a custom handler to some of the actions. We have done this by attaching a call to 
HandleCallResponse to the ResponseAsync action. Whenever this method 
is called by the code that uses the client, this handler will be called. So, we can place 
all of our exception-handling logic there. We will add this method later. But for now, 
we will add a client-streaming call:

public override AsyncClientStreamingCall<TRequest, 

  TResponse> AsyncClientStreamingCall<TRequest, 

    TResponse>(ClientInterceptorContext<TRequest, 

      TResponse> context, AsyncClientStreamingCall

       Continuation<TRequest, TResponse> continuation)

{

    var call = continuation(context);

    return new AsyncClientStreamingCall<TRequest, 

      TResponse>(

        call.RequestStream,

        HandleCallResponse(call.ResponseAsync),

        call.ResponseHeadersAsync,

        call.GetStatus,

        call.GetTrailers,

        call.Dispose);

}



Debugging gRPC client components inside a .NET application     417

8. Because this type of call returns the same kind of response as a blocking unary call, 
we can apply the same handler to the method that returns its response. Next, we will 
add an interceptor method for a server-streaming call:

public override AsyncServerStreamingCall<TResponse> 

  AsyncServerStreamingCall<TRequest, TResponse>

    (TRequest request, ClientInterceptorContext

      <TRequest, TResponse> context, AsyncServer

        StreamingCallContinuation<TRequest, TResponse> 

          continuation)

{

    try

    {

        return continuation(request, context);

    }

    catch (RpcException ex)

    {

        Console.WriteLine(ex);

        throw;

    }

}

9. In here, we can also associate handlers with various actions. But we will need to 
write a different type of handler – one that is appropriate to the action. After this, 
we will add an interceptor method for a bi-directional call:

public override AsyncDuplexStreamingCall<TRequest, 

  TResponse> AsyncDuplexStreamingCall<TRequest, 

    TResponse>(ClientInterceptorContext<TRequest, 

      TResponse> context, AsyncDuplexStreamingCall

       Continuation<TRequest, TResponse> continuation)

{

    try

    {

        return continuation(context);

    }

    catch (RpcException ex)

    {



418     Using Logging, Metrics, and Debugging in gRPC on .NET

        Console.WriteLine(ex);

        throw;

    }

}

10. Once again, we haven't added any handlers to any of the actions. But you can 
experiment with this method and add your own. Finally, we will need to add the 
method for the actual handler that we referenced previously:

private async Task<TResponse> HandleCallResponse

  <TResponse>(Task<TResponse> responseTask)

{

    try

    {

        var response = await responseTask;

        return response;

    }

    catch (RpcException ex)

    {

        Console.WriteLine(ex);

        throw;

    }

}

11. And all we have to do now is add this interceptor to our client. To do so, we will 
modify our Startup class (or the Program.cs file if you are using .NET 6 
project templates). Whichever file we are using, we need to make sure that we have 
the following using statement in it:

using IotAnalytics;

12. Then, we will need to add the following code to the ConfigureServices 
method. If you are using a .NET 6 template, replace services with builder.
Services, and insert this code anywhere before the Build action. If you are 
running your gRPC server on macOS, the Address option should be HTTP with 
the relevant port number added:

services.AddGrpcClient<IotStatusManager.IotStatus

  ManagerClient>(options =>

{



Debugging gRPC client components inside a .NET application     419

    options.Address = new 

      Uri("https://localhost:5001");

})

.AddInterceptor<TracingInterceptor>();

13. The gRPC client has now been added to the dependency injection container and our 
custom interceptor has been added to it. We will now add a controller where we will 
be able to use the client. We will do this by adding a DevicesController.cs 
file to the Controllers folder with the following content:

using Google.Protobuf.WellKnownTypes;

using IotAnalytics;

using Microsoft.AspNetCore.Mvc;

using System.Collections.Generic;

using System.Threading;

using System.Threading.Tasks;

 

namespace IotApiGateway.Controllers

{

    [ApiController]

    public class DevicesController : ControllerBase

    {

        private readonly IotStatusManager

          .IotStatusManagerClient client;

 

        public DevicesController(IotStatusManager

          .IotStatusManagerClient client)

        {

            this.client = client;

        }

    }

}



420     Using Logging, Metrics, and Debugging in gRPC on .NET

14. We will then add endpoint methods that correspond with both of the rpc 
definitions in Protobuf:

[HttpGet("")]

public async Task<IEnumerable<LocationStatusResponse>> 

  GetAllStatuses()

{

    var response = new List<LocationStatusResponse>();

    using var call = client.GetAllStatuses(new 

       Empty());

    while (await call.ResponseStream.MoveNext

      (CancellationToken.None))

    {

         response.Add(call.ResponseStream.Current);

    }

 

    return response;

}

 

[HttpGet("{id}")]

public async Task<LocationStatusResponse> 

  GetStatus(int id)

{

    return await client.GetLocationStatusAsync(new 

      LocationStatusRequest

    {

        LocationId = id

    });

}

We are now ready to launch our application and see what error information will be logged 
from it. After all, it will be easy to trigger an error, as we haven't implemented one of the 
rpc definitions on the server. Nonetheless, we have the code that will attempt to call it.



Debugging gRPC client components inside a .NET application     421

Viewing gRPC error information on the client
Make sure that the launchSettings.json files in the IotApiGateway and 
IotDeviceManager projects have different ports specified in the applicationUrl 
field. Otherwise, one application will prevent the other from running. Once this is done, 
launch the applications by executing the dotnet run command in each of the  
project folders.

We can now navigate to the Swagger page of the IotApiGateway application, which 
will be available at the following address:

{base URL as defined in launchSettings.json file}/swagger

This page will allow us to execute both of our DeviceController endpoints. The 
first endpoint calls a gRPC method that has been fully implemented, so you will be 
able to see some data returned. The second endpoint, however, will encounter an error 
that is being deliberately thrown by the server. If you try to execute the Devices/
{id} endpoint, you would expect to see the following error logged in the console of the 
IotApiGateway application:

Figure 11.1 – An exception from the gRPC server being logged with full information



422     Using Logging, Metrics, and Debugging in gRPC on .NET

We can see the inner message of the exception that we have deliberately thrown. However, 
if we now stop both of our applications and set the EnableDetailedErrors option 
on the gRPC server to false, we will see a different outcome in our client console after 
re-launching the applications. The exception would still be caught and logged, but this 
time, there will be no original error message present, as this image demonstrates:

Figure 11.2 – An exception from the gRPC server being logged without the inner error message

In short, if we enable the EnableDetailedErrors option, the error message would 
be Exception was thrown by handler. This call is not ready yet. 
But if we disable this option, it would just be Exception was thrown by handler. 
This is how you can get detailed error information on the development environment while 
hiding it from the users in production.

But it's not only the client that allows you to use interceptors and extract inner error 
information from gRPC middleware – you can do this on the server too. And this is what 
we will do now.



Debugging gRPC server components inside a .NET application     423

Debugging gRPC server components inside a 
.NET application
An ASP.NET Core application with gRPC capabilities allows you to get gRPC middleware 
to output internal debugging information to the application console. It is switched off by 
default, but we can turn it on by applying a simple change to the application settings.

Likewise, the gRPC server application allows you to use interceptors, just like we did on 
the client. The server-side interceptor would inherit from the same base class as the client-
side one, but it will have different methods defined in it that are only applicable to the 
server-side events:

1. To enable the debug log from the gRPC middleware to be printed in the console, 
you would need to open the appsettings.json file (and appsettings.
Development.json, if you have it) in the IotDeviceManager project folder, 
locate the LogLevel section, and insert the following entry within it:

"Grpc": "Debug"

2. Now, we will add our server-side interceptor. To do this, we will add the 
ServerTracingInterceptor.cs file to the root of the project and add the 
following content to it:

using Grpc.Core;

using Grpc.Core.Interceptors;

using System;

using System.Threading.Tasks;

 

namespace IotDeviceManager

{

    public class ServerTracingInterceptor : 

      Interceptor

    {

    }

}



424     Using Logging, Metrics, and Debugging in gRPC on .NET

3. We will then add the call handling methods to it one by one. First, we would add the 
following handler for a unary call:

public override async Task<TResponse> Unary

  ServerHandler<TRequest, TResponse>(TRequest request, 

    ServerCallContext context, UnaryServerMethod

      <TRequest, TResponse> continuation)

{

    try

    {

        return await continuation(request, context);

    }

    catch (Exception ex)

    {

        Console.WriteLine(ex);

        throw;

    }

}

4. Then, we will add a handler for a client-streaming call:

public override async Task<TResponse> Client

  StreamingServerHandler<TRequest, TResponse>

    (IAsyncStreamReader<TRequest> requestStream, 

      ServerCallContext context, ClientStreaming

        ServerMethod<TRequest, TResponse> continuation)

{

    try

    {

        return await continuation(requestStream, 

          context);

    }



Debugging gRPC server components inside a .NET application     425

    catch (Exception ex)

    {

        Console.WriteLine(ex);

        throw;

    }

}

5. Next, we will apply a handler for  a server-streaming call:

public override async Task ServerStreamingServer

  Handler<TRequest, TResponse>(TRequest request, 

    IServerStreamWriter<TResponse> responseStream, 

      ServerCallContext context, ServerStreaming

        ServerMethod<TRequest, TResponse> 

          continuation)

{

    try

    {

        await continuation(request, responseStream, 

          context);

    }

    catch (Exception ex)

    {

        Console.WriteLine(ex);

        throw;

    }

}



426     Using Logging, Metrics, and Debugging in gRPC on .NET

6. And finally, we will add a handler for a bi-directional streaming call:

public override async Task DuplexStreamingServer

  Handler<TRequest, TResponse>(IAsyncStreamReader

    <TRequest> requestStream, IServerStreamWriter

       <TResponse> responseStream, ServerCallContext

          context, DuplexStreamingServerMethod

            <TRequest, TResponse> continuation)

{

    try

    {

        await continuation(requestStream, 

          responseStream, context);

    }

    catch (Exception ex)

    {

        Console.WriteLine(ex);

        throw;

    }

}

7. We will now need to register our handler. To do this, navigate to either the 
Startup.cs file (for .NET 5) or the Program.cs file (for .NET 6) and then place 
the following statement inside of the AddGrpc call:

options.Interceptors.Add<ServerTracingInterceptor>();

8. And we will also need to register the interceptor in our dependency injection 
container by adding the following statement, replacing services with builder.
Services if you are on .NET 6:

services.AddSingleton<ServerTracingInterceptor>();



Debugging gRPC server components inside a .NET application     427

These are all of the changes we wanted to make on the server side. Let's now launch the 
applications and have a look at the changes in their behavior.

Viewing the debug output on the gRPC server console
Now, if we launch both of our applications and call the working gRPC method from the 
REST API via the Swagger page, we will be able to see debugging information in our 
gRPC server console. For example, the following figure demonstrates that each message 
on the stream is being read individually. Those entries are clearly marked as debug:

Figure 11.3 – The debug output from gRPC in the server-side log



428     Using Logging, Metrics, and Debugging in gRPC on .NET

As for the gRPC call that was deliberately designed to fail, we can see that we have been 
able to intercept the exception and print it to the console even before the default logger 
has picked it up, as can be seen in the following figure:

Figure 11.4 – The server-side interceptor intercepting the exception

And this is how you can use interceptors to handle all of your exceptions globally, instead 
of adding a try/catch block to every individual RPC implementation. If you have  
a handler for a specific RPC type, any exception that originates in any of the RPCs of that 
type would be caught in it.

So far, we have been logging our exceptions as plain messages directly in the console. This 
is acceptable for debugging, but if you want to release an application, you would need to 
use a proper logger. And this is what we will have a look at next.



Applying logs to gRPC     429

Applying logs to gRPC
In software development, logging is a very important concept. Not only will it allow you to 
identify problems while you are developing your application, but it will also allow you to 
monitor an application that has been released into production. If anything happens to the 
application, you would be able to have a look in the logs to see what the application was 
doing and whether it produced any errors.

There are many different types of logs. You can write the log messages to the console, 
as we did. You can write them to a file. You can write them to Azure Blob Storage 
somewhere in the cloud. You can select whichever method suits you best.

In ASP.NET Core applications, it's good practice to use dependency injection for logging, 
just as you would for other service types. The places in your code that write messages to 
the log would call relevant methods on the logger interface. And it's up to you to configure 
what exact implementation of that interface those objects would receive. This is how 
you can swap loggers of different types depending on the environment. For example, in 
the development environment, logging to the console may be all you need. But in the 
production environment, you will need to send your logs where it would be easy to  
query them.

When you use configurable loggers, it's not only the output type that you can configure 
but also the log level. You can get the logger to only output messages if they are of a 
specific severity. We saw this when we configured an inbuilt gRPC logger to output debug 
messages to the console of the server application. Typically, the severity levels of a logger 
would be as follows; however, some variations may exist depending on what logger you 
are using:

• Debug: This is for detailed information on internal functionality that is only useful 
for debugging purposes.

• Info: This is for information about important events happening inside the 
application.

• Warning: This means some unexpected behavior was detected but it is not classed 
as an error.

• Error: This means an error occurred inside the application.

• Critical/Failure: This means a critical error has occurred, which prevented an 
important functionality from working.



430     Using Logging, Metrics, and Debugging in gRPC on .NET

These severity levels are shown from the lowest to the highest. If you set a log severity level 
in your application, it will log everything from that severity level and above, but it will 
ignore anything below it. For example, if you set it to Debug, everything will be logged. 
However, if you set it to Warning, the Debug and Info messages will be ignored. In other 
words, only the Warning, Error, and Critical messages will be logged.

With a custom logger, you can get gRPC middleware to write to your own log. But with 
interceptors in place, you can also associate custom log messages with gRPC calls. Now, 
we will go ahead and demonstrate how logging works both on the client and on the server.

Configuring a logger on the gRPC client
We will now configure a logging provider for the gRPC client application and will replace 
all console logs with proper logging:

1. In the Program.cs file of the IotApiGateway application, add the following 
block immediately after the call to CreateDefaultBuilder. If you are using 
a .NET 6 template, there will be no ConfigureLogging method, and the 
statements inside of it will be added to builder.Logging:

.ConfigureLogging(logging =>

{

    logging.ClearProviders();

    logging.AddConsole();

})

2. We have now added a default console logger to our application. We are still logging 
into the console, but our output will now be annotated with a color-coded severity 
level. We will now be able to insert the logger into the places that need it via 
dependency injection. We will start with the TracingInterceptor class. To 
enable us to inject the logger, we will add the following using statement to it:

using Microsoft.Extensions.Logging;



Applying logs to gRPC     431

3. Then, we will replace the class constructor, while also adding the logger as  
a private readonly field:

private readonly ILogger<TracingInterceptor> logger;

 

public TracingInterceptor(ILogger<TracingInterceptor> 

  logger)

{

    this.logger = logger;

}

4. Next, we will replace the content of the LogException method with the 
following:

logger.LogError(ex, "gRPC error occured");

5. And we will add the following private method to the class:

private void LogException(RpcException ex)

{

    logger.LogError(ex, "gRPC error occured");

}

6. Then, at the beginning of every call interceptor method, we will call this method 
like this:

LogCall(context.Method);

7. We can also inject our custom logger directly into a gRPC client. I will 
demonstrate this by creating another standalone instance of the client inside the 
DevicesController class. First, we will need to add the following using 
statements to the class:

using Grpc.Net.Client;

using Microsoft.Extensions.Logging;



432     Using Logging, Metrics, and Debugging in gRPC on .NET

8. Then, we will add the following private readonly field:

private readonly ILoggerFactory loggerFactory;

9. Then, we will replace the class controller with the following:

public DevicesController(IotStatusManager.

  IotStatusManager Client client, ILoggerFactory 

    loggerFactory)

{

    this.client = client;

    this.loggerFactory = loggerFactory;

}

10. Next, we will add the following method to use a single-use client. Please note how 
we are inserting our own logger into the gRPC channel:

[HttpGet("single-use-client")]

public async Task<IEnumerable<LocationStatusResponse>> 

  GetAllStatusesSingleUseClient()

{

    var option = new GrpcChannelOptions

    {

        LoggerFactory = loggerFactory

    };

 

    var channel = GrpcChannel.ForAddress

      ("https://localhost:5001", option);

    var localClient = new IotStatusManager.

      IotStatusManagerClient(channel);

 

    var response = new List<LocationStatusResponse>();

    using var call = localClient.GetAllStatuses(new 

      Empty());

    while (await call.ResponseStream.MoveNext

      (CancellationToken.None))

    {



Applying logs to gRPC     433

        response.Add(call.ResponseStream.Current);

    }

 

    return response;

}

11. Finally, to actually see the debug output in our console, we need to open the 
appsetting.Development.json file (or appsettings.json, if you don't 
have it) and set the Default LogLevel entry to Debug. We can also remove any 
other entries in that section.

Now, the internal middleware of the gRPC client will log its events into whichever place 
our logger has been configured to log them to. And we will be able to query those event 
messages the same way as we can query our own log entries.

Next, we will apply a logger to the server.

Applying a logger on the gRPC server
We will apply the same type of logger on the server as we did on the client. After that, we 
will look at the console output to see how it's different from what we had before:

1. We will first append the following call to the CreateDefaultBuilder call 
in the Program.cs file. We will need to modify these statements for .NET 6 
implementations, as has been described previously:

.ConfigureLogging(logging =>

{

    logging.ClearProviders();

    logging.AddConsole();

})

2. Next, we will open the ServerTracingInterceptor.cs file and add the 
following using statement to it:

using Microsoft.Extensions.Logging;



434     Using Logging, Metrics, and Debugging in gRPC on .NET

3. We will then add the following private readonly field and constructor:

private readonly ILogger<ServerTracingInterceptor> 

  logger;

 

public ServerTracingInterceptor(Ilogger

  <ServerTracingInterceptor> logger)

{

    this.logger = logger;

}

4. Next, we will replace the content of the LogException method with  
the following:

logger.LogError(ex, "gRPC error occurred");

5. We will then add the following method:

private void LogCall(ServerCallContext context)

{

    logger.LogDebug($"gRPC call request: 

      {context.GetHttpContext().Request.Path}");

}

6. And we will also add a call to this method at the beginning of every handler 
method, like so:

LogCall(context);

7. We will now need to open the appsetting.Development.json file (or 
appsettings.json, if you don't have it) and set the Default LogLevel entry 
to Debug. We can also remove any other entries in that section.

So, we are now ready to launch our applications and see what kind of output will  
be produced.



Applying logs to gRPC     435

Testing our log output
We will launch both of our applications and the Devices/single-use-client 
endpoint from the Swagger page in the browser. If you then observe what happens in 
the console, you will see the full debug output coming from the gRPC client library, along 
with the custom debug message that we have added, as the following figure demonstrates:

Figure 11.5 – The debug output in the console of the client application



436     Using Logging, Metrics, and Debugging in gRPC on .NET

You will see all of the debugging information in the server console too, as can be seen in 
the following figure:

Figure 11.6 – The debug output in the gRPC server console

This logging is very useful to find out the exact point at which interceptor methods are 
being called. For example, it is apparent from the server console that gRPC reads the 
incoming message first, and only then calls the interceptor. And, of course, if you set the 
default log level to something other than Debug in your application's settings, you will 
not see any of this output in the console.



Applying logs to gRPC     437

Now, we will call our Devices/{id} endpoint from the Swagger page to see how the 
exception is being logged. And, as can be seen in the following figure, our custom log 
message is now annotated with a color-coded severity level:

Figure 11.7 – The logged exception, annotated with a color-coded log severity level

This concludes our overview of applying logging to the gRPC functionality in an ASP.NET 
Core application. But logging individual messages is not the only way you can monitor your 
applications – you can also apply metrics to them. This is what we will have a look at next.



438     Using Logging, Metrics, and Debugging in gRPC on .NET

Applying metrics to gRPC
Metrics are fundamentally different from log messages. Typically, metrics would represent 
fairly basic measurements, such as counters, durations, and so on. But they can work 
nicely alongside logging. For example, if you are counting errors, you can see when they 
occur, and you can then query the logs for this specific period of time. Likewise, if you 
measure request latency, you can see when it goes above the acceptable threshold. And 
then you can query the logs produced within the same period to find out exactly what was 
happening inside your application.

Metrics are typically stored in a time series database, such as Prometheus, InfluxDB, or 
TimescaleDB. Because metrics represent simple data, they can be easily aggregated and 
plotted on a time series graph. For example, Grafana software was specifically designed 
to visualize metrics information. It can plot metrics on graphs similar to that in the 
following figure:

Figure 11.8 – An example of a Grafana metrics graph

There are several different metrics technologies available, but they usually follow either of 
the following principles:

• Collect the metrics and push them to a database endpoint at set intervals.

• Publish metrics via a URL endpoint and let a third-party probe collect them.

Typically, if you have a URL endpoint, it will be hidden behind a firewall, so only the 
specific piece of software that collects the metrics will be able to access it. This is done 
because some of the metric types get reset during every collection.



Applying metrics to gRPC     439

The metrics types that get reset during every collection include counters. These metrics 
typically just increment the number of actions within a specific period of time. And in the 
next cycle, we will only be concerned with how many actions occurred within the current 
cycle. So, none of the previously incremented values get passed into the next collection 
cycle. Some examples of counters may include the number of requests, the number of 
errors, and more.

A gauge is an example of a metric type that doesn't get reset. These metrics get 
incremented and decremented when various events occur. And we are always interested 
in their real-time value. A gauge can be used, for example, to indicate how many user 
sessions are currently active.

In our example, we will generate Prometheus-style metrics that will be collectible via a 
URL endpoint.

Configuring metrics on the gRPC server
We will need to add some NuGet packages to the class library that is shared between the 
client and the server. Then, we will need to add some relevant configurations to our gRPC 
server application:

1. First, open the GrpcDependencies project folder and execute the following 
commands to add the relevant NuGet dependencies:

dotnet add GrpcDependencies.csproj package prometheus-

net.AspNetCore

dotnet add GrpcDependencies.csproj package prometheus-

net.AspNetCore.Grpc

2. Next, we will open the Startup.cs file (or the Program.cs file if you are on 
.NET 6) of the IotDeviceManager project and add this using statement to it:

using Prometheus;

3. Next, we will add the following statement immediately after app.UseRouting:

app.UseGrpcMetrics();

This will enable the automatic collection of metrics associated with gRPC. 
4. Then, we will add the following statement inside the call to app.UseEndpoints:

endpoints.MapMetrics();



440     Using Logging, Metrics, and Debugging in gRPC on .NET

This will add the default metrics collection endpoint to our application, which will 
be accessible via {base URL}/metrics. 

With this setup, we are able to collect the default metrics from gRPC. But what if we 
wanted to apply some custom metrics too? Well, on our client, we will do exactly this.

Enabling metric collection on the gRPC client
On the gRPC client, we will do exactly the same metrics registration that we have done on 
the server. But this time, we will also apply some custom metrics:

1. In the IotApiGateway project, open the Startup.cs file (or Program.cs if 
you are on .NET 6) and add the following using statement to it:

using Prometheus;

2. Then, add the following statement immediately after app.UseRouting:

app.UseGrpcMetrics();

3. Next, add the following statement inside the call to app.UseEndpoints:

endpoints.MapMetrics();

4. Now, let's open the TracingInterceptor class and add the following using 
statement on top of it:

using Prometheus;

5. Then, add the following private fields to the class:

private static readonly Counter 

  BlockingUnaryCallsCount = Metrics.

  CreateCounter("blocking_unary_calls_count", "Count of 

    blocking unary calls.");

private static readonly Counter AsyncUnaryCallsCount = 

  Metrics.CreateCounter("async_unary_calls_count", 

    "Count of async unary calls.");

private static readonly Counter 

  ClientStreamingCallsCount = Metrics.

CreateCounter("client_streaming_calls_count", "Count of 

  client streaming calls.");

private static readonly Counter 



Applying metrics to gRPC     441

  ServerStreamingCallsCount = Metrics.

    CreateCounter("server_streaming_calls_count", "Count 

      of server streaming calls.");

private static readonly Counter 

  DuplexStreamingCallsCount = Metrics.

    CreateCounter("duplex_streaming_calls_count", "Count 

      of bi-directional streaming calls.");

private static readonly Counter FailedGrpcCallsCount = 

  Metrics.CreateCounter("failed_grpc_calls_count", 

    "Count of failed gRPC calls.");

private static readonly Histogram GrpcCallDuration = 

  Metrics.CreateHistogram("grpc_call_duration", 

    "Durations of gRPC calls.");

6. We will then add the following line just before the return statement of every 
interceptor method. This will measure the duration of the call:

using GrpcCallDuration.NewTimer();

7. And now we will increment our counters. First, insert the following line at the 
beginning of the BlockingUnaryCall method:

BlockingUnaryCallsCount.Inc();

8. After this, insert the following line at the beginning of the AsyncUnaryCall 
method:

AsyncUnaryCallsCount.Inc();

9. Then, insert the following line into the AsyncClientStreamingCall method:

ClientStreamingCallsCount.Inc();

10. Afterward, insert the following line into the AsyncServerStreamingCall 
method:

 ServerStreamingCallsCount.Inc();

11. Finally, insert this line at the beginning of the AsyncDuplexStreamingCall 
method:

DuplexStreamingCallsCount.Inc();



442     Using Logging, Metrics, and Debugging in gRPC on .NET

We have now enabled custom metrics in our gRPC client application. Now, we will launch 
our applications and see how the metrics get produced.

Viewing gRPC metrics
After launching both applications and triggering a number of gRPC calls via the 
Swagger page, we can evaluate what metrics get collected by our applications. If you 
then navigate to the metrics endpoint of the client application, which is accessible via 
the base URL from the launchConfig.json file followed by the /metrics path, you 
will see a combination of core metrics produced by the gRPC middleware alongside the 
custom metrics that we added. This can be seen in the following figure:

Figure 11.9 – The metrics produced by the IotApiGateway application



Applying metrics to gRPC     443

If you navigate to the metrics endpoint of the IotDeviceManager application, you 
will see a combination of metrics produced by  ASP.NET Core system processes and gRPC 
middleware, as the following figure demonstrates:

Figure 11.10 – The metrics generated by the IotDeviceManager application



444     Using Logging, Metrics, and Debugging in gRPC on .NET

Out of the box, the gRPC middleware generates only the most basic metrics. This is why 
it makes sense to generate your own to make application monitoring more targeted. The 
following metrics get produced by the gRPC client library:

• total-calls: Total calls

• current-calls: Current calls

• calls-failed: Total calls failed

• calls-deadline-exceeded: Total calls deadlines exceeded

• messages-sent: Total messages sent

• messages-received: Total messages received

The gRPC server library will generate the same metrics, but there is one additional metric 
that the server generates:

• calls-unimplemented: Total calls unimplemented

And this concludes the overview of gRPC metrics. Let's now summarize what we have 
learned in this chapter.

Summary
Congratulations! You have now reached the end of this book.

In this chapter, you have learned how to debug both client and server implementations 
of gRPC on .NET. You now know how to configure the server to return detailed errors to 
the client. Likewise, you have learned how to apply interceptors to both the client and the 
server to enable global error reporting and event logging.

You have also learned how to use loggers in gRPC on .NET. We have covered the 
fundamentals of configuring logging on ASP.NET Core, and you have learned how to 
insert these logs both into gRPC interceptors and internal gRPC processes.

We have also gone through the concept of applying metrics to your application. You now 
know that metrics consist of data that can be easily plotted on time series graphs to help 
you identify trends, and we explored counters and durations as an example of this.

You have been shown how to extract built-in metrics emitted by gRPC libraries on .NET. 
Also, we have gone over some examples of how to apply custom metrics where necessary.



Questions     445

We have now concluded this book on using gRPC on .NET to enable effective 
communication between microservices. We have covered all the fundamental topics of 
using gRPC on .NET, so you should now be fully equipped to use it in your own solutions. 
I hope you have enjoyed the journey and found the information in this book useful.

Questions
1. How do you get the gRPC server to send detailed error diagnostics to the client?

A. You have to add your custom logic to the gRPC service implementation.
B. You have to use interceptors.
C. You can set the EnableDetailedErrors option on the server.
D. You have to throw RpcException.

2. How do you enable the middleware of the gRPC service on ASP.NET Core to output 
debugging information?

A. Set the Grpc entry in the logging settings to Debug.
B. Attach event listeners to the gRPC assembly.
C. Insert a custom logger into the gRPC channel.
D. This is not possible.

3. What is the easiest way to determine if an error came from the inner gRPC 
middleware on ASP.NET Core?

A. You can do this by looking up special keywords in the exception message.
B. You can do this by checking if the exception is of the RpcException type.
C. You can do this by checking if the exception is of the HttpException type.
D. You can do this by looking up special numeric codes in the exception message.

4. How can you pass a shared application logger to the inner middleware of the 
gRPC client?

A. You can do this by adding it to the interceptor.
B. You can do this by adding an ILoggerFactory implementation to the 

GrpcChannel options.
C. This is not possible.
D. It's only possible when catching exceptions that originated from the inner 

middleware.



446     Using Logging, Metrics, and Debugging in gRPC on .NET

5. What is the difference between logs and metrics?

A. Metrics provide detailed information, while logs only contain basic messages.
B. Metrics consist of data that can be easily aggregated (for example, counters, gauges, 

histograms, and so on), while logs provide detailed information of each event.
C. Metrics represent the metadata behind the log entries.
D. Metrics are used strictly for measuring performance, while logs contain detailed 

event information.

Further reading
• Logging and diagnostics in gRPC on .NET: https://docs.microsoft.com/

en-us/aspnet/core/grpc/diagnostics

• Logging in .NET Core and ASP.NET Core: https://docs.microsoft.com/
en-us/aspnet/core/fundamentals/logging/

• An overview of Prometheus: https://prometheus.io/docs/
introduction/overview/

• The Prometheus-net library documentation: https://github.com/
prometheus-net/prometheus-net

• 30 best practices for logging at scale: https://www.loggly.com/blog/30-
best-practices-logging-scale/

https://docs.microsoft.com/en-us/aspnet/core/grpc/diagnostics
https://docs.microsoft.com/en-us/aspnet/core/grpc/diagnostics
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/
https://www.loggly.com/blog/30-best-practices-logging-scale/
https://www.loggly.com/blog/30-best-practices-logging-scale/


Assessments
You'll find the answers to the questions in all chapters of the book in this section.

Chapter 1, Creating a Basic gRPC Application 
on ASP.NET Core

1. B.  "You cannot have a Protobuf message definition without any fields" is an 
incorrect statement. You can have empty message definitions in Protobuf.

2. A.  ASP.NET Core is a cross-platform framework that works on Windows, Linux, 
and macOS, so gRPC can be implemented on them.

3. C.  You need to register each proto file by adding a Proto element to your project file. 
Then, you can specify the GrpcServices attribute inside it, which can be set 
to Server, Client, or Both. It's set to Both by default, so if you don't specify 
this attribute, both client and the server code will be generated. If you specify 
Server, only the server code will be generated. So, either Both or Server  
is a valid option for generating server code.

4. C.  To get gRPC to work inside an ASP.NET Core server app, you need to add all 
the required references to the project. Then, for each gRPC service definition, 
you need to create a C# class that overrides from a class that was auto-generated 
from a proto file, representing one of its service definitions. Then, you need to 
register gRPC capabilities inside the Startup class. Finally, you need to register 
your custom C# implementation of a gRPC service as an endpoint in your 
middleware.

5. C.  The client-side code that's generated with both the synchronous and 
asynchronous versions of each RPC is defined in a proto file. The name of 
the synchronous function is the same as the one defined in the proto file. The 
asynchronous version has the same name but with Async at the end.



448     Assessments

Chapter 2, When gRPC Is the Best Tool and 
When It Isn't

1. B.  Yes, by utilizing streaming
2. C. Yes, but only by using async/await on the client
3. A. Server-streaming calls
4. B. Yes, both on the server and the client
5. D. Calls from the server to the client without a request from the client

Chapter 3, Protobuf – the Communication 
Protocol of gRPC

1. A. long.
2. A.  The int32 data type will have only as many bytes allocated as necessary, while 

fixed32 always occupies 4 bytes.
3. C. Create a repeated field of a message that itself has a repeated field.
4. B. The original field gets unset, and the new field gets set.
5. D.  You can keep the original Proto file that is specified in the import directive but 

get it to import the new proto file via the import public directive.

Chapter 4, Performance Best Practices for 
Using gRPC on .NET

1. B. Channel.
2. C. 100.
3. A. Apply the stream keyword before the rpc keyword.
4. D. Apply the stream keyword before both the input and output parameters.
5. A. When you intend to modify the original byte array after this call.

Chapter 5, Applying Versioning to the gRPC API
1. C. It will not affect the functionality.
2. B. sfixed32 and int32.
3. A. It will be populated with the default value on the client.



Chapter 6, Scaling a gRPC Application     449

4. D.  Use the reserved keyword, followed by the sequence numbers of the  
removed fields.

5. C. Using separate Protobuf definitions for separate API versions.

Chapter 6, Scaling a gRPC Application
1. C. To split a large number of requests between multiple instances of the application.
2. C. By getting the list of individual endpoint addresses and calling them directly.
3. D. All of the above.
4. A.  The client connects to the proxy endpoint and the proxy redirects it to individual 

application instances.
5. C. Support for HTTP/2.

Chapter 7, Using Different Call Types 
Supported by gRPC

1. B. Yes
2. C. Only when you make asynchronous calls
3. A. Unknown
4. C. To set a strict timeout on the call's completion time
5. D.  By using the stream keyword between the request and response message 

definitions

Chapter 8, Using Well-Known Types to Make 
Protobuf More Handy

1. C. google/protobuf/wrappers.proto.
2. C. Fixed64Value.
3. A. Duration is equivalent to DateTimeOffset.
4. D. All of the above.
5. C. The Any data type cannot store strings.



450     Assessments

Chapter 9, Securing gRPC Endpoints in Your 
ASP.NET Core Application with SSL/TLS

1. B. TLS.
2. C. With this configuration, insecure requests are routed to HTTP/1.1.
3. D. All of the above.
4. D.  A .pfx file stores the complete certificate chain, while a .crt file only stores 

the public key and any related metadata.
5. A. For authentication.

Chapter 10, Applying Authentication and 
Authorization to gRPC Endpoints

1. B. To ensure that the user is who they claim to be.
2. A. To ensure that only users with specific permissions can access the application.
3. C. OpenID Connect is used for authentication.
4. C. Header, payload, and signature.
5. B. Any JSON field in the payload.

Chapter 11, Using Logging, Metrics, and 
Debugging in gRPC on .NET

1. C. You can set the EnableDetailedErrors option on the server.
2. A. Set the Grpc entry in the logging settings to Debug.
3. B. By checking if the exception is of the RpcException type.
4. B.  By adding the IloggerFactory implementation to the GrpcChannel 

options.
5. B.  Metrics consist of data that can be easily aggregated (counters, gauges, 

histograms, and so on), while logs provide detailed information about each event.



Index

Symbols
.NET application

gRPC client components, debugging  407
gRPC server components, 

debugging  423-426
.NET CLI

used, for initializing ASP.NET 
Core project  15, 16

.NET SDK
downloading  11
reference link  11

A
Any and Value data types

adding, to gRPC server  308-312
Any and Value fields

populating, from gRPC client  313-316
Any data type  122
API versioning

factoring, at design stage  190, 191
API versioning strategy

need for  168
API versioning strategy demonstration

client communication to server, 
verifying  174-176

gRPC client application, 
creating  172, 173

gRPC client logic, 
implementing  173, 174

server application, creating  169, 170
server-side gRPC components, 

implementing  170, 171
application

launching  83-88, 301, 302
running  298

Application Layer Protocol 
Negotiation (ALPN)  39

application programming 
interface (API)  44

ASP.NET Core
about  413
self-signed certificate, 

applying on  345-348
ASP.NET Core project

gRPC server, component 
adding to  16-19

initializing, via IDE  12-15
initializing, via .NET CLI  15, 16

asynchronous gRPC endpoints
testing  72-74



452     Index

authenticated users
gRPC endpoints, restricting to  378

authentication backend
IdentityServer4, configuring  366-369
login redirect, forcing on web 

application  372-378
OAuth flow  364-366
OpenID Connect  364-366
setting up  363, 364
SSO clients, adding  369-371
SSO roles, adding  369-371
SSO users, adding  369-371

auto-generated code
examining, for wrapper fields  287-292

Azure Blob Storage  429

B
bi-directional streaming

enabling  274
server-side components, 

enabling for  275, 276
bi-directional streaming call

about  94
client-side implementation, 

adding of  276-278
performance, monitoring  158, 159

bi-directional streaming RPC
setting up  155-158

binary fields
adding, to Protobuf  160-163

binary payloads
using, to decrease data's size  160

Blazor WebAssembly  74

C
C# code

generating, with proto file  29
certificate authentication

applying, on gRPC client  351
applying, on gRPC  server  351
enabling, on gRPC client  355
gRPC server, configuring  352-354
testing  356-358

certification authority (CA)  324
claims  365
client

building, for gRPC communication  333
communication to server, 

verifying  174-176
data, streaming from  265
Protobuf definitions, 

exposing to  330-333
client and server application

gRPC dependencies, sharing 
between  37, 38

proto file, sharing between  34
shared class library, creating  34, 35
shared gRPC component, adding 

to class library  35-37
client application

backend components, adding  206-210
controller, adding  210-212
creating  205
dependencies, registering  212, 213
gRPC dependencies, using in  260-262
Protobuf definition, modifying  178, 179
setting up  137-146

client certificates  324, 325



Index   453

client logic
adding  336-338

client-side call implementations
applying  255-260

client-side implementation
adding, of bi-directional 

streaming call  276-278
client-side load balancing, with gRPC

about  216
components, enabling  217, 218
custom load balancers, creating  224-230
DNS resolver, enabling for 

load balancer  219-221
NuGet package, updating  216, 217
resolvers, creating  224-230
static resolver, using for load 

balancer  221-223
client-streaming call

about  94
adding, to server application  266, 267

client-streaming gRPC call
client logic, adding for  267, 268

client types
performance, comparing  146-149

collections
using, in Protobuf  109

collections types
map fields  111-113
repeated fields  109-111

command-line interface (CLI)  45
Command Prompt (CMD)  62
comments

creating, in Protobuf  95
connection concurrency

configuring, on gRPC client  149-152
cross-origin resource sharing (CORS)  74
cryptographic keys  324

custom certificates
testing  348-350

D
data

streaming, from client  265
dates

using, in Protobuf  299, 300
debug output

viewing, on gRPC server 
console  427, 428

default development certificate
trusting  340, 341

dependency injection (DI)  54, 388
dependency inversion principle (DIP)  57
digital certificate  324
dotnet CLI  323
duration

adding, to server  300, 301

E
Empty data type

adding, to server-side 
application  303-305

empty messages
exchanging  303

Empty object
applying, on client  305-307

enum data type  104, 105
external enum definition  105

F
Fedora  340



454     Index

G
Google Remote Procedure Calls (gRPC)

about  4, 5
application, testing  189
benefits  5
for asynchronous communication  64
for microservices  44, 45
logs, applying to  429
metrics, applying to  438, 439
not best for browser  74
old and unused fields, deprecating  187
on ASP.NET Core  6
supporting, RPC types  92
unary calls, making on  242
using, in ASP.NET Core application  6

Grafana software  438
gRPC call

making, to versioned endpoint  195, 196
streaming procedure, testing  278, 279

gRPC channels
using, reasons  132, 133

gRPC client
adding, with additional debugging 

capabilities  413-420
Any and Value fields, populating 

from  313-316
building  251-254
certificate authentication, applying  351
certificate authentication, enabling  355
changes, applying  397-401
changes, applying to  301, 302
component, adding to  24-27
component, applying to code  27-29
configuring, for asynchronous 

communication  68-71
configuring, for unencrypted 

communication  323

configuring, via service 
reference  334, 335

connection concurrency, 
configuring on  149-152

functionality, enabling  386-391
keep-alive pings, setting up on  153, 154
logs, configuring  430-433
manually, configuring  335, 336
metrics collection, enabling  440-442
project, initializing  23
server-streaming call, making 

from  273, 274
setting up  22, 296, 297

gRPC client application
creating  172, 173

gRPC client components
debugging, in .NET application  407
gRPC client, adding with additional 

debugging capabilities  413-420
gRPC error information, 

viewing  421, 422
gRPC service application, 

adding  409-413
gRPC service application, adding to 

display detailed errors  409-413
shared gRPC dependencies, 

setting up  407-409
gRPC client implementation 

version-specific
creating  194

gRPC client logic
implementing  173, 174

gRPC communication
client, building  333

gRPC component
code, adding to  20-22

gRPC dependencies
using, in client application  260-262



Index   455

gRPC endpoints
authorization rules, applying 

to different  395, 396
restricting, to authenticated users  378
restricting, to authorized users  391, 392

gRPC, for asynchronous communication
client-streaming gRPC 

endpoints, adding  64-67
server-streaming gRPC 

endpoints, adding  64-67
gRPC, for microservices

distributed application, launching  62, 63
REST API gateway service, 

setting up  55-62
shared dependencies, setting up  45-48
solution, setting up  45-48
status manager microservice, 

setting up  49-54
gRPC metrics

viewing  442-444
gRPC, not best for browser

Blazor WebAssembly gRPC 
client, setting up  74-78

gRPC server, modifying to 
enable gRPC-Web  79, 80

gRPC-Web application, launching  80
gRPC server

Any and Value data types, 
adding to  308-312

ASP.NET Core project, 
initializing via IDE  12-15

certificate authentication, applying  351
client-side configuration, modifying  39
component, adding to ASP.

NET Core project  16-19
configuring, for certificate 

authentication  352-354

configuring, for unencrypted 
communication  323

logs, applying  433, 434
metrics, configuring  439, 440
running, on Mac  39
server-side component, configuring  39
setting up  11, 380-385

gRPC server application
logic, adding to  292-294
setting up  286, 287

gRPC server components
debugging, in .NET application  423-426

gRPC service application
adding, to display detailed 

errors  409-413
setting up  325-329

H
HTTPS redirection

testing  348-350
HyperText Markup Language 

(HTML)  55, 374
Hypertext Transfer Protocol 

Secure (HTTPS)  323

I
IdentityServer4

configuring  366-369
InfluxDB  438
integer data types

fixed32 and fixed64 data types  100
int32 and int64 data types  97
sfixed32 and sfixed64 data types  101
sint32 and sint64 data types  99
uint32 and uint64 data types  98



456     Index

integrated development 
environment (IDE)

about  6
setting up  6
setting up, on Linux  10, 11
setting up, on Mac  9, 10
setting up, on Windows  7-9
used, for initializing ASP.NET 

Core project  12-15
interceptors  414
internal enum definition  105
Internet of Things (IoT)  409

J
JavaScript Object Notation (JSON)  45
JWT

SSO provider, configuring to insert 
role claim into  392-394

K
keep-alive pings

setting up, on gRPC client  153, 154
Kestrel  339

L
library

adding, with Protobuf 
dependencies  133-135

Linux
IDE, setting up  10, 11

load balancing  200
load balancing, fundamental principles

application, running  214-216
client application, creating  205

multiple instances, creating of  
server-side application  204, 205

shared gRPC dependencies, 
adding  201, 202

shared library, creating for server-side 
application instances  202, 203

logger level
critical/failure  429
debug  429
error  429
info  429
warning  429

logic
adding, to gRPC server 

application  292-294
logs

applying, on gRPC server  433, 434
applying, to gRPC  429
configuring, on gRPC client  430-433
output, testing  435-437

loosely typed fields
using, in Protobuf message  308

M
Mac

gRPC server, running  39
IDE, setting up  9, 10

map field collections  111-113
metrics

applying, to gRPC  438, 439
collection, enabling on gRPC 

client  440-442
configuring, on gRPC server  439, 440

Model-View-Controller (MVC)  372
multi-factor authentication (MFA)  363



Index   457

multiple instances
creating, of server-side 

application  204, 205
multiple Protobuf versions

adding, to server application  191, 192
server application, allowing 

to use  192, 193

N
native Protobuf data types

enum  104, 105
integer data types  97
non-integer numeric data types  101
non-numeric data types  102
reviewing  95, 96

nested messages  106-108
non-integer numeric types

double data types  102
float data type  102

non-numeric data types
bool  103
bytes  103
string  103

NuGet package  121
nullable data types

using, in Protobuf  285, 286

O
OAuth flow  364-366
oneof keyword

making, communication 
efficient  114-117

one-time access code (OTAC)  364
OpenID Connect  364-366

OpenSSL
used, for creating self-signed 

certificate on Unix  344
option keyword

field-level options  119, 120
global-level options  117
message-level options  118
used, for customizing behavior  117

P
PowerShell

used, for creating self-signed 
certificate on Windows  341-343

Prometheus  438
Protobuf

about  409
binary fields, adding to  160-163
collections, using  109
comments, creating  95
dates, using  299, 300
nullable data types, using  285, 286
server-streaming RPC, adding to  269
special keywords, using  113
supporting, RPC types  93, 94

Protobuf definitions
exposing, to clients  330-333
modified applications, 

launching  179-181
modifying, in client application  178, 179
modifying, in server 

application  177, 178
modifying, on client side  183
server-side implementations, 

creating of  245-250
Protobuf dependencies

used, for adding library  133-135



458     Index

Protobuf message
loosely typed fields, using  308

Protobuf versions
existing fields, modification 

avoidance  181, 182
Protobuf versions modification 

avoiding, demonstration
applications, launching  183, 184
applications, re-launching  186, 187
changes, making to client 

application  185
Protobuf definitions, modifying 

on client side  183
Protocol Buffer (Protobuf)  5, 44, 378
proto files

auto-generated code, storing  30, 31
external proto packages, 

importing  121, 122
internal proto files, referencing  122-124
Protobuf namespaces, modifying  31-34
referencing  121
representing, sequence 

numbers  176, 177
sharing, between client and 

server application  34
used, for generating C# code  29
using, as relays  124, 125

Proxy load balancing, with gRPC
about  230
HTTP/2 proxy, launching  233, 234
web application, building  230-233

public key certificate  324

R
real-time communication (RTC)  44
remote procedure calls  

(RPCs)  47, 52, 324, 409

repeated field collections  109-111
REpresentational State Transfer (REST)  44
reserved keyword

applying, to server-side Protobuf 
interface  187, 188

Rider
download link  7

RPC types
Protobuf, supporting  93, 94
supported, by gRPC  92

S
self-signed certificate

applying, on ASP.NET Core  345-348
creating  339
creating, on Unix with OpenSSL  344
creating, on Windows with 

PowerShell  341-343
trusting  339

sequence numbers
in proto file  176, 177

server
duration, adding to  300, 301
timestamp, adding to  300, 301

server application
client-streaming call, adding to  266, 267
creating  169, 170
Protobuf definition, modifying  177, 178
setting up  133

server certificates  323, 324
server project

shared Protobuf library, adding to  135
server-side application

Empty data type, adding to  303-305
multiple instances, creating  204, 205

server-side application instances
shared library, creating  202, 203



Index   459

server-side components
enabling, for bi-directional 

streaming  275, 276
server-side gRPC components

implementing  136, 137, 170, 171
server-side implementations

creating, of Protobuf definitions  245-250
server-side Protobuf interface

reserved keyword, applying to  187, 188
server-streaming call

making, from gRPC client  273, 274
setting up, on server side  270-273

server-streaming RPC
adding, to Protobuf  269

service reference
gRPC client, configuring via  334, 335

shared dependencies
setting up  294, 295

shared gRPC dependencies
adding  201, 202
setting up  243-245, 378-380, 407-409

shared library
creating, for server-side application 

instances  202, 203
shared Protobuf library

adding, to server project  135
SignalR  81
SignalR application

setting up  81-83
SignalR client

adding  83-88
single connection and multiple 

connections
performance, comparing  152, 153

software development kit (SDK)  6
special keywords

oneof keyword  114-117

option keyword, used for 
customizing behavior  117

using, in Protobuf  113
SSO clients

adding  369-371
SSO provider

configuring, to insert role claim 
into JWT  392-394

SSO roles
adding  369-371

SSO users
adding  369-371

streams
reading, from server  269

subject  340

T
thumbprint  340
TimescaleDB  438
timestamp

adding, to server  300, 301
TLS certificates

basics  339
client certificates  324, 325
role  323
server certificates  323, 324

Transport Layer Security (TLS)  132
removing, on HTTP/1.1  329, 330
removing, on HTTP/2  329, 330

U
Ubuntu  340
unary call endpoints

testing  262-265
unary calls

making, on gRPC  242



460     Index

Uniform Resource Locator (URL)  58, 367
Unix

self-signed certificate, creating 
with OpenSSL  344

user interface (UI)  55

V
Visual Studio 2019

download link  8
Visual Studio Code

reference link  9

W
web application

login redirect, forcing on  372-378
Windows

IDE, setting up  7-9
self-signed certificate, creating 

with PowerShell  341-343
wrapper fields

auto-generated code, examining 
for  287-292



Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as 
well as industry leading tools to help you plan your personal development and advance 
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos 

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and 
ePub files available? You can upgrade to the eBook version at packt.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up  
for a range of free newsletters, and receive exclusive discounts and offers on Packt books 
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com


462     Other Books You May Enjoy

Other Books You 
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Embracing Microservices Design
Ovais Mehboob Ahmed Khan, Nabil Siddiqui, Timothy Oleson
ISBN: 978-1-80181-838-4

• Discover the responsibilities of different individuals involved in a microservices initiative 

• Avoid the common mistakes in architecting microservices for scalability and resiliency 

• Understand the importance of domain-driven design when developing microservices 

• Identify the common pitfalls involved in migrating monolithic applications to 
microservices 

• Explore communication strategies, along with their potential drawbacks and alternatives 

• Discover the importance of adopting governance, security, and monitoring 

• Understand the role of CI/CD and testing

https://packt.link/9781801818384


Other Books You May Enjoy     463

Practical Microservices with Dapr and .NET

Davide Bedin

ISBN: 978-1-80056-837-2

• Use Dapr to create services, invoking them directly and via pub/sub 

• Discover best practices for working with microservice architectures 

• Leverage the actor model to orchestrate data and behavior 

• Use Azure Kubernetes Service to deploy a sample application 

• Monitor Dapr applications using Zipkin, Prometheus, and Grafana 

• Scale and load test Dapr applications on Kubernetes 

https://packt.link/9781800568372


464     

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and 
tech professionals, just like you, to help them share their insight with the global tech 
community. You can make a general application, apply for a specific hot topic that we are 
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Microservices Communication in .NET Using gRPC, we'd love to hear 
your thoughts! If you purchased the book from Amazon, please click here to go straight 
to the Amazon review page for this book and share your feedback or leave a review on the 
site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-803-23643-4
https://packt.link/r/1-803-23643-4



	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Section 1: 
Basics of gRPC 
on .NET
	Chapter 1: Creating a Basic gRPC Application on ASP.NET Core
	Technical requirements
	Introduction to gRPC
	gRPC on ASP.NET Core
	Using gRPC in your own distributed ASP.NET Core application

	Preparing your system
	Setting up your environment on Windows
	Setting up your environment on Mac
	Setting up your environment on Linux
	Downloading the .NET SDK (all operating systems)

	Setting up a gRPC server
	Initializing an ASP.NET Core project via an IDE
	Adding gRPC server components to an ASP.NET 
Core project
	Adding some code to use gRPC components

	Setting up a gRPC client
	Initializing the project for the client application
	Adding gRPC client components to the application
	Applying gRPC client components to the code

	Understanding how proto files generate 
C# code
	Where is auto-generated code stored?
	Modifying Protobuf namespaces

	Sharing a proto file between the client and 
the server
	Creating a shared class library
	Adding shared gRPC components to the class library
	Sharing gRPC dependencies between different projects

	Running a gRPC service on Mac
	Configuring server-side components
	Modifying the client-side configuration

	Summary
	Questions
	Further reading

	Chapter 2: When gRPC Is the Best Tool and When It Isn't
	Technical requirements
	Why gRPC is a great tool for microservices
	Setting up a solution and shared dependencies
	Setting up the status manager microservice
	Setting up a REST API gateway service
	Launching the distributed application

	How gRPC can be a good tool for asynchronous communication 
	Adding client-streaming and server-streaming gRPC endpoints
	Configuring the gRPC client for asynchronous communication
	Testing asynchronous gRPC endpoints

	Why gRPC is not the best tool for browsers
	Setting up a Blazor WebAssembly gRPC client
	Modifying the gRPC server to enable gRPC-Web
	Launching the gRPC-Web application

	Where SignalR would beat gRPC
	Setting up a SignalR application
	Adding a SignalR client and launching the application

	Summary
	Questions
	Further reading

	Chapter 3: Protobuf – the Communication Protocol of gRPC
	Technical requirements
	The RPC types supported by gRPC
	The RPC types that Protobuf supports
	Making comments in Protobuf

	Reviewing the native Protobuf data types
	Integer data types
	Non-integer numeric types
	Non-numeric data types
	Enums
	Nested messages

	Using collections in Protobuf
	Repeated fields
	Map fields

	Using special keywords in Protobuf
	How the oneof keyword can make communication more efficient
	Customizing the behavior with the option keyword

	Referencing other proto files
	Importing external proto packages
	Referencing internal proto files
	Using proto files as relays

	Summary
	Questions
	Further reading

	Section 2: 
Best Practices of Using gRPC
	Chapter 4: Performance Best Practices for Using gRPC on .NET
	Technical requirements
	Why you need to reuse a gRPC channel 
	Setting up the server application
	Setting up the client application
	Comparing the performance of different client types

	How to not get held up by a concurrent 
stream limit
	Configuring connection concurrency on the gRPC client
	Comparing the performance between a single connection and multiple connections

	Ensuring that your connection remains alive
	Setting up keep-alive pings on the gRPC client

	When streaming is better than individual calls
	Setting up a bi-directional streaming RPC
	Monitoring the performance of the bi-directional streaming call

	Using binary payloads to decrease the 
data's size
	Adding binary fields to Protobuf

	Summary
	Questions
	Further reading

	Chapter 5: Applying Versioning to the gRPC API
	Technical requirements
	Why an API versioning strategy is important
	Creating a server application
	Implementing the server-side gRPC components
	Creating the gRPC client application
	Implementing the gRPC client logic
	Verifying that the client can talk to the server

	What the sequence numbers in the proto file represent
	Modifying the Protobuf definition in the server application
	Modifying the Protobuf definition in the client application
	Launching modified applications

	Why you must not modify existing fields in future Protobuf versions
	Modifying Protobuf definitions on the client side
	Launching the applications
	Making further changes to the client application
	Re-launching the applications

	How to deprecate old, unused fields in gRPC
	Applying the reserved keyword to the server-side Protobuf interface
	Testing the application

	How to factor in API versioning at the 
design stage
	Adding multiple Protobuf versions to the server application
	Allowing the server application to use multiple Protobuf versions
	Making the gRPC client implementation version-specific
	Making a gRPC call to a versioned endpoint

	Summary
	Questions
	Further reading

	Chapter 6: Scaling a gRPC Application
	Technical requirements
	Introduction to load balancing
	Adding shared gRPC dependencies
	Creating a shared library for server-side application instances
	Creating multiple instances of the server-side application
	Creating a client application
	Running a load-balanced application

	Client-side load balancing with gRPC
	Updating the NuGet package
	Enabling client-side load balancing components
	Enabling a DNS resolver for the load balancer
	Using a static resolver for the load balancer
	Creating custom load balancers and resolvers

	Proxy load balancing with gRPC
	Building a web application to act as a proxy
	Launching the HTTP/2 proxy

	Summary
	Questions
	Further reading

	Section 3: 
In-Depth Look at gRPC on .NET
	Chapter 7: Using Different 
Call Types Supported by gRPC
	Technical requirements
	Making unary calls on gRPC
	Setting up shared gRPC dependencies
	Creating server-side implementations of the 
Protobuf definitions
	Building the gRPC client
	Applying different types of client-side call implementations
	Using gRPC dependencies in the client application
	Testing different types of unary call endpoints

	Streaming data from the client
	Adding a client-streaming call to the server application
	Adding client logic for a client-streaming gRPC call

	Reading streams from the server
	Adding a server-streaming RPC to Protobuf
	Setting up a server-streaming call on the server side
	Making a server-streaming call from a gRPC client

	Enabling bi-directional streaming
	Enabling server-side components for bi-directional streaming
	Adding a client-side implementation of a bi-directional streaming call
	Testing how to stream gRPC calls

	Summary
	Questions
	Further reading

	Chapter 8: Using Well-Known Types to Make Protobuf More Handy
	Technical requirements
	Using nullable types in Protobuf
	Setting up a gRPC server application
	Examining auto-generated code for wrapper fields
	Adding logic to gRPC server application
	Setting up shared dependencies
	Setting up the gRPC client
	Running the application

	Using dates and times in Protobuf
	Adding timestamp and duration to the server
	Applying changes to the gRPC client and launching 
the app

	Exchanging empty messages
	Adding the Empty data type to the server-side application
	Applying an Empty object on the client

	Using loosely typed fields in a Protobuf message
	Adding Any and Value data types to the gRPC server
	Populating the Any and Value fields from the gRPC client

	Summary
	Questions
	Further reading

	Chapter 9: Securing gRPC Endpoints in Your ASP.NET Core Application with SSL/TLS
	Technical requirements
	Configuring the gRPC client and server for unencrypted communication
	The role of TLS certificates
	Setting up a gRPC service application
	Removing TLS on both HTTP/1.1 and HTTP/2
	Exposing Protobuf definitions to clients
	Building the client for gRPC communication
	Adding the remaining client logic

	Creating and trusting a self-signed certificate
	The basics of a TLS certificate
	Trusting a default development certificate
	Creating a self-signed certificate on Windows using PowerShell
	Creating a self-signed certificate on Unix using OpenSSL
	Applying a certificate on ASP.NET Core
	Testing custom certificates and HTTPS redirection

	Applying certificate authentication on the gRPC client and server
	Configuring the gRPC server for certificate authentication
	Enabling certificate authentication on the gRPC client
	Testing certificate authentication

	Summary
	Questions
	Further reading

	Chapter 10: Applying Authentication and Authorization to gRPC Endpoints
	Technical requirements
	Setting up the authentication backend
	OpenID Connect and OAuth flow
	Configuring IdentityServer4
	Adding SSO users, roles, and clients
	Forcing login redirect on a web application

	Restricting gRPC endpoints to authenticated users
	Setting up shared gRPC dependencies
	Setting up the gRPC server
	Enabling gRPC client functionality

	Restricting endpoints to authorized users only
	Configuring SSO provider to insert role claim into 
the JWT
	Applying different authorization rules to different gRPC endpoints
	Applying gRPC client changes

	Summary
	Questions
	Further reading

	Chapter 11: Using Logging, Metrics, and Debugging in gRPC on .NET
	Technical requirements
	Debugging gRPC client components inside a .NET application
	Setting up shared gRPC dependencies
	Adding a gRPC service application and getting it to display detailed errors
	Adding a gRPC client with additional debugging capabilities
	Viewing gRPC error information on the client

	Debugging gRPC server components inside a .NET application
	Viewing the debug output on the gRPC server console

	Applying logs to gRPC
	Configuring a logger on the gRPC client
	Applying a logger on the gRPC server
	Testing our log output

	Applying metrics to gRPC
	Configuring metrics on the gRPC server
	Enabling metric collection on the gRPC client
	Viewing gRPC metrics

	Summary
	Questions
	Further reading

	Assessments
	Index
	About Packt
	Other Books You May Enjoy



