PREFACE

General Character and Purpose of the Instructor’s Manual

This Manual contains:

(I) Detailed solutions of the even-numbered problems.

(I1) General comments on the purpose of each section and its classroom use, with math-
ematical and didactic information on teaching practice and pedagogical aspects, Some of
the comments refer to whole chapters (and are indicated accordingly).

Changes in Problem Sets

The major changes in this edition of the text are listed and explained in the Preface of the
book. They include global improvements by updating and streamlining chapters as well
as many local improvements aimed at simplification of the whole text. Speedy orienta-
tion is helped by chapter summaries at the end of the chapters, as in the last edition, and
by subdividing sections into subsections with unnumbered headings. Resulting effects of
these changes on the problem sets are as follows.

The problems have been changed. The large total number of over 4000 problems has
been retained, increasing their overall usefulness by the following.

(I) Balancing by extending problem sets that seemed too short and contracting others
that were too long, adjusting the length to the relative importance of the material in
a section, so that important issues are reflected sufficiently well not only in the text but
also in the problems. Thus, the danger of overemphasizing minor techniques and ideas is
avoided as much as possible.

(IT) Simplification by omitting a small number of very difficult problems that appeared
in the previous edition, retaining the wide spectrum ranging from simple routine prob-
lems to more sophisticated engineering applications, and taking into account the “algo-
rithmic thinking” that is developing along with computers,

(I) Close amalgamation of text, examples, and problems. This has again been
achieved by the large number of over 600 worked-out examples in the text and by in-
cluding problems closely related to those examples.

(IV) Addition of TEAM PROJECTS, CAS PROJECTS, and WRITING PROJ-
ECTS, whose role is explained in the Preface of the book under Big Changes.

These changes in the problem sets will help students in solving problems as well as in
gaining a better understanding of practical aspects in the text. It will also enable instruc-
tors to explain ideas and methods in terms of examples supplementing and illustrating
theoretical discussions-—or even replacing some ol them if so desired.

“Show the details of your work.”

This request repeatedly stated in the book applies to all the problem sets. Of course, it is
intended to prevent the student from simply producing answers by a CAS instead of try-
ing to understand the underlying mathematics.

Orientation on Computers

Comments on computer use are included in the Preface of the book. Software systems are
listed in the book subsequent to Contents and at the beginning of Chap. 17 on numerical
methods,

ERWIN KREYSZIG
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Part A. ORDINARY DIFFERENTIAL
EQUATIONS

CHAPTER 1 First-Order Differential Equations
Major Changes

Direction fields are now discussed much earlier, in Sec, 1.2. This “geometrical” and “qual-
itative™ approach to differential equations may provide a better conceptual understanding
of equations and solutions. The graphical power of a CAS will be helpful in this context.

The second major change concerns the combination of related solution methods. Solu-
tion by separation and solution by reduction to separable form now appear in a single sec-
tion (Sec. 1.3). Similarly, exact equations and integrating factors are both discussed in the
same section (Sec. 1.5).

Team Projects and CAS Projects are included in most problem sets.

SECTION 1.1. Basic Concepts and Ideas, page 2

Purpose. To give the student a first impression of what a differential equation is and
what we mean by solving it.

Background Material. For the whole chapter we need integration formulas and tech-
niques, which the student should review.

General Comments
This section should be covered relatively rapidly to get quickly to the actual solution meth-

ods in the next sections.
If an example of a partial differential equation is wanted in passing, Laplace’s equa-

tion
3u ki u 0
gyt

may be best because of its great physical importance.
Problem Set 1.1 is supposed to help the student with the tasks of

Solving y" = f(x) by calculus,

Finding particular solutions from given general solutions,

Setting up a differential equation for a given function as solution,

Gaining a first experience in modeling, by doing one or two problems,

Gaining a first impression of the importance of differential equations,
without wasting time on matters that can be done much faster, once systematic methods
are available.

Comment on “General Solution” and “Singular Selution”

Usage of the term “general solution” is not uniform in the literature. Some books use the
term to mean a solution that includes all solutions, that is, both the particular and the sin-
gular ones. We do not adopt this definition for two reasons. First, it is frequently quite
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difficult to prove that a formula includes all solutions, hence this definition of a general
solution is rather useless in practice. Second, linear differential equations (satisfying rather
general conditions on the coefficients) have no singular solutions (as mentioned in the
text), so that for these equations a general solution as defined does include all solutions.
For the latter reason, some books use the term “‘general solution” for linear equations only;
but this seems very unfortunate. '
Comment on Example 2
Theoretically inclined students may show (a) by differentiation, (b) directly from the
differential equation, that the solution cannot be continued to the closed interval
—1 = x = 1, where the function is still continuous, but no longer differentiable.

This also illustrates that open intervals generally are the appropriate domains of defin-
ition of solutions.

SOLUTIONS TO PROBLEM SET 1.1, page 8

2. —=(cos 3x)/3 + ¢ 4. —ée*” +c
10. x — yy' = 0 by implicit differentiation and division by 2.
12. From the solution and the initial condition, 0 + 1 = ¢. Answer: x* + y* = 1(y > 0).
The figure shows the portion of this curve in the first quadrant, together with a
quarter-circle for comparison.

.74‘.
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Section 1.1. Problem 12

0

4. y = —x4 16. y = (m2) sec x

18. We get an ellipse with semi-axes |a| and b = |a|/2; that is, 2la® + yal2? = 1.

20. ¢=36% = 12, k = 0.192 541, e* = 0.825 after 1 day, 3.012 - 10~" after 365 days.

22. y" = g. By two integrations y' = gf + ¢; with ¢, = 0 because the stone starts from
rest, s = y = gf%/2 + ¢, with ¢; = 0 because 5(0) = 0, the stone starts at 5 = 0.

24. k follows from €899 = 12 k = In (1/2)/18000 = —0.000038 508. Answer:
35000k — () 26y, Since the decay is exponential, 36000 = 2 - 18000 would give
(y0/2)12 = 0.25y,-

26. y' = ry, where r = 0.08; y(1) equals

1080.00, 1082.43, 1083.28, 1083.29
and y(5) equals ' 2
1469.33, 1485.95, 1491.76, 1491.82.

The last two numbers in each line differ only slightly from each other, as claimed.
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SECTION 1.2. Geometrical Meaning of y’ = f(x, y). Direction Fields,
page 10

Purpose. To give the student a feel for the nature of differential equations and the gen-
eral behavior of fields of solutions. This amounts to a conceptual clarification before
entering into formal manipulations of solution methods, the latter being restricted to rel-
atively small—albeit important—classes of equations. This approach is becoming in-
creasingly important, especially because of the graphical power of computer software. It
is the analog of conceptual studies of the derivative and integral in calculus as opposed
to formal techniques of differentiation and integration.

Comment on Isoclines

These could be omitted since students sometimes confuse them with solutions. In the com-
puter approach to direction fields they no longer play a role.

Comment on Order of Sections

This section couid equally well be presented later in Chap. 1, perhaps after one or two
formal methods of solution have been studied.

SOLUTIONS TO PROBLEM SET 1.2, page 12

2.y=x*+¢ 4. y = ce™ 6. y=x% +¢
8 y=ce®™—x~1 10, y = x%2 + 4

12. y = ce™*2, ¢ = 1, a bell-shaped curve

14. The exact solution is y = H{(x — 1). This is not part of the problem because the
solution is obtained by separating variables (which is discussed in the next section),
dyly* = —dx,y = U(x + ¢), ¢ = ~1 from the initial condition.

16. 5'(f) = 1/s(r). Exact solution s = +V/27 + 1 this is not part of the problem:; it is
obtained by separating variables, s ds = dr, 5%/2 = ¢ + 7, 52 = 2f + ¢, and 5(0) = 1
gives ¢ = 1. Now take square roots.

18. The main points of this problem are to realize that a direction field can give general
information on solutions and that the present differential equation permits direct con-
clusions. We can write it

(A) Y =dy-yr=y4a-y)
We now see that y = 4 is a solution. For'x = 0 Eq. (A) gives
¥'(0) = y(0)4 — y(0)).
For 0 < y(0) < 4 both factors on the right are positive, so that y'(0) is positive.
Similarly, as long as 0 < y(x) < 4, we get y'(x) > 0, that is, an increasing curve,

When y(x) > 4, then y'(x) < 0 and the curve decreases,
20. CAS PROJECT. (a) The point is that enlargement of subregions may give a more

accurate impression.

(b) y = ce~7 is monotone, and the simple direction field may help the student gain
confidence in the method. Note that the isoclines are horizontal straight lines
Y = const, a property that should also become visible if the field is produced by
computer, without reference to isoclines.

(c) The impression of circles should come out very nicely.

@ y' = —x/ay
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SECTION 1.3. Separable Differential Equations, page 14

Purpose. To familiarize the student with the first “big” method by solving simple equa-
tions as well as some that require more skill, along with initial value problems (which are
simple to solve, once the general solution has been found). Applications of separable equa-
tions follow in the next section.

Comment on Example 1

From the implicit solution we can get two explicit solutions

y=+2Ve — (x*/9),
representing semi-ellipses in the upper half-plane, and

y=—2Vc — (x*M),

representing semi-ellipses in the lower half-plane. [Similarly, we can get two explicit
solutions x(y) representing semi-ellipses in the left and right half-planes, respectively.]
On the x-axis, the tangents to the ellipses are vertical, so that y'(x) does not exist. Simi-
larly for x'(y) on the y-axis.

Comment on Separability

An analytic function -f(x, y) in a domain D of the xy-plane can be factored in D,
f(x, y) = g(x)h(y), if and only if in D,

feyl = fafy

[D. Scott, American Math. Monthly 92 (1985), 422—23). Simple cases are easy to decide,
but this may save time in cases of more complicated equations, some of which may per-
haps be of practical interest.

SOLUTIONS TO PROBLEM SET 1.3, page 18

2.25x2 +y¥=¢ 4. 1/ + 0 6. ‘1(kx + ¢)
8. x(u +x) =xu + x,u'x =14 = Ux,u=Inkl +c=yx Answer: y =
x(In |x] + ¢).
10.y+4x=v,y =0v —4= v? by the differential equation. Hence v’ = v* + 4.
We may set v/2 = w. Then 2w’ = 4(w* + 1). By integration, arc tanw = 2x + ¢,
w = tan (2x + ¢) = /2 = y/2 + 2x. Answer: y = —4x + 2tan (2x | ©).
12. yy' = —x, 212 = —x*2 + ¢ x* + y* = c. From this and the initial condition,
12 + (V3) = 4 = c. Answer: x*> + y* = 4, a circle of radius 2.
14. By integration, y%4 + x*4 = c. From this and the initial condition, 1/4 + 0 = c.
Answer: x* + y* = 1.
16. By separation of variables, dy/(1 + 4y®) = dx. We may set 2y = z, hence y =zZ'n.
By substitution,

dz
—_— - = .
20+ 20 dx, arctanz = 2x + ¢, z = tan (2x + ©),

hence y = z/2 = }tan (2x + ¢). From this and the initial condition, 0 = 3tanc,
¢ = 0. Answer: y = 3 tan 2x.
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18. By separation, integration, and exponentiation,
dr
= -2t di, Inr=—t+¢, r=ce .

From this and the initial condition, r(0) = ¢ = 2.5. Answer: r = 2.5¢"t".
20. Substitute y/x = u, y = xu, y' = u + xu’ and simplify to get
x(u+ ') = x3u - 1) + qu, u' = x(u - 13

By separation and integration,

1 x? 1
—_— = S —— S — r —_ z=
w-1D° x dx, =1y > + ¢, (e — 1) P A

Hence by taking roots, y = xu = x + x/V¢ — x From this and the initial condi-
tion, 32 = 1 + 1/Vc¢ — 1, ¢ = 5. Answer:

x
SRR
22. We substitute y/x = u, y = xu,y' = u + xu' and simplify, obtaining
x(u+xu')=xu+x2secu. u' = secu, cos udu = dx, sinu = x + ¢,
From this and the initial condition ¥(1) = 7 we have u(l) = #, 0 = sinw =
I+c,c=—1.Answer:y=xa:csin(x-l). g
B v=x+y—-2,y =v' =1=12p" =2+ lcmbcsepmawd.-vz—+—T=dx.
arcta.nv=x+c,y=v—x+2=2—x+tan(x+c).
26. TEAM PROJECT. (a) Note that at the origin, x/y = 0/0, so that y' is undefined at
the origin.
M) (xy) =y +xy' =0,y = —yix
(¢) y = cx. Here the student should learn that ¢ must not appear in the differential
equation. ylx = ¢, y'/x — ylx? = 0, y' = y/x.
(d) The right sides —x/y and y/x are the slopes y’ of the curves. Orthogonality is im-
portant and will be discussed further in Sec. 1.8.

_SECTION 1.4, Modeling: Separable Equations, page 19

Purpose. This section contains some typical applications to choose from, depending on
students’ interests and background. They serve to convince the student of the practical
importance of differential equations Similarly, Problem Set 1.4 contains much mure
material than one would ordinarily wish to discuss.

Comment on Example 4
Although Newton’s second law involves acceleration, hence a second derivative, it is
often possible to stay within first-order equations, as in this case.
Comment on Footnote 4
Newton conceived his method of fluxions (calculus) in 1665-1666, at the age of 22.
Philosophiae Naturalis Principia Mathematica was his most influential work.

Leibniz invented calculus independently in 1675 and introduced notations that were
essential to the rapid development in this field. His first publication on differential cal-
culus appeared in 1684.
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SOLUTIONS TO PROBLEM SET 1.4, page 23

2. y" = k (constant acceleration). By two integrations, y = 3kr* + 10t, where we used
the given initial speed. After 50 sec we have y(50) = 1250k + 500 = 2000. This
gives k = 1.2. By differentiation and substitution, y'(50) = 50k + 10 = 70 meters/sec
= 252 km/hour.

4. Acceleration y' = 7t. Hence y' = 7632, y = 7¢%/6, y'(10) = 350 (initial speed of

further flight = end speed upon return from peak), y(10) = 7000/6 = 1167 (height

reached after the 10 sec). At the peak, v = 0, s = 0, say; thus for the further flight
(measured from the peak), s(z) = (g/2)* = 4.9¢% v(r) = 9.8t = 350 (see before).
This gives the further flight time to the peak t = 1, = 350/9.8 = 35.7 and the fur-
ther height s(t;) = 4.91,% = 6245. Answer: 1167 + 6245 = 7412 [m].

6. e ¥ =1 k=%&in} = 0069315, e = 0.01 (1% is the remaining moisture).

1
Answer: to = T In 100 = 66.4 min; practically 1 hour.

8. The acceleration is @ = 9 - 10° meters/sec?, and the distance traveled is 5.5 meters.
This is obtained as follows. Since s(0) = 0O (i.e., we count time from the instant the
particle enters the accelerator), we have for a motion of constant acceleration

2
(A) s =a— + bt

2
and the velocity is
v() = s'(t) = at + b.
From the given data we thus obtain v(0) = b = 10® and
v(10~%) = 107% + 10° = 10*
so that
a = 10°(10* — 10%) = 107 ~ 10% = 9 - 105,
Finally, with this @ and that b, from (A) we get
1 -6
2

10. At the earth’s surface the minimum velocity for escape is vg”, and from (11) and (12)
in Example 4 we see that then the square of the velocity at any distance r from the
center of the earth is

1073 =9-10°- +10°- 102 = 5.5 [m).

so that at the point of separation ro = R + 1000 (i.e., 1000 km above the earth’s sur-
face) the projectile has the velocity

2gR? 2 - 0.0098 - 63722
. u(rg)= \/ i = \/ 7372 = V107.95 = 10.39 [km/sec].
ey 0

This is the minimum velocity of escape at the separation point.

12. AA = —kAAx (A = amount of incident light, AA = absorbed light, Ax = thickness,
—k = constant of proportionality). Let Ax — 0. Then A" = —kA. Hence
A(x) = Age™™ is the amount of light in a thick layer at depth x from the surface of
incidence.

14. Let y(r) be the amount of salt in the tank at time ¢. Then each gallon contains y400

http://librosysolucionarios.net
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16.

18.

Ib of salt. 2A¢ gal of water run in during a short time At, and —Ay = 2A¢(y/400) =
At 1200 is the loss of salt during At. Thus Ay/At = —y/200, y' = —0.005y, y(1) =
100e %% Answer: y(60) = 100e~°3 = 74 [Ib].

Let V = V(1) be the volume and r = r() the radius. Then the area is A = 4772 The
rate of change dV/dt is proportional to A; thus by the chain rule, denoting the con-
stant of proportionality by £,

—-=——-—=4m'2—7=kA=4k1rrz.

At t = 0 the radius is 1 and after 2 months, it is 3. Now dividing the previous equa-
tion by 477 and integrating, we obtain

dr
_— - +
= k, r=kt+c
and that condition can be used to find k and c,
r@=c=1, r=k+1}, r@2)=2k+1=4%

Hence & = —1/4, and from this and the condition that the ball have radius 0.05 cm,
we obtain

005=r() = -3t + 1, thus 1=4-095=38.

The answer is 3.8 months.

‘W = mg in Fig. 12 is the weight (the force of attraction acting on the body). Its com-

ponent parallel to the surface is mg sin @, and N = mg cos a. Hence the friction is
0.2mg cos a, and it acts against the direction of motion. From this and Newton’s sec-
ond law, noting that the acceleration is dv/dt (v the velocity), we obtain

dv

m—r = mg sin @ — 0.2mg cos a
= m - 9.80(0.500 — 0.2 - 0.866)
= 3.203m.

The mass m drops out, and two integrations give

2
v = 3203t and s = 3203 % .

Since the slide is 10 meters long, the last equation with 5 = 10 gives the time
t = V2-10/3203 = 2.50.
From this we obtain the answer
v = 3.203 - 2.50 = 8.01 [meters/sec].

. TEAM PROJECT. (a) This property is worth noting. It is obtained by substituting

t = t(h) into v(f); thus
a=g v=g, h=g®2, t=V2hlg, v=g\V2hlg=\2gh.

(b) This is a typical exercise in modeling. It is remarkable that A and B(h) in (14)
are unspecified, so that (14) could serve as a model for various types of tanks
(cylindrical, conical, hemispherical, etc.). BAh is the decrease in volume when A
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decreases by Ah during a short time Af, and this must equal AvAt, which, by
Torricelli’s law equals A - 0.600V2ghAr. By equating the two expressions, and
introducing a minus sign (since the water level decreases), we get

BAh = —26.56AVhAt,

Dividing by Ar and letting Az — 0 gives (14).
(¢) This is the simplest case because B is constant (independent of h), and we can
easily solve (14) by separation of variables and integration,

E~VY2 gh = —26.56(A/B) dt
W% = —1328(A/B)t + c.

(d) A/B = (1/100)%, VA(0) = V150 = 12.25 = ¢, and the tank will be empty at ¢
satisfying
0 = —0.001328¢ + 12.25; that is, t = 9924 sec = 154 min.

SECTION 1.5. Exact Differential Equations. Integrating Factors, page 25

Purpose. This is the sccond “big” method in this chapter, after separation of variables,
and also applies to equations that are not separable. The criterion (5) is basic. Simpler
cases are solved by inspection, more involved cases by integration, as explained in the
text.

Comment on Footnote 12

Condition (5) is equivalent to (6") in Sec. 9.2, which is equivalent to (6) in the case of
two variables x, y. Simple connectedness of D follows from our assumptions in Sec. 1.5.
Hence the differential form is exact by Theorem 3, Sec. 9.2, part (b) and part (a), in that
order.

Method of Integrating Factors

This greatly increases the usefulness of solving exact equations. It is important in itself
as well as in connection with linear equations in the next section. Problem Set 1.5 will
help the student gain skill needed in finding integrating factors. Inasmuch, the method has
somewhat the flavor of tricks, but on the other hand, Theorems 1 and 2 show that at least
in some cases one can proceed systematically—and one of them is precisely the case
needed in the next section.

Comment on Notation in Example 5

The standard notation for (sin y)? is sin? y, hence sin y® clearly means sin (y®); the paren-
theses are superfluous, but we wanted to help poorer students.

SOLUTIONS TO PROBLEM SET 1.5, page 31

2. 2xdx — 2y dy = 0, hyperbolas, with asymptotes y = *x

4. —(2xdx + 2y dy)l(x*® + y®? = 0, concentric circles

6. cos x cosh y dx + sin x sinh y dy = 0. The curves « = const go vertically upward to
infinity as sin x — 0, as x — 0, 7, - - - ; see the figure.
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y
8l
6
4
2 L
=
% 1 2 a =
Section 1.5. Problem 6
8. yx=c¢ 10. re®*® =¢

12. xcoty + x*3 =¢ 14. Yes, y = 3.8 sin 2x
16. Yes, y* + ye* =0
18. (@ cos wy), = 0 but (2 sin wy), # 0. Not exact. By separation of variables,

2 1 2 & 2
cotwydy=—-—{;—dx, ;lnlsinwy|= —;x+c, sin wy = ce %",

Now y(0) = m/(2w) gives sin (m/2) = c. Hence ¢ = 1. Answer: ¢** sin wy = 1.
20. (2xye"’),, = 2xe® = (&), shows exactness. By integration,
ye*' = ¢.

¥(0) = 2 gives ¢ = 2. Answer: y = 2e™%".
22. Equation (9) becomes s* + * = const; see the figure in the solution to Prob. 12 of
Sec. 1.1 in this Manual.

24. (xy) ' dy — x*dx = 0 has the integrating factor F = y, giving
(A) xYdy = x%ydx = 0,
which is exact because
e =t = (-2,
Now (A) implies

— ydx
,-xay-x.-ydx=L‘yx,_y_=d(1)=o

<n that

=c, y=cx

* |

as claimed, but y = 0 is not a solution of the original equation.
26. ycos (x + y)dx + [ycos (x + y) + sin (x + y)] dy = 0 is exact because

[ycos(x + y)], = cos (x + y) — ysin(x + y)
= [ycos (x + y) + sin (x + )]
By inspection or systematically, ’

ysin(x +y)=c.
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28. The new equation is
3y + D& 4dx — 2y + Dx~2dy = 0.
It is exact,
M, =N, = 6(y + Ix~%
The general solution is
o+ DA 2=

30. The new equation is
2cos 2xcos ydx — sin2xsiny dy = 0.
It is exact,
M, = N, = —2cos 2xsin y.
A general solution is
sin 2xcosy = c.
32. F = y® gives the new equation
2xy® dx + 3x%y? dy = d(x*y®) = 0,

which is exact and has the general solution x%y® = const.

34, F = ¢** gives the new equation
e2*(2 cos ydx — sinydy) = 0.
This equation is exact,
M, = N, = —2¢**sin y.

The general solution is e** cos y = c.

36. F = 1/(x + 1)(y + 1) gives the exact equation

dx dy

x+1 y+1=0

The general solution is
y+1=c¢x+ 1)
38. WRITING PROJECT. Suitable equations abound; for instance, the equations
' +y+4=0, b2cdx + a?ydy = 0,

etc. can be solved by inspection, separation, or as exact equations.
40. CAS PROJECT. (a) Theorem 1 does not apply. Theorem 2 gives

1 dr 2 2 1

—— + 3 - e o = i = —,

F = (0 + 2ysinx) 5’ F cxpf 5 dy -
The exact equation is

y 2dy — sinxdx = 0,
as one could have seen by inspection—any equation of the form

fx)dx + g(y)dy =0
is exact! We now obtain

u= f—sinxdx= cos x + k(y)
1

1
=k =—, k= ——,
u, (89 3 y
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1
U=COSX— —=¢.
y

(b) Yes,

o . 1
= y*sinx, — = sin x dx, —— = —cosXx + ¢, = e
Hemedh y? y Y= cosx +¢

(¢) The vertical asymptotes that some CAS programs draw disturb the graph. From
the solution in (b) the student should conclude that for each initial condition
¥(xg) = yo with yp # 0 there is a unique particular solution because from (b),

1 — yo cos xg
Yo ’

c=

@ y=0

SECTION 1.6. Linear Differential Equations. Bernoulli Equation, page 33

Purpose. Linear equations are of great practical importance, as Problem Set 1.6 illus-
trates (and even more so are higher order linear equations in Chap. 2). We show that the
homogeneous equation is easily separated and the nonhomogeneous equation is solved,
once and for all, in the form of an integral (4) by the method of integrating factors. Of
course, in simpler cases one does not need (4), as our examples illustrate.

Comment on Notation
‘We write

Y+ p(y = r().
p(x) seems standard. r(x) suggests “right side.” The notation
¥+ plx)y = qx)

used in some calculus books (which are not concerned with higher order equations)
would be short-sighted here because a few weeks later in Chap. 2 we tum to second-

order equations
Y' 4+ p@)y' + gy = r@x),

where we need g(x) on the left, thus in a quite different role (and on the right we would
have to choose another letter different from that used in the first-order case).

Comment on Content
Bernoulli’s equation appears occasionally in practice, so the student should remember
how to handle it.

Riccati and Clairaut equations are less important than Bernoulli's, so we have put
them in the problem set; they will not be needed in our further work.

Input and output have become common terms in various contexts, so we thought it a
good place to mention them here.

Problems 2330 express the properties that make linearity important, and their coun-
terparts will, of course, reappear in Chap. 2.
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Comment on Footnote 14

Eight members of the Bemoulli family became known as mathematicians; for more de-
tails, see p. 220 in Ref. [2] listed in Appendix 1.

SOLUTIONS TO PROBLEM SET 1.6, page 38

4. y=ce 2+ 125 »

6. y = ce*" + 4. Separation of variables seems simplest here, y' = —(y — 4)x; then
divide by y — 4, etc.

8. y = ce™** + $ cos x + 75 sin x. The particular solution can be obtained by substi-
tuting y = a cos x + b sin x, which leads to @ = 4b and 17b = 1 by comparing with
cos x on the right of the given equation. This avoids the integration.

10. y = ¢™%c — In|cos x|)
12. y = x3In | + ¢)
14. x%' + 2xy = (x%)’ = sinh 5x; now integrate to get

x%y = § cosh 5x + c, thus y = x~ %% cosh 5x + ¢).

These problems illustrate that the integral solution formula (4) can be avoided in many
cases.

16. y = cx®¢® — x is the general solution. The initial condition gives ¢ = 1.

18. This homogeneous linear equation has the general solution y = ¢ secx, and ¢ = —2
from the initial condition.

20. y = e 2*°(¢ — 1/x) is the general solution; ¢ = 1 from the initial condition.

22, y = ex™* + x* is the general solution. The initial condition gives ¢ = 1,

24. Problems 2330 require proofs by substitution, so they are basically very similar. By
working these problems the student should become aware of the difference between
homogeneous and nonhomogeneous equations. This will also serve as a preparation
for the corresponding theorems for higher order equations, some of which are im-
portant in constructing general solutions of nonhomogeneous equations from those of
homogeneous equations.

30. y' + poy = ro. ¥' = —poly — rolpo), ¥y — rolpe) = —pos
In(y = rolpa) = —pox + €,y = rolpy + ce™P"

2. u=yy' +y2=—x 3" + u=—xu' + 2u= —2x hence

u=e"2’[—jez’2xdx+c]=§—x+ce"z’, y=Vu
34. This differential equation can simply be solved by separating variables,

dx a
cotydy=-x_—l, Infsinyl = Infx = 1| + E,

y=arcsinfe(x~1)] o x=1+csiny.
As an alternative, we can regard it as a differential equation for the unknown func-
tion x = x(y) and solve it by formula (4) with x and y interchanged.
36. Take x as the dependent variable to get

x dx 2 1
— = y~“(sinh 3y — 2xy), — 4 — = —=3inh 3
dy P dy y 4
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and by (4) with x and y interchanged,

x= y‘z[f y2(sinh 3y)y~2dy + c]
= y~?[4 cosh 3y + c].

38. Using the given transformation y* = z, we obtain the linear differential equation

1
'+ (1 ™ —)z = xe*,
¥

which we can solve by (4) with z instead of y,
1
z= xe"”( f = e*xe* dx + c) = xe *(3e** + ¢) = cxe™* + xe®.

From this we obtain y = V'Z.
40. y' + y = 1 — cos (mt/12). Solution:

el Faly e A
y=e [fe(l coslz)dt+c]

- — .. 9 Wil ()
e [e'(l 0.936 cos - — 0.245 sin 12) ¢

where y(0) = 2 gives ¢ = 1.936, so that we get the answer

rt it
= "'t+ — . — = . 1 —_
y ='1.936¢ 1 — 0.936 cos 2 0.245 sin 2

42. From (4) and the initial condition v(0) = 0 we obtain
W-—B W 2254

— p—ktim B e I —
X (1—e ), where m i 9.80 230 [kg].

By integration, using y(0) = 0,

W o i s
¥ = X [t k(l € ):I.

From v(f) we calculate that v = v When

uv(t) =

t = tort = —1In :
CoemtT g 1 — 12k(W — B)
This gives y(f.ry1) = 105 meters, approximately.
44. The given equation y' = x*(y — x)* + x~'y shows immediately that y = x is a so-
lution. It is a Riccati equation; its standard form is
y + @2 - x" Yy =382 + x5,

as follows by direct calculation.
From w = y — x we have y = w + x, and from the given equation we get

= 17.2 [sec].

y =w +1=2x%%+ x"Y(w + x), w — x"lw = x3y2

http://librosysolucionarios.net
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a Bemnoulli equation. To solve it, set 1/w = z, w = 1/z, w' = —z'/z® and by substi-
tution

Answer:

! 1 14_1
y=w+x=;+x= [+« SEoL b - + X

. By differentiation, y' = y" + xy" — y"iy'2 = y' + y"(x — 1/y'?). Now (A) y" = 0

gives y — ex + aand @ — 1/c by substitution, a family of straight lincs. (D) + = 1/y'?
gives by integration y = 2x'* .+ T and ¢ = 0 by substituting y and y’ into the given
equation, hence y = 2V7z, the singular solution, to which the straight lines in (A) are
tangent.
y = ax -+ b intersects the axes at (—b/a, 0) and (0, b). Length 1 implies that b =
—a/V1 + a. Now a = y" and we get the equation given in the problem. We write
y" = s. Then the singular solution results from x = —g'(s) = (1 + s%)~*2, From this
and the differential equation, by simplification,
y = sx — s/(1 + s2)12 = —s3(1 + s?)*2,

The result is

x=(1+ s y = =531 + s3)~3R

a parametric representation of the astroid (see the figure). Adding these two expres-
sions, each raised to the power 2/3, we get the formula in the problem.

Section 1.6. Astroid in Problem 48

SECTION 1.7. Modeling: Electric Circuits, page 41

Purpose. To model by Kirchhoff's laws those circuits (RL and RC) that lead to a first-
order equation and to discuss the currents for the simplest inputs (constant and sinusoidal).
This is a major standard application of lincar equations and will help all students—not
just electrical engineers—to gain further experience in modeling. (RLC-circuits, leading
to second-order equations, follow in Sec. 2.12.)

Shorter Courses. Sections 1.7—1.9 may be omitted without interrupting continuity.

http://librosysolucionarios.net
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SOLUTIONS TO PROBLEM SET 1.7, page 47

2. & increases with L, indicating that L has a retarding effect (an inertia effect—to be

6. For t = 1 and I = 0.99Ey/R we have from (5**) with L = 10

8. We ubtain

10.

studied further in Sec. 2.12, where we show the analogy between mechanical and
electrical quantities).

. Solve (4) algebraically for I” = dl/dr, this gives I' = [Eq — RIJ/L,and I' > 0 as long

as Ey/R = I(1), so that I(f) begins to increase when I(0) < Ey/R. Similarly, 1(0) >
Ey/R implies that I(f) begins to decrease.

5—5‘1 — p—RNO -RA0
099 —F = —2 (1 — ¢RI, (~R10 = 001,

819 = 100, R = 101n 100 = 46 [ohms].

RA + wlB = 0, ~wlA + RB = E,
and from this,
A = —wLEJ(R* + *L?), B = RE/(R® + &*L?).
By (14), Appendix A3.1,

VET P =  |VUE + RE _ _ E
A2+ B = = ;
(R? + «”L%? VR + 212

as in (6), and tan § = —A/B = wL/R.

TEAM PROJECT. (a) I(7) is continuous. A jump J/L of I" gives a jump J of LI',

equal to the jump of E(r) on the right side of (4).

) I=1; =1 -3¢ * when 0 =1t =4, [, = cpe="“~? (this is better than writing
cpe~", which, however, would also work). Now by continuity of I,
I4) = I,(4) = 1 — 3% = 0.99.

(¢) Here we proceed as in (b), with letters instead of numbers.

E,
L(t) =—-R3 + cie”®L when 0=t=a,

II(O) = -Eig + C1 = Io, €= Io = % » Iz(f) = Cze-m-a)”‘.
Again, t — a in the exponent is practical, but we could use t instead. ¢, follows
from

E, |
Iy(a) = ¢y = Ii(a) = % + (10 - 'Eq‘)e-m-

12. From the first line in (11),

wEy C
IO=ct+———==0;
O = ¢+ T3 (wreP |
this gives c. Inserting it into the first line, we have
It) = e € [=e ¥RC 4 cos wt + @RC sin wt).

1 + (wRC)?
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14. Differentiation of (7) gives

Rl'+R'1+“—=O. o ’+ — R !
(200 — I 3ar=0, 7 Py dt

Hence I = ¢(¢ — 200)® and J(0) = 1 gives ¢ = —1/8 - 10%), thus
I(H) = (200 — 0?8 - 10%) if 0 = ¢ = 200, I(t)y = 0if t = 200.

16. We want the time such that Q = Qpe™"R¢ = 0.01Q,. Hence t = RC In 100 = 4.605RC
|sec].

18. 20Q" + 10Q = 30e™%" is the new equation. For the initial condition Q(0) = 0 we
obtain the particular solution

0@) = 0.6(e™"* — ™).

Q'() = 0.6(—0.5¢7%2 + 3¢7) = 0 gives ™ = 6, 1,, = (In 6)/2.5 = 0.717 [sec]
and Q,, = 0.349 [coulomb]. The larger R has caused a smaller Q,, at a later time t,,,.
See the figure, where the upper curve corresponds to Prob. 17.

Q)

0.5
0.4
03
0.2

0.1
1 1 1
00 0.5 1 1.5 2

Section 1.7. Problem 18

~Y

20. TEAM PROJECT. (a) Use (3%), (3). Then from (7),
‘ RI(t) = E(t) — Q()/C.
Divide by R and set ¢ = 0.

(b) This follows from (7). The charge on the capacitor cannot change abruptly. Hence
RI on the left must have a jump of magnitude J, so that / must have a jump J/R.

(€ I0)=0by(@).I' +I=t,I=t-1+ e 2) =1+ e~2 dE/dt has a jump
—2 at t = 2. Hence the current I, for r = 2 satisfies
I3 + Iy = 0, I2) = —1+ e "

Solution: I, = (1 — e*)e™".

SECTION 1.8. Orthogonal Trajectories of Curves. Optional, page 48

Purpose. To show that families of curves F(x, y, ¢) = 0 can be described by differential
equations y' = f(x, y) and the switch to y' = —1/f(x, y) produces as general solution the
orthogonal trajectories. This is a nice application, which may also help the student gain
more self-confidence, skill, and a deeper understanding of the nature of differential equa-
tions. We leave this section optional, for reasons of time. This will cause no gap.
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SOLUTIONS TO PROBLEM SET 1.8, page 51

2. (x — ¢ + (y — ¢®? — 4 = 0 gives a circle of radius 2 with center (o, ¥o) =
(¢, ¢®), and we see that the coordinates of the center satisfy y, = xo°, as required.

4. y' = 1/2. This is the slope of these parallel straight lines.

6. From the given formula we get arc tan y = x + ¢. Differentiating and applying the

chain rule, we obtain
i

T{? =1 Answer: y =1+
8. x~%y = c. By differentiation, —4x~ 3y + x~%' = 0. Algebraic solution for y' gives
the answer

y = 4dylx.
10. From the given representation we get
ye“"2 =c e“"z(y' — 2xy) =0, y = 2xy.
This is the differential equation of the given family of curves. From this we have the
differential equation of the orthogonal trajectories
; 1

D S

2xy
Separation of variables and integration gives

dx 1 5
2ydy=-7, y==hhjj+c=h—+2

¥
Taking exponentials and solving for x as a function of y, we obtain

c¥
eV =—, x = c*e ¥,
- ¢
These are bell-shaped curves—note that in Sec. 1.3 the roles of x and y are inter-
changed.

12. y' = 1/x gives for the orthogonal trajectories y° = —x with the solution
y=—k?+ ¢
Note that here we have congruent curves as well as congruent orthogonal trajecto-
ries.

14. Squaring the given formula, differentiating, and solving algebraically for y', we
obtain

’

y-x=c 2y’ =1 y=i
’ A 2}"

This is the differential equation of the given curves. Hence the differential equation
of the orthogonal trajectories is

’
y =2
By separation of variables and integration we obtain
Inphf = —2x + ¢
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Exponentiation gives the answer

y = c¥e™%,
16. Differentiating the given formula, we obtain
x' +y=0. Thus y'=—%.

This is the differential equation of the given hyperbolas. Hence the differential equa-
tion of the orthogonal trajectories is

’

y=

AR

Separation of variables and integration gives
ydy = x dx, =L+

Answer: The hyperbolas x> — y* = c¢* are the orthogonal trajectories of the given
hyperbolas.
18. x + x~%y* = 2¢ by algebra. By differentiation,

y -
1—x B2 +2ly =0, tus =X
2xy
Hence the equation of the trajectories is
dx _ 2 -y
dy &y
To solve it for x = x(y), set v = x/y and separate.
v dy
———dy = —==—, Th In@?+1)=~Inly| +¢
T dv 5 en ¢ ) nly +¢
which gives
2 2c* .
vz+l=;—+l=—-—, 2+ (y— %) =c%2
y

20. (x> — 1ly + y = 2¢ by algebra; 2x/y — [(x* — 1)/y? — 1}y’ = 0. Now replace
y' by —1/y" and multiply by y*/x*:

Multiply by x to get the desired final formula
G+t +yi=c¥ -1

2. 4x+2n' =0, y =-=2ly, y=y2x y=c*Vx
24. dv = 0 gives dyldx = —v_ /v, and this must equal w,/u, (see Prob. 23).
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Differentiating ¥ = e“cosy and using the first Cauchy-Riemann equation,
Uz = Uy, we obtain

— p— X
vy = up = e*cosy.

By integration with respect to y,

v = e"siny + k(x),

where the “constant” of integration X = k(x) depends on x because we are dealing
with partial derivatives. From this and the second Cauchy-Riemann equation,

vy = e"siny + k'(x) = —u, = + esiny.

Hence we must have k'(x) = 0, and k = ¢ = const. Answer: e* sin y =c*

26. TEAM PROJECT. (a) The point is that the student should learn to summarize the
essential facts in a given more detailed presentation.
(b) Differendating the glven equation with respect 1o x and solving the result alge-

(c)

braically for y’, we obtain the differential equation of the given curves

.}
y 5 y
This involves the constant k = b*/a”; hence we are dealing with infinitely many
families, each corresponding to some value of k. The differential equation of the
orthogonal trajectories is

\<N

,_a
> %

):0

By separation of variables and integration,

2
Inly = —Inl.xf + ¢

and by taking exponentials,
! y= P i

We see that a®/b® has substantial influence on the form of the trajectories. For
a® = b® we have circles and obtain straight lines as trajectories. a*/b® = 2 gives
quadratic parabolas. For larger integer values of a®/b* we obtain parabolas of
higher order. Intuitively, the “flatter” the ellipses are, the more rapidly must the
trajectories increase to have orthogonality.

For hyperbolas we have a minus sign in the given formula. This produces a plus
sign in the differential equation for the curves (instead of the minus we had) and
a minus sign in the differential equation of the trajectories,

i
b%x "

By separation of variables and integration we obtain
= c*x‘“%’

with a minus sign in the exponent. For a®/b® = 1 we get hyperbolas and for
higher values less familiar curves.

(d) The problem set contains various cases that lead to other families of curves that

can be handled easily.
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SECTION 1.9. Existence and Uniqueness of Solutions. Picard Iteration,
page 52

Purpose. To give the student at least some impression of the theory that would occupy a
central position in a more theoretical course on a higher level.
Short Courses. This section can be omitted.

Comment on Iteration Methods

Iteration methods were used rather early in history, but it was Picard who made them pop-
ular. They are well suited for the computer because of their modest storage demands and
usually short programs in which the same loop or loops are used many times, with dif-
ferent data. Since integration is generally no difficulty for a CAS, Picard’s method has
gained popularity during the past two decades.

SOLUTIONS TO PROBLEM SET 1.9, page 58

2. General solution y = cx%, so that y(0) = 0 does not specify ¢ and we have infinitely
many solutions, f(x, ¥) = 4y/x is not defined when x = 0. Note that in Prob. 1 we
had no solutions; hence both cases, nonexistence or nonuniqueness, may occur.

4, Separating variables and integrating, we get
dy _ 2x-2
y X — 2

& =l -2+

and by taking exponentials
y = c(x® = 2x) = ex(x = 2).

From this we can see the answers:

(a) No solution if y(0) = k # 0 or y(2) = k # 0.

(b) Infinitely many solutions if y(0) = 0 or y(2) = 0.

{¢) A unique solution satisfying y(xg) = yo if xo # 0 and x, # 2. There are no con-
tradictions to Theorems 1 and 2 because

2x—2
fr3) = 5 —-

is not defined when x = 0 or 2.

6. y=0,y=cé*" (c >0),y = ce~*2 (¢ < 0). Thus the solutions in the upper half-
plane increase very rapidly as |x| increases, whereas in the lower half-plane they are
bell-shaped curves and approach zero as |x| — . They are obtained by noting that
y =xyify=0andy = —xyify = 0.

8. The smallest K is K = (b + 1) and b/(b + 1)* is maximum when b = 1, the value
is 1/4. Hence a = 1/4. The solution is y = 1/(2 — x).

10. PROJECT. (a) The student should get an understanding of the “intermediate” po-
sition of a Lipschitz condition between continuity and (partial) differentiability.
(b) It suffices to consider the sine term. The validity of a Lipschitz condition follows
from (12) in Appendix A3.1 and the calculation
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}’z")'ll
2 |

The nonexistence of df/dy can be seen from the curve of [sin x|, which has a 90°
cusp at 0; formally, if x = 0, then

lsin (x + &x)| — [sinx] _ |sin Ax] N { 1 if Ax>0

=F )’1'-

sin cos

+ -
lsin y, — siny| = 2 hzyllgzm "*'-|=1y,,

2

Ax Ax 1 if Ax<0.

(c) Here the student should realize that the linear equation is basically simpler than
the nonlinear one. The calculation is straightforward because we have

fx, y) = rx) = p(x)y
and this implies that
(A) Jx, ya) — fix, y1) = —p)yz — ).
This becomes a Lipschitz condition if we note that the continuity of p(x) for

|x — xo| = a implies that p(x) is bounded, say |p(x) = M for all these x. Taking
absolute values on both sides of (A) now gives

[£Cx, y2) = FOx. y0)l = Mlys = yy.

50 e G b
" T o T 3 o+

y=e*—x-1

M. yo=1Ly=1+xy,=1+x+x>+ L5 etc.;exacty = 1/(1 — x)

16. y = (x — 1) y = 0. The general solution is y = (x + ¢)2. Picard iterations for this
equation and other initial values are not suitable either. The student may give it a try
for y(1) = 1, etc.

18. The solution is y = x®. The Picard iterates are linear combinations of powers of In x,

I, 1+3mlx, 1+3Inx+%nx% 1+3nx+ 2nx®+ 20nx?,

etc.
20. CAS PROJECT. (b) The Maclaurin series is
o« x2n+l
y=2

“1-3-5---@+1)°

Picard’s method gives the terms one after another, undisturbed by any error terms
that change from step to step. The initial value problem is

v =xy+1, »0) = 0.

This linear differential equation is solved as explained in Sec. 1.6.

(¢) y' = y would be a good candidate to begin with, It is perhaps a good idea to as-
sume the initial choice in the form y, + a; then a = 0 corresponds to the choice
in the text, and we see how the expressions in a are involved in the various
approximations. The conjecture is true for any choice of a constant (or even of
a continuous function of x).
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SOLUTIONS TO CHAPTER 1 REVIEW, page 59

16. This Bernoulli equation (a Verhulst equation 1f b < 0) can be reduced to linear form,
as shown in Example 5 of Sec. 1.6 (except for the notations). The general solution is
(see (9) in Sec. 1.6)

1
ce™ ™ — bla’

y:

18. We separate variables and integrate,

dy _ dx
y2+1 ©2+1!

arc tan y + arc tan x = C.

We now take the tangent on both sides and use the addition formula for the tangent
(formula (16) in Appendix A3.1). This gives the answer.
tan (arc tan y) + tan (arc tan x)

tan tany + arc tan x) =
ety anan) 1 — tan (arc tan y) tan (arc tan x)

- B
1= xy
20. Exact equation, solvable almost by inspection,

= C.

€= cosh y+x=c
22, yix =u,y = ux,y = xu' + u substituted gives
x(xu' + u) = xu+ X2 sec u.
xu drops out on both sides. Dividing by x%, we get
u' = secu, cos u du = dx, sinu = x + c.

Answer: y = xu = x arc sin (x + ¢).
24. The equation is not exact. Theorem 1 in Sec. 1.5 gives an integrating factor F = e
Multiplying the equation by this factor, we see that it can be written

d(e" tany) = 0. Answer: e* tany = c.
26. By separating variables, integrating, and simplifying we get
=
Vi
the general solution. From this and the initial condition we obtain the answer
y = sin (x + 3m).

28. The general solution of this linear differential equation is obtained as explained in
Sec. 1.6,

= dx, arcsiny = x + ¢, y = sin (x + ¢),

y= e'“’(f A2 gy 4 c) = (x + c)e 2,

From this and the initial condition y(0) = —4 we have ¢ = —4. Answer:

y = (x — 4)e~22"
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30. The exactness test gives e¥ = e¥, so that the differential equation is exact. We have
u, = xe” from the equation. By integration,

u = xe¥ + k(x)

By differentiation with respect to x and comparing with the coefficient function of dx
in the equation, we get

uy=e'+k'=e'+2x; thus Kk'=2 k=x%
This gives the general solution
u=uxe¥+ 2% =c
The initial condition W(2) = 0 gives 2+ 1 + 4 = 6. Answer:
xe¥ + x* = 6,
32. Theorem 1 in Sec. 1.5 gives the integrating factor F = 1/x%. We thus obtain the ex-

act equation

lsinhydy - —lgcoshydt = 0.

X x
By inspection or systematically by integration (as explained in Sec. 1.5), we obtain

1 1
d(—; cosh y) =0; thus, ;ooshy = c.

From this and the initial condition we get 3+ 1 = ¢. Answer:
coshy = 3x.
34. To solve this Benoulli equation we set u = y~2 Then y = u~ Y2,y = ~L,~%2,'
Substitution into the given differential equation gives

B

We now multiply by —24*2, obtaining

' —u=—2.  General solution: u = ce* + 2.
Hence
Ll
Veer +2
From this and the initial condition y(0) = 1 we get ¢ = —1. Answer:

y = w12 =

1
V2 = e* ‘

36. The student should gain confidence in the method by working simple equations that
permit a comparison with exact solutions. This includes the choice of a suitable
region to be plotted, using trial and error. Solution: y = ce™*" (bell-shaped curves).

38. y = 1/(c ~ 2x). See the figure, which shows the tangent directions of these hyper-
bolas.

y=
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40. The given curves can be written x®y = c. By differentiation and simplification we
get the differential equation of the given curves,

2y' + 3x%y = 0, y' = —3y/x.
Hence the differential equation of the orthogonal trajectories is
y' = Xf3}'.

By separating variables we get as the general solution the family of orthogonal tra-
jectories

y = Va3 + c*.
42. We square the given representation and differentiate the result,
y:=2hlx +¢ 2yy' = 2/x.
Hence the differential equation of the orthogonal trajectories is y' = —xy, We sepa-
rate variables, integrate, and then take exponentials,
-?- = —xdx, In |4yl =c - x*2, y = c*e™*3,

These are the orthogonal trajectories. This agrees with Prob. 41, where we went in
the opposite direction.
44, Exact: y = 1 + ¢~ *. Iterates:

2, 2=m 2 —x+dck 2=x+ 8% =83, etc.

46. By Newton's law of cooling, since the surrounding temperature is 100°C and the ini-
tial temperature of the metal is 7(0) = 20, we first obtain

, () = 100 — 80e™.
k can be determined from the condition that 7(1) = 51.5; that is,
T(1) = 100 — 80&* = 51.5,
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52.

50 that £ = In (48.5/80) = —0.500. With this value of k we can now find the time at
which the metal has the temperature 99.9°C,

9 = 100 — 80e~0%, 1 = 80e~0%, = —— = 134,
99 0.1 = 80e r=—s—=134

Answer: The temperature of the metal has practically reached that of the boiling wa-
ter after 13.4 min.

. We get 10 amperes from the 48-volt battery by choosing R = 48/10 = 4.8 [ohms).

Then L = 0.007 henry follows from the condition
1=10(1 — ¢ ™1y = 9,99,
Here we have used the initial condition (0) = 0.

We proceed as in Sec. 1.4. The time rate of change y' = dy/dt equals the inflow of
salt minus the outflow per minute,

l= 1 3 0

The initial condition is y(0) = 80. This gives the particular solution
y = 500 — 420e~004¢,
The limiting value is 500 1b; 95% are 475 1b, so that we get the condition
500 — 420e™%9%4 = 475,

B [ ]‘l

so it will take a little over an hour.

This is Example 1 in Sec. 1.8 with the given curves and the trajectories interchanged.
It also shows how these kinds of curves and orthogonal trajectories may occur in
physics. From x® + 2y® = ¢ we obtain the differential equation y' = —x/2y. Hence
the differential equation of the orthogonal trajectories is

2
y = Ty > Solution: y = c*x°.
The equation is separable,
dy
e R .
(y—a)y—b)

We now use partial fractions,

1 - 1 1
(-ay—-b b-a (y—b _y—a)'
By integration and multiplication by b — a,
In(y =b)—In(y —a) = (t + T)b ~ a).
Taking exponentials now gives

y=-b = @t

y—a
We can solve this algebraically for y. Denoting the function on the right by f, we
obtain

_b—af

1=
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of Second and Higher Order
Major Changes

The old Chap. 3 on higher order linear differential equations has been absorbed into
Chap. 2 (Secs. 2.13—2.15). The main emphasis is on second-order differential equations.
By combining these two chapters, trivial duplication is avoided, so that the entire pre-
sentation has become more streamlined.

SECTION 2.1. Homogeneous Linear Equations of Second Order,
page 64 _

Purpose. To extend the basic concepts from first-order to second-order equations and to
present the basic properties of linear equations.

Comment on the Standard Form (1)
The form (1), with 1 as the coefficient of y”, is practical, because if one starts from

fo" + gy’ + h(x)y = 7(x),

one usually considers the equation in an interval I in which f(x) is nowhere zero, so that
in / one can divide by f(x) and obtain an equation of the form (1). Points at which
f(x) = 0 require a special study, which we present in Chap. 4.

Main Content, Important Concepts
Linear and nonlinear equations
Homogeneous linear equations (Secs. 2.1—-2.7)
Nonhomogencous linear equations (follow in Secs. 2.8—2.12, 2.15)
Superposition principle for homogeneous equations
General solution, basis, linear independence
Particular solution, initial value problem (2), (5)
Reduction to first order (Probs. 1—16)

Comment on the Four Equations Near the Beginning

These are for illustration, not for solution, but should a student ask, answers are that the
first will be solved by methods in Secs. 2.9 and 2.10, the second is a Legendre equation
(Sec. 4.3), the third has y = x~ "2 as a solution, and the fourth is solved in Prob. 16.
Comment on Footnote 4

In 1760, Lagrange gave the first methodical treatment of the calculus of variations. The
book mentioned in the footnote includes all major contributions of others in the field and
made him the founder of analytical mechanics.

SOLUTIONS TO PROBLEM SET 2.1, page 71

py e b dy_de

& & dx dy
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4. z = ', 2xz' = 3z. Separation of variables and integration gives

dz 3 3
Lo SO P = — 32
. dx, In | 2lnH1c, z=cx¥2

Integrating once more, we have
y= fzdx =cx%2 + ¢y,

6. p = 2/x (divide the equation by x to get it in standard form, with 1 as the coefficient
of ¥"). Hence in (9),

e-Ipd . J2zdz _ ! '

This gives from (9) a2
U= x2 i__ 1
. sin? x X2 sin® x

The integral of this is —cot x, and thus

cosx sinx cos x
=y = —— = s
Yo =M sinx x x
dz dx o ¢
8 x' +z=0, S Inlzl = =lnjx| + 5,z = 7% that we obtain the answer

y=jzdx=cln|x|+cz.

dz 1 :
10, z = 4 y—2z+ (1 + —) z* = 0, divide by z, separate variables, and integrate:
dx dy y
dz 1
—=—l1+—]ady, 1 =-~y—=Inly +¢
Eo—(1+3)an  mE=-y-mplsc
Take exponentials, separate again, and integrate:
dy & =
E=z=-y—e LA ye'dy = ¢ dx, f)w"dy=cx+c2.

Evaluation of the integral gives the answer (y — 1)e¥ = ¢\x + cs.
12. The standard form is
" 2‘ ! 2

= + = (.
R s G ¢

Hence in (9) we have

—fpdx=f%z-dx=—-ln(1—x=)=lnl >

- X

This gives, in terms of partial fractions,

1 1 1 172 1/2
= . -t .
X x+ 1 x—1

By integration we get the answer
b o ¢

yz_=y1u=y1fde=—1+§x1nx_ T
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The equation is Legendre’s equation with parameter n = 1 (which, of course, need
not be mentioned to the student), and the solution is essentially a Legendre function.
Similarly, the equation in Prob. 11 is Bessel’s equation with parameter § (a case in
which Bessel functions of the first kind reduce to sine and cosine (divided by Vx)).
4. y" =y, y(0) = 2,)'(0) = 2,y = 2¢", y(6) = y'(6) = 807
16. 2 = (1 + 23, (1 + 257Y2dz = dx, sinh™'z = x + ¢,. From this,
z = sinh(x + ¢;), y = cosh(x + ¢y) + co. From the boundary conditions
¥(1) = 0, y(—1) = 0 we get
cosh (1 + ¢;) + ¢ = 0 = cosh(—1 + ¢;) + .

Hence ¢; = 0 and then ¢y = —coshl. The answer is (see the figure)
y = coshx — cosh 1.

=4

wY

~0.54
Section 2.1. Problem 16

18. Double root (A + 1) = 0,y = (o + cx)e %, y0) = ¢cp = 1, y(0) = —¢p + ¢; =
0,¢, = cg = 1. Answer: y = (1 + x)e™.
Doing more such problems before the discussion of the (rather simple) solution
method in the next section may scare students rather than really help them.

SECTION 2.2. Second-Order Homogeneous Equdﬂons with Constant
Coefficients, page 72

Purpose. To show that constant-coefficient equations can be solved by algebra, namely,
by solving the quadratic characteristic equation (3), which may have:

(Case I) Real distinct roots
(Case IT) A real double root (“critical case™)
(Case IIl) Complex conjugate roots (see Sec. 2.3 for details)

SOLUTIONS TO PROBLEM SET 2.2, page 75

2. (¢c; + cox)e~ 1% 4, c.'le\/"-’z + czc"\ﬁi’ 6. cr 6™ + cpe—™N
8. ce”* + cpe®¥* 10. 6e** + 4¢=2* 12, 3¢7%
14, ¢75%2 — 52 16. [(k + 1) + (k — De **]r2k

18. Linearly independent  20. Linearly independent = 22. Linearly independent

. Linearly dependent because x|x| = x* for nonnegative x

. Linearly dependent because sin 2x = 2 sinx cos x

. Proportionality on I implies proportionality on J. No, proportionality on J does not
imply proportionality on I. Probs. 24 and 25 illustrate this.

. TEAM PROJECT. (8) (A — ADA — Ap) = A2 — (A, + Ay) + My, =
A%+ a) + b. Comparing coefficients gives a = —(A, + Az), b = AjA,.

g BER
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M) y" + ay' = 0. (i) c1€7%* + 6™ = ™™ + ¢, (i) 2’ + az = 0, where
z = ),z = ce™™ and the second term comes in by integration,
y= [zdx = c;e7% + ¢, :

(d) e®*™% and ¢ satisfy y” —~ (2k + m)y’ + k(k + m)y = 0, by the coefficient
formulas in part (a). By the superposition principle, another solution is

e(kﬂn)n: e

m
We now let m — 0. This becomes 0/0, and by 1'"Hépital’s rule (differentiation of
numerator and denominator separately with respect to m, not x!) we obtain

X%/ = xe**.
The differential equation becomes y" — 2ky” + k%y = 0. The characteristic equa-
tion is
NR-—2A+K2=A-k*=0
and has a double root. Since a = —2k, we get k = —a/2, as expected.

SECTION 2.3. Case of Complex Roots. Complex Exponential Function,
page 76

Purpose. To discuss the remaining complex Case III, which gives undamped (harmonic)
oscillations (if ¢ = 0) or damped oscillations, first obtained in complex form, but con-
vertible to the real form (9) by the superposition principle.

Main Content, Important Concepts
Real general solution (10) in Case IIT (a damped oscillation)
Euler formula (5) [resulting from the definition (7) of €]

Comment on How to Avoid Working in Complex
The average engineering student will profit from working a little with complex numbers.

But if one has reasons for avoiding complex numbers here, one may apply the method of
eliminating the first derivative from the equation, that is, substitute y = wv and determine
v so that the equation for « does not contain u’. For v this gives
2 +av=0. A solutionis v = ¢™%%/2
With this v, the equation for u takes the form
W (b —3aPu=0

and can be solved by remembering from calculus that cos @x and sin @x reproduce un-
der two differentiations, multiplied by ~@°. This gives (10), where

&=Vb-1a2

Of course, the present approach can be used to handle all three cases. In particular,
4" = 0 in Case II gives u = c; + csx at once,
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Comment on Boundary Value Problems and Initial Value Problems

In usual courses on differential equations, initial value problems are generally given more
space and weight than boundary value problems. Some reasons are that initial value prob-
lems have the following advantages:

1. They do not have the somewhat awkward nonuniqueness explained in Example 4.

2. Initial conditions are more suitable when a higher order equation is converted to a
first-order system, as is usually done in existence and uniqueness theory.

For a first-order equation the two concepts formally coincide, but it seems a bit illog-
ical to speak of a boundary value problem because a single point (at which the condition
is given) does not bound any interval; it is not the “boundary” of anything, so the situa-
tion that suggested the name “boundary value problem™ is not given in this case.

SOLUTIONS TO PROBLEM SET 2.3, page 80

2. A cos2mwx + Bsin27mx 4. e **(A cos 2x + B sin 2x)
6. 1, ;% + coe~* 8. III, e 2%(A cos wx + B sin wx)
10. m.f\/i(AcosL + BsinL) 12, 11, e-""(Acosi + Bsinf)
V2 V2 k k
0 &a=2% e X -0.2z 0 e
14, —0.5¢ *F cos ) 16. e (cos ) 2 sin 2)

18. ¢"(—2 cos 2mx + 3 sin 27x)
20. y = cosh 5x by inspection. Systematically, we first get

y = c167% + cpe®%.
From the boundary conditions,

y(—2) - Clelo + 626-10 = cosh 10
W2) = ;72 + c,e? = cosh 10.

By elimination or by Cramer’s rule, ¢, = ¢, = 3, in agreement with the result by in-
spection. :
22, y = cye” ™3 + ¢,e®*. From the boundary conditions, x

(a) W=3)=cie+ce?=1
(b) Y3) =cre™* + cpe® = e

(a) minus e? times (b) gives c; = 0. Then ¢; = /e from (a). Answer: y = e~ %*"1
24, PROJECT., The purpose is twofold: (i) Students should learn to look at results care-
fully before rushing on to the next project or problem, and (ii) graphs may show var-
ious interesting facts not obvious from formulas. They may also give quantitative im-
pressions (e.g., in this case, how rapidly the exponential function decreases). Since
the tangent at the extrema is horizontal, whereas at the points of contact the tangent
has a negative slope (for positive y) or a positive slope (for negative y), it is clear
without calculation that these points cannot coincide with extrema, but must come af-
ter them (at larger x's). For the harmonic motion the inflection points lie on the axis,
for reasons of symmetry. For a damped oscillation, one might guess that they are al-
ternatingly at positive and negative y-values, shifted from the intersection points
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slightly to smaller x-values. Some calculations are as follows.
y = ¢~ % gin 2x
y' = e %1%(—0.1 sin 2x + 2 cos 2x) = 0, tan 2x = 20,

thus x = 0.760 419, etc.,

0.4
y" = e %1%(~0.4 cos 2x — 3.99 sin 2x) = 0, tan 2x = — ==,

thus x = —0.049 958 + /2, etc.
26. CAS PROJECT. (a) o = b — }a® by the definition of w. Thus b = 1 + & be-
cause a = 1.
(b) The approach is rapid. The figure shows the solutions for @ = 5, 0.5, 0.1,
0.01, - + +, 0.000 001.

: 3
€ y=e™* (cos wr = o= sin wx) Applying I'Hopital’s rule to the second term

(differentiating numerator and denominator separately with respect to w, not x),
we get the limit
e ™2(cos ax — $(cos @)oo = (1 — Ex)e™2,

as it should be.
(d) Change y'(0) to 0 or to a positive value.

0.5

Section 2.3. CAS Project 26

SECTION 2.4. Differential Operators. Optional, page 81

Purpose. To take a short look at the operational calculus of second-order differential op-
erators with constant coefficients, which parallels and confirms our discussion of differ-
ential equations with constant coefficients,

SOLUTIONS TO PROBLEM SET 2.4, page 83

2. —12x% — 10x + 4, 0, 2 sin 2x — 6 cos 2x

4. 25(2 + 5x + 2 cos 5x), 20(1 + 5x)e®*, 0

6. (c; + cax)e™® 8. c€%% + 6702 10, 1™ + cpe T F
12, cie™™2 + ¢
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SECTION 2.5. Modeling: Free Oscillations (Mass-Spring System),

page 83

Purpose. To present a main application of second-order constant-coefficient equations

my" + cy' + ky =0

resulting as models of motions of a mass m on an elastic spring of modulus & (= 0) un-
der linear damping c (= 0) by applying Newton's second law and Hooke's law. These
are free motions (no driving force). Forced motions follow in Sec. 2.11.

Main Content, Important Concepts
Restoring force ky, damping force cy’, force of inertia my”

No damping, harmonic oscillations (4), natural frequency wy/27
Overdamping, critical damping, nonosclilatory motlons (7), (8)
Underdamping, damped oscillations (10)

SOLUTIONS TO PROBLEM SET 2.5, page 90

2.

10.

W = 20 and s, = 2 gives k = W/s, = 10 by Hooke’s law. Thus

_wy _ Vim _ VeWR)  V10/(20/980)
£ 27 2 2w 27

= 3.52 [Hz].

From this we get the period 1/f = 0.284 [sec].

. No, because the frequency is independent of initial conditions; it only depends on

kim.

. By Hooke's law, F; = k;, = 8 stretches spring S, by 8, and Fs = k; = 12 stretches

spring S, by 12. Hence the unknown k of the combination of the springs stretches S,
by kik; = k/8 and Sy by k/ks = k/12. And k is such that the sum of these stretches
equals 1, because k is the force that corresponds to the stretch 1 of the combination.
Thus

k 1 1 1
+E=1' e e e Y e Answer: k = 4.8,

k<
ky k  kpg k-

. my" = - 0.3%7y, where 7 - 0.3%y is the volume of water displaced when the buoy

is depressed y meters from its equilibrium position, and 7y — 9800 nt is the weight of
water per cubic meter. Thus y" + wy?y = 0, where w,> = - 0.3%y/m and the pe-
riod is 2@/wy = 2; hence :

m = 7+ 0.3%y/wy> = 0.3%y/7 = 281,
W = mg = 281 - 9.80 = 2754 [nt] (about 620 Ib).

TEAM PROJECT. (a) mL8" = —mg sin § = —mg# (the tangential component of
w=mg), 8" + w20 = 0, wy> = g/L. Answer: VglLI2m

(b) By (a), the frequency is

1 [g 1 [980 _
2 J;— 27 1 =0A%,
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80 it takes about 2 sec to complete 1 cycle. Answer: It ticks about 30 times per
minute.

(€) W= ksy = 8. Now s, = 1 because the system has its equilibrium position 1 cm
below the horizontal line. Also, m = W/g, so that

s, k_ W/So_ 3 _
w-\/;— /W/g = Vg = V080 = 31.3,

and we get the general solution
y = Acos31.3r + Bsin 31.3t.

The initial conditions give y(0) = A = 0 and y'(0) = 31.3B = 10. Hence
B = 0.319 and the answer is
¥ = 0.319 sin 31.3¢ {cm].

(d) A() = 05235 cos 371 + 0.0043 ¢in 3.7¢ [rad]

12. y = 0 gives ¢; = —cye~ 2", which has at most one solution because the exponential
function is monotone.

14. Equating the derivative of (8) to zero, we get

Y = (—ac, — acst + cp)e” ™ =0
and from this the solution
Cp — ac 1 c
NS L’ T .
aCy @ Cy
which is positive if 1/a > ¢/c,. This is the condition.
16. From (10) and y’ = 0 we obtain tan (w*t — 8) = —a/w* = const and consecutive
solutions of this equation have the constant distance /w*.
18. If a maximum is at 7y, the next is at f; = £, + 2m/w*. Since the sine and cosine in
(10) have period 27/w*, the ratio is

exp (—atp)lexp (—aty) = exp 2malw*).

A = 2w tant = —1 gives 37/4 (min), 77/4 (max), etc.

20. CAS PROJECT. (a) Cases L, II, I appear, along with their typical solution curves,
no matter what k/m is or ¥(0), etc.

(b) The first step is to see that Case II corresponds to ¢ = 2. Then one can choose
other values by experimentation. In Fig. 51 the values of ¢ (omitted on purpose;
the student should choose!) are 0 and 0.1 for the oscillating curves and 1, 1.5, 2,
3 for the others (from bclow to above).

(¢) This addresses a general issue that also arises in problems involving heating and
cooling, mixing, electrical vibrations, etc. One is generally surprised how quickly
certain states are reached practically when the theoretical time is infinite.

(@) ¥ = e ***(A cos w*t + Bsin 0*f), @* =1V4 — c2 From the initial condi-
tions, A = 1, B = ¢/V4 — ¢% In y'(1) the cosine terms drop out, and sin w*r =
0 gives as the smallest positive solution ¢ = t, = 2#/\V4 ~ ¢® = 7/w*. There
W) has a horizontal tangent and touches y = —0.01 when y(t,) = —0.01 and
stays within the limits in (11) because it oscillates between *e™ /2, Thus we
get ¢ from y(ty) = —e™ "% = —0.01 as ¢ = 1.65, approximately.

(¢) The main difference is that Case II gives y(#) = (1 — f)e™¢, which is negative for
t > 1. The experiments with the curves are as before.
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SECTION 2.6. Euler-Cauchy Equation, page 93

Purpose. Algebraic solution of the Euler-Cauchy equation, which appears in certain ap-
plications (see our Example 4) and which we shall need again in Sec. 4.4 as the simplest
equation to which the Frobenius method applies. We have three cases; this is similar to
the situation for constant-coefficient equations, to which the Euler—Cauchy equation can
be transformed (Prob. 20); however, this fact is of theoretical rather than of practical in-
terest.

Comment on Footnote 9

Euler worked in St. Petersburg 1727-1741 and 1766-1783 and in Beriin 1741-1766. He
investigated Euler’s constant (Sec. 4.6) first in 1734, used Euler’s formula (Secs. 2.3, 12.6,
12.7) since 1740, introduced integrating factors (Sec. 1.5) in 1764, and studied conformal
mappings (Sec. 12.5) since 1770. His main influence on the development of mathemat-
ics and mathematical physics resulted from his textbooks, in particular from his famous
Introductio in analysin infinitorum (174%), in which he also introduced many of the mod-
ern notations (for trigonometric functions, etc.). Euler was the central figure of the math-
ematical activity of the 18th century. His collected works are still incomplete, although
some seventy volumes have already been published.

Cauchy worked in Paris, except during 18301838 when he was in Turin and Prague.
In his two fundamental works, Cours d’Analyse (1821) and Résumé des lecons données
a I’Ecole royale polytechnique (vol. 1, 1823), he introduced more rigorous methods in
calculus, based on an exactly defined limit concept; this also includes his convergence
principle (Sec. 14.1). He also was the first to give existence proofs in differential equa-
tions. He initiated complex analysis; we discuss his main contributions to this field in
Secs. 12.4, 13.2—13.4, and 14.2. His famous integral theorem (Sec. 13.2) was published
in 1825, his paper on complex power series and their radius of convergence (Sec. 14.2)
in 1831.

SOLUTIONS TO ' PROBLEM SET 2.6, page 96

2. L c,x® + cpx®
4. I, ¢y/x + c,. This can also be solved by reduction to first order and separation of vari-
ables.
6. 111, x|A cos (In x) + B sin (In x)]
8. II, ¢; + ¢ In x. Also solvable by reduction and separation.
10. I, ¢,x7 92 4 ,x05
12. 11, (¢; + ¢p In x)x°8
14. General solution: ¢yx + cox2. Answer: 2x — 3x*
16. General solution: A cos (3 In x) + B sin (3 In x). Answer: 2 cos (3 In x)
18. General solution: (¢; + ¢ In x)/x. Answer: (3 — Inx)/x
20. x = €', t = In x. The chain rule gives

y =yt =yix, y" = yix? = yix?,

where the dots denote derivatives with respect to 7. By substitution into (1) we
obtain

xzy"+axy'+by=x2(;}%—}y—2-)+ax§+by=;+(a-l)y'+by=0.
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The characteristic equation of the new equation is
B+@-1DA+b=0.
It is of the form (3). Its roots are in Case 1
em™t = (f)y™ = ym, emat = yma
etc., so that we can obtain the solution of the Euler-Cauchy equation from those of

the new equation. Also, in Case III the transformation into real form in Sec. 2.3 car-
ries over into that in this section.

SECTION 2.7. Existence and Uniqueness Theory. Wronskian, page 97
Purpose. To explain the theory of existence of solutions of equations with variable co-
efficients in standard form (that is, with y" as the first term, not, say, f(x)y")
¥+ pGy' + gx)y =0
and of their uniqueness if initial conditions
Y(xp) = Ko, ¥ (%) = Ky

are imposed. Of course, no such theory was needed in the last sections on equations for
which we were able to write down all solutions explicitly.
Main Content

Continuity of coefficients suffices for existence and uniqueness.

Linear independence if and only if the Wronskian is not zero.

General solution exists and includes all solutions.

Comment on Wronskian

For n = 2, where linear independence and dependence can be seen immediately, the Wron-
skian serves primarily as a tool in our proofs; the practical value of the independence cri-
terion will appear for higher n in Sec. 2.13.

SOLUTIONS TO PROBLEM SET 2.7, page 100

3 W ll o x

. = =g
0 &

4. W = (my — my™ ™
eAI Iea\z 1

6. Ww=|", e = N Ll
Aett (14 e[ A 1+ Ax

8. We use the abbreviations ¢ = cos wx, § = sin wx. Then
-2 il

e *c e s

W= _ e = g~

e (=c — ws) e *(—s + we)

10. x%" + xy' — 25y = 0, W = —10/x

c B

I
£

—C — @S —-s + we
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5
= 2, where ¢ = cosh 2x, s = sinh 2x

= c
12. y' — 4y =0, W=

25 2c
14, y" + 2y =0, W= —2¢7%*
c K} 1
16. x5" + ' +y=0,W= ==
' —s/x clx x

where ¢ = cos (Inx), s = sin (In x).

18. TEAM PROJECT. (a) Suppose that y, and y, are zero at some point xg in . Then
the first row of their Wronskian is zero at x,. This implies linear dependence of y,
and y, by Theorem 2.

(b) At a maximum or minimum the first derivative is zero; if this happens for two
solutions y, and y, at the same point, the second row of the Wronskian is zern,
so W = 0 at that point. This implies linear dependence by Theorem 2.

(¢) By direct calculation, :

& 2

/ Fl =
1 g

ayy; + apys az Y1 t agys

W(zy, 25) =
s aypyi + G2ys  amyi + aasys

= (ayy1 + @12y2)(azy1 + azzyz) — (@1y1 + ayya)amyy + azyo).
Multiplying out, we see that four of the eight terms cancel in pairs (the terms in
y1¥1 and y,ys). The remaining terms can be written

agn ayy

(a11822 = G12a2)) (Y12 — Ya¥1) = W(y1 y2).

az Az

From this the conclusion follows. Note that in this calculation we need not refer to
the familiar rule for multiplying determinants (which some students may not know).

3

-3

(€) cre* + cae™* = T coshx + Gy sinh x = 3¢1(e” + €7%) + §Cp(e™ — %) gives
1 = 3@ + S, ca = 3(E; — &),

= —d
2

(d) det [ay] =

1
2

SECTION 2.8. Nonhomogeneous Equations, page 101

Purpose. We show that for getting a general solution y of a nonhomogeneous linear equa-
tion we must find a general solution y;, of the corresponding homogeneous equation and
then—this is our new task—any particular solution y, of the nonhomogeneous equation,

Y=Yt Yp

Main Content, Important Concepts

General solution, particular solution
Continuity of p, g, r suffices for existence and uniqueness.
General solution exists and includes all solutions.

(Solution methods follow in Secs. 2.9, 2.10.)
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SOLUTIONS TO PROBLEM SET 2.8, page 103

2.

4.

10.

12.

14.

16.

The general solution of the homogeneous equation is c;e™ + c,e®. Hence as the so-
lution of the nonhomogeneous equation we first obtain

Y=Ynt Yy =c1e" + e + 3% — 3¢%,

We see that the last term is a solution of the homogeneous equation, and we can ab-
sorb it into the general solution of the latter, so that we simply have

Y =c1e”% + Ge* + 737,

the same answer as in Prob. 1, except for the notation. Of course, the point of the
problem is that two particular solutions of the nonhomogeneous equation can differ
at most by a solution of the homogeneous equation; in the present case, this is —3e*.
y = €*(A cos 2x + Bsin 2x) + x®. Whereas in Prob. 3 we have just one term on the
right side of the equation but many terms in y,, here we have the opposite situation
where the right side of the equation has many terms but y,, is simple.

. ¥ = (e1 + c2x)e?® — de sinx
-y = 6™ + c;¢7 + fe™% + ¢, Perhaps the student should express y,, in terms of

cosh x and sinh x, to see the analogy to the expression A cos x + B sin x in other equa-
tions.

¥ = 0.4¢* + 0.6e™ ~ cos x. From this form of the answer we recognize the form
of the general solution y;, = ¢,e™ + cpe™ (which may not always be the case). It is
important for the student to understand that y, will satisfy the initial conditions only
in very rare cases—practically never—and that further work is necessary for solving
the initial value problem.

¥ = 1.8 cos 2x + sin 2x + 3x cos 2x. The right side of the equation is a solution of
the homogeneous equation and produces the form of y, involving the factor x. This
will be discussed systematically in the next section.

y = 4x — 2x® + 3¢%. The first two terms result from the general solution of the ho-
mogeneous equation c,x + cpx?.

TEAM PROJECT. (a) 1. Find a general solution of the homogeneous equation.

2. Find any particular solution y,, of (1). (It is quite unlikely that Yp automati-
cally satisfies the initial conditions.)
3. Determine values of the arbitrary constants in (3) from the initial conditions.

(b) The difference of the two solutions must be a solution of the homogencous equa-
tion.

(¢) Asin (b).

(d) Of course, because y, does not depend on the choice of that general solution y,
or V.

(e) The usual method for the Euler-Cauchy equation gives the general solution
cyx + cax® of the homogeneous equation, hence y = ¢;x + c,x% + 3e” for the
nonhomogeneous equation. From this, y(0) = 3 (note that any other ¥(0) would
result in no solution!). Now ¥’ = ¢; + 2¢,x + 3¢, y'(0) = ¢, + 3 = 7, hence
¢y = 4, whereas ¢, remains arbitrary, The reason is that the coefficients of the
equation in standard form

2 2
" ’

— — +_ =
Yoyl TEY y

become infinite as x — 0.
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SECTION 2.9. Solution by Undetermined Coefficients, page 104

Purpose. To discuss a special method for particular solutions of constant-coefficient equa-
tions with special right side r(x). This method is simpler than that in Sec. 2.10 and should
be used whenever it applies. Rules (A), (B), and (C) tell us what to do in practice.

Comment on Table 2.1

It is clear that the table could be extended by the inclusion of products of polynomials
times cosine or sine and other cases of limited practical value. Also, a = 0 in the last pair
of lines gives the previous two lines, which we have listed separately because of their
practical importance.

SOLUTIONS TO PROBLEM SET 2.9, page 107

‘I'ne request to show each step should prevent students from simply letting the CAS pro-

duce the final answer.

2. y = c167% + cpe” + xe® + 2¢>*. An important point is that the Modification Rule
applies only to one of the two exponential terms. The Sum Rule is also used.

4. y = c1e”* + co€* + xe**; an application of the Modification Rule for a simple root
A=2.

6. y = ;673" + cpe” ™ + 3x — 10 + }sin x; an application of the Sum Rule. Note
that 9x causes an x-term and a constant term in the solution. The cosine term would
usually cause a cosine and a sine term, so here we get less than expected.

8. y = (c; + cax)e™* + 7%(6 cos x + 8 sin x). In this problem we go slightly beyond
the lines in Table 2.1, which does not contain products of trigonometric times expo-
nential functions. However, the method is the same in principle and should encour-
age students to attempt more independent work. On the other hand, we did not in-
clude other such problems, whose practical value is not very great.

10. y = cre ™ + ce®? — 2¢72% + $¢**, Students should perhaps be asked to ex-
press the solutions (the last two terms) in terms of cosh 2x and sinh 2x, to see the
analogy to expressions a cos x + b sin x in other differential equations.

12. y = ;6% + ce~% + 1e™* + L™ Modification Rule. Here ¢%* is “hidden” in
sinh 3x on the right, whereas the other term in sinh 3x does not call for the Modifi-
cation Rule but produces 1e~* without an extra factor x.

14. y = ¢®>*(A cos 4x + Bsin4x) + 4cosx + 19sinx

16. y = e3*(cos 2x — sin 2x) + €%, Be sure students do not get confused: the Modifi-
cation Rule is not needed.

18. y = cos 3x + xsin 3x. The first term results from the general solution ¢, cos 3x +
co sin 3x of the homogeneous equation. Initial conditions y(0) = 1, y"(0) = 0 (or con-
versely) appear in various theoretical considerations.

20. y = x%'“%, This is an application of the Modification Rule in the case of the dou-
ble root 1.4. A general solution of the nonhomogeneous equation is y =
(c; + cpx + x%)e™**. One should emphasize that the initial conditions ¥(0) = 0,
y'(0) = 0 would imply y = 0 only in the homogeneous case. Also, ¢; = 0, ¢, = 0
is an exception, caused by y,(0) = 0, y;(0) = 0, where y, = x%!**,

22. 2e 5% cos 3x + e~* + 4. The general solution e %5%(A cos 3x + B sin 3x) of the
homogeneous equation contributes the first term of the solution.
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24. TEAM PROJECT. Begin with simple cases. Find the form of ¥p (with undeter-
mined coefficients) by repeated differentiation. For example, xe® will require Yp =
(a + bx)e”, etc. Applications may occur occasionally. For instance, e~ ** cos wx (with
x =t = time) could represent a time-decreasing driving force.

SECTION 2.10. Solution by Variation of Parameters, page 108

Purpose. To discuss the general method for particular solutions, which applies in any
case, but may often lead to difficulties in integration (which we by and large have avoided
in our problems, as the subsequent answers show),

Comments

The equation must be in standard form, with 1 as the coefficient of y”"—students tend to
forget that.

Here we do need the Wronskian, in contrast to Sec. 2.7 where we could get away with-
out it.

SOLUTIONS TO PROBLEM SET 2.10, page 111

2. yy=cos3x, y,=sin3x, W=3. Hencein (2),

Yor . _ (sin3xsec3x . 1
2 ax= | T dx =~ Infoos 3
W, (cos3xsec3x _1_
wdx——f 3 —-3x.

Answer:
y = Acos 3x + B sin 3x + §(cos 3x) In [cos 3x| + 4x sin 3x.
4. y, = cos3x, yo=sin3x, W =3, r=csc3x. Hence in (2),

yor . 1 sin3x = x
dex SJsin3xdx 3

nr, 1 reos3x’ A
dex_3fsin3xdx 9ln|sm3x].

Answer: i 1
A cos 3x -+ Bsin3x — -5-cos3x — ;(sin3x)1nlsin3xi

6. y; = e**cosx, y, = e sinx, W= e* Hencein (2),

=X

Yor ., [(e**sinx)e**/sin x
f _W-.d"r - I P o

2x 2::/ s
f‘%‘;dx _ J‘(e cos x)e“"/sin x it il

e«iz
Answer:
y = [Acosx + Bsinx — xcos x + (sin x) In |sin x{]e*.
8.y =e ¥, y,=xe% W=¢e% Hencein (2),
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Yor (xe™ 3‘)1&-3’/(;1 +1)
f —f dx = fx’+1 =8In(x%+ 1)

o, [l 3‘)l6e_3‘l(x2 ot ) o
fwdx-j — dx—fx2+ldx—l6arc(anx.

er:
y = (¢; + cox)e™** + 8[—In (x® + 1) + 2xarc tan xJe™>~.

10. y, = e~*cosx, Yy, =e *sinx, W =e 2% Hencein (2),

fyzrdx I(e smx)4e %lcos® x & 2

cos® x

dx = 4 tan x.

Iylrdx J’(e cos x)43 *Icos® x

This gives the particular solution
2
-0 - + H ——
¢ [ (cos x) g 4(smx)tanx] e (
= e *[—~2(cos 2x)/cos x].

Cos x

=2+ 4sin2x)

Answer:
y = ¢ "[A cos x + B sinx — 2(cos 2x)/cos x].

12. y; = 1, y, = x%, W = 2x. Divide the given equation by x to get it in standard
form and from it,

r= (3 + x)x%%x = (3 + x)xe*.
Hence in (2),

f%dﬁf"z(—g’;—mizdu lf(x3 + 3x2)e’dx=lx3e"

f%dx=[l.(3—;m‘£ —_f(x+3)e”dx x + 2)¢*.

Substitution into (2) shows that the terms in x* drop out and the answer is
Y = ¢y + cpx® + x%. _
14. y, = x* y, = x% W= —x* From the standard form we get
r = (7x* sin x)/x*> = 7x®sin x.

Hence in (2),
yor . (X*(Tx%sinx)
J-'T'de —J'——-_';‘;-—dx = Tcosx
nr x*(7x% sin x)
[e=l=oa
= -7 |xsinxdx = Txcosx — 7 sinx.
This gives the particular solution
—7x3 cos x + x*(Txcos x — 7 sinx) = —7x? sin x.
Answer:

y = x> + cax® — TxZsin x.
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16. yy = x, y, = l/x, W= —2/x. From (2),

xi s ¥ 1 x 1 1
e L e L2
Answer:

1
=cx+ cax” + —5.
Y 1 2 3x?

18. TEAM PROJECT. (a) y, = ™, y, = ¢ %, W = 2% r = 65 cos 2x.
From (2),

. fe"65 cos 2x P fe“s’65 cos 2x

yp 2e—tx 28—4::
65
— 22 _ -3 [ 3z -
- 2( e [ cos 2xds + =fe=cos2xdx)
05f ol ) 1 _
i e (3cos?.x+2sm2x)+e"‘§e”(oos2.x+2s1n2x
= —cos 2x + 8 sin 2x.
Answer:

Y =167 + e — cos 2x + 8 sin 2x.
1 2

This was much more work than that for undetermined coefficients.

(b) We can treat x* on the right by undetermined coefficients, obtaining the contri-
bution x* + 4x + 6 to the solution. We could treat it by the other method, but
we would have to evaluate additional integrals of an exponential function times
a power of x. We treat the other part, 35x*2¢*, by the method of this section,
calling the resulting function Yp1- We need y; = e*, y, = xe*, W = ¢**. From
this and (2),

x x
Yp = e f g; 35x"%" dx + xe* f -f;,— 35x%2%¢* dx

= 35(-e’ fxsizdx + xe* fx'm dx) = 4¢%x"2,
Complete answer:
¥y = (c; + cox)e® + 4e*x"2 + x% + 4x + 6.

(¢) If the right side is a power of x, say, r = rox®, then substitution of y, = Cx*
gives '
x®y" + axy’ + by = (k(k — 1) + ak + B)Cx* = rox*.
This can be solved for C. To explore further possibilities, one may work “back-

wards”; that is, assume a solution, substitute it on the left, and see what form one
gets as a right side.

SECTION 2.11. Modeling: Forced Oscillations. Resonance, page 111

Purpose. To extend Sec. 2.5 from free to forced vibrations by adding an input (a driving
force, here assumed to be sinusoidal). Mathematically, we go from a homogeneous to a
nonhomogeneous equation, which we solve by undetermined coefficients.
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New Features
Resonance (11) y = At sin wy! in the undamped case
Beats (12) y = B(cos wt — cos wyt) if input frequency close to natural
Large amplitude if (15') o® = w,®> = ¢*2m* (Fig. 60)
Phase lag between input and output

SOLUTIONS TO PROBLEM SET 2.11, page 117

2. ¥, = 1.5 cos 37 + sin 3¢

4. y, = fycost — ggcos 3t + dsint + Fysin 3¢

6. y, = }(cos t + sin?)

8. y = A cos V3t + Bsin V31 + 4 cos 0.5¢. We have no sine term in y,, because of the
absence of y" in the equation. This is typical.

10. y = (¢c; + co)e™ + 2sint — §cost

12. y = cye™" + ¢y + t — 3 cos t + 4 sin . Note that the harmless term 1 on the right of
the equation causes the unbounded term ¢ in the solution.

14. y = ¢ %cost + 2sinf) + 0.2cos t + 0.4 sint. For ¢ = 5 the exponential term has
decreased to less than 1% of its original value; this practically marks the end of the
transition.

16. y = ¢ * cos t + 26.8 sin 0.51 — 6.4 cos 0.5, At 7 = 1.2 the exponential term has de-
creased to less than 1% of its original value. This marks the end of the transition from
a practical point of view. r = 1.8 is the time when that term has become less than
1/10 of a percent in absolute value.

18. WRITING PROJECT. Brevity should force the student to recognize what is im-
portant and what is marginal. It is useful to learn this in connection with short re-
ports, articles, talks, etc.

20. CAS PROJECT. The choice of @ needs experimentation, inspecting the curves ob-
tained and then making changes on a trial-and-error basis. It is interesting to see how
in the case of beats the period gets longer and longer and the maximum amplitudes
get larger and larger as @ approaches the resonance frequency.

SECTION 2.12. Modeling of Electric Circuits, page 118

Purpose. To discuss the cumrent in the RLC-circuit with sinusoidal input Ej sin wt.
ATTENTION! The right side in (1) is Eqw cos wt, because of differentiation.

Main Content
Modeling by a simple extension of Sec. 1.7
Electrical-mechanical strictly quantitative analogy (Table 2.2)
Transient tending to harmonic steady-state current

SOLUTIONS TO PROBLEM SET 2.12, page 122

2.a = RRL > 0. If Bis real, B = R/2L since R? — 4L/C = R? hence A, =
—a+ B<0(and Ay, = —a — B <0, of course). If 8 is imaginary, I;(z) represents
a damped oscillation.
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4. 10cosz + 20 sin ¢t because the general solution of the homogeneous equation ap-
proaches zero as t — o,

6.0
8. E' = 1700 cos 41, I = e (A cos 4t + Bsindz) + 5 cos 41 + 20 sin 4¢

10. The equation is
101" + 80I' + 2501 = 2405 cos 10z,

Using undetermined coefficients, we obtain the general solution
= e (A cos 3t + Bsin 3f) — § cos 10¢ + £ sin 10z

Hence y(0) = A = § = 0, A = 3. From Eq. (1) for the charge we see that Q(0) =
0 in the present case implies 7'(0) = . By differentiating 7 and substituting A = £
we obtain from /'(0) = 0 the value B = —3{. Answer:

1= ¢"*(§ cos 3t — L cin 31) — § cos 10t + § sin 10r.

12. The equation is
0.5I" + 3I' + 12,51 = —60 sin 5t.

It has the general solution
y = € (A cos 41 + B sin 4¢) + 4 cos 5¢.

From (1") for Q we obtain (similar to Example 1) I'(0) = Q"(0) = 24. From this and
I(0) = 0 we obtain the answer

= ¢”3(3 sin 4t — 4 cos 4¢) + 4 cos 5t.
14, The equation is
2" +3-10°r =0, thus "+ 104 = 0.

A general solution is
I = Acos 100z + B sin 100z,

1(0) = 0 gives A = 0. Equation (1") for the charge is
20" + 2-10%Q = 110.
It implies that
I'0) = Q"(0) = 55
because O(0) = 0. From I = B sin 1007 we thus obtain
I' = 100 B cos 100t, I'(0) = 100R = 55, B = 0.55,

Answer:
I = 0.55 sin 100z,

16. (a) By integration,
Q = ¢ — 0.0055 cos 100« with ¢ = 0.0055 from Q(0) = 0.
(b) 20" + 2+ 10°Q = 110; a general solution is
Q = Acos 100t + Bsin 100 + 110/(2 - 10%).

From this and the first initial condition, Q(0) = A + 0.0055 = 0. Hence A = —0.0055.
The second initial condition /(0) = Q'(0) = 0 gives B = 0 because

1= Q" = —1004 sin 100t + 1008 cos 100t = 0.
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Together we have
0 = 0.0055 — 0.0055 cos 100,

as in (a).
18. TEAM PROJECT. (a) The complex division trick is performed to make the de-
nominator real,

a _ab
b b
Before we multiply out and take the real pant, the expression for [, is

— gt _ —Eo . ¢ os
I, = Ke SQ+R2(S+¢R)(coswt+zsmax).

(c) Substitution of (11) and its derivatives into the present equation gives
(=1 + i + 3)Ke™ = 5e*,
Solving for K, we obtain K = 2 — i. Hence the complex solution is
I, = (2 — i) = (2 — i)cos t + isin ).
The real part is
I, = 2cost + sint.
The student should verify that it satisfies the given real differential equation.

SECTION 2.13. Higher Order Linear Equations, page 124

Purpose. Extension of the basic concepts and theory in Secs. 2.1 and 2.7 to homogeneous
linear differential equations of any order n. This shows that all the essential facts carry
over practically without change. Linear independence, now more involved than for
n = 2, causes the Wronskian to become indispensable (whereas for n = 2 it played a mar-

ginal role).
Main Content, Important Concepts
Superposition principle for the homogeneous equation (2)
General solution, basis, particular solution
General solution of (2) with continuous coefficients exists.
Existence and uniqueness of solution of initial value problem (2), (5)
Linear independence of solutions, Wronskian
General solution includes all solutions of (2).

SOLUTIONS TO PROBLEM SET 2.13, page 131
2. W= —6e®,y=e* — 3>
4. W=1,y=12 + 3cosx
6. W = 4,y = ¢*. Note that another basis is e*, e™, cos x, sin x.
8. W=18,y = cosx + }sin2x
10. Linearly independent. Point out that sin 2x = 2 sin x cos x is not a linear combina-
tion of cos x and sin x.
12. Linearly dependent. This is an example where the use of a functional relation helps
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to decide: In (*®) = 3 In x.

14. Linearly dependent. The essential point is that the exponential functions have the right
exponent occurring in the definition of sinh 3x.

16. Linearly independent

18. Linearly dependent. This serves as a reminder that any set containing the zero func-
tion as an element is linearly dependent.

20. TEAM PROJECT. (a) (1) If y; = 0, then (4) holds with any k; # 0 and the other
k; all zero.

(2) If § were linearly dependent on 7, then (4) would hold with a ki # Oonl,
hence also on J, contradicting the assumption. This also shows that linear de-
pendence on I implies linear dependence on J. Linear independence on / im-
plies no conclusion for J. Example: x|x| and x® are linearly independent on
—1 < x < 1 but linearly dependent on 0 < x < 1,

(3) By assumption, Kyyy + * * * + kpy, = O with ky, * * * , k, not all zero. This
implies (4) with &y, - - -, k;, as before and k. = * - * = k, = 0. In the other
case T may be linearly dependent (or not). Example: Take any linearly in-
dependent S and let 7' be S and the zero function.

(b) If your functions are solutions of a homogeneous linear differential equation with
continuous coefficients, then you can use the Wronskian. For other means, sce
the problems (for instance, the use of functional relations, evaluating (4) at sev-
eral x’s in the interval, etc.).

SECTION 2.14. Higher Order Homogeneous Equations, page 132

Purpose. Extension of the algebraic solution method for constant-coefficient equations
from n = 2 (Secs. 2.2, 2.3) to any n, and discussion of the increased number of possible
cases:

Real different roots

Complex simple roots

Real multiple roots

Complex multiple roots

Combinations of the preceding four basic cases
Explanation of these cases in terms of typical examples,

Comment on Numerical Work

In practical cases, one may have to use Newton’s method or another method for com-
puting (approximate values of) roots in Sec. 17.2.

SOLUTIONS TO PROBLEM SET 2.14, page 137

2. (c; + Cox + cgxP)e~3 4. (¢; + cax)cosx + (c3 + cgx) sinx
6. A;cosx + Ay cos 2x + B, sinx + B, sin 2x

8. 1672 + (cp + czx)e” 10. cie™* + cpe™%F + cge™3®
12. A2 — 3A% + 31 — 1 = (A — 1) Hence a general solution is

y = (c; + cx + c3x?)e”, and ¥0)=¢c; =2.
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With this,
Y = (2 + cox + cgx® + ¢3 + 203x)e”

and
Y (0) =2+ ¢ =2 ¢y = 0.

With ¢, = 0, another differentiation gives

' = (2 + cgx? + 2cex + 2c5x + 2c3)e”
and
y"(0) = 2 + 2¢c5 = 10, cs=4.
Answer:
y = (2 + 4x%)e”.

14. The characteristic equation has the roots =1 and *i. Hence a general solution, its de-
rivatives, and their values at x = 0, equated to the corresponding initial conditions,
are as follows.

(@) y=cye® +cpe*+Acosx + Bsinx, ¢;+cp+A=—1
b) ¥ = c1e" — coe™* — Asinx + Bcosx, ¢; —ca+B=17
© y" = 16" + cpe ™ — Acosx — Bsinx, ¢y +cg—A=—1
d) y" = c16* — cpe™* + Asinx — Beosx, ¢;—c;—B=1.
We obtain A = 0 from (a), (c); then B = 0 from (b), (d); then ¢, = 3 from (a), (b);
and finally ¢, = —4 from (a). Answer:
y = 3" — 4e™%.

16. The characteristic equation has the roots *i and *3i. Hence a general solution, its
derivatives, and their values at x = 0, equated to the corresponding initial conditions,
are as follows.

(a) y = Ajcosx + Bysinx + Azcos3x + Bysin3x, A; + A, =0
(b) ¥ = —A,sinx + B, cosx — 3A,sin3x + 3Bycos 3x, By + 3B, =0
(C) y" = _Al cosx — B‘ sinx — 9Az cos 3x — 9stin3x, _Al = 9A2 = 32
(d) y" = Aysinx — By cos x + 27A, sin 3x — 27Bycos 3x, —B; — 27B, = 0.
From (a) and (c) we obtain A; = —4, A, = 4. From (b) and (d) we obtain B, = 0,
B, = 0. Answer:

y = 4cosx — 4cos 3x.

18. The characteristic equation has a triple root —2. Hence a general solution, its deriv-
atives, and their values at x = 0, equated to the corresponding initial conditions, are
as follows.

(@) y = (¢, + czx + c5x%)e™ 2%, y0)=¢;, =1
®) ¥ = (=2 + ¢y — 2ax + 2zx — 233>, YO)=-2+c=-2 =0
(©) y' =22+ c; — deax + 2c5x)e™ %, Y'(0)=4+23=6, 3= 1.
Answer:

y=(1+ %)%

20. PROJECT. (a) Divide the characteristic equation by A — A, if y; = e** is known.
(b) The idea is the same as in Sec. 2.1.

(c) Here, as always, the first step is to produce the standard form, as the form under
which the equation for z was derived. Division by x* gives

3 6 6 1
W L o (N Vi AR o R
Y x” 13 (xz l)y (x’ x)y %
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With y; = x, y; = 1, ¥ = 0, and the coefficients p, and p, from the standard
equation, we obtain

,, 3 ' 3 6
a3+ x|z + | 2{——)-1+ |5 -1]x|z=0.
x x x
Simplification gives
6 6
2"+ (——+-——x)z=x(z"—z)=0.
X x
Hence
= Clez + Ese"’.
By integration we get the answer

Yo =X f zdx = (c1€™ + cpe™* + cy)x.

SECTION 2.15. Higher Order Nonhomogeneous Equations, page 138

Purpose. To show that the transition from n = 2 (Sec. 2.8) to general n introduces no
new ideas, but generalizes all results and practical aspects in a straightforward fashion;
this refers to existence, uniqueness, and the need for a particular solution ¥p to get a gen-
eral solution in the form

Y=t ¥p

SOLUTIONS TO PROBLEM SET 2.15, page 141

oy =xLy=xy =23 W=6x" W, = 2% W, = =3, W = 2x". Further-
more, r = In.x because we have to divide the equation by x* to get it in standard
form. From (7) we now obtain
% x x2
Yp =7 |x®Inxdx - ) xInxdx + —s-flnxdx

6

x1 [ x4 xt x| x* x2
= S _—— = = -
6 [41“ 16] 2[2 4] g i
x3 7
g o s AR

8lnx 32):.

Answer:
y=cx 4 cpx + cx® + 2% Inx — gx®

4. y, is conveniently obtained by undetermined coefficients. Answer:
Y =172 + cpe™" + cge* + 2x® — 322 + 15x — 8.

6. A% — 6A% + 121 — 8 = (A — 2). Hence a basis is

= €%, Yo = xe2°, yg = x2e2%,
The derivatives are
y1 = 2¢%%, ¥z = (2x + 1)e**, v = (2x2 + 2x)e?%.
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The second derivatives are

yi=4e%,  yi=(4x+ e, yi=(@x*+ 8+ 2
From the Wronskian we can factor out e** from each of the three columns. Then
1 X x2
W= ¢% |2 2x+ 1 2x% + 2x
4 4x+4 42 +8x+2
1 x x? ; 5
X
= ¢% |0 1 2x | =%
4 8 + 2
0 4 8x + 2
In (7) we further need
0 X X3 2
X X
W,=e0 1 2% =% g = g2
1 4 8 + 2

W W

where we have ¢** instead of ¢®* because in the replacement of one column of W as
explained in the text, we lose a factor e**. Furthermore,

1 0 x2 0 o
— 0 0 21' = p%r = =2 4x
Warie i x+2 g
0 1 8x+ 2
and
1 x 0 1 0
Wy;=e%*[0 1 0| = &% l = %,
4 1
0 4 1
With these values and
r = x¥2e%*
the integrals in (7) become
jW,r j “xzx"zez‘

= -i-fxmdx=-_’-x7’3

nuz 2x

J‘Wzrdx J'—Ze‘“‘m i

Ws r

= —Ixs”dx= __i_xslz'
~J.64lelzezz
=%J’xlndr=%.z"’.
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10.

14.

From this and (7),
1 2 1
= 2z — U2 _ 2z % 52 2.2z © 32
Yp=€7Tx xe Sx"” + X% 3 x
=ezzx'"z_.l_(15_42+35)=ie2xxwz
105 105 :

Answer:
y = [CI + sz -+ caxﬁ =~ iﬂax'”z]ezx.

.y1=x,y2=x”2,y3=xm,w=—{,W,=x,Wz=*M’,W3=—ixuz.r=15’2

(divide by 4x®). From (7) we thus obtain
Yp = J'(—4x)x5’2dx + xmjzxs”x"”zdx + xamfhyzxs’zdx
- _%le + éxlm + %xllla
= L A2
m -

Answer:
Y = 61X + caxM? + g3 + x1V2190,

Y1 =%y =xlnxys = x(Inx)?% W=2 W =x(Inx? Wy = ~2cInx, W = 22,
r= 1/x. Answer: y = x> + xInx
¥y = sinx -+ sin 3x + 2 sinh x
CAS PROJECT. The first equation has as a general solution
¥ = (c1 + cax + czx)e” + 1Bze™x",
80 in cascs such as this, one could try
y = x"%ag + ayx + azx® + agx®)e®.

However, the equation alone does not show much, so another idea is needed. One
could modify the right side systematically and see how the solution changes. The so-
lution of the second suggested equation shows that the equation is not accessible by
undetermined coefficients; its solution is (see Prob. 2)

y=cx™' + cpx + cgx® + 3% Inx — .

And one could perhaps modify this equation, too, in an attempt to obtain a form of
solution that might be suitable for undetermined coefficients.

SOLUTIONS TO CHAPTER 2 REVIEW, page 142

16.
18.
m‘

22,

y = e A cos }x + B sin x)
y=cx® + cx~2
Yp is obtained by the method of undetermined coefficients, Answer:

y-—- C]Cx + cze"" + Cge‘r = Seh.

The particular solution y,, = x%¢™ is obtained by the method of undetermined coef-
ficients. Answer:
y = (c1 + cpx)e™ + x%e™.
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32.

£ES8

&

. The particular solution y, = $x sinh x — § cosh x is obtained by the method of un-

. The particular solution y, = —In x e~* is obtained by the method of variation of pa-

rameters. Answer:
y = (¢; + cox — Inx)e~2%,

determined coefficients. Answer:

y = ¢; + cpe* + cze™™ + 3xsinhx — 3 cosh x.

. Applying the method of undetermined coefficients, we obtain as a general solution '

y=e %A cos}V3x + Bsin3V3x) + sinx — 3 cos 2x + 2 sin 2x.

. By variation of parameters we obtain the answer i

y = (cy + cox)e®® + (xInx — x)e*~.

The particular solution y, — 3 cos x + sin x is obtained by the method of undeter
mined coefficients. Answer:

y = 3e* — 5¢®* + 3 cos x + sinx.

y = e " ?%(cos wx + sin wx)
The initial conditions are such that the general solution of the homogeneous equation
does not contribute to the answer

Yy =Yp =2cosx + sinx.

.y = (2 = x)e*
. A% + 322 + 30 + 1 = (A + 1)% hence a general solution of the homogeneous equa-
tion is

T

Yn = (€1 + cox + caxe™ .

By the method of undetermined coefficients and from the initial conditions we get
the answer
y=(1+x%e"* — 2cosx — 2sinx.

. () = cye™ 199987 4 cze—o.lzsooat
. I(f) = 0.0833¢715%% — 0.3333¢%4% + 0.2500 if 0 < ¢ < 0.01,

I(f) = —0.3294¢1%°" + (0.1639¢ 4 if 1 > 0.01.

Note that since E(f) is continuous at ¢ = 0.01, and Q is always continuous (cannot
change abruptly), / and I' are continuous at ¢t = 0.01, whereas /" has a jump —1600
since 10E” has this jump at r = 0.01.

The complex equation is
41" + 20I" + 21 = 10 - 10,
Substituting 7 = Ke'%* and its derivatives and dropping the factor ¢'®*, we obtain
[4(—100) + 20 - 10i + 2]K = 100.
Solving algebraically for K, we get

e 100(—398 — 200i) ~ —39800 — 20000i
T (—398 + 200i)(—398 — 200i) 198404
= —0.2006 — 0.1008i.

Answer: :
Re Ke'®* = —(.2006 cos 107 + 0.1008 sin 10r.
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48. The equation is

0.125y" + 1.125y = cos 1 — 4 sin f;
thus,
y" + 9y = 8cost — 32sint.
- The solution satisfying the initial conditions is
y = —cos 3t + §sin 3t + cos7 — 4 sin,
as obtained by the method of undetermined coefficients.

The last two terms result from the driving force. In the first two terms, w, =
Vkim = 3. This shows that resonance would occur if the driving force had the fre-
quency w27 = 32
. C*(w) is given by (14), Sec. 2.11. The maximum is obtained by equating the deriv-
ative to zero; this gives (15) in Sec. 2.11, which for our numerical values becomes

16 = 2(24 — o?),
so that @ = 4, Eq. (16) in Sec. 2.11 then gives the maximum amplitude

2-1-10
C*(Wmax) = = ().5590.
441224 - 16
To check this result, we determine the general solution, using the method of un-
determined cocfficients, finding
WO = e 24(A cos 2V5¢ + Bsin 2V/51) + 0.25 cos 4¢ + 0.5 sin 4t,

and confirm the result by calculating the amplitude

V0.25% + 0.5% = 0.5590.
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CHAPTER 3 Systems of Differential Equations.

52

Phase Plane, Qualitative Methods
Major Changes

This chapter has been completely rewritten, on the basis of suggestions by instructors who
have taught from it and of my own recent experience of (once more!) teaching systems
of differential equations. The main reason is that due to the increasing emphasis on lin-
ear algebra in our standard curricula, we can now expect that when students take a course
on differential equations that includes material from Chap. 3, almost all of them have at
least some working knowledge of 2 X 2 matrices.

Accordingly, Chap. 3 makes modest use of 2 X 2 matrices. n X n matrices are men-
tioned only in passing and are immediately followed by illustrative examples of systems
of two differential equations in two unknowns, involving 2 X 2 matrices only. Section
3.2 and the beginning of Sec. 3.3 are intended to give the student the impression that for
first-order systems, one can develop a theory that is conceptually and structurally similar
to that in Chap. 2 for a single differential equation. Hence if the instructor feels that the
class might be disturbed by n X n matrices, omission of the latter and explanation of the
material in terms of two differential equations in two unknowns will entail no disadvan-
tage and will leave no gaps of understanding or skill.

To be completely on the safe side, Sec. 3.0 is included for reference, so that the stu-
dent will have no need to search through Chap. 6 or 7 for a concept or fact needed in
Chap. 3.

Basic throughout Chap. 3 is the eigenvalue problem (for 2 X 2 matrices), consisting
first of the determination of the eigenvalues A,, A, (not necessarily numerically distinct)
as solutions of the characteristic equation, that is, the quadratic equation

ay;; — A ajp

= (ayy — AMazz = A) = agpas;
(%) Cagg — A

= A* = (a1, + Gg)A + 433822 — Gy3a5, = 0,
and then an eigenvector corresponding to A; with components x,, x, from
(@ — ADxy + ayax, = 0
and an eigenvector corresponding to Ag from
(@11 = A)xy + ay9xy = 0.
It may be useful to emphasize early that eigenvectors are determined only up to a nonzero
factor and that in the present context, normalization (in order to obtain unit vectors) is

hardly of any advantage.
If there are students in the class who have not seen eigenvalues before (although the

elementary theory of these problems does occur in every up-to-date introductory text on

linear algebra), they should not have difficulties in readily grasping the meaning of these
problems and their role in this chapter, simply because of the numerous examples and ap-
plications in Sec. 3.3 and in later sections.
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Section 3.5 includes three famous applications, namely, the pendulum and van der Pol
equations and the Lotka-Volterra predator-prey population model.

SECTION 3.0. Introduction: Vectors, Matrices, Eigenvalues, page 146
Purpose. This section is for reference and review only, the material being restricted to
what is actually needed in this chapter, to make it self-contained.

Main Content

Matrices, vectors

Algebraic matrix operations

Differentiation of vectors

Eigenvalue problems for 2 X 2 matrices
Important Concepts and Facts

Matrix, column and row vector, multiplication

Linear independence

Eigenvalue, cigenvector, characteristic equation
Some Details on Content
Most of the material is explained in terms of 2 X 2 matrices, which play the major role
in Chap. 3; indeed, n X n matrices for general n occur only briefly in Sec. 3.2 and at the
beginning in Sec. 3.3. Hence the demand on the student in Chap. 3 will be very modest,
and Sec. 3.0 is written accordingly.

In particular, eigenvalue problems presently lead to quadratic equations only, so that
nothing needs to be said about difficulties encountered with 3 X 3 or larger matrices.

Example 1. Although the later sections include many eigenvalue problems, the com-

plete solution of such a problem (the determination of the eigenvalues and corresponding
cigenvectors) is given here.

SECTION 3.1. Introductory Examples, page 152

Purpose. In'this section the student is supposed to gain a first impression of the impor-
tance of systems of differential equations in physics and engineering and why they occur,
and why they lead to cigenvalue problems.
Main Content

Mixing problem

Electrical network

Conversion of single equations to systems [see (8)—(10)]
Background Material. Secs. 2.5, 2.11.
Shert Courses. Take a quick look at Sec. 3.1, skip Sec. 3.2 and the beginning of Sec.
3.3, proceeding directly to solution methods in terms of the examples in Sec. 3.3.
Some Details on Content
Example 1 extends the physical system in Sec. 1.4, consisting of a single tank, to a sys-
tem of two tanks. The principle of modeling remains the same. The problem leads to a

typical eigenvalue problem, and the solutions show typical exponential increases and de-
creases.
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Example 2 leads to a nonhomogeneous first-order system (a kind of system to be con-
sidered in Sec. 3.6). The vector g on the right in (5) causes a term + 3 in /,, but has no
effect on I, which is interesting to observe. If time permits, one could add a litle dis-
cussion of particular solutions corresponding to different initial conditions.

Reduction of single equations to systems [formula (10)] is of great importance and
should be emphasized. Example 3 illustrates it, and further applications follow in Sec.
3.5. It helps to create a “uniform” theory centered around first-order systems, along with
the possibility of reducing higher order systems to first order.

SOLUTIONS TO PROBLEM SET 3.1, page 158
2. The system is
y1 =002, — 00Ty,
ya = 0.01y; — 0.02y,

where 0.01 appears because we divide by the content of the tank T3, which is twice
the old value. In proper order, the system becomes

yi = —001y, + 0.02y,
y2 = 0.0ly; — 0.02y,.

As a single vector equation,

; —-0.01 002
y = Ay, where A= G
001 -0.02

A has the eigenvalues A; = 0 and A, = —0.03 and corresponding eigenvectors

e-[L). e-[]
0.5 =1

respectively. The corresponding general solution is

. y= c,xm + ch(z)e-o.om_
From the initial values,

0=afos] +a 1] - [ua)
YO=alos]* 2 1]~ |iso)

In components this is ¢; + ¢; = 0, 0.5¢; — ¢, = 150. Hence ¢; = 100, ¢, = —100.
This gives the solution

1 1
y= 100[ ] = 100[ ]e-m*.
0.5 -1

y1 = 100(1 — =93¢
Yo = 100(} + e~03%),

In components,

4. In (6) we have

& h = 2 -2t I:l :|-o.at [3]
J(©) [13] cl[l]e + Cg 03 e + ol
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From this and the initial conditions in vector form we get
2 1 3 28
0) = + + = .
2 °1[1] °’[o.8] [0] [14]

(a) 20, + =125

in components,

(b) Cy + 0.8Cz = 14,
Subtract 3(a) from (b) to get
03¢, = 1.5, ¢ =35.
Then from (a),
G = %(25 - 02) = 10.

20 5 3
P -2t + —-0.8¢ + .
10 [10} [4]" [0] ‘
in components,

L2045t g, ettt

Thus

6. The first differential equation remains as before. The second equation is obviously
changed to

I, = 04I; — 0.541,.
Substitution of the first equation into the new second one, as in the text, gives
I = —1.6I; + 1.06I, + 4.8.

Hence the matrix of the new system is

-4 4
A= :
[—1.6 1.06]

Its eigenvélues are —1.5 and —1.44. Corresponding eigenvectors are xV =
[1 0.625]" and x® = [1 0.64]", respectively. The corresponding general solution
is

¥ = oxWe15t 4 o x @144t

8. The system is

yi= Yo

Y2 = —2y; — 3y
The matrix has the eigenvalues —1 and —2 and corresponding eigenvectors [1  —1]7
and [1 —2]", respectively. From this

Y=y =cie”t + cpe”®

and the second equation gives the derivative y, = y'.
10. The system is

yi = ¥
Y2 =y + 15y,/4.
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14.

The matrix has the eigenvalues 4 and —1/4 and eigenvectors [1 4]"and [1 3],
respectively. The corresponding general solution is

y=cll 47t + g1 —3JTe%

. The system is

y= Ya
)’5 = Y3
Ya= 2y +y»— 2y3

The eigenvalues of its matrix are 1, —1, —2. Eigenvectors are [1 1 1],
[1 =1 15[ -2 4], respectively. The corresponding general solution is

Yy=cl 1 1J7e +co[1 =1 1)Te™  + 5[l =2 4772,
TEAM PROJECT. (a) From Sec. 2.5 we know that the undamped motions of a
mass on an elastic spring are governed by my” + ky = 0 or
my" = —ky

where y = y(f) is the displacement of the mass. By the same arguments, for the
two masses on the two springs in Fig. 77 we obtain the linear homogeneous system

(11) myy = —kiyy + ka(y2 = y1)
myys = —ka(y2 = yy)

for the unknown displacements y, = yy(#) of the first mass m, and y, = y(1) of the
second mass my. The forces acting on the first mass give the first equation, and the
forces acting on the second mass give the second equation. Now my, = my = 1,
ky = 3, and k; = 2 in Fig. 77 so that by ordering (11) we obtain

M= =S+ 2,

Y2 = 2y~ 2
or, written as a single vector equation,

P e [

(b) As for a single equation, we try an exponential function of ¢,

y = xe*. Then y" = oPxe** = Axe*,
Then, writing @® = A and dividing by e, we get
Ax = Ax.

Eigenvalues and eigenvectors are
AA=-1, xP= B] and A =-6, x?= [_f] :
Since w = VA and V=1 = %iand V—6 = +iV6, we get
y= ‘”(cle“ + ¢y e—iz) + x‘z)(cae‘\[‘” & Cde-i\/ét)
or, by (7) in Sec. 2.3,

¥y = a;x®cos t + byxPsin 1 + axx® cos V6t + box® sin V6t
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where a; = ¢y + cy, bl ~ i(Cl o Cz), as = cg + cq, bz = i(cg — C¢). These four
arbitrary constants can be specified by four initial conditions. In components, this
solution is

¥1= ajcost+ bysint + 2azcos\/6: + 2b, sin V6t
Yo =2a,cost + 2bysint — a,cos V6t — b, sin V6r.
(¢) The conversion is done by the formulas
2=Y U=V B=N=-5u+2%
=Y 3=V =la 24=Ya= 24 — 2z

This gives the matrix

0 1 0 0
e =5 0o 2 0
0o 0 0 1
2 0 -2 o
Eigenvalues and eigenvectors are
i —i -2iV6 2iV6
1 1 =12 -12
~I, 2 |’ i, PaE —i\/(;, Ve | Ve, Ve
2 2 6 6

Denoting these complex vectors by z¥, - - + | 2, we have as a general solution
z = c,z“’e"“ @ czz(z’e“ g 632(3)8—4\/6 t c4z(4)ew3 t
The first and third components are
73 =y = ice~® — icge® — 2iV6cge V8t + 2iV6cyetV8 "
73 = yo = 2icye™ — 2icye® + iV6ege V8t — iV6ege' VB,

Converting this to real form by means of the Euler formula (Sec. 2.3) we obtain
the same result as in (b), except for notations.

SECTION 3.2. Basic Concepts and Theory, page 159

Purpose. This survey of some basic concepts and facts on nonlinear and linear systems
is intended to give the student an impression of the conceptual and structural similarity
of the theory of systems to that of single differential equations.

Content, Important Concepts
Standard form of first-order systems
Form of corresponding initial value problems
Existence of solutions

Basis, general solution, Wronskian
Background Material. Sec. 2.7 contains the analogous theory for single equations. See
also Sec. 1.9.
Short Courses. This section may be skipped, as mentioned before.
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SECTION 3.3. Homogeneous Linear Systems with Constant Coefficients.
Phase Plane, Critical Points, page 162

Purpose. Typical examples are intended to show the student the rich variety of pattern
of solution curves (trajectories) near critical points in the phase plane, along with the
process of actually solving homogeneous linear systems. This will also prepare the stu-
dent for a good understanding of the systematic discussion of critical points in the phase
plane in Sec. 3.4,

Main Content

Solution method for homogeneous linear systems

Examples illustrating types of critical points

Solution when no basis of eigenvectors is available
Important Concepts and Facts

Trajectories as solution curves in the phase plane

Phase plane as a means for the simultaneous (qualitative) discussion of a large number
of solutions

Basis of solutions obtained from basis of eigenvectors

Background Material. Short review of eigenvalue problems from Sec. 3.0, if needed.
Short Courses. Omit Example 6.

Some Details on Content
In addition to developing skill in solving homogeneous linear systems, the student is sup-
posed to become aware that it is the kind of eigenvalues that determine the type of criti-
cal point. The examples show important cases. (A systematic discussion of all cases fol-
lows in the next section.)

Example 1. Two negative eigenvalues give a node.

Example 2. A real double eigenvalue gives a node.

Example 3. Real eigenvalues of opposite sign give a saddle point.

Example 4. Pure imaginary eigenvalues give a center, and working in complex is
avoided by a standard trick, which can also be useful in other contexts.

Example 5. Genuinely complex eigenvalues give a spiral point. Some work in com-
plex can be avoided, if desired, by differentiation and elimination. The first equation is

(@) Yo =1+ n.

By differentiation and from the second equation as well as (a),

Yi==nty==yi=y—01+y)=-2-2n

—1xi)

Complex solutions e give the real solution

1 =e (Acost + Bsint).

From this and (a) follows the expression for y, given in the text.

Example 6 shows that the present method can be extended to include cases when A
does not provide a basis of eigenvectors, but then becomes substantially more involved.
In this way the student will recognize the importance of bases of eigenvectors, which also
play a role in many other contexts.
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SOLUTIONS TO PROBLEM SET 3.3, page 169
2. The cigenvalues are —3 and 4. Eigenvectors are (2 —5]" and [1  1]7, respectively.
The corresponding general solution is
Y= 2c7% + ¢yt
Yo = —5c1e73 + cpett.
4. The eigenvalues are 3 and 9. Eigenvectors are [3 —1]" and [3 1]7, respectively.
The corresponding general solution is
¥y = 3c.e® + 3cqe™
Yo = —c1€ + et

6. The matrix has the double eigenvalue —6. An eigenvector is [1 —1]". Hence the
vector u needed is obtained from

aram=[7 Te= ]
“La 2| =t/

We can take u = [0, —21]. With this we obtain as a general solution
N = e % + cyre”%
3. Rasi C]C-ct — Cz(f + %)e"o‘.

8. The eigenvalue —3 has two linearly independent eigenvectors, which we can choose
asfl 0 0)"and[0 2 1]". The second eigenvalue is —6. A corresponding eigen-
vectoris [1 1 —1]". This gives the solution

y; =c;e" >t + cqe™C
yg = 2cqe~3 + cqe™C
Y2 = cze ™ — cge™,

10. y, =273 ~ 2%,  y, = —5e % — 2"

12. y, = 3e¥ + ™%,  y, = 6> — 2¢7"

14, y; = =3¢ + 3%, y,=¢ +¢%

16. The restriction of the inflow from outside to pure water is necessary to obtain a ho-
mogeneous system. The principle involved in setting up the model is

Time rate of change = Inflow — Outflow.
For Tank 7, this is (see Fig. 84)
¥ = (12-0 + f,;n) -

For Tank T it is

’ 16 4+ 12

r2 563 4 B _NO_ Ya-

Performing the divisions and ordering terms, we have

y1 = —0.08y; +0.02y,

yz = 0.08y; —0.08y,.
The eigenvalues of the matrix of this system are —0.04 and —0.12. Eigenvectors are
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[1 2)7and [I —2]", respectively. The corresponding general solution is

1 1
y= cl[z] o004t czli-.z]e—o-lm'

The initial condition is y,(0) = 100, y,(0) = 200. This gives ¢; = 100, ¢, = 0. In
components the answer is

y = lme—o.ml
Yo = m—o.mt‘

Both functions approach zero as ¢ — =, a reasonable result because pure water flows
in and mixture flows out.

18. Differentiate the first given equation,
L/C + R(I; — I3) = 0.

Solve algebraically for Iy, substituting I, from the second given equation. Solve the
second given equation algebraically for /3. Then we have the system in the usual form

R 1 R
I = (———_)11——12

L RC L
R R
Ié = III L z 12.

Thus the matrix is
R/IL — 1/RC  —=RIL

RIL ~ —RIL
This gives the characteristic equation
A2+ _l. A+ L =0
RCS DG

and the eigenvalues

A= — 1 - 1 —L.
2RC ~ V4R*C* LC

Hence the eigenvalues are real if and only if
e s
4R*C* ~ LC’

20. TEAM PROJECT. From the complex solution in Example 4 we can obtain a real

basis and a real general solution by the Euler formula (Sec. 2.3), which we need in
the form

thus, L = 4R%C.

¥ = cos 2t + isin 2, e~ = cos 2t — isin2t.

Collecting the real and imaginary parts, we thus obtain in the complex solution (12¥)

1 1 . cos 2t sin 2t
(A) e = | | (cos2t + isin2t) = ) + i
2i 2i —2 sin 2t 2 cos 2t

and similarly
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BT e T 1 ) cos 2t sin2t |
| (cos 2t — isin 2f) = ' —i .
—2i | —2i —2 sin 2¢ 2 cos 2t

Substitution into (12) shows that the real part and the imaginary part in (A),

Fu,] [ cos 2t ] [01] [ sin 2¢ ]
u= = and V= = :
| Uy | —2 sin 21 Ug 2cos 2t

are solutions. These real solutions form a basis because their Wronskian is not zero,

cos 2t sin 2t
—~2 sin 2¢ 2 cos 2t

Hence a real general solution of (12) is

[y,] [ cos 2t ] l: sin 2t ]
¥ = —Au + By = A : FB .
¥a —2 sin 2t 2 cos 2t

This represents the same ellipses as before becaunse by calculation and simplification
we find

W, v) = = 2cos?2t + 2sin® 2t = 2.

¥ + 1ye® = (A + B?)(cos® 2t + sin® 21) = A® + B® = const.
We turn to Example (5). The complex solution is

' 1 : 1 :
(B) y =cy [i]e(—lﬂ)‘ + Cz[-i]e(—l—m‘

We derive from this a real general solution. In (B) we have

= Gy oy e
1 goveoe _ [ € (mst+xsmt)]=[e oost] +i[e smt]
i ie (cost + isin?) ~e tsint e tcost

and

[ 1 ] o [ e *(cost — isini) ] [ etcost :| 'l:e" sin t]

e = = = .
—i —ie"%cost — isinf) —e tsint e tcost
The real and imaginary parts on the right are real solutions of (13)—call them u

and v—as can be seen by substitution. They form a basis because their Wronskian is
not zero.

-t ~t
e "Ccost e "sint
] = ¢ 2cos? ¢t | sin?f) = 28,

W(n,V)*’[ g e
—€ "sint € "Cosi

The corresponding real general solution is

Y1 e tcost e 'sint
y= =Au+Bv=4| _,  |+B| :
Y2 —e~tsint e~tcost

in components,
C) y1 = e YAcost + Bsint), yo = e *(Bcost — Asinf).

It represents spirals (see Fig. 82). To see this, we introduce the usual polar coordi-
nates r, @ in the y,y,-plane defined by

2=y + y2 tan @ = y,ly;.
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Then by straightforward calculation and simplification of the result we obtain
from (C)

r = (A% + BYe ™, thus r = coe,

where ¢, = VA% + B%and 6 = —1. For each ¢ this represents a spiral, as claimed.
The origin is a spiral point of the system (13).

SECTION 3.4. Criteria for Critical Points. Stability, page 170
Purpose. Systematic discussion of critical points in the phase plane from the standpoints
of both the geometrical shapes of trajectories and stability.
Main Content

Formula (9) for the types of critical points

Formula (10) for the stability behavior

Stability chart, giving (9) and (10) graphically
Important Concepts

Node, saddle point, center, spiral point

Stable and attractive, stable, unstable
Background Material. Sec. 2.5 (needed in Example 2).

Short Courses. Since all those types of critical points already occurred in the previous
section, one may perhaps present just a short discussion of stability.

Some Details on Content

The types of critical points in Sec. 3.3 now recur, and the discussion shows that they ex-
haust all possibilities. With the examples of Sec. 3.3 fresh in mind, the student will ac-
quire a deeper understanding by discussing the stability chart and by reconsidering those
examples from the viewpoint of stability. This gives the instructor an opportunity to em-
phasize that the general importance of stability in engineering can hardly be overesti-
mated,

Example 2, relating to the familiar free vibrations in Sec. 2.5, gives a good illustration
of stability behavior, namely, depending on ¢, attractive stability, stability (and instabil-
ity if one includes “negative damping,” with ¢ << (), as it will recur in the next section in
connection with the famous van der Pol equation).

SOLUTIONS TO PROBLEM SET 3.4, page 174
2. p = 0, g = —9, saddle point, always unstable. A general solution is

1= 167 + cpe®
Y2 = "‘5016—3-! + Czeat.
4. p= =12, =27, A = 144 — 108 > 0, stable and attractive node. A general solu-
tion is
n= e+ e

Yo = —3c1e73 + 3ce™.
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6. p=0,q =09, A= —36, center, always stable. A complex general solution, as ob-
tained directly from the characteristic equation, is

1-—3i . 1+3:| ..
y=c1|: 2 ']e”m+cz|: : t:le:’“.

The conversion to real form takes patience:

1. Take the simpler of the two components and multiply everything out. Then col-
lect the cosine and the sine terms and choose a notation for their coefficients,
say, A and B.

2. Express ¢; and ¢, in terms of A and B.
3. Substitute the result just obtained into the first component and simplify.
In the present case the second component, y,, is simpler:
Yo = Sc,(cos 31 — isin 3f) + Scy(cos 3t -+ isin 3¢)
= (5¢y + 5cg) cos 3t + (—5ic; + Sicy) sin 3t

= 10A cos 3t + 10B sin 3¢
where
5(.‘1 + 5(,'2 ey lOA

S¢; — 5¢, = 10iB.

In the second step we solve this for ¢, and c,, obtaining
¢ =A+iB
cz = A — iB.

In the third step we turn to the first component,

y1 = e3(1 — 3i)(cos 3t — isin 37) + co(1 + 3i)(cos 3¢ + isin 31)
= [(1 = 3i)e; + (1 + 3i)cg] cos 3t
+ [(—i(1 — 3i)ey + i(1 + 3i)cy] sin 3t.

Expressing ¢; and ¢, in terms of A and B and simplifying (in this operation, imagi-
nary terms must drop out by cancellation) we obtain

Y1 = (24 + 6B) cos 3t + (2B — 6A) sin 3.
8. p — —3, g — —10, saddlc point, always unstablc. A gencral solution is
V1= ¢1e”% +4cye®
Yo = —c87 % + 3c,e.

10. We could solve the first equation, y; = ¢;e”* and insert this into the second equa-
tion, and solve it. Or we can follow the rule. An eigenvalue is —1 and has only a sin-
gle independent eigenvector, say, [0 1], so that we have no eigenbasis and have to

determine u from )
Shanl PEMEIH
GRSl ol Ll
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This gives —5u; = 1, u; = —1/5, u; = 0. A general solution is

Y= — dcge™t
Y2 = et + cyte".
The critical point is a degenerate node, which is stable and attractive.

12. y = A cos it + Bsin3t. The trajectories are the ellipses

sylz + yzz = const.
This is obtained as in Example 4 in Sec. 3.3.

14. y = ¢7*(A cos t + B sin ). The trajectories are stable and attractive spirals.

16. y; = —dy,/d7, y; = —dy,/dr, reversal of the direction of motion; to get the usual
form, we have to multiply the transformed system by —1, which amounts to multi-
plying the matrix by —1, changing p into —p, but leaving ¢ and A unchanged. In the
example, we get an unstable node.

18. At acenter, p = a,; + ags = 0, ¢ = det A > 0, hence A < 0. Under the change,
p changes into ay; + k + age + k = 2k # 0; g remains positive because
(ay; + kXage + k) — aypap = g + k2> 0.
Finally, A remains unchanged because
(p+ 202 — 4(g + k?) = (20)° - 4(g + k*) = —4g < 0.

Hence we obtain a spiral point, which is unstable if £ > 0 and stable and attractive
if k<0

We can reason more simply as follows. For a center the eigenvalues are pure imag-
inary (to have closed trajectories). An eigenvalue A of A gives an eigenvalue A + k
of A, causing a damped oscillation (when k < 0) or an increasing one (when k = 0),

thus a spiral.

SECTION 3.5. Qualitative Methods for Nonlinear Systems, page 175

Purpose. As a most important step, in this section we extend phase plane methods to non-
linear systems and nonlinear equations.

Main Content
Critical points of nonlinear systems
. Their discussion by linearization
Transformation of single autonomous equations
Applications of linearization and transformation techniques
Important Concepts and Facts
Linearized system (3), condition for applicability
Linearization of pendulum equations
Self-sustained oscillations, van der Pol equation

Short Courses. Linearization at different critical points seems the main issue that the stu-
dent is supposed to understand and handle practically. Examples 1 and 2 may help stu-
dents gain skill in that technique. The other material could be skipped without loss of con-
tinuity.
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Some Details on Content
This section is very important, because from it the student should learn not only tech-
niques (linearization, etc.) but also the fact that phase plane methods are particularly pow-
erful and important in application to systems or single equations that cannot be solved ex-
plicitly. The student should also recognize that it is quite surprising how much information
these methods can give. This is demonstrated by the pendulum equation (Examples 1
and 2) for a relatively simple system, and by the famous van der Pol equation for a sin-
gle equation, which has become a prototype for self-sustained oscillations of electrical
systems of various kinds.

We also discuss the famous Lotka—-Volterra predator-prey model.

For the Rayleigh and Duffing equations, sec the problem set.

SOLUTIONS TO PROBLEM SET 3.5, page 183
2.y = Acost + Bsint, radivs VA2 + B2
4. (nm, 0) saddle points for even n and centers for odd n
6. At(0,0), y; = y2,¥2 = =y, p = 0,q = 1, A = —4, center. The other critical point
is at (—1, 0). We sety; = —1 + ¥, yp = ¥, Then —y; — y,* =5,. Hence ; = 3,
Yo = ¥,. This gives a saddle point.
8. y" + y — y¥ = 0 written as a system is
yi=Je
Y2 = =3 + ¥
Now =y; + y,® = y3(—1 + y,%) = 0 shows that there are three critical points, at

O, ¥2) = (0, 0), (—1, 0), and (1, 0).
The linearized system at (0, 0) is

= 0 1
IS Matrix: [ ]
Y2 = . =1 0
From the matrix we see that p = ay; + ay3 = 0, g = 1. Hence (0, 0) is a center (see

Sec. 3.4).
For the next critical point we have to linearize at (—1, 0) by setting

Nn=-1+5%, Ya = Ya.
Then

yi(=1 + 33 = (=1 +5[-1 + (-1 + 5H)?
=(-1+ 3"1)[_23"1 + 37‘12] = 27,.

Hence the linearized system is

i=5 0 1
Z} yi Matrix: [ ] 4
Y2 = 2y1. 2 0

Hence g = det A = —2 < 0, that is, the critical point at (—1, 0) is a saddle point.
Similarly, to linearize at (1, 0), set

n=1+5y, Y2 = Y.
Then
-y + 3’ =25,

and we obtain another saddle point, as just before.
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10. The equation gives the system

Y=Yz
y2 = —4y; + 5y,® — 3%
Now
FOO=—4y + 5> —y°= -3l -52+yH=0

involves a quadratic equation in y,® with solutions y,® = 1, 4. Hence the zeros
of f(y,) are £2, =1, 0 and give the five critical points (y,, 0) with y; = —2, —1,
0, 1,2

Linearization leads to the resuit that (0, 0), (=2, 0), and (2, 0) are centers and
(=1, 0), (1, 0) are saddle points.

For instance, at (0, 0), linearize to

Y1 =Y yo=—4y; toget p=0, g=4>0, acenter
At the other points some work may be saved by setting
fO) = =00y + Dy = DOy +2)n — 2)
and substituting y; = —2 + ¥, at (=2, 0) (ete. for the others) and finding
f) = =51 — 21 — DGL — GG, — 4) = =24y,
giving the linearized system
Vi =52 Vo= —247,, p=0, g=24, acenter.
More savings follow by noting that every linearized system is of the form
P L O ] &
¢ Al Y, thus p=0, g= —dy.
asy 0
Now
q = —dyn = —f'(n) =4 - 15, + 5p,*
is positive at 0 and *2, thus giving centers, and negative at 1, giving saddle points,
as asserted.
12. y1 =y, y2 = 41 — 3% y2v2 = 4y — niyn
yo© = 4y,;2 — 3y, + c* or (see the figure on the next page)
ya? =3 +4 = y®)e — 4+ y).
14. Critical points at (0, 0), (2, 0), (—2, 0). Linearization leads to the following:

At@Q0: 2 g=—4, saddle point.
Y2 =4y ~ ya
1=y

At(x2,0: ") 7% p=-1,g=8A=1-32<0,

Y2 = =8y = ya
which gives stable and attractive spiral points (instead of centers).
Note the similarity to the situation in the case of the undamped and damped pen-
dulum equations.

16. TEAM PROJECT. (a) Unstable node if u = 2, unstable spiral point if
2> p > 0, center if u = 0, stable and attractive spiral point if 0 > g > —2, stable
and attractive node if pu = —2.

(© y1 = ¥a, y2 = —(wp’y; + By,®), hence
Yayz = =(wg’y; + Byy®)y1.

http://librosysolucionarios.net




Instructor’s Manual 67

Yz A

yi

Section 3.5. Problem 12

By integration on both sides,
ya* + @o’n® + 3Bn* = const.

SECTION 3.6. Nonhomogeneous Linear Systems, page 184

Purpose. We now turn from homogeneous linear systems considered so far to solution
methods for nonhomogeneous systems.

Main Content

Method of undetermined coefficients
Modification for special right sides
Method of variation of parameters

Method of diagonalization
Short Courses. Select just one or two of the preceding methods.
Some Details on Content

In addition to understanding the solution methods as such, the student should observe the
conceptual and technical similarities to the handling of nonhomogeneous linear differen-
tial equations in Secs. 2.8~2.12 and 2.15 and understand the reason for this, namely, that
systems can be converted to single equations and conversely. For instance, in connection
with Example 2 in this section, one may point to the Modification Rule in Sec. 2.9, or, if
time permits, establish an even more definite relation by differentiation and elimination
of Ya,

=3yt 1267
==3y1 + (¥ —3ya+ 267) + 1267
= =3y; + y; — 3(y1 + 3y + 6e72) + 14

=61 — 8y; — 4e™¥,

solving this for y; and then getting y, from the solution.

http://librosysolucionarios.net




68

Instructor’s Manual

SOLUTIONS TO PROBLEM SET 3.6, page 189
2. The eigenvalues are —2 and 2. Eigenvectors are [l —1]Tand [1  1]7, respectively.

A particular solution can be obtained by the method of undetermined coefficients.
Answer:

V1= c1e” % + cpe?t - 3, ya = —C1e7% + cpe®t ~ 4t

. The eigenvalues are —1 and 2, with eigenvectors [1 1]" and [1 4], respectively.

By the method of undetermined coefficients we have to assume, say,
¥, = A, cost + By sin¢; similarly for y,. Answer:

Y1 = et + coe®* —Tcost + sint
2

Yo = ¢1~t +1coe®* — 3 cost — sint.

. The eigenvalues are 2 and 5, with cigenvectors [I —2]T and [1 1]7, respectively.

Answer:
n=c1e®+ coe® — 0.18 — 0.4¢

Yo = —2c;€2 + cpe® + 0.32 + 0.61.

. From the characteristic equation we obtain

1 1
N R ]

By the method of undetermined coefficients, we set

¥P =u+ vt + wi,
By substitution,

Y(m'=v+2wt=|:0 4](u+vt+wrz)+|:0:|+[0]tz.
4 0 2 -16

We now compare componentwise the constant terms, linear terms, and quadratic
terms:

vy, = 4“2 }
constant terms
vz = 4”1 + 2
2wy = 4o
* = ]lincar terms

ZWa == 4U|
0= dw, }quadrati terms

c .
0= 4W1 - 16

We then obtain, in this order,
wi=4, w,=0, v1=0, V=2, Uy =3w,-2)=0, u = 0.
The corresponding general solution is
y = ;xPV%e% + c,x®Pe~ + vt + wid;
in components,
y1=c1e%¥ + e + 487, y, = 1o — cpe™ 4+ 21

From this and the initial conditions y,(0) = 3, y,(0) = 1 we obtain ¢; = 2, ¢; = 1.
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10.

12.

Answer:
yi=2% + e+ 42 y, =2 - ™4 4 2

From the characteristic equation,

4 1
Al = 2’ x(l) = [l] ; Az = —4, x(z) a [l] :

¥'? can be obtained by the method of undetermined coefficients, starting from
¥® = acosh + b sinh 1.
Substitution gives
y'?' = asinht + bcosht

4 -8 . 2 L 2
= (acosht + bsinh?#) + cosht + sinh 1.
2 =6 1 2

Compasing sinli teuns and cosh s (componentwise), we get from this

a, = 4b, — 8b, ;

sinh terms
as = 2b1 b 6b2 + 2
b1=4al - 802+2

cosh terms.
bz = 201 = 602 + 1

To solve this, one can substitute the first two equations into the last two, solve for
by = 2, b, = 1, and then get from the first two equations @, = a, = 0. This gives
the general solution

y1 = 4cie® + coe™ + 2sinht, y, = cye®* + coe™d + sinh .

From the initial conditions we see that ¢; = 0, ¢; = 0, so that the general solution
does not contribute to the answer. This is not automatically the case when we have
y1(0) = 0, y,(0) = 0, but is a consequence of the fact that y*® at t = 0 is the zero
vector. Answer: y; = 2sinht, y, = sinh .

1 4
¥ = c;xPe + cxPe?, xP = I:_l]. x® = [ 5]. Now €' on the right is a so-

lution of the homogeneous system. Hence, to find y'¥, we have to proceed as in Ex-
ample 2, setting
¥P = ute* +'ve'.

Suhstimtion gives
-3 -4 - 5
¥y = u(t + 1) + ve' = [ c 46](““‘ + ve') + [_6]3‘.

Equating the terms in ¢* (componentwise) gives
uy tuvy=-3v;, —4dvy, +5
ug + g = 5v;+ 6vy — 6
and the terms in re* give
Uy = =3uy — 4uy
Uy = Suy + Gus.
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Hence u; = 1, up = —1, vy = 1, vy = 0. This gives the general solution
Y1 = 1€t + dcge® + tet + €,  yu, = —cie' — Scae® — te.
From the initial conditions we obtain ¢; = —2, ¢, = 5. Answer:
y1 = —2e" +20e% + te' + &,  y, = 2¢' — 25¢% — (e
14. A general solution of the homogeneous system is

¥® = ;xPe® + cx@et, x@ = {:?] i x® = [ ?:l .

Answer:
yl=2€_‘+'2. y2=—e"‘—t.

16. The formula for v shows that these various choices differ by multiples of the eigen-
vector for A = —2, which can be absorbed into, or taken out of, ¢; in the general so-

lution y™.
18. The equations are
(a) I} = =2I; + 2I, + 440sin ¢
and
812 + 21-1241 + 2(12 - Il) =0
Thus

I = —025 [Ldt + 025, — I),

which, upon differentiation and insertion of I; from (a) and simplification, gives
(b) I, = —0.41, + 0.2I, + 88 sin 1.

The general solution of the homogeneous system is as in Prob. 17, and the method
of undetermined coefficients gives as a particular solution

1 [352] 1 [616] .
=) cost + — sin t,
3L 44 3 1132
[—3 1.25]
2. A= :
S |
3

_ 125 [ g 125 5| _ase , 500 |1
= [2]e 2 26 T

SOLUTIONS TO CHAPTER 3 REVIEW, page 190

16. Eigenvalues — 1, 6. Eigenvectors [I —1]7, [4 3]". The corresponding general so-
lution is

y1=cre"t + dcee®,  yy = —cre7t + 3cpe®.

The critical point at (0, 0) is a saddle point, which is always unstable.
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18. Eigenvalues *2i. Hence y; = A cos 2t + B sin 2¢. From this and the first equation,
yo = =3y = =Bcos 2t + Asin 2t.

The critical point at (0, 0) is a center, which is always stable.
20. y, = cre”" + coe™, yg = —2c1e7" ~ 3cge™?, stable and attractive node
22. y; = c1€®* + cze7, y2 = $016% — deye™t; saddle point

4.y, = 2c1e + cge"‘ + 2 + &
Yz = —cef — 20062 — et
26. y; = 2c1e™" + 2c0¢™ + cost — sint, y, = —cie”" + cpe®t
28. g = AjAy < 0 for a saddle pomt, 50 that A; and A, must be real. A? has the eigen-
values w; = A,? and p, = A% which are real, and pyp, > 0, as well as
(1 + 1) = dpypin = (g — p2)* 0,
s0 that we get a node, which Is unstable because p, + o = 0.
30. The matrix of the system is
(A =5 -A]

| A —A
where A = R/L and B = 1/RC. A general solution is

"1 4
=c et+c F
y 1 _4] 2[_1]

and the initial conditions give ¢; = —1/3 and ¢, = 1/3.

32. I, = I, + 1017 = 100, I, + I3 — Il = 0 (after differentiation). Solve the first equa-
tion algebraically for I7. Replace I in the second equation by using the first equa-
tion. This gives the system

Iy = =015 + 0.1, + 10
Iy = =0.11; — 0.9, + 10.
Eigenvalues A = —0.5 = V(.15 = —0.1127, —0.8873; corresponding eigenvectors:

1 s
@ - @ =
= [—0.127] s = [-7.873] :

100
J = o xDe-0112% 4 @) -08873¢ | [ ]

Answer:

0
with ¢; = —101.6 and ¢, = 1.64 from the initial conditions.
34. A general solution is
Y1 =Acost+ Bsint + 1
Yo = Bcost — Asint —t,
(I) Undetermined coefficients. This is much simpler than the other two methods.

y1 = At + B, y, = Ct + D, By substitution, A = Ct + D + ¢, C = —At — B; thus
C=-1,A=0,B=1,D=0.
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(II) Variation of parameters. We write ¢ = cos t, s = sinz. Then

wweva=x[le T [a=v [Tl 4
o S ol Bl
g 1 oy e

where the last term is a solution of the homogeneous system.
(I) Diagonalization can be done in complex. A; = i, A, = —i, and

1 Hirl I | A B
[ 6300

7= i+t
29 ==igy + 3t

Thus

Particular solutions are
= f ~#lrde = (it + 1)
=c® fe“%tdt =¥—it+ 1)

y‘v>=xz=‘|:l 1][ it/2 + 1/2] ~
i —iJL—itl2+ 112 -
36. (n, 0) centers (n integer)

38. Critical points at (0, 0) and (0, —1). The linearized systems are

and thus

yi =2y 1= 2%
% and o =
y2 = =8y, Yo = —8y;
where y; = ¥, and y3 = —1 + ¥,. At (0, O)mesystemhasace:uerandal (0, =D

a saddle point.
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CHAPTER 4 Series Solutions of Differential Equations

Special Functions

Changes

This chapter has been streamlined and shortened by presenting the material on Bessel
functions in a more condensed form and several minor changes to make it more teachable,
without losing the opportunity to familiarize the student with an overview of some of the
techniques used in connection with higher special functions.

SECTION 4.1. Power Series Method, page 194

Purpose. A simple introduction to the technique of the power series method in terms of
simple examples whose solution the student knows very well.

SECTION 4.2. Theory of the Power Series Method, page 198

Purpose. Review of power series and a statement of the basic existence theorem for power
series solutions (without proof, which would exceed the level of our presentation).

Main Content, Important Concepts

Radius of convergence (7)

Differentiation, multiplication of power series
Technique of index shift

Real analytic function (needed again in Sec. 4.4)

Comment N
Depending on the preparation of the class, skip the section or discuss just a few less known
facts.

SOLUTIONS TO PROBLEM SET 4.2, page 204
2.y=a4—x* -3+ &5+ A8+ .. )
4o y=ay(l + x>+ 3%+ --) =g/l — x?)

& .8

6. y = (ag + ax) (1"'12"'%*'?‘*"")=(a0+a1x)e‘z

8.y =ayx + ag(l — x® — 3x* — §x® — Lx® — . ..). [This is a particular case of
Legendre’s equation (n = 1), which we consider in Sec. 4.3.]

2! 3!
where A = ggcosh 1 — a, sinh 1, B = a; cosh 1 — agsinh 1.

12. The answer to Prob. 11 shows that the equation does not have a solution in powers
of x, because of In x. The reason is that the coefficient 1/x of the equation is not an-
alytic at x = 0. If we substitute a power series in powers of x into xy’ = y + x, we
getayg = 0, a, = a; + 1, a contradiction.

4. R=1 16. R =1 18. R = 20. R=0

2 t*
10. y = a, (1 = +) + ay (, + — +) = Acoshx + Bsinhx,

73
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22. TEAM PROJECT. The student should see that power series reveal many basic prop-
erties of the functions that they represent. The familiarity with the functions consid-
ered should help students understand the basic idea without being irritated by unfa-
miliar notions or notations and more involved formulas. Some of the tasks in (d)
illustrate that not all properties become immediately visible, although all of them are
determined by the sequence of the coefficients.

24. 3, (m**+ 2)(m + Dx™, 1
m=0

26. CAS PROJECT. (a) It is instructive to see how polynomials of increasing degree
follow more and more the cosine curve and then at a distinctly noticeable point be-
gin to go their own way (see the figure). Some calculus books also show this, but
students may have forgotten, so this reminder serves a good purpose. Those “quali-
tative” break-away points are very roughly at 1, 2, 3, - - - . Of course, for quantita-
tive intormation, one would need more exact analytical estimates ot remainders.

Section 4.2, CAS Project 26(a)

(b) The plot in the figure suggests that all the partial sums are even functions and
that convergence seems to take place for —1 << x << 1; of course, this does not
prove that the convergence radius is 1. Divide the equation by the coefficient of
y" to see that we cannot expect convergence in a larger interval because 1 — x*
is zero at x = =* 1. The series solution is

o x2m
y=1 ,,;2_1 e

Section 4.2. CAS Project 26(b)

http://librosysolucionarios.net




Instructor’s Manual 75

SECTION 4.3. Legendre’s Equation. Legendre Polynomials P,(x),
page 205
Purpose. This section on Legendre’s equation, one of the most important equations, and
its solutions is more than just an exercise on the power series method, It should give the
student a feeling for the usefulness of power series in exploring properties of special func-
tions and for the wealth of relations between functions of a one-parameter family (with
parameter n).
Legendre’s equation occurs again in Secs. 4.7, 4.8, and 11.11.

Comment on Literature and History

For literature on Legendre’s equation and its solutions, see Refs. [1], [6], [11].
Legendre’s work on the subject appeared in 1785 and Rodrigues’s contribution (sce
Prob. 6) in 1816.

SOLUTIONS TO PROBLEM SET 4.3, page 209

6. We have
¢ == 3 (-1 (") 7 g
m=0 m

Differentiating n times, we can express the product of occurring factors
(2n = 2m)(2n — 2m — 1) - - - as the quotient of factorials and get

n M | o
Li-p=3 ="t Crz2mt
dx 0

e ml(n — m)! (n — 2m)!

with M as in (11). Divide by n!2". Then the left side equals the right side in
Rodrigues’s formula and the right side equals the right side of (11).

10. TEAM PROJECT. (a) Following the hint, we obtain
1
A (-2xu+u?®)y12=1+ E(qu - u?)

2 L28ee -G =)
2:4---(2n)

i

xu = u)* + -
and for the general term on the right

(B) (zxu =2 uz)m <2, (zx)mum N m(zx m—l“m+1
" mim — 1)

2!
Now u™ occurs in the first term of the expansion (B) of (2xu — #%)", in the sec-
ond term of the expansion (B) of (2xu — «*)™~?, and so on. From (A) and (B)

we see that the coefficients of ¥™ in those terms are
1:3:-@n—1)
2:4---(2n)

(n = 1)(20)"~2

(ZX)“‘ ~8unw8 doaee,

(20" = apx™ [see (9],

.

_1:3:-@2n-3)
24+ (2n -2

2n 75 - 1 o
=1 g T g™ [see (9%)],

and so on. This proves the assertion.
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(b) Set u = ry/ry and x = cos 6.
(¢) Use the formula for the sum of the geometric series and setx = 1 and x = —1.
Then set x = 0 and use

-1/2
(A +u)y12=73 ( ) ™,
m
(d) Abbreviate 1 — 2xu + w* = U. Differentiation of (13) gives

"

5 U™%(=2x + 2u) = 2 nPp(@u".

n=0

Multiply this equation by U/ and represent U~2 by (13):

G~ u) 3 P(u™ = (1 — 2xu + 1) 3, nP()u"!

n=0 n=0
In this equation, u™ has the coefficients
XPy(x) = Pp_y(x) = (n + DPpsq(x) = 2nxPy(x) + (n — DP_1 ().

Simplifying gives the asserted Bonnet recursion.

12. Piix) = V1 = 22 Pl = 3xV1 — 2 P%(x) = 3(1 — xP),
P2(x) = (1 — x*)(105x* — 15)/2

SECTION 4.4. Frobenius Method, page 211

Purpose. To introduce the student to the Frobenius method (an extension of the power
series method), which is important for equations with coefficients that have singularities,
notably Bessel’s equation, so that the power series method can no longer handle them.
This extended method requires more patience and care.

Main Content, Important Concepts

Regular and singular points
Indicial equation, three cases of roots (one unexpected)
Frobenius theorem, forms of bases in those cases

Short Courses. Take a quick look at those bases 1 Frobenius’s theorem, say how it fits
with the Euler-Cauchy equation, and omit everything else.

Comment on “Regular Singular” and “Irregular Singular”

These terms are used in some books and papers, but there is hardly any need for confus-
ing the student by using them, simply because we cannot do (and don’t do) anything about
“irregular singular points.” A simple use of “regular” and “singular” (as in complex analy-
sis, where holomorphic functions are also known as “regular analytic functions™) may
thus be the best terminology.

Comment on Footnote 11

Gauss was born in Braunschweig (Brunswick) in 1777. At the age of 16, in 1793 he dis-
covered the method of least squares (Secs. 18.5, 23.9). From 1795 to 1798 he studied at
Gottingen. In 1799 he obtained his doctor’s degree at Helmstedt. In 1801 he published
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his first masterpiece, Disquisitiones arithmeticae (Arithmetical Investigations, begun in
1795), thereby initiating modern number theory. In 1801 he became generally known when
his calculations enabled astronomers (Zach, Olbers) to rediscover the planet Ceres, which
had been discovered in 1801 but had been visible only very briefly. He became the di-
rector of the Gottingen observatory in 1807 and remained there until his death. In 1809
he published his famous Theoria motus corporum coelestium in sectionibus conicis solem
ambientium (Theory of the Heavenly Bodies Moving About the Sun in Conic Sections;
Dover Publications, 1963), resulting from his further work in astronomy. In 1814 he de-
veloped his method of numerical integration (Sec. 17.5). His Disquisitiones generales
circa superficies curvas (General Investigations Regarding Curved Surfaces, 1828) rep-
resents the foundation of the differential geometry of surfaces and contributes to confor-
mal mapping (Sec. 12.5). His clear conception of the complex plane dates back to his the-
sis, whereas his first publication on this topic was not before 1831, This is typical: Gauss
left many of his most outstanding results (non-Euclidean geometry, elliptic functions, eic.)
unpublished. His paper on the hypergeometric series published in 1812 is the first sys
tematic investigation into the convergence of a series; it allows a study of many special
functions from a single point of view.

SOLUTIONS TO PROBLEM SET 4.4, page 216

2. yy=x+ 1,y = W/x + 1). Check: Set x + 1 = z to get an Euler-Canchy
equation.

4. Substitution of (2) and the derivatives (2*) gives
o« =
(A) 4 (m+ r(m+r— D2, x™"=1 + 2 (m + ra,x™*" 1
m=0 m=0

o«
+ X ™ = 0.

: m=0
Writing this out, we have
4r(r — Dagx""! + 4(r + Drayx™ + 4(r + 2)(r + Dagx™1 + - - -
+ 2rapx™ + 2(0r + D ayx” + 2r + 2)agx™t + ¢ - -
+ ao.l" + alx'l'l F o=,

By equating the sum of the coefficients of "1 to zero we obtain the indicial equa
tion

ar(r—1)+2r=0, thus r?—4r=0.

The roots are r; = § and r, = 0. This is Case 1.

By equating the sum of the coefficients of x"** in (A) to zero we obtain (take
m+r—1=r+s thusm = s+ 1in the first two series and m = s in the last se-
ries)

s+ r+ I)s + nagy +2As +r+ 1agy +a, = 0.
By simplification we find that this can be written

s+r+1)(s+r+3a,, +a, =0
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We solve this for a,, in terms of a,:

iz as e
(B) Gor1 (s +2r+2)@s+2r+ 1) (=00

First solution. We determine a first solution y,(x) comesponding to r; = 3. For
r = ry, formula (B) becomes

a’ — 4 .- ..
%1 = T 05 ¥ 3)2s + 2) =012

From this we get successively

Ao I a4 = as
3-2° T 5.4 8T 7-6°
In many practical situations an explicit formula for a,, will be rather complicated,
Here it is simple: by successive substitution we get

o .
51 BT

etc.

a, =

al=-_§! Q= Ty

and in general, taking a5 = 1,

-, D™ (m=0,1,-)
@m + 1)! men

Hence the first solution is

___.112” =" m=\/_( _..1_ +._1_ + = gi
yi(x) = x 20 G+ D L=t — x2 - sin Vx.
Second solution. If you recognize y, as a familiar function, apply reduction of order
(see Sec. 2.1). If not, start from (6) with r, = 0. For r = r, = 0, formula (B) [with
A,y and A, instead of a,., and a,| becomes

A,
= — = ’l,-.-.
A= T i )@t 1) (&= )
From this we get successively
_ A _ A _ A
A= L= 4= "%s
and by successive substitution we have
_ A _ A -
Al- 2" A2——4Tv AS"_E,
and in general, taking Ay = 1,
B o § s
Am =
Hence the second solution, of the form (6) with r, = 0, is
()—iﬂt‘. mo ] —legdy®— 4...=cosVx
yolx) = (2m)!x 3x + 34 = x.

m=0
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6. y; =x'cos2x, y,=x"'sin2x
8. y=¢€% y=¢i

10. y; = (x — 1)% y; = U/(x — 1)®. Check: z = x — 1 gives an Euler-Cauchy equation.
2 4 6

P [ - L I e S
- N 22 (2.4)2 (2‘4'6)2 ’ 2
e yine— X <l | Lo
NN = T 816 64:6-26
2 x4 x® x8 1
= —— + — ) - —
Un=5-335t25  m S A
16. TEAM PROJECT. (b) In (7b), Sec. 4.2,
Ay (@ + n)b + n)
= _)1’
ay, (n+ I)c + n)
hence R = 1.
(¢) In the second line,
arctanx =x—4x® + 4x% — Ix" 4+ — . .. (d <1
1-3 -3
arc sinx = x + 3+ B+ - > T4 (<.

23" Begn R Y T
(d) The roots can be read from (15), brought to the form (1") by multiplying it by x
and dividing by 1 — x; then by = c in (4) and ¢y = 0.
18. y = AF(2, 2, 3; x) + Bx~?
20. y = A(1 + 4x) + BVx F(—3, -3, 3, )

SECTION 4.5. Bessel's Equation. Bessel Functions J,(x), page 218

Purpose. To derive the Bessel functions of the first kind J, and J_, by the Frobenius
method. (This is a major application of that method.) To show that these functions con-
stitute a basis if » is not an integer, but are linearly dependent for integer v = n (so that
we must look later, in Sec. 4.6, for a second linearly independent solution). To show that
various differential equations can be reduced to Bessel's equation (see Problem Set 4.5).

Main Content, Important Concepts

Derivation just mentioned

Linear independence ot /, and J__, if v is not an integer

Linear dependence of J, and J_, if v =n =1,2,- - -

Gamma function as a tool .
Short Courses. No derivation of any of the series. Discussion of J, and J; (which are
similar to cosine and sine). Mention Theorem 2.

Comment on Special Functions

Since various institutions no longer find time to offer a course in special functions, Bessel
functions may give another opportunity (together with Sec. 4.3) for getting at least some
feeling for the flavor of the theory of special functions, which will continue to be of some
significance to the engineer and physicist. For this reason we have added some material
on basic relations for Bessel functions in this section.

http://librosysolucionarios.net

f——e




Instructor’s Manual

SOLUTIONS TO PROBLEM SET 4.5, page 226

2. y = AJ(Ax) + BJ_,(AXx)
From a practical point of view, this is probably the most frequently occurring case.
Problems 1— 10 are for gaining skill and making the student aware of the fact that
Bessel’s equation, just as the hypergeometric equation in Problem Set 4.4, is a mem-
ber of a large family of equations that can be solved in terms of Bessel functions, a
fact that adds to the great importance of these functions.

4. Alye(Vx) + BJ_ye(Vx)
6. Jo(Vx)
8. Vx [AJyo(VX) + BI_y5(Vx)] = x4[A4 sin Vx + B cos V]

10. x®J4(x), and we do not get a general solution, by Theorem 2.

ce‘ 2'”(_ l)mxzm—l m‘ (___ l)mxz;n-l eg‘ (__, l)’* lxzavl
WA= = O e =2 ,
o 2 S 2™ Imim — 1)) ) 22 s + D)s!

where m = 5 + L.

x2m+2 x2m
14. Use (7b), Sec. 42, and 23m+2+0(y + Di(a + m + 1! / 22 i+ m)! O
as m — = (x fixed).

16. We obtain the following values. Note that the relative error of this very crude ap-
proximation is rather small.

x  Approximation Exact (4D) Relative Error (%)

0 1.0000 '1.0000 0
0.1 0.9975 0.9975 0
02 0.9900 0.9900 0
0.3 09775 0.9776 0.01
C 04 0.9600 0.9604 0.04
05 0.9375 0.9385 0.1
0.6 0.9100 0.9120 0.2
0.7 0.8775 0.8812 0.4
0.8 0.8400 0.8463 0.7
09 0.7975 0.8075 12
1.0 0.7500 0.7652 20

18. Let x = 0. We have Jo(x) = s9(x) + Ra(x) = 54(x) + Rg(x), 52(x) < Jop(x) < 54(x),
Sa(xg) < 0 << s4(xq); hence x; < xg < Xp, where x; = 2 and x5 = V8 are defined
by Sz(xl) =0, SQ(I’) = (.

20. J; = 0 at least once between two consecutive zeros of J,, by Rolle’s theorem. Now
(25) with v =0 is

J§ = =1
Together, J; has at least one zero between two consecutive zeros of Jy.
Furthermore, (xJ;)' = 0 at least once between two consecutive zeros of xJ,, hence
of J; (also at x = 0 since J,(0) = 0), by Rolle’s theorem. Now (24) with » = 1 is

&))" = xJe.

Together, J, has at least one zero between two consecutive zeros of J;.
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22, Integrate (24).
24. Integrate (27).
26. Integrate (24) with v = 2 to get
@) [2nax =2, +c.
Integrate (24) with v = 1 to get
(b) [x1gdx = x, + .
Integratihg by parts, using (b), and again, using (a), we get
[rdx = [x2xrg) ax
= x*(xJy) ~ 2 | X% dx
=y — 287 tc,

28. TEAM PROJECT. Assuming small angles « in the displacement, we can regard
W(x) to be approximately equal to the tension acting tangentially in the moving ca-
ble. The restoring force is the horizontal component of the tension. For the difference
in force we use the mean value theorem of differential calculus. By Newton's sec-
ond law this equals the mass pAx times the acceleration u, of this portion of the ca-
ble. The substitution of « first gives

~aw?y cos (wt + 8) = g[(L — x)y']" cos (wt + 8).

Now drop the cosine factor, perform the differentiation, and order the terms.
(b) dx = —dz and by the chain rule,

a? d
Z'dz—:ﬁ'%"“ )\zy=0.
In the next transformation the chain rule gives
Q - Q Az—l’z .d& — ..d_i): Azz-l - l Ql\z_am
dz ds g dz®  ds* 2 ds ’

Substitution gives
d’y 1 dy
2___+ __A—U2+A—112_+A2 = 0.
N 2 ¢ ) as T
Now divide by A? and remember that s — 2A2"/%, This gives Bessel's equation.

(c) This follows from the fact that the upper end (x = 0) is fixed. The second nor-
mal mode looks similar to the portion of J, between the second positive zero and
the origin. Similarly for the third normal mode. The first positive zero is about
2.405. For the cable of 2 meters this gives the frequency

B 2 e 2B [sec=1] = 25.4 [cycles/min]
2 2. 211'\/17} 47\V/2.00/9.80 ’ ) )
Similarly, we obtain 11.4 cycles/min for the long cable.
30. CAS PROJECT. (b) xo = 1, x; = 2.5, x, = 20, approximately. It increases
with n,
(c) (14) is exact,
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(d) It oscillates.
(e) Formula (25) with v = 0.

SECTION 4.6. Bessel Functions of the Second Kind, page 228

Purpose. Derivation of a second independent solution, which is still missing in the case
of v=n=01,-+-.

Main Content
Detailed derivation of Y;(x)
Cursory derivation of Y, (x) for any n
General solution (9) valid for all v, integer or not

Short Courses. Omit this section.

Comment on Hankel Functions and Modified Bessel Functions
These are included for completeness, but will not be needed in our further work.

SOLUTIONS TO PROBLEM SET 4.6, page 232

2. AJs(x) + BYy(x)
4. Substitute y = ux'/? and its derivatives into the given equation and multiply the re-
sulting equation by x*2 to get
20"+ xu' + (B - Lu=0.
Now introduce z as given in the problem statement to get the answer
y = Vx [Al,5(3c%?) + BJ_,5(8x%?)].

6. Vx [AJy3(2kx¥?) + BYy5(#ix®2)]. For k = i = V/—1, this equation is called Airy’s
equation. Its solutions (“Airy functions™) have been extensively investigated; for
some formulas and graphs, see M. Abramowitz and 1. A, Stegun [1], pp. 446—52,
listed in Appendix 1.

8. Vi [AJye(3x®) + BYyel3ir)]

10. x*[AJ (x") + BJ_ (x")]

12. Approximate values 7/4 = 0.79, S7/4 = 3.93, 9n/4 = 7.07

14. Use (20) in Sec. 4.5.

16. Since I, is a solution of (12), so is I_, because (12) involves v? and is linear and ho-
mogeneous. Hence K, is a solution of (12).

The problem illustrates that for different purposes different special functions were

introduced and investigated. It would Iead us too far to show applications where those
K, are of practical advantage. See Watson's standard treatise [A7] in Appendix 1.

SECTION 4.7. Sturm-Liouville Problems. Orthogonal Functions,
page 233

Purpose. Discussion of eigenvalue problems for ordinary second-order differential equa-
tions (1) under boundary conditions (2).
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Main Content, Important Concepts
Sturm-Liouville equations, Sturm—Liouville problem
Reality of eigenvalues
Orthogonality of eigenfunctions
Orthogonality of Legendre polynomials and Bessel functions

Short Courses. Omit this section.

Comment on Importance

This theory owes its significance to two factors. On the one hand, boundary value prob-
lems involving practically important equations (Legendre’s, Bessel’s, etc.) can be cast into
Sturm-Liouville form, so that here we have a general theory with several important par-
ticular cases. On the other hand, the theory gives important general results on the spec-
tral theory of those problems.

Comment on Existence of Eigenvalues

This theory is difficult. Quite generally, in problems where we can have infinitely many
eigenvalues, the existence problem becomes nontrivial, in contrast to matrix eigenvalue
problems (Chap. 7), where existence is trivial, a consequence of the fact that a polyno-
mial equation f(x) = O (f not constant) has at least one solution and at most n numeri-
cally different ones (n the degree of the polynomial).

SOLUTIONS TO PROBLEM SET 4.7, page 238

2. If yy, is a solution of (1), so is z,, because (1) is lincar and homogencous; here,
A = Ay, the eigenvalue corresponding 1o y,,,. Also, multiplying (2) with y = y,, by
¢, we see that z,, also satisfies the boundary conditions. This proves the assertion,

4 A=mmlP n=12"--+; y(x) = sin(nmx/L)
6. A=n*n=0,1,2--; yx) = 1, y,(x) = cos nx, sinnx (n = 1)
8. A=rn=1,2,--+; y(0) = e *sinnx

10. " + Ay =0, Y0 =0, y(m=0
12. The k,, are obtained as intersections of z = tank and z = —k; see the figure.
ky = 2.029, k; = 4.913, approximately.

o

Section 4.7. Problem 12
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M. a=-mb=mec=mk=0
16. TEAM PROJECT. (a) We integrate over x from —1 to 1, hence over f defined by
x = cos 6 from to 0, Using (1 — x*)~ Y2 dx = —d6, we thus obtain

1
I cos (m arc cos x) cos (n arc cos x)(1 — x> 2 dx
-1

- l w
= f cos mé cos n6dé = EI (cos (m + n)@ + cos (m — n)@) dé,
0 0

which is zero for integer m # n.
(b) Following the hint, we calculate [ e™*x*L,, dx = 0 for k < n:

= 1.1 e.d® k™ a1
- — 7y~ - e— -1 n,—
Le X*L,(x) dx = n!J;x"—("x e *) dx n!J;xk dx""(x e ) dx
kK 2 drk
= o in.e S f e ] Y e - -
em et B S g

SECTION 4.8. Orthogonal Eigenfunction Expansions, page 240

Purpose. To show how families (sequences) of orthogonal functions, as they arise in
eigenvalue problems and elsewhere, are used in series for representing other functions,
and to show how orthogonality becomes crucial in simplifying the determination of the
coefficients of such a series by integration.

Main Content, Important Concepts

Standard notation (¥, ¥»)

Orthogonal expansion (3), eigenfunction expansion
Fourier constants (4)

Fourier series (5), Euler formulas (6)

Short Courses. Omit this section.

Comment on Flexibility on Fourier Series

Since Sec. 4.8, with the definition of orthogonality taken from Sec. 4.7 and Examples 2
and 3 omitted, is independent of other sections in this chapter, it could also be used after
Chap. 10 on Fourier series. We did not put it there for reasons of time and because Chap.
10 is intimately related to the main applications of Fourier series (to partial differential
equations) in Chap. 11.

Comment on Notation

(¥ ¥) 18 nOt a must, but has become standard; perhaps if it is written out a few times,
it will stop irritating poorer students.

SOLUTIONS TO PROBLEM SET 4.8, page 246

2. By (7), where f(x) is the given polynomial, or by undetermined coefficients, starting

from
f(x) = agPy + a1Py(x) + agPy(x) + azP3(x)
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and equating coefficients of like powers on both sides, we get
f(x) = —4Py + 2P, — 4P, + 8P,.
=%P0+§P2’ x3=gpl+§P31 x4=épo+qu+%}’4
6. € = ag + ayPy(x) + asPy(x) + « - -, where, by (7), and by (11’) in Sec. 4.3,
1
= — x = g7 =
G = f_le dx = sinh 1 = 1.1752

1

3 3
@ =~f 1xe‘dx= 5 &= De*| =3¢ = 1.1036

-1

a3=—f (3x—1)e=dx--—[(3x2 l)e" —6fxedx]

N

L)
= ¥ [Z(e — e - 6(x - 1)e*

= 5sinh 1 — 15¢1 = 0.3578, etc.

Answer:
et = 111752”0 + 1.1036P1 + 0-3578’,2 + 0.0705P3 +

8. From (7) we obtain
f@x) = 0.5Py — 0.9375P, + 0.5273P, + 0. 1333P3 — 0.4910Pg +

10. TEAM PROJECT. (b) A Maclaurin series f(f) = 2 a,t™ has the coefficients
a, = f™(0)/n!. We thus obtain n=0

f(n)(o) ﬂ (et~ !’/2) = %2 :;:_: (e-(:-:)’m) i
t=0 tul

If we set x — t = z, this becomes '

f(n)(o) a3 x’IZ( H" F (e—z‘IZ) = (=1)* e*12 % (e-z#/z) = He,(x).

© Gy =2 an(t" = 3, Hel(x)t™n! = 1G = >, He,_,()1™(n — 1), etc.

(d) We write e~*72 = y, y™ = d"v/dx™, etc., and use (21). By integrations by parts,
forn > m,

| vHenHe,dx = (-1 [ Hev™ dx = (—1y- | Hepo-v x
= (—l)”'lmf Hep " Vdx = -
= (= 1) f Heqv™ ™ dx = 0,

(e) nHe, = nxHe,_, — nHe,, _, from (22) with n — 1 instead of n. In this equauon,
the first term on the right equals xHe,, by (21). The last term equals —Hey,, as
follows by differentiation of (21).
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We write y = Ew, where E = ¢ Then
y' = 3xEw + Ew'
y' = 3Ew + Ix%Ew + xEw' + Ev'.
Substitute this into the differential equation (23) and divide by E to get the re-

sult. The point is that the new equation does not contain a first derivative; hence
our transformation is precisely that for eliminating the first derivative from (23).

SOLUTIONS TO CHAPTER 4 REVIEW, page 247

16. (x — 2)* (x = 2)~® This is an Buler—Cauchy equation with independent variable
t=x—2.

18. &=, xe™*"

20. x2cos (x?), x 2sin (x?)

22. ¢*, e*Inx

24. x,xlnx + x*

26. \/Nm V2rcosnx,n=1,2,: - -

28. T}_-z— %x, %(31:2 - 1), %‘(51‘3 - 3x)

30. A=n%y, =sinmx,n=1,2,:-

32. A = a,; = the nth positive zero of /y(x),n = 1,2, - -, y, = J(a@p1X)

34. 3Py + §Ps + §Ps, APo + 3Po + HPy + 37Ps

36. —16P; (x)

38. AJ(2x) + BY (2x)

40. Alyu(x) + BJ_y4(x)
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CHAPTER 5 Laplace Transforms

Major Changes

The first shifting theorem has been moved ahead to Sec. 5.1, where it fits much better
and helps to simplify the presentation. Further streamlining has been achieved by placing
the unit step function and Dirac’s delta in the same section (Sec. 5.3). The impractical
theoretical formulas for the Laplace transforms of partial fractions have been replaced by
a more practical approach in terms of key examples related to differential equations
(Sec. 5.6). The application of the Laplace transform to systems of differential equations
is discussed in the new Sec. 5.7.

SECTION 5.1. Laplace Transform. Inverse Transform. Linearity.
Shifting, page 251

Purpose. To explain the basic concepts, to present a short list of basic transforms, and to
show how these are derived from the definition.

Main Content, Important Concepts
Transform, inverse, linearity
First shifting theorem
Table 5.1
Existence and its practical significance

Comment on Table 5.1 -

After working for a while in this chapter, the student should be able to memorize these
transforms. Further transforms in Sec. 5.9 arc derived as we go along, many of them from
Table 5.1. 5

SOLUTIONS TO PROBLEM SET 5.1, page 257

2. als + bls® + 2ls®
4. cos® wt = } + 4 cos 20f; transform 1/2s + s/(25% + 80?)
6. e’ cosh 3t = 2(¢** + £72%); transform

1 1 N 1 o os=1
2\s—4 s+2)] @ _2-3
8. sin 2¢ cos 21 = 2 sin 4¢; transform 2/(s® + 16)

k
10. = (e7* — e™9)

| -2
12‘( ze‘)
5
l1—¢™* 1
2 T

14.

§ se

b b
16. —l — )=
as 5

87
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18. 5 cosh 5¢
20. cosh 2t — 2 sinh 2¢
22, 3% + 4t + Ae®
24. & + 72 — 26
26. t* + &>
252 . s
=1 2+1 3 52— 1
st a
1 s+ 1
s+1  2+2+2
2 2 1
s—-12 T (s= 172 T
2‘8€St
2¢' sinh 2t = &% — ™t
4e~"2 gin 3t
42. Let f = $7YF), g = $7YG). Since the transform is linear, we obtain
aF + bG = aX(f) + b<(g) = Laf + bg).
Now apply £~ on both sides to get the desired result,
L-YaF + bG) = L7 L(af + bg) = af + bg = aL~YF) + bLYG).
Note that we have proved much more than just the claim, namely, the theorem: If a
linear transformation has an inverse, the inverse is linear.
44. We first use the definition (1). Then we set ¢t = v, so that

v dv sU s
t=—, = — -st=——=—{—]) v
c c c c

. Answer: cost + cosh t

32.

S

S& 8

Thus,

| @«
——

L(f(ct) = j; et di = L e~ tiowgy L % F(c

c

The application is straightforward, with ¢ = w.

SECTION 5.2. Transforms of Derivatives and Integrals. Differential
Equations, page 258

Purpose. To get a first impression of how the Laplace transform solves ordinary differ-
ential equations and initial value problems, the task for which it is designed.

Main Content, Important Concepts
(1) L(f") = s2(f) — £(0)
Extension of (1) to higher derivatives [(2)—(4)]
Solution of a differential equation, subsidiary equation
Transfer function
Transform of the integral of a function
Shifted data problems
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| Comment on Differential Equations

The last of the three steps of solution is the hardest, but we shall derive many general
properties of the Laplace transform (collected in Sec. 5.8) that will help, along with for-
mulas in Table 5.1 and those in Sec. 5.9, so that we can proceed to equations for which
the present method is superior to the classical one.

SOLUTIONS TO PROBLEM SET 5.2, page 264

2.y =13 -3 4. y =3¢t + 5%
6. y=3cost+ (4 + r)sint 8 y=-25+ 052
10. PROJECT. (b) Theorems 1 and 2 are more important because they are crucial in

solving differential equations, whereas Theorem 3 serves as a tool for obtaining new
transforms.

(¢) In the integration by parts shown in the proof of Theorem 1 we now have to in-
tegrate from 0 to a and then from a to o, thus obtaining f(a — 0)e™* from the
upper limit of integration of the first integral and — f(a + 0)e™* from the lower
limit of integration of the second integral.

(d) For the given function, f(2 + 0) — f(2 — 0) = —1, f(0) = 0, so that (1*) and
L(f) = (1 — e~%)/s give

E(f) = (1 — e™* ~ se™2)/s2,
12, PROJECT. We derive (a). We have f(0) = 0 and

£ (&) = cos wt — wt sin o, ) =1
() = —2wsin wt — 2f().
By (2),
w
S2 + wz

2" = =20 - &*L(f) = 2L(f) - 1.

Collecting &(f)-terms, we obtain
LN + o?) = s;

207 52— @?

+1= .
+ w? : 52 + w®

Division by s* + »? on both sides gives (a).
In (b) on the right we get from (a)

s2 - &?

- !
2+ o »* + @®)?

Z(sin ot — wt cos wt) =

Taking the common denominator and simplifying the numerator,
o(s* + @*) - o(s® - o?) = 26°
gives (b).
(c) is shown in Example 4.
(d) is derived the same way as (b), with + instead of —, so that the numerator is
o(s® + %) + w(s? ~ o) = 2ws?,
which gives (d).
(e) is similar to (a). We have f(0) = 0 and obtain
f'(t) = cosh at + at sinh at, flo)y=1
() = 2asinh at + a().
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By (2) we obtain %

L") = =3 + @) = L) — 1.
Hence
2 24 .2
2(f)(s* — a®) = szzj 2zt l=s2—az'

a S —a

Division by s*> — a® gives (e).

" (f) follows similarly. We have f(0) = 0 and, furthermore,
f'(t) = sinh at + at cosh at, ffO =0
£"(t) = 2acoshat + a*f()

L("0) = 2a—— — + a*2(f) = L)

52 -
L(f)(s* - a?) = .
(f) " — a%) o
Division by s* — a? gives formula (f).
4. ¥ —2%—-1 16. cost + 31> — 1
18. 2 -t —2¢" 20. sin 7t + 7% — mt

SECTION 5.3. Unit Step Function. Second Shifting Theorem. Dirac’s Delta
Function, page 265
Purpose

1. Tointroduce the unit step function u(f — @), which together with Dirac’s delta greatly
increases the usefulness of the Laplace transform.

2. To find the transform of
0 (<a), ft—a) ¢>a)

if that of f(?) is known (“t-shifting ). (“s-shifting” was considered in Sec. 5.1.)
3. To model short impulses by Dirac’s delta 8(t — a).
Main Content, Important Concepts
Unit step function (1), its transform (4)
Second shifting theorem (Theorem 1)
Dirac’s delta, its transform (8)

Comment on the Unit Step Function
Problem Set 5.3 shows that u(z — a) is the basic function for representing discontinuous
functions.

SOLUTIONS TO PROBLEM SET 5.3, page 273
2. The representation needed for applying the second shifting theorem is
tu(t — 1) = (= Du@ — 1) + u(t — 1)
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and gives the transform

4. 2¢7%s®
6. e 2u(t — 3) = e 2P~z — 3). Answer: e **~Si(s + 2)
8. 20 —u— 1) =12=[¢—1?+20— 1)+ 1u@ - 1).
Answer: 2578 — e 252 + 252 + 571
10 = e —u=2)]=1—e""— (1 — e D=2yt — 2).

1 1 1 3
Answer:?———e“"" (—— : )

s s+1
12. The given function is

[u(® — 27) — u(t — 4m)] sint = w(t — 2w)sin (t — 2m7) — u(t — 47) sin (t — 47),

so that we get the answer

(e—%s o

2+ ).

14. du(t — 2) — 8u(t — 5)

16. 572 has the inverse 1%/2, hence (s — 1)™® has the inverse ¢"t%/2 (first shifting), and
e 2%/(s — 1) has the inverse 3e*~?(t — 3)%u(t — 3) (second shifting).

18. 52 + 25 + 2 = (s + 1) + 1. Hence the reciprocal of this has the inverse ¢* sin 1,
and the second shifting theorem gives the answer e~ ~2" (sin t)u(t — 2%).

20. y = 3e%(cos 3t + sin 31)

22. In terms of unit step functions the function on the right is

rr) = 4¢[1 — u(@ — 1)) + 8Bu(r — 1) = 4¢ = [4(t = 1) — 4]u(t — 1).

Answer:
_{4e"—e‘2‘+2r—3 if 0<t<1
Y=l —se)et + G2 — 1)e2t + 4 if £> 1.
24. r(r) = 4e'[1 — u(t — 2)] = 4e* — 4e%“ 2 u(r — 2). Hence
4 2, ~25
$2¥ — s+ 2 — S(s¥ — 1) + 6Y = 5. ol
s—1 so==1
Take —s + 7 to the right, divide by 52 — 55 + 6 = (s — 2)}(s — 3) to get
s—1 4 4e%e2*

e o . .
G=2—3) (@E—-IDs—2)s—3) (s—1)s—2)s—3)
The sum of the first two terms on the right has the partial fraction expansion

2 1 2 ; u
+ - ,  hence the inverse  2e® + 2t — 2¢%%;
s—1 §—2 -5—3

this is the solution if 0 << ¢ < 2. For ¢t = 2 the solution equals the solution just given
plus the inverse of

B de®e?* cmeeanf o B o W . BN
(s-l)(s—2)(s—3)_ee s=1 s—2 s-3/'

this inverse is

eZ[—Ze"" + 4o20-2 _ Ze?'“‘z’]u(t -2).
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The sum of this and the previous solution is
(1 + 4672 + (=2 — 27 9™,

this is the solution if 1 > 2,

26. y = 2cosdt + u(t — m)sind(t — m)
=2cos4rif 0 <t < and 2cos 4t + sindtift > 7
28. y=3e Hsint (0<t<1),y=e?[3sint+ e2sin(t— )] (¢ > 1)
30. (s +2(s+ )Y =e"5s+ e 25 + 1. Use
1 1/6 1/2 1/3

G+ +3) s s+2 s+3°

Answer:
y=e®—-e3 jfo<t<],
y= e—zt — e—3t & % — %e—z(t-l) + ie—s(t-l)
=31+ -3 - (1 -4e¥e™ ifl<t<2,
y = é + (l e ieZ)e—Zf — (1 2K éea)e—at + e-—z(t—m = e—s(f—Z)
=3+ -2 +e*)e™? — (1 -3 + %) ifr>2
32. (—Lcost+ Rsint + e ®*Ly/(L2% + R%)if 0 < t < 2m,
Le™R9L (1 — 2™RLY/(J2 . R?) if t > 2
34. v = 1 — ult — a). Subsidiary equation:

sl + lis = 1/s — e~ ™s.

Answer:
. {sint if 0<t<a
‘ —_—
sint — sin(r — a) if t>a.
36. 1=100(e* — e /(s +0.1), i=0 ifr<]1,
i=100e”%1¢D jf] <r<1.01,
i= loo[e—o.l(t—l) - e-—o.m-l.on] = —0.1106e=%1t ift > 1.01
38.i=0 ifr<3, i=5— 501D = 5(1 = 1.3499¢°%'%) ift >3

40. CAS PROJECT. Students should become aware of the fact that careful observation
of plots may lead to discoveries or to more information about conjectures that they
may want to prove or disprove. The curves branch from the solution of the homoge-
neous equation at the instant at which the impulse is applied, which by choosing, say,
a=1,23, .-+, gives an interesting joint plot.

SECTION 5.4. Differentiation and Integration of Transforms, page 275

Purpose. To show that, roughly, diffcrentiation and integration of transforms (not of func-
tions, as before!) corresponds to multiplication and division, respectively, of functions by
t, with application to the derivation of further transforms and to the solution of Laguerre’s
differential equation.

Comment on Application to Variable-Coefficient Equations

This possibility is rather limited; our Example 4 is perhaps the best elementary example
of practical interest.

Very Short Courses. This section and the two subsequent sections can be omitted.
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SOLUTIONS TO PROBLEM SET 5.4, page 278

s o

£-16) (- 160
4_( s+ 1 )'=_s3+2s+2—(s+1)(2s+2)_ 52 + 25
TN+ D241 (s® + 25 + 2 (s + 25 + 2)%
6i( 2 )_i( —4s )_—4(s3+4)2+l652(.92+4)
T dst\(s® + 4) ds \ (s*> + 4)* (s + 4)*
_12s* - 16
2+ P

dz( 5 ) d =+ o® 25— 60’

"dP\2 + 2] ds (2 + P (4 PP
10 2 )'—— L  4¢ sinh 3t
\Fog) = T g Amwer: sl

12. By (6),

r o IS VO

L P+ 65+ 102 S+6s+10 ~\z)°

The inverse transform of the integral is e~*¢ sin 1. Answer:

—3t
- 1

st+ta s+b

so that (1) gives the answer

te”“"sint.

has the inverse transform e~ %* — ¢~ %",

14. (In(s+a) —In(s + b)) =

16. We have

¢
s T .
arccot—=f,_‘2 5 ds.
™ s §°+

The inverse transform of the integrand is sin 7r¢. From (6) we thus obtain the answer

t~ 1 sin 1.
18. nll(s — a)"™*
20. CAS PROJECT. Students should become aware of the fact that usually there are
various possibilities for calculations, and they should not rush into numerical work
before making a careful selection of formulas,

(b) The formula follows by the usual rule of differentiating a product » times. Some
of the polynomials are
lp=1-2t+ 12
Is=1—73t+ 5> - 33
L=1—4t+33— 3+ &t
Is=1—5t+ 52 = 8 + Zr* - 2515

I
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SECTION 5.5. Convolution. Integral Equations, page 279

Purpose. To find the inverse A(r) of a product H(s) = F(s)G(s) of transforms whose in-
verses are known.

Main Content, Important Concepts

Convolution f * g, its properties

Convolution theorem

Application to differential and integral equations
Comment on Occurrence

In a differential equation, the transform R(s) of the right side r(z) is known from Step 1.
By solving the subsidiary equation algebraically for ¥(s) the transform R(s) gets multi-
plied by the reciprocal of the factor of ¥(s) on the left (the transfer function Q(s); see Sec.
5.2). This calls for the convolution theorem, unless one sees some other way or shortent

Very Short Courses. This section can be omitted.

SOLUTIONS TO PROBLEM SET 5.5, page 283

coswr |[* 1 — cosawrt
o @

4. This is similar to Example 1. We obtain

1
2. l*sinw:=jsinmd1'= —
0 w

t l t
I cos w7t cos (Wt — wr)dr = — j [cos wt + cos Qur — wt)] dw
0 27

1 1
= —t¢cos wt + — sin wl.

1
= e B
5 [t Cos wt 5 2w

sin @t — sin (—wt)
2w

t t eat bt

6. e w &Pt = fe‘“e"“"” dr = ¢® f O Gy = —
0 ) a—b

— €

1
=30-1Pifr>1

t
1

t 1
1
Y | e = - 2 RNy oyl
8. J; ¢ — Diutr = 1)dr fl ¢ = Ddr= =<~ 1)
and 0ifr < 1.

t
10. 6+ e~ — [ Ge—dr = —2¢=* + 2
0

t t
12. % % o8t = faafea(t-r)d,r - eatfdf - teat
o 0

14. cos wr * cos wt. Proceed as in Prob. 4. Answer:

1
—1 cos Wt + — sin wt
2 2w

¢ t
1
16. u(t — a) * e** = fez“")d*r = e”fe"”d'r - -2-(62“"” — 1) ift> aand
a a

0ift<a
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t t
18. e—St % g2t = f e-31e2(t—r) dr = ezef e 8 dr
0 0
e 1
=={(1 - =5ty . 2t __ -3t
i e - Catl

- 20. Subsidiary equation s®Y + ¥ = 572, ¥ = 1/(s® + s%), solution y = ¢ — sin ¢
22. The subsidiary equation is
P+ +2Y =1+ (1 — e %)s.

From this,
s+1—¢"%
s(s2+3s+2) "

Answer!
e %(l - e—2t) + é(ze——(t—l) s e-?(t-—l) o l)u(t s 1)

24. We use the notation of the text,
g=e—e* LY + a)y0) + y'(0)]Q} = —4e® + Se*.

Then
reqg= 2% — 4¢* + 2¢ if 0<t<2
y = =23 + &% + 2¢ if 0<1<2
reg= 2(1 - e e + 4(e7? - 1)e* if t>2
y=—2+ 2N + (1 +4e72)e*  if 1> 2.

26. We use the notation of the text,
g=e "t —e 2 rxg=4et—e P+ -3 if 0<t<l.

For t > 1 we have
1 t
rxg= f 7q(t — 1) dt + f8q(t — 7)dr
0 1
A= [4e“ -1+ ez)e-z:] + [4 — Re—¢-D 4 4e"3“'”]
= (4 —~ 8e)e™* + (3e% - 1)e™* + 4.

28. Y =25"% — 4572, Y = U(s* + 4),y = sin2t

30. Y =2/(s®+ 4) + 2¥/(s® + 4), ¥ = 2/(s® + 2),y = V2sin V2t

R.Y=1U+D+Y(s2+1),Y=1/s%y=¢

34, TEAM PROJECT. (a) Settingt — 7= p, wehave 7=t — p, dv = —dp, and p
runs from ¢ to 0; thus

¢ 0
frg= fo f(ng(t = Ndr = J: g(p)f(t — p)(—dp)

t
= [ 4G - prdp =g .
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(b) Interchanging the order of integration and noting that we integrate over the shaded
triangle in the figure we obtain

(f*g)*u:v*(f:g)

t t—p
= fv(p)f f(r)g@t — p — n)drdp
0 0

t t—r
= ff(’r)f gt = 7 — p(p)dpdr
0 o

=f(g*v).

0

0 t P
Section 5.5, Team Project 34(b)

(c) This is a simple consequence of the additivity of the integral.
d) Z@B*f) = LBZL(f) = 1-L(f) = L(f), since L{6(¢)} = 1 by (8), Sec. 5.3.

k
(e) Lett >k Then (fr. * f)(1) = fo-llzf(t — 7)dr = f(t — 1) for some 7 between

0 and k. Now let k — 0. Then 7 — 0 and f, (1 — 7) — 8(t), so that the formula
follows.

() s%Y = sy(0) — ¥'(0) + w?Y = L(r) has the solution

1 s
Y= —(—“’—) L)+ 3O0) 55 +

w\s* + o®

YO e
@ 52 + wz

elc.

SECTION 5.6. Partial Fractions. Differential Equations, page 284

Purpose. This section is mainly for reference. Partial fractions are discussed systemati-
cally In terms of examples, along with their inverse transtorms.

Very Short Courses. Omit this section.

SOLUTIONS TO PROBLEM SET 5.6, page 289

2. 1% + sint 4. (1 - pet 6. e'(cost + tsing) 8. te' — 4%
14. The subsidiary equation is

p

sY + w02Y=KW.

Its solution is
Kp
(5% + we?)(s* + p?)

Y(s) = ((1)02 # pz).
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16.

Since w,® # p? by assumption, s? + w,? is the product of two unrepeated complex
factors, and so is 5% + p®. Accordingly, the partial fraction representation is
Kp As+B  Ms+N

Y(s) = = .
( ) (sz a4 woz)(sz 2 pz) 52 + woz sz ¥ p2

Multiplication by the common denominator gives
Kp= (& + p*)(As + B) + (s> + wo®)(Ms + N).

Equating the coefficients of each power of s on both sides gives the four equations
@ [s*: 0=A+M thusM=-A
® [’ 0=B+N, thusN=—-B
© [sl:  0=p%4 + w®™ = (p? ~ w,2)A by (a); hence A = M = 0
@ [s°: Kp = p?B + wo®N = (p® — w,?)B by (b); hence B = Kpl(p? - wg?).
From this, with N = —B, we have
o Kp 1 1

= e (sz + ot s+ pz) '

The inverse is (see Table 5.1 in Sec. 5.1)

® Kp (I.’l.l)
= —5——— | —sin wgt — —sin .
AR T | P

This is a superposition of two harmonic oscillations, as expected.

TEAM PROJECT. (a) If f(z) is piecewise continuous on an interval of length p,
then its Laplace transform exists, and we can write the integral from zero to infinity
as the series of integrals over successive periods:

0 P 2p 3p
2f) = | efydi= [ e=fa st StEd g
f) J;e £(0) foe fr+fpe fdt-i-fzpe £ dt +

If we substitute ¢t = 7 + p in the second integral, t = 7 + 2p in the third integral,
*t*s =7+ (n = 1)p in the nth integral, - - -, then the new limits in every integral
are 0 and p. Since
fr+p)=f@),  f(r+2p) = f(n)
etc., we thus obtain
P P

P
L(f) = f e~*7f(7) dr + f =S rDIg(ry dr | f Ll ( () 1 /10 RIS
0 0 0

The factors that do not depend on 7 can be taken out from under the integral signs;
this gives

P
L) =L+ e+ et ] [ eorfiryar,
0

The series in brackets [- - -] is a geometric series whose sum is 1/(1 — e P%), The
theorem now follows.
(b) From (10) we obtain

1

wlw
e —88 a2
2(f) = T e_z,,,,,,J; e~ sin wt dr.
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Using 1 — ™2™/ = (1 + ¢~"™/*)(1 — ¢~"*/*) and integrating by parts or not-
ing that the integral is the imaginary part of the integral

wiw oy e e :
PR SN SR SR e . O '
¢ dt = — ¢ = — (—e 1) 1
0 —s tiw o s*+a° i

we obtain the result.

(c¢) From (10) we obtain the following equation by using sin wt from 0 to 7/w and
—sin wt from 7/ to 27/w:

® 1+ eﬂl«n @ e—wll&n + e‘lrslzu

sz + mz eirs/w -1 sz + wz eﬂtlZm = e-«:/zm

w  cosh(ws/2w)
5% 4+ ©® sinh (7s/2w) '

This gives the result.
(d) The saw-tooth wave has the representation

f() = fr if0<rt<p, ft+ p) = f(.

Integration by parts gives

P t
I e tdt = ~—e™*
0 Ry

P 1
+—fe"“dl
0 § Y

1
w ke gesig ey

and thus from (10) we obtain the result

k ke™ P8
= —-—1—— =3 .
g(f) psz s(l =X e—ps) (S 0)
(e) Since kt/p has the transform k/ps?, from (d) we have the result
ke™ P
m (s = 0).

SECTION 5.7. Systems of Differential Equations, page 291

Purpose. This new section explains the application of the l.aplace transform to systems
of differential equations in terms of three typical examples: a mixing problem, an elec- |
trical network, and a system of masses on elastic springs. i

SOLUTIONS TO PROBLEM SET 5.7, page 294
2. The subsidiary equations
SY1+3=6Y1+9Y2, SY2+3=Y1+6Y2

give
35+ 9 6 3
= - — R % | ] 3t
= =0 —03) 7=9 T g3 Jm—6ett3e
3s—15 2 1

= e EX e - = _n,9% _ 3t
ty (s — 9)s — 3) s—9 s—3° *2 o
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4.5Y, +3=5Y,+ Yy, s¥o— 7=V, +5Y,. Answer:
y; = 2¢5t ~ Sett, ya = 268t + 5ett,
6. y; =sinr + cos2¢, y, = sint — cos 2t
8. The subsidiary equations are
21— 3= =5Y; +2Yy, $%Vy— s =2V, ~ 2,

They have the solutions
2 3s* + 8s __5 . 25
PO+ 12 +6) £ +1 0 5246
s+ 1ls 2s s

TN re P+l 2rs
Answer:
y1 = cost + 2cos V61, ¥2 = 2cost — cos V61

10, yy =12,y =12 + 2,y = 12 — 2t
12, The subsidiary equations are

sYy + Y, S (1 = e~2m), Y, + s¥, = 1.
Solving algebraically gives
1 T e
Yy == R
s+ 1 s 1
v = s " 2se~27*
T See1 0 B -1

Answer:
yp=sint if0=1=2mnm y1 = —=sinh(t — 2m) ift> 27
Yz =cost if0=t=2m, ya = cosh(t—2#) ift> 2w

14. The subsidiary equations are

-8 -8
sY,+4=64(‘$2 +‘"—s-) + 2¥, + 4%, Yo+ 4 =Y, + 2¥,.
Solving algebraically gives
—45—8 642 + 5 — s2)e*
h=%%—a"" 2c-9
—4s+4  64(1 + 5)e”*
L= =8 " Sg-a

Taking the inverse Laplace transform gives the answer
i = —6e* + 2 + u(r - 1)[-18 + 10e** % — 81 + 1612]
y2 = =3e% = 1 + u(t — D[7 + 5e*** - 4r — 82),
16. y; = 100 — 62.5¢~024¢ — 37 5008t

Y2 = 100 + 125¢~024¢ — 75,—0.08¢
Setting 2t = 7 gives the old solution, except for notation.
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18. y; = cos V37 + 2sin 3r + sint
yo = cos V3t — 2sin 3t — sint
20. For 0 = ¢ = 27 the solution is as in Prob. 19,
iy =2e"% 4+ 13672 — |5cost + 42sint.

For t > 27 one has to add to this further terms whose form is determined by this
solution and the second shifting theorem,

u(t — 2m[—2e~8¢=2" — 13,~2¢=29 4 15c0st — 42 sin1].
The cosine and sine terms cancel, so that
iy =2(1 — e®)e™8 + 13(1 — e*M)e™2* if 1> 2m
Similarly, for i, we obtain
) —e78 4 13272 — 12¢cost + I1Rsiny  if 0St= 27
2= { 1= &%) 4130 = H)e”® e t>2m.

SOLUTIONS TO CHAPTER 5 REVIEW, page 299

™ 27® i 8432
16. —_(s P 18. P By 20. ¢ T
s 252 1
|, — 26. — at _ —2t

2 T 16) nErp i )
28, 3t% + 18 30. % + cos 2t 32. sin (wt + )

[2.5cosr if 0<t<?2
M.y= .

2.5cost + sin(t — 2) if t>2

36. e *(cost — sint) + e*(15cost — 29 sin t)
38. 0if0=¢r=2and1 —~ 272 4 ¢72¢~2jf s> 2
40, y, = —6e¥ +2, y,= -3¢t -1
42, y, = 3e? + 75, y, = 4% — ¢~
4. y, = (1/V10)sin V10¢, yp = —(1/V10) sin V10 ¢
1—2( "+ cost+sinp) if 0<t<m
46. 9= {%[(e"’ —3)cost— (e”" + I)sint]  if t>
i) =4'®
48. iy =2l —e*), ip=2e"
50. 5ij + 20(i; — iz) = 60, 30iy + 20(iy — i1) + 20iy = 0. Answer:
i = =8 + 5¢79% + 3, iy = —4e™% + 4¢708¢
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PART B. LINEAR ALGEBRA,
VECTOR CALCULUS

Major Change

Part B consists of

Chap. 6 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems of Equations
Chap. 7 Linear Algebra: Matrix Eigenvalue Problems

Chap. 8 Vector Differential Calculus, Grad, Div, Curl

Chap. 9 Vector Integral Calculus. Integral Theorems

Following several requests, we now present cigeuvalue problems in a separate chapter.
However, this does not change the flow of the material in Part B as a whole.

Chapter 8 is self-contained and completely independent of Chaps. 6 and 7. Thus, Part
B consists of two large independent units, namely Linear Algebra (Chaps. 6, 7) and Vec-
tor Calculus (Chaps. 8, 9). Chapter 9 depends on Chap. 8, mainly because of the occur-
rence of div and curl (defined in Chap. 8) in the Gauss and Stokes theorems in Chap. 9.

CHAPTER 6 Linear Algebra: Matrices, Vectors,
Determinants. Linear Systems of Equations

Major Changes

Various local changes have been made in order to increase the usefulness of this chapter
for applications. By cutting out some passages that were somewhat sluggish and less im-
portant in practice, the total amount of material has been reduced slightly, resulting in a
smoother and better motivated flow of ideas and methods and a corresponding valuable
gain in teaching time. More specifically, there are essentially three major changes, as fol-
lows.

1. The heginning, which had been somewhat slow by modcrn standards, has been
streamlined, so that the student will see applications to linear systems of cquations
much earlier.

2. The reference section on second-order and third-order determinants, which had be-
come somewhat dated, has been omitted and replaced by a shorter portion on that
material at the beginning of the section on determinants (Sec. 6.6), from which the
essential information on those lower order determinants can now be obtained more
casily and quickly.

3. The two sections on determinants and Cramer’s rule have been combined into a sin-
gle section (Sec. 6.6), which precedes the discussion of the inverse in Sec. 6.7—
thus making this portion of the chapter more compact.

101
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SECTION 6.1. Basic Concepts. Matrix Addition, Scalar Multiplication,
page 305

Purpose. Explanation of the basic concepts and the two basic matrix operations.
Main Content, Important Concepts

Matrix, square matrix, main diagonal

Double subscript notation

Row vector, column vector, transposition :

Equality of matrices

Matrix addition

Scalar multiplication (multiplication of a matrix by a scalar)

Comment on Notation

For transposition, T seems preferable over a prime, which is often used in the literature,
but will be needed to indicate differentiation in Chap. 8.

Comments on Important Facts {

One should emphasize that vectors are always included as special cases of matrices and
that those two operations have properties [formulas (4), (5)] similar to those of operations
for numbers, which is a great practical advantage.

Comment on Vector Spaces

Since vector spaces are defined in terms of matrix addition and scalar multiplication, they
could be mentioned here. We discuss them later, in Sec. 6.4, when the student will be
more familiar with the matrix concept. '

SOLUTIONS TO PROBLEM SET 6.1, page 309

£ [24 —36] [—24 36] [-24 36]
4 -36]'L -4 36]'L -4 36 =
% -3
4. C,| 0 8| ,undefined (not of the same size) ;
103 i

6. Undefined, undefined, the 2 X 2 zero matrix 0
108 0 -54
’ [—48 72 132
10. [-6 =5 =3),[6 5 3]", undefined
12, (11 =1 3], [—36 120 -—48]
14. Undefined, [6 5 3]", undefined (not of the same size)
16. 0 by (7), undefined, [7 0 26]
20. TEAM PROJECT. (b) The nodal incidence matrices are

] , the same matrix because of (5), (6), and (AT)" = A.
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SECTION 6.2. Matrix Multiplication, page 311

Purpose. Matrix multiplication, the third and last algebraic operation, is defined and dis-
cussed, with emphasis on its “unusual” properties; this also includes its representation by
inner products of row and column vectors. ‘

Main Content, Important Facts

Definition of matrix multiplication (“rows times columns”)

Properties of matrix multiplication

Matrix products in terms of inner products of vectors

Linear transformations motivating the definition of multiplication

AB # BA in general, so the order of factors is important.

AB = 0 does not imply A = 0or B = 0 or BA = 0.

(AB)T = BTAT
Short Courses. Products in terms of row and column vectors and the discussion of lin-
ear transformations could be omitted.

Comments on Content
Most important for the next sections on systems of equations will be the multiplication
of a matrix times a yector,

“Unusual properties” (i.e., having no counterpart in the multiplication of numbers) are
exhibited in Examples 4 and 5, and it may be good to invite the student to invent further
examples. The student should also get used to cases in which products are not defined,
in order to recognize the limitation of the definition.

Formula (5) for the transposition of a product should be memorized.

In motivating matrix multiplication by linear transformations, one may also illustrate
the geometric significance of noncommutativity by combining a rotation with a stretch in
x-direction in both orders and show that a circle transforms into an ellipse with main axes
in the direction of the coordinate axes or rotated, respectively.
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SOLUTIONS TO PROBLEM SET 6.2, page 319

(347 [2487 [2618
2. (15,237, 1794
(11| [102] [1105

4, [34 15 11)7, undefined, [34 24 17)

5 20 15
6. | 20 80 60|, 130,[-6 14]
15 60 45
~ 8 2
8. —32, —32 [as follows from the first result and (5)], | 12 —15 | , and the trans-
pose of it [again hy (5)] 4 =51

10. TEAM PROJECT. (a) bj, is the dot product of the jth row of A and the kth col-
umn of AT, which is the kth row of A because of the transposition. Thus,

bm — %amakm o %akmajm = bkj

To prove the second statement in (a), use (5). If AB = BA, then
(AB)" = (BA)" = ATB" = AB

because A" = A, B" = B, by assumption of symmetry. Conversely, if (AB)" = AB,
then AB = (AB)" = BTAT = BA, so that A and B commute.

— X [1 o] [1 1] N tm[o a] [o 0]
mpoe Lo ot Lo o) CEATEERR Ly Gzl ol

etc., and A% = I is true for

P Y I e 1 I O O

where a, b, and ¢ # 0 are arbitrary.
(c) Triangular are U, + U,, U;U,, hence U, and the corresponding expressions for
L, and L,. U, is lower triangular.
(d) The entry cp; of (AD)T is cji of AB, which is row j of A times column & of B.
On the right, ¢y, is row k of BT, hence column k of B, times column j of A,
hence row j of A.
12. The transition probabilities can be given in a matrix

To N ToT
A [0.8 0.2] From N
0.5 0.5 From T

The first row gives the state after one day if initially there was N, and the second row
if initially there was 7. From this we see that there will be N after 2 days with prob-
ability

08-08+02-05 =074
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because N will remain with P = 0.8 and 7 will return to N with P = 0.5, Similarly
for the other possibilities. We see that this is Just the law of matrix multiplication.
Accordingly, A? gives the probabilities after 2 days and A® after 3 days; here, by cal-
culation,

5 [0.74 0.26] - [0.722 0278]
065 035]° 0695 0305

Answer: 0.26, 0.278.
14. The matrix of the transition probabilities is

e [0.9 0.1 ]
0.002 0998 |

The starting vector is x, = [1200 98800] and gives (rounded)
X; = XoA = [1278  98722)
C Xg = XA =[1347  98653]
X3 = XoA = [1410  98590]

indicating that a substantial increase is likely.

16. We then proceed by time intervals of 10 years.

18. TEAM PROJECT. (b) Use induction on #. True if n = 1. Take the formula in the
problem as the induction hypothesis, multiply by A, and simplify the entries in the
product by the addition formulas for the cosine and sine to get A™*!,

(¢) Those formulas follow directly from the definition of matrix multiplication.

(d) A scalar matrix would correspond to a stretch or contraction by the same factor
in all directions.

(e) Rotations about the x;-, x,-, x53-axes through 6, @, ¥, respectively.

SECTION 6.3. Linear Systems of Equations. Gauss Elimination, page 321

* Purpose. This simple section centers around the Gauss elimination for solving linear sys-
tems of msequations in n unknowns xy, - - * , x,,, its practical use as well as its mathe-
matical justification (leaving the—more demanding—general existence theory to the next
sections).

Main Content, Important Concepts

Nonhomogeneous, homogeneous, coefficient matrix, augmented matrix
Gauss climination in the case of the existence of

L. a unique solution (Examples 2, 4)
Il.  infinitely many solutions (Example 3)
II.  no solutions (Example 5).
Pivoting
Elementary row operations, echelon form

Background Material. All one needs here is the multiplication of a matrix and a vector.
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Comments on Content
The student should become aware of the following facts:

1. Linear systems of equations provide a major application of matrix algebra and jus-
tification of the definitions of its concepts.

2. The Gauss elimination (with pivoting) gives sensible results in each of the Cases
I-IIL

3. This method is a systematic elimination that does not look for unsystematic “short-
cuts” (depending on the size of the numbers involved and still advocated in some older
pre-computer-age books).

Algorithms for programs of Gauss’s and related methods are discussed in Sec. 18.1,
which is independent of the rest of Chap. 18, and can thus be taken up along with the
present section in case of time and interest.

SOLUTIONS TO PROBLEM SET 6.3, page 329

2.x=1y=-2 4. x=2,y=0,z=—4

6. No solution 8. x=2y+1,z=4

10. x=T7y — %2 12. No solution

4 w=x—2y,z=3 16. w=0,x=3z,y=2z+ 1

18. Currents at the lower node:
~h+IL+I3=0
(minus because /; flows out). Voltage in the left circuit:
4 + 121, = 12 + 24
and in the right circuit
121, — 813 = 24
(minus because /5 flows against the arrow of E,). Hence the augmented matrix of the

system is
-1 1 1 0

4 12 0 36
0 12 -8 24
The solution is .
L=%, L=%, Iy = {; ampere.
22. Py=6,P,=10,D, = S; =18, D, = S5 = 26

24. PROJECT. (a) B and C are different. For instance, it makes a difference whether
we first multiply a row and then interchange, and then do these operations in reverse
order.

ay 12 a Gy

B - azy A3z e agy — Say Ggy — Say3
as — Say, agy ~ 5ay3 , Qs Qga
8ay, 8ay, 8a4, 8ay,

(b) Premultiplying A by E makes E operate on rows of A. The assertions then fol-
low almost immediately from the definition of matrix multiplication.
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(c) These matrices, applied in the order E,, E,, E;, are

1 0 o0 1 0 0 1 0
Ey=|-my | 0], E,= 0 1 0], Eg=|0 1 0
0 0 1 —mg 0 1 0 =mg 1
with the multipliers given by
May = 8 , Mgy = 431 : - Q11932 — Q1303 ¢
ayn an 11822 — Q03
The product is
1 0 0
E3EE, = | —my, 1 0
~Mgy —Mgo 1

SECTION 6.4. Rank of a Matrix. Linear Independence. Vector Space,
page 331

Purpose. This section introduces some theory centered around linear independence and
rank, in preparation for the discussion of the existence and uniqueness problem for linear
systems of equations (Sec. 6.5).

Main Content, Important Concepts
Linear independence
Real vector space R", dimension, basis
Rank defined in terms of row vectors
Rank in terms of column vectors
Invariance of rank under elementary row operations

Short Courses. For the further discussion in the next sections, it suffices to define linear
independence and rank.
Comments on Rank and Vector Spaces
Of the three possible equivalent definitions of rank,
(i) By row vectors (our definition),
(ii) By column vectors (our Thooiem 1),
(iii) By submatrices with nonzero determinant (Sec. 6.6),

the first seems to be most practical in our context.

Introducing vector spaces here, rather than in Sec. 6.1, we have the advantage that the
student immediately sees an application (row and column spaces). Vector spaces in full
generality follow in Sec. 6.8.

SOLUTIONS TO PROBLEM SET 6.4, page 336

2. Linearly dependent
4. Linearly dependent (four vectors in R®!)
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6. Linearly dependent (one is the zero vector!)
8. Linearly dependent
10. 2 12. 3 14. 3 16. 3
18. Yes when k = 0, dimension 2, basis [1 0 0],[0 1 —4]. No for any other value
of k
20. No, because of the inequality
22. Yes, dimension 2, basis e, _y, and e, (the last two vectors of the standard basis)
24. Yes, dimension 1, basis [S —4 —23], as follows by first considering the second
equation and then the first
26. TEAM PROJECT. (b) B'A™ = (AB)" and rank is invariant under transposition.
The other two statements follow from the definition of rank and Theorem 1.
Parts (c) and (d) are proved in Ref, [B2] listed in Appendix 1. Equality in (d) oc-
curs for A = B = I, for instance.
28. 2 -1, [4 -1 3]7

SECTION 6.5. Solutions of Linear Systems: Existence, Uniqueness,
General Form, page 338

Parpose. The student should see that the totality of solutions (including the existence and
uniqueness) can be characterized in terms of the ranks of the coefficient matrix and the
augmented matrix.

Main Content, Important Concepts

Augmented mattix
Necessary and sufficient conditions for the existence of solutions

Implications for homogeneous systems
rank A + nullity A = n

Background Material. Rank (Sec. 6.4)

Short Courses. Brief discussion of the first two theorems, illustrated by some simple ex-
amples.

Comments on Content

This section should make the student aware of the great importance of rank. It may be
good to have students memorize the condition

rank A = rank A
for the existence of solutions.
Students familiar with differential equations may be reminded of the analog of Theo-
rem 4 (see Sec. 2.8).

This section may also provide a good opportunity to point to the roles of existence and
uniqueness problems throughout mathematics (and to the distinction between the two).

SECTION 6.6. Determinants. Cramer’s Rule, page 341

Purpose. The first part of this section (on second- and third-order determinants) is mainly
for reference in other chapters. The main body of the section concerns those properties
of nth-order determinants that are needed in practical work, and Cramer’s rule.
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so that we obtain
2+ % + 22 x y z
Ayt ox oy Z
Xyt tnt x oy 23
Pyt xg oy oz
WAyt x oy oz
The sphere through the given points is x* + y* + (z — 1) = 16.
() For a general conic section the equation is
af+bxy+cy2+dx+ey+f'l=0.

e ek e ek
I
o

so that we get
o xy y? X y 1
x® amn »n’ X Y1 !
xg? Xa2Ya y2© X2 Y2 1 i)
x5 xzys  ygl ¥3  ys 1 ‘
xg X4¥a 4 g Ya 1
x5 *5)s Ys® Xs s 1

SECTION 6.7. Inverse of a Matrix. Gauss—Jordan Elimination, page 350

Purpose. To familiarize the student with the concept of the inverse A™! of a square ma-
trix A, its conditions for existence, and its computation.

Main Content, Important Concepts
AATT=ATTA =1
Nonsingular and singular matrices
Existence of A" and rank
Gauss-Jordan elimination
(AC)™1 = C-1A?
Cancellation law
det (AB) = det (BA) = det A'det B
Short Courses. Theorem 1 without proof, Gauss-Jordan elimination, formulas (4*%)
and (7). ‘
Comments on Content

Although in this chapter we are not concerned with operations count (Chap. 18), it would
make no sense to first blindfold the student by using Gauss~Jordan for solving Ax = b
and then later in numerical analysis correct the false impression by explaining why Gauss

-elimination is better because back substitution needs fewer operations than the diagonal-

ization of a triangular matrix. Thus Gauss-Jordan should be applied only when A™! is
needed.

The “unusuval” properties of matrix multiplication, briefly mentioned in Sec. 6.2 can
now be explored systematically by the use of rank and inverse.

Formula (4*) is worth memorizing.
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Main Content, Important Concepts

Second- and third-order determinants

nth-order determinants

General ﬁmperties of determinants

Rank in terms of determinants (Theorem 3)

Cramer’s rule for solving linear systems by determinants (Theorem 4)

General Comments on Determinants
Our definition of a determinant seems more practical than that in terms of permutations
(because it immediately gives those general properties), at the expense of the proof that
our definition is unambiguous (see the proof in Appendix 4).

General properties are given for order n, from which they can be easily seen for
7 = 3 when needed.

The importance of determinants has decreased with time, but will remain basic in eigen-
value problems (characteristic determinants), differential equations (Wronskians!), inte-
gration and transformations (Jacobians!), and other areas of practical interest.

SOLUTIONS TO PROBLEM SET 6.6, page 349
6. 1 8. —42,640 10. 0
12, —64 14. 1 16. 2
8. x=2,y=-3,z=8
20. TEAM PROJECT. (b) For a plane the equation isax + by + cz +d-1 =0, s0
that we get the determinantal equation

X ¥ z 1
X1 N 4 1 -0
X3 Ya 22 1
X3 Y3 23 1

The plane is 3x + 4y — 2z = 5.
(c¢) For a circle the equation is
a(x* +y) +bx+cy+d-1=0,
so that we get
2+y  x y
x2+y? oxm on
Bty x »
x?+ys  xs ys
The circle is x* + y* — 4x — 2y = 20.
(d) For a sphere the equation is

[ S T Y

a(x®>+y*+ 2 +bx+cy+dz+e-1=0,
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SOLUTIONS TO PROBLEM SET 6.7, page 357

19 2 -9
2.|-4 -1 2
=2 0 1

4. Note that due to the special form of the given matrix, the 2 X 2 minor in the
right lower corner of the inverse has the form of the inverse of a 2 X 2 matrix;

the inverse is o
—-1/7 0 0
0 5 —-13
0 -3 8

6. The entries of the inverse are the same as for a diagonal matrix, but their position on
the other diagonal is different. The inverse is

0 0 52
0 =5 0
10/3 0 0

8. The given matrix is singular. It is interesting that this is not the case for the 2 X 2

matrix
5 i
3 4]

10. Multiply I = (A?)~*A” by A~" from the right, A~ = (A%)~*A, and this result again

by A~ from the right.
12. We obtain

I=1I"=(AA™")" = (A7A)T
ar (A—I)TAT s AT(A-»-I)T-

This shows that the inverse of AT must be (A™")", as we wanted to prove.

14. Use (1), with A replaced by C, and set C = A™,

- 0 3 z 0 0 1 0
16. 0o 3 0 18.| 3 -1 0 2. (-3 o &
5 0 -4 % 1 3 i 1 %

SECTION 6.8. Vector Spaces. Inner Product Spaces. Linear
Transformations. Optional, page 358

Purpose. In this optional section we extend our earlier discussion of vector spaces R™
and C™, define inner product spaces, and explain the role of matrices in linear transfor-
mations of R™ into R™.
Main Content, Important Concepts

Real vector space, complex vector space

Linear independence, dimension, basis
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Inner product space
Linear transformation of R™ into R™

Background Material. Vector spaces R™ and C™ (Sec. 6.4), inner product (Sec. 6.2).

Comments on Content

The student is supposed to see and comprehend how concrete models (R™ and C", the
inner product for vectors) lead to abstract concepts, defined by axioms resulting from basic
properties of those models. Because of the level and general objective of this chapter, we
have to restrict our discussion to the illustration and explanation of the abstract concepts
in terms of some simple typical examples.

Most essential from the viewpoint of matrices is our discussion of linear transforma-
tions, which in a more theoretically oriented course of a higher level would occupy a more
prominent position.

Comment on Footnote 12

Hilbert's work was fundamental to various areas in mathematics; roughly speaking, he
worked on number theory 18931898, foundations of geometry 1898-1902, integral equa-
tions 1902-1912, physics 1910-1922, and logic and foundations of mathematics
1922-1930. Closest to our interests here is the development in integral equations, as fol-
lows. In 1870 Carl Neumann (Sec. 4.6) had the idea of solving the Dirichlet problem for
the Laplace equation (Sec. 9.8) by converting it to an integral equation. This created gen-
eral interest in integral equations. In 1896 Vito Volterra (1860-1940) developed a gen-
eral theory of these equations, followed by Ivar Fredholm (1866-1927) in 1900-1903,
whose papers caused great excitement, and Hilbert since 1902. This gave the impetus to
the development of inner product and Hilbert spaces and operators defined on them. These
spaces and operators and their spectral theory have found basic applications in quantum
mechanics since 1927. Hilbert’s great interest in mathematical physics is documented by
Ref. [4], a classic full of ideas that are of interest to the mathematical work of the engi-
neer. For more details, see G. Birkhoff and E. Kreyszig. The establishment of functional
analysis. Historia Mathematica 11 (1984), pp. 258—321.

SOLUTIONS TO PROBLEM SET 6.8, page 364

2. No; nonnegativity is not preserved under scalar multiplication.

4. Dimension 2. Basis [cos x sin x]. Further examples from differential equations can
casily be presented W students familiar with these equations, We did not mention this
explicitly, to keep chapters independent.

6. Dimension 6, basis

1 0 0 0 1 0 0 0 1
o o of, |1 0 0}, |O 0 0]},
0o 0 0 0o 0 o0 1 0 0
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8. Dimension 4, basis

[2—1 3] [0 0 o] [o o_o] [o 0 0

000'100’010'001]

10. No

12. If another such representation with coefficients k; would also hold, subtraction would
give 2(c; — k;)a; = 0, hence ¢; — k; = 0, because of the linear independence. This
shows the uniqueness.

14. V77 16. V38 18. V62 20. £[08 0.6]"

22. 0.8 + 39 + 11.0 = 15.7 < 2.58650V/38 = 15.944

4. 13 4TI+ 00 =272 =25+5=205+ 10)

26. xy = 5y; — ¥

X3 =3y; = ya

28, x; = 0.25y; — 0.1yg 3. x; =y,
X = Yo — 0.8y Xy = Y2 €08 6 — yz8in @
X3 = 0.2y, Xg = Yo sin @ + yg cos 6

SOLUTIONS TO CHAPTER 6 REVIEW, page 365

(1 18 13 19 1 -2 -2 -12 -12
12.|~6 -8 2| 14 1 21 15| 16. |—-12 16 -9
=1 7 7 | —22 15 38 -12 -9 -14
[ & 4 A =
18. |-4 0 -2 20. | —34 22. -5
-1 2 o0 | -13
4.9 34 13 26. x=2,y=—-1,z=4 28. No solution
30.x=0y=22=-3 3. x=1,z=3y+2 Mox=2+18y -3
36. 2,3 38. 3,3 40. 2,2

42. A 3 X 3 skew-symmetric matrix is always singular. Hence any product involving B
or B is singular, by the theorem on the determinants of products of matrices (Sec.
6.7, Theorem 4).

25 -1 —45
44, 3 1 -1
=35 =3 85

46. I, = 12, I = 4, I3 = 16 [amps]

48. I, = 4,1, = 5, I = 1 [amps]

50. By Kirchhoff's current law, i, = i, + Uyl Zy. From this, Kirchhoff’s voltage law, and
Ohm’s law,

1
u1=Zlil+uz=Zl(lz+— )+u2.
Zy
This gives the indicated matrix.
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CHAPTER 7 Linear Algebra: Matrix Eigenvalue Problems

This chapter is new. Prerequisite is some familiarity with the notion of a matrix and with
the two algebraic operations for matrices. Otherwise the chapter is independent of Chap.
6, so that it can be used for teaching eigenvalue problems and their applications, without
first going through the material in Chap. 6.

SECTION 7.1. Eigenvalues, Eigenvectors, page 371

Purpose. To familiarize the student with the determination of eigenvalues and eigenvec-
tors of real matrices and to give a first impression of what one can expect (multiple cigen-
values, complex eigenvalues, etc.).

Main Content, Important Concepts

Eigenvalue, cigenvector

Determination of eigenvalues from the characteristic equation

Determination of eigenvectors

Algebraic and geometric multiplicity, defect
Comments on Content
To maintain undivided attention on the basic concepts and techniques, all the examples
in this section are formal, and typical applications are put into a separate section (Sec.
7.2).

The distinction between the algebraic and geometric multiplicity is mentioned in this
early section, and the idea of a basis of eigenvectors could perhaps be mentioned briefly
in class, whereas a thorough discussion of this in a later section (Sec. 7.5) will profit from
the increased experience with eigenvalue problems, which the student will have gained
at that later time.

The possibility of normalizing any eigenvector is mentioned in Theorem 2, but this will
be of greater interest to us only in connection with orthonormal or unitary systems (Sec.
7.4).

In our present work we find eigenvalues first and are then left with the much simpler
task of determining corresponding eigenvectors. Numerical work (Secs. 18.6—18.9) may
proceed in the opposite order, but to mention this here would perhaps just confuse the
student.

SOLUTIONS TO PROBLEM SET 7.1, page 375

1 1
2. 0, any nonzero vector 4. —a, [ l] , a, I:l]

1 1
6. —3i, [ ] ! I: :I . This result is typical because the matrix is skew-symmetric.
i i
We discuss this in Sec. 7.3.
1 1
8. 0.8 + 0.6, |: ] , 0.8 — 0.6, [] . This is typical, as we shall see in Sec. 7.3;
—f i

namely, the matrix is orthogonal, its eigenvalues have absolute value 1, and its de-
terminant has value 1.
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1] T 1
122 0],a=V2,|-V2|,a+VZ|V2
-1 ] 1 1
0 1
14. =2,10(,0,|0|.A =0 has algebraic multiplicity 2 and geometric multiplicity 1
1 0

(ust as A = 3 in Prob. 13), so that we have no basis of cigenvectors.

[0 -1
16. i O] . The cigenvalues are { and —i. Corresponding eigenvectors are complex,
indicating that there is no direction that is preserved under a Fotation.
(1 0 o 1 0
18. | O 1 0| . An eigenvalue is 1, with eigenvectors [ 0 | and | 1 |, indica-
0 0 -1 0 0

ting that every point in the xy-plane is mapped onto itself. The other cigenvalue is
—1, with eigenvector [0 0 1]7, indicating that every point z; on the z-axis is
mapped onto its negative —z,.

4 i1 o0 0 1
20. | 2 3 0. Theeigenvalue 1 with eigenvectors | 0 | and | 1 | indicates that
0 0 1 1{ . |0

every point in the plane y = x is mapped onto itself. The other eigenvalue 0 with
eigenvector [I ~1 0]7 indicates that any point on the line y = —x, z = 0 (which
is perpendicular to the plane y = x) is mapped onto the origin. The student should
perhaps make a sketch to see what is going on geometrically.

SECTION 7.2. Some Applications of Eigenvalue Problems, page 376

Purpose. Matrix eigenvalue problems are of greatest importance in physics, engineering,
geometry, etc., and the applications in this section and in the problem set are supposcd to
give the student at least some impression of this fact.

Main Content

Applications of eigenvalue problems in
Elasticity theory (Example 1),
Probability theory (Example 2),
Biology (Example 3),

Mechanical vibrations (Example 4).

Short Courses. Of course, this section can be omitted, for reasons of time, or one or two

of the examples can be considered quite briefly.
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Comments on Content
The examples in this section have been selected from the viewpoint of modest prerequi-
sites, so that not too much time will be needed to set the scene.

Example 4 illustrates why real matrices can have complex eigenvalues (as mentioned
before, in Sec. 7.1), and why these eigenvalues are physically meaningful. (For students
familiar with systems of differential equations, one can easily pick further examples from
Chap. 3.)

SOLUTIONS TO PROBLEM SET 7.2, page 379

2. Eigenvalues and eigenvectors are 1.6, [1 ~1]" and 2.4, {1 1]". These vectors are
orthogonal, as is typical of a symmetric matrix. Directions are —45° and 45°, re-
spectively.

4. 05, [1 —1]7; 1.5, [1 1]". Orthogonality as in Prob. 2. Directions —45° and 45°,
respectively.

6. 2,1 17 é, [1 —1]". Directions 45° and —45°, respectively.

8. [1 1 1]7. This could be seen without calculation because the matrix also has col-
umn sums equal to 1, which is not the case in general.

10. The growth rate is 2. The other two eigenvalues are not needed; they could be de-
termined by dividing the characteristic polynomial by A — 2; they are —1 = V0.6

12. Growth rate 3. The other eigenvalues are —0.247004 and —2.753. These are not
needed.

14. A has the same eigenvalues as AT, and AT has row sums 1, so that it has the eigen-
value 1 with eigenvector x = [1--- 1],

Leontief is a leader in the development and application of quantitative methods in
empirical economical research, using genuine data from the economy of the United
States to provide, in addition to the “closed model” of Prob. 13 (where the produc-
ers consume the whole production), “open models” of various situations of produc-
tion and consumption, including import, export, taxes, capital gains and losses, etc.
See W. W. Leontief, The Structure of the American Econonty 1919-1939 (Oxford:
Oxford University Press, 1951), H. B. Cheney and P. G. Clark, Interindustry Eco-
nomics (New York: Wiley, 1959).

16. TEAM PROJECT. (a) Because a polynomial with real coefficients (in our case,
the characteristic polynomial) has real or complex conjugate zeros.

(h) A~! exists if and only if det A # 0. but det A = AsAa * - * A,.. as follows from
the product representation

D(A) = det(A — AL) = (=1)™A — Ay) == - (A = Ap),
namely,
det A = (—=1D™(—AN=A2) *** (—Ap) = MAg - - - A

(c) This follows by comparing the coefficient of A"~ in the expansion of D(A) with
that obtained from the product representation.
(d) AXj = /\jXJ (x, - 0). (A — kl)x,' = A,'Xj - ka = (A, - k)x,-
(e) The first statement follows from
AX = AX, (kKA)Xx = k(AX) = k(AX) = (kA)x,

the second by induction and multiplication of A¥x; = A;*x; by A from the left.
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(f) From Ax; = A;x; (x; # 0) and (e) follows ko APX; = k,A;Px; and kA%, =
koAi?%; (p = 0, ¢ = 0, integer). Adding on.both sides, we see that kAP + k A®
has the eigenvalue k,A;* + k,A;% From this the statement follows.

(8) det(L — AI) = —A% + Liplp A + lyalpl3, = 0. Hence A # 0. If all three eigen-
values are real, at least one is positive since trace L = 0. The only other possi-
bility is Ay = a + ib, Ay = a — ib, Ag real (except for the numbering of the
eigenvalues). Then Az > 0 because [see (b)]

A1A2A3 ond (az + bz)l\a =detL = 113121133 > (.

SECTION 7.3. Symmetric, Skew-Symmetric, and Orthogonal Matrices,
page 381

Purpose. To intraduce the student to the three most important classes of real square ma-

trices and their general properties and eigenvalue theory.

Main Content, Important Concepts

The eigenvalues of a symmetric matrix are real.

The eigenvalues of a skew-symmetric matrix are pure imaginary or zero.
The eigenvalues of an orthogonal matrix have absolute value 1.

Further properties of orthogonal matrices

Comments on Content

The student should memorize the preceding three statements on the locations of eigen-
values as well as the basic properties of orthogonal matrices (orthonormality of row vec-
tors and of column vectors, invariance of inner product, determinant equal to 1 or —1),

Furthermore, it may be good to emphasize that, since the eigenvalues of an orthogonal
matrix may be complex, so may be the eigenvectors. Similarly for skew-symmetric ma-
trices. Both cases are simultaneously illustrated by

0 1 o 1 1
A= [ ] with eigenvectors and ]
=1 0 i —i

corresponding to the eigenvalues i and —i, respectively.

SOLUTIONS TO PROBLEM SET 7.3, page 384

2. Skew-symmetric if a = 0, symmetric if b = 0, orthogonal if a2 + b2 = 1. Eigen-
values a * ib

4. Orthogonal (a rotation about the x-axis through an angle #). Eigenvalues 1 and
cos @ = isin @

6. Symmetric (for real a and k). Eigenvalues a — k (of algebraic and geometric multi-
plicities 2 when k # 0) and a + 2k

8. Let Ax = Ax (x # 0), Ay = uy (y # 0). Then (Ax)" = x"AT = x"A = Ax". Thus
Ax"y = xTAy = x"py = ux"y. Hence, if A # y, then x"y = 0, which proves orthogo-
nality,
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10. Yes, for instance

a 1 -a? 0
V1 - a? —a 0|
0 0 1

where =1 =a = 1.
12. No for 3 X 3, yes for4 X 4, no for 5 X 5. For 3 X 3,

0 a b
det | —a 0 ¢ | = —abc + bac = 0.
—-b —c 0

det A = det(AT) =det(—A) = (=1)"det A =0ifn=23,5,---.

14. (@) AT=A"LB"=B"1L (ABY =B"A"=B~'A! = (AB) . Also (A™})" =
(AT)™* = (A=), In terms of rotations it means that the composite of rotations and
the inverse of a rotation arc rotations.

(b) The inverse is
[ cos 0 sin 0:|
—sin 6 cos 6|

(¢) To a rotation of 16.26°. No limit. For a student unfamiliar with complex num-
bers this may require some thought.

(d) Limit 0, approach along some spiral.

(e) The matrix is obtained by using familiar values of cosine and sine,

[\/512 -1/2]
12 V3l

SECTION 7.4. Complex Matrices: Hermitian, Skew-Hermitian, Unitary,
page 385

Purpose. This section is devoted to the three most important classes of complex matri-
ces and corresponding forms and eigenvalue theory.
Main Content, Important Concepts

Hermitian and skew-Hermitian matrices

Unitary matrices, unitary systems

Location of eigenvalues (Fig. 146)

Quadratic forms, their symmetric coefficient matrix

Hermitian and skew-Hermitian forms

Background Material. Section 7.3, which the present section generalizes. The prerequi-
sites on complex numbers are very modest, so that students will hardly need any extra

help in that respect.
Short Courses. This section can be omitted.

Comments on Content
This is the first time in this chapter that the student meets with complex matrices. The
material is arranged so that the analogy of properties and proofs to those in Sec. 7.3 will

be apparent.
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The importance of these matrices results from quantum mechanics as well as from math-
ematics itself (e.g., from unitary transformations, product representations of nonsingular
matrices A = UH, U unitary, H Hermitian, etc.).

The determinant of a unitary matrix (sce Theorem 4) may be complex. For example,

the matrix
1+i|l 0
A=
\/5[0 1]

det A = 1.

is unitary and has

SOLUTIONS TO PROBLEM SET 7.4, page 390
2M=3 ST -3 =97
a0 1nna -1
6. Skew-Hermitian; ~i, [~1 +i 2] 2i,[1 —i 17
8. Skew-Hermitian; 4, (0 1 0]%; 34, (-1 0 115501 0 1]7
10. Hermitian; —2,[i —1—i 1)50,[—-i 0 1520 1+i 1T
12. PROJECT. (a) For A, B unitary, (AB)™" = B—'A~* =B"A" = (AB)".
We prove the statement abou} thf inversle. Let A be unitary. Set A~ = B. Then
B=QAY)"=@A" =@ ) =B " ThusB-'=F"
© AA" = A%if A is Hermitian, —A? if A is skew-Hermitian, AA~! = I if A is
unitary. Commutability is now obvious.
@A=H+S,A =H +8 =H-S, hence
AR" = (H + SYH - §) = H? — HS + SH — §2.
Also -
AA=MH-S(H+8 =H?>+HS - SH - §2
These two expressions are equal if and only if
—HS + SH = HS — SH.

This implies that HS = SH, as claimed.
For instance,
(e) For instance 0 0
i 0
is not normal. A normal matrix that is not Hermitian, skew-Hermitian, or unitary

is obtained if we take a unitary matrix and multiply it by 2 or some other real
factor different from *1.

3 I -2 3 -1 I: =L 4 0
-2 4 -6 2 -1 -3 -4 4
14. 0 0 2 16. 18.
{ 2 -9 3 6 9 -3 4 -4 16 0
-1 2 -3 1 0 4 0 -4

20. Skew-Hermitian, 6i
22. Hermitian, alx,|* + 2 Re [(b + ic)%,x;] + k|xy|?
24. Hermitian, 4
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SECTION 7.5. Similarity of Matrices. Basis of Eigenvectors.
Diagonalization, page 392

Purpose. This section exhibits the role of bases of eigenvectors in connection with lin-
ear transformations and contains theorems of great practical importance in connection with
eigenvalue problems, notably Theorems 1, 4, 5.

Main Content, Important Concepts
Similar matrices have the same spectrum (Theorem 1).
Bases of eigenvectors (Theorems 3, 4)
Diagonalization of matrices (Theorem 5)
Principal axes transformation of forms

Short Courses. Complete omission of this section or restriction to a short look at Theo-
rems 1 and 5.

Comments on Content
Theorem 1 on similar matrices has various applications in the design of numerical meth-
ods (Chap. 18), which often use subsequent similarity transformations to tridiagonalize or
(nearly) diagonalize matrices on the way to approximations of eigenvalues and eigen-
vectors. The matrix X of eigenvectors [see (5)] also occurs quite frequently in that con-
text.

Theorem 4 is another result of fundamental importance in many applications, for in-
stance, in those methods for numerically determining eigenvalues and eigenvectors. Its
proof is substantially more difficult than the other proofs given in this chapter.

SOLUTIONS TO PROBLEM SET 7.5, page 397

2 A 3.008 —0.544] visi [—17] [25]
= 2 = 4, = X = 3
5456 6.992 y 3] 25

1 2 0 1 -1 0
6.A=|0 3lsa=1Ly=|-1]|,y=]0]|,x=1 O}, x=]|1];
0 2 2 0 2 0
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8. [(L+ V2 UV2ITL [+ -1/V2]T
HEA N
10.
3
ol L)LY °]
12.
0 =50
2 0
1 2
2

1] [o :
4. [ -1],[1].]1].]o0 0
of |1 0 0 -1

16. Hyperbola 52y,® — 39y,% = 156, hence 4y,2 — 3y,% = 12 x, = (2y, + 3y,)/\V13,
Xp = 3y — 25)/V13

18. Orthogonal straight lines 25y,% + 50y,® = 0, that is, the coordinate axes of the
y-system, 2y — 0.G6y; = 0.8ys, x5 = 0.8y, + 0.6y,

20. Ellipse y,* + 165" = 16, x, = (23 + )/ V5, x5 = (=3, + 2)/V/5

22. PROJECT. (a) This follows immediately from the product representation of the
characteristic polynomxal of A.

n
(b) C=AB, ¢y, = 2 anby, €2 = >, ag1b;5, etc. Now take the sum of these n
=1 1=1
sums. Furthermore, trace BA is the sum of
"

n
= 2 DimOmas* ¢ s Can = 2 bymmn,
me1 m=1

involving the same n* terms as those in the double sum of trace AB.
(¢) By multiplications from the right and from the left we readily obtain

K = p?Ap-2
(d) Interchange the corresponding eigenvectors (columns) in the matrix X in (5).

SOLUTIONS TO CHAPTER 7 REVIEW, page 398

o[ [}

1 1 0 1 1 2
14. 1,|10:0,11(:3,]0 16. -3 F 3 19505, 1 ' =1
0 1 1 -1 2 1

2 0 l 18 0 0
18. |1].[2],]0],] O 9 0
0 1 2 0 0 -9

20. Hyperbola —10y,% + 5y,® = 10, x; = (y; + 2y,)/ V5, =2+ ya)I V5
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22. Straight lines y = *y,, resulting from 13(—y,2 + y,%) = 13(ya + ¥ )(ya — ¥ =
0: x; = 2y + 3y2)/ V13, xp = (—3y; + 2y5)/ V13
24. Eigenvalues and eigenvectors are

1 1
Syt ==1¢ [—l_; 1, _l}

1] 1
Syt -1, [_‘_-; 1, _i]

07 1
Sa -1, [1_ 2 1, _0].

http://librosysolucionarios.net

NP S S e



CHAPTER 8 Vector Differential Calculus. Grad, Div, Curl

Changes

These are minor. In Sec. 8.6, tangential and normal accelerations are discussed in a
more concrete fashion, The section on grad, div, and curl in curvilinear coordinates has
been omitted; this material can now be found in Appendix A3.4, since it is mainly for
reference.

SECTION 8.1. Vector Algebra in 2-Space and 3-Space, page 401

Purpose. We introduce vectors in 3-space given geometrically by (families of parallel)

directed segments or algebraically by ordered triples of real numbers, and we define ad-
dition of vectors and scalar multiplication (multplication of vectors by numbers).

Main Content, Important Concepts

Vector, norm (length), unit vector, components
Addition of vectors, scalar multiplication
Vector space R, linear independence, basis

Comments on Content

Our discussions in the whole chapter will be independent of Chap. 6, and there will be
no more need for writing vectors as columns and for distinguishing between row and col-
umn vectors. Our notation a = [a,, ay, ag) is compatible with that in Chap. 6. Engineers
seem to like both notations

a = [ay, a3, a3] = a;i + ayj + agk,

preferring the first for “short” components and the second in the case of longer expres-
sions,

The student is supposed to understand that the whole vector algebra (and vector cal-
culus) has resulted from applications, with concepts that are practical, that is, they are
“made to measure” for standard needs and situations; thus, in this section, the two alge-
braic operations resulted from forces (forming resultants and changing magnitudes of
forces); similarly in the next sections. The restrictions to three dimensions (as opposed to
n dimensions in the previous two chapters) allows us to “visualize” concepts, relations,
and results and to give geometrical explanations and interpretations.

On a higher level, the equivalence of the geometric and the algebraic approach (Theo-
rem 1) would require a consideration of how the various triples of numbers for the vari-
ous choices of coordinate systems must be related (in terms of coordinate transformations)
for a vector to have a norm and direction independent of the choice of coordinate sys-
tems.

SOLUTIONS TO PROBLEM SET 8.1, page 407

2. —-1,4,3;: V26 4. -10,2, —6; V140 6. a,b,c; Va® + b2 + ¢?
8. —-2,0, -2: V8 10. (0, 0, 1); V13 12. 3, -1, =2); 0
123

http://librosysolucionarios.net

Bttt

e b

B S ——



124

Instructor’'s Manual

14. (3, —1, 6); V46 16. [-3,2, —11, 19, —6, 31, [-&. 1, —3]
18. V11, V14 + 3 20. (1/V14) [3, =2, 1], [0, 1, 0]
22. [27, —-19, 2] 24. [8, -3, 8]; V137 26. [0, 10, 0]

28. [12, 0, 16]; 20

30. 2= |p + q| = 10, 12 = [4p — 3q| = 36. Nothing about the direction.

32. p= -3i,q = —9j,u = 3k. Yes

34. TEAM PROJECT. (a) The idea is to write the position vector of P in the figure in

two ways and then to compare,
AMa -+ b) =a+ wb — a).

A =1 — u are the coefficients of a and A = p those of b. Together, A = p = §, ex-

pressing bisection.

(b) The idea is similar to that in part (a). It gives

AMa + b) = 3a + pl(b — a).
A =4 — 1ufrom aand A = 3 from b, resulting in A = , thus a ratio 3:1.

(c) Partition the parallelogram into four congruent parallelograms. Part (a) gives 1:1
for a small parallelogram, hence 1:(1 + 2) for the large parallelogram.

(d) In the figure,a + b + ¢ + d = 0, hence ¢ + d = —(a + b). Also, AB =
3a + b), CD = 3(c + d) = —4(a + b), and for DC we get +3(a + b), which
shows that one pair of sides is parallel and of the same length. Similarly for the
other pair.

(e) Let vy, ++,V, be the vectors. Their angle is @ = 2n/n. The interior angle at
each vertex is B = & — (27/n). Put v, at the terminal point of vy, then v, at
the terminal point of vy, etc. Then the figure thus obtained is an n-sided regular

polygon, becausc the angle between two sides equals w7 — a = B. Hence
vy + vy + - o+ + v, = 0. (Of course, for even n the truth of the statement is im-

mediately obvious).
(f) Leta, b, ¢ be edge vectors with a common initial point (see the figure). Then the
four (space) diagonals have the midpoints
AG: 3a+b+e)
BH: a+3b+c—a)
EC: ct+3a+b—c)
DF: b+4@+c—h),

and these four position vectors are equal.

&g
Section 8.1. Parallelepiped in Team Project 34(f)

http://librosysolucionarios.net

SIS SO




Instructor’s Manual 125

SECTION 8.2. Inner Product (Dot Product), page 408

Purpose. We define, explain, and apply a first kind of product of vectors, the dot prod-
uct a*b, whose value is a scalar.

Main Content, Important Concepts
Detinition (1)
Dot product in terms of components
Orthogonality
Length and angle between vectors in terms of dot products
Schwarz and triangle inequalities

Comment on Dot Product

This product is motivated by work done by a force (Example 2), by the calculation of
components of forces (Example 3), and by geometric applications such as those given in
Examples 5 and 6.

“Inner product” is more modern than “dot product” and is also used in more general
settings (see Sec. 6.8).

SOLUTIONS TO PROBLEM SET 8.2, page 413

2. V14,2V14, V21 4. —16
6. —37 8. V27, Vi4 + V29

10. u*(v — w) = 0. v — w is orthogonal to u. So this does nor imply that v — w = 0,
that is, v = w.

14. 0 16. —82

18. Yes, because W = (p + q)+d = p+d + q-d.
b-ae—a) [21,10,-12] 1

: - - . Answer: 79.5°
el —d VeVs Van e
(@a+b)ec [4,3,1][1,0,2] 6
= - : - 58.25°
2 mru V26V5 V3o - Answer: 582
24, 85.74° 26. 60° 28. 55.3°, 85.6°, 39.1°
30. 3 32 2V11 34. 0

36. |a + bf* = (a + b)*(a + b) = [a[> + 2Jallb] + [bf2 = (la| + [b))?
38. PROJECT. (a) a; = |
(b) a such that Sa, = 2a, with a,® + a,% = 1
(c) b such that 2b, + b, = 0 and b; arbitrary. Yes
(d) ¢ =3/
@€ c= -2
(f) a =0, 0, 1] is a unit vector orthogonal to b and ¢, and g1 = gs = 1/5 gives unit
vectors b and ¢, which are orthogonal.
() If a and b correspond to adjacent sides, to the diagonals there correspond a + b
and a — b. Orthogonality implies that

(a+b)e(a—b)=[a> — b]> =0, |a|=[b]
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SECTION 8.3. Vector Product (Cross Product), page 414

Purpose. We define and explain a second kind of product of vectors, the cross product
a X b, which is a vector perpendicular.to both given vectors (or the zero vector in some

cases).
Main Content, Important Concepts
Definition of cross product, its components (2), (2**)
Right- and left-handed coordinate systems
Properties (anticommutative, not associative)
Scalar triple product
Prerequisites. Elementary use of second- and third-order determinants (see the beginning
of Sec. 6.6).
Comment on Motivations
Cross products were suggested by the observation that in certain applications, one asso-
ciates with two given vectors a third vector perpendicular to the given vectors (illustra-

tions in Examples 4-6). Scalar triple products can be motivated by volumes (Example 7)
and linear independence (Theorem 1).

SOLUTIONS TO PROBLEM SET 8.3, page 421

2. [8, 12, —13], [-8, =12, 13],0,0 4. (8, 12, 18]

6. 0,0, 13 8. [4, -2, —27]
10. 0 12. [—16, —24,0], 0
14. —62, —62 16. 32, 32
18. 1776

20. v = [3,0,0] % [22,2] = [0, =6, 6], |¥] = V72

22. m=[-3,4,0] x[2,1,0] =[0,0, —11]

24. m = [-3, —1,2] X [3, —1,2] = [0, 12, 6]

26. The area is obtained as the length of the cross product of two edge vectors,

-1 -2-1, 0)xM@9—-1, 3—-1, 01=(0, O, 30]

Answer: 30.

28.(4—-2, -1—1, 0]x[6—2, 3—1, 01=[0, 0, 12]. Answer: 6
30.2-1, 0~-3, 8—0]x[0—-1, 2~-3, 2~-0]=1[2 —10, —4]. Hence
2x — 10y — 4z = ¢ with ¢ = —28 obtained by inserting one of the three points.

32. 10

34. Edge vectors are (3 — 1, 7 — 3, 12— 6], [8 — 1, 8 — 3, 9 — 6],
[2-1, 2-3, 8—6).The mixed triple product of these vectors is —90 (or +90).
Answer: 15,

36. Their determinant is 220. Answer: Yes.

38. TEAM PROJECT. (a) |a x bf*> = [al?b]> sin®y = [|a’b’(1 — cos®y) =
(a*a)(b+b) — (a*b)?
(b) We choose a right-handed Cartesian coordinate system such that the x-axis has

the direction of d and the xy-plane contains ¢. Then the vectors in (b) are of the
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form
b = [by, by, by, ¢ = [c1, €5, 0], d = [d,, 0, 0].
Hence by (2%%),
i j k i J k
cxXd=|c Ca 0] = —cadik, b X (e x d) = (b, by, by
d; 0 0 0 0  —cd,

The determinant on the right equals [—bycod,, bycady, 0]. Also,
(b'd)c e (b'c)d == bldl[cl. Co, 0] s (blcl + szz)[dl, 0, 0]
= [~bacody, bydicy, 0].

This proves (b) for our special coordinate system. Now the length and direc-
tion of a vector and a vector prodnet, and the value of an inner product, arc in-
dependent of the choice of the coordinates. Furthermore, the representation of
b X (¢ X d) in terms of , j, k will be the same for right-handed and left-handed
systems, because of the double cross multiplication. Hence, (b) holds in any Carte-
sian coordinate system, and the proof is complete.

(c) This follows from (b) with b replaced by a X b.

(d) a*[b X (e X d)]equals(a b [c X d]) = (a X b)+*(c x d) by the definition
of the triple product, as well as (a*c)(b=d) — (a*d)(b+c) by (b) (take the dot
product by a).

SECTION 8.4. Vector and Scalar Functions and Fields. Derivatives,
page 423

Purpose. To gel started on vector differential calculus, we discuss vector functions and
their continuity and differentiability.

Main Content, Important Concepts

Vector and scalar functions and fields

Continuity, derivative of vector functions 9), (10)
Differentiation of dot, cross, and triple products, (11)—(13)
Partial derivatives

Comment on Content
This parallels calculus of functions of one variable and, if known to students, can be sur-
veyed quickly.

SOLUTIONS TO PROBLEM SET 8.4, page 427
2. Ellipses 4. Circles 6. Hyperbolas

11\2
e —_—)] +y2 = —
8C1rcles( ) ¥

10. CAS PROJECT. Note that all these functions occur in connection with solutions of
Laplace’s equation; so they are real or imaginary parts of complex analytic functions.
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For example, (f) occurs in connection with In cos z. A CAS can graphically handle
these more complicated functions, whereas the paper and pencil method is relatively
limited. This is the point of the project.

12. Elliptic cylinders

14. Paraboloids of revolution

16. Congruent cylinders whose cross section in the yz-plane is a quadratic parabola

18. Note that each field vector equals the position vector of the corresponding point.

20. Note that each field vector is orthogonal to the position vector of the corresponding
point, as for the velocity field of a rotation.

26. —yzsinxyz (i + j), —xzsinxyz (i + j), —xysinxyz (i + j)
28, [e"cosy, e*siny, 0], [—€"siny, e*cosy, 0]

a0 x -y y x
1B+ 22y P4y

SECTION 8.5. Curves. Tangents. Arc Length, page 428

Purpose. Discussion of space curves as an application of vector functions of one variable
and in view of later use of curves in mechanics (Sec. 8.6) and in line integrals (Chap. 9).

Main Content, Important Concepts
Parametric representation of curves (1)
Tangent vector, tangent, (7)~(9)

Arc length s

Comment on Problems 27-32
These involve only integrals that are simple (which is usually not the case in connection
with lengths of curves).

SOLUTIONS TO PROBLEM SET 8.5, page 433

2. r(t) =[-1+4+31 341 8]

dr)=0—-1t 1+t 1-14

6. r(t) = [4r, 41, 1]

S.ri)=la+4t, b+ 2-2)1, c—1]

10. Helix on an elliptical cylinder

12. Circle in the xy-plane with center at (a, b, 0)

14. Ellipse in the plane z = 4

16. Only the portion corresponding to x = 0

18. Hyperbola [V3 cosht, 2sinhs, 1]

20. Helix [3cos?, 3sint, 51]

22, (a) r'(t) = [—2sints, 2cost, 0], u=3r
® r'(P)=[-V2, V2, 0LuP) =[-UV2 UV2 0]
© qw) =[V2—V2w, 2+ V2w, 0]

24. (a) ¥'(¢) = [—2sint, 2cost, 1], u= (1/V5)r'()
® '@ =100, 2, 1luP) =[0, 2/V5 1/V5)
© q(w) =1[2, 2w, w]
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26. (@) w = (1 + 472 + %~V + 24 + 3%k)
(b) u(P) = 1474 + 2j + 3k)
© (1+wi+ (1+2wj+ 1+ 3wk

. 2aVa® + ¢

. r' = —3acos®tsinti + 3asin®tcost
r'sr’ = 94%cos? rsin?r + 9a"; sin? f cos? ¢

= 9a® cos?® tsin® ¢ = 2{—- sin® 2r,

g8

This gives as the length in the first quadrant

/2

3a i 3a 3a
l=7fo sin 2t dt = —T(cos'n'—cosO)=—

> -
Answer: 6a.
32. From the given representation we get dp = asin 6 d. Hence
ds* = a*(1 ~ cos 0)* d6* + a? sin 6 d62 = 24%(1 — cos 0) d6>
where 1 — cos 6 = 2 sin® }6, so that the total length is

1= Zarsiniﬂd0= —4a(cos 7 — 1) = 8a.
0

SECTION 8.6. Velocity and Acceleration, page 435

Purpose. To show the role of parametric representations and of derivatives in connection
with motions in mechanics.

Main Content, Important Concepts
Velocity vector
Acceleration vector, its tangent and normal components
Angular speed
Centripetal acceleration
Coriolis acceleration
Short Courses. This section (and the next two sections) can be omitted.

SOLUTIONS TO PROBLEM SET 8.6, page 439

2. v=costi,a = —sinri = Atang: Anorm = 0

4. v=~4sin2ri —dcos2tj,a = ~8cos2ti + 8 sin 2tj, Agang = 0, apory = a, as
in Example 1,

6. v= —sinti+ 2cos2tj,a = —cosri— 4 sin 2t j,

asy 3 sin 2t — 4 sin 4¢ . .
Btnng = v=2 v, =3 — i
tang |y sin® t + 4 cos® 2t ozt sne

The path looks like an infinity sign, with a double point at the origin, corresponding
tot = /2 and 37/2.
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8. CAS PROJECT. (a) v=[—2sint — 2sin2¢, 2cost — 2cos 2¢t]. From this we
obtain |v[* = vev = (~=2sint — 2sin 21)% + (2 cos t — 2 cos 2t)®. Performing the
squares and simplifying gives

|vf2 = 8(1 + sin ¢ sin 2t — cos t cos 2t)

= 8(1 — cos 3t)
3t
= in2 —
16 sin 7
Hence
3t
vl sin

a=[—2cost—4cos2r, —2sint + 4sin2t].
We use (4%) By straightforward simplification,
a*v = 12(cos ¢ sin 2t + sint cos 21)
= 12 sin 3¢.
Hence (4%) gives
__12 sin 37 "
16 sin” (3¢/2)

dporm = @ © Agup.

Aan

(b) v=[—sinr — 2sin27, cost — 2cos 2t]
Iv[? =5 — 4 cos 3t
a=[—cost — 4cos2t, —sint + 4sin21]
au,,=-5-f—zmc—zs—§}-[—sinr—23in2t, cost — 2cos 2t
Anorm — @ — 8igp
() v =[—sint, 2cos2t, —2sin2t]
[v|2 = 4 + sin®¢
a=[—cost, —4sin2t, —4cos2t]
a,,,,,=7i-;s-l—:—i%[—sin t, 2cos2t, —2sin2t]
Anorm = & ~ 8gan
(d) v=[ccost— ctsint, csint+ ctcost, c]
V2 = 22 + 2)
a=[—2csint — ctcost, 2ccost— ctsint, 0]
ct

Agn = 5—— [cost — ¢sing, sin? + tcost, 1
tan 12+2[ ]

Anorm = 8 ~ Agan

This is a spiral on a cone.
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10. v = [—=sint, 2cos?], [v|]® = 4 cos®¢ + sin®t is minimum at *7/2 and maximum
at 0 and 7. Also, a = [—cost, —2sin{], and |a| is minimum at ¢+ = 0 and  (on
the x-axis) and maximum at *7/2 (on the y-axis). Finally,

3sintcost {

Qgn = S [sin?, —2cost i
- smzt+4coszt[ ]

Anorm — @ — Qggp

12. r=1%b,v = 2tb + 1?b',a = v/ = 2b + 41b’ + 1?b". Answer: 41b’ é

14. R =385-10°m, |v| = 27R/(2.36 - 10%) = 1025 [m/sec), |v] = wR,
|a| = &®R = [V[*R = 0.0027 [meter/sec?], which is only 2.8 - 10~ g, where g is the
acceleration due to gravity at the earth’s surface.

16. R = 3960 + 450 = 4410 [mi], 27R = 100|v|, |v| = 277.1 mi/min, g = Ja| =
@R = VIR = 17.41 [mi/min®] = 25.53 [ft/sec?] = 7.78 [meters/scc?]. Here we
used |v] = wR.

SECTION 8.7. Curvature and Torsion of a Curve. Optional, page 440

Purpose. To complete the discussion of the foundations of differential geometric curve
theory. We leave this section opfional because we shall not refer to curvature or torsion
in our further work.

Main Content, Important Concepts

Curvature
Torsion

Frenet formulas

Short Courses. Omit this section, (IR

SOLUTIONS TO PROBLEM SET 8.7, page 443
2. We denote derivatives with respect to ¢ by primes. In (1),

dr _, dt di Lo o g
ds-r P ds_s'_(r r )" " (See (12), Sec. 8.5.)

|
|
|
Thus in (1), :
d dr\? &, , d*
where :
d*  d (dt\ dt 3 |
a? " dr (E) = = AR 2a @) |
= _(r".rl)(rl.rl)~2.
Hence '
d |
__5‘_:_ = rll(rl.rl)_l . rl(r”.rl)(rl.rl)_z ’
|
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S

2. —=—/=—

d
4 : = (")) - 2"k (o) + (or) T er)?

— (l'"'l‘")(l'"l")-z = (l'”’l‘l)z(l'"l")_s.
Taking square roots, we get (1°).
Ellipse x*/a® + y*b® = 1, «k = ab(a®sin®t + b* cos® 1)~ %2
Hyperbola, k = 2|ex®|/(x* + ¢*)*?

. Hyperbola x> — y? = 1, (cosh? t + sinh?® 1)™*?
10.

7= —ps(uXp) = —pe(u'Xp+ux pH)=0- p u p') =+u p p)
de _dr [ds  d* d [(ds\? dr  d% [(ds\?

ds a) @’ ds® dr® (E)+"" ds®  dr® (Z)+
where the dots denote terms that vanish by applying familiar rules for simplifying de-
terminants; thus

1 ( dr d’r d"r) 1 ( dr d?r d3r )

TTE\a P ) T &asia \ar  ar et
Now use (1') and formula (12) in Sec. 8.5.
14. c/(a® + ¢%)

16.p=bxu,p ' =b ' Xu+bxu' =—-rpXu+bxnup

=7(=b) + k(—u)

SECTION 8.8. Review from Calculus in Several Variables. Optional,

page 443

Purpose. To give the student a handy reference and some help on material known from
calculus, if needed.

SOLUTIONS TO PROBLEM SET 8.8, page 446
2. g'th — gh'IK®
4. (1 —t—sint)sint + (1 + ¢+ cost) cos¢
6. 4u, 4v
8 4Pt -4+ v, 4t -0
10. This follows from (1). Anewer- 32 + 202 + y2)2x, 3y? + 2 + y2)2y.

SECTION 8.9. Gradient of a Scalar Field. Directional Derivative, page 446

Purpose. To discuss gradients and their role in connection with directional derivatives,
surface normals, and the generation of vector fields from scalar fields (potentials).

Main Content, Important Concepts

Gradient, nabla operator

Directional derivative, maximum increase, surface normal
Vector fields as gradients of potentials

Laplace’s equation
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Comments on Content
This is probably the first section in which one should no longer rely on knowledge from
calculus, although relatively elementary calculus books usually include a passage on gra-
dients.

Potentials are important; they will occur at a number of places in our further work.

SOLUTIONS TO PROBLEM SET 8.9, page 452
2. [y x],[1, 1] 4. [2x, 18y],[-4, 36]

6. [¢*siny, e cos y], [V2, V2]

1
8. ~(cos(x+2)[1, 0, 1], [——\/—i'»o, "'\%]

10. 0+ y)7 'y, -2l 1 -
12, —2¢%"¥ [(x sin 2xy + ycos 2xy)i + (x cos 2xy — y sin 2xy)j],
=2(sin 2 + cos 2)i — 2(cos 2 — sin 2)j

14. The direction of 6i — 5j 16. (1/V3)[2, 1]
18. (@ + b% + A~ V2 [a, b, c] 20. (I/VIDL, 1, 3]
22, xyz 24, ye* + z

26. %ln x* + %)
28. PROJECT. The first formula follows from

[(fg)z’ (fg)yv (fg)z] o [fzg’ fyg» fxg] + [fgx» fgya fgx]-

The second formula follows by the chain rule, and the third follows by applying the
quotient rule to each of the components (f/g),, ( f/g)y, (f/g), and suitably collecting
terms. The last formula follows by two applications of the product rule to each of the
three terms of V2,

30. 1/V5 32. 1/2V?2)

34. 2V3

SECTION 8.10. Divergence of a Vector Field, page 453
Purpose. To explain the divergence (the sccond of the three concepts grad, div, curl) and
its physical meaning in fluid flows.
Main Content, Important Concepts

Divergence of a vector field

Continuity equations (35), (6)

Incompressibility condition (7)
Comment on Content
The interpretation of the divergence in Example 2 depends essentially on our assumption
that there are no sources or sinks in the box. From our calculations it becomes plausible
that in the case of sources or sinks the divergence may be related to the net flow across
the boundary surfaces of the box. To confirm this and to make it precise we need inte-
grals; we shall do this in Sec. 9.8 (in connection with Gauss’s divergence theorem).
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Moving div and curl to Chap. 9?

Experimentation has shown that this would perhaps not be a good idea, simply because
it would combine two substantial difficulties, that of understanding div and curl them-
selves, and that of understanding the nature and role of the two basic integral theorems
by Gauss and Stokes, in which div and curl play the key role.

SOLUTIONS TO PROBLEM SET 8.10, page 456

2. 2%x+ 2y + 22 40

6. 0 8. 6xyz

10. w X r = (Waz — wayll + (wgx — wy2)j + (w,y — wyx)k shows immediately that
div v = 0 because the first, second, and third components do not depend on x, y, z,
respectively.

12, v—uli+u2j+u3k—£’l+%j+d—:k=xl.ﬁcnccdivv= 1, and

d d
dx _ dy _ dz _
& 2w T &

By integration, x = ¢,é', y = ¢3,z = cg, and r = xi + yj + zk. Hence
l‘(O) = Cli + Czj + Cak and l'(l) = Clei + Czj + Csk.
This shows that the cube in Prob. 11 is transformed into the rectangular parallelepiped
bounded by x =0, x =e¢,y =0,y = 1,z = 0, z = 1, whose volume is e.
14. 4(x — y)i(x + y)*
16. 0
18. 2 cosh 2x — 2 cosh 2y
20. —1/Vx® 4+ y® Equation (3) is simpler than differentiation.

SECTION 8.11. Curl of a Vector Field, page 457

Purpose, Content

We introduce the curl of a vector field (the last of the three concepts grad, div, curl) and
interpret it in connection with rotations [Example 2 and the remarks on (3) and (4)]. A
main application of the curl follows in Sec. 9.9 in Stokes’s integral theorem.

SOLUTIONS TO PROBLEM SET 8.11, page 459

2. 3k 4,0

6. [sinz, 0, —cosy]

8. curlv = —4yk, divv = 0, imcompressible, v = [x', ¥, '] = [2)% 0, 0),
Y =0, y=cp7 =0,z=cyx' =2y°= 2¢9%, x = 2¢5%t + ¢

10. curl v = (0, 0, (cosec x)'], divy = secx tanx, v = [x, y', z'] = [sec x, cosec x, 0],
x' = secx, cosxdx = dt, sinx =t + ¢;, x = arc sin(t + ¢;), ¥ = cosecx =
1/(1 +Cl),)'= ll'l(t"“ Cl) + C2, 2= Cg

12. curlv = (17/4)k, incompressible, v = x'i + y'j + z'k = —yi + 4xj; hence
(@) x' = ~%y, ®) ¥ = 4x. Now (b) gives x = 3y’. From this and (a) we obtain
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x' = —(3y)3)"). By integration, x%/2 = —y%/32 + const, x> + (yl4)? = const.

The streamlines are ellipses.

14. PROJECT. Parts (b) and (d) are basic. They follow from the definitions by direct
calculation. Part (a) follows by decomposing each component accordingly.

(¢) In the first component in (1) we now have fvg instead of vg, etc. Product differ-
entiation gives (fvg)y = fyvg + f(vg),. Similarly for the other five terms in the
components. f,v3 and the corresponding five terms give (grad f) X v and the
“other six terms f(vg),, ete. give f curl v.

(d) For twice continuously differentiable f, for which the mixed second derivatives
are equal, this follows from Vf = f,i + f,j + f,k and (1), which gives

curl (vf) 2= [(fz)y = (fy)x]‘ + [(f::)z - (fz)x]j + I(.fy)x et (f::)y]k-

(e) Write out and compare the twelve terms on either side.
16. 0,0
18. [—xy+zx-zz, —yz + xy — x%, —zx+yz—yz]
2. x—y—-zx—2z y—=x z-3)]

Solutions to Chapter 8 Review, page 461

14. 1716 16. [16, =60, —6], 0
18. [156, 104, —124], [2, =6, 0]
20. (1/V14) (3, 1, =2], (1/V/52) [4, —6, 0]

22. 0, [—46, 106, —16] 24. V12 < V14 + V74
26. arc cos (—8/V'14-74) = 104.4°, 0 (orthogonal vectors)
28. p=[L,2,-7]

30. a*b/|b| = 12/V18 = 22

32.m=rxp=[~12,0] X [3,8 0] = —14k. The minus sign indicates that the ten-
dency of rotation is in the clockwise sense.

34. 2/3

36. v =[-3sint, —2cos ¢, §] = [-3/V2, - V2§, [v| = 3V3n,
a=[—3cost 2sint, 0]

38. [2y%(x — 2), 29(x — 2% —2%x — 2)], 0

40. [—2, —4, —2], [2y, 62, 4x]

42. 2y(3x — 2)

4. —4xy + 2y% + 2xz — yz — 2%

46. 0

48. 0,0

50. 0 becanse this is a scalar triple product corresponding to a determinant with two equal
rows. .
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CHAPTER 9 Vector Integral Calculus. Integral Theorems

SECTION 9.1, Line Integrals, page 464

Purpose. To explain line integrals in space and in the plane conceptually and technically
with regard to their evaluation by using the representation of the path of integration.

Main Content, Important Concepts
Line integral (3), (3'), its evaluation
Its motivation by work done by a force
General properties (8)
Dependence on path (Example 3)
Background Material, Parametric representation of curves (Sec. 8 5); a comple of review
problems may be useful.
Comments on Content
The integral (3) is more practical than (7) (more direct in view of subsequent material),

and work done by a force motivates it sufficiently well.
Independence of path is settled in the next section.

SOLUTIONS TO PROBLEM SET 9.1, page 470

2. 6/5
4. Forinstance, r = [2 — 21, 21], 0 = t = 1. Answer: —4/15
6. For instance, r = [1, t¥2). Answer: 0
8. F(C) = [2cost —t, t— 2sint, 2sint — 2cos ). Answer; —87 + 272
10. F(C) = [cosh s, sinh (r?), exp (%)), F(C)*r' =
cosh r + 2t sinh (%) + 3t2exp(t3) Answer: sinh 2 + cosh 4 + €% — 2 = 3010
12. PROJECT. (a) Fort = p we obtain r’ = [~2p sin p?, 2pcospz]
F(C) = [~cos®p?, cosp smpz] so that the integrand is 4p cos® p® sin p?.
Integration gives —(2/3) cos® p?, hence 4/3, in agreement with the result for the
given representation.
=[1, m™ ', F(C) = [-£% **1), the integrand is —> + n". By inte-
gration,
1 n

3 2n+1°

(¢) The limit is —3 + 3 = 4. Direct integration from (0,0) to (1,0) and then to (1,1)
gives the same, where the two summands correspond to the horizontal and the
vertical part of the path.

w2
14. dsids = Vr'sr =2, f 32 cos® ¢ sin ¢ dt = 8
0

3
16. ds/dt = V2 + 42, f(2+413)dt=6+36=42
0
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2
18. d/dt = cosht, [ (1~ sinh®r)coshrds = sih2 — 3 sinh®2 ~ 12276
0

20. ds/dt = V9sin®t + 4 coss, f 6(9sin®t + 4 cos ) dt = 397
0

SECTION 9.2. Line Integrals Independent of Path, page 471

Purpose. Independence of path is a basic issue on line integrals, and we discuss it here
in full.
Main Content, Important Concepts

Definition of independence of path

Relation to gradient (Theorem 1), potential theory

Integration around closed curves

Work, conservative systems

Relation to exactness of differential forms

Comment on Content

We see that our text pursues three ideas by relating path independence to (1) gradients
(potentials), (ii) closed paths, and (iii) exactness of the form under the integral sign. The
complete proof of the latter needs Stokes's theorem, so here we leave a small gap to be
easily filled in Sec. 9.9.

SOLUTIONS TO PROBLEM SET 9.2, page 477

2. f = e"cosy. Answer: 1
4. f = sin xcos 2y. Answer: 1/V2 — 1
6. f = 3xy + z° Answer: 16
8. f = cosxz + siny. Answer: —1
10. PROJECT. (a) 2y* # x* from (6").
() r=1[t, bt], 0=t =1, represents the first part of the path. By integration, b/4
+ b%2. On the second part, r = [1, ], b = ¢ = 1. Integration gives 2(1 — b%)/3.
Equating the derivative of the sum of the two expressions to zero gives b = 1/V/2.
The corresponding maximum value of / is 1/(6V2) + 2/3 = 0.78452.
(c) The first partis y = x/corr = [1, 1/c], 0 =t = c. The integral over this por-
tion is ¢%4 + ¢/2. For the second portion r = [t, 1],¢ = ¢ = 1 the integral is
(1 — ¢®)i3. Forc = 1 we get I = 0.75, the same as in (b) for & = 1. This is the
maximum value of / for the present paths through (¢, 1) because the derivative
of I with respect to ¢ is positive for 0 = ¢ = 1.
12. Dependent on path
14. Independent of path, f = xyz, abc
16. Dependent on path
18. Dependent on path
20. Independent of path, f = zcoshy — x2, ¢ cosh b — a®
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SECTION 9.3. From Calculus: Double Integrals. Optional, page 478

Purpose. We need double integrals (and line integrals) in the next section and review
them here for completeness, suggesting that the student go on to the next section.

Comment
Definition, evaluation, and properties of double integrals
Some standard applications
Change of variables, Jacobians

SOLUTIONS TO PROBLEM SET 9.3, page 484
2. Integrate over y to get

[@+2ma=12
0
as before.
4. This order of integration is less practical because we have to split the integral into
two parts, :

o .3 3
[ | a*+ydyax+ rf &2 + y%) dy dx.
-3 =% 0"z
By integration over y we get from the first part

0 = 27 3
j 26+ D)+t | gp=21,
3 3 3

The other part gives 27, too. Answer: 54.

6. After the integration over y we have
. 1
fo %(ooszx - sin® x) dx = & + 1—1; :

8. We now have
2
ffzsinh(x«ry)dydx=f[cosh(2+x)—cosh2x]dx=;sinh4—sinh2.
0 x 0 :

10. After the integration over x we have

| oo 1
L;co ysmydy=-lz.
11—z 1-22
8
12. dydzdx = —
Lk L ey
14. 2b/3, h/3
4 nl2 .a 4 ﬂ'lzaa 4a
16.;;]’0 L(rcosB)rdrdO—?fo oo 040 = 2=

18. I, = bh*12, I, = Tb*h/48
20. I = Kb + @12, I, = h(a* - b*)(48(a — b))
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SECTION 9.4. Green’s Theorem in the Plane, page 485

Purpose. To state, prove, and apply Green's theorem in the plane, relating line and dou-
ble integrals.
Comment on the Role of Green’s Theorem in the Plane

This theorem is a special case of each of the two “big” integral theorems in this chapter,
Gauss’s and Stokes’s theorems (Secs. 9.7, 9.9), but we need it as the essential tool in th
proof of Stokes’s theorem. ’

The present theorem must not be confused with Green’s first and second theorems in
Sec. 9.8.

SOLUTIONS TO PROBLEM SET 9.4, page 490
2. 4
4. F = grad x%°. Answer: 0

o xiw

6ff (—cosy —sinx)dydx = —1 — 7 + wcos 1
0’0 ‘

3 3x

s.f[ (—coshx — sinhy)dydx = f(coshx — 2xcoshx — cosh3x)dx
1°x 1
= 2(cosh 3 — cosh 1) + sinh 1 — (14 sinh 3 + sinh 9)

1
10. frzxsinhzydydx=§(1 ~ sinh 2 — cosh2 + 2sinh 2) = 3(1 — e~?)
02

12. ' = [a(1 — cos1), asini),
A= —iazr [t = sinnysinz — (1 — cos )?] dr = 3ma®.
0

Here, the minus sign was needed because the sense of integration was such that the
region was to the right of the curve.

14, e® + 2¢ — 3 =~ 983

16. V?w = 0. Answer: 0

18. Vw = 20(x% + xy®) = 20xy(x® + y%) = 20r* cos Osin 6, so that we obtain

w2 .1 20 w2 5
[ [ 20r*cos 5in 6rdrdo =22 [ cos bsin 6o = .
o Yo 6 1y 3

20. PROJECT. We obtain divF in (11) if we take F = [Fs, —Fy]. Taking
n = [y, =x'] as in Example 4, we get from (1) the right side in (11),
dy dx
. =|F—=+F, —|ds=Fydy + 3
(F+n) ds (Fz =+ Fy ds) ds = Fy dy + F, dx
Formula (12) follows from the explanation of (1').
Furthermore, div F = 7 — 3 = 4 times the area of the disk of radius 2 gives 167
For the line integral in (11) we need
s T s s

_ i . 5 pi S S s R N
r—[2¢os2,2sm2:|. r [ smz,cosz]. n=[y, —x]
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This gives
dr
Fends = (Txy" + 3yx")ds = 14 cos® — — ~) ds =
i n fc(xy yx') J;( cos® 2 6 sin® 2)ds 1677
In (12) we have curl F = 0 and

Fer' = ~l4cos%sin§ - 6cos%siu% = —10sin s,

which gives zero upon integration from 0 to 4.

SECTION 9.5. Surfaces for Surface Integrals, page 491

Purpose. The section heading indicates that we are dealing with a tool in surface inte-
grals, and we concentrate our discussion accordingly.

Main Content, Important Concepts

Parametric surface representation (2) (see also Fig. 221)
Surface normal vector N, unit surface normal vector n

Short Courses. Discuss (2) and (4) and a simple example.

Comments on Text and Problems

The student should realize and understand that the present parametric representations are
the two-dimensional analog of parametric curve representations.

Problems 1-10 concern some standard surfaces of interest in applications. We shall
need only a few of these surfaces, but these problems should help students grasp the idea
of a parametric representation and see the relation to representations (1). Moreover, it may
be good to collect surfaces of practical interest in one place for possible reference.

SOLUTIONS TO PROBLEM SET 9.5, page 495

2. uk; note that this normal vector becomes the zero vector at the origin, where (4) is
violated.
4. z = x* + y? circles, parabolas, [-2u® cosv, —2u®sinv, u]
6. x*la® + y*Ib? + Z%c? = 1, cllipses,
[becos®veosu, accos’vsinu,  abcosvsinv]
R. ¥%a® + y2Ih? — 7%c% 4+ 1 = 0, ellipses, hyperbolas,
[~besinh®ucosv,  —acsinh®usinv,  ab cosh u sinh u)

10. z = arc tan (y/x), helices, horizontal straight lines, [sinv, —cosv, u]
12. [u, v, u], [—1,0,1]
14, [2cosu, 3sinu,v],[Bcosu, 2sinu, 0]

16. [2cosvcosu, 1+ 2cosvsinu, —2 + 2sinv],

[4cosucos®v, 4sinucos®v, 4 sinvcosuv]

18. [2ucosv, usinv, 2u],[-2ucosv, =—4usinv, 2ul
20. At the origin, in Prob. 3 because of the apex of the cone, in the other problems be-
cause of the representation.
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22. Because r,, and r, are tangent to the coordinate curves v = const and u = const, re-
spectively.

24. (1622 + )? + 812212 [4x, y, 92)

26. (1 + 25x% + 25y*)~V2 [5y, 5x, —1]

28. 3+ 2 + 25V [x, —y, 2]

30. PROJECT. (a) r,(P) and r (P) span T(P). r* varies over T(P). The vanishing of
the scalar triple product implies that r* — r(P) lies in the tangent plane T(P).
(b) Geometrically, the vanishing of the dot product means that r* — r(P) must be

perpendicular to Vg, which is a normal vector of S at P.

(¢) Geometrically, f.(P) and fy(P) span T(P), so that for any choice of x*, y* the
point (x*, y*, z¥) lies in T(P). Also, x* = x, y* = ¥ gives z* = z, so that T(P)
passes through P, as it should.

SECTION 9.6. Surface Integrals, page 496

Purpose. We define and discuss surface integrals with and without taking into account
surface orientations. ’

Main Content
Surface integrals (3) = (4) = (6)
Change of orientation (Theorem 1)
Integrals (7) without regard to orientation; also (1 1)

Comments on Content

The right side of (3) shows that we need only N but not the corresponding unit vector n.
An orientation results automatically from the choice of a surface representation, which
determines r,, and r, and thus N.
The existence of nonorientable surfaces is interesting, but is not needed in our further
work.

SOLUTIONS TO PROBLEM SET 9.6, page 503
2r=[um v, 1-u—-v)0=u=1-v,0=v=1,Fn=[> ¢ 1]
N =11, 1, 1] (which is obvious without calculation), F(r)* N = u® + ¢* + 1.
Answer: e — 17/12 =~ 1.30
4. F(r) = [sinh (cosvsinv), 0, cos*v], N = [0, —cosv, —sin v], F(r)*N =
—cos® v sin v. Answer: —16/5
6. r=[cosu, 3sinu, v],F(r)=[3sin®u, cos®u, v, N=[Lcosu, sing, 0],
F(r)*N = cos® usinu + fgcos usin®u, 0 = u = w2, 0= v = h. Answer: 17h/64
8. N = [coshu, —sinhu, 0], F(r)*N = 2 cosh® u sinh u. Answer: 4 cosh®?2 — 4
10. F(r) = [u®cos®v, u®sin®v, %], N = [3sinv, —3cosv, ul, F(r)*N =
9uv® + 3u*(cos® v sin v — cos v sin® v). The integral of 9uw? is 127r°. The integral
of the other term is zero. Answer: 127
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12.x=u,y=v, G=cosu+sinv, N =V3 and
1 1-u :
ff (cosu + sinv)dvdu = 2 — cos1 — sin 1.
0’0

Answer: (2 — cos 1 — sin 1)\/5.
14. N=[5cosu, Ssinu, 0], |N| =35, G(r)[N| = 5 - 625(cos* u + sin* u). Integration
over u gives 187507/8. Integration over v then gives-the answer 937.57 = 2945,
16. N = [~2ucosv, —2usinv, u],|N| = uV5, GE)N| = V5u® — 4u®). Answer:
—-5V5mi3

20. I, = LI[%—(x -y + zz] odA

22. hw(l + K%/6) )
24, Proof for a lamina S of denasity o. Choosc coordinates so that A is the ¢-axis and B
is the line x = k in the xz-plane. Then

IB=LJ’[(x—k)2+y2]0dA=J;f[xz—2kx+k2+y2]adA

= (x®+y)odA — 2k | |xodA + k2| |odA
[Jo+r [/ IJ
=1, — 2k-0 + kM,
the second integral being zero because it is the first moment of the mass about an
axis through the center of gravity.
For a mass distributed in a region in space the idea of proof is the same.
26. TEAM PROJECT. (a) Use dr = r, du + r,dv. This gives (13) and (14) because
dredr = ryor, du® + 2r v, dudy + r,*r, dv?
(b) E, F, G appear if you express everything in terms of dot products. In the nu-
merator,
asb = (r,g'+ r,h")+(r,p'+ r,q") = Eg'p" + F&'q' + h'p") + Gh'q’
and similarly in the denominator.
(c) This follows by Lagrange’s identity (Problem Set 8.3),
e X b = (1 X )0 (ry X 1) = (@, 1)@, *T,) — (Xy* 1)
= FEG — F?
(d) r=[ucosv, wusinv]r,=[cosv, sinv],r,*r, =cos’v + sin®v = 1, etc.

(e) By straightforward calculation £ = (a + b cos v)?, F = 0 (the coordinate curves
on the torus are orthogonal!), and G = b Hence, as expected,

VEG — F? = b(a + bcosv).

SECTION 9.7. Triple Integrals. Divergence Theorem of Gauss, page 505

Purpose, Content

Proof and application of the first “big” integral theorem in this chapter, Gauss’s theorem,
preceded by a short discussion of triple integrals (probably known to most students from
calculus).

http://librosysolucionarios.net

SV



Instructor's Manual 143

Comment on Proof
The proof is simple:

1. Cut (2) into three components. Take the third, (6).

aF '
2. On the left, integrate f f f -523 dz dx dy over z to get

© f f [Fs(upper surface) — F(lower surface)] dx dy
integrated over the projection R of the region in the xy-plane (Fig. 231).

3. Show that the right side of (6) equals (9). Since the third component of n is cos ¥,
the right side is

[[Facos yaa = [[Fyaxay

- f f F(upper) dx dy — f f Fy(lower) dx dy,

where minus comes from cos y < 0 in Fig. 231, lower surface. This is the proof.
Everything else is (necessary) accessory.

SOLUTIONS TO PROBLEM SET 9.7, page 509

2. Integration over x, y, z gives successively —e "% 4 g~¥=F _p,=1-z 4 ¢ e
2073 — g2 - 2071 41,
4. In polar coordinates, o = r%3. The integral is

f_: szjj-;-r"drdedz = 4867 ~ 1527.

6. We may integrate inthe order 0 = 7 S, 0Sy=s1—-x2 0 S x = 1. This gives
2x?, then 2x*(1 — x*), and finally the answer 4/15.

8. abc(b® + )12 10. 7h%10 12. 8ma®N15

14. divF = e + e¥ + ¢, Integration over x gives 2 sinh 1 + 2¢¥ + 2¢%. Integration
over y then gives 4 sinh 1 + 4sinh 1 + 4¢® Integration over z gives the answer
24 sinh 1.

16. divF = —sinz. Integration over z gives cos2 — 1. Multiplication by the cross-
sectional area 9 gives the answer 9m(cos 2 — 1) = —40.04.

18. divF = 4x + y + arsin 7z. Integration over z from 0 to 1 — ¢ — y gives
1+ (1~ x~y)dx +y) — cos [w(l - x — ¥)]. Then integration over y from 0 to
1 — x gives
7 F 1 7 2+£ s 1 . i ]
3 2x 2x 6x "sm[ﬂ( x)].

Integration over x from 0 to 1 now gives the answer 17/24 — 2/72.

SECTION 9.8. Further Applications of the Divergence Theorem, page 510

Purpose. To represent the divergence free of coordinates (Example 1), to show that
it measures the source intensity (Example 2), to use Gauss’s theorem for deriving the
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heat equation governing heat flow in a region, and to obtain basic properties of harmonic
functions.

Main Content, Important Concepts

Divergence as the limit of a surface integral; see (3)
Total flow (4) out of a region
Heat equation (7) (to be discussed further in Chap. 11)
Properties of harmonic functions (Theorems 1-3)
Green’s formulas (10), (11)

Short Courses. This section can be omitted.

Comments on (3)

Equation (3) is sometimes used as a definition of the divergence, giving independence of
the choice of coordinates immediately. Also, Gauss’s theorem follows more readily, but
since its proof is simple (see Sec. 9.7. in this Manual), that savings is marginal. Also, it
seems that to the student our Example 2 in Sec. 8.10 motivates the divergence at least as
well (and without integrals) as (3) does for a beginner.

SOLUTIONS TO PROBLEM SET 9.8, page 514

2.r = [2cos@, 2sinf] = N, n = [cosf, sin6)], f = d4cos>@ — 4sin® 6,
aflon = Vfen = 4 cos® § — 4 sin® @ = 4 cos 26 gives the integral zero. The inte-
grals over the disks (z = 0 and z = 1) are zero, too, since Vf has no component in
z-direction (the normal direction of those disks).

4. divF = 10. Answer: 10 times the volume 7r?h/3 of a cone of base radius » and
height A, thus 907

6. divF = 10 + 3z% Hence

f_llf;f:(w + 3% dzdydx = J‘-:J:z(my + Y3 dydx =

115 15 83
Fixioatl o s 4 = —,
f_l( 1° rgt ) 32
8. divF = x + y. (a) In polar coordinates (cylindrical coordinates)

128

f:j:f:/;(rcosﬂ-f- r sin O)r dr ddz = f:%zs’zdz =—.

(b) In Cartesian coordinates,

ff_t_ L";?‘(x+y)dydxdz=ff;’;(x Ty I8 _;.(Z_xz)) o
=J:(0+'§'Zm)dz=ll_2:'

10. r = a,cos ¢ = 1; V = 3 a(dma?)

12. TEAM PROJECT. (a) Put f = g in (10).
(b) Use (a).
(¢) Use (11).
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(d) h = f — g is harmonic and dh/dn = 0 on S. Thus h = const in T by (b).
(e) Use div grad f = V2f.

SECTION 9.9. Stokes’s Theorem, page 515
Purpose. To prove, explain, and apply Stokes's theorem, relating line and surface inte-
grals.
Main Content
Formula (2) = (3)
Further interpretation of the curl (see also Sec. 8.11)
Path independence of line integrals (leftover from Sec. 9.2)

Comment on Orientation
Since the choice of right-handed or left-handed coordinates is essential to the curl (Sec.
8.11), surface orientation becomes essential here (Fig. 232).

Comment on Proof
The proof is simple:
1. Cut (3) into components. Take the first, (4).
2. Cast the left side of (4) by using Ny, Nj into the form (8).

3. Transform the right side of (4) by Green’s theorem into a double integral and show
equality with the integral obtained on the left.

SOLUTIONS TO PROBLEM SET 9.9, page 520
2. curll F = (—2x — 2y)k,

Vayt 2
: 2
rf (-2x = 2y)dxdy = [ ~4Va - yidy = -2
0 “—Va-y* 0 3

Line integral: Over the x-axis from —2 to 2 we obtain

and over the semicircler = [2cost, 2sins, 0),thusr’ =[-2sint, 2coss, 0],
we obtain

f Fa)or' di = f [(4 cos? )(—2 sin 1) — (4 sin® (2 cos 1) dt
0 0

w T

8 6
=—cos’t| — —sin®t )
3 . 3 o 3

The verifications in Probs. 1-6 are supposed to familiarize the student more thor-
oughly with the nature and significance of Stokes’s theorem.

4. curl F = —cos 2z, S:r = [cosu, sinw, v],N = [cosu, sinu, 0]; thus

J:nf:—coshsinududv = —1.

http://librosysolucionarios.net




146

Instructor’s Manual

Line integral: The two circular arcs contribute nothing, as can be seen from F, whose
first two components are zero. From (—1, 0, 0) straight up to (—1, 0, 7/4) we get
w4
f —1-cos2zdz = —3.
0

Similarly, —3 is obtained for the straight-line segment from (1, 0, #/4) to (1, 0, 0).
6. cul F = [~2z, —2x, —2y), §: r = [cosvcosu, cosvsinu, 1 + sinv],
OSusw-m2=v=0N=][cos’v,cosu, cos®vsinu, cosuv sinv]

0 -
f I(—cosavsm2u—2cosucos2v(1+sinv)-oosvsinusin20)dua‘v
-m2°0

0
=f —4cos®vsinvdy =$§.
— 2

Verification: The line integral over the horizontal semicircle equals *4/3, as in Prob.
5. Over the vertical semicircle it is zero because r = [t, 0, VI —¢2],
v =[1, 0, =t/V1 —¢]; on the semicircle, F = [0, 1 ~ 2, 2], so that the
integrand is t%/V'1 — ¢2, and the integral is zero, as claimed.

8. curl F = (1 — 4y)k, N = k. Hence, writing X = Va? — x2, we have

f_a j_xx(l = dy)dydx = f 2X dx = 24® arc sin 1 = ma®.

10. curl F = [1,0, =1, N = [-1,0, 1], (curl F)*n = V2. Multiplication by the area
97V2 gives the answer —18.

12. curl F = 0. Answer: O

14. r = [cos 6, sin 6, 0]. Hence

Fer' =[-sinf, cos@, O0]*[—sin6, cos6, 0] = 1. Answer: 2m.

SOLUTIONS TO CHAPTER 9 REVIEW, page 521

16. —325/3 by exactness from f = (x* — 2y*V3, or by integration from
r=[@4-T7t 2+3,r =[-7, 3]

1
j (4 = 70%(=7) — 22 + 3)* - 3) dt = —%.
i}
18. Notexact, C:r =[x, 202 x|, r' =[1, 4x, 11 F(r) = [2x®, x, 0] Hence
[ + ax?yar =10
1 6

20. Not exact. By Green’s theorem in the plane, using polar coordinates, we obtain
wr 2
Jj f 3r%rdrdé = 24m. Answer: 247
0 "o
22. curl F = [~1, =1, S5}, N=%[-1, 0, 1], (curlF)*n = +6/V2. The area of

the ellipse is 7 - 2 - 2V2. Answer: 247 = 75.4
24. Exact, e — ¢! = 2sinh 1 from f = €** + cosh 2y
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26. By Green’s theorem in the plane,
2 % 2
| J‘(2ye‘——)dydz=f(4e’-xln2—e’)dx
0“1 Yy 0
=3¢2~2In2 - 3,

Answer: +(3e®> — 2In2 — 3).

28. Not exact, § sinh 3 + &= 10.59

30. Not exact, r' = [-sint, coss, 3], F(r)

= [cos®t, sin®t, sin®fcost],
F(r)er' = —cos® rsmt+4sm tcost. Answer: 1

- L 7

32.M—f_lfz‘fdydx 21 x =0, y= n f_;-ny dydx—9
197 da

o s = _ T : oSk

4. M = ma®l2, ¥ = 0 (symmetry), y = i }; Lrem O rdrdb ok

w2 .a
%.M=[ [rdrdd=mB, %=MG5 = 8a5m, 5= 8alSw
0 0

38. r=[v, 2cosu, 2sinu), F(r) = [sinv, 2sin u, 2cosul,
N=1[0, 2cosu, 2sinu], F(r)*N = 8 cos u sin u. Answer: 4
40. div F = 3(x® + y* + z?). Hence in Cartesian coordinates,

Wrme \f“‘ A
3
ff 3(x=+y e s
4-1'

In spherical coordinates, with dx dy dz = r* sin ¢ dr d¢ db,
3847
f ff3r2r’drsm¢d¢do X
42. N=1[2, -1, OLF@ = [ 0, ve¥], Fr)*N = 2¢**. Answer: 6 sinh 2

) 2
44. divF = 2z, szf rrdrdOdz = 16w
o Joo
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PART C. FOURIER ANALYSIS AND PARTIAL

DIFFERENTIAL EQUATIONS

CHAPTER 10 Fourier Series, Integrals, and Transforms

148

Change

The presentation was streamlined by moving half-range expansions into the section on
even and odd functions.

SECTION 10.1. Periodic Functions. Trigonometric Series, page 527

Purpose. To show what a Fourier series will look like; in Problem Set 10.1, to give a
first impression of what kind of functions will occur in this chapter.

Basic Concepts
Periodic function
Trigonometric system
Trigonometric series

Comment on Footnote 1

Fourier series were used in special problems much earlier by Daniel Bernoulli (1700—
1782) in 1748 (vibrating string, Sec. 11.3) and Euler (Sec. 2.6) in 1754 (Euler formulas,
Sec. 10.2). Fourier's book of 1822 became the source of many mathematical methods in
classical mathematical physics. Furthermore, the surprising fact that Fourier series, whose
terms are continuous functions, may represent discontinuous functions led to a reflection
on, and generalization of, the concept of a function in general. Hence the book is a land-
mark in both pure and applied mathematics. [That surprising fact also led to a controversy
between Euler and D. Bernoulli over the question of whether the two types of solution of
the vibrating string problem (Secs. 11.3 and 11.4) are identical; for details, see E. T. Bell,
The Development of Mathematics, New York: McGraw-Hill, 1940, p. 482.] A mathe-
matical theory of Fourier series was started by Peter Gustav Lejeune Dirichlet (1805—
1859) of Berlin in 1829. The concept of the Riemann integral also resulted from work on
Fourier series. Later on, these series became the model case in the theory of orthogonal
functions (Sec. 4.7). An English translation of Fourier’s book was published by Dover
Publications in 1955.

SOLUTIONS TO PROBLEM SET 10.1, page 528

2. 27min, 2@n, k, k, k/n, k/n

4. True when n = 1. Induction hypothesis f(x + np) = f(x). Now set x + np = z. Then
fx+ (n + p) = f(z + p) = f(@) = f(x).

6. f(x + p) = f(x) implies flax + p) = f(alx + (pla)]) = f(ax) or glx + (pla)] =
g(x), where g(x) = f(ax). Thus g(x) has period p/a. This proves the first statement,
and the other statement follows by setting a = 1/b.

8. A common source of errors here and throughout this chapter results from the fact
that the student often does not pay attention to the interval on which the function is
given, notably whether itis ~m S x = wor0 = x = 27
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Note that the first of these is preferable because it shows more immediately whether
a function is odd or even (or neither).

20. CAS PROJECT. This “experimental approach” to trigonometric and Fourier series

should help the student obtain a feeling for the kind of series to expect in practice,
and for the kind and quality of convergence, depending on continuity properties of
the sum of the series. '

Convergence is best for the first of the three series because its sum x2 is continu-
ous—note that the coefficients are proportional to 1/n2, whereas for the other two se-
ries they are only proportional to 1/n. The second series has the square wave in Prob.
15 as its sum. The third series has the sum f(x) = x. Hopefully it will puzzle the stu-
dent by its poor convergence behavior (and the Gibbs phenomenon) near the discon-
tinuity points at x = 7, where it converges to the mean of the left-hand and right-
hand limits, which is typical (see Sec. 10.2).

SECTION 10.2. Fourier Series, page 529

Purpose. To derive the Euler formulas (6) for the coefficients of a Fourier series (7) of
a given function of period 277, using the key property of the orthogonality of the
trigonometric system.

Main Content, Important Concepts

Euler formulas (6) for Fourier coefficients (period 27)
Orthogonality of the trigonometric system
Convergence and sum of a Fourier series (Theorem 1)

Comment on Notation
If we write a,/2 instead of ag in (1), we must do the same in (6a) and see that (6a) then
becomes (6b) with n = 0. This is merely a small notational convenience (but may be a
source of confusion to poorer students).
Comment on Fourier Series
Whereas their theory is quite involved, practical applications are simple, once the student
has become used to evaluating integrals in (6) that depend on n.

Figure 238 should help students understand why and how a series of continuous terms
can have a discontinuous sum.

SOLUTIONS TO PROBLEM SET 10.2, page 536

1 1 | 1
. — 4 — S - g + o - + ¢ e
2 (cos X 3 cos 3x 5 cos 5x )

1 2 1 1 2
+ —|sinx + —sin2x + —sin3x + —sin 5x + —sin6x + - - -
T 2 3 5 6

2 1 1 2 1
4. ——|cosx — —cos3x+ —cosSx— + | + = |sin2x + —sin6x + - - -
ar 3 5 m 3

1 1
6. w—Z(sinx+—~2-sin2x+-3-sin3x+---)
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2 1 1
8. 4; +4(cosx+2-0082x+§-cos3x+'~)

1 1
—4w(sinx+5sin2x+§sin3x + )

T 4 1 1
10. > e cosx + —cos3x + ——cosSx 4+ - -+

9 25
. 1 . 1 L
+2(smx«;sm2x+§sme—-Zm4x+——'-)
1 1 1 1
12.—:—;(cosx—gcos3x+§cos5x—+~~-
—l(sinx+Esin2x+-l—sin3x+lsin5x+-z—sin6x+---)
T 2 3 5 6
4 (. 1 . L[
14.;(smx—;sm3x+gsm5x—+---)
w2 4 2 4 2 4
16.?—;oosx—?cos2x+?—wc053x+icos4x——sqcosSx+---

18. The student should be encouraged to choose any other integrals of products of cosines
and sines. The point is to realize the importance of the interval in connection with
orthogonality. The integral suggested in the problem has the value sina — 2 sin 7a.
The figure suggests orthogonality for a = r, as expected.

-2 -1 T 27 @
-05f -

-1 )=

Section 10.2. Integral in Problem 18

SECTION 10.3. Functions of Any Period p = 2L, page 537

Purpose. Transition from period 27 to period 2L (a notation practical later), simply by a
linear transformation on the x-axis, giving the Fourier series (1) with coefficients (2).

SOLUTIONS TO PROBLEM SET 10.3, page 540
2. —1 times the answer to Prob. 1

b1 = foos ™4 Looe 3™ o L 5™ ...
2 e 2 9 2 25 2

63+._4_ ___l. 2 +l 3 e e
B 3 7r2 COs X 4008 mX 9008 X
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|-

2 1 1
+— (coswa+ 9 —cos 6mrx + _2?‘:03 107x + - )

25

:]

\-/

4 1
0 = (cos X + —cos 3mx + - cosSmx + -

2 1
+— (smwx + = sin37mx + - )
T 3
6\ . ! :
12. 1-? sin7x = {7~ 23 3| sin27x + 33 5| sin3wx — + - -
Vi
14. b,,=0.ao=—°.
T
1/200
Gn =100 [ Vqcos 1007t cos 100nmt di
-1/200
1/200 1/200
=50V [ cos 100(n + Lymedt + 50V, | cos 100(n ~ 1ymtar,
-1/200 -1/200
V, Vo
—2 4 =2 cos 1007t
™ 2
2V [ 1 1 1
+ — |— - — o + e
e (1 3cos200m D 5cos400m 5. 7oos6007rl )
16. In Prob. 7, Sec. 10.2, write ¢ for x and
z 1
}(I)=tz=%—4(cost—zcos2t+ —) .

Now set t = 7x to get f(r) = 72x2, which shows that the series should be multiplied
by 3/7® 1o get that of

12 1
f(x) = 322 - 1-?(cos'rrx—zcos21rx+- )

20. CAS PROJECT. The figure shows s.(x).

-1 0.5

-2 |-

Section 10.3. Gibbs phenomenon in CAS Project 20

SECTION 10.4. Even and Odd Functions. Half-Range Expansions,
page 541
Purpose. 1. To show that a Fourier series of an even function (an odd function) has

only cosine terms (only sine terms), so that unnecessary work (and sources of errors!)
is avoided.

http://librosysolucionarios.net

e e e . s b 5




152

Instructor’s Manual

2. To represent a function f(x) by a Fourier cosine series or by a Fourier sine series (of
period 2L) if f(x) is given on an interval 0 = x = L only, which is half the interval of
periodicity—hence the name “half-range.”

Comment

Such half-range expansions occur in vibrational problems, heat problems, etc., as will be
shown in Chap. 11.

SOLUTIONS TO PROBLEM SET 10.4, page 546

2. Even: |4, e*”, sin® x, x sin x, e, Odd: x cos x.

4. Neither even nor odd. The problem shows that the student must always pay careful
attention to the interval on which the function is given because for different func-
tions, different intervals are practical.

6. Even 8. Neither even nor odd

10. PROJECT. (a) Sums and products of even functions are even. Sums of odd func-
tions are odd. Products of odd functions are odd (even) if the number of their factors
is odd (even). Products of an even times and odd function are odd. This is important
in connection with the integrands in the Euler formulas for the Fourier coefficients.
Absolute values of odd functions are even. f(x) + f(—x) is even, f(x) — f(—x) is
odd.

1 1 x

k3‘= + . - + .
(b) e cosh kx smhkx,l_x = ]._xz,funhcrmorc,

sin(x + k) = sinkcosx + cos ksinx, .
cosh (x + k) = cosh k cosh x + sinh k sinh x.

(€) f(=x) = —f(x) and f(—x) = f(x) together imply f = 0.
(d) cos® x is even, sin® x is odd. The Fourier series are the familiar identitics

cos® x = 2cos x + § cos 3x and sin® x = § sinx — 4 sin 3x.

8 1 1
S - — +-.. —— +.-.
12. & ﬂ(cosx 9cos3x+ 250(35.: )

4 1 1 1
, — — a—— ——— + e 1 — 4o
14 (cosx+ 9oos3x+ 25 cos 5x ) + 2(smx+ 3 sin 3x )

L: o
16. 36[-Fsmx—?sm2x+—3—§m3x—+...]

18. Setx = 7rto get

ol el gda g L
e = ;

The result was first obtained by Euler.
20. The even periodic extension has the Fourier series f(x) = 1. For the odd half-range
expansion we obtain

1 1
i(sinE +—sin-3ﬂ+ -sinm+“ ) 3
o L 3 L 5 L
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22. The cosine series is

L"_4Lz mx 1 2nx+l Imx 1 41rx+
I T R R S

Its Fourier coefficients are proportional to 1/n?, reflecting the fact that its sum is con-
tinuous. The sine series is

212 4\  ax 1 . 27x 1 4 . 3mx
S l__z. Slﬂ'——“_sul—‘—“‘ Ccp— RN e
ar L L 2 L
1 | 47x
- N R
7 Sin 3 ]

Its coefficients are only proportional to 1/n, reflecting the fact that its sum is discon-
tinuous.
24. The cosine series is

L} eI [(4 amx 1 2mx 4 1 37x
Tt Tl es—+Fcos T 4 [ — ) cos 2™ ...
R [(nz )°°s L B T\3aE T )

Its sum is continuous. Its coefficients go to zero faster than those of the sine series
2 [( ™ 6 ) . X (1:'2 6 ) . 2mx
S I\ " F)Isn——|— - —= sm—L—+

w 1 1? L 2 22
f-is' 37rx_+.__
T

whose sum is discontinuous.

SECTION 10.5. Complex Fourier Series. Optional, page 547

Purpose. To show that the formula for e*? or direct derivation leads to the complex Fourier
series in which complex exponential functions (instead of cosine and sine) appear. This
is interesting, but will not be needed in our further work, so that we can leave it optional.

Short Courses. Sections 10.5-10.11 can be omitted.

SOLUTIONS TO PROBLEM SET 10.5, page 549

1

2 : 1 ) = .
AR o (2n+1)ix N i (2n+ )iz
2 2 HmyT TR o L
n==-co T 20
L o (=0,
6.?-+22 (nz) e 8. See Prob. 6, Sec. 10.2.
a0

10. PROJECT. When n = m, the integrand of the integral on the right is € = 1, so that
the integral equals 27. This gives

) | 1@ ax = 27,
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provided the other integrals are zero, which is true by (5),

wei(n—m): dx = ; (ei(u—m)nr i e—‘(n—m)ﬁ')
5 i(n ~ m)
: 2i si =0
0E= 1) isin(n — m)mw = 0.

Now writing n for m in (A) gives the coefficient formula in (8).

SECTION 10.6. Forced Oscillations, page 550

Purpose. To show that mechanical or electrical systems with periodic but nonsinusoidal
input may respond predominantly to one of the infinitely many terms in the Fourier se-
ries of the input, giving an unexpected output; sea Fig. 25?2, where the ontpnt frequency
is essentially five times that of the input.

Short Courses. Sections 10.5-10.11 can be omitted.

SOLUTIONS TO PROBLEM SET 10.6, page 552

2. r'(t) is given by the sine series in Example 1, Sec. 10.2, with k = —1. The new C,
is n times the old, so that Cj is so large that the output is practically a cosine vibra-
tion having five times the input frequency. Replacement of the right side by its inte-
gral (with (0) = 0) also produces an increase of Cs.

. 1 1
4, y = C;cos wt + Cysin af + -w;—_—a;cosar B mcosﬁt

6. y-= CICOS(I)f'*' Czsinwt+ Blsmf e BgSin3l + BsSiﬂSf, where

@ 0s 09 | 1.1 20 29 l 31 | 40 | 49 IS.I | 6.0 | 8.0
Bi=1a*=1) |-1.33 |-53 48 033 | 013 | 012 | 007 | 004]004 003 [0.02
By = 1w —9) [—0013 | -0.014 | -0.014 | =002 |-0.19 | 018 | 002 | 001001 [0.004 | C.002
By = 1/25(ws® — 25) |—0.002 | —0.002 | =0.002 | ~0.002 | ~0.002 | ~0.003 | ~0.004 |—0.04 | 0.04 | 0.004 | 0.001

/27 is the frequency of the free vibration. If @ comes close to 1, 3, or 5 in one of
e tenus of the input 7(¢), then the output corresponding to that term becomes com-
paratively large in amplitude, B, if w is near 1, next B if @ is near 3, and finally Bj
if w is near 5. The effect would even be stronger had we chosen all coefficients on
the right equal to 1, instead of 1/n® as in the partial sum of a Fourier series.

1

+
1 3 — 3) cos 2t

1
8. y= Cycos wt + C, sin wt + SR
___..}__—__... 41 4+ —
3-5(” — 16) O
10. The situation is the same as that in Fig. 57 in Sec. 2.11.

12. y = Ajcost + Bysint + Az cos 31 + Basin3t + « -+ -
where A, = —nch,/D, B, = (1 - n®b,/D, D= (1 —n??+ n%?,
by =1,by=0,bs=—8§,by=0,bs=25,"""
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4. I =3 (A, cosnt + B, sinnr),
=1
_ 80(10 — nzz _
mn*D, ' """ nmD,
Ap=0,B, =0 (neven), D, = (10 — n*? + 100 n hence
1= 1.266 cos ¢t + 1.406 sin ¢ + 0.003 cos 3t + 0.094 sin 3t
= 0.006 cos 5t + 0.019 sin 5¢ — 0.003 cos 7¢ + 0.006 sin 7¢
— 0.002 cos 9¢ + 0.002 sin 9 — 0.001 cos 11z + 0.001 sin 11t + - -

Ay

(n odd),

SECTION 10.7. Approximation by Trigonometric Polynomials, page 553

Purpose. We show how to find “best” approximations of a given function by trigono-
metric polynomials of a given degree N.

Important Concepts
Trigonometric polynomial
Square error
Parseval’s identity

“Short Courses. Sections 10.5-10.11 can be omitted.

Comment on Quality of Approximation

This quality can be measured in many ways. Particularly important are (i) the absolute
value of the maximum deviation over a given interval, and (ii) the mean square error con-
sidered here. See Ref. [9] in Appendix 1.

SOLUTIONS TO PROBLEM SET 10.7, page 556

4 1 1 1
2.1——- cosr+—cos§x+—-—cos$x+~-+-—cosN,_. if N'is odd;
- N2

2 9 25
for even N, the last term is —(4/ar(N — 1)?) cos (N — 1)x.
2 7 42 1 1
T e e +_+~+"'.- s U s U y UL s U .
E* 3 > = (1 FT )'0075 0.075, 0.012, 0.012, 0.0037
o’ 1 1 (=12
i - s i + — - :
4. F 3 4 (cosx 400521 9cos3Jr + N cosNx)
E* = 4,14, 1.00, 0.38, 0.18, 0.10
6 % (sinx -+ sin3x + — sin 57 — +
» 5 (sinx = 5 sin 55 sin 5x :
16 1 1
E* = ‘12—3 - '—w— (l + 3;' “+ 5—‘ + - '); 0.075, 0.075, 0.012, 0.012, 0.0037
PRI % W8 A S $EDTE o
- 8 sinx — 73 sin2x + 5 sin 3x & sinNx.

The integral is 3020/945 = 3.196; E* = 0.054, 0.0054, 0.001 1, 0.00032, 0.00012.
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10. CAS PROJECT. (a) In part because of the Gibbs phenomenon (see Problem Set
10.3).
(b) For the continuous function (Prob. 4), E* equals (rounded)

4.14, 1.00, 0.38, 0.18, 0.10, 0.060, 0.039, 0.027, 0.019, 0.014, 0.011, 0.0086,
0.0068, 0.0055, 0.0045, 0.0037, - - -.

For the discontinuous function (Example 1 in the text), E* equals
8.10, 4.96, 3.57, 2.78, 2.28, 1.93, 1.67, 1.48, 1.32, 1.20,- - -.

It is typical that in the discontinuous case, the Fourier coefficients arc only pro-
portional to 1/n, whereas in continuous cases they are proportional to 1/n® or 1/n®,
etc.

In Prob. 5 the initial error E* is very large (863), and E* decreases very slowly;
it is still 1.53 for 800 terms and 0.408 for 3000 terms.

42 1 1 1
. e Rl ot EADRI] [RPEgRtip s i i
12. (l + 9 + % ) p 24 by Parseval’s identity
14, The Fourier series is cos® x = 2 + 4 cos 2x and (8) gives

w

s f cos* x dx.

i
4 A

1
2

SECTION 10.8. Fourier Integrals, page 557

Purpose. Beginning in this section, we show how ideas from Fourier series can be ex-
tended to nonperiodic functions defined on the real line, leading to integrals instead of
series.

Main Content, Important Concepts
Fourier integral (5)
Existence Theorem 1
Fourier cosine integral, Fourier sine integral, (10)-(13)
Application to integration
Short Courses. Sections 10.5-10.11 can be omitted.

SOLUTIONS TO PROBLEM SET 10.8, page 563
2. The result suggests to consider f(x) = -g— if0<x<1land f(x) =0ifx> 1.

From (10) we obtain A(w) = % , and by inserting this into (11) the result follows.

™

1—w2 %73
6. Taking f(x) = me *cosx (x > 0), we obtain from (12)

4. Alw) =
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B=2f e~" cos v sin wu dv
0

= [ e sinw + Dy +f ™" sin Gv < 1)v dv.
0 0

Here we used (11) in Appendix A3.1. Integration by parts yields

_ w+ 1 w-—1 '2w3__
T+ w+12 1+w-12 w'44’

From this and (13) the result follows.

2 2\ . 2 Cos xw
8.-;_,; [(l—?)smw+wcosw] = dw

4 (* COS xW
10. -—J (sin aw — aw cos aw) —5— dw
w0 w

6 (F 2+w?
wh T s dn

2. 2
14. B(w) = — f U sin wo dv = — (sin aw — aw cos aw), so that the answer is
KO W

3 sin xw dw.

2 f"’sin aw — aw cos aw
Yo w

2 7w — sinww
16. — f —————sinxwdw
™ Y9 W

2 ("w—et(wcosw + sinw) |
18. ;J; 1+ sin xw dw

20. PROJECT. (a) Formula (al): Setting wa = p, we have from (11)

" o _ = £ ﬂ’-
flax) _LA(w)cosaxwdw J;A(a)cosxp pal

If we again write w instead of P, we obtain (al),
Formula (a2): From (12) with f(v) replaced by vf(v) we have

2 ® dA
B*(W) = ;-’; vf(v) sin wu dy = -E

where the last equality follows from (10).
Formula (a3) follows by differentiating (10) twice with respect to w,

2 o
% = - % J; f*(v) cos wo dv, f*@) = v3f().

(b) In Prob. 7 we have

2
A=—wlsinw
o
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Hence by differentiating twice,

1

2
A" = = 2w 3sinw — 2w 2cos w — w™ ! sin w).

By (a3) we now get the result, as before,
xzf(x)—lfm -—i+-!— sinw+icos cos xw d
= 3 = fa e 75 w xwdw.

(c) A(w) = (2 sin aw)/mw; see Prob. 7. By differentiation,

. 2

2 [acosaw  sinaw
w W

This agrees with the answer to Prob. 14.
(d) The derivation of the following formulas is similar to that of (al)—(a3).

1 ™ (w) .
@n fen = L B (~I;) sinxwdw (6> 0)

(d2) xf(x) = f C*(w) cos xw dw, C¥w) = Q , Basin (12)
0 dw
o 2

d3) x*f(x) = f D*(w) sin xw dw, D*(w) = — _'{_I; )
0 dw

SECTION 10.9. Fourier Cosine and Sine Transforms, page 564

Purpose. Fourier cosine and sine transforms are obtained immediately from Fourier co-
sine and sine integrals, respectively, and we investigate some of their properties.

Content
Fourier cosine and sine transforms
Transforms of derivatives (8), (9)

- Comment on Purpose of Transforms
Just as the Laplace transform (Chap. 5), these transforms are designed for solving differ-
ential equations. We show this for partial differential equations in Sec. 11.6.

SOLUTIONS TO PROBLEM SET 10.9, page 568

2. From (3) and the answer to Prob. 1 we obtain
2sinw 2 I"‘ sin 2w

cos wxdw — —
w T

cos wx dw.

0 w

2 o0
fo) == fo
Problem 2 in Problem Set 10.8 shows that the first term is 2 if 0 < x < 1 and O if

x = 1. Set 2w = u in the second term and conclude that the second term is —1 if
0 < x/2<1or0 < x < 2. This agrees with Prob. 1.

2 (™ 2 1
6. f(x) = \/;J; e Y coswxdw = \/; (;7+—-1-) by integration or by Prob. 5.
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" 2 1
8. fw) = \/l;L clos_z::cosxwdx - /—}coswiflwl < gmand 0 if w| > i

sin wx

10. f cos wxcdy = lim (w fixed!) does not exist. Similarly in (5).

0 oo W f

M. Va2if0<w< mand0if w > 7 {
16. F(xe™™%) = ~F(e™™1%)) = w(e™2) = ye~ w12 |
20. WRITING PROJECT. Methods include integration, the use of the operational for- :
mulas (8) and (9) (independently or together with the use of the tables in Sec. 10.1 1), i

and the use of integrals from Sec. 10.8. By presenting this in a systematic fashion,
the student should gain a better feeling for these transform methods.

SECTION 10.10. Fourier Transform, page 569

Purpose. Derivation of the Fourier transform from the complex form of the Fourier in-
tegral; explanation of its physical meaning and its basic properties.

Main Content, Important Concepts
Complex Fourier integral (4)
Fourier transform (6), its inverse (7)
Spectral representation, spectral density
Transforms of derivatives
Convolution f * g

Comments on Content

The complex Fourier integral is relatively easily obtained from the real Fourier integral
in Sec. 10.8, and the definition of the Fourier transform is then immediate.

Note that convolution f * g differs from that in Chapter 5, and so does the formula (12)
in the convolution theorem (we now have a factor V2).

SOLUTIONS TO PROBLEM SET 10.10, page 575

2. WUk + iw)V2m) 4. 1/(tk — iw)V2m)
6. (e7™(=2i + 2w + iw?) + 20/(WP\V2m)
8. V2m/(1 + w?) 10. V2z(cosw + wsinw — 1)/w?

12. Let f(x) = xe™ (x > 0) and g(x) = ™" (x > 0). Then f' = g — f and by (9),
iw#F(f) = F(f') = F(g) - F(f);
1
V2u(l + iw)

hence

(iw + DF(f) = F(g) =

Divide by 1 + iw to get the result.

14, 1/((1 + iw)V2r) follows directly from formula 5. For —e < x < O setx = —¢. Then
0 o

f eSe™ "% dx = f e~ et dr =
0

e—(l—iw)t 1
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Together,

1 1 1 2 1
\/2_77(l+iw+ l—iw) T N2 1w
16. TEAM PROJECT. (a) Use 1 = x — a as a new variable of integration.
(b) Use ¢ = 3b.
(c) Replace w by w — a. This gives a new factor e'**.

SOLUTIONS TO CHAPTER 10 REVIEW, page 579
16. 2(sinx — §sin2x + 4sin3x — + - - )

4k 1 1
18. —1}- (sinvrx + —sin3wx + —sinSwx + - ¢ )

3 5
16 X 1 3rx 1 Smx
q +— prh L — — —_ — ..
20. 2 ﬂ_z( 4+9cos4+25cos4+ )

2 4 1 1
s cos 2x + ———cos 4x + cos b6x + ¢ - -
@ w\l-3

3-5 5-7
24. 2(sinx + 3sin2x + 3sin3x + sindx +-- 1)
26. 7 — 2(sinx + 3sin2x + §sin3x + -+ )

2 2 , 47 -6 . 972 — 6
28. ﬂ_,((ar 6) sin Tx P’ sin 2mx + 3 sin 3mx
1672 - 6 . )
e iR AR A 2
4

30. For instance, use Prob. 23.
32. For instance, use Prob. 17.
34. 54.403, 4.138, 0.996, 0.376, 0.180, 0.099, 0.060, 0.039, 0.027, 0.019

36. y = C, cos wt + Cysin wt

+ sint sin 2t + sin3t— + -

1 1
T Pw? - 4) 3Fw® — 9)

38. V2w (w + sinw — 2w cos w)/w?
40. k[(ibw + e ™ — (iaw + e ***)(w*V2m)

@ -1
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CHAPTER 11 Partial Differential Equations

Change

The Fourier transform method has been included in the section on Fourier integrals for
heat problems (Sec. 11.6).

SECTION 11.1 Basic Concepts, page 583

Purpose. To familiarize the student with the following:
Concept of solution, verification of solutions
Superposition principle for homogeneous linear equations
Equations solvable by methods for ordinary differential equations

SOLUTIONS TO PROBLEM SET 11.1, page 584
16. u = A(y) cos 3x + B(y) sin 3x
18, uyfu= =2y, Inu=-y*+2&x), u=clx)exp(~y?
20. u = cy(x)e¥ + co(x)e™Y
22. u,=q,q,=q,q=Cx)e% u= fqdy = c(x)e¥ + h(x)
24. By the chain rule,
(A) Vg = Xy = Y@pte + 240,) = x(z,r, + 248,) = 0.

Now r = (&% + y22, r, = 12 + y2)=12 3 = oy ry = ylr, so that yr, — xr, =0
in (A) and (A) gives z, = 0.

SECTION 11.2. Modeling: Vibrating String, Wave Equation, page 585

Purpose. A careful derivation of the one-dimensional wave equation (more careful than in
most other texts, where some of the essential physical assumptions are usually missing).

Short Courses. One may perhaps omit the derivation and Just state the wave equation
and mention of what ¢? is composed.

SECTION 11.3. Separation of Variables. Use of Fourier Series, page 587
Purpose. This first section in which we solve a “big” problem has several purposes:

1. To familiarize the student with the wave equation and with the typical initial and
boundary conditions that physically meaningful solutions must satisfy.

2. To explain and apply the important method of separation of variables, by which the
partial differential equation is reduced to ordinary differential equations.

3. To show how Fourier series help to get the final answer, thus seeing the reward of
our great and long effort in Chap. 10.

4. To discuss the cigenfunctions of the problem, the basic building blocks of the solu-
tion, which lead to a deeper understanding of the whole problem.

161
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Steps of Solution
1. Setting u = F(x)G(#) gives two ordinary differential equations for F and G.
2. The boundary conditions lead to sine and cosine solutions of the latter.

3. A series of those solutions with coefficients determined from the Fourier series of
the initial conditions gives the final answer. '

SOLUTIONS TO PROBLEM SET 11.3, page 594
2. 0.01 cos 3¢ sin 3x

0.8 1 1
4, u~= : (costsinx+?cos3tsin3x+ ?coSStsinSx+ . )

6. u = 2k/(wa — a®) (sin a cos £ sin x + 3 sin 2a cos 2¢ sin 2x

+ 3 sin3acos 3tsin3x + - - )

4 {1 1 1
8. u=— (—cos2tsin21———cos6tsin6x + ———cos 10z sin 10x — +)

57 \4 36 100
= : g 0.04 nmw
10, u = "2-1 B *sinnxsinnt, B.* = o i
12. u = cd=-Y
14. f'1x%f = gly?g = 3k, u = "=V
F' G_ = & i
16'?=_E= L F" — I?F = 0, G + k®*G = 0, hence

u = (¢, + coe”"*)A cos ky + B sin ky).

Taking the separation constant negative, we obtain a similar result. Taking it zero,

we have
u = (ax + b)(cy + d).
18. u = (A cos kx + B sin kx)(C cos ky + D sin ky)
or
U = (1€ + coe™* N cze + cie™™)
or

u = (ax + b)(cy + d).
20. TEAM PROJECT. (c) From the given initial conditions we obtain
2 b . nmx
Go(0) = B, = 7 [ 09 sin =T~ ds,
24w(1 — cos @m) _
nw(d,? — o*)
(&) u(0,1) =0, w(0, 1) =0, u(L, 1) = h(r), w(L, 1) = h(z). The simplest w satisfying
these conditions is w(x, r) = xh(f)/L. Then
v(x, 0) = f(x) — xh(OYL = f1(x),
vlx, 0) = g(x) — xh"(OYL = g, (x),
Vg — Covpy = —xh"/L.

Ga(0) = A B,* +
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SECTION 11.4. D’Alembert’s Solution of the Wave Equation, page 595

Purpose. To show a simpler methodof solving the wave equation, which, unfortunately,
is not so universal as separation of variables.

Comment on Order of Sections

Section 11.12 on the solution of the wave equation by the Laplace transform may be stud-
ied directly after this section. We have placed that material at the end of this chapter be-
cause some students may not have studied Chap. 5 on the Laplace transform, which is
not a prerequisite for Chap. 11.

Comment on Footnote 2

D’Alembert’s Traité de dynamique appeared in 1743 and his solution of the vibrating
string problem in 1747; the latter makes him, together with Daniel Bernoulli (1700—
1782), the founder of the theory of partial differential equations. In 1754 d’ Alembert be-
came Secretary of the French Academy of Science and as such the most influential man
of scicnce in Frauce,

SOLUTIONS TO PROBLEM SET 11.4, page 597 _
2. T =200 nt, p = 0.8/(2 - 9.80) nt sec®/meter?, c? = 4900 meters®/sec?.
Answer: 70 meters/sec
4. (0, 1) = 3 f(c)) + f(—ct)] = 0, f(=ct) = —f(ct), so that £ is odd. Also,

u(L, £) = 3{f(ct + L) + f(—ct + L)] = 0,
hence
flet + L) = —f(=ct + L) = f(ct - L),

which proves the periodicity.
12 2 -2y + 1=/ - 12 =0,y =x+ a¥xy=x—yv=xz1=x-y
14. Hyperbolic, y'2 - y' — 2 = (3 + DO —2)=0y+x=cy-2x=¢
v=x+y,z=2x—y,uu=0,u=f1(x+y)+f2(2x—y)
16. Parabolic, y'2 + 2y" + 1 = (y' + 1)%, Uy =0 v =x,z2=x+y,

u = vf@z) + 7 =xflx +y) + f(x + y)
2

- ')' WSty LS nix ‘e -
18. u = F()G(), 2 T @ F - P Fa=sin— .G+ )G =0,

2
cnw
Anz - (T) + ‘72. etc.

20. TEAM PROJECT. (b) F,, = sin (nmx/L), G,, = a, cos (cn®*7?1/L?). The solution
satisfying the initial conditions is

812 32,2*__}_ 3"2,-3"”4_.,
==y |oomc|= fsin— 33 cose| = tsin 3

For the string the frequency of the nth normal mode is proportional to n, whereas for
the beam it is proportional to n2.
(€) w0,1) =0, ulL, 1) =0, u 0, = 0, u(L, 1) = 0, Hence

F(O)=A+C=0,C=-A,F'(O)=B(B+D)=O,D= ~B.
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With this we further obtain
F(L) = A(cos BL — cosh BL) + B(sin BL — sinh BL) = 0,
F'(L) = B[—AC(sin BL + sinh BL) + B(cos BL — cosh BL)] = 0.
This homogeneous system has a nontrivial solution if and only if its determi-
nant is zero. Thus (cos BL — cosh BLY* + sin® BL — sinh® BL = 0 or

2 — 2 cos BL cosh BL = 0.
From this we have (17), which can be written

1

co8 Pl = AL
because cosh BL is very large. This gives approximate solutions
BL = &=, 8w, §m, « - - (more exactly, 4.730, 7.853, 10.996, - - -).
d) FO)=A + C=0,C= —A, F'(0) = B(B + D) = 0, D = —B. Then
F(x) = A(cos Bx — cosh Bx) + B(sin Bx — sinh Sx),

F"(L) = B*[—A(cos BL + cosh L) — B(sin BL + sinh BL)] = 0,

F"(L) = B*lA(sin BL — sinh L) — B(cos BL + cosh BL)] = 0.

The determinant (cos BL + cosh BL)* + sin® BL — sinh® BL of this system must
be zero, and from this the result follows.
From (18) we have

0

cosh BL
because cosh BL is very large. This gives the approximate solutions
BL = im, 2m, §r, - - - (more exactly, 1.875, 4.694, 7.855, - - ).

=

cos BL =

SECTION 11.5. Heat Equation: Solution by Fourier Series, page 600

Purpose. This section has two purposes:
1. To solve a typical heat problem by steps similar to those for the wave equation,
pointing to the two main differences: only ore initial condition (instead of two) and
u, (instead of 1), resulting in exponential functions in 7 (instead of cosine and sine
in the wave equation).
2. Solution of Laplace’s equation (which can be interpreted as a time-independent heat
equation in two dimensions).
Comments on Content
Additional points to emphasize are
More rapid decay with increasing n,
Difference in time evolution in Figs. 267 and 263,
Zero can be an cigenvalue (see Example 4),
Three standard types of boundary value problems,
Analogy of electrostatic and (steady-state) heat problems.

Problem Set 11.5 includes additional heat problems and types of boundary conditions.
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SOLUTIONS TO PROBLEM SET 11.5, page 608

2. A% = (In2)/20, ¢® = (L&72)(ln 2)/20 = 0.003512
4. u = ksin 0.2mx ¢~ 1752725

9
8. u(x, 1) = uy(x) + uyr(x, t) with u; as in Prob. 7 and

o0
. nmx
Uy = 2 B,, sin _L__ e (cnwlL)‘t'
where nel

16 1
6. u= pr (sm 0.17x e™00VI527% _ i 037y ¢ ~0O1TEGTR | _ )

2 * . nmx
B, = Lfo[f(x) — uy(x)] sin —=dx
2 Y oamx 2
= an f0) sin == dx + = [(~1)"U, ~ U,].
T 4 -t 4 1 ~9t 1 —25¢
A R - — ot — ~ e
10. u 3 p (cosxe 9cos3xe 25cm5xe +

12, u(x, f) = cos 2x e~
14. w" = —Ne™*/c*; make w(0) = w(L) = 0 to get the function

N 1
wix =‘E~—z~[—e_u—z(l - e~y + l].

16, — i > nB, et
L n=1
18. CAS PROJECT. (a) u = sin wx sinh yfsinh 2.
(b) u,(x, 0,7) = uy(x, 2, 1) = 0, u = sin mrx cos niry.

20. u = F()G(y), F = Acospx + Bsinpx, u0, y) = F "0G(y) =
G = Ccosh py + D sinh py, u,(x, b) = F(x)G' () = 0, C = cosh pb, D
G = cosh (pb — py). For u = cos px cosh pb — y) we get

0, B =0,
= —sinh pb,

uga, y) + hu(a, y) = (—p sin pa + h cos pa) cosh p(b — y) = 0.

Hence p must satisfy tan ap = h/p, which has infinitely many positive real solutions
P = Y1 Y2 " ' *, as you can illustrate by a simple sketch. Answer:

U= Uy = COS YpX COS V(b — ),
where 'y = v, satisfies ytan ya = h.
To determine coefficients of series of u,,’s from a boundary condition at the lower

side is difficult because that would not be a Fourier series, the y,'s being only ap-
proximately regularly spaced. See [C1], pp. 114-119, 167.

SECTION 11.6. Heat Equation: Solution by Fourier Integrals and
Transforms, page 610

Purpose. Whereas we solved the problem of a finite bar in the last section by using Fourier
series, we show that for an infinite bar (practically, a long insulated wire) we can use the
Fourier integral for the same purpose. Figure 271 shows the time evolution for a “rec-
tangular” initial temperature (100°C between x = —1 and +1, zero elsewhere), giving
bell-shaped curves as for the density of the normal distribution.
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We also show typical applications of the Fourier transform and the Fourier sine trans-
form to the heat equation.
Short Courses. This section can be omitted.

SOLUTIONS TO PROBLEM SET 11.6, page 615

2 .
2. A(p) = —f g oy =~ %e"’ = e~? by (15), Sec. 10.8,
and ©
u(x, 1) = f e~ @ cos px dp.
0

2 2. 1
4. A(P)=m.8(p)=0.u=;_[)l+pzcospxe‘°a"z'dp

10. CAS PROJECT. (a) Set w = —v in (21) to get erf(—x) = —erf x.
(b) See (36) in Appendix A3.1.
l—x

Uy
(e) u(x,t)--—-—[erfz\/- erfz\/-], (t=0)
® ulx,f) =3+ § exf (x/2cVD)

SECTION 11.7. Modeling: Membrane, Two-Dimensional Wave Equation,
page 616

Purpose. A careful derivation of the two-dimensional wave equation governing the mo-
tions of a drumhead, from physical assumptions (the analog of the modeling in Sec. 11.2).

SECTION 11.8. Rectangular Membrane. Use of Double Fourier Series,
page 619

Purpose. To solve the two-dimensional wave equation in a rectangle 0 = x = a,
0=sy=b (‘rectangular membrane”) by separation of variables and double Fourier

series.
Comment on Content
New features as compared to the one-dimensional case (Sec. 11.3) are as follows:
1. We have to separate twice, first by u = F(x, y)G(1), then the Helmholtz equation for
F by F = H(x)Q(y).
2. We get a double sequence of infinitely many eigenvalues A, and eigenfunctions
U e (12), (13).
3. We need double Fourier series (easily obtainable from the usual Fourier series) to
get a solution that also satisfies the initial conditions.

SOLUTIONS TO PROBLEM SET 11.8, page 626

6. B,,, = 16/mnm” (m and n odd), 0 otherwise
8. B, = (—1)™""4/mn
10. CAS PROJECT. (b) The figure shows the first partial sum (a single term) and the
partial sum of the terms up to that with coefficient bs5 (9 terms).
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1.5 1.5
Section 11.8. CAS Praject 10(b). Two partial sums

12. u = kcos wV/2t sin mx sin Ty

64k & & 1
4, — N ———e e 1 2 + 2y o - .
1 - El %1 m? — By — 4) (mtVm® + n) sin marx sin nary
m,n odd

16. A = ab, b = Ala, so that from (12) withm = n = 1 by differentiating with respect
to a and equating the derivative to zero, we obtain

/i Y C RO i L &Y =3 Za_
crtf \@ ) T\ T2 T F e

hence a* = A%, a2 = A, b = Ala = a.
18. cm V260 (corresponding eigenfunctions Fy 16, F16.14), €lC.

64a’h® & = 1 m>  n? . mmx . n
W =2 3 e | [T+ o) sin B2E gy BT
il a b2 b

mn odd

SECTION 11.9. Laplacian in Polar Coordinates, page 626

Purpose. A detailed discussion of the wansformaton of the Laplacian into polar coordi-
nates as a typical case of a task often required in applications. The result (4) will be needed
in the next section.

Short Courses. This section can be omitted.

SOLUTIONS TO PROBLEM SET 11.9, page 628

6. TEAM PROJECT. (a) % cos 20 = r%(cos? 6 — sin® 6) = x* — y%, r?sin 20 = 21y,
etc.

400 | R |
© u=—|rsinf@+ = rsin30+ — +PsinSH + - - -
T 3 5
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(d) The form of the series results as in (b) and the formulas for the coefficients fol-
low from
et
u(R, 0) = 2, nR" YA, cos nd + B, sinn6) = f(6).
n=1
8. u(6) = 10} + 4 cos 26). Answer: 5 + 5r* cos 26
4 1 1
10. u= = — — |rcos 6 + — r¥cos 30 + = rPcos 56 + - - -
T 9 25

2
12. u = 75rsin @ — 25 sin 36. Note that this also follows from Prob. 7 because of the

skew symmetry of the boundary condition as a function of 6.

80 1 1
14. = (rsin9+ Sg-rssm36+ ?r°sin50+---)

SECTION 11.10. Circular Membrane: Use of Fourier-Bessel Series,
page 629
Purpose. To derive the function that gives the vibrations of a circular membrane, by solv-
ing the wave equation in polar coordinates.
Comment on Content

We concentrate on the simpler case of radially symmetric vibrations, that is, vibrations
independent of the angle. (For eigenfunctions depending on the angle, see Probs. 11-18.)

We do three steps:
1. u = WG gives for W Bessel’s equation with v = 0, hence solutions
W(r) = Jo(kr).
2. We satisfy the boundary condition W(R) = 0 by choosing suitable values of k.
3, A Fourier-Besse] series (13) helps to get the solution (12) of the entire problem.

Short Courses. This section can be omitted.

SOLUTIONS TO PROBLEM SET 11.10, page 634

2. f, = cky/27 = cay/2mR = 0.3827c/R = 0.3827V T/pR?

4. In polar coordinates the boundary has the simple representation R = const.

6. CAS PROJECT (b) Error 0.04864 (m = 1), 0.02229, 0.01435, 0.01056, 0.00835,
0.00690, 0.00589, V.0U512, 0.U0454, 0.00408 (m = 10)

8. From (24), Sec. 4.5, we have (rJ,(r))" = rJo(r). By integration

&

(A) fo “rlo(r) dr = agdy(am).

a,, = 0 because the initial deflection is zero. From (15) and (A), with g(r) = 1 and

a,,r = s, we obtain
1

by = [ riotemn) dr
0

2
amJ 1 z(am)

2 % 5 ds
= e——— — J i
amh”(am)-[o @ o) o

——http://librosysolucionarios.net
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2
~ ey i
Hence the series is
1

asz 1 (am)

u(r.t)=2§

me=1
10: £(0) = 1; 1.10801, 0.96823, 1.01371, 0.99272, 1.00436, and we see that the last value
is already correct to 3 significant digits,
18. ;)2 = 0.6099 (see Table Al in Appendix 5)

8in @t Jo(a,r).

SECTION 11.11. Laplace’s Equation in Cylindrical and Spherical
Coordinates. Potential, page 636

Purpose. 1. Transformation of the Laplacian into cylindrical coordinates (which is triv-
ial because of Scc. 11.9) and spheiical courdinates; some remarks on areas in which
Laplace’s equation is basic.

2. Separation of the Laplace equation in spherical coordinates and application to a typ-
ical boundary value problem. For simplicity we consider a boundary value problem for a
sphere with boundary values depending only on ¢. We do three steps:

1. u = G(r)H(¢) and separation gives for H Legendre's equation.

2. Continuity requirements restrict H to Legendre polynomials.

3. A Fourier-Legendre series (17) helps to get the solution (16) of the interior prob-

lem. Similarly for the exterior problem, whose solution is (19).

Short Courses. Omit the derivation of the Laplacian in cylindrical and spherical coordi-
nates.

SOLUTIONS TO PROBLEM SET 11.11, page 641

4. u= —80Inr/in2) + 300
6. For u = u(r) we get from (7)

2 u" 2
Vzu=u"+-’_-u'=0, —==-7, hd==2Ir+g,
u
r_ € _c
=5 w=Zan

21 + 1
10. Fw) = w, A, = "2

thogonal on the interval —1 = w = 1, we obtain Ay =1, A, =0(n>1). Answer:
= rcos ¢. Of course, this is at once seen by inspection.

12. u = —%r®Py(cos ¢) + § = r¥(—cos® ¢ + ) + 3
14. u = 4r3Py(cos ¢) — 2r®Py(cos ¢) + rPy(cos ¢p) — 2
16. f(d) = cos ¢, Uint = 7COS B, Upre = r2cos ¢, f(d) = cos2¢ = 2cos? ¢ — 1,

1
| WPy dw. Since w = Py(w) and the P.w) are or-
-1

R 1
28 = 1= §Py) — & hine = $°Py(c0s ) — §, ey = 3aT2cos 4) — ==

18, A4 = 0, A5 = 605/16, Ag = 0, Ay = —4125/128, Ag = 0, Ag = 7315/256, Ayg = 0
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1
20. Set s = p and consider u(p, 6, ¢) = ru(r, 6, ¢). By differentiation,

1 1 2
=@+ |—=), = (2v, + rv,) —3 + —3 (v + rv)).
up ( )( ﬂz) upp ( )p‘ pa( )
Thus

”

2 1 2
up,,+;u =;;(2v,+rv")=r5(v,.,+70,).

By substituting this and ugg = rvgg, ctc., into (7) [written in terms of p] and divid-
ing by r® we obtain the result.

22. v = r-2cos Osin 6 = xyl(x* + y?)?

24. TEAM PROJECT. (2) The two drops over a portion of the cable of length Ax are
—RiAx and —L(3i/at)Ax, respectively. Their sum equals the difference u, 5, — 4,.
Divide by Ax and let Ax — 0.

(c) To get the first equation, differentiate the first transmission line equation with re-
spect 1o x and use the second equation to replace i, and i,
~Upy = Riy + Liy,
= R(—Gu — Cu,) + L(—Guy — Cuyy).
Now collect terms. Similarly for the second equation.

1
(d) Set i ¢2. Then ty, = c%Uy., the heat equation. By (10), (11), Sec. 11.5,

n*a>
I?RC

4U, 1
vt (s T2 nt L SR ) a2
T ! 3 !

() u = Ugcos (mt/I'VLC) sin (wx/l)

SECTION 11.12. Solution by Laplace Transforms, page 643

Purpose. For students familiar with Chap. 5 we show that the Laplace transform also ap-
plies to certain partial differential equations, where the subsidiary equation must be ex-
pected to be an ordinary differential equation.

Short Courses. This section can be omitted,

SOLUTIONS TO PROBLEM SET 11.12, page 646

2. Usec = VTlp.

t+1 ift =
2+1  ifr=x®
(where u(f — x?) is the unit step fuction) as obtained from

4, w(x,t)=t+l—(t-x2)u(t-xz)=[

1+
Ulx, s) = 2 Ty o(s)e~**

with ¢(s) = —1/s? as obtained from (0, ¢) = 1, U(0, 5) = Us.

ey http://librosysolucionarios.net
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6. u= f(x)g(t), xf'g + fg = x, hence

; :
A
f & fg
To complete the separation, we take f(x) = x, obtaining
&g t .
0 e tg=1 =cet+t—1;
g2 g &§TEg g

hence
= x(ce "+t — 1),

which satisfies w(0, 1) = 0. Also, u(x, 0) = x(c — 1). Thus ¢ = 1 and the answer is,
as before,
u=x(e"t+1t—1).

8. From W = F(s)e=*/*V% and the convolution theorem we have

w= e e V5, k= % :

From this and formula 39 in Sec. 5.9 we get, as asserted,

e KM g

t
k
w= [ fe- 57—
10. Wolx, 5) = st~ V5% & (y4(r)} = 1/s, and since w(x, 0) = 0,

Wix, 5) = F(s)sWy(x, 5) = F(5)[sWo(x, s) — w(x, 0)]
=F5) & [%‘;i] ,
Now apply the convolution theorem.

SOLUTIONS TO CHAPTER 11 REVIEW, page 647

22, u = c(x)e”? — ix?

4. u=gy —e™+ f(y)

26. u = (Ae** + Be™*%)(C cos ky + D sin ky),
u = (ax + b)(cy + d),
u = (A cos kx + B sin kx)(Ce™ + De~*¥)

28. Parabolic, y'> — 6y’ +9=(' ~ 3 v=xz=y— 3x
u — af1(y — ) t+ foly — 3x)

30. 3 cos 21 sin x — 4 cos 67 sin 3x

4 1 1
32, u= -; (cos2:sinx— — ¢os 6f sin 3x + Ecos 10¢sin 5x — + - - )

9
40 (. 7x _ooo11ese 1 . 3mx ~0.010236¢
g - X W X + — e
Mou=—5 (sm 100 € , 9 sin Too €

1 1
36. u = 57% — 60 (cosxe“' - Icos2x e + 30083.!8—9‘ .- )

32 /1 1
U= — |— e —36t 4 ...
B.u=m = (4 cos2xe 36cos6xe )
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400 & 1 - i -
€0 iji 2 e 2n — Dmx smh'[(Zn 1)ary/12]
W yan =l 12 sinh 2n — Dwr
42, ¥4
# N—
0 | —
0 12 x
Chapter 11 Review. Equipotential lines in Prob. 42
4. Ay 27 = cn(V1 + Do = 1/V2
46. Area mR*/2 = 1, R = \V/2/m,

cku/Z‘rr b k11I21T = au/21rR = 3.832/27V2m = 3.832/V8xw

48. u = (g = uy)rory i Uiy = Wghy

» where r is the distance from the center of the
(ry — ro)r rn—ro

spheres
50. f(¢) = 4 cos® ¢. Now, by (11"), Sec. 4.3,

cos? ¢ = £Py(cos ¢) + 3P, (cos ).
Answer:
u = &r3Py(cos ¢) + LrPy(cos ).
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PART D. COMPLEX ANALYSIS
CHAPTER 12 Complex Numbers and Functions.

Conformal Mapping
Major Changes

The old chapter on conformal mapping has been absorbed into Chap. 12, beginning
with a general introduction to conformality in Sec. 12.5, continuing with the conformal
mapping of the elementary complex functions in Secs. 12.6-12.8 and concluding with
a special section on linear fractional transformations (Sec. 12.9). This gives a better
understanding of those functions because we now discuss their geometric properties
(their mapping properties) simultancously with their analytic formulas, as we do it all
the time in calculus.

SECTION 12.1. Complex Numbers. Complex Plane, page 652

Purpose. To discuss the algebraic operations for complex numbers and the representa-
tion of complex numbers as points in the plane.

Main Content, Important Concepts
Complex number, real part, imaginary part, imaginary unit
The four algebraic operations in complex
Complex plane, real axis, imaginary axis
Complex conjugates
Two Suggestions on Content

1. Of course, at the expense of a small conceptual concession, one can also start im-
mediately from (4), (5),

z=x+iy, 2= ~1

and go on from there.

2. If students have some knowledge of complex numbers, the practical division rule
(7) and perhaps (8) and (9) may be the only items to he recalled in this section. (But I
personally would do ten minutes more in any case.)

SOLUTIONS TO PROBLEM SET 12.1, page 656
2.iz==-24+4,-1—-i,2+5i

4. —96 + 280i 6. —7 — 26 8. —0.1 + 1.3i
10. (7 — 24i)/625, (7 + 24i)/625 12. 29/25
14, 4x®y — 4xy®, 4x%*? 16. (x* — y2/(x® + y?)

173
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20. zyzp = 0 if and only if
XpXy — ¥2)1 =0
Y2Xy + Xy, = 0.
Let z5 # 0, so that x,* + y,® # 0, the coefficient determinant of our homogeneous

system of equations in the “unknowns” x; and y;, which therefore must be zero; hence
Z 1= 0.

SECTION 12.2. Polar Form of Complex Numbers. Powers and Roots,
page 657

Purpose. To give the student a firm grasp of the polar form, including the principal value
Arg z, and its application in multiplication and division.
Main Content, Important Concepts

Absolute value |z], argument 8, principal value Arg 0

Triangle inequality '

Multiplication and division in polar form

nth root, nth roots of unity (16)

SOLUTIONS TO PROBLEM SET 12.2, page 662

2. V8(cos 3 + isinm) 4. 10(cos 7 + isin7) 6. cosdm — isindnw
8. (I/V18)(coskm + isindm) 10. V37/8(cos 2.19105 — i sin 2.19105)

12. m, —3.0419 14. 3714

16. i 18. 3 + V27

20. TEAM PROJECT. (a) Use (15).
(b) Use those formulas (10) in the form

cos 36 = V(1 + cos 6), sin20 = V(1 — cos 6),
multiply them by V7,

Vrcosdo = Vi@ + rcos 6), Vrsind6 = Vi(r - rcos 6),

use r cos 6 = x, and finally choose the sign of Im V'Z in such a way that
sign [(Re VZ)(Im V7)] = sign y.
(© =V2(1 +i),6 + 4i,5 - V2i
22. 2cos gk + isindkm), k = 1,5, 9, thatis, V3 + i, =V3 + i, —2i,
24, £(1 = 1)
26. =(2 + i), £(1 — 2i) is obtained by taking the square root of each of the two solu-
tions in Prob. 25,
28. Using (18) in Team Project 20, we obtain

z=35+DxVIS+P-8-i=§5+nN=xV-2+3
=35+ = [ VIE + (-2) + iViE - (-2))]

-gs+nxpa={ 7Y
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30. Quadratic equation in z* with solutions
2=33+i)*(15+i) =3+ 4iand 2i,
with the roots evaluated by (18). From this, by (18), we get the four solutions
VI 4i=22+i), V2= +i]

3. z) = xy + iyy, 73 = x5 + iys,
2y + 2o + o — 2P = (1 + %" + (0 + y2)? + O — ) + (3 — y0)?
=202 + %% + 3 + 3.0 = 2z + |
The name results from the fact that the equality relates the lengths of the sides and
the diagonals of a parallelogram with sides determined by the vectors corresponding
to z; and z,. For the importance of the equality in Functional Analysis, see Ref. [9]

listed in Appendix 1.
36. |4 = Va2 + y2 = |x], ete.

SECTION 12.3. Derivative. Analytic Function, page 663

Purpose. To define (complex) analytic functions—the class of functions complex analy-
sis is concerned with—and the concepts needed for that definition, in particular, deriva-
tives.

This is preceded by a collection of a few standard concepts on sets in the complex plane
that we shall need from time to time in the chapters on complex analysis.

Main Content, Important Concepts

Unit circle, unit disk, open and closed disks

Domain, region

Complex function

Limit, continuity

Derivative

Analytic function
Comment on Content
The most important concept in this section is that of an analytic function. The other con-
cepts resemble those of real calculus. The most important new idea is connected with the
limit: the approach in infinitely many possible directions. This yields the negative result
in Example 4 and—much more importantly—the Canchy—Riemann equations in the next
sectlion.

SOLUTIONS TO PROBLEM SET 12.3, page 668

2. Annulus with center 4 — 2i bounded by the circles of radius } and 2
4. Disk without its center 1 + £, radius V2. Such domains will be crucial in connection
with residue integration in Chap. 15.

6. We obtain
X

2+
the exterior of the circle of radius § with center at 3.

< x<x?+y? I<@x-%2+y3,
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8. Angular region —}7 < argz < i#
10. 4, —4 12. 0.6, 0.8
14. (r%cos 26)/r — 0 as r — 0; yes
16. (rcos @ — rsin 6)/r® = (cos @ — sin 6)/r; no
18. 625000 20. —-110 + 70¢ 22. 0
24. TEAM PROJECT. (a) Use Re f(2) = [f(2) + J@V2, Im £(z) = [f(z) ~ F@)2i.

(b) Assume that lim,_,, f(z) = I, lim,_,. f(z) = I, I # I,. For every € > 0 there
are 8, > 0 and 8, > 0 such that

lf@—4l<e when O<|—z|<§, j=12
Hence for € = |} — BLl/2 and 0 < |z — zo| < 8, where § = &, § = 8,, we have
[h =L = |[f&) — 1] - [f@ - 4]l
ZE@ — b + |f@ — Ul < 2= |1, = 1.

(c) By continuity, for any € > 0 there is a § > 0 such that |f(z) — f(a)| < € when
|z = a| < 8. Now |z,, — a| < & for all sufficiently large » since lim z,, = a. Thus
|f(z,) — f(a)| < e-for these n.

(d) The proof is as in calculus. We write

f(2) — f(z) s f'(zo) =
2=

Then from the definition of a limit it follows that for any given € > 0 there is a
8 > 0 such that [n] < e when |z — z¢| < 8. From this and the triangle inequality,

£ = fzo)l = |z — zollf"(zo) + 0| = |z — zollf'zo)| + Iz = zole,
which approaches 0 as |z — zo| — 0.
(e) The quotient in (4) is Ax/Az, which is 0 if Ax = 0 but 1 if Ay = 0, so that it has
no limit as Az — 0,
@ fetAD-f@ _G+Axe+A9 -z K .
Az Az Az
When z = 0 the expression on the right approaches zero as Az — 0. When
z # 0and Az = Ax, then Az = Ax and that expression approaches z + Z. When
z # 0 and Az = iAy, then Az = —iAy and that expression approaches —z + Z.
This proves the statement.

SECTION 12.4. Cauchy-Riemann Equations. Laplace’s Equation,

page 669

Purpose. To derive and explain the most important equations in this chapter, the
Cauchy-Riemann equations, which constitute the basic criterion for analyticity.

Main Content, Important Concepts

Cauchy-Riemann equations (1)
These equations as a criterion for analyticity (Theorems 1 and 2)
Derivative in terms of partial derivatives, (4), (5)
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Relation of analytic functions to Laplace’s equation
Harmonic function, conjugate harmonic

Comment on Content
(4), (5), and Example 3 will be needed occasionally.
The relation to Laplace’s equation is basic, as mentioned in the text.

SOLUTIONS TO PROBLEM SET 12.4, page 673

2. No 4. Yes(z # 0) 6. Yes (z # 0) 8. Yes (z # *1, i) 10. No
12. No. Note that this is x> = y* — 2xyi = (x — iy)® = 2.
14. TEAM PROJECT. (a) u = const, u, = uy = 0,v, = v, = 0by (1), v = const,
f=u+ iv = const.
(b) Same idea as in (a).
© f' = u; + w, = 0 by (4). Hence v, = 0,u, = 0by (1), f = u + iv = const.
18. No 20. Inzl + iArgz 22. sin x cosh y + i cos x sinh y
24. No 26. a = 0,%b(y* — x* 28. a = 2, —sin 2x sinh 2y
30. Students should observe the orthogonality of the two families, which will be discussed
- in the next section, as a consequence of conformality.

SECTION 12.5. Geometry of Analytic Functions: Conformal Mapping,
page 674

Purpose. To show conformality (preservation of angles in size and sense) of the mapping
by an analytic function w = f(z); exceptional are points z at which f'(z) = 0.

Main Content, Important Concepts

Concept of mapping

Complex functions as mappings
Definition of conformality
Critical point

Conformality (Theorem 1)

Comment on the Proof

The crucial point is to show that w = f(z) rotates all straight lines (hence all tangents)
passing through a point g through the samc angle a = arg f'(zp), but this follows fium
(3) by taking arguments. This in a nutshell is the proof, once the stage has been set.

Comment on Purpose of Section

Apart from applications, this discussion of geometric aspects of analytic functions should
help the student gain a better understanding of complex functions. In a sense it is a coun-
terpart of discussions of functions in terms of curves in calculus.

SOLUTIONS TO PROBLEM SET 12.5, page 678

2. x =¢,w= —y + ic, horizontal lines; y = k, w = —k + ix, vertical lines
4. Only in size
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6. The lower half-plane v < 0
8. From the last formula in Example 1 with k = 1 we have fory = k = 1 the image

vP=41+u) o u=pht+1,

a parabola opening to the right. For the boundary y = 0 we get v* = 0. The x-axis
is “folded up” at 0, where angles are doubled, and is mapped onto the nonnegative
ray of the u-axis.

1 -
10. w = _=)‘; tyz.Forx=lwethushave
x+iy x°+y
1 =
u—l+y2’ v_l+y2'
Hence

2

B mat Y o 1 =u

12.

~(1+y2)2 14y

This implies (u — §)* + v® = }. The image is the closed disk bounded by this
circle.
w =2z —a)-32=0givesz = Oand z = Va.

14. w' = —4z/(z*> — 1)? after simplification. Hence z = 0,

16.

18

Ellipse z(f) = 3 cos ¢ + isin t. Advise students that other solutions are possible.
. 2(0) =t + ike?

20. CAS PROJECT. Orthogonality is a consequence of conformality because in the w-

plane, u = const and v = const are orthogonal. (a) u = x* — 6x%? + 4
v = 4x%y — 4xy® (b) u = x/(x* + 3%, v = —yi(x® + y2);

(©) u = (2 — yW® +y*)?, v = —2y/(x® + y*)? (d) u = 20/((1 — y)® + D),
v=(1-x%- YU -y + 2

SECTION 12.6. Exponential Function, page 679

Purpose. Sections 12.6~12.8 are devoted to the most important elementary functions in
complex, which generalize the corresponding real functions, and we emphasize proper-
ties that are not apparent in real.

We also discuss the basic mapping properties of these functions. This is important for

practical reasans (in connection with potential theoretic applications) as well as for cre-

ati

ng a better understanding of the nature of these complex special functions. It is the ana-

log of what we do all the time in calculus when we discuss real functions in terms of their
graphs in the xy-plane.

Basic Properties of the Exponential Function

Derivative and functional relation as in real
Euler formula, polar form of z

Periodicity with 27ri, fundamental region

e* # 0forall z

Conformality of the mapping w = &* for all z
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SOLUTIONS TO PROBLEM SET 12.6, page 682

2. elcos 1 + isinl) = 1.47 + 2.29i, ¢

4. —0.0755 — 2.5846i

6. V2 ™ -

8. Vrexp (i(0 + 2%kmyin), k=0,1,-+-,n—1;r =7
10 ¢ Rl metl  Saild
12.2=3m2*nmi,n=0,1,---

14. z=In5 + (arc tan 2 + 2n7)i
16. Annulus /e < |w| < e cut along the negative real axis
18. Whole w-plane except w = 0
20. TEAM PROJECT. (a) e"* is analytic for all z # 0. € is not analytic for any z. The
last function is analytic if and only if k = 1.
(b) (1) e®siny = 0, siny = 0. Answer. On the hwizoutal lines y = *nm,
n=01---. (i) e™ < 1, x > 0 (the right half-plane).
(iii) € = ™ = ¢®(cos y — isiny) = e*(cosy + isiny) = ¢ Answer: All .
(d f' = u, +iv, = f=u+iv, hence u, = u, v, = v. By integration,

u = cy(y)e, U = ca(y)e”.
By the first Cauchy—Riemann equation,
u, = v, =cze*, thus ¢, =cy; ( =ddy).
By the second Cauchy—Riemann equation,
u, = c1e® = —v, = —cye”, thus ¢ = —c,.
Differentiating the last equation with respect to y, we get
¢ = —cy=—¢,, hence ¢, =acosy+ bsiny.
Now for y = 0 we must have
u(x, 0) = ¢1(0)e* = &7, () =1, a=1,
v(x, 0) = cx(0)e* = 0, co(0) = 0.
Also, b = ¢;(0) = —c4(0) = 0. Together ¢,(y) = cos y. From this,
ca(y) = —¢1(y) = siny.
This gives f(z) = e™(cos y + isiny).

SECTION 12.7. Trigonometric Functions, Hyperbolic Functions, page 682

Purpose. Discussion of basic properties (including mapping properties) of trigonometric
and hyperbolic functions, with emphasis on the relations between these two classes of
functions as well as between them and the exponential function; here we see on an ele-
mentary level that investigation of special functions in complex can add substantially to
their understanding.
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SOLUTIONS TO PROBLEM SET 12.7, page 686

2.

[ = N

10.

14.

16.

The right side is
cosh z; cosh zz + sinh z; sinh z,
= Xe + e~h)et + e72) + e — e7n)(ez — e72),

If we multiply out, then because of the minus signs the products e®ie™* and e *1¢%
cancel in pairs. There remains, as asserted,

2 - 3(e*r*2 + e77%) = cosh (z; + 2p).
Similarly for the other formula.

. cos 1 cosh 1 — isin 1sinh 1 = 0.8337 — (0.9889i
. i sinh 77 = 11.5487i (same as Prob. 5)
. cos Ssinh4 + icosh4sinS = 7.7411 — 26.1865i

coshz = 0, coshxcosy = 0, cosy = 0,y = £(2n + 1)m/2, sinhxsiny = 0,
siny # O for those y, hence sinh x = 0, x = 0. Answer:

i
z=:(2n+l)-£-. n=0,1,-.

. sinx coshy = 1000, cos xsinh y = 0, x = #/2 * 2n, cosh y = 1000, cosh y = ¢¥/2

(y large), e = 2000, y = 7.600 902 (which agrees with the 6D value of the solution
of cosh y = 1000). Answer: z = @/2 = 2n7 £ 7.600 902i.

The region in the right half-plane bounded by the v-axis and the hyperbola
4u® — $v® = 1 because for x = 0 formula (6b) reduces to
sin iy = i sinh y.
Thus u = 0 (the v-axis) is the left boundary of that region. For x = 71/6 we obtain
sin (7/6 + iy) = sin (/6) cosh y + i cos (7/6) sinh y,

thus

u = 3coshy, v =3\V3sinhy
and we obtain the right boundary curve of that region from

1 = cosh® y — sinh® y = 4u? — $0?,
as asserted.
The region in the upper half-plane bounded by portions of the w-axis, the ellipse
u?/cosh® 3 + v¥/sinh® 3 = 1 and the hyperbola u® — v? = L.

Indeed. for x = *7/4 we get [see (6b)]
sin (37 + iy) = sin (£3m) coshy + i cos (1) sinh y
= £(1/V'2) cosh y + i(1/V/2) sinh y
and from this
1 = cosh®y — sinh®y = 2u% — 0%,  thus w® —0v® =1

For y = 0 we get v = 0 (the u-axis).
For y = 3 we get

u = sin x cosh 3, v = cos x sinh 3,

hence

2 2

W, v
cosh?3  sinh®3 °

1 = sin®x + cos?x =
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18. The upper boundary maps onto the ellipse

u? v

+ =
cosh®1  sinh® 1
and the lower boundary onto the ellipse

u? v

-+ =
cosh®4  sinh®1
Since 0 < x < 2, we get the entire ellipses as boundaries of the image of the given

domain, which therefore is an elliptical ring.
Now the vertical boundaries x = 0 and x = 27r map onto the same segment

sinh§ = u = sinh 1

of the u-axis because for x = 0 and x = 27 we have

2

2
1.

u = cosh y, v =0

Answer: Elliptical annulus between those two ellipses and cut along that segment.
See the figure.

v

=

Section 12.7. Problem 18

20. CAS PROJECT. This is an impressive demonstration of the relationships between
the four functions. (a) and (b) reflect that they are wanslations of one another by an
odd multiple of /2. More about the actual formula cos z = sin (z + 2#) cannot be
discovered from the plot. Similarly for (c) and (d), which are translates by multiples
of imf2 (thus in the y-direction). (a) and (c) are rotations of one another through 90°.
Similarly for () and (d). Hence (a) and (d) are related by translations and rotations,
and so are (b) and (c).

SECTION 12.8. Logarithm. General Power, page 687

Purpose. Discussion of the complex logarithm, which extends the real logarithm In x (de-
fined for positive x) to an infinitely many-valued relation (3) defined for all z # 0 defi-
nition of general powers z%; mapping properties.

Comment on Notation

In z is also denoted by log z, but for the engineer, who also needs logarithms log x of base
10, the notation In is more practical; this notation is widely used in mathematics.
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/

SOLUTIONS TO PROBLEM SET 12.8, page 691

4. elnz - eln [gl+io=2nm) _ |Zl¢“ =z
Ine® = Inje?| +iarge® =Ine* + i(y * 2nm) = x + iy * 2nmi = z * 2nmi

6. In 20 — i arc tan (4/3) = 2.9957 — 2.2143{

8. 1In100.01 * (7 — 0.0100)i = 2.302 635 + 3.131593

10. 1 = 2nmi,n=0,1,---

12. n4 = 2n + Dawi,n=0,1,+++

14 In5 + (arc tan (3/4) = 2nmi,n =0, 1, - -

16. ¢~ 2732 = ¢=2(cosd — isind) = 0.010 — 0.135i
18. ™ = —15.154
20, 202 = 20247 — g=T(cog (In4) + i sin (In4)) = 0.0079 + 0.0425i
22, AP IBAD = oxp [(1 = i)(In V2 + mild)]
=exp(nV2 +3mi —~ilnV2 + in)
= V2 e"M(cos 37 — In V2) + isin G7 — In V2))
= 2.808 + 1.318i
24, ¢'m A3 = exp [i(ln V10 + i arc tan 3)]
e~ tan 3 (o5 (In V10) + i sin (In V10))
0.1168 + 0.2619i
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26, @40 In (=D _ ,@—didm = v — 9ge78]
28, g¥m In 34049 — oxp D77i(ln V'1.85) + i arc tan (0.4/1.3)]
= ¢~ 1¥"5(cos (277 In V1.85) + i sin (2 In V1.85))
= —0.0543 + 0.1433;

30. TEAM PROJECT. (a) w = cos™'z,z = cos w = (e + ¢~™). Multiply by 2¢**

to get a quadratic equation in €',

X — 226 + 1 = (.
A solution is ¢ = z + Vz% ~ 1, and by taking logarithms we get the given formula
coslz=w=~iln(z+ Vz2 - 1).
(b) Similarly,
T
z=sinw = —(e™ — g~¥),
2i
2ize™ = 2% — |,
W0 — Djzet — | = (),
=iz +V-z2+1.
Now take logarithms, etc.
(c) coshw =23+ e ™) =z, (")® - 22" + 1 =0, ¢ =z+ Vz%2— 1. Take

logarithms.
(d) z = sinhw = }(e* — e7%), 2z¢” = ™ — 1, €* = z + Vz® + 1. Take loga-
rithms. ) ;
© & sin w ie""‘—e‘“” - cine e |
= W= ==l = —] —_——
z cos w e 4 o7iw P |
2w i-2 w=i i—z _ 4. itz
i+z 2i itz 2 i-z

(f) This is similar to (e).

SECTION 12.9. Linear Fractional Transformations. Optional, page 692

Purpose. Introduction to this large class of conformal mappings, also called Mébius trans-
formations. These transformations form a group, have various general properties in com-
mon, and help to motivate the concept of the extended complex plane, which plays a
more important role in advanced complex analysis than it does in our investigations.

Main Content, Important Concepts
Linear fractional transformations, special cases
Extended complex plane, point at infinity
Fixed points
Construction of linear fractional transformations
Mappings

Short Courses. This section may be omitted.
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SOLUTIONS TO PROBLEM SET 12.9, page 698
2. The inverse is

w+ i _ utiv+i a(u+iv+i)(l—v—iu)
iw+1l 1—-v+iu (1-v)P+u?

Multiplying out the numerator, a number of terms drop out, and the real part of the
numerator is 2u. This gives Re z = x in the form

This yields the circles

ae claimed.
4. z = 2w — 1)/(—w + 1). The equation for the fixed points of w = f(z) is
Z+z-1=0
with solutions

e o
= 2~ "2 °

From the inverse we get the same equation with w instead of z. Of course, this is not
surprising; a fixed point of the mapping must be a fixed point of the inverse.
6. TEAM PROJECT. (a) This follows by direct calculation and simplification.
(b) One can combine the cases of a straight line and a circle by writing (A = 0 a
straight line, A # 0 a circle)

AX®+y)+Bx+Cy+ D=0 (A, B, C, D real).

One can simplify the further work by writing this in terms of z and 7, a device
that has other applications, too:
= 2tz o
+ +
Azz + B 2 C 2%

w = 1/z gives z = 1/w. Substitution of this and multiplication by wiv gives

t4¢D=o

wtw w—w
A+ B + C —— 4+ DwWw = ()
2 2i

o1, in tenns of ¢ and v,
A+ Bu — Cv+ D@® + v =0,

which is a circle (if D # 0) or a straight line (if D = 0) in the w-plane.
(c) This follows by direct calculation.
(d) If we set
w, = €z, we = w; + d, Wy = —, wg = Kwg,
Wa
then we have w = wy + a/c from (c).
The statement to be proved is trivial for a translation or a rotation, fairly ob-
vious for a uniform expansion or contraction, and true for an inversion, as proved
in (b). Hence the statement is true for any LFT (1) because of (c).

(e w=—@+ 2+ 1)
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1 b4
SB.w=z+2 10. w = R2.w=——— 14, w=1i
W7k e T e vepray e
16. The requirement is that
ax + b
w:u:
ex+d

must come out real for all real x. Hence the four coefficients must be real, except
possibly for a common complex factor.

18. cz® = ¢ = 0 (c # 0) has those fixed points as solutions, and by comparing this with
(5) we see that we must have

a—d=0, b=c¢
and get the answer
_a+tc bi
w_cz+a (a, ¢ arbitrary).

SECTION 12.10. Riemann Surfaces. Optional, page 699

Purpose. To introduce the idea and some of the simplest examples of Riemann surfaces,
on which multivalued relations become single-valued, that is, functions in the usual sense.

Short Courses. This section may be omitted.

SOLUTIONS TO PROBLEM SET 12.10, page 700

4. For w = Vz the Riemann surface has 4 sheets. To them correspond in the w-plane
the four angular regions of angle 90° each and bounded by the two bisecting lines of
the four quadrants; z = 0 is a branch point. If z moves 4 times around the origin and
back to its original position, then w completes a motion once around the origin.

Similarly for w = ¥z, where we need 5 sheets and z = 0 is a branch point,

6. By the hint, we have

w = V5 &2\ r, %2 = \/p 7, KO+ 62,

If we move from A in the first sheet (see the figure), we get into the second sheet at
B (dashed curve) and get back to A after two loops around the branch point 1.

Similarly for a loop around z = 2 (without encircling z = 1); this curve is not
shown in the figure.

Section 12.10. Problem 6
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10.

If we move from C and back to C as shown, we do not cross the cut, we stay in
the same sheet, and we increase #; and 6, by 27 each. Hence (6, + 6,)/2 is increased
by 2, and we have completed one loop in the w-plane. This makes it plausible that
two sheets will be sufficient for the present w and that the cut along which the two
sheets are joined crosswise is properly chosen.

. Branch points at =1 and *2, as shown in the figure, together with the cuts. If we

pass a single cut, we get into the other sheet. If a path crosses two cuts, it is back in
the sheet in which it started. The figure shows one path (A) that encircles two branch
points and stays entirely in one sheet. The path from B and back to B also encloses
two branch points, and since it crosses two cuts, part of it is in one sheet and part of
it is in the other.

A discussion in terms of coordinates as in Prob. 6 would be similar to the previ-
ous one. Various other paths can be drawn and discussed in the figure.

~
~k-——’

Section 12.10. Problem 8

+1, %i; 2 sheets

SOLUTIONS TO CHAPTER 12 REVIEW, page 701

16. —24 — 70i 18. +$/74 exp I:%Anc tan %7] ~ 2.608 — 1.342i
20. 1+ i ' 22. V145 exp [i Arc tan 3] = 12.042¢°983%

24. 7.3e™ 26. *3, +3i

28. (=1 + i)YV2 30. =4 — 4i)

32. 1/2% 34, sin 2z

36. —22.72 + 49.65i 38. —2.3013i

40. w| <19,u>0 42, 0 < Argw < 3m/2

44, ¢ < |w| < ¢? in the sccond quadrant

46. z=0,22+1=0,%m = 2m, - -+

48. w = (z + 2z — i)

50. ¢?z — (@ — d)z — b = c(z + iMz — i) = ¢(z® + 1) by the equation for the fixed

points. By comparing powers of z we havea — d = 0, » = —c. Hence

az+ b
—bz +a’
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CHAPTER 13 Complex Integration

Change

We now discuss the two main integration methods (indefinite integration and integration
by the use of the representation of the path) directly after the definition of the integral,
postponing the proof of the first of these methods until Cauchy’s integral formula is avail-
able in Sec. 13.2. This compactification of the material seems desirable from a practical
point of view.

Comment

The introduction to the chapter mentions two reasons for the importance of complex in-
tegration. Another practical reason is the extensive use of complex integral representa-
tions in the higher theory of special functions; see Ref. [11] listed in Appendix 1.

SECTION 13.1. Line Integral in the Complex Plane, page 704

Purpose. To discuss the definition, existence, and general properties of complex line in-
tegrals. Complex integration is rich in methods, some of them very clegant. In this sec-
tion we discuss the first two methods, integration by the use of path and (under suitable
assumptions given in Theorem 1!) by indefinite integration.

Main Content, Important Concepts
Definition of the complex line integral
Existence
Basic properties
Indefinite integration (Theorem 1)
Integration by the use of path (Theorem 2)
Integral of 1/z around the unit circle (basic!)
ML-inequality (13) (needed often in our work)

Comment on Content

Indefinite integration will be justified in Sec. 13.2, after we have obtained Cauchy’s in-
tegral theorem. We discuss this method here for two reasons: (i) to get going a little faster
and, more importantly, (ii) to answer the students’ natural question suggested by calcu-
lus, that is, whether the method works and under what condition—that it does not work
unconditionally can be seen from Example 7!

SOLUTIONS TO PROBLEM SET 13.1, page 711

2.443i—9+4in0=ts1

4. 3cost + 2isint (0 = ¢ = 2). Here (and elsewhere) one should emphasize the ad-
vantage of parametric representations, that one gets the entire curve, whereas ¥y = yx)
would give only the upper half (or the lower half), and y'(x) — © as x — +3.

6.t+iP(-2=ts3)
8. 2cosht + isinht (—® < ¢ < w)
10. Upper semicircle (radius V'3, center 5i)

187
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2. y=%(-1=x=1)
14. Hyperbolaxy = 4 from 1 + 4ito4 + i

2
16. (1) z(9) = 1 +it(l§t§2),i(t)=i,ifldt=i.
Q) =t+2(1=t=3),30)= lftdt

Answer: 4 + i
18. z() =t +i? (0=t =1),2() =1 + 2it,z =t — it? gives

j; = i+ 2 d =1+ L
20. Re z2 = x® — 2 (1) Upward, z(t) = i1, 2(t) = i, j:— 2idt = —4i
(2) To the right, z(f) = ¢ + i, 3() = 1,f°l(r2 —Ddr=3-1
(3) Down, z(f) = 1 + it, ¢ goes from 1 to 0, £(z) = i, fo(l — Didt = i(~1 +})
(4) To the left, z(f) = 1, £ goes from 1 to 0, £(f) = 1, fzzd: = -3,

Answer: —1 — i
22. By Theorem 1, the integral gives

cosh 7z |°
m

1 1 2
=—(1—coshmi)=— (1 —cosm) = —
ar T T

i

24. By Theorem 1 the integral gives
8-3i—mi

‘3842 - %832—12‘(6-4'". = l) =0

8-3i

because of (7) in Sec. 12.6.
26. —3 - 27 by Example 6.
28. L=V5,|Rezl = |x] =3 = M, thus 3V5 = |4 + 2i] = V/20. It is typical that the
bound is much larger than the actual value.
30. TEAM PROJECT. (b) (i) 12.8i, (ii) 3(&*** — 1)
(c) The integral of Re 7 equals 27° — 2ai. The integral of 7 equals 472 The inte-
gral of Re z? equals 7°/3 — ma®/2 — 2ami. The integral of z2 equals 7°/3.
(d) The integrals of the four functions in (c) have for the present paths the values
Lami, 0, (4a® — 2)i/3, and —2i/3, respectively.
Parts (c) and (d) may also help to motivate our further discussions on path inde-
pendence and the principle of deformation of path,

SECTION 13.2. Cauchy’s Integral Theorem, page 713

Purpose. To discuss and prove the most important theorem in this chapter, Cauchy’s
integral theorem, which is basic by itself and has various basic consequences to be
discussed in the remaining sections of the chapter.
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Main Content, Important Concepts
Simply connected domain
Cauchy’s integral theorem, Cauchy’s proof
(Goursat’s proof in Appendix 4)
Independence of path
Principle of deformation of path
Existence of indefinite integral
Extension of Cauchy’s theorem to multiply connected domains

SOLUTIONS TO PROBLEM SET 13.2, page 720
2. (a) Yes. (b) No, since we would have to move the contour across +2i where
1/(z% + 4) is not analytic.
4. (a) z = 0 outside C, (b) z = 0, =1, =i outside C, (c) 0, +3i outside C.
6. No, because of the principle of deformation of path.
8. 0, yes ’
1 1/

W T il

1
. Answer: = 2mi = 2i by the deformation principle and (6). No

ar 2
12. f‘ e~ et dt = —4e~*| =0, no
o 0
2% o
14. [ etie di = 0, no
0

PROJE . 2z+3i __ 4 2 ) o
16. TEAM PROJECT. (b) (i) 2114 I1- %0 . From this, the princi-

ple of deformation of path, and (6) we obtain the answer

4-2mi — 2-2mi = 4.
(ii) Similarly,
z+1 1R 1/2
£2+2 z " z+2°
Now z = —2 lies outside the unit circle. Hence the answer is § + 2ai = i
(c) The integral of z, Im z, z2, Re 22, Im 72 equals 1/2, a/6, 1/3, 1/3 — a*/30 — ia/6,
al6 — ia*/30, respectively. Note that the integral of Re 2z plus i times the inte-
gral of Im z* must equal 1/3. Of course, the student should feel free to experi-
ment with any functions whatsoever,
18. 0 by Cauchy’s theorem because z = 1 and the portion x > 1 of the real axis lie out-
side the contour.

20. f xdx = 0, 2(1) = €", 0 = t = , hence the integral over the semicircle is
0

f (cos tie* dt = | f %(e“ + e ®)ett dy = ,'[o + éﬂ] = :
0 0 2

http://librosysolucionarios.net
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1
2=

25=:1
2z— 1
lie inside C.
24. 0 because the points *4n4ri, at which sinh z = 0, lie all outside the contour of inte-
gration, so that Cauchy’s integral theorem applies.

22,

. Answer: 2qri + 27ri = 44ri by (6) because both 0 and 1

1
==+
2

SECTION 13.3. Cauchy’s Integral Formula, page 721

Purpose. To prove, discuss, and apply Cauchy’s integral formula, the second major con-
sequence of Cauchy’s integral theorem (the first being the justification of indefinite inte-
gration).

Comment on Examples

The student has to find out how to write the integrand as a product f(z) times 1/(z — zg),
and the examples (particularly Example 3) and problems are designed to give help in that

technique.

SOLUTIONS TO PROBLEM SET 13.3, page 724
2. 2miild = —m/2
4. The ellipse 3x* + y*4 = 1 includes the singularities at —1 and 1 in the interior,
whereas *1 lie outside. If we write the integrand
E 3 B iz*
=1 @E+Dz=1) @@E+DEz+1)
we can apply Cauchy's integral formula to each of the two terms on the right and get
2mi-} —2mi-3=0.
6. The integrand is

Z

1
=il

4

et
ko

7wz — i =
By Cauchy’s formula,
2mi 1 1
2T itr = Zi(cos— + isin —) = —0.626 + 1.900i.
™ T T

8. The integrand is

22 sinz _ Z22sinz 1
3z—-1 3 z—-13°
Hence Cauchy’s formula gives
2mi 1
ﬁ sin = 0.02538i.

10. TEAM PROJECT. (a) Eq. (2) is
-6 (1)3_ ] dz 2 — ¢i®
fc Z’-%idz [2 8 §cz-ii+§c z— 4 "

i 1 1 1
( 3 )m fc(z 2zz 4) 411' 127ri

_ http://librosysolucionarios.net
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because the last integral is zero by Cauchy’s integral theorem. The result agrees with
that in Example 2, except for a factor 2.

(b) Using (12) in Appendix A3.1, we obtain (2) in the form

sin z 5 g dz sin z — sin 37
§ 1. 4z = singm I +§ S R
c LT 3T C Z—'z‘ﬂ' C Z=am
2sin (3z — 37)cos Az + 3w
=21ri+§ (32 —amcos(3z + 3§ )dz.
c z— 3w

As p in Fig. 343 approaches 0, the integrand approaches 0.
12. z = 2 lies outside the contour, so that we get the solution
4 —sinz
. iz =2
14. z = 0 lies inside the contour; the solutions of ¢ — 2 = 0 lic outside becausc ¢ —
2i,z = In2i = 2ni, and |In 2i| > In2 > . We thus obtain the answer

2

et —2i

= —47ri,
z=0

—- 27k
e 1=

2mi = =087 + 047 = —2.51 + 1.26i.

16. 422 — 8iz = 4z(z — 2i) = O at z = 2i in the “ring” in the figure and at z = 0 not in
the ring. Hence
wi sin2i i Ty
= e = 2. P
i’ B BT B '

sin z I 1 sinz
- T Il 1
c 422 — 8iz 4 gz

Section 13.3. Problem 16

18. zo = i lies inside the large circle; —i and —1 lie outside. The integral over |z| = 0.2
is zero by Cauchy’s theorem. Hence

La+D) , _ 2m_[Ln(z +2] — ol + D)
c (z=iNz+ 1) z+i ey 2i

- fn'(ln V32 + %i) = 1.089 + 2.467i.
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20. By Cauchy’s integral theorem we can replace C by two small circles C, and C, around
1 and —1 and then apply (9:6 get

f tan z 1 dz+§ ia.n.z_ 1 %
clLz+1]z-1 oLz—1 z$1
tan z tan z
= 2mi + 2mi = 2mitan 1.
2 5 O [ kg () PO

SECTION 13.4. Derivatives of Analytic Functions, page 725

Purpose. To discuss and apply the third major consequence of Cauchy’s integral formula,
the theorem on the existence and form of the derivatives of an analytic function.
Main Content

Formulas for the derivatives of an analytic function

Cauchy's inequality

Liouville’s theorem

Morera's theorem (inverse of Cauchy’s theorem)
Comments on Content
Technically the application of the formulas for derivatives in integration is practically the
same as that in the last section.

The basic importance of (1) in giving the existence of all derivatives of an analytic
function is emphasized in the text.

SOLUTIONS TO PROBLEM SET 13.4, page 729

2 20 (e*sinz)’| = 2mie™*(—sinz + cosz)] = 2mi
1! e s
28 ; .
4. 2z - 1)° = PG -1 Hence the solution is
2mi @A _2mi 720z]  _ 3mi
51 2 les 120 2° lLop 32
6. Differentiating three times, we obtain the answer
2 i
e “CO0Ss B e —
ETR b P

8. The answer is obtained by 2n differentiations, which reproduces cos z times a factor
(—1)™ Since cos 0 = 1, we obtain (—1)"2#7i/(2n)!.
10. From (1) we obtain

: 1/2;
L 22e?)" = mi(z® + 622 + 6z)€ "ol :
2! 2=12 z=1/2 8
12. We have to differentiate twice, so that (1) gives
—2-51? (z® + sinz)"| = mi(6z — sinz)] = (sinh1 — 6)m
: 2=i z=i

=, 1 : http://librosysolucionarios.net
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= —27i.
z=m2

14. From (1) with n = 1 we obtain 27ri/(—sin? z)
16. From (1) we obtain

27r£(e'3 12)' = 2rie* 2-z"%

2=2i z=2i
18. z = 2 lies outside the contour, and (1) with n = 1 gives

2mi| BEFD " 2m‘(-l - E)
-4y S [ 6 9 /-
20. TEAM PROJECT. (a) If no such z existed, then |f(z)| = M for every 2], which
means that the entire function f(z) would be bounded, hence a constant by Liouville's

theorem. .
(C“ + n—-1

() Let f(z) = co + ez + + + + + ¢cp2™ = z®
n > 0. Set [z = r. Then

n

Co
+roo+ =] ,c, #0,
z

lf@)] > r* (Icnl = ICL;ll' ““““ '—c'f'.l')

and |f(2)] > £r"c,,| for sufficiently large r. From this the result follows.

(c) |e*] > M for real z = x with x > R = In M. On the other hand, |e*] = 1 for any
pure imaginary z = iy because |e¥| = 1 for any real y (Sec. 12.6).

(d) If f(z) # O for all z, then g = 1/f would be analytic for all z. Hence by (a) there
would be values of z exterior to every circle || = R at which, say, |g(z)| > 1 and
thus [f(z)| < 1. This contradicts (b). Hence f(z) # 0 for all z cannot hold.

SOLUTIONS TO CHAPTER 13 REVIEW, page 730

16. —64/35

18. The four integrals along the four edges of the rectangle have the value 2,
=1+ cosh 1, =2 cosh 1, —1 + cosh 1. The sum is 0.

20. z = 0 and z = 2 both lie inside the contour, Hence we obtain —27i — 2mi = ~4q7i
(clockwise integration!).
2mi

. T
22, T (e®)

24. z(f) = 1 + it® (0 = 1 = 3). Hence the integral takes the form

3 ' e Pl 9 243
Lt(l + 3it?) dt = [—2- + 3I'IJ ) + 3 b

i
=

=1 3

=0
26. 2m —y = 20%
COs™ mz z2=1
28. z(f) = 3¢" (0 =t = }m), 7 = 3ie™. Hence the integral is
w2 1 )
f —3ietdt=e"V2 - | =j—1.
o 3
4 32
30, 2 —7'
453 z=w/4
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Major Change

Laurent series have been moved to Chap. 15, a better place because of their use in residue
integration.
Furthermore, the section on uniform convergence (Sec. 14.5) has been made optional.

SECTION 14.1. Sequences, Series, Convergence Tests, page 732

Purpose. Since not too much changes in the transition from real to complex sequences
and series, this section can almost be regarded as a review from calculus plus a presen-
tation of convergence tests for later use.

Main Content, Important Concepts
Sequences, series, convergence, divergence
Comparison test (Theorem 5)

Ratio test (Theorem 8)
Root test (Theorem 10)

SOLUTIONS TO PROBLEM SET 14.1, page 740

2. Yes, no, =(1 + i) 4. Yes, no, +1, +i
6. No, because z,, = (cosh n#w)/n 8. Yes, yes, 0

10. Choose € > 0 arbitrary. By the definition of convergence there exists N(e€) such that
[z, = 1| < 3¢, lz,* — 1*| < }e for all n > N(e). Hence for all these n,

len + 2 — A+ )| = |za =L+ 2* — ¥ Sz = | + |2a* — ¥ < e

This proves the assertion.
12. Convergent, the sum being e2°*3%

. 1 1 1
14. Convergent since Ff+_.| < z and >, ) converges.

16. This series converges by the ratio test because
(@ + DY @n)! (n+ 172 1

—p TRL
@2n+2) @) @n+2ZN2n+1) 4
18. Divergent since 1/lnn > 1/n (n = 2, 3, - - ) and the harmonic series diverges.
20. TEAM PROJECT. (a) By the generalized triangle inequality (6), Sec. 12.2, we have

Izm-l griahlads » zn-rpl = Izn+l| + lzn+2l gt 20 » lzn+pl-

Since |zy| + |zg| + - - - converges by assumption, the sum on the right becomes less

than any given € > 0 for every n greater than a sufficiently large N and p = 1,

2, - - -, by Cauchy’s convergence principle. Hence the same is true for the left side,

which proves convergence of z; + z + * + * by the same theorem.

(c) The form of the estimate of R, suggests we use the fact that the ratio test is a
comparison test based on the geometric series. This gives

. http:/llibrosysolucionarios.net .. ..
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Wiz Wis3
Rn=w,,+,+w“+2+~--=wn+l (l + ot =]
Wy Wnaa
Wni2 Weia Wnia Whao
| g = ¢% etc.,
Wpiy Wna1 Whnaz Wnyy

R,| = Wasal 1+ g+ g2 +--4) = llwnul .
=

(d) For this series we obtain the test ratio

1 _n /(n+1)’+1
2n + 1) n+ 1

2
__l_\/ nt + 203 + 202 1
n

n+1+i n
n+1 n+i

T2Vr 1 2P v 2 vl 3

from this with ¢ = 1/2 we have

IRl___Iwﬂ,1[=[n+l+i|_V(n+l)z+l

1-q 2%G+1)  2"G+1) 00
Hence n = 5 (by computation), and
5= i i 6—6-1-1‘ = 0.96875 + 0.688542i.
32 960

Exact to 6 digits is 1 + 0.693147i.

SECTION 14.2. Power Series, page 741

Purpose. To discuss the convergence behavior of power series, which is basic to our fur-
ther work (and which is simpler than that of series having arbitrary complex functions as
terms).

Proof of the Assertions in Example 6

R = 1/L follows from R = 1/T by noting that in the case of convergence, L = T (the only
limit point). 7 exits by the Bolzano-Weicrstrass theorem, assuming boundedness of

{Vla,|}. Otherwise, |an| > K for infinitely many n and any given K. Fix z # z, and
take K = 1/jz = zo| to get :

Vian(z — 20" > Kz — 2o = 1

and divergence for every z # z, by Theorem 9, Sec. 14.1.
Now, by the definition of a limit point, for a given € > 0 we have for infinitely
many n

T-e< cIa“I<T+ €,

hence for all z # z, and those n,

) @ - Olz = 2| < Viap(z — 20" < @ + e)fz — Zq|.

http://librosysolucionarios.net
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The right inequality holds even for all n > N (N sufficiently large), by the definition of
a greatest limit point. :

Let T = 0. Since V]a,| = 0, we then have convergence to 0. Fix any z = 7, # 2.
Then for € = 1/(2]z, — 2o|) > 0 there is an N such that m < efor all n > N, hence

1
lan@ = 20" < €2y — 2™ = S5

and convergence for all z, follows by the comparison test.
Let 7 > 0. We establish 1/7 as the radius of convergence of (1) by proving

convergence of the series (1) if |z — zo| < 1/7,
divergence of the series (1) if |z — zo| > 1.

Let | — 2zl < 1/ Then, say, |z — z/l = 1 — b < 1. With this and
€=bl2z — 7| > 0in (*), foralln >N,

Viaz — 20" <Tlze — 2ol + ez — 2l =1 = b+ 3 < 1.

Convergence now follows from Theorem 9, Sec. 14.1.
Let |z — zg| > 1/1. Then [z — 2|l = 1 + ¢ > 1. With this and € = c/(2|z — zo}) > 0
in (%), for infinitely many n,

Vigaz — 20" > Tl — 20l — ez — 2| =1 +c — 3¢ > 1,

and divergence follows.

SOLUTIONS TO PROBLEM SET 14.2, page 745

2, 3,® 4.0,4 6. mi, bla 8. 0, 1/V2
10. —1, 4 (the reciprocal of R in Example 5 of the text)
12. The quotient in (6) is

n® [(n+ 1" n™ 1

VAT '(n+1)"=F+l)" -
n

Hence the answer is 34, 1/e.

14. 0, =

16. 0, V2 (not 2; sec Team Project 20)

18. 0, 1/6

20. TEAM PROJECT. (a) The faster the coefficients go to zero, the smaller |a,, 4| is,
compared to |a,|, and the larger |a,/a, 1] = R becomes.

(b) (i) Nothing. (ii) This multiplies R by 1/k. (iii) The new series has radius of con-
vergence 1/R.

(c) In Example 6 we took the first term of one series, then the first term of the other,
etc. We could have taken, for instance the first three terms of one series, then the
first five terms of the other, then again three terms and five terms, etc. Or we
could have mixed three or more series term by term.

L
=
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Gn

Ap 4

@) 2 a,2® = 3 a @™ |22 < R = lim ,  hence |z] < VR

P

SECTION 14.3. Functions Given by Power Series, page 746

Purpese. To show what operations on power series are mathematically justified and to
prove the basic fact that power series represent analytic functions.

Main Content
Termwise addition, subtraction, and multiplication of power series
Termwise differentiation and integration (Theorems 3, 4)
Analytic functions and derivatives (Theorem 5

Comment on Content
That a power series is the Taylor series of its sum will be shown in the neat section,

SOLUTIONS TO PROBLEM SET 14.3, page 750
2. Set f =Vn and apply I'Hdpital’s rule to In £,

/
limlnfﬂlim-—=limT=0. Hence limf = 1.
n

- n—-k+1
6. (") = sin=1) ok ) consists of the fixed k!, which has no effect on

k k!
R, and factors n(n — 1) -+« (n — k + 1), as obtained by differentiation. Since
2 (z/m™" has R = m, the answer is 7.
8. V'5/3. The root appears because of z2" = (z%)",

10. . This is (36) in Appendix A3.1, except for a constant factor, and with z instead
of x.

12. 1/4 because 1/(n + 1) results from integration, and for the series without this factor
in the coefficients we have in (6), Sec. 14.2,
2nm)Y(n!)* . m+12 4 B

(2n + 2)U((n + 1)1)? - @n + 1)2n + 2) - 4

14. = because 3n(3n — 1) results from differentiation, and for the coefficients without
these factors we have in (6), Sec. 14.2,

/™
/(n + 1™+

16. This is a useful formula for binomial coefficients. It follows from

D P q q
(I +g%( &= ()z"Z ( )z"‘
m=0

n=0 VI

+ n
=(n l) n+1) —» « as n— o,
n

p+q
=1 +gPe=3 (” * “)zr

r=0 r

http://librosysolucionarios.net
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by equating the coefficients of z” on both sides. To get z"z™ = 2z on the left, we
must have n + m = r; thus m = r — n, and this gives the formula in the problem.

18. The even-numbered coefficients are zero because f(—z) = —f(z) implies
Aan(—2"™ = g 7®™ = ~ag2®™.

20. TEAM PROJECT. (a) The list is
I, 1, 2, 3, 5, 8 13, 21, 34, 55, 89, 144, 233.

In the recursion, a,, is the number of pairs of rabbits present and a,,_, is the number
of pairs of offspring from the pairs of rabbits present at the end of the preceding

month,
(b) Using the hint, we calculate

o= o
U=2-2) 2 ap2” = 2, (@ = Gny — Gno2™ = 1,

n=0 n=0

where a_; = a_, = 0, and Theorem 2 gives ao = 1, ¢ — a5 = 0,
a, =~ @y, = ay_5 = 0forn =23, -+ The converse follows from the unique-
ness of a power series representation (see Theorem 2).

SECTION 14.4. Taylor Series and Maclaurin Series, page 751

Purpose. To derive and explain Taylor series, which include those for real functions
known from calculus as special cases.
Main Content

Taylor series (1), integral formula (2) for the coefficients

Singularity, radius of convergence

Maclaurin series for €%, cos z, sin z, cosh z, sinh x, Ln (1 + z)

Theorem 2 connecting Taylor series to the last section

Comment
The series just mentioned, with z = x, are familiar from calculus.

SOLUTIONS TO PROBLEM SET 14.4, page 757

2. 3 %% R = 1, singularities at 1, +i

n=0

4. 1-42+34 -4 +—---;R=w

6.(2—z)znz =2+ 3z+422+52+628+---;R=1

n=1

8. The series is

4

3
22 5+ 2 z7+
*3-5 | Bar R N

§ e 1
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10.

12,
14.

16.

18.

20.

22.

24.

26.

It can be obtained in several ways. (a) Integrate the Maclaurin series of the inte-

grand termwise and form the Cauchy product with the series of e, (b) f satisfies

the differential equation f' = 2zf + 1. Use this, its derivatives f" = 2(f + zf"),

etc., f(0) = 0, f'(0) = 1, ctc., and the coefficient formulas in ( 1). (c) Substitute
@«

o«
f= 2 a,z"and f' = 2 na,z*' into the differential equation and compare coef-

n=0 n=0
ficients; that is, apply the power series method (Sec. 4.1).
2 R
——— g —— e —— L s =
‘733 T 55 T R i
25 29 213
st Tem T Ree

First of all, since sin (w + 27) = sin w and sin (m = w) = sin w, we obtain all val-
ues of sin w by letting w vary in a sunitable vertical strip of width o, for example, in
the strip —7/2 = u = m/2. Now since

(5 -5) =on (5 +5) =com
sin | — - = _ =
>~ sin y Ty ¥

R 0% o, T __3+.)_ oih
mzzy—smzly—cy,

we have to exclude a part of the boundary of that strip, so we exclude the boundary
in the lower half-plane. To solve our problem we have to show that the value of the
series lies in that strip. This follows from |z} < 1 and

1 23 )l 128 ‘ 1 [|z?
R t-——tee =zt ——+-- | Slf+ -2 ...
°(Z 23 k+33

2 3

r
s =
sin |z|<2.

1 T L
m——l’al(z 0% R=1

G+ D=1 ==1+5z+1) - 10z + D+ 10z + 1) = 5z + 1)* +
@+ 1)»

s (= go) == D)+ 2= 2o v pe
C = - — — — e — — — —_— —— — ...; -
e R 1 2] T\ 2

Y. A g = "+i —#@)P’+:+; R=o
S A b

—%—i’z—i)+%(z-i)H%(z—i)’—%(z-i)u---; R=2
We obtain
00622=l+—00822='l—1008(2z—1r)
2 2 2 2
1[4 1 \2 42 1 \*
A ] e
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28. TEAM PROJECT. (@) (Ln(1 +2)' =1 —z+ 22 =2+ -+ =

1
14z

1 CRPEIRC | ® (=]
(C) sin(z+—ﬂ)=2ﬂ_(zl)z,‘=2( ) n——
2 n=0 n! n=0

(d) For y # 0 the series

singy < (D" . 2ﬂ=°° 1
iy z'o(znﬂ)z('y) ,‘E_‘o(Zn+l)!yzn

has positive terms; hence its sum cannot be 0.

SECTION 14.5. Uniform Convergence. Optional, page 759

Purpose. To explain uniform convergence and its application to power seres (I'heorem
1). To explain the two main reasons for the importance of uniform convergence (Theo-
rems 2 and 3).

SOLUTIONS TO PROBLEM SET 14.5, page 766

2,
4'

6.

8.
10.
12.

14.

This Maclaurin series of cosh z converges for all z. Use Theorem 1.
n

i ] = = i and % 27" converges. Use the Weierstrass M-test,

P+ 1] " 2t

{tanh™ |z} = 1, 1/n(n + 1) < 1/n® and % 1/n® converges. Use the Weierstrass M-test.

R = 5; uniform convergence for |zl = 5 — 8, § > 0.

R = =o; uniform convergence on any bounded set.

lanhn?] = 1. Convergence for [z)| < 1/6. Uniform convergence for

l4d = V6 - 8,8>0. :

TEAM PROJECT. (a) Convergence follows from the comparison test (Sec. 14.1).

Let R,(z) and R,,* be the remainders of (1) and (5), respectively. Since (5) converges,

for given € > 0 we can find an N(e) such that R,* < e for all n > N(e). Since

|f(@)| = M,, for all z in the region G, we also have |R,(z)| = R,* and therefore
|R,(z)| < € for all n > N(e) and all z in the region G. This proves that the conver-
gence of (1) in G is uniform.

(b) Since fg + f1 + - - - converges uniformly, we may integrate term by term, and
the resulting scrics has the sum F(z), the integral of the sum of that series. There-
fore, the latter sum must be F'(z).

(¢) The converse is not true.

(d) Noting that this is a geometric series in powers of ¢ = (1 + z%)~', we have
g=1+2 <L, 1<|l+ %=1 +x*—y** + 4x®? the exterior of a
lemniscate. The series converges also at z = 0.

(e) We obtain

L z[~ °°_L_]
2 il R s

ol § B o el |

=t —— =@ 14+ 1
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2| - 2
16. |B,| = Ilf f(x)sani'z”idx < ML, where M is such that | f(x)| < M on the io-
0
terval of integration. Thus [B,| < K (= 2M). Now when 1 = o >0,

. nuxX RS
|iey) = |B,, sin TR e~ MM < KemAn'te

because lsin l?, = 1 and the exponential function decreases in a monotone fash-

ion as r increases. From this,

a
}-‘ul = |=Anunl = A2 < A,2Ke " when 1=,

cnr
Consider 2 An2Ke™*="%, Since A, = — . the test ratio i

n=l

1K ~Ani +1\2 ]
A:,,;K::: E-:ﬂzt:)%) = (n - ) exp [—(Zn + l)(c_'rc) to] ~ 0

as n— o, and the series converges. From this and the Weierstrass test it follows that

du
2 7 converges uniformly and, by Theorem 4, has the sum e etc.
t t

SOLUTIONS TO CHAPTER 14 REVIEW, page 767

16. z/(1 — 2%, R=1 18. R =
20. R =4 22.6_'8, R =
z =2\
24. (1—4+3i) , R=5
26. ez‘ = ez(“i"")"‘"' = —ga(z_*'".) —2 —(z —_ %qn)“ =
: n=o N
1 1
28. -
(z+3 -4 . z P
, (3—4;)[1+34‘,]
3— _E‘L(_) (3—4:)"
+ 4i)* & + 4i
82 S +1>( )z
25 n=0
and

(3 +4i)
Z
25

the distance of 3 + 4i from z = 0.
30. In3+34z-3) - %z -32+{Ze-3°—-+-; R=13

25
<1, lz,(—s—=5. R =23,
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32. 1 — di(z — i) — 6(z — i)®> + 4i(z — i)* + (z — i)* a binomial expansion also read-
ily obtainable from Taylor’'s theorem.

1 1 LAY 9 1 \°
M ~z-——7)+—|z—-— -—fz—— + =
(z z) 3!(Z 2") 5!(2 2)
I
=-sin(z-;1r);R=°°
36. |30 + 10i| = V1000 > [31 — 6i] = V997. No, by Theorem 1 in Sec. 14.2. Smaller
numbers serving the same purpose are 5 + 4i and 6 + 2i; then |5 + 4i| = V41 >
|6 + 2i] = V40.
8. |4d=7-88>0
40. R = 0, the series converges only at the center z = —1, so that uniformity of conver-
gence loses its meaning.
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CHAPTER 15 Laurent Series, Residue Integration
Major Change

Laurent series, formerly in the previous chapter, have now been placed into this chapter,

because of their main application, which is residue integration.

Applications to real integrals has been shortened because their practical importance

seems to have decreased.

SECTION 15.1. Laurent Series, page 770

Purpose. Next in importance after power series are Laurent series, converging in an an-
nulus, and we explain here their theory and technique of application.

Comment on Content

The Laurent series of a given function in 2 given annulus is unique; this is esscntial in
view of our various methods and tricks of derivation. Because of our later work (residue
integration!), two facts should be emphasized: (i) a function may have different Laurent
series in different annuli with the same center, and (ii) the series converging in an im-
mediate neighborhood of a singularity (except at the singularity itself) is of particular
interest because it will give the residue (defined as the coefficient of the term of the

power 1/7).

SOLUTIONS TO PROBLEM SET 15.1, page 775

2. Divide the Maclaurin series of sin 7z by z2 to obtain the answer

r o w° il

e i e A e o o e
: 3!z+5!z R i 0<y < .
4. Using the sum formula for the geometric series, we obtain the answer
1
o=l gmemgbaeiy O<idel
6.z"5"51'4+z£iZ‘3—1§§Z"2+—"’; 0<|f <o
8. Using the sum formula for the geometric series, we obtain
1 | l @ 2™ 3 lagofies 4
Ty R a e (Sl
z m=0 " gn=0 n=0 ‘m=0
-1+2+—5— +l63+—°33+ ;
FETGE T 2T ’

10. The function is the same as in Prob. 8, but we now have the center zy = 1. (In Prob.

8 the center was 0.) We obtain
o e(z-!)-f-l

G-DA+@-1) z-

I N BN Y
—Z_IE:O(EO = )(z 1)

m=0
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2 B 3
-1 @-1

12. 1 +
Z

1
14. sinz = sin(z — 7 + }n) = T(sin (z — 4m + cos(z — 1m)). This gives the
answer 2
1
7—5[& - 2+e-m 7 -d-le-in+Hhe-{*+ - R=o
16. e®[(z ~b) ' +a+3a%z—b) + 3z -bP+--); R=o
18. The answer is the Laurent series, which is the sum of the two series

1 — 1 —_l..*.L_L_L'_*_ (lz|>1
z—i Z1-i) z 2 & )

and
1 -1
z—=2i 21 — z/2)

20. The answer is the Taylor series that is the sum of the two series

=%i+h-di?-HP+Ht - (d<2).

z_i—i=z"*‘%(z'*‘i)—ii(z+i)2—-l¥.-(z+i)3+-éi(z+,-)4+...
and

=3i+3z+ D) -Fi+i)P -z + i+ g+t +---.

z—2

22. TEAM PROJECT. (a) Let D, a,(z — 2o)" and , ¢,(z — 2o)" be two Laurent

series of the same function f(z) in the same annulus. We multiply both series by

(z — 7o) "%~ and integrate along a circle with center at z, in the interior of the an-

nulus. Since the series converge uniformly, we may integrate term by term. This yields

27ria, = 2micy. Thus, g = ¢ forallk =0, £1,+ -,

(b) No, because tan (1/z) is singular at 1/z = = /2, £37/2, - - - ,hence atz = *2/m,
+2/3m, - -+, which accumulate at 0.

(c) These series are obtained by termwise integration of the integrand. The second
function is Si(z)/z®, where Si(z) is the sine integral [see (40) in Appendix A3.1].

Answer:
1 1 z 2
—t = = F r e
z 212 313 414 i
l__l_+zz
2 313 515

SECTION 15.2. Singularities and Zeros. Infinity, page 776

Purpose. Singularities just appeared in connection with the convergence of Taylor and
Laurent series in the last sections, and since we now have the instrument for their classi-
fication and discussion (i.e., Laurent serics), this seems the right time for doing so. We
also consider zeros, whose discussion is somewhat related.
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Main Content, Important Concepts

Principal part of a Laurent series convergent near a singularity
Pole, behavior (Theorem 1)

Isolated essential singularity, behavior (Theorem 2)

Zeros are isolated (Theorem 3)

Relation between poles and zeros (Theorem 4)

Point =, extended complex plane, behavior at

Riemann number sphere

SOLUTIONS TO PROBLEM SET 15.2, page 780

2. *1. =i fourth order
4. (1 = 2n)mi/4 (second order) because

cosh2z = 3(e* + e*) =0, &% = -1, 4z =1In(~1) = (1 = 2n)mi.

6. 3w+ 2nmn=0,1,---; tenth order
8. TEAM PROJECT. (a) f(z) = (z — 20)"g(z) gives

10

f'@ = nGz — 20" @) + - 2)"2'@),
which implies the assertion because £(zo) # 0.

(b) f(z) as in (a) implies 1/f(z) = (z — z0)~"h(z), where h(z) = 1/g(z) is analytic at
2o because g(z,) # 0.

(€} f(z) — k = 0 at those points. Apply Theorem 3.

(d) f1(2) — f2(2) is analytic in D and zero at each Zn. Hence its zeros are not iso-
lated because that sequence converges. Thus it must be constant since otherwise
it would contradict Theorem 3. And that constant must be zero because it is zero
at those points. Thus f,(z) and f,(z) are identical in D.

. X1, £3, X5, + - (simple poles); = (essential singularity)

12. = (essential singularity)

14.

16.
18.

%2i (essential singularities). These are the solutions of 22 + 4 = (. Also, f(lw) =
cosh [w’l( 1+ 4w3)] is analytic at w = 0. Hence the given function is analytic at e,
—i (essential singularity)

m/4 % nar (simple poles). These are the points where the sine and cosine curves in-
tersect. They have a different tangent there, hence their difference cos z — sin Z can-
not have a zero derivative at those points; accordingly, those zeros are simple and
give simple poles of the given function. To make sure that no further zeros of
€os z — sin z exist, one must calculate

it Y (L By
Cos z sz = 2 zle 2 Zie = U,

and by simplification,

. T
A= | z=z-’_':n1r, n=0,1,++-,

so that we get no further solutions beyond those found by inspecting those two curves.
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20. For |z] small enough we have |1 + z| > V2, 1 = 2| > 1/V2; hence
-2 =1+2[1 =2 >12and

L o L
2 z| |

This motivates the proof.

To prove the theorem, let f(z) have a pole of mth order at some point z = zo. Then

1
1 —22 >-2-‘;|§ — o© as |gd—0.

m bm—l

z-2™ @-z2™!

b b
=(z—':o)"'[” :l(z'z"”'“]’ W

For given M > 0, no matter how large, we can find a § > 0 so small that

@) =

wml bm-—l l
s (7 - I S ——
& M and 1 (z —zp) >

for all [z — zo| < &. Then

1
lf@)| > I—;:'Ti 5=M

Hence |f(z)] — = as z— z,.

SECTION 15.3. Residue Integration Method, page 781
Purpose. To explain and apply this most elegant integration method.
Main Content, Important Concepts

Formulas for the residues at poles

Residue theorem (several singularities inside the contour)

Comment
The extension from the case of a single singularity to several singularities (residue theo-
rem) is immediate.

SOLUTIONS TO PROBLEM SET 15.3, page 786

2. 0 (at 0)

4 -1 (@ @n+ Dm/2,n=0, %1, £2,---)

6. (—1)""' (@t @n+ Daf2,n=0, £1, £2,+ )

8. —2&i (at 2i), 3i (at —i)

(ez)" 1

B I

12. 22 — 4z — 5§ = (z + 1)z ~ 5). Simple poles at —1 [residue (—1 — 23)/(=1 = 5)
= 4 by (4)] and 5 [residue (5 — 23)/(5 + 1) = —3], both inside C. Answer:
2mwi(4 — 3) = 2mi.

14, Simple poles at +3. By (4) the residues are

10.

sinz _ 1
8z 8

zsin z.

....... = 3 ¥ _http://librosysolucionarios.net
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This gives the answer
2milg - Fsind + §(—3) sin (—3)] = {mising.

16. Simple poles at —1, 0, 1. Equation (4) gives (¢* + 2)/(3z® — 1), hence (e~ — 72,
=1, (e + 1)/2, respectively. Answer: 2mi(cosh 1 — 1).
18. Simple pole at z = i/2 with residuc

R sinhz_sinhil__l___l_
eim2—i 2 203
Answer: —msin = —1.506.

20. sind4z = 0 at 0, *7/4 (inside C), £m/2, - - - (outside C). This gives three simple
poles at —mr/4, 0, w/4 to be taken into account, with residues

. 2 % N6 e~T6
es = == R 1’ = "
==z sindz 4 coe g, 4 4 4

respectively, and by the residue theorem the answer

2—;’5 (1 — 2718 = _0.1245;

SECTION 15.4. Evaluation of Real Integrals, page 787

Purpose 1. To show that certain classes of real integrals over finite or infinite intervals
of integration can also be evaluated by residue integration.

Comment on Content

Since residue integration requires a closed path, one must have methods for producing
such a path. We see that for the finite intervals in the text, this is done by (2), perhaps
preceded by a translation and change of scale if another interval is given. (This is not
shown in the text.) In the case of an infinite interval, we start from a finite one, close it
by some curve in complex (here, a semicircle; Fig. 360), blow it up, and make assump-
tions on the integrand such that we can prove (once and for all) that the value of the in-
tegral over the complex curve added goes to zero.

Purpose 2. Extension of the second of the two methods Jjust mentioned to integrals of
practical interest in connection with Fourier integral representations (Sec. 10.8) and to
discuss the case of singularities on the real axis.

SOLUTIONS TO PROBLEM SET 15.4, page 793
2. The denominator is
25 — 24 cos @

2B5-12z+z ) =~1272 -8B+ 1)

~1274z - f)(z - §).

Two simple poles, at z = 4/3 (outside the contour) and at z = 3/4 (inside). From this
and df = dz/iz we obtain the answer

2 L 1 _ 2w
™2 - 7
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4'

10.

Using (2), we obtain for the integral
+ 1/ 241
§ iz 7) pou § Z
c c

(3 + (12i)z — 1/2))iz 2% + 6iz — 1]

=§ 22+ 1
c Az — 1)z — zp)

The residue at the simple pole z = 0 is 1/(—1) = —1. The two other poles are at
2 = (=3 + V)i inside the unit circle and z, = (—~3 — V8)i outside the unit cir-
cle. From (3), Sec. 15.3, we obtain at z, the residue

22+ 1 —(-3+V82+1 -16+6VE

@ — ) (=3 + VB)i-2V8i T 16+ 6V k

Answer. 0.

This also follows by noting that the integral from 0 to $7r equals minus the inte-
gral from 17 to 7 (set @ = 7 — 6%) and the integral from 77 to §r equals minus the
integral from 27 to 2.

. Using (2), we obtain for the integral

§ dz W ., ., dz
c . 3 1 3 fod lO 3 c(Z—Sl')(Z—i.B)‘
tzS—Ez—; 1

The residue at the pole at i/3 is

Answer: 2mi(~3i) = 4m.

. The integral equals

1 14+2z+2z7Y 1 222 +z+2

-:é = — §

i Jo 17— 4@z +27Y)] —4i Vo 2(z = 7))z ~ 22)
where z; = 1/4 (inside the unit circle) and z; = 4 (outside) give simple poles. The
residue at z = 01is 2/z;29 = 2, and at z = 1/4 it is

216+ 1/4+2 _ 38
14 —-4 15

This gives the answer
2m (2 A PR
—4i 15 15°
Simple poles at z; = (2 + 2i)/V2 and z5 = (=2 + 2i)/V'2 in the upper half-plane

(and at (=2 — 2i)/V2 in the lower half-plane). From (4) in Sec. 15.3 we obtain the
residucs

4z, = (=1 = DI(32V2),  14dz,® = (1 — HI(32V2).

Answer: m(8V2).

- oo _hitp:/llibrosysolucionarios.net

—— e




Instructor’s Manual 209

12. Third-order pole at z = i (and at z = —i in the lower half-plane) with residue

11 1" __s
2L+l @°

Answer: 2i « 6/(2i)° = 3/8.

14. Second-order pole at z; = 1 + 2i in the upper half-plane (and at z, = 1 — 2i in the
lower) with residue

[ 1 ]' <% =5 3
(z-1+ 2‘)2 2wy (Z1 oy 22)3 (4i)3 32
Answer: 2mi(1/32i) = #/16.

16. Simple poles at i and 31 in the upper half-planc (and at —i and —3i in the lower) with
residues

1 1 1 1
@HYE+9 |, 167 @+ D+, 480

Answer: 2mi(1/16i — 1/48i) = 7/12.
18. Simple pole at z; = X(—1 + iV/3) (and at 3(—1 = iV3 in the lower half-plane), with
residue
e e—\/§
—_— = — 1 —isin1).
3 s (cos isin 1)

Answer: —2me="3(sin 1)/V/3 [by (10)].

20. Second-order poles at z, = j and z, = —i (in the lower half-plane). By (5), Sec. 15.3,
we get the residuc

s o - s
[ G+ i)z]m_ e 2L S B ZIL_‘- = :2‘.), (=6) = —3e7%i/d.

Multiplying the imaginary part —3e~2/4 by —2a gives the answer
3me~2%/2 = 0.6378.

22. 2% — 2z = z(z ~ 2i) shows that we have simple poles at 0 and 2i with residues [by
(3), Sec. 15.3]

1
z =2

ze2i

i
z=0 2

N'-—.

1
and -
z

The answer is
wi(il2) + 2mwi(—if2) = mw2.
24.23-1 = 0 has the solutions z; = 1, z, = —1 on the real axis, z; = i in the upper

half-plane (and —i in the lower). By (4), Sec. 15.3, the residues at the first three of
these four simple poles are

1 g 1 1 1 1
s VT g 1) = 4* 4B 5
so that (14) gives the answer

(1 1 fi)y_ =
71'1(4 4)+21ﬂ(4)— ?
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26. TEAM PROJECT. (b) The integral of ¢~*" along C is zero. Writing it as the sum
of four integrals over the four segments of C we have
a ~a 0
J e dx + e re”z"zavi dy + esz e~ % —BbT gy 4 ie““zj eV +2aut gy = (),
-a 0 a b
Let ¢ — =, Then the terms having the factor e approach zero, Taking the real part
of the third integral, we thus obtain

—j e™* cos 2bx dx = 2f e cos 2bx dx = e”"’f e dx = e~V 7.
o 0 —
Answer: 3¢~ V/m.

(c) Use the fact that the integrands are odd.

SOLUTIONS TO CHAPTER 15 REVIEW, page 794

22. 6mi because C contains only the pole at z = 3 in its interior.
24, 28 — 92 = z(z + 3)(z — 3) = O at z = —3, 0, 3 gives simple poles, all three inside
C: |z| = 4. From (4), Sec. 15.3, we get the residues
%152+9=15z+9 _ =36
2=-3 7% — Oz 322 -~ 9 |;m-3 18

and similarly, at 0 the value 9/(—9) = —1 and at 3 the residue 54/18 = 3. Since all .

three poles lic inside C, by the residue theorem we have to take the sum of all three
residues, which is zero. Answer: 0.
26. Simple poles at z = —1/2, 1/2 with residues [by (4), Sec. 15.3]

R z%sinz __zozsinzo b = e s K
n 42 -1 8z Rt T A

Answer: 2mi -2 - Js sin = dmisin} = 0.37651.
28. 2 expz* = (expz%)’, so that indefinite integration (because of independence of
path) gives, with (1 + i)* = —4,
1 1

1
fod il ==
4P T

Answer: (e — e~%/4 = 0.6750. No.
30. From the Maclaurin series of sinz we see that the residue is 0 for odd »n and
(=1)™* 220 — 1)1 forn = 2, 4, - + - . Multiplication by 27ri gives the answer.

32. Simple pole at 0, residue [by (4), Sec. 15.3]
coshz
(sinh z)’

Answer: 21ri.
34. The integral equals

(z — 1i2)12 - =]
£ iz[3 + 4(z + 1/2)] = §c Z[2® + 62 + 1] g8
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At the simple pole at z = 0 the residue is —1 (not counting the minus in front of the
integral). At the simple pole at ~3 + V'8 (inside the unit circle) the residue is

(=3+V8P*-1_
(-3 + V8)2/8

Answer: 0.
36. m/60
38. Simple pole at z; = i/2 in the upper half-plane (and at —i/2 in the lower) with residue
1/(8zy) = —ilA. Answer: 2mi(—il4) = m/2.
40. Poles atz; = —~3 + iV3/2 and 7p=—1- iV/3/2 (both simple). We need, using (3)
in Sec. 15.3,
e e

- = ~Vaz -1 i
l'{;c‘s: -z Mz2—29) z-12. ¢ (e — iD/EV3)

= —fe V3 — 191V3,

where ¢ = cos and s = sin}. Taking 27 times the real part of this, we get the
answer

—2me~V32 (sin $)/V3 = —0.7315.
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CHAPTER 16 Complex Analysis Applied to Potential Theory

This seems perhaps the most important justification for teaching complex analysis to en-
gineers, and it also provides for nice applications of conformal mapping.

SECTION 16.1. Electrostatic Fields, page 799

Purpose. To show how complex analysis can be used to discuss and solve two-dimen-
sional electrostatic problems and to demonstrate the usefulness of complex potential, a
major concept in this chapter.

SOLUTIONS TO PROBLEM SET 16.1, page 802

2. F(z) =~ 20z + 300
4. ® = 100(y + %x), F(z) = 100(} — i)z
6. 110(In r)/In2 = 159 In r (with r measured in cm)
8. ©(r) = 20(In r)/In 2 — 10, (3) = 21.70 > 20
10. Yes, because near a source line its effect is much stronger than that of the other source
line, and for a single source line, the equipotential lines are exactly concentric cir-
cles.
12, & = 110 — 50xy
14. Compare the formulas for cos™* and cosh™* in Team Project 30, Sec. 12.8, and note
that v = const in 1 + iv = cos™! z represents ellipses.
16. CAS PROJECT. (a) x> —y* = c,xy =k
() xy = ¢, x> = y* = k; the rotation caused by the multiplication by i leads to the
interchange of the roles of the two families of curves.
© xx*+y)=c¢ gives (x — 1/2¢)® + y% = 1/4c*. Also, —y(x® + y) =k gives
the circles x* + (y + 1/2k)> = 1/4k>. All circles of both families pass through the
origin.
(d) Another interchange of the families, compared to (c), (y — 1/2¢)® + x* = 1/4¢2,
(x — 122 + y% = 1/4k>,

SECTION 16.2. Use of Conformal Mapping, page 804

Puarpose. Tu show how confunnal mwapping helps in solving potential problems by map-
ping given domains onto simpler ones or onto domains for which the solution of the prob-
lem (subject to the transformed boundary conditions) is known,

SOLUTIONS TO PROBLEM SET 16.2, page 807
2. Figure 315, Sec. 12.6, shows D (a semi-infinite horizontal strip) and D* (the upper
half of the unit circular disk); and ® = 2¢"cos y e*siny = ¢**sin2y =0ony =0
and y = 7, and sin 2y on the vertical boundary x = 0 of D.
4. ® = 2sinxcos xcoshysinhy = §sin2xsinh2y = 0ifx = Qorx = dwory = 0,
and } sin 2xsinh 2 if y = 1.

212
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8.

10.

14.

TEAM PROJECT. We map 0 > 7y, 2¢ +> —rg, obtaining from (2) with b = z, the
conditions
- 2c — 26—,
r0=——2=20» —ro= Zo: 0'
-1 2%5¢ =1  2rpc—1

hence

I
ro=2—c'(l - V1 = 4¢3,

ro is real for positive ¢ = 3. Note that with increasing ¢ the image (an annulus) be-
comes slimmer and slimmer.
® = 100(1 — (1/m) Arg (z = 1)), F(z) = 100(1 + (i/m) Ln (z — 1))

- *iare fixed points, and straight lines are mapped onto circles (or straight lines). From

this the assertion follows. (It also follows by setting x = 0 and calculating |w].)

The function z = Z* maps the first quarter of |Z| = 1 onto the upper half of the unit
disk |z] = |, thesegments U S X = 1and0S ¥V = | being mapped into the x-axis,
where the potential is zero (Fig. 372a). From this the result follows.

SECTION 16.3. Heat Problems, page 808

Purpose. To show that previous examples and new ones can be interpreted as potential
problems in time-independent heat flow.

Comment on Interpretation Change
Boundary conditions of importance in one interpretation may be of no interest in another;

this

is about the only handicap in a change of interpretation.

SOLUTIONS TO PROBLEM SET 16.3, page 811

2.

4.

By inspection,
T(x, y) = 10 + 7.5(y - x),
the real part of

F(z) = 10 = 7.5(1 + i)z

A systematic derivation is as follows. The boundary and boundary values suggest that A
T(x, y) is linear in x and y,

I'(x,y) = ax + by + c.
From the boundary conditions,

) T(x, x ~ 4) = ax + b(x — 4) + ¢ = —20,
@ T(x, x + 4) = ax + b(x + 4) + ¢ = 40,
By addition,

2ax + 2bx + 2¢ = 20.
Since this is an identity in x, we must have @ = —b and ¢ = 10. From this and (1),
—bx + bx — 4b + 10 = —20.

Hence b = 7.5. This agrees with our result obtained by inspection.
T = 10 + 105(Arg 2)/m '
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6.

10.

12'

14,

The lines of heat flow are perpendicular to the isotherms, and heat flows from higher
to lower temperatures. Accordingly, heat flows from the portion of higher tempera-
ture of the unit circle |Z| = 1 to that kept at a lower temperature, along the circular
arcs that intersect the isotherms at right angles.

Of course, as temperatures on the boundary we must choose values that are phys-
ically possible, for example, 20°C and 100°C.

. TEAMPROJECT. (a) Argzor Arg w is abasic building block when we have jumps

in the boundary values. To get it as the real part of an analytic function (a logarithm),
we have to multiply the logarithm by —i. Otherwise we just incorporate the real con-
stants that appear in T(x, y). Answer:

T2 25 Tl

F¥w) =T, — i La (w — a),

T*(u, 1) = Re F*(w) = T, + L-Th Arg (w — a).
m

T,
(b) T*=-£—Arg(w— |)—%’Arg(w+ 1). This is the real part of

. Ty
F*(w) = *!;ILD(W = 1) = La(w + 1)].

On the u-axis both arguments are 0 for u > 1, one equals 7if —1 < u < 1, and
both equal 7, giving m — m= 0if u < —1.
(¢) w— a = z% Hence Arg (w — a) = Arg z> = 2 Arg z. Thus (a) gives

2
Tl +;(T2 o T])A.l'gz

and we see that T = T on the x-axis and T = T, on the y-axis are the boundary
data.

Geometrically, the a in w = a + z2 is a translation, and z> opens the quadrant
up onto the upper half-plane, so that the result of (a) becomes applicable and
gives the potential in the quadrant.

(400/mr) Arg z. This is quite similar to Example 3 because the smaller circular bound-
ary is a line of heat flow, as it must be for an insulated part of the boundary.

The answer is
10
;[Arg(zz ~-1) - Arg (22 + 1]

because w = z* maps the first quadrant onto the upper half-plane with | — 1 and
i => —1. The figure shows the transformed boundary conditions. The temperature is

10 10
—[Arg(w = 1) = Arg (w + 1)] =;[Arg(z”— 1) — Arg (22 + 1)),

in agreement with Team Project 8(b) with T, = 10.
(200 Arg z)/m

T=0C -1 T=10C 1 T=0%¢C
Section 16.3. Problem 12
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SECTION 16.4. Fluid Flow, page 812
Purpose. To give an introduction to complex analysis in potential problems of fluid flow.
Important Concepts

Stream function ¥, streamlines ¥ = const

Velocity potential @, equipotential lines & = const

Complex potential F = & + ¥

Velocity V = F%

Circulation (6), vorticity, rotation (9)

Irrotational, incompressible

Flow around a cylinder (Example 2, Team Project 14)

SOLUTIONS TO PROBLEM SET 16.4, page 817

2. F(2) = (1 — DKz/'V2, K positive real
4. F(z) = iz® = i(x® — y?) — 2xy gives the streamlines
x% — y% = const.
The equipotential lines are
xy = consl.
The velocity vector is
V=F = -2i7 = =2y — 2ix.
See the figure.

Section 16.4. Problem 4

6. F(z) = iz® = i(x® + 3ix%y = 3xy? — %) = ~%2y + 3 + i3 - 3ny?) gives the
streamlines
x(x* — 3y%) = const.

This includes the three straight-line asymptotes x = 0 and y = *x//3 (which make
60° angles with one another, dividing the plane into six angular regions of angle 60°
each), and we could interpret the flow as a flow in such a region. This is similar to
the case F(z) = z2, where we had four angular regions of 90° opening each (the four
quadrants of the plane) and the streamlines were hyperbolas. In the present case the
streamlines look similar but they are “squeezed” a little so that each stays within its
region, whose two boundary lines it has for asymptotes.
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The velocity vector is
= —6xy + 3i(y* — x?)
sothat Vy = Oony = x and y = —x. See the figure.

il
|

N
T

N
.
\l\x

P

“~

Section 16.4. Problem 6

8. This rotates the whole flow pattern about the origin through the angle a.

10. F(z) = 2* + /2%, ¥ = (r* = Ur®)sin 26 = 0 if » = 1 (the cylinder wall) or 8 = 0,
% m/2, m. The unit circle and the axes are streamlines. For large |z| the flow is simi-
lar to that in Example 1. For smaller |z] it is a flow in the first quadrant around a quar-
ter of [z] = 1. Similarly in the other quadrants.

12. w = cosh™? z implies

z=x+ iy = coshw = cosiw = sin (iw + }m).
Along with an interchange of the roles of the z- and w-planes, this reduces the pre-

sent problem to the consideration of the sine function in Sec. 12.7 (compare with Fig.
316). Instead of (16), Sec. 12.7, we now have the hyperbolas

2 2
Yy
sin® ¢ cos® ¢

X

where ¢ is different from the zeros of sine and cosine, and as limiting cases, the
y-axis and the two portions of the aperture.
14. TEAM PROJECT. (b) We have

iK ik K
R = —— ' o —
F(z) = Inz e In |2| oy HET

Hence the streamlines are circles

K
——Inlzl = const, thus 2| = const.
27
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The formula also shows the asserted increase of the potential

K
D(x, y) = o, ABZ
if arg z is increased by 2.

1 1
(d) Fi(z) = Py In (z + a) (source). Fy(z) = =T In (z — @) (sink). The minus sign

has the consequence that the flow is directed radially inward toward the sink be-
cause the velocity vector V is

1 x—a+iy
2w m :
For instance, at z = a + i (above the sink),
i
V=- %
which is directed vertically downward, that is, in the direction of the sink at a.
(e) The addition gives

1 iK

= + — - ——
Fiz) =z : 2Wlnz
—x bt argz + iy —
- B4y o TBETHY 2+
—Lln\/x2+yz).
2
Hence the streamlines are
y K
‘I'(Xs)')=1lnF(Z)=)"xz+y2 ‘Eln Vx® + y? = const.
In both flows that we have added, |z] = 1 is a streamline, hence the same is true
for the flow obtained by the addition,

Depending on the magnitude of K, we may distinguish between three types of
flow having either two or one or no stagnation points on the cylinder wall. The
speed is

el — |t _L __':_K__
M= 7@l = ol = |(1- 5) - 2%

We first note that [V] — 1 as |z| — w; actually, V — 1, that is, for points at a
great distance from the cylinder the flow is nearly parallel and uniform. The stag-
nation points are the solutions of the equation V = 0, that is,

iK
(A) 2——z-1=0.
27
We obtain
_£+ _Kz-{-]
% 447 167
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If K = 0 (no circulation), then z = *1, as in Example 2. As K increases from 0
to 44, the stagnation points move from z = *1 up on the unit circle until they
unite at z = . The value K = 47 corresponds to a double root of equation (A).
If K > 4, the roots of (A) become imaginary, so that one of the stagnation points
lies on the imaginary axis in the field of flow while the other one lies inside the
cylinder, thus losing its physical meaning.

SECTION 16.5. Poisson’s Integral Formula, page 819

Purpose. To represent the potential in a standard region (a disk |z| = R) as an integral
(5) over the boundary values; to derive from (5) a series (7) that gives the potential and
for |z| = R is the Fourier series of the boundary values.

Comment on Footnote 6

Poisson’s discovery (1812) that Laplace’s equation holds only outside the masses (or
charges) resulted in the Poisson equation (Sec. 11.1). The publication on the Poisson dis-
tribution (Sec. 22.7) appeared in 1837,

SOLUTIONS TO PROBLEM SET 16.5, page 822

2.®=2—rcosh
4. © = r*cos 46 — r®cos 26
6. =32+ 2r*cos20 + §ricos 48
r’ rs
8. b=7-2 (rsin0+7sin20+?sin38+---).

Note that ®(1, ) is neither even nor odd, but ®(1, ) — 7 is odd, so that we get
a sine series plus the constant term .

1 2 | 1 3
10. b=—+ — |rsinf + —r®sin30 + — rPsinS50 + - - +
2 T 3 5

l o
14. TEAM PROJECT. (a) r = 0 in (5) gives ®(0) = 7Y r ®(R, a)da. Note that
the interval of integration has length 27, not 2nR. 0

1 1
(b) V:u = 0, u = g(rh(B), g"h + = g'h + = gh" = 0, hence by separating

variables
n ! h”

Pl i, opp h = a, cos né + b, sin né.
g g h

r’g" +rg' —n¥g=0. A solution is r"/R™.

(¢) By the Cauchy-Riemann equations,
1 2 =l
‘Irf = _7(1)3 - .-z Rﬂ

n=1

(—ay, sin n® + b, cos nb)n,

v =¥(0) + 2, (—:;;-) (—b,, cos nf + a, sin nf).

n=1
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(d) From the series for ® and ¥ we obtain by addition

n=1

Fz2) = ag + i%(0) + S (%) (@, — iby) cos nb + i(a, — ib,) sin nf]

=ag +i¥(0) + X (%) (ap, — ib,)e™,
n=1

i .
G = iby = — f R, e~ da.
0

Using z = re'’, we have the power series
o= s .b
FG) = ag + iW(0) + 3, 2" On R"' L

n=1

SECTION 16.6. General Properties of Harmonic Functions, page 822

Purpose. We derive general properties of analytic functions and from them correspond-
ing properties of harmonic functions.

Main Content, Important Properties
Mean value of analytic functions over circles (Theorem 1)
Mean value of harmonic functions over circles, over disks (Theorem 2)
Maximum modulus theorem for analytic functions (Theorem 3)
Maximum principle for harmonic functions (Theorem 4)
Uniqueness theorem for the Dirichlet problem (Theorem 5)

Comment on Notation

Recall that we introduced F to reserve f for conformal mappings (beginning in Sec. 16.2),
and we continue to use F also in this last section of Chap. 16.

SOLUTIONS TO PROBLEM SET 16.6, page 825
2. From (2) we obtain

l w
o — 4 dia pa
F(0) 27 Jy Srfe®™® do = 0,
as expected.
4. No, because lz] is not analytic.

6. z=1+¢" x=1+ cos6,y= sin 0 gives

'f” O _
21_'_0(l+2<:050+cos(9—sm())do--2‘"_v(2'n'+-0+‘:r—'lr)—|,

1 7 .1 1 1
—]1 f«brdrde=—f2w-rdr= 1.
70 Yo KU

8. x=1+cosfy=1+sing® =31+ cos 61 + sin 8) — (1 + sin 6)*. Inte-
grate over 6 from 0 to 2, divide by 2. This gives 2 = &(1, 1),
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10. TEAM PROJECT. (a) (i) Polar coordinates show that |F(z)| = |z/* assumes its max-
imum at the boundary point 4 + 74, namely, 65, but at no interior point. (ii) Use the
fact that |¢*| = e* is monotone.

(b) F(z) is not analytic.
(c) From (7), Sec, 12.7, we obtain in a small disk with center at /2

sin(--"?-n*t')2
) y
=1+sinh®y > 1 (¥l = 0).

= sin? = + sinh?® y
2
This shows that the maximum of |sin 2| is taken on the boundary of the disk at
L + ir, r the radius of the disk, and equals
[1 + sinh® /]2,

(d) The extension is simple. Since the interior D of C is simply connected, Theorem
3 applies. The maximum of [F(z)| is assumed on C, by Theorem 3, and if F(z)
had no zeros inside C, then, by Theorem 3, it would follow that |F(z)| would also
have its minimum on C, so that F(z) would be constant, contrary to our as-
sumption. This proves the assertion.
The fact that |[F(z)| = const implies F(z) = const for any analytic function F(z)
was shown in Example 3, Sec. 12.4.
F(z) = z, 2% 2%, - - - furnish examples.
12. e* = ¢® e* = ePonlyatx = b,cosy = 1,cosy = 1 only at y = 0, 2, and (b, 0)
and (b, 27) lic on the boundary.
14. & =exp(x® — y)cos2xy, D: |zl S 1, x = 0, y = 0. Yes, (uy, vy) = (1, 0) is the
image of (xy, y;) = (1, 0); this is typical. (&, v,) is found by noting that on the bound-

ary (semicircle), ®* = * cos (V1 — ?) increases monotone with u. Similarly for D.

SOLUTIONS TO CHAPTER 16 REVIEW, page 826
16. ® =20(1 —x + y), F = 20 — 20(1 + i)z

+ 1
8. @ =52 =— (- 0+ (y — &) = 2 circles through the origin with
x*+y 2c

centeron y = Xx,

20. ® = exp (x* — y?) sin 2xy

22. Isothcrms are the rays Arg ¢ = const. Heat flows alung vircular arcs from the higher
to the lower temperature.

24. 43.22°C, which is obtained as follows. We have

I(r) =alnr+b
and at the outer cylinder,
(1 7(10) =aln 10 + b = 20
and from the condition to be achieved
(2) T(5) =aln5 + b = 30.

(1) subtracted from (2) gives
a(ln 5 — In 10) = 10, a=10/n} = —14.43.
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From this and (1)

b=20-aln10 = 5322
Hence on the inner cylinder we should have

T2) =aln2 + b = 43.22.

» W =x+y=const, V=1 - i, flow between parallel plates sloping downward (45°)
s V=2t 1lmx+1l-iy
. F(z) = z/2 + 2/z

g8 R

3 5

34, V=F'(z) = 27 — 2/z% = 0: solutions *1, =i

200 1 1
32, 50—7 (rcosﬂ——rscos38+—r500559— +)
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PART E. NUMERICAL METHODS

The subdivision into three chapters has been retained. All three chapters have been up-
dated in the light of computer requirements and developments. A list of suppliers (with
addresses etc.) has been included on p. 829 of the book.

CHAPTER 17 Numerical Methods in General
Major Changes

Updating of this chapter consists of the inclusion of ideas, such as error estimation by
halfing, changes in Sec. 17.4 on splines, the presentation of adaptive integration and
Romberg integration, and further error estimation techniques in integration.

SECTION 17.1. Introduction, page 831

Purpose. To familiarize the student with some facts of numerical work in general, re-
gardless of the kind of problem or the choice of method.

Main Content, Important Concepts

Floating-point representation of numbers, overflow, underflow,
Rounding

Stability

Sources of errors

Error, relative error, error propagation

Short Courses. Mention the round-off rule and the definitions of error and relative error.

SOLUTIONS TO PROBLEM SET 17.1, page 836

2. —0.89217 X 10% 0.50000 x 10°% —0.22137 X 10™2
6. 29.9666, 0.0334; 29.9666, 0.0333705
8. —99.980, —0.020; —99.980, —0.020004
10. Use the last formula in (12), Appendix A3.1. Avoiding small differences of large
numbers or expressions that may become nearly (/0 is an important task in the de-
sign of algorithms. The problem illustrates that often a simple change in a formula
may help.
12. —0.126 X 1072, —0.402 X 107%; —0.267 X 1075, —0.849 X 1077
14, 65.425 + 17.05905 = 82.48405 = § = 65.435 + 17.05915 = 82.49415
16. 2-(9.5:19.5 + 19.5:29.5 + 29.5-9.5) = 2081.5 = A = 2321.5 [cm?]
18. The proof is practically the same as that in the text. With the same notation we get

lel=k+y- &+
=la -9+ 0~
=g + &| = leg| + l&| = B, + B
222
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20. Since x; = 2/x; and 2 is exact, [€,(15)| = |€,(x,)| by Theorem Ib. Since Xy is rounded
to 4S, we have |e(x,)| = 0.005, hence

[&(xy)| = 0.005/39.95.
This implies
leCen)] = |e(xa)xs| = |e,(x)g)
= (0.005/39.95) - 0.0506
< 0.00001.

22,612 - 75-155+11.2-3.94 + 2.80 = 61.2 — 116 + 44.1 + 280 = ~-79

((x = 7.3)x + 11.2)x + 2.8 = (—3.56 - 3.94 + 11.2)3.94 + 2.80
=(—14.0 + 11.2)3.94 + 2.8 = ~11.0 + 2.80

= —82
Exact: —8.336016

SECTION 17.2. Solution of Equations by Iteration, page 838
Purpose. Discussion of the most important methods for solving equations f(x) = 0, a
very important task in practice.
Main Content, Important Concepts

Solution of f(x) = 0 by iteration (3) Xpi1 = 2(x,)

Condition sufficient for convergence (Theorem 1)

Newton (-Raphson) method (5)

Speed of convergence, order

Secant, bisection, false position methods
Comments on Content
Fixed-point iteration gives the opportunity to discuss the idea of a fixed point, which is
also of basic significance in modern theoretical work (existence and uniqueness of solu-
tions of differential, integral, and other functional equations).

The less important method of bisection and method of false position are included in the
problem set.

SOLUTIONS TO PROBLEM SET 17.2, page 847

2.x0= I,X‘=O,X2;‘ 1,1'3=0.“‘
xp = 0.5, x; = 0.875, x, = 0.330, - - -
Xpx 2,11 = _7,»\72 = 344,X3 = _40707583, vE.

4. x = _},(x2 + 101 + 1.88/x); 1, 0.778, 0.806347, 0.798340, 0.800447, 0.799881,
0.800032, 0.799991, 0.800002, 0.799999, 0.800000 (exact)

6. x = l/cosh x; 1, 0.64805, 0.82140, 0.73706, - - - approaches 0.76501 (58 exact, 16
steps) in a nonmonotone fashion.

8. x = x/(e* sin x); 0.5, 0.63256, 0.56838, - - - converges to 0.58853 (5S exact) in 14
steps.

10. CAS PROJECT. (a) This follows from the intermediate value theorem of calculus.
(b) Roots r; = 1.56155 (6S-value), rp = —1 (exact), rg = ~2.56155 (6S-value). (1)
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ry, about 12 steps, (2) ry, about 30 steps, (3) convergent to ry, divergent, (4) con-
vergent to 0, divergent, (5) r3, about 7 steps, (6) ry, divergent, (7) ry, 4 steps; this
is Newton,

12. fR) =x* —¢, Xps1 =Xy = (xp — clx¥~"Nk

_ 1 ¢
= (1 - ‘Z)x,‘ + 'kT”k': .
In each case, x4 is the first value that gives the desired accuracy, 1.414 214,
1.259 921, 1.189 207, 1.148 698.
14. 0.906180 (6S exact, 4 steps, xp = 1), also obtainable exactly by solving a quadratic
equation in x2,
16. 2, 2.452, 2.473; temperature 39.02°C

18. 21, 21.20870, 21.20575, 21.20575. A good x, is essential. x, = 20 would give a zero
near 2,36, which has no meaning for Bessel functions since such an x is too small for
the asymptotic formula considered.

20. f(x) = f1(x) = fo(x) = 0; 3, 2.498, 2.472, 2.473
22. 0.7, 0.577094, 0.534162, 0.531426, 0.531391
24. TEAM PROJECT. (a)
ALGORITHM REGULA FALSI (f, ag, bg, €, N). Method of False Position
This algorithm computes an interval [a,, b,] containing a solution of f(x) = 0
(f continuous) or a solution c,,.
INPUT: Initial interval [aq, by, tolerance €, maximum number of iterations N.
OUTPUT: Interval [a,, b,] containing a solution, or a solution c,,, or message
of failure.
Forn=0,1,---,N— 1do:
a,f(b,) = b.f(ay)
fbo) = flan)

If f(c,) = O then OUTPUT c,,. Stop. [Successful completion)
Else continue.
Iff(au)f(cn) < 0 then set An+1 = Qq and bu+1 = Cnp-
Else seta,.y = ¢, and b,y = b,,.
If bﬂ+1 = Ans1 = e then OUTPUT [ﬂ,‘,l, bn+1]- StOp
[Successful completion)
Else continue.

Compute c,, =

End
OUTPUT [ay, by] and message “Failure”. Stop.
{Unsuccessful completion; N iterations did not give an interval of length not ex-
ceeding the tolerance.)
End REGULA FALSI
(b) 2.68910, (c) 0.64171, 1.55715

SECTION 17.3. Interpolation, page 848

Purpose. To discuss methods for interpolating (or extrapolating) given data (x, fo),
* (x5, fp), all x; different, arbitrarily or equally spaced, by polynomials of degree not
exceeding n.
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Main Content, Important Concepts
Lagrange interpolation (4) (arbitrary spacing)
Error estimate (5)
Newton’s divided difference formula (10) (arbitrary spacing)
Newton’s difference formulas (14), (18) (equal spacing)
Short Courses. Lagrange’s formula briefly, Newton's forward difference formula (14).

Comment on Content

For given data, the interpolation polynomial p,(x) is unique, regardless of the method by
which it is derived. Hence the error estimate (5) is generally valid (provided f is n + 1
times continuously differentiable),

SOLUTIONS TO PROBLEM SET 17.3, page 860

2. This parallels Example 3. From (5) we get
'@ _0.03

_-————-12 2

6(9.3) = (x — 9(x - 9.5)
z=93

where 9 = ¢ = 9.5. Now the right side is a monotone function of 1, hence its extrema
occur at 9.0 and 9.5. We thus obtain

0.00033 = a — @ = 0.00037.
This gives the answer

2.2300 = a = 2.2301.

2.2300 is exact to 4D.
4. From (5) we obtain

" 0036

€(9.2) = (x = 9x — 9.5)x — 11) %

6 =92

The right side is monotone in ¢, hence its extreme values occur at the ends of the in-
terval 9 = ¢ = 11. This gives

0.000 027 = €(9.2) = a — & = 0.000 050
and by adding & = 2.2192
22192 = a = 2.2193.
6. From
Lo(x) = x® — 20.5x + 104.5,

1
Lyx) = 075 (—x* + 20x — 99),

La(x) = %(x2 —~ 18.5x + 85.5)

and the 5S-values of the logarithm in the text we obtain
pa(x) = —0.005 233x2 + 0.205 017x + 0.775 950.
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10.

This gives the values and errors

2.2407, error 0
2.3028, error —0.0002
2.3517, error —0.0003
2.4416, error 0.0007
2.4826, error 0.0023,

Itillustrates that in extrapolation one may usually get less accurate values. p,(x) would
change if we took more accurate values of the logarithm.

Ly = —3x — Dlx — 2)x — 3), Ly = 3x(x — 2)(x =~ 3), Ly = —3x(x — 1)(x — 3),

Ly = %x(x — 1)(x — 2). From this and the data we obtain

ps(x) = 1 + 0.039740x — 0.335187x? + 0.060645x%
and p5(0.5) = 0.943654 (68 exact 0.938470), p3(1.5) = 0.510116 (6S exact 0.511828),
pa(2.5) = —0.047993 (6S exact —0.048384); see Ref. [1], p. 390, in Appendix 1.
From (5) we obtain

N () 3 s

&(0.75) = (x — 0.25)(x — 0.5)(x — 1) —— = —0.005208f"(1)
3 6 |iwo7s

where, by differentiation,

—4
") = —= (1 — 2% "
IR0 \/;( 1)e

Another differentiation shows that f” is monotone on the interval 0.25 = t = | be-
cause

we o2 3iametag

Vo

on that interval. Hence the extrema of f* occur at the ends of the interval, so that we
obtain

—0.00433 = a — @ = 0.00967
and by adding @ = 0.70929

0.70496 = a = 0.71896.
Exact: 0.71116 (5D).

12. The difference table is

X 1) 1st Diff. 2nd Diff. 3rd Diff.
1.0 0.94608

0.37860
1.5 1.32468 —0.09787

0.28073 —0.01002
20 1.60541 -0.10789

0.17284
25 1.77825

The interpolating polynomials and errors are
Py(1.25) = f(1.0) + 0.5 - 0.37860 = 1.13538 (e = 0.01107)
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P2(1.25) = py(1.25) + ﬂ%@ *(—0.09787) = 1.14761 (e = —0.00116)

P3(1.25) = py(1.25) +

0'5(;0'2)(_—"2 - (—0.01002) = 1.14699 (€ = —0.00054)

Note the decrease of the error.,
14. The divided difference table is

X f(x;) FT%5s X541] Flxi g1, 4]
9.0 2.1972
0.1082
95 2.2513 ~0.0053
0.0977
11.0 23979
This gives by (10)

Pa(x) = 2.1972 + (x — 9.0) - 0.1082 + (x ~ 9.0)(x — 9.5)(—0.0053)
= —0.0053x* + 0.2062x + 0.7702,

the discrepancies being due to round-off, as can be seen by using one or two addi-
tional digits in the computations.

16. With the change in j the difference table is

j Xj f j = cosh XJ v f 4 sz, Vafj
-3 0.5 1.127 626
0.057 839
-2 0.6 1.185 465 0.011 865
0.069 704
-1 0.7 1.255 169 0.012 562
0.082 266
0 0.8 1.337 435
From this and (18) we obtain
x — 0.8

Ps(x) = 1.337 435 + 0,082 266 - e

x — 0.8)(x — 0.7)

+ 0.012 562 -
0.01-2!
(x = 0.8)(x — 0.7)x — 0.6)
+ 0. 97 -
o 0.001 - 3!

and with x = (.56 this becomes
1.337 435 + 0.082 266(—2.4) + 0.012 562(=24)(—1.4)/2
+ 0.000 697(—2.4)(—1.4)(—~0.4)/6 = 1.160 945.

This agrees with Example 5. The correct last digit is 1 (instead of 5 here or 4 in Ex-
ample 5).
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18. The difference table is

x; Jy(x;) A A? A3 A% AS
0.0 0.00000
9950
0.2 0.09950 -297
9653 —289
04 0.19603 —586 22
9067 —-267 5
0.6 0.28670 —853 27
8214 —240
0.8 0.36884 —1093
7121
1.0 0.44005

From this and (14) we get by straightforward calculation
ps(x) = 0.00130x° + 0.00312x* — 0.06526x> + 0.00100x* + 0.49988x.
This gives as the values of Jy(x), x = 0.1(0.2)0.9,
’ 0.04993,  0.14832, 024227, 032899,  0.40595,

the errors being 1, 0, 0, 1, 0 unit of the last given digit.
20. TEAM PROJECT. (a) For p,(x) we need

X — X

X
- =19-2x, L= = —18 + 2x
bo= = ' m—x

pi(x) = 2.19722(19 — 2x) + 225129(—-18 + 2x) = 1.22396 + 0.10814x,

p1(9.2) = 2.21885.
Exact 2.21920, error 0.00035. For p, we need

Lo = 1045 — $x + x*

Ly = =132 + Bx - 45

L, =285 — % + 12
This gives (with 10S- values for the logarithm)

pa(x) = 0.779466 + 0.204323x — 0.0051994x2,
hence p9(9.2) = 2.21916, error 0.00004. The error estimate is
p2(9.2) = py(9.2) = 0.00031.

(b) Extrapolation gives a much larger error. The difference table is

0.2 0.9980
—0.0294

04 0.9686 —0.0949
=0.1243

0.6 0.8443 —0.1842
—-0.3085

0.8 0.5358 -0.2273
—0.5358

1.0 0.0000
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The differences not shown are not needed. Taking x = 0.6, 0.8, 1.0 gives the best
result. Newton's formula (14) with » = 0.1/0.2 = 0.5 gives

0.8443 + 0.5 - (—0.3085) + 95%-5—) *(—0.2273) = 0.7185,

€ = —0.0004.
Similarly, by taking x = 0.4, 0.6, 0.8 we obtain

1.5-0.
0.9686 + 1.5 - (—0.1243) + e

- (—0.1842) = 0.7131, € = 0.0050.

Taking x = 0.2, 0.4, 0.6, we extrapolate and get a much poorer result:
2515

0.9980 + 2.5 - (—0.0294) + < (—0.0949) = 0.7466, €= —0.0285.

(e) 0.386 4185, exact to 7S.

SECTION 17.4. Splines, page 861

Purpose. Interpolation of data (x,, fo) * * (x5, £) by a (cubic) spline, that is, a twice
continuously differentiable function that in each of the intervals [x0, x1), [x1, %3], + - - is
given by a polynomial of third degree at most.

Short Courses. This section may be omitted.
Comments on Content

Higher order polynomials tend to oscillate between nodes—~Pg(x) in Fig. 402 is typical—
and splines were introduced to avoid that phenomenon. This motivates their application.

If we impose the additional condition (3) with given k, and k,,, then for given data the
cubic spline is unique.

SOLUTIONS TO PROBLEM SET 17.4, page 867
2. Writing f(x;) = f;, f(x41) = fi+1:x = X; = F, x = xj,; = G we get (6) in the form
pix) = fi¢°G(1 + 2;F)
+ fi416°F(1 = 2¢,G)
+ ki FG?
+ kiy1cF%G.
Ifx = x;, then F = 0, so that because ¢; = WXy — x3),
Pi%) = 556705 = %ua)® = £
Similarly, if x = x;,,, then G = 0 and

Pi{%j.1) = f}ﬂcjz(xjﬂ - xj)z = fis
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6.
8

10.

12.
14.

16.

This verifies (4). By differentiation,
pix) = £;,¢7[2G(1 + 2¢F) + 2¢,G?)
+ fi416°[2FQ1 = 2¢,G) — 2¢;F?)
+ k¢*[G* + 2FG]
+ kjua62[2FG + F?).
If x = x;, then F = 0 and in the first line
26(1 + ¢G) = 2(x; ~ x,-“)(l . 5?;’-‘1*‘—‘) =0

X+1 — X
There remains

Pis) = kic(x.1 — %) = k.
Similarly, if x = x;.,, then G = 0 and
Pi%e1) = F1a6 20501 — %) — 26541 — %)7)]
+ k16 (a1 — %)
= ki-»l
because [- - -] = 0. This verifies (5).

. This is simple and straightforward.

ajs can be seen from (7), and a;5 follows directly as indicated in the text after (14).
pa(x) = lxs}_[f(x) — po(x)]" = 4x® — 2x = 0 gives the points of maximum deviation
x = *=1/V2 and by inserting this, the maximum deviation itself,

IF1V2) = p(V2) =} - 4 =}
For the spline g(x) we get, taking x = 0,

[fx) — g@) =4x* +2x — 6x2 = 0.
A solution is x = 1/2. The corresponding maximum deviation is

- =f%-(-1+2'D=1
which is merely 25% of the previous value.
Since the third derivative of a cubic polynomial is constant and g(x) consists of cu-
bic polynomials, g"(x) is always piecewise constant. Since g"'(x) is assumed to
be continuous, g"(x) = M = const throughout the entire interval. By integration
pj(x)" = Mx + A;. Since £"(x) is always continuous, A; = A = conyt for all j. This
idea and two more integrations show that g(x) is just one cubic polynomial through-
out the whole interval.
Pox) =1—2(x+2)+ (x + 22 py(x) =5 + 10x + 6x* — 4x®
Po) =% py(x) =1 +3(x — 1) +3(x — 1> — (x — 1),
pa(x) = 6 + 6(x — 2) — 2(x — 2)°
Po=-3x+22+3x+2P=3+6x+ 2+ %P
1= §(x+ 1)+3(x+ 12 =8+ 1P =1-52-%3
P2 = 1- x + ifa
Ps=-Hx-D+x—-1P2-4(x—-1P =3 - 6x+ L% - %3
The interpolation polynomial is (Fig. 405)

px) =1 — 52+ It
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18. f(0) = 5 (instead of 1) was chosen to avoid fractions g throughout. Equation (12) :
givesky = —1,k; = 4, ks = 0, ky = ~4, ks = 1. From this and (13)—(14) we ob-
tain
Po=(x+32—(x+3P°=-18~ 21x — 822 — 13 !
P1=—(+2) =20+ 2% + 3 + 2% = 14 + 27x + 1622 + 3 _:
Pa=4G+ D)+ Tx+ 1P - 6(x+ 1) =5 — 11x% — 623 |
Ps=5—1x* + 63 ‘
Pa=~4x—1D+7(x—1®—3(x — 1)* = 14 — 27x + 1622 ~ 3x°
Ps=x—2-2x—2P+(x~2°=~18+ 21x — &2 + 5

Note that this is an even function, and so is the interpolation polynomial

px) =5 — 6.80556x + 1.94444x% — (0.138889x5.

Polynomial

-3 ~2 -1 2 3
-1
Spline
2

Section 17.4. Cubic spline versus polynomial of 6th degree in Problem 18

20. TEAM PROJECT.
®) x(0) =3t + 8% - 26 y) =t + (3V3 - )2 + (} - 1V3)B
© 20 =1+22 =20 yi)) =t + 3V3 - ) + (1 — }V3)

SECTION 17.5. Numerical Integration and Differentiation, page 869

Purpose. Evaluation of integrals of empirical functions, functions not intcgrable by ele-
mentary methods, etc.

Main Content, Important Concepts
Simpson's rule (7) (most important), error (8), (10)
Trapezoidal rule (2), error (4), (5)
Gaussian integration
Adaptive integration with Simpson’s rule (Example 6)
Numerical differentiation

Short Courses. Discuss and apply Simpson’s rule,
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Comments on Content
The range of numerical integration includes empirical functions, as measured or recorded
in experiments, functions that cannot be integrated by the usual methods, or functions that
can be integrated by those methods but lead to expressions whose computational evalua-
tion would be more complicated than direct numerical integration of the integral itself.
Simpson’s rule approximates the integrand by quadratic parabolas. Approximations by
higher order polynomials are possible, but lead to formulas that are generally less
practical.
Numerical differentiation can sometimes be avoided by changing the mathematical
model of the problem.

SOLUTIONS TO PROBLEM SET 17.5, page 880

2. A=J =B, A= hiA;, B= hiB; A; and B; being lower and upper bounds for f in
the jth subinterval. 0.681 = J = 0.808.

4. h=1,J,=05;h =05, Jo5 = 028125, €5 = 3(0.28125 — 0.5) = —0.07292 (ac-
tual error —0.08125); h = 0.25, Jo2s = 0.22070, €25 = 3(0.22070 — 0.28125) =
—0.02018 (actual error —0.02070). The agreement is very good. The same is true in
Prob. 5, where we integrate a trigonometric function (instead of a single power of x).

6. hiey + € + - - + €,_; + 3€,| = [(b — a)/nlnu = (b — a)u. This is similar to the
corresponding proof for Simpson’s rule given in the text.

8. 0.693150. Exact to 6D: In 2 = 0.693147

10. 0.07392 8162. Exact to 9D: 0.07392 8106
12. 0.78539 8153. Exact to 9D: 0.78539 8163
4. C = —0.5%90 in (9), —0.000695 = e = —0.000094 (actual error —0.000292).
In (10),
€05 =~ 75(0.864956 — 0.868951) = —0.000266.

Note that the absolute value of this is less than that of the actual error, and we must
carefully distinguish between bounds and approximate values.

16. 0.946146, 0.946083. Exact to 6D: 0.946083. A modest table is included in Appendix
5. See Ref. [1] for larger tables.

18. 0.4716. Exact to 4D: 0.4615. For tables, see Ref. [1].

20. 0.91973 (exact to 5D). For a table, see the end of Ref. [A7], the standard book on
Bessel functions.

22. (a) My = 2, My* = 1/4, hence by (4) and the accuracy requirement,

which gives n = 183.
(b) From (9) with f = 24/x%, M, = 24, and the accuracy requirement,
24 L. .ii
ICMd = Te5 @ =2 10
which gives 2m = 14,
24. TEAM PROJECT. The factor 2* = 16 comes in because we have replaced h by 3h,
giving for h* now (3h)* = {sh® In the next step (with h/8) the error €3 has the fac-
tor 1/(2% — 1) = Z;, etc.
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For f(x) = e~ the table of J and € values is

Jy; = 1135335
€& = -0.066595
Jz, = 0935547 Jao = 0.868951
&y = —0.017648 €5y = —0.000266
Ty = 0.882604 Jyp = 0.864956 J33 = 0.864690

Jag is exact to 4D,
For f(x) = }mx* cos mx the Romberg table is

Ju=0
€, = 0.185120
]91 = (0.555360 Jag = 0.74048
@ = 0.168597 €33 = 0.003262
Jay = 106115 Jaa = 122975 oy = 1.26236
€n = 0.049142 €az = 0.001864 €xn = —0.00004
o1 = 1.20857 T = 125711 Jgs = 125958 Jog = 1.25953

Jaq is exact to 5D.

26. 0.240, which is not exact. It can be shown that the error term of the present formula
is h3f“(£)/12, whereas that of (15) is h%f(£)/30, where x, — h < E<x,+ hIn
our case this gives the exact value 0.240 + 0.016 = 0.256 and 0.256 + 0 = 0.256,

respectively. .
28. Differentiating (14) in Sec. 17.3 with respect to r and using dr = dx/h we get
d - ALS
f(x)=hf'(x)~Afo+2r 1A2f0+3r2 6r+2A3f0+---.
dr 2! 31

Now x = xq gives r = (x — xo)/h = 0 and the desired formula follows.
SOLUTIONS TO CHAPTER 17 REVIEW, page 882

22. 0.14910 X 10% -091842 x 107% 030303 x 10%, —0.81818 X 10~
0.97656 x 103

24. 8.2586, 8.258, 9.90, impossible

26. 26.855 = d = 26.965

28. In multiplication, relative errors add (see the proof of Theorem 1 in Sec. 17.1).

30. Multiply numerator and denominator by V12 + 16 + 4, so that the given expression

takes the form x*/(V2> + 16 + 4).
32. Because |g’(x)| is small (0.U3%) near the solution 0.739085.
34. 0.641714
36. 0.450184
38. 0.4, 0.085
40. 2.969

2.343x+D)—6(x+ 1) +2xx+ 1Pif-1=x=1,
143x-D+6x—-12~-@x-1Pifl=x=s3,
24+ 15x-3)-(x—3Pif3sx=5

4. Jo5 = 0.90266, Jg 5 = 0.90450, €5 = 0.00012
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SECTION 18.1. Linear Systems: Gauss Elimination, page 886

Purpose. To explain the Gauss elimination, which is a solution method for linear systems
of algebraic equations by systematic elimination (reduction to triangular form).

Main Content, Important Concepts

Gauss elimination, back substitution
Pivot equation, pivot, choice of pivot
Operations count, order [e.g., O(n®))

Comments on Content
This section is independent of Chap. 6 on matrices (in particular, Sec. 6.3, where the Gauss
climination is also considered).

Gauss’s method and its variants (Sec. 18.2) are the most important solution methods
for those systems (with matrices that do not have too many zeros).

The Gauss-Jordan method (Sec. 18.2) is less practical because it requires more opera-
tions than the Gauss elimination.

Cramer’s rule (Sec. 6.6) would be totally impractical in numerical work, even for sys-
tems of modest size.

SOLUTIONS TO PROBLEM SET 18.1, page 893

2. xp = (25/42)x,, x, arbitrary

4. x; = 3.1, x5 = =52

6. x; = 120, x5, = 0.3

8. x; =53,x=0,x3 = —2.1
10. x; = —8x;, x5 = 1xg, x5 arbitrary; rank A = 2
12. No solution; the matrix obtained at the end is

5 3 1 2
0 -4 8 -3
6 0 0 5

Mox=-txn=%xs=—f
16. x, arbitrary, xo = 3x; — 5,x3 = —5x; + 14;rank A = 2
18. x; =42, x5 = 0, x3 = —1.8, x4 = 2.0
20. TEAM PROJECT. (a) () a # ltomake D =a— 1 #0;(ii)a=1,b = 3;
(li)a=1,b# 3.
() x; = 4(3x; — 1), xp = 3(—5x; + 7), x5 arbitrary is the solution of the first sys-
tem. The second system has no solution.
(c) det A = 0 can change to det A # 0 because of round-off.
(d) (I — 1/e)xz = 2 — 1/e eventually becomes xy/e = l/e, x, = 1,
Xx; = (1 = xp)/e = 0. The exact solution is x; = 1/(1 — €), x5 (1 — 2€)/(1 — €).
We obtain it if we take x, + x, = 2 as the pivot equation.
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(¢) The exact solution is x, = 1, X2 = —4. The 3-digit calculation gives Xy = —45,
X = 1.27 without pivoting and x, = —6, Xy = 2.08 with pivoting. This shows
that 38 is simply not enough. The 4-digit calculations give Xy = —4.095, x, =
1.051 without pivoting and the exact result x, = —4, x; = 1 with pivoting.

SECTION 18.2. Linear Systems: LU-Factorization, Matrix Inversion,
page 894

Purpose. To discuss Doolittle’s, Crout’s, and Cholesky’s methods, three methods for solv-
ing linear systems that are based on the idea of writing the coefficient matrix as a prod-
uct of two triangular matrices (“LU-factorization™). Furthermore, we discuss matrix in-
version by the Gauss-Jordan elimination.

Main Content, Important Concepts
Doolittle’s and Crout’s methods for arbitrary square matrices
Cholesky’s method for positive definite symmetric matrices
Numerical matrix inversion
Short Courses. Doolittle’s method and the Gauss—Jordan elimination.
Comment on Content
L suggests “lower triangular” and U “upper triangular.” For Doolittle's method, these are

the same as the matrix of the multipliers and of the triangular system in the Gauss elim-
ination.
The point is that in the present methods, one solves one equation at a time, no systems.

SOLUTIONS TO PROBLEM SET 18.2, page 899

2 1 0)[-3 6] = 425
| -2 1][ 0 4]’x2=—3.67
4. [1 0 02 2 47 x=-1
0 [o
idlo

1 Sl.xg= 2
.5 4 0 BJ X3=—'l

61 o 0o][s 9 2] =2
g 1 oflo _'? _‘g ’x2=0
2 B 1llo o 8] u=7

8.[01 0 OJ 01 0 03] x= 2
0 _
0.7 1 0 0 o

0

0

4

0 0 4 .x‘:—]

http://librosysolucionarios.net

o ——



236

Instructor’s Manual

12. x"(—A)x = —x"Ax < 0, no; x'A™x = (x"ATx)" because this is a scalar; this gives
X'ATX"T = xTAx > 0, yes. A + B is positive definite; A — B is not.
14. TEAM PROJECT. (a) The formulas for the entries of L = [I,] and U = [uy;] are

= an =1 eengm i
um‘—‘% ! Y RPN
k-1
Ip. = ap = X, sk j=keoum k&2 ,
1 =
“jk=g(ajk-21j:“3k) k=j+1,-,nm jE2 :
s=1

- 1 0“-3 2] =4
6 1Jlo 5]'xm=3

T 1 0 Ol -4 2] x =218
-4 9 oflo 1 F[.xm= 4
L 2 12 4llo 0 11 x=-165

(c) To get the Doolittle factorization, take the transpose of Crout's factorization. The
Cholesky factorization is

1 0 0olfr -4 2

—4 3 o(fo 3 4

2 4 2JL0 2
-5 1
16 | -7 & -3
1 -4 3

22N 1
18311 2 2= ;AT. Hencc;Ais orthogonal.

2 1 =2

20. det A = 0 as given, but rounding makes det A # 0 and may completely change the
situation with respect to existence of solutions of linear systems, a point to be watched
for when using a CAS. In the present case we get (a) —0.00000035, (b) —0.00001998,
(c) —0.00028189, (d) 0.002012, (e) 0.0002.

SECTION 18.3. Linear Systems: Solution by Iteration, page 900

Purpose. To familiarize the student with the idea of solving linear systems by iteration,
to explain in what situations that is practical, and to discuss the most important method
(Gauss—Seidel iteration) and its convergence.

Main Content, Important Concepts
Distinction between direct and indirect methods
Gauss—Seidel iteration, its convergence, its range of applicability
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Matrix norms
Jacobi iteration

Short Courses. Gauss-Seidel iteration only.
Comments on Content
The Jacobi iteration appeals by its simplicity but is of no practical value.
A word on the frequently occurring sparse matrices may be good. For instance, we have

about 99.5% zeros in solving the Laplace equation in two dimensions by using a
1000 X 1000 grid and the usual five-point pattern (Sec. 19.4).

SOLUTIONS TO PROBLEM SET 18.3, page 905

2. The exact solution 3, —9, 6 is reached at Step 8, rather quickly due to the fact that
the spectral radius of C is (.125, hence rather small.

4. Iuteichunge the first equation and the last equation. Then the exact solution —2.5, 2,
4.5 is reached at Step 11, the spectral radius of C being 1/V/15 = 0.258199. (The
eigenvalues are complex conjugates, and the third eigenvalue is 0, as always for the
present C.)

6. The exact solution is 2, 0, 1. Step 10 gives [2.00144 —0.00221311 0.9997797".
The spectral radius (§)** = 0.544331 of C is relatively large.

8. In (a) we obtain

C=-1+L)y'U
1 0 07[o0 o1 o1
=—| -0.1 1 ofjo o o1

=009 -0.1 1 0 0 0
0 =0.100 =-0.100
0 0010 -0.09
0 0.009 0.019
and [IC|| = 0.2 < 1 by (11), which implies convergence by (8).

In (b) we have
1 1 10
10 1 1I=0+L)+U
1 10 1
1 0 0 0 1 107
=110 1 0} +1(0 0 1] <
1 10 1 L0 0 O.J

From this we compute

[ 1 0 0770 1 107
=—-I+L)y"'W=—-|-10 I 0|(0 o 1
L 99 =10 1JLlo o 0.

[0 110

==[0 —-10 —99

[0 99 980
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Developing the characteristic determinant by its first column, we obtain

-A—10 -99 2
A = AMA® — 970X + 1),
99 —A + 980
which shows that one of the eigenvalues is greater than 1 in absolute value, so that

we have divergence.

10. [1 5.5 2.5625 3.3125 2.94531 3.03906
1|,[-1075|,| =775 |, | —921875 | , | —8.84375 | , | —9.02734
1 8.5 5.5625 6.3125 5.94531 6.03906

Step 5 of the Gauss—Seidel iteration gives the better result
[2.99969 ~—9.00015 5.99996]".  Exact:[3 -9 6]

12, |1 —1.8125 —2.29583 2.6359%4 2.51691 —2.53287
1|,| 258333, 281875(,| 2.14931(,| 207710|, 1.96657
1 1.7 3.95 4.33667 4.60875 4.51353

Step 5 of the Gauss—-Seidel iteration gives the more accurate result
[—2.49475 1.99981 4.49580]". Exact: [-2.5 2 4.5

14. The eigenvalues of I — A are 0.5, 0.5, —1. Here, A is £ times the coefficient matrix
of the given system.
16. V52 =172,6,6 18. 3a, 3a, 3a 20. V300 = 17.32, 10, 10

SECTION 18.4. Linear Systems: lll-Conditioning, Norms, page 906

Purpose. To discuss ill-conditioning quantitatively in terms of norms, leading to the con-
dition number and its role in judging the effect of inaccuracies on solutions.

Main Content, Important Concepts

Il-conditioning, well-conditioning

Symptoms of ill-conditioning

Residual

Vector norms

Matrix norms

Condition number

Effect of inaccuracies of coefficients on solutions
Comment on Content

Reference (E8] in Appendix 1 gives some help when A~ needed in x(A), is unknown
(as is usual in practice).

SOLUTIONS TO PROBLEM SET 18.4, page 912

2. 12, V50 =17.07,5 (06 08 -—1]
4.5V5=2241,[1 1 1 1 1)
6. 1,1,1,[0 0 0 1 0]
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82,2;2:2=4,2-2 = 4 Inverse

[—0.75 1.25]
125 -0.75

10. 5.5,5.5; 5.5 136 = 748, 5.5 - 136 = 748, ill-conditioned. Inverse

10 -60 60
3 -12 10
—-12 64 -60
12, 19,21; 19+ 13 = 247, 21 - 13 = 273. Inverse
6 4 3
4 3 2
3 4 2

14. x; = 1, x5 = 1; x, = 0.845455, Xz = 1.27273 (6S); x(A) = 4.7 - 42.7273 = 20038
16. The residual is [0.145 0.120]7, whereas the approximate solution deviates from the
true solution by a factor 5 (the first component) and 3% This is a consequence of the
fact that the system is very ill-conditioned.

18. By (12), 1 = 1| = JJAA—Y|| = A l[A=Y|| = x(A). For the Frobenius norm,
Vn = |1 = x(A).
20. TEAM PROJECT. (a) Formula (18a) is obtained from

max [5] = 3 [ = [Ixfly = nmax x| = nlx]...

Equation (18b) follows from (18a) by division by n.

(b) To get the first inequality in (19a) consider the square of both sides and then take
square roots on both sides. The second inequality in (19a) follows by means of
the Cauchy-Schwarz inequality and a little trick worth remembering,

Ski=Z1-kls S8 /5 ke = Vah,

To get (19b), divide (19a) by V.

(c) Let x # 0. Set x = |x[ly. Then ||y}l = [Ix}l/llx]| = 1. Also, Ax = A([|x|ly)
= [|x|| Ay since [|x]| is a number. Hence lAx|l/[lx|| = |Ayll, and in (9), instead
of taking the maximum over all x # 0, since ||y|| = 1 we only take the maxi-
mum aver all y of norm 1. Write x for y to get (10) frum this.

(d) These “axioms of a norm” follow from (3), which are the axioms of a vector
norm,

SECTION 18.5. Method of Least Squares, page 914

Purpose. To explain Gauss's least squares method of “best fit” of straight lines to given
data (xg, yo), * * -, (x,, ¥,,) and its extension to best fit of quadratic polynomials, etc.

Main Content, Important Concepts

Least squares method

Normal equations (4) for straight lines

Normal equations (8) for quadratic polynomials
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Short Courses. Discuss the linear case only.

Comment. Normal equations are often ill-conditioned, so that results may be sensitive
to round-off. For another (theoretically much more complicated) method, see Ref. [E3],
p. 201.

SOLUTIONS TO PROBLEM SET 18.5, page 916

2. 3.68 — 1.22x. Note the considerable change of the slope.

4. 95.26 — 0.5741, where t = 0 [min] corresponds to 12:00. This is a cooling process
following Newton's law of cooling, an exponential decrease of temperature; this ex-
plains the better fit in Prob. 5.

6. Zx; = 2950. Zx? = 1822500, Zy; = 7010,
2x;y; = 4 490 000; this gives the normal equations
S5bo + 2950 b, = 7010
2950 by + 1822 500 b; = 4 490 000.
The solution is by = —1145.79, b, = 4.32. Answer:

y = —1145.79 + 4.32x.

8. s(F) = 0.033 + 0.314F, k = Fis = 1/0.314 = 3.185
10. 0.955 — 1.159x + 0.932x%
12. 1660 + 656x — 32x*
14. 5.9 — 0.05x; 5.9 — 0.95x + 0.23x*
16. bon  + by2x; + byZx® + baZx® = Zy;
boXx; + byZx? + bp2x® + ba¥x* = Zxy
box? + byZx® + bpZa* + bpix® =

bonf + bIZch" + szst + bsz 9 = :I,sy,
18. —0.15 + 0.35x; 0.09 + 0.35x — 0.14x% —0.03 — 1.54x — 0.11x* + 0.57x®. Note
the large x*-term, which had to be expected from the position of the given points.

20. TEAM PROJECT. (a) We substitute F,, (x) into the integral and perform the square.
This gives

If — Full * = ffzdx 22%ffy,dx t E Ea,anfy,yndx

=0 k=0

This is a quadratic function in the coefficients. We take the partial derivative with re-
spect to any one of them, call it a;, and equate this derivative to zero. This gives

0- 2ffy,dx+22a,fy,y,dx 0.
=0

Dividing by 2 and taking the first integral to the right gives the system of normal
cquations, with [ = 0, - -, m.
(b) In the case of a polynomial we have

b

b
f Yy dx = I xI*h dx,
a a
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which can be readily integrated. In particular, if a = O and b = 1, integration
from O to 1 gives 1/(j + | + 1), and we obtain the Hilbert matrix as the coef-
ficient matrix,

(¢) In the case of an orthogonal System we see from (4), Sec. 4.8, with p(x) = 1 (as
for the Legendre polynomials, or with any weight function p(x) corresponding to
the given system) and / instead of m that a, = b,/||y,||.

SECTION 18.6. Matrix Eigenvalue Problems: Introduction, page 917

Purpose. This section is a collection of concepts and a handful of theorems on matrix
eigenvalues and eigenvectors that are frequently needed in numerical methods; some of
them will be discussed in the remaining sections of the chapter and others can be found
in more advanced or more specialized books listed in part E of Appendix 1.

The section frees both the instructor and the student from the task of locating these
matters in Chaps. 6 aund 7, which contain much more material and should be consulted
only if problems on one or the other matters are wanted (depending on the background
of the student) or if a proof might be of interest.

SECTION 18.7. Inclusion of Matrix Eigenvalues, page 920

Purpose. To discuss theorems that give approximate values and error bounds of cigen-
values of general (square) matrices (Theorems 1, 2, 4, Example 2) and of special matri-
ces (Theorem 6).

Main Content, Important Concepts

Gerschgorin’s theorem (Theorem 1)

Sharpened Gerschgorin’s theorem (Theorem 2)
Gerschgorin’s theorem improved by similarity (Example 2)
Strict diagonal dominance (Theorem 3)

Schur’s inequality (Theorem 4), normal matrices

Perron’s Theorem (Theorem 5)

Collatz’s theorem (Theorem 6)

Short Courses. Discuss Theorems 1 and 6.

Comments on Content

It is important to emphasize that one must always make sure whether or not a thoctew
applies to a given matrix. Some theorems apply to any real or complex square matrices
whatsoever, whereas others are restricted to certain classes of matrices.

The exciting Gerschgorin's theorem was one of the early theorems on numerical meth-
ods for eigenvalues; it appeared in Bull, Acad. Sciences de I"'URSS (Classe mathém, 7-e
série, Leningrad, 1931, p. 749), and shortly thereafter in the German Zeitschrift fiir ange-
wandte Mathematik und Mechanik,

SOLUTIONS TO PROBLEM SET 18.7, page 924

2. Symmetric matrix; hence we get intervals on the real axis, 9.7 = A = 10.3,
S9=A1=61,28=1=32 The eigenvalues (6S-values) are 10.0082, 5.99751,
2.99429,
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4. i, 0,3 + 4, radii 0.5 + V2, V2 + V5, 2.
Spectrum (6S-values) —0.0933282 + 1.061i, —0.403385 — 0.72446i, 3.49671 + 4.66346i

6. 0, 0.2, 1.2, radii 1.3, 2, 0.1, or, by taking the transpose, centers as before, radii 1.1,
0.5, 1.8, and we can take the smaller of the two in each case.
Spectrum 0.108609 * .742484i (absolute value 0.750386), 1.182781.

8. T with t;; = g3 = 1,1 = 34 gives
1 0 0 10 01 -027/[1 0 0
T!AT = |0 1 0 0.1 6 0 0 1 0=
0 0 £|L-02 0 3 0 0 34

10 01 -68
01 6 0
-2 0 3

Note that the disk with center 3 is still disjoint from that with center 10.
10. An example is
" 0 1
L oo)”

The eigenvalues are —1 and 1, so that the entire spectrum lies on the circle. A
similar-looking 3 X 3 matrix or 4 X 4 matrix, etc., can be constructed with some or
all of its eigenvalues on the circle.

12. This is a “continuity proof.” Let S = Dy U D, U + - + U D,, without restriction, where
D; is the Gerschgorin disk with center ay. We write A = B + C, where B =
diag (aj;) is the diagonal matrix with the main diagonal of A as its diagonal. We now
consider

A, =B +1C for0=:t=1

Then A, = B and A; = A. Now by algebra, the roots of the characteristic polyno-
mial f,(A) of A, (that is, the eigenvalues of A,) depend continuously on the coeffi-
cients of f4(A), which in turn depend continuously on . For = 0, the eigenvalues
are dyq, * * * » Gpy. If we let ¢ increase continuously from 0 to 1, the eigenvalues move
continuously and, by Theorem 1, for each ¢ lie in the Gerschgorin disks with centers
a;; and radii
”j where ’3 = z lajk|.
ki
Since at the end, § is disjoint from the other disks, the assertion follows.
14. These proofs follow readily from the definition of these classes of matrices.
16. A%(A%)" = AAATAT = AATAAT = - - - ATATAA; yes. (AB)(AB)" = (AB)"(AB) if
and only if B'A = ABT; no, in general. CC" — C"C is symmetric, hence normal,
18. 29 = A = 37. It is interesting that the second starting vector gives the same interval.
The third gives 31.66 = A = 33.00.
In practice, one would compute several steps and use the last two vectors for de-
termining an interval that contains an eigenvalue. See Example 4 in the text.
20. CAS PROJECT. (a) The midpoint is an approximation for which the endpoints give
error bounds.
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(b) Nonmonotone behavior may occur if by chance you pick an initial vector close
lo an eigenvector corresponding to an eigenvalue that is not largest in absolute
value.

SECTION 18.8. Eigenvalues by Iteration (Power Method), page 925
Purpose, Explanation of the power method for determining approximations and emor
bounds for eigenvalues of real symmetric matrices,

Main Content, Important Concepts

The iteration process of the power method
Rayleigh quotient (the approximate value)
Improvement of convergence by a spectral shift
Scaling (for eigenvectors)

Short Courses. Omit spectral shift,

Comments on Content
The method is simple but converges slowly, in general.

Symmetry of the matrix is essential to the validity of the error bound ( 1). The method
as such can be applied to more general matrices.

SOLUTIONS TO PROBLEM SET 18.8, page 928

2. [ﬂ , [33] [_:3?];(, = ~1, 2.76471, 5.81101; |¢| = 4, 4.94118, 3.23670.

This illustrates that the error bounds e need not be a monotone function of the step.
They are large. This indicates that we are still far away from an cigenvalue (7 in the
present case),

4. ¢ = 11.3333, 11.9802, 11.9994: le] = 2.4944, 0.4446, 0.0742.

The rapid convergence to the absolutely largest cigenvalue, 12, results from the

fact that the other eigenvalues, 2 and =2, are much smaller in absolute value.

6. ¢ = 10.5000, 11.1303, 11.1831: le] = 2.95804, 1.36886, 0.96374

8. We get the vectors

1 8 38
| 5 14 {, 172
1 12 144

and from them the following. From the first two, Collatz gives 8 = A = 14, thus, if
one wishes, the approximation 11 and error bound 3. Our Theorem 1 gives g = 11.33
(a bit closer to the exact A = 12) and |e = 2.5, which is of the same order of mag-
nitude as Collatz’s bound.

From the second and third vectors, Collatz gives 11 = A = 12.286, say, the ap-
proximation 11.643 and error bound 0.643. Theorem 1 gives g = 11.98, which is
much closer to 12, and || = 0.45, about of the same quality as the bound by Collatz.

Remember that Collatz assumes positivity of the matrix entries, whereas in Theo-
rem 1 we require symmetry of the matrix; in that sense the two theorems are not com-
parable. Theorem 1 uses all components of the vectors involved, and that tends to
give better results than those from methods that use only one or two components.

http://librosysolucionarios.net



Instructor's Manual

Note further that Theorem 1 requires more operations (not excessively many, how-
ever).
10. The cigenvalues are A = =5. Corresponding eigenvectors are

-] e[l
S EET

and I have chosen x, as

so that
X, =502, —2) =[5 15]
Xz = 25(2; + 2y),
etc. From this,
Xo'x; = 0
and for the error bound we get

and similarly in all the further steps. This shows that our error bound is the best
possible in general.
12. The scaled vectors

—0.6 1 1 1 1
1 |* 10030303 | | —0517949 | | —0.260014 | * | —0.365776

approach their limit [1 —1/3]" (corresponding to A = 7) in a somewhat irregular
way during these first steps, indicating that the sequence begins with a linear combi-
nation of the two eigenvectors with a substantial contribution of each. The other eigen-
vector is [1/3 1]", corresponding to A = —3.

14. The eigenvalues are 11.2321, 4.28275, 0.44156, —7.95637, so the speed of conver-
gence is determined by the ratio 11:8, approximately. The approximations obtained

are
0.466667 0.57047 0.494303
\ 1 1
0.6 : 0.651007 |’ 0.582203
0.733333 0.973134 0.798155

SECTION 18.9. Tridiagonalization and QR-Factorization, page 929

Purpose. Explanation of an optimal method for determining the whole spectrum of a real
symmetric matrix by first reducing the matrix to a tridiagonal matrix with the same spec-
trum and then applying the QR-method, an iteration in which each step consists of a fac-
torization (5) and a multiplication (6).

Comment on Content

Householder steps correspond to similarity transformations; hence the spectrum is pre-
served. The same holds for QR.
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SOLUTIONS TO PROBLEM SET 18.9, page 937 ;
2.v=1[0 092388 —0.382683], hence
1 0 0 6 509117 0 |
P=|0 -0707107 0707107 |, = 1509117 96 0 "
[0 0707107 0707107 0 0 -0.8 |
[ 6 -412311 0 0
4 B=| 412311 870588 724175 0 i
: 0 7.24175 218908  3.87609 |
0 0 3.87609  7.10504 ;
= i
5 —-4.24264 0 0 g
6B~ | 3424264 6 141421 0 l
== | -0 141421 5 0 ;
0 0 0 2 |
142004 00444 0 142005 —00197 0
8. | 00444 —63046 —0.0668 | . -0.0197 -63052  0.0223 ], :
0 —0.0668  2.1042 00223  2.1047 |
142005 000875 0 !
0.00875 —6.30524 —0.00744 ;
0 —0.00744  2.10475 !

6S-values of the eigenvalues are 14.2005, —6.30525, 2.10476. Hence the diagonal
entries are more accurate than one would expect by looking at the size of the off-di-

agonal entries.

06463 —0.1471 0 0.6988 —0.0848 0
10. | -0.1471 04201 00630 |, -0.0848 03804 0.0152 |,
0 0.0630  0.1036 0 00152 0.0908
07145 —0.0443 0
~0.0443 03655  0.0037
0 0.0037  0.0901
The spectrum is 0.72, 0.36, 0.09.

SOLUTIONS TO CHAPTER 18 REVIEW, page 938

16. x; = 4, x, = 2x, 18. x; = 3, % = 3x3 + 2
22. All the entries of the triangular matrices are 1.

i [48 =8 =6
24— -8 39 1
26 (-6 1 29
10 -10 ~10
26. | —2.99240  3.18590  2.95784
-5.66690 596406  5.97007
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28. Reorder to get convergence. Equation 1 becomes 2, 2 becomes 3, 3 becomes 1. So-

lution x, = —2, x = 8, x3 = —1. The iteration gives

—1.50667 -2.01927
8.17533 |, 7.99250 | ,
~1.08464 —0.996747
30. 2, V2, 1 32. 24, V136, 8
36. 11 38. 9.1

40. 8.8 - 19.15 = 168.5. The matrix is ill-conditioned.

42. y = 2.89 + 0.505x
44. y = 1.95 - 2.217x + 1.067x*
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CHAPTER 19 Numerical Methods for Differential Equations

Major Changes

These include automatic variable step size selection in modern codes,

the discussion of

the Runge-Kutta-Fehlberg method, and the extension of Euler and Runge-Kutta methods
1o systems and higher order equations.

SECTION 19.1. Methods for First-Order Differential Equations, page 942
Purpose. To explain three numerical methods for solvin

g initial value problems

Yy = fG, ¥, ¥(xo) = yo by stepwise computing approximations to the solution at

X = Xg + h,x3 = xo + 2h, etc.

Main Content, Important Concepts

Euler’s method (3)

Automatic variable step size selection

Improved Euler method (7)

Classical Runge-Kutta method (Table 19.4)

Error and step size control
Runge-Kutta-Fehlberg method

Comments on Content

Euler’s method is good for explaining the

value,

The improved Euler method is a simple case of a predictor-corrector method.

principle but is too crude‘to be of practical

The classical Runge-Kutta method is of order 4% and is of great practical importance.
Principles for a good choice of 4 are important in any method.
f in the equation must be such that the problem has a unique solution (see Sec. 1.9).

SOLUTIONS TO PROBLEM SET 19.1, page 951

2. y = sin 3mx. Since the values obtained give Yo = 1.01170 > 1, y,, comes out com-

plex and is meaningless.

X n Error X 10°
0.1 0.15708 -65
0.2 0.3122] —-319
0.3 0.46144 ~T745
04 0.60079 1301
05 0.72636 —1926
06 0.83433 —2531
0.7 0.92092 —2991
0.8 0.98214 -3100
09 1.01170 —2401
1.0 — —_—
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4. y = tanx — x (special Riccati equation; set y + x = u, then u’ = u* + 1, etc.). The
computation gives

X Yn ) Error X 10°
01 0000000  0.000335 335
02 0001000  0.002710 1710
03 0005040  0.009336 4296
04 0014345 0022793 8 448
05 0031513  0.046302 14789
06 0059764  0.084137 24373
07 0103292  0.142288 38 996
08 0167820 0229639 61 818
09 0261488 0360158 98 670
L0 0396393  0.557408 161 014

6. y = 1/(1 + e *). The given Verhulst equation is a special Bernoulli equation; see

Sec. 1.6.

X Vn Error X 108
0.1 0.524969 10

02 0.549813 21

03 0.574411 32

04 0.598645 4?2

05 0.622407 53 2
0.6 0.645593 63

0.7 0.668114 74

08 0.689890 84

09 0.710855 94

1.0 0.730955 104

8. y = tan 2x. Note that the error is first negative and then positive and rapidly increasing,

due to the behavior of the tangent.

X Y Error X 10°
0.05 0.10050 =17
0.10 0.20304 =33
0.15 0.30081 —48
020 0.42341 -62
0.25 0.54702 ~72
0.30 0.68490 -76
0.35 0.84295 —66
0.40 1.02989 -25
0.45 1,25930 +86
0.50 1.55379 362

10. The error of y(1) is —0.0036, hence comparable to that in Prob. 7. The error of y(2)
is +0.0067, hence twice that in Prob. 7 and of the opposite sign.

12. y = 0, 0.2055, 0.4276, 0.6587, 0.8924; error 0, 0.0101, 0.0221, 0.0322, 0.0409. Hence
the error is about 20% less.
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14

16.

18.

y = 0,0.1033,0.2134, 0.3280, 0.4456, 0.5650, 0.6852, 0.8058, 0.9261; error 0, 0.0011,
0.0022, - - -, 0.0071; about 15% of that in Prob. 11.

For instance, x = 05, y = 0632114762 (error 0.58-10%); x = 1,
y = 0.864 660 452 (error 0.43 - 10~%); hence the error is substantially less, and it is
interesting that it is not increasing: for x = 0.1, - - -, 1.0, it is 0.26, 042, 0.52, 0.57,
0.58, 0.57, 0.54, 0.51, 0.47, 0.43 times 10~5.

Errors —0.004, —0.008, —0.011, —0.015, —0.017, —0.019, —=0.021, —0.021, —0.021,
—0.021. For the improved Euler method, the errors times 10° are 0.8, 1.6, 2.2, 2.5,
25,18, +04, —1.9, -5.1, —9.3.

Xp Vi Error Estimate (10) x 10° Error X 10
0.1 1.20033 46725 3.0 ~-04
02 1.40271 00374 3.7 -19
0.3 1 60032 62546 59 =50
04 1.82279 32298 94 -=11.0
0.5 2.04630 25124 13.1 =225
0.6 2.28413 68531 144 —44.7
0.7 2.54228 84689 +5.0 —88.4
0.8 2.82963 87346 -38.8 -177.6
0.9 3.16015 85865 —191.1 —-369.0
1.0 3.55740 85377 ' —699.9 —813.0

SECTION 19.2. Multistep Methods, page 952

Purpose. To explain the idea of a multistep method in terms of the practically important
Adams-Moulton method, a predictor—corrector method that in each computation uses four
preceding values.

Main Content, Important Concepts
Adams-Bashforth method (5)
Adams-Moulton method (7)

Short Courses. This section may be omitted.

SOLUTIONS TO PROBLEM SET 19.2, page 955

2.

Starting Predicted Corrected

" . Y T4 P e
0 0.0 1.000 000
1 0.1 1.105 171
2 0.2 1.221 403
3 0.3 1.349 859
4 0.4 1.491 821 1.491 825 1.491 825
5 0.5 1.648 717 1.648 722 1.648 721
6 0.6 1.822 114 1.822 120 1.822119
7 0.7 2.013 748 2.013 754 2013753
8 0.8 2225536 2.225 543 2.225 541
9 0.9 2.459 598 2.459 605 2.459 603
10 1.0 2.718 277 2718 285 2718282

http://librosysolucionarios.net



250

Instructor’s Manual

6. Solution y* — x% =

8. y = tanx + x + 1. tan x approaches infinity as x — 3.
12, y = ¢*'. Some of the values and errors are:

n X Vn Exact Error X 10¢
0 1.0 0 0 0
1 1.1 0.104394 0.104394 0
2 1.2 0.215563 0.215563 0
3 13 0331199 0.331199 0
4 14 0.449688 0.449886 -2.3
5 1.5 0.569871 0.569867 ~3.5
6 1.6 0.690911 0.690907 —3.8
7 1.7 0.812198 0.812195 -39
8 1.8 0.933284 0.933280 —3.9

X Yn

1.2 3.07246

1.4 3.15595

1.6 3.24962

1.8 3.35261

2.0 3.46410

22 3.58330

24 3.70945

2.6 3.84188

28 3.97995

3.0 4.12311

¢ = Yu (h = 0.05) Error X 10°  y, (h = 0.1) Error X 10°
0.1 1.010050 1.01005

02 1.040817 -6 1.040811

03 1.094188 -14 1.094224 -50
04 1.173535 —24 1.173623 -112
05 1.284064 -38 1.284219 -194
06 1.433388 -58 1.433636 =307
07 1.632404 87 1.632782 466
08 1.896612 -131 1.897175 —694
09 2248105 -197 2248931 -1023
10 2718579 ~297 2719785 -1503

The errors differ by a factor 4 to 5, approximately.
14. y, = 4.002707, y, = 4.022789, y; = 4.084511, y, = 4.230685, y5 = 4.559046,

yg = 5364224, y; = 8.060954. Exact: y = tanx — x + 4

SECTION 19.3. Methods for Systems and Higher Order Differential
Equations, page 956

Purpose. Extension of the methods in Sec. 19.1 to first-order systems and to higher or-
‘der equations.
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Content
Euler’s method for systems (5)
Classical Runge-Kutta method extended to systems (6)
Runge-Kutta-Nystrém method (7)

SOLUTIONS TO PROBLEM SET 19.3, page 961

2. See Fig. 82 in Sec. 3.3. The discussion in Sec. 3.3 is not needed for the present pur-
pose. The computation gives:

x N Yo
0 0 4
0.2 0.8 3.2
0.4 1.28 24
0.6 1.504 1.664
0.8 1.536 1.0304
1.0 1.43488 0.51712

4.y = 0, —0.15, —0.3, —0.44925, —0.596996, —0.742481. The error increases
monotone from O to 0.0081.
6. Much more accurate values.

x x) 10® X Error of y(x) y' @)
0.1 0.804837 -8 ~1.90484
0.2 0.618731 -15 -1.81873
0.3 0.440818 -20 ~1.74082

8. We had to choose x, # 0 because of the factor 1/x. Those initial values were taken
from Ref. [1] in Appendix 1.

x o) To(x) 10° X Error of Jo(x)
1 0765198 - —0.440051 0
L5 0511903  -0.558002 ~76
2 0224008  —0.576897 -117
25 —0.048289 —0.497386 =95
3 —0260055  —0.339446 +3
35 0380298  -0.137795 . 170
Exact
0 0 0 | 0 0
02 002 0.2 1.21 0.0214 00014

0.4 0.0842 0.4420 1.4631 0.0918 0.0076
0.6 0.2019 0.7346 1.7682 0.2221 0.0202
0.8 0.3842 1.0883 2.1362 0.4255 0.0413
1.0 0.6446 0.7183 0.0737
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12. T'(2/3) = (3/2)I'(5/3) by (25); now use interpolation in Table A2, etc.

14. 10% X Error
Xy Ya ky kg ks ky of y,
1.0 0.765198 —0.081287 =0.056989 —0.061848 —0.034 604 0
1.5 0511819 —0.034970 -0.007296 -0.011250 +0.015740 +9
2.0 +0223946 +0.016098 +0.041840 +0.038979 0.061 098 —-55
2.5 —-0.048241 0.061 767 0.080 770 0.079 042 0.092 562 —143
3.0 —0.259845 0.093 218 0.102 154 0.101 466 0.104 389 -207
35 —0379914 —214

In the present case the errors of the two methods are of the same order of magnitude.

An exact comparison is not possible since the errors change sign in a different fash-

ion in each method.

SECTION 19.4. Methods for Elliptic Partial Differential Equations,
page 962
Purpose. To cxplain numerical methods for the Dirichlet problem involving the Laplace
equation, the typical representative of elliptic equations.
Main Content, Important Concepts
Elliptic, parabolic, hyperbolic equations
Dirichlet, Neumann, mixed problems
Difference analogs (7). (8) of Poisson’s and Laplace’s equations
Coefficient scheme (9)
Licbmann’s method of solution (identical with Gauss—Seidel, Sec. 18.3)
Peaceman-Rachford's ADI method (15)

Short Courses. Omit the ADI method.

Comments on Content
Neumann’s problem and the mixed problem follow in the next section, including the mod-
ification in the case of irregular boundaries.

The distinction between the three kinds of equations (elliptic, parabolic, hyperbolic) is
not merely a formal matter because the solutions of the three types behave difterently in
principle, and the boundary and initial conditions are different; this necessitates different
numerical methods, as we shall see.

SOLUTIONS TO PROBLEM SET 19.4, page 969

2. 6 steps. Some results are
[93.75 90.625 65.625 64.0625] (Step 2)
[87.8906 87.6953 62.6953 62.5977] (Step 4)
[87.5244 87.5122 62.5122 62.5061] (Step 6)
[87.5001 875 625 62.5] (Step 10)
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4. The values obtained by the Gauss elimination agree with those of the exact solution
of the problem, u(x, y) = x* — 3xy”. Gauss-Seidel would need 14 steps to produce
6S-values or 9 steps for 3S-values.

6. This shows the importance of good starting values; it then does not take long until
the approximations come close to the solution. A rule of thumb is to take a rough es-
timate of the average of the boundary values at the points that enter the linear Sys-
tem. By starting from 0 we obtain

[0.094722 0.101487 0.317994 0.321376] (Step 3)
(0.107407 0.107830 0.324337 0.324548) (Step 5).
8. uy; = 92.86, uyy = 90.18, uy, = 81.25, uyy = 75.00, uyz = 57.14,
Ugz = 47.32, ugy = uy,, etc., by symmetry.
10. All the isotherms must begin and end at a corner. The diagonals are isotherms u =

25, because of the data obtained and for reasons of symmetry. Hence we ohtain a
qualitative picture as follows.

[~
[
J -37.55
/ \25@/
l12:\

Section 19.4. Problem 10

12. (@) uyy = ~wy = —66
(b) By symmetry, we can reduce the problem to four equations in four unknowns.

Solution:
Uiy = Uzy = —U15 = —ugs = —92.92
Ugy = —Ugg = —8745
Uip = Ugg = —llyq = —Ugs = —064.22
Ugo = —lgy = —53.98
Uys = Ugg = Ugg = 0

14. First step. First come rows j = 1, j = 2; for these, (14a) is

j=1, i=1. %1“4“11+“21="“10—u12
i=2. Uy — Augy + Uz = —Ugg — gy
J=2, i=1  ugs = 4Ugs + tge = —ly; — Uy
i=2. Uyg = Qugy + Ugy = Uz — Ugg.

Six of the boundary values are zero, and the two on the upper edge are u;3 = uyg =
V/3/2 = 0.866 025. Also, on the right we substitute the starting values 0. With this,
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our four equations become
—duy, + Uy =0
Uy~ 4y =0
—8uyy + Uy = —0.866 025
Uyp = 4us, = —0.866 025,
The solution is from the first two equations
uy; =0, ug; =0
and from the other two equations
uyz = 0.288 675, Uqge = 0.288 675.

First step. Now come columns; for these, (14b) is

i=1 j=1  wo=4uy +up = —ug — Uy
j = 2. U1 — 4“12 + Wiz = “Ugy — Ugo
i=2. j=l- um"‘4u21+uzz=—ull_u31
j = 2. Uy — 4“33 + Ugg = —Ujp — Ugza.

With the boundary values and the previous solution on the right, this becomes

—duy; + U =0
gy — bityy = —0.866 025 — 0.288 675

—duyy + gy =0 2
gy — Btgy = —0.866 025 — 0288 675.

The solution is

Uy = 0.076 28
g = 0.076 98
Uyo = 0.307 92
gy = 0.30792.

Second step. Rows. We can use the previous equations, changing only the right sides:
_4"11 + um = —'0-30792
Uy — 4“21 = =0.307 92
—4u12 + u& = —0-866025 Il 0.()76 98

Uyp — dugy = —0.866 025 — 0.076 98
Solution:

Uy = Ugy = 0.102 640, Uyg = Uge = 0.314 335,
Second step. Columns. The equations with the new right sides are
—duyy + wy = —0.102 640
Uy = 4uy, = —0.866 025 — 0.314 335
—duy; + ugy = —0.102 640
Ug; — 4uge = —0.866 025 — 0.314 335.
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Final result (solution of these equations):
uy1 = 0.106 061
Uz = 0.106 061
5 = 0.321 605

Use = 0.321 605.
Exact 3D values:

U = Upyy = 0.108, Uyo = Ugp = 0.325.
16. CAS PROJECT. (b) The solution of the linear system (rounded to integers), with
the values arranged as the points in the xy-plane, is
160 170 157 110
138 145 125 75
138 145 125 75
160 170 157 110

Twenty steps gave accuracies of 3S—5S, with slight variations between the compo-
nents of the output vector.

SECTION 19.5. Neumann and Mixed Problems. Irregular Boundary,
page 971

Purpose. Continuing our discussion of elliptic equations, we explain the ideas needed for
handling Neumann and mixed problems and the modifications required when the domain
is no longer a rectangle.

Main Content, Important Concepts
Mixed problem for a Poisson equation (Example 1)
Modified stencil (6) (notation in Fig. 428)

Comments on Content

Neumann's problem can be handled as explained in Example 1.
In all the cases of an elliptic equation we need only one boundary condition at each
point (given u or given u,,).

SOLUTIONS TO PROBLEM SET 10.5, page 975

2.0=uy,= —2171-(1411 ~ M_y,1) BiVes u_y 4 = uyy. Similarly, ug; = ug, + 3 from the
condition on the right edge, so that the equations are
~dugy + 2uyy = ]
gy = 4uyy + ug =025 + 0.75 = 0.5

Uy = Qugy + ugy = —1
gy — dug, = —225 ~ 125 — 3 = —6.5.

ugy = —0.25, uyy = 0, ugy = 0.75, ug, = 2; this agrees with the values of the exact
solution w(x, y) = x® — y* of the problem.

http://librosysolucionarios.net



256

Instructor’s Manual

4. The exact solution of the Poisson equation is ¥ = x®y?. The approximate solution re-

14.

16.

sults from Au = b, where

— - —_ —

-4 1 0 1 0 0 4

1 -4 1 0 1 0 10

a| 0 24 0 0 8
1 0 0 -4 1 0 1

0 I 0 I =& 1 ~20

Lo 0 1 0 2 -4 | —103

where the six equations correspond to Pyy, Pyy, Py, Pig, Pay, Pga, in our usual or-
der. The components of b are of the form a — ¢ with a resulting from 2(x* + y?)
and ¢ from the boundary values; thus, 4 — 0 =4, 10 = 0 = 10, 20 — 12 = 8,
10 =9 =1,16 — 36 = —20, 26 — 81 — 48 = —103. The solution of this system
agrees with the values obtained at the Py, from the exact solution, uy; = 1, ug, =
Uyp = 4, ugy = 16, and ug; = 9, ug, = 36 on the boundary. ug; = wgy + 12 and g,
= Uy, + 48 produced entries 2 in A and —12 and —48 in b.

. Exact solution x = 9y sin 7x. Linear system Au = b, where

-4 1 1 0 0 0] [ a
1 -4 0 1 0 o0 a
1 0 -4 1 1 0 2a
A= ., b=
o 1 1 -4 0 1 2a
0o 0 2 0 -4 1 3a + ¢
L 0 0 0 2 1 -4] | 3a + ¢

a = —8.54733, ¢ = —V243 = —15.5885. The solution of this system is (exact val-
ues of u in parentheses)

Uy = Uz = 8.46365 (exact IV3 = 7.79423)
s = ugy = 16.8436 (exact 93 = 15.5885)
Uy = Upg = 24.9726 (exact F\V/3 = 23.3827).
Let v denote the unknown boundary potential. Then v occurs in Au = b, where

-4 1 1 0 0
1 —4 0 1 —v
A= s b =
1 0 -4 1 -U
0 § § =4 —&v

The solution of this linear system is u = 119[5 10 10 16]". From this and

5v/19 = 100 (the potential at Py;) we have v = 380 as the constant boundary po-
tential on the indicated portion of the boundary.

Two equations are as usual:
—duyy + Ugy tup— 2=2
Uyy 4“31 -05=2
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where the right side is due to the fact that we are dealing with the Poisson equation.
The third equation results from (6) witha = p = ¢=1land b = 1/2. We get

[123_'_“1.512_*_“02 uy 32 :|=2

—_— — e —

2 3/4 2 32 1p 2

The first two terms are zero and Hge = —2; these are given boundary values. There
remains

guu = 6“12 =4,
Our three equations for the three unknowns have the solution

Uy = "'1.5, Ug = —1. Hyg = —1I.

SECTION 19.6. Methods for Parabolic Equations, page 976

Purpose. To show the numerical solution of the heat equation, the prototype of a para-
bolic equation, on the region givenby 0 = x = 1,1 = 0, subject to one initial condition
(initial temperature) and one boundary condition on each of the two vertical boundaries.

Content
Direct method based on (5), convergence condition (6)
Crank-Nicolson method based on (8)
Special case (9) of (8)

Comment on Content

Condition (6) restricts the size of time steps too much, a disadvahtagc that the Crank—
Nicolson method avoids.

SOLUTIONS TO PROBLEM SET 19.6, page 981

4. The first term in (10), Sec. 11.5, gives exp [~d5m?] = 0.1, 1 = 100 (In 10)/72 =
23.3. The other terms decrease much more rapidly and contribute practically nothing,
6. u(x,0) = u(l - x, 0) and the boundary conditions imply u(x, 1) = u(1 — x, 1) for all
t. The calculation gives
0, 0.2, 0.35, 0.35, 0.2, 0)
(0, 0.1875, 0.3125, 0.3125, 0.1875, 0)
(0, 0.171875, 0.28125, 0.258125, 0.171875, 0)
(0, 0.15625, 0.253906, 0.253906, 0.15625, 0)
(0, 0.141602, 0.229492, 0.229492, 0.141602, )

8. We have k = 0.01. The boundary condition on the left is that the normal derivative
is zero. Now if we were at an inner point, we would have, by (5),

Uo,j+1 = Ru_y; + Bug; + uy;

Here, by the central difference formula for the normal derivative (partial derivative
with respect to x) we get

dug; 1
e
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10.

12.

so that the previous formula gives what we need,

Ug 41 = %(uo,' + Uy ;).

The underlying idea is quite similar to that in Sec. 19.5. The computation gives

t x=0 x=02 x=04 x=06 x=038 x=1

0 0 0 0 0 0 0

0.01 0 0 0 0 0 0.5

0.02 0 0 0 0 0.125 0.866 025
0.03 0 0 0 0.031 0.279 1

0.04 0 0 0.008 0.085 0.397 0.866 025
0.05 0 0.002 0.025 0.144 0.437 0.5

0.06 0.001 0.007 0.049 0.187 0.379 0

0.07 0.001 0.016 0.073 0.201 0.236 —-0.5

0.08 0.010 0.027 0.091 0.178 0.043 -(.866 025
0.09 0.019 0.039 0.097 0.122 —0.601 -1

0.10 0.029 0.048 0.089 -0.065 —0.520 —0.866 025
0.11 0.039 0.054 0.040 —0.140 ~0.493 -0.5

0.12 0.046 0.047 -0.002 —0.183 —0.406 0

r=k=1k=12 steps. The series in Sec. 11.5 gives (with L = 10, ¢ = 2,
by = 2.58012, by = 0, bg = 0.09556)

u = by sin 0.1x exp (—7w%/50) + by sin 0.3x exp (—9m/50).

The values fort = 2 and x = 0, 1, - - -, 10 are (exact values in parentheses) 0 (0),
0.6691 (0.6546), 1.2619 (1.2449), 1.7212 (1.7135), 2.0075 (2.0143), 2.1043 (2.1179),
2.0075 (2.0143), etc. (symmetric).

CAS PROJECT. (0, ) = u(1, 1) = 0, (0.2, 1) = u(0.8, 1), u(0.4, 1 = u(0.6, 1),
where

x =02 x=04
t=0 0.587785 0.951057

0.393432 0.636586 Explicit
t =0.04 0.399274 0.646039 CN
0.396065 0.640846 Exact (6D)

0.263342 0.426096
t = 0.08 0271221 0438844
0.266878 0.431818

0.176267 0.285206
t=0.12 0.184236 0.298100
0.179829 0.290970

0.117983 0.190901
t=0.16 0.125149 0.202495
0.121174 0.196063

0.078972 0.127779
t=02 0.085012 0.137552
0.081650 0.132112
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SECTION 19.7. Methods for Hyperbolic Equations, page 982

Purpose. Explanation of the numerical solution of the wave equation, the prototype of a
hyperbolic equation, on a region of the same type as in the last section, subject to initial
and boundary conditions that guarantee the uniqueness of the solution.
Comments on Content
We now have two initial conditions (given initial displacement and given initial veloc-
ity), in contrast to the heat equation in the last section, where we had only one initial con-
dition.

The computation by (6) is simple. Formula (8) gives the values of the first time steps
in terms of the initial data,

SOLUTIONS TO PROBLEM SET 19.7, page 984

2. Note that the curve of f(x) is no longer symmetric with respect to x = 0.5. The so-
lution was required for 0 = ¢ = 1. We present it here for a full cycle0 =t =2

H x=02 x=04 x=06 x=08
0 0.032 0.096 0.144 0.128
02 0.048 0.088 0.112 0.072
04 0.056 0.064 0.016 —-0.016
0.6 0.016 —0.016 =0.064 —0.056
0.8 —0.072 —0.112 —0.088 —0.048
1.0 ~0.128 —0.144 —0.096 -0.032
1.2 -0.072 ~0.112 -0.088 —0.048
1.4 0.016 —0.016 —0.064 ~0.056
1.6 0.056 0.064 0.016 -0.016
1.8 0.048 0.088 0.112 0.072

20 0.032 0.096 0.144 0.128

4. By (14), Sec. 11.4, with ¢ = 1 the left side of (6) is
(A) w501 = wlih, (G + D) = HfGh + ( + Dh) + fGh — (G + D))
and the right side is the sum of the six terms
Ui1,5 = 3L — DR + jh) + f((i — DA — jh)],
wie; = 3[fG + Db + jh) + £(G + Dh — jh)),
—w3-1 = —3[fGh + (j = Dh) + fGh — (j — D).

Four of these six terms cancel in pairs, and the remaining expression equals the right
side of (A).
6. From (13), Sec. 11.4, with ¢ = 1 we get the exact solution

T+ct I
sin s ds = oY [cos m(x — ef) — cos m(x + ct)].

u(x, f) = %f

x—ct

From (8) we have kg; = 0.1g; = 0.1 sin 0.1i. Because of the symmetry with respect
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to x = 0.5 we may list only the following values (with the exact values in parenthe-

ses):
t x=0.1 x=02 x=03 x=04 x =05
0.0 0 0 0 0 0
01 0.030 902 0.058 779 0.080 902 0.095 106 0.100 000
’ (0.030 396) (0.057 816) (0.079 577) (0.093 549) (0.098 363)
02 0.058 779 0.111 804 0.153 885 0.180 902 0.190 212
; (0.057 816) (0.109973) (0.151 365) (0.177 941) (0.187 098)
03 0.080 902 0.153 885 0.211 804 0.248 991 0.261 804
’ (0.079 577) (0.151 365) (0.208 337) (0.244 914) (0.257 518)
0.4 NOAS 106 N 1RO QN2 248 901 0292 704 0307 770
' (0.093 549) (0.177 941) (0.244 914) (0.287 914) (0.302 731)

8. Since u(x, 0) = f(x), the derivation is immediate. Formula (8) results if the integral

equals 2kg;.

10. Exact solution: u(x, £) = (x + £)°. The values obtained in the computation are those
of the exact solution. uyy, ug), 4z, 4gy are obtained from (8) and the initial condi-
tions u;9 = (0.2i)%, g; = 0.2i. In connection with the left boundary condition we can
use the central difference formula

1

o5 @15 = uery) = 40, jk) = 2k

to obtain ¥_, ; and then (8) to compute uy; and (6) to compute ug 41.

SOLUTIONS TO CHAPTER 19 REVIEW, page 984
22, y = ¢*. Computed values are

> 3 Yn ) Error X 10° Error in Prob. 21
0.01 1.010 000 1.010 050 50
0.02 1.020 100 1.020 201 101
0.03 1.030 301 1.030 455 154
0.04 1.040 604 1.040 811 207
0.05 1.051 010 1.051271 261
0.06 1.061 520 1.061 837 316
0.07 1.072 135 1.072 508 373
0.08 1.082 857 1.083 287 430
0.09 1.093 685 1.094 174 489
0.10 1.104 622 1.105 171 549 0.005 171

We see that the error of the last value has decreased by a factor 10, approximately,
due to the smaller step.
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4. y=2"*+x%+1,
Xn Ya Error X 10%
0.1 2.8205 ~8
0.2 2.6790 -15
03 2.5738 -22
0.4 2.5033 -27
0.5 2.4662 -32
0.6 24612 —-36
0.7 2.4871 -39
0.8 2.5429 ~42
0.9 2.6276 —44
1.0 2.7404 —46
26. y =€ 0,710 °%7-107°4-10"7,10"%, 5 - 10~°
28. From y' = x + y and the given formula we get, with k = 0.2,
ky = 0.2(1’,‘ + yn)
ke = 02[x, + 0.1 + y, + 0.1(x,, + yn)]
= 02[L.1(x, + y,) + 0.1]
k3 = 02[x, + 02 + y, ~ 02(x,, + y,) + 0.4[1.1(x, + y,) + 0.1]]
= 0.2[1.24(x,, + yn) + 0.24]
and from this
Yn+1 = ¥p + §[1.328(x, + y,) + 0.128].
The computed values are
X Fn Error X 108
0.0 0.000 000 0
0.2 0.02]1 333 69
0.4 0.091 655 170
0.6 0.221 808 311
0.8 0.425 035 506
1.0 0.717 509 772
30. Solutiony = tanx — x + 4.
Xp Ya Error X 10%
08 422069 ~-52
1.0 4.55686 +548
The starting values were obtained by classical Runge-Kutta.
4.y =2,2,1.68,- -+, —3.30955; 3, = 0, —1.6, =3.2, - - -, 5.17403. Exact solution

4y* + 3 = 16 (cllipse).

36. y1 = —6€ + 3¢%, y, = ~2¢™ — %, errors of y: —1 X 1073, -3 X 10-3,

=7 X 107; errors of y,: =3 X 107%, —10 X 1074, =25 X 10~*
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38. The computed values are

£

42.

Xn Yn yv,l Yexact Error ¥ ;xm Error
0.0 0 -3 0 0 o) 0

0.1 -0.3 -3 -0.299 0.001 -2.97 0.03

0.2 —0.597 —-2.94 —0.592 0.005 —2.88 0.06

0.3 ~0.884 985 —2.819 700 ~0.873 0.011 985 -2.73 0.089 7
0.4 -1.157910 -2.638 796 ~1.136 0.021 910 —-2.52 0.118 796
0.5 —1.409 698 —1.375 0.034 698 ~2.25

u(Pyy) = u(Prg) = 105, u(Pyy) = 155, u(Pyp) = 115
1.96, 7.86, 29.46

From the 3D-values given below we see that at each point x > O the \emperature 0s-
cillates with a phase lag and a maximum amplitude that decreases with decreasing x.

t x=0 x=02 x=04 x=06 x=03 x=10
0 0 0 0 0 0 0
0.02 0 0 0 0 0 0.5
0.04 0 0 0 0 0.250 0.866 025
0.06 0 0 0 0.125 0.433 1
0.08 0 0 0.062 0.217 0.562 0.866 025
0.10 0 0.031 0.108 0.312 0.541 0.5
0.12 0 0.054 0.172 0.325 0.406 0
0.14 0 0.086 0.189 0.289 0.162 =05
0.16 0 0.095 0.188 0.176 —0.105 —0.866 025
0.18 0 0.094 0.135 0.041 —-0.345 =1
0.20 0 0.068 0.067 -0.105 -0.479 ~0.866 025
0.22 0 0.034 -0.019 —0.206 —0.485 —0.5
0.24 0 —0.009 =0.086 —0.252 —0.353 0
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PART F. OPTIMIZATION. GRAPHS
CHAPTER 20 Unconstrained Optimization.

Linear Programming
Major Change

The simplex method of linear programming has been completely rewritten in the spirit of
matrix techniques, without making reference to other chapters (6 or 18).

SECTION 20.1. Basic Concepts. Unconstrained Optimization, page 990

Purpose. To explain the concepts needed throughout this chapter. To discuss Cauchy’s
method of steepest descent or gradient method, a popular method of unconstrained opti-
mization.
Main Content, Important Concepts

Objective function

Control variables

Constraints, unconstrained optimization

Cauchy’s method

SOLUTIONS TO PROBLEM SET 20.1, page 993
2. f(x) = (x; = 3)* + 4(x, — 1)® — 13. Calculation gives

*1 X3

3.73846 1.04615
3.11077 0.889231
3.0818 1.00511

4. f(x) = 0.8(x; + 1.4)% + 0.35(x, + 0.3)® + const. Steps 1-3 give

X1 X2
—1.48804 0.979908
~1.29286 —0.261496
—1.40147 ~0.278573

6. f(X) = x,* — x, gives

zZ(®) =x— 2%, —1]=[(1 = 20x;, x, + 1],
hence
g = (1 = 20%x% - x, — ¢,
g0 =—-41-20x2~1=0.

263
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From this,

1
8x

=

I—-2%=——, t=
1

For this 1,

ey e gk p A
i [l ren R R S 2

From this, with x, = 1, x, = 1, we get successively

zw=[-% 1+1+1}]

Zoy =1, 1+2-3+3+2],

Zg = [~3 1+3-3+2-1+2] et

AR 1

The student should sketch this, to see that it is reasonable. The process continues in-

definitely, as had to be expected.
8. The calculation gives for steps 1—5

*1

Xz

—1.33333
—3.55556
237037
6.32099
—4.21399

2.66667
—1.77778
—4,74074

3.16049

8.42798

This is the beginning of a broken line of segments spiraling away from the origin. At
the corner points, f is alternatingly positive and negative and increases monotone in

absolute value.

10. CAS PROJECT. (c) For f(x) = x,> + x,* the values converge relatively rapidly to

[0 o1

X

X2

0.410245
—0.00977922
0.007137
~0.00550786

0.00441861
—0.00364745

—0.589755
—0.16973

—0.152814
—0.140169
—0.130242
—0.122176

Similarly for f(x) = x;* + x,*

X1

X2

—0.352941
—0.249135
0.043965 -
0.0310341
=0.00547661
—0.00386584

0.705882
—0.124567
—0.08793

0.0155171

0.0109532
—0.00193292
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SECTION 20.2. Linear Programming, page 994

Purpose. To discuss the basic ideas of linear programming in terms of very simple ex-
amples.
Main Content, Important Concepts

Linear programming problem

Its normal form. Slack variables

Feasible solution, basic feasible solution
Optimal solution

Comments on Content

Whereas the function to be maximized (or minimized) by Cauchy’s method was arbitrary
(differentiable), but we had no constraints, we now simply have a linear objective func-
tion, but constraints, so that calculus no longer helps.

No systematic method of solution is discussed in this section; these follow in the next
sections.

SOLUTIONS TO PROBLEM SET 20.2, page 997

2.

6.

10.
12.
14.
16.

18.

No. For instance, f = 5x; + 2x, yiclds maximum profit f = 12 for every point on
the segment AB,

Ordinarily a vertex of a region is the intersection of only two straight lines given by
inequalities taken with the equality sign. Here, (5, 4) is the interscction of three such
lines. This may merit special attention in some cases, as we discuss in Sec. 20.4.

. The first inequality could be dropped from the problem because it does not restrict

the region determined by the other inequalities. Note that that region is unbounded
(stretches to infinity). This would cause a problem in maximizing an objective func-
tion with positive coefficients.

f(9, 4) = 270 + 40 = 310 is the maximum.

No solution because the region is unbounded

Fmax = £(9, 6) = 360

f=x+ x3 2xy + 4x, = 800, 5x; + 2x, = 600, x; = 50, x5 = 175,

Fmax = £(50, 175) = 225

¥ = Number of days of vperation of kiln I, x, = Number of days of operation of
kiln TI. Objective function f = 400x, + 600x,. Constraints:

3000x, + 2000x, = 9000 (Grey bricks)

2000x, + 5000x, = 17000 (Red bricks)
300x; + 1500x, = 4500 (Glazed bricks).

Fmin = f(1, 3) = 2200, as can be seen from a sketch of the region in the x,x,-plane
resulting from the constraints in the first quadrant. Operate kiln I one day and kiln II
three days in filling that order. Note that the region determined by the constraints in
the first quadrant of the x;x,-plane is unbounded, which causes no difficulty because
we minimize (not maximize) the objective function.
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20. x; units of A and x, units of B cost f = 1.5x; + 2x,. Constraints are

10x, + 352 = 100 (Protein)
700x; + 500z, = 3100  (Calories).

From a sketch of the region we see that [,,;, = f(3, 2) = 8.50. Hence the minimum
cost diet consists of 3 units A and 2 units B.

SECTION 20.3. Simplex Method, page 998

Purpose. To discuss the standard method of linear programming for systematically find-
ing an optimal solution by a finite sequence of transformations of matrices.

Main Content, Important Concepts
Normal form of the problem
Initial simplex table
Pivoting, further simplex tables (augmented matrices)

Comment on Concepts and Method

The given form of the problem involves inequalities. By introducing slack variables we
convert the problem to the normal form. This is a linear system of equations. The initial
simplex table is its augmented matrix. It is transformed by first selecting the column of
a pivot and then the row of that pivot. The rules for this are entirely different from those
for pivoting in connection with the solution of a linear system of equations. The selec-
tion of a pivot is followed by a process of elimination by row operations similar to that
in the Gauss—Jordan method (Sec. 6.7). This is the first step, leading to another simplex
table (another augmented matrix). The next step is done by the same rules, and so on. The
process comes to an end when the first row of the simplex table obtained contains no
more negative entries. From this final simplex table one can read the optimal solution of
the problem.

SOLUTIONS TO PROBLEM SET 20.3, page 1001
2, The normal form is
z= X — X = 0
2%y | 4x3 | xy - 800

5).'1 + 212 + Xa = 600.
The calculation is

To=|0 2 4 1 0 800
0 5 2 0 1 600
800/2 = 400, 600/5 = 120, pivot 5
1 o -2 o & 120 Row 1 + £ Row 3
T,=|0 0 ¥ 1 - 560 Row 2 — # Row 3
0 5 2 0 1
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560/%8 < 60012, pivot 16/5

1 0 o & 3 25 Row 1 + & Row 2
Tz =10 0 J‘g 1 "§ 560
0 5 0 -8 § 25 Row 3 — 3 Row 2

X, = 250/5 = 50, xp = 560/ = 175, 7., = F(50, 175) = 225.
4. The matrices and pivot selections are

I -1 -1 0 0 0

To=]10 3 4 1 0 550
0 5 4 0 1 650
550/3 = 650/5, pivot 5
(1 0 -3 0 % 130 Row 1 + 4 Row 3
Ti=j0 0 & 1 -% 160 Row 2 — 2 Row 3
[0 5 4 0 1 65
160/% < 650/4, pivot 8/5

(1 0 o 3 1 15 Row 1 + 3 Row 2
T.=|0 0 & 1 -§ 160
0 s 0 -3 § 25 Row 3 —  Row 2

fmax = 150 at x; = 250/5 = 50, x, = 160/(8/5) = 100.
6. The matrices and pivot selections are

I =90 =50 0 0 o0 0
0 1 31 0 0 18
To =
0 1 1 0 1 0 10
0 3 1 0 0 1 24_]
pivot 3 in row 4
1 0 =20 0 0 30 7207
o o & 1 o -3 10
T, =
0 0 2 0 1 -3 2
0 3 1 0 0 1 24 |
pivot 2/3 in row 3
]‘1 0 0 0 30 20 780
% 0 0 0 1 -4 1 2
o 0o 2 o 1 2 2
0 3 0 o0 -2 § 2
fmax =780 atx; = 21/3 =7, x, = 213 = 3.
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8. The matrices and pivot selections are

1 -4 10 20 0 0 0 0
0 3 4 5 1 0 0 60
T =
0 2 1 0 0 1 0 20
0 2 0 3 0 0 1 30
60/4 = 15 < 20/1 = 20, pivot 4
1 -2 0 ¥ -5 0 0 -150]
r=|® 3 4 5 1 0 0 6
1o § o0 -8 -3 1 o0 5
0 2 0 3 0o 0 1 30
60/5 = 30/3, pivot 3
(1 -8 0 0 -8 0 -3 -25]
i 0 -3 4 0 1 0 - 10
0 % 0 0 -1 1 § i
0 2 0 3 0 0 1 30

fmin = =225 at x; = 0, xp = 10/4 = 2.5, x3 = 30/3 = 10.

SECTION 20.4. Simplex Method: Degeneracy, Difficulties in Starting,
page 1002

Purpose. To explain ways of overcoming difficulties that may arise in applying the sim-
plex method.

Main Content, Important Concepts

Degenerate feasible solution
Artificial variable (for overcoming difficulties in starting)

SOLUTIONS TO PROBLEM SET 20.4, page 1007

2. In the second step in Prob. 1 we had a choice of the pivot, and in tie present prob-
lem, due to our rule of choice, we took the other pivot. The result remained the same.

The calculation is
1 -6 =12 0 0 0 0]
= 0 1 o 1 0 0 4
0 6 12 0 0 1 72
| 0 0 1 0 1 0 4 |
1 0 -12 6 0 0 24] RI+6R2
5, 0 1 0 1 0 0 4 R2
0 0 12 -6 0 1 48 R3 — 6 R2
0 0 1 0 1 0 4] R4
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T,

= =

0

S = O

0

0
0

12

0

269
Rl + R3
R2
R3
R4 — 4 R3

- This gives x; = 4, x, = 48/12 = 4, ¥3=0,x,=0,x5 =0, f(4, 4) = 72.
4. The calculation is as follows.

1 —300
0 2
T =
0 0 2
L0 4
1 0
0 0
T1=
0o 2
0 o0
1 0
e 0 o
" lo 2
[0 0

3500

0
0
0

2

~350

7
1
2

0

0 0
1 0
-6 0
' I |
0 0
1 0
0 1
0 0
0 150 0
1 -1 0
0 1 0
0 -2 1
-200 175
6 —%
A
-2 1

R1 + 150 R3
R2 - R3
R3
R4 - 2R3
R1 + 175 R4
R2 - I R4
R3 — 3 R4
R4

z = 4500 is the same as in the step before. But we shall now be able to reach the
maximum f(10, 5) = 5500 in the final step.

Ts

(=~ B —

We see that x,
z = 5500.

0
0
2
0

0
0
0
2

2 o0
1 6 -}
= I
b0 3

5500
30
20
10

R1 + 2 R2
R2

R3 —iR2
R4 + 2R2

20/2 =10, x; = 10/2 = 5, x5 = 0, x, = 30/6 = 5, x5 = 0,

Problem 5 shows that the extra step (which gave no increase of z = f(x)) could
have been avoided if we had chosen 4 (instead of 2) as the first pivot.

6. The maximum £(0, 2.4, 0) = 2.4 is obtained as follows.
=1

1
To =

-1

0O C oo i

-1 0 o
8 | 0
4 0 1
4 0 i
& I =f
4 0 1
3 & %
6 1 -}
-8 -2 2

07
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From T, we see that x; = 0/8 = 0, x, = 6/2 =125, x3 =0, x4 =0, x5 = 0,
z = 12/5.

8. Maximize f= —2x; + Xp. The result is — foun = fmax = F(2, 3) = —1, hence
fmin = 1. The calculation is as follows. An artificial variable x; is defined by

X3=_5+X1+X2+X6.

A corresponding objective function is

F= J- Mxg=(=2+ M, + (1 + M)xs — Mxs — SM.

The corresponding matrix is

1 2-M -1-M M 0 0 -5M
- 0
T, = 0 1 1 1 0 s
0 -1 1 0o 1 0 1
0 5 4 0 0 1 40
From this we obtain
1T 0 -3 2 0 0 -10 RI + (M — 2)R2
g |0 L 1 -1 0 0o s R2
"lo 0o 2 -1 1 0 6 R3 + R2
0 0 -1 5 0 1 15 R4 — 5R2
and
1 0 o0 & 2 o0 1 Rl + 2R3
5 0o 1 o0 -3 -1 o0 2 R2 —1R3
2]lo o 2 -1 1 0 6 R3
0 o o % 3 1 18 R4 + 1 R3

Weseethat x; =2/1 = 2, %5 = 6/2 = 3,x3 = 0, x4 = 0, x5 = 18, f = —1.

10. An artificial variable xq is defined by

X4 =X + 2xs — 6 + xg

and a corresponding objective function by

f=2x + xp — Mxg = 2x; + x5 — M(xg — x; — 2x5 + 6)
= (2 + M)x, + (1 + 2M)x, — Mxg — 6M.

This gives the matrix
1 -2-M -1-2M 0 M 0 —-6M
0 2 1 1 0 0 2
Ty =
0 1 2 0 -1 0 6
0 1 1 0 0 1 4
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and from it
1 0 -3M 1+3M M 0 2-5y RI + (1 + 3 R2
T, = O 2 1 1 0 o0 2 R2
0 0o § -1 =14 0 5 R3 — 3 R2
0o o 3 -4 0 1 3 R4 - iR2
and from this
1 3 0 142 M 0 2-2y Rl + 3M R2
r=|® 2 1 1 0 0 2 R2
o -3 0o -2 -1 o 2 R3 ~ 2R2
¢ -1 0 =1 0 1 2 R4 —1R2

which still contains M.

SOLUTIONS TO CHAPTER 20 REVIEW, page 1007
12. 9 steps give the solution [—1, 2] to 6S. Steps 1—5 give

X *2

~1.01462 3.77669
—0.888521 2.07432
—1.00054 2.06602
~0.995857 2.00276
—1.00002 2.00245

14. The values obtained are

1 Xo

—1.04366 0.231924
—0.758212 1.51642

—1.01056 1.5725
—0.941538 1.88308
-1.00255 1.89664

Gradients (times a scalar) are obtained by calculating differences of subsequent val-
ues. Orthogonality follows from the fact that we change direction when we are tan-
gent to a level curve and then proceed perpendicular to it.

16. Replace —Vf by Vf.
24. fm-x = f(6,3) = 180
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CHAPTER 21 Graphs and Combinatorial Optimization

SECTION 21.1. Graphs and Digraphs, page 1010

Purpose. To explain the concepts of a graph and a digraph (directed graph) and related
concepts, as well as their computer representations.

Main Content, Important Concepts

Graph, vertices, edges

Incidence of a vertex v with an edge, degree of v

Digraph

Adjacency matrix

Incidence matrix

Vertex incidence list, edge incidence list
Comment on Content
Graphs and digraphs have become more and more important, due to an increase of sup-
ply and demand-—a supply of more and more powerful methods of handling graphs and
digraphs, and a demand for those methods in more and more problems and fields of ap-
plication. Our chapter, devoted to the modern central area of combinatorial optimization,
will give us a chance to get a fecling for the uscfulness of graphs and digraphs in gen-
eral.

SOLUTIONS TO PROBLEM SET 21.1, page 1014
40

0 1 1 1 q
0 1 1 1
1 0 1 1 1
: 1 0 1 1
6. | 1 1 0O 0 0 8.
1 1 0 1
1 1 0o o0 o0
1 1 1 0
1 1 0 0 0
[0 1 0 0 0]
0 0 1 1 1
1.0 0 o0 0 0 12.
0 1 0 0 1
| 0 1 0 1 0
16. Join vy to vy, * * *, U, then vy tO Ug, * * +, Uy, then vy to vy, - - -, U, etc.; then take

thesum 1 +2+ -+ (n—1) = én(n — 1), the number of edges you have used
in that process.
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-

1 ( 1 1 0 1 0 1 0 Vertex Incident Edges
2|1 0 1 0 1 0 1 1 —e1, —€y, &3, —€
8.83/0 1 1 0 0 o o 2 5 o
"alo 0o 0o 1 1 o o 2 R
i [ " " " 5 1 IJ 4 €4

SECTION 21.2. Shortest Path Problems. Complexity, page 1015

Purpose. To explain a method (by Moore) of determining a shortest path from a given
vertex s to a given vertex ¢ in a graph, all of whose edges have length 1.

Main Content, Important Concepts
Moore’s algorithm (Table 21.1)
DIES (Bicadth First Search), DFS (Depth First Search)
Complexity of an algorithm
Efficient, polynomially bounded
Comment on Content

The basic idea of Moore’s algorithm is quite simple. A few related ideas and problems
are illustrated in the problem set.

SOLUTIONS TO PROBLEM SET 21.2, page 1019
2. There are 3 shortest paths, of length 4 each:

8 5
¢ ¢ ‘
(A) (B)

Which one we obtain in backtracking depends on the numbering (not labeling!) of
the vertices and on the backtracking rule. For the rule in Example 1 and the num-
bering shown in the following figure we get (B).

s
(C)

If we change the rule and let the computer look for largest (instead of smallest)
numbers, we get (A).
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4. n — 1. If it had more, a vertex would appear more than once and the corresponding
cycle could be omitted. One edge.

6. This is true for I = 0 since then v = 5. Let it be true for an I — 1. Then A(v;_;) =
[ — 1 for the predecessor vy, of v on a shortest path s — v. We claim that when
vp_; gets labeled, v is still unlabeled (so that we shall have A(v) = [ as wanted). In-
deed, if v were labeled, it would have a label less than /, hence distance less than [
by Prob. 5, contradicting that v has distance /.

8. No

10.

12. Delete the edge (2, 4).

141-2-3-4~-5-3-1, 1 —3—=4-8=3=2—1

16. Let T: s — s be a shortest postman trail and v any vertex. Since 7' includes each edge,
T visits v. Let Ty: s — v be the portion of T from s to the first visit of v and Ty:
v — s the other portion of T. Then the trail v — v consisting of 7, followed by T
has the same length as 7 and solves the postman problem.

SECTION 21.3. Bellman's Optimality Principle. Dijkstra’s Algorithm,
page 1020 ‘

Purpose. This section extends the previous one fo graphs whose edges have any (posi-
tive) length and explains a popular corresponding algorithm (by Dijkstra).
Main Content, Important Concepts

Bellman’s optimality principle, Bellman’s equations

Dijkstra’s algorithm (Table 21.2)

Comment on Content

Throughout this chapter, one should emphasize that algorithms are needed because most
practical problems are so large that eolution by inspection would fail, even if one were
satisfied with approximately optimal solutions.

SOLUTIONS TO PROBLEM SET 21.3, page 1023

2. Let j be the vertex that gave k its present label Ly, namely, L; + I After this label
was assigned, j did not change its label, since it was then removed from J£. Next,
find the vertex that gave j its permanent label, etc. This backward search traces a path
from 1 to k, whose length is exactly L.

4. The algorithm gives
1. L,=0,L,=2,0,=6L,=8L;=
2. Ly =2,k=2
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3. Ly =min (6,2 + lpg) = 5
Ly = min {8,2 + Iy} = 8
Z,,=min{°°,2+°°}=°°

2. Ly=5k=3

3. Ly = min (8,5 + Iy} = 8
Ls = min (@, 5 + ©} =

2. Ly=8,k=4
3. Is = min {w, 8 + I} =28
2. Ly=28,k=5,

so that the answer is
(1,2),(1,4),(2,3),(4,5); Ly=2,Ly=5L, =8, Ls = 28.
. Dijkstra’s algorithm gives
LL=0TL,~15L;~2Z,-10,Is=6
2. L; =2
3. Z,,=minus 2+ Iy} =15

L. min {10, 2 + ly4} = 10

Iy= min {6, 2 + ljz) = §

.‘*’N"‘U

2. dg=5

3. Ly = min {15, 5 + Iy} =
o= mm{105+154}—9

2 Ly=Q

3. L = min {15, 9 + I} = 14

2. L, =14,

The answer is (1, 3), (2, 4), (3, 5), (4, 5): Ly=14,Ly=2,L,=9,L; =5,
ijkstra’s algorithm gives
L,=0L2—8L3—10L4—°°L5—5Z6=
Lg='5
L, = min (8,5 + Iy} = 7
Ls = min {10, 5 + Iy} =
Ly = min {0, 5 + [y} = 10
Ls = min {»,5 + L} = 7

3, Lamy

3. Ly ~ win {10, 7 + lpg} = Y
Ly = min {10, 7 + Ly} =
Lg=min (7,7 + by) =7

2. Lg=17

3. L3 =min (9,7 + lgg) = 9
L, = min (10,7 + lgg} = 8

2. L,=8

3. L3 = min {9, 8 + Iy} = 9

2. Ly=09,

The answer is (1, 5), (2, 3), (2, 5),(4,6),(5.6); L,=17, Ly=9,Ly=8,Ly=3,

Le=17.
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SECTION 21.4. Shortest Spanning Trees. Kruskal’s Greedy Algorithm,
page 1024

Purpose. After the discussion of shortest paths between two given vertices, this section
is devoted to the construction of a tree in a given graph that is spanning (contains all ver-
tices of the graph) and is of minimum length.

Main Content, Important Concepts

Tree
Cycle
Kruskal’s greedy algorithm (Table 21.3)

Comment on Content

Figure 459 illustrates that Kruskal’s algorithm does not necessarily give a tree during each
intermediate step, in contrast © another algorithin w be discussed in the next section.

SOLUTIONS TO PROBLEM SET 21.4, page 1027

3
2 2—1—4<
5
6—5
9.
4. 7—38
Ng#
N
4—3
Note that trees, just as general graphs, can be sketched in different ways.
2—6
6. 4-—3<
5==1

8. Order the edges in descending order of length and delete them in this order, retain-

ing an edge only if it would lead to the omission of a vertex or to a disconnected

graph.

10. Order the edges in descending order of length and choose them in this order, reject-
ing an edge when a cycle would arise.

14. Let Py: u— v and Py: u — v be different. Let € = (w, x) be in Py but not in .
Then P, without e together with P, is a connected graph. Hence it contains a path
Ps: w — x. Hence Py together with e is a cycle in T, a contradiction.

16. True for n = 2. Assume truth for all trees with less than n vertices. Let T be a tree
with n = 2 vertices, and (u, v) an edge of 7. Then T without (&, v) contains no path
u — v, by Prob. 14. Hence this graph is disconnected. Let G,, G, be its connected
components, having n, and n, vertices, hence ny — 1 and n, — 1 edges, respectively,
by the induction hypothesis, so that Ghasny = 1 + np — 1 + 1 =n — 1 edges.

18. Extend an edge e into a path by adding edges to its ends if such exist. A new edge -

attached at the end of the path introduces a new vertex, or closes a cycle, which is
impossible. This extension terminates on both sides of e, yielding two vertices of de-

gree 1.
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20. If G is a tree, it has no cycles, and has n — I edges by Prob, 16. Conversely, let G
have no cycles and n — 1 edges. Then G has 2 vertices of degree 1 by Prob. 18. Now
prove connectedness by induction. True when n = 2. Assume true for n = k ~ 1,
Let G with k vertices have no cycles and k — 1 edges. Omit a vertex v and its inci-
dent edge e, apply the induction hypothesis and add e and v back on.

SECTION 21.5. Prim’s Algorithm for Shortest Spanning Trees, page 1028

Purpose. To explain another algorithm (by Prim) for constructing a shortest spanning tree
in a given graph whose edges have arbitrary (positive) lengths.
Comments on Content
In contrast to Kruskal’s greedy algorithm (Sec. 21.4), Prim's algorithm gives a tree at
each intcrmediate step.

The problem set illustrates a few concepts that can be fit into the present cycle of ideas.

SOLUTIONS TO PROBLEM SET 21.5, page 1030

2. In Step 2 we first sclect a smallest h; for the n — 1 vertices outside U; these are
n — 2 comparisons. Step 3 then requires n — 2 updatings (pairwise comparisons). In
the next round we have n — 3 comparisons in Step 2 and n — 3 updatings in Step 3,
and so on, until we finally end up with 1 comparison and 1 updating. The sum of all
these numbers is (n — 2)(n — 1) = O(n?). '

4. An algorithm for minimum spanning trees must examine each entry of the distance
matrix at least once, because an entry not looked upon might have been one that
should have been included in a shortest spanning tree. Hence, examining the relevant
given information is already O(n?) work.

6. The algorithm gives

Relabelin

Tnitial 4

Vertex Label ()] (IN) ()
p=6 Ig = 3

Ly =1
hs=15  Iy=15 ;=9

e W

We see that we got
(lv 3)1 (3. 2)s (2, 5)v (5, 4); L= 15.
The tree has the length L = 15.

To visualize the effect of the algorithm, use the graph (the figure) and for each step
circle U and then go along the “circle” and look for the shortest edge that crosses it,
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8. The algorithm gives

Initial
Vertex  Label @ a (1m) av) ) 1) |

Im=3

8 I
&
]
w
£
!

1”'10 lm=
8 Iy = =7 b= =7 =7 lg=7

- B LV R R

W 88888
8
&
I
W
g
1

bha

We see that we got i
(1,2),(2,3),(3,6),(6,4). (3,5, 3. 7 (2, 8).

The length is L = 28.
10. The algorithm proceeds as follows.

Initial Relabeling
Vertex Label M (1) (1m av)

4 lya =
e le = 12 Iy =2
lla=8
118.’30 llO= 30 l,3==30 ‘|3= 30 Iw‘“ 10

[ N B S

Hence we got successively
1,5).(5.3).3,4,3,2), (2,6); L= 30.
In Prob. 6 of Sec. 21.4 we got the same edges, but in the order
(3, 4),(2,3),3,5),(1,5),@2.6).

12, We obtain, in this order, the tree
(1, 2), (2, 8), (8, 7), (8, 6), (6, 3), (2, 4), (4, 3).

The length is 40.

14. TEAM PROJECT. (a) (1) = 16, €(2) = 22, €(3) = 12.

(b) d(G) = 24, r(G) = 12 = &(3), center {3}.

(c) 20, 14, center {3, 4}

(e) Let T* be obtained from T by deleting all endpoints (= vertices of degree 1) to-
gether with the edges to which they belong. Since for fixed w, max d(u, v) oc-
curs only when v is an endpoint, €(x) is one less in T* than it is in 7. Hence the i
vertices of minimum eccentricity in 7 are the same as those in T*. Thus T has
the same center as T*. Delete the endpoints of 7% to get a tree T7#* whose cen- i
ter is the same as that of T, etc. The process terminates when only one vertex or I
two adjacent vertices are left. [

—
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(f) Choose a vertex u and find a farthest vy. From v, find a farthest v,. Find w such
that d(w, vy) is as close as possible to being equal to 1d(vy, vy).

SECTION 21.6. Networks. Flow Augmenting Paths, page 1031

Purpose. After shortest paths and spanning trees we discuss in this section a third class
of practically important problems, the optimization of flows in networks.

Main Content, Important Concepts
Network, source, target (sink)
Edge condition, vertex condition
Path in a digraph, forward edge, backward edge
Flow augmenting path
Cut set, Theorems 1 and 2
Augmenting path theorem for flows
Max-flow min-cut theorem

Comment on Content
An algorithm for determining flow augmenting paths follows in the next section.

SOLUTIONS TO PROBLEM SET 21.6, page 1037
2.T={2,4,6},cap(S,T)=20+10+4+13+3=50
4. T={3,4,5,6,7),cap(5, T) =7 +8 =15
6. T=1{4,56,7),cap(S,T) =7+ 10 = 17
8. One is interested in flows from s to 1, not in the opposite direction.
10.A1‘=6,A‘5_=3,A52=l,A23=3,A38=7
12.Am=5,Am=8,A45=2;A12=5,A25=3;A13=4,A35=9.
From these numbers we see that flow augmenting paths are
Pt L=2=4-5:Af=2
Pz: 1_2—5.Af=3
Py 1-3—-5Af=4,
14, Flow augmenting paths arc
P 1-2-4-6,Af=1
Py 1-3-5-6,Af=1
P 1-2-3-5-6,Af=1
Pg 1=2-3~4-5-6,Af =1,etc.
lG.Themaximumﬂowisf=l4.ltcanberea1iwdbyfu=8,fm=6,fz4=8.
fas = 4, fas = 10, fo5 = 4.
18. The maximum flow is f = 4. It is realized by
f12=2vf13=2'f24=1)f23=lsf35=l9f34=2!f45=0’
f«:=3’fw=l-
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f is unique, but the way in which it is achieved is not, in general. In the present case
we can change f45 from 0 to 1, fyg from 3 to 2, fs¢ from 1 to 2.
2. IfOo<f;<ec

SECTION 21.7. Ford-Fulkerson Algorithm for Maximum Flow, page 1038

Purpose. To discuss an algorithm (by Ford and Fulkerson) for systematically increasing
a flow in a network (e.g., the zero flow) by constructing flow augmenting paths until the
maximum flow is reached.

Main Content, Important Concepts
Forward edge, backward edge
Ford-Fulkerson algorithm (Table 21.8)
Scanning of a labeled vertex

Comment on Content
Note that this is the first section in which we are dealing with digraphs.

SOLUTIONS TO PROBLEM SET 21.7, page 1040
2. Scanning the vertices in the order of their numbers, we get a flow augmenting path
Py 1-2-4-6
with A, = 1 and then
Ps: 1-3—-4-6
with A, = 1, but no further flow augmenting path. Since the initial flow was 2, this

gives the total flow f = 4.
4. The given flow equals 9. We first get the flow augmenting path

Py 1-2-5  with A =2,

then the flow augmenting path
Py ] =:3:=3 with A, =5,

and finally the flow augmenting path
Py 1-2-3-5  with A,=1

The maximum flowis 9 +2 + 5 + 1 = 17.

6. No. This follows from Theorem 4 in Sec. 21.6.

8. Not more work than in Example 1. Steps 1-7 are similar to those in the example and
give the flow augmenting path

Py: ] 23 =6,

which augments the flow from O to 11.

In determining a second flow augmenting path we scan 1, labeling 2 and 4 and get-
ting Ay = 9, Ay = 10. In scanning 2, that is, trying to label 3 and 5, we cannot la-
bel 3 because ¢y = ¢33 = fi = fa3 = 11, and we cannot label 5 because fsg = 0.
In scanning 4 (i.e., labeling 5) we get A; = 7. In scanning 5 we cannot label 3 be-
cause fgs = 0, and we further get Ag = 3. Hence a flow augmenting path is
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Py: 1-4-5-5¢
and A, = 3. Together we get the maximum flow 11 + 3 = 14 because no further
flow augmenting paths can be found. The result agrees with that in Example 1.

10. The forward edges of the set are used to capacity; otherwise one would have been
able to label their other ends. Similarly for the backward edges of the set, which carry
no flow.

12. Let G have k edge-disjoint paths s — ¢, and let f be a maximum flow in G. Define
on those paths a flow f by f(e) = 1 on each of their edges. Then f = k = f since f
is maximum. Now let G* be obtained from G by deleting edges that carry no portion
of f. Then, since each edge has capacity 1, there exist f edge-disjoint paths in G*,
hence also in G, and T = k. Together, T = .

14. Since (S, T) is a cut set, there is no directed path s — ¢ in G with the edges of (S, T)
deleted. Since all edges have capacity 1, we thus obtain

cap (S, T) = q.

Now let E, be a set of g edges whose deletion destroys all directed paths 5 —> ¢, and
let Gy denote G without these q edges. Let V, be the set of all those vertices vin G
for which there is a directed path s — v. Let V; be the set of the other vertices in G,
Then (Vy, V,) is a cut set since 5 € Vo and 1 € V). This cut set contains none of the
edges of Gy, by the definition of V,. Hence all the edges of (Vy, Vy) are in E,, which

has g edges. Now (S, T) is a minimum cut set, and all the edges have capacity 1.
Thus,

cap (S, T) = cap (V,, Vy) = q.
Together, cap (S, T) = 4.

SECTION 21.8. Assignment Problems. Bipartite Matching, page 1041

Purpose. As the last class of problems, in this section we explain assignment problems
(of workers to jobs, goods to storage spaces, etc.), so that the vertex set V of the graph
consists of two subsets S and T and vertices in § are assigned (related by edges) to ver-
tices in 7'
Main Content, Important Concepts

Bipartite graph G = (V, E) = (5, T} E)

Matching, maximum cardinality matching

Exposed vertex

Alternating path, augmenting path

Matching algorithm (Table 21.9)
Comment on Content

A few additional problems on graphs, related to the present circle of ideas as well as of
a more general nature, arc contained in the problem set.

SOLUTIONS TO PROBLEM SET 21.8, page 1045

2.85=(1,55T= (23, 4}. Just move 2 down and you see it.
4. Yes, S = {1,4,5, 8)
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10.

14.
16.

20.

. No, as for a triangle, septangle, etc., whereas square, hexagon, octagon, - - -, are bi-

partite.

1 =2=3-7=35-4

(1,4),2,3), 5,7

. From the answer to Prob. 9 we see that as a matching of cardinality 3 we can take

(1, 4), (3, 6), (7, 8). Addition of (2, 5) gives the desired matching of maximum car-
dinality 4.
5. (Make a sketch.)

Period
1 2 3 4
7, Cq cy ey —_—
T, €1 Cq [ Cy
Ty = ) Cq C3

One might perhaps mention that the particular significance of K5 and K3 3 results from
Kuratowski’s theorem, stating that a graph is planar if and only if it contains no
subdivision of K5 or Ky (that is, it contains no subgraph obtained from Kj or K35
by subdividing the edges of these graphs by introducing new vertices on them).

SOLUTIONS TO CHAPTER 21 REVIEW, page 1046

16.

20.

22,

[0 1

18l

-0 O
-0 o O
©C O O =
O O = -
c o - O O C
o o = O O C©

1
1
1
0
1
i

O O = O = O

C O = O =
S QO = = O

Vertex Incident Edges

€y, €3

€y, €3, €4

€y, €y

€3, €4, €5, €g &9
€g

€7

(=R L

24. (1,2), (1,49, 2,3); Ly=2Ly=51Ls=35

28.

The maximum flow is f = 7.

34. (1,6),(4,5),(2,3), (7,8
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PART G. PROBABILITY AND STATISTICS
CHAPTER 22 Data Analysis. Probability Theory

Change

The beginning is a new section on data analysis, explaining stem-and-leaf plots and
boxplots and motivating probability by relative frequency.

SECTION 22.1. Data: Representation, Average, Spread, page 1050

Purpose. To discuss standard graphical representations of data in statistics. To introduce
concepts that characterize the average size of the data values and their spread (their vari-
ability),

Main Content, Important Concepts
Stem-and-leaf plot
Histogram
Boxplot
Absolute frequency, relative frequency
Cumulative relative frequency
Outliers
Mean
Variance, standard deviation
Median, quartiles, interquartile range
Comment on Content

We explain the logic of the order of material. The graphical representations of data to be
discussed in this section have become standard in connection with statistical methods. Avy-
erage size and variability give the two most important general characterizations of data.
Relative frequency will motivate probability as its theoretical counterpart. This is a main
reason for presenting this material here before the beginning of our discussion of proba-
bility in this chapter. Randomness is not mentioned here because the introduction of sam-
ples (random samples) as a concept can wait until Chap. 23 when we shall need them in
connection with statistical mcthods. The connection with this section will then be imme-
diate and will provide no difficulty or duplication,

SOLUTIONS TO PROBLEM SET 22.1, page 1054

2. g, = 16, gy = 17, gy, = 17.5. Not symmetric with respect to g,,.
4. g1 = =051, gy = —0.18, gy = 0.25

6. g1, = 11.0, gy = 12,6, gy = 13.4

8. g, = 82, g5 = 84, g, = 86
10. g1, = 199, g5 = 201, g, = 201
12. X = 16.9,5 = 0.83,IQR = 1.5

283
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14. X = 12.6 but g5y = 7. The data are not sufficiently symmetric. s = 9.07.

16. Xmin = X} = Xpax- Now sum over j from 1 to ». Then divide by n to get
Xmin =xX= Xmax-

18. Points to consider are the amounts of calculation, the size of the data (in using quar-
tiles we lose information—the larger the number of data points, the more informa-
tion we lose), and the symmetry and asymmetry of the data. In the case of symme-
try we have better agreement between quartiles on the one hand and mean and variance
on the other, as in the case of data with considerable deviation from symmetry.

SECTION 22.2. Experiments, Outcomes, Events, page 1055

Purpose. To introduce basic concepts needed throughout Chaps. 22 and 23.
Main Cantent, Important Concepts

Experiment

Sample space S, outcomes, events

Union, intersection, complements of events

Mutually exclusive events

Representation of sets by Venn diagrams

Comment on Content
To make the chapter self-contained, we explain the modest amount of set-theoretical con-
cepts needed in the next sections, although most students will be familiar with these mat-

ters.

SOLUTIONS TO PROBLEM SET 22.2, page 1057
2. 62 = 36 outcomes, which are ordered pairs (1, 1), (1, 2), - - - (6, 6), where the first
number refers to the first die and the second number to the second die.
4. Let A: Six, N = A% No Six. Then the infinitely many outcomes are A, NA, NNA,
NNNA, etc.
6. No, AN B = S\ ({RRR} U (LLL}). Yes, we cannot obtain 2 right-handed and 2
left-handed screws in the same trial because we draw only 3 screws.

8. A= (1,1, ,66)B={11)12,013,2122G6DL,ANB=
{(1v 1)! (2& 2)}. ete.
10. With the notation in Prob. 4 we have

E = {A, NA, NNA, NNNA, NNNNA}.
The complement is

ES: Rolling 6 or more times to get the first Six.

12. T has 7 clements, L has 10, T N L has 4.

6

Section 22.2. Problem 12

~
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14. For instance, for the first formula we can proceed as follows (see the figure). On the
right,
A U B: All except 3

A U C: All except 5
and the intersection of these two is
Right side: All except 3 and 5.

On the left,
A=1U2U6U7
BNCc=4u7
and the union of these two gives the same as on the right.
Similarly for the other formula.

Section 22.2. Problem 14

SECTION 22.3. Probability, page 1058

Purpose. To introduce
L. Laplace’s elementary probability concept based on equally likely outcomes,
2. The general probability concept defined axiomatically.
Main Content, Important Concepts
Definition 1 of probability
Definition 2 of probability
Motivation of the axioms of probability by relative frequency
Complementation rule, addition rules
Conditional probability
Multiplication rule, independent events
Sampling with and without replacement

Comments on Content
Whereas Laplace’s definition of probability takes care of some applications and some sta-
tistical methods (for instance, nonparametric methods in Sec. 23.8), the major part of ap-
plications and theory will be based on the axiomatic definition of probability, which should
thus receive the main emphasis in this section.

Sampling with and without replacement will be discussed in detail in Sec. 22.7.
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SOLUTIONS TO PROBLEM SET 22.3, page 1063

2. A® = {(5. 6), (6, 5), (6, 6)}, P(A®) = 3/36. Answer: 1 — 3/36 = 11/12

4. Increase. The probabilities are (20/30)(19/29) for RR, (20/30)(10/29) for RL and
LR. For RR the probability decreases, whereas the other two probabilities increase.

Answer: T80/870 = 0.89655 > 8/9 = (.88889

6. P=1/6+ 1/6 + 1/6 — 1/36 — 1/36 — 1/36 + 1/216 = 91/216. Check by the com-
plementation rule: 1 — 5%216 = 91/216 because cach of the dice can independently
show one of the numbers 1, - - -, 5, whereas 6 is out.

8. A° = {(1,1),(1,2), 2, 1), (1,3), (2, 2), (3, 1)}. The sample space has 10 - 10 = 100

outcomes. Answer: 1 — 6/100 = 94%

10. By the multiplication rule (Theorem 4) we obtain

100 99
(a) 500 e 24.874%

100 100 100 100

®) 200 199 & 200 199
() Same as (a).

—— = 50.25%

Since (a)—(c) exhaust all possibilities, these probabilities must add up to 1, which pro-
vides a way of checking results in this and similar cases.

50 49
(d) 200 199 — 6.16%

12. P* = (.99 gives P = (.99749 as the probability that a single switch does not fail dur-
ing a given time interval, and the answer is the complement of this, namely, 0.25%.

14. Drawing without replacement from the (hypothetically infinite) production that is go-

ing on. The probabilities are

(a) 0.98% = 96.04%
() 2-098-0.02 = 3.92%
(c) 0.02% = 0.04%

and the sum is 1.

16. We list the outcomes that favor the event whose probability we want to determine,
and after each outcome the corresponding probability (F = female, M = male):

FF
MFF
FMF
MMFF
MFMF
FMMF
This gives the answer 11/16.
18. We have

1/4
1/8
1/8
1/16
1/16
1/16

A=BU(ANB%
where B and A N B are disjoint because B and B are disjoint. Hence by Axiom 3,
P(A) = P(B) + P(A N B®) = P(B)
because P(A N B®) is a probability, hence nonnegative.
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20. We have

PA) = 2/4 = 1/2, P(B) = 172, P(C) =12
and
P(A N B) = 1/4, PBNC)=1/4, P(CNA) = 1/4,
but P(A N B N C) = 0 because there is no chip numbered 111; hence

P(AN BN C)# PAAPBP(C) = 1/8.

SECTION 22.4. Permutations and Combinations, page 1064

Purpose. To discuss permutations and combinations as tools necessary for systematic
counting in experiments with a large number of outcomes.
Main Content

Theorems 1-3 contain the main properties of permutations and combinations we must
know.

Formulas (5)~(14) contain the main properties of factorials and binomial coefficients
we need in practice.

Comiment on Content

The student should become aware of the surprisingly large size of the numbers involved
in (1)—(4), even for relatively modest numbers 7 of given elements, a fact that would make
attempts to list cases a very impractical matter. '

SOLUTIONS TO PROBLEM SET 22.4, page 1068
2. The 5!/3! = 120/6 = 20 permutations are

ae ai ao au

ea . el eo eu
ia ie 2 o iu
oa oe oi . ou

ua ue ui wo

The (:) = 10 combination without repetition are obtained from the previous list by
regarding the two pairs consisting of the same two letters (in opposite orders) as equal.
The (5 g ; - l) = (z) = 15 combinations with repetitions consist of the 10 com-
binations just mentioned plus the 5 combinations

aa ee I 00 uu.

4. In 7! = 5040 ways

n () -

100
8. There are ( 10) samples of 10 from 100; hence the probability of picking a partic-
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100 97
ular one is ll( 10) . Now the number of samples containing the 3 male mice is ( ’ )
because these are obtained by picking the 3 male mice and then 7 female mice from

97
97, which can be done in (7 ) ways. Hence the answer is
97 100 2
(7)/(10) = 2605 = 0.074%.
10. In 6!//6 = 120 ways
12. (a) 1/84, (b) 521

14. The complementary event (no two people have a common birthday) has probability

1
— 365364 - - - = (.
36550 65 - 364 - - - 346 = 0.5886

(which can also be nicely computed by the Stirling formula). This gives the answer
41%, which is surprisingly large.

16. TEAM PROJECT. (a) There are n choices for the first thing and we terminate with
the kth thing, for which we have n — k + 1 choices.
(b) The theorem holds when & = 1. Assuming that it holds for any fixed positive

n+k
k, we show that the number of combinations of (k -+ 1)th order is (k . l) . From

+k—1
the assumption it follows that there are (n % ) combinations of (k + 1)th

order whose first element is 1 (this is the number of combinations of kth order).

+k—2
Then there are (n % ) combinations of (¢ + 1)th order whose first ele-

ment is 2 (this is the number of combinations of kth order of the n — 1 elements

n+k-3)

2, 3,+++,n). Then there are combinations of (k + 1)th order

whose first element is 3, etc., and, by (13),

(n+k-l) (n+k—2) (k) ""(k+s) (n+k)
+ 4ot = = ,
k K ) il A 5 ° K+ 1
(d) a*b"~* is obtained by picking k of the n factors

(a+ba+tb)---(at+b) (n factors)
and choosing a from each of k factors (and b from the remaining n — k factors);

n
by Theorem 3, this can be done in (k) ways.

(e) Apply the binomial theorem to
(1 + BP(1 + b)? = (1 + b)P*9,

+
b" has the coefficient (p q) on the right and 2 ([I:) (
r .
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SECTION 22.5. Random Variables, Probability Distributions, page 1069

Purpose. To introduce the concepts of discrete and continuous random variables and their
distributions (to be followed up by the most important special distributions in Secs, 22.7
and 22.8).

Main Content, Important Concepts

Random variable X, distribution function F(x)
Discrete random variable, its probability function
Continuous random variable, its density

Comments on Content

The definitions in this section are general, but the student should not be scared because
the number of distributions one needs in practice is small, as we shall see.

Discrete random variables occur in experiments in which we count, continuous ran-
dom variables in expeniments in which we measure.

For both kinds of random variables X the definition of the distribution function F(x) is
the same, namely, F(x) = P(X = x), so that it permits a uniform treatment of all X. For
discrete X the function F(x) is piecewise constant; for continuous X it is continuous, For
obtaining an impression of the distribution of X the probability function or density is more
useful than F(x).

SOLUTIONS TO PROBLEM SET 22.5, page 1074

2. k= 1/8 because of (6) and 1 + 3 + 3 + 1 =8

4. k = 1/100 because of (6) and 1 + 8 + 27 + 64 = 100

6. F=0,-3+x1ifx<2,2<x<6x>6, respectively. The probabilities are 4
and

This problem and Prob. 7 are important to the student in explaining the two basic
tasks.

1. Find P for given x,
2. Find x = ¢ for given P
in the simplest possible situation.
8. f=0.1e7%% 1 — ¢7%1% = 0,95, x = (In20)/0.1 = 29.96
10. 42/90, 42/90, 6/90, 0, 48/90

12. To have the area under the density curve equal to 1, we must have £ — 5. If A do-
notes “Defective” and B = A®, we have

120,09
PB) =5 dax=09, Pw=ol,

119.81

so that about 50 of the 500 axles will be defective. This can also be seen without
calculation.

14. The outcomes and their probabilities are (A: Six, B = A%)
PA) =}
P(BA) =§-3
P(BBA) = 2-2.3 et
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Hence the event X = x: First Six in rolling x times has the probability
1 {5\
&= (-6) N i Pl SO
We can now verify (6) by applying the sum formula of the geometric series:
1
= 1& (5 1& (5% 6
2 f@=c2 (—) > (—)=—= L.
z=1 6:-1 6 611"0 6 1_..§.
6
Herex — 1 = y.

16. Integrating the density, we obtain the distribution function
F)=0ifx<—-LFx) =4x+ 1D?if-1=3x<0,
F)=1=-3x-12if0=x<1Fx)=1lifx=1

About 500 of the cans will contain 100 gallons or more because Y = 100 corresponds
to X = 0 and F(0) = 0.5. Similarly, Y = 99.5 corresponds to X = —0.5 and
F(—0.5) = 0.125; this is the probability that a can will contain less than 99.5 gallons.

Finally, F(—1) = 0 is the answer to the last question.
18. By differentiation,

fix) =04x if2<x<3, f(x) = 0 otherwise.

Furthermore,
PRS5S <X =5 =F5) —F25) =1-045 =055,
that is, 55%.
20. PX=c)=PX=b) + P(b < X = c¢) = P(X = b) because all probabilities are
nonnegative.

SECTION 22.6. Mean and Variance of a Distribution, page 1075
Purpose. To introduce the two most important parameters of a distribution, the mean p

of X (also called expectation of X), which measures the central location of the values of
X, and the variance o of X, which measures the spread of those values.

Main Content, Important Concepts
Mean u given by (1)
Variance o given by (2), standard deviation o
Standardized random variable (6)

Short Courses. Mention definitions of mean and variance and go on to the special dis-
tributions in the next two sections.

Comments on Content
Important practical applications follow in Secs. 22.7, 22.8, and later.
The transformation theorem (Theorem 2) will be basic in Sec. 22.8 and will have var-

ious applications in Chap. 23.
Moments (8) and (9) will play no great role in our further work, but would be more
important in a more theoretical approach on a higher level. We shall use them in Sec.

23.2.
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SOLUTIONS TO PROBLEM SET 22.6, page 1078
2. p = 3.5, as follows by symmetry, without calculation. The variance is

o =32-25+2-1.5% + 2-05% = 2.916667.

4, u= l,azxf (x—1)Pe*dx =1
0

6. u=20"=42.1=16

8.

10.
12,

14.

20.89% because for a nondefective bolt we obtain

1+0.06 0.06
kf fx) dx = 750-2[ 0.1 + 2X0.1 — 2)dz = 0.792
1-0.06 0
wherex — 1 =z
About 70

We arc asking for the sale 4 sucl that F(x) = 0.93. Integration of f(x) gives
Fx) =3*-2* if 0=x<1.

From this we get the solution 0.8646, meaning that with a probability of 95% the sale
will not exceed 8646 gallons (because here we measure in ten thousands of gallons).
Thus

P(X = 0.8646) = 0.95
and the complementary event that the sale will exceed 8646 gallons thus has a 5%

chance,
P(X = 0.8646) = 0.05

and then the tank will be empty if it has a capacity of 8660 gallons.

He should pay the expected gain per game, which is the mean of 0.1 X, where X is
the number that shows up; thus,
01+
& 2 x = 35 cents.
xz=]1

16. TEAM PROJECT. (a) E(X — p) = E(X) — uE(l) = p - p = 0. Furthermore,

o = E(X — pl*) = EX? - 2pX + u?)
= E(X?) — 2pE(X) + p2E(1),

where E(X) = p and E(1) = 1, so that the result follows. The formula obtained has

various practical and theoretical applications.

(b) g(x) = X and the definition of expectation gives the defining formula for the
mean. Similarly for (11). For E(1) we get the sum of all possible values or the
integral of the density taken over the x-axis, and in both cases the value is 1 be-
cause of (6) and (10) in Sec. 22.5.

(€) E(X*) = %' = a**Y)/[(b — a)(k + 1)] by straightforward integration.

(d) Setx — u = t, write 7instead of ¢, set 7 = —¢, and use e — 0= f(p+ o).
Then

BOX ) = [ A+ pde= |

0 oG
B + D) dr + f Bf(u + 1) de
oo 0

0 Cl
= [0 = ocar + [ Bfu+na=o
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€ p=202=2,y=423"2 =2
(8) f(1) = 3, f(—4) = §, £(5) = }. But for distributions of interest in applications,
the skewness will serve its purpose.

SECTION 22.7. Binomial, Poisson, and Hypergeometric Distributions,
page 1079

Purpose. To introduce the three most important discrete distributions and to illustrate

them by typical applications.

Main Content, Important Concepts

Binomial distribution (2)-(4)

Poisson distribution (5), (6)

Hypergeometric distribution (8)—(10)
Short Courses. Discuss the binomial and hypergeometric distributions in terms of Ex-
amples 1 and 4.
Comments on Content
The “symmetric case” p = ¢ = 1/2 of the binomial distribution with probability function
(2#) is of particular practical interest. Formulas (3) and (4) will be needed from time to
time. The approximation of the binomial distribution by the normal distribution follows
in the next section.

SOLUTIONS TO PROBLEM SET 22.7, page 1083

2. 1 — 0.75* = 68.36%, where 0.75% is the probability of not hitting the target in the 4
trials.

100\
4. f(x) = ( ) 0.04%0.96'%~* =~ 4%¢~4/x!. Values 0.018, 0.073, 0.147, 0.195, 0.195,
X

0.156. Sum 0.784. This leaves 21.6% for the remaining x-values.

6. p = 0.02, g = 0.98, hence 0.98'% = 74%

8. Let X be the number of customers per minute. The average number is 120/60 = 2
per minute, Hence X has a Poisson distribution with mean 2. Waiting occurs if

X > 4. The probability of the complement is P(X = 4) = 0.9473 (see Table 6). Hence
the answer is 1 — 0.9473 = 5}%.

10. For this problem, the hypergeometric distribution has the probability function

-()(")/)

The numerical values are
x 0 1 2 3

PX=x % T A% db

These values sum up to 1, as they should.

12. If a package of N = 100 items contains precisely M = 10 defectives, then the prob-
ability that 10 items drawn without replacement contain no defectives is
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10\ /90 100 90-89--- 8]
1= (o) (10)/(10) TR e
Answer: 67%, so the method is very poor.

14. TEAM PROJECT. (a) In each differentiation we get a factor X; by the chain rule,
so that

G®) = 3 x e f(x,).
J

If we now set ¢ = 0, the exponential function becomes 1 and we are left with the de-
finition of E(X*). Similarly for a continuous random variable.

(d) By differentiation,
G'(1) = n(pe' + q)"'pe!,
G"(f) = n(n — 1)(pe* + 6" %(pe*)? + n(pe* + g)"pet
This gives, since p + ¢ = 1,
E(X?) = G"(0) = n(n — 1)p2 + np.
From this we finally obtain the desired result,
o = EX?) — p® = n(n ~ 1)p* + np — n%® = npq.
(e) G(t) gives G(0) = 1 and furthermore
G'(0) = e " exp [ue'] pe* = pe'G),
G"() = pe'(G() + G’
B(X?) = G"(0) = p + p?
o = EX®) — p* = .

”=2xf(x)=(1:72x(f) (1::25)

n

(f) By definition,

(summation over x from 0 to n). Now

X(M) _ MM - 1) (M- x+1)
X

x!

— 1) e(M=x+1 M-1
_ M- 1) M- x )=M( )

(x—1)! x—1

L]

)t
=0)()- (1]

(summaﬁonovcrkﬁomOtor).With=M— Lk=x—-1,qg=N-M,

Now (14), Sec. 22.4, is

http://librosysolucionarios.net

e e A e e e, _}—__.. B e e ST AR S S
'
|
!
\




294 Instructor’s Manual

r—k=n—xwehavep+g=N—1,r=k+n—-x=n-—1 and the for-

mula gives
M (N - 1) M
— =g —

AR
n

SECTION 22.8. Normal Distribution, page 1085

Purpose. To discuss Gauss’s normal distribution, the practically and theoretically most
important distribution, and the practical use of the normal tables.

Main Content, Important Concepts
Normal distribution, its density (1) and distribution function (2)
Distribution function ®(z), Tables A7, A8 in Appendix 5
De Moivre-Laplace limit theorem

Short Course. Emphasis on the use of Tables A7 and A8 in terms of some of the given
examples and problems.
Comments on Content
Most important is that the student learn how to use Tables A7 and A8. Second, the stu-
dent should get a feeling for the distribution of values as expressed in (6) or (7).
Applications of the De Moivre-Laplace theorem follow in Chap. 23.
Bernoulli’s law of large numbers is included in the problem set.

SOLUTIONS TO PROBLEM SET 22.8, page 1090
2. From Table A7 in Appendix 5 we get

112.5 — 105
5

100 — 105) -
5

P(X = 112.5) = F(112.5) = CD( ) = ®(1.5) = 0.9332,

P(X>100)=1—F(I(X))=I—4>( 1= ®(-1)

=1-(1 —®(1)) = 08413,
111.25 — 105) - (b(llO.S = 105)
5 5
= ©(1.25) — P(1.1) = 0.8944 — 0.8643
= 0.0301.

P(110.5 < X < 111.25) = ‘i’(

4. We have

c— 3.6
P(XSC)=(D( o1 )=O.5.

Thus, from Table A8 in Appendix 5,
c=36 0 3.6
g1 = mTR

This could be seen without calculation. Next,

~ 16 - 36
P(X>c)=l-®(c01 )=0.1, <b(c )=0.9.
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From the table,
c— 3.6
= 1.282, c = 3.7282.
0.1
Finally,
c -C
P(—c<X-36=c¢)= @(6-1—) - 0(6-1-) = 99.9%,
c
T 3.291, c = 0.3291,

6. Smaller. This should help the student in qualitative thinking and an understanding of
standard deviation and variance.

8. We have np = 4040 - § = 2020 and o = Vnpg = V/1010. By the De Moivre-Laplace
theorem we thus obtain

4010 — 2020 + 0.5 2048 — 2020 - 0.5
o 5 x5 iy - 000208 103) _ 310~ am0 )
L ? 1010 1010
= 19.3%.

Hence the event actually observed has a not too small probability of occurring under
the assumption that the coin was fair (p = $).

10. Applying the De Moivre-Laplace theorem, we get

10
1000
P=> ( . ) 0.0170.991000—=

=0
10— 10 + 0.5 0—-10-05 :
=Pl ————") - | —————) = 0.564.
( V9.9 ) ( V99 )

(The exact value is 0.583.)
12. We get the maximum load ¢ from the condition

¢ — 1500
PX=¢c)= Q(T) = 5%.
By Table A8 in Appendix 5,
¢ — 1500
50
14. TEAM PROJECT. (c) Let e denote the exponential function in (1) Then

S (e A

= —-1.645, = 1418kg.

hence x = pu + o.
(d) Proceeding as suggested, we obtain
L L
— - T d
27 f-ooe V2w f—cae

- 51; f_ i f_ Ze“‘z’ze‘”"ztbadv = % J; i fo " gy b,

Pe0) = T dy

The integral over 6 equals 27r, which cancels the factor in front, and the integral
over r equals 1, which proves the desired result.
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(e) Writing B instead of o in (1) and using (x — w)/B = u and dx = S du, we

obtain
1
st (5]
2 —u’/26du \;'_2__ f- ~u’l2 du
_____E_z___w.. =2 (=X—I"')
= L,( W)(— ey dy w=
—_ -_l__ e —u®2 il - 2 —ud/2 }=
B -\/2—1”( u)e _.,,+ 7 f_we du &
' (f) We have
P(%—p <€) =Pp—en<X<[p+e€ln

and apply (11) witha = (p — €)n, b = (p + e)n. Then, since np cancels,
B = (en + 0.5)/Vnpg, a=—B,
and a — —=, B~ ® as n —> . Hence the above probability approaches ®(x)
—P(—x)=1—-0=1.
(g) Setx* = ¢x + ¢y. Then (x — p)o = (x* — u*)/o* and
F(x¥*) = P(X* = x*)
=PX =x)
= O((x = p)lo)
= ®((x* — p*)lo®).

SECTION 22.9. Distributions of Several Random Variables, page 1091

Purpose. To discuss distributions of two-dimensional random variables, with an exten-
sion to n-dimensional random variables near the end of the section.

Main Content, Important Concepts

Discrete two-dimensional random variables and distributions
Continuous two-dimensional random variables and distributions
Marginal distributions

Independent random variables

Addition of means and variances

Short Courses. Omit this section. (Use the addition theorems for means and variances in
Chap. 23 without proof.)
Comments on Content

The addition theorems (Theorems 1 and 3) resulting from the present material will be
needed in Chap. 23 this is the main reason for the inclusion of this section,

Note well that the addition theorem for variances holds for independent random vari-

ables only. In contrast, the addition of means is true without that condition.
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SOLUTIONS TO PROBLEM SET 22.9, page 1099

2.

40

6.

8.

10.

12.

14.

16I

The answers are 0 and 1/32. Since the density is constant in that triangle, these re-
sults can be seen from a sketch of the triangle and the regions determined by the in-
equalities x > 4, y > 4 and x S 1, y = 1, respectively, without any integrations.
We have to integrate f(x, y) = 1/32 over y from 0 to 8 — x, where this upper inte-
gration limit follows from x + y = 8. This gives the density of the desired marginal
distribution in the form

)‘fsql i fO0=Sx=8 and O otherwi

filx) = o 32 2 32x 1 xS an otherwise.

By Theorem 1 the mean is 10000 - 2 = 20 kg. By Theorem 3, assuming indepen-
dence (which is reasonable), we find the variance 10 000 - 0.032 = 9, hence the stan-
dard deviation 3 grams. Note that the mean is multiplied by n = 10 000, whereas the
standard deviation is multiplicd only by Vr — 100.

From the given distributions we obtain

fix) =25 if098 <x <102 and O otherwise,
fay) =25 f100<y<1.04 and O otherwise.

A pin fits the hole if X < 1 and P(X < 1) = 50%.

By Theorem 1 the mean is 105 Ib. By Theorem 3, assuming independence, we get
the variance 0.04 + 0.25, hence the standard deviation V0.29 = 0.539 Ib.

No. Whereas for the mean it is not essential that the trials are not independent and
one still obtains from p = M/N (single trial) the result & = nM/N (n trials) via The-
orem 1, one cannot use Theorem 3 here; indeed, the variance o2 = M(V — M)/N?
(single trial) does not lead to (10), Sec. 22.7.

(X, Y) takes a value in A, B, C, or D (see the figure) with probability F(by, bs), a
value in A or C with probability F(a,, b,), a value in C or D with probability
F(by, ay), a value in C with probability F(a,, a,), hence a value in B with probabil-
ity given by the right side of (2).

Y=b,

Y=52

X= al x= bl
Section 22.9. Problem 14

In the continuous case, (18) is obtained from (17) by differentiation, and (17) is ob-
tained from (18) by integration. In the discrete case the proof results from the fol-
lowing theorem. Two random variables X and ¥ are independent if and only if the
events of the forma, < X = b, anda, < ¥ = b, are independent, This theorem can
be proved as follows. From (2), Sec. 22.5, we have

Play < X = b)P@y < Y S by) = [Fy(by) ~ Fy(ap)][Falby) — Fylaz)].
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In the case of independence of the variables X and ¥ we conclude from (17) that the
expression on the right equals

F(bl' bz) = Flay, by) — F(by, ap) + F(ay, as).
Hence, by (2),
P(01<X§b1)P(a3<Y§b2)=P(a1<X§bl.az<ngz).
This means independence of a; < X = b, and a, < Y = by; see (14), Sec. 22.3. Con-
versely, suppose that the events are independent for any a,, by, g, by. Then
Pla; < X=b)Play <YSbhy) = Play < X=by,a, <Y S h,).

Let ay — —=, @, — — and set b, = x, by = y. This yields (17), that is, X and ¥
are independent.

SOLUTIONS TO CHAFPTER 22 REVIEW, page 1100

26. Oy = 110, Qy = 112, Qy = 115
28. ¥ = 1119, s = 4.0125, s* = 16.1
30. Xpin = X = Xpaxe Sum over j from | to n to get

n
n Xmin = zxj = N Xynax-
. i=1
Divide by n.
32. HHH, HHT, HTH, THH, HTT, THT, TTH, TTT
34. Obviously, A C B implies A N B = A. Conversely, if A N B = A, then every ele-
ment of A must also be in B, by the definition of intersection; hence A C B.

36. (a) (12) =220, ® (9) =84, (© (3) (9) ~ 108
o 3 oo » ( ) 3 Lo » (c l 2 Yoo »

o (i) (?) =2 @ (;) = L. Note that the sum of (b) through (e) is 220.

38. f(x) =2"% x=1,2,- . From this and the definition of mean we first have

o © l"
= A= n(-—).
z=1 n=1 2

This can be summed by the derivative of the geometric series with ¢ = 4, as follows.

n=0 L= q n=1 (1 - q)2
Now multiply the last series by g to get g/(1 — g)* on the right, and take g = ; then
the right side equals 2 and the left side equals our series for the mean. Hence the an-
sweris u = 2.
40. 6° outcomes. The 6! permutations of 1, 2, 3, 4, 5, 6 are of the desired type. Answer:
61/6% = 5/324 = 1.5%
4. 1,3
46. We first need
2 11 1
= 1 — - —— e | m e
n=2 J;x( x) dx 2(2 3)
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In the further integrations we can usc the defining integrals of E[X - w?

and E[(X = p)®] or, more simply,
1 1

2 . 2 R 1 1
0'=E(X)"#=2fx2(l—x)dx———= aszm e S r g
0 9

9 3 4

and similarly,
E[(X — p’] = EX®) — 3uE(X?) + 3u2E(X) — u?
= E(X®) — 3uE(X?) + 2u®

4 5 6 27 135°
This gives
_18V18 22
T 5-21 5

48. 0.1587, 0.6306, 0.5, 0.4950
50. 25.71 cm, 0.0205 cm
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Changes

The first section on random sampling is new. At the end of the chapter an introduction
to correlation analysis has been added.

SECTION 23.1. Introduction. Random Sampling, page 1104

Purpose. To explain the role of (random) samples from populations.
Main Content, Important Concepts

Population

Sample

Random numbers, random number generator

Sample mean: %; see (1)

Sample variance s%; see (2)
Comments on Content

Sample mean and sample variance are the two most important parameters of a sample.
X measures the central location of the sample values and s their spread (their variabil-
ity). Small s* may indicate high quality of production, high accuracy of measurement, etc.

Note well that ¥ and s* will generally vary from sample to sample taken from the same
population, whose mean g and variance o are unique, of course. This is an important
conceptual distinction that should be mentioned explicitly to the students.

SECTION 23.2. Estimation of Parameters, page 1106
Purpose. As a first statistical task we discuss methods for obtaining approximate values
of unknown population parameters from samples; this is called estimation of parameters.
Main Content, Important Concepts

Point estimate, interval estimate

Method of moments

Maximum likelihood method

SOLUTIONS TO PROBLEM SET 23.2, page 1108

4. | = V(b — a)" is maximum if b — q is as small as possible, that is, a equal to the
smallest sample value and b equal to the largest.

6. p=16 =% ‘

8. 8 =1x=2Fx)=1- e if x = 0 and 0 otherwise. A graph shows that the
step function F(x) (the sample distribution function) approximates F(x) reasonably
well. (For goodness of fit, see Sec. 23.7.)
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10. The likelihood function is (we can drop the binomial factors)

= pk: a- p)ﬂ-k: AR -pk"(l RS p)n~km
= pk,+~--+k_(l = p)nm—(k,+-'-+k,,,)-

The logarithm is

Inl=(y+- t+kp)Inp+[am=(ky+ -+ kp]ln(l — p).

Equating the derivative with respect to p to zero, we get
1 1
ky + 00+ k) — = -y + -+ k)] ——
(ky )p [nm = (ky m)]l_p

Multiplication by p(1 — p) gives
U + -+ k)1 = p) = [nm = (ky + - - - + k,)]p.
By simplification,

k1+-“+km=nmp.
The result is

m

>k

i=1

p= .
" nm
12. The likelihood function is

I=f=pa—prt
The logarithm is

Inl=Inp+@x-—1)In(l — p).

Differentiating and equating the derivative to zero, we get

l_ x—1
4 1-p
Hence the answer is
1
p==.
X

14. p = 2/(7 + 6) = 2/13, by Prob,. 13.

SECTION 23.3. Confidence Intervals, page 1109

Purpose. To obtain interval estimates (“confidence intervals™) for unknown population

parameters for the normal distribution and other distributions.
Main Content, Important Concepts
Confidence interval for w if o2 is known
Confidence interval for w if o is unknown
t-distribution, its occurrence (Theorem 2)
Confidence interval for o
Chi-square distribution, its occurrence (Theorem 3)
Distribution of a sum of independent normal random variables
Central limit theorem

http://librosysolucionarios.net



302

Instructor’s Manual

Comments on Content

The present methods are designed for the normal distribution, but the central limit theo-
rem permits their extension to other distributions, provided we have available sufficiently
large samples.

The theorems giving the theory underlying the present methods also serve as the the-
oretical basis of tests in the next section. Hence these theorems are of basic importance.

We see that, although our task is the development of methods for the normal distribu-
tion, other distributions (¢ and chi-square) appear in the mathematical foundation of those
methods.

SOLUTIONS TO PROBLEM SET 23.3, page 1117

2. 2.576 - 3/\100 = 0.773. Length increase by 30%. The shift of ¥ canses a corre-
sponding shift (3 units) of the interval.
4. n = 8, ¢ = 1960, ¥ = 10.25, k = 0.832, so that we obtain the confidence interval

CONFy05(9.41 = p = 11.09}.

6. Reduction of the sample size by a factor 4 corresponds to an increase of the length
by a factor 2.

8. n = 290 gives L/o = 0.3, hence L = 0.18, Lf2 = (.09, so that the confidence inter-
val is

CONFgg0{16.21 = p = 16.39}.
10. n — 1 = 4; F(c) = 0.995 gives ¢ = 4.60. From the sample we compute
X = 659.2, s% = 22.70.
Hence k = 9.8 in Table 23.2, 4th step. This gives the confidence interval
CONF; g5{649.4 = p = 669.0).
12. n = 24000, ¥ = 12 012, p = X/n = 0.5005. Now the random variable
X = Number of heads in 24 000 trials

is approximately normal with mean 24 000p and variance 24 000p(1 — p). Estima-
tors are

24 000p = 12012 and 24 0005(1 — p) = 5999.99.

For the standardized normal random variable we get from Table A8 in Appendix 5
and ®(c) = 0.995 the value

c* — 12012
¢ = 2576 = W
and
c* — 12012 = 2.576 V6000 = 199.5
so that
CONFjy00{11812 = p = 12212)
and by division by n,

CONF, 4510.492 = p = 0.509).
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14.

16.

18.

n — 1 = 9 degrees of freedom, F(c,) = 0.025, ¢, = 2.70, F(cp) = 0.975, ¢, = 19.02
from Table A10. From the sample,

X = 2535, 95 = 54.5.

Hence k; = 54.5/2.70 = 20.19, k, = 54.5/19.02 = 2.86. From Table 23.3 we thus
obtain the confidence interval

CONF,g5(2.8 = o* = 20.2).

n — 1 = 7 degrees of freedom, F(c,) = 0.025, ¢; = 1.69, F(cy) = 0.975, cy = 16.01
from Table A10. From the sample,

X = 17.7625, (n — 1)s* = 752 = (.73875.
Hence k; = 0.437, ky = 0.046. The answer is
CUNKp510.046 = o® = 0.437).

By Theorem 1 in this section and by Team Project 14(g) in Sec. 22.8, the distribu-
tion of 4X; — X, is normal with mean 4 - 16 — 12 = 52 and variance 16 - § + 2 =
130.

By Theorem 1, the load Z is normal with mean 40N and variance 4N, where N is the
number of bags. Now
2000 — 40N
P(Z =2000) = | ———x—] = 095
; ! ( 2VN )

gives the condition

2000—401v21645
2VN

by Table A8. The answer is N = 49 (since N must be an integer).

SECTION 23.4. Testing of Hypotheses, Decisions, page 1118

Purpose. Our third big task is testing of hypotheses. This section contains the basic ideas
and the corresponding mathematical formalism. Applications to further tasks of testing
follow in Secs. 23.5-23.8.

Main Content, Important Concepts
Hypothesis (null hypothesis)
Alternative (alternative hypothesis), one- and two-sided
Type I error (probability & = significance level)
Type II error (probability B; 1 — B = power of a test)
Test for p with known o (Example 2)
Test for p with unknown o® (Example 3)
Test for o® (Example 4)

Comparison of means (Example 5)

Comparison of variances (Example 6)
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Comment on Content

Special testing procedures based on the present ideas have been developed for control-
ling the quality of production processes (Sec. 23.5), for assessing the quality of produced
goods (Sec. 23.6), for determining whether some function F(x) is the unknown distribu-
tion function of some population (Sec. 23.7), and for situations in which the distribution
of a population need not be known in order to perform a test (Sec. 23.8).

SOLUTIONS TO PROBLEM SET 23.4, page 1127

2.

10.

12.

14.

If the hypothesis p = 0.5 is true, X = Number of heads in 4040 trials is ap-
proximately normal with = 2020, o> = 1010 (Sec. 228).
P(X = ¢) = ®([c — 2020]/V1010) = 0.95, ¢ = 2072 > 2048, do not reject the
hypathesis.

. Left-sided test, o%/n = 9/20 = 0.45. From Table A8 in Appendix 5 we obtain

- ¢ — 60.0
P(X) = €)ympoo = ®(—(—)\/—-Z—§—) = 0.05.

¢ =600 1645V045 = 589 > %
and we reject the hypothesis.

Hence

. We obtain

o 58.9 — 57.0
7(57.0) = P(X <€)7 = d)(W) = $(2.83) = 993%,

Hypothesis p, = 35 000, alternative p > 35 000. Using the given data and Table A9,
we obtain

t = (37000 — 35000)/(5000/\/25) = 2.00 > ¢ = 1.71.

Hence we reject the hypothesis and assert that the manufacturer’s claim is justified.
Hypothesis Hy: not better. Altemative H,: better. Under H, the random variable

X = Number of cases cured in 400 cases

is approximately normal with mean u = np = 300 and variance o® = npg = 75.
From Table A8 and a = 5% we get

(¢ — 300)/\V/75 = 1.645, ¢ = 300 + 1.645\/75 = 314.

Since the observed value 310 is not greater than ¢, we do not reject the hypothesis.
This indicates that the results obtained so far do not establish the superiority.

We test the hypothesis 0,> = 25 against the alternative that o® < 25. As in Exam-
ple 4, we now get

Y= (n — 1)S%0,? = 278%25 = 1.0852
From Table A10 with 27 degrees of freedom and the condition
PY<o)=a=5% we get ¢ = 16.2.

Since y = 1.085% = 1.08 - 3.5 = 13.23 < ¢ and the test is left-sided, we reject the
hypothesis and assert that it will be less expensive to replace all the batteries simul-
tancously.
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16. We test the hypothesis 0,* = o, against the alternative 0,2 > 0,2 We proceed as
in Example 6. By computation,

Vo = 3121522 = 350/61.9 = 5.65.

For @ = 5% and (5, 6) degrees of freedom. Table All gives 4.39. Since 5.65 is
greater, we reject the hypothesis and assert that the variance of the first population is
greater than that of the second.

18. In this two-sided test we use (11), obtaining

12-18-28 10 - 14
to = = -3.58.
4 30 VI1-9+17-9

From the f-table with ny + ny — 2 = 28 degrees of freedom we obtain cy = 2.05
corresponding to 973% and —2.05 for 2%, by symmetry. Since —3.58 < ~2.05, we
reject the hypothesis and assert that the population means are different.

SECTION 23.5. Quality Control, page 1128

Purpose. Quality control is a testing procedure performed every hour (or every half hour,
etc.) in an ongoing process of production in order to see whether the process is running
properly (“is under control,” is producing items satisfying the specifications) or not (“is
out of control”), in which case the process is being halted in order to search for the trou-
ble and remove it. These tests may concern the mean, variance, range, etc.

Main Content

Control chart for the mean
Control chart for the variance

Comment on Content
Control charts have also been developed for the range, the number of defectives, the num-
ber of defects per unit, for attributes, etc. (see the problem set).

SOLUTIONS TO PROBLEM SET 23.5, page 1132

2.1%3-002V4=1%003
4. Decrease by a factor V2 = 1.41. By a factor 2.58/1.96 = 1.32. Hence the two op-

erations have almost the same effect.
6. LCL = 3.5, UCL = 6.5 ;
8. The sample range tends to increase with increasing n, whereas o remains unchanged.
10. The random variable Z = Number of defectives in a sample of size n has the variance
npq. Hence X = Zin has the variance o = npg/n® = 0.04 - 0.96/100 = 0.000 384.
This gives
UCL = 0.04 + 3o = 0.0988.
From the given values we see that the process is not in control.
12, Choosce 4 times the original sample size.

14. LCL = npy — 2.580 Vn, UCL = nug + 2.580 V/n, as follows from Theorem 1 in
Sec. 23.3,
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SECTION 23.6. Acceptance Sampling, page 1133

Purpose. This is a test for the quality of a produced lot designed to meet the interests of
both the producer and the consumer of the lot, as expressed in the terms listed below.

Main Content, Important Concepts _
Sampling plan, acceptance number, fraction defective
Operating characteristic curve (OC curve)
Acceptable quality level (AQL)

Rejectable quality level (RQL)
Rectification 1
Average outgoing quality limit (AOQL)

Comments on Content

Basically, acceptance sampling first leads to the hypergeometric distribution, which, how-
ever, can be approximated by the simpler Poisson distribution and simple formulas re-
sulting from it, or in other cases by the binomial distribution, which can in turn be ap-
proximated by the normal distribution. Typical cases are included in the problem set.
SOLUTIONS TO PROBLEM SET 23.6, page 1136

2. We expect a decrease of values because of the exponential function in (3), which in-
volves n. The probabilities are 0.9098 (down from 0.9825), 0.7358, 0.0404.,

4. P(A; 6) = e~2°°(1 + 206) from (3). From Fig. 504 we find a and B. For 6 = 1.5%
we obtain P(A; 0.015) = 96.3%, hence a = 3.7%. Also 8 = P(A; 0.075) = 55.8%,
which is very poor.

6. [6e72°°(1 + 306)]" = 0 gives 6 = 0.054 and the value 0.028.

8. The approximation is 6°(1 — 6)* and is fairly accurate, as the following values show:

0 Exact (2D) Approximate
0.0 1.00 1.00
0.2 0.63 0.64
04 0.35 0.36
0.6 0.15 0.16
0.8 0.03 0.04
1.0 0.00 0.00
10. From the definition of the hypergeometric distribution we now obtain
» 20 - N -
PA; 0) = (200) (20 209) / ( )_ (20 — 200)(19 — 206)(18 — 206)
0 3 3 6840
This gives P(A; 0.1) = 0.72 (instead of 0.81 in Example 1) and P(A; 0.2) = 0.49 (in-
stead of 0.63), a decrease in both cases, as had to be expected.
12. P(4; 0) = e~2°%1 + 206). [6P(A; 8])' = 0 gives 8 = 6, = 0.0809, 6,P(A; 0,) =
0.0420.

http://librosysolucionarios.net



Instructor's Manual 307

14. For 8 = 0.05 we should get P(A; 0) = 0.98. (Figure 504 illustrates this, for differ-
ent values.) Since n = 100, we get np = 5 and the variance npg = 5-0.95 = 475.
Using the normal approximation of the binomial distribution, we thus obtain, with ¢
to be determined,

c

100 _s. sog
> ( )o.os=o.95*°°-= - q»(c bl ) ~ @(0 2. 20> ) = 098,
X

z=0 V475 V4.75
c—5+05 =-3.5
Pl =P ) + 0.98 = 0.9859.
( V4.75 ) ( V475

From this and Table A8 we get (by interpolation)
¢ =45 + 2214V475 = 9.325.

The answer is that we should choose 9 or 10 as .

SECTION 23.7. Goodness of Fit. y*-Test, page 1137

Purpose. The y-test is a test for a whole unknown distribution function, as opposed to
the previous tests for unknown parameters in known types of distributions.
Main Content

Chi-square test

Test of normality

Comments on Content

The present method includes many practical problems, some of which are illustrated in
the problem set.

Recall that the chi-square distribution also occurred in connection with confidence in-
tervals and in our basic section on testing (Sec. 23.4).

SOLUTIONS TO PROBLEM SET 23.7, page 1140

2. xo® = 0.4 < ¢ = 3.84. Assert that the coin is fair,

4. xo° = 94.19 > 11.07, reject. As usual, it is interesting to see the contributions of the
varlous terms to xo". In the present case these vary considerably, between 1.6
and 52:

1.628 + 26.582 + 7.426 + 52.250 + 3.945 + 2.359.

6. x* =313 -82+(3-82+8~-8?%=625> 3.84 because p = (13 + 3 +
8)/600 = 4% was estimated, so that we have K — 1 — | = | degree of freedom. The
difference between the numbers of defectives is significant.

8. The maximum likelihood estimates for the two parameters are X = 59.87, § = 1.504,
K — 1= 2 = 2 degrees of freedom. From Table 23.10 we get the critical value
9.21 > xo® = 6.10. Accept the hypothesis that the population from which the sam-
ple was taken is normally distributed. y,” is obtained as follows.
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x—X x—X
x s 4)( = ) Expected Observed Terms in (1)

58.5 ~0.91 0.1812 14.31 14 0.01
59.5 ~0.25 0.4028 17.51 17 0.01
60.5 0.42 0.6623 20.50 27 2.06
61.5 1.08 0.8608 15.68 8 3.76
11.00 13 0.36

XYoo = 6.20

Slightly different results due to rounding are possible.
10. Let 50 + b be that number. Then 26%/50 > ¢, b > 5V, 50 + b = 60, 63, 64.

12. K = 2 classes (dull, sharp). Expected values 10 dull, 390 sharp; 1 degree of freedom;
hence

xoo =1 + & — 503> 384

Reject the claim. Two things are interesting here. First, 16 dull blades (an excess of
609% over the expected value!) would not have been sufficient to reject the claim at
the 5% level. Second, 49/10 contributes much more to y,° than 49/390 does; in other
applications the situation will often be qualitatively similar.

14. TEAM PROJECT. n = 3 - 77 = 231.

(@ a; = 231720 = 11.55, K = 20, xo> = 24.32 < ¢ = 30.14 (a@ = 5%, 19 degrees
of freedom). Accept the hypothesis.

) xo> = 13.10 > ¢ = 3.84 (a = 5%, 1 degree of freedom). Reject the hypothesis.
(©) xo® = 10.62 > ¢ = 3.84 (a = 5%, 1 degree of freedom). Reject the hypothesis.

SECTION 23.8. Nonparametric Tests, page 1142

Purpose. To introduce the student to the ideas of nonparametric tests in terms of two typ-
ical examples selected from a wide variety of tests in that field.
Main Content
Median, a test for it
Trend, a test for it
Comment on Content

Both tasks have not yet been considered in the previous sections. Another approach to
trend follows in the next section.

SOLUTIONS TO PROBLEM SET 23.8, page 1143
2.2+ 6-@)° + 15- (3)° = 34% is the probability of at most 2 negative values if
# = 0, which we do not reject.

4. We drop 0 from the sample. Let X = Number of positive values. Under the hypoth-
esis we get the probability

9\ /1)
PX=19) = o) \2 = 0.2%.

Accordingly, we reject the hypothesis that there is no difference between A and B
and assert that the observed difference is significant.
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6. Under the hypothesis the probability of obtaining at most 3 negative differences
(80 — 85, 90 — 95, 60 — 75) is

G [ () () + (3)] = 7
2 1 2 < M
We reject the hypothesis and assert that B is better.

8. Let X = Number of positive values among 8 values. If the hypothesis is true, a pos-
itive value is as probable as a negative value and thus has probability 1/2. Hence, un-
der the hypothesis the probability of getting at most 1 positive value is

P=3 +38-4% =359
Hence we reject the hypothesis and assert that the setting is too low.
10. n = 5 values, with 2 transpositions, namely,
I111.1 before 110.9 and 111.0,
so that from Table A12 we obtain
PT=2)= 0117
and we do not reject the hypothesis.
12. n = 8 values, with 4 transpositions, namely,
33.4 before 31.6
35.3 before 31.6, 35.0
37.6 before 36.5.

Table A12 gives.
P(T = 4) = 0.007.

Reject the hypothesis that the amount of fertilizer has no effect and assert that the
yield increases with increasing amounts of fertilizer. ;

14. We order by_increasing x. Then we have 10 transpositions:
418 > 301, 352, 395, 375, 388
395 > 375, 388
465 = 455
521 = 455, 490

Hypothesis no trend, alternative positive trend, P(T = 10) = 1.4% by Table A12 in
Appendix 5. Reject the hypothesis.

SECTION 23.9. Regression Analysis. Fitting Straight Lines, page 1145

Purpose. This section is a short introduction to regression analysis, restricted to linear re-
gression and involving the famous least squares principle.

Main Content
Distinction between correlation and regression
Gauss’s least squares method
Sample regression line, sample regression coefficient
Population regression coefficient, a confidence interval for it
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SOLUTIONS TO PROBLEM SET 23.9, page 1150

2, y=2-0.55x

4, y =299%, k= 1/2.99

6. y = —120.5 + 9.15x, (35) = 200. The negative constant —120.5 simply indicates
that our linear interpolation by the least squares principle is meaningful only over a
relatively short interval where we can approximate the actual function y(x) by a lin-
ear function.

8. X =25,5.2= 53,7 = 7475, sy = 14.9225, 35, = 14.95, ky = 2.99, g, = 0.067,
¢ = 4.30 (2 degrees of freedom) from (13) and the t-table, K = 0.35197, so that the
answer is

CONFOQG{263 = Ky = 3.34}.
10. Multiplying out the square, we get three terms, hence three sums, R

> 0y — 3P = X x5 — 2%, x; + i
PR R ]

and the last of these three terms cancels half of the second term, giving the result.

SECTION 23.10. Correlation Analysis, page 1150

Purpose. Correlation analysis deals with the iterrelation of X and Y in a two-dimensional
random variable (X, Y). This section is an introduction without proofs.

Main Content, Important Concepts

Sample covariance s,

Sample correlation coefficient »

Population covariance oyy

Population correlation coefficient p

Independence of X and Y implies p = 0 (“uncorrelatedness”).
Two-dimensional normal distribution

If (X, Y) is normal, p = 0 implies independence of X and Y.
Test for p — 0

SOLUTIONS TO CHAPTER 23 REVIEW, page 1153

26. ¥ = 20.325, s* = 4.551, s = 2.133
28. o= 20325, 52 = (7/8)s* = 3.982
30. k = 1.96 - 5/\/500 (see Table 23.1 in Sec. 23.3). CONFyg5{21.56 = p = 22.44)
32. k = 2576 - 3.2/V8 = 3.0 (Table 23.1 in Sec. 23.3). CONF, 5(28.4 = p = 34.4)

34. k = 2.06 - 7/V/2 = 2.9 from the r-table in Appendix 5 with 24 degrees of freedom.
CONFygs{113.1 = p = 118.9}

36. n — 1 = 3 degrees of freedom, F(cy) = 0.025, ¢; = 0.22, F(cy) = 0.975, ¢, = 9.35
from Table A10 in Appendix §; hence k; = 0.05/0.22 = 0.227, kg = 0.05/9.35 = 0.005
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38.

40.

42,

44.
46.

48.

50.

by Table 23.3 in Sec. 23.3. The answer is
CONF, ¢5{0.005 = o? = 0.227).

The test is two-sided. We have o*/n = 0.025, as before. Table A8 gives

= c— 150

PX <c¢ = Q| ———

( )15.0 ( m

and 15.0 — 0.31 = 14.69 as the left endpoint of the acceptance region. Now ¥ =
14.5 < 14.7, and we reject the hypothesis.

We proceed as in Example 3 in Sec. 23.4. The test is right-sided. From Table A9 with
n — 1 = 19 degrees of freedom and

P(T>¢),, =001, thus T =¢),, =099
we get ¢ = 2.54. From the sample we compute

- 298-280 R
vVianvaa

) = 0.975, ¢ = 15.31

and reject the hypothesis.

X = 376.3,5 = 335.3, 5,2 = 1009.3, 5,® = 869.3, o =164 <c=292(a = 5%,
2 degrees of freedom); do not reject the hypothesis.

Because the sample size n is finite.

a=1-=(~ 0)°= 585%, when 8 = 0.01. For 6 = 15% we obtain B =
(1 — 6)° = 37.7%. If n increases, so does a, whereas B decreases.

We drop the two rods of exact length. Then we have a sample of 18. Under the hy-
pothesis that no adjustment is needed, longer rods and shorter rods have the same
probability 4. Hence the probability of getting three or fewer shorter rods is

3 + 18 + 153 + 816) = 0.0038

and we reject the hypothesis and accept the alternative,
y =34 - 1.85x
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