

React Native Blueprints

Create eight exciting native cross-platform mobile
applications with JavaScript

Emilio Rodriguez Martinez

BIRMINGHAM - MUMBAI

React Native Blueprints
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2017

Production reference: 1061117

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78728-809-6

www.packtpub.com

http://www.packtpub.com

Credits

Author
Emilio Rodriguez Martinez

Copy Editor
Charlotte Carneiro

Reviewers
Mike Grabowski
Christoph Michel
Alessandro Molina

Project Coordinator
Sheejal Shah

Acquisition Editor
Reshma Raman

Proofreader
Safis Editing

Content Development Editor
Jason Pereira

Indexer
Rekha Nair

Technical Editor
Prajakta Mhatre

Production Coordinator
Melwyn D'sa

About the Author
Emilio Rodriguez Martinez is a senior software engineer who has been working on highly
demanding JavaScript projects since 2010. He transitioned from web development positions
into mobile development, first with hybrid technologies such as Cordova and then with
native JavaScript solutions such as Titanium.
In 2015, he focused on the development and maintenance of several apps built in React
Native, some of which were featured in Apple's App Store as the top apps of the week.
Nowadays, Emilio is part of the Red Hat mobile team, which leverages Red Hat's open
source mobile platform. He serves as an advocate for mobile developers using RHMAP. He
is also an active contributor to React Native's codebase and StackOverflow, where he
provides advice on React and React Native questions.

About the Reviewers
Mike Grabowski is a CTO and co-founder of Callstack (callstack.com), a consultancy that
helps developers and businesses launch their apps for everyone, on many platforms, at the
same time. Right now, it is done with the help of React Native. He is also on a React Native
core team where he helps to orchestrate monthly releases of the framework. At Callstack, he
does a whole bunch of open source activities for the community, including React Native
EU--the first conference to focus on React Native in the world. When not working, he enjoys
driving his BMW on a race track.

Christoph Michel is a software engineer who's been involved with React Native since its
early release in 2015. He has published several React Native apps on the App Store. He also
develops open source components and writes technical articles on cmichel.io.

Alessandro Molina, partner at AXANT.it, a software engineer at Crunch.IO, and a father of
two, has been passionate about web and mobile development for the past 15 years. He is
particularly involved in the Python community and is the author of the DukPy project,
which runs React and JavaScript in pure Python environments. He is also a core developer
of the TurboGears2 Python Web Framework and co-maintainer of widely used web
development libraries and technologies in Python and MongoDB environments such as the
Beaker Session and Caching framework and the Ming MongoDB ODM.

He was also the original author of the AXMEAS hybrid multiplatform mobile development
framework, which is used to create mobile apps that run on iOS, Android, Windows, and
on other browsers. In his spare time, Alessandro enjoys exploring big data and machine
learning solutions applied to nearly real-time use cases and traveling with his family to
learn new things, not only about software but about the world and culture too.

https://callstack.com/

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1787288099.

If you'd like to join our team of regular reviewers, you can e-mail us
at customerreviews@packtpub.com. We award our regular reviewers with free eBooks
and videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787288099

Table of Contents
Preface 1

Chapter 1: Shopping List 6

Overview 7
Setting up our project 10
Setting up the folder structure 14
Adding a Navigation component 15
Styling our app with NativeBase 17
Building the ShoppingList screen 17

Adding state to our screen 20
Adding event handlers 21
Putting it all together 25

Building the AddProduct screen 26
Using AsyncStorage 26

Adding state to our screen 27
Adding event listeners 30
Putting it all together 34

Installing and distributing the app 36
Testflight 36
Diawi 37
Installr 37

Summary 38

Chapter 2: RSS Reader 39

Overview 40
Setting up the folder structure 47

Adding dependencies 48
Using vector icons 50

Managing our state with MobX 50
The store 51

Setting up the store 53
Defining actions 54

Networking in React Native 56
Creating our app's entry point 57
Building the FeedsList screen 58

Adding event handlers 59

[ii]

Building the AddFeed screen 62
ActivityIndicator 64

Building the FeedDetail screen 65
Building the EntryDetail screen 71
Summary 72

Chapter 3: Car Booking App 73

Overview 74
Setting up the folder structure 78

Files and folders created by React Native's CLI 80
__tests__/ 80
android/ and ios/ 80
node_modules/ 81
Files in the root folder 81

react-native link 82
Running the app in the simulator 82

The developer menu 84
Creating our app's entry point 84

Adding images to our app 91
LocationSearch 91

Aligning elements 92
LocationPin 93

flexDirection 95
Dimensions 96
Shadows 96

ClassSelection 97
Adding custom fonts 100
Animations 101

ConfirmationModal 103
Summary 107

Chapter 4: Image Sharing App 108

Overview 109
Setting up the folder structure 115
Redux 118
ImagesList 121
Gallery 124
Header 126
ActivityIndicator 128
Camera 129
MyImages 132

[iii]

ImageGrid 134
Actions 136
Reducers 138
API 141
Summary 142

Chapter 5: Guitar Tuner 144

Overview 145
Setting up the folder structure 147
Writing the native module 150
index.ios.js 157

utils 158
Tuner 162
Strings 164
Adding an icon 166
Adding a launch screen 167
Disabling the landscape mode 169
Summary 170

Chapter 6: Messaging App 171

Overview 172
Firebase 182

Real-time database 183
Reading data from Firebase's database 185
Updating data in Firebase's database 186

Authentication 187
Setting up the folder structure 188
Users store 192
Chats store 197
Push notifications using Firebase 201
Login 203
Chats 209
ListItem 212
Chat 213
Search 214
Profile 217
Summary 218

Chapter 7: Game 220

Overview 221
Sprites 224

[iv]

Numbers 224
Background 225
Ground 225
Rocks 225
Parrot 226
The home screen 227
Game over screen 227

Setting up the folder structure 228
GameContainer 232
Actions 238
Reducer 239
The sprites module 240

The sprites array 242
prepareNewRockSizes() 243
getRockProps() 243
moveSprites() 244
bounceParrot() 246
checkForCollision() 247
getUpdatedScore() 248

Constants 249
Parrot 249
RockUp and RockDown 251
Ground 252
Score 253
Start 255
GameOver 255
StartAgain 256
Summary 257

Chapter 8: E-Commerce App 258

Overview 259
Setting up the folder structure 276
Linting and code formatting 280
Indexes and main files 281
Reducers 284
API 291
ProductList 293
ProductDetail 296
MyCart 299
Payment 302

[v]

PaymentConfirmation 307
MyProfile 310
LoginOrRegister 312

Login 314
Register 316
Sales 319
Summary 321

Index 322

Preface
React Native helps web and mobile developers to build apps for iOS and Android apps that
perform at the same level as any other natively developed app. The range of apps that can
be built using this library is huge. From e-commerce to games, React Native is a good fit for
any mobile project due to its flexibility and extendable nature. It has good performance,
reuses React knowledge, has the ability to import npm packages, and uses the same
codebase for iOS and Android. There's no doubt React Native is not only a good alternative
to native development, but also a great way to introduce web developers to a mobile
project. This book aims to give JavaScript and React developers a peek at how some of the
most popular apps in the market could be built from scratch with React Native. We will
build all the apps in iOS and Android, except for those cases where the apps only make
sense on one of the platforms.

What this book covers
Chapter 1, Shopping List, shows how a groceries list can be built in React Native using
simple navigation and introducing some of the most common native components.

Chapter 2, RSS Reader, teaches you how to create a news feed reader using RSS.

Chapter 3, Car Booking App, explains how some of the most popular car-sharing apps could
have been developed using React Native.

Chapter 4, Image Sharing App, teaches you the fundamentals of how a social network based
on image sharing can be created with React Native.

Chapter 5, Guitar Tuner, is one of the apps that require components not yet available in
React Native. We will build one of these native components and use it from a React Native
app.

Chapter 6, Messaging App, 1:1 messaging apps are the most popular apps in the stores. In
this chapter, we will build a full-featured messaging app including push notifications and
cloud-based storage.

Chapter 7, Game, is fun and shows you the fundamentals of how a 2D game can be
developed using React Native.

Chapter 8, E-Commerce App, uses React Native to build one of the most requested types of
app in the market: an e-commerce app to buy and sell products online.

Preface

[2]

What you need for this book
Most of the apps built throughout this book will run on Android and iOS, so a computer
running Linux, Windows, or OSX will be required, although we recommend any Apple
computer (running OSX 10 or later) to run both mobile platforms at once, as some examples
will require working on XCode, which is only installable on OSX.

Other pieces of software we will use in examples are:

XCode
Android Studio
A React-ready IDE (such as Atom, VS Code, and SublimeText)

And of course, we will need React Native and React Native CLI installed (https:/ /
facebook.github. io/ react- native/ docs/ getting- started. html).

Who this book is for
This book is targeted at JavaScript developers trying to understand how different kinds of
apps can be built using React Native. They will find a set of best practices and proven
architectural strategies that can be applied to building any kind of app.

Although some basic concepts of React won't be explained in this book, no specific React
skills are needed to follow along, since we won't dive deep into complex React patterns.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We have
to create an src folder where we will store all our React code."

Also in big code blocks, when some pieces of code are not relevant or reviewed in a
different place, they will be replaced by an ellipsis (...).

https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html

Preface

[3]

A block of code is set as follows:

/*** index.js ***/

import { AppRegistry } from 'react-native';
import App from './src/main';
AppRegistry.registerComponent('GroceriesList', () => App);

Any command-line input or output is written as follows:

react-native run-ios

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "The back button on the Add
a product screen."

Tips and important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book--what you liked or disliked. Reader feedback is important to us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

http://www.packtpub.com/authors

Preface

[4]

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/React- Native- Blueprints. We also have other code bundles from our
rich catalog of books and videos available at https://github.com/PacktPublishing/.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https:/ / www. packtpub. com/ sites/ default/ files/
downloads/ReactNativeBlueprints_ ColorImages. pdf.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/React-Native-Blueprints
https://github.com/PacktPublishing/React-Native-Blueprints
https://github.com/PacktPublishing/React-Native-Blueprints
https://github.com/PacktPublishing/React-Native-Blueprints
https://github.com/PacktPublishing/React-Native-Blueprints
https://github.com/PacktPublishing/React-Native-Blueprints
https://github.com/PacktPublishing/React-Native-Blueprints
https://github.com/PacktPublishing/React-Native-Blueprints
https://github.com/PacktPublishing/React-Native-Blueprints
https://github.com/PacktPublishing/React-Native-Blueprints
https://github.com/PacktPublishing/React-Native-Blueprints
https://github.com/PacktPublishing/React-Native-Blueprints
https://github.com/PacktPublishing/React-Native-Blueprints
https://github.com/PacktPublishing/React-Native-Blueprints
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactNativeBlueprints_ColorImages.pdf

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code--
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

1
Shopping List

Most of the modern languages and frameworks used to present a to-do list as their sample
app. It is a great way to understand the basics of a framework as user interaction, basic
navigation, or how to structure code. We'll start in a more pragmatic way: building a
shopping list app.

You will be able to develop this app in React Native code, build it for both iOS and
Android, and finally install it on your phone. This way, you could not only show your
friends what you built, but also understand missing features that you can build by yourself,
thinking about user-interface improvements, and above all, motivating yourself to keep
learning React Native as you feel its true potential.

By the end of this chapter, you will have built a fully-functional shopping list that you can
use on your phone and will have all the tools you need to create and maintain simple
stateful apps.

Shopping List

[7]

Overview
One of the most powerful features of React Native is its cross-platform capabilities; we will
build our shopping list app for both iOS and Android, reusing 99% of our code. Let's take a
look at how the app will look on both platforms:

iOS:

Shopping List

[8]

After adding more products, this is how it will look:

Android:

Shopping List

[9]

After adding more products, this is how it will look:

The app will have a very similar user interface on both platforms, but we won't need to care
much about the differences (for example, the back button on the Add a product screen), as
they will be handled automatically by React Native.

It is important to understand that each platform has its own user interface patterns, and it's
a good practice to follow them. For example, navigation is usually handled through tabs in
iOS while Android prefers a drawer menu, so we should build both navigation patterns if
we want happy users on both platforms. In any case, this is only a recommendation, and
any user interface pattern could be built on every platform. In later chapters, we will see
how to handle two different patterns in the most effective way within the same codebase.

The app comprises of two screens: your shopping list and a list of the products which could
be added to your shopping list. The user can navigate from the Shopping List screen to
the Add a product screen through the round blue button and back through the <
Back button. We will also build a clear button in the shopping list screen (the round red
button) and the ability to add and remove products on the Add a product screen.

Shopping List

[10]

We will be covering the following topics in this chapter:

Folder structure for a basic React Native project
React Native's basic CLI commands
Basic navigation
JS debugging
Live reloading
Styling with NativeBase
Lists
Basic state management
Handling events
AsyncStorage

Prompt popups
Distributing the app

Setting up our project
React Native has a very powerful CLI that we will need to install to get started with our
project. To install, just run the following command in your command line (you might need
to run this with sudo), if you don't have enough permissions:

npm install -g react-native-cli

Once the installation is finished, we can start using the React Native CLI by typing react-
native. To start our project, we will run the following command:

react-native init --version="0.49.3" GroceriesList

Shopping List

[11]

This command will create a basic project named GroceriesList with all the dependencies
and libraries you need to build the app on iOS and Android. Once the CLI has finished
installing all the packages, you should have a folder structure similar to this:

The entry file for our project is index.js. If you want to see your initial app running on a
simulator, you can use React Native's CLI again:

react-native run-ios

Or

react-native run-android

Shopping List

[12]

Provided you have XCode or Android Studio and Android Simulator installed, you should
be able to see a sample screen on your simulator after compilation:

We have everything we need to set up to start implementing our app, but in order to easily
debug and see our changes in the simulator, we need to enable two more features: remote JS
debugging and live reloading.

For debugging, we will use React Native Debugger, a standalone app, based on the official
debugger for React Native, which includes React Inspector and Redux DevTools. It can be
downloaded following the instructions on its GitHub repository (https:/ /github. com/
jhen0409/react-native- debugger). For this debugger to work properly, we will need to
enable Remote JS Debugging from within our app by opening a React Native development
menu within the simulator by pressing command + ctrl + Z on iOS or command + M on
Android.

https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger

Shopping List

[13]

If everything goes well, we should see the following menu appear:

Shopping List

[14]

Now, we will press two buttons: Debug Remote JS and Enable Live Reload. Once we are
done with this, we have all our development environment up and ready to start writing
React code.

Setting up the folder structure
Our app only comprises of two screens: Shopping List and Add Products. Since the state
for such a simple app should be easy to manage, we won't add any library for state
management (for example, Redux), as we will send the shared state through the navigation
component. This should make our folder structure rather simple:

Shopping List

[15]

We have to create an src folder where we will store all our React code. The self-created
file index.js will have the following code:

/*** index.js ***/

import { AppRegistry } from 'react-native';
import App from './src/main';
AppRegistry.registerComponent('GroceriesList', () => App);

In short, these files will import the common root code for our app, store it in a variable
named App and later pass this variable to the AppRegistry through the
registerComponent method. AppRegistry is the component to which we should register
our root components. Once we do this, React Native will generate a JS bundle for our app
and then run the app when it's ready by invoking AppRegistry.runApplication.

Most of the code we will be writing, will be placed inside the src folder. For this app, we
will create our root component (main.js) in this folder, and a screens subfolder, in which
we will store our two screens (ShoppingList and AddProduct).

Now let's install all the initial dependencies for our app before continue coding. In our
project's root folder, we will need to run the following command:

npm install

Running that command will install all the basic dependencies for every React Native
project. Let's now install the three packages we will be using for this specific app:

npm install native-base --save
npm install react-native-prompt-android --save
npm install react-navigation --save

Further ahead in this chapter, we will explain what each package will be used for.

Adding a Navigation component
Most mobile apps comprise of more than one screen, so we will need to be able to "travel"
between those screens. In order to achieve this, we will need a Navigation component.
React Native comes with a Navigator and a NavigatorIOS component out of the box,
although the React maintainers recommend using an external navigation solution built by
the community named react-navigation (https:/ /github. com/ react- community/
react-navigation), which is very performant, well maintained, and rich in features, so we
will use it for our app.

https://github.com/react-community/react-navigation
https://github.com/react-community/react-navigation
https://github.com/react-community/react-navigation
https://github.com/react-community/react-navigation
https://github.com/react-community/react-navigation
https://github.com/react-community/react-navigation
https://github.com/react-community/react-navigation
https://github.com/react-community/react-navigation
https://github.com/react-community/react-navigation
https://github.com/react-community/react-navigation
https://github.com/react-community/react-navigation
https://github.com/react-community/react-navigation
https://github.com/react-community/react-navigation
https://github.com/react-community/react-navigation

Shopping List

[16]

Because we already installed our module for navigation (react-navigation), we can set
up and initialize our Navigation component inside our main.js file:

/*** src/main.js ***/

import React from 'react';
import { StackNavigator } from 'react-navigation';
import ShoppingList from './screens/ShoppingList.js';
import AddProduct from './screens/AddProduct.js';

const Navigator = StackNavigator({
 ShoppingList: { screen: ShoppingList },
 AddProduct: { screen: AddProduct }
});

export default class App extends React.Component {
 constructor() {
 super();
 }

 render() {
 return <Navigator />;
 }
}

Our root component imports both of the screens in our app (ShoppingList and
AddProduct) and passes them to the StackNavigator function, which generates the
Navigator component. Let's take a deeper look into how StackNavigator works.

StackNavigator provides a way for any app to transition between screens, where each
new screen is placed on top of a stack. When we request the navigation to a new
screen, StackNavigator will slide the new screen from the right and place a <
Back button in the upper-right corner to go back to the previous screen in iOS or, will fade
in from the bottom while a new screen is placing a <- arrow to go back in Android. With
the same codebase, we will trigger familiar navigation patterns in iOS and Android.
StackNavigator is also really simple to use, as we only need to pass the screens in our
apps as a hash map, where the keys are the names we want for our screens and the values
are the imported screens as React components. The result is a <Navigator/> component
which we can render to initialize our app.

Shopping List

[17]

Styling our app with NativeBase
React Native includes a powerful way to style our components and screens using Flexbox
and a CSS-like API but, for this app, we want to focus on the functionality aspect, so we will
use a library including basic styled components as buttons, lists, icons, menus, forms, and
many more. It can be seen as a Twitter Bootstrap for React Native.

There are several popular UI libraries, NativeBase and React Native elements being the two
most popular and best supported. Out of these two, we will choose NativeBase, since it's
documentation is slightly clearer for beginners.

You can find the detailed documentation on how NativeBase works on their website
(https://docs.nativebase. io/), but we will go through the basics of installing and using
some of their components in this chapter. We previously installed native-base as a
dependency of our project through npm install but NativeBase includes some peer
dependencies, which need to be linked and included in our iOS and Android native folders.
Luckily, React Native already has a tool for finding out those dependencies and linking
them; we just need to run:

react-native link

At this point, we have all the UI components from NativeBase fully available in our app. So,
we can start building our first screen.

Building the ShoppingList screen
Our first screen will contain a list of the items we need to buy, so it will contain one list item
per item we need to buy, including a button to mark that item as already bought. Moreover,
we need a button to navigate to the AddProduct screen, which will allow us to add
products to our list. Finally, we will add a button to clear the list of products, in case we
want to start a new shopping list:

https://docs.nativebase.io/
https://docs.nativebase.io/
https://docs.nativebase.io/
https://docs.nativebase.io/
https://docs.nativebase.io/
https://docs.nativebase.io/
https://docs.nativebase.io/
https://docs.nativebase.io/
https://docs.nativebase.io/
https://docs.nativebase.io/

Shopping List

[18]

Let's start by creating ShoppingList.js inside the screens folder and importing all the
UI components we will need from native-base and react-native (we will use an alert
popup to warn the user before clearing all items). The main UI components we will be
using are Fab (the blue and red round buttons), List, ListItem, CheckBox, Text, and
Icon. To support our layout, we will be using Body, Container, Content, and Right,
which are layout containers for the rest of our components.

Having all these components, we can create a simple version of our ShoppingList
component:

/*** ShoppingList.js ***/
import React from 'react';
import { Alert } from 'react-native';
import {
 Body,
 Container,

Shopping List

[19]

 Content,
 Right,
 Text,
 CheckBox,
 List,
 ListItem,
 Fab,
 Icon
} from 'native-base';

export default class ShoppingList extends React.Component {
 static navigationOptions = {
 title: 'My Groceries List'
 };
 /*** Render ***/
 render() {
 return (
 <Container>
 <Content>
 <List>
 <ListItem>
 <Body>
 <Text>'Name of the product'</Text>
 </Body>
 <Right>
 <CheckBox
 checked={false}
 />
 </Right>
 </ListItem>
 </List>
 </Content>
 <Fab
 style={{ backgroundColor: '#5067FF' }}
 position="bottomRight"
 >
 <Icon name="add" />
 </Fab>
 <Fab
 style={{ backgroundColor: 'red' }}
 position="bottomLeft"
 >
 <Icon ios="ios-remove" android="md-remove" />
 </Fab>
 </Container>
);
 }
}

Shopping List

[20]

This is just a dumb component statically displaying the components we will be using on
this screen. Some things to note:

navigationOptions is a static attribute which will be used by <Navigator> to
configure how the navigation would behave. In our case, we want to display My
Groceries List as the title for this screen.
For native-base to do its magic, we need to use <Container> and <Content>
to properly form the layout.
Fab buttons are placed outside <Content>, so they can float over the left and
right-bottom corners.
Each ListItem contains a <Body> (main text) and a <Right> (icons aligned to
the right).

Since we enabled Live Reload in our first steps, we should see the app reloading after
saving our newly created file. All the UI elements are now in place, but they are not
functional since we didn't add any state. This should be our next step.

Adding state to our screen
Let's add some initial state to our ShoppingList screen to populate the list with actual
dynamic data. We will start by creating a constructor and setting the initial state there:

/*** ShoppingList.js ***/

...
constructor(props) {
 super(props);
 this.state = {
 products: [{ id: 1, name: 'bread' }, { id: 2, name: 'eggs' }]
 };
}
...

Now, we can render that state inside of <List> (inside the render method):

/*** ShoppingList.js ***/

...
<List>
 {
 this.state.products.map(p => {
 return (
 <ListItem

Shopping List

[21]

 key={p.id}
 >
 <Body>
 <Text style={{ color: p.gotten ? '#bbb' : '#000' }}>
 {p.name}
 </Text>
 </Body>
 <Right>
 <CheckBox
 checked={p.gotten}
 />
 </Right>
 </ListItem>
);
 }
)}
</List>
...

We now rely on a list of products inside our component's state, each product storing an id,
a name, and gotten properties. When modifying this state, we will automatically be re-
rendering the list.

Now, it's time to add some event handlers, so we can modify the state at the users'
command or navigate to the AddProduct screen.

Adding event handlers
All the interaction with the user will happen through event handlers in React Native.
Depending on the controller, we will have different events which can be triggered. The
most common event is onPress, as it will be triggered every time we push a button, a
checkbox, or a view in general. Let's add some onPress handlers for all the components
which can be pushed in our screen:

/*** ShoppingList.js ***/

...
render() {
 return (
 <Container>
 <Content>
 <List>
 {this.state.products.map(p => {
 return (
 <ListItem

Shopping List

[22]

 key={p.id}
 onPress={this._handleProductPress.bind(this, p)}
 >
 <Body>
 <Text style={{ color: p.gotten ? '#bbb' : '#000' }}>
 {p.name}
 </Text>
 </Body>
 <Right>
 <CheckBox
 checked={p.gotten}
 onPress={this._handleProductPress.bind(this, p)}
 />
 </Right>
 </ListItem>
);
 })}
 </List>
 </Content>
 <Fab
 style={{ backgroundColor: '#5067FF' }}
 position="bottomRight"
 onPress={this._handleAddProductPress.bind(this)}
 >
 <Icon name="add" />
 </Fab>
 <Fab
 style={{ backgroundColor: 'red' }}
 position="bottomLeft"
 onPress={this._handleClearPress.bind(this)}
 >
 <Icon ios="ios-remove" android="md-remove" />
 </Fab>
 </Container>
);
 }
...

Notice we added three onPress event handlers:

On <ListItem>, to react when the user taps on one product in the list
On <CheckBox>, to react when the user taps on the checkbox icon next to every
product in the list
On both the <Fab> buttons

Shopping List

[23]

If you know React, you probably understand why we use .bind in all our handler
functions, but, in case you have doubts, .bind will make sure we can use this inside the
definition of our handlers as a reference to the component itself instead of the global scope.
This will allow us to call methods inside our components as this.setState or read our
component's attributes, such as this.props and this.state.

For the cases when the user taps on a specific product, we also bind the product itself, so we
can use them inside our event handlers.

Now, let's define the functions which will serve as event handlers:

/*** ShoppingList.js ***/

...
_handleProductPress(product) {
 this.state.products.forEach(p => {
 if (product.id === p.id) {
 p.gotten = !p.gotten;
 }
 return p;
 });

 this.setState({ products: this.state.products });
}
...

First, let's create a handler for when the user taps on a product from our shopping list or in
its checkbox. We want to mark the product as gotten (or unmark it if it was already
gotten), so we will update the state with the product marked properly.

Next, we will add a handler for the blue <Fab> button to navigate to the AddProduct
screen:

/*** ShoppingList.js ***/

...
_handleAddProductPress() {
 this.props.navigation.navigate('AddProduct', {
 addProduct: product => {
 this.setState({
 products: this.state.products.concat(product)
 });
 },
 deleteProduct: product => {
 this.setState({
 products: this.state.products.filter(p => p.id !== product.id)

Shopping List

[24]

 });
 },
 productsInList: this.state.products
 });
}
...

This handler uses this.props.navigation, which is a property automatically passed by
the Navigator component from react-navigation. This property contains a method
named navigate, receiving the name of the screen to which the app should navigate plus
an object which can be used as a global state. In the case of this app, we will store three
keys:

addProduct: One function to allow the AddProduct screen to modify the
ShoppingList component's state to reflect the action of adding a new product to
the shopping list.
deleteProduct: One function to allow the AddProduct screen to modify
the ShoppingList component's state to reflect the action of removing a product
from the shopping list.
productsInList: A variable holding the list of products is already on the
shopping list, so the AddProducts screen can know which products were
already added to the shopping list and display those as "already added",
preventing the addition of duplicate items.

Handling state within the navigation should be seen as a workaround for simple apps
containing a limited number of screens. In larger apps (as we will see in later chapters), a
state management library, such as Redux or MobX, should be used to keep the separation
between pure data and user interface handling.

We will add the last handler for the blue <Fab> button, which enables the user to clear all
the items in the shopping list in case you want to start a new list:

/*** ShoppingList.js ***/

...
_handleClearPress() {
 Alert.alert('Clear all items?', null, [
 { text: 'Cancel' },
 { text: 'Ok', onPress: () => this.setState({ products: [] }) }
]);
}
...

Shopping List

[25]

We are using Alert to prompt the user for confirmation before clearing all the elements in
our shopping list. Once the user confirms this action, we will empty the products attribute
in our component's state.

Putting it all together
Let's see how the whole component's structure would look like when putting all the
methods together:

/*** ShoppingList.js ***/

import React from 'react';
import { Alert } from 'react-native';
import { ... } from 'native-base';

export default class ShoppingList extends React.Component {
 static navigationOptions = {
 title: 'My Groceries List'
 };

 constructor(props) {
 ...
 }

 /*** User Actions Handlers ***/
 _handleProductPress(product) {
 ...
 }

 _handleAddProductPress() {
 ...
 }

 _handleClearPress() {
 ...
 }

 /*** Render ***/
 render() {
 ...
 }
}

Shopping List

[26]

The structure of a React Native component is very similar to a normal React component.
We need to import React itself and then some components to build up our screen. We also
have several event handlers (which we have prefixed with an underscore as a mere
convention) and finally a render method to display our components using standard JSX.

The only difference with a React web app is the fact that we are using React Native UI
components instead of DOM components.

Building the AddProduct screen
As the user will have the need of adding new products to the shopping list, we need to
build a screen in which we can prompt the user for the name of the product to be added
and save it in the phone's storage for later use.

Using AsyncStorage
When building a React Native app, it's important to understand how mobile devices handle
the memory used by each app. Our app will be sharing the memory with the rest of the
apps in the device so, eventually, the memory which is using our app will be claimed by a
different app. Therefore, we cannot rely on putting data in memory for later use. In case we
want to make sure the data is available across users of our app, we need to store that data in
the device's persistent storage.

React Native offers an API to handle the communication with the persistent storage in our
mobile devices and this API is the same on iOS and Android, so we can write cross-
platform code comfortably.

The API is named AsyncStorage, and we can use it after importing from React Native:

import { AsyncStorage } from 'react-native';

We will only use two methods from AsyncStorage: getItem and setItem. For example,
we will create within our screen a local function to handle the addition of a product to the
full list of products:

/*** AddProduct ***/

...
async addNewProduct(name) {
 const newProductsList = this.state.allProducts.concat({
 name: name,
 id: Math.floor(Math.random() * 100000)

Shopping List

[27]

 });

 await AsyncStorage.setItem(
 '@allProducts',
 JSON.stringify(newProductsList)
);

 this.setState({
 allProducts: newProductsList
 });
 }
...

There are some interesting things to note here:

We are using ES7 features such as async and await to handle asynchronous calls
instead of promises or callbacks. Understanding ES7 is outside the scope of this
book, but it is recommended to learn and understand about the use of async and
await, as it's a very powerful feature we will be using extensively throughout
this book.
Every time we add a product to allProducts, we also call
AsyncStorage.setItem to permanently store the product in our device's
storage. This action ensures that the products added by the user will be available
even when the operating system clears the memory used by our app.
We need to pass two parameters to setItem (and also to getItem): a key and a
value. Both of them must be strings, so we would need to use JSON.stringify,
if we want to store the JSON-formatted data.

Adding state to our screen
As we have just seen, we will be using an attribute in our component's state
named allProducts, which will contain the full list of products the user can add to the
shopping list.

We can initialize this state inside the component's constructor to give the user a gist of what
he/she will be seeing on this screen even during the first run of the app (this is a trick used
by many modern apps to onboard users by faking a used state):

/*** AddProduct.js ***/

...
constructor(props) {
 super(props);

Shopping List

[28]

 this.state = {
 allProducts: [
 { id: 1, name: 'bread' },
 { id: 2, name: 'eggs' },
 { id: 3, name: 'paper towels' },
 { id: 4, name: 'milk' }
],
 productsInList: []
 };
}
...

Besides allProducts, we will also have a productsInList array, holding all the products
which are already added to the current shopping list. This will allow us to mark the product
as Already in shopping list, preventing the user from trying to add the same product
twice in the list.

This constructor will be very useful for our app's first run but once the user has added
products (and therefore saved them in persistent storage), we want those products to
display instead of this test data. In order to achieve this functionality, we should read the
saved products from AsyncStorage and set it as the initial allProducts value in our
state. We will do this on componentWillMount:

/*** AddProduct.js ***/

...
async componentWillMount() {
 const savedProducts = await AsyncStorage.getItem('@allProducts');
 if(savedProducts) {
 this.setState({
 allProducts: JSON.parse(savedProducts)
 });
 }

 this.setState({
 productsInList: this.props.navigation.state.params.productsInList
 });
}
...

We are updating the state once the screen is ready to be mounted. First, we will update the
allProducts value by reading it from the persistent storage. Then, we will update the list
productsInList based on what the ShoppingList screen has set as the state in the
navigation property.

Shopping List

[29]

With this state, we can build our list of products, which can be added to the shopping list:

/*** AddProduct ***/

...
render(){
 <List>
 {this.state.allProducts.map(product => {
 const productIsInList = this.state.productsInList.find(
 p => p.id === product.id
);
 return (
 <ListItem key={product.id}>
 <Body>
 <Text
 style={{
 color: productIsInList ? '#bbb' : '#000'
 }}
 >
 {product.name}
 </Text>
 {
 productIsInList &&
 <Text note>
 {'Already in shopping list'}
 </Text>
 }
 </Body>
 </ListItem>
);
 }
)}
 </List>
}
...

Inside our render method, we will use an Array.map function to iterate and print each
possible product, checking if the product is already added to the current shopping list to
display a note, warning the user: Already in shopping list.

Of course, we still need to add a better layout, buttons, and event handlers for all the
possible user actions. Let's start improving our render method to put all the functionality
in place.

Shopping List

[30]

Adding event listeners
As it happened with the ShoppingList screen, we want the user to be able to interact with
our AddProduct component, so we will add some event handlers to respond to some user
actions.

Our render method should then look something like this:

/*** AddProduct.js ***/

...
render() {
 return (
 <Container>
 <Content>
 <List>
 {this.state.allProducts.map(product => {
 const productIsInList = this.state.productsInList.
 find(p => p.id === product.id);
 return (
 <ListItem
 key={product.id}
 onPress={this._handleProductPress.bind
 (this, product)}
 >
 <Body>
 <Text
 style={{ color: productIsInList? '#bbb' : '#000' }}
 >
 {product.name}
 </Text>
 {
 productIsInList &&
 <Text note>
 {'Already in shopping list'}
 </Text>
 }
 </Body>
 <Right>
 <Icon
 ios="ios-remove-circle"
 android="md-remove-circle"
 style={{ color: 'red' }}
 onPress={this._handleRemovePress.bind(this,
 product)}
 />
 </Right>

Shopping List

[31]

 </ListItem>
);
 })}
 </List>
 </Content>
 <Fab
 style={{ backgroundColor: '#5067FF' }}
 position="bottomRight"
 onPress={this._handleAddProductPress.bind(this)}
 >
 <Icon name="add" />
 </Fab>
 </Container>
);
 }
...

There are three event handlers responding to the three press events in this component:

On the blue <Fab> button, which is in charge of adding new products to the
products list
On each <ListItem>, which will add the product to the shopping list
On the delete icons inside each <ListItem> to remove this product from the list
of the products, which can be added to the shopping list

Let's start adding new products to the available products list once the user presses the
<Fab> button:

/*** AddProduct.js ***/

...
_handleAddProductPress() {
 prompt(
 'Enter product name',
 '',
 [
 { text: 'Cancel', style: 'cancel' },
 { text: 'OK', onPress: this.addNewProduct.bind(this) }
],
 {
 type: 'plain-text'
 }
);
}
...

Shopping List

[32]

We are using here the prompt function from the react-native-prompt-android
module. Despite its name, it's a cross-platform prompt-on-a-pop-up library, which we will
use to add products through the addNewProduct function we created before. We need to
import the prompt function before we use it, as follows:

import prompt from 'react-native-prompt-android';

And here is the output:

Shopping List

[33]

Once the user enters the name of the product and presses OK, the product will be added to
the list so that we can move to the next event handler, adding products to the shopping list
when the user taps on the product name:

/*** AddProduct.js ***/

...
_handleProductPress(product) {
 const productIndex = this.state.productsInList.findIndex(
 p => p.id === product.id
);
 if (productIndex > -1) {
 this.setState({
 productsInList: this.state.productsInList.filter(
 p => p.id !== product.id
)
 });
 this.props.navigation.state.params.deleteProduct(product);
 } else {
 this.setState({
 productsInList: this.state.productsInList.concat(product)
 });

Shopping List

[34]

 this.props.navigation.state.params.addProduct(product);
 }
}
...

This handler checks if the selected product is on the shopping list already. If it is, it will
remove it by calling deleteProduct from the navigation state and also from the
component's state by calling setState . Otherwise, it will add the product to the shopping
list by calling addProduct in the navigation state and refresh the local state by calling
setState.

Finally, we will add an event handler for the delete icon on each of the <ListItems>, so the
user can remove products from the list of available products:

/*** AddProduct.js ***/

...
async _handleRemovePress(product) {
 this.setState({
 allProducts: this.state.allProducts.filter(p => p.id !== product.id)
 });
 await AsyncStorage.setItem(
 '@allProducts',
 JSON.stringify(
 this.state.allProducts.filter(p => p.id !== product.id)
)
);
}
...

We need to remove the product from the component's local state, but also from the
AsyncStorage so it doesn't show during later runs of our app.

Putting it all together
We have all the pieces to build our AddProduct screen, so let's take a look at the general
structure of this component:

import React from 'react';
import prompt from 'react-native-prompt-android';
import { AsyncStorage } from 'react-native';
import {
 ...
} from 'native-base';

Shopping List

[35]

export default class AddProduct extends React.Component {
 static navigationOptions = {
 title: 'Add a product'
 };

 constructor(props) {
 ...
 }

 async componentWillMount() {
 ...
 }

 async addNewProduct(name) {
 ...
 }

 /*** User Actions Handlers ***/
 _handleProductPress(product) {
 ...
 }

 _handleAddProductPress() {
 ...
 }

 async _handleRemovePress(product) {
 ...
 }

 /*** Render ***/
 render() {

 }
}

We have a very similar structure to the one we built for ShoppingList :
the navigatorOptions constructor building the initial state, user action handlers, and a
render method. In this case, we added a couple of async methods as a convenient way to
deal with AsyncStorage.

Shopping List

[36]

Installing and distributing the app
Running our app on a simulator/emulator is a very reliable way to feel how our app will
behave in a mobile device. We can simulate touch gestures, poor network connectivity
environments, or even memory problems, when working in simulators/emulators. But
eventually, we would like to deploy the app to a physical device, so we could perform a
more in-depth testing.

There are several options to install or distribute an app built in React Native, the direct
cable connection being the easiest one. Facebook keeps an updated guide on how to achieve
direct installation on React Native's site (https:/ /facebook. github. io/ react- native/
docs/running-on- device. html), but there are other alternatives when the time comes to
distribute the app to other developers, testers, or designated users.

Testflight
Testflight (https:/ / developer. apple. com/testflight/) is an awesome tool for
distributing the app to beta testers and developers, but it comes with a big drawback--it
only works for iOS. It's really simple to set up and use as it is integrated into iTunes
Connect, and Apple considers it the official tool for distributing apps within the
development team. On top of that, it's absolutely free, and it's usage limits are quite large:

Up to 25 testers in your team
Up to 30 devices per tester in your team
Up to 2,000 external testers outside your team (with grouping capabilities)

In short, Testflight is the platform to choose when you target your apps only to iOS devices.

Since, in this book, we want to focus on cross-platform development, we will introduce
other alternatives to distribute our apps to iOS and Android devices from the same
platform.

https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://facebook.github.io/react-native/docs/running-on-device.html
https://developer.apple.com/testflight/
https://developer.apple.com/testflight/
https://developer.apple.com/testflight/
https://developer.apple.com/testflight/
https://developer.apple.com/testflight/
https://developer.apple.com/testflight/
https://developer.apple.com/testflight/
https://developer.apple.com/testflight/
https://developer.apple.com/testflight/
https://developer.apple.com/testflight/
https://developer.apple.com/testflight/
https://developer.apple.com/testflight/

Shopping List

[37]

Diawi
Diawi (http://diawi. com) is a website where developers can upload their .ipa and .apk
files (the compiled app) and share the links with anybody, so the app can be downloaded
and installed on any iOS or Android device connected to the internet. The process is
simple:

Build the .ipa (iOS) / .apk (Android) in XCode/Android studio.1.
Drag and drop the generated .ipa/.apk file into Diawi's site.2.
Share the link created by Diawi with the list of testers by email or any other3.
method.

Links are private and can be password protected for those apps with the higher need of
security. The main downside is the management of the testing devices, as once the links are
distributed, Diawi loses control over them, so the developer cannot know which versions
were downloaded and tested. If managing the list of testers manually is an option, Diawi is
a good alternative to Testflight.

Installr
If we are in need of managing what versions were distributed to which testers and whether
they have already started testing the app or not, we should give Installr (https:/ /www.
installrapp.com) a try, since functionality-wise it is quite similar to Diawi, but it also
includes a dashboard to control who are the users, which apps were sent to them
individually, and the status of the app in the testing device (not installed, installed, or
opened). This dashboard is quite powerful and definitely a big plus when one of our
requirements is to have good visibility over our testers, devices, and builds.

The downside of Installr is its free plan only covers three testing devices per build, although
they offer a cheap one-time pay scheme in case we really want to have that number
increased. It's a very reasonable option when we are in need of visibility and cross-platform
distribution.

http://diawi.com
http://diawi.com
http://diawi.com
http://diawi.com
http://diawi.com
http://diawi.com
http://diawi.com
https://www.installrapp.com
https://www.installrapp.com
https://www.installrapp.com
https://www.installrapp.com
https://www.installrapp.com
https://www.installrapp.com
https://www.installrapp.com
https://www.installrapp.com

Shopping List

[38]

Summary
During the course of this chapter, we learned how to start up a React Native project,
building an app which includes basic navigation and handling several user interactions. We
saw how to handle persistent data and basic states using the navigation module, so we
could transition through the screens in our project.

All these patterns can be used to build lots of simple apps, but in the next chapter, we will
dive deeper into more complex navigation patterns and how to communicate and process
external data fetched from the internet, which will enable us to structure and prepare our
app for growing. On top of that, we will use MobX, a JavaScript library, for state
management, which will make our domain data available to all the screens inside our app
in a very simple and effective way.

2
RSS Reader

In this chapter, we will create an app which will be able to fetch, process, and show the user
several RSS feeds. RSS is a web feed, which allows users to access updates to online content
in a standardized and computer-readable format. They are normally used in news websites,
news aggregators, forums, and blogs to represent updated content and it fits very well to
the mobile world, as we can have all the content from different blogs or newspapers just by
entering the feed's URL in one app.

An RSS feed reader will serve as an example on how to fetch external data, store it, and
display it to the user, but at the same time, will add a bit of complexity to our state tree; we
will need to store and manage lists of feeds, entries, and posts. On top of that, we will
introduce MobX as a library to manage all those state models and update our views, based
on the user's actions. Therefore, we will introduce the concept of actions and stores, which
is widely used in some of the most popular state management libraries, such as Redux or
MobX.

As we did in the previous chapter, and because the UI patterns we will need for this app are
very similar on both platforms, we will aim at sharing 100% of the code for iOS and
Android.

RSS Reader

[40]

Overview
To better understand our RSS reader, let's take a look at how the app will look like once we
finish it.

iOS:

RSS Reader

[41]

Android:

The home screen will display a list of the feeds already added by the user. It will also show
a button (+) in the navigation header to add a new feed to the list. When that button is
pressed, the app will navigate to the Add feed screen.

RSS Reader

[42]

iOS:

Android:

RSS Reader

[43]

Once a new feed has been added, it will show on the home screen and the user will be able
to open it by simply tapping on it.

iOS:

RSS Reader

[44]

Android:

RSS Reader

[45]

At this stage, the app will retrieve the list of the updated entries for the selected feed and
display it on a list. In the navigation header, a Trash icon will allow the user to remove the
feed from the app. If the user is interested in any entries, she can click on it to display the
full content for that entry.

iOS:

RSS Reader

[46]

Android:

This last screen is basically a WebView, a lightweight browser opened by default in the
URL, which is containing the content for the selected entry. The user will be able to navigate
to subsections and fully interact with the open website in this screen having also the
possibility to go back to the feed details by tapping on the Back arrow in the navigation
header.

We will be covering the following topics in this chapter:

State management with MobX
Fetch external data from a URL
WebView
Basic linking modules with native resources
Adding icons
ActivityIndicator

RSS Reader

[47]

Setting up the folder structure
As we did in the first chapter, we need to initialize a new React Native project through
React Native's CLI. This time, we will name our project RSSReader:

react-native init --version="0.49.3" RSSReader

For this app, we will need a total of four screens:

FeedList: This is a list containing the titles for the feeds which were added to
the app sorted by the time they were added.
AddFeed: This is a simple form to allow the user to add a feed by sending its
URL. We will here retrieve the feed details to finally add and save them in our
app for later usage.
FeedDetail: This is a list containing the latest entries (retrieved before mounting
the screen) belonging to the selected feed.
EntryDetail: This is a WebView showing the contents of the selected entry.

Besides the screens, we will include an actions.js file containing all the user actions
modifying the app's state. Although we will review how the state is managed in a later
section, in detail, it's also important to note that besides this actions.js file, we need a
store.js file to contain the state structure and methods to modify it.

Finally, and as it is normal in most of the React Native projects, we will need an index.js
 file (already created by React Native's CLI) and a main.js file to serve as an entry point for
our app's components tree.

RSS Reader

[48]

All these files will be organized inside src/ and src/screens/ folders, as follows:

Adding dependencies
For this project, we will use several npm modules to save development time and put the
focus on the functional aspects of the RSS reader itself, rather than dealing with custom
state management frameworks, custom UI, or data processing. For these matters, we will
use the following package.json file:

{
 "name":"rssReader",
 "version":"0.0.1",
 "private":true,
 "scripts":{
 "start":"node node_modules/react-native/local-cli/cli.js start",
 "test":"jest"

RSS Reader

[49]

 },
 "dependencies":{
 "mobx":"^3.1.9",
 "mobx-react":"^4.1.8",
 "native-base":"^2.1.3",
 "react":"16.0.0-beta.5",
 "react-native": "0.49.3",
 "react-native-vector-icons":"^4.1.1",
 "react-navigation":"^1.0.0-beta.9",
 "simple-xml2json":"^1.2.3"
 },
 "devDependencies":{
 "babel-jest":"20.0.0",
 "babel-plugin-transform-decorators-legacy":"^1.3.4",
 "babel-preset-react-native":"1.9.1",
 "babel-preset-react-native-stage-0":"^1.0.1",
 "jest":"20.0.0",
 "react-test-renderer":"16.0.0-alpha.6"
 },
 "jest":{
 "preset":"react-native"
 }
}

As can be seen in this file, we will be using the following npm modules together with the
standard React Native's modules:

mobx: This is the state management library we will be using
mobx-react: This is the official React bindings for MobX
native-base: As we did in the previous chapter, we will use NativeBase's UI
library
react-native-vector-icons: NativeBase requires this module to display
graphic icons
react-navigation: We will use the React Native's community navigation
library again
simple-xml2json: A lightweight library to convert XML (the standard format
for RSS feeds) into JSON to easily manage the RSS data within our code

Having this package.json file, we can run the following command (in the root folder of
our project) to finish the installation:

npm install

RSS Reader

[50]

Once npm finishes installing all dependencies, we can start our app in the iOS simulator:

react-native run-ios

Or in the Android emulator:

react-native run-android

Using vector icons
For this app, we will use two icons: a plus sign to add feeds and a trash bin to remove them.
React Native doesn't include a list of icons to be used by default, so we will need to add one.
In our case, since we are using native-base as our UI library, it's very convenient to
use react-native-vector-icons, as it is supported natively from native-base, but it
requires one extra configuration step:

react-native link

Some libraries use extra native capabilities which are not present in React Native. In the
case of react-native-vector-icons, we need to include a number of vector icons stored
in the library accessible natively. For these kinds of tasks, React Native includes react-
native link, a script to automatically link the provided library to prepare all the native
code and resources, which are needed for this library to be accessible within our app. Lots
of libraries will require this extra step, but thanks to React Native's CLI, it is a very simple
step, which in the past required moving files around projects and messing with
configuration options.

Managing our state with MobX
MobX is a library which makes state management simple and scalable by transparently
applying functional reactive programming. The philosophy behind MobX is very simple:
anything that can be derived from the application state, should be derived automatically. This
philosophy applies to UI, data serialisation and server communication.

Lots of documentation and examples of using MobX can be found on its website https:/ /
mobx.js.org/, although we will make a small introduction in this section to fully
understand our app's code in this chapter.

https://mobx.js.org/
https://mobx.js.org/
https://mobx.js.org/
https://mobx.js.org/
https://mobx.js.org/
https://mobx.js.org/
https://mobx.js.org/
https://mobx.js.org/
https://mobx.js.org/
https://mobx.js.org/

RSS Reader

[51]

The store
MobX uses the concept of "observable" properties. We should declare an object containing
our general application's state, which will hold and declare those observable properties.
When we modify one of these properties, all the subscribed observers will be updated by
MobX automatically. This is the basic principle behind MobX, so let's take a look at a
sample code:

/*** src/store.js ***/

import {observable} from 'mobx';

class Store {
 @observable feeds;

 ...

 constructor() {
 this.feeds = [];
 }

 addFeed(url, feed) {
 this.feeds.push({
 url,
 entry: feed.entry,
 title: feed.title,
 updated: feed.updated
 });
 this._persistFeeds();
 }

 ...

}

const store = new Store()
export default store

We have an attribute, feeds, marked as @observable, meaning that any component can
subscribe to it and be notified every time the value is changed. This attribute is initialized
as an empty array in the class constructor.

RSS Reader

[52]

Finally, we also created the addFeed method, which will push a new feed into the feeds
attribute and therefore will trigger automatic updates on all the observers. To better
understand MobX observers, let's take a look at a sample component observing the feeds
list:

import React from 'react';
import { Container, Content, List, ListItem, Text } from 'native-base';
import { observer } from 'mobx-react/native';

@observer
export default class FeedsList extends React.Component {

 render() {
 const { feeds } = this.props.screenProps.store;
 return (
 <Container>
 <Content>
 <List>
 {feeds &&
 feeds.map((f, i) => (
 <ListItem key={i}>
 <Text>{f.title}</Text>
 </ListItem>
))}
 </List>
 </Content>
 </Container>
);
 }
}

The first thing we notice is the need to mark our component with the @observer decorator
to ensure it is updated when any of the @observable properties change in our store.

By default, React Native's Babel configuration doesn't support the
@<decorator> syntax. In order for it to work, we will need to modify our
.babelrc file (found in the root of our project) and add transform-
decorator-legacy as a plugin.

Another thing to note is the need for the store to be received in the component as a
property. In this case, since we are using react-navigation, we will pass it
inside screenProps, which is the standard way in react-navigation for sharing
properties between <Navigator> and its child screens.

RSS Reader

[53]

MobX has many more features, but we will leave those for more complex apps as one of the
goals for this chapter is to show how simple state management can be when we are
building small apps.

Setting up the store
After understanding how MobX works, we are ready to create our store:

/*** src/store.js ** */

import { observable } from 'mobx';
import { AsyncStorage } from 'react-native';

class Store {
 @observable feeds;
 @observable selectedFeed;
 @observable selectedEntry;

 constructor() {
 AsyncStorage.getItem('@feeds').then(sFeeds => {
 this.feeds = JSON.parse(sFeeds) || [];
 });
 }

 _persistFeeds() {
 AsyncStorage.setItem('@feeds', JSON.stringify(this.feeds));
 }

 addFeed(url, feed) {
 this.feeds.push({
 url,
 entry: feed.entry,
 title: feed.title,
 updated: feed.updated,
 });
 this._persistFeeds();
 }

 removeFeed(url) {
 this.feeds = this.feeds.filter(f => f.url !== url);
 this._persistFeeds();
 }

 selectFeed(feed) {
 this.selectedFeed = feed;
 }

RSS Reader

[54]

 selectEntry(entry) {
 this.selectedEntry = entry;
 }
}

const store = new Store();
export default store;

We have already seen the basic structure of this file in the MobX section of this chapter.
Now, we will add some methods to modify the list of feeds and to select a specific
feed/entry when the user taps on them in our app's listings for feeds/entries.

We are also making use of AsyncStorage to persist the list of feeds every time it is
modified by either addFeed or removeFeed.

Defining actions
There will be two types of actions in our app: those affecting a specific component's state
and those affecting the general app state. We want to store the latter somewhere out of the
component's code, so we can reuse and easily maintain them. An extended practice in
MobX (and also Redux or Flux) apps is to create a file named actions.js, where we will
store all the actions modifying business logic for our app.

In the case of our RSS reader, the business logic revolves around feeds and entries, so we
will capture all the logic dealing with these models in this file:

/*** actions.js ** */

import store from './store';
import xml2json from 'simple-xml2json';

export async function fetchFeed(url) {
 const response = await fetch(url);
 const xml = await response.text();
 const json = xml2json.parser(xml);
 return {
 entry:
 (json.feed && json.feed.entry) || (json.rss &&
 json.rss.channel.item),
 title:
 (json.feed && json.feed.title) || (json.rss &&
 json.rss.channel.title),
 updated: (json.feed && json.feed.updated) || null,
 };
}

RSS Reader

[55]

export function selectFeed(feed) {
 store.selectFeed(feed);
}

export function selectEntry(entry) {
 store.selectEntry(entry);
}

export function addFeed(url, feed) {
 store.addFeed(url, feed);
}

export function removeFeed(url) {
 store.removeFeed(url);
}

Since actions modify the general app state, they will need to access the store. Let's take a
look at each action separately:

fetchFeed: When a user wants to add a feed to the RSS reader, he will need to
pass the URL, so the app can download the details for that feed (feed title, list of
latest entries, and when it was updated for the last time). This action is
responsible for retrieving this data (formatted as an XML document) from the
supplied URL and transforming that data into a JSON object with a standard
format for the app. Fetching the data from the supplied URL will be performed
by fetch, a built-in library in React Native, which is used to make HTTP
requests to any URL. Since fetch supports promises, we will use async/await to
handle the asynchronous behavior and simplify our code. Once the XML
document containing the feed's data is retrieved, we will convert that data into a
JSON object using simple-xml2json, a very lightweight library for this kind of
needs. Finally, the action returns a JSON object containing only the data we will
really need in our app (title, entries, and last update time).
selectFeed: Once the user has added one or more feeds to the reader, she
should be able to select one of them to get the list of the latest entries for that feed.
This action just saves the details for a specific feed in the store, so it can be used
by any screen interested in displaying data related to that feed (that is, the
FeedDetail screen).
selectEntry: Similar to selectFeed, a user should be able to select one of the
entries in a feed to get the details for that specific entry. In this case, the screen
displaying that data will be EntryDetail as we will see in a later section.

RSS Reader

[56]

addFeed: This action requires two parameters: the URL for a feed and the feed's
detail. These parameters will be used to store the feed in the list of saved feeds so
that it will be available globally in our app. In the case of this app, we decided to
use the URL as the key which stores the details for the feed, as it is a unique
property of any RSS feed.
removeFeed: A user can also decide that they don't want a specific feed in the
RSS reader anymore and therefore we need an action to remove the feed from the
list of feeds. This action only requires the URL for the feed to be passed as a
parameter, since we stored the feed using the URL as an ID to uniquely identify
the feed.

Networking in React Native
Most mobile apps need to fetch and update data from an external URL. There are several
npm modules, which can be used in React Native to communicate and download remote
resources such as Axios or SuperAgent. If you are familiar with a specific HTTP library, you
can use it in your React Native projects (as long as is not dependent on any browser specific
APIs), although a safe and proficient option is to use Fetch, the built-in networking library
in React Native.

Fetch is very similar to XMLHttpRequest, so it will feel familiar to any web
developers who had to perform AJAX requests from the browser. On top of that, Fetch
supports promises and the ES2017 async/await syntax.

The full documentation for the Fetch API can be found on Mozilla Developer Networks
website https://developer. mozilla. org/ en- US/docs/ Web/ API/ Fetch_ API.

By default, iOS will block any request that's not encrypted using SSL. If
you need to fetch from a cleartext URL (one that begins with http instead
of https), you will first need to add an App Transport Security (ATS)
exception. If you know ahead of time what domains you will need access
to, it is more secure to add exceptions just for those domains; if the
domains are not known until runtime, you can disable ATS completely.
Note, however, that from January 2017, Apple's App Store review will
require reasonable justification for disabling ATS. See Apple's
documentation for more information.

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

RSS Reader

[57]

Creating our app's entry point
All React Native apps have one entry file: index.js, we will delegate the root of the
component's tree to our src/main.js file:

/*** index.js ***/

import { AppRegistry } from 'react-native';
import App from './src/main';
AppRegistry.registerComponent('rssReader', () => App);

We will also register our app with the operating system.

Now, let's take a look at the src/main.js file to understand how we will set up navigation
and start up our component's tree:

/** * src/main.js ***/

import React from 'react';
import { StackNavigator } from 'react-navigation';

import FeedsList from './screens/FeedsList.js';
import FeedDetail from './screens/FeedDetail.js';
import EntryDetail from './screens/EntryDetail.js';
import AddFeed from './screens/AddFeed.js';

import store from './store';

const Navigator = StackNavigator({
 FeedsList: { screen: FeedsList },
 FeedDetail: { screen: FeedDetail },
 EntryDetail: { screen: EntryDetail },
 AddFeed: { screen: AddFeed },
});

export default class App extends React.Component {
 constructor() {
 super();
 }

 render() {
 return <Navigator screenProps={{ store }} />;
 }
}

RSS Reader

[58]

We will use react-navigation as our navigator library and StackNavigator as our
navigation pattern. Add each of our screens to the StackNavigator function to generate
our <Navigator>. All this is very similar to the navigation pattern we used in Chapter 1,
Shopping List, but we incorporated an improvement to it: we are passing store in the
screenProps property for our <Navigator>, instead of directly passing the attributes and
methods to modify our app's state. This simplifies and cleans up the code base and as we
will see in later sections, it will free us from notifying the navigation every time our state
changes. All these improvements come for free thanks to MobX.

Building the FeedsList screen
The list of feeds will be used as the home screen for this app, so let's focus on building the
list of the feeds' titles:

/** * src/screens/FeedsList.js ***/

import React from 'react';
import { Container, Content, List, ListItem, Text } from 'native-base';

export default class FeedsList extends React.Component {
 render() {
 const { feeds } = this.props.screenProps.store;
 return (
 <Container>
 <Content>
 <List>
 {feeds &&
 feeds.map((f, i) => (
 <ListItem key={i}>
 <Text>{f.title}</Text>
 </ListItem>
))
 </List>
 </Content>
 </Container>
);
 }
}

This component expects to receive the list of feeds
from this.props.screenProps.store and then iterates over that list building a
NativeBase <List>, showing the titles for each of the feeds on the store.

RSS Reader

[59]

Let's introduce some MobX magic now. As we want our component to be re-rendered when
the list of feeds changes (when a feed is added or removed), we have to mark our
component with the @observer decorator. MobX will automatically force the component
re-rendering on any update. Let's see now how to add the decorator to our component:

...

@observer
export default class FeedsList extends React.Component {

...

That's it. Now, our component will be notified when the store is changed and a re-render
will be triggered.

Adding event handlers
Let's add an event handler to be triggered when the user taps on one of the feed's titles so
the list of entries for that feed is displayed on a new screen (FeedDetail):

/** * src/screens/FeedsList.js ***/

...

@observer
export default class FeedsList extends React.Component {
 _handleFeedPress(feed) {
 selectFeed(feed);
 this.props.navigation.navigate('FeedDetail', { feedUrl: feed.url });
 }

 render() {
 const { feeds } = this.props.screenProps.store;
 return (
 <Container>
 <Content>
 <List>
 {feeds &&
 feeds.map((f, i) => (
 <ListItem key={i} onPress=
 {this._handleFeedPress.bind(this, f)}>
 <Text>{f.title}</Text>
 </ListItem>
))
 }
 </List>

RSS Reader

[60]

 </Content>
 </Container>
);
 }
}

...

For this, we added a method to our component named _handleFeedPress, which will
receive the feed detail as a parameter. When this method is called, it will run the action
selectFeed and will trigger a navigation event passing the feed's URL as a property, so
the next screen (FeedDetail) can include a button to delete the feed based on that URL.

Finally, we will add navigationOptions, including the title for the navigation header and
the button to add a feed:

/** * src/screens/FeedsList.js ***/

...

@observer
export default class FeedsList extends React.Component {
 static navigationOptions = props => ({
 title: 'My Feeds',
 headerRight: (
 <Button transparent onPress={() =>
 props.navigation.navigate('AddFeed')}>
 <Icon name="add" />
 </Button>
),
 });

...

}

Pressing the AddFeed button will navigate to the AddFeed screen. This button will be
displayed to the right of the navigation header by passing it as a property named
headerRight in the navigationOptions.

RSS Reader

[61]

Let's see how this component looks all together:

/*** src/screens/FeedsList.js ** */

import React from 'react';
import {
 Container,
 Content,
 List,
 ListItem,
 Text,
 Icon,
 Button,
} from 'native-base';
import { observer } from 'mobx-react/native';
import { selectFeed, removeFeed } from '../actions';

@observer
export default class FeedsList extends React.Component {
 static navigationOptions = props => ({
 title: 'My Feeds',
 headerRight: (
 <Button transparent onPress={() =>
 props.navigation.navigate('AddFeed')}>
 <Icon name="add" />
 </Button>
),
 });

 _handleFeedPress(feed) {
 selectFeed(feed);
 this.props.navigation.navigate('FeedDetail', { feedUrl: feed.url });
 }

 render() {
 const { feeds } = this.props.screenProps.store;
 return (
 <Container>
 <Content>
 <List>
 {feeds &&
 feeds.map((f, i) => (
 <ListItem key={i} onPress=
 {this._handleFeedPress.bind(this, f)}>
 <Text>{f.title}</Text>
 </ListItem>
))
 </List>

RSS Reader

[62]

 </Content>
 </Container>
);
 }
}

Now that we have our list of feeds fully functional, let's allow the users to add some feeds
through the AddFeed screen.

Building the AddFeed screen
This screen consists of a basic form, including one <Input> for the URL from the feed and a
<Button> to retrieve the feed information from the provided URL to later store the feed's
details in our store.

We will need to import two actions (addFeed and fetchFeed), which will be called once
the Add button is pressed:

/*** src/screens/AddFeed.js ** */

import React from 'react';
import {
 Container,
 Content,
 Form,
 Item,
 Input,
 Button,
 Text,
} from 'native-base';
import { addFeed, fetchFeed } from '../actions';
import { Alert, ActivityIndicator } from 'react-native';

export default class AddFeed extends React.Component {
 static navigationOptions = {
 title: 'Add feed',
 };

 constructor(props) {
 super(props);
 this.state = {
 url: '',
 loading: false,
 };
 }

RSS Reader

[63]

 _handleAddPress() {
 if (this.state.url.length > 0) {
 this.setState({ loading: true });
 fetchFeed(this.state.url)
 .then(feed => {
 addFeed(this.state.url, feed);
 this.setState({ loading: false });
 this.props.navigation.goBack();
 })
 .catch(() => {
 Alert.alert("Couldn't find any rss feed on that url");
 this.setState({ loading: false });
 });
 }
 }

 render() {
 return (
 <Container style={{ padding: 10 }}>
 <Content>
 <Form>
 <Item>
 <Input
 autoCapitalize="none"
 autoCorrect={false}
 placeholder="feed's url"
 onChangeText={url => this.setState({ url })}
 />
 </Item>
 <Button
 block
 style={{ marginTop: 20 }}
 onPress={this._handleAddPress.bind(this)}
 >
 {this.state.loading && (
 <ActivityIndicator color="white" style={{ margin: 10 }}
 />
)}
 <Text>Add</Text>
 </Button>
 </Form>
 </Content>
 </Container>
);
 }
}

RSS Reader

[64]

Most of the functionality in this component is in _handleAddPress as it is the handler,
which will be triggered once the Add button is pushed. This handler is responsible for
four tasks:

Checking there is a URL present to retrieve data from
Retrieving the feed data from the provided URL (through the fetchFeed action)
Saving that data into the app's state (through the addFeed action)
Alerting the user if something went wrong when fetching or saving the data.

One important thing to note is how the fetchFeed action is used. Since it was declared
with the async syntax, we can use it as a promise and attach it to the result of its listeners
for then and catch.

ActivityIndicator
It is a good practice to display a spinner every time the app needs to wait for a response to
an HTTP request. Both iOS and Android have standard activity indicators to display this
behavior and both are available through the <ActivityIndicator> component in React
Native's module.

The easiest way to display this indicator is by keeping a loading flag in the component
state. Since this flag is only used by our component to display this <ActivityIndicator>,
it makes sense to have it inside the component's state instead of moving it to the general
app's state. Then, it can be used inside the render function:

{ this.state.loading && <ActivityIndicator color='white' style={{margin:
10}}/>}

This syntax is very common in React apps for displaying or hiding components based on
flags or simple conditions. It takes advantage of the way JavaScript evaluates the &&
operations: check truthiness of the first operand, if truthy, returns the second operator;
otherwise, it returns the first operator. This syntax saves lines of code on a very common
kind of instructions and therefore it will be widely used throughout this book.

RSS Reader

[65]

Building the FeedDetail screen
Let's recap what happened when the user tapped on one feed on the FeedsList screen:

_handleFeedPress(feed) {
 selectFeed(feed);
 this.props.navigation.navigate('FeedDetail', { feedUrl: feed.url });
}

The navigate method was called on the navigation property to open the FeedDetail
screen. As a parameter, the _handleFeedPress function passed feedUrl, so it can retrieve
the feed data and display it to the user. This is a necessary step since the data we have in
our store for the selected feed can be obsolete. So, it's better to re-fetch that data before
showing it to the user so we are sure it's 100% updated. We could also do a more complex
check instead of retrieving the whole feed every time the user selects a feed, but we will
stay with the given approach in order to keep simplicity in this app.

Let's start by retrieving the updated list of entries in the componentWillMount method:

/*** src/screens/FeedDetail.js ***/

import React from 'react';
import { observer } from 'mobx-react/native';
import { fetchFeed} from '../actions';

@observer
export default class FeedDetail extends React.Component {
 ...

 constructor (props) {
 super(props);
 this.state = {
 loading: false,
 entry: null
 }
 }

 componentWillMount() {
 this.setState({ loading: true });
 fetchFeed(this.props.screenProps.store.selectedFeed.url)
 .then((feed) => {
 this.setState({ loading: false });
 this.setState({ entry: feed.entry});
 });
 }

RSS Reader

[66]

 ...

}

We will mark our component as @observer so that it get's updated every time the selected
feed changes. Then, we need a state with two properties:

loading: This is a flag to signal to the user that we are fetching the updated
feed's data
entry: This is the list of entries to be displayed to the user

Then, before the component is mounted, we want to start the retrieval of the updated
entries. For this matter, we can reuse the fetchFeed action we used in the AddFeed screen.
When the feed data is received, the loading flag in the component's state is set to false,
which will hide <ActivityIndicator> and the entries list for the feed will be set in the
component's state. Now that we have a list of entries, let's take a look at how we will
display it to the user:

/** * src/screens/FeedDetail.js ** */

import React from 'react';
import {
 Container,
 Content,
 List,
 ListItem,
 Text,
 Button,
 Icon,
 Spinner,
} from 'native-base';
import { observer } from 'mobx-react/native';
import { fetchFeed } from '../actions';
import { ActivityIndicator } from 'react-native';

@observer
export default class FeedDetail extends React.Component {

 ...

 render() {
 const { entry } = this.state;

 return (
 <Container>
 <Content>

RSS Reader

[67]

 {this.state.loading && <ActivityIndicator style=
 {{ margin: 20 }} />}
 <List>
 {entry &&
 entry.map((e, i) => (
 <ListItem key={i}>
 <Text>{e.title}</Text>
 </ListItem>
))}
 </List>
 </Content>
 </Container>
);
 }
}

The && syntax is used again to display <ActivityIndicator> until the data is retrieved.
Once the data is available and properly stored in, the entry property inside our
component's state, we will render the list items containing the entries titles for the selected
field.

Now, we will add an event handler which will be triggered when a user taps on one of the
entries' titles:

/** * src/screens/FeedDetail.js ** */

import React from 'react';
import {
 Container,
 Content,
 List,
 ListItem,
 Text,
 Button,
 Icon,
 Spinner,
} from 'native-base';
import { observer } from 'mobx-react/native';
import { selectEntry, fetchFeed } from '../actions';
import { ActivityIndicator } from 'react-native';

@observer
export default class FeedDetail extends React.Component {

 ...

 _handleEntryPress(entry) {

RSS Reader

[68]

 selectEntry(entry);
 this.props.navigation.navigate('EntryDetail');
 }

 render() {
 const { entry } = this.state;

 return (
 <Container>
 <Content>
 {this.state.loading && <ActivityIndicator style=
 {{ margin: 20 }} />}
 <List>
 {entry &&
 entry.map((e, i) => (
 <ListItem
 key={i}
 onPress={this._handleEntryPress.bind(this, e)}
 >
 <Text>{e.title}</Text>
 </ListItem>
))}
 </List>
 </Content>
 </Container>
);
 }
}

This handler is named _handleEntryPress and is responsible for two tasks:

Marking the tapped entry as selected
Navigating to EntryDetail

To finalize the component, let's add the navigation header through the
navigationOptions method:

/** * src/screens/FeedDetail.js ** */

...

@observer
export default class FeedDetail extends React.Component {
 static navigationOptions = props => ({
 title: props.screenProps.store.selectedFeed.title,
 headerRight: (
 <Button

RSS Reader

[69]

 transparent
 onPress={() => {
 removeFeed(props.navigation.state.params.feedUrl);
 props.navigation.goBack();
 }}
 >
 <Icon name="trash" />
 </Button>
),
 });

 ...
}

Besides adding the title for this screen (the feed's title), we want to add an icon to the
navigation for the user to be able to remove the feed from the stored list of feeds in the app.
We will use the trash icon of native-base for this purpose. When it's pressed, the
removeFeed action will be called passing the URL for the current feed URL, so it can be
deleted from the store, then it will force the navigation to go back to the FeedList screen.

Let's take a look at the finished component:

/*** src/screens/FeedDetail.js ** */

import React from 'react';
import {
 Container,
 Content,
 List,
 ListItem,
 Text,
 Button,
 Icon,
 Spinner,
} from 'native-base';
import { observer } from 'mobx-react/native';
import { selectEntry, fetchFeed, removeFeed } from '../actions';
import { ActivityIndicator } from 'react-native';

@observer
export default class FeedDetail extends React.Component {
 static navigationOptions = props => ({
 title: props.screenProps.store.selectedFeed.title,
 headerRight: (
 <Button
 transparent
 onPress={() => {

RSS Reader

[70]

 removeFeed(props.navigation.state.params.feedUrl);
 props.navigation.goBack();
 }}
 >
 <Icon name="trash" />
 </Button>
),
 });

 constructor(props) {
 super(props);
 this.state = {
 loading: false,
 entry: null,
 };
 }

 componentWillMount() {
 this.setState({ loading: true });
 fetchFeed(this.props.screenProps.store.selectedFeed.url).
 then(feed => {
 this.setState({ loading: false });
 this.setState({ entry: feed.entry });
 });
 }

 _handleEntryPress(entry) {
 selectEntry(entry);
 this.props.navigation.navigate('EntryDetail');
 }

 render() {
 const { entry } = this.state;

 return (
 <Container>
 <Content>
 {this.state.loading && <ActivityIndicator style=
 {{ margin: 20 }} />}
 <List>
 {entry &&
 entry.map((e, i) => (
 <ListItem key={i} onPress=
 {this._handleEntryPress.bind(this, e)}>
 <Text>{e.title}</Text>
 </ListItem>
))
 </List>

RSS Reader

[71]

 </Content>
 </Container>
);
 }
}

Now, let's move on to the last screen: EntryDetail.

Building the EntryDetail screen
The EntryDetail screen is just WebView: a component-abled rendering web content in a
native view. You can think of a WebView as a lightweight web browser displaying
the contents of a website for a provided URL:

import React from 'react';
import { Container, Content } from 'native-base';
import { WebView } from 'react-native';

export default class EntryDetail extends React.Component {
 render() {
 const entry = this.props.screenProps.store.selectedEntry;
 return <WebView source={{ uri: entry.link.href || entry.link }} />;
 }
}

The render method in this component is merely returning a new WebView component
loading the URL from the selected entry inside the store. As we did with the feed's data in
the previous sections, we need to retrieve the selectedEntry data
from this.props.screenProps.store. The URL can be stored in two different ways
depending on the RSS version of the feed: in the link property or one level deeper in
link.href.

RSS Reader

[72]

Summary
A state management library becomes necessary in every app when its complexity starts to
grow. As a rule of thumb, it's a good idea to add a state management library when the app
is comprised of more than four screens and they share information between them. For this
app, we used MobX, which is simple but powerful enough to handle all the feeds and
entries' data. In this chapter, you learned the basics of MobX and how to use it in
conjunction of react-navigation. It's important to understand the concept of actions and
stores, as we will use them in future apps not only built around MobX but also on Redux.

You also learned how to fetch data from a remote URL. This is a very common action in
most of the mobile apps, although we only covered the basic usage of it. In the following
chapters, we will dive deeper into the Fetch API. Moreover, we saw how to process and
format the fetched data to formalize it within our app.

Finally, we reviewed what a WebView is and how we can insert web content into our native
app. This can be done using local HTML strings or remotely through the URL, so it's a very
powerful trick used by mobile developers to reuse or access web-only content.

3
Car Booking App

In the previous chapters, we set the focus on feature development rather than in building a
user interface by delegating the styling of our apps to UI libraries such as native-base. In
this chapter, we are going to do the opposite and spend more time in building custom
UI components and screens.

The app we will build is a car booking app in which the user can select the location in which
he/she wants to be picked up and the type of car she wants to book for the ride. Since we
want to focus on the user interface, our app will only have two screens and a little state
management is needed. Instead, we will dive deeper into aspects such as animations,
component's layout, using custom fonts, or displaying external images.

The app will be available for iOS and Android devices, and since all the user interface will
be custom made, 100% of the code will be reused between both platforms. We will only use
two external libraries:

React-native-geocoder: This will translate coordinates into human-readable
locations
React-native-maps: This will easily display the maps and the markers
showing the locations for the bookable cars

Due to its nature, most of the car booking apps put their complexity in the backend code to
connect drivers with riders effectively. We will skip this complexity and mock all that
functionality in the app itself to focus on building beautiful and usable interfaces.

Car Booking App

[74]

Overview
When building mobile apps, we need to make sure we reduce the interface complexity to
the minimum, as it's often punishing to present the user intrusive manuals or tooltips once
the app is open. It is a good practice to make our app self-explanatory, so the user can
understand the usage just by going through the app screens. That's why using standard
components such as drawer menus or standard lists is always a good idea, but is not always
possible (as it happens in our current app) due to the kind of data we want to present to the
user.

In our case, we put all the functionality in the main screen plus in a modal box. Let's take a
look at what the app will look like on iOS devices:

Car Booking App

[75]

The background on our main screen is the maps component itself where we will show all
the available cars as markers in the map. On the maps, we will display three components:

The pickup location box displaying the selected pickup location
The location pin, which can be dragged around the maps to select a new location
The selector for the kind of car the user wants to book. We will display three
options: ECONOMY, SPECIAL, and SUPERIOR

Since most of the components are custom built, this screen will look very similar in any
Android device:

Car Booking App

[76]

The main difference between the iOS and the Android version will be the map component.
While iOS will use Apple maps by default, Android uses Google Maps. We will leave this
setup as each platform has its own map component optimized, but it's good to know that
we can switch the iOS version to use Google Maps just by configuring our component.

Once the user has selected a pickup location, we will display a modal box to confirm the
booking and contact the nearest driver for pickup:

Car Booking App

[77]

As it happened with the main screen, this screen uses custom components: we even decided
to create our own animated activity indicator. Because of this, the Android version will look
very similar:

Since our app won't be connected to any external API, it should be seen as a mere display of
the visual capabilities of React Native, although it could be easily extended by adding a
state management library and a matching API.

We will be covering the following topics in this chapter:

Using maps in our app
Style sheets in React Native
Flexbox in React Native
Using external images in a React Native app
Adding custom fonts
Animations in React Native

Car Booking App

[78]

Using modals
Working with shadows and opacity

Setting up the folder structure
Let's initialize a React Native project using React Native's CLI. The project will be named
carBooking and will be available for iOS and Android devices:

react-native init --version="0.49.3" carBooking

In this app, there is only one screen so that the folder structure for the code should be very
straightforward. Since we will be using external images and fonts, we will organize these
resources in two separate folders: img and fonts, both under the root folder:

Car Booking App

[79]

The images and fonts used to build this app can be downloaded freely from some image
and font sock websites. The name of the font we will use is Blair ITC.

We also stored the following images inside the img folder:

car.png: A simple drawing of a car to represent the bookable cars on the map.
class.png: The silhouette of a car to show inside the class selection button.
classBar.png: The bar in which the class selection button will be slid to change
the class.
loading.png: Our custom spinner. It will be stored as a static image and
animated through the code.

Finally, let's take a look at our package.json file:

{
 "name": "carBooking",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node node_modules/react-native/local-cli/cli.js start",
 "test": "jest"
 },
 "dependencies": {
 "react": "16.0.0-beta.5",
 "react-native": "0.49.3",
 "react-native-geocoder": "^0.4.8",
 "react-native-maps": "^0.15.2"
 },
 "devDependencies": {
 "babel-jest": "20.0.3",
 "babel-preset-react-native": "1.9.2",
 "jest": "20.0.4",
 "react-test-renderer": "16.0.0-alpha.6"
 },
 "jest": {
 "preset": "react-native"
 },
 "rnpm": {
 "assets": ["./fonts"]
 }
}

Car Booking App

[80]

We only use two npm modules:

react-native-geocoder: This translates coordinates into human-readable
locations
react-native-maps: This easily displays the maps and the markers showing
the locations for the bookable cars

In order to allow the app to use custom fonts, we need to make sure they are accessible
from the native side. For that, we need to add a new key to package.json named rnpm.
This key will store an array of assets in which we will define our fonts folder. During
build time, React Native will copy the fonts to a location from where they will be available
natively and therefore usable within our code. This is only required by fonts and some
special resources, but not by images.

Files and folders created by React Native's CLI
Let's take the chance of having a simple folder structure in this app to show what other files
and folders are created by React Native's CLI when initializing a project through react-
native init <projectName>.

__tests__/
React Native's CLI includes Jest as a developer dependency and, to get testing started, it
includes a folder named __tests__, in which all tests can be stored. By default, React
Native's CLI adds one test file: index.js , representing the initial set of tests. Developers
can add later tests for any components in the app. React Native also adds a test script in
our package.json, so we can run npm run test from the very first moment.

Jest is ready to be used with every project initialized through the CLI and it's definitely the
easiest option when it comes to testing React components, although it is also possible to use
other libraries such as Jasmine or Mocha.

android/ and ios/
These two folders hold the built app for both platforms natively. This means that we can
find our .xcodeproj and .java files in here. Every time we need to make changes to the
native code of our app, we will need to modify some files in these two directories.

Car Booking App

[81]

The most common reasons to find and modify files in these folders are:

Modify permissions (push notifications, access to location services, access to
compass, and many more) by changing Info.plist (iOS)
or AndroidManifest.xml (Android)
Change the build settings for any platform
Add API keys for native libraries
Add or modify native libraries to be used from our React Native code

node_modules/
This folder should be familiar to most of the JavaScript developers who worked with npm
as it is where npm stores all the modules marked as a dependency in our project. It is not
common to have the necessity to modify anything inside this folder, as everything should
be handled through npm's CLI and our package.json file.

Files in the root folder
React Native's CLI creates a number of files in the root directory of our project; let's take a
look at the most important ones:

.babelrc: Babel is the default library in React Native to compile our JavaScript
files containing JSX and ES6 (for example, syntax into plain JavaScript capable to
be understood by most of the JavaScript engines). Here, we can modify the
configuration for this compiler so we can, for example, use the @ syntax for
decorators as it was done in the first versions of React.
.buckconfig: Buck is the build system used by Facebook. This file is used to
configure the building process when using Buck.
.watchmanconfig: Watchman is a service that watches the files in our project to
trigger a rebuild anytime something changes in them. In this file, we can add
some configuration options such as directories, which should be ignored.
app.json: This file is used by the react-native eject command to configure
the native apps. It stores the name that identifies the app in each platform and
also the name that will be displayed on the home screen of the device when the
app is installed.
yarn.lock: The package.json file describes the intended versions desired by
the original author, while yarn.lock describes the last-known-good
configuration for a given application.

Car Booking App

[82]

react-native link
Some apps depend on libraries with native capabilities which, before React Native CLI,
required developers to copy native library files into the native projects. This was a
cumbersome and repetitive project until react-native link came to the rescue. In this
chapter we will use it to copy library files from react-native-maps and to link custom
fonts from our /fonts folder to the compiled app.

By running react-native link in our project's root folder we will trigger the linking
steps which will result in those native capabilities and resources to be accessible from our
React Native code.

Running the app in the simulator
Having the dependencies in the package.json file and all the initial files in place, we can
run the following command (in the root folder of our project) to finish the installation:

npm install

Then, all the dependencies should be installed in our project. Once npm finishes installing
all dependencies, we can start our app in the iOS simulator:

react-native run-ios

Or in the Android emulator using the following command:

react-native run-android

When React Native detects the app is running in a simulator, it enables a developer toolset
available through a hidden menu, which can be accessed through the shortcuts command +
D on iOS or command + M on Android (on Windows Ctrl should be used instead of
command). This is how the developer menu looks like in iOS:

Car Booking App

[83]

And this is how it looks like in the Android simulator:

Car Booking App

[84]

The developer menu
In the process of building an app in React Native, the developer will have debugging needs.
React Native fulfills these needs with the ability to remotely debug our apps in Chrome
developer's tools or external applications such as React Native Debugger. Errors, logs, and
even React components can be debugged easily as in a normal web environment.

On top of that, React Native provides a way to automatically reload our app each time a
change is done saving the developers the task of manually reloading the app (which can be
achieved by pressing command + R or Ctrl + R). There are two options when we set our app
for automatic reloading:

Live reload detects any changes we make in the app's code and resets the app to
its initial state after reloading.
Hot reload also detects changes and reloads the app, but keeps the current state
of the app. This is really useful when we are implementing user flows to save the
developer to repeat each step in the flow (for example, logging in or registering
test users)

Finally, we can start the performance monitor to detect possible performance issues when
performing complex operations such as animations or mathematical calculations.

Creating our app's entry point
Let's start our app's code by creating the entry point for our app: index.js . We
import src/main.js in this file to use a common root component for our code base.
Moreover, we will register the app with the name carBooking:

/*** index.js ***/

import { AppRegistry } from 'react-native';
import App from './src/main';
AppRegistry.registerComponent('carBooking', () => App);

Let's start building our src/main.js by adding a map component:

/*** src/main.js ** */

import React from 'react';
import { View, StyleSheet } from 'react-native';
import MapView from 'react-native-maps';

Car Booking App

[85]

export default class Main extends React.Component {
 constructor(props) {
 super(props);
 this.initialRegion = {
 latitude: 37.78825,
 longitude: -122.4324,
 latitudeDelta: 0.00922,
 longitudeDelta: 0.00421,
 };
 }

 render() {
 return (
 <View style={{ flex: 1 }}>
 <MapView
 style={styles.fullScreenMap}
 initialRegion={this.initialRegion}
 />
 </View>
);
 }
}

const styles = StyleSheet.create({
 fullScreenMap: {
 position: 'absolute',
 top: 0,
 bottom: 0,
 left: 0,
 right: 0,
 },
});

Instead of using libraries for styling, we will create our own styles using StyleSheet, a
React Native API, which serves as an abstraction similar to CSS style sheets. With
StyleSheet, we can create a style sheet from an object (through the create method),
which can be used in our components by referring to each style by its ID.

This way, we can reuse the style code and make the code more readable as we will be using
meaningful names to refer to each style (for example, <Text
style={styles.title}>Title 1</Text>).

Car Booking App

[86]

At this point, we will only create a style referred by the key fullScreenMap and make it as
an absolute position by covering the fullscreen size by adding top, bottom, left, and
right coordinates to zero. On top of this, we need to add some styling to our
container view to ensure it fills the whole screen: {flex: 1}. Setting flex to 1, we want
our view to fill all the space its parent occupies. Since this is the main view, {flex: 1} will
take over the whole screen.

For our map component, we will use react-native-maps, an open module created by
Airbnb using native maps capabilities for Google and Apple maps. react-native-maps is
a very flexible module, really well maintained, and fully featured so that it has become the
de facto maps module for React Native. As we will see later in this chapter, react-native-
maps requires the developer to run react-native link in order for it to work.

Apart from the style, the <MapView/> component will take initialRegion as a property
to centre the map in a specific set of coordinates, which should be the current location of the
user. For consistency reasons, we will locate the center of the map in San Francisco where
we will also place some bookable cars:

/** * src/main.js ** */

import React from 'react';
import { View, Animated, Image, StyleSheet } from 'react-native';
import MapView from 'react-native-maps';

export default class Main extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 carLocations: [
 {
 rotation: 78,
 latitude: 37.78725,
 longitude: -122.4318,
 },
 {
 rotation: -10,
 latitude: 37.79015,
 longitude: -122.4318,
 },
 {
 rotation: 262,
 latitude: 37.78525,
 longitude: -122.4348,
 },
],

Car Booking App

[87]

 };
 this.initialRegion = {
 latitude: 37.78825,
 longitude: -122.4324,
 latitudeDelta: 0.00922,
 longitudeDelta: 0.00421,
 };
 }

 render() {
 return (
 <View style={{ flex: 1 }}>
 <MapView
 style={styles.fullScreenMap}
 initialRegion={this.initialRegion}
 >
 {this.state.carLocations.map((carLocation, i) => (
 <MapView.Marker key={i} coordinate={carLocation}>
 <Animated.Image
 style={{
 transform: [{ rotate: `${carLocation.rotation}deg` }],
 }}
 source={require('../img/car.png')}
 />
 </MapView.Marker>
))}
 </MapView>
 </View>
);
 }
}

...

We have added an array of carLocations to be shown on the map as markers. Inside our
render function, we will iterate over this array and place the
corresponding <MapView.Marker/> in the provided coordinates. Inside each marker, we
will add the image of the car rotating it by a specific number of degrees, so they match the
streets directions. Rotating images must be done with the Animated API, which will be
better explained later in this chapter.

Car Booking App

[88]

Let's add a new property in our state to store a human-readable position for the location in
which the map is centered:

/** * src/main.js ** */

import GeoCoder from 'react-native-geocoder';

export default class Main extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 position: null,

 ...

 };

 ...
 }

 _onRegionChange(region) {
 this.setState({ position: null });
 const self = this;
 if (this.timeoutId) clearTimeout(this.timeoutId);
 this.timeoutId = setTimeout(async () => {
 try {
 const res = await GeoCoder.geocodePosition({
 lat: region.latitude,
 lng: region.longitude,
 });
 self.setState({ position: res[0] });
 } catch (err) {
 console.log(err);
 }
 }, 2000);
 }
 componentDidMount() {
 this._onRegionChange.call(this, this.initialRegion);
 }

 render() {
 <View style={{ flex: 1 }}>
 <MapView
 style={styles.fullScreenMap}
 initialRegion={this.initialRegion}
 onRegionChange={this._onRegionChange.bind(this)}
 >

Car Booking App

[89]

 ...

 </MapView>
 </View>;
 }
}

...

To fill this state variable, we also created a function _onRegionChange, which uses
the react-native-geocoder module. This module uses Google Maps reverse geocoding
services to translate some coordinates into a human-readable location. Because it's a Google
Service, we might need to add an API key in order to authenticate our app with the service.
All the instructions to get this module fully installed can be found at its repository
URL https://github. com/ airbnb/ react- native- maps/ blob/ master/ docs/ installation.
md.

We want this state variable to be available from the first mount of the main component, so
we will call _onRegionChange in componentDidMount so that the name of the initial
location is also stored in the state. Moreover, we will add the onRegionChange property on
our <MapView/> to ensure the name of the location is recalculated every time the map is
moved to show a different region, so we always have the name of the location in
the center of the map in our position state variable.

As a final step on this screen, we will add all the subviews and another function to confirm
the booking request:

/** * src/main.js ** */

...

import LocationPin from './components/LocationPin';
import LocationSearch from './components/LocationSearch';
import ClassSelection from './components/ClassSelection';
import ConfirmationModal from './components/ConfirmationModal';

export default class Main extends React.Component {
 ...

 _onBookingRequest() {
 this.setState({
 confirmationModalVisible: true,
 });
 }

 render() {

https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md
https://github.com/airbnb/react-native-maps/blob/master/docs/installation.md

Car Booking App

[90]

 return (
 <View style={{ flex: 1 }}>
 ...

 <LocationSearch
 value={
 this.state.position &&
 (this.state.position.feature ||
 this.state.position.formattedAddress)
 }
 />
 <LocationPin onPress={this._onBookingRequest.bind(this)} />
 <ClassSelection />
 <ConfirmationModal
 visible={this.state.confirmationModalVisible}
 onClose={() => {
 this.setState({ confirmationModalVisible: false });
 }}
 />
 </View>
);
 }
}

...

We added four subviews:

LocationSearch: The component in which we will show the user the location
that is centered on the map so she can know the name of the location she is
exactly requesting the pickup.
LocationPin: A pinpointing to the center of the map, so the user can see on the
map where she will request the pickup. It will also display a button to confirm
the pickup.
ClassSelection: A bar where the user can select the type of car for the pickup
(economy, special, or superior).
ConfirmationModal: The modal displaying the confirmation of the request.

The _onBookingRequest method will be responsible for bringing the confirmation modal
up when a booking is requested.

Car Booking App

[91]

Adding images to our app
React Native deals with images in a similar way as websites do: images should be placed in
a folder inside the projects folder structure, and then they can be referenced from the
<Image /> (or <Animated.Image />) by the source property. Let's see an example from
our app:

car.png: This is placed inside the img/ folder in the root of our project
Then the image will be displayed by creating an <Image/> component using the
source property:

 <Image source={require('../img/car.png')} />

Notice how the source property doesn't accept a string, but a
 require('../img/car.png'). This is a special case in React Native and may
change in future versions.

LocationSearch
This should be a simple textbox displaying the human-readable name of the location in
which the map is centered. Let's take a look at the code:

/*** src/components/LocationSearch.js ** */

import React from 'react';
import {
 View,
 Text,
 TextInput,
 ActivityIndicator,
 StyleSheet,
} from 'react-native';

export default class LocationSearch extends React.Component {
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.title}>PICKUP LOCATION</Text>
 {this.props.value && (
 <TextInput style={styles.location} value={this.props.value} />
)}
 {!this.props.value && <ActivityIndicator style={styles.spinner} />}
 </View>
);

Car Booking App

[92]

 }
}

const styles = StyleSheet.create({
 container: {
 backgroundColor: 'white',
 margin: 20,
 marginTop: 40,
 height: 60,
 padding: 10,
 borderColor: '#ccc',
 borderWidth: 1,
 },
 title: {
 alignSelf: 'center',
 fontSize: 12,
 color: 'green',
 fontWeight: 'bold',
 },
 location: {
 height: 40,
 textAlign: 'center',
 fontSize: 13,
 },
 spinner: {
 margin: 10,
 },
});

It receives only one property: value (the name of the location to be displayed). If it's not set,
it will display a spinner to show activity.

Because there are many different styles to be applied in this component, it's beneficial to use
the StyleSheet API to organize the styles in a key/value object and refer it from our
render method. This separation between logic and style helps in readability of the code
and also enables code reuse as the styles can be cascaded down to child components.

Aligning elements
React Native uses Flexbox for setting up the layout of the elements in an app. This is mostly
straightforward, but sometimes it can be confusing when it comes to aligning elements as
there are four properties that can be used for this purpose:

justifyContent: It defines the alignment of the child elements through the
main axis

Car Booking App

[93]

alignItems: It defines the alignment of the child elements through the cross-axis
alignContent: It aligns a flex container's lines within when there is extra space
in the cross-axis
alignSelf: It allows the default alignment (or the one specified by alignItems)
to be overridden for individual flex items

The first three properties should be assigned to the container element, while the fourth one
will be applied to a child element in case we want to override the default alignment.

In our case, we only want one element (the title) to be center aligned so we can
use alignSelf: 'center'. Later in this chapter, we will see other uses for the different
align properties.

LocationPin
In this section, we will focus on building the pinpointing to the center of the map to visually
confirm the pickup location. This pin also contains a button, which can be used to trigger a
pickup request:

/** * src/components/LocationPin.js ** */

import React from 'react';
import {
 View,
 Text,
 Dimensions,
 TouchableOpacity,
 StyleSheet,
} from 'react-native';

const { height, width } = Dimensions.get('window');

export default class LocationPin extends React.Component {
 render() {
 return (
 <View style={styles.container}>
 <View style={styles.banner}>
 <Text style={styles.bannerText}>SET PICKUP LOCATION</Text>
 <TouchableOpacity
 style={styles.bannerButton}
 onPress={this.props.onPress}
 >
 <Text style={styles.bannerButtonText}>{'>'}</Text>

Car Booking App

[94]

 </TouchableOpacity>
 </View>
 <View style={styles.bannerPole} />
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 position: 'absolute',
 top: height / 2 - 60,
 left: width / 2 - 120,
 },
 banner: {
 flexDirection: 'row',
 alignSelf: 'center',
 justifyContent: 'center',
 borderRadius: 20,
 backgroundColor: '#333',
 padding: 10,
 paddingBottom: 10,
 shadowColor: '#000000',
 shadowOffset: {
 width: 0,
 height: 3,
 },
 shadowRadius: 5,
 shadowOpacity: 1.0,
 },
 bannerText: {
 alignSelf: 'center',
 color: 'white',
 marginRight: 10,
 marginLeft: 10,
 fontSize: 18,
 },
 bannerButton: {
 borderWidth: 1,
 borderColor: '#ccc',
 width: 26,
 height: 26,
 borderRadius: 13,
 },
 bannerButtonText: {
 color: 'white',
 textAlign: 'center',
 backgroundColor: 'transparent',

Car Booking App

[95]

 fontSize: 18,
 },
 bannerPole: {
 backgroundColor: '#333',
 width: 3,
 height: 30,
 alignSelf: 'center',
 },
});

This component is again very light in terms of functionality, but has a lot of custom style.
Let's dive into some of the style details.

flexDirection
By default, React Native and Flexbox stack elements vertically:

For the banner in our pin, we want to stack every element horizontally after each other as
follows:

This can be achieved by adding the following styles to the containing
element flexDirection: 'row'. The other valid options for flexDirection are:

row-reverse
column (default)
column-reverse

Car Booking App

[96]

Dimensions
One of the first lines of code in this component extracts the height and the width from the
device into two variables:

const {height, width} = Dimensions.get('window');

Obtaining the height and width of the device enables us developers to absolute position
some elements being confident they will show properly aligned. For example, we want the
banner of our pin to be aligned in the center of the screen, so it points to the center of the
map. We can do this by adding {top: (height/2), left: (width/2)} to the banner
style in our style sheet. Of course, that would align the upper-left corner, so we need to
subtract half the size of the banner to each property to ensure it gets centered in the middle
of the element. This trick can be used whenever we need to align an element that is not
relative to any other in the components tree although it is recommended to use relative
positioning when possible.

Shadows
Let's set focus on our banner's style, specifically on the shadows properties:

banner: {
 ...
 shadowColor: '#000000',
 shadowOffset: {
 width: 0,
 height: 3
 },
 shadowRadius: 5,
 shadowOpacity: 1.0
}

In order to add a shadow to a component, we need to add four properties:

shadowColor: This adds the hexadecimal or RGBA value of the color we want
for our component
shadowOffset: This shows how far we want our shadow to be casted
shadowRadius: This shows the value of the radius in the corner of our shadow
shadowOpacity: This shows how dark we want our shadow to be

That's it for our LocationPin component.

Car Booking App

[97]

ClassSelection
In this component, we will explore the Animated API in React Native to get started with
animations. Moreover, we will use custom fonts to improve the user experience and
increase the feeling of customization in our app:

/*** src/components/ClassSelection.js ** */

import React from 'react';
import {
 View,
 Image,
 Dimensions,
 Text,
 TouchableOpacity,
 Animated,
 StyleSheet,
} from 'react-native';

const { height, width } = Dimensions.get('window');

export default class ClassSelection extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 classButtonPosition: new Animated.Value(15 + width * 0.1),
 };
 }

 _onClassChange(className) {
 if (className === 'superior') {
 Animated.timing(this.state.classButtonPosition, {
 toValue: width * 0.77,
 duration: 500,
 }).start();
 }

 if (className === 'special') {
 Animated.timing(this.state.classButtonPosition, {
 toValue: width * 0.5 - 20,
 duration: 500,
 }).start();
 }

 if (className === 'economy') {
 Animated.timing(this.state.classButtonPosition, {
 toValue: 15 + width * 0.1,

Car Booking App

[98]

 duration: 500,
 }).start();
 }
 }

 render() {
 return (
 <View style={styles.container}>
 <Image
 style={styles.classBar}
 source={require('../../img/classBar.png')}
 />
 <Animated.View
 style={[styles.classButton, { left:
this.state.classButtonPosition }]}
 >
 <Image
 style={styles.classButtonImage}
 source={require('../../img/class.png')}
 />
 </Animated.View>
 <TouchableOpacity
 style={[
 styles.classButtonContainer,
 {
 width: width / 3 - 10,
 left: width * 0.11,
 },
]}
 onPress={this._onClassChange.bind(this, 'economy')}
 >
 <Text style={styles.classLabel}>economy</Text>
 </TouchableOpacity>
 <TouchableOpacity
 style={[
 styles.classButtonContainer,
 { width: width / 3, left: width / 3 },
]}
 onPress={this._onClassChange.bind(this, 'special')}
 >
 <Text style={[styles.classLabel, { textAlign: 'center' }]}>
 Special
 </Text>
 </TouchableOpacity>
 <TouchableOpacity
 style={[
 styles.classButtonContainer,
 { width: width / 3, right: width * 0.11 },

Car Booking App

[99]

]}
 onPress={this._onClassChange.bind(this, 'superior')}
 >
 <Text style={[styles.classLabel, { textAlign: 'right' }]}>
 Superior
 </Text>
 </TouchableOpacity>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 height: 80,
 backgroundColor: 'white',
 position: 'absolute',
 bottom: 0,
 left: 0,
 right: 0,
 paddingBottom: 10,
 },
 classBar: {
 width: width * 0.7,
 left: width * 0.15,
 resizeMode: 'contain',
 height: 30,
 top: 35,
 },
 classButton: {
 top: 30,
 justifyContent: 'center',
 borderRadius: 20,
 borderColor: '#ccc',
 borderWidth: 1,
 position: 'absolute',
 backgroundColor: 'white',
 height: 40,
 width: 40,
 },
 classButtonImage: {
 alignSelf: 'center',
 resizeMode: 'contain',
 width: 30,
 },
 classButtonContainer: {
 backgroundColor: 'transparent',
 position: 'absolute',

Car Booking App

[100]

 height: 70,
 top: 10,
 },
 classLabel: {
 paddingTop: 5,
 fontSize: 12,
 },
});

This simple component is made out of five sub components:

classBar: This is an image showing the bar and the stop points for each class
classButton: This is the round button, which will be moved to the selected class
once the user presses a specific class
classButtonContainer: This is the touchable component detecting what class
the user wants to select
classLabel: These are titles for each class to be displayed on top of the bar

Let's start by taking a look at the styles as we can find a new property for image
components: resizeMode, which determines how to resize the image when the frame
doesn't match the raw image dimensions. From the five possible values (cover, contain,
stretch, repeat, and center), we chose contain as we want to scale the image
uniformly (maintain the image's aspect ratio) so that both dimensions of the image will be
equal to or less than the corresponding dimension of the view. We are using these
properties both in classBar and classButtonImage being the two images we will need
to resize in this view.

Adding custom fonts
React Native includes a long list of cross-platform fonts available by default. The list of
fonts can be checked on https:/ / github. com/ react- native- training/ react- native-
fonts.

Nevertheless, adding custom fonts is a common need when developing apps, especially
when designers are involved, so we will use our car booking app as a playground to test
this functionality.

https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts

Car Booking App

[101]

Adding custom fonts to our app is a three steps task:

Add the font file (.ttf) into a folder inside our project. We used fonts/ for this1.
app.
Add the following lines to our package.json:2.

 “rnpm”: {
 “assets”: [“./fonts”]
 }

Run the following command in a terminal: 3.

 react-native link

That's it, React Native's CLI will handle the insertion of the fonts folder and its files inside
the iOS and Android project at once. Our fonts will be available by their font name (which
may not be the same as the filename). In our case, we have fontFamily: 'Blair ITC' in
our style sheet.

We can now modify our classLabel style in the ClassSelection component to include
the new font:

...

classLabel: {
 fontFamily: 'Blair ITC',
 paddingTop: 5,
 fontSize: 12,
},

...

Animations
React Native's Animated API is designed to make it very easy to concisely express a wide
variety of interesting animation and interaction patterns in a very performant way.
Animated focuses on declarative relationships between inputs and outputs, with
configurable transforms in between, and simple start/stop methods to control time-based
animation execution.

Car Booking App

[102]

What we want to do in our app is to move the classButton to a specific location whenever
the user presses the class she wants to book. Let's take a closer look at how we are using this
API in our app:

/** * src/components/ClassSelection ***/

...

export default class ClassSelection extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 classButtonPosition: new Animated.Value(15 + width * 0.1),
 };
 }

 _onClassChange(className) {
 if (className === 'superior') {
 Animated.timing(this.state.classButtonPosition, {
 toValue: width * 0.77,
 duration: 500,
 }).start();
 }

 ...

 }

 render() {
 return (
 ...

 <Animated.View style={{ left: this.state.classButtonPosition }}>
 <Image
 style={styles.classButtonImage}
 source={require('../../img/class.png')}
 />
 </Animated.View>

 ...

 <TouchableOpacity
 onPress={this._onClassChange.bind(this, 'superior')}
 >
 <Text>Superior</Text>
 </TouchableOpacity>

 ...

Car Booking App

[103]

);
 }
}

...

For this movement to happen correctly, we need to wrap the classButtonImage in
Animated.View and provide an initial Animated.Value to it as a left coordinate. We will
use this.state.classButtonPosition for this matter so that we can change it when the
user selects a specific class.

We are ready to start our animation. It will be triggered by the _onClassChange method,
as it is the one invoked when the user presses classButtonContainer
(<TouchableOpacity/>). This method is calling the Animated.timing function passing
two parameters:

The animated value to drive (this.state.classButtonPosition)
An object containing the end value and the duration of the animation

Invoking Animated.timing will result in an object containing the start() method, which
we call right away to start the animation. React Native will then know that the left
coordinate of the Animated.View needs to be slowly changed according to the provided
parameters.

As this may feel a bit overcomplicated for a simple move animation, it allows a wide range
of customization as chaining animations or modifying the easing functions. We will see a
rotation animation later in this chapter.

ConfirmationModal
Our last component is a modal view, which will be opened once the user has pressed on the
SET PICKUP LOCATION button on the location pin. We will display the modal and a
custom activity indicator, which will use a complex animation setup to continuously rotate
in its position:

/** * src/components/ConfirmationModal.js ***/

import React from 'react';
import {
 Modal,
 View,
 Text,
 Animated,

Car Booking App

[104]

 Easing,
 TouchableOpacity,
 StyleSheet,
} from 'react-native';

export default class ConfirmationModal extends React.Component {
 componentWillMount() {
 this._animatedValue = new Animated.Value(0);
 }

 cycleAnimation() {
 Animated.sequence([
 Animated.timing(this._animatedValue, {
 toValue: 100,
 duration: 1000,
 easing: Easing.linear,
 }),
 Animated.timing(this._animatedValue, {
 toValue: 0,
 duration: 0,
 }),
]).start(() => {
 this.cycleAnimation();
 });
 }

 componentDidMount() {
 this.cycleAnimation();
 }

 render() {
 const interpolatedRotateAnimation = this._animatedValue.interpolate({
 inputRange: [0, 100],
 outputRange: ['0deg', '360deg'],
 });

 return (
 <Modal
 animationType={'fade'}
 visible={this.props.visible}
 transparent={true}
 >
 <View style={styles.overlay}>
 <View style={styles.container}>
 <Text style={styles.title}>Contacting nearest car...</Text>
 <Animated.Image
 style={[
 styles.spinner,

Car Booking App

[105]

 { transform: [{ rotate: interpolatedRotateAnimation }] },
]}
 source={require('../../img/loading.png')}
 />
 <TouchableOpacity
 style={styles.closeButton}
 onPress={this.props.onClose}
 >
 <Text style={styles.closeButtonText}>X</Text>
 </TouchableOpacity>
 </View>
 </View>
 </Modal>
);
 }
}

const styles = StyleSheet.create({
 overlay: {
 flex: 1,
 backgroundColor: '#0006',
 justifyContent: 'center',
 },
 container: {
 backgroundColor: 'white',
 alignSelf: 'center',
 padding: 20,
 borderColor: '#ccc',
 borderWidth: 1,
 },
 title: {
 textAlign: 'right',
 fontFamily: 'Blair ITC',
 paddingTop: 5,
 fontSize: 12,
 },
 spinner: {
 resizeMode: 'contain',
 height: 50,
 width: 50,
 margin: 50,
 alignSelf: 'center',
 },
 closeButton: {
 backgroundColor: '#333',
 width: 40,
 height: 40,
 borderRadius: 20,

Car Booking App

[106]

 justifyContent: 'center',
 alignSelf: 'center',
 },
 closeButtonText: {
 color: 'white',
 alignSelf: 'center',
 fontSize: 20,
 },
});

For this component, we are using the <Modal /> component available in React Native to
take advantage of its fade animation and visibility capabilities. The
property this.props.visible will drive the visibility of this component as it is the
parent who is aware of the pickup request from the user.

Let's focus again on animations as we want to do a more complex setup for the spinner
showing activity. We want to display an endless rotating animation, so we need to
systematically call our start() animation method. In order to achieve this, we created
a cycleAnimation() method, which is called on the component mount (to get the
animation started) and from the Animated.timing returned object as it is passed as a
callback to be invoked every time the animation ends.

We are also using Animated.sequence to concatenate two animations:

Moving from 0 degrees to 360 (in one second using a linear easing)
Moving from 360 degrees to 0 (in 0 seconds)

This is required to repeat the first animation over at the end of each cycle.

Finally, we defined a variable named interpolatedRotateAnimation to store the
interpolation from 0 degrees to 360, so it can be passed to the transform/rotate style
defining what are going to be the available rotation values when animating
our Animated.Image.

As an experiment, we can try and change loading.png with an alternative image and see
how it gets animated. This can be easily achieved by replacing the source prop in our
<Animated.Image /> component:

...

 <Animated.Image
 style={[
 styles.spinner,
 { transform: [{ rotate: interpolatedRotateAnimation }] },
]}

Car Booking App

[107]

 source={require('../../img/spinner.png')}
 />

...

Summary
Using UI libraries such as native-base or react-native-elements saves a lot of time
and maintenance hassle when we need to build apps, but the results end up having a
standard flavor, which is not always desirable in terms of user experience. That's why
learning how to manipulate the style of our apps is always a good idea, especially on teams
where the design is provided by UX specialists or app designers.

In this chapter, we took a deep look into the folders and files created by React Native's CLI
when initializing a project. Moreover, we familiarized ourselves with the developer menu
and its debugging functionalities.
When building our app we set the focus on the layouts and component styling, but also on
how to add and manipulate animations to make our interface more appealing to the
user. We took a look at Flexbox layout system and how to stack and center elements in our
components. API's such as dimensions were used to retrieve the device width and height to
perform positioning tricks on some components.
You learned how to add fonts and images into our app and how to show them to improve
the user experience.

Now that we know how to build more custom interfaces, let's build in the next chapter an
image sharing app in which design plays a key role.

4
Image Sharing App

At this point, we know how to create a fully-featured app with a custom interface. You even
learned how to add a state management library to control shared data in our app so that the
code base remains maintainable and scalable.

In this chapter, we will focus on building the app with a different state management library
(Redux), using the camera capabilities, writing platform-specific code, and diving deeper
into building a custom user interface, which is both appealing and usable. An image
sharing app will serve as a good example for these features and also will set up the basis for
understanding how big apps should be built on React Native.

We will reuse most of our code for the two platforms where this app will be available: iOS
and Android. Although most of our user interface will be custom, we will use native-
base to simplify UI elements as icons. For navigation, we will use react-navigation
again as it provides the most commonly used navigation for each platform: tabbed
navigation for iOS and drawer menu navigation for Android. Finally, we will use react-
native-camera to handle the interaction with the device's camera. This will not only
reduce implementation complexity but also will provide us with a large set of features for
free that we could use to extend our app in the future.

For this app, we will mock up a number of API calls so that we don't need to build a
backend. These calls should be easily replaced by real API when the time to build a
connected app comes.

Image Sharing App

[109]

Overview
One of the main requirements when building an image sharing app is an appealing design.
We will follow the design patterns for some of the most popular image sharing apps,
adapting those patterns for each platform while trying to reuse as much code as possible
taking advantage of React Native's cross-platform capabilities.

Let's first take a look at the user interface in iOS:

The main screen shows a simple header and a list of images, including the user picture,
name, and a More icon to share the image. At the bottom, the tabbed navigation displays
three icons representing the three main screens: All Images, My Images, and Camera.

Image Sharing App

[110]

All images used for this sample app are free to be used in any form.

When a user presses the More icon for a specific image, the Share menu will be displayed:

This is a standard iOS component. It doesn't make much sense to use it on a simulator, it
can be better tested on an actual device.

Image Sharing App

[111]

Let's take a look at the second screen, My Images:

This is a grid representation of all the images uploaded by the current user, which can be
updated by the next screen, Camera:

Image Sharing App

[112]

The iOS simulator doesn't include support for any camera, so this feature is again
better tested on an actual device, although react-native-camera is fully usable and will
return fake data when accessed. We will use a static image for testing purposes.

That's all for iOS; let's move now to the Android version:

Image Sharing App

[113]

As Android encourages drawer-based navigation instead of tabs, we will include a drawer
menu icon in the header and will also make the camera available through a different icon.

As with the iOS Share menu, Android has its own controller, so we will take advantage of
this feature and include it whenever a user taps on the More icon on a specific image:

Image Sharing App

[114]

When a user taps on the drawer menu icon, the menu will be displayed, revealing the three
available screens. From here, the user can navigate to the My Images screen:

Image Sharing App

[115]

Finally, the camera screen will also be accessible through the drawer menu:

The Android Simulator includes a camera simulation consisting of a colored moving
square, which can be used for testing. Instead, we will stick with the fixed image we used in
the iOS version for consistency reasons.

We will be covering the following topics in this chapter:

Redux in React Native
Using the camera
Platform-specific code
Drawer and tabbed navigation
Sharing data with other apps

Setting up the folder structure
Let's initialize a React Native project using React Native's CLI. The project will be named
imageShare and will be available for iOS and Android devices:

react-native init --version="0.44.0" imageShare

In order to use some packages in this app, we will be using a specific version of React
Native (0.44.0).

Image Sharing App

[116]

We will be using Redux for our app, so we will create a folder structure in which we can
accommodate our reducers, actions, components, screens, and api calls:

Moreover, we have added logo.png in the img folder. For the rest, we have a very
standard React Native project. The entry point will be index.ios.js for iOS
and index.android.js for Android:

/*** index.ios.js and index.android.js ***/

import { AppRegistry } from 'react-native';
import App from './src/main';

AppRegistry.registerComponent('imageShare', () => App);

Image Sharing App

[117]

We have the same implementation for both files as we want to use src/main.js as the
common entry point for both platforms.

Let's jump into our package.json file to understand which dependencies we will have in
our app:

/*** package.json ***/

{
 "name": "imageShare",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node node_modules/react-native/
 local-cli/cli.js start",
 "test": "jest"
 },
 "dependencies": {
 "native-base": "^2.1.5",
 "react": "16.0.0-alpha.6",
 "react-native": "0.44.0",
 "react-native-camera": "^0.8.0",
 "react-navigation": "^1.0.0-beta.9",
 "react-redux": "^5.0.5",
 "redux": "^3.6.0",
 "redux-thunk": "^2.2.0"
 },
 "devDependencies": {
 "babel-jest": "20.0.3",
 "babel-preset-react-native": "1.9.2",
 "jest": "20.0.3",
 "react-test-renderer": "16.0.0-alpha.6"
 },
 "jest": {
 "preset": "react-native"
 }
}

Some of the dependencies, such as react-navigation or native-base, are old
acquaintances from previous chapters. Others, such as react-native-camera, will be
introduced in this chapter for the first time. Some of them are closely related to the state
management library we will be using for this app, Redux:

redux: This is the state management library itself
react-redux: These are the React handlers for Redux

Image Sharing App

[118]

redux-thunk: This is Redux middleware that handles asynchronous action
execution

To complete the installation, we will need to link react-native-camera as it requires
some changes in the native part of our app:

react-native link react-native-camera

On iOS 10 and higher, we also need to modify our ios/imageShare/Info.plist to add a
Camera Usage Description, which should be displayed to request permission to enable the
camera within the app. We need to add these lines right before the last </dict></plist>:

<key>NSCameraUsageDescription</key>
<string>imageShare requires access to the camera on this device to perform
this action</string>
<key>NSPhotoLibraryUsageDescription</key>
<string>imageShare requires access to the image library on this device to
perform this action</string>

Redux
Redux is a predictable state container for JavaScript apps based on simple principles:

The whole state of your app is stored in an object tree inside a single store
The only way to change the state tree is to emit an action, an object describing
what happened
To specify how the actions transform the state tree, you write pure reducers

Its popularity comes from the degree of consistency, testability, and developer experience
that can be derived from its use in any kind of code base (frontend or backend). It's also
simple to reason and master due to its strict unidirectional data flow:

Image Sharing App

[119]

User triggers and Actions that are processed by Reducers, which are just pure functions
applying changes to the state based on that Action. The resulting state is saved in a single
Store, which is used by the View in our app to display the current state of the application.

Redux is a complex topic that falls out of the scope of this book, but it will be extensively
used throughout some of the chapters in this book, so it could be beneficial to take a look at
their official documentation (http:/ /redux. js.org/) to get acquainted with the basic
concepts of this state management library.

Some of the basic concepts of Redux will be used in our src/main.js file:

/*** src/main.js ***/

import React from 'react';
import { DrawerNavigator,TabNavigator } from 'react-navigation';
import { Platform } from 'react-native';

import { Provider } from 'react-redux';
import { createStore, combineReducers, applyMiddleware } from 'redux';
import thunk from 'redux-thunk';
import imagesReducer from './reducers/images';

import ImagesList from './screens/ImagesList.js';
import MyImages from './screens/MyImages.js';
import Camera from './screens/Camera.js';

let Navigator;
if(Platform.OS === 'ios'){
 Navigator = TabNavigator({
 ImagesList: { screen: ImagesList },
 MyImages: { screen: MyImages },
 Camera: { screen: Camera }
 }, {
 tabBarOptions: {
 inactiveTintColor: '#aaa',
 activeTintColor: '#000',
 showLabel: false
 }
 });
} else {
 Navigator = DrawerNavigator({
 ImagesList: { screen: ImagesList },
 MyImages: { screen: MyImages },
 Camera: { screen: Camera }
 });
}

http://redux.js.org/
http://redux.js.org/
http://redux.js.org/
http://redux.js.org/
http://redux.js.org/
http://redux.js.org/
http://redux.js.org/
http://redux.js.org/
http://redux.js.org/
http://redux.js.org/

Image Sharing App

[120]

let store = createStore(combineReducers({ imagesReducer }),
applyMiddleware(thunk));

export default class App extends React.Component {
 render() {
 return (
 <Provider store={store}>
 <Navigator/>
 </Provider>
)
 }
}

Let's focus first on the Redux ceremony. let store =
createStore(combineReducers({ imagesReducer }),

applyMiddleware(thunk)); sets up the store by combining the imported reducers (we
only have one reducer for this app, so this is merely informative) and applying
the Thunk middleware, which will enable our app to use asynchronous actions. We will
simulate several API calls that will return asynchronous promises, so this middleware is
needed to properly handle the resolutions of those promises.

Then, we have our render method:

<Provider store={store}>
 <Navigator/>
</Provider>

This is standard in most Redux apps using React. We wrap the root component
(<Navigator /> in our case) with a <Provider /> component to ensure that we will have
the store available from the root of our app. The Redux connect method will be available
for us to use in our containers or screens as we proceed in this chapter.

We will use a <Navigator /> component as the root of our app, but it will have a different
nature based on which platform is running:

let Navigator;
if(Platform.OS === 'ios'){
 Navigator = TabNavigator({
 ...

 });
} else {
 Navigator = DrawerNavigator({
 ...
 });
}

Image Sharing App

[121]

Platform is a React Native API used mainly to identify which platform our app is running
on. We can write iOS-specific code by enclosing that code with if(Platform.OS ===
'ios'){ ... } and the same goes for Android: if(Platform.OS === 'android'){
... }.

In this case, we are using it to build a tabbed navigator on iOS and a drawer navigator on
Android, which are the de facto navigation patterns for those platforms. On both navigators,
we will set ImagesList, MyImages, and Camera as the three main screens in our app.

ImagesList
The main screen in our app is a list of images retrieved from the backend. We will display
this images together with their corresponding uploader profile pictures and names. For
each image, we will show More, which can be used to share the image with other apps on
the user's device, such as messaging apps or social networks. Most of the UI for this screen
will be derived from the <Gallery /> component, so we will focus on connecting the
screen with Redux store, adding a custom header, and a scroll view to make the gallery
scrollable, and adding an activity indicator to warn the user about network activity:

/*** src/components/ImagesList ***/

import React from 'react';
import { View, ScrollView } from 'react-native';

import { bindActionCreators } from 'redux';
import { connect } from 'react-redux';
import * as Actions from '../actions';
import { Icon } from 'native-base';

import Header from '../components/Header';
import Gallery from '../components/Gallery';
import ActivityIndicator from '../components/ActivityIndicator';

class ImagesList extends React.Component {
 static navigationOptions = {
 tabBarIcon: ({ tintColor }) => (
 <Icon name='list' style={{fontSize: 40, color: tintColor}}/>
),
 drawerLabel: 'All Images'
 };

 componentWillMount() {
 this.props.fetchImages();
 }

Image Sharing App

[122]

 componentWillReceiveProps(nextProps) {
 if(!this.props.addingImage && nextProps.addingImage) {
 this.scrollable.scrollTo({y: 0});
 }
 }

 render() {
 return (
 <View style={{flex: 1}}>
 <Header onMenuButtonPress={() =>
 this.props.navigation.navigate('DrawerOpen')}
 onCameraButtonPress={() =>
 this.props.navigation.navigate('Camera')}/>
 <ScrollView ref={(scrollable) => {
 this.scrollable = scrollable;
 }}>
 { this.props.addingImage && <ActivityIndicator
 message='Adding image' /> }
 <Gallery imageList={this.props.images} loading=
 {this.props.fetchingImages}/>
 </ScrollView>
 </View>
);
 }
}

function mapStateToProps(state) { return { images:
state.imagesReducer.images, addingImage: state.imagesReducer.addingImage,
fetchingImages: state.imagesReducer.fetchingImages } }
function mapStateActionsToProps(dispatch) { return
bindActionCreators(Actions, dispatch) }

export default connect(mapStateToProps,
mapStateActionsToProps)(ImagesList);

As most of the React apps use Redux, we need to connect our component with the state and
the actions. We will create two functions (mapStateToProps and
mapStateActionsToProps) to decorate our <ImageList /> component with the mapped
actions and parts of the state the component is interested in:

images: This is the list of images we will use to render in our <Gallery />
addingImage: This is a flag we will set to true when uploading an image
fetchingImages: This is a flag that will be set to true when the app requests
the list of images to the backend in order to update the store

Image Sharing App

[123]

The only action we will need on this screen is fetchImages, which is accessible through
the props component because we connected the list of actions in Actions to our
<ImagesList /> component. On a similar note, we have the three state variables (images,
addingImage, and fetchingImages) available through props, thanks to the same
connect invocation:

function mapStateToProps(state) {
 return {
 images: state.imagesReducer.images,
 addingImage: state.imagesReducer.addingImage,
 fetchingImages: state.imagesReducer.fetchingImages
 };
}
function mapStateActionsToProps(dispatch) {
 return bindActionCreators(Actions, dispatch);
}

export default connect(mapStateToProps,
mapStateActionsToProps)(ImagesList);

That's all we need from Redux. We will see this pattern in other screens as well, as it's a
common solution for connecting React components with parts of the store and the list of
actions.

The fetchImages action is called on componentWillMount as the initial retrieval of the
list of images to be rendered:

componentWillMount() {
 this.props.fetchImages();
}

We also added a way to detect the moment the addingImage flag is set to true to display
the activity indicator:

componentWillReceiveProps(nextProps) {
 if(!this.props.addingImage && nextProps.addingImage) {
 this.scrollable.scrollTo({y: 0});
 }
}

This method will call scrollTo in the <Scrollview /> to make sure it displays the top
part, so the <ActivityIndicator /> is visible to the user. We are using a custom
<ActivityIndicator /> this time (imported from
src/components/ActivityIndicator), as we want to display not only a spinner but
also a message.

Image Sharing App

[124]

Last, we will add two components:

<Header />: This displays the logo and (in the Android version) two icons to
navigate to the drawer menu and the camera screen

<Gallery />: This shows the formatted list of images and uploaders

Before moving to another screen, let's take a look at the three custom components we
included in this one: <ActivityIndicator />, <Header />, and <Gallery />.

Gallery
Gallery holds all the rendering logic for the list of images. It relies on native-base and,
more specifically, on two of its components, <List /> and <ListItem />:

/*** src/components/Gallery ***/

import React from 'react';
import { List, ListItem, Text, Icon, Button, Container, Content }
 from 'native-base';
import { Image, Dimensions, View, Share, ActivityIndicator, StyleSheet }
from 'react-native';

var {height, width} = Dimensions.get('window');

export default class Gallery extends React.Component {
 _share(image) {
 Share.share({message: image.src, title: 'Image from: ' +
 image.user.name})
 }

 render() {
 return (
 <View>
 <List style={{margin: -15}}>
 {
 this.props.imageList && this.props.imageList.map((image) =>
 {
 return (
 <ListItem
 key={image.id}
 style={{borderBottomWidth: 0,
 flexDirection: 'column', marginBottom: -20}}>
 <View style={styles.user}>

Image Sharing App

[125]

 <Image source={{uri: image.user.pic}}
 style={styles.userPic}/>
 <Text style={{fontWeight: 'bold'}}>
 {image.user.name}</Text>
 </View>
 <Image source={{uri: image.src}}
 style={styles.image}/>
 <Button style={{position: 'absolute', right: 15,
 top: 25}} transparent
 onPress={this._share.bind(this, image)}>
 <Icon name='ios-more' style={{fontSize: 20,
 color: 'black'}}/>
 </Button>
 </ListItem>
);
 })
 }
 </List>
 {
 this.props.loading &&
 <View style={styles.spinnerContainer}>
 <ActivityIndicator/>
 </View>
 }
 </View>
);
 }
}

const styles = StyleSheet.create({
 user: {
 flexDirection: 'row',
 alignSelf: 'flex-start',
 padding: 10
 },
 userPic: {
 width: 50,
 height: 50,
 resizeMode: 'cover',
 marginRight: 10,
 borderRadius: 25
 },
 image: {
 width: width,
 height: 300,
 resizeMode: 'cover'
 },
 spinnerContainer: {

Image Sharing App

[126]

 justifyContent: 'center',
 height: (height - 50)
 }
});

This component takes two props from its parent: loading and imageList.

loading is used to display a standard <ActivityIndicator /> showing the user
network activity. This time we are using the standard one instead of a custom indicator as it
should be clear enough what the network activity is indicating.

imageList is the array storing the list of images, which will be rendered in our <Gallery
/> one <ListenItem /> at a time. Each <ListItem /> holds a <Button />
with onPress={this._share.bind(this, image) to share the image with other apps.
Let's take a look at the _share function:

_share(image) {
 Share.share({message: image.src, title: 'Image from: '
 + image.user.name})
}

Share is a React Native API for sharing text content. In our case, we will share the URL
(img.src) of the image together with a simple title. Sharing text is the easiest way of
sharing content between apps, as many apps would accept text as a shared format.

It's also worth noting the style we apply to the image to take over the whole width and a
fixed height (300), so we have a stable layout for all images even when the display images
have different sizes. For this setup, we use resizeMode: 'cover' so the images are not
stretched in any dimension. This means we may end up cutting the image, but it
compensates on uniformity. Another option would be to use resizeMode: contain if we
don't want to cut anything, but rather want to fit the image inside these bounds while
possibly shrinking them.

Header
We want to reuse a custom header between several screens. That's why it's best to create a
separate component for it and import it in those screens:

/*** src/components/Header ***/

import React from 'react';
import { View, Image, StyleSheet } from 'react-native';
import { Icon, Button } from 'native-base';

Image Sharing App

[127]

import { Platform } from 'react-native';

export default class Header extends React.Component {
 render() {
 return (
 <View style={styles.container}>
 {
 Platform.OS === 'android' &&
 <Button transparent onPress={this.props.onMenuButtonPress}>
 <Icon android='md-menu' style={styles.menuIcon}/>
 </Button>
 }
 <Image source={require('../../img/logo.png')}
 style={styles.logo} />
 {
 Platform.OS === 'android' &&
 <Button onPress={this.props.onCameraButtonPress} transparent>
 <Icon name='camera' style={styles.cameraIcon}/>
 </Button>
 }
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 paddingTop: 20,
 flexDirection: 'row',
 alignItems: 'center',
 justifyContent: 'space-around',
 borderBottomWidth: 1,
 borderBottomColor: '#ccc'
 },
 menuIcon: {
 fontSize: 30,
 color: 'black'
 },
 logo: {
 height: 25,
 resizeMode: 'contain',
 margin: 10
 },
 cameraIcon: {
 fontSize: 30,
 color: 'black'
 }
});

Image Sharing App

[128]

We are using the Platform API again to detect Android devices and show a drawer menu
button and a camera button only on that platform. We decided to do this to make those
features, which are the core of the app, more prominent to Android users by reducing the
number of buttons needed to be pressed to reach them. The actions to be performed when
pressing the buttons are passed by the parent component through two props:

onMenuButtonPress

onCameraButtonPress

Those two props call two separate functions invoking the navigate method of the
navigator:

this.props.navigation.navigate('DrawerOpen')

this.props.navigation.navigate('Camera')

The last thing to note is how we set up the layout for the container in this component. We
use justifyContent: 'space-around', which is the way we tell Flexbox to evenly
distribute items in the line with equal space around them. Note that, visually, the spaces
aren't equal since all the items have equal space on both sides. The first item will have one
unit of space against the container edge, but two units of space between the next item
because that next item has its own spacing that applies:

ActivityIndicator
Our custom ActivityIndicator is a very simple component:

/*** src/components/ActivityIndicator ***/

import React from 'react';
import { ActivityIndicator, View, Text, StyleSheet }
from 'react-native';

export default class CustomActivityIndicator extends React.Component {
 render() {
 return (
 <View style={styles.container}>
 <ActivityIndicator style={{marginRight: 10}}/>

Image Sharing App

[129]

 <Text>{this.props.message}</Text>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flexDirection: 'row',
 justifyContent: 'center',
 padding: 10,
 backgroundColor: '#f0f0f0'
 }
});

It receives a message as a prop and displays it next to a standard spinner. We also added a
custom background color (#f0f0f0) to make it more visible over the white backgrounds.

Let's move now to the camera screen to add our images to the list.

Camera
Most of the logic when taking photos can be abstracted when using react-native-
camera, so we will focus on using this module in our component and making sure we
connect it to our app's state through Redux actions:

/*** src/screens/Camera ***/

import React, { Component } from 'react';
import {
 Dimensions,
 StyleSheet,
 Text,
 TouchableHighlight,
 View
} from 'react-native';
import { Button, Icon } from 'native-base';
import Camera from 'react-native-camera';
import { bindActionCreators } from 'redux';
import { connect } from 'react-redux';
import * as Actions from '../actions';

class CameraScreen extends Component {
 static navigationOptions = {
 tabBarIcon: ({ tintColor }) => (

Image Sharing App

[130]

 <Icon name='camera' style={{fontSize: 40, color: tintColor}}/>
),
 };

 render() {
 return (
 <View style={styles.container}>
 <Camera
 ref={(cam) => {
 this.camera = cam;
 }}
 style={styles.preview}
 aspect={Camera.constants.Aspect.fill}>
 <Button onPress={this.takePicture.bind(this)}
 style={styles.cameraButton} transparent>
 <Icon name='camera' style={{fontSize: 70,
 color: 'white'}}/>
 </Button>
 </Camera>
 <Button onPress={() =>
 this.props.navigation.navigate('ImagesList')}
 style={styles.backButton} transparent>
 <Icon ios='ios-arrow-dropleft' android='md-arrow-dropleft'
 style={{fontSize: 30, color: 'white'}}/>
 </Button>
 </View>
);
 }

 takePicture() {
 const options = {};
 this.camera.capture({metadata: options})
 .then((data) => {
 this.props.addImage(data);
 this.props.navigation.navigate('ImagesList');
 })
 .catch(err => console.error(err));
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'row',
 },
 preview: {
 flex: 1,
 justifyContent: 'flex-end',

Image Sharing App

[131]

 padding: 20
 },
 capture: {
 flex: 0,
 backgroundColor: '#fff',
 borderRadius: 5,
 color: '#000',
 padding: 10,
 margin: 40
 },
 cameraButton: {
 flex: 0,
 alignSelf: 'center'
 },
 backButton: {
 position: 'absolute',
 top:20
 }
});

function mapStateToProps(state) { return {} }
function mapStateActionsToProps(dispatch) { return
bindActionCreators(Actions, dispatch) }

export default connect(mapStateToProps,
mapStateActionsToProps)(CameraScreen);

The way react-native-camera works is by providing a component we can include in our
screen and, through a reference, we can call its capture method, which returns a promise
we can use to call addImage to upload our image to the app's backend.

Let's take a closer look at the <Camera /> component:

<Camera
 ref={(cam) => {
 this.camera = cam;
 }}
 style={styles.preview}
 aspect={Camera.constants.Aspect.fill}>

...

</Camera>

Image Sharing App

[132]

The <Camera /> component takes three props:

ref: This sets a reference to the <Camera /> component in the parent component
for it to call the capture method.
style: This allows the developer to specify the look of the component in the app.
aspect: This allows you to define how the view renderer will behave when
displaying camera's view. There are three options: fill, fit, and stretch.

The takePicture function will be invoked when the user presses the camera button:

takePicture() {
 const options = {};
 this.camera.capture({metadata: options})
 .then((data) => {
 this.props.addImage(data);
 this.props.navigation.navigate('ImagesList');
 })
 .catch(err => console.error(err));
}

We will use the saved reference to the camera to call its capture method to which we can
pass some metadata (for example, the location in which the photo was taken). This method
returns a promise, which will be resolved with the image data so we will use this data to
call the addImage action to send this data to the backend, so the picture can be added to the
imagesList. Right after sending the image to the backend, we will make the app navigate
back to the ImagesList screen. The addImage method will set the addingImages flag, so
the ImageList screen can display the activity indicator with the corresponding message.

Let's move on to the last screen in our app: MyImages.

MyImages
This screen shows all the images the logged user has uploaded. We are using fake images
for this screen to pre-fill this screen, but more images can be added through the camera
screen.

Most of the rendering logic will be moved to a separate component named <ImagesGrid
/>:

/*** src/screens/MyImages ***/

import React from 'react';

Image Sharing App

[133]

import {
 Image,
 TouchableOpacity,
 Text,
 View,
 ActivityIndicator,
 Dimensions
} from 'react-native';

import { bindActionCreators } from 'redux';
import { connect } from 'react-redux';
import * as Actions from '../actions';
import { Icon } from 'native-base';

import Header from '../components/Header';
import ImagesGrid from '../components/ImagesGrid';

var {height, width} = Dimensions.get('window');

class MyImages extends React.Component {
 static navigationOptions = {
 drawerLabel: 'My Images',
 tabBarIcon: ({ tintColor }) => (
 <Icon name='person' style={{fontSize: 40, color: tintColor}}/>
)
 };

 componentWillMount() {
 this.props.fetchImages(this.props.user.name);
 }

 render() {
 return (
 <View>
 <Header onMenuButtonPress={() =>
 this.props.navigation.navigate('DrawerOpen')}
 onCameraButtonPress={() =>
 this.props.navigation.navigate('Camera')}/>
 {
 this.props.fetchingImages &&
 <View style={{justifyContent: 'center',
 height: (height - 50)}}>
 <ActivityIndicator/>
 </View>
 }
 <ImagesGrid images={this.props.images}/>
 </View>
);

Image Sharing App

[134]

 }
}

function mapStateToProps(state) { return { images:
state.imagesReducer.userImages, user: state.imagesReducer.user,
fetchingImages: state.imagesReducer.fetchingUserImages } }
function mapStateActionsToProps(dispatch) { return
bindActionCreators(Actions, dispatch) }

export default connect(mapStateToProps, mapStateActionsToProps)(MyImages);

The first thing this component does is make a call to the fetchImages action but, unlike
the <ImagesList /> component, it passes the username to only retrieve the pictures for
the logged in user. When we create this action, we need to take this into account and receive
an optional userName parameter to filter out the list of images we will retrieve.

Other than that, this component delegates most of its behavior to <ImageGrid /> so that
we can reuse the render capabilities for other users. Let's move on to <ImageGrid />.

ImageGrid
A simple scroll view and a list of images. This component is as simple as that, but it's
configured in a way that allows the images to flow like a grid in an easy way:

/*** src/components/ImageGrid ***/

import React from 'react';
import {
 Image,
 TouchableOpacity,
 ScrollView,
 Dimensions,
 View,
 StyleSheet
} from 'react-native';

var {height, width} = Dimensions.get('window');

export default class ImagesGrid extends React.Component {
 render() {
 return (
 <ScrollView>
 <View style={styles.imageContainer}>
 {
 this.props.images &&

Image Sharing App

[135]

 this.props.images.map(img => {
 return (<Image style={styles.image}
 key={img.id} source={{uri: img.src}}/>);
 })
 }
 </View>
 </ScrollView>
);
 }
}

const styles = StyleSheet.create({
 imageContainer: {
 flexDirection: 'row',
 alignItems: 'flex-start',
 flexWrap: 'wrap'
 },
 image: {
 width: (width/3 - 2),
 margin: 1,
 height: (width/3 - 2),
 resizeMode: 'cover'
 }
});

When styling the container, we use flexWrap: 'wrap' to ensure the images flow not only
in the row direction but also spread to new lines when the device width is covered for a line
of images. By setting width and height for each image to width/3 - 2, we ensure the
container can fit three images per row, including two pixels for a small margin between
them.

There are also several grid modules available through npm, but we have decided to build
our own component for this matter, as we don't need extra functionality in the grid and we
gain the flexibility to do it this way.

Those were all the screens and visual components we need in our image share app. Let's
take a look now at the glue that makes them work together, the actions and the reducers.

Image Sharing App

[136]

Actions
As we see on our screens, there are only two actions needed for this app, fetchImages (for
all users or for a specific user) and addImage:

/*** src/actions/index ***/

import api from '../api';

export function fetchImages(userId = null) {
 let actionName, actionNameSuccess, actionNameError;
 if(userId) {
 actionName = 'FETCH_USER_IMAGES';
 actionNameSuccess = 'FETCH_USER_IMAGES_SUCCESS';
 actionNameError = 'FETCH_USER_IMAGES_ERROR';
 } else {
 actionName = 'FETCH_IMAGES';
 actionNameSuccess = 'FETCH_IMAGES_SUCCESS';
 actionNameError = 'ADD_IMAGE_ERROR';
 }

 return dispatch => {
 dispatch({ type: actionName });
 api
 .fetchImages(userId)
 .then(images => {
 dispatch({
 type: actionNameSuccess,
 images
 })
 })
 .catch(error => {
 dispatch({
 type: actionNameError,
 error
 });
 });
 };
}

export function addImage(data = null) {
 return dispatch => {
 dispatch({ type: 'ADD_IMAGE' });
 api
 .addImage()
 .then(imageSrc => {
 dispatch({

Image Sharing App

[137]

 type: 'ADD_IMAGE_SUCCESS',
 imageSrc
 });
 })
 .catch(error => {
 dispatch({
 type: 'ADD_IMAGE_ERROR',
 error
 });
 });
 };
}

Redux actions are just simple objects describing an event, including its payload. Since we
are using redux-thunk, our action creators will return a function in which the Redux
dispatch function will be called, passing the action. Let's take a closer look at our
addImage action:

export function addImage(data = null) {
 return dispatch => {
 dispatch({ type: 'ADD_IMAGE' });
 api
 .addImage()
 .then(imageSrc => {
 dispatch({
 type: 'ADD_IMAGE_SUCCESS',
 imageSrc
 });
 })
 .catch(error => {
 dispatch({
 type: 'ADD_IMAGE_ERROR',
 error
 });
 });
 };
}

The function we return starts by dispatching an action named ADD_IMAGE with no payload,
as we just want to let Redux know that we are ready to make a network request to upload
the image to our backend. Then, we make that request using our api (we will mock this call
later). This request will return a promise, so we can attach .then and .catch callbacks to
handle the response. If the response is positive (the image was properly uploaded), we will
dispatch an ADD_IMAGE_SUCCESS action passing the URL for the uploaded image. If there
is an error, we will dispatch an ADD_IMAGE_ERROR action covering all the possible states.

Image Sharing App

[138]

Most of the action creators work in a similar way when making network requests in Redux
and Thunk. In fact, our action fetchImages is very similar to addImage, with one
exception: it needs to check if userId was passed and issued a different set of actions
instead, so the reducers can modify the state accordingly. Let's then take a look at the
reducers, which will be handling all these actions.

Reducers
In Redux, reducers are functions in charge of updating the state as new actions happen.
They receive the current state and the action (including any payload) and return a new
state object. We won't go deep into how reducers work, we just need to understand their
basic structure:

/*** src/reducers/index ***/

const initialState = {
 images: null,
 userImages: null,
 error: null,
 user: {
 id: 78261,
 name: 'Sharer1',
 pic: 'https://cdn.pixabay.com/photo/2015/07/20/12/53/
 man-852762_960_720.jpg'
 }
}

export default function (state = initialState, action) {
 switch(action.type){
 case 'FETCH_IMAGES':
 return Object.assign({}, state, {
 images: [],
 fetchingImages: true,
 error: null
 });
 case 'FETCH_IMAGES_SUCCESS':
 return Object.assign({}, state, {
 fetchingImages: false,
 images: action.images,
 error: null
 });
 case 'FETCH_IMAGES_ERROR':
 return Object.assign({}, state, {
 fetchingImages: false,
 images: null,

Image Sharing App

[139]

 error: action.error
 });
 case 'FETCH_USER_IMAGES':
 return Object.assign({}, state, {
 userImages: [],
 fetchingUserImages: true,
 error: null
 });
 case 'FETCH_USER_IMAGES_SUCCESS':
 return Object.assign({}, state, {
 fetchingUserImages: false,
 userImages: action.images,
 error: null
 });
 case 'FETCH_USER_IMAGES_ERROR':
 return Object.assign({}, state, {
 fetchingUserImages: false,
 userImages: null,
 error: action.error
 });
 case 'ADD_IMAGE':
 return Object.assign({}, state, {
 addingImage: true,
 error: null
 });
 case 'ADD_IMAGE_SUCCESS':
 let image = {
 id: Math.floor(Math.random() * 99999999),
 src: action.imageSrc,
 user: state.user
 }
 return Object.assign({}, state, {
 addingImage: false,
 images: [image].concat(state.images),
 userImages: [image].concat(state.images),
 error: null
 });
 case 'ADD_IMAGE_ERROR':
 return Object.assign({}, state, {
 addingImage: false,
 error: action.error
 });
 default:
 return state;
 }
}

Image Sharing App

[140]

Let's break this down:

const initialState = {
 images: null,
 userImages: null,
 error: null,
 user: {
 id: 78261,
 name: 'Sharer1',
 pic: 'https://cdn.pixabay.com/photo/2015/07/20/12/53/
 man-852762_960_720.jpg'
 }
}

We start with an initial state where all properties will be set to null except for user, which
will contain mocked user data. This initial state is injected by default in the reducer on
startup:

export default function (state = initialState, action) {

 ...

}

In the subsequent calls, Redux will inject the actual state after applying any actions. Inside
this function, we have switch evaluating the type of each triggered action to modify the
state according to that action and its payload. Let's take, for example, the
FETCH_IMAGES_SUCCESS action:

case 'FETCH_IMAGES_SUCCESS':
 return Object.assign({}, state, {
 fetchingImages: false,
 images: action.images,
 error: null
 });

One of the rules in Redux is that reducers shouldn't mutate state, but return a new object
after an action is triggered. Using Object.assign, we return a new object containing the
current state plus the desired changes based on the action which just happened. In this case,
we are setting the fetchingImages flag to false to let our components know that they
can hide any activity indicator related to the action of fetching images. We also set the
received list of images (from actions.images) in the key images of our state, so they can
be injected into the components requiring them. Finally, we set the error flag to null to
hide any errors we may have displayed because of a previous state.

Image Sharing App

[141]

As we mentioned before, every asynchronous action should be split into three separate
actions to represent the three different states: asynchronous request pending, succeeded,
and errored. This way, we will have three groups of actions for our app:

FETCH_IMAGES, FETCH_IMAGES_SUCCESS, and FETCH_IMAGES_ERROR
FETCH_USER_IMAGES, FETCH_USER_IMAGES_SUCCESS,
and FETCH_USER_IMAGES_ERROR
ADD_IMAGE, ADD_IMAGE_SUCCESS, and ADD_IMAGE_ERROR

It's important to note that we have separate cases for FETCH_IMAGES and
FETCH_USER_IMAGES, as we want to keep two separate lists of images at the same time:

A general one containing the images of all the people the user is following
The list of the pictures the user has uploaded

The last missing piece is the API calls invoked from the action creators.

API
In a real-world app, we would place all the calls to our backend in a separate api folder.
For educational purposes, we just mocked the two API calls that are core to our
app, addImage and fetchImages:

/*** src/api/index ***/

export default {
 addImage: function(image) {
 return new Promise((resolve, reject) => {
 setTimeout(()=>{
 resolve('<imgUrl>');
 }, 3000)
 })
 },
 fetchImages: function(user = null){
 const images = [
 {id: 1, src: '<imgUrl>', user: {pic: '<imgUrl>', name: 'Naia'}},
 {id: 2, src: '<imgUrl>', user: {pic: '<imgUrl>',
 name: 'Mike_1982'}},
 {id: 5, src: '<imgUrl>', user: {pic: '<imgUrl>',
 name: 'Sharer1'}},
 {id: 3, src: '<imgUrl>', user: {pic: '<imgUrl>', name: 'Naia'}},
 {id: 6, src: '<imgUrl>', user: {pic: '<imgUrl>',
 name: 'Sharer1'}},

Image Sharing App

[142]

 {id: 4, src: '<imgUrl>', user: {pic: '<imgUrl>',
 name: 'Sharer1'}},
 {id: 7, src: '<imgUrl>', user: {pic: '<imgUrl>',
 name: 'Sharer1'}}

]
 return new Promise((resolve, reject) => {
 setTimeout(()=>{
 resolve(images.filter(img => !user || user === img.user.name)
);
 }, 1500);
 })
 }
}

To simulate the network delay, we added some setTimeouts that will help in testing the
activity indicators we set up to show the user network activity. We also used promises
instead of plain callbacks to make our code easier to read. We also skipped the image URLs
in these examples to make it more succinct.

Summary
We used Redux in this app, and that shaped the folder structure we use. Although using
Redux requires some boilerplate code, it helps break up our codebase in a reasonable way
and removes direct dependencies between containers or screens. Redux is definitely a great
addition when we need to maintain a shared state between screens, so we will be using it
further throughout the rest of this book. In more complex apps, we would need to build
more reducers and possibly separate them by domain and use Redux combineReducers.
Moreover, we would need to add more actions and create separate files for each group of
actions. For example, we would need actions for login, logout, and register, which we could
put together in a folder named src/actions/user.js. Then, we should move our image-
related actions (currently in index.js) to src/actions/images.js, so we can modify
src/actions/index.js to use it as a combinator for the user and images actions in case
we want to have the ability to import all the actions in one go.

Redux also helps with testing as it isolates the app's business logic into the reducers, so we
can focus on testing them thoroughly.

Image Sharing App

[143]

Mocking the API calls enables us to build a quick prototype for our app. When a backend is
available, we can reuse those mockups for test purposes and replace src/api/index.js
with real HTTP calls. In any case, it's a good idea to have a separate folder for all our API
calls, so we can replace them easily if there are any backend changes.

You also learned how to build platform-specific code (Android-specific in our case), which
is a very useful feature for most apps. Some companies prefer to write separate apps for
each platform and only reuse their business logic code, which should be very easy in any
Redux-based app as it resides in the reducers.

There is no specific API in React Native to control the device's camera, but we can use
the react-native-camera module for it. This is an example of a library accessing iOS-
and Android-native APIs to expose them in the React Native JavaScript world. In our next
chapter, we will explore and cross that bridge between the native and the JavaScript world
in React Native apps by building a guitar tuner app.

5
Guitar Tuner

React Native covers most of the components and APIs that are available in iOS and
Android. Points such as UI components, navigation, or networking can be fully set up
within our JavaScript code using React Native components, but not all the platform's
capabilities have been mapped from the native world to the JavaScript world. Nonetheless,
React Native offers a way to write real native code and have access to the full power of the
platform. If React Native doesn't support a native feature that you need, you should be able
to build it yourself.

In this chapter, we are going to use React Native's ability to enable our JavaScript code to
communicate with custom native code; specifically, we will write a native module to detect
frequencies coming from the device's microphone. These capabilities shouldn't be part of
the day-to-day tasks for a React Native developer but, eventually, we may need to use
modules or SDKs, which are only available on Objective-C, Swift, or Java.

For this chapter, we will focus on iOS, as we need to write native code which is outside the
scope of this book. Porting this app to Android should be fairly simple as we can fully reuse
the UI, but we will keep that out of this chapter to reduce the amount of native code
written. Since we are focusing only on iOS, we will cover all the aspects of building the app,
adding a splash screen and an icon, so it is ready to be submitted to the App Store.

We will need a Mac and XCode to add and compile native code for this
project.

Guitar Tuner

[145]

Overview
The concept of how a guitar is tuned should be simple to understand: each of the six strings
of a guitar emits a sound at a specific frequency when played open (that is when no fret is
pushed). Tuning a guitar means tightening the string until a specific frequency is emitted.
This is the list of frequencies each string should emit to be standard tuned:

The digital process of tuning a guitar will follow these steps:

Record a live sample of the frequencies captured through the device's1.
microphone.
Find the most prominent frequency in that sample.2.
Calculate what is the closest frequency in the preceding table to detect what3.
string is being played.
Calculate the difference between the frequency emitted and the standard tuned4.
frequency for that string, so we can let the user correct the string tension.

There are also some pitfalls we need to overcome, like ignoring low volumes so that we
don't confuse the user by detecting frequencies from sounds which are not coming from the
strings.

For much of this process, we will use native code not only because we need to deal with
features not available in React Native's API (for example, recording through the
microphone), but also because we can perform complex calculations in a more effectual
way. The algorithm we will be using here to detect the predominant frequency from the
samples we take from the microphone is called the Fast Fourier Transform (FFT). We won't
go into much detail here, but we will use a native library to perform these calculations.

Guitar Tuner

[146]

The user interface for this app should be really simple as we only have one screen to show
the user. The complexity will reside in the logic, rather than in displaying a beautiful
interface, although we will use some images and animations to make it more appealing. It's
important to keep in mind that the interface is what makes an app appealing in the App
Store, so we won't neglect this aspect.

This is what our app will look like once it is finished:

At the top of the screen, our app displays an "analog" tuner displaying the frequency the
guitar string is emitting. A red indicator will move inside the tuner to show if the guitar
string is close to the tuned frequency. If the indicator is on the left side, it means the guitar
string is at a lower frequency and needs to be tightened. Therefore, a user should try to
make the indicator go to the middle of the tuner to ensure the string is tuned. This is a very
intuitive way of showing how well a string is tuned.

Guitar Tuner

[147]

However, we need to let the user know what string she is trying to tune. We can guess this
by detecting what the closest tuned frequency is. Once we know what string was pushed,
we will display it to the user in the bottom part of the screen where there is a representation
of each of the strings plus the notes which should be played once the guitar is tuned. We
will change the border color of the corresponding note to green to notify the user that the
app detected a specific note.

Let's review the list of topics we will cover in this chapter:

Running native code from JavaScript
Animating images
<StatusBar />

propTypes

Adding a splash screen
Adding an icon

Setting up the folder structure
Let's initialize a React Native project using React Native's CLI. The project will be named
guitarTuner and will be exclusively available for iOS:

react-native init --version="0.45.1" guitarTuner

As this is a single-screen app, we won't need a state management library such as Redux or
MobX, so, we will use a simple folder structure:

Guitar Tuner

[148]

We have three images to support our custom interface:

indicator.jpg: The red bar indicating how tuned a string is
tuner.jpg: The background in which the indicator will move
string.jpg: A representation of a guitar string

Guitar Tuner

[149]

Our src/ folder contains two subfolders:

components/: This stores the <Strings/> component and the <Tuner/>
component
utils/: This holds a list of functions and constants which will be used in several
parts of our app

Finally, the entry point of our app will be index.ios.js, as we will be building our app
exclusively for the iOS platform.

Let's take a look at our package.json to identify what dependencies we will have:

/*** package.json ***/

{
 "name": "guitarTuner",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node node_modules/react-native/
 local-cli/cli.js start",
 "test": "jest"
 },
 "dependencies": {
 "react": "16.0.0-alpha.12",
 "react-native": "0.45.1"
 },
 "devDependencies": {
 "babel-jest": "20.0.3",
 "babel-preset-react-native": "2.0.0",
 "jest": "20.0.4",
 "react-test-renderer": "16.0.0-alpha.12"
 },
 "jest": {
 "preset": "react-native"
 }
}

Guitar Tuner

[150]

As can be seen, there are no dependencies other than react and react-native, which are
created by React Native's CLI when running the init script.

To obtain permission to record from the microphone, we also need to modify
our ios/guitarTuner/Info.plist to add a Microphone Usage Description, which is a
message to be displayed to the user to request access to the microphone on her device. We
need to add these lines right before the last </dict></plist>:

<key>NSMicrophoneUsageDescription</key><key>NSMicrophoneUsageDescription</k
ey>
<string>This app uses the microphone to detect what guitar
 string is being pressed.
</string>

With this last step, we should have the JavaScript part of our app ready to start coding.
However, we still need to set up the native modules we will be using for recording and
frequency detecting.

Writing the native module
We need XCode to write the native module, which will use the microphone to record
samples and to analyze those samples to calculate the main frequency. As we are not
interested in how these calculations are made, we will use an open source library to
delegate most of the recording and FFT calculations. The library is named SCListener and
a fork of it can be found at https:/ /github. com/ emilioicai/ sc_ listener.

We need to download the library and add its files to the project following these steps:

Navigate to the folder where our iOS project is: <project_folder>/ios/.1.
Double-click on guitarTuner.xcodeproj, which should open XCode.2.

https://github.com/emilioicai/sc_listener
https://github.com/emilioicai/sc_listener
https://github.com/emilioicai/sc_listener
https://github.com/emilioicai/sc_listener
https://github.com/emilioicai/sc_listener
https://github.com/emilioicai/sc_listener
https://github.com/emilioicai/sc_listener
https://github.com/emilioicai/sc_listener
https://github.com/emilioicai/sc_listener
https://github.com/emilioicai/sc_listener
https://github.com/emilioicai/sc_listener
https://github.com/emilioicai/sc_listener
https://github.com/emilioicai/sc_listener

Guitar Tuner

[151]

Right-click on the guitarTuner folder and click on Add Files to3.
"guitarTuner"...:

Select all the files from the downloaded SCListener library:4.

Guitar Tuner

[152]

Click on Accept. You should end up with a file structure in XCode similar to this5.
one:

SCListener needs the AudioToolbox framework to be installed. Let's do this by 6.
clicking on the root of the project in XCode.
Select the Build Phases tab.7.

Guitar Tuner

[153]

Go to Link Binary with Libraries.8.
Click on the + icon.9.
Select AudioToolbox.framework. 10.

Guitar Tuner

[154]

Now, let's add our module which will use SCListener and will send the data to11.
React Native. Right-click on the guitarTuner folder and click on New File.
Add a header file named FrequencyDetector.h:12.

Guitar Tuner

[155]

Let's repeat the process to add an implementation file for our module: right-click13.
on the guitarTuner folder and click on New File.
Add an Objective-C file named FrequencyDetector.m:14.

Our module FrequencyDetector is now ready to be implemented. Let's take a look at
what FrequencyDetector.h should look like:

/*** FrequencyDetector.h ***/

#import <React/RCTBridgeModule.h>
#import <Accelerate/Accelerate.h>

@interface FrequencyDetector : NSObject
@end

Guitar Tuner

[156]

It just imports two modules: Accelerate which is used to make the Fourier Transform
calculations and RCTBridgeModule, which enables our native module to interact with our
app's JavaScript code. Now, let's move to the implementation of the module:

/*** FrequencyDetector.m ***/

#import "FrequencyDetector.h"
#import "SCListener.h"

NSString *freq = @"";

@implementation FrequencyDetector

RCT_EXPORT_MODULE();

RCT_EXPORT_METHOD(getFrequency:(RCTResponseSenderBlock)callback)
{
 double power = [[SCListener sharedListener] averagePower];
 if(power < 0.03) { //ignore low volumes
 freq = @"0";
 } else {
 freq = [NSString stringWithFormat:@"%0.3f",
 [[SCListener sharedListener] frequency]];
 }
 callback(@[[NSNull null], freq]);
}

RCT_EXPORT_METHOD(initialise)
{
 [[SCListener sharedListener] listen];
}

@end

Even for non-Objective-C developers, this code should be easy to understand:

First, we import SCListener, the module which exposes methods to record from1.
the device's microphone, and calculate the FFT from the recorded sample
Then, we expose two methods: getFrequency and initialise2.

Guitar Tuner

[157]

The implementation of getFrequency is also quite simple. We only need to read the
volume we detect on the microphone by calling averagePower on our SCListener shared
instance. If the volume is strong enough, we decide a guitar string has been pushed so we
update a variable named freq, which will be passed into a callback supplied from our
JavaScript code. Note that sending data back to JavaScript can only be done through
callbacks (or promises) due to the nature of the bridge between the native and the
JavaScript code.

The way we expose methods from the native world into the JavaScript world is by using
RCT_EXPORT_METHOD, a macro provided by RCTBridgeModule. We also need to let React
Native know this module can be used from our JavaScript code. We do it by calling another
macro: RCT_EXPORT_MODULE. That's all we need; from this moment on, we can access this
module's methods with this:

import { NativeModules } from 'react-native';
var FrequencyDetector = NativeModules.FrequencyDetector;

FrequencyDetector.initialise();
FrequencyDetector.getFrequency((res, freq) => {});

As we can see, we pass a callback to getFrequency in which the current recorded
frequency will be received. We can now use this value to calculate what string was pressed
and how tuned it is. Let's take a look at how we are going to use this module in our app's
JavaScript components.

index.ios.js
We already saw how we can access the method we exposed from the native module
FrequencyDetector. Let's now see how we can use it within our components tree to
update the state of our app:

/*** index.ios.js ***/

...

var FrequencyDetector = NativeModules.FrequencyDetector;

export default class guitarTuner extends Component {

 ...

 componentWillMount() {
 FrequencyDetector.initialise();

Guitar Tuner

[158]

 setInterval(() => {
 FrequencyDetector.getFrequency((res, freq) => {
 let stringData = getClosestString(parseInt(freq));
 if(!stringData) {
 this.setState({
 delta: null,
 activeString: null
 });
 } else {
 this.setState({
 delta: stringData.delta,
 activeString: stringData.number
 });
 }
 });
 }, 500);
 }

 ...

});

AppRegistry.registerComponent('guitarTuner', () => guitarTuner);

Most of the logic will be placed in the componentWillMount method of our entry file. We
need to initialize the FrequencyDetector module to start listening from the device's
microphone and right after that, we call setInterval to repeatedly (every 0.5 seconds)
invoke the getFrequency method of FrequencyDetector to get the updated prominent
frequency. Every time we get a new frequency, we will check the guitar string which was
most likely pressed by calling a support function named getClosestString and save the
returned data in our component state. We will store this function in our utils file.

utils
Before continuing with index.ios.js, let's take a look at our utils file located in
src/utils/index.js:

/*** src/utils/index.js ***/

const stringFrequencies = [
 { min: 287, max: 371, tuned: 329 },
 { min: 221, max: 287, tuned: 246 },
 { min: 171, max: 221, tuned: 196 },
 { min: 128, max: 171, tuned: 146 },

Guitar Tuner

[159]

 { min: 96, max: 128, tuned: 110 },
 { min: 36, max: 96, tuned: 82}
];

export function getClosestString(freq) {
 let stringData = null;
 for(var i = 0; i < stringFrequencies.length; i++) {
 if(stringFrequencies[i].min < freq && stringFrequencies[i].max
 >= freq){
 let delta = freq - stringFrequencies[i].tuned; //absolute delta
 if(delta > 0){
 delta = Math.floor(delta * 100 / (stringFrequencies[i].max -
 stringFrequencies[i].tuned));
 } else {
 delta = Math.floor(delta * 100 / (stringFrequencies[i].tuned -
 stringFrequencies[i].min));
 }
 if(delta > 75) delta = 75; //limit deltas
 if(delta < -75) delta = -75;
 stringData = { number: 6 - i, delta } //relative delta
 break;
 }
 }
 return stringData;
}

export const colors = {
 black: '#1f2025',
 yellow: '#f3c556',
 green: '#3bd78b'
}

getClosestString is a function which, based on a provided frequency, will return a
JavaScript object containing two values:

number: This is the number from the guitar string which was most likely pressed
delta: This is the difference between the frequency provided and the tuned
frequency for the guitar string which was most likely pressed

We will also export a list of colors and their hex representation which will be used by some
user interface components to keep consistency throughout the app.

Guitar Tuner

[160]

After invoking getClosestString, we have enough information to build the state in our
app. Of course, we need to provide this data to the tuner (to show how well-tuned the
guitar string is) and to the string's representation (to show what guitar string was pressed).
Let's take a look at the entire root component to see how this data is spread among
components:

/*** index.ios.js ***/

import React, { Component } from 'react';
import {
 AppRegistry,
 StyleSheet,
 Image,
 View,
 NativeModules,
 Animated,
 Easing,
 StatusBar,
 Text
} from 'react-native';
import Tuner from './src/components/Tuner';
import Strings from './src/components/Strings';
import { getClosestString, colors } from './src/utils/';

var FrequencyDetector = NativeModules.FrequencyDetector;

export default class guitarTuner extends Component {
 state = {
 delta: null,
 activeString: null
 }

 componentWillMount() {
 FrequencyDetector.initialise();
 setInterval(() => {
 FrequencyDetector.getFrequency((res, freq) => {
 let stringData = getClosestString(parseInt(freq));
 if(!stringData) {
 this.setState({
 delta: null,
 activeString: null
 });
 } else {
 this.setState({
 delta: stringData.delta,
 activeString: stringData.number
 });

Guitar Tuner

[161]

 }
 });
 }, 500);
 }

 render() {
 return (
 <View style={styles.container}>
 <StatusBar barStyle="light-content"/>
 <Tuner delta={this.state.delta} />
 <Strings activeString={this.state.activeString}/>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 backgroundColor: colors.black,
 flex: 1
 }
});

AppRegistry.registerComponent('guitarTuner', () => guitarTuner);

We will use two components to render the current pressed string (<Strings/>) and how
tuned the pressed string is (<Tuner/>).

On top of that, we are using a React Native component named <StatusBar/>.
<StatusBar/> allows the developer to choose the colors the app will show in the top bar
where the carrier, time, battery level, and so on, are displayed:

As we want our app to have a black background, we decided to use a light-content bar
style. This component allows us to hide the bar completely, change its background color
(Android only), or hide network activity, among other options.

Let's move now to the components displaying all the visual components. We will start with
<Tuner/>.

Guitar Tuner

[162]

Tuner
Our <Tuner/> component comprises two elements: a background image dividing the
screen into segments and an indicator which will move according to how well tuned the
guitar string played is. To make it user-friendly, we will use animations to move the
indicator, similar to the way analog tuners behave:

/*** src/components/Tuner/index ***/

import React, { Component } from 'react';
import {
 StyleSheet,
 Image,
 View,
 Animated,
 Easing,
 Dimensions
} from 'react-native';

import { colors } from '../utils/';

var {height, width} = Dimensions.get('window');

export default class Tuner extends Component {
 state = {
 xIndicator: new Animated.Value(width/2)
 }

 static propTypes = {
 delta: React.PropTypes.number
 }

 componentWillReceiveProps(newProps) {
 if(this.props.delta !== newProps.delta) {
 Animated.timing(
 this.state.xIndicator,
 {
 toValue: (width/2) + (newProps.delta*width/2)/100,
 duration: 500,
 easing: Easing.elastic(2)
 }
).start();
 }
 }

 render() {

Guitar Tuner

[163]

 let { xIndicator } = this.state;

 return (
 <View style={styles.tunerContainer}>
 <Image source={require('../../img/tuner.jpg')}
 style={styles.tuner}/>
 <Animated.Image source={require('../../img/indicator.jpg')}
 style={[styles.indicator, {left: xIndicator}]}/>
 </View>
)
 }
}

const styles = StyleSheet.create({
 tunerContainer: {
 flex: 1,
 backgroundColor: colors.black,
 marginTop: height * 0.05
 },
 tuner: {
 width,
 resizeMode: 'contain'
 },
 indicator: {
 position: 'absolute',
 top: 10
 }
});

We will use a component's state variable for the animation named xIndicator, which
will store the value (in an animated way) of the position where the indicator should be.
Remember, the closer to the center, the better tuned the string will be. We will update this
value every time we receive a new delta prop from its parent using
the componentWillReceiveProps method and the Animated.timing function to ensure
the image is animated. To make it more realistic, we also added an easing function which
will make the indicator bounce, a bit like a real analog indicator.

We also added a propTypes static attribute to our class for type checking. We will make
sure this way our component receives a delta in the proper format.

Finally, remember how we exported a list of colors and their hex value in the utils file?
We are using it here to show what color the background of this component will be.

Guitar Tuner

[164]

Strings
The last component is a representation of the six strings of a guitar. When our
FrequencyDetector native module detects which frequency is played, we will display
which string has the ability to emit the closest frequency by changing the note's container
border to green here:

Therefore, we need to accept one prop from its parent: the number of the active guitar
string. Let's take a look at the code for this simple component:

/*** src/components/Strings ***/

import React, { Component } from 'react';
import {
 StyleSheet,
 Image,
 View,
 Text
} from 'react-native';

import { colors } from '../utils/';

const stringNotes = ['E','A','D','G','B','E'];

export default class Strings extends Component {
 static propTypes = {
 activeString: React.PropTypes.number
 }

Guitar Tuner

[165]

 render() {
 return (
 <View style={styles.stringsContainer}>
 {
 stringNotes.map((note, i) => {
 return (
 <View key={i} style={styles.stringContainer}>
 <Image source={require('../../img/string.jpg')}
 style={styles.string}/>
 <View style={[styles.noteContainer,
 {borderColor: (this.props.activeString === (i+1))
 ? '#3bd78b' : '#f3c556'}]}>
 <Text style={styles.note}>
 {note}
 </Text>
 </View>
 </View>
)
 })
 }
 </View>
);
 }
}

const styles = StyleSheet.create({
 stringsContainer: {
 borderTopColor: colors.green,
 borderTopWidth: 5,
 justifyContent: 'space-around',
 flexDirection: 'row'
 },
 stringContainer: {
 alignItems: 'center'
 },
 note: {
 color: 'white',
 fontSize: 19,
 textAlign: 'center'
 },
 noteContainer: {
 top: 50,
 height: 50,
 width: 50,
 position: 'absolute',
 padding: 10,
 borderColor: colors.yellow,
 borderWidth: 3,

Guitar Tuner

[166]

 borderRadius: 25,
 backgroundColor: colors.black
 }
});

We are rendering six images, one per guitar string, and justifying them using space-
around to distribute them across the entire device screen, leaving two small spaces on both
sides. We use a constant array containing the notes for each of the strings in a guitar to map
them into the string representation. We will also use the prop activeString received from
its parent to decide if we should show a yellow or a green border for each note.

We are again using propTypes to check the type of the provided prop (a number in this
case).

This is all the code we need to build our guitar tuner. Let's add an icon and a splash screen
now to make the app ready for submission to the App Store.

Adding an icon
Once we have our icon designed and saved as a large image, we need to resize it to all the
formats Apple requires. In general, these are the sizes required:

20 x 20 px (iPhone Notification 2x)
60 x 60 px (iPhone Notification 3x)
58 x 58 px (iPhone Spotlight - iOS 5,6 2x)
67 x 67 px (iPhone Spotlight - iOS 5,6 3x)
80 x 80 px (iPhone Spotlight - iOS 7-10 2x)
120 x 120 px (iPhone Spotlight - iOS 7-10 3x && iPhone App ios 7-10 2x)
180 x 180 px (iPhone App ios 7-10 3x)

Since this is a very tedious process, we can use one of the online tools which automate all
the resizing tasks by providing an image large enough. One of the most popular tools can
be found at https:/ /resizeappicon. com/ .

https://resizeappicon.com/
https://resizeappicon.com/
https://resizeappicon.com/
https://resizeappicon.com/
https://resizeappicon.com/
https://resizeappicon.com/
https://resizeappicon.com/
https://resizeappicon.com/

Guitar Tuner

[167]

Once we have our icon in the proper sizes, we need to add them to our XCode project. We
will do this by clicking on Images.xcassets in XCode and adding each image with its
corresponding size to each asset in this window:

The next time we compile our app, we will see our new icon in the simulator (use command
+ Shift + H to show the home screen).

Adding a launch screen
The launch screen is an image iOS displays while your app is loading. There are several
techniques to make this introduction pleasant for the user, like showing a preview of the
user interface the user will see once the app is loaded. However, we will take a simpler
approach: we will display the app logo with its title.

Guitar Tuner

[168]

The easiest and more flexible way to do this is to use the interface builder in XCode by
clicking on LaunchScreen.xib:

An interface builder is a WYSIWYG tool, which helps developers building responsive
screens by dragging and dropping components into a container. We kept it simple and just
added a label with the name of the app and the same logo we used on the app icon.

Another option could be to upload images as launch screens and remove the
LaunchScreen.xib file, but then we would run the risk of stretching the images
depending on which device the app is run, so the recommended approach is always to use
the interface builder for launch screens.

Guitar Tuner

[169]

Disabling the landscape mode
When testing our app, we need to test both landscape and portrait modes as both will be
enabled by default. In the case of this app, we don't really need to have a landscape mode as
it doesn't add any extra value to the portrait mode. Having decided this point, we need to
disable the landscape mode to ensure we don't have any odd behavior in our user interface
if the user orients the device as though for landscape mode. We will do this in XCode
through the General tab when selecting the root of our project:

We need to uncheck both Landscape Left and Landscape Right options to allow only
portrait mode in all cases.

Guitar Tuner

[170]

Summary
The main challenge of this app was accessing a native module written in Objective-C from
our JavaScript code. Fortunately, React Native has the means to ease the communication
between those two worlds with relatively few lines of code.

We focused only on iOS for this app, but the reality is that building the same app in
Android should follow a very similar process taking into account that we should build our
native module in Java instead of Objective-C. Besides, we learned the process of including
an icon and a launch screen in our app to complete the development cycle prior to release.

As we only had one screen in our app, we opted not to use any routing or state
management libraries, which enabled us to keep the focus on the communication between
our JavaScript code and the native module we implemented.

We also created some animations to emulate an analog tuner which gives an attractive and
fun look to this app.

Besides the icon and the launch screen, we also took care of another visual element, which is
important in many apps: the status bar. We saw how easy it is to change its content colors
depending on what our app looks like. In this case, we opted for a dark background, so we
needed light content in the status bar, although some apps (like games) may look better
with no status bar at all.

We will move to a different kind of app in the next chapter: a messaging app.

6
Messaging App

One-to-one communication is the main use for mobile phones although, text messaging has
been quickly replaced by direct messaging apps. In this chapter, we will build a messaging
app in React Native with the support of Firebase, a mobile backend as a service that will
free us from having to build a whole backend for our app. Instead, we will focus on
handling the state of our app fully from the frontend. Of course, this may have security
implications that need to be eventually tackled, but to keep the focus of this book on React
Native's capabilities, we will stick with the approach of keeping all the logic inside our app.

Firebase is a real-time database built on self-synching collections of data, it plays very well
with MobX, so we will use it again for controlling the state of our app. But in this chapter,
we will dive deeper as we will build larger data stores, which will be injected in our
component tree through the mobx-react connectors.

We will build the app to be used both with iOS and Android having some platform-specific
code for navigation (we will use tabbed navigation for iOS and drawer navigation for
Android).

To reduce the size of the code, in this chapter, we will set the focus on functionality rather
than design. Most of the user interface will be plain and simple, but trying to keep usability
in mind. Moreover, we will use a react-native-gifted chat for our chat screen--a pre-
built React Native component to render chat rooms based on a list of messages.

Messaging App

[172]

Overview
A messaging app requires more work than the apps we reviewed in previous chapters, as it
needs a user management system comprising of logging in, registering, and logging out.
We will reduce the complexity of building this system using Firebase as a backend.
Together with its user management system, we will use their push notifications system to
notify users when new messages are sent to them. Firebase also gives an analytics platform,
a lambda functions service, and a storage system for free, but the feature we will take the
most profit from is their real-time database. We will store our user's profile, messages, and
chats data there.

Let's take a look at what our app will look like to have a mental image of the screens we will
be building:

Messaging App

[173]

First screen will be a login/registration screen because we need our users to provide a name
and some credentials to attach their device to a specific account, so they can receive push
notifications for each message they need to receive. Both authentication methods are
validated using Firebase's API and would result in the chats screen when they are
successful:

Messaging App

[174]

When pressing a contact in the contacts list, the app will display the conversation with the
selected contact in the chat screen:

Messaging App

[175]

The chats screen will show up all the chats that were started for the logged in user. Initially,
this screen will be empty as the user won't have initiated any chats. To start a conversation,
the user should go to the search screen in order to find some contacts:

This is a simple screen where the user can enter the contact name to search for it in the
database. If there is a match on the name of the contact; the user will be able to tap on it to
get the conversation started. From that point on, the conversation will show in the
chat screen.

Messaging App

[176]

The last screen is the profile screen:

This screen is just a mean to log the current user out. When extending the app, we could
add more features such as changing the avatar or the username.

While the app will look very similar on Android, navigation will be replaced by a drawer
from which all the screens will be available. Let's take a look at the Android version:

Messaging App

[177]

The login/registration screen has standard text input and button components for Android:

Messaging App

[178]

Once the user logs in, he/she can navigate through all the screens by opening the drawer
through the sliding finger gesture. The screen that opens by default after login is the chats
screens where we will list the list of open conversations the user has:

Messaging App

[179]

From this screen, the user can press a specific conversation to list the messages on it:

Messaging App

[180]

The next screen is the search screen, which will be used to search for other users and start
conversations with them:

Messaging App

[181]

The last screen is the profile screen where the LOGOUT button can be found:

The app will work on both platforms in portrait and landscape mode out of the box:

Messaging App

[182]

As we can imagine, this app will require of a powerful backend environment to store our
users, messages, and statuses. Moreover, we will require a Push Notifications platform to
notify users when they receive any messages. Since we are focusing in React Native in this
book, we will delegate all this backend work to one of the most popular Mobile Backend as
a Services (MBaaS) in the mobile world: Firebase

Before start coding, we will spend some time setting up our Firebase's push notifications
service and real-time database to better understand what kind of data we will be dealing
with in our app.

In summary, we will go through the following topics in this chapter:

Complex Redux in React Native
Firebase real-time database
Firebase push notifications
Firebase user management
Forms

Let's start by reviewing the data models we will be using and how our app will connect
with Firebase for syncing its data.

Firebase
Firebase is a Mobile Backend as a Service (MBaaS), which means that it provides mobile
developers with all the backend necessities, such as user management, no SQL database,
and a push notification server. It integrates easily with React Native through an official
node package, which brings the database connection for free. Unfortunately, Firebase
doesn't offer a JavaScript SDK for their push notifications service, but there are several
React Native libraries filling that gap by bridging Firebase's iOS and Java SDKs with a
JavaScript interface. We will be using react-native-fcm as it is the most mature in its
field.

Before building an app on top of a Firebase MBaaS, you need to create a project for it. This
is a free process that is explained in Firebase's website https:/ / firebase. google. com/ .
Although this process is not directly related to React Native, it's a good starting point to
understand how to set up and use a MBaaS for our apps. Most of the configuring can be
finished in a matter of minutes just by following the tutorials available on Firebase's
documentation site. The benefits of setting up this MBaaS make those minutes worth the
time and initial hassle.

https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/

Messaging App

[183]

To set up Firebase and connect our app to the correct project, we need to use the
configuration for the web snippet we can find in the Settings screen inside our
Firebase project's dashboard. We added this initialization snippet on src/firebase.js:

import firebase from 'firebase';

var firebaseConfig = {
 apiKey: "<Your Firebase API key>",
 authDomain: "<Your Firebase Auth domain>",
 databaseURL: "<Your Firebase database URL>",
 projectId: "<Your Firebase projectId>",
 storageBucket: "<Your Firebase storageBucket>",
 messagingSenderId: "<Your messaging SenderId>"
};

export const firebaseApp = firebase.initializeApp(firebaseConfig);

Once the project is set up, we can start taking a look at how our database is going to be
structured.

Real-time database
Firebase allows mobile developers to store and sync data between users and devices in real
time using a cloud-hosted, noSQL database. Updated data syncs across connected devices
in milliseconds and data remains available if your app goes offline, providing a great user
experience regardless of network connectivity.

Three data models come into the picture when thinking about the basic data a one-to-one
communication app should handle:

users: This will store avatars, names, and push notification tokens. There is no
need to store authentication data here as it is handled through a different
Firebase API (authentication API).
messages: We will save each message on each chat room separately for easy
retrieval using the chat room ID as a key.
chats: All the information about the opened chats will be stored here.

Messaging App

[184]

To understand how we will request and use the data in our app, let's see a gist of the
example data we can actually use for testing:

{
 "chats" : {
 "--userId1--" : {
 "--userId2----userId1--" : {
 "contactId" : "--userId2--",
 "image" : "https://images.com/person2.jpg",
 "name" : "Jason"
 }
 },
 "--userId2--" : {
 "--userId2----userId1--" : {
 "contactId" : "--userId1--",
 "image" : "https://images.com/person1.jpg",
 "name" : "John"
 }
 }
 },
 "messages" : {
 "--userId2----userId1--" : {
 "-KpEwU8sr01vHSy3qvRY" : {
 "_id" : "2367ad00-301d-46b5-a7b5-97cb88781489",
 "createdAt" : 1500284842672,
 "text" : "Hey man!",
 "user" : {
 "_id" : "--userId2--",
 "name" : "Jason"
 }
 }
 }
 },
 "users" : {
 "--userId1--" : {
 "name" : "John",
 "notificationsToken" : ""
 },
 "--userId2--" : {
 "name" : "Jason",
 "notificationsToken" : "--notificationsId1--"
 }
 }
}

Messaging App

[185]

We organized our data in a way it will be easy for the messaging app to retrieve and
synchronize. Instead of normalizing the data structure, we introduced some data
duplication to increase speed during data retrieval and simplify the frontend code to the
maximum.

The users collection holds the users' data using the user ID as a key (--user1--, and --
user2--). These user IDs are retrieved automatically by Firebase during registration/login.
Each user has a notification token, which is an identifier for the device the user is logged in
with the push notifications service. When the user logs out, the notifications token is
removed, so messages sent to this user will be stored, but not notified to any device.

The chats collection stores each user's chat list by user ID. Each chat has its own ID (a
concatenation of both user IDs) and will be duplicated as every user on that chat should
have a copy of the chat data. In each copy, there is enough information for the other user to
build up their chat screen.

The messages collection is stored in a separate collection, which can be referenced by that
ID. Each chat ID points to a list of messages (only one in this example) where all the data
needed by the chat screen is stored. There is also some duplication in this collection as some
user data is stored together with each message to reduce the number of requests needed
when building a chat screen.

A full tutorial on how to read and write data in Firebase's real-time database can be found
on their website (https:/ /firebase. google. com/ docs/ database/), but we will take a quick
look at the methods we will be using in this chapter.

Reading data from Firebase's database
There are two ways for retrieving data from Firebase's database. The first one sets a listener
that will be called every time the data changes, so we only need to set it up once for the
entire lifetime of our app:

firebaseApp.database().ref('/users/' + userId).on('value', (snapshot) => {
 const userObj = snapshot.val();
 this.name = userObj.name;
 this.avatar = userObj.avatar;
});

https://firebase.google.com/docs/database/
https://firebase.google.com/docs/database/
https://firebase.google.com/docs/database/
https://firebase.google.com/docs/database/
https://firebase.google.com/docs/database/
https://firebase.google.com/docs/database/
https://firebase.google.com/docs/database/
https://firebase.google.com/docs/database/
https://firebase.google.com/docs/database/
https://firebase.google.com/docs/database/
https://firebase.google.com/docs/database/
https://firebase.google.com/docs/database/
https://firebase.google.com/docs/database/
https://firebase.google.com/docs/database/

Messaging App

[186]

As we can see, in order to retrieve a snapshot of data, we need to call the database()
method in our firebaseApp object (the one we created in our src/firebase.js file).
Then, we will have a database object where we can call the ref('<uri>') on it passing
the URI, where the data is stored. That will return a reference to the piece of data pointed by
that URI. We can go for the on('value', callback) method, which will attach a callback
passing the snapshot of data. Firebase always returns objects as snapshots, so we need to
transform them into plain data ourselves. In this example, we want to retrieve an object
with two keys (name and avatar), so we only need to call the val() method on the
snapshot to retrieve a plain object containing the data.

If we don't need the retrieved data to be automatically synched every time it is updated, we
could have used the once() method instead of on():

import firebase from 'firebase';
import { firebaseApp } from '../firebase';

firebaseApp.database().ref('/users/' + userId).once('value')
.then((snapshot) => {
 const userObj = snapshot.val();
 this.name = userObj.name;
 this.avatar = userObj.avatar;
});

The callback receiving snapshot will only be called once.

Updating data in Firebase's database
Writing data in a Firebase database can also be done in two different ways:

firebaseApp.database().ref('/users/' + userId).update({
 name: userName
});

update() changes the object referenced by the supplied URI according to the keys and
values passed as a parameter. The rest of the object is left intact.

On the other hand, set() will replace the object in the database with the one we provide as
a parameter:

firebaseApp.database().ref('/users/' + userId).set({
 name: userName,
 avatar: avatarURL
});

Messaging App

[187]

Finally, if we want to add a new snapshot of data but we want Firebase to generate an ID
for it, we can use the push method:

firebaseApp.database().ref('/messages/' + chatId).push().set(message);

Authentication
We will use Firebase authentication services, so we don't need to worry about storing login
credentials, handling forgotten passwords, or verifying emails on our side. These and other
related tasks come for free with Firebase authentication services.

In order to activate login and registration through email and password, we need to enable
this method as a session sign-in method in our Firebase dashboard. More information about
how to do this can be found on Firebase's website at https:/ / firebase. google. com/ docs/
auth/web/password- auth.

In our app, we only need to use the provided Firebase SDK for login:

firebase.auth().signInWithEmailAndPassword(username, password)
 .then(() => {
 //user is logged in
 })
 .catch(() => {
 //error logging in
 })
})

For registration, we can use the following code:

firebase.auth().createUserWithEmailAndPassword(email, password)
.then((user) => {
 //user is registered
})
.catch((error) => {
 //error registering
})

All the token handling will be taken care of by Firebase, and we only need to add a listener
to make sure our app is updated when the authentication status changes:

firebase.auth().onAuthStateChanged((user) => {
 //user has logged in or out
}

https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth
https://firebase.google.com/docs/auth/web/password-auth

Messaging App

[188]

Setting up the folder structure
Let's initialize a React Native project using React Native's CLI. The project will be named
messagingApp and will be available for iOS and Android devices:

react-native init --version="0.45.1" messagingApp

We will be using MobX to manage state in our app, so we will need a folder for our stores.
The rest of the folder structure is standard to most React apps:

Messaging App

[189]

We need five screens (Chats, Chat, Login, Profile, and Search), a component
(ListItem) and two stores (chats and users), which will be available through the
stores/index.js file. There are also two helpers that we will be using to support our app:

notifications.js: All the logic related to push notifications will be stored in
this file
firebase.js: This includes the configuration and initialization of Firebase SDK

Since we will be using MobX and several other dependencies, let's take a look at our
package.json file to understand what packages we will be using:

/*** package.json ***/

{
 "name": "messagingApp",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node node_modules/react-native/local-cli
 /cli.js start",
 "test": "jest"
 },
 "dependencies": {
 "firebase": "^4.1.3",
 "mobx": "^3.2.0",
 "mobx-react": "^4.2.2",
 "react": "16.0.0-alpha.12",
 "react-native": "0.45.1",
 "react-native-fcm": "^7.1.0",
 "react-native-gifted-chat": "^0.2.0",
 "react-native-keyboard-aware-scroll-view": "^0.2.9",
 "react-native-vector-icons": "^4.2.0",
 "react-navigation": "^1.0.0-beta.11"
 },
 "devDependencies": {
 "babel-jest": "20.0.3",
 "babel-plugin-transform-decorators-legacy": "^1.3.4",
 "babel-preset-react-native": "2.1.0",
 "jest": "20.0.4",
 "react-test-renderer": "16.0.0-alpha.12"
 },
 "jest": {
 "preset": "react-native"
 }
}

Messaging App

[190]

Some of the npm packages we will be using are:

firebase: Firebase's SDK for authentication and database connection
mobx: MobX will handle our app state
react-native-fcm: Firebase's SDK for push messaging
react-native-gifted-chat: A library for rendering chat rooms including date
separation, avatars, and many other features
react-native-keyboard-aware-scroll-view: A library that ensures the on-
screen keyboard doesn't hide any focused text input when working with forms
react-native-vector-icons: We will use Font Awesome icons for this app
react-navigation: We will have a drawer, a tabbed, and a stack navigator
handling the screens in our app
babel-plugin-transform-decorators-legacy: This library allows us to use
decorators (with the legacy @ syntax) which is quite useful when working with
MobX

After running npm install, we will have our app ready to start coding. As it happened in
previous apps, the entry point for our messaging app will be the same code both in
 index.ios.js for iOS and in index.android.js for Android:

/*** index.ios.js and index.android.js ***/

import React from 'react'
import { AppRegistry } from 'react-native';
import App from './src/main';

import { Provider } from 'mobx-react/native';
import { chats, users } from './src/stores';

class MessagingApp extends React.Component {
 render() {
 return (
 <Provider users={users} chats={chats}>
 <App/>
 </Provider>
)
 }
}

AppRegistry.registerComponent('messagingApp', () => MessagingApp);

Messaging App

[191]

This is a standard way to start up a React Native app working with MobX--a <Provider
/> is supplied as the root element to inject the two stores (users and chats) into the
screens in our app. All the initializing and navigation logic has been deferred to the
src/main.js file:

/*** src/main.js ***/

import React from 'react'
import { DrawerNavigator,TabNavigator } from 'react-navigation'
import { Platform, View } from 'react-native'
import { observer, inject } from 'mobx-react/native'

import Login from './screens/Login'
import Chats from './screens/Chats'
import Profile from './screens/Profile'
import Search from './screens/Search'
import { users, chats } from './stores'

let Navigator;
if(Platform.OS === 'ios'){
 Navigator = TabNavigator({
 Chats: { screen: Chats },
 Search: { screen: Search },
 Profile: { screen: Profile }
 }, {
 tabBarOptions: {
 inactiveTintColor: '#aaa',
 activeTintColor: '#000',
 showLabel: true
 }
 });
} else {
 Navigator = DrawerNavigator({
 Chats: { screen: Chats },
 Search: { screen: Search },
 Profile: { screen: Profile }
 });
}

@inject('users') @observer
export default class App extends React.Component {
 constructor() {
 super();
 }

 render() {
 if(this.props.users.isLoggedIn){

Messaging App

[192]

 return <Navigator/>
 } else {
 return <Login/>
 }
 }
}

The first thing we can see on the src/main.js file is that we will use different navigators,
depending on which platform we are running the app: iOS will open a tabbed navigator,
while Android will open a drawer-based navigator.

Then, we see a line we will be repeating in many components in our app:

@inject('users') @observer

This is the way to tell MobX this component needs to receive the users store. MobX will
then pass it as a prop to this component and therefore we can use all the methods and
attributes it holds. In this case, we are interested in the isLoggedIn attribute to present the
user with the <Login /> screen if they are still not logged in. Since MobX will inject this
attribute as a property in our component, the right way to access it will
be this.props.users.isLoggedIn.

Before continuing building components, let's take a look at the stores we will be using
throughout this chapter to better understand what data and actions are available.

Users store
This store is responsible for holding all the data and logic surrounding users, but also helps
the chats store initializing when a user is logged in:

/*** src/stores/users.js ***/

import {observable, computed, map, toJS, action} from 'mobx';
import chats from './chats'
import firebase from 'firebase';
import { firebaseApp } from '../firebase';
import notifications from '../notifications'

class Users {
 @observable id = null;
 @observable isLoggedIn = false;
 @observable name = null;
 @observable avatar = null;
 @observable notificationsToken = null;

Messaging App

[193]

 @observable loggingIn = false;
 @observable registering = false;
 @observable loggingError = null;
 @observable registeringError = null;

 @action login = function(username, password) {
 //login with Firebase email/password method
 }

 @action logout = function() {
 //logout from Firebase authentication service
 }

 @action register = function(email, password, name) {
 //register through firebase authentication service
 }

 @action setNotificationsToken(token) {
 //store the notifications token for this device
 }

 searchUsers(name) {
 //helper for searching users by name in the database
 }

 constructor() {
 this.bindToFirebase();
 }

 bindToFirebase() {
 //Initialise connection to Firebase user
 //authentication status and data
 }
}

const users = new Users();

export default users;

These are all the attributes and methods we need for this store. There are several flags
(those attributes containing a verb in its -ing form) to note network activity. Let's implement
each method now:

@action login = function(username, password) {
 this.loggingIn = true;
 this.loggingError = null;
 firebase.auth().signInWithEmailAndPassword(username, password)
 .then(() => {

Messaging App

[194]

 this.loggingIn = false;
 notifications.init((notificationsToken) => {
 this.setNotificationsToken(notificationsToken);
 });
 })
 .catch((error) => {
 this.loggingIn = false;
 this.loggingError = error.message;
 });
}

Logging in with Firebase is as simple as calling signInWithEmailAndPassword on their
authentication SDK. If the login is successful, we will initialize the notifications module to
enable the device to receive push notifications. We will follow the opposite path on logout:

@action logout = function() {
 notifications.unbind();
 this.setNotificationsToken('');
 firebase.auth().signOut();
}

In the registration action, besides setting the appropriate flags for network activity, we need
to validate the user entered a name, initialize the notifications, and store the name in the
database:

@action register = function(email, password, name) {
 if(!name || name == '') {
 this.registering = false;
 this.registeringError = 'Name was not entered';
 return;
 }
 this.registering = true;
 this.registeringError = null;
 firebase.auth().createUserWithEmailAndPassword(email, password)
 .then((user) => {
 this.registering = false;
 notifications.init((notificationsToken) => {
 this.setNotificationsToken(notificationsToken);
 });
 firebaseApp.database().ref('/users/' + user.uid).set({
 name: name
 });
 })
 .catch((error) => {
 this.registering = false;
 this.registeringError = error.message;
 })
}

Messaging App

[195]

Setting the notification token is just a simple update in the database:

@action setNotificationsToken(token) {
 if(!this.id) return;
 this.notificationsToken = token;
 firebaseApp.database().ref('/users/' + this.id).update({
 notificationsToken: token
 });
}

searchUsers() is not marked as @action, as it won't modify the state of our app, but only
search and return a list of users with the provided name in the database:

searchUsers(name) {
 return new Promise(function(resolve) {
 firebaseApp.database().ref('/users/').once('value')
 .then(function(snapshot) {
 let foundUsers = [];
 const users = snapshot.val();
 for(var id in users) {
 if(users[id].name === name) {
 foundUsers.push({
 name: users[id].name,
 avatar:
 users[id].avatar,
 notificationsToken:
 users[id].
 notificationsToken,
 id
 });
 }
 }
 resolve(foundUsers);
 });
 });
}

We will return the result as a promise, due to the asynchronous nature of the request we are
making.

Messaging App

[196]

Finally, bindToFirebase() will attach the attributes in this store to data snapshots in
Firebase's database. This method is called by the constructor, so it serves as initialization for
the user data. It's important to note that this data will be updated when the authentication
status changed to always reflect the most up to date data for the user:

bindToFirebase() {
 return firebase.auth().onAuthStateChanged((user) => {
 if(this.chatsBind && typeof this.chatsBind.off === 'function')
 this.chatsBind.off();
 if(this.userBind && typeof this.userBind.off === 'function')
 this.userBind.off();

 if (user) {
 this.id = user.uid;
 this.isLoggedIn = true;
 this.chatsBind = chats.bindToFirebase(user.uid);
 this.userBind = firebaseApp.database().ref('/users/' + this.id).
 on('value', (snapshot) =>
 {
 const userObj = snapshot.val();
 if(!userObj) return;
 this.name = userObj.name;
 this.avatar = userObj.avatar;
 });
 } else {
 this.id = null;
 this.isLoggedIn = false;
 this.userBind = null;
 this.name = null;
 this.avatar = null;
 }
 });
}

We will store the listeners for the chat data (as this.chatsBind) and for the user data (as
this.userBind), so we can remove them (by calling the off() method) before attaching
new listeners on every auth state change.

Messaging App

[197]

Chats store
This store is responsible for holding all the data and logic surrounding chats and messages,
but it also helps the chats store initializing when a user is logged in:

/*** src/stores/chats.js ***/

import { observable, computed, map, toJS, action } from 'mobx';
import { AsyncStorage } from 'react-native'

import { firebaseApp } from '../firebase'
import notifications from '../notifications'

class Chats {
 @observable list;
 @observable selectedChatMessages;
 @observable downloadingChats = false;
 @observable downloadingChat = false;

 @action addMessages = function(chatId, contactId, messages) {
 //add a list of messages to a chat
 }

 @action selectChat = function(id) {
 //set a chat as selected and retrieve all the messages for it
 }

 @action add(user1, user2) {
 //add a new chat to the list of chats for the users in it
 }

 bindToFirebase(userId) {
 //listen for the list of chats in Firebase to update the
 @observable list
 }
}

const chats = new Chats()
export default chats;

We will store the list of open chats the user has in @observable list. When a user selects
one chat, we will download and synchronize the list of messages on that chat
to @observable selectedChatMessages. Then, we will have a couple of flags to let the
user know when we are downloading data from the Firebase database.

Messaging App

[198]

Let's take a look at each method individually. We will start with addMessages:

@action addMessages = function(chatId, contactId, messages) {
 if(!messages || messages.length < 1) return;

 messages.forEach((message) => {
 let formattedMessage = {
 _id: message._id,
 user: {
 _id: message.user._id,
 }
 };
 if(message.text) formattedMessage.text = message.text;
 if(message.createdAt) formattedMessage.createdAt =
 message.createdAt/1;
 if(message.user.name) formattedMessage.user.name =
 message.user.name;
 if(message.user.avatar) formattedMessage.user.avatar =
 message.user.avatar;
 if(message.image) formattedMessage.image = message.image;

 //add the message to the chat
 firebaseApp.database().ref('/messages/' +
 chatId).push().set(formattedMessage);

 //notify person on the chat room
 firebaseApp.database().ref('/users/' + contactId).once('value')
 .then(function(snapshot) {
 var notificationsToken = snapshot.val().notificationsToken;
 notifications.sendNotification(notificationsToken, {
 sender: message.user.name,
 text: message.text,
 image: message.user.image,
 chatId
 });
 });
 });
}

This method receives three parameters:

chatId: The ID for the chat in which the messages will be added.
contactId: The ID for the user to whom we are sending the message. This will
be used to send a notification to the user's contact.
messages: This is an array with all the messages we want to add to the chat.

Messaging App

[199]

We will loop through the list of messages, formatting the message the way we want to store
it. Then, we will call the set() method on a database reference to save the new message in
Firebase's database. Finally, we need to send the notification to our contact, so we retrieve
their notifications token by querying the users collection by their contactId.

Sending notifications is normally handled by the backend, but since we are setting all the
logic on the app itself, we need to build a function to send notifications. We have done this
in our notifications
module: notifications.sendNotification(notificationsToken, data);.

Let's see what happens when we select a chat to display the messages for it:

@action selectChat = function(id) {
 this.downloadingChat = true;
 if(this.chatBind && typeof this.chatBind.off === 'function')
 this.chatBind.off();
 this.chatBind = firebaseApp.database().ref('/messages/' + id)
 .on('value', (snapshot) => {
 this.selectedChatMessages = [];
 this.downloadingChat = false;
 const messagesObj = snapshot.val();
 for(var id in messagesObj) {
 this.selectedChatMessages.push({
 _id: id,
 text: messagesObj[id].text,
 createdAt: messagesObj[id].createdAt,
 user: {
 _id: messagesObj[id].user._id,
 name: messagesObj[id].user.name,
 avatar: messagesObj[id].user.avatar
 },
 image: messagesObj[id].image
 });
 }
 });
}

The main piece of functionality here is attaching a listener to the messages/chat ID
collection, which will sync the this.selectedChatMessages observable with the list of
messages for the selected chat in the database. This means that every time a new message is
stored in Firebase, this.selectedChatMessages will be synced to reflect it. This is how
the on() method in the Firebase SDK works: we pass a callback, which we can use to
synchronize the real-time database with our app's state.

Messaging App

[200]

Adding a new chat will be done using the add() method:

@action add(user1, user2) {
 return new Promise(function(resolve, reject) {
 firebaseApp.database().ref('/chats/' + user1.id + '/' + user1.id +
 user2.id).set({
 name: user2.name,
 image: user2.avatar,
 contactId: user2.id
 }).then(() => {
 firebaseApp.database().ref('/chats/' + user2.id + '/'
 + user1.id +
 user2.id).set({
 name: user1.name,
 image: user1.avatar,
 contactId: user1.id
 }).then(() => {
 resolve();
 })
 })
 });
}

Here, we are building and returning a promise that will be resolved when the two chats
(one per each user participating in the chat) are updated. These two database updates can
be seen as the duplication of data, but it will also reduce the data structure complexity and
therefore our code base readability.

The last method in this store is bindToFirebase():

bindToFirebase(userId) {
 this.downloadingChats = true;
 return firebaseApp.database().ref('/chats/' + userId).
 on('value', (snapshot) => {
 this.downloadingChats = false;
 const chatsObj = snapshot.val();
 this.list = [];
 for(var id in chatsObj) {
 this.list.push({
 id,
 name: chatsObj[id].name,
 image: chatsObj[id].image,
 contactId: chatsObj[id].contactId
 });
 }
 });
}

Messaging App

[201]

As we saw in our users store, this method will be called when the user logs in and attaches
a listener to the chats/<userId> snapshot of data to keep all the chats data synched with
the database on the this.list attribute.

As a convenience, we will group both stores in src/stores/index.js, so we can import
them both on one line of code:

/*** src/stores/index.js ***/

import users from './users';
import chats from './chats';

export {
 users,
 chats
};

This is all about the stores we will be using. As we can see, most of the business logic is
handled here so it can be thoroughly tested. Let's move now to the helper we will use for
notifications.

Push notifications using Firebase
Firebase incorporates a push notification service for iOS and Android, but it unfortunately
doesn't provide any JavaScript on their SDK to use it. For this matter, an open source library
was created bridging the Objective-C and Java SDKs into a React Native module: react-
native-fcm.

We won't cover the installation of this module in this book, as it's a changing process that
can be better followed on its repository at https:/ /github. com/ evollu/ react- native- fcm.

We decided to abstract the logic for this module on our src/notifications.js file to
make it available for every component while keeping its maintainability. Let's take a look at
this file:

/*** src/notifications.js ***/

import {Platform} from 'react-native';
import FCM, {FCMEvent, RemoteNotificationResult,
WillPresentNotificationResult, NotificationType} from 'react-native-fcm';

let notificationListener = null;
let refreshTokenListener = null;
const API_URL = 'https://fcm.googleapis.com/fcm/send';

https://github.com/evollu/react-native-fcm
https://github.com/evollu/react-native-fcm
https://github.com/evollu/react-native-fcm
https://github.com/evollu/react-native-fcm
https://github.com/evollu/react-native-fcm
https://github.com/evollu/react-native-fcm
https://github.com/evollu/react-native-fcm
https://github.com/evollu/react-native-fcm
https://github.com/evollu/react-native-fcm
https://github.com/evollu/react-native-fcm
https://github.com/evollu/react-native-fcm
https://github.com/evollu/react-native-fcm
https://github.com/evollu/react-native-fcm
https://github.com/evollu/react-native-fcm
https://github.com/evollu/react-native-fcm
https://github.com/evollu/react-native-fcm

Messaging App

[202]

const FirebaseServerKey = '<Your Firebase Server Key>';

const init = (cb) => {
 FCM.requestPermissions();
 FCM.getFCMToken().then(token => {
 cb(token)
 });
 refreshTokenListener = FCM.on(FCMEvent.RefreshToken, (token) => {
 cb(token);
 });
}

const onNotification = (cb) => {
 notificationListener = FCM.on(FCMEvent.Notification, (notif) => {
 cb(notif);

 if(Platform.OS ==='ios'){
 switch(notif._notificationType){
 case NotificationType.Remote:
 notif.finish(RemoteNotificationResult.NewData)
 break;
 case NotificationType.NotificationResponse:
 notif.finish();
 break;
 case NotificationType.WillPresent:
 notif.finish(WillPresentNotificationResult.All)
 break;
 }
 }
 })
}

const unbind = () => {
 if(notificationListener) notificationListener.remove();
 if(refreshTokenListener) refreshTokenListener.remove();
}

const sendNotification = (token, data) => {
 let body = JSON.stringify({
 "to": token,
 "notification": {
 "title": data.sender || '',
 "body": data. text || '',
 "sound": "default"
 },
 "data": {
 "name": data.sender,
 "chatId": data.chatId,

Messaging App

[203]

 "image": data.image
 },
 "priority": 10
 });

 let headers = new Headers({
 "Content-Type": "application/json",
 "Content-Length": parseInt(body.length),
 "Authorization": "key=" + FirebaseServerKey
 });

 fetch(API_URL, { method: "POST", headers, body })
 .then(response => console.log("Send response", response))
 .catch(error => console.log("Error sending ", error));
}

export default { init, onNotification, sendNotification, unbind }

There are four functions exposed in this module:

init: This requests the permission to receive push notifications (in case it was
not yet granted) and requests the device token or refreshes it if changed.
onNotification: This invokes a provided callback when a notification is
received. In iOS, it also calls the appropriate methods on the notification to close
the cycle.
unbind: This stops listening for push notifications.
sendNotification: This formats and sends a push notification to a specific
device using a provided notifications token.

Sending notifications in Firebase can be done using their HTTP API, so we will use fetch
for sending a POST request with the proper header and body data.

Now, we have all the logic we need to start building our screens and components.

Login
The <Login /> component heavily relies on the users store for logic, as it is mostly
focused on rendering two forms for login and registration. All the validation for the forms
is done by Firebase, so we only need to focus on rendering the UI elements and calling the
proper store methods.

Messaging App

[204]

In this screen, we will be using the react-native-keyboard-aware-scroll view, which
is a module providing a self-scrolling <Scrollview />, which reacts to any focused
<TextInput /> so they are not hidden when the keyboard pops up.

Let's take a look at the code:

/*** src/screens/Login.js ***/

import React, { PropTypes } from 'react'
import {
 ScrollView,
 TextInput,
 Button,
 Text,
 View,
 Image,
 ActivityIndicator
} from 'react-native';
import { observer, inject } from 'mobx-react/native'
import Icon from 'react-native-vector-icons/FontAwesome'
import { KeyboardAwareScrollView } from 'react-native-keyboard-aware-
scroll-view'

import LoginForm from '../components/LoginForm'
import RegistrationForm from '../components/RegistrationForm'

@inject('users') @observer
class Login extends React.Component {
 onLogin(email, password) {
 this.props.users.login(email, password);
 }

 onPressRegister(email, password, name) {
 this.props.users.register(email, password, name);
 }

 render() {
 return (
 <KeyboardAwareScrollView style={{padding: 20, marginTop: 20,
 backgroundColor: '#eee'}}>
 <Icon name="comments" size={60} color='#ccc'
 style={{alignSelf: 'center', paddingBottom: 20}}/>
 <View style={{alignItems: 'center', marginBottom: 20}}>
 <Text>- please, login to continue -</Text>
 </View>
 <LoginForm
 onPress={this.onLogin.bind(this)}

Messaging App

[205]

 busy={this.props.users.loggingIn}
 loggingError={this.props.users.loggingError}
 />
 <View style={{alignItems: 'center', marginTop: 20,
 marginBottom: 20}}>
 <Text>- or register -</Text>
 </View>
 <RegistrationForm
 onPress={this.onPressRegister.bind(this)}
 busy={this.props.users.registering}
 registeringError={this.props.users.registeringError}
 />
 </KeyboardAwareScrollView>
)
 }
}

export default Login;

We split the login screen in two forms: <LoginForm /> and <RegistrationForm />.
Both components need to be passed three props:

onPress: What the component needs to do when the Send button is pressed.
busy: Are we waiting for remote data?
loginError/registrationError: Description of the error that happened when
logging/register (in case it happened).

We are wrapping the whole screen in a <KeyboardAwareScrollView /> to ensure no
<TextInput /> gets hidden by the keyboard when focused. Let's take a look at the
LoginForm now:

/*** src/components/LoginForm.js ***/

import React, { PropTypes } from 'react'
import {
 TextInput,
 Button,
 Text,
 View,
 Image,
 ActivityIndicator
} from 'react-native';

class LoginForm extends React.Component {
 state= {
 loginEmail: '',

Messaging App

[206]

 loginPassword: ''
 }

 onPressLogin() {
 this.props.onPress(this.state.loginEmail,
 this.state.loginPassword);
 }

 render() {
 return (
 <View style={{backgroundColor: 'white', padding: 15,
 borderRadius: 10}}>
 {
 this.props.loggingError &&
 <View style={{backgroundColor: '#fcc', borderRadius: 5,
 alignItems: 'center', marginBottom: 10}}>
 <Text>{this.props.loggingError}</Text>
 </View>
 }
 <TextInput
 autoCapitalize='none'
 autoCorrect={false}
 keyboardType='email-address'
 returnKeyType='next'
 style={{height: 40}}
 onChangeText={(loginEmail) => this.setState({loginEmail})}
 value={this.state.loginEmail}
 placeholder='email'
 onSubmitEditing={(event) => {
 this.refs.loginPassword.focus();
 }}
 />
 <TextInput
 ref='loginPassword'
 style={{height: 40}}
 onChangeText={(loginPassword) =>
 this.setState({loginPassword})}
 value={this.state.loginPassword}
 secureTextEntry={true}
 placeholder='password'
 />
 {
 this.props.busy ?
 <ActivityIndicator/>
 :
 <Button
 onPress={this.onPressLogin.bind(this)}
 title='Login'

Messaging App

[207]

 />
 }
 </View>
)
 }
}

export default LoginForm;

For the <TextInput /> elements containing the email, we set the
property keyboardType='email-address' so the @ sign is easily accessible on the
software keyboard. There are other options such as numeric keyboards, but we will only
use 'email-address' for this app.

Another useful prop on <TextInput /> is returnKeyType. We
set returnKeyType='next' for those form inputs that are not the last ones to display the
Next button in the keyboard so the user knows they can go to the next input by tapping
that button. This prop is used in conjunction with a prop like the following:

onSubmitEditing={(event) => {
 this.refs.loginPassword.focus();
}}

onSubmitEditing is a <TextInput /> prop that will be invoked when a user presses the
Return or Next button on the keyboard. We are using it to focus on the next <TextInput
/>, which is quite user-friendly when dealing with forms. To get the reference for the next
<TextInput /> we use ref, which is not the safest way, but is good enough for simple
forms. For this to work, we need to assign the corresponding ref to the next <TextInput
/>: ref='loginPassword'.

RegistrationForm is a very similar form:

/*** src/components/RegistrationForm ***/

import React, { PropTypes } from 'react'
import {
 ScrollView,
 TextInput,
 Button,
 Text,
 View,
 Image,
 ActivityIndicator
} from 'react-native';

class RegisterForm extends React.Component {

Messaging App

[208]

 state= {
 registerEmail: '',
 registerPassword: '',
 registerName: ''
 }

 onPressRegister() {
 this.props.onPress(this.state.registerEmail,
 this.state.registerPassword, this.state.registerName);
 }

 render() {
 return (
 <View style={{backgroundColor: 'white', padding: 15,
 borderRadius: 10}}>
 {
 this.props.registeringError &&
 <View style={{backgroundColor: '#fcc', borderRadius: 5,
 alignItems: 'center', marginBottom: 10}}>
 <Text>{this.props.registeringError}</Text>
 </View>
 }
 <TextInput
 autoCapitalize='none'
 autoCorrect={false}
 keyboardType='email-address'
 returnKeyType='next'
 style={{height: 40}}
 onChangeText={(registerEmail) =>
 this.setState({registerEmail})}
 value={this.state.registerEmail}
 placeholder='email'
 onSubmitEditing={(event) => {
 this.refs.registerName.focus();
 }}
 />
 <TextInput
 ref='registerName'
 style={{height: 40}}
 onChangeText={(registerName) =>
 this.setState({registerName})}
 returnKeyType='next'
 value={this.state.registerName}
 placeholder='name'
 onSubmitEditing={(event) => {
 this.refs.registerPassword.focus();
 }}
 />

Messaging App

[209]

 <TextInput
 ref='registerPassword'
 style={{height: 40}}
 onChangeText={(registerPassword) =>
 this.setState({registerPassword})}
 value={this.state.registerPassword}
 secureTextEntry={true}
 placeholder='password'
 />
 {
 this.props.busy ?
 <ActivityIndicator/>
 :
 <Button
 onPress={this.onPressRegister.bind(this)}
 title='Register'
 />
 }
 </View>
)
 }
}

export default RegisterForm;

Chats
This is the screen displaying the list of open chats. The special thing to note here is we are
using a second navigator to display selected chats on top of the chats list. This means we
need a StackNavigator in our Chats component that will contain two screens: ChatList
and Chat. When a user taps on a chat from ChatList, StackNavigator will display the
selected chat on top of ChatList making the list of chats available through a standard <
back button in the header.

For listing the chats, we will use <FlatList />, a performant interface for rendering
simple, flat lists, supporting the most of the features from <ListView />:

/*** src/screens/Chats.js ***/

import React, { PropTypes } from 'react'
import { View, Text, FlatList, ActivityIndicator } from 'react-native'
import { observer, inject } from 'mobx-react/native'
import { StackNavigator } from 'react-navigation'
import Icon from 'react-native-vector-icons/FontAwesome'
import notifications from '../notifications'

Messaging App

[210]

import ListItem from '../components/ListItem'
import Chat from './Chat'

@inject('chats') @observer
class ChatList extends React.Component {
 imgPlaceholder =
 'https://cdn.pixabay.com/photo/2017/03/21/02/00/user-
 2160923_960_720.png'

 componentWillMount() {
 notifications.onNotification((notif)=>{
 this.props.navigation.goBack();
 this.props.navigation.navigate('Chat', {
 id: notif.chatId,
 name: notif.name || '',
 image: notif.image || this.imgPlaceholder
 })
 });
 }

 render () {
 return (
 <View>
 {
 this.props.chats.list &&
 <FlatList
 data={this.props.chats.list.toJS()}
 keyExtractor={(item, index) => item.id}
 renderItem={({item}) => {
 return (
 <ListItem
 text={item.name}
 image={item.image || this.imgPlaceholder}
 onPress={() => this.props.navigation.navigate('Chat',
 {
 id: item.id,
 name: item.name,
 image: item.image || this.imgPlaceholder,
 contactId: item.contactId
 })}
 />
)
 }}
 />
 }
 {
 this.props.chats.downloadingChats &&
 <ActivityIndicator style={{marginTop: 20}}/>

Messaging App

[211]

 }
 </View>
)
 }
}

const Navigator = StackNavigator({
 Chats: {
 screen: ChatList,
 navigationOptions: ({navigation}) => ({
 title: 'Chats',
 }),
 },
 Chat: {
 screen: Chat
 }
});

export default class Chats extends React.Component {
 static navigationOptions = {
 tabBarLabel: 'Chats',
 tabBarIcon: ({ tintColor }) => (
 <Icon name="comment-o" size={30} color={tintColor}/>
)
 };

 render() {
 return <Navigator />
 }
}

The first thing we notice is that we are injecting the chats store where the list of chats is
saved: @inject('chats') @observer. We need this to build our <FlatList />, based
on this.props.chats.list, but as the list of chats is an observable MobX object, we need
to transform it using its toJS() method to make a JavaScript array out of it.

On the componentWillMount() function, we will invoke onNotification on the
notifications module to open the corresponding chat every time the user presses a push
notification on her device. Therefore, we will use the navigate() method on the navigator
to open the proper chat screen including the name of the contact and her avatar.

Messaging App

[212]

ListItem
The list of chats relies on <ListItem /> to render each specific chat within the list. This
component is a custom UI class we created to reduce the ChatList component complexity:

/*** src/components/ListItem.js ***/

import React, { PropTypes } from 'react'
import { View, Image, Text, TouchableOpacity } from 'react-native'
import Icon from 'react-native-vector-icons/FontAwesome'

const ListItem = (props) => {
 return (
 <TouchableOpacity onPress={props.onPress}>
 <View style={{height: 60, borderColor: '#ccc',
 borderBottomWidth: 1,
 marginLeft: 10, flexDirection: 'row'}}>
 <View style={{padding: 15, paddingTop: 10}}>
 <Image source={{uri: props.image}} style={{width: 40,
 height: 40,
 borderRadius: 20, resizeMode: 'cover'}}/>
 </View>
 <View style={{padding: 15, paddingTop: 20}}>
 <Text style={{fontSize: 15}}>{ props.text }</Text>
 </View>
 <Icon name="angle-right" size={20} color="#aaa"
 style={{position: 'absolute', right: 20, top: 20}}/>
 </View>
 </TouchableOpacity>
)
}

export default ListItem

There is little logic on this component as it only receives a prop named onPress(), which
will be called when the <ListItem /> is pressed, which, as we saw on this component's
parent, will open the chat screen to show the list of messages on that specific chat. Let's take
a look at the chat screen where all the messages for a specific chat are rendered.

Messaging App

[213]

Chat
To keep our code succinct and maintainable, we will use GiftedChat for rendering all the
messages in a chat, but there is still some work we need to do to properly render this screen:

/*** src/screens/Chat.js ***/

import React, { PropTypes } from 'react'
import { View, Image, ActivityIndicator } from 'react-native';
import { observer, inject } from 'mobx-react/native'
import { GiftedChat } from 'react-native-gifted-chat'

@inject('chats', 'users') @observer
class Chat extends React.Component {
 static navigationOptions = ({ navigation, screenProps }) => ({
 title: navigation.state.params.name,
 headerRight: <Image source={{uri: navigation.state.params.image}}
 style={{
 width: 30,
 height: 30,
 borderRadius: 15,
 marginRight: 10,
 resizeMode: 'cover'
 }}/>
 })

 onSend(messages) {
 this.props.chats.addMessages(this.chatId, this.contactId,
 messages);
 }

 componentWillMount() {
 this.contactId = this.props.navigation.state.params.contactId;
 this.chatId = this.props.navigation.state.params.id;
 this.props.chats.selectChat(this.chatId);
 }

 render () {
 var messages = this.props.chats.selectedChatMessages;
 if(this.props.chats.downloadingChat) {
 return <View><ActivityIndicator style={{marginTop: 20}}/></View>
 }

 return (
 <GiftedChat
 onSend={(messages) => this.onSend(messages)}
 messages={messages ? messages.toJS().reverse() : []}

Messaging App

[214]

 user={{
 _id: this.props.users.id,
 name: this.props.users.name,
 avatar: this.props.users.avatar
 }}
 />
)
 }
}

export default Chat;

We also need to inject some stores for our <Chat /> component to work. This time, we
need users and chats stores that will be available as props inside the component. This
component also expects to receive two params from the navigator: chatId (the ID for the
chat) and contactId (the ID for the person the user is chatting with).

When the component is getting ready to be mounted (onComponentWillMount()) we save
the chatId and contactId in more convenient variables inside the component and call the
selectChat() method on the chats store. This will trigger a request to Firebase database
to fetch the messages for the selected chat, which will be synced through the chats store
and is accessible to the component through this.props.chats.selectedChatMessages.
MobX will also update a downloadingChat property to ensure we let the user know the
data is being retrieved from Firebase.

Lastly, we need to add a onSend() function to GiftedChat, which will call the
addMessages() method on the chats store to post the message to Firebase every time the
Send button is pressed.

GiftedChat helped us in largely reducing the amount of work we need to do in order to
render the list of messages for a chat. On the other hand, we had to format the messages in
the way GiftedChat requires and provide an onSend() function to be executed whenever
we need a message posted to our backend.

Search
The search screen is divided into two parts: a <TextInput /> for the user to search a name
and a <FlatList /> to show the list of contacts found with the entered name:

import React, { PropTypes } from 'react'
import { View, TextInput, Button, FlatList } from 'react-native'
import Icon from 'react-native-vector-icons/FontAwesome'

Messaging App

[215]

import { observer, inject } from 'mobx-react/native'

import ListItem from '../components/ListItem'

@inject('users', 'chats') @observer
class Search extends React.Component {
 imgPlaceholder = 'https://cdn.pixabay.com/photo/2017/03/21/02/00/user-
 2160923_960_720.png'

 state = {
 name: '',
 foundUsers: null
 }

 static navigationOptions = {
 tabBarLabel: 'Search',
 tabBarIcon: ({ tintColor }) => (
 <Icon name="search" size={30} color={tintColor}/>
)
 };

 onPressSearch() {
 this.props.users.searchUsers(this.state.name)
 .then((foundUsers) => {
 this.setState({ foundUsers });
 });
 }

 onPressUser(user) {
 //open a chat with the selected user
 }

 render () {
 return (
 <View>
 <View style={{padding: 20, marginTop: 20,
 backgroundColor: '#eee'}}>
 <View style={{backgroundColor: 'white', padding: 15,
 borderRadius: 10}}>
 <TextInput
 style={{borderColor: 'gray', borderBottomWidth: 1,
 height: 40}}
 onChangeText={(name) => this.setState({name})}
 value={this.state.name}
 placeholder='Name of user'
 />
 <Button
 onPress={this.onPressSearch.bind(this)}

Messaging App

[216]

 title='Search'
 />
 </View>
 </View>
 {
 this.state.foundUsers &&
 <FlatList
 data={this.state.foundUsers}
 keyExtractor={(item, index) => index}
 renderItem={({item}) => {
 return (
 <ListItem
 text={item.name}
 image={item.avatar || this.imgPlaceholder}
 onPress={this.onPressUser.bind(this, item)}
 />
)
 }}
 />
 }
 </View>
)
 }
}

export default Search;

This component requires the injection of both stores (users and chats). The users store is
used to invoke the searchUsers() method when the user hits the Search button. This
method doesn't modify the state and therefore we need to provide a callback to receive the
list of found users to finally set that list on the component's state.

The second store, chats, will be used to store the open chat in Firebase by calling add()
from the onPressUser() function:

onPressUser(user) {
 this.props.chats.add({
 id: this.props.users.id,
 name: this.props.users.name,
 avatar: this.props.users.avatar || this.imgPlaceholder,
 notificationsToken: this.props.users.notificationsToken || ''
 }, {
 id: user.id,
 name: user.name,
 avatar: user.avatar || this.imgPlaceholder,
 notificationsToken: user.notificationsToken || ''
 });

Messaging App

[217]

 this.props.navigation.navigate('Chats', {});
}

The add() method in the chats store requires two parameters to be passed: one per each
user in the newly open chat. This data will be properly stored in Firebase, so both users will
see the chat on their chat list in the app. After adding the new chat, we will navigate the app
to the chats screen so the user can see if the addition was successful.

Profile
The profile screen displays the user's avatar, name, and a Logout button for signing out:

import React, { PropTypes } from 'react'
import { View, Image, Button, Text } from 'react-native'
import { observer, inject } from 'mobx-react/native'
import Icon from 'react-native-vector-icons/FontAwesome'

import notifications from '../notifications'

@inject('users') @observer
class Profile extends React.Component {
 static navigationOptions = {
 tabBarLabel: 'Profile',
 tabBarIcon: ({ tintColor }) => (
 <Icon name="user" size={30} color={tintColor}/>
),
 };

 imgPlaceholder =
 'https://cdn.pixabay.com/photo/2017/03/21/02/00/user-
 2160923_960_720.png'

 onPressLogout() {
 this.props.users.logout();
 }

 render () {
 return (
 <View style={{ padding: 20 }}>
 {
 this.props.users.name &&
 <View style={{ flexDirection: 'row', alignItems: 'center'
 }}>
 <Image
 source={{uri: this.props.users.avatar ||

Messaging App

[218]

 this.imgPlaceholder}}
 style={{width: 100, height: 100, borderRadius: 50,
 margin: 20, resizeMode: 'cover'}}
 />
 <Text style={{fontSize: 25}}>{this.props.users.name}
 </Text>
 </View>
 }
 <Button
 onPress={this.onPressLogout.bind(this)}
 title="Logout"
 />
 </View>
)
 }
}

export default Profile;

The logout process is triggered by calling the logout() method on the users store. Since
we controlled the authentication status in our src/main.js file, the app will automatically
return to the Login or Register screen when the logout is successful.

Summary
We covered several important topics for most of the modern enterprise apps: user
management, data synchronization, complex app state, and handling forms. This is a
complete app, which we manage to fix with a small code base and the help of MobX and
Firebase.

Firebase is very capable of handling this app in production with a large number of users,
but building our own backend system should not be a complex task, especially if we have
experience in working with socket.io and real-time databases.

There are some aspects missing in this chapter such as handling security (which can be
done fully within Firebase) or creating chat rooms for more than two users. In any case,
these aspects fall out of React Native's environment, so they were intentionally left out.

Messaging App

[219]

After finishing this chapter, we should be able to build any app on top of Firebase and
MobX as we covered the most used user cases on both pieces of technology. Of course, there
are some more complex cases that were left out, but they can be easily learned by having a
good understanding of the basics explained throughout this chapter.

In the next chapter, we will build a very different kind of app: a game written in React
Native.

7
Game

Most of the most successful apps on the app stores are games. They proved to be really
popular as mobile users tend to play all sort of games while commuting, in waiting rooms,
when traveling, or even when relaxing at home. It is a fact that mobile users are more
inclined to pay for a game than for any other kind of app in the market as the perceived
value is higher most of the time.

Modern games are usually built in powerful gaming engines such as Unity or Unreal, as
they provide a wide range of tools and frameworks to work with sprites, animations, or
physics. But the reality is that great games can also be built in React Native due to its native
capabilities. Moreover, React Native has introduced many web and mobile app
programmers into game development as it offers them a familiar and intuitive interface. Of
course, there are some concepts in game development which need to be understood in
order to make the most of the library when building games. Concepts like sprites, ticks, or
collisions are small hurdles, which may need to be overcome by non-game developers
before building a game.

The game will be built for both iOS and Android, and will use a limited number of external
libraries. Redux, the state management library, was chosen to help calculate the position of
every sprite on each frame.

We will use some custom sprites and add a sound effect to notice each time the score is
increased. One of the main challenges when building a game is making sure the sprites are
rendered responsively, so different devices will show the game with the same proportions
providing the same game experience across different screen sizes.

This game will be designed to be played in portrait mode only.

Game

[221]

Overview
The game we will build in this chapter has simple mechanics:

The goal is to help a parrot fly between rocks in a cave
Tapping the screen will result in the parrot flying higher
Gravity will pull the parrot toward the ground
Any collision between the parrot and the rocks or the ground will result in the
end of the game
The score will be increased every time the parrot flies through a group of rocks

This kind of game is very well suited to being built with React Native, as it doesn't really
need complex animations or physics capabilities. All we need to be sure of is that we move
every sprite (graphics component) on the screen at the correct time to create the feeling of
continuous animation.

Let's take a look at the initial screen for our game:

Game

[222]

This screen presents the logo and instructions about how to get the game started. In this
case, a simple tap will start up the game mechanics causing the parrot to fly forward and up
on every tap.

The player must help our parrot to fly through the rocks. Each time a set of rocks is passed,
the player will get one point.

Game

[223]

To make it more difficult, the heights of the rocks will vary forcing the parrot to fly higher
or lower to pass through the rocks. If the parrot collides with a rock or the ground, the game
will stop and the final score will be presented to the user:

At this point, the user will be able to restart the game by tapping again on the screen.

To make it nicer and easier to play, tapping can be done anywhere on the screen, causing a
different effect depending on which screen the user is on:

On the initial screen tapping will start up the game
In-game tapping will result in the parrot flying higher
On the GAME OVER screen tapping will restart the game and reset the score

As can be observed, it will be a very simple game but, due to this, easily extendable and fun
to play. One import aspect when building this kind of app is counting with a nice set of
graphics. For this matter, we will download our assets from one of the multiple game assets
markets, which can be found online (most game assets cost a small amount of money
although free assets can be found every now and then).

Game

[224]

The technical challenges for this game lie more in how the sprites will be moved over time
than on a complex state to be maintained. Despite this, we will use Redux to keep and
update the app's state as it is a performant and well-known solution. Besides revisiting
Redux, we will review the following topics in this chapter:

Handling animated sprites
Playing sound effects
Detecting colliding sprites
Absolute positioning in different screen resolutions

Sprites
Sprites are the graphics used by the games, normally grouped into one or several images.
Many game engines include tools to split and manage those graphics in a convenient way,
but this is not the case in React Native. Since it was designed with a different kind of app
having in mind, there are several libraries supporting React Native in the task of dealing
with sprites, but our game will be simple enough not to need any of these libraries, so we
will store one graphic in each image and we will load them separately into the app.

Before starting to build the game, let's get acquainted with the graphics we will load, as
they will be the building blocks for the whole app.

Numbers
Instead of using a <Text/> component to display the score in our game, we will use sprites
for a more attractive look. These are the images we will use to represent the user's score:

As mentioned, all these graphics will be stored in separate images (named 0.png to 9.png)
due to React Native's lack of sprite splitting capabilities.

Game

[225]

Background
We need a large background to make sure it will fit all screen sizes. In this chapter, we will
use this sprite as a static graphic although it could be easily animated to create a nice
parallax effect:

From this background, we will take a piece of ground to animate.

Ground
The ground will be animated in a loop to create a constant feeling of velocity. The size of
this image needs to be larger than the maximum screen resolution we want to support, as it
should be moved from one side of the screen to the opposite. At all times, two ground
images will be displayed, one after the other to ensure at least one of them is shown on the
screen during the animation:

Rocks
The moving rocks are the obstacles our parrot needs to pass. There will be one on the top
and one on the bottom and both will be animated at the same speed as the ground. Their
height will vary for each pair of rocks but always keep the same gap size between them:

Game

[226]

In our images folder, we will have rock-up.png and rock-down.png representing each
sprite.

Parrot
We will use two different images for our main character so we can create an animation
displaying when the user has tapped on the screen:

The first image will be displayed when the parrot is moving down:

This second image will be shown every time the user presses the screen to move the parrot
up. The images will be named parrot1.png and parrot2.png.

Game

[227]

The home screen
For the home screen, we will display two images: a logo and some instructions about how
to get the game started. Let's take a look at them:

The instructions to start the game just point out that tapping will get the game started:

Game over screen
When the parrot hits a rock or the ground, the game will end. Then, it is time to display a
game over sign and a reset button to get the game started again:

Although the entire screen will be touchable to get the game restarted, we will include a
button to let the user know that tapping will result in the game restarting:

Game

[228]

This image will be stored as reset.png.

This is the full list of images we will have in our game:

Now, we know the list of images we will use in our game. Let's take a look at the whole
folder structure.

Setting up the folder structure
Let's initialize a React Native project using React Native's CLI. The project will be named
birdGame and will be available for iOS and Android devices:

react-native init --version="0.46.4" birdGame

Game

[229]

As this one is a simple game, we will only need one screen in which we will position all our
sprites moving, showing, or hiding them depending on the state of the game, which will be
managed by Redux. Therefore, our folder structure will be in line the standard Redux apps:

The actions folder will only contain one file as there are only three actions which may
happen in this game (start, tick, and bounce). There is also a sounds folder to store the
sound effect which will be played every time the parrot passes a pair of rocks:

For each sprite, we will create a component so we can move it, show it, or hide it easily:

Game

[230]

Again, only one reducer will be needed to process all our actions. We will also create two
helper files:

constants.js: This is where we will store helper variables for dividing the
height and the width of the screen for the device playing the game
sprites.js: This stores all the functions which will calculate how the sprites
should be positioned in each frame to create the required animations

main.js will serve as the entry point for both iOS and Android and will be responsible to
initialize Redux:

The rest of the files are generated by React Native's CLI.

Let's now review the package.json file we will need to set the dependencies up in our
project:

/*** package.json ***/

{
 "name": "birdGame",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node node_modules/react-native/local-cli/cli.js start",
 "test": "jest"
 },
 "dependencies": {
 "react": "16.0.0-alpha.12",
 "react-native": "0.46.4",
 "react-native-sound": "^0.10.3",
 "react-redux": "^4.4.5",
 "redux": "^3.5.2"

Game

[231]

 },
 "devDependencies": {
 "babel-jest": "20.0.3",
 "babel-preset-react-native": "2.1.0",
 "jest": "20.0.4",
 "react-test-renderer": "16.0.0-alpha.12"
 },
 "jest": {
 "preset": "react-native"
 }
}

Apart from Redux libraries, we will import react-native-sound, which will be in charge
of playing any sounds in our game.

After running npm install, we will have our app ready to start coding. As happened in
previous apps, the entry point for our messaging app will be the same code both in
 index.ios.js for iOS and in index.android.js for Android, but both will delegate the
initialisation logic to src/main.js:

/*** index.ios.js and index.android.js ***/

import { AppRegistry } from 'react-native';
import App from './src/main';

AppRegistry.registerComponent('birdGame', () => App);

src/main.js is responsible for initializing Redux and will set GameContainer as the root
component in our app:

/*** src/main.js ***/

import React from "react";
import { createStore, combineReducers } from "redux";
import { Provider } from "react-redux";

import gameReducer from "./reducers/game";
import GameContainer from "./components/GameContainer";

let store = createStore(combineReducers({ gameReducer }));

export default class App extends React.Component {
 render() {
 return (
 <Provider store={store}>
 <GameContainer />
 </Provider>

Game

[232]

);
 }
}

We use GameContainer as the root of the component tree in our app. As a regular Redux
app, a <Provider /> component is in charge of supplying the store to all the components
which require reading or modifying the application state.

GameContainer
GameContainer is responsible for starting up the game once the user taps the screen. It will
do this using requestAnimationFrame()--one of the custom timers implemented in React
Native.

requestAnimationFrame() is similar to setTimeout(), but the former will fire after all
the frame has flushed, whereas the latter will fire as quickly as possible (over 1000x per
second on a iPhone 5S); therefore, requestAnimationFrame() is more suited for animated
games as it deals only with frames.

As happens with most animated games, we need to create a loop to animate the sprites in
the screen by calculating the next position of each element on each frame. This loop will be
created by a function named nextFrame() inside our GameContainer:

nextFrame() {
 if (this.props.gameOver) return;
 var elapsedTime = new Date() - this.time;
 this.time = new Date();
 this.props.tick(elapsedTime);
 this.animationFrameId =
 requestAnimationFrame(this.nextFrame.bind(this));
}

This function will be aborted if the property gameOver is set to true. Otherwise, it will
trigger the action tick() (which calculates how the sprites should be moved on to the next
frame, based on the elapsed time) and finally calls itself through
requestAnimationFrame(). This will keep the loop in the game to animate the moving
sprites.

Game

[233]

Of course, this nextFrame() should be called at the start for the first time, so we will also
create a start() function inside GameContainer to get the game started:

start() {
 cancelAnimationFrame(this.animationFrameId);
 this.props.start();
 this.props.bounce();
 this.time = new Date();
 this.setState({ gameOver: false });
 this.animationFrameId =
 requestAnimationFrame(this.nextFrame.bind(this));
}

The start function makes sure there is no animation started by calling
cancelAnimationFrame(). This will prevent any double animations being performed
when the user resets the game.

Then, the functions trigger the start() action, which will just set a flag in the store to
notice the game has started.

We want to start the game by moving the parrot up, so the user has the time to react. For
this, we also call the bounce() action.

Finally, we start the animation loop by passing the already known nextFrame() function
as a callback of requestAnimationFrame().

Let's also review the render() method we will use for this container:

render() {
 const {
 rockUp,
 rockDown,
 ground,
 ground2,
 parrot,
 isStarted,
 gameOver,
 bounce,
 score
 } = this.props;

 return (
 <TouchableOpacity
 onPress={
 !isStarted || gameOver ? this.start.bind(this) :
 bounce.bind(this)
 }

Game

[234]

 style={styles.screen}
 activeOpacity={1}
 >
 <Image
 source={require("../../images/bg.png")}
 style={[styles.screen, styles.image]}
 />
 <RockUp
 x={rockUp.position.x * W} //W is a responsiveness factor
 //explained in the 'constants' section
 y={rockUp.position.y}
 height={rockUp.size.height}
 width={rockUp.size.width}
 />
 <Ground
 x={ground.position.x * W}
 y={ground.position.y}
 height={ground.size.height}
 width={ground.size.width}
 />
 <Ground
 x={ground2.position.x * W}
 y={ground2.position.y}
 height={ground2.size.height}
 width={ground2.size.width}
 />
 <RockDown
 x={rockDown.position.x * W}
 y={rockDown.position.y * H} //H is a responsiveness factor
 //explained in the 'constants'
 //section
 height={rockDown.size.height}
 width={rockDown.size.width}
 />
 <Parrot
 x={parrot.position.x * W}
 y={parrot.position.y * H}
 height={parrot.size.height}
 width={parrot.size.width}
 />
 <Score score={score} />
 {!isStarted && <Start />}
 {gameOver && <GameOver />}
 {gameOver && isStarted && <StartAgain />}
 </TouchableOpacity>
);
 }

Game

[235]

It may be lengthy, but actually, it's a simple positioning of all the visible elements on the
screen while wrapping them in a <TouchableOpacity /> component to capture the user
tapping no matter in which part of the screen. This <TouchableOpacity /> component is
actually not sending any feedback to the user when they tap the screen (we disabled it by
passing activeOpacity={1} as a prop) since this feedback is already provided by the
parrot bouncing on each tap.

We could have used React Native's <TouchableWithoutFeedback />
for this matter, but it has several limitations which would have harmed
our performance.

The provided onPress attribute just defines what the app should do when the user taps on
the screen:

If the game is active, it will bounce the parrot sprite
If the user is on the game over screen it will restart the game by calling the
start() action

All other children in the render() method are the graphic elements in our game,
specifying for each of them, their position and size. It's also important to note several
points:

There are two <Ground /> components because we need to continuously
animate it in the x axis. They will be positioned one after the other horizontally to
animate them together so when the end of the first <Ground /> component is
shown on screen, the beginning of the second will follow creating the sense of
continuum.
The background is not contained in any custom component but in <Image />.
This is because it doesn't need any special logic being a static element.
Some positions are multiplied by factor variables (W and H). We will take a deeper
look at these variables in the constants section. At this point, we only need to
know that they are variables helping in the absolute positioning of the elements
taking into account all screen sizes.

Let's now put all these functions together to build up our <GameContainer />:

/*** src/components/GameContainer.js ***/

import React, { Component } from "react";
import { connect } from "react-redux";
import { bindActionCreators } from "redux";

Game

[236]

import { TouchableOpacity, Image, StyleSheet } from "react-native";

import * as Actions from "../actions";
import { W, H } from "../constants";
import Parrot from "./Parrot";
import Ground from "./Ground";
import RockUp from "./RockUp";
import RockDown from "./RockDown";
import Score from "./Score";
import Start from "./Start";
import StartAgain from "./StartAgain";
import GameOver from "./GameOver";

class Game extends Component {
 constructor() {
 super();
 this.animationFrameId = null;
 this.time = new Date();
 }

 nextFrame() {
 ...
 }

 start() {
 ...
 }

 componentWillUpdate(nextProps, nextState) {
 if (nextProps.gameOver) {
 this.setState({ gameOver: true });
 cancelAnimationFrame(this.animationFrameId);
 }
 }

 shouldComponentUpdate(nextProps, nextState) {
 return !nextState.gameOver;
 }

 render() {
 ...

 }
}

const styles = StyleSheet.create({
 screen: {
 flex: 1,

Game

[237]

 alignSelf: "stretch",
 width: null
 },
 image: {
 resizeMode: "cover"
 }
});

function mapStateToProps(state) {
 const sprites = state.gameReducer.sprites;
 return {
 parrot: sprites[0],
 rockUp: sprites[1],
 rockDown: sprites[2],
 gap: sprites[3],
 ground: sprites[4],
 ground2: sprites[5],
 score: state.gameReducer.score,
 gameOver: state.gameReducer.gameOver,
 isStarted: state.gameReducer.isStarted
 };
}
function mapStateActionsToProps(dispatch) {
 return bindActionCreators(Actions, dispatch);
}

export default connect(mapStateToProps, mapStateActionsToProps)(Game);

We added three more ES6 and React lifecycle methods to this component:

super(): The constructor will save an attribute named animationFrameId to
capture the ID for the animation frame in which the nextFrame function will run
and also another attribute named time will store the exact time at which the
game was initialized. This time attribute will be used by the tick() function to
calculate how much the sprites should be moved.
componentWillUpdate(): This function will be called every time new props
(positions and sizes for the sprites in the game) are passed. It will detect when the
game must be stopped due to a collision so the game over screen will be
displayed.
shouldComponentUpdate(): This performs another check to avoid re-rendering
the game container if the game has ended.

Game

[238]

The rest of the functions are Redux related. They are in charge of connecting the component
to the store by injecting actions and attributes:

mapStateToProps(): This gets the data for all the sprites in the store and injects
them into the component as props. The sprites will be stored in an array and
therefore they will be accessed by index. On top of these, the Score, a flag noting
if the current game is over, and a flag noting if the game is in progress will also
be retrieved from the state and injected into the component.
mapStateActionsToProps(): This will inject the three available actions (tick,
bounce, and start) into the component so they can be used by it.

Accessing the sprites data by index is not a recommended practice as
indexes can change if the number of sprites grows, but we will use it like
this in this app for simplicity reasons.

Actions
As we mentioned before, only three Redux actions will be available:

tick(): To calculate the next position of the sprites on the screen
bounce(): To make the parrot fly up
start(): To initialize the game variables

This means our src/actions/index.js file should be very simple:

/*** src/actions/index.js ***/

export function start() {
 return { type: "START" };
}

export function tick(elapsedTime) {
 return { type: "TICK", elapsedTime };
}

export function bounce() {
 return { type: "BOUNCE" };
}

Game

[239]

Only the tick() action needs to pass a payload: the time it passed since the last frame.

Reducer
Since we have a very limited amount of actions, our reducer will also be fairly simple and
will delegate most of the functionality to the sprites helper functions in the
src/sprites.js file:

/*** src/reducers/index.js ***/

import {
 sprites,
 moveSprites,
 checkForCollision,
 getUpdatedScore,
 bounceParrot
} from "../sprites";

const initialState = {
 score: 0,
 gameOver: false,
 isStarted: false,
 sprites
};

export default (state = initialState, action) => {
 switch (action.type) {
 case "TICK":
 return {
 ...state,
 sprites: moveSprites(state.sprites, action.elapsedTime),
 gameOver: checkForCollision(state.sprites[0],
 state.sprites.slice(1)),
 score: getUpdatedScore(state.sprites, state.score)
 };
 case "BOUNCE":
 return {
 ...state,
 sprites: bounceParrot(state.sprites)
 };
 case "START":
 return {
 ...initialState,
 isStarted: true
 };

Game

[240]

 default:
 return state;
 }
};

The start() function only needs to set the isStarted flag to true, as the initial state will
have it set to false by default. We will reuse this initial state every time the game ends.

bounce() will use the bounceParrot() function from the sprites module to set a new
direction for the main character.

The most important changes will happen when the tick() function is triggered, as it needs
to calculate the positions of all moving elements (through the moveSprites() function),
detect if the parrot has collided with any static elements (through the
checkForCollision() function), and update the score in the store (through the
getUpdatedScore() function).

As we can see, most of the game's functionality is delegated to the helper functions inside
the sprites module, so let's take a deeper look into the src/sprites.js file.

The sprites module
The structure of the sprites module is formed by an array of sprites and several exported
functions:

/*** src/sprites.js ***/

import sound from "react-native-sound";

const coinSound = new sound("coin.wav", sound.MAIN_BUNDLE);
let heightOfRockUp = 25;
let heightOfRockDown = 25;
let heightOfGap = 30;
let heightOfGround = 20;

export const sprites = [
 ...
];

function prepareNewRockSizes() {
 ...
}

function getRockProps(type) {

Game

[241]

 ...
}

export function moveSprites(sprites, elapsedTime = 1000 / 60) {
 ...
}

export function bounceParrot(sprites) {
 ...
}

function hasCollided(mainSprite, sprite) {
 ...
}

export function checkForCollision(mainSprite, sprites) {
 ...
}

export function getUpdatedScore(sprites, score) {
 ...
}

This module begins by loading the sound effect we will play when the parrot passes a set of
rocks to give feedback to the user about the increment in their score.

Then, we define some heights for several sprites:

heightOfRockUp: This is the height of the rock which will appear in the upper
part of the screen.
heightOfRockDown: This is the height of the rock which will show in the lower
part of the screen.
heightOfGap: We will create an invisible view between the upper and the lower
rock to detect when the parrot has passed each set of rocks so the score is
updated. This this gap's height.
heightOfGround: This is a static value for the height of the ground.

Each other item in this module plays a role in moving or positioning the sprites on the
screen.

Game

[242]

The sprites array
This is the array in charge of storing all the sprite's positions and sizes at a given time. Why
are we using an array for storing our sprites instead of a hash map (Object)? Mainly for
extensibility; Although a hash map would make our code noticeably more readable, if we
want to add new sprites of an existing type (as it happens with the ground sprite in this
app) we would need to use artificial keys for each of them despite being the same type.
Using an array of sprites is a recurrent pattern in game development which allows to
decouple the implementation from the list of sprites.

Whenever we want to move a sprite, we will update its position in this array:

export const sprites = [
 {
 type: "parrot",
 position: { x: 50, y: 55 },
 velocity: { x: 0, y: 0 },
 size: { width: 10, height: 8 }
 },
 {
 type: "rockUp",
 position: { x: 110, y: 0 },
 velocity: { x: -1, y: 0 },
 size: { width: 15, height: heightOfRockUp }
 },
 {
 type: "rockDown",
 position: { x: 110, y: heightOfRockUp + 30 },
 velocity: { x: -1, y: 0 },
 size: { width: 15, height: heightOfRockDown }
 },
 {
 type: "gap",
 position: { x: 110, y: heightOfRockUp },
 velocity: { x: -1, y: 0 },
 size: { width: 15, height: 30 }
 },
 {
 type: "ground",
 position: { x: 0, y: 80 },
 velocity: { x: -1, y: 0 },
 size: { width: 100, height: heightOfGround }
 },
 {
 type: "ground",
 position: { x: 100, y: 80 },

Game

[243]

 velocity: { x: -1, y: 0 },
 size: { width: 100, height: heightOfGround }
 }
];

The array will store the initial values for positioning and sizing all the moving sprites in the
game.

prepareNewRockSizes()
This function randomly calculates the size of the next upper and lower rock together with
the height of the gap between them:

function prepareNewRockSizes() {
 heightOfRockUp = 10 + Math.floor(Math.random() * 40);
 heightOfRockDown = 50 - heightOfRockUp;
 heightOfGap = 30;
}

It's important to note that this function only calculates the heights for the new set of rocks
but doesn't create them. This is just a preparation step.

getRockProps()
The helper functions to format the position and size attributes of a rock (or gap):

function getRockProps(type) {
 switch (type) {
 case "rockUp":
 return { y: 0, height: heightOfRockUp };
 case "rockDown":
 return { y: heightOfRockUp + heightOfGap,
 height: heightOfRockDown };
 case "gap":
 return { y: heightOfRockUp, height: heightOfGap };
 }
}

Game

[244]

moveSprites()
This is the main function as it calculates the new position for each sprite stored in the sprites
array. Game development relies in physics to calculate the position for each sprite in each
frame.

For example, if we want to move an object to the right side of the screen, we will need to
update its x position a number of pixels. The more pixels we add to the object's x attribute
for the next frame, the faster it will move (sprite.x = sprite.x + 5; moves sprite
five times faster than sprite.x = sprite.x + 1;).

As we can see in the following example, the way we calculate the new position for each
sprite is based on three factors: the current position of the sprite, the time that has passed
since the last frame (elapsedTime), and the gravity/velocity of the sprite (i.e.
sprite.velocity.y + elapsedTime * gravity).

Additionally, we will use the helper function getRockProps to get the new sizes and
positions for the rocks. Let's take a look at how the moveSprites function looks like:

export function moveSprites(sprites, elapsedTime = 1000 / 60) {
 const gravity = 0.0001;
 let newSprites = [];

 sprites.forEach(sprite => {
 if (sprite.type === "parrot") {
 var newParrot = {
 ...sprite,
 position: {
 x: sprite.position.x,
 y:
 sprite.position.y +
 sprite.velocity.y * elapsedTime +
 0.5 * gravity * elapsedTime * elapsedTime
 },
 velocity: {
 x: sprite.velocity.x,
 y: sprite.velocity.y + elapsedTime * gravity
 }
 };
 newSprites.push(newParrot);
 } else if (
 sprite.type === "rockUp" ||
 sprite.type === "rockDown" ||
 sprite.type === "gap"
) {

Game

[245]

 let rockPosition,
 rockSize = sprite.size;
 if (sprite.position.x > 0 - sprite.size.width) {
 rockPosition = {
 x: sprite.position.x + sprite.velocity.x,
 y: sprite.position.y
 };
 } else {
 rockPosition = { x: 100, y: getRockProps(sprite.type).y };
 rockSize = { width: 15,
 height: getRockProps(sprite.type).height };
 }
 var newRock = {
 ...sprite,
 position: rockPosition,
 size: rockSize
 };
 newSprites.push(newRock);
 } else if (sprite.type === "ground") {
 let groundPosition;
 if (sprite.position.x > -97) {
 groundPosition = { x: sprite.position.x + sprite.velocity.x,
 y: 80 };
 } else {
 groundPosition = { x: 100, y: 80 };
 }
 var newGround = { ...sprite, position: groundPosition };
 newSprites.push(newGround);
 }
 });
 return newSprites;
}

Calculating the next position for a sprite is, most of the time, basic addition (or subtraction).
Let's take, for example, how the parrot should move:

var newParrot = {
 ...sprite,
 position: {
 x: sprite.position.x,
 y:
 sprite.position.y +
 sprite.velocity.y * elapsedTime +
 0.5 * gravity * elapsedTime * elapsedTime
 },
 velocity: {
 x: sprite.velocity.x,

Game

[246]

 y: sprite.velocity.y + elapsedTime * gravity
 }
 }

The parrot will only move vertically, basing its speed on gravity, so the x attribute will
always stay fixed for it while the y attribute will change according to the
function sprite.position.y + sprite.velocity.y * elapsedTime + 0.5 *
gravity * elapsedTime * elapsedTime which, in summary, adds the elapsed time
and the gravity in different factors.

The calculations for how the rocks should move are a little more complex, as we need to
take into account every time the rocks disappear from the screen (if
(sprite.position.x > 0 - sprite.size.width)). As they have been passed, we
need to recreate them with different heights (rockPosition = { x: 100, y:
getRockProps(sprite.type).y }).

We have the same behavior for the ground, in terms of having to recreate it once it
abandons the screen completely (if (sprite.position.x > -97)).

bounceParrot()
The only task for this function is changing the velocity of the main character, so it will fly
up reversing the effect of gravity. This function will be called whenever the user taps on the
screen while the game is started:

export function bounceParrot(sprites) {
 var newSprites = [];
 var sprite = sprites[0];
 var newParrot = { ...sprite, velocity: { x: sprite.velocity.x,
 y: -0.05 } };
 newSprites.push(newParrot);
 return newSprites.concat(sprites.slice(1));
}

It's a simple operation in which we take the parrot's sprite data from the sprites array; we
change its velocity on the y axis to a negative value so that the parrot moves upwards.

Game

[247]

checkForCollision()
checkForCollision() is responsible for identifying if any of the rigid sprites have
collided with the parrot sprite, so the game can be stopped. It will use hasCollided() as a
supporting function to perform the required calculations on each specific sprite:

function hasCollided(mainSprite, sprite) {
 /***
 *** we will check if 'mainSprite' has entered in the
 *** space occupied by 'sprite' by comparing their
 *** position, width and height
 ***/

 var mainX = mainSprite.position.x;
 var mainY = mainSprite.position.y;
 var mainWidth = mainSprite.size.width;
 var mainHeight = mainSprite.size.height;

 var spriteX = sprite.position.x;
 var spriteY = sprite.position.y;
 var spriteWidth = sprite.size.width;
 var spriteHeight = sprite.size.height;

 /***
 *** this if statement checks if any border of mainSprite
 *** sits within the area covered by sprite
 ***/

 if (
 mainX < spriteX + spriteWidth &&
 mainX + mainWidth > spriteX &&
 mainY < spriteY + spriteHeight &&
 mainHeight + mainY > spriteY
) {
 return true;
 }
}

export function checkForCollision(mainSprite, sprites) {
 /***
 *** loop through all sprites in the sprites array
 *** checking, for each of them, if there is a
 *** collision with the mainSprite (parrot)
 ***/

 return sprites.filter(sprite => sprite.type !== "gap").find(sprite => {

Game

[248]

 return hasCollided(mainSprite, sprite);
 });
}

For simplicity, we assume that all sprites have a rectangular shape (even though rocks grow
thinner towards the end) because the calculation would be a lot more complex if we
considered different shapes.

In summary, checkForCollision() is just looping through the sprites array to find any
colliding sprite, hasCollided() checks for collisions based on the sprite size and position.
In just an if statement, we compare the boundaries of a sprite and the parrot's sprite to see
if any of those boundaries are occupying the same area of the screen.

getUpdatedScore()
The last function in the sprites module will check if the score needs to be updated based on
parrot position relative to the gap position (the gap between the upper and the lower rock is
also counted as a sprite):

export function getUpdatedScore(sprites, score) {
 var parrot = sprites[0];
 var gap = sprites[3];

 var parrotXPostion = parrot.position.x;
 var gapXPosition = gap.position.x;
 var gapWidth = gap.size.width;

 if (parrotXPostion === gapXPosition + gapWidth) {
 coinSound.play();
 score++;
 prepareNewRockSizes();
 }

 return score;
}

An if statement checks if the parrot's position in the x axis has surpassed the gap
(gapXPosition + gapWidth). When this happens, we play the sound we created in the
header of the module (const coinSound = new sound("coin.wav",
sound.MAIN_BUNDLE);) by calling its play() method. Moreover, we will increase the
score variable and prepare a new set of rocks to be rendered when the current ones leave
the screen.

Game

[249]

Constants
We already saw the variables W and H. They represent one part of the screen if we divided it
into 100 parts. Let's take a look at the constants.js file to understand this better:

/*** src/constants.js ***/

import { Dimensions } from "react-native";

var { width, height } = Dimensions.get("window");

export const W = width / 100;
export const H = height / 100;

W can be calculated as the total width of the device's screen divided by 100 units (as
percentages are easier to reason about when positioning our sprites). The same goes for H; it
can be calculated by dividing the total height by 100. Using these two constants, we can
position and size our sprites relative to the size of the screen, so all screen sizes will display
the same ratios for positions and sizes.

These constants will be used in all the visual components requiring responsive capabilities
so they will show and move different depending on the screen size. This technique will
ensure the game is playable even in small screens as the sprites will be resized accordingly.

Let's move on now to the components which will be displayed inside the <GameContainer
/>.

Parrot
The main character will be represented by this component, which will comprise of two
different images (the same parrot with its wings up and down) driven by the Y position
property passed by <GameContainer />:

/*** src/components/parrot.js ***/

import React from "react";
import { Image } from "react-native";
import { W, H } from "../constants";

export default class Parrot extends React.Component {
 constructor() {
 super();
 this.state = { wings: "down" };

Game

[250]

 }

 componentWillUpdate(nextProps, nextState) {
 if (this.props.y < nextProps.y) {
 this.setState({ wings: "up" });
 } else if (this.props.y > nextProps.y) {
 this.setState({ wings: "down" });
 }
 }

 render() {
 let parrotImage;
 if (this.state.wings === "up") {
 parrotImage = require("../../images/parrot1.png");
 } else {
 parrotImage = require("../../images/parrot2.png");
 }
 return (
 <Image
 source={parrotImage}
 style={{
 position: "absolute",
 resizeMode: "contain",
 left: this.props.x,
 top: this.props.y,
 width: 12 * W,
 height: 12 * W
 }}
 />
);
 }
}

We use a state variable named wings to pick which image the parrot will be--when it is
flying up the image with the wings down will be displayed while the wings up will be
shown when flying down. The way this will be calculated is based on the position of the
bird on the y axis passed as a property from the container:

If the Y position is lower than the previous Y position means the bird is going
down and therefore the wings should be up
If the Y position is higher than the previous Y position means the bird is going up
and therefore the wings should be down

The size of the parrot is fixed to 12 * W both for the height and width as the sprite is a
square and we want it to be sized relative to the width of each screen device.

Game

[251]

RockUp and RockDown
The sprites for the rocks have no logic on them and are basically <Image /> components
positioned and sized by the parent component. This is the code for <RockUp /> :

/*** src/components/RockUp.js ***/

import React, { Component } from "react";
import { Image } from "react-native";

import { W, H } from "../constants";

export default class RockUp extends Component {
 render() {
 return (
 <Image
 resizeMode="stretch"
 source={require("../../images/rock-down.png")}
 style={{
 position: "absolute",
 left: this.props.x,
 top: this.props.y,
 width: this.props.width * W,
 height: this.props.height * H
 }}
 />
);
 }
}

The height and the width will be calculated by the following formulae: this.props.width
* W and this.props.height * H. This will size the rock relative to the device's screen
and the provided height and width.

The code for <RockDown /> is quite similar:

/*** src/components/RockDown.js ***/

import React, { Component } from "react";
import { Image } from "react-native";

import { W, H } from "../constants";

export default class RockDown extends Component {
 render() {
 return (

Game

[252]

 <Image
 resizeMode="stretch"
 source={require("../../images/rock-up.png")}
 style={{
 position: "absolute",
 left: this.props.x,
 top: this.props.y,
 width: this.props.width * W,
 height: this.props.height * H
 }}
 />
);
 }
}

Ground
Building the ground component is similar to the rock sprites. An image rendered in the
proper position and size will be sufficient for this component:

/*** src/components/Ground.js ***/

import React, { Component } from "react";
import { Image } from "react-native";

import { W, H } from "../constants";

export default class Ground extends Component {
 render() {
 return (
 <Image
 resizeMode="stretch"
 source={require("../../images/ground.png")}
 style={{
 position: "absolute",
 left: this.props.x,
 top: this.props.y * H,
 width: this.props.width * W,
 height: this.props.height * H
 }}
 />
);
 }
}

In this case, we will use H to relatively positioning the ground image.

Game

[253]

Score
We decided to use number images to render the score, so we will need to load them and
pick the appropriate digits depending on the user's score:

/*** src/components/Score.js ***/

import React, { Component } from "react";
import { View, Image } from "react-native";

import { W, H } from "../constants";

export default class Score extends Component {
 getSource(num) {
 switch (num) {
 case "0":
 return require("../../images/0.png");
 case "1":
 return require("../../images/1.png");
 case "2":
 return require("../../images/2.png");
 case "3":
 return require("../../images/3.png");
 case "4":
 return require("../../images/4.png");
 case "5":
 return require("../../images/5.png");
 case "6":
 return require("../../images/6.png");
 case "7":
 return require("../../images/7.png");
 case "8":
 return require("../../images/8.png");
 case "9":
 return require("../../images/9.png");
 default:
 return require("../../images/0.png");
 }
 }

 render() {
 var scoreString = this.props.score.toString();
 var scoreArray = [];
 for (var index = 0; index < scoreString.length; index++) {
 scoreArray.push(scoreString[index]);
 }

Game

[254]

 return (
 <View
 style={{
 position: "absolute",
 left: 47 * W,
 top: 10 * H,
 flexDirection: "row"
 }}
 >
 {scoreArray.map(
 function(item, i) {
 return (
 <Image
 style={{ width: 10 * W }}
 key={i}
 resizeMode="contain"
 source={this.getSource(item)}
 />
);
 }.bind(this)
)}
 </View>
);
 }
}

We are doing the following in the render method:

Converting the score to a string
Converting the string into a list of digits
Turning this list of digits into a list of images using the supporting getSource()
function

One of the limitations in React Native <Image /> is that its source cannot be required as a
variable. Hence, we are using this small trick of retrieving the source from
our getSource() method, which actually acquires all the possible images and returns the
correct one through a switch/case clause.

Game

[255]

Start
The start screen includes two images:

A logo
A start button explaining how to start up the game (tapping anywhere on the
screen)

/*** src/components/Start.js ***/

import React, { Component } from "react";
import { Text, View, StyleSheet, Image } from "react-native";

import { W, H } from "../constants";

export default class Start extends Component {
 render() {
 return (
 <View style={{ position: "absolute", left: 20 * W, top: 3 * H }}>
 <Image
 resizeMode="contain"
 source={require("../../images/logo.png")}
 style={{ width: 60 * W }}
 />
 <Image
 resizeMode="contain"
 style={{ marginTop: 15, width: 60 * W }}
 source={require("../../images/tap.png")}
 />
 </View>
);
 }
}

We are using our H and W constants again to ensure the elements are positioned in the right
place on every device screen.

GameOver
When the parrot collides with a rock or the ground, we should display the game over
screen. This screen only contains two images:

A game over sign
A button to restart the game

Game

[256]

Let's first take a look at the game over sign:

/*** src/components/GameOver.js ***/

import React, { Component } from "react";
import { Image } from "react-native";

import { W, H } from "../constants";

export default class GameOver extends Component {
 render() {
 return (
 <Image
 style={{
 position: "absolute",
 left: 15 * W,
 top: 30 * H
 }}
 resizeMode="stretch"
 source={require("../../images/game-over.png")}
 />
);
 }
}

Now, let's move on to the reset the game button.

StartAgain
Actually, the reset button is only a sign as the user will be able to tap not only on the button
but anywhere on the screen to get the game started. In any case, we will position this button
properly on every screen using the H and W constants:

/*** src/components/StartAgain.js ***/

import React, { Component } from "react";
import { Text, View, StyleSheet, TouchableOpacity, Image }
from "react-native";

import { W, H } from "../constants";

export default class StartAgain extends Component {
 render() {
 return (
 <Image
 style={{ position: "absolute", left: 35 * W, top: 40 * H }}

Game

[257]

 resizeMode="contain"
 source={require("../../images/reset.png")}
 />
);
 }
}

Summary
Games are a very special kind of app. They are based on displaying and moving sprites on
the screen, depending on the time and the user interaction. That is why we spent most of
this chapter explaining how we could easily display all the images in the most performant
way and how to position and size them.

We also reviewed a common trick to position and size sprites relatively to the height and
width of the device screen.

Despite not being designed for games specifically, Redux was used to store and distribute
the sprite's data around the components in our app.

At a general level, we proved that React Native can be used to build performant games and,
although it lacks game-specific tooling, we can produce a very readable code which means
it should be easy to extend and maintain. In fact, some very easy extensions can be created
at this stage to make the game more fun and playable: increase speed after passing a
specific amount of obstacles, reduce or increase the gap size, show more than one set of
rocks on screen at once, etc.

The next chapter will review the blueprint of a more conventional type of app: an e-
commerce app.

8
E-Commerce App

Online shopping is something most retailers have adopted, but users are slowly migrating
from websites to mobile apps. That's why e-commerce has set a strong focus on responsive
websites, which can be seamlessly accessed from a desktop computer or a mobile browser.
Along with that, users also demand higher standards of quality which cannot always be
met by even the most responsive websites. Loading times, laggy animations, non-native
components, or a lack of native features may hurt user experiences resulting in low
conversion rates.

Building our e-commerce app in React Native can reduce the development efforts required
due to the possibility of reusing some web components, which were already designed for
the web (using React.js). Besides that, we can reduce the time to market and development
costs, making React Native a very attractive tool for small and medium-sized businesses
willing to sell their products or services online.

In this chapter, we will focus on building a bookstore for iOS and Android reusing 100% of
our code. Despite focusing on a bookstore, the same codebase could be reused to sell any
kind of products just by replacing the products list.

E-Commerce App

[259]

To free us from building an API for this app, we will mock all the data behind a fake API
service. The state management library we will use for this app will be Redux and its
middleware redux-thunk to handle asynchronous calls.

Asynchronous calls and redux-thunk were already explained in Chapter
4, Image Sharing App. It may be useful to review its usage in that chapter to
reinforce the main concepts before moving into the Actions sections in this
chapter.

Navigation will be handled by react-navigation as it is the most complete and
performant navigation library in React Native developed to date. Finally, we will use some
very useful libraries, especially for e-commerce apps, such as react-native-credit-
card-input, which handles credit card inputs.

While building this app, we will emphasize several quality aspects to make sure the app is
production-ready by the end of the chapter. For example, we will use type validation
extensively for properties and code linting.

Overview
Instead of putting much effort into the app's look and feel, as we did in previous chapters,
we will focus on functionality and code quality for this one. Nevertheless, we will build it in
a way which will allow any developer to style it easily at a later stage. With that in mind,
let's take a look at what the app will look like once finished.

E-Commerce App

[260]

Let's start from the home screen where all the books are displayed:

E-Commerce App

[261]

In Android, we will add a drawer navigation pattern instead of a tabbed one as Android
users are more used to it:

E-Commerce App

[262]

The drawer can be opened by swiping the screen from the left edge to the right:

E-Commerce App

[263]

Now, let's see what happens when a user taps on one of the books from the home screen
(list of books available):

E-Commerce App

[264]

The Android version for this screen will be similar, as only a couple of native components
will adopt a different styling, depending on which platform the app is executed:

E-Commerce App

[265]

Only logged-in users will be able to buy books from our app. This means that we need to
pop up a login/registration screen at a certain point, and clicking on the BUY! button seems
like an appropriate moment for this:

E-Commerce App

[266]

In this case, the Android version will look different from the iOS because of the difference
in styles between native buttons on each platform:

For testing purposes, we created a test account in this app with the following credentials:

e-mail: test@test.com
password: test

E-Commerce App

[267]

In case the user still doesn't have an account, she will be able to click on the
OR REGISTER button to create one:

This form will include the following validations:

e-mail and repeat e-mail field values match
All the fields are entered

E-Commerce App

[268]

In case any of these validations fail, we will display an error message at the bottom of this
screen:

E-Commerce App

[269]

After registering, the user will be logged in automatically and will be able to continue her
purchase journey by reviewing her cart:

E-Commerce App

[270]

Again, the Android version will show small differences in the looks of this screen:

By clicking on the KEEP BUYING button on this screen, the user will be sent back to the
home screen where all the available books are displayed for her to continue adding items to
her cart.

E-Commerce App

[271]

In case she decides to confirm her purchase, the app will display a payment screen in which
the user can enter her credit card details:

E-Commerce App

[272]

The Pay now button will only be active when all the data has been entered correctly:

For testing purposes, the developers can use the following credit card data:

Card number: 4111 1111 1111 1111
Date of expiration: any date in the future
CVC/CVV: 123

E-Commerce App

[273]

Once the payment has gone through, the user will receive a confirmation of her purchase
detailing all the items which will be sent to her address:

This screen will finish the purchase journey. At this stage, the user can click on the
Continue Shopping button to go back to the list of available products.

E-Commerce App

[274]

There are two more journeys available through the tabbed/drawer navigation. The first one
is to the My Profile section to review her account details or Logout:

If the user still didn't log in, the app will show the login/register form on this screen.

E-Commerce App

[275]

The last journey is accessed through the Sales tab/menu item:

By pressing Add to cart, the user will be sent directly to the purchase journey where she can
add more items to the cart or directly confirm the purchase by entering her login (if not
present) and payment details.

Lastly, every time we need to receive data from the backend API, we will display a spinner
to let the user know there is some activity happening in the background:

Since we will mock all the API calls, we will need to add a small delay to their responses in
order to see the spinners, so the developers can have a similar experience as users will have,
when we replace the mocked up calls for real API requests.

E-Commerce App

[276]

Setting up the folder structure
This app will use Redux, as its state management library, which will define the folder
structure we will be using throughout this chapter. Let's start by initializing the project
through React Native's CLI:

react-native init --version="0.48.3" ecommerce

As we have seen in previous chapters where we used Redux, we need our folder structure
to accommodate different module types:
reducers, actions, components, screens, and api calls. We will do this in the following
folder structure:

E-Commerce App

[277]

Apart from the folder structure created by React Native's CLI, we added the following
folders and files:

src/components: This will hold the reusable visual components.
src/reducers: This will store the reducers, which modify the state of the app by
detecting which actions were triggered.
src/screens: This will store all the different visual containers connecting them
to the app state through Redux.
src/api.js: By the end of the chapter, we will have all the required API calls
mocked inside this file. In case we wanted to connect to a real API, we would just
need to change this file to make HTTP requests to the proper endpoints.
src/main.js: This is the entry point to the app and will set up the navigation
components and initialize the store in which the app's state will live.

The src/components folder will contain the following files:

The src/reducers will hold the three different data domains in our app: user, payment,
and products:

E-Commerce App

[278]

Last, the screens folder will store a file for each of the screens the user will be able to see in
the app:

Let's take a look now at the package.json file we will use to install all required libraries
for this app:

/*** package.json ***/

{
 "name": "ecommerce",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node node_modules/react-native/local-cli/cli.js start",
 "test": "jest",
 "ios": "react-native run-ios",
 "android": "react-native run-android"
 },
 "dependencies": {
 "native-base": "^2.3.1",
 "prop-types": "^15.5.10",
 "react": "16.0.0-alpha.12",
 "react-native": "0.48.3",
 "react-native-credit-card-input": "^0.3.3",
 "react-navigation": "^1.0.0-beta.11",
 "react-redux": "^5.0.6",
 "redux": "^3.7.2",
 "redux-thunk": "^2.2.0"
 },
 "devDependencies": {
 "babel-eslint": "^7.2.3",
 "babel-jest": "20.0.3",
 "babel-plugin-lodash": "^3.2.11",
 "babel-plugin-module-resolver": "^2.7.1",
 "babel-plugin-transform-builtin-extend": "^1.1.2",
 "babel-plugin-transform-react-jsx-source": "^6.22.0",

E-Commerce App

[279]

 "babel-plugin-transform-runtime": "^6.23.0",
 "babel-preset-env": "^1.6.0",
 "babel-preset-es2015": "^6.24.1",
 "babel-preset-react-native": "2.0.0",
 "babel-preset-stage-0": "^6.24.1",
 "eslint-config-airbnb": "^15.1.0",
 "eslint-config-prettier": "^2.3.0",
 "eslint-config-rallycoding": "^3.2.0",
 "eslint-import-resolver-babel-module": "^3.0.0",
 "eslint-import-resolver-webpack": "^0.8.3",
 "eslint-plugin-flowtype": "^2.35.0",
 "eslint-plugin-import": "^2.7.0",
 "eslint-plugin-jsx-a11y": "^5.1.1",
 "eslint-plugin-prettier": "^2.1.2",
 "eslint-plugin-react": "^7.2.0",
 "eslint-plugin-react-native": "^3.0.1",
 "jest": "20.0.4",
 "prettier": "^1.5.3",
 "prettier-package-json": "^1.4.0",
 "react-test-renderer": "16.0.0-alpha.12"
 },
 "jest": {
 "preset": "react-native"
 }
}

We will be using the following extra libraries for our app:

native-base: This is for styled components.
prop-types: This is for property validation inside components.
react-native-credit-card-input: This is for the user to enter her credit card
details.
react-redux: This and Redux are used for state management.
redux-thunk: This is for connecting Redux to asynchronous calls.

Besides all these dependencies, we will add some other dev dependencies, which will help
our developers write code in a very comfortable and confident way:

babel-eslint: This is for linting our ES6 code.
eslint-config-airbnb: This is the set of coding styles we will use.
prettier: This is the code formatter we will use to support ES6 and JSX.

E-Commerce App

[280]

Having this package.json in place, we are ready to install all these dependencies by
running:

npm install

Before starting to write code let's configure our linting rules and the text editor to take full
advantage of the code formatting tools we will use in this chapter.

Linting and code formatting
Writing clean, bug-free code is challenging. There are a lot of pitfalls that we may face such
as indentation, importing/exporting misses, tags not closed, and so on. Having to overcome
all of them manually is a tough job which can distract us from our main purpose: writing
functional code. Luckily, there are a handful of very useful tools to help us with this task.

The tools we will be using in this chapter to ensure our code is clean will be ESLint (https:/
/eslint.org/) and Prettier (https:/ /github. com/ prettier/ prettier).

ESLint will be in charge of identifying and reporting on patterns found in the
ES6/JavaScript code, with the goal of making the code more consistent and avoiding bugs.
For example, ESLint will flag any use of non-declared variables, exposing the error while
we are writing code instead of waiting until compilation.

On the other hand, Prettier enforces a consistent code style across your entire codebase
because it disregards the original styling by parsing it away and reprinting it with its own
rules that take the maximum line length into account, wrapping code when necessary.

We can also use ESLint to enforce Prettier code styles directly in our browser. Our first step
will be to configure ESLint to adapt to the formatting and linting rules we want to enforce
in our project. In the case of this app, we will follow Airbnb's and Prettier's rules as we
already installed them as a developer's dependency in this project.

To ensure ESLint will use these rules, we will create a .eslintrc file containing all the
options we want to set up when linting:

/*** .eslintrc ***/

{
 "extends": ["airbnb", "prettier", "prettier/react", "prettier/flowtype"],
 "globals": {
 "queryTree": false
 },
 "plugins": ["react", "react-native", "flowtype", "prettier"],

https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://github.com/prettier/prettier

E-Commerce App

[281]

 "env": { "es6": true, "jest": true },
 "parser": "babel-eslint",
 "rules": {
 "prettier/prettier": [
 "error",
 {
 "trailingComma": "all",
 "singleQuote": true,
 "bracketSpacing": true,
 "tabWidth": 2
 }
],
 ...

}

We won't explore much in how to configure ESLint much in this book as their
documentation is quite extensive and well explained. For this project, we will only need to
extend Airbnb's and Prettier's rules while setting the corresponding plugins (react,
react-native, flowtype, and prettier) in the configuration file.

Setting rules for the linter is a matter of taste, and in case of not having had much
experience with it, it is always good to start with a set of prebuilt rules (such as the Airbnb
rules) and modify them one rule at a time.

Finally, we would need to configure our code editor to display those rules, flag them, and
ideally fix them on saving. Visual Studio Code does a very good job at integrating these
linting/code formatting rules as its ESLint plugin (https:/ /github. com/Microsoft/ vscode-
eslint) does all the work for us. It is highly recommended to enable
the eslint.autoFixOnSave option to ensure the editor fixes all the code formatting issues
after saving the file we are working on.

Now that we have our linting tools in place, let's start writing our app's codebase.

Indexes and main files
Both the iOS and Android platforms will share the same codebase using src/main.js as
an entry point. Therefore, we will change index.ios.js and index.android.js to
import main.js and initialize the app with that component as a root:

/*** index.ios.js and index.android.js ***/

import { AppRegistry } from 'react-native';
import App from './src/main';

https://github.com/Microsoft/vscode-eslint
https://github.com/Microsoft/vscode-eslint
https://github.com/Microsoft/vscode-eslint
https://github.com/Microsoft/vscode-eslint
https://github.com/Microsoft/vscode-eslint
https://github.com/Microsoft/vscode-eslint
https://github.com/Microsoft/vscode-eslint
https://github.com/Microsoft/vscode-eslint
https://github.com/Microsoft/vscode-eslint
https://github.com/Microsoft/vscode-eslint
https://github.com/Microsoft/vscode-eslint
https://github.com/Microsoft/vscode-eslint

E-Commerce App

[282]

AppRegistry.registerComponent('ecommerce', () => App);

This is the same structure we used for all apps sharing codebase throughout the book. Our
main.js file should now initialize the navigation components and set up the store we will
use to hold the app's state:

/*** src/main.js ***/

import React from 'react';
import {
 DrawerNavigator,
 TabNavigator,
 StackNavigator,
} from 'react-navigation';
import { Platform } from 'react-native';

import { Provider } from 'react-redux';
import { createStore, combineReducers, applyMiddleware } from 'redux';
import thunk from 'redux-thunk';
import paymentsReducer from './reducers/payments';
import productsReducer from './reducers/products';
import userReducer from './reducers/user';

import ProductList from './screens/ProductList';
import ProductDetail from './screens/ProductDetail';
import MyCart from './screens/MyCart';
import MyProfile from './screens/MyProfile';
import Payment from './screens/Payment';
import PaymentConfirmation from './screens/PaymentConfirmation';
import Sales from './screens/Sales';

const ProductsNavigator = StackNavigator({
 ProductList: { screen: ProductList },
 ProductDetail: { screen: ProductDetail },
});

const PurchaseNavigator = StackNavigator({
 MyCart: { screen: MyCart },
 Payment: { screen: Payment },
 PaymentConfirmation: { screen: PaymentConfirmation },
});

let Navigator;
if (Platform.OS === 'ios') {
 Navigator = TabNavigator(
 {
 Home: { screen: ProductsNavigator },
 MyCart: { screen: PurchaseNavigator },

E-Commerce App

[283]

 MyProfile: { screen: MyProfile },
 Sales: { screen: Sales },
 },
 {
 tabBarOptions: {
 inactiveTintColor: '#aaa',
 activeTintColor: '#000',
 showLabel: true,
 },
 },
);
} else {
 Navigator = DrawerNavigator({
 Home: { screen: ProductsNavigator },
 MyCart: { screen: MyCart },
 MyProfile: { screen: MyProfile },
 Sales: { screen: Sales },
 });
}

const store = createStore(
 combineReducers({ paymentsReducer, productsReducer, userReducer }),
 applyMiddleware(thunk),
);

export default () => (
 <Provider store={store}>
 <Navigator />
 </Provider>
);

Our main navigator (Navigator) will be a tabbed navigation on iOS and a drawer
navigator on Android. This navigator will be the root for the app and will use two nested
stacked navigators (ProductsNavigator and PurchaseNavigator), which will cover the
following journeys:

ProductsNavigator: ProductList | ProductDetail
PurchaseNavigator: MyCart | Payment | PaymentConfirmation

Each step in each journey is a specific screen in the app.

Login and registration are not steps in those journeys since they will be
treated as pop-up screens displaying only if they are needed.

E-Commerce App

[284]

The last step in this file is in charge of setting up Redux, applying all the reducers and
middleware (only redux-thunk in our case), which will be in place for this project:

const store = createStore(
 combineReducers({ paymentsReducer, productsReducer, userReducer }),
 applyMiddleware(thunk),
);

Once store is created, we pass it to the provider in the root of our app to make sure the
state will be shared among all the screens. Before moving into each individual screen, let's
create our reducers and actions so that we can have them available to be used when
building the screens.

Reducers
In previous chapters, we split our Redux-specific code (reducers, actions, and
action creators) in the standard way that is documented in Redux's documentation. To
make it easy to maintain in the future, we will use a different approach for this app: Redux
Ducks (https:// github. com/ erikras/ ducks- modular- redux).

Redux Ducks is a proposal for bundling together reducers, action types, and actions when
using Redux. Instead of creating separate folders for reducers and actions, they are put
together in files based on which kind of functionality they handle, reducing the number of
files to deal with when implementing new features.

Let's start with the products reducer:

/*** src/reducers/products.js ***/

import { get } from '../api';

// Actions
const FETCH = 'products/FETCH';
const FETCH_SUCCESS = 'products/FETCH_SUCCESS';
const FETCH_ERROR = 'products/FETCH_ERROR';
const ADD_TO_CART = 'products/ADD_TO_CART';
const REMOVE_FROM_CART = 'products/REMOVE_FROM_CART';
const RESET_CART = 'products/RESET_CART';

// Reducer
const initialState = {
 loading: false,
 cart: [],
 products: [],

https://github.com/erikras/ducks-modular-redux
https://github.com/erikras/ducks-modular-redux
https://github.com/erikras/ducks-modular-redux
https://github.com/erikras/ducks-modular-redux
https://github.com/erikras/ducks-modular-redux
https://github.com/erikras/ducks-modular-redux
https://github.com/erikras/ducks-modular-redux
https://github.com/erikras/ducks-modular-redux
https://github.com/erikras/ducks-modular-redux
https://github.com/erikras/ducks-modular-redux
https://github.com/erikras/ducks-modular-redux
https://github.com/erikras/ducks-modular-redux
https://github.com/erikras/ducks-modular-redux
https://github.com/erikras/ducks-modular-redux
https://github.com/erikras/ducks-modular-redux

E-Commerce App

[285]

};
export default function reducer(state = initialState, action = {}) {
 let product;
 let i;
 switch (action.type) {
 case FETCH:
 return { ...state, loading: true };
 case FETCH_SUCCESS:
 return {
 ...state,
 products: action.payload.products,
 loading: false,
 error: null,
 };
 case FETCH_ERROR:
 return { ...state, error: action.payload.error, loading: false };
 case ADD_TO_CART:
 product = state.cart.find(p => p.id ===
 action.payload.product.id);
 if (product) {
 product.quantity += 1;
 return {
 ...state,
 cart: state.cart.slice(),
 };
 }
 product = action.payload.product;
 product.quantity = 1;
 return {
 ...state,
 cart: state.cart.slice().concat([action.payload.product]),
 };
 case REMOVE_FROM_CART:
 i = state.cart.findIndex(p => p.id ===
 action.payload.product.id);
 if (state.cart[i].quantity === 1) {
 state.cart.splice(i, 1);
 } else {
 state.cart[i].quantity -= 1;
 }
 return {
 ...state,
 cart: state.cart.slice(),
 };
 case RESET_CART:
 return {
 ...state,
 cart: [],

E-Commerce App

[286]

 };
 default:
 return state;
 }
}

// Action Creators
export function addProductToCart(product) {
 return { type: ADD_TO_CART, payload: { product } };
}

export function removeProductFromCart(product) {
 return { type: REMOVE_FROM_CART, payload: { product } };
}

export function fetchProducts() {
 return dispatch => {
 dispatch({ type: FETCH });
 get('/products')
 .then(products =>
 dispatch({ type: FETCH_SUCCESS, payload: { products } }),
)
 .catch(error => dispatch({ type: FETCH_ERROR, payload: { error } }));
 };
}

export function resetCart() {
 return { type: RESET_CART };
}

This file handles all the business logic related to products in our app. Let's review each
action creator and how it modifies the state when processed by the reducer:

addProductToCart(): This will dispatch the ADD_TO_CART action, which will
be picked up by the reducer. If the provided product is already present in the cart
inside the state, it will increase the quantity by one item. Otherwise, it will insert
the product into the cart and set its quantity to one.
removeProductFromCart(): This action does the opposite to the previous one.
It decreases the quantity of this product if already present in the cart stored in the
state. If the quantity of this product is one, the reducer will remove the product
from the cart.

E-Commerce App

[287]

fetchProducts(): This is an asynchronous action and therefore will return a
function for redux-thunk to pick it up. It will make a GET request (implemented
by the get() function in the api.json file) to the API to the /products
endpoint. It will also handle the response from this endpoint, dispatching
a FETCH_SUCCESS action when the request is successfully fulfilled, or
a FETCH_ERROR action in case the request is errored out.
resetCart(): This dispatches a RESET_CART action, which will be used by the
reducer to clear all the cart details from the state.

As we are following Redux Ducks recommendation, all these actions are put together in the
same file making it easy to determine what actions do and what effect they cause in the
application state.

Let's move now to the next reducer: the user reducer:

/*** src/reducers/user.js ***/

import { post } from '../api';

// Actions
const LOGIN = 'user/LOGIN';
const LOGIN_SUCCESS = 'user/LOGIN_SUCCESS';
const LOGIN_ERROR = 'user/LOGIN_ERROR';
const REGISTER = 'user/REGISTER';
const REGISTER_SUCCESS = 'user/REGISTER_SUCCESS';
const REGISTER_ERROR = 'user/REGISTER_ERROR';
const LOGOUT = 'user/LOGOUT';

// Reducer
export default function reducer(state = {}, action = {}) {
 switch (action.type) {
 case LOGIN:
 case REGISTER:
 return { ...state, user: null, loading: true, error: null };
 case LOGIN_SUCCESS:
 case REGISTER_SUCCESS:
 return {
 ...state,
 user: action.payload.user,
 loading: false,
 error: null,
 };
 case LOGIN_ERROR:
 case REGISTER_ERROR:
 return {
 ...state,

E-Commerce App

[288]

 user: null,
 loading: false,
 error: action.payload.error,
 };
 case LOGOUT:
 return {
 ...state,
 user: null,
 };
 default:
 return state;
 }
}

// Action Creators
export function login({ email, password }) {
 return dispatch => {
 dispatch({ type: LOGIN });
 post('/login', { email, password })
 .then(user => dispatch({ type: LOGIN_SUCCESS,
 payload: { user } }))
 .catch(error => dispatch({ type: LOGIN_ERROR,
 payload: { error } }));
 };
}

export function register({
 email,
 repeatEmail,
 name,
 password,
 address,
 postcode,
 city,
}) {
 if (
 !email ||
 !repeatEmail ||
 !name ||
 !password ||
 !name ||
 !address ||
 !postcode ||
 !city
) {
 return {
 type: REGISTER_ERROR,
 payload: { error: 'All fields are mandatory' },

E-Commerce App

[289]

 };
 }
 if (email !== repeatEmail) {
 return {
 type: REGISTER_ERROR,
 payload: { error: "Email fields don't match" },
 };
 }
 return dispatch => {
 dispatch({ type: REGISTER });
 post('/register', {
 email,
 name,
 password,
 address,
 postcode,
 city,
 })
 .then(user => dispatch({ type: REGISTER_SUCCESS, payload:
 { user } }))
 .catch(error => dispatch({ type: REGISTER_ERROR, payload:
 { error } }));
 };
}

export function logout() {
 return { type: LOGOUT };
}

The action creators in this reducer are quite straightforward:

login(): This takes an email and password to dispatch the LOGIN action and
then makes a POST request to the /login endpoint to validate the credentials. If
the API call becomes successful, the action creator will dispatch a
LOGIN_SUCCESS action logging the user in. In case the request fails, it will
dispatch a LOGIN_ERROR action so the user can know what happened.
register(): This is similar to the login() action creator; it will dispatch a
REGISTER action, then a REGISTER_SUCCESS or REGISTER_ERROR, depending
on how the API call returns. If the registration was successful, the user data will
be stored in the application's state, flagging that the user has logged in.
logout(): This dispatches a LOGOUT action, which will make the reducer clear
the user object in the application state.

E-Commerce App

[290]

The last reducer deals with payments data:

/*** src/reducers/payments.js ***/

import { post } from '../api';

// Actions
const PAY = 'products/PAY';
const PAY_SUCCESS = 'products/PAY_SUCCESS';
const PAY_ERROR = 'products/PAY_ERROR';
const RESET_PAYMENT = 'products/RESET_PAYMENT';

// Reducer
export default function reducer(state = {}, action = {}) {
 switch (action.type) {
 case PAY:
 return { ...state, loading: true, paymentConfirmed: false,
 error: null };
 case PAY_SUCCESS:
 return {
 ...state,
 paymentConfirmed: true,
 loading: false,
 error: null,
 };
 case PAY_ERROR:
 return {
 ...state,
 loading: false,
 paymentConfirmed: false,
 error: action.payload.error,
 };
 case RESET_PAYMENT:
 return { loading: false, paymentConfirmed: false, error: null };
 default:
 return state;
 }
}

// Action Creators
export function pay(user, cart, card) {
 return dispatch => {
 dispatch({ type: PAY });
 post('/pay', { user, cart, card })
 .then(() => dispatch({ type: PAY_SUCCESS }))
 .catch(error => dispatch({ type: PAY_ERROR,
 payload: { error } }));
 };

E-Commerce App

[291]

}

export function resetPayment() {
 return { type: RESET_PAYMENT };
}

There are only two action creators in this reducer:

pay(): This takes a user, a cart, and a credit card and calls the /pay endpoint in
the API to make a payment. If the payment is successful, it triggers a
PAY_SUCCESS action, otherwise, it triggers a PAY_ERROR action to notify the user.
resetPayment(): This clears any payment data by triggering the
RESET_PAYMENT action.

We have seen these action creators contact the API in several ways. Let's now create some
API methods, so the action creators can interact with the application's backend.

API
The API service we will be using will use two HTTP methods (GET and POST) and four
endpoints (/products, /login, /register, and /pay). We will mock up this service for
testing and development reasons but will leave the implementation open to plug in external
endpoints easily at a later stage:

/*** src/api.js ***/

export const get = uri =>
 new Promise(resolve => {
 let response;

 switch (uri) {
 case '/products':
 response = [
 {
 id: 1,
 name: 'Mastering Docker - Second Edition',
 author: 'James Cameron',
 img:
 'https://d1ldz4te4covpm.cloudfront.net/sites/default
 /files/imagecache/ppv4_main_book_cover
 /B06565_MockupCover_0.png',
 price: 39.58,
 },

E-Commerce App

[292]

 ...

];
 break;
 default:
 return null;
 }

 setTimeout(() => resolve(response), 1000);
 return null;
 });

export const post = (uri, data) =>
 new Promise((resolve, reject) => {
 let response;

 switch (uri) {
 case '/login':
 if (data.email === 'test@test.com' && data.password === 'test')
 {
 response = {
 email: 'test@test.com',
 name: 'Test Testson',
 address: '123 test street',
 postcode: '2761XZ',
 city: 'Testington',
 };
 } else {
 setTimeout(() => reject('Unauthorised'), 1000);
 return null;
 }
 break;
 case '/pay':
 if (data.card.cvc === '123') {
 response = true;
 } else {
 setTimeout(() => reject('Payment not authorised'), 1000);
 return null;
 }
 break;
 case '/register':
 response = data;
 break;
 default:
 return null;
 }

 setTimeout(() => resolve(response), 1000);

E-Commerce App

[293]

 return null;
 });

export const put = () => {};

All calls are wrapped inside a setTimeout() function with 1-second delays to simulate
network activity so indicators can be tested. The service only replies successfully when
credentials are test@test.com/test. On the other hand, the pay() service only returns a
successful response when the CVC/CVV code is 123. The register call just returns the
provided data as successfully registered user data.

This setTimeout() trick is used to mock asynchronous calls up as they
would happen with a real backend. It is an useful way to develop front-
end solutions before the backend or testing environments are ready.

Let's now move on to the screens in the application.

ProductList
Our home screen displays a list of products available to be purchased:

/*** src/screens/ProductList.js ***/

import React from 'react';
import { ScrollView, TouchableOpacity } from 'react-native';
import PropTypes from 'prop-types';

import { bindActionCreators } from 'redux';
import { connect } from 'react-redux';
import {
 Spinner,
 Icon,
 List,
 ListItem,
 Thumbnail,
 Body,
 Text,
} from 'native-base';
import * as ProductActions from '../reducers/products';

class ProductList extends React.Component {
 static navigationOptions = {
 drawerLabel: 'Home',
 tabBarIcon: () => <Icon name="home" />,

E-Commerce App

[294]

 };

 componentWillMount() {
 this.props.fetchProducts();
 }

 onProductPress(product) {
 this.props.navigation.navigate('ProductDetail', { product });
 }

 render() {
 return (
 <ScrollView>
 {this.props.loading && <Spinner />}
 <List>
 {this.props.products.map(p => (
 <ListItem key={p.id}>
 <Thumbnail square height={80} source={{ uri: p.img }} />
 <Body>
 <TouchableOpacity onPress={() =>
 this.onProductPress(p)}>
 <Text>{p.name}</Text>
 <Text note>${p.price}</Text>
 </TouchableOpacity>
 </Body>
 </ListItem>
))}
 </List>
 </ScrollView>
);
 }
}

ProductList.propTypes = {
 fetchProducts: PropTypes.func.isRequired,
 products: PropTypes.array.isRequired,
 loading: PropTypes.bool.isRequired,
 navigation: PropTypes.any.isRequired,
};

function mapStateToProps(state) {
 return {
 products: state.productsReducer.products || [],
 loading: state.productsReducer.loading,
 };
}

function mapStateActionsToProps(dispatch) {

E-Commerce App

[295]

 return bindActionCreators(ProductActions, dispatch);
}

export default connect(mapStateToProps,
mapStateActionsToProps)(ProductList);

Right after this screen is mounted, it will retrieve the latest list of available products by
invoking this.props.fetchProducts();. This will trigger a re-render in the screen, so
all the available books are displayed on the screen. For that to happen, we rely on Redux
updating the state (through the product reducer) and injecting the new state into this screen
by calling the connect method, to which we will need to pass mapStateToProps and
mapStateActionsToProps functions.

mapStateToProps will be in charge of extracting the list of products from state
while mapStateActionsToProps will connect each action with the dispatch() function,
which will connect those actions with the Redux state, applying each triggered action to all
the reducers. In this screen, we are only interested in product-related actions, so we will
bind only ProductActions and the dispatch function together through
the bindActionCreators Redux function.

Inside the render method, we use the map function to translate the list of retrieved
products into several <ListItem/> components, which will be displayed inside <List/>.
Above this list, we will display <Spinner/> while waiting for the network request to be
fulfilled: {this.props.loading && <Spinner />}.

We also added property validation through the prop-types library:

ProductList.propTypes = {
 fetchProducts: PropTypes.func.isRequired,
 products: PropTypes.array.isRequired,
 loading: PropTypes.bool.isRequired,
 navigation: PropTypes.any.isRequired,
};

This means we will get a warning every time this component receives a wrongly typed
prop, or it actually fails to receive one of the required props. In this case, we expect to
receive:

A function named fetchProducts, which will request the list of available
products to the API. It will be provided by Redux
through mapStateActionsToProps as defined on this screen.
A products array that contains the list of available products. This will be
injected by Redux through the previously stated mapStateToProps function.

E-Commerce App

[296]

A loading Boolean to flag network activity (also provided by Redux through
mapStateToProps).
A navigation object provided by react-navigation automatically. We mark it
as type any as it is an external object, which may change its type out of our
control.

All these will be available to be used inside our component's props (this.props).

The last thing to note about this container is how we are going to deal with the user actions.
In this screen, there is only one action: the user clicking on a product item to see its details:

onProductPress(product) {
 this.props.navigation.navigate('ProductDetail', { product });
}

When the user taps on a specific product, this screen will call the navigate function in the
navigation prop to move to our next screen, ProductDetail. Instead of saving the
selected product in the state through an action, we will pass it directly using navigation
options to simplify our store.

ProductDetail
This screen will show the user all the details about the selected product and allow her to
add this selected product to her cart:

/*** src/screens/ProductDetail.js ***/

import React from 'react';
import { Image, ScrollView } from 'react-native';

import { bindActionCreators } from 'redux';
import { connect } from 'react-redux';
import PropTypes from 'prop-types';
import { Icon, Button, Text } from 'native-base';
import * as ProductsActions from '../reducers/products';

class ProductDetail extends React.Component {
 static navigationOptions = {
 drawerLabel: 'Home',
 tabBarIcon: () => <Icon name="home" />,
 };

 onBuyPress(product) {
 this.props.addProductToCart(product);

E-Commerce App

[297]

 this.props.navigation.goBack();
 setTimeout(() => this.props.navigation.navigate('MyCart',
 { product }), 0);
 }

 render() {
 const { navigation } = this.props;
 const { state } = navigation;
 const { params } = state;
 const { product } = params;
 return (
 <ScrollView>
 <Image
 style={{
 height: 200,
 width: 160,
 alignSelf: 'center',
 marginTop: 20,
 }}
 source={{ uri: product.img }}
 />
 <Text
 style={{
 alignSelf: 'center',
 marginTop: 20,
 fontSize: 30,
 fontWeight: 'bold',
 }}
 >
 ${product.price}
 </Text>
 <Text
 style={{
 alignSelf: 'center',
 margin: 20,
 }}
 >
 Lorem ipsum dolor sit amet, consectetur
 adipiscing elit. Nullam nec
 eros quis magna vehicula blandit at nec velit.
 Mauris porta risus non
 lectus ultricies lacinia. Phasellus molestie metus ac
 metus dapibus,
 nec maximus arcu interdum. In hac habitasse platea dictumst.
 Suspendisse fermentum iaculis ex, faucibus semper turpis
 vestibulum quis.
 </Text>
 <Button

E-Commerce App

[298]

 block
 style={{ margin: 20 }}
 onPress={() => this.onBuyPress(product)}
 >
 <Text>Buy!</Text>
 </Button>
 </ScrollView>
);
 }
}

ProductDetail.propTypes = {
 navigation: PropTypes.any.isRequired,
 addProductToCart: PropTypes.func.isRequired,
};

ProductDetail.navigationOptions = props => {
 const { navigation } = props;
 const { state } = navigation;
 const { params } = state;
 return {
 tabBarIcon: () => <Icon name="home" />,
 headerTitle: params.product.name,
 };
};

function mapStateToProps(state) {
 return {
 user: state.userReducer.user,
 };
}
function mapStateActionsToProps(dispatch) {
 return bindActionCreators(ProductsActions, dispatch);
}

export default connect(mapStateToProps,
mapStateActionsToProps)(ProductDetail);

ProductDetail requires Redux to provide it with the user details stored in state. This is
achieved by calling the connect method, passing a mapStateToProps function which will
extract the user from the specified state and return it to be injected as prop in the screen. It
also requires an action from Redux: addProductToCart. This action just stores the selected
product in the store when the user expressee her wish to buy it.

E-Commerce App

[299]

The render() method in this screen shows <ScrollView /> wrapping the book image,
price, description (we will display a fake lorem ipsum description for now), and a Buy!
button, which will be connected to the addProductToCart action provided by Redux:

onBuyPress(product) {
 this.props.addProductToCart(product);
 this.props.navigation.goBack();
 setTimeout(() => this.props.navigation.navigate('MyCart',
 { product }), 0);
}

The onBuyPress() method invokes the mentioned action and does a small navigation trick
afterwards. It goes back by calling the goBack() method on the navigation object to
remove the ProductDetail screen from the navigation stack, as the user won't need it
anymore after adding the product to the cart. Immediately after doing this, the
onBuyPress() method will invoke the navigate method on the navigation object to be
moved and display the state of the user's cart in the MyCart screen. We are
using setTimeout here to make sure we wait until the previous call
(this.props.navigation.goBack();) has finished all the navigation tasks and the
object is again ready for us to use. Waiting for 0 seconds should be enough, since we just
want to wait for the call stack to be cleared.

Let's take a look at what the MyCart screen looks like now.

MyCart
This screen expects Redux to inject the cart stored in the state, so it can render all the items
in the cart for the user to review before confirming the purchase:

/*** src/screens/MyCart.js ***/

import React from 'react';
import { ScrollView, View } from 'react-native';

import { bindActionCreators } from 'redux';
import { connect } from 'react-redux';
import PropTypes from 'prop-types';
import {
 ListItem,
 Text,
 Icon,
 Button,
 Badge,

E-Commerce App

[300]

 Header,
 Title,
} from 'native-base';

import * as ProductActions from '../reducers/products';

class MyCart extends React.Component {
 static navigationOptions = {
 drawerLabel: 'My Cart',
 tabBarIcon: () => <Icon name="cart" />,
 };

 onTrashPress(product) {
 this.props.removeProductFromCart(product);
 }

 render() {
 return (
 <View>
 <ScrollView>
 {this.props.cart.map((p, i) => (
 <ListItem key={i} style={{ justifyContent:
 'space-between' }}>
 <Badge primary>
 <Text>{p.quantity}</Text>
 </Badge>
 <Text> {p.name}</Text>
 <Button
 icon
 danger
 small
 transparent
 onPress={() => this.onTrashPress(p)}
 >
 <Icon name="trash" />
 </Button>
 </ListItem>
))}
 {this.props.cart.length > 0 && (
 <View>
 <Text style={{ alignSelf: 'flex-end', margin: 10 }}>
 Total: ${this.props.cart.reduce(
 (sum, p) => sum + p.price * p.quantity,
 0,
)}
 </Text>
 <View style={{ flexDirection: 'row',
 justifyContent: 'center' }}>

E-Commerce App

[301]

 <Button
 style={{ margin: 10 }}
 onPress={() =>
 this.props.navigation.navigate('Home')}
 >
 <Text>Keep buying</Text>
 </Button>
 <Button
 style={{ margin: 10 }}
 onPress={() =>
 this.props.navigation.navigate('Payment')}
 >
 <Text>Confirm purchase</Text>
 </Button>
 </View>
 </View>
)}
 {this.props.cart.length == 0 && (
 <Text style={{ alignSelf: 'center', margin: 30 }}>
 There are no products in the cart
 </Text>
)}
 </ScrollView>
 </View>
);
 }
}

MyCart.propTypes = {
 cart: PropTypes.array.isRequired,
 navigation: PropTypes.object.isRequired,
 removeProductFromCart: PropTypes.func.isRequired,
};

function mapStateToProps(state) {
 return {
 user: state.userReducer.user,
 cart: state.productsReducer.cart || [],
 loading: state.userReducer.loading,
 error: state.userReducer.error,
 paying: state.paymentsReducer.loading,
 };
}
function mapStateActionsToProps(dispatch) {
 return bindActionCreators(ProductActions, dispatch);
}

export default connect(mapStateToProps, mapStateActionsToProps)(MyCart);

E-Commerce App

[302]

Apart from the cart itself, as we can see in the propTypes definition, this screen needs the
action removeProductFromCart from ProductActions, and the navigation object to be
provided to navigate to the Payment screen when the user is ready to confirm her purchase.

In summary, the user can take three actions from here:

Removing an item from the cart by clicking on the Trash icon on each product
row (invoking this.onTrashPress())
Navigating to the Payment screen to complete her purchase (invoking
this.props.navigation.navigate('Payment'))
Navigating to the home screen to keep buying products (invoking
this.props.navigation.navigate('Home'))

Let's continue to the purchase journey by reviewing the Payment screen.

Payment
We will use the react-native-credit-card-input library to capture the user's credit
card details. For this screen to work, we will request the cart, the user, and several
important actions from Redux:

/*** src/screens/Payment.js ***/

import React from 'react';
import { View } from 'react-native';

import { CreditCardInput } from 'react-native-credit-card-input';
import { bindActionCreators } from 'redux';
import { connect } from 'react-redux';
import { Icon, Button, Text, Spinner, Title } from 'native-base';
import PropTypes from 'prop-types';
import * as PaymentsActions from '../reducers/payments';
import * as UserActions from '../reducers/user';
import LoginOrRegister from '../components/LoginOrRegister';

class Payment extends React.Component {
 static navigationOptions = {
 drawerLabel: 'MyCart',
 tabBarIcon: () => <Icon name="cart" />,
 };
 state = {
 validCardDetails: false,
 cardDetails: null,

E-Commerce App

[303]

 };
 onCardInputChange(creditCardForm) {
 this.setState({
 validCardDetails: creditCardForm.valid,
 cardDetails: creditCardForm.values,
 });
 }

 componentWillReceiveProps(newProps) {
 if (this.props.paying && newProps.paymentConfirmed) {
 this.props.navigation.navigate('PaymentConfirmation');
 }
 }

 render() {
 return (
 <View
 style={{
 flex: 1,
 alignSelf: 'stretch',
 paddingTop: 10,
 }}
 >
 {this.props.cart.length > 0 &&
 !this.props.user && (
 <LoginOrRegister
 login={this.props.login}
 register={this.props.register}
 logout={this.props.logout}
 loading={this.props.loading}
 error={this.props.error}
 />
)}
 {this.props.cart.length > 0 &&
 this.props.user && (
 <View>
 <Title style={{ margin: 10 }}>
 Paying: $
 {this.props.cart.reduce(
 (sum, p) => sum + p.price * p.quantity,
 0,
)}
 </Title>
 <CreditCardInput onChange=
 {this.onCardInputChange.bind(this)} />
 <Button
 block
 style={{ margin: 20 }}

E-Commerce App

[304]

 onPress={() =>
 this.props.pay(
 this.props.user,
 this.props.cart,
 this.state.cardDetails,
)}
 disabled={!this.state.validCardDetails}
 >
 <Text>Pay now</Text>
 </Button>
 {this.props.paying && <Spinner />}
 </View>
)}
 {this.props.cart.length > 0 &&
 this.props.error && (
 <Text
 style={{
 alignSelf: 'center',
 color: 'red',
 position: 'absolute',
 bottom: 10,
 }}
 >
 {this.props.error}
 </Text>
)}
 {this.props.cart.length === 0 && (
 <Text style={{ alignSelf: 'center', margin: 30 }}>
 There are no products in the cart
 </Text>
)}
 </View>
);
 }
}

Payment.propTypes = {
 user: PropTypes.object,
 cart: PropTypes.array,
 login: PropTypes.func.isRequired,
 register: PropTypes.func.isRequired,
 logout: PropTypes.func.isRequired,
 pay: PropTypes.func.isRequired,
 loading: PropTypes.bool,
 paying: PropTypes.bool,
 error: PropTypes.string,
 paymentConfirmed: PropTypes.bool,
 navigation: PropTypes.object.isRequired,

E-Commerce App

[305]

};

function mapStateToProps(state) {
 return {
 user: state.userReducer.user,
 cart: state.productsReducer.cart,
 loading: state.userReducer.loading,
 paying: state.paymentsReducer.loading,
 paymentConfirmed: state.paymentsReducer.paymentConfirmed,
 error: state.paymentsReducer.error || state.userReducer.error,
 };
}
function mapStateActionsToProps(dispatch) {
 return bindActionCreators(
 Object.assign({}, PaymentsActions, UserActions),
 dispatch,
);
}

export default connect(mapStateToProps, mapStateActionsToProps)(Payment);

This is a complex component. Let's take a look at the props validation to understand its
signature:

Payment.propTypes = {
 user: PropTypes.object,
 cart: PropTypes.array,
 login: PropTypes.func.isRequired,
 register: PropTypes.func.isRequired,
 logout: PropTypes.func.isRequired,
 pay: PropTypes.func.isRequired,
 loading: PropTypes.bool,
 paying: PropTypes.bool,
 error: PropTypes.string,
 paymentConfirmed: PropTypes.bool,
 navigation: PropTypes.object.isRequired,
};

The following props need to be passed for the component to work properly:

user: We need the user to check if she is logged in. In case she is not, we will
display the login/registration components instead of the credit card input.
cart: We need it to calculate and display the total to be charged to the credit
card.
login: This action will be invoked if the user decides to log in from this screen.

E-Commerce App

[306]

register: This action will be invoked if the user decides to register from this
screen.
logout: This action is needed for the <LoginOrRegister /> component to
work, so it needs to be provided from Redux so it can be injected into the child
<LoginOrRegister /> component.
pay: This action will be triggered when the user has entered valid credit card
details and pressed the Pay now button.
loading: This is a flag for the child <LoginOrRegister /> component to work
properly.
paying: This flag will be used to display a spinner while the payment is being
confirmed.
error: This is a description of the last error to have happened when trying to pay
or log in/register.
paymentConfirmed: This flag will let the component know when/if the payment
has gone through correctly.
navigation: The navigation object used to navigate to other screens.

This component also has its own state:

state = {
 validCardDetails: false,
 cardDetails: null,
};

Both attributes in this state will be provided by <CreditCardInput /> (the main
component form react-native-credit-card-input) and will hold the user's credit
card details and their validity together.

To detect when the payment has been confirmed, we will use the React
method componentWillReceiveProps:

componentWillReceiveProps(newProps) {
 if (this.props.paying && newProps.paymentConfirmed) {
 this.props.navigation.navigate('PaymentConfirmation');
 }
}

This method just detects when the prop paymentConfirmed changes from false to true
in order to navigate to the PaymentConfirmation screen.

E-Commerce App

[307]

PaymentConfirmation
A simple screen displays a summary of the purchase just confirmed:

/*** src/screens/PaymentConfirmation ***/

import React from 'react';
import { View } from 'react-native';
import PropTypes from 'prop-types';

import { bindActionCreators } from 'redux';
import { connect } from 'react-redux';
import { NavigationActions } from 'react-navigation';
import { Icon, Title, Text, ListItem, Badge, Button } from 'native-base';

import * as UserActions from '../reducers/user';
import * as ProductActions from '../reducers/products';
import * as PaymentsActions from '../reducers/payments';

class PaymentConfirmation extends React.Component {
 static navigationOptions = {
 drawerLabel: 'MyCart',
 tabBarIcon: () => <Icon name="cart" />,
 };

 componentWillMount() {
 this.setState({ cart: this.props.cart }, () => {
 this.props.resetCart();
 this.props.resetPayment();
 });
 }

 continueShopping() {
 const resetAction = NavigationActions.reset({
 index: 0,
 actions: [NavigationActions.navigate({ routeName: 'MyCart' })],
 });
 this.props.navigation.dispatch(resetAction);
 }

 render() {
 return (
 <View>
 <Title style={{ marginTop: 20 }}>Your purchase is complete!
 </Title>
 <Text style={{ margin: 20 }}>
 Thank you for buying with us. We sent you an email with the
 confirmation details and an invoice.

E-Commerce App

[308]

 Here you can find a summary of
 your purchase:{' '}
 </Text>
 {this.state.cart.map((p, i) => (
 <ListItem key={i} style={{ justifyContent:
 'space-between' }}>
 <Badge primary>
 <Text>{p.quantity}</Text>
 </Badge>
 <Text> {p.name}</Text>
 <Text> {p.price * p.quantity}</Text>
 </ListItem>
))}
 <Text style={{ alignSelf: 'flex-end', margin: 10 }}>
 Total: ${this.state.cart.reduce(
 (sum, p) => sum + p.price * p.quantity,
 0,
)}
 </Text>
 <Button
 block
 style={{ margin: 20 }}
 onPress={this.continueShopping.bind(this)}
 >
 <Text>Continue Shopping</Text>
 </Button>
 </View>
);
 }
}

PaymentConfirmation.propTypes = {
 cart: PropTypes.array.isRequired,
 resetCart: PropTypes.func.isRequired,
 resetPayment: PropTypes.func.isRequired,
};

function mapStateToProps(state) {
 return {
 cart: state.productsReducer.cart || [],
 };
}
function mapStateActionsToProps(dispatch) {
 return bindActionCreators(
 Object.assign({}, PaymentsActions, ProductActions, UserActions),
 dispatch,
);
}

E-Commerce App

[309]

export default connect(mapStateToProps, mapStateActionsToProps)(
 PaymentConfirmation,
);

The first thing this screen does is to save the app's state related to the cart in the own
component's state:

componentWillMount() {
 this.setState({ cart: this.props.cart }, () => {
 this.props.resetCart();
 this.props.resetPayment();
 });
}

This is necessary because we want to reset the cart and payment details right after this
screen is shown as it won't be needed on any further occasion. This is done by invoking
both the resetCart() and resetPayment() actions provided by Redux.

The render method just maps the items in the cart (now saved in the component's state)
into a list of views so the user can review her order. At the bottom of these views, we will
display a button labeled Continue Shopping, which will return the user to the
ProductList screen by calling the continueShopping method. Besides navigating to the
ProductList screen, we need to reset the navigation so the purchase journey can be
started from scratch the next time the user wants to buy some items. This is achieved by
creating a reset navigation action and
invoking this.props.navigation.dispatch(resetAction);.

The method continueShopping calls NavigationActions.reset to
clear the navigation stack and go back to the home screen. This method is
usually called at the end of a user journey.

This screen completes the purchase journey, so let's focus now in a different part of the
application: the user profile.

E-Commerce App

[310]

MyProfile
As we saw before, only logged-in users can complete purchases so we need a way for the
users to log in, log out, register, and review their account details. This will be achieved by
the MyProfile screen and the <LonginOrRegister /> component:

/*** src/screens/MyProfile.js ***/

import React from 'react';
import { View, Button as LinkButton } from 'react-native';
import PropTypes from 'prop-types';

import { bindActionCreators } from 'redux';
import { connect } from 'react-redux';
import {
 Icon,
 Header,
 Title,
 Label,
 Input,
 Item,
 Form,
 Content,
} from 'native-base';

import * as UserActions from '../reducers/user';
import LoginOrRegister from '../components/LoginOrRegister';

class MyProfile extends React.Component {
 static navigationOptions = {
 drawerLabel: 'My Profile',
 tabBarIcon: () => <Icon name="person" />,
 };

 render() {
 return (
 <View
 style={{
 flex: 1,
 alignSelf: 'stretch',
 }}
 >
 <Header>
 <Title style={{ paddingTop: 10 }}>My Profile</Title>
 </Header>
 {!this.props.user && (
 <LoginOrRegister

E-Commerce App

[311]

 login={this.props.login}
 register={this.props.register}
 logout={this.props.logout}
 loading={this.props.loading}
 error={this.props.error}
 />
)}
 {this.props.user && (
 <Content>
 <Form>
 <Item>
 <Item fixedLabel>
 <Label>Name</Label>
 <Input disabled placeholder={this.props.user.name} />
 </Item>
 </Item>
 <Item disabled>
 <Item fixedLabel>
 <Label>Email</Label>
 <Input disabled placeholder={this.props.user.email}
 />
 </Item>
 </Item>
 <Item disabled>
 <Item fixedLabel>
 <Label>Address</Label>
 <Input disabled placeholder={this.props.user.address}
 />
 </Item>
 </Item>
 <Item disabled>
 <Item fixedLabel>
 <Label>Postcode</Label>
 <Input disabled placeholder=
 {this.props.user.postcode} />
 </Item>
 </Item>
 <Item disabled>
 <Item fixedLabel>
 <Label>City</Label>
 <Input disabled placeholder={this.props.user.city} />
 </Item>
 </Item>
 </Form>
 <LinkButton title={'Logout'} onPress={() =>
 this.props.logout()} />
 </Content>
)}

E-Commerce App

[312]

 </View>
);
 }
}

MyProfile.propTypes = {
 user: PropTypes.any,
 login: PropTypes.func.isRequired,
 register: PropTypes.func.isRequired,
 logout: PropTypes.func.isRequired,
 loading: PropTypes.bool,
 error: PropTypes.string,
};

function mapStateToProps(state) {
 return {
 user: state.userReducer.user || null,
 loading: state.userReducer.loading,
 error: state.userReducer.error,
 };
}
function mapStateActionsToProps(dispatch) {
 return bindActionCreators(UserActions, dispatch);
}

export default connect(mapStateToProps, mapStateActionsToProps)(MyProfile);

This screen receives the user from the app's state and a number of actions (login,
register, and logout), which will be fed into the <LoginOrRegister /> component to
enable login and registration. Most of the logic, therefore, will be deferred to
the <LoginOrRegister /> component, leaving the MyProfile screen with the tasks of
listing the user's account details and displaying a button for logging her out.

Let's review what the <LoginOrRegister /> component does and how.

LoginOrRegister
Actually, this component is compounded by two sub-components: <Login /> and
<Register />. The only task of <LoginOrRegister /> is to save the state of which
component (<Login /> or <Register />) should be displayed, showing it accordingly.

/*** src/components/LoginOrRegister.js ***/

import React from 'react';
import { View } from 'react-native';

E-Commerce App

[313]

import PropTypes from 'prop-types';

import Login from './Login';
import Register from './Register';

export default class LoginOrRegister extends React.Component {
 state = {
 display: 'login',
 };

 render() {
 return (
 <View
 style={{
 flex: 1,
 justifyContent: 'center',
 alignSelf: 'stretch',
 }}
 >
 {this.state.display === 'login' && (
 <Login
 login={this.props.login}
 changeToRegister={() => this.setState({ display:
 'register' })}
 loading={this.props.loading}
 error={this.props.error}
 />
)}
 {this.state.display === 'register' && (
 <Register
 register={this.props.register}
 changeToLogin={() => this.setState({ display: 'login' })}
 loading={this.props.loading}
 error={this.props.error}
 />
)}
 </View>
);
 }
}

LoginOrRegister.propTypes = {
 error: PropTypes.string,
 login: PropTypes.func.isRequired,
 register: PropTypes.func.isRequired,
 loading: PropTypes.bool,
};

E-Commerce App

[314]

The state in this component can be changed by their child components as it passes a
function to do so to each child:

changeToRegister={() => this.setState({ display: 'register' })}

...

changeToLogin={() => this.setState({ display: 'login' })}

Let's now take a look at how the <Login /> and <Register /> components will use these
props to update their parents' state, switching from one view to another.

Login
The login view will be displayed by default on the parent component. Its task is to capture
login information and call the login action once the user pushes the Login button:

/*** src/components/Login.js ***/

import React from 'react';
import { View, Button as LinkButton } from 'react-native';
import { Form, Item, Input, Content, Button, Text, Spinner } from 'native-
base';
import PropTypes from 'prop-types';

class Login extends React.Component {
 state = { email: null, password: null };

 render() {
 return (
 <View style={{ flex: 1 }}>
 <Content>
 <Form>
 <Item>
 <Input
 placeholder="e-mail"
 keyboardType={'email-address'}
 autoCapitalize={'none'}
 onChangeText={email => this.setState({ email })}
 />
 </Item>
 <Item last>
 <Input
 placeholder="password"
 secureTextEntry
 onChangeText={password => this.setState({ password })}

E-Commerce App

[315]

 />
 </Item>
 <Button
 block
 disabled={this.props.loading}
 style={{ margin: 20 }}
 onPress={() =>
 this.props.login({
 email: this.state.email,
 password: this.state.password,
 })}
 >
 <Text>Login</Text>
 </Button>
 </Form>

 <LinkButton
 title={'or Register'}
 onPress={() => this.props.changeToRegister()}
 />
 {this.props.loading && <Spinner />}
 </Content>
 {this.props.error && (
 <Text
 style={{
 alignSelf: 'center',
 color: 'red',
 position: 'absolute',
 bottom: 10,
 }}
 >
 {this.props.error}
 </Text>
)}
 </View>
);
 }
}

Login.propTypes = {
 error: PropTypes.string,
 loading: PropTypes.bool,
 login: PropTypes.func.isRequired,
 changeToRegister: PropTypes.func.isRequired,
};

export default Login;

E-Commerce App

[316]

Two inputs capture the email and the password and save them into the component state as
the inputs are being changed. Once the user has finished entering her credentials, she will
press the Login button and trigger the login action passing the email and password from
the component's state.

There is also a <LinkButton /> labeled or Register, which will invoke (when pressed)
the this.props.changeToRegister() function passed by its parent,
<LoginOrRegister />.

Register
Similarly to the login form, the <Register /> component is a list of input fields saving its
changes into the component state until the user is confident enough to press the Register
button:

import React from 'react';
import { View, Button as LinkButton } from 'react-native';
import { Form, Item, Input, Content, Button, Text, Spinner } from 'native-
base';
import PropTypes from 'prop-types';

class Register extends React.Component {
 state = {
 email: null,
 repeatEmail: null,
 name: null,
 password: null,
 address: null,
 postcode: null,
 city: null,
 };

 render() {
 return (
 <View style={{ flex: 1 }}>
 <Content>
 <Form>
 <Item>
 <Input
 placeholder="e-mail"
 keyboardType={'email-address'}
 autoCapitalize={'none'}
 onChangeText={email => this.setState({ email })}
 />

E-Commerce App

[317]

 </Item>
 <Item>
 <Input
 placeholder="repeat e-mail"
 autoCapitalize={'none'}
 keyboardType={'email-address'}
 onChangeText={repeatEmail => this.setState({
 repeatEmail })}
 />
 </Item>
 <Item>
 <Input
 placeholder="name"
 onChangeText={name => this.setState({ name })}
 />
 </Item>
 <Item>
 <Input
 placeholder="password"
 secureTextEntry
 onChangeText={password => this.setState({ password })}
 />
 </Item>
 <Item>
 <Input
 placeholder="address"
 onChangeText={address => this.setState({ address })}
 />
 </Item>
 <Item>
 <Input
 placeholder="postcode"
 onChangeText={postcode => this.setState({ postcode })}
 />
 </Item>
 <Item>
 <Input
 placeholder="city"
 onChangeText={city => this.setState({ city })}
 />
 </Item>
 <Button
 block
 style={{ margin: 20 }}
 onPress={() =>
 this.props.register({
 email: this.state.email,
 repeatEmail: this.state.repeatEmail,

E-Commerce App

[318]

 name: this.state.name,
 password: this.state.password,
 address: this.state.address,
 postcode: this.state.postcode,
 city: this.state.city,
 })}
 >
 <Text>Register</Text>
 </Button>
 </Form>
 <LinkButton
 title={'or Login'}
 onPress={() => this.props.changeToLogin()}
 />
 {this.props.loading && <Spinner />}
 </Content>
 {this.props.error && (
 <Text
 style={{
 alignSelf: 'center',
 color: 'red',
 position: 'absolute',
 bottom: 10,
 }}
 >
 {this.props.error}
 </Text>
)}
 </View>
);
 }
}

Register.propTypes = {
 register: PropTypes.func.isRequired,
 changeToLogin: PropTypes.func.isRequired,
 error: PropTypes.string,
 loading: PropTypes.bool,
};

export default Register;

In this case, <LinkButton /> at the bottom of the view will
invoke this.props.changeToLogin() when pressed to switch to the login view.

E-Commerce App

[319]

Sales
We added one last screen to demonstrate how different journeys can be linked together
reusing screens and components. In this case, we will create a list of products with their
prices reduced, which can be added directly to the cart for a quick purchase:

/*** src/screens/Sales.js ***/

import React from 'react';
import { ScrollView, Image } from 'react-native';

import { bindActionCreators } from 'redux';
import { connect } from 'react-redux';
import PropTypes from 'prop-types';

import {
 Icon,
 Card,
 CardItem,
 Left,
 Body,
 Text,
 Button,
 Right,
 Title,
} from 'native-base';
import * as ProductActions from '../reducers/products';

class Sales extends React.Component {
 static navigationOptions = {
 drawerLabel: 'Sales',
 tabBarIcon: () => <Icon name="home" />,
 };

 onBuyPress(product) {
 this.props.addProductToCart(product);
 setTimeout(() => this.props.navigation.navigate
 ('MyCart', { product }), 0);
 }

 render() {
 return (
 <ScrollView style={{ padding: 20 }}>
 {this.props.products.filter(p => p.discount).map(product => (
 <Card key={product.id}>
 <CardItem>

E-Commerce App

[320]

 <Left>
 <Body>
 <Text>{product.name}</Text>
 <Text note>{product.author}</Text>
 </Body>
 </Left>
 </CardItem>
 <CardItem cardBody>
 <Image
 source={{ uri: product.img }}
 style={{ height: 200, width: null, flex: 1 }}
 />
 </CardItem>
 <CardItem>
 <Left>
 <Title>${product.price}</Title>
 </Left>
 <Body>
 <Button transparent onPress={() =>
 this.onBuyPress(product)}>
 <Text>Add to cart</Text>
 </Button>
 </Body>
 <Right>
 <Text style={{ color: 'red' }}>
 {product.discount} off!</Text>
 </Right>
 </CardItem>
 </Card>
))}
 </ScrollView>
);
 }
}

Sales.propTypes = {
 products: PropTypes.array.isRequired,
 addProductToCart: PropTypes.func.isRequired,
 navigation: PropTypes.any.isRequired,
};

function mapStateToProps(state) {
 return {
 products: state.productsReducer.products || [],
 };
}
function mapStateActionsToProps(dispatch) {
 return bindActionCreators(ProductActions, dispatch);

E-Commerce App

[321]

}

export default connect(mapStateToProps, mapStateActionsToProps)(Sales);

We will use the same full list of available products, already stored in Redux's state, to filter
(by reduced price) and map into an appealing list item that are ready to be added to the cart
by triggering the onBuyPress() method, which in turn triggers addProductToCart():

onBuyPress(product) {
 this.props.addProductToCart(product);
 setTimeout(() => this.props.navigation.navigate('MyCart',
 { product }), 0);
}

Besides triggering this Redux action, onBuyPress() navigates to the MyCart screen, but it
does so after the call stack is cleared to ensure the product has been added to the cart
correctly.

At this stage, the purchase journey will kick in again allowing the user to log in (if not
logged in yet), pay for the items, and confirm the purchase.

Summary
In this chapter, we developed several common functionalities present in most e-commerce
apps, such as user login and registration, retrieving data from an API, purchase journeys,
and payments.

We tied all the screens with a common app state managed through Redux, which makes
this app scalable and easily maintainable.

With maintainability in mind, we added properties validation for all our components and
screens. Moreover, we enforced standard code formatting and linting, using ESLint, so that
the app is ready for various team members to align and develop comfortable new features
or maintain the current ones.

Finally, we also added API mocking for the developers to work locally without needing a
backend when building the mobile app.

Index

A
actions 136, 137, 138
ActivityIndicator 128
AddFeed screen
 ActivityIndicator 64
 building 62, 64
AddProduct screen
 AsyncStorage, using 26
 building 26
 event listeners, adding 30, 32, 34
 state, adding 27, 29
 structure 34
API 141
API service 291
App Transport Security (ATS) 56
app's entry point
 creating 57, 58

C
camera 129, 132
car booking app
 ConfirmationModal 103, 106
 developer menu 84
 entry point, creating 84, 86, 89
 folder structure, setting up 78, 79
 images, adding 91
 LocationPin 93
 LocationSearch 91
 overview 74, 75, 76, 77
 react-native link 82
 running, in simulator 82
chats screen 209, 213
chats store 197, 198, 199, 200, 201
class booking app
 ClassSelection 97
ClassSelection

 about 97
 animations 101, 102
 custom fonts, adding 100, 101
code formatting 280
constants 249
custom fonts
 reference 100

D
database, Firebase
 data, reading from 185, 186
 data, updating 186
Diawi
 about 37
 reference 37

E
e-commerce app
 about 258
 API 141
 API service 291
 code, formatting 280
 ESLint 280
 folder structure, setting up 276, 278
 indexes 281
 Login screen 314
 login screen 312
 main files 281
 MyCart screen 299
 MYProfile screen 310
 overview 259, 262, 264, 266, 269, 273
 payment screen 302, 306
 PaymentConfirmation screen 307
 ProductDetail screen 296
 ProductList screen 293
 reducers 284, 289
 Register screen 312, 316

[323]

 sales screen 319
EntryDetail screen
 building 71
ESLint
 reference 280, 281

F
FeedDetail screen
 building 65, 69
FeedsList screen
 building 58, 59
 event handlers, adding 59, 62
Fetch API
 reference 56
file and folders, React Native's CLI
 __tests__/ 80
 android/ and ios/ 80
 in root folder 81
 node_modules/ 81
Firebase
 about 171, 182, 183
 authentication 187
 authentication, reference 187
 chats store 197
 folder structure, creating 189, 190, 192
 folder structure, setting up 188
 real-time database 183, 184, 185
 real-time database, reference 185
 reference 182
 used, for push notification 201
 user store 192
folder structure, RSS reader
 dependencies, adding 48
 vector icons 50

G
gallery 124
game
 background 225
 folder structure, setting up 228, 229, 230
 game over screen 227, 228
 ground 225
 ground component, building 252
 home screen 227
 mechanics 221, 222

 moving rocks 225
 over screen 255
 over sign 256
 overview 222, 223
 parrot image 226
 reset button 256
 score, displaying 224
 score, rendering 253
 start screen 255
GameContainer
 using 232, 233, 235, 238
guitar tuner
 about 162
 folder structure, setting up 147
 older structure, setting up 148, 150
 overview 145, 146, 147

H
header 126, 128

I
icon
 adding 166
image sharing app
 actions 136
 ActivityIndicator 128
 API 141
 camera 129
 folder structure, creating 117, 118
 folder structure, setting up 115
 gallery 124
 header 126
 ImageGrid 134
 ImagesList 121
 MyImages 132
 overview 109, 110, 111, 112, 113, 115
 reducers 138
ImageGrid 134
ImagesList 121, 123, 124
index.ios.js
 about 157
 utils 158, 160
Installr
 about 37
 reference 37

[324]

L
landscape mode
 disabling 169
launch screen
 adding 167
ListItem screen 212
LocationPin
 about 93
 dimensions 96
 flexDirection 95
 shadows 96
LocationSearch
 about 91
 elements, aligning 92
login screen 203, 205, 312, 314

M
messaging app
 overview 172, 173, 174, 175, 176, 178, 179,

180, 181, 182
Mobile Backend as a Service (MBaaS) 182
MobX
 actions, defining 54
 reference 50
 store 51, 52
 store, setting up 53
 used, for managing state 50
MyCart screen 299
MyImages 132
MyProfile screen 310

N
native module
 writing 150, 151, 152, 154, 155, 156, 157
NativeBase
 reference 17
 used, for styling shopping list app 17

P
parrot, character 249
payment screen 302, 306
PaymentConfirmation screen 307
ProductDetail screen 296, 299
ProductList screen 293, 296

profile screen 217
push notifications
 Firebase, using 201

R
React Native Debugger
 reference 12
React Native
 feature 7
 networking 56
 reference 36
react-native-maps
 reference 89
react-navigation
 reference 15
reducer 138, 140, 141, 239
Redux 118, 119, 121
Redux actions 238
Redux Ducks
 reference 284
Register screen 312, 316
RockDown 251
RockUp 251
RSS reader
 about 39
 folder structure, setting up 47
 overview 40, 41, 43, 45, 46

S
sales screen 319
SCListener library
 reference 150
search screen 214
shopping list app
 AddProduct screen, building 26
 building 17
 distributing 36
 folder structure, setting up 14, 15
 installing 36
 navigation component, adding 15, 16
 overview 7, 8, 9
 setting up 10, 11, 12, 13
 styling, with NativeBase 17
ShoppingList screen
 building 17, 18, 20

 event handlers, adding 21, 23
 state, adding 20
 structure 25
simulator
 car booking app, executing 82
sprites 224
sprites module
 about 240
 bounceParrot() 246
 checkForCollision() 247
 getRockProps() 243
 getUpdatedScore() 248

 moveSprites() 244
 prepareNewRockSizes() 243
 sprites array 242
strings 164

T
testflight
 about 36
 reference 36

U
user store 192, 195, 196

	Cover
	Title Page
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Shopping List
	Overview
	Setting up our project
	Setting up the folder structure
	Adding a Navigation component
	Styling our app with NativeBase
	Building the ShoppingList screen
	Adding state to our screen
	Adding event handlers
	Putting it all together

	Building the AddProduct screen
	Using AsyncStorage
	Adding state to our screen

	Adding event listeners
	Putting it all together

	Installing and distributing the app
	Testflight
	Diawi
	Installr

	Summary

	Chapter 2: RSS Reader
	Overview
	Setting up the folder structure
	Adding dependencies
	Using vector icons

	Managing our state with MobX
	The store

	Setting up the store
	Defining actions
	Networking in React Native

	Creating our app's entry point
	Building the FeedsList screen
	Adding event handlers

	Building the AddFeed screen
	ActivityIndicator

	Building the FeedDetail screen
	Building the EntryDetail screen
	Summary

	Chapter 3: Car Booking App
	Overview
	Setting up the folder structure
	Files and folders created by React Native's CLI
	__tests__/
	android/ and ios/
	node_modules/
	Files in the root folder

	react-native link

	Running the app in the simulator
	The developer menu

	Creating our app's entry point
	Adding images to our app

	LocationSearch
	Aligning elements

	LocationPin
	flexDirection
	Dimensions
	Shadows

	ClassSelection
	Adding custom fonts
	Animations

	ConfirmationModal
	Summary

	Chapter 4: Image Sharing App
	Overview
	Setting up the folder structure
	Redux
	ImagesList
	Gallery
	Header
	ActivityIndicator
	Camera
	MyImages
	ImageGrid
	Actions
	Reducers
	API
	Summary

	Chapter 5: Guitar Tuner
	Overview
	Setting up the folder structure
	Writing the native module
	index.ios.js
	utils

	Tuner
	Strings
	Adding an icon
	Adding a launch screen
	Disabling the landscape mode
	Summary

	Chapter 6: Messaging App
	Overview
	Firebase
	Real-time database
	Reading data from Firebase's database
	Updating data in Firebase's database

	Authentication

	Setting up the folder structure
	Users store
	Chats store
	Push notifications using Firebase
	Login
	Chats
	ListItem
	Chat
	Search
	Profile
	Summary

	Chapter 7: Game
	Overview
	Sprites
	Numbers
	Background
	Ground
	Rocks
	Parrot
	The home screen
	Game over screen

	Setting up the folder structure
	GameContainer
	Actions
	Reducer
	The sprites module
	The sprites array
	prepareNewRockSizes()
	getRockProps()
	moveSprites()
	bounceParrot()
	checkForCollision()
	getUpdatedScore()

	Constants
	Parrot
	RockUp and RockDown
	Ground
	Score
	Start
	GameOver
	StartAgain
	Summary

	Chapter 8: E-Commerce App
	Overview
	Setting up the folder structure
	Linting and code formatting
	Indexes and main files
	Reducers
	API
	ProductList
	ProductDetail
	MyCart
	Payment
	PaymentConfirmation
	MyProfile
	LoginOrRegister
	Login

	Register
	Sales
	Summary

	Index

