

Mastering Xamarin.Forms
Third Edition

App architecture techniques for building multi-platform,
native mobile apps with Xamarin.Forms 4

Ed Snider

BIRMINGHAM - MUMBAI

Mastering Xamarin.Forms
Third Edition

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Acquisition Editor: Tushar Gupta
Acquisition Editor – Peer Reviews: Suresh Jain
Content Development Editor: Alex Patterson
Technical Editor: Aniket Shetty
Project Editor: Janice Gonsalves
Proofreader: Safis Editing
Indexer: Manju Arasan
Presentation Designer: Pranit Padwal

First published: January 2016
Second edition: March 2018
Third edition: December 2019

Production reference: 1241219

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-83921-338-0

www.packt.com

http://www.packt.com

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and

Videos from over 4,000 industry professionals
• Learn better with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.Packt.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt
books and eBooks.

https://subscribe.packtpub.com/
http://www.Packt.com
mailto:customercare@packtpub.com
http://www.packtpub.com/

Foreword

One of the most common questions I hear is "I looked at Xamarin years ago.
What's changed?" Wow, that's a conversation starter!

Every six weeks Xamarin.Forms is now shipping new stable versions that roll
out quality and performance improvements and new controls, and expand the
capabilities of existing controls. That alone might be dizzying to many, but then
consider that we are also shipping pre-releases and service releases in between
them. Look at the pace of pull requests coming in from our contributors and core
team alike, and you will start to get a sense of the life pulsing through the Xamarin
ecosystem!

And then I hear from developers who have recently re-engaged with Xamarin after
a period of time away, and the reactions are always those of astonishment: the builds
are faster, the apps are faster, the controls are richer, the tools are better, and on and
on. Personally being very close to the project day in and day out, it's wonderful to
get these reactions.

While there has been much growth in Xamarin.Forms, many of the principles for
delivering high-quality applications remain the same. That's where a book like this
is an excellent resource to introduce you to new features of Xamarin.Forms 4, while
building upon the solid foundation of proven patterns and practices.

To close, I want to issue a challenge. We are able to achieve this growth and get
these reactions thanks to developers like you who are willing to collaborate with
us to make this open source product everything we dream it can be. Our team at
Microsoft is obsessed with serving you and discovering what experiences, features,
controls, and tools will deliver the most value to .NET developers. I challenge you to
reach out and share your stories with us. Join us in shaping the future of Xamarin!

David Ortinau
Principal Program Manager, Microsoft
david.ortinau@microsoft.com

Contributors

About the author
Ed Snider is a senior software developer, speaker, author, and Microsoft MVP
based in the Washington D.C./Northern Virginia area. He has a passion for mobile
design and development and regularly speaks about Xamarin and Windows app
development in the community. Ed works at InfernoRed Technology, where his
primary role is working with clients and partners to build mobile products for
iOS, Android, and Windows. He started working with .NET in 2005 and has been
building mobile apps with .NET since 2011. Ed blogs at edsnider.net and can be
found on Twitter at twitter.com/edsnider.

Acknowledgements:

God.

My parents, my wife Kelly, and my daughters, Camden and Colby, for their
loving support and encouragement.

Scott, Art, Josh, and all my teammates at InfernoRed for always inspiring
and supporting me.

Joseph Hill, David Ortinau, Jayme Singleton, James Montemagno,
and everyone at Xamarin for all their support through the years.

http://edsnider.net
http://twitter.com/edsnider

About the reviewer
Steven Thewissen is a software developer from the Netherlands, focusing on
Xamarin development, CI/CD in Azure DevOps and developing REST APIs. He
started working with Xamarin in 2014, and has been in love with it ever since. Steven
shares his knowledge by regularly writing blogs about topics that interest him. He
also has a lot of interest in UI design, and loves to create kick-ass user interfaces for
his mobile apps.

I'd like to thank everyone involved with the creation of this book, for
allowing me to be a part of it as a reviewer, and hope you will enjoy
reading it as much as I enjoyed reviewing it.

[i]

Table of Contents
Preface v
Chapter 1: Getting Started 1

Introducing the app idea 1
Defining features 2

Creating the initial app 3
Setting up the solution 3

Updating the Xamarin.Forms packages 6
Creating the main page 7
Creating the new entry page 12
Creating the entry detail page 15

Summary 20
Chapter 2: MVVM and Data Binding 21

Understanding the MVVM pattern 21
Adding MVVM to the app 22

Setting up the app structure 24
Adding ViewModels 25

Adding MainViewModel 26
Adding DetailViewModel 28
Adding NewEntryViewModel 32

Validation 37
Adding a base validation ViewModel 38
Adding validation to the New Entry Page 41

Summary 44
Chapter 3: Navigation 45

The Xamarin.Forms navigation API 46
Navigation and MVVM 47

Table of Contents

[ii]

ViewModel-centric navigation 48
Creating a navigation service 49

Updating the TripLog app 57
Updating BaseViewModel 58
Updating MainViewModel 60
Updating NewEntryViewModel 62
Updating DetailPage 64

Summary 66
Chapter 4: Platform-Specific Services
and Dependency Injection 67

Inversion of control and dependency injection in mobile apps 67
Xamarin.Forms DependencyService versus third-party alternatives 68
Creating and using platform-specific services 69

Creating a location service 69
Using the location service on the New Entry Page 70
Adding the location service implementation 71

Registering dependencies 73
Registering the platform-service implementations 74
Registering the ViewModels 75
Registering the navigation service 76
Updating the TripLog app 78
Updating the navigation service to handle ViewModel creation and
dependency injection 80

Summary 81
Chapter 5: User Interface 83

Custom renderers 83
Creating a TableView DatePicker 84

Value converters 90
Creating a reverse visibility value converter 91
Creating an integer-to-image value converter 96

Adding pull-to-refresh 100
Accessibility 102

Supporting screen readers 102
Summary 104

Chapter 6: API Data Access 105
Creating an API with Azure Functions 105

Creating an Azure Functions App 106
Creating an Azure Function 107
Browsing and adding data 110

Creating a base HTTP service 112

Table of Contents

[iii]

Creating an API data service 115
Updating the TripLog app ViewModels 117

Offline data caching 120
Adding the Akavache library 121
Maintaining an offline data cache 122

Summary 123
Chapter 7: Authentication 125

Adding authentication to Azure Functions 125
Setting up an identity provider 126

Creating an authentication service 131
Adding a sign-in page 136
Adding a sign-out button 142
Summary 148

Chapter 8: Testing 149
Unit testing 149

Testing ViewModels 153
Running unit tests in Visual Studio 164

Summary 165
Chapter 9: App Monitoring 167

Mobile app analytics 168
Crash reporting 168

Visual Studio App Center 169
Setting up Visual Studio App Center 169
Creating an analytics service 169
Tracking exceptions and events 174

Summary 176
Other Books You May Enjoy 177
Index 181

[v]

Preface
Xamarin released the Xamarin.Forms toolkit in the summer of 2014, and it has since
become a very popular framework for .NET mobile app developers. On the surface,
Xamarin.Forms is a user interface toolkit focused on abstracting the platform-
specific UI APIs of iOS, Android, and Windows into a single easy-to-use set of APIs.
In addition, Xamarin.Forms also provides the common components of a Model-
View-ViewModel (MVVM) framework, making it extremely easy and intuitive
to bind data to a user interface.

Xamarin.Forms comes with several building blocks that are paramount to a solid
mobile app architecture, such as dependency injection, data binding, messaging,
and navigation. However, many apps will quickly outgrow these in-the-box
capabilities and require the use of more advanced and sophisticated replacements.
This book will show you how to leverage the strengths of the Xamarin.Forms
toolkit while complementing it with popular patterns and libraries to achieve
a more robust and sustainable app architecture.

As with any framework or toolkit, there are specific scenarios where
Xamarin.Forms might make more sense than others. Xamarin has done a great
job of providing guidance and recommendations on when the use of Xamarin.Forms
is appropriate versus when it might be a better decision to use the core Xamarin
platform. Once you have made the decision to use Xamarin.Forms, this book will
help guide you through using patterns and best practices with your
Xamarin.Forms mobile app by walking you through an end-to-end example.

Preface

[vi]

Who this book is for
This book is intended for .NET developers who are familiar with the Xamarin
platform and Xamarin.Forms toolkit. If you have already started working with
Xamarin.Forms and want to take your app to the next level, making it more
maintainable, testable, and flexible, then this book is for you.

What this book covers
Chapter 1, Getting Started, will start off by quickly reviewing the basics of the
Xamarin.Forms toolkit. We will then walk through building a simple app with
Xamarin.Forms, called TripLog. The TripLog app will serve as the foundation that
we build upon throughout the rest of the book by applying new techniques and
concepts in each subsequent chapter.

Chapter 2, MVVM and Data Binding, will introduce the Model-View-ViewModel
(MVVM) pattern and the benefits of using it in a mobile app architecture. We will
then walk through updating the TripLog app with ViewModels that provide data
context for the app's pages through data binding. We will then build client-side
validation that leverages the MVVM pattern put in place.

Chapter 3, Navigation, will explain how navigation works in Xamarin.Forms
and some approaches to navigation related to MVVM. We will build a custom
navigation service for the TripLog app that extends the one provided by
Xamarin.Forms to provide a navigation model that occurs solely at the ViewModel
level, decoupled from the pages themselves.

Chapter 4, Platform-Specific Services and Dependency Injection, will discuss the power
of the inversion of control (IoC) and the dependency injection pattern, specific
to multi-platform mobile app development. We will discuss the Xamarin.Forms
Dependency Service and some of its shortcomings. We will add a third-party
dependency injection library to the TripLog app to be used instead of
Xamarin.Forms's default Dependency Service. We will then build some
services that are dependent on platform-specific APIs and use them within
the TripLog app through dependency injection.

Chapter 5, User Interface, will explain how to tap into platform-specific user
interface APIs using custom renderers in Xamarin.Forms. We will also discuss the
use of value converters to customize the appearance of data at the time of binding.

Chapter 6, API Data Access, will explain how to set up a new RESTful API using
a Microsoft Azure Function App. We will then walk through how to connect the
TripLog app to the API to get its data and how to set up caching for offline use.

Preface

[vii]

Chapter 7, Authentication, will explain how to set up authentication on the API
created in Chapter 6, API Data Access, and then how to add sign-in, sign-out, and
authentication to the TripLog app.

Chapter 8, Testing, will discuss the importance of testing in mobile apps. We will
walk through how to take advantage of the patterns introduced throughout the
book to easily unit test the ViewModels within the TripLog app.

Chapter 9, App Monitoring, will explain the importance of crash reporting and
collecting analytical data in mobile apps. We will then integrate the Visual Studio
App Center SDK into the TripLog app using the service dependency pattern
implemented in Chapter 4, Platform-Specific Services and Dependency Injection.

To get the most out of this book
To get the most out of this book, you should have a working knowledge of the
Xamarin platform and Xamarin.Forms toolkit as well as experience with .NET.

In order to follow along with the code throughout this book, you will need to have
Visual Studio and Xamarin installed on your Windows or Mac computer. Although
the examples throughout this book are shown in Visual Studio for Mac, everything
shown can also be done in Visual Studio for Windows. If you are using a Windows
computer, you will need a Mac running Xamarin on your network to serve as a
build host to build and deploy iOS apps. For details on setting up a Mac build host
or any other requirements for setting up a Xamarin development environment, visit
docs.microsoft.com/en-us/xamarin.

In Chapter 6, API Data Access, you will need a Microsoft Azure account in order to
follow along with the examples to create a basic API using an Azure Function App.

Throughout this book, there are several open source tools and libraries used, which
are obtained from NuGet via the Visual Studio package manager.

Download the example code files
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly
to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packtpub.com.
2. Select the SUPPORT tab.

http://docs.microsoft.com/en-us/xamarin
http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[viii]

3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the on-screen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Xamarin.Forms-Third-Edition. We also have
other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839213380_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, class names, property names, field
names, folder names, filenames, file extensions, pathnames, URLs, and user input.
For example; "Update the constructor in the BaseViewModel class."

A block of code is set as follows:

public class BaseViewModel
{
 protected BaseViewModel()
 {
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public class BaseViewModel : INotifyPropertyChanged
{

https://github.com/PacktPublishing/Mastering-Xamarin.Forms-Third-Edition
https://github.com/PacktPublishing/Mastering-Xamarin.Forms-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781839213380_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781839213380_ColorImages.pdf

Preface

[ix]

 protected BaseViewModel()
 {
 }
}

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"In Visual Studio, click on File | New Solution."

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title
in the subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http://www.packtpub.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub.com.

Warnings or important notes appear like this.

 Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

[x]

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can understand
what you think about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

[1]

Getting Started
The goal of this book is to focus on how to apply best practices and patterns
to mobile apps built with Xamarin.Forms, and not on the actual Xamarin.Forms
toolkit and API itself. The best way to achieve this goal is to build an app end to
end, applying new concepts in each chapter.

Therefore, the goal of this chapter is to simply put together the basic structure of
a Xamarin.Forms mobile app code base, which will serve as a foundation that we
can build from throughout the rest of this book.

In this chapter, we will do the following:

• Introduce and define the features of the app that we will build throughout
the rest of the book

• Create a new Xamarin.Forms mobile app with an initial app structure and
user interface

In the next chapter we'll introduce the Model-View-ViewModel (MVVM) pattern
and add data bindings to the user interface we create in this chapter. From there we
will build upon the app and its architecture, introducing best practices and patterns
for things like platform-specific API dependencies, dependency injection, remote
data access, authentication, and unit testing. But, just like the beginning of many new
mobile projects, we will start with an idea.

Introducing the app idea
We will create a travel app named TripLog and, as the name suggests, it will be an
app that will allow its users to log their travel adventures. Although the app itself
will not solve any real-world problems, it will have features that will require us to
solve real-world architecture and coding problems. The app will take advantage of
several core concepts, such as list views, maps, location services, and live data from a
RESTful API, and we will apply patterns and best practices throughout this book to
implement these concepts.

Getting Started

[2]

Defining features
Before we get started, it is important to understand the requirements and features
of the TripLog app. We will do this by quickly defining some of the high-level things
this app will allow its users to do:

• View existing log entries (online and offline)
• Add new log entries with the following data:

 ° Title
 ° Location using GPS
 ° Date
 ° Notes
 ° Rating

• Sign into the app
The following screenshots show some of the iOS and Android screens of the app we
will be creating. The first screenshot shows the initial screen running on iOS with the
list of all the user's trip log entries. The middle screenshot shows the trip log detail
screen using native maps. The last screenshot shows the screen that lets users add
new trip log entries running on Android:

Figure 1: The TripLog app as it will appear at the end of the book

Chapter 1

[3]

Creating the initial app
To start off the new TripLog mobile app project, we will need to create the initial
solution architecture. We can also create the core shell of our app's user interface
by creating the initial screens based on the basic features we have just defined.

Setting up the solution
We will start things off by creating a brand new, blank Xamarin.Forms solution
within Visual Studio by performing the following steps:

1. In Visual Studio, click on File | New Solution. This will bring up a series
of dialog screens that will walk you through creating a new Xamarin.Forms
solution. On the first dialog, click on App on the left-hand side, under the
Multiplatform section, and then select Blank Forms App, as shown in the
following screenshot:

Figure 2: Xamarin.Forms new project setup in Visual Studio (step 1 of 3)

Getting Started

[4]

2. On the next dialog screen, enter the name of the app, TripLog, and ensure
that Use .NET Standard is selected for the Shared Code option, as shown in
the following screenshot:

Figure 3: Xamarin.Forms new project setup in Visual Studio (step 2 of 3)

3. On the final dialog screen, simply click on the Create button, as follows:

You can use either .NET Standard or a Shared Library for the code
sharing option when creating a new Xamarin.Forms project. There
are benefits to both but we will use .NET Standard, as it lends itself
better to the architecture patterns and testability objectives of this
book.

Chapter 1

[5]

Figure 4: Xamarin.Forms new project setup in Visual Studio (step 3 of 3)

4. After creating the new Xamarin.Forms solution, you will have several
projects created within it, as shown in the following screenshot:

Figure 5: The TripLog solution in Visual Studio

Getting Started

[6]

There will be a single .NET Standard project and two platform-specific projects,
as follows:

• TripLog: This is a .NET Standard project that will serve as the core layer
of the solution architecture. This is the layer that will include all our business
logic, data objects, Xamarin.Forms pages, and other non-platform-specific
code. The code in this project is common and not specific to a platform,
and can therefore be shared across the platform projects.

• TripLog.iOS: This is the iOS platform-specific project containing all the
code and assets required to build and deploy the iOS app from this solution.
By default, it will have a reference to the TripLog core project.

• TripLog.Android: This is the Android platform-specific project containing
all the code and assets required to build and deploy the Android app from
this solution. By default, it will have a reference to the TripLog core project.

You'll notice a file in the core library named App.xaml, which includes a code-behind
class in App.xaml.cs named App that inherits from Xamarin.Forms.Application.
Initially, the App constructor sets the MainPage property to a new instance of
a ContentPage named MainPage that simply displays some default text.

The first thing we will do in our TripLog app is build the initial views, or screens,
required for our UI, and then update that MainPage property of the App class in
App.xaml.cs.

Updating the Xamarin.Forms packages
If you expand the Dependencies > NuGet folder within the main TripLog project,
and the Packages folder in each of the platform projects in the solution, you will
see that Xamarin.Forms is a NuGet package that is automatically included when
we select the Xamarin.Forms project template. It is possible that the included NuGet
packages need to be updated. Update the Xamarin.Forms NuGet packages in each
of the projects within the solution to the latest version available.

If you are using Visual Studio for Mac, you will only get an iOS
and an Android project when you create a new Xamarin.Forms
solution. To include a Windows (UWP) app in your Xamarin.Forms
solution, you will need to use Visual Studio for Windows.
Although the screenshots and samples used throughout this
book are demonstrated using Visual Studio for Mac, the code and
concepts will also work in Visual Studio for Windows. Refer to the
Preface of this book for further details on software and hardware
requirements that need to be met to follow along with the concepts
in this book.

Chapter 1

[7]

Creating the main page
The main page of the app will serve as the entry point into the app and will display
a list of existing trip log entries. Our trip log entries will be represented by a data
model named TripLogEntry. Models are a key pillar in the MVVM pattern and data
binding, which we will explore more in Chapter 2, MVVM and Data Binding; however,
in this chapter, we will create a simple class that will represent the TripLogEntry
model.

Let's now start creating the main page by performing the following steps:

1. First, delete the default MainPage.xaml and its code-behind file,
MainPage.xaml.cs, from the TripLog project. We will create our own
MainPage.

2. Next, add a new folder named Views to the root of the TripLog project.
This folder will be where app pages in the application live.

3. Next, add a new Xamarin.Forms XAML ContentPage to the Views folder
in the TripLog project and name it MainPage.

4. Next, update the MainPage property of the App class in App.xaml.cs to
a new instance of Xamarin.Forms.NavigationPage whose root is a new
instance of TripLog.MainPage that we just created:
using Xamarin.Forms;
using TripLog.Views;

namespace TripLog
{
 public partial class App : Application
 {
 public App()
 {
 InitializeComponent();
 MainPage = new NavigationPage(new MainPage());
 }

New for Third Edition!

In this edition of Mastering Xamarin.Forms we will take advantage
of some of the new features and capabilities of Xamarin.Forms 4.
To do this, we will require a minimum stable version of 4.3 of the
Xamarin.Forms NuGet package.

Getting Started

[8]

 // ...

 }
}

Notice how we are wrapping our MainPage with a NavigationPage. By
doing this, we automatically get native components for navigating between
pages.

5. Create a new folder in the TripLog project named Models.
6. Create a new empty class file in the Models folder named TripLogEntry.
7. Update the TripLogEntry class with auto-implemented properties

representing the attributes of an entry:
public class TripLogEntry
{
 public string Title { get; set; }
 public double Latitude { get; set; }
 public double Longitude { get; set; }
 public DateTime Date { get; set; }
 public int Rating { get; set; }
 public string Notes { get; set; }
}

8. Now that we have a model to represent our trip log entries, we can use it
to display some trips on the main page using a CollectionView control. We
will use a DataTemplate to describe how the model data should be displayed
in each of the rows in the CollectionView using the following XAML in the
ContentPage.Content tag in MainPage.xaml:
<ContentPage
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TripLog.Views.MainPage"
 Title="TripLog">
 <ContentPage.Content>
 <CollectionView x:Name="trips"
 SelectionMode="Single">
 <CollectionView.ItemTemplate>
 <DataTemplate>
 <Grid Padding="10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="1*" />
 <ColumnDefinition Width="3*" />
 </Grid.ColumnDefinitions>

http://xamarin.com/schemas/2014/forms
http://xamarin.com/schemas/2014/forms
http://xamarin.com/schemas/2014/forms
http://schemas.microsoft.com/winfx/2009/xaml
http://schemas.microsoft.com/winfx/2009/xaml

Chapter 1

[9]

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Label Grid.RowSpan="2"
 Text="{Binding Date,
StringFormat='{0:MMM d}'}" />
 <Label Grid.Column="1"
 Text="{Binding Title}"
 FontAttributes="Bold" />
 <Label Grid.Column="1"
 Grid.Row="1"
 Text="{Binding Notes}" />
 </Grid>
 </DataTemplate>
 </CollectionView.ItemTemplate>
 </CollectionView>
 </ContentPage.Content>
</ContentPage>

9. In the main page's code-behind, MainPage.xaml.cs, we will populate
the CollectionView ItemsSource with a hardcoded collection of
TripLogEntry objects. In the next chapter, we will move this collection
to the page's data context (that is, its ViewModel), and in Chapter 6, API Data
Access, we will replace this hardcoded data with data from a live Azure
backend:
public partial class MainPage : ContentPage
{
 public MainPage()
 {
 InitializeComponent();

 var items = new List<TripLogEntry>
 {
 new TripLogEntry
 {
 Title = "Washington Monument",
 Notes = "Amazing!",
 Rating = 3,
 Date = new DateTime(2019, 2, 5),
 Latitude = 38.8895,
 Longitude = -77.0352
 },
 new TripLogEntry

Getting Started

[10]

 {
 Title = "Statue of Liberty",
 Notes = "Inspiring!",
 Rating = 4,
 Date = new DateTime(2019, 4, 13),
 Latitude = 40.6892,
 Longitude = -74.0444
 },
 new TripLogEntry
 {
 Title = "Golden Gate Bridge",
 Notes = "Foggy, but beautiful.",
 Rating = 5,
 Date = new DateTime(2019, 4, 26),
 Latitude = 37.8268,
 Longitude = -122.4798
 }
 };

 trips.ItemsSource = items;
 }
}

At this point, we have a single page that is displayed as the app's main page. If we
debug the app and run it in a simulator, emulator, or on a physical device, we should
see the main page showing the list of log entries we hardcoded into the view, as
shown in the following screenshot:

Chapter 1

[11]

Figure 6: The TripLog main page

In Chapter 2, MVVM and Data Binding, we will refactor this quite a bit as we
implement MVVM and leverage the benefits of data binding.

Getting Started

[12]

Creating the new entry page
The new entry page of the app will give the user a way to add a new log entry by
presenting a series of fields to collect the log entry details. There are several ways
to build a form to collect data in Xamarin.Forms. You can simply use a StackLayout
and present a stack of Label and Entry controls on the screen, or you can also use
a TableView with various types of ViewCell elements. In most cases, a TableView
will give you a very nice default, platform-specific look and feel. However, if your
design calls for a more customized aesthetic, you might be better off leveraging the
other layout options available in Xamarin.Forms. For the purpose of this app, we
will use a TableView.

There are some key data points we need to collect when our users log new entries
with the app, such as title, location, date, rating, and notes. For now, we will use a
regular EntryCell element for each of these fields. We will update, customize, and
add things to these fields later in this book. For example, we will wire the location
fields to a geolocation service that will automatically determine the location. We will
also update the date field to use an actual platform-specific date picker control. For
now, we will just focus on building the basic app shell.

In order to create the new entry page that contains a TableView, perform the
following steps:

1. First, add a new Xamarin.Forms XAML ContentPage to the Views folder
in the TripLog project and name it NewEntryPage.

2. Update the new entry page using the following XAML to build the
TableView that will represent the data entry form on the page:
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TripLog.Views.NewEntryPage"
 Title="New Entry">
 <ContentPage.Content>
 <TableView Intent="Form">
 <TableView.Root>
 <TableSection>
 <EntryCell Label="Title" />
 <EntryCell Label="Latitude"
 Keyboard="Numeric" />
 <EntryCell Label="Longitude"
 Keyboard="Numeric" />
 <EntryCell Label="Date" />
 <EntryCell Label="Rating"
 Keyboard="Numeric" />
 <EntryCell Label="Notes" />

xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

Chapter 1

[13]

 </TableSection>
 </TableView.Root>
 </TableView>
 </ContentPage.Content>
</ContentPage>

Now that we have created the new entry page, we need to add a way for users to
get to this new screen from the main page. We will do this by adding a New button
to the main page's toolbar. In Xamarin.Forms, this is accomplished by adding a
ToolbarItem to the ContentPage.ToolbarItems collection and wiring up the
ToolbarItem.Clicked event to navigate to the new entry page, as shown in the
following XAML:

<!-- MainPage.xaml -->
<ContentPage
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TripLog.Views.MainPage"
 Title="TripLog">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="New" Clicked="New_Clicked" />
 </ContentPage.ToolbarItems>
 <ContentPage.Content>
 <!-- ... -->
 </ContentPage.Content>
</ContentPage>

// MainPage.xaml.cs
public partial class MainPage : ContentPage
{
 // ...

 void New_Clicked(object sender, EventArgs e)
 {
 Navigation.PushAsync(new NewEntryPage());
 }
}

In Chapter 3, Navigation, we will build a custom service to handle navigation
between pages and will replace the Clicked event with a data-bound ICommand
ViewModel property, but for now, we will use the default Xamarin.Forms navigation
mechanism.

Getting Started

[14]

When we run the app, we will see a New button on the toolbar of the main page.
Clicking on the New button should bring us to the new entry page, as shown in the
following screenshot:

Figure 7: The TripLog new entry page

We will need to add a save button to the new entry page toolbar so that we can save
new items. For now, this button will just be a placeholder in the UI that we will
bind an ICommand to in Chapter 2, MVVM and Data Binding. The save button will be
added to the new entry page toolbar in the same way the New button was added to
the main page toolbar. Update the XAML in NewEntryPage.xaml to include a new
ToolbarItem, as shown in the following code:

<ContentPage>
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Save" />
 </ContentPage.ToolbarItems>

 <!-- ... -->

</ContentPage>

Chapter 1

[15]

When we run the app again and navigate to the new entry page, we should now see
the Save button on the toolbar, as shown in the following screenshot:

Figure 8: The TripLog new entry page with Save button

Creating the entry detail page
When a user clicks on one of the log entry items on the main page, we want to take
them to a page that displays more details about that particular item, including a map
that plots the item's location. Along with additional details and a more in-depth view
of the item, a detail page is also a common area where actions on that item might
take place, such as editing the item or sharing the item on social media. The detail
page will take an instance of a TripLogEntry model as a constructor parameter,
which we will use in the rest of the page to display the entry details to the user.

In order to create the entry detail page, perform the following steps:

1. First, add a new Xamarin.Forms XAML ContentPage to the Views folder
in the TripLog project and name it DetailPage.

Getting Started

[16]

2. Update the constructor of the DetailPage class in DetailPage.xaml.cs to
take a TripLogEntry parameter named entry, as shown in the following code:
using Xamarin.Forms;
using TripLog.Models;

// ...

public partial class DetailPage : ContentPage
{
 public DetailPage(TripLogEntry entry)
 {
 // ...
 }
}

3. Add the Xamarin.Forms.Maps NuGet package to the core TripLog project
and to each of the platform-specific projects. This separate NuGet package
is required in order to use the Xamarin.Forms Map control in the next step.

4. Update the XAML in DetailPage.xaml to include a Grid layout to display
a Map control and some Label controls to display the trip's details, as shown
in the following code:
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:maps="clr-namespace:Xamarin.Forms.Maps;assembly=Xamarin.
Forms.Maps"
 x:Class="TripLog.Views.DetailPage">
 <ContentPage.Content>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="4*" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="1*" />
 </Grid.RowDefinitions>

 <maps:Map x:Name="map" Grid.RowSpan="3" />

 <BoxView Grid.Row="1" BackgroundColor="White"
 Opacity=".8" />

 <StackLayout Padding="10" Grid.Row="1">
 <Label x:Name="title"
 HorizontalOptions="Center" />
 <Label x:Name="date"

xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

Chapter 1

[17]

 HorizontalOptions="Center" />
 <Label x:Name="rating"
 HorizontalOptions="Center" />
 <Label x:Name="notes"
 HorizontalOptions="Center" />
 </StackLayout>
 </Grid>
 </ContentPage.Content>
</ContentPage>

5. Update the detail page's code-behind, DetailPage.xaml.cs, to center the
map and plot the trip's location. We also need to update the Label controls
on the detail page with the properties of the entry constructor parameter:
using Xamarin.Forms;
using Xamarin.Forms.Maps;
using TripLog.Models;

// ...

public DetailPage(TripLogEntry entry)
{
 InitializeComponent();

 map.MoveToRegion(MapSpan.FromCenterAndRadius(
 new Position(entry.Latitude,
 entry.Longitude),
 Distance.FromMiles(.5)));

 map.Pins.Add(new Pin
 {
 Type = PinType.Place,
 Label = entry.Title,
 Position = new Position(entry.Latitude, entry.Longitude)
 });

 title.Text = entry.Title;
 date.Text = entry.Date.ToString("M");
 rating.Text = $"{entry.Rating} star rating";
 notes.Text = entry.Notes;
}

Getting Started

[18]

6. Next, we need to wire up the ItemTapped event of the CollectionView on
the main page to pass the tapped item over to the entry detail page that we
have just created, as shown in the following code:
<!-- MainPage.xaml -->
<CollectionView x:Name="trips"
 SelectionMode="Single"
 SelectionChanged="Trips_SelectionChanged">
 <!-- ... -->
</CollectionView>

// MainPage.xaml.cs
public partial class MainPage : ContentPage
{
 // ...

 async void Trips_SelectionChanged(object s,
SelectionChangedEventArgs e)
 {
 var trip = (TripLogEntry)e.CurrentSelection.
FirstOrDefault();

 if (trip != null)
 {
 await Navigation.PushAsync(new DetailPage(trip));
 }

 // Clear selection
 trips.SelectedItem = null;
 }
}

7. Next, add your Google Maps API Key to the AndroidManifest.xml file in
the Android project:
<application android:label="TripLog.Android">
 <meta-data
 android:name="com.google.android.maps.v2.API_KEY"
 android:value="YOUR-MAPS-API-KEY-HERE" />
</application>

There are some additional steps required for Google Maps
to work in the Android app. You can read more about how
to properly set everything up in the Xamarin.Forms Map
documentation at https://docs.microsoft.com/en-
us/xamarin/xamarin-forms/user-interface/map.

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/map
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/map

Chapter 1

[19]

8. Finally, we will need to initialize the Xamarin.Forms.Maps library in each
platform-specific startup class (AppDelegate for iOS and MainActivity for
Android) using the following code:
// in iOS AppDelegate
global::Xamarin.Forms.Forms.Init();
Xamarin.FormsMaps.Init();
LoadApplication(new App());

// in Android MainActivity
global::Xamarin.Forms.Forms.Init(this, savedInstanceState);
Xamarin.FormsMaps.Init(this, savedInstanceState);
LoadApplication(new App());

Now, when we run the app and tap on one of the log entries on the main page, it
will navigate us to the details page to see more detail about that particular log entry,
as shown in the following screenshot:

Figure 9: The TripLog entry detail page

Getting Started

[20]

Summary
In this chapter, we built a simple three-page app with static data, leveraging the
most basic concepts of the Xamarin.Forms toolkit. We used the default Xamarin.
Forms navigation APIs to move between the three pages, which we will refactor
in Chapter 3, Navigation, to use a more flexible, custom navigation approach.

Now that we have built the foundation of the app, including the basic UI for each
page within the app, we'll begin enhancing the app with better architecture design
patterns, live data with offline syncing, nicer looking UI elements, and tests. In the
next chapter, we will introduce the MVVM pattern and data binding to the app
to enforce a separation between the user interface layer and the business and data
access logic.

[21]

MVVM and Data Binding
In this chapter, we will take a look at the Model-View-ViewModel (MVVM)
pattern, the MVVM elements that are offered with the Xamarin.Forms toolkit, and
how we can expand on them to truly take advantage of the power of the pattern.
As we dig into these topics, we will apply what we have learned to the TripLog
app that we started building in Chapter 1, Getting Started.

In this chapter, we will cover the following topics:

• Understanding the MVVM pattern and data binding
• Adding the MVVM pattern and data binding to the Xamarin.Forms mobile

app created in Chapter 1, Getting Started
• Adding client-side validation to the Xamarin.Forms mobile app created in

Chapter 1, Getting Started

Before we start applying the MVVM pattern to our app we will review the basics of
the pattern in the following section.

Understanding the MVVM pattern
At its core, MVVM is a presentation pattern designed to control the separation
between user interfaces and the rest of an application. The key elements of the
MVVM pattern are as follows:

• Models: Models represent the business entities of an application. When
responses come back from an API, they are typically deserialized to Models.

MVVM and Data Binding

[22]

• Views: Views represent the actual pages or screens of an application, along
with all of the elements that make them up, including custom controls.
Views are very platform-specific and depend heavily on platform APIs to
render the application's user interface (UI).

• ViewModels: ViewModels control and manipulate the Views by serving
as their data context. ViewModels are made up of a series of properties
represented by Models. These properties are part of what is bound to the
Views to provide the data that is displayed to users, or to collect the data
that is entered or selected by users. In addition to Model-backed properties,
ViewModels can also contain commands, which are action-backed
properties that bind the actual functionality and execution to events that
occur in the Views, such as button taps or list item selections.

• Data binding: Data binding is the concept of connecting data properties
and actions in a ViewModel with the UI elements in a View. The actual
implementation of how data binding happens can vary and, in most cases, is
provided by a framework, toolkit, or library. In Windows app development,
data binding is provided declaratively in XAML. In traditional (non-Xamarin.
Forms) Xamarin app development, data binding is either a manual process or
dependent on a third-party framework. Data binding in Xamarin.Forms follows
a very similar approach to Windows app development.

Now that we have an understanding of the key pieces of the MVVM pattern and
how those pieces relate to one another we can start updating our app architecture to
follow the pattern. In the next section we will add ViewModels for each of the pages
we added in the previous chapter and refactor those pages with data bindings.

Adding MVVM to the app
The first step of introducing MVVM into an app is to set up the structure by
adding folders that will represent the core tenants of the pattern, such as Models,
ViewModels, and Views. Traditionally, the Models and ViewModels live in a core
library (usually, a portable class library or .NET standard library), whereas the
Views live in a platform-specific library.

Thanks to the power of the Xamarin.Forms toolkit and its abstraction of platform-
specific UI APIs, the Views in a Xamarin.Forms app can also live in the core library.

Chapter 2

[23]

When implementing a specific structure to support a design pattern, it is helpful
to have your application namespaces organized in a similar structure. This is not
a requirement, but it is something that can be useful. By default, Visual Studio for
Mac will associate namespaces with directory names, as shown in the following
screenshot:

Figure 1: .NET Naming Policies settings in Visual Studio

Just because the Views can live in the core library with the
ViewModels and Models doesn't mean that separation between the
UI and the app logic isn't important. As we will see in this chapter
and throughout the rest of the book, the separation between the UI
and app logic is instrumental in keeping the codebase maintainable,
testable, and shareable.

MVVM and Data Binding

[24]

Setting up the app structure
For the TripLog app, we will let the Views, ViewModels, and Models all live in the
same core .NET standard library project. In our solution, this is the project called
TripLog. We have already added the Views and Models folders in Chapter 1, Getting
Started, so we just need to add a ViewModels folder to the project to complete the
MVVM structure:

1. Add a new folder named ViewModels to the root of the TripLog project.

Once the MVVM structure has been added, the folder structure in the solution
should look similar to the following screenshot:

Figure 2: The TripLog solution in Visual Studio

In MVVM, the term View is used to describe a screen.
Xamarin.Forms uses the term View to describe controls, such as
buttons or labels, and uses the term Page to describe a screen.
In order to avoid confusion, I will stick with the Xamarin.Forms
terminology and refer to screens as Pages, and will only use the
term Views in reference to screens for the folder where the Pages
will live, in order to stick with the MVVM pattern.

Chapter 2

[25]

Adding ViewModels
In most cases, Views (Pages) and ViewModels have a one-to-one relationship.
However, it is possible for a View (Page) to contain multiple ViewModels or for
a ViewModel to be used by multiple Views (Pages). For now, we will simply have
a single ViewModel for each Page. Before we create our ViewModels, we will start
by creating a base ViewModel class, which will contain the basic functionality that
each of our ViewModels will inherit. Initially, the base ViewModel class will only
contain a couple of members and will implement INotifyPropertyChanged, but
we will add to this class as we continue to build upon the TripLog app throughout
this book.

In order to create a base ViewModel, perform the following steps:

1. Create a new class named BaseViewModel in the ViewModels folder using
the following code:
public class BaseViewModel
{
 protected BaseViewModel()
 {
 }
}

2. Update BaseViewModel to implement INotifyPropertyChanged:
using System.ComponentModel;
using System.Runtime.CompilerServices;

public class BaseViewModel : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 protected BaseViewModel()
 {
 }

 protected virtual void OnPropertyChanged([CallerMemberName]
string propertyName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs
(propertyName));
 }
}

MVVM and Data Binding

[26]

The implementation of INotifyPropertyChanged is key to the behavior and role
of the ViewModels and data binding. It allows a Page to be notified when the
properties of its ViewModel have changed.

Now that we have created a base ViewModel, we can start adding the actual
ViewModels that will serve as the data context for each of our Pages. We will start
by creating a ViewModel for MainPage.

Adding MainViewModel
The main purpose of a ViewModel is to separate the business logic, for example,
data access and data manipulation, from the UI logic. Right now, our MainPage
directly defines the list of data that it is displaying. This data will eventually be
dynamically loaded from an API but for now, we will move this initial static data
definition to its ViewModel so that it can be data bound to the UI.

In order to create the ViewModel for MainPage, perform the following steps:

1. Create a new class file in the ViewModels folder and name it MainViewModel.
2. Update the MainViewModel class to inherit from BaseViewModel:

public class MainViewModel : BaseViewModel
{
 // ...
}

3. Add an ObservableCollection<T> property to the MainViewModel
class and name it LogEntries. This property will be used to bind to the
ItemsSource property of the CollectionView element on MainPage.xaml:
using System.Collections.ObjectModel;
using TripLog.Models;

public class MainViewModel : BaseViewModel
{
 ObservableCollection<TripLogEntry> _logEntries;
 public ObservableCollection<TripLogEntry> LogEntries
 {
 get => _logEntries;
 set
 {
 _logEntries = value;
 OnPropertyChanged();
 }
 }

Chapter 2

[27]

 // ...
}

4. Next, remove the code in MainPage.xaml.cs that creates the
List<TripLogEntry> that populates the CollectionView element on
MainPage.xaml and repurpose that logic in the MainViewModel – we will
put it in the constructor for now:
public MainViewModel()
{
 LogEntries = new ObservableCollection<TripLogEntry>
 {
 new TripLogEntry
 {
 Title = "Washington Monument",
 Notes = "Amazing!",
 Rating = 3,
 Date = new DateTime(2019, 2, 5),
 Latitude = 38.8895,
 Longitude = -77.0352
 },
 new TripLogEntry
 {
 Title = "Statue of Liberty",
 Notes = "Inspiring!",
 Rating = 4,
 Date = new DateTime(2019, 4, 13),
 Latitude = 40.6892,
 Longitude = -74.0444
 },
 new TripLogEntry
 {
 Title = "Golden Gate Bridge",
 Notes = "Foggy, but beautiful.",
 Rating = 5,
 Date = new DateTime(2019, 4, 26),
 Latitude = 37.8268,
 Longitude = -122.4798
 }
 };
}

MVVM and Data Binding

[28]

5. Set MainViewModel as the BindingContext for MainPage. Do this by simply
setting the BindingContext property of MainPage in its code-behind file to a
new instance of MainViewModel. The BindingContext property comes from
the Xamarin.Forms.ContentPage base class:
using System;
using Xamarin.Forms;
using TripLog.Models;
using TripLog.ViewModels;

public partial class MainPage : ContentPage
{
 public MainPage()
 {
 InitializeComponent();

 BindingContext = new MainViewModel();
 }

 // ...
}

6. Finally, update how the CollectionView element on MainPage.xaml
gets its items. Currently, its ItemsSource property is being set directly
in the Page's code behind, which we removed in step four. Now update
the CollectionView element's tag in MainPage.xaml to bind to the
MainViewModel LogEntries property:
<CollectionView x:Name="trips"
 SelectionMode="Single"
 ItemsSource="{Binding LogEntries}"
 SelectionChanged="Trips_SelectionChanged">

The Main Page is now all setup with a ViewModel and data binding. Next, we will
add a ViewModel for the Detail Page.

Adding DetailViewModel
Now we will add another ViewModel to serve as the data context for DetailPage, as
follows:

1. Create a new class file in the ViewModels folder and name it
DetailViewModel.

Chapter 2

[29]

2. Update the DetailViewModel class to inherit from the BaseViewModel class:
public class DetailViewModel : BaseViewModel
{
 // ...
}

3. Add a TripLogEntry property to the class and name it Entry. This
property will be used to bind details about an entry to the various labels on
DetailPage:
using TripLog.Models;

public class DetailViewModel : BaseViewModel
{
 TripLogEntry _entry;
 public TripLogEntry Entry
 {
 get => _entry;
 set
 {
 _entry = value;
 OnPropertyChanged();
 }
 }

 // ...

}

4. Update the DetailViewModel constructor to take a TripLogEntry parameter
named entry. Use this constructor property to populate the public Entry
property created in the previous step:
public class DetailViewModel : BaseViewModel
{
 // ...

 public DetailViewModel(TripLogEntry entry)
 {
 Entry = entry;
 }
}

MVVM and Data Binding

[30]

5. Set DetailViewModel as the BindingContext for DetailPage and pass in
the TripLogEntry property that is being passed to DetailPage:
using System;
using Xamarin.Forms;
using TripLog.Models;
using TripLog.ViewModels;

public partial class DetailPage : ContentPage
{
 public DetailPage(TripLogEntry entry)
 {
 InitializeComponent();

 BindingContext = new DetailViewModel(entry);

 // ...
 }

 // ...
}

6. Next, remove the code at the end of the DetailPage constructor that directly
sets the Text properties of the Label elements:
public DetailPage(TripLogEntry entry)
{
 // ...
 // Remove these lines of code:
 //title.Text = entry.Title;
 //date.Text = entry.Date.ToString("M");
 //rating.Text = $"{entry.Rating} star rating";
 //notes.Text = entry.Notes;
}

In Chapter 3, Navigation, we will refactor how we are
passing the entry parameter to DetailViewModel.

Chapter 2

[31]

7. Next, update the Label element tags in DetailPage.xaml to bind their Text
properties to the DetailViewModel Entry property:
<Label ... Text="{Binding Entry.Title}" />
<Label ... Text="{Binding Entry.Date, StringFormat='{0:M}'}" />
<Label ... Text="{Binding Entry.Rating, StringFormat='{0} star
rating'}" />
<Label ... Text="{Binding Entry.Notes}" />

8. Finally, update the map to get the values it is plotting from the ViewModel.
Since the Xamarin.Forms Map control does not have bindable properties, the
values have to be set directly to the ViewModel properties. The easiest way
to do this is to add a private field to the Page that returns the value of the
page's BindingContext and then use that field to set the values on the map:
public partial class DetailPage : ContentPage
{
 DetailViewModel ViewModel => BindingContext as
DetailViewModel;

 public DetailPage(TripLogEntry entry)
 {
 InitializeComponent();
 BindingContext = new DetailViewModel(entry);

 map.MoveToRegion(MapSpan.FromCenterAndRadius(
 new Position(
 ViewModel.Entry.Latitude,
 ViewModel.Entry.Longitude),
 Distance.FromMiles(.5)));

 map.Pins.Add(new Pin
 {
 Type = PinType.Place,
 Label = ViewModel.Entry.Title,
 Position = new Position(ViewModel.Entry.Latitude,
ViewModel.Entry.Longitude)
 });
 }
}

MVVM and Data Binding

[32]

With the Main Page and Detail Page updated with ViewModels and data binding
we just need to update the New Entry Page. In the next section we will create a
ViewModel to bind to the user's input on the New Entry Page.

Adding NewEntryViewModel
Finally, we will need to add a ViewModel for NewEntryPage, as follows:

1. Create a new class file in the ViewModels folder and name it
NewEntryViewModel.

2. Update the NewEntryViewModel class to inherit from BaseViewModel:
public class NewEntryViewModel : BaseViewModel
{
 // ...
}

3. Add public properties to the NewEntryViewModel class that will be used to
bind it to the values entered into the EntryCell elements in NewEntryPage.
xaml:
public class NewEntryViewModel : BaseViewModel
{
 string _title;
 public string Title
 {
 get => _title;
 set
 {
 _title = value;
 OnPropertyChanged();
 }
 }

 double _latitude;
 public double Latitude
 {
 get => _latitude;
 set
 {
 _latitude = value;
 OnPropertyChanged();
 }
 }

Chapter 2

[33]

 double _longitude;
 public double Longitude
 {
 get => _longitude;
 set
 {
 _longitude = value;
 OnPropertyChanged();
 }
 }

 DateTime _date;
 public DateTime Date
 {
 get => _date;
 set
 {
 _date = value;
 OnPropertyChanged();
 }
 }

 int _rating;
 public int Rating
 {
 get => _rating;
 set
 {
 _rating = value;
 OnPropertyChanged();
 }
 }

 string _notes;
 public string Notes
 {
 get => _notes;
 set
 {
 _notes = value;
 OnPropertyChanged();
 }
 }

MVVM and Data Binding

[34]

 // ...
}

4. Update the NewEntryViewModel constructor to initialize the Date and
Rating properties:
public NewEntryViewModel()
{
 Date = DateTime.Today;
 Rating = 1;
}

5. Add a public Command property to NewEntryViewModel and name it
SaveCommand. This property will be used to bind to the Save ToolbarItem
in NewEntryPage.xaml. The Xamarin.Forms Command type implements
System.Windows.Input.ICommand to provide an Action to run when the
command is executed, and a Func to determine whether the command can
be executed:
public class NewEntryViewModel : BaseViewModel
{
 // ...

 Command _saveCommand;
 public Command SaveCommand =>
 _saveCommand ?? (_saveCommand = new Command(Save,
CanSave));

 void Save()
 {
 var newItem = new TripLogEntry
 {
 Title = Title,
 Latitude = Latitude,
 Longitude = Longitude,
 Date = Date,
 Rating = Rating,
 Notes = Notes
 };

 // TODO: Persist entry in a later chapter
 }

 bool CanSave() => !string.IsNullOrWhiteSpace(Title);
}

Chapter 2

[35]

6. In order to keep the CanExecute function of the SaveCommand up to date,
we will need to call the SaveCommand.ChangeCanExecute() method in any
property setters that impact the results of that CanExecute function. In our
case, this is only the Title property:
public string Title
{
 get => _title;
 set
 {
 _title = value;
 OnPropertyChanged();
 SaveCommand.ChangeCanExecute();
 }
}

7. Next, set NewEntryViewModel as the BindingContext for NewEntryPage:
using System;
using Xamarin.Forms;
using TripLog.ViewModels;

public NewEntryPage()
{
 InitializeComponent();

 BindingContext = new NewEntryViewModel();

 // ...
}

8. Next, update the EntryCell elements in NewEntryPage.xaml to bind to the
NewEntryViewModel properties:
<EntryCell Label="Title" Text="{Binding Title}" />
<EntryCell Label="Latitude" Keyboard="Numeric"
 Text="{Binding Latitude}" />
<EntryCell Label="Longitude" Keyboard="Numeric"
 Text="{Binding Longitude}" />

The CanExecute function is not required, but by
providing it, you can automatically manipulate the state of
the control in the UI that is bound to the Command so that
it is disabled until all of the required criteria are met, at
which point it becomes enabled.

MVVM and Data Binding

[36]

<EntryCell Label="Date"
 Text="{Binding Date, StringFormat='{0:d}'}" />
<EntryCell Label="Rating" Keyboard="Numeric"
 Text="{Binding Rating}" />
<EntryCell Label="Notes" Text="{Binding Notes}" />

9. Finally, we will need to update the Save ToolbarItem element in
NewEntryPage.xaml to bind to the NewEntryViewModel SaveCommand
property:
<ToolbarItem Text="Save" Command="{Binding SaveCommand}" />

Now, when we run the app and navigate to the New Entry Page, we can see the data
binding in action, as shown in the following screenshots. Notice how the Save button
is disabled in the first set of screenshots until the title field contains a value, as shown
in the second set of screenshots:

Figure 3: The TripLog new entry page with Save button disabled

Chapter 2

[37]

Figure 4: The TripLog new entry page with Save button enabled

Validation
In software, data validation is a process that ensures the validity and integrity of
user input and usually involves checking that data is in the correct format and
contains an acceptable value. There are typically two types of validation when
building apps: server-side and client-side. Both play an important role in the
lifecycle of an app's data. Server-side validation is critical when it comes to security,
making sure malicious data or code doesn't make its way into the server or backend
infrastructure. Client-side validation is usually more about user experience than
security. A mobile app should always validate its data before sending it to a backend
(such as a web API) for a number of reasons, including the following:

• To provide real-time feedback to the user about any issues instead of waiting
on a response from the backend

• To support saving data in offline scenarios where the backend is not
available

• To prevent encoding issues when sending the data to the backend

MVVM and Data Binding

[38]

Just as a backend server should never assume all incoming data has been validated
by the client side before being received, a mobile app should also never assume
the backend will do its own server-side validation, even though it's a good security
practice. For this reason, mobile apps should perform as much client-side validation
as possible.

When adding validation to a mobile app the actual validation logic can go in a few
areas of the app architecture. It could go directly in the UI code (the View layer of
an MVVM architecture), it could go in the business logic or controller code (the
ViewModel layer of an MVVM architecture), or it could even go in the HTTP code.
In most cases when implementing the MVVM pattern it will make the most sense to
include validation in the ViewModels for the following reasons:

• The validation rules can be checked as the individual properties of the
ViewModel are changed.

• The validation rules are often part of or dependent on some business logic
that exists in the ViewModel.

• Most importantly, having the validation rules implemented in the
ViewModel makes them easy to test.

Adding a base validation ViewModel
As discussed earlier in this section, validation makes the most sense in the
ViewModel. To do this we will start by creating a new base ViewModel that will
provide some base-level methods, properties, and events for subclassed ViewModels
to leverage. This new base ViewModel will be called BaseValidationViewModel
and will subclass the BaseViewModel we created earlier in the chapter. It
will also implement an interface called INotifyDataErrorInfo from the
System.ComponentModel namespace. INotifyDataErrorInfo works a lot like
INotifyPropertyChanged – it specifies some properties about what errors have
occurred and as well as an event for when the error state of particular property
changes:

1. Create a new class in the ViewModels folder named
BaseValidationViewModel that subclasses BaseViewModel:
public class BaseValidationViewModel : BaseViewModel
{
 public BaseValidationViewModel()
 {
 }
}

Chapter 2

[39]

2. Update BaseValidationViewModel to implement INotifyDataErrorInfo
as follows:
public class BaseValidationViewModel : BaseViewModel,
 INotifyDataErrorInfo
{
 readonly IDictionary<string, List<string>> _errors =
 new Dictionary<string, List<string>>();

 public BaseValidationViewModel()
 {
 }

 public event EventHandler<DataErrorsChangedEventArgs>
ErrorsChanged;

 public bool HasErrors =>
 _errors?.Any(x => x.Value?.Any() == true) == true;

 public IEnumerable GetErrors(string propertyName)
 {
 if (string.IsNullOrWhiteSpace(propertyName))
 {
 return _errors.SelectMany(x => x.Value);
 }

 if (_errors.ContainsKey(propertyName)
 && _errors[propertyName].Any())
 {
 return _errors[propertyName];
 }

 return new List<string>();
 }
}

3. In addition to implementing the required members of
INotifyDataErrorInfo – ErrorsChanged, HasErrors, and GetErrors() –
we also need to add a method that actually handles validating ViewModel
properties.

MVVM and Data Binding

[40]

This method needs a validation rule parameter in the form of a Func<bool>
and an error message to be used if the validation rule fails. Add a protected
method named Validate to BaseValidationViewModel as follows:
public class BaseValidationViewModel : BaseViewModel,
 INotifyDataErrorInfo
{
 // ...

 protected void Validate(Func<bool> rule, string error,
 [CallerMemberName] string propertyName = "")
 {
 if (string.IsNullOrWhiteSpace(propertyName)) return;

 if (_errors.ContainsKey(propertyName))
 {
 _errors.Remove(propertyName);
 }

 if (rule() == false)
 {
 _errors.Add(propertyName, new List<string> { error });
 }

 OnPropertyChanged(nameof(HasErrors));

 ErrorsChanged?.Invoke(this,
 new DataErrorsChangedEventArgs(propertyName));
 }
}

If the validation rule Func<bool> returns false, the error message that
is provided is added to a private list of errors – used by HasErrors
and GetErrors() – mapped to the specific property that called into
this Validate() method. Lastly, the Validate() method invokes the
ErrorsChanged event with the caller property's name included in the event
arguments.

Now any ViewModel that needs to perform validation can subclass
BaseValidationViewModel and call the Validate() method to check if individual
properties are valid.

In the next section we will use BaseValidationViewModel to add validation to the
New Entry Page and its supporting ViewModel.

Chapter 2

[41]

Adding validation to the New Entry Page
In this section we will add some simple client-side validation to a couple of the entry
fields on the New Entry Page.

1. First, update NewEntryViewModel to subclass BaseValidationViewModel
instead of BaseViewModel:
public class NewEntryViewModel : BaseValidationViewModel
{
 // ...
}

Because BaseValidationViewModel subclasses BaseViewModel,
NewEntryViewModel is still able to leverage everything in BaseViewModel as
well.

2. Next, add a call to Validate() in the Title property setter that includes a
validation rule specifying that the field cannot be left blank:
public string Title
{
 get => _title;
 set
 {
 _title = value;
 Validate(() => !string.IsNullOrWhiteSpace(_title),
 "Title must be provided.");
 OnPropertyChanged();
 SaveCommand.ChangeCanExecute();
 }
}

3. Next, add a call to Validate() in the Rating property setter that includes a
validation rule specifying that the field's value must be between 1 and 5:
public int Rating
{
 get => _rating;
 set
 {
 _rating = value;
 Validate(() => _rating >= 1 && _rating <= 5,
 "Rating must be between 1 and 5.");
 OnPropertyChanged();
 SaveCommand.ChangeCanExecute();
 }
}

MVVM and Data Binding

[42]

Notice we also added SaveCommand.ChangeCanExecute() to the setter as
well. This is because we want to update the SaveCommand's canExecute
value when this value is changed since it will now impact the return value
of CanSave(), which we will update in the next step.

4. Next, update CanSave() – the method used for the SaveCommand's
canExecute function – to prevent saving if the ViewModel has any errors:
bool CanSave() => !string.IsNullOrWhitespace(Title) && !HasErrors;

5. Finally, update the New Entry Page to reflect any errors by highlighting the
field's text color in red:
// NewEntryPage.xaml:

<EntryCell x:Name="title" Label="Title" Text="{Binding Title}" />
// ...
<EntryCell x:Name="rating" Label="Rating" Keyboard="Numeric"
 Text="{Binding Rating}" />

// NewEntryPage.xaml.cs:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using Xamarin.Forms;
using TripLog.ViewModels;

public partial class NewEntryPage : ContentPage
{
 NewEntryViewModel ViewModel =>
 BindingContext as NewEntryViewModel;

 public NewEntryPage()
 {
 InitializeComponent();

 BindingContextChanged += Page_BindingContextChanged;

 BindingContext = new NewEntryViewModel();
 }

 void Page_BindingContextChanged(object sender, EventArgs e)
 {
 ViewModel.ErrorsChanged += ViewModel_ErrorsChanged;
 }

 void ViewModel_ErrorsChanged(object sender,
 DataErrorsChangedEventArgs e)

Chapter 2

[43]

 {
 var propHasErrors = (ViewModel.GetErrors(e.PropertyName)
 as List<string>)?.Any() == true;

 switch (e.PropertyName)
 {
 case nameof(ViewModel.Title):
 title.LabelColor = propHasErrors
 ? Color.Red : Color.Black;
 break;
 case nameof(ViewModel.Rating):
 rating.LabelColor = propHasErrors
 ? Color.Red : Color.Black;
 break;
 default:
 break;
 }
 }
}

Now when we run the app and navigate to the New Entry Page and enter an invalid
value in either the Title or Rating field, we will see the field label turn red and the
Save button will be disabled, as shown in the following screenshots. Once the error has
been corrected the field label color returns to black and the Save button is re-enabled.

Figure 5: The TripLog new entry page with client side validation

MVVM and Data Binding

[44]

Summary
In this chapter, we updated the app that we started creating in Chapter 1, Getting
Started, by removing data and data-related logic from the Pages, offloading it to a
series of ViewModels, and then binding the Pages to those ViewModels. In the next
chapter, we will expand on the Xamarin.Forms navigation service so that we can
also move navigation code from the Pages to the ViewModels.

[45]

Navigation
The overarching goal of this book is to show how you can build a solid architecture
based on design patterns and best practices; the objective of this chapter is to take
our TripLog app one step closer to achieving that goal. By introducing MVVM into
our TripLog app in Chapter 2, MVVM and Data Binding, we set up the app with
a very clear pattern to separate the user interface from the rest of the logic in the
app. Each subsequent chapter, starting with this one, further advances this concept
of separation.

In Chapter 2, MVVM and Data Binding, we moved a large portion of the app logic into
ViewModels; however, navigation is still being initiated from the Pages (Views).
In this chapter, we will create a navigation service that we can use to refactor any
navigation logic out of the Page-level code and into the ViewModels. While doing
this will not result in any noticeable differences when running the app, it will allow
us to make navigation fit more naturally into the rest of the app's logic. Furthermore,
as we will see in Chapter 8, Testing, having an abstracted navigation service means we
can include assertions about navigation when testing the logic in our ViewModels.

Here's a quick look at what we'll cover in this chapter:

• Understanding the basics of the Xamarin.Forms navigation API
• Thinking about navigation in MVVM
• Creating a navigation service
• Updating the TripLog app to use the navigation service

We'll start by reviewing the navigation API that comes with Xamarin.Forms.

Navigation

[46]

The Xamarin.Forms navigation API
Along with abstracting common user interface elements into a multi-platform API,
Xamarin.Forms also abstracts navigation for iOS, Android, and Windows into a
single easy-to-use navigation service. Each mobile platform does navigation in a
slightly different way and has a slightly different navigation API; however, at their
core, they all accomplish similar tasks, and, in most cases, use a stack structure –
last in, first out.

The Xamarin.Forms navigation API uses stack-like terminology, closely resembling
the navigation APIs of iOS. The Xamarin.Forms navigation API is exposed through
the Xamarin.Forms.INavigation interface, which is implemented via the
Navigation property that can be called from any Xamarin.Forms.VisualElement
object. Typically, Xamarin.Forms.Page is the object used. Xamarin.Forms.
NavigationPage also implements the Xamarin.Forms.INavigation interface
and exposes public methods to perform common navigation tasks.

The Xamarin.Forms navigation API supports two types of navigation: standard
and modal. Standard navigation is the typical navigation pattern where the user
clicks or taps through a series of pages and is able to use either device/operating
system-provided functionality (back buttons on Android and Windows), or app-
provided elements (navigation bar on iOS and action bar on Android), to navigate
back through the stack. Modal navigation is similar to the modal dialog concept
in web apps where a new page is layered on top of the calling page, preventing
interaction with the calling page until the user performs a specific action to close
the modal page. On smaller form factor devices, modal pages typically take up the
entire screen, whereas on larger form factors, such as tablets, modal pages may only
take up a subset of the screen, more like a dialog. The Xamarin.Forms.INavigation
interface exposes two separate read-only properties to view the standard and modal
navigation stacks: NavigationStack and ModalStack.

The Xamarin.Forms.INavigation interface provides several methods to
asynchronously push and pop pages onto the navigation and modal stacks,
as follows:

• PushAsync(Page page) and PushAsync(Page page, bool animated)
to navigate to a new page

• PopAsync() and PopAsync(bool animated) to navigate back to the
previous page, if there is one

• PushModalAsync(Page page) and PushModalAsync(Page page, bool
animated) to modally display a page

Chapter 3

[47]

• PopModalAsync() and PopModalAsync(bool animated) to dismiss
the current modally displayed page

Notice how each method has an optional animated parameter that allows you to
specify if the page should animate when the navigation transition is happening.

In addition to these methods, there are a few methods that help you manipulate the
navigation stack, since it is exposed as a read-only property:

• InsertPageBefore(Page page, Page before) to insert a page before
a specific page that is already in the navigation stack

• RemovePage(Page page) to remove a specific page in the navigation stack
• PopToRootAsync() and PopToRootAsync(bool animated) to navigate back

to the first page and remove all others in the navigation stack

We've already used PushAsync() a few times in the TripLog app to allow the user
to move from page to page. In the next couple of sections of this chapter, we'll
create a custom navigation service that extends the Xamarin.Forms navigation API,
use it to move those instances of PushAsync() from the Views into the ViewModels,
and expose them through commands that will be data bound to the page.

Navigation and MVVM
One of the key purposes of the MVVM pattern is to isolate an app's presentation
layer from its other layers. In doing so, an app's business logic is also isolated.
One of the thoughts behind this isolation is to have a user interface that is only
concerned with displaying data, and that is completely independent of how
that data is stored, acquired, manipulated, or shared with the rest of the app. As
explained in Chapter 2, MVVM and Data Binding, this is typically accomplished
through data binding.

In MVVM, the actions that a user performs on a page are bound to commands on
that page's backing ViewModel. It is very common for these actions to result in
a transition to another page—either by directly linking to it or by automatically
navigating to a previous page after performing a task, such as saving data.
Therefore, it makes sense to rethink how we implement navigation in an app
that leverages the MVVM pattern so that it can be controlled by the ViewModels
and not by the pages.

Navigation

[48]

There are two main approaches to consider when performing navigation within
ViewModels—one is the page-centric approach and the other is the ViewModel-
centric approach. A page-centric approach involves navigating to another page by
a direct reference to that page. A ViewModel-centric approach involves navigating
to another page by reference to that page's ViewModel.

The page-centric approach can be accomplished in Xamarin.Forms by simply
passing the current Xamarin.Forms.INavigation instance into a ViewModel's
constructor. From there, the ViewModel can use the default Xamarin.Forms
navigation mechanism to navigate to other pages. The benefits of this approach are
that it separates the navigation functionality from the page layer and is fairly quick
to implement. However, the downside is that it puts a strong dependency on direct
page references into ViewModels. I typically prefer to use the ViewModel-centric
approach and keep ViewModels loosely coupled and unaware of the actual page
implementations.

ViewModel-centric navigation
As previously discussed, the ViewModel-centric approach alleviates a ViewModel
from having any dependencies on the specific implementation of individual pages.
In a default Xamarin.Forms solution, this might not appear to be such a big deal,
but consider a situation where pages were self-contained in their own library—the
library containing ViewModels probably wouldn't have a reference to that library.
This is typical of a traditional Xamarin-based multi-platform solution architecture
and also a good practice to follow.

Since a ViewModel doesn't navigate directly to a page, it will navigate to a page via
the page's ViewModel. This means that when implementing this approach, there is a
need to build a relationship, or mapping, between pages and their ViewModels. As
with most things in software development, this can be done in a couple of ways. One
way is to include a dictionary or key-value type property in the navigation service
that maintains a one-to-one mapping of pages and ViewModels using their type.
This could also be done externally to the navigation service to provide an additional
abstraction. Another approach, which is used by the MVVM Light (http://www.
mvvmlight.net/) toolkit's navigation service, is to map the type of ViewModel with
a string key that represents the actual page it relates to.

Most of the common third-party MVVM frameworks and toolkits
subscribe to this theory and often even provide a navigation service
that is designed for ViewModel consumption.

http://www.mvvmlight.net/
http://www.mvvmlight.net/

Chapter 3

[49]

In the next section, we'll create a ViewModel-centric navigation service that includes
ViewModel and page type mapping.

Creating a navigation service
In a typical multi-platform mobile app architecture, one would have to implement
a platform-specific navigation service for each platform the app supports. In our
case, Xamarin.Forms has already done this, so we will simply implement a single
navigation service that extends the Xamarin.Forms navigation abstraction so that
we can perform ViewModel-to-ViewModel navigation.

The first thing we need to do is define an interface for our navigation service that
will define its methods. We start with an interface so that the service can be added
to ViewModels via constructor injection, which we'll dive into in Chapter 4, Platform-
Specific Services and Dependency Injection, and we can easily provide alternative
implementations of the service without changing ViewModels that depend on it. A
common scenario for this is creating a mock of the service that gets used when unit
testing ViewModels.

In order to create the navigation service, perform the following steps:

1. Create a new Services folder in the core library.
2. Create a new interface named INavService with the following members:

using System;
using System.ComponentModel;
using System.Threading.Tasks;
using TripLog.ViewModels;

public interface INavService
{
 bool CanGoBack { get; }
 Task GoBack();
 Task NavigateTo<TVM>()
 where TVM : BaseViewModel;
 Task NavigateTo<TVM, TParameter>(TParameter parameter)
 where TVM : BaseViewModel;
 void RemoveLastView();
 void ClearBackStack();
 void NavigateToUri(Uri uri);

 event PropertyChangedEventHandler CanGoBackChanged;
}

Navigation

[50]

This interface defines fairly standard navigation behavior—the ability to navigate
to ViewModels, navigate back, clear the navigation stack, and navigate to a regular
URI. The NavigateTo() method defines a generic type and restricts its use to objects
of the BaseViewModel base class, which we created in the previous chapter. There is
also an overloaded NavigateTo() method that enables a strongly typed parameter
to be passed along with the navigation.

Before we create the actual implementation of the INavService interface, we will
need to make a couple of updates to our BaseViewModel:

1. Update the BaseViewModel to include a virtual method called Init:
public class BaseViewModel
{
 // ...

 public virtual void Init()
 {
 }
}

2. Next, add a second BaseViewModel base class to the BaseViewModel.cs file
with a generic type that will be used to pass strongly typed parameters to the
Init() method:
public class BaseViewModel
{
 // ...
}

public class BaseViewModel<TParameter> : BaseViewModel
{
 protected BaseViewModel()
 {
 }

 public override void Init()
 {
 Init(default(TParameter));
 }

 public virtual void Init(TParameter parameter)
 {
 }
}

Chapter 3

[51]

3. Then, update MainViewModel to override the Init() method from
BaseViewModel. The Init() method in MainViewModel will be responsible
for loading the log entries. We will refactor the ViewModel and move the
log entry list population logic out of the constructor and into a new method
named LoadEntries, which will then be called from the Init() override:
public class MainViewModel : BaseViewModel
{
 // ...

 public MainViewModel()
 {
 LogEntries = new ObservableCollection<TripLogEntry>();
 }

 public override void Init()
 {
 LoadEntries();
 }

 void LoadEntries()
 {
 LogEntries.Clear();

 LogEntries.Add(new TripLogEntry
 {
 Title = "Washington Monument",
 Notes = "Amazing!",
 Rating = 3,
 Date = new DateTime(2019, 2, 5),
 Latitude = 38.8895,
 Longitude = -77.0352
 });

 LogEntries.Add(new TripLogEntry
 {
 Title = "Statue of Liberty",
 Notes = "Inspiring!",
 Rating = 4,
 Date = new DateTime(2019, 4, 13),
 Latitude = 40.6892,
 Longitude = -74.0444
 });

 LogEntries.Add(new TripLogEntry

Navigation

[52]

 {
 Title = "Golden Gate Bridge",
 Notes = "Foggy, but beautiful.",
 Rating = 5,
 Date = new DateTime(2019, 4, 26),
 Latitude = 37.8268,
 Longitude = -122.4798
 });
 }
}

4. Next, update NewEntryViewModel to override the Init() method from
BaseViewModel. For now, the overridden Init() implementation will be
blank:
public class NewEntryViewModel : BaseValidationViewModel
{
 // ...

 public NewEntryViewModel()
 {
 // ...
 }

 public override void Init()
 {
 }

 // ...
}

5. Next, update DetailViewModel to inherit from
BaseViewModel<TripLogEntry> and override the Init() method, and set
the Entry property with the value of its TripLogEntry parameter, removing
the need for the constructor TripLogEntry parameter:
public class DetailViewModel : BaseViewModel<TripLogEntry>
{
 // ...

 public DetailViewModel() // <- Remove parameter
 {
 }

 public override void Init(TripLogEntry parameter)
 {

Chapter 3

[53]

 Entry = parameter;
 }
}

6. We also need to remove the TripLogEntry parameter from the DetailPage
constructor as it will now all be handled between the navigation service and
the ViewModel's Init() method:

public partial class DetailPage : ContentPage
{
 // ...

 public DetailPage() // <- Remove parameter
 {
 InitializeComponent();

 BindingContext = new DetailViewModel();

 // ...
 }
}

Now that BaseViewModel has been updated, we can create our navigation service
that implements INavService and update the app to use the navigation service:

1. Create a new class within the Services folder of the core library. Name the
new class XamarinFormsNavService and make it implement INavService
as follows:
public class XamarinFormsNavService : INavService
{
 // TODO: INavService implementation goes here.
}

2. Update the XamarinFormsNavService class to include a public INavigation
property named XamarinFormsNav. This XamarinFormsNav property
provides a reference to the current Xamarin.Forms.INavigation instance,
and will need to be set when the navigation service is first initialized, which
we'll see later in this chapter when we update the TripLog app:
using System;
using Xamarin.Forms;

public class XamarinFormsNavService : INavService
{
 public INavigation XamarinFormsNav { get; set; }

Navigation

[54]

 // TODO: INavService implementation goes here.
}

As discussed in the previous section, we will implement the navigation
service with a page-to-ViewModel mapping. We will do this with an
IDictionary<Type, Type> property and a method to register the mappings.

3. Update the XamarinFormsNavService with an IDictionary<Type, Type>
read-only property and add a public method named RegisterViewMapping
to populate it:
using System;
using System.Collections.Generic;
using Xamarin.Forms;

public class XamarinFormsNavService : INavService
{
 readonly IDictionary<Type, Type> _map =
 new Dictionary<Type, Type>();

 public void RegisterViewMapping(Type viewModel, Type view)
 {
 _map.Add(viewModel, view);
 }

 // ...

 // TODO: INavService implementation goes here.
}

4. Next, implement the INavService members. Most of the INavService
members will leverage the XamarinFormsNav property to make calls to the
Xamarin.Forms navigation API in order to perform the navigation and alter
the navigation stack:
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using System.Reflection;
using System.Threading.Tasks;
using Xamarin.Forms;
using TripLog.ViewModels;

public class XamarinFormsNavService : INavService
{
 // ...

Chapter 3

[55]

 public event PropertyChangedEventHandler CanGoBackChanged;

 public INavigation XamarinFormsNav { get; set; }

 public bool CanGoBack =>
 XamarinFormsNav.NavigationStack != null
 && XamarinFormsNav.NavigationStack.Count > 0;

 public async Task GoBack()
 {
 if (CanGoBack)
 {
 await XamarinFormsNav.PopAsync(true);
 OnCanGoBackChanged();
 }
 }

 public async Task NavigateTo<TVM>()
 where TVM : BaseViewModel
 {
 await NavigateToView(typeof(TVM));

 if (XamarinFormsNav.NavigationStack.Last().BindingContext
is BaseViewModel)
 {
 ((BaseViewModel)XamarinFormsNav.NavigationStack.
Last().BindingContext).Init();
 }
 }

 public async Task NavigateTo<TVM, TParameter>(TParameter
parameter)
 where TVM : BaseViewModel
 {
 await NavigateToView(typeof(TVM));

 if (XamarinFormsNav.NavigationStack.Last().BindingContext
is BaseViewModel<TParameter>)
 {
 ((BaseViewModel<TParameter>)XamarinFormsNav.
NavigationStack.Last().BindingContext).Init(parameter);
 }
 }

Navigation

[56]

 public void RemoveLastView()
 {
 if (XamarinFormsNav.NavigationStack.Count < 2)
 {
 return;
 }

 var lastView = XamarinFormsNav.
NavigationStack[XamarinFormsNav.NavigationStack.Count - 2];

 XamarinFormsNav.RemovePage(lastView);
 }

 public void ClearBackStack()
 {
 if (XamarinFormsNav.NavigationStack.Count < 2)
 {
 return;
 }

 for (var i = 0; i < XamarinFormsNav.NavigationStack.Count
- 1; i++)
 {
 XamarinFormsNav.RemovePage(XamarinFormsNav.
NavigationStack[i]);
 }
 }

 public void NavigateToUri(Uri uri)
 {
 if (uri == null)
 {
 throw new ArgumentException("Invalid URI");
 }

 Device.OpenUri(uri);
 }

 async Task NavigateToView(Type viewModelType)
 {
 if (!_map.TryGetValue(viewModelType, out Type viewType))
 {
 throw new ArgumentException("No view found in view
mapping for " + viewModelType.FullName + ".");
 }

Chapter 3

[57]

 // Use reflection to get the View's constructor and create
an instance of the View
 var constructor = viewType.GetTypeInfo()
 .DeclaredConstructors
 .FirstOrDefault(dc => !dc.
GetParameters().Any());

 var view = constructor.Invoke(null) as Page;

 await XamarinFormsNav.PushAsync(view, true);
 }

 void OnCanGoBackChanged() => CanGoBackChanged?.Invoke(this,
new PropertyChangedEventArgs("CanGoBack"));

 // ...
}

5. Finally, the navigation service class needs to be marked as a dependency
so that it can be resolved by the Xamarin.Forms DependencyService. This
is accomplished by adding an assembly attribute to the class before the
namespace block, as shown in the following code:

[assembly: Dependency(typeof(XamarinFormsNavService))]
namespace TripLog.Services
{
 public class XamarinFormsNavService : INavService
 {
 // ...
 }
}

In Chapter 4, Platform-Specific Services and Dependency Injection, we will remove this as
we replace the Xamarin.Forms DependencyService with a third-party dependency
injection library.

Updating the TripLog app
With the navigation service completed, we can now update the rest of the TripLog
app to leverage it. To start with, we will update the constructor in the main App class
in App.xaml.cs to create a new instance of the navigation service and register the
app's Page-to-ViewModel mappings:

using System;

Navigation

[58]

using Xamarin.Forms;
using TripLog.Services;
using TripLog.Views;
using TripLog.ViewModels;

public App()
{
 InitializeComponent();

 var mainPage = new NavigationPage(new MainPage());
 var navService = DependencyService.Get<INavService>() as
XamarinFormsNavService;

 navService.XamarinFormsNav = mainPage.Navigation;
 navService.RegisterViewMapping(typeof(MainViewModel),
typeof(MainPage));
 navService.RegisterViewMapping(typeof(DetailViewModel),
typeof(DetailPage));
 navService.RegisterViewMapping(typeof(NewEntryViewModel),
typeof(NewEntryPage));

 MainPage = mainPage;
}

Updating BaseViewModel
Since most ViewModels in the TripLog app will need to use the navigation service,
it makes sense to include a reference to it in the BaseViewModel class. We will do
this by passing an instance of INavService into the BaseViewModel constructor and
setting a protected INavService property:

using TripLog.Services;

public class BaseViewModel : INotifyPropertyChanged
{
 // ...

 protected INavService NavService { get; private set; }

 protected BaseViewModel(INavService navService)
 {
 NavService = navService;
 }

 // ...

Chapter 3

[59]

}

public class BaseViewModel<TParameter> : BaseViewModel
{
 protected BaseViewModel(INavService navService)
 : base(navService)
 {
 }

 // ...
}

Each of the ViewModels that inherit from BaseViewModel need to be updated to
include an INavService parameter in their constructors that is then passed to its
BaseViewModel base class:

1. Update the MainViewModel constructor with an INavService parameter that
is passed to the base class constructor:
public MainViewModel(INavService navService)
 : base(navService)
{
 // ...
}

2. Update the DetailViewModel constructor with an INavService parameter
that is passed to the base class constructor:
public DetailViewModel(INavService navService)
 : base(navService)
{
}

3. Update the NewEntryViewModel constructor with an INavService
parameter that is passed to the base class constructor:
public NewEntryViewModel(INavService navService)
 : base(navService)
{
 // ...
}

The BaseValidationViewModel base class needs to be updated to include an
INavService constructor parameter as well:

public BaseValidationViewModel(INavService navService)
 : base(navService)
{
}

Navigation

[60]

In addition, each ViewModel instantiation needs to be updated to pass in an
INavService, which can be retrieved from the Xamarin.Forms DependencyService:

1. Update the MainViewModel instantiation in the MainPage constructor:
public MainPage()
{
 BindingContext = new MainViewModel(DependencyService.
Get<INavService>());
}

2. Update the DetailViewModel instantiation in the DetailPage constructor:
public DetailPage()
{
 BindingContext = new DetailViewModel(DependencyService.
Get<INavService>());
}

3. Update the NewEntryViewModel instantiation in the NewEntryPage
constructor:

public NewEntryPage()
{
 // ...

 BindingContext = new NewEntryViewModel(DependencyService.
Get<INavService>());
}

Updating MainViewModel
In order to move the navigation functionality from MainPage to MainViewModel,
we need to add two new Command properties—one for creating a new log entry and
another for viewing the details of an existing log entry:

public class MainViewModel : BaseViewModel
{
 // ...

 public Command<TripLogEntry> ViewCommand =>
 new Command<TripLogEntry>(async entry =>
 await NavService.NavigateTo<DetailViewModel,
TripLogEntry>(entry));

 public Command NewCommand =>
 new Command(async () =>

Chapter 3

[61]

 await NavService.NavigateTo<NewEntryViewModel>());

 // ...
}

With the Command properties in place on MainViewModel, we can now update
MainPage to use these commands instead of using the Xamarin.Forms navigation
APIs directly from the page:

Replace the Clicked attribute on the New ToolbarItem element with a Command
attribute whose value is a binding to the NewCommand:

<ToolbarItem Text="New" Command="{Binding NewCommand}" />

Because we are binding the New ToolbarItem element to the NewCommand now, we
no longer need the New_Clicked() event handler method in the MainPage code-
behind, so it can be deleted. We can also delete the Trips_SelectionChanged()
event handler method in the MainPage code-behind as we will bind the item
selection to the ViewCommand using a TapGestureRecognizer, within the
ItemTemplate of the CollectionView as follows:

<ContentPage ...
 x:Class="TripLog.Views.MainPage"
 xmlns:vm="clr-namespace:TripLog.ViewModels"
 Title="TripLog">
 <!-- ... -->
 <Grid Padding="10">
 <Grid.GestureRecognizers>
 <TapGestureRecognizer
 Command="{Binding
 Source={RelativeSource
 AncestorType={x:Type vm:MainViewModel}},
 Path=ViewCommand}"
 CommandParameter="{Binding}" />
 </Grid.GestureRecognizers>
 <!-- ... -->
 </Grid>

 <!-- ... -->
</ContentPage>

While it is possible to use the SelectionChangedCommand on the CollectionView,
it is actually recommended to use a TapGestureRecognizer to handle
CollectionView item tap events. SelectionChangedCommand is best used for
handling and taking action on a selection of multiple items, for example deleting
multiple items at once.

Navigation

[62]

The BindingContext for the individual items within a CollectionView, as well
as other controls that contain a templated list of items, is the item itself – not the
BindingContext of the parent ContentPage (the page's ViewModel). Therefore,
the TapGestureRecognizer we added uses a RelativeSource within its Command
Binding to access the page's ViewModel and use it as the source for the Binding.
In order to reference the MainViewModel type within the XAML binding we
created a xmlns for the ViewModels namespace in the ContentPage element. The
ViewCommand we are binding to takes a TripLogEntry parameter, so we used the
CommandParameter to pass the item itself by simply calling {Binding}.

Initializing MainViewModel
The XamarinFormsNavService custom navigation service we created handles
initializing ViewModels automatically when they are navigated to by calling the
Init() method in BaseViewModel. However, because the main page is launched
by default and not via navigation, we will need to manually call the Init()
method on the page's ViewModel when the page first appears.

Update MainPage by overriding its OnAppearing() method to call its ViewModel's
Init() method:

public partial class MainPage : ContentPage
{
 MainViewModel ViewModel => BindingContext as MainViewModel;

 // ...

 protected override void OnAppearing()
 {
 base.OnAppearing();

 // Initialize MainViewModel
 ViewModel?.Init();
 }
}

Now, when the app is launched and the main page is loaded, the ViewModel will be
initialized and load all of the trip log entries.

Updating NewEntryViewModel
In Chapter 2, MVVM and Data Binding, we added SaveCommand to
NewEntryViewModel, but once the SaveCommand executed, nothing occurred.

Chapter 3

[63]

Once SaveCommand performs its logic to save the new log entry, it should navigate
the user back to the previous page. We can accomplish this by updating the execute
Action of SaveCommand to call the GoBack() method in the navigation service that
we created in the last section:

public class NewEntryViewModel : BaseValidationViewModel
{
 // ...

 Command _saveCommand;
 public Command SaveCommand =>
 _saveCommand ?? (_saveCommand = new Command(async () => await
Save(), CanSave));

 // ...

 async Task Save()
 {
 var newItem = new TripLogEntry
 {
 Title = Title,
 Latitude = Latitude,
 Longitude = Longitude,
 Date = Date,
 Rating = Rating,
 Notes = Notes
 };

 // TODO: Persist Entry in a later chapter.

 await NavService.GoBack();
 }

 // ..
}

Notice that because the Save() method now calls an asynchronous method, it needs
to use async and await, and its return type needs to be updated from void to Task.

Navigation

[64]

Updating DetailPage
Finally, we need to update how the map on DetailPage is being bound to the
data in the DetailViewModel. Since the ViewModel is being initialized via the
navigation service now, it happens after the page is constructed, and therefore the
map doesn't have the data it needs. Normally, this would not be a problem thanks
to data binding; however, since the map control does not allow for data binding,
we will need to handle its data differently. The best way for the page to check
when its ViewModel has data for its map control is to handle the ViewModel's
PropertyChanged event. If the ViewModel's Entry property changes, the map
control should be updated accordingly, as shown in the following steps:

1. First, move the two statements that plot and center the coordinates on the
map control out of the constructor, and into a separate private method
named UpdateMap in the DetailPage class:
public partial class DetailPage : ContentPage
{
 // ...

 public DetailPage()
 {
 InitializeComponent();

 BindingContext = new DetailViewModel(DependencyService.
Get<INavService>());
 }

 void UpdateMap()
 {
 if (ViewModel.Entry == null)
 {
 return;
 }

 // Center the map around the log entry's location
 map.MoveToRegion(MapSpan.FromCenterAndRadius(new
Position(ViewModel.Entry.Latitude, ViewModel.Entry.Longitude),
Distance.FromMiles(.5)));

 // Place a pin on the map for the log entry's location
 map.Pins.Add(new Pin
 {
 Type = PinType.Place,
 Label = ViewModel.Entry.Title,

Chapter 3

[65]

 Position = new Position(ViewModel.Entry.Latitude,
ViewModel.Entry.Longitude)
 });
 }
}

2. Next, handle the ViewModel's PropertyChanged event to update the map
when the ViewModel's Entry property is changed:

public partial class DetailPage : ContentPage
{
 // ...

 protected override void OnAppearing()
 {
 base.OnAppearing();

 if (ViewModel != null)
 {
 ViewModel.PropertyChanged +=
OnViewModelPropertyChanged;
 }
 }

 protected override void OnDisappearing()
 {
 base.OnDisappearing();

 if (ViewModel != null)
 {
 ViewModel.PropertyChanged -=
OnViewModelPropertyChanged;
 }
 }

 void OnViewModelPropertyChanged(object sender,
PropertyChangedEventArgs args)
 {
 if (args.PropertyName == nameof(DetailViewModel.Entry))
 {
 UpdateMap();
 }
 }

 void UpdateMap()

Navigation

[66]

 {
 // ...
 }
}

Now that we have refactored the Views and ViewModels throughout the app's code
base to use our navigation service, all page navigation can now be initiated from the
ViewModels. When we run the app now, everything should look and behave just as
it did at the end of the last chapter.

Summary
In this chapter, we created a service that extends the default Xamarin.Forms
navigation API to enable a ViewModel-centric navigation. Even though this change
does not result in a visible change to the app's appearance or functionality, it helps
enforce a better separation between the presentation layer and the business logic
in ViewModels. In Chapter 4, Platform-Specific Services and Dependency Injection, we
will create some additional services that abstract platform-specific APIs and replace
the Xamarin.Forms DependencyService with a more flexible IoC and dependency
injection alternative.

[67]

Platform-Specific Services
and Dependency Injection

This chapter will not teach you everything there is to know about inversion of
control (IoC) and dependency injection, as there are numerous resources available
that strictly focus on these topics alone. Instead, this chapter will focus on how
these patterns apply to mobile development and, more specifically, how to
implement them in a Xamarin.Forms mobile app.

The following is a quick look at what we'll cover in this chapter:

• The need for dependency injection in multi-platform mobile app
development

• Implementing IoC and dependency injection using a third-party library in
place of Xamarin.Forms DependencyService

• Creating, injecting, and using platform-specific services
• Updating our TripLog app to use platform-specific services through

dependency injection

We'll get started by looking into why and how dependency injection plays an
important role in mobile app development.

Inversion of control and dependency
injection in mobile apps
In software development, IoC and dependency injection solve many problems. In the
world of mobile development, particularly multi-platform mobile development, they
provide a great pattern to handle platform- and device-specific code.

Platform-Specific Services and Dependency Injection

[68]

One of the most important aspects of multi-platform mobile development is the idea
of sharing code. Not only does development become easier and quicker when code
can be shared across apps and platforms, but so does maintenance, management,
feature parity, and so on. However, there are always parts of an app's code base
that simply cannot be shared due to its strict tie-in with the platform's APIs. In most
cases, an app's user interface represents a large portion of this non-sharable code.
It is because of this that the MVVM pattern makes so much sense in multi-platform
mobile development—it forces the separation of user interface code (Views) into
individual, platform-specific libraries, making it easy to then compartmentalize
the rest of the code (ViewModels and Models) into a single, shareable library.

However, what if the code in the shared ViewModels needs to access the device's
physical geolocation, or leverage the device's camera to take a photo? Since the
ViewModels exist in a single platform-agnostic library, they can't call the platform-
specific APIs. This is where dependency injection saves the day.

Xamarin.Forms DependencyService
versus third-party alternatives
In addition to providing the core building blocks for the MVVM pattern, Xamarin.
Forms also includes a very basic service that handles dependency registration
and resolution, called the DependencyService. We actually used this service
in the previous chapter to register and resolve our custom navigation service.
Like many of the services and components built into the Xamarin.Forms toolkit,
DependencyService is designed to help get developers up and running quickly
by providing an easy-to-use basic implementation. It is in no way the only
way of handling dependencies in a Xamarin.Forms mobile app and, in most
complex apps, you will quickly outgrow the capabilities of the Xamarin.Forms
DependencyService. For example, the Xamarin.Forms DependencyService
doesn't provide a way of doing constructor injection.

There are several third-party alternatives to the DependencyService that allow
much greater flexibility, such as Autofac, TinyIoC, Ninject, and Unity. Each of
these libraries are open source and, in most cases, community maintained. They
all implement the patterns in slightly different ways and offer different benefits
depending on the architecture of your app.

In the next couple of sections, we will build two new platform-specific services,
and use the Ninject library to register and use them in our TripLog app. We will
also update the navigation service from Chapter 3, Navigation, to be registered in
Ninject, instead of the Xamarin.Forms DependencyService.

Chapter 4

[69]

Creating and using platform-specific
services
We have already created a service to handle navigation in the previous chapter.
That custom navigation service specification was provided by the INavService
interface and there is a property of that interface type in the BaseViewModel so
that a concrete implementation of the service can be provided to the ViewModels
as needed.

The benefit of using an interface to define platform-specific or third-party
dependency services is that it can be used in an agnostic way in the ViewModels,
and the concrete implementations can be provided via dependency injection. Those
concrete implementations can be actual services, or even mocked services for unit
testing the ViewModels, as we'll see in Chapter 8, Testing.

In addition to navigation, there are a couple of other platform-specific services
our TripLog app could use to enrich its data and experience. In this section, we
will create a location service that allows us to get specific geocoordinates from the
device. The actual platform-specific implementation of the location service is fairly
trivial, and there are tons of resources on how to do this. We will create a basic
implementation without going too deep, so that we can keep the focus on how
we leverage it as a dependency in a Xamarin.Forms architecture.

Similar to the approach we took for the navigation service, we will first start out by
creating an interface for the location service, and then create the actual platform-
specific implementations.

Creating a location service
The first step to allowing our app to take advantage of the device's geolocation
capabilities, is to provide an interface in the core library that can be used by the
ViewModels in a device- and platform-agnostic manner. When receiving the
geolocation back from a device, each platform could potentially provide coordinates
in a platform-specific data structure. However, each structure will ultimately
provide two double values representing the coordinate's latitude and longitude.

There are a couple of ways to ensure that the results are returned in a platform-
agnostic manner, which we will need since we are working in a non-platform-
specific library.

Platform-Specific Services and Dependency Injection

[70]

One way to ensure this is to pass the values back via a callback method. Another
approach we will be employing is to use a custom object, which we will define in
our Models namespace, as shown in the following steps:

1. Create a new class named GeoCoords in the Models folder of the core library.
2. Add two double properties to the GeoCoords class named Latitude and

Longitude:
public class GeoCoords
{
 public double Latitude { get; set; }
 public double Longitude { get; set; }
}

3. Create a new interface named ILocationService in the Services folder of
the core library. The interface should have one async method, which returns
Task<GeoCoords>:

public interface ILocationService
{
 Task<GeoCoords> GetGeoCoordinatesAsync();
}

Now that we have an interface that defines our location service, we can use it in the
core project of our TripLog app.

Using the location service on the New Entry
Page
The main place we will need to capture location in the app is on the New Entry Page,
so coordinates can be attached to log entries when they are added. Since we want to
keep our app logic separate from the user interface, we will use the location service
in the new entry page's ViewModel, and not on the Page itself.

In order to use the ILocationService interface in the NewEntryViewModel, perform
the following steps:

1. First, add a read-only property to the NewEntryViewModel to hold an
instance of the location service:
public class NewEntryViewModel : BaseValidationViewModel
{
 readonly ILocationService _locService;

 // ...
}

Chapter 4

[71]

2. Next, update the NewEntryViewModel constructor to take an
ILocationService instance, and set its read-only ILocationService
property:
public NewEntryViewModel(INavService navService, ILocationService
locService)
 : base(navService)
{
 _locService = locService;

 Date = DateTime.Today;
 Rating = 1;
}

3. Finally, update the NewEntryViewModel Init() method to use the location
service to set the Latitude and Longitude double properties:
public override async void Init()
{
 try
 {
 var coords = await _locService.GetGeoCoordinatesAsync();

 Latitude = coords.Latitude;
 Longitude = coords.Longitude;
 }
 catch (Exception)
 {
 // TODO: handle exceptions from location service
 }
}

Notice how we can completely work with the location service in the ViewModel,
even though we haven't actually written the platform-specific implementations.
Although, if we were to run the app, we would get a runtime error because the
implementation doesn't actually exist, but it's useful to be able to work with the
service through abstraction to fully build out and test the ViewModel.

Adding the location service implementation
Now that we have created an interface for our location service and updated the
ViewModel, we need to create the concrete platform-specific implementations.
Create the location service implementations using Xamarin.Essentials as follows:

Platform-Specific Services and Dependency Injection

[72]

1. First, create a new folder in the TripLog.iOS project named Services.
2. Next, create a new class file in the Services folder named LocationService

that implements the ILocationService interface we created earlier in the
chapter:
public class LocationService : ILocationService
{
 public async Task<GeoCoords> GetGeoCoordinatesAsync()
 {
 var location = await Xamarin.Essentials.Geolocation.
GetLocationAsync();

 return new GeoCoords
 {
 Latitude = location.Latitude,
 Longitude = location.Longitude
 };
 }
}

3. Next, update the iOS app's Info.plist file by adding a new entry to request
access to the device's location services. For example, add the Privacy -
Location When In Use Usage Description property along with a reason
explaining why or how the device's location will be used.

4. Next, create a new folder in the TripLog.Android project named Services.
5. Next, create a new class file in the Services folder named LocationService

that implements the ILocationService interface for Android:
public class LocationService : ILocationService
{
 public async Task<GeoCoords> GetGeoCoordinatesAsync()
 {
 var location = await Xamarin.Essentials.Geolocation.
GetLocationAsync();

NOTE

The following steps use the Xamarin.Essentials library, which is
available on NuGet. The latest versions of Visual Studio include
this package in the Xamarin.Forms templates so it is likely you
already have the library added to your projects. If you don't, add
the Xamarin.Essentials NuGet package to the core project and each
of the platform projects before proceeding.

Chapter 4

[73]

 return new GeoCoords
 {
 Latitude = location.Latitude,
 Longitude = location.Longitude
 };
 }
}

6. Next, update the Android app's AndroidManifest.xml file to require
ACCESS_COARSE_LOCATION and/or ACCESS_FINE_LOCATION permissions.

These are extremely over-simplified location service implementations that simply
leverage the Xamarin.Essentials library and its geolocation API. Most real-world
scenarios will require more logic; however, for the purposes of demonstrating
platform-specific service dependency injection, this implementation will suffice.

Now that we have created a platform-dependent service, it is time to register it into
an IoC container so that we can use it throughout the rest of the code. In the next
section, we will use Ninject to create registrations between both our location service
interface and the actual platform-specific implementations. We will also update the
custom navigation service that we created in Chapter 3, Navigation, to use Ninject in
place of the default Xamarin.Forms DependencyService.

Registering dependencies
As mentioned earlier, each dependency injection library implements the pattern
slightly differently. In this section, we will use Ninject to start adding dependency
injection capabilities to our TripLog app. Ninject allows you to create modules that
are responsible for adding services to the IoC container.

Xamarin.Essentials is an open source library created by the Xamarin
team at Microsoft. The library exposes lots of common native APIs
in a single cross-platform package. While the package is cross-
platform and could easily be called directly from ViewModel code,
it is still a good idea to abstract it out into a service as we've done
here. This keeps the implementation details in a single place and
also continues to ensure your ViewModels remain testable. For
more details on the Xamarin.Essentials library, visit www.github.
com/xamarin/essentials and docs.microsoft.com/en-
us/xamarin/essentials.

http://www.github.com/xamarin/essentials
http://www.github.com/xamarin/essentials
http://docs.microsoft.com/en-us/xamarin/essentials
http://docs.microsoft.com/en-us/xamarin/essentials

Platform-Specific Services and Dependency Injection

[74]

The modules are then added to a Kernel that is used to resolve the services in other
areas of the app.

You can create a single Ninject module or many, depending on how your app is
structured and how you want to organize your services. For the TripLog app, we will
have a Ninject module in each platform project, which is responsible for registering
that platform's specific service implementations. We will also create a Ninject
module in the core library, which will be responsible for registering dependencies
that live in the core library, such as ViewModels and data access services, which we
will add later in Chapter 6, API Data Access, when we start working with live data.

Registering the platform-service
implementations
We will start by creating Ninject modules in each of the platform projects, which
will be responsible for registering their respective platform's specific service
implementations, as shown in the following steps:

1. Add the Portable.Ninject NuGet package to each of the platform-specific
projects.

2. Next, create a new folder in the TripLog.iOS project named Modules.
3. Create a new class in the Modules folder named TripLogPlatformModule

that inherits from Ninject.Modules.NinjectModule:
public class TripLogPlatformModule : NinjectModule
{
 // ...
}

4. Override the Load() method of the NinjectModule class and use the
Ninject Bind() method to register the iOS-specific implementation of
ILocationService as a singleton:
public class TripLogPlatformModule : NinjectModule
{
 public override void Load()
 {
 Bind<ILocationService>()
 .To<LocationService>()
 .InSingletonScope();
 }
}

Chapter 4

[75]

5. Next, create a folder in the TripLog.Android project named Modules, then
create a new class named TripLogPlatformModule within it that inherits
from Ninject.Modules.NinjectModule:
public class TripLogPlatformModule : NinjectModule
{
 // ...
}

6. Finally, override the Load() method of the NinjectModule class and use the
Ninject Bind() method to register the Android-specific implementation of
ILocationService as a singleton:

public class TripLogPlatformModule : NinjectModule
{
 public override void Load()
 {
 Bind<ILocationService>()
 .To<LocationService>()
 .InSingletonScope();
 }
}

We now have an IoC container that can hold and resolve all of our dependencies. In
the next section, we will register our ViewModels in the IoC container, like we just
did with our location service.

Registering the ViewModels
We can also use our IoC container to hold our ViewModels. It is a slightly different
model than the one used to register the concrete implementations of our service
interfaces—instead of mapping them to an interface, we will simply register them
to themselves. Since our ViewModels are in our core library, we will create another
Ninject module in the core library that will register them, as shown in the following
steps:

1. Add the Portable.Ninject NuGet package to the core project.
2. Create a new folder in the core project named Modules.
3. Create a new class in the core project Modules folder named

TripLogCoreModule that inherits from Ninject.Modules.NinjectModule:
public class TripLogCoreModule : NinjectModule
{
 // ...
}

Platform-Specific Services and Dependency Injection

[76]

4. Override the Load() method of the NinjectModule class, and use the Ninject
Bind() method to register each of the ViewModels:

public class TripLogCoreModule : NinjectModule
{
 public override void Load()
 {
 // ViewModels
 Bind<MainViewModel>().ToSelf();
 Bind<DetailViewModel>().ToSelf();
 Bind<NewEntryViewModel>().ToSelf();
 }
}

With our location service and ViewModels all registered in the IoC container, the
only remaining dependency to register is our navigation service, which we will
accomplish in the next section.

Registering the navigation service
In the previous chapter, we created a custom navigation service and used the
Xamarin.Forms DependencyService to register and resolve the navigation
service. Now that we have introduced Ninject, we can swap Xamarin.Forms
DependencyService out for a Ninject module instead, in order to register the
navigation service so that it can be resolved and used just like our location service
and ViewModels:

1. First, remove the assembly attribute that was originally added above the
class's namespace:
// Remove assembly attribute
// [assembly: Dependency(typeof(XamarinFormsNavService))]
public class XamarinFormsNavService : INavService
{
 // ...
}

We originally instantiated the navigation service and registered view
mappings within the core App class. We can now move all of that logic into a
new Ninject module whose overridden Load method will handle creating the
service, creating the view mappings, and then registering the service into the
IoC container.

Chapter 4

[77]

2. Create a new class in the core project's Modules folder named
TripLogNavModule that inherits from Ninject.Modules.NinjectModule:
public class TripLogNavModule : NinjectModule
{
 // ...
}

3. Override the Load() method of the NinjectModule class to instantiate a new
XamarinFormsNavService object:
public class TripLogNavModule : NinjectModule
{
 public override void Load()
 {
 var navService = new XamarinFormsNavService();
 }
}

4. Remove the ViewModel-to-View mappings from the App class and place
them in the TripLogNavModule.Load() override method:
public override void Load()
{
 var navService = new XamarinFormsNavService();

 // Register view mappings
 navService.RegisterViewMapping(typeof(MainViewModel),
typeof(MainPage));
 navService.RegisterViewMapping(typeof(DetailViewModel),
typeof(DetailPage));
 navService.RegisterViewMapping(typeof(NewEntryViewModel),
typeof(NewEntryPage));
}

5. Finally, update the TripLogNavModule.Load() override method to use
the Ninject Bind() method to register the XamarinFormsNavService as a
singleton:
public override void Load()
{
 var navService = new XamarinFormsNavService();

 // Register view mappings
 navService.RegisterViewMapping(typeof(MainViewModel),
typeof(MainPage));
 navService.RegisterViewMapping(typeof(DetailViewModel),
typeof(DetailPage));

Platform-Specific Services and Dependency Injection

[78]

 navService.RegisterViewMapping(typeof(NewEntryViewModel),
typeof(NewEntryPage));

 Bind<INavService>()
 .ToMethod(x => navService)
 .InSingletonScope();
}

Now that our platform services, navigation service, and ViewModels have
all been registered in the IoC container, we will need to add the Ninject
modules that we created to the Ninject Kernel. We will do this in our main
Xamarin.Forms.Application class in the next section.

Updating the TripLog app
In order to get our platform modules into the App class, which is in our core library,
we simply update the App constructor to take in INinjectModule parameters. Then,
each platform-specific project will be responsible for passing in its respective Ninject
module when it loads the App at startup, as shown in the following steps:

1. Update the App constructor to take in INinjectModule parameters:
public App(params INinjectModule[] platformModules)
{
 // ...
}

2. Next, add a public IKernel property named Kernel to the App class:
public partial class App : Application
{
 public IKernel Kernel { get; set; }

 // ...
}

Platform-specific services are good candidates for singleton objects
because, typically, we do not want to create new instances of the
services each time we reference them. ViewModels can also be
singletons, but typically should not be as they should usually start
with a fresh state each time a Page is visited.

Chapter 4

[79]

3. Next, update the body of the App constructor. In the previous section, we
moved the bulk of the existing App constructor logic into the navigation
Ninject module. Now, the App constructor should only be responsible for
creating the main Page and initializing the Ninject Kernel with the various
modules that we have created:
public partial class App : Application
{
 public IKernel Kernel { get; set; }

 public App(params INinjectModule[] platformModules)
 {
 // ...

 // Register core services
 Kernel = new StandardKernel(
 new TripLogCoreModule(),
 new TripLogNavModule());

 // Register platform specific services
 Kernel.Load(platformModules);

 SetMainPage();
 }

 void SetMainPage()
 {
 var mainPage = new NavigationPage(new MainPage())
 {
 BindingContext = Kernel.Get<MainViewModel>()
 };

 var navService = Kernel.Get<INavService>() as
XamarinFormsNavService;
 navService.XamarinFormsNav = mainPage.Navigation;

 MainPage = mainPage;
 }

 // ...
}

Platform-Specific Services and Dependency Injection

[80]

Notice how we get an instance of the MainViewModel from the IoC container
and use it to set the BindingContext (ViewModel) of the MainPage. In the
next section, we'll update the navigation service to do this every time we
navigate to the other Pages in the app.

4. Next, we need to update the App instantiation in the AppDelegate class
of our iOS project to pass in a new instance of TripLog.iOS.Modules.
TripLogPlatformModule:
LoadApplication(new App(new TripLogPlatformModule()));

5. Finally, repeat the previous step in the MainActivity class of the Android
project to pass in an Android platform-specific Ninject module instance to
the App constructor.

Now that the app is updated with an IoC container for resolving dependencies, we
can update our navigation service to automatically instantiate ViewModels when we
navigate to them.

Updating the navigation service to handle
ViewModel creation and dependency injection
Currently, in the TripLog app, each Page is responsible for creating its own
ViewModel instance. However, because we provide a ViewModel's dependencies
through its constructor, we would have to manually resolve each dependency within
the Page class and then pass them into the ViewModel instantiation. Not only is
this going to be messy code, it is also difficult to maintain, and doesn't promote
loose coupling. Since we have registered our ViewModels in our IoC container, we
can completely remove the ViewModel instantiations from our Pages and set our
navigation service up to handle resolving the ViewModels from the IoC container,
automatically supplying their dependencies through constructor injection, as shown
in the following steps:

1. First, remove the code from the constructor of each Page that sets its
BindingContext property to a new ViewModel instance.

2. Next, update the NavigateToView() private method in the
XamarinFormsNavService to handle setting the ViewModels of the Pages
automatically as they are navigated to. After the Page (View) is created using
the Invoke() method, simply get a new instance of the specified ViewModel
and assign it to the BindingContext property of the Page:
async Task NavigateToView(Type viewModelType)
{
 // ...

Chapter 4

[81]

 var view = constructor.Invoke(null) as Page;

 var vm = ((App)Application.Current)
 .Kernel
 .GetService(viewModelType);

 view.BindingContext = vm;
 await XamarinFormsNav.PushAsync(view, true);
}

After making this small change, the Pages are no longer responsible for
instantiating their own ViewModel instances. Instead, when a Page is navigated
to, the ViewModel for it is retrieved from the IoC container and set as the Page's
BindingContext. By doing this, the ViewModel's dependencies are automatically
resolved and injected into the ViewModel's constructor. This is much cleaner and
easier to maintain than manually instantiating each dependency and passing it into
the ViewModel's constructor.

Summary
In this chapter, we explored the benefits of IoC and the dependency injection
pattern in mobile development, and how they help solve the problem of working
with platform-specific APIs from shared code. We also made some significant
improvements to our Xamarin.Forms TripLog app by adding a new platform-specific
service and introducing the Ninject dependency injection library, resulting in a code
base that is more flexible and easier to test.

In the next chapter, we will shift our focus back to the View layer of our app and
enhance the user experience with some customizations, and leverage some of the
platform capabilities we are now showcasing through our ViewModels.

[83]

User Interface
There are a lot of things that go into delivering a great user experience in a mobile
app, such as graphical design, ease of use, discoverability, accessibility, and
intuitive controls, just to name a few. Graphical design is very important in a mobile
app – it's largely what makes an app enjoyable to use – but just because an app
is beautiful doesn't mean it's functional or easy to use. In this chapter, we are going
to focus on some key concepts that will improve our app's overall user experience.

Here is a quick look at what we'll cover in this chapter:

• Leveraging platform-specific APIs to extend the default behavior of Xamarin.
Forms controls with custom renderers

• Manipulating the visual appearance of bound data with value converters
• Leveraging basic accessibility APIs so that a user interface (UI) is friendly

and easy to use for all audiences

We will start by creating a custom renderer for the date entry field on the New Entry
page so users are presented with a native date picker instead of a standard keyboard.

Custom renderers
One of the paramount features of the Xamarin.Forms toolkit is the layer of
abstraction it provides over UI implementation. With a single API, Xamarin.Forms
allows you to use native UI controls and functionality.

For example, the Entry class at runtime will display a UITextField view on iOS,
an EditText widget on Android, and a TextBox control on Windows. The toolkit
does this using a concept called renderers. The renderers correspond with the visual
elements—controls, pages, and layouts—within the API. So, for example, there is an
EntryRenderer that is responsible for rendering instances of the Entry class down
to the platform-specific versions of that control.

User Interface

[84]

The beauty of this renderer concept is that you can subclass the various renderer
classes to override how a specific element is translated at runtime. So, for example,
if you want all text boxes in your app (that is, every time you display an Entry
element) to be completely borderless, you could simply write a new EntryRenderer
subclass for each platform that removes the border on the platform-specific element.

However, you typically won't want to completely override the default controls of
the toolkit. The most common solution is to create a custom control by subclassing
a Xamarin.Forms element and then writing the renderer specifically for that custom
class. So, instead of removing the border from all uses of Entry, you would instead
use a custom Entry class, for example, NoBorderEntry, which, when rendered, will
be borderless.

The concept of custom renderers is a very powerful and handy utility when
building rich apps using the Xamarin.Forms toolkit. Using the default controls and
behaviors of the toolkit will certainly render a native experience, but they can limit
you in more complex scenarios. Custom renderers will ensure that you can exceed
these limits when needed, to deliver the exact experience you want.

Creating a TableView DatePicker
In our TripLog app, we are using a TableView with EntryCell elements to present
a form so the user can add a new log entry. Currently, the date field in the form
uses a regular EntryCell that presents an editable text field with the default
keyboard. Obviously, this is not an ideal user experience, and is also a nightmare
when it comes to data validation. Ideally, when the user taps into this date field,
they should be presented with a standard, platform-specific date picker.

The Xamarin.Forms API provides the DatePicker control; however, it is based on
a View, not a ViewCell. The only way to use the DatePicker control in a TableView
would be to wrap it in a ViewCell, as follows:

var datePickerCell = new ViewCell
{
 View = new DatePicker()
};

Or, in XAML, as follows:

<ViewCell>
 <DatePicker />
</ViewCell>

Chapter 5

[85]

Although this approach will work, it is somewhat limited. It is simply a control
embedded in a ViewCell; it does not have the same look and feel as the rest of the
cells in the TableView. In order to get a similar look and feel to the other EntryCell
elements used in the TableView, you will have to add a label and also mess with
the margins, spacing, and sizing to get it to look just right.

Another minor downside to this approach is that you will need to include two
separate cells—one that includes DatePicker and one that includes TimePicker—
in order to capture both date and time. The iOS UIDatePicker actually provides
a mode that lets the user pick both the date and time in the same picker. Android
does not have this same capability; however, if we're going to make a custom
renderer, we can at least take advantage of the dual mode on iOS.

So, in order to overcome these limitations and deliver the best experience possible,
we can create a custom renderer that extends the EntryCellRenderer to display
an EntryCell that behaves like the standard DatePicker control.

Since we don't want to render all EntryCell elements in our application with the
date picker functionality, the first thing that we will need to do is to create a custom
EntryCell control that the custom renderer will be affiliated with. We can create
this in a Controls folder within the core library of our TripLog app, as follows:

1. First, create a new folder in the core project named Controls.
2. Create a new class in the Controls folder named DatePickerEntryCell

that inherits from EntryCell:
public class DatePickerEntryCell : EntryCell
{
}

3. Next, add a DateTime BindableProperty so that this custom control can be
data bound just like any other control:
public class DatePickerEntryCell : EntryCell
{
 public static readonly BindableProperty DateProperty =
 BindableProperty.Create(
 nameof(Date),
 typeof(DateTime),
 typeof(DatePickerEntryCell),
 DateTime.Now,
 BindingMode.TwoWay);

 public DateTime Date
 {
 get => (DateTime)GetValue(DateProperty);

User Interface

[86]

 set => SetValue(DateProperty, value);
 }
}

Next, we will need to create a custom EntryCellRenderer, which will provide
the platform-specific functionality for the DatePickerEntryCell, as follows:

1. Create a new folder in the TripLog.iOS project named Renderers.
2. Create a new class in the Renderers folder named

DatePickerEntryCellRenderer that inherits from EntryCellRenderer,
as follows:
public class DatePickerEntryCellRenderer : EntryCellRenderer
{
}

3. Next, override the EntryCellRenderer GetCell() method to override
the default EntryCell behavior for iOS by setting InputView of the
UITextField to a UIDatePicker instance:
public class DatePickerEntryCellRenderer : EntryCellRenderer
{
 public override UITableViewCell GetCell(Cell item,
UITableViewCell reusableCell, UITableView tv)
 {
 var cell = base.GetCell(item, reusableCell, tv);
 var datepickerCell = (DatePickerEntryCell)item;
 UITextField textField = null;

 if (cell != null)
 {
 textField = (UITextField)cell.ContentView.Subviews[0];
 }

 // Default datepicker display attributes
 var mode = UIDatePickerMode.Date;
 var displayFormat = "d";
 var date = NSDate.Now;
 var isLocalTime = false;

 // Update datepicker based on Cell's properties
 if (datepickerCell != null)
 {
 // Kind must be Universal or Local to cast to NSDate
 if (datepickerCell.Date.Kind == DateTimeKind.
Unspecified)
 {

Chapter 5

[87]

 var local = new DateTime(datepickerCell.Date.
Ticks, DateTimeKind.Local);

 date = (NSDate)local;
 }
 else
 {
 date = (NSDate)datepickerCell.Date;
 }

 isLocalTime = datepickerCell.Date.Kind ==
DateTimeKind.Local
 || datepickerCell.Date.Kind == DateTimeKind.
Unspecified;
 }

 // Create iOS datepicker
 var datepicker = new UIDatePicker
 {
 Mode = mode,
 BackgroundColor = UIColor.White,
 Date = date,
 TimeZone = isLocalTime ? NSTimeZone.LocalTimeZone :
new NSTimeZone("UTC")
 };

 // Create a toolbar with a done button that will
 // close the datepicker and set the selected value
 var done = new UIBarButtonItem("Done",
UIBarButtonItemStyle.Done, (s, e) =>
 {
 var pickedDate = (DateTime)datepicker.Date;

 if (isLocalTime)
 {
 pickedDate = pickedDate.ToLocalTime();
 }

 // Update the value of the UITextField within the Cell
 if (textField != null)
 {
 textField.Text = pickedDate.
ToString(displayFormat);
 textField.ResignFirstResponder();
 }

User Interface

[88]

 // Update the Date property on the Cell
 if (datepickerCell != null)
 {
 datepickerCell.Date = pickedDate;
 datepickerCell.SendCompleted();
 }
 });

 var toolbar = new UIToolbar
 {
 BarStyle = UIBarStyle.Default,
 Translucent = false
 };

 toolbar.SizeToFit();
 toolbar.SetItems(new[] { done }, true);

 // Set the input view, toolbar and initial value for the
Cell's UITextField
 if (textField != null)
 {
 textField.InputView = datepicker;
 textField.InputAccessoryView = toolbar;

 if (datepickerCell != null)
 {
 textField.Text = datepickerCell.Date.
ToString(displayFormat);
 }
 }

 return cell;
 }
}

4. Next, in order to register the custom renderer, simply add an
ExportRenderer assembly attribute to the class above the namespace
declaration. This attribute is required by Xamarin.Forms in order for the
custom renderer to take action on the control at runtime:
[assembly: ExportRenderer(typeof(DatePickerEntryCell), typeof(Date
PickerEntryCellRenderer))]
namespace TripLog.iOS.Renderers
{
 // ...
}

Chapter 5

[89]

5. Finally, we will need to update the new entry XAML page to use our new
custom DatePickerEntryCell. Simply update the date EntryCell tag to a
DatePickerEntryCell tag, binding the Date property instead of the Text
property. Also, ensure that you include the Controls namespace in the root
ContentPage tag, as follows:
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:controls="clr-namespace:TripLog.
Controls;assembly=TripLog"
 x:Class="TripLog.NewEntryPage"
 Title="New Entry">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Save" Command="{Binding SaveCommand}"
/>
 </ContentPage.ToolbarItems>
 <ContentPage.Content>
 <TableView Intent="Form">
 <TableView.Root>
 <TableSection>
 <EntryCell Label="Title" ... />
 <EntryCell Label="Latitude" ... />
 <EntryCell Label="Longitude" ... />
 <controls:DatePickerEntryCell Label="Date"
 Date="{Binding Date,
StringFormat='{0:d}'}" />
 <EntryCell Label="Rating" ... />
 <EntryCell Label="Notes" ... />
 </TableSection>
 </TableView.Root>
 </TableView>
 </ContentPage.Content>
</ContentPage>

Now, if we run the TripLog app, navigate to the New Entry page, and tap into the
Date field, we will see a native date picker, as shown in the following screenshot.

User Interface

[90]

As we pick different values in the picker, the DateProperty binding we created will
automatically update the ViewModel as well:

Figure 1: The TripLog new entry page with a native date picker

Value converters
Value converters form an important concept in data binding because they allow you
to customize the appearance of a data property at the time of binding. If you have
done any Windows Presentation Foundation (WPF) or Windows app development,
you will probably be familiar with how value converters work. Xamarin.Forms
provides an almost identical value converter interface as part of its API.

The Android version of this custom renderer is available in the
companion source code for this book.

Chapter 5

[91]

One of the biggest benefits of a value converter is that it prevents you from having
to add a bunch of getter properties to your data model to adjust how things are
displayed. For example, imagine you have a status property on your model, and
you want to change the font color of the status when it is displayed based on its
value. You could add a getter property to your model that returns a color based
on the current value of the status property. This approach works, but it clutters
the model and also potentially leaks platform-specific and UI logic into the model,
which should typically remain very lean and agnostic. The more appropriate
approach is to create a value converter that allows you to bind an element directly
to the status property but display it differently based on the value.

Another common way that value converters are helpful in Xamarin.Forms is
to toggle the visibility of elements based on a boolean property. Luckily, the
Xamarin.Forms API made the VisualElement IsVisible property a boolean
instead of an enumeration, so showing things based on boolean properties is
fairly straightforward. However, if you want to hide something when a data
bound property is true, you will need a value converter to convert the true
value to a false value when it is bound to the IsVisibleProperty of an element.

In the next section, we will create a reverse visibility converter, which we will use
to hide controls on the screen until the ViewModel has finished loading. We'll
also create a converter that converts our integer rating property to stars, for a
more appealing visual effect.

Creating a reverse visibility value converter
There are often cases where your UI must wait for data to be loaded. In the
meantime, the user might see what appears to be a broken or incomplete page. In
these situations, it is best to let the user know what is happening by showing some
sort of progress indicator and hiding the rest of the UI, such as labels, until the data
is ready.

Right now, our TripLog app uses only local data, so we do not really see any
negative visual effects while the ViewModel data is loading. We will connect our app
to a live API in the next chapter but, until then, we can simulate a waiting period by
simply adding a 3-second delay to our NewEntryViewModel Save() method before
the NavService.GoBack() method is called:

async Task Save()
{
 // ...

 // TODO: Remove this in Chapter 6
 await Task.Delay(3000);

User Interface

[92]

 await NavService.GoBack();
}

Now, when we run the app and add a new trip, we will see the UI freeze up for a
few seconds before navigating back to the main page. Not only is this experience
unappealing, but there is also no visual indicator to explain to the user that their
data is being saved.

We can improve this by displaying an ActivityIndicator control while the new
trip is being saved.

In order to know whether our ViewModel is saving (or loading) data, we can create a
boolean property called IsBusy, which we will set to true only while we are actually
loading data or doing some sort of lengthy processing, such as saving data. Since
we will need to do similar things in other ViewModels, it makes the most sense to
include this boolean IsBusy property in the BaseViewModel:

1. Add a public bool property named IsBusy to the BaseViewModel class, as
follows:
public class BaseViewModel : INotifyPropertyChanged
{
 // ...

 bool _isBusy;
 public bool IsBusy
 {
 get => _isBusy;
 set
 {
 _isBusy = value;
 OnPropertyChanged();
 }
 }

 // ...
}

2. Next, we will need to update the Save() method in NewEntryViewModel to
toggle the IsBusy value while it's saving data:
async Task Save()
{
 if (IsBusy) return;

 IsBusy = true;

Chapter 5

[93]

 try
 {
 // ...
 }
 finally
 {
 IsBusy = false;
 }
}

Now that our ViewModel indicates when it is busy, we will need to update the UI
in NewEntryPage.xaml to hide the entry form while the trip is being saved, and
show a spinner instead. We will do this by data binding the IsBusy property in
two places. In order to hide the entry form TableView element when IsBusy is
true, we will need to create a reverse boolean value converter:

1. Create a new folder in the core project named Converters.
2. Create new class file in the Converters folder named

ReverseBooleanConverter, that implements Xamarin.Forms.
IValueConverter:
public class ReverseBooleanConverter : IValueConverter
{
}

3. Next, implement the Convert() and ConvertBack() methods of
IValueConverter. The goal of this converter is to return the opposite of a
given boolean value so that when something is false, the converter will
return true:
public class ReverseBooleanConverter : IValueConverter
{
 public object Convert (object value, Type targetType, object
parameter, CultureInfo culture)
 {
 if (!(value is Boolean))
 {
 return value;
 }

 return !(Boolean)value;
 }

 public object ConvertBack (object value, Type targetType,
object parameter, CultureInfo culture)

User Interface

[94]

 {
 if (!(value is Boolean))
 {
 return value;
 }

 return !(Boolean)value;
 }
}

4. Now we can bind the IsBusy property to the TableView element in
NewEntryPage.xaml using this converter, so it is only visible (IsVisible is
true) when IsBusy is false:
<ContentPage
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:controls="clr-namespace:TripLog.
Controls;assembly=TripLog"
 xmlns:converters="clr-namespace:TripLog.
Converters;assembly=TripLog"
 x:Class="TripLog.NewEntryPage"
 Title="New Entry">
 <ContentPage.Resources>
 <ResourceDictionary>
 <converters:ReverseBooleanConverter
x:Key="ReverseBooleanConverter" />
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Save" Command="{Binding SaveCommand}"
/>
 </ContentPage.ToolbarItems>
 <ContentPage.Content>
 <TableView Intent="Form" IsVisible="{Binding IsBusy,
Converter={StaticResource ReverseBooleanConverter}}">
 <TableView.Root>
 <TableSection>
 <!-- ... -->
 </TableSection>
 </TableView.Root>
 </TableView>
 </ContentPage.Content>
</ContentPage>

Chapter 5

[95]

Note that we must declare the Converters namespace in the root
ContentPage tag and also define a static resource key for the converter so
that it can be referenced within the binding.

5. Finally, we will need to add a loading indicator to NewEntryPage.xaml
and only show it when IsBusy is true. We'll do this by adding an
ActivityIndicator control and a Label control to a StackLayout view
layout and displaying it in the center of the screen. Also, because we now
have two elements to show on the screen, we will need to update how we're
setting the Content of ContentPage using a Grid:
<ContentPage.Content>
 <Grid>
 <TableView Intent="Form" IsVisible="{Binding IsBusy,
Converter={StaticResource ReverseBooleanConverter}}">

 <!-- ... -->

 </TableView>

 <StackLayout Orientation="Vertical"
VerticalOptions="Center" HorizontalOptions="Center"
IsVisible="{Binding IsBusy}">
 <ActivityIndicator IsRunning="True" />
 <Label Text="Saving new entry..." />
 </StackLayout>

 </Grid>
</ContentPage.Content>

Converters can also be defined as static resources in App.
xaml making them available to the entire app as opposed
to being scoped to a single page. If you have a converter
that is used on more than one page, it can be useful to
define it at the app level so it doesn't have to be repeatedly
defined on each page.

User Interface

[96]

Now, when we launch the app and save a new trip, we will see a nice loading
indicator while the data saves instead of a frozen UI, as shown in the following
screenshot:

Figure 2: The TripLog new entry page with a busy indicator while saving data

Creating an integer-to-image value converter
In this section, we will continue to improve the user experience with the use of
another value converter. Currently, the detail page binds to the Rating property and
simply displays the integer value as a formatted string, which is a rather boring way
to display data, as shown in the following screenshot:

Chapter 5

[97]

Figure 3: The TripLog entry detail page

This rating data would look much nicer, and stand out to the user much more if it
were an image of stars instead of plain text. In order to translate a number value to an
image, we will need to create a new value converter, as shown in the following steps:

1. Create a new class file in the core library Converters folder
named RatingToStarImageNameConverter that implements
Xamarin.Forms.IValueConverter:
public class RatingToStarImageNameConverter : IValueConverter
{
}

2. Next, provide implementations for the Convert() and ConvertBack()
methods of IValueConverter. In the Convert() method, we will need to
check whether the value is an integer, and then, based on its value, we will
need to convert it to an image filename:
public class RatingToStarImageNameConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object
parameter, CultureInfo culture)
 {
 if (value is int rating)

User Interface

[98]

 {
 if (rating <= 1)
 {
 return "star_1";
 }

 if (rating >= 5)
 {
 return "stars_5";
 }

 return "stars_" + rating;
 }

 return value;
 }

 public object ConvertBack(object value, Type targetType,
object parameter, CultureInfo culture)
 {
 throw new NotImplementedException();
 }
}

Notice we are throwing a NotImplementedException in the ConvertBack
method. This converter is only used to convert the value when displaying
it; the value is never changed in the UI, and therefore does not need to be
converted back so the method is never called and can be left unimplemented.
This is common for converters that are used with read-only or one-way data
bindings.

3. Finally, we will need to update DetailPage.xaml to use an Image control
instead of a Label to display the rating. We will still bind the Image control
to the same ViewModel property; however, we will use the converter we just
created to convert it to an image filename:
<ContentPage
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:maps="clr-namespace:Xamarin.Forms.Maps;assembly=Xamarin.
Forms.Maps"
 xmlns:converters="clr-namespace:TripLog.
Converters;assembly=TripLog"
 x:Class="TripLog.DetailPage">
 <ContentPage.Resources>
 <ResourceDictionary>
 <converters:RatingToStarImageNameConverter x:Key="Rati

Chapter 5

[99]

ngToStartImageNameConverter" />
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.Content>
 <Grid>
 <!-- ... -->
 <StackLayout Padding="10" Grid.Row="1">
 <Label HorizontalOptions="Center" Text="{Binding
Entry.Title}" />
 <Label HorizontalOptions="Center" Text="{Binding
Entry.Date,
 StringFormat='{0:M}'}" />
 <Image HorizontalOptions="Center" Source="{Binding
Entry.Rating,
 Converter={StaticResource
RatingToStartImageNameConverter}}" />
 <Label HorizontalOptions="Center" Text="{Binding
Entry.Notes}" />
 </StackLayout>
 </Grid>
 </ContentPage.Content>
</ContentPage>

Now, if we run the app and navigate to one of the entries, we will see a much nicer
display that immediately causes the rating to stand out to the user, as shown in the
following screenshot:

Figure 4: The TripLog entry detail page with an image for the entry rating

User Interface

[100]

Adding pull-to-refresh
As with the new entry page, when the main page is loading our data, we should
present the user with a loading indicator so that they know their list of entries is
on its way. However, since the main page is using a data-bound CollectionView
instead of a static TableView, we can surround the CollectionView with a
RefreshView to easily add pull-to-refresh functionality.

Pull-to-refresh also has the benefit of allowing users to easily refresh the screen
and load any new data that might be available. Xamarin.Forms makes adding
pull-to-refresh very easy, and we will still use the IsBusy property from our
BaseViewModel, just as we did on the new entry page.

The Xamarin.Forms RefreshView API requires two things: an ICommand that
handles refreshing the bound source of the scrollable element it surrounds (in our
case, this is a CollectionView), and a boolean field that indicates whether the
RefreshView is currently refreshing or not. To add pull-to-refresh, perform the
following steps:

1. First, we will need to add a new refresh command to MainViewModel.
This command will simply call the existing LoadEntries() method:
Command _refreshCommand;
public Command RefreshCommand =>
 _refreshCommand ?? (_refreshCommand = new
Command(LoadEntries));

2. Next, we will need to update the LoadEntries() method to set IsBusy
while it's loading its data. For now, just as we did earlier in the chapter with
the NewEntryViewModel, we will add a 3-second delay to simulate a waiting
period (we will remove this in the next chapter when we start getting our
data from a live web service):
void LoadEntries()
{
 if (IsBusy)
 {
 return;
 }

The images used for the star rating are available in the companion
code for this book.

Chapter 5

[101]

 IsBusy = true;

 LogEntries.Clear();

 // TODO: Remove this in chapter 6
 Task.Delay(3000).ContinueWith(_ => Device.
BeginInvokeOnMainThread(() =>
 {

 LogEntries.Add(new TripLogEntry
 {
 // ...
 });

 LogEntries.Add(new TripLogEntry
 {
 // ...
 });

 LogEntries.Add(new TripLogEntry
 {
 // ...
 });

 IsBusy = false;
 }));
}

3. Next, we will need to surround the CollectionView element in
MainPage.xaml with a RefreshView and bind its Command property to the
new RefreshCommand command we just added in MainViewModel. For the
IsRefreshing property, we can simply bind to IsBusy, as that will be set to
true while we're loading entries and back to false when that operation is
complete:
<RefreshView
 IsRefreshing="{Binding IsBusy, Mode=OneWay}"
 Command="{Binding RefreshCommand}">
 <CollectionView ...
 SelectionMode="Single"
 ItemsSource="{Binding LogEntries}" ... >
 <!-- ... -->
 </CollectionView>
</RefreshView>

User Interface

[102]

Now when we run the app, we will see the pull-to-refresh spinner while the data
initially loads on the main page, as well as when the user pulls down on the list, as
shown in the following screenshot:

Figure 5: The TripLog main page with pull-to-refresh

Accessibility
When it comes to user interfaces, accessibility is often an afterthought or forgotten
about completely. User interfaces are not just about good-looking icons, fonts, and
fancy custom controls, they are also about how your users actually use the app.
This means that you need to leverage the platform's accessibility APIs to ensure
usability for as much of your potential audience as possible. Xamarin.Forms now
provides some basic APIs for adding accessibility to your apps, so users who
depend on screen readers can successfully interact with the screens of your app.

Supporting screen readers
One of the most common ways to bring accessibility to an app is to provide support
for screen readers, which are used to narrate and describe elements on the screen. In
this section, we will use the Xamarin.Forms AutomationProperties class to easily
add screen reader support to our entry detail page:

Chapter 5

[103]

1. First, we will need to update each of the detail elements in DetailPage.xaml
to be included in the accessibility tree, making them readable by the
operating systems' screen readers:
<StackLayout Padding="10" Grid.Row="1">
 <Label ... Text="{Binding Entry.Title}"
 AutomationProperties.IsInAccessibleTree="true" />
 <Label ... Text="{Binding Entry.Date, StringFormat='{0:M}'}"
 AutomationProperties.IsInAccessibleTree="true" />
 <Image ... Source="{Binding Entry.Rating,
Converter={StaticResource RatingToStartImageNameConverter}}"
 AutomationProperties.IsInAccessibleTree="true" />
 <Label ... Text="{Binding Entry.Notes}"
 AutomationProperties.IsInAccessibleTree="true" />
</StackLayout>

2. Next, we will need to update each of the detail elements in DetailPage.xaml
to describe itself. This is what the screen reader will use when narrating.
There are a couple of properties that we can use for this, such as
AutomationProperties.Name and AutomationProperties.HelpText. The
Name property is used to identify the element, while the HelpText property is
used to describe what the element is used for or what type of data should be
provided to the element, as shown in the following code:
<StackLayout Padding="10" Grid.Row="1">
 <Label ... Text="{Binding Entry.Title}"
 AutomationProperties.IsInAccessibleTree="true"
 AutomationProperties.HelpText="Title of trip" />
 <Label ... Text="{Binding Entry.Date, StringFormat='{0:M}'}"
 AutomationProperties.IsInAccessibleTree="true"
 AutomationProperties.HelpText="Date of trip" />
 <Image ... Source="{Binding Entry.Rating,
Converter={StaticResource RatingToStartImageNameConverter}}"
 AutomationProperties.IsInAccessibleTree="true"
 AutomationProperties.HelpText="{Binding Entry.Rating,
StringFormat='{0} star rating'}" />
 <Label ... Text="{Binding Entry.Notes}"
 AutomationProperties.IsInAccessibleTree="true"
 AutomationProperties.HelpText="Notes from trip" />
</StackLayout>

User Interface

[104]

Notice how we used data binding to set the AutomationProperties.HelpText
attribute for the rating Image tag.

Summary
In this chapter, we leveraged several key concepts in the Xamarin.Forms API to help
improve the look, feel, and user experience of our TripLog app. With the use of a
custom renderer, we are now able to tap directly into the platform-specific APIs to
change the default behavior of Xamarin.Forms controls and, with the use of value
converters, we are now able to alter the appearance of data when it is bound to the
UI. Finally, the Xamarin.Forms accessibility APIs give us the ability to make our
app more straightforward for users who rely on accessibility features to use their
mobile apps.

In the next chapter, we will connect the TripLog app to an API in order to work with
live data.

Each platform handles accessibility and screen reading
differently—using different combinations and precedence of
the AutomationProperties attached properties. Refer to the
Xamarin.Forms accessibility documentation and the accessibility
documentation specific to each platform for more details.

[105]

API Data Access
So far in this book, we've worked with static data that is hardcoded directly into
the TripLog app itself. However, in the real world, it is rare that an app depends
purely on local static data—most mobile apps get their data from a remote data
source, typically an API. In some cases, an app may communicate with a third-party
API—that of a social network, for example. Alternatively, developers sometimes
create their own API to make data available for their apps. In this chapter, we will
create a simple API in the cloud that we can connect to and retrieve data from in the
TripLog app.

The following is a quick look at what we will cover in this chapter:

• Creating a live, cloud-based, backend API to store and retrieve TripLog data
• Creating a data access service that handles communication with the API for

the app
• Setting up data caching so that the TripLog app works offline

Let's start by creating an API using Microsoft's Azure Function App service.

Creating an API with Azure Functions
Almost all mobile apps communicate with an API to retrieve and store information.
In many cases, as a mobile app developer, you might just have to use an API that
already exists. However, if you're building your own product or service, you may
need to create your own backend and web API.

There are several ways you can create an API, as well as several places you can host
it, and certainly many different languages you can develop it in. For the purposes
of this book, we will create a backend service and web API in the cloud using an
Azure Function bound to Azure Table storage.

API Data Access

[106]

Azure Functions have a lot of capability and serve as a powerful "serverless"
compute platform for numerous scenarios. You can create functions in Visual
Studio or directly in the Azure portal and you can choose from .NET Core, Node.js,
and several other runtime stacks. Since the primary focus of this book is developing
a mobile app, I won't go too deep in explaining all the ins and outs of Azure
Functions. In this section, we'll just cover the basics needed to create a simple
API to which we can connect our app later in this chapter.

In order to follow along with the steps in this chapter, you'll need to have an Azure
account. If you don't already have an Azure account, you can create one for free
at https://azure.microsoft.com/en-us/free/.

Creating an Azure Function App
Once you have an Azure account, you can begin setting up an API with Azure
Functions in the Azure portal, as follows:

1. Go to https://portal.azure.com in a web browser, and log in to the
Azure portal using your credentials.

2. From the Azure portal dashboard or home screen, click on the + Create
a resource button in the main portal menu, then type function into
the search textbox and select Function App, as shown in the following
screenshot:

Figure 1: Creating a new Function App in the Azure Portal (step 1 of 2)

For more information about Azure Functions, visit https://
azure.microsoft.com/en-us/services/functions/

https://azure.microsoft.com/en-us/free/
https://portal.azure.com
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

Chapter 6

[107]

3. On the Function App detail page, click on the Create button:

Figure 2: Creating a new Function App in the Azure Portal (step 2 of 2)

4. Select your Subscription and Resource Group.
5. Enter a name for your Function App.
6. Select .NET Core for your Runtime stack.
7. Select the Region that is closest to your location and then click on Create.

Now that a Function App has been created, we will add a new function within it.

Creating an Azure Function
Create a new HTTP trigger function as follows:

1. Navigate to your new Function App from the portal dashboard or home
screen.

2. Select Function Apps on the left side and click on the + to add a new
function, as shown in the following screenshot:

Figure 3: Creating a new Azure Function in the Azure Portal (step 1 of 2)

API Data Access

[108]

3. Click on the HTTP trigger button.
4. Enter a name for the new function, such as entry and select Anonymous for

the authorization level, as shown in the following screenshot:

Figure 4: Creating a new Azure Function in the Azure Portal (step 2 of 2)

By selecting the Anonymous authorization level, we are making the API
available without providing any specific authentication headers in the HTTP
request. In the next chapter, we will add authentication to both the API and
the mobile app, but for now we will simply provide anonymous access.

5. Click on Create.

Once the new function has been created, it will present you with the function code
in a simple in-browser code editor. In addition to the function code file, there is also
a file called function.json, which contains the details of the function. Update the
function.json file as follows to add Azure Table storage bindings to our function:

{
 "bindings": [
 {
 "authLevel": "anonymous",
 "name": "req",
 "type": "httpTrigger",
 "direction": "in",
 "methods": [
 "get",
 "post"
]

Chapter 6

[109]

 },
 {
 "name": "$return",
 "type": "http",
 "direction": "out"
 },
 {
 "type": "table",
 "name": "entryTableOutput",
 "tableName": "entry",
 "connection": "AzureWebJobsStorage",
 "direction": "out"
 },
 {
 "type": "table",
 "name": "entryTableInput",
 "tableName": "entry",
 "take": 50,
 "connection": "AzureWebJobsStorage",
 "direction": "in"
 }
],
 "disabled": false
}

For the purposes of this book, we will write a very simple function that handles both
retrieving and storing entries. For incoming GET requests, we will simply return all
the objects in the table. For incoming POST requests, we'll read the request body and
add it to the table. Update your function as follows:

#r "Newtonsoft.Json"
#r "Microsoft.WindowsAzure.Storage"

using System.Net;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Primitives;
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Table;
using Newtonsoft.Json;

public static async Task<IActionResult> Run(HttpRequest req,
Newtonsoft.Json.Linq.JArray entryTableInput, IAsyncCollector<Entry>
entryTableOutput, ILogger log)
{
 log.LogInformation(req.Method);

API Data Access

[110]

 if (req.Method == "GET")
 {
 return (ActionResult) new OkObjectResult(entryTableInput);
 }

 var requestBody = await new StreamReader(req.Body).
ReadToEndAsync();
 var entry = JsonConvert.DeserializeObject<Entry>(requestBody);

 if (entry != null)
 {
 await entryTableOutput.AddAsync(entry);
 return (ActionResult) new OkObjectResult(entry);
 }

 return new BadRequestObjectResult("Invalid entry request.");
}

public class Entry
{
 public string Id => Guid.NewGuid().ToString("n");
 public string Title { get; set; }
 public double Latitude { get; set; }
 public double Longitude { get; set; }
 public DateTime Date { get; set; }
 public int Rating { get; set; }
 public string Notes { get; set; }

 // Required for Table Storage entities
 public string PartitionKey => "ENTRY";
 public string RowKey => Id;
}

Browsing and adding data
Now that we have created an API in Azure and set up a data table within the service,
we can start making calls to the API and getting responses. Before we start making
calls to the API from within the TripLog app, we can test the endpoint by making
GET and POST HTTP requests to it using either a command line or a REST console.

There are several REST consoles to choose from if you don't already have one
installed. I typically use an app named Postman (https://www.getpostman.com).

https://www.getpostman.com

Chapter 6

[111]

1. Using either a REST console or the command line, issue a GET request to the
API endpoint for the Azure Function using the following URL and header:
https://<your-function-name>.azurewebsites.net/api/entry

2. If everything has been set up properly, we should receive a 200 status code
and an empty collection in the response body, as follows:
[]

3. Next, add a new record to the backend service by issuing a POST request to
the same API endpoint, with an Entry JSON object included in the body of
the request. The service will automatically create the appropriate columns
within the Entry table when we insert the first object, and we should get
a 200 status code with the new item we added in the response body, as
follows:
https://<your-function-name>.azurewebsites.net/api/entry
--data '{
 "title": "Space Needle",
 "latitude": 47.6204,
 "longitude": -122.3491,
 "date": "2019-11-09T00:00:00.000Z",
 "rating": 5,
 "notes": "Wonderful site to see"
}'

4. Next, issue another GET request to the entry endpoint:

https://<your-function-name>.azurewebsites.net/api/entry

If you don't want to use a REST console, you can use the command
line to issue HTTP requests to the API. To do this, use either curl
in Terminal on macOS or Invoke-RestMethod in PowerShell on
Windows.

For documentation about curl, visit: https://curl.haxx.se/
docs/

For documentation about Invoke-RestMethod, visit: https://
docs.microsoft.com/en-us/powershell/module/
microsoft.powershell.utility/invoke-restmethod

https://curl.haxx.se/docs/
https://curl.haxx.se/docs/
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-restmethod
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-restmethod
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-restmethod

API Data Access

[112]

We should receive a 200 status code, but now the response body has a collection
containing the new item we added:

[
 {
 "Id": "beb8fcd5e31b48f8a601efc167a0018f",
 "Title": "Space Needle",
 "Latitude": 47.6204,
 "Longitude": -122.3491,
 "Date": "2019-11-09T00:00:00Z",
 "Rating": 5,
 "Notes": "Wonderful site to see",
 "PartitionKey": "ENTRY",
 "RowKey": "beb8fcd5e31b48f8a601efc167a0018f"
 }
]

In the preceding response, notice that after we added the new record to the backend
service, it was automatically given an Id property, along with a couple of other
properties. We will need to update the TripLogEntry model in our TripLog app to
account for this new Id property, as follows:

public class TripLogEntry
{
 public string Id { get; set; }
 public string Title { get; set; }
 public double Latitude { get; set; }
 public double Longitude { get; set; }
 public DateTime Date { get; set; }
 public int Rating { get; set; }
 public string Notes { get; set; }
}

Now that we have a live backend service that we can communicate with via HTTP,
we will update our TripLog app so that it can send requests to the API to add and
retrieve log entries.

Creating a base HTTP service
In order for an app to communicate with an API via HTTP, it needs an HTTP
library. Since we are using .NET and C# to build a Xamarin.Forms app, we can
leverage a library called System.Net.Http.HttpClient. The .NET HttpClient
provides a mechanism to send and receive data via standard HTTP methods, such
as GET and POST.

Chapter 6

[113]

Continuing to keep separation and abstraction key to our app architecture, we
want to keep the specific logic related to the HttpClient separate from the rest of
the app. In order to do this, we will write a base service class in our core library
that will be responsible for handling HTTP communications in a generic way. This
provides a building block for any domain-specific data services we might need to
write; for example, a service that is responsible for working with log entries in the
API. Any class that will inherit from this class will be able to send HTTP request
messages using standard HTTP methods (such as GET, POST, PATCH, and DELETE)
and get HTTP response messages back without having to deal with HttpClient
directly.

As we saw in the previous section, we are able to post data to the API in the form
of JSON, and when we receive data from the API, it's also returned in the JSON
format. In order for our app to translate its C# models into JSON for use in an
HTTP request body, the model will need to be serialized. In contrast, when an
HTTP response message is received in JSON, it needs to be deserialized into the
appropriate C# model. The most widely used method to do this in .NET software
is to use the Json.NET library.

In order to create a base HTTP service, perform the following steps:

1. Add the Json.NET NuGet package, Newtonsoft.Json, to the core library
project and each of the platform-specific projects.

2. Create a new abstract class in the Services folder of the core library
project named BaseHttpService:
public abstract class BaseHttpService
{
}

3. Add a protected async method to the BaseHttpService class named
SendRequestAsync<T>, which takes in a Uri named url, an optional
HttpMethod named httpMethod, an optional IDictionary<string,
string> named headers, and an optional object named requestData.
These four parameters will be used to construct an HTTP request. The
url parameter is the full URL of the API endpoint for the request. The
httpMethod optional parameter is used to make the request a GET, POST,
and so on. The headers optional dictionary parameter is a collection of
string key/value pairs used to define the header(s) of the request (such
as authentication). Finally, the requestData optional parameter is used to
pass in an object that will be serialized into JSON and included in the body
of POST and PATCH requests:
public abstract class BaseHttpService
{

API Data Access

[114]

 protected async Task<T> SendRequestAsync<T>(
 Uri url,
 HttpMethod httpMethod = null,
 IDictionary<string, string> headers = null,
 object requestData = null)
 {
 var result = default(T);

 // Default to GET
 var method = httpMethod ?? HttpMethod.Get;

 // Serialize request data
 var data = requestData == null
 ? null
 : JsonConvert.SerializeObject(requestData);

 using (var request = new HttpRequestMessage(method, url))
 {
 // Add request data to request
 if (data != null)
 {
 request.Content = new StringContent(data,
Encoding.UTF8, "application/json");
 }

 // Add headers to request
 if (headers != null)
 {
 foreach (var h in headers)
 {
 request.Headers.Add(h.Key, h.Value);
 }
 }

 // Get response

 using (var client = new HttpClient())
 using (var response = await client.SendAsync(request,
HttpCompletionOption.ResponseContentRead))
 {
 var content = response.Content == null
 ? null
 : await response.Content.ReadAsStringAsync();

Chapter 6

[115]

 if (response.IsSuccessStatusCode)
 {
 result = JsonConvert.
DeserializeObject<T>(content);
 }
 }
 }

 return result;
 }
}

Now that we have a base HTTP service, we can subclass it with classes that are more
specific to our data model, which we will do in the next section.

Creating an API data service
Using BaseHttpService as a foundation that abstracts away the HTTP request
details, we can now begin to create services that leverage it to get responses back
from the API in the form of domain-specific models. Specifically, we will create a
data service that can be used by the ViewModels to get the TripLogEntry objects
from the backend service.

We will start off by defining an interface for the data service that can be injected
into the ViewModels, ensuring that there is no strict dependency on the API, or the
logic that communicates with it, continuing the pattern we put in place in Chapter
4, Platform-Specific Services and Dependency Injection. To create a data service for the
TripLog API, perform the following steps:

1. Create a new interface named ITripLogDataService in the Services folder
of the core library:
public interface ITripLogDataService
{
}

2. Update the ITripLogDataService interface with methods to get and add
new TripLogEntry objects:
public interface ITripLogDataService
{
 Task<IList<TripLogEntry>> GetEntriesAsync();
 Task<TripLogEntry> AddEntryAsync(TripLogEntry entry);
}

API Data Access

[116]

Next, we will create an implementation of this interface that will also subclass
BaseHttpService so that it has access to our HttpClient implementation, as
shown in the following steps:

1. Create a new class in the core library Services folder named
TripLogApiDataService, which subclasses BaseHttpService and
implements ITripLogDataService:
public class TripLogApiDataService : BaseHttpService,
ITripLogDataService
{
}

2. Add two private properties to the TripLogApiDataService class—a Uri and
an IDictionary<string, string>—to store the base URL and headers,
respectively, to be used for all requests:
public class TripLogApiDataService : BaseHttpService,
ITripLogDataService
{
 readonly Uri _baseUri;
 readonly IDictionary<string, string> _headers;
}

3. Update the TripLogApiDataService constructor to take in a Uri parameter,
then set the private _baseUri and _headers properties:
public class TripLogApiDataService : BaseHttpService,
ITripLogDataService
{
 readonly Uri _baseUri;
 readonly IDictionary<string, string> _headers;

 public TripLogApiDataService(Uri baseUri)
 {
 _baseUri = baseUri;
 _headers = new Dictionary<string, string>();

 // TODO: Add header with auth-based token in chapter 7

 }
}

4. Finally, implement the members of ITripLogDataService using the
SendRequestAsync<T>() base class method:
public class TripLogApiDataService : BaseHttpService,
ITripLogDataService

Chapter 6

[117]

{
 readonly Uri _baseUri;
 readonly IDictionary<string, string> _headers;

 // ...

 public async Task<IList<TripLogEntry>> GetEntriesAsync()
 {
 var url = new Uri(_baseUri, "/api/entry");
 var response = await SendRequestAsync<TripLogEntry[]>(url,
HttpMethod.Get, _headers);

 return response;
 }

 public async Task<TripLogEntry> AddEntryAsync(TripLogEntry
entry)
 {
 var url = new Uri(_baseUri, "/api/entry");
 var response = await SendRequestAsync<TripLogEntry>(url,
HttpMethod.Post, _headers, entry);

 return response;
 }
}

Each method in this TripLog data service calls the SendRequestAsync() method
on the base class passing in the API route and the appropriate HttpMethod. The
AddEntryAsync() also passes in a TripLogEntry object, which will be serialized and
added to the HTTP request message content. In the next chapter, we will implement
authentication with the API and update this service to pass in an authentication-
based token in the header as well.

Updating the TripLog app ViewModels
Using the API and data service we created, we can now update the ViewModels in
the app to use live data instead of the local, hardcoded data they currently use. We
will continue to leverage the patterns we put in place in previous chapters to ensure
that our ViewModels remain testable and do not have any specific dependencies on
the Azure API, or even the HTTP communication logic. To update the ViewModels,
perform the following steps:

API Data Access

[118]

1. First, update the TripLogCoreModule in the core library to register our
ITripLogDataService implementation into the IoC:
public class TripLogCoreModule : NinjectModule
{
 public override void Load()
 {
 // ViewModels
 Bind<MainViewModel>().ToSelf();
 Bind<DetailViewModel>().ToSelf();
 Bind<NewEntryViewModel>().ToSelf();

 // Core Services
 var tripLogService = new TripLogApiDataService(new
Uri("https://<your-function-name>.azurewebsites.net"));

 Bind<ITripLogDataService>()
 .ToMethod(x => tripLogService)
 .InSingletonScope();
 }
}

2. Next, update the MainViewModel constructor to take an
ITripLogDataService parameter, which will be provided automatically via
dependency injection:
readonly ITripLogDataService _tripLogService;

// ...

public MainViewModel(INavService navService, ITripLogDataService
tripLogService)
 : base(navService)
{
 _tripLogService = tripLogService;

 LogEntries = new ObservableCollection<TripLogEntry>();
}

3. We will then update the LoadEntries() method in MainViewModel,
replacing the 3-second delay and hardcoded data population with a call to
the live TripLog API via the current ITripLogDataService implementation
that is injected into the ViewModel's constructor:
async void LoadEntries()
{
 if (IsBusy)

Chapter 6

[119]

 return;

 IsBusy = true;

 try
 {
 var entries = await _tripLogService.GetEntriesAsync();
 LogEntries = new ObservableCollection<TripLogEntry>(entri
es);
 }
 finally
 {
 IsBusy = false;
 }
}

Notice we are using async/await for all calls to our TripLog API since it is a remote
call over the internet and we can't expect immediate responses.

No other changes to MainViewModel are required. Now, when the app is launched,
instead of the hardcoded data loading, you will see the items stored in the Azure
backend service database.

Now, we will update the NewEntryViewModel so that when we add a new entry, it is
actually saved to the Azure backend through the data service:

1. Update the NewEntryViewModel constructor to take an
ITripLogDataService parameter:
readonly ITripLogDataService _tripLogService;

// ...

public NewEntryViewModel(INavService navService, ILocationService
locService, ITripLogDataService tripLogService)
 : base(navService)
{
 _locService = locService;
 _tripLogService = tripLogService;

 Date = DateTime.Today;
 Rating = 1;
}

API Data Access

[120]

2. Then, we will update the SaveCommand execution method to call the
AddEntryAsync() method of the data service:
async Task Save()
{
 if (IsBusy)
 return;

 IsBusy = true;

 try
 {
 var newItem = new TripLogEntry
 {
 Title = Title,
 Latitude = Latitude,
 Longitude = Longitude,
 Date = Date,
 Rating = Rating,
 Notes = Notes
 };

 await _tripLogService.AddEntryAsync(newItem);
 await NavService.GoBack();
 }
 finally
 {
 IsBusy = false;
 }
}

Now, if we launch the app, navigate to the new entry page, fill out the form, and
click on Save, the log entry will be sent to the TripLog backend service and saved
in the database.

Offline data caching
Mobile apps have several benefits over web apps, one of which is the ability to
operate offline and maintain offline data. There are a couple of reasons why offline
data is important to a mobile app. First of all, you cannot guarantee that your app
will always have a network connection and the ability to directly connect to live
data. Supporting offline data allows users to use the app, even if only for limited
use cases when they are operating with limited or no connectivity. Secondly, users
expect mobile apps to offer high performance, specifically, quick access to data
without having to wait.

Chapter 6

[121]

By maintaining an offline cache, an app can present a user with data immediately
while it's busy retrieving a fresh dataset, providing a perceived level of performance
to the user. It is important that when the cache updates, the user receives that
updated data automatically so that they are always seeing the latest data possible,
depending on specific use cases, of course.

There are several ways of implementing a data cache in a mobile app, all depending
on the size and complexity of the data that needs to be stored. In most cases, storing
the cache in a local database using SQLite is the best approach.

In this chapter, we will update the TripLog app to maintain a cache of log entries
and keep the cache in sync with the live API as data is received from the Azure
backend service. The data cache will be stored in an SQLite database, but to ease
the implementation, we will use an open source library called Akavache. Akavache
provides not only caching capabilities, but also a very easy-to-use API to update
the cache to be able to handle many different scenarios.

Adding the Akavache library
Like most libraries that we have used throughout this book, the Akavache library
can be obtained via NuGet. First, add a reference to the library to the core library
project and each of the platform-specific projects.

Next, we will need to add Akavache to our IoC container so that it can be injected
into our ViewModels. Akavache comes with some static variables that make it very
easy to use.

However, we want to instantiate our own instance and add it to the IoC, to maintain
separation. To do this, update the Load method in the TripLogCoreModule Ninject
module, as follows:

Bind<Akavache.IBlobCache>().ToConstant(Akavache.BlobCache.
LocalMachine);

For the purposes of this book and the TripLog sample application,
we will only be using a small subset of Akavache features. For
a closer look at the Akavache library and all of its capabilities,
check it out on GitHub at https://github.com/reactiveui/
Akavache.

https://github.com/reactiveui/Akavache
https://github.com/reactiveui/Akavache

API Data Access

[122]

Maintaining an offline data cache
Currently, the TripLog app's MainViewModel calls the TripLogApiDataService
to get its data directly from the live API. As mentioned at the beginning of this
chapter, in the event of little or no connectivity, the TripLog app will fail to display
any log entries. With a few minor modifications to the MainViewModel, we can set
it up to use the Akavache library to retrieve log entries from a local cache, and also
to refresh that cache with any changes in the dataset once a connection with a live
API succeeds.

First, update the MainViewModel constructor to require an instance of
Akavache.IBlobCache, which will be injected via our Ninject implementation
from Chapter 4, Platform-Specific Services and Dependency Injection:

readonly IBlobCache _cache;

// ...

public MainViewModel(INavService navService, ITripLogDataService
tripLogService, IBlobCache cache)
 : base (navService)
{
 _tripLogService = tripLogService;
 _cache = cache;

 LogEntries = new ObservableCollection<TripLogEntry> ();
}

Next, we will need to modify the logic in the LoadEntries() method to tie into the
local offline cache. To do this, we will leverage an extension method in Akavache
called GetAndFetchLatest. This method actually performs two functions. First, it
immediately returns cached data, given a specific key (in our case, entries). Secondly,
it makes a call to the API based on the given Func<> and updates the cache for the
given key. Since it is performing two functions, it will ultimately return twice. In
order to handle this, and because it is returning an IObservable, we can use the
Subscribe extension method to handle each return as it occurs. In the Subscribe
extension method, we will update the LogEntries ObservableCollection property
on the MainViewModel based on what is either returned from the cache or from the
subsequent API call, if successful:

void LoadEntries()
{
 if (IsBusy)
 {
 return;

Chapter 6

[123]

 }

 IsBusy = true;

 try
 {
 // Load from local cache and then immediately load from API
 _cache.GetAndFetchLatest("entries", async () => await _
tripLogService.GetEntriesAsync())
 .Subscribe(entries =>
 {
 LogEntries = new ObservableCollection<TripLogEntry>(e
ntries);
 IsBusy = false;
 });
 }
 finally
 {
 IsBusy = false;
 }
}

The first time the app is launched with this code, the cache will be populated. On any
subsequent launches of the app, you will notice that data appears immediately as
the view is constructed. If you add an item to the backend service database and then
launch the app again, you will notice that the new item falls into place after a couple
of seconds.

Summary
In this chapter, we created a live API from scratch using Azure Function App. We
then created a data service within our app to handle communication between the
app and the API. Then, by adding a reference to this service to our ViewModels,
we quickly transformed the app from using static data to using live data from our
new API. Finally, we set up offline data caching. In the next chapter, we will add
authentication to our API and update the app with sign-in capabilities.

[125]

Authentication
In the last chapter, we created a live web-based API using an Azure Function App
and updated our app to use it instead of static, hardcoded data. When we created
the API, we made it available anonymously, which means anyone can access the
data within it. Most web-based APIs require some level of authentication. In some
cases, it may be an API key you are provided by the API owner. In other cases, you
may be required to sign in with credentials, in order to obtain an authorization
token. Whether you are provided a key or granted a token through an authorization
process, that key or token can then be used to authenticate all access to the API. In
this chapter, we are going to update our API to require authorization, and update
our app to allow users to sign in to access the API.

In this chapter, we'll cover the following topics:

• Adding authentication to the Azure Function App
• Using the Xamarin.Auth library to easily perform OAuth and securely

communicate with the API
• Updating the TripLog app with a sign-in page and the ability to sign out

We'll start by enabling authentication on the Azure Function App we created in the
last chapter.

Adding authentication to Azure
Functions
In the previous chapter, we set up a new, live backend using an Azure Function App.
The service contains a single table named entry, which houses all log entries for our
TripLog app and makes them available via an entry endpoint. Currently, the entry
endpoint is available anonymously.

Authentication

[126]

In this section, we'll change the permissions on the Azure Function App to require
each request to contain an access token associated with an authenticated user.

Setting up an identity provider
There are a couple of approaches you can use to handle identity and authentication
in Azure. You can set up the Azure Function App to use Facebook, Twitter, a
Microsoft Account, Google, or even Azure Active Directory as a trusted identity
provider. You can also create your own custom identity provider if you want to
use account data stored in your database, instead of one of the social providers.
You can use one of these options or a combination of several of them—they will
all provide an access token that can be used by your mobile app to communicate
with your API on behalf of your users. In this section, we'll only use one provider,
Facebook. If you want to use a different provider you can still follow the steps in
this section, since they're the same for all providers.

In order to use a third-party identity provider, you will need to have an app/
client ID and app secret. These keys can be obtained directly from the identity
provider by setting up an app for OAuth, typically in their developer portal. Once
you've obtained the app/client ID and secret, you can configure the authentication
settings for the backend service, as shown in the following steps:

1. Select your Function App in the Azure portal.
2. Go to the Platform features tab and click on Authentication / Authorization,

as shown in the following screenshot:

Figure 1: Setting up Authentication / Authorization for an Azure Function App (step 1 of 2)

Chapter 7

[127]

3. Switch the App Service Authentication toggle to On and select Log in
with Facebook in the Action to take when request is not authenticated
dropdown, as shown in the following screenshot:

Figure 2: Azure Function App Authentication / Authorization setup (step 2 of 2)

4. Click on the Save button at the top of the Authentication / Authorization
pane.

At this point, any attempt to call the API endpoints, as we did in the previous
chapter, will result in an unauthorized response. For example, using either a REST
console or the command line, issue a GET request to the API endpoint using the
following URL and you should get back a 401 response:

https://<your-function-name>.azurewebsites.net/api/entry

Next, we'll set up Facebook as an identity provider for our Function App so that
we can obtain a user-specific access token that can be used in the request header,
allowing us to get back a successful response:

1. Return to the Platform features tab of your Function App and click on
Authentication / Authorization.

2. Select Facebook.

Authentication

[128]

3. Provide your Facebook authentication settings (App ID and App Secret) and
click on the OK button at the bottom of the pane, as shown in the following
screenshot:

Figure 3: Facebook Authentication Settings for an Azure Function App

4. Click on the Save button at the top of the Authentication / Authorization
pane.

5. Finally, you will need to add the OAuth redirect Uniform Resource
Identifier (URI) for your service within the app settings of the identity
provider. The redirect URI will depend on the identity provider, using the
following format: https://<your-function-name>.azurewebsites.net/.
auth/login/<identity-provider>/callback. Replace <your-function-
name> with the name of your Function App, and replace <identity-
provider> with facebook, twitter, microsoftaccount, google, or aad,
depending on which identity provider you are using.

Chapter 7

[129]

Once you have set everything up on the identity provider side and provided the
keys in the Azure portal, you can test it out in your internet browser by navigating
to https://<your-function-name>.azurewebsites.net/.auth/login/facebook.

Setting up an app for OAuth is different for each provider, and the
Azure App Service documentation outlines the steps in detail for
each, as follows:

Facebook: https://docs.microsoft.com/en-us/azure/
app-service/configure-authentication-provider-
facebook

Twitter: https://docs.microsoft.com/en-us/azure/app-
service/configure-authentication-provider-twitter

Microsoft Account: https://docs.microsoft.com/en-
us/azure/app-service/configure-authentication-
provider-microsoft

Google: https://docs.microsoft.com/en-us/azure/app-
service/configure-authentication-provider-google

Azure Active Directory: https://docs.microsoft.com/
en-us/azure/app-service/configure-authentication-
provider-aad

For more details on Azure App Service authentication and
authorization, visit https://docs.microsoft.com/en-
us/azure/app-service/overview-authentication-
authorization

https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-facebook
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-facebook
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-facebook
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-twitter
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-twitter
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-microsoft
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-microsoft
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-microsoft
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-google
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-google
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-aad
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-aad
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-aad
https://docs.microsoft.com/en-us/azure/app-service/overview-authentication-authorization
https://docs.microsoft.com/en-us/azure/app-service/overview-authentication-authorization
https://docs.microsoft.com/en-us/azure/app-service/overview-authentication-authorization

Authentication

[130]

If everything is set up correctly, you should see the login prompt for the identity
provider, as shown in the following screenshot:

Figure 4: Facebook log in page for API authorization

If you observe the URL in the browser address bar after authenticating with the
identity provider, you should see the redirected URL appended with a token
value in the form of a URL-encoded JSON object. We can then take the value of the
authenticationToken key in that JSON object and use it in a request to our API to
confirm that we get back a successful response.

In either a REST console or the command line, issue the same GET request as we did
in the previous section, but this time, add a new header named x-zumo-auth and use
the value from authenticationToken in the JSON object returned in the redirect
URI as the x-zumo-auth header value:

https://<your-function-name>.azurewebsites.net/tables/entry
 --header "x-zumo-auth:<your-authentication-token>"

If everything has been set up correctly, you should get back a response containing all
of the Entry objects in the Azure backend service.

Chapter 7

[131]

In the next section, we will update the TripLog app with a Facebook authentication
page to get an access token that can be stored and used by the app to communicate
with the API.

Creating an authentication service
Now that we have enabled our backend service with Facebook authentication, the
app as it is from the previous chapter will fail to load content. In this section, we
will update the app to authenticate users with Facebook via OAuth and obtain
an access token from Azure that can be used in subsequent API calls by the
TripLogApiDataService.

As in the previous chapter, instead of using the identity provider's SDK, we will
directly call the API endpoints behind the SDK, to better understand the approach
to authenticate to an API in a more generic way. In order to do this, we first make an
OAuth call to Facebook, obtaining a Facebook token. We then pass that token to an
Azure App Service authentication endpoint, where it is validated using the Facebook
app ID and the secret that was added to the service's configuration in Azure, to
finally receive the access token needed to make calls to the Function App endpoints.

Performing OAuth in a mobile app requires a certain set of platform-specific
capabilities. Fortunately, Xamarin has abstracted this into a cross-platform library,
available as a NuGet package, called Xamarin.Auth. We will use the Xamarin.
Auth library to perform OAuth in our app. However, we do not want to put
this particular implementation detail directly in a ViewModel, because it puts
an external dependency on the ViewModel, making it less testable, as discussed
in Chapter 4, Platform-Specific Services and Dependency Injection. So, instead of a
ViewModel calling the Xamarin.Auth library directly, we will create and use an
authentication service, following the inversion of control pattern introduced in
Chapter 4, Platform-Specific Services and Dependency Injection. We will start by creating
an authentication service interface, as shown in the following steps:

1. First, create a new interface named IAuthService in the Services folder in
the core library:
public interface IAuthService
{
}

2. Update the IAuthService interface with a single method that takes in all
the key components of a standard OAuth call as its parameters:
public interface IAuthService
{
 void SignInAsync(string clientId,

Authentication

[132]

 Uri authUrl,
 Uri callbackUrl,
 Action<string> tokenCallback,
 Action<string> errorCallback);
}

The two callback Action parameters provide a way to handle both success and
failure OAuth responses.

Next, we'll need to create an implementation of this interface that will leverage the
Xamarin.Auth library to perform the actual OAuth prompts and requests, as shown
in the following steps:

1. Add the Xamarin.Auth NuGet package to the core library project and each of
the platform projects.

2. Next, initialize the Xamarin.Auth library in each platform-specific startup
class as follows:
// in iOS AppDelegate
global::Xamarin.Forms.Forms.Init();
global::Xamarin.Auth.Presenters.XamarinIOS.
AuthenticationConfiguration.Init();
Xamarin.FormsMaps.Init();
LoadApplication(new App(new TripLogPlatformModule()));

// in Android MainActivity
global::Xamarin.Forms.Forms.Init(this, savedInstanceState);
global::Xamarin.Auth.Presenters.XamarinAndroid.
AuthenticationConfiguration.Init(this, savedInstanceState);
Xamarin.FormsMaps.Init(this, savedInstanceState);
LoadApplication(new App(new TripLogPlatformModule()));

3. Next, create a new class that implements IAuthService, named
AuthService, in the Services folder in the core library project:
public class AuthService : IAuthService
{
}

4. Next, provide the implementation for the SignInAsync method from
IAuthService:
public class AuthService : IAuthService
{
 public void SignInAsync(string clientId,
 Uri authUrl,
 Uri callbackUrl,

Chapter 7

[133]

 Action<string> tokenCallback,
 Action<string> errorCallback)
 {
 var presenter = new OAuthLoginPresenter();
 var authenticator = new OAuth2Authenticator(clientId, "",
authUrl, callbackUrl);

 authenticator.Completed += (sender, args) =>
 {
 if (args.Account != null && args.IsAuthenticated)
 {
 tokenCallback?.Invoke(args.Account.
Properties["access_token"]);
 }
 else
 {
 errorCallback?.Invoke("Not authenticated");
 }
 };

 authenticator.Error += (sender, args) =>
 {
 errorCallback?.Invoke(args.Message);
 };

 presenter.Login(authenticator);
 }
}

5. Finally, update the TripLogCoreModule Ninject module in the core library to
register the IAuthService implementation in the IoC:
public class TripLogCoreModule : NinjectModule
{
 public override void Load()
 {
 // ...

 Bind<IAuthService>().To<AuthService>().InSingletonScope();
 }
}

The IAuthService interface provides a way to perform OAuth against Facebook,
which gives us a Facebook authentication token, but we still need a way to pass that
Facebook-specific token to our API, to get back an Azure-authenticated access token
that we can use in our API requests. Azure App Service authentication provides an

Authentication

[134]

endpoint that takes an identity provider-specific token, and in return, provides an
Azure-specific access token. In order to use this endpoint, we just need to update our
TripLog data service with a new method, as follows:

1. First, create a new model class named TripLogApiAuthToken. As we
saw in the preceding section, the response from the /.auth/login/
facebook endpoint is a JSON object, containing a userId object and an
authenticationToken object; so, this TripLogApiAuthToken model will
represent that structure, so that we can deserialize the response and use the
access token for future calls to the TripLog backend service:
public class TripLogApiUser
{
 public string UserId { get; set; }
}

public class TripLogApiAuthToken
{
 public TripLogApiUser User { get; set; }
 public string AuthenticationToken { get; set; }
}

2. Next, add a new method to the ITripLogDataService interface named
AuthenticateAsync:
public interface ITripLogDataService
{
 Task AuthenticateAsync(string idProvider, string
idProviderToken);
 Task<IList<TripLogEntry>> GetEntriesAsync();
 Task<TripLogEntry> AddEntryAsync(TripLogEntry entry);
}

Notice the idProvider parameter, which allows this method to be used for
Azure identity providers other than just Facebook.

3. Next, add a new Action<string> property to the ITripLogDataService
interface named AuthorizedDelegate. This delegate will allow callers to
take action whenever the app has been authorized to access the data service:
public interface ITripLogDataService
{
 Action<string> AuthorizedDelegate { get; set; }

 Task AuthenticateAsync(string idProvider, string
idProviderToken);
 Task<IList<TripLogEntry>> GetEntriesAsync();
 Task<TripLogEntry> AddEntryAsync(TripLogEntry entry);
}

Chapter 7

[135]

4. Next, update the TripLogApiDataService to include the
AuthorizedDelegate property and the implementation of
the AuthenticateAsync method that we just added to the
ITripLogDataService. The method needs to make a POST call to the
/.auth/login/facebook endpoint, with the access token received from
the OAuth response in the request body. The service endpoint expects the
token in the body to be associated with a key named access_token. Since
our base HTTP service handles serializing the message body data for us,
we can simply create a struct to house the token that will be passed to the
endpoint:
public class TripLogApiDataService : BaseHttpService,
ITripLogDataService
{
 readonly Uri _baseUri;
 readonly IDictionary<string, string> _headers;

 public Action<string> AuthorizedDelegate { get; set; }

 struct IdProviderToken
 {
 [JsonProperty("access_token")]
 public string AccessToken { get; set; }
 }

 public async Task AuthenticateAsync(string idProvider, string
idProviderToken)
 {
 var token = new IdProviderToken
 {
 AccessToken = idProviderToken
 };

 var url = new Uri(_baseUri, string.Format(".auth/login/
{0}", idProvider));
 var response = await SendRequestAsync<TripLogApiAuthToken>
(url, HttpMethod.Post, requestData: token);

 if (!string.IsNullOrWhiteSpace(response?.
AuthenticationToken))
 {
 var authToken = response.AuthenticationToken;
 // Update this service with the new auth token
 _headers["x-zumo-auth"] = authToken;

Authentication

[136]

 AuthorizedDelegate?.Invoke(authToken);
 }
 }

 // ...
}

Notice how the AuthorizedDelegate is invoked (if defined) when an auth
token is successfully received from the API. This allows other areas of the
app to take action when the authentication has successfully completed, as we
will see later in this chapter.

5. Finally, we'll need to update the TripLogApiDataService constructor with
a string parameter named authToken. In the AuthenticateAsync method,
we update the _headers property with the token we received from the
backend. However, we also need to be able to set the _headers property
from the constructor, so that we can initialize the service with a token if one
already exists (for instance, if a token was persisted in the app's settings
after signing in), as shown in the following code:
public TripLogApiDataService(Uri baseUri, string authToken)
{
 _baseUri = baseUri;
 _headers = new Dictionary<string, string>();
 _headers.Add("x-zumo-auth", authToken);
}

Now that we've created an authentication service, and have the ability to authorize
access to our backend service, we need to update our app to leverage it. In the next
section, we'll create a new page and ViewModel, which uses our authentication
service to allow users to sign in and access the data from our API.

Adding a sign-in page
In order to add sign-in capabilities to our app, we need to create a new Page and a
new ViewModel. The ViewModel will be pretty straightforward, containing just a
single command that handles signing into Facebook via the IAuthService interface,
and passing the received Facebook token to the Azure backend service through the
ITripLogDataService, as shown in the following steps:

1. Create a new class that inherits from BaseViewModel, named
SignInViewModel, in the ViewModels folder in the core library project:
public class SignInViewModel : BaseViewModel
{
}

Chapter 7

[137]

2. Update the SignInViewModel with a constructor that takes in INavService,
IAuthService, and ITripLogDataService parameters:
public class SignInViewModel : BaseViewModel
{
 readonly IAuthService _authService;
 readonly ITripLogDataService _tripLogService;

 public SignInViewModel(INavService navService,
 IAuthService authService,
 ITripLogDataService tripLogService)
 :base(navService)
 {
 _authService = authService;
 _tripLogService = tripLogService;
 }
}

3. Next, add a new Command property named SignInCommand to the
SignInViewModel along with its execute Action:
public class SignInViewModel : BaseViewModel
{
 // ...

 Command _signInCommand;
 public Command SignInCommand =>
 _signInCommand ?? (_signInCommand = new Command(SignIn));

 void SignIn()
 {
 // TODO: Update with your Facebook App Id and Function App
name
 _authService.SignInAsync("YOUR_FACEBOOK_APPID",
 new Uri("https://m.facebook.com/dialog/oauth"),
 new Uri("https://<your-function-name>.azurewebsites.
net/.auth/login/facebook/callback"),
 tokenCallback: async token =>
 {
 // Use Facebook token to get Azure auth token
 await _tripLogService.
AuthenticateAsync("facebook", token);
 },
 errorCallback: e =>
 {
 // TODO: Handle invalid authentication here

Authentication

[138]

 });
 }
}

4. Update the TripLogCoreModule Ninject module to add SignInViewModel
to the IoC container:
public class TripLogCoreModule : NinjectModule
{
 public override void Load()
 {
 // ViewModels
 Bind<SignInViewModel>().ToSelf();
 Bind<MainViewModel>().ToSelf();
 Bind<DetailViewModel>().ToSelf();
 Bind<NewEntryViewModel>().ToSelf();

 // ...
 }
}

5. Update the TripLogCoreModule to account for the updated
TripLogApiDataService constructor and pass in the auth token stored in
local settings:

public class TripLogCoreModule : Ninject.Modules.NinjectModule
{
 public override void Load()
 {

 // ...

 var apiAuthToken = Preferences.Get("apitoken", "");
 var tripLogService = new TripLogApiDataService(new
Uri("https://<your-function-name>.azurewebsites.net"),
apiAuthToken);

 // ...
 }
}

Chapter 7

[139]

We now have a ViewModel that handles the authentication flow for our app. Next,
we will create the actual sign-in page, which will use the SignInViewModel as its
data context:

1. Create a new XAML page in the Views folder in the core library named
SignInPage.

2. Update the XAML of the SignInPage to add a button that is bound to the
SignInCommand of SignInViewModel:
<ContentPage.Content>
 <Button Text="Sign in with Facebook"
 Command="{Binding SignInCommand}"
 BackgroundColor="#455c9f"
 TextColor="White"
 Margin="20"
 VerticalOptions="Center" />
</ContentPage.Content>

3. Next, register the SignInPage and SignInViewModel mappings in the
navigation service in the TripLogNavModule Ninject module:

public class TripLogNavModule : NinjectModule
{
 // ...

 public override void Load()
 {
 var navService = new XamarinFormsNavService();

 // Register view mappings
 navService.RegisterViewMapping(typeof(SignInViewModel),
typeof(SignInPage));
 navService.RegisterViewMapping(typeof(MainViewModel),
typeof(MainPage));
 navService.RegisterViewMapping(typeof(DetailViewModel),
typeof(DetailPage));
 navService.RegisterViewMapping(typeof(NewEntryViewModel),
typeof(NewEntryPage));

 Bind<INavService>()
 .ToMethod(x => navService)
 .InSingletonScope();
 }
}

Authentication

[140]

Now that we've created a sign-in page, we need to make a few minor adjustments
to the app so that users will go directly to the SignInPage if an auth token does not
exist in local settings, and then go to the MainPage after successfully signing in.

There are a couple of ways to tap into the platform-specific APIs to store and retrieve
local settings. One way is to roll your own service, similar to the way we did with
the geolocation service: creating a core interface that is implemented uniquely per
platform. Another alternative is to leverage a plugin, or other third-party library, that
has already been created and published.

In this section, we'll use the Preferences API from the Xamarin.Essentials library to
get and retrieve the API auth token:

1. First, add a bool property to the App class in App.xaml.cs that indicates
whether an auth token is present by checking the Xamarin.Essentials
Preferences API:
public partial class App : Application
{
 bool IsSignedIn => !string.IsNullOrWhiteSpace(Preferences.
Get("apitoken", ""));

 // ...
}

2. Next, update the SetMainPage method in the App class to set MainPage to the
SignInPage if IsSignedIn is false:
public partial class App : Application
{
 // ...

 void SetMainPage()
 {
 var mainPage = IsSignedIn
 ? new NavigationPage(new MainPage())
 {
 BindingContext = Kernel.Get<MainViewModel>()
 }
 : new NavigationPage(new SignInPage())
 {
 BindingContext = Kernel.Get<SignInViewModel>()
 };

 var navService = Kernel.Get<INavService>() as
XamarinFormsNavService;

Chapter 7

[141]

 navService.XamarinFormsNav = mainPage.Navigation;

 MainPage = mainPage;
 }

 // ...
}

3. Lastly, set the data service's AuthorizedDelegate to a method that saves
the token returned from the successful API authorization and then resets the
app's MainPage property:
public partial class App : Application
{
 public App(params INinjectModule[] platformModules)
 {
 // ...

 Kernel.Load(platformModules);

 // Setup data service authentication delegates
 var dataService = Kernel.Get<ITripLogDataService>();
 dataService.AuthorizedDelegate = OnSignIn;

 SetMainPage();
 }

 void SetMainPage()
 {
 // ...
 }

 void OnSignIn(string accessToken)
 {
 Preferences.Set("apitoken", accessToken);

 SetMainPage();
 }

 // ...
}

Authentication

[142]

Now, when the app is launched for the first time and an auth token is not present
in the local settings, you will see the sign-in page. Clicking on the sign-in button
will launch the Xamarin.Auth dialog, prompting for Facebook credentials and
permission to grant access to the TripLog app, as shown in the following screenshots:

Figure 5: The sign in and authorization pages

Upon successfully authenticating with Facebook, you should be automatically
brought to the MainPage, and the list of the Entry objects will be loaded from the
API. In the next section, we'll add the ability for users to sign out of the app.

Adding a sign-out button
Now that we've added a sign-in feature to our app, we need to give our users a way
to sign out as well. Most apps that deal with authenticating users will put a sign-out
button somewhere in an account settings or profile screen. Since our app does not
have an account settings or profile screen, we'll simply add a Sign out button to the
navigation bar on the main page. In addition to allowing the user to sign out, the
app should also automatically sign the user out if it receives any 401 (unauthorized)
responses from the API.

We'll add support for automatic sign-out first, because we'll be able to repurpose it
when we add the sign-out button:

Chapter 7

[143]

1. First, add a new Action property to the ITripLogDataService interface
named UnauthorizedDelegate. This delegate will work like the
AuthorizedDelegate we added earlier in the chapter, except this one will
allow callers to take action whenever the app's access to the data service is
unauthorized:
public interface ITripLogDataService
{
 Action<string> AuthorizedDelegate { get; set; }
 Action UnauthorizedDelegate { get; set; }

 Task AuthenticateAsync(string idProvider, string
idProviderToken);
 Task<IList<TripLogEntry>> GetEntriesAsync();
 Task<TripLogEntry> AddEntryAsync(TripLogEntry entry);
}

2. Next, update the TripLogApiDataService to include the
UnauthorizedDelegate property that we just added to
ITripLogDataService:
public class TripLogApiDataService : BaseHttpService,
ITripLogDataService
{
 readonly Uri _baseUri;
 readonly IDictionary<string, string> _headers;

 public Action<string> AuthorizedDelegate { get; set; }
 public Action UnauthorizedDelegate { get; set; }

 // ...
}

3. Next, update the GetEntriesAsync and AddEntryAsync methods
to invoke the UnauthorizedDelegate (if defined) anytime an
UnauthorizedAccessException is caught:
public class TripLogApiDataService : BaseHttpService,
ITripLogDataService
{
 // ...

 public async Task<IList<TripLogEntry>> GetEntriesAsync()
 {
 try
 {
 var url = new Uri(_baseUri, "/api/entry");

Authentication

[144]

 var response = await SendRequestAsync<TripLogEntry[]>(
url, HttpMethod.Get, _headers);

 return response;
 }
 catch (UnauthorizedAccessException)
 {
 UnauthorizedDelegate?.Invoke();
 throw;
 }
 }

 public async Task<TripLogEntry> AddEntryAsync(TripLogEntry
entry)
 {
 try
 {
 var url = new Uri(_baseUri, "/api/entry");
 var response = await SendRequestAsync<TripLogEntry>(u
rl, HttpMethod.Post, _headers, entry);

 return response;
 }
 catch (UnauthorizedAccessException)
 {
 UnauthorizedDelegate?.Invoke();
 throw;
 }
 }
}

4. Next, update the BaseHttpService SendRequestAsync method to throw a
new UnauthorizedAccessException if the API response's HTTP status code
is a 401:
public abstract class BaseHttpService
{
 protected async Task<T> SendRequestAsync<T>(Uri url,
HttpMethod httpMethod = null, IDictionary<string, string> headers
= null, object requestData = null)
 {
 // ...

 using (var response = await client.SendAsync(request,
HttpCompletionOption.ResponseContentRead))
 {

Chapter 7

[145]

 var content = response.Content == null
 ? null
 : await response.Content.ReadAsStringAsync();

 if (response.IsSuccessStatusCode)
 {
 result = JsonConvert.
DeserializeObject<T>(content);
 }
 else
 {
 if (response.StatusCode == HttpStatusCode.
Unauthorized)
 {
 throw new UnauthorizedAccessException();
 }
 }
 }

 // ...
 }
}

5. Finally, in the App class, set the data service's UnauthorizedDelegate to a
method that removes the stored token and then resets the app's MainPage
property:
public partial class App : Application
{
 public App(params INinjectModule[] platformModules)
 {
 // ...

 Kernel.Load(platformModules);

 // Setup data service authentication delegates
 var dataService = Kernel.Get<ITripLogDataService>();
 dataService.AuthorizedDelegate = OnSignIn;
 dataService.UnauthorizedDelegate = SignOut;

 SetMainPage();
 }

 void SetMainPage()
 {

Authentication

[146]

 // ...
 }

 void OnSignIn(string accessToken)
 {
 // ...
 }

 void SignOut()
 {
 Preferences.Remove("apitoken");

 SetMainPage();
 }

 // ...
}

Now, anytime the app receives a 401 response from the API, it will automatically
sign the user out, and return them to the SignInPage. Next, we'll add the ability for
the user to sign out on their own:

1. First, add a new method to ITropLogDataService, named Unauthenticate:
public interface ITripLogDataService
{
 Action<string> AuthorizedDelegate { get; set; }
 Action UnauthorizedDelegate { get; set; }

 Task AuthenticateAsync(string idProvider, string
idProviderToken);
 void Unauthenticate();
 Task<IList<TripLogEntry>> GetEntriesAsync();
 Task<TripLogEntry> AddEntryAsync(TripLogEntry entry);
}

2. Next, update TripLogDataService to include the implementation for the
Unauthenticate method we just added to the ITripLogDataService
interface, which simply invokes the UnauthorizedDelegate:

public class TripLogApiDataService : BaseHttpService,
ITripLogDataService
{
 // ...

 public Action<string> AuthorizedDelegate { get; set; }

Chapter 7

[147]

 public Action UnauthorizedDelegate { get; set; }

 // ...

 public void Unauthenticate() => UnauthorizedDelegate?.
Invoke();
 // ...
}

Now anytime the user wants to sign out we can call this Unauthenticate method,
which will invoke the UnauthorizedDelegate, and therefore execute the same code
as when a 401 is received and we automatically sign the user out. Now all we need
to do is add a sign-out button that calls this Unauthenticate method.

As with the other buttons or components in the user interface, the sign-out button
should be data bound to a ViewModel Command property, so, we'll start by adding
that:

1. Add a new Command property named SignOutCommand to MainViewModel
that simply calls the Unauthenticate method in the data service:
public class MainViewModel : BaseViewModel
{
 readonly ITripLogDataService _tripLogService;

 // ...

 public Command SignOutCommand => new Command(_tripLogService.
Unauthenticate);

 // ...
}

2. Next, add a sign-out button to the MainPage navigation bar that is bound to
the SignOutCommand we just added:

<ContentPage ... >
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="New" Command="{Binding NewCommand}" />
 <ToolbarItem Text="Sign out" Command="{Binding
SignOutCommand}" />
 </ContentPage.ToolbarItems>
 <ContentPage.Content>
 <!-- ... -->
 </ContentPage.Content>
</ContentPage>

Authentication

[148]

Now, when the app is run, there'll be a Sign out button on the navigation bar of its
main page, as shown in the following screenshot. When the user clicks on the Sign
out button, the stored auth token will be cleared and they will be routed back to the
sign-in page.

Figure 6: The TripLog main page with a Sign Out button

Summary
In this chapter, we updated the Azure backend service we created in the previous
chapter with Facebook-provided authentication. We also updated the API data
service in the TripLog app, to authenticate its HTTP API requests with a user-specific
auth token provided by Azure App Service authentication, given a valid Facebook
access token. Finally, we added a sign-in page, the ability to sign out, and updated
the app to automatically route the user to the sign-in page if an auth token isn't
found in local settings, or if a 401 response is ever received from the API. In the
next chapter, we'll create unit tests for our TripLog app.

[149]

Testing
Throughout this book, we've implemented patterns and best practices with the
intention of separating the layers of our TripLog app, making it easier to maintain
and test. Over the course of this chapter, we'll write unit tests for the business logic
in our ViewModels.

In this chapter, we'll cover the following topics:

• Adding a unit test project to our solution
• Writing unit tests for some of the ViewModels in our app
• Running unit tests and fixing a failing test

We'll start by adding a new NUnit project to our solution, to contain all of the unit
tests we'll write throughout the rest of the chapter.

Unit testing
To test the business logic in our TripLog app, we'll start out by creating a new unit
test project in our solution that will be responsible for testing our ViewModels.
There are many options and libraries to create unit tests in .NET with Visual
Studio. In this chapter, we will use the NUnit Library Project template in Visual
Studio for Mac.

In order to create a unit test project, perform the following steps:

1. Create a new solution folder in the TripLog solution named Tests.
Although this is not required, it helps keep any testing-related projects
organized within the overall solution.

Testing

[150]

To add a new solution folder in Visual Studio, simply right-click on the
solution name, go to Add and click on Add Solution Folder, as shown in
the following screenshot:

Figure 1: Adding a solution folder in Visual Studio

Chapter 8

[151]

2. Next, create a new NUnit Library Project within the new Tests solution
folder:

Figure 2: Creating a new NUnit project in Visual Studio (step 1 of 2)

Adding a new solution folder in Visual Studio for
Windows is the same process: right-click on the solution
name, go to Add, and click on New Solution Folder.

Testing

[152]

3. Name the NUnit Library Project TripLog.Tests, as shown in the following
screenshot:

Figure 3: Creating a new NUnit project in Visual Studio (step 2 of 2)

4. Add a reference to the Xamarin.Forms NuGet package to the TripLog.
Tests project. Be sure to add the same version that's being used by the
other projects in your solution. This reference is required due to the
dependencies our ViewModels have on Xamarin.Forms, specifically for
Command properties.

5. By default, the new NUnit project will contain a Test.cs file. You can
safely delete this file, since we'll create new ones that are specific to each of
our ViewModels in the next section.

Now that we have created a new test project, we can begin writing unit tests for our
ViewModels.

Chapter 8

[153]

Testing ViewModels
When unit testing ViewModels, it is best to break the tests into individual test
classes that represent each ViewModel, resulting in a one-to-one relationship
between ViewModel classes and the unit test classes that test their logic.

In order to test our ViewModels, we will need to add a reference to them within
the unit tests project. To do this, right-click the References folder within the
TripLogs.Tests project, then click on Edit References, and then select the TripLog
core library project, as shown in the following screenshot:

Figure 4: Adding a TripLog project reference to the Unit Test project in Visual Studio

We will start by creating a set of unit tests for the DetailViewModel:

1. First, create a new folder in the TripLog.Tests project, named ViewModels.
This helps keep the file structure of the tests the same as the library being
tested.

2. Next, create a new empty class named DetailViewModelTests within the
new ViewModels folder in the TripLog.Tests project.

Testing

[154]

3. Next, update the DetailViewModelTests class with a TestFixture
attribute:
using NUnit.Framework;

[TestFixture]
public class DetailViewModelTests
{
}

4. Then, create a test setup method in the DetailViewModelTests class by
adding a new method named Setup with the [SetUp] NUnit attribute, as
follows:

[TestFixture]
public class DetailViewModelTests
{
 [SetUp]
 public void Setup()
 {
 }
}

This Setup method will be responsible for creating new instances of our ViewModel
for each of the tests within the class by ensuring that each test is run with a clean,
known state of the ViewModel under test.

In order to create a new instance of a ViewModel, we need to provide it with the
instances of the services required by its constructor. During runtime, these are
automatically provided via constructor injection, but in the case of the unit tests,
we'll need to provide them manually. We have a couple of options for passing in
these services.

We can create new mock versions of our services and pass them into the
ViewModel's constructor. This requires providing a mock implementation for
each method in the service's interface, which can be time-consuming and causes
additional code maintenance.

We can also use a mocking library to create mocks of the services and pass these
mocks into the ViewModel's constructor. The mocking library provides a much
cleaner approach, that's also less fragile. Additionally, most mocking libraries
provide a way to specify how methods or properties should return data in a much
cleaner way without actually having to implement them ourselves. In this chapter,
we will use Moq (available on NuGet)—a very popular mocking library for .NET
applications—to handle mocking for our unit tests.

Chapter 8

[155]

In order to initialize the ViewModel with mocked services, perform the following
steps:

1. Add a reference to the Moq NuGet package to the TripLog.Tests project.
2. Next, within the Setup method, create a new instance of DetailViewModel

and use the Moq library to create a mock instance of INavService to pass
in when instantiating DetailViewModel:

using NUnit.Framework;
using Moq;
using TripLog.Services;
using TripLog.ViewModels;

[TestFixture]
public class DetailViewModelTests
{
 DetailViewModel _vm;

 [SetUp]
 public void Setup()
 {
 var navMock = new Mock<INavService>().Object;

 _vm = new DetailViewModel(navMock);
 }
}

Now that we have a setup function defined, we can create an actual test method.
This ViewModel does not do much beyond initialization. Therefore, we'll just test
the Init method, to ensure that the ViewModel is properly initialized when its Init
method is called. The success criteria for this particular test will be that once Init is
called, the Entry property of the ViewModel will be set to the value provided in the
Init method's parameter.

In order to create a test for the ViewModel's Init method, perform the following
steps:

1. Create a new method in DetailViewModelTests, named Init_
ParameterProvided_EntryIsSet, and decorate it with an NUnit Test
attribute. Each test method that we create will follow the Arrange-Act-Assert
pattern:
[TestFixture]
public class DetailViewModelTests
{

Testing

[156]

 // ...

 [Test]
 public void Init_ParameterProvided_EntryIsSet()
 {
 // Arrange

 // Act

 // Assert
 }
}

2. Next, update the arrange portion of the test method by creating a new
mocked instance of a TripLogEntry object, to pass to the Init method in
order to test its functionality. Also, set the ViewModel's Entry property to
null, so that we can easily confirm that the property has a proper value after
calling Init later, in the assert portion of the test:
using NUnit.Framework;
using Moq;
using TripLog.Services;
using TripLog.ViewModels;
using TripLog.Models;

[TestFixture]
public class DetailViewModelTests
{
 // ...

 [Test]
 public void Init_ParameterProvided_EntryIsSet()
 {

The Arrange-Act-Assert pattern is a popular approach
to laying out unit test methods.

The Arrange portion is where you set up any
preconditions needed for the test.

The Act portion is where you call the code that is under
test.

The Assert portion is where you confirm the code that is
under test behaves as expected.

Chapter 8

[157]

 // Arrange
 var mockEntry = new Mock<TripLogEntry>().Object;
 _vm.Entry = null;

 // Act

 // Assert
 }
}

3. Next, pass the mocked TripLogEntry object into the ViewModel's Init
method in the act portion of the test method:
[Test]
public void Init_ParameterProvided_EntryIsSet()
{
 // Arrange
 var mockEntry = new Mock<TripLogEntry>().Object;
 _vm.Entry = null;

 // Act
 _vm.Init(mockEntry);

 // Assert
}

4. Finally, verify that the ViewModel's Entry property is no longer null using
the NUnit Assert.IsNotNull method:

[Test]
public void Init_ParameterProvided_EntryIsSet()
{
 // Arrange
 var mockEntry = new Mock<TripLogEntry>().Object;
 _vm.Entry = null;

 // Act
 await _vm.Init(mockEntry);

 // Assert
 Assert.IsNotNull(_vm.Entry, "Entry is null after being
initialized with a valid TripLogEntry object");
}

Testing

[158]

Notice the second parameter in the Assert.IsNotNull method usage in step
4, which is an optional parameter. This allows you to provide a message to be
displayed if the test fails, to help troubleshoot the code under the test.

We should also include a test to ensure that the ViewModel throws an exception if
the empty Init method is called, because the DetailViewModel requires the use of
the Init method in the base class that takes a parameter. We can do this using the
Assert.Throws NUnit method and providing a delegate that calls the Init method:

[TestFixture]
public class DetailViewModelTests
{
 // ...

 [Test]
 public void Init_ParameterNotProvided_
ThrowsEntryNotProvidedException()
 {
 // Assert
 Assert.Throws(typeof(EntryNotProvidedException), () => _
vm.Init());
 }
}

Initially, this test will fail because, until this point, we haven't included the
code to throw an EntryNotProvidedException in DetailViewModel. In
fact, the tests currently won't even build, because we've not defined the
EntryNotProvidedException type.

In order to get the tests to build, create a new class in the core library that inherits
from Exception and name it EntryNotProvidedException:

using System;

public class EntryNotProvidedException : Exception
{
 public EntryNotProvidedException()
 : base("An Entry object was not provided. If using
DetailViewModel, be sure to use the Init overload that takes an Entry
parameter.")

There are several other Assert methods, such as AreEqual,
IsTrue, and IsFalse, which can be used for various types of
assertions.

Chapter 8

[159]

 {
 }
}

For ViewModels that have dependencies on a specific functionality of a service,
you'll need to provide some additional setup when you mock the objects
for its constructor. For example, the NewEntryViewModel depends on the
GetGeoCoordinatesAsync method of ILocationService in order to get the
user's current location in the Init method. By simply providing a new Mock object
for ILocationService to the ViewModel, this method will return null, and an
exception will be thrown when setting the Latitude and Longitude properties. In
order to overcome this, we just need to use the Setup method when creating the
Mock, to define how the calls to the GetGeoCoordinatesAsync method should be
returned to the callers of the mock ILocationService instance. This allows us to test
a specific ViewModel functionality without needing to deal with the implementation
of a specific dependency – in fact, it ensures that the dependency always returns the
same results, so the functionality being tested can be tested consistently.

To see this in action, we'll create a unit test to test the NewEntryViewModel Init
method to assert that whenever it is called it gets the current location and sets the
Latitude and Longitude properties, as shown in the following steps:

1. Create a new class in the TripLog.Tests project named
NewEntryViewModelTests. Add the TextFixture attribute to the class, just
as we did with the DetailViewModelTests class:
using NUnit.Framework;

[TestFixture]
public class NewEntryViewModelTests
{
}

2. Next, create a method named Setup with the [SetUp] attribute, where we
will define the NewEntryViewModel instance that will be used by tests in the
class. NewEntryViewModel requires three parameters. We will use Moq again
to provide mock implementations for them, but we will need to customize
the implementation for ILocationService to specify exactly what the
GetGeoCoordinatesAsync method should return:
using NUnit.Framework;
using Moq;
using TripLog.Models;
using TripLog.Services;
using TripLog.ViewModels;

Testing

[160]

[TestFixture]
public class NewEntryViewModelTests
{
 NewEntryViewModel _vm;
 Mock<INavService> _navMock;
 Mock<ITripLogDataService> _dataMock;
 Mock<ILocationService> _locMock;

 [SetUp]
 public void Setup()
 {
 _navMock = new Mock<INavService>();
 _dataMock = new Mock<ITripLogDataService>();
 _locMock = new Mock<ILocationService>();

 _locMock.Setup(x => x.GetGeoCoordinatesAsync())
 .ReturnsAsync(new GeoCoords
 {
 Latitude = 123,
 Longitude = 321
 });

 _vm = new NewEntryViewModel(_navMock.Object, _locMock.
Object, _dataMock.Object);
 }
}

Now that we know our mock ILocationService implementation will return 123
for Latitude and 321 for Longitude, we can properly test the ViewModel's Init
method and ensure that the Latitude and Longitude properties are properly set
using its provided ILocationService (this would be an actual platform-specific
implementation when running the mobile app).

Following the Arrange-Act-Assert pattern, set the values of the Latitude and
Longitude properties to 0 before calling the Init method. In the assert portion of
the test, we confirm that after calling Init, the Latitude and Longitude properties
of ViewModel are the values that we expect to come from the provided mock
ILocationService instance—in our case, 123 and 321:

[TestFixture]
public class NewEntryViewModelTests
{
 // ...

 [Test]

Chapter 8

[161]

 public void Init_EntryIsSetWithGeoCoordinates()
 {
 // Arrange
 _vm.Latitude = 0.0;
 _vm.Longitude = 0.0;

 // Act
 _vm.Init();

 // Assert
 Assert.AreEqual(123, _vm.Latitude);
 Assert.AreEqual(321, _vm.Longitude);
 }
}

It is important to recognize that we're not testing the actual result or functionality
of the ILocationService method—we're testing the behavior of the Init method,
which depends on the ILocationService method. The best way to do this is with
mock objects—especially for platform-specific services or services that provide
dynamic or inconsistent data.

There are a few more unit tests we can write for the NewEntryViewModel, to
increase its test coverage. We should write a test to assert that the Save button is not
enabled if the Title field has not been provided. This can be done by testing the
SaveCommand's CanExecute function, as follows:

[TestFixture]
public class NewEntryViewModelTests
{
 // ...

 [Test]
 public void SaveCommand_TitleIsEmpty_CanExecuteReturnsFalse()
 {
 // Arrange
 _vm.Title = "";

 // Act
 var canSave = _vm.SaveCommand.CanExecute(null);

 // Assert
 Assert.IsFalse(canSave);
 }
}

Testing

[162]

Next, we'll write some tests that assert that when the SaveCommand is executed, it
actually sends the TripLogEntry object to the data service and then navigates the
user back to the main page. In order to test that specific methods on a service are
called, we can mark them as Verifiable when setting up the service mocks in the
text fixture Setup method, and then call the Verify method in the unit tests to verify
they're called, as shown in the following steps:

1. Update the Setup method in NewEntryViewModelTests to set up the
INavService and ITripLogDataService mocks so the methods used by the
SaveCommand are verifiable:
[TestFixture]
public class NewEntryViewModelTests
{
 NewEntryViewModel _vm;
 Mock<INavService> _navMock;
 Mock<ITripLogDataService> _dataMock;
 Mock<ILocationService> _locMock;

 [SetUp]
 public void Setup()
 {
 _navMock = new Mock<INavService>();
 _dataMock = new Mock<ITripLogDataService>();
 _locMock = new Mock<ILocationService>();

 _navMock.Setup(x => x.GoBack())
 .Verifiable();

 _dataMock.Setup(x => x.AddEntryAsync(It.
Is<TripLogEntry>(entry => entry.Title == "Mock Entry")))
 .Verifiable();

 _locMock.Setup(x => x.GetGeoCoordinatesAsync())
 .ReturnsAsync(new GeoCoords
 {
 Latitude = 123,
 Longitude = 321
 });

 _vm = new NewEntryViewModel(_navMock.Object, _locMock.
Object, _dataMock.Object);
 }

 // ...
}

Chapter 8

[163]

Notice how the setup for the AddEntryAsync method is for a TripLogEntry
instance that specifically has a Title equal to "Mock Entry." This is how we
can later verify that not only are we calling the AddEntryAsync method, but
we are passing the correct data to it.

2. Add a new test method named SaveCommand_AddsEntryToTripLogBackend
that executes the SaveCommand, and verifies that the TripLogEntry object
created in the ViewModel is actually passed to the AddEntryAsync method:
[TestFixture]
public class NewEntryViewModelTests
{
 // ...

 [Test]
 public void SaveCommand_AddsEntryToTripLogBackend()
 {
 // Arrange
 _vm.Title = "Mock Entry";

 // Act
 _vm.SaveCommand.Execute(null);

 // Assert
 _dataMock.Verify(x => x.AddEntryAsync(It.
Is<TripLogEntry>(entry => entry.Title == "Mock Entry")), Times.
Once);
 }
}

3. Finally, add another test method named SaveCommand_NavigatesBack that
executes the SaveCommand and verifies that the app navigates back:

[TestFixture]
public class NewEntryViewModelTests
{
 // ...

 [Test]
 public void SaveCommand_NavigatesBack()
 {
 // Arrange
 _vm.Title = "Mock Entry";

 // Act
 _vm.SaveCommand.Execute(null);

Testing

[164]

 // Assert
 _navMock.Verify(x => x.GoBack(), Times.Once);
 }
}

We have now written several tests that assert the various behaviors of the
NewEntryViewModel. As you can see, the use of dependency injection in the
app architecture makes it extremely easy to test our ViewModels with maximum
flexibility and minimum code. Next, we will run these unit tests in Visual Studio
to see if they pass or fail.

Running unit tests in Visual Studio
Once you have some unit tests created, you can start running them directly from
Visual Studio. To run tests in Visual Studio for Mac, simply click on Run Unit Tests
from the Run menu; in Visual Studio for Windows, click Run > All Tests from
the Test menu. Typically, this should be done as tests are created throughout your
development lifecycle as well as before you commit your code to source control,
especially if there is a continuous integration process that will automatically build
your code and run the tests.

After the tests have completed running, the results will appear in the Test Results
pane:

Figure 5: Unit test results in Visual Studio

Notice that one of our unit tests is failing. In order to get this test to pass, we need
to go back and update DetailViewModel by overriding the empty Init method of
BaseViewModel, and have it throw a new EntryNotProvidedException instance, as
follows; this type of iterative testing development process is a common best practice,
which helps you develop better code with more testing coverage:

Chapter 8

[165]

public class DetailViewModel : BaseViewModel<TripLogEntry>
{
 // ...

 public override void Init()
 {
 throw new EntryNotProvidedException();
 }

 public override void Init(TripLogEntry logEntry)
 {
 Entry = logEntry;
 }
}

Now, when you rerun the unit tests, they should all pass:

Figure 6: Unit test results in Visual Studio

Summary
In this chapter, we looked into how to take advantage of the loosely coupled
architecture that we developed in the earlier chapters of this book to write unit tests.
We used a mocking framework to mock out the services that our ViewModels are
dependent on, to be able to effectively test the logic within them in a predictable
manner. In the next chapter, we'll add the ability to monitor app usage and crashes
in our TripLog mobile app.

[167]

App Monitoring
In the mobile development world, it's very important to iterate fast—users want
new features and expect quality, and if you can't deliver on those expectations,
you'll certainly feel it in your ratings and reviews. One of the best ways to ensure
that you're shipping quality apps and features is to employ DevOps.

DevOps is where the technical and operational sides of app development meet.
Proper DevOps integrates business operations with tools, resulting in a more
automated and continuous release process. DevOps tools typically combine
continuous integration and delivery (CI/CD)—the automation of the building,
testing, and distribution of your app—with monitoring capabilities. CI/CD and
monitoring together create a seamless loop, where CI/CD provides an output
of testable features, and monitoring provides an input of feedback and analytics
on those features. This continuous loop, when implemented properly, enables
development teams to rapidly release new features that maintain the quality their
users expect.

In this last chapter of the book, we'll focus on analytics and crash reporting
tools, and how they can help you continuously monitor and improve your app.
Specifically, we'll take a look at Visual Studio App Center and how to integrate its
SDK libraries into the TripLog Xamarin.Forms mobile app that we have created in
this book.

In this chapter, we will cover the following topics:

• Mobile app analytics and crash reporting
• Adding monitoring capabilities to the TripLog app with the Visual Studio

App Center SDK

We'll start by going over the benefits of collecting analytics in a mobile app.

App Monitoring

[168]

Mobile app analytics
Application analytics and crash reporting tools have been around for a long time.
The idea of application analytics is to collect data about your users, their behavior
within your application, the features they use—or don't use—and how often they
use those features or the application itself. The idea of crash reporting is to collect
crash or error data from within the application. In both cases, the information
collected is typically aggregated into a single dashboard-like interface, so that
you and other members on the application team can analyze it.

Application analytics are also extremely important to a product's life cycle and its
stakeholders, as they provide real insight into the application and can help drive
key business decisions about the product. For example, a feature that was thought
to be very important to users might show up in analytics data as something that
users aren't actually utilizing as much as anticipated. From there, the decision needs
to be made whether this is because the feature is undiscoverable, or simply not as
important to the users as anticipated. On the other hand, analytics might indicate
that a specific feature or area within your application is being used or accessed
far more than expected. This would tell the product owners and developers that
focusing on that feature or area should be a priority.

Crash reporting
The power of a crash reporting tool is that it automatically captures the exception
and stack trace information. Without this type of capability, you as a developer are
left to rely on your end user to report the bug or error. In some cases, they may not
even report the error and will instead simply close your app, and you will have
no idea the bug even exists. Assuming that your users do report back to you about
a bug or error they witnessed in the application, you are still relying on them to
provide you with accurate information and are left trying to reproduce the error.
Not only is this a potentially inaccurate process, but it is also time-consuming
and cumbersome. It puts a burden on your users, as well as on you and your
development team.

Having a crash reporting tool in place allows you to handle bugs and errors in real
time, which is much faster than relying on users. If a user does experience a bug
and reports it to you, having the crash reporting tool integrated within your app
allows you to easily find the data related to the error they ran into. Furthermore,
if you have both app analytics and crash reporting in your application, you can
often leverage the analytics to identify the specific path the user took within the
application before running into the issue.

Chapter 9

[169]

There are several tools on the market. Some only do analytics, others only do crash
reporting, and, of course, some do both. Most of these tools support .NET, and
several specifically support Xamarin, making it easy to integrate them into mobile
applications built with Xamarin. Microsoft's Visual Studio App Center is a service
that offers analytics, error, and crash reporting tools, on top of a suite of automated
build, distribution, and testing tools.

Visual Studio App Center
Visual Studio App Center is a service provided by Microsoft that offers a
comprehensive mobile DevOps toolchain. One of the biggest barriers to entry
when it comes to setting up DevOps tooling is the amount of configuration,
integration, and maintenance that's involved. In my experience, setting up
DevOps tools means integrating several services, writing tons of scripts, and,
typically, dedicating a developer to maintaining the build server. App Center
offers a streamlined solution that minimizes configuration and pretty much
eliminates integration and maintenance, since it's a centralized and hosted service.

All of the components of App Center can be accessed via the App Center website
or API. The monitoring components also require the App Center SDK to be included
in your mobile app package. For Xamarin apps, the SDK is available via NuGet.

Setting up Visual Studio App Center
If you don't already have an App Center account, you'll need to create one. Once
you have signed in to App Center, create a new app for each platform you will be
delivering your mobile app on. Each app you create in App Center will be associated
with a unique identifier known as an app secret. These app secrets are required when
using the App Center SDK within your mobile app.

Creating an analytics service
In order to use the App Center SDK in our TripLog app, we will want to abstract
it into a service, like we did for geolocation. As we saw multiple times in previous
chapters, there are numerous benefits to this approach, namely, it loosely couples our
ViewModels from the actual code that uses the App Center SDK, making unit testing
our ViewModels much simpler and cleaner.

This chapter is primarily focused on the app monitoring tools
within Visual Studio App Center. To learn more about all of the
tools and features of Visual Studio App Center, visit http://
appcenter.ms.

http://appcenter.ms
http://appcenter.ms

App Monitoring

[170]

In order to create an analytics service, perform the following steps:

1. First, create a new interface named IAnalyticsService in the Services
folder of the core library project:
public interface IAnalyticsService
{
}

2. Next, update the IAnalyticsService interface with methods to track usage
events and errors:

public interface IAnalyticsService
{
 void TrackEvent(string eventKey);
 void TrackEvent(string eventKey, IDictionary<string, string>
data);
 void TrackError(Exception exception);
 void TrackError(Exception exception, IDictionary<string,
string> data);
}

Notice that in the preceding code, the methods in this service are not necessarily
specific to App Center—they represent a pretty generic functionality when it
comes to event and error tracking. This leads to yet another benefit of the loosely
coupled architecture that we have put in place: if, for some reason, you need to
stop using App Center Analytics and use another app analytics toolset instead,
simply write a new implementation of this interface, and your ViewModels
will automatically be ready to use the new implementation, since they use it
through the IAnalyticsService interface. Unit tests for ViewModels that have
a dependency on IAnalyticsService also require no change if the concrete
implementation changes, and they'll provide validation that the ViewModels
haven't started failing as a result of swapping out implementations.

For now, we will, of course, use App Center in our concrete implementation of
the IAnalyticsService interface. The App Center Analytics and Crashes API
is pretty simple and straightforward, and so the implementation for each of the
methods in the interface is no more than a couple of lines of code. Specifically, the
Analytics.TrackEvent and Crashes.TrackError methods allow us to send user
events and exceptions to App Center, which are then visible within the App Center
portal. In order to create the App Center implementation of IAnalyticsService,
perform the following steps:

1. Add the Microsoft.AppCenter.Analytics and Microsoft.AppCenter.
Crashes NuGet packages to the core project and each of the platform-specific
projects.

Chapter 9

[171]

2. Start the SDK using your provided app secrets for each platform, in the
OnStart method override in the App class (App.xaml.cs):
using Microsoft.AppCenter;
using Microsoft.AppCenter.Crashes;
using Microsoft.AppCenter.Analytics;

public partial class App : Application
{
 // ...

 protected override void OnStart()
 {
 AppCenter.Start("ios={Your iOS app secret here};"
 + "android={Your Android app secret here};"
 + "uwp={Your UWP app secret here}",
 typeof(Analytics), typeof(Crashes));
 }

 // ...
}

3. Create a new class named AppCenterAnalyticsService in the Services
folder, in the core library, that implements IAnalyticsService:
public class AppCenterAnalyticsService : IAnalyticsService
{
}

4. Next, implement the members of IAnalyticsService within the
AppCenterAnalyticsService class:
using System.Collections.Generic;
using Microsoft.AppCenter.Analytics;
using Microsoft.AppCenter.Crashes;

public class AppCenterAnalyticsService : IAnalyticsService
{
 public void TrackEvent(string eventKey)
 {
 Analytics.TrackEvent(eventKey);
 }

 public void TrackEvent(string eventKey, IDictionary<string,
string> data)
 {
 Analytics.TrackEvent(eventKey, data);

App Monitoring

[172]

 }

 public void TrackError(Exception exception)
 {
 Crashes.TrackError(exception);
 }

 public void TrackError(Exception exception,
IDictionary<string, string> data)
 {
 Crashes.TrackError(exception, data);
 }
}

5. Next, update the TripLogCoreModule Ninject Module in the core library,
to register the AppCenterAnalyticsService implementation in the IoC:

public class TripLogCoreModule : NinjectModule
{
 public override void Load()
 {
 // ViewModels

 // ...

 // Core Services

 // ...

 Bind<IAnalyticsService>()
 .To<AppCenterAnalyticsService>()
 .InSingletonScope();
 }
}

Next, we'll need to be able to use this new analytics service within the logic of
our app; specifically, the ViewModels. Since we'll likely need to report analytics
data from all of our ViewModels, it would be best to just include an instance of
IAnalyticsService as a protected property of the BaseViewModel, similar to the
INavService property, and include it in the constructor's parameter list, as follows:

1. Add a protected IAnalyticsService property to BaseViewModel, named
AnalyticsService, and add an IAnalyticsService parameter to the
constructor, which will set the protected property:
public abstract class BaseViewModel : INotifyPropertyChanged

Chapter 9

[173]

{
 protected INavService NavService { get; private set; }
 protected IAnalyticsService AnalyticsService { get; private
set; }

 protected BaseViewModel(INavService navService,
IAnalyticsService analyticsService)
 {
 NavService = navService;
 AnalyticsService = analyticsService;
 }

 // ...
}

2. Next, update the constructor of the BaseViewModel<TParameter> class that
subclasses BaseViewModel to take an IAnalyticsService parameter, which
it simply passes to its base constructor:
public abstract class BaseViewModel<TParameter> : BaseViewModel
{
 protected BaseViewModel(INavService navService,
IAnalyticsService analyticsService)
 : base(navService, analyticsService)
 {
 }

 // ...
}

3. Next, update the constructors of each of the ViewModels that inherit from
BaseViewModel to take an IAnalyticsService parameter, which is just
passed to its BaseViewModel base class.

4. Finally, update the ViewModel instantiations in the unit test Setup methods
to account for the new IAnalyticsService parameter by passing in a
Mock<IAnalyticsService> object:

[TestFixture]
public class DetailViewModelTests
{
 DetailViewModel _vm;

 [SetUp]
 public void Setup()
 {
 var navMock = new Mock<INavService>().Object;

App Monitoring

[174]

 var analyticsMock = new Mock<IAnalyticsService>().Object;

 _vm = new DetailViewModel(navMock, analyticsMock);
 }

 // ...
}

[TestFixture]
public class NewEntryViewModelTests
{
 // ...

 [SetUp]
 public void Setup()
 {
 // ...

 var analyticsMock = new Mock<IAnalyticsService>().Object;

 _vm = new NewEntryViewModel(_navMock.Object, _locMock.
Object, _dataMock.Object, analyticsMock);
 }

 // ...
}

Now that we have created an analytics service using the App Center SDK and
included it in each of the ViewModels, we can start using it to track events and
exceptions, as we will see in the next section.

Tracking exceptions and events
Now that we have an IAnalyticsService property in all of our ViewModels,
we can update all of our try/catch blocks to pass exceptions to App Center. For
example, in MainViewModel, we have a try/finally block in the LoadEntries
method that is not currently catching exceptions.

Update this try/finally block with a catch block and then pass any caught
Exception off to the analytics service via the TrackError method:

void LoadEntries()
{
 if (IsBusy)
 {

Chapter 9

[175]

 return;
 }

 IsBusy = true;

 try
 {
 // ...
 }
 catch (Exception e)
 {
 AnalyticsService.TrackError(e, new Dictionary<string, string>
 {
 { "Method", "MainViewModel.LoadEntries()" }
 });
 }
 finally
 {
 IsBusy = false;
 }
}

We can also start tracking user events throughout the application. For example, if we
wanted to know how often users viewed the entry detail page in our app, we could
call the TrackEvent method of IAnalyticsService within the Init method of
DetailViewModel to log that in App Center Analytics:

public class DetailViewModel : BaseViewModel<TripLogEntry>
{
 // ...

 public override void Init(TripLogEntry parameter)
 {
 AnalyticsService.TrackEvent("Entry Detail Page", new
Dictionary<string, string>
 {
 { "Title", parameter.Title }
 });

The App Center Crashes SDK automatically reports all unhandled
exceptions once it is enabled in the app.

App Monitoring

[176]

 Entry = parameter
 }
}

Summary
In this chapter, we covered the importance of app monitoring and implemented
an analytics service using the Visual Studio App Center SDK. Using the analytics
service, we updated the app to track errors and events, which can all be viewed in
the App Center web portal.

At the beginning of this book, we started with a basic app. With each chapter we
ventured into new concepts, as we refactored and added to the app code base.
The app we built is not necessarily a real-world app, but the patterns used and the
approaches taken are and can be applied to real-world, production apps. Early on,
we introduced the MVVM pattern to separate the presentation (user interface) code
from the rest of the code – the core – where the business logic lives. The immediate
benefit of this pattern is that the core code becomes centralized and platform
agnostic, and therefore reusable across multiple platforms. Coupled with inversion
of control and dependency injection, the code becomes easily testable. The end
result is a clean, organized app architecture that you can maintain and evolve with
the needs of your business and end users.

Thank you so much for taking this journey with me – I hope you enjoyed reading
it as much as I did writing it. I hope it helps you take your Xamarin.Forms app
to the next level. I am confident that with the topics discussed in this book, the
possibilities to create amazing mobile apps with Xamarin.Forms are limited only
by your imagination. Happy coding!

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

Mark J. Price

ISBN: 978-1-78847-812-0

 ● Build cross-platform applications for Windows, macOS, Linux, iOS, and Android
 ● Explore application development with C# 8.0 and .NET Core 3.0
 ● Explore ASP.NET Core 3.0 and create professional web applications
 ● Learn object-oriented programming and C# multitasking
 ● Query and manipulate data using LINQ

https://www.packtpub.com/in/mobile/c-8-0-and-net-core-3-0-modern-cross-platform-development-fourth-edition

[178]

Other Books You May Enjoy

 ● Use Entity Framework Core and work with relational databases
 ● Discover Windows app development using the Universal Windows Platform

and XAML
 ● Build mobile applications for iOS and Android using Xamarin.Forms

[179]

Other Books You May Enjoy

Deep Learning with TensorFlow 2 and Keras

Antonio Gulli, Amita Kapoor, Sujit Pal

ISBN: 978-1-83882-341-2

 ● Build machine learning and deep learning systems with TensorFlow 2 and
the Keras API

 ● Use Regression analysis, the most popular approach to machine learning
 ● Understand ConvNets (convolutional neural networks) and how they are

essential for deep learning systems such as image classifiers
 ● Use GANs (generative adversarial networks) to create new data that fits with

existing patterns
 ● Discover RNNs (recurrent neural networks) that can process sequences of input

intelligently, using one part of a sequence to correctly interpret another
 ● Apply deep learning to natural human language and interpret natural language

texts to produce an appropriate response
 ● Train your models on the cloud and put TF to work in real environments
 ● Explore how Google tools can automate simple ML workflows without the

need for complex modeling

https://www.packtpub.com/in/data/deep-learning-with-tensorflow-2-0-and-keras-second-edition

[180]

Other Books You May Enjoy

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

[181]

Index
A
accessibility

about 102
screen readers, supporting 102-104

Akavache library
about 121
adding 121
reference link 121

API, creating with Azure Functions
about 105, 106
data, adding 110, 112
data, browsing 110, 112

API data service
creating 115-117

app, setup for OAuth
references 129

authentication service
creating 131-136

Autofac 68
Azure Function App

creating 106, 107
Azure Functions

API, creating with 105, 106
authentication, adding 125
creating 107-109
creation, reference link 106
identity provider, setting up 126-131
reference link 106

B
base HTTP service

creating 112-115
base validation ViewModel

adding 38-40

C
continuous integration and delivery

(CI/CD) 167
crash reporting tool 168, 169
curl

URL 111
custom renderer 84

D
dependencies

registering 73
dependency injection

about 67
in mobile apps 67, 68

DevOps 167

I
image value converter

integer, creating to 96-99
integer

creating, to image value converter 96-99
inversion of control (IoC)

about 67, 68
injecting, in mobile apps 67, 68

Invoke-RestMethod
reference link 111

L
location service

creating 69, 70
using, on New Entry Page 70, 71

location service implementation
adding 71-73

[182]

M
mobile app analytics 168
mobile apps

dependency injection 67, 68
inversion of control (IoC) 67, 68

modal navigation 46
Model-View-ViewModel (MVVM) pattern

about 21
adding, to app 22, 23
app structure, setting up 24
data binding 22
elements 21
models 21
ViewModels 22
views 22

Modules
creating 73

MVVM Light
URL 48

N
navigation

MVVM pattern 47, 48
navigation service

creating 49-57
registering 76-78
updating, to handle dependency

injection 80, 81
updating, to handle ViewModels

creation 80, 81
New Entry Page

location service, using on 70, 71
Ninject 68

O
offline data

caching 120, 121
offline data cache

maintaining 122, 123

P
platform-service implementations

registering 74, 75
platform-specific services

creating 69
location service, creating 69, 70
location service implementation,

adding 71-73
location service, using on New Entry

Page 70, 71
using 69

Postman
URL 110

Preferences API
using 140

pull-to-refresh
adding 100, 101

R
reverse visibility value converter

creating 91-95

S
screen readers

supporting 102-104
sign-in page

adding 136-142
sign-out button

adding 142-148
standard navigation 46

T
TableView DatePicker

creating 84-90
third-party alternatives

versus Xamarin.Forms
DependencyService 68

TinyIoC 68
TripLog 6
TripLog.Android 6
TripLog app

BaseViewModel, updating 58-60
DetailPage, updating 64, 66
entry detail page, creating 15-19
features 2
initial solution architecture, creating 3
main page, creating 7-11
MainViewModel, initializing 62
MainViewModel, updating 60-62

[183]

new entry page, creating 12-14
NewEntryViewModel, updating 62, 63
updating 57, 78, 80
Xamarin.Forms packages, updating 6
Xamarin.Forms solution, setting up 3-6

TripLog app ViewModels
updating 117-120

TripLog.iOS 6

U
Uniform Resource Identifier (URI) 128
unit testing 149-152
unit tests

running, in Visual Studio 164, 165
Unity 68
user interface (UI) 22

V
validation

about 37, 38
adding, to New Page Entry 41-43

value converters 90, 91
ViewModel-centric navigation 48
ViewModels

adding 25, 26
DetailViewModel, adding 28-32
MainViewModel, adding 26-28
NewEntryViewModel, adding 32-37
registering 75, 76
testing 153-163

Visual Studio
unit tests, running 164, 165

Visual Studio App Center
about 167, 169
analytics service, creating 169-174
events, tracking 174
exceptions, tracking 174
setting up 169
URL 169

X
Xamarin.Auth 131
Xamarin.Essentials library

reference link 73
Xamarin.Forms 1

Xamarin.Forms DependencyService
versus third-party alternatives 68

Xamarin.Forms.INavigation interface
methods 46

Xamarin.Forms Map documentation
reference link 18

Xamarin.Forms.Maps NuGet package
adding 16

Xamarin.Forms navigation API 46, 47
Xamarin.Forms packages

updating 6

	Cover
	Copyright
	Packt Page
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Introducing the app idea
	Defining features

	Creating the initial app
	Setting up the solution
	Updating the Xamarin.Forms packages

	Creating the main page
	Creating the new entry page
	Creating the entry detail page

	Summary

	Chapter 2: MVVM and Data Binding
	Understanding the MVVM pattern
	Adding MVVM to the app
	Setting up the app structure
	Adding ViewModels
	Adding MainViewModel
	Adding DetailViewModel
	Adding NewEntryViewModel

	Validation
	Adding a base validation ViewModel
	Adding validation to the New Entry Page

	Summary

	Chapter 3: Navigation
	The Xamarin.Forms navigation API
	Navigation and MVVM
	ViewModel-centric navigation

	Creating a navigation service
	Updating the TripLog app
	Updating BaseViewModel
	Updating MainViewModel
	Updating NewEntryViewModel
	Updating DetailPage

	Summary

	Chapter 4: Platform-Specific Services and Dependency Injection
	Inversion of control and dependency injection in mobile apps
	Xamarin.Forms DependencyService versus third-party alternatives
	Creating and using platform-specific services
	Creating a location service
	Using the location service on the New Entry Page
	Adding the location service implementation

	Registering dependencies
	Registering the platform-service implementations
	Registering the ViewModels
	Registering the navigation service
	Updating the TripLog app
	Updating the navigation service to handle ViewModel creation and dependency injection

	Summary

	Chapter 5: User Interface
	Custom renderers
	Creating a TableView DatePicker

	Value converters
	Creating a reverse visibility value converter
	Creating an integer-to-image value converter

	Adding pull-to-refresh
	Accessibility
	Supporting screen readers

	Summary

	Chapter 6: API Data Access
	Creating an API with Azure Functions
	Creating an Azure Functions App
	Creating an Azure Function
	Browsing and adding data

	Creating a base HTTP service
	Creating an API data service
	Updating the TripLog app ViewModels

	Offline data caching
	Adding the Akavache library
	Maintaining an offline data cache

	Summary

	Chapter 7: Authentication
	Adding authentication to Azure Functions
	Setting up an identity provider

	Creating an authentication service
	Adding a sign-in page
	Adding a sign-out button
	Summary

	Chapter 8: Testing
	Unit testing
	Testing ViewModels
	Running unit tests in Visual Studio

	Summary

	Chapter 9: App Monitoring
	Mobile app analytics
	Crash reporting

	Visual Studio App Center
	Setting up Visual Studio App Center
	Creating an analytics service
	Tracking exceptions and events

	Summary

	Other Books You May Enjoy
	Index

