

Hands-On Design Patterns
with Java

Learn design patterns that enable the building of large-scale
software architectures

Dr. Edward Lavieri

BIRMINGHAM - MUMBAI

Hands-On Design Patterns with Java
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews. Copyright © 2019 Packt Publishing

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Denim Pinto
Content Development Editor: Tiksha Sarang
Technical Editor: Royce John
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Jisha Chirayil
Production Coordinator: Arvindkumar Gupta

First published: April 2019

Production reference: 1250419

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78980-977-0

www.packtpub.com

http://www.packtpub.com

To IBB, my ride or die, and our eternal puppies, Muzz and Java.

– Ed

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Dr. Edward Lavieri is a veteran software engineer and developer with a strong academic
background. He earned a Doctorate of Computer Science from Colorado Technical
University, an MS in Management Information Systems (Bowie State University), an MS in
Education (Capella University), and an MS in Operations Management (University of
Arkansas). He has been creating and teaching computer science courses since 2002. Edward
retired from the U.S. Navy as a Command Master Chief after 25 years of active service. He
is the founder and creative director of three19, a software design and development studio.
Edward has authored more than a dozen technology books, including several on Java.

About the reviewer
Aristides Villarreal Bravo is a Java developer, a member of the NetBeans Dream Team,
and a Java User Groups leader. He lives in Panama. He has organized and participated in
various conferences and seminars related to Java, JavaEE, NetBeans, the NetBeans platform,
free software, and mobile devices. He is the author of jmoordb framework, and tutorials
and blogs about Java, NetBeans, and web development. He has participated in several
interviews about topics such as NetBeans, NetBeans DZone, and JavaHispano. He is a
developer of plugins for NetBeans.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Section 1: Introducing Design Patterns
Chapter 1: Unified Modeling Language Primer 7

Technical requirements 7
Introducing UML 8
Understanding behavioral UML diagrams 8

Activity diagrams 9
Interaction diagrams 10

Sequence diagrams 11
Communication diagrams 12
Timing diagrams 12

State machine diagrams 13
Use case diagrams 14

Understanding structural UML diagrams 15
Class diagrams 16
Component diagrams 17
Composite structure diagrams 17
Deployment diagrams 18
Object diagrams 19
Package diagrams 20

Summary 20
Questions 21
Further reading 21

Chapter 2: Object-Oriented Design Patterns 22
Technical requirements 22
Introduction to object-oriented programming 23

Primary benefits of OOP 23
Portability 23
Inheritance 24
Encapsulation 25
Polymorphism 25

Sample OOP class 27
Instance variables 29
The this reference 29

Object-oriented programming approaches 29
Accessors and mutators 30
Driver class 31
Constructors 31

Table of Contents

[ii]

Overloading constructors and methods 32
Method call chaining 35

Principles of design patterns 37
Creating concise objects 37
Encapsulating to protect 37
Being purposeful with inheritance 38

Learning the complete OOP class 41
Summary 48
Questions 48
Further reading 48

Section 2: Section 2: Original Design Patterns
Chapter 3: Behavioral Design Patterns 50

Technical requirements 51
Introducing behavioral design patterns 51
Understanding the chain of responsibility pattern 52

Use case 53
UML class diagram 54
Programming the design pattern 54

University email handler interface 55
Main email handler 55
Academic email handler 57
Alumni email handler 58
Advising email handler 58
Finance email handler 59
HR email handler 59
Admin email handler 60

Exploring the command pattern 61
Use case 61
UML class diagram 62
Programming the design pattern 62

Class variables 63
Constructor 63
Accessor methods 63
Power-related methods 64
Slider-related methods 64

Using the interpreter pattern 65
Use case 65
UML class diagram 66
Programming the design pattern 66

The Expression interface 67
The MapIntToCharacters class 67
The Conversion class 68
InterpreterDriver class 69

Using the iterator pattern 71
Use case 71

Table of Contents

[iii]

UML class diagram 72
Programming the design pattern 72

Understanding the mediator pattern 74
Use case 74
UML class diagram 75
Programming the design pattern 76

Starter 76
AssemblySystem 77
Hopper 78
The SystemAccelerator class 79
EmergencyBreak 80
WidgetProductionSystem 82

Examining the memento pattern 85
Use case 85
UML class diagram 86
Programming the design pattern 86

Using the null object pattern 88
Use case 88
UML class diagram 89
Programming the design pattern 89

Observing the observer pattern 91
Use case 91
UML class diagram 91
Programming the design pattern 92

Understanding the state pattern 93
Use case 93
UML class diagram 93
Programming the design pattern 94

PrinterOnLine 94
PrinterOffLine 95
Printer 95
PrinterController 96
Driver 96
Application output 97

Strategizing with the strategy pattern 97
UML class diagram 97

Understanding the template method pattern 98
Understanding the visitor pattern 98
Summary 99
Questions 99
Further reading 100

Chapter 4: Creational Design Patterns 101
Technical requirements 101
Introducing creational design patterns 102
Understanding the abstract factory design pattern 102

Table of Contents

[iv]

Use case 104
UML class diagram 104
Programming the design pattern 106

Interfaces 106
Abstract Factory class 107
TypeA classes 107
TypeB classes 108
Type-C classes 110
Driver class 111

Building with the builder design pattern 113
Use case 113
UML class diagram 114
Programming the design pattern 114

Roaster class 115
Interface 115
Builder classes 116
Director class 119
Driver class 119

Exploring the factory method design pattern 121
Use case 121
UML class diagram 121
Programming the design pattern 122

Using the prototype design pattern 124
Use case 125
UML class diagram 125
Programming the design pattern 126

Examining the simple factory design pattern 129
Use case 130
UML class diagram 130
Programming the design pattern 131

Implementing the singleton design pattern 133
Use case 133
UML class diagram 133
Programming the design pattern 134

Summary 135
Questions 135
Further reading 136

Chapter 5: Structural Design Patterns 137
Technical requirements 137
Introduction to structural design patterns 138
Understanding the adapter design pattern 138

Use case 139
UML class diagram 139
Programming the design pattern 140

Crossing the bridge design pattern 142

Table of Contents

[v]

Learning about abstraction 142
Implementing the abstraction example 143

Use case 146
UML class diagram 146
Programming the design pattern 147

Combining objects with the composite design pattern 151
Use case 151
UML class diagram 151
Programming the design pattern 152

Understanding the decorator design pattern 156
Use case 157
UML class diagram 157
Programming the design pattern 158

Implementing the facade design pattern 160
Use case 161
UML class diagram 162
Programming the design pattern 162

Soaring with the flyweight design pattern 166
Use case 166
UML class diagram 166
Programming the design pattern 167

Implementing the proxy design pattern 170
Use case 171
UML class diagram 171
Programming the design pattern 172

Summary 174
Questions 174
Further reading 175

Section 3: Section 3: New Design Patterns
Chapter 6: Architectural Patterns - Part I 177

Introducing architectural patterns 178
Understanding the blackboard pattern 178

Coffee shop automation example 178
Warehouse security bot example 181

Understanding the broker pattern 182
University enterprise information system example 183
Luxury cruise reservation system example 184

Understanding the client-server pattern 185
Coffee shop example 185
Three-tier example 186

Understanding the event-driven pattern 187
Event-driven architectural pattern – broker 187
Event-driven architectural pattern – mediator 188

Table of Contents

[vi]

Understanding the extract-transform-load pattern 189
Extract 190
Transform 190
Load 191

Understanding the layered pattern 192
Traditional operating system layers example 194
Mobile operating system layers example 194
Business application layers example 195

Understanding the master–slave pattern 196
Single client example 198
Cloud storage example 199

Understanding the microkernel pattern 200
Construction quote example 201
Optical disc player example 202

Summary 203
Questions 203
Further reading 204

Chapter 7: Architectural Patterns - Part II 205
Technical requirements 205
Understanding the microservices pattern 206

Logistics example 207
eCommerce example implementation 208

Understanding the model-view-controller pattern 209
Book model-view-controller example implementation 210

Book class 210
BookView class 211
The BookController class 211
The MVCArchitecturalPattern class 213

Understanding the naked object pattern 214
Understanding the peer-to-peer pattern 215

File sharing example implementation 216
Networking example implementation 217

Understanding the pipe-filter pattern 218
Simple transformation example implementation 219
Complex transformation example implementation 220

Understanding the serverless pattern 221
IaaS implementation 222
PaaS implementation 223
SaaS implementation 223
BaaS implementation 224
MBaaS implementation 224
FaaS implementation 225

Understanding the service-oriented pattern 225
Understanding the space-based pattern 227

Table of Contents

[vii]

Summary 228
Questions 229
Further reading 229

Chapter 8: Functional Design Patterns 230
Technical requirements 230
Introducing functional design patterns 231
Understanding the execute around design pattern 232

Demonstrated implementation 232
Understanding the lambda design pattern 233

Accessing variables 234
Implementing lambda with a single parameter 234
Implementing lambda with multiple parameters 236

Understanding the loan design pattern 239
Implementing file processing 239

Understanding the MapReduce design pattern 243
Input-Map-Output 244

Input 244
Map 245
Output 245

Input-Map-Reduce-Output 245
Input 246
Map 247
Reduce 247
Output 247

Input-Multiple Maps-Reduce-Output 248
Input 248
Multiple maps 249

Input-Map-Combiner-Reduce-Output 249
Understanding the memoization design pattern 250
Understanding the streams design pattern 254

Stream intermediate operations 255
Stream terminal operations 256
Programming the streams design pattern 256

Understanding the tail call design pattern 257
Programming the tail call design pattern 257

Summary 260
Questions 261
Further reading 261

Chapter 9: Reactive Design Patterns 262
Technical requirements 263
Introducing reactive design patterns 263

Responsive 264
Resilient 264
Elastic 264

Table of Contents

[viii]

Message-driven 265
Understanding the asynchronous communication design pattern 266

Implementing the asynchronous communication design pattern 267
Understanding the autoscaling design pattern 272

Horizontal scaling 274
Vertical scaling 275
Implementing autoscaling 275

Understanding the bounded queue design pattern 275
Understanding the bulkhead design pattern 278
Understanding the caching design pattern 280

Implementing the caching design pattern in Java 281
Understanding the circuit-breaker design pattern 285

Use case 286
Understanding the event-driven communication design pattern 286
Understanding the fail-fast design pattern 287

Programming the design pattern 287
Introducing a fail event 289

Understanding the failure-handling design pattern 291
Failure isolation 291
Controlled failure 292

Understanding the fan-out and quickest-reply design pattern 294
Understanding the idempotency design pattern 295

Programming the design pattern 296
Understanding the monitoring design pattern 299
Understanding the publisher-subscriber design pattern 300
Understanding the self-containment design pattern 301
Understanding the stateless design pattern 302

Use case 303
UML class diagram 303
Programming the design pattern 304

Summary 316
Questions 316
Further reading 317

Appendix A: Assessments 318
Chapter 1 318
Chapter 2 318
Chapter 3 319
Chapter 4 319
Chapter 5 320
Chapter 6 320
Chapter 7 321
Chapter 8 321
Chapter 9 322

Table of Contents

[ix]

Other Books You May Enjoy 323

Index 326

Preface
This book was written to provide software engineers, system architects, and software
developers a timeless reference and guide on over 60 design patterns. While the examples
are provided in Java, the explanations and examples are programming language-agnostic.

In addition to covering behavioral, creational, structural, architectural, functional, and
reactive design patterns, this book provides the reader with an introduction to the Unified
Modeling Language (UML) and Object-Oriented Programming (OOP). UML is covered
with specific focus on behavioral and structural diagrams, as they are used throughout the
book to provide a deeper understanding of the featured design-pattern implementations.
OOP is covered to provide the reader with an overview or refresher, depending on their
experience. Understanding OOP principles is key to understanding how to program in
Java.

Who this book is for
This book is for software engineers, system architects, and software developers that want to
understand the different design patterns and how they can be used to create more efficient
and resilient systems. Familiarity with the fundamentals of the Java programming language
is expected.

What this book covers
Chapter 1, Unified Modeling Language Primer, provides an introduction to UML and
explains how it is used to help communicate class structures, objects, and interactions. Four
behavioral diagrams and six structural diagrams are explained, along with examples to
help solidify your understanding of these important components in systems design, and
their applicability to the design patterns featured in this book.

Chapter 2, Object-Oriented Design Patterns, explores fundamental, intermediate, and
advanced concepts and approaches to OOP and their applicability to design patterns. OOP
approaches are examined and a complete OOP class serves as an example of how to
implement OOP concepts. The principles of design patterns are explored, which will prime
you to dive into the design patterns featured in the rest of the book.

Preface

[2]

Chapter 3, Behavioral Design Patterns, explores behavioral design patterns with a specific
focus on the chain of responsibility, command, interpreter, iterator, mediator, memento,
null object, observer, state, strategy, template method, and visitor design patterns. This
chapter demonstrates how behavioral design patterns focus on how system components
interact to form a system.

Chapter 4, Creational Design Patterns, takes a thorough look at the abstract factory, builder,
factory method, prototype, simple factory, and singleton design patterns. The exploration
of these six creational design patterns demonstrates how they are used to manage objects as
they are instantiated.

Chapter 5, Structural Design Patterns, provides detailed information on the adapter, bridge,
composite, decorator, facade, flyweight, and proxy structural design patterns. These
patterns have either an object scope or class scope and relate to how objects and classes are
combined to form a system.

Chapter 6, Architectural Design Patterns – Part I, examines the blackboard, broker, client-
server, event-driven, extract-transform-load, layered, master-slave, and microkernel
architectural design patterns. These design patterns are explained, as is their applicability
to system-level design.

Chapter 7, Architectural Design Patterns – Part II, continues our coverage of architectural
design patterns with a specific look at the microservices, model-view-controller, naked
objects, peer-to-peer, pipe-filter, serverless, service-oriented, and space-based design
patterns.

Chapter 8, Functional Design Patterns, takes a look at functional design and functional
programming. The execute around, lambda, loan, MapReduce, memoization, streams, and
tail call patterns are examined. The chapter also reviews how functional design patterns use
functional programming to solve computational problems and system design challenges.

Chapter 9, Reactive Design Patterns, examines the responsive, resilient, elastic, and message-
driven characteristics of reactive design patterns. Specific design patterns covered in this
chapter include asynchronous communication, autoscaling, bounded queue, bulkhead,
caching, circuit breaker, event-driven communication, fail fast, failure handling, fan-out
and quickest reply, idempotency, monitoring, publisher-subscriber, self-containment, and
stateless patterns.

Preface

[3]

To get the most out of this book
The reader should have a familiarity with Java and be capable of writing, compiling, and
executing Java applications. In order to execute the examples in this book, the reader
should have access to a 64-bit version of Windows 7 (SP1), 8, or 10; a Mac with macOS 10.11
or higher; or a computer running Linux GNOME or KDE desktop.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Hands- On- Design- Patterns- with- Java. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781789809770_ ColorImages. pdf.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789809770_ColorImages.pdf

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Next, we have the Mother class, which extends Grandmother and has its own
constructor method."

A block of code is set as follows:

 Mother() {
 System.out.println("Mother constructor executed.");
 }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

public abstract class MotorHomeAbstractFactory {
 public abstract Frame createFrame();
 public abstract Style createStyle();
 public abstract Engine createEngine();
 public abstract Kitchen createKitchen();
}

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Beneath the Receive Order node is a horizontal black bar referred to as a fork."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Introducing Design

Patterns
In this section, you will gain an understanding of the concept and significance of design
patterns, learn necessary unified modeling language constructs, and learn how design
patterns are classified into a comprehensive library.

The following chapters will be covered:

Chapter 1, Unified Modeling Language Primer
Chapter 2, Object-Oriented Design Patterns

1
Unified Modeling Language

Primer
This book features several design patterns and covers their implementation using Java. We
can use Unified Modeling Language (UML) to help communicate class structures, objects,
and interactions. This chapter provides an overview of UML, with a specific focus on
diagrams applicable to the hands-on activities in this book.

The following topics will be covered in this chapter:

Introducing UML
Behavior diagrams
Structural diagrams

Technical requirements
This chapter does not have any technical requirements. In order to create UML diagrams,
the following open source software tool is recommended:

Modelio, which is available at https:/ /www. modelio. org

https://www.modelio.org
https://www.modelio.org
https://www.modelio.org
https://www.modelio.org
https://www.modelio.org
https://www.modelio.org
https://www.modelio.org
https://www.modelio.org
https://www.modelio.org

Unified Modeling Language Primer Chapter 1

[8]

Modelio can be run on systems with any of the following operating systems:

Debian/Ubuntu
macOS X
RedHat/CentOS
Windows 7
Windows 8
Windows 10

Introducing UML
UML was developed in 1994 to document object-oriented systems. Since that time, UML
has become a standard tool for software engineers, software developers, and businesses.
UML is used to design software and, after programming, also provides a visual record for
the system which can be included as part of formal software documentation.

There are two types of UML diagrams—behavioral and structural. Both are described in the
sections that follow.

Understanding behavioral UML diagrams
Behavioral diagrams illustrate how system components interact to form a system. The four
diagrams listed here are behavioral, and are briefly described in the subsections that follow:

Activity diagrams
Interaction diagrams
State machine diagrams
Use case diagrams

Unified Modeling Language Primer Chapter 1

[9]

Activity diagrams
Activity diagrams illustrate the flow of processes in a system. This type of diagram is used
to visually document activities within a system, also referred to as a system's procedures or
dynamic components.

The following activity diagram shows the activities involved when a coffee shop customer
places an order. The starting point is the top black circle. From there, an order is received.
Beneath the Receive Order node is a horizontal black bar referred to as a fork. There are
three activities that take place in parallel after the fork—Make Drink, Get Bakery, and
Collect Payment. All of those activities take place in parallel. Each of those activities feed
into a second black bar, this time referred to as a join, which has multiple activities linked
to it. Once all three activities are completed, the order can be completed and ends with the
bottom black circle:

An activity diagram for a coffee shop order process

Unified Modeling Language Primer Chapter 1

[10]

Interaction diagrams
Interaction diagrams visually document how system components interact with each other.

In the following interaction diagram, you can see that the flow starts with a decision on
whether the customer is a new, or already existing, customer. In both cases, the interaction
between the Customer object and Customer Database object is documented:

An interaction diagram for a coffee shop order

Unified Modeling Language Primer Chapter 1

[11]

Interaction UML diagrams are robust and come in several different types. The interaction
UML diagram types are listed here and will be covered in the subsequent sections:

Sequence diagram
Communication diagram
Timing diagram

Sequence diagrams
Sequence diagrams are used to show a specific use case scenario. So, these diagrams are
representative of a typical behavior based on the given use case.

The following sequence diagram example visually documents the use case where a student
logs on to an online book order system and enters their course code. The online system
calculates a price and provides this total to the student. The student is then able to submit
their payment, which goes through the online bookstore and informs the fulfillment center,
which ships the books to the student:

An example sequence diagram

Unified Modeling Language Primer Chapter 1

[12]

Communication diagrams
Communication diagrams are a special type of interaction diagrams. They focus on how
system participants are linked to one another.

The following sample communication UML diagram is a partial look at an online book-
ordering system. System participants and their associations are provided:

A sample communication diagram

Timing diagrams
Timing UML diagrams provide a visual representation of a system's time constraints.

The following example shows two time constraints in a bank's vault security system. There
are two objects:

Bio Security System
Vault

Each starts in the Off state. The first time constraint indicates that the vault must be opened
within 15 seconds of the Bio Security System being activated. The second time constraint is
that the vault can only be open for 20 minutes or less:

Unified Modeling Language Primer Chapter 1

[13]

Sample timing diagram

State machine diagrams
State machine diagrams are used to visually describe a system's behavior. The key
components of these diagrams include states and transitions. The sample state machine
provided in the following diagram is for a bank vault. The solid circle is the initial pseudo
state and indicates entry into the system. There are four states—Wait, Unlock, Enable, and
Vault.

In our bank vault example, the vault is enabled when two bank managers place their thumb
on a thumbprint scanner. The vault is unlocked, contingent on a successful thumbprint
scan, by entering the correct combination. When these conditions are met, the Vault state is
reached and the managers can enter it:

State diagram for bank vault

Unified Modeling Language Primer Chapter 1

[14]

Use case diagrams
Use case diagrams document the interactions between your users and your system. This is
typically done with text, but UML does support use cases.

Let's start by looking at use cases in text, and then review a UML diagram representing the
same use cases. We will use an example of a grade book for an online education institution.

The student logs on to the system and selects their class. The student then selects the
assignment and uploads their document. Next, the student enters text and selects the
submit button.

The instructor logs on to the system and selects their class. The instructor then selects the
assignment, and the student. They grade the assignment, enter a grade, and select the
submit button.

These use cases are pretty basic and easy to understand in text. There are only a few
constructs for the use case diagram in UML:

A use case diagram for an online grade book system

Unified Modeling Language Primer Chapter 1

[15]

There are several visual components to the UML use case diagram:

Actor: The stick figure is referred to as an actor. In our example, student and
instructor were both actors. These are the users that use your system. Often, there
are multiple user roles in a system.
Relationship: The solid lines indicate which actors interact with which use case
items.
System: The overall system is represented by a rectangle. Actors are placed
outside of the system and use case items are placed within the system.
Use Case Item: Use case items are represented in ovals, as seen in our
preceding Online Grade Book example. These are the components of your use case.

These visual components are further illustrated as follows:

Another use case diagram for an online grade book system

Understanding structural UML diagrams
Structural diagrams illustrate components of a system. The six diagrams listed here are
structural, and are briefly described in the subsections that follow:

Class diagrams
Component diagrams
Composite structure diagrams

Unified Modeling Language Primer Chapter 1

[16]

Deployment diagrams
Object diagrams
Package diagrams

Class diagrams
The class diagram is the most commonly used UML diagram, as it provides a visual
description of a system's objects. Consider that, in Java, everything is an object, so you can
see the relevance and reason as to why this particular diagram is so widely used. Class
diagrams do more than just display objects—they visually depict their construction and
relationships with other classes.

As you can see here, the basic component of the class diagram is a rectangle, divided into
three sections. Each overall rectangle represents a class, and the class name appears using a
bold typeface in the top section. The middle section contains attributes that correlate to
variable fields. The third section contains operation data which, in Java, means functions
and methods:

The class diagram structure

A simple example of a class diagram for a Kennel is displayed in the following diagram.
The class name is Kennel, and there are three attributes (animal, breed, and name) and two
operations (intake and discharge):

A class diagram of our Kennel class

We will further explore class diagrams using our Kennel class example later in this chapter.

Unified Modeling Language Primer Chapter 1

[17]

Component diagrams
Component diagrams provide a visual representation of a system's physical components.
The following example illustrates the three physical components of the system:

An inventory database
A customer database
An order component

The relationships between these components are annotated with dotted lines in the
following component diagram:

An example component diagram

Composite structure diagrams
The Composite structure UML diagram shows the runtime structure of a system. This
diagram can be used to show the internal components of a class. The following example
shows a microwave with four structures:

A graphical composite structure diagram

Unified Modeling Language Primer Chapter 1

[18]

We can also represent a composite structure with a rectangular box, as illustrated in the
following diagram:

A textual composite structure diagram

Deployment diagrams
Deployment diagrams provide a visual representation of a system's hardware and
software. Physical hardware components are illustrated, along with the particular software
components that are on them. The hardware components are represented as nodes, and
software is represented as an execution environment.

The nodes are drawn as three-dimensional rectangles and represent hardware for a
software object, such as a database. As illustrated in the following example, associations are
annotated with lines marked with the type of communication protocol used. Our example
shows TCP/IP as the communication type:

A deployment diagram for a distributed system

Unified Modeling Language Primer Chapter 1

[19]

Deployment diagrams can be more involved than the example provided here. Our example
does, however, provide sufficient insight for you to progress through the proceeding
chapters.

Object diagrams
Object diagrams have an unfortunate name, as it does not aptly describe this UML
diagram's purpose. The object diagram visually communicates a set of class instances. In
fact, the instances have mostly optional components and are often only partially depicted.
Therefore, a more apt name for this diagram might be a loosely defined instance UML diagram.

The following example depicts four objects and their hierarchy. Because each object is an
instance of a class, it is underlined and followed by a colon and the class name:

A sample object diagram

Unified Modeling Language Primer Chapter 1

[20]

Package diagrams
Package diagrams are used to provide a high-level visual depiction of large systems. These
diagrams are simplistic and simply show how a system's components are grouped. The
following example illustrates nested packages, starting with Java and drilling down to the
ArrayList:

A nested package diagram

Summary
The Universal Modeling Language (UML) is used to create visual documentation of our
systems. This can be used to design a system as well as document a system. UML is widely
used by software engineers, software developers, and other professionals.

Two of the 14 UML diagrams are behavioral and structural. Behavioral diagrams illustrate
how system components interact to form a system and include activity diagrams,
interaction diagrams, state machine diagrams, and use case diagrams. There are several
types of interaction UML diagrams, including sequence diagrams, communication
diagrams, and timing diagrams.

Structural diagrams illustrate components of a system and include class diagrams,
component diagrams, composite structure diagrams, deployment diagrams, object
diagrams, and package diagrams.

Unified Modeling Language Primer Chapter 1

[21]

In the next chapter, Object-Oriented Design Patterns, we will explore intermediate and
advanced concepts and approaches to object-oriented programming and their applicability
to design patterns. A review of the fundamental concepts of object-oriented programming
will help to ensure a deep conceptual understanding of object-oriented programming. An
overview of object-oriented programming-related design pattern principles will also be
provided.

Questions
What are the two basic types of UML diagrams?1.
Why was UML initially created?2.
List four behavioral UML diagrams.3.
Which UML diagram provides a system's process flow?4.
Which UML diagram documents the interactions between a system and its users?5.
What is a UML actor?6.
What type of UML diagram illustrates system components?7.
What is the most commonly used UML diagram?8.
Which UML diagram shows the runtime structure of a system?9.
Which UML diagram visually documents a system's hardware and software?10.

Further reading
UML 2.0 in Action: A project-based-tutorial (https:/ /www. packtpub. com/ hardware-
and-creative/ uml- 20- action- project- based- tutorial)

https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial
https://www.packtpub.com/hardware-and-creative/uml-20-action-project-based-tutorial

2
Object-Oriented Design

Patterns
In this chapter, we will explore intermediate and advanced concepts and approaches to
object-oriented programming (OOP) and their applicability to design patterns. We will
review the fundamental concepts of OOP to facilitate a deep conceptual understanding.
This chapter also covers the principles of OOP design patterns.

Specifically, we will cover the following topics in this chapter:

Introduction to object-oriented programming
Object-oriented programming approaches
Principles of design patterns
Complete OOP class

Technical requirements
The code for this chapter can be found at https:/ /github. com/ PacktPublishing/ Hands-
On-Design-Patterns- with- Java/ tree/ master/ Chapter02.

https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter02

Object-Oriented Design Patterns Chapter 2

[23]

Introduction to object-oriented programming
Object-Oriented Programming (OOP) has been around for a couple of decades now, and
most software developers are familiar with at least one OOP language, such as C or Java.
The introduction of OOP represented a significant computer programming paradigm shift
from the prevailing procedural programming technique. With OOP programming, the
focus is on objects, and the focus of procedural programming is on procedures. For
example, a procedural programming approach to a bicycle management information
system would focus on the procedures that the system might perform. The OOP approach
would focus on the bicycle and model it as an object. With the physical bicycle represented
as an OOP object, we can define characteristics of the object and what behaviors can be
taken with respect to the bicycle object.

In this section, we will cover the basics of OOP and use the bicycle object as a common
reference. This section is subdivided as follows:

Primary benefits of OOP
Sample OOP class
Instance variables
The This reference

Primary benefits of OOP
There are many benefits of OOP. Chief among them are the following:

Portability
Inheritance
Encapsulation
Polymorphism

Each of these aspects is detailed in the following sections.

Portability
Portability, also referred to as modularity, is the primary benefit of OOP. With OOP, we
program in a series of classes. For example, we would have a bicycle class and other classes
for a complete bicycle management system. If there was a problem with a bicycle method,
we immediately know to check the bicycle class. That makes source code troubleshooting
efficient.

Object-Oriented Design Patterns Chapter 2

[24]

The class structure lends itself well to portability. Our example bicycle class can easily be
used in other programs as it is a self-contained object. As mentioned previously, the class
contains all the components of a physical bicycle.

Inheritance
Inheritance in programming is the same as in real life. A girl inherits from her mother, who
inherits from her mother, and so on. The following diagram shows inheritance in the real
world and how it relates to OOP:

Inheritance examples

On the left-hand side of the preceding diagram, a Grandmother passes down traits to the
Daughter, who passes down traits to the Granddaughter. So, the Granddaughter inherits
from both the Daughter and Grandmother. The same inheritance concept applies to our
Bicycle class, which inherits from both the Two-Wheeled class and the Vehicle class. This
is a powerful schema as it avoids class bloating. As an example, if the Vehicle class has
data elements such as year, make, and model, those elements are automatically part of the
Two-Wheeled and Bicycle classes. We will see an example of this later on in this chapter.

Object-Oriented Design Patterns Chapter 2

[25]

Encapsulation
Encapsulation refers to the hidden nature of an object's data components. We know that the
data is there, but cannot access it directly because external entities cannot directly interact
with that data:

Inheritance examples

The illustration above demonstrates how a Bicycle class protects its data from external
methods and functions. The object's own methods are the only mechanism that can directly
view or alter its data.

Polymorphism
Polymorphism is not a word that non-OOP programmers are likely familiar with. The term
polymorphism is generally defined as appearing in multiple forms. In OOP, polymorphism
states that different types of objects can be accessed via a common interface. This can be achieved
by writing overloaded constructors and methods and is covered later in this chapter.
Polymorphism can also be achieved by having subclasses override superclass methods.

Let's take a simple look at this using Java code:

First, we create a Vehicle class that, by default, extends Java's Object class.1.
Next, we create a TwoWheeled class that extends the Vehicle class.2.
Then, we create a Bicycle class that extends the TwoWheeled class.3.

Object-Oriented Design Patterns Chapter 2

[26]

Lastly, we create a Driver class that creates an instance of the Bicycle class and4.
runs four checks using the instanceof keyword:

public class Vehicle {
}

public class TwoWheeled extends Vehicle {
}

public class Bicycle extends TwoWheeled {
}

public class Driver {

 public static void main(String[] args) {

 Bicycle myBike = new Bicycle();

 System.out.println("\nmyBike \"Instance of\" Checks");
 if (myBike instanceof Bicycle)
 System.out.println("Instance of Bicycle: True");
 else
 System.out.println("Instance of Bicycle: False");

 if (myBike instanceof TwoWheeled)
 System.out.println("Instance of TwoWheeled: True");
 else
 System.out.println("Instance of TwoWheeled: False");

 if (myBike instanceof Vehicle)
 System.out.println("Instance of Vehicle: True");
 else
 System.out.println("Instance of Vehicle: False");

 if (myBike instanceof Object)
 System.out.println("Instance of Object: True");
 else
 System.out.println("Instance of Object: False");
 }
}

Object-Oriented Design Patterns Chapter 2

[27]

The output is as follows:

Driver class output

As you can see in the preceding screenshot, an instance of the Bicycle class is also an
instance of TwoWheeled, Vehicle, and Object. This makes the myBike object
polymorphic.

Sample OOP class
Let's develop our Bicycle class further by adding attributes and a behavior. The attributes
will be the number of gears, how much the bicycle cost, the weight, and the color. The
behavior will be the ability to output the attribute values. Here is the source code:

public class Bicycle extends TwoWheeled {

 // instance variable declarations
 private int gears = 0;
 private double cost = 0.0;
 private double weight = 0.0;
 private String color = "";

 // method to output Bicycle's information
 public void outputData() {
 System.out.println("\nBicycle Details:");
 System.out.println("Gears : " + this.gears);
 System.out.println("Cost : " + this.cost);
 System.out.println("Weight : " + this.weight + " lbs");
 System.out.println("Color : " + this.color);
 }

Here is the code for Setters:

 public void setGears(int nbr) {
 this.gears = nbr;
 }
public void setCost(double amt) {
 this.cost = amt;

Object-Oriented Design Patterns Chapter 2

[28]

 }
public void setWeight(double lbs) {
 this.weight = lbs;
 }
public void setColor(String theColor) {
 this.color = theColor;
 }
}

We will take a look at all components of the Bicycle class in subsequent sections. For now,
focus on the public void outputData() method. We will use our Driver class to evoke
that method. Here is the updated Driver class:

public class Driver {

 public static void main(String[] args) {

 Bicycle myBike = new Bicycle();

 myBike.setGears(24);
 myBike.setCost(319.99);
 myBike.setWeight(13.5);
 myBike.setColor("Purple");

 myBike.outputData();
 }
}

In the preceding Driver class, we create an instance of Bicycle called myBike, assign
values to its attributes, and then make a call to the outputData() method. Here are the
output results:

Driver class output

Object-Oriented Design Patterns Chapter 2

[29]

Instance variables
In the Bicycle class, we had four instance variables. Refer to the following code snippet
for reference:

// instance variable declarations
private int gears = 0;
private double cost = 0.0;
private double weight = 0.0;
private String color = "";

These are instance variables because they exist for every instance of the Bicycle class. In
our examples thus far, we only had one instance of Bicycle, but we can have an unlimited
amount, each with their own set of these instance variables.

The this reference
In Java, we can use the this keyword as a reference to the current object. For example, the
following code snippet sets the color of the current Bicycle object:

 public void setColor(String theColor) {
 this.color = theColor;
 }

The preceding setColor method accepts a String parameter and assigns it to the color
instance variable of the current object.

Object-oriented programming approaches
OOP represents an efficient way to develop portable and secure code. The key to
implementing OOP in our applications includes several approaches to include the
following:

Accessors and mutators
Driver class
Constructors
Overloading constructors and methods
Method call chaining

Each of these approaches is covered in the sections that follow.

Object-Oriented Design Patterns Chapter 2

[30]

Accessors and mutators
Accessor methods are those that allow an object's data to be accessed. These methods can
get the data, but not change it. This is a great way to protect the data from being changed.
Accessor methods are also referred to as Getters methods.

Mutator methods, also known as setter methods, allow the object's instance variables to
be changed.

Here is a complete set of accessors and mutators for our Bicycle class:

// Accessors (Getters)
public int getGears() {
 return this.gears;
}

public double getCost() {
 return this.cost;
}

public double getWeight() {
 return this.weight;
}

public String getColor() {
 return this.color;
}

// Mutators (Setters)
public void setGears(int nbr) {
 this.gears = nbr;
}

public void setCost(double amt) {
 this.cost = amt;
}

public void setWeight(double lbs) {
 this.weight = lbs;
}

public void setColor(String theColor) {
 this.color = theColor;
}

Object-Oriented Design Patterns Chapter 2

[31]

As you can see in the preceding code, we use the this reference for the current object. The
accessors do not take any parameters and simply return the value of the instance variable.
The mutators take a parameter and use its value in assigning a new value to an instance
variable.

Driver class
While driver classes are not specific to OOP languages, they are a best practice approach to
implementation. They are used to drive a multi-class program. As you would expect, they
contain a main() method to signify the starting point for your application's execution.

An example Driver class was provided earlier in this chapter.

Constructors
Constructors are a special kind of method that are run when an object is initialized. We use
constructors to set up an object with default values. Let's take a look at what our Bicycle
class constructor would be. The following code should be placed in the Bicycle class after
the instance variable section:

// constructor
Bicycle() {
 this.color = "Navy Blue";
}

As you can see from the preceding, the constructor sets the color of the newly instantiated
object to Navy Blue. When we run the following Driver class, an instance of Bicycle is
instantiated, causing the Bicycle class constructor to run, and then a call to the
outputData() method is made:

public class Driver {

 public static void main(String[] args) {

 Bicycle myBike = new Bicycle();

 myBike.outputData();
 }
}

Object-Oriented Design Patterns Chapter 2

[32]

The preceding code shows the Driver class. The following is the output from
the outputData() method call.

outputData() execution results

Overloading constructors and methods
When constructors and methods are declared, we include the expected parameters. For
example, our Bicycle() constructor does not take any parameters. We can overload that
constructor by creating one or more versions of it, each with a different set of parameters.
Let's look at our Bicycle class with four constructors:

// constructor - default
Bicycle() {
}

// constructor - String parameter
Bicycle(String aColor) {
 this.color = aColor;
}

// constructor - int parameter
Bicycle(int nbrOfGears) {
 this.gears = nbrOfGears;
}

// constructor - int, double, double, String parameters
Bicycle(int nbrOfGears, double theCost, double theWeight, String aColor) {
 this.gears = nbrOfGears;
 this.cost = theCost;
 this.weight = theWeight;
 this.color = aColor;
}

Object-Oriented Design Patterns Chapter 2

[33]

The default constructor is used when an instance of the object is created without any
parameters. We would use the following code link:

Bicycle myBike1 = new Bicycle();

We can use one of the overloaded methods when creating a Bicycle object, simply by
passing the proper arguments, based on what the overloaded method expects as
parameters. The following Driver class shows the creation of four Bicycle objects, one
using a different constructor:

public class Driver {

 public static void main(String[] args) {

 Bicycle myBike1 = new Bicycle();
 Bicycle myBike2 = new Bicycle("Brown");
 Bicycle myBike3 = new Bicycle(22);
 Bicycle myBike4 = new Bicycle(22, 319.99, 13.5, "White");

 myBike1.outputData();
 myBike2.outputData();
 myBike3.outputData();
 myBike4.outputData();

 }
}

As you can see from the following output provided, each Bicycle object was created with
a different constructor. Overloading the constructor increases the flexibility in object
creation:

Object-Oriented Design Patterns Chapter 2

[34]

outputData() execution results

We can also overload methods. For example, we have used the outputData() method in
our Bicycle class several times already. Let's overload that method so that we can pass
additional text to be printed in the output. Here are both versions of that method:

// method to output Bicycle's information
public void outputData() {
 System.out.println("\nBicycle Details:");
 System.out.println("Gears : " + this.gears);
 System.out.println("Cost : " + this.cost);
 System.out.println("Weight : " + this.weight + " lbs");
 System.out.println("Color : " + this.color);
}

// method to output Bicycle's information - overloaded
public void outputData(String bikeText) {
 System.out.println("\nBicycle " + bikeText + " Details:");
 System.out.println("Gears : " + this.gears);
 System.out.println("Cost : " + this.cost);
 System.out.println("Weight : " + this.weight + " lbs");
 System.out.println("Color : " + this.color);
}

Object-Oriented Design Patterns Chapter 2

[35]

As you can see in the preceding code, our overloaded method accepts a String parameter
and incorporates that in the first printed line. We can modify our Driver class as shown in
the following code snippet:

myBike1.outputData("Nbr 1");
myBike2.outputData("Nbr 2");
myBike3.outputData("Nbr 3");
myBike4.outputData("Nbr 4");

The output is presented here and illustrates how easy it is to create and use overloaded
methods:

Overloaded outputData(String) execution results

Method call chaining
OOP affords us the opportunity to use method call chaining. That is the process of making
multiple method calls in a single statement. Here is the syntax:

object.method1().method2().method3().method4();

Object-Oriented Design Patterns Chapter 2

[36]

Using the syntax provided previously, we can walk through the process of method call
chaining. The object first calls method1(), which returns the calling object. Next, that
returned object calls method2(), which returns the calling object. You can see the process
here. It works from left to right.

So, we can implement this in our Driver class, as shown here:

// Example using method call chaining
Bicycle myBike5 = new Bicycle(24, 418.50, 17.2, "Green");
myBike5.setColor("Peach").setGears(32).outputData("Number 5");

Before this code can work, we will need to make two changes to each method we want to
use in our method call chaining:

Add a return type to the method definition
Add a return this; statement to each method

Here is an example of the setGears() method that the preceding changes listed made:

public Bicycle setGears(int nbr) {
 this.gears = nbr;
 return this;
}

Once these changes are made, we can run the Driver class:

Method call chaining execution results

The preceding screenshot shows the final result.

Object-Oriented Design Patterns Chapter 2

[37]

Principles of design patterns
So far, we have discussed taking a multi-class approach to designing object-oriented
programs. We also used examples to demonstrate the use of accessors, mutators,
constructors, and driver classes. There are three key principles to bear in mind when
studying the design patterns presented in subsequent chapters of this book:

Creating concise objects
Encapsulating to protect
Being purposeful with inheritance

These principles are explored in the subsequent sections.

Creating concise objects
Objects are at the core of OOP. This principle aims to remind software designers and
developers to isolate objects to a specific model. Using our Bicycle class as an example,
we would create Bicycle objects that contained the appropriate attributes and behaviors.
The bicycle attributes used in this chapter were gears, cost, weight, and color. We created
accessors and mutators for each of those attributes. We also created a method that echoed
the object's attributes to the output console. No behaviors were added to the Bicycle
object, but we could have included behaviors such as upgrade().

What we did not include in the Bicycle class were attributes and behaviors that were
ancillary to the Bicycle object. Examples of these include the owner's address, vacation
details, and more. While the data might be somewhat related to a specific Bicycle, it is not
part of a real-world bicycle that we need to model.

Adhering to this principle helps ensure our code is concise, easy to maintain, and portable.

Encapsulating to protect
Earlier in this chapter, we defined encapsulation as the hidden nature of an object's data.
Granting access to an object's data via its own accessors and mutators is a great approach to
data protection.

Object-Oriented Design Patterns Chapter 2

[38]

We use encapsulation as an approach to data protection in OOP. Encapsulating too much
data into a class is an anti-pattern—something that should be avoided. As with the create
concise objects approach, we should identify what data all copies of an object have in
common and only encapsulate those data elements. Other data might be better suited for an
ancillary class.

Being purposeful with inheritance
Inheritance is a powerful OOP construct. We can model objects efficiently, as was
illustrated with the bicycle. We know that the following relationships exist:

Bicycle is a two wheeled
Bicycle is a vehicle
Bicycle is a object

When we program inheritance, we should perform the "IS A" Checks using the
following pseudo-code logic:

if (<new child object> is a <parent object>) then relationship = True;
else relationship = False

If our "IS A" Checks fails, then inheritance should be avoided. This is an important test
that, with dedicated use, can help ensure that inheritance lines between objects are valid.

Let's create the "IS A" Checks for our Bicycle class. We will do this by using Java's
instanceof operator. Here is the code in three sections. The first section runs the checks
for myBike6 and checks to see whether it is an instance of Bicycle, TwoWheeled,
Vehicle, and Object:

// "IS A" Checks
System.out.println("\n\"IS A\" CHECKS");

// focus on myBike6
Bicycle myBike6 = new Bicycle();

if (myBike6 instanceof Bicycle)
 System.out.println("myBike6 Instance of Bicycle: True");
else
 System.out.println("myBike6 Instance of Bicycle: False");

if (myBike6 instanceof TwoWheeled)
 System.out.println("myBike6 Instance of TwoWheeled: True");
else
 System.out.println("myBike6 Instance of TwoWheeled: False");

Object-Oriented Design Patterns Chapter 2

[39]

if (myBike6 instanceof Vehicle)
 System.out.println("myBike6 Instance of Vehicle: True");
else
 System.out.println("myBike6 Instance of Vehicle: False");

if (myBike6 instanceof Object)
 System.out.println("myBike6 Instance of Object: True");
else
 System.out.println("myBike6 Instance of Object: False");

The second section runs the checks for myTwoWheeled and checks to see whether it is an
instance of Bicycle, TwoWheeled, Vehicle, and Object:

// focus on TwoWheeled
TwoWheeled myTwoWheeled = new TwoWheeled();

if (myTwoWheeled instanceof Bicycle)
 System.out.println("\nmyTwoWheeled Instance of Bicycle: True");
else
 System.out.println("\nmyTwoWheeled Instance of Bicycle: False");

if (myTwoWheeled instanceof TwoWheeled)
 System.out.println("myTwoWheeled Instance of TwoWheeled: True");
else
 System.out.println("myTwoWheeled Instance of TwoWheeled: False");

if (myTwoWheeled instanceof Vehicle)
 System.out.println("myTwoWheeled Instance of Vehicle: True");
else
 System.out.println("myTwoWheeled Instance of Vehicle: False");

if (myTwoWheeled instanceof Object)
 System.out.println("myTwoWheeled Instance of Object: True");
else
 System.out.println("myTwoWheeled Instance of Object: False");

The third and final section runs the checks for myVehicle and checks to see whether it is an
instance of Bicycle, TwoWheeled, Vehicle, and Object:

// focus on Vehicle
Vehicle myVehicle = new Vehicle();

if (myVehicle instanceof Bicycle)
 System.out.println("\nmyVehicle Instance of Bicycle: True");
else
 System.out.println("\nmyVehicle Instance of Bicycle: False");

if (myVehicle instanceof TwoWheeled)

Object-Oriented Design Patterns Chapter 2

[40]

 System.out.println("myVehicle Instance of TwoWheeled: True");
else
 System.out.println("myVehicle Instance of TwoWheeled: False");

if (myVehicle instanceof Vehicle)
 System.out.println("myVehicle Instance of Vehicle: True");
else
 System.out.println("myVehicle Instance of Vehicle: False");

if (myVehicle instanceof Object)
 System.out.println("myVehicle Instance of Object: True");
else
 System.out.println("myVehicle Instance of Object: False");

The output of the three sections of is a code is provided here. As you can see,
the myBike6 object is an instance of Bicycle, TwoWheeled, Vehicle,
and Object; the myTwoWheeled object is an instance of TwoWheeled, Vehicle,
and Object; and the myVehicle object is an instance of Vehicle and Object. We can also
see that the myTwoWheeled object is not an instance of Vehicle or Object; and that the
myVehicle object is not an instance of Bicycle or TwoWheeled:

Results of "IS A" checks

The preceding screenshot depicts this example.

Object-Oriented Design Patterns Chapter 2

[41]

Learning the complete OOP class
Throughout this chapter, we made use of a Bicycle class. As illustrated in the following,
we created a hierarchy to demonstrate inheritance as a key feature of OOP. All objects
inherit from the Object class in Java. Our hierarchy has Bicycle inheriting from
TwoWheeled, which inherits from Vehicle, which inherits from Object:

Bicycle class hierarchy

For our Bicycle class to work with the intended hierarchy, we created classes for Vehicle
and TwoWheeled. Here are those classes:

public class Vehicle {
}

public class TwoWheeled extends Vehicle {
}

The Vehicle and TwoWheeled classes do not offer anything to the Bicycle class.
Normally, each would have attributes and behaviors associated with them.

The completed Bicycle class, as refined throughout this chapter, is provided in the
following sections. This first section has the class definition and the four instance variables:

public class Bicycle extends TwoWheeled {

 // instance variable declarations
 private int gears = 0;
 private double cost = 0.0;
 private double weight = 0.0;
 private String color = "";

Object-Oriented Design Patterns Chapter 2

[42]

The next section of the Bicycle class contains the constructors. The first constructor does
not take any parameters and is the default constructor. The second constructor accepts a
String parameter. The third constructor accepts a single int parameter. The final
constructor accepts four parameters:

 // constructor - default
 Bicycle() {
 }

 // constructor - String parameter
 Bicycle(String aColor) {
 this.color = aColor;
 }

 // constructor - int parameter
 Bicycle(int nbrOfGears) {
 this.gears = nbrOfGears;
 }

 // constructor - int, double, double, String parameters
 Bicycle(int nbrOfGears, double theCost, double theWeight, String
aColor) {
 this.gears = nbrOfGears;
 this.cost = theCost;
 this.weight = theWeight;
 this.color = aColor;
 }

After the overloaded constructor methods, we have two methods to output data. The
outputData() method is overloaded so that it can be used without any parameters or with
a single String parameter:

 // method to output Bicycle's information
 public void outputData() {
 System.out.println("\nBicycle Details:");
 System.out.println("Gears : " + this.gears);
 System.out.println("Cost : " + this.cost);
 System.out.println("Weight : " + this.weight + " lbs");
 System.out.println("Color : " + this.color);
 }

 // method to output Bicycle's information - overloaded
 // - method call chaining enabled
 public Bicycle outputData(String bikeText) {
 System.out.println("\nBicycle " + bikeText + " Details:");
 System.out.println("Gears : " + this.gears);
 System.out.println("Cost : " + this.cost);

Object-Oriented Design Patterns Chapter 2

[43]

 System.out.println("Weight : " + this.weight + " lbs");
 System.out.println("Color : " + this.color);

 return this;
 }

The next section of our Bicycle class contains the four Accessor methods, one for each of
the instance variables:

 // Accessors (Getters)
 public int getGears() {
 return this.gears;
 }

 public double getCost() {
 return this.cost;
 }

 public double getWeight() {
 return this.weight;
 }

 public String getColor() {
 return this.color;
 }

The final section of our Bicycle class contains the four Mutator methods, one for each of
the instance variables:

 // Mutators (Setters) - method call chaining enabled
 public Bicycle setGears(int nbr) {
 this.gears = nbr;
 return this;
 }

 public Bicycle setCost(double amt) {
 this.cost = amt;
 return this;
 }

 public Bicycle setWeight(double lbs) {
 this.weight = lbs;
 return this;
 }

 public Bicycle setColor(String theColor) {
 this.color = theColor;
 return this;

Object-Oriented Design Patterns Chapter 2

[44]

 }

}

We also made several changes to our Driver class. That class is provided here over several
successive sections. The code includes in-code comments to organize and identify each
code block:

This first code block defines the class, includes the main() method definition,1.
creates a myBike instance of Bicycle, and provides example calls to mutators.
Then, a sample output statement is provided that makes a call to the
getColor() accessor method:

public class Driver {

 public static void main(String[] args) {

 // Example calls to mutators
 Bicycle myBike = new Bicycle();
 myBike.setGears(24);
 myBike.setCost(319.99);
 myBike.setWeight(13.5);
 myBike.setColor("Purple");
 System.out.println("\nmyBike's color is " +
myBike.getColor());

The second block of code provides example calls to the overloaded constructor.2.
There are four instances of the Bicycle object created, each using a different
overloaded constructor:

// Example of calls to overloaded constructor
Bicycle myBike1 = new Bicycle();
Bicycle myBike2 = new Bicycle("Brown");
Bicycle myBike3 = new Bicycle(22);
Bicycle myBike4 = new Bicycle(22, 319.99, 13.5, "White");

Our third code block makes four calls to the overloaded outputData() method:3.

myBike1.outputData("Nbr 1");
myBike2.outputData("Nbr 2");
myBike3.outputData("Nbr 3");
myBike4.outputData("Nbr 4");

Object-Oriented Design Patterns Chapter 2

[45]

The fourth code block provides an example of method call chaining:4.

// Example using method call chaining
Bicycle myBike5 = new Bicycle(24, 418.50, 17.2, "Green");
myBike5.setColor("Peach").setGears(32).outputData("Number 5");

The fifth code bock provides "IS A" Checks for the Bicycle class. We start by5.
creating an instance of Bicycle and then run our checks against the newly
created myBike6 object:

// "IS A" Checks
System.out.println("\n\"IS A\" CHECKS");

// focus on myBike6
Bicycle myBike6 = new Bicycle();

if (myBike6 instanceof Bicycle)
 System.out.println("myBike6 Instance of Bicycle: True");
else
 System.out.println("myBike6 Instance of Bicycle: False");

if (myBike6 instanceof TwoWheeled)
 System.out.println("myBike6 Instance of TwoWheeled: True");
else
 System.out.println("myBike6 Instance of TwoWheeled: False");

if (myBike6 instanceof Vehicle)
 System.out.println("myBike6 Instance of Vehicle: True");
else
 System.out.println("myBike6 Instance of Vehicle: False");

if (myBike6 instanceof Object)
 System.out.println("myBike6 Instance of Object: True");
else
 System.out.println("myBike6 Instance of Object: False");

The sixth code bock provides the "IS A" Checks for the TwoWheeled class. We6.
start by creating an instance of TwoWheeled and then running our checks against
the newly created myTwoWheeled object:

// focus on TwoWheeled
TwoWheeled myTwoWheeled = new TwoWheeled();

if (myTwoWheeled instanceof Bicycle)
 System.out.println("\nmyTwoWheeled Instance of Bicycle: True");
else
 System.out.println("\nmyTwoWheeled Instance of Bicycle:

Object-Oriented Design Patterns Chapter 2

[46]

False");

if (myTwoWheeled instanceof TwoWheeled)
 System.out.println("myTwoWheeled Instance of TwoWheeled:
True");
else
 System.out.println("myTwoWheeled Instance of TwoWheeled:
False");

if (myTwoWheeled instanceof Vehicle)
 System.out.println("myTwoWheeled Instance of Vehicle: True");
else
 System.out.println("myTwoWheeled Instance of Vehicle: False");

if (myTwoWheeled instanceof Object)
 System.out.println("myTwoWheeled Instance of Object: True");
else
 System.out.println("myTwoWheeled Instance of Object: False");

The seventh and final code bock provides the "IS A" Checks for the Vehicle7.
class. We start by creating an instance of Vehicle and then running our checks
against the newly created myVehicle object:

 // focus on Vehicle
 Vehicle myVehicle = new Vehicle();

 if (myVehicle instanceof Bicycle)
 System.out.println("\nmyVehicle Instance of Bicycle:
True");
 else
 System.out.println("\nmyVehicle Instance of Bicycle:
False");

 if (myVehicle instanceof TwoWheeled)
 System.out.println("myVehicle Instance of TwoWheeled:
True");
 else
 System.out.println("myVehicle Instance of TwoWheeled:
False");

 if (myVehicle instanceof Vehicle)
 System.out.println("myVehicle Instance of Vehicle:
True");
 else
 System.out.println("myVehicle Instance of Vehicle:
False");

 if (myVehicle instanceof Object)

Object-Oriented Design Patterns Chapter 2

[47]

 System.out.println("myVehicle Instance of Object:
True");
 else
 System.out.println("myVehicle Instance of Object:
False");
 }
}

The complete output of the Driver class is provided as follows:

Driver class output

In this section, we demonstrated OOP using a complete OOP Bicycle application.

Object-Oriented Design Patterns Chapter 2

[48]

Summary
This chapter started with an introduction to OOP. Portability, inheritance, encapsulation,
and polymorphism were deemed to be the primary benefits of OOP and were explored. A
sample OOP class was examined in detail. That class, the Bicycle class, was used to
demonstrate key OOP concepts to include instance variables, the this reference, accessors,
mutators, driver class, constructors, overloading, and method call chaining. The chapter
ended with a look at key OOP principles—create concise objects, encapsulate to protect,
and purposeful inheritance.

In the next chapter, Behavioral Design Patterns, we will explore the behavioral design pattern
category and its individual design patterns of chain of responsibility, mediator, memento,
null object, observer, state, strategy, template method, and visitor. We will examine the
programming challenges and design patterns that resolve them.

Questions
What are the primary benefits of OOP languages?1.
Which OOP construct lends itself well to portability?2.
What refers to the hidden nature of an object's data components?3.
What is the definition of polymorphism in relation to OOP?4.
What is the this reference used for?5.
What is an accessor method?6.
What is a mutator method?7.
What is a constructor?8.
How are overloaded constructors or methods unique?9.
In what direction are chained method calls executed?10.

Further reading
Hands-On Object-Oriented Programming with Java 11 [Video] (https:/ /www.
packtpub. com/ application- development/ hands- object- oriented-
programming- java- 11- video)
Learning Object-Oriented Programming (https:/ /www. packtpub. com/ application-
development/ learning- object- oriented- programming)

https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/hands-object-oriented-programming-java-11-video
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming
https://www.packtpub.com/application-development/learning-object-oriented-programming

2
Section 2: Original Design

Patterns
In this section, the categories behavioral, creational, and structural will be explored. For
each of these categories, their design patterns will be explained along with step-by-step
instructions on how to solve the underlying design challenge. The behavioral category
contains 12 design patterns; the creational category contains 6 design patterns, and the
structural category contains 7 design patterns.

The following chapters will be covered:

Chapter 3, Behavioral Design Patterns
Chapter 4, Creational Design Patterns
Chapter 5, Structural Design Patterns

3
Behavioral Design Patterns

In the previous chapter, we explored Object-Oriented Programming (OOP) and accepted
it as the preferred programming approach for this and the remaining chapters in the book.
We learned the key OOP principles—concise objects, encapsulation to protect, and
purposeful inheritance—and we will see evidence of those principles in the design patterns
and source code presented throughout this book.

In this chapter, we will explore the behavioral design pattern category and its individual
design patterns listed as follows. We will examine programming challenges and the
behavioral design patterns that solve them:

Introducing behavioral design patterns
Chain of responsibility pattern
Command pattern
Interpreter pattern
Iterator pattern
Mediator pattern
Memento pattern
Null object pattern
Observer pattern
State pattern
Strategy pattern
Template method pattern
Visitor pattern

Behavioral Design Patterns Chapter 3

[51]

Technical requirements
The code for this chapter can be found here: https:/ /github. com/PacktPublishing/
Hands-On-Design- Patterns- with- Java/ tree/ master/ Chapter03.

Introducing behavioral design patterns
In Chapter 1, Unified Modeling Language Primer, we learned that behavioral diagrams
illustrate how system components interact to form a system. We examined the following
behavioral diagrams—activity diagram, interaction diagram, state Machine diagram, and
use case diagram. It follows that behavioral design patterns are focused on the interaction
of objects and classes in a system. The key component here is the interaction, also referred
to as the communication between objects and classes.

The twelve behavioral design patterns presented in this chapter can be grouped into two
subcategories—those that focus on classes and those that focus on objects. The following
table details the subcategories:

Object Scope Class Scope
Chain of responsibility pattern Interpreter pattern
Command pattern Template method pattern
Iterator pattern
Mediator pattern
Memento pattern
Null object pattern
Observer pattern
State pattern
Strategy pattern
Visitor pattern

Behavioral design pattern subcategories

The behavioral design patterns listed in the preceding table are detailed in the remaining
sections of this chapter. They are presented in alphabetical order to illustrate that one is not
more important than the others. Here is a brief description of each design pattern's
applicability to the behavioral design category. These are further detailed in subsequent
sections of this chapter:

Chain of responsibility pattern: An object submits a request to multiple objects
without knowing which object will handle the request

https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter03

Behavioral Design Patterns Chapter 3

[52]

Command pattern: Permits the sending of requests without knowing details
about the receiver or even about what is being requested
Interpreter pattern: Used to establish a grammatical representation and an
interpreter that interprets language
Iterator pattern: Grants access to an object's members without sharing the
encapsulated data structures
Mediator pattern: Used to permit object interactions without using explicit object
references
Memento pattern: Saves an object's current internal state as a memento so that it
can be referred to and restored to
Null object pattern: Negates the need to search for the null condition
Observer pattern: Updates subscriber objects when a change is made to the
publisher object's state
State pattern: Allows an object to change its behavior based on internal state
changes
Strategy pattern: Allows us to individually encapsulate a set of interchangeable
algorithms
Template method pattern: Involves creating an algorithm template with
processing steps relegated to child classes
Visitor pattern: Performs operations on an object without altering its structure

Understanding the chain of responsibility
pattern
The purpose of the chain of responsibility design pattern involves senders and receivers.
Specifically, the chain of responsibility design pattern calls for the decoupling of the sender
and receiver. Objects can be sent to a series of receivers without the sender being concerned
about which receiver handles the request. The request is sent along a chain of receivers and
only one of them will process the request. Let's look at some examples of this.

Consider a large customer service agency that handles thousands of incoming emails each
day. Instead of having a person or persons manually review each one to determine which
department should process the email, we can write a Java program using the chain of
responsibility design pattern to send the emails along the chain so that they are processed
by the appropriate department.

Behavioral Design Patterns Chapter 3

[53]

Another example is a call center. Many call centers now ask the caller to briefly describe
what they are calling about and then the caller is placed in a queue. The caller's brief
descriptions are recorded and then analyzed for key words. The calls are routed along the
chain and then processed by the appropriate agent. In cases when an agent receives a call
that is not appropriate for them, say it is regarding billing and the agent handles shipping,
then the call can be sent further down the chain.

We will further explore a third example that involves incoming emails to a university. The
university has several functional areas and wants to ensure the emails are routed to the
appropriate team. We will look at the use case, UML class diagram, and the source code
necessary to implement the chain of responsibility design pattern for this scenario.

Use case
To demonstrate the chain of responsibility design pattern, we will use the university email
scenario briefly mentioned in the previous section. For our example, we design a system
that takes incoming emails and searches for specific keywords to help determine which
university team the email should be routed to. Specifically, we will account for the
following:

Keywords University Team Java Handler
academic Academic Team AcademicEmailHandler()

alumni, transcript Alumni Affairs AlumniEmailHandler()

advising, schedule, course Advising Staff AdvisingEmailHandler()

financial, student aid, tuition Finance Staff FinanceEmailHandler()

career, job, faculty Human Resources HREmailHandler()

other Admin Team AdminEmailHandler()

As you can see from the table, we identified handler classes to be implemented in Java.
Having individual handlers for each type of email request will improve our application's
efficiency.

Behavioral Design Patterns Chapter 3

[54]

UML class diagram
Before we look at the UML class diagram, let's determine the chain of responsibility flow.
As emails are received, they will be sent down the chain until they are processed by a team.
We do have to provide the path, and that path, for our example, is illustrated here:

Chain of responsibility path

The following UML class diagram shows how we will implement the university email
system. First, we will create a UniversityEmailHandler interface, a MainEmailHandler
class, and six email handler classes, one for each of the university teams that will receive
emails for processing:

Chain of responsibility—UML diagram

The chain of responsibility's directional flow is implied by the UML class diagram's layout.

Programming the design pattern
The source code for the university email system is provided here:

UnversityEmailHandler()

MainEmailHandler()

Behavioral Design Patterns Chapter 3

[55]

AcademicEmailHandler()

AlumniEmailHandler()

AdvisingEmailHandler()

FinanceEmailHandler()

HREmailHandler()

AdminEmailHandler()

The interface and classes are detailed next, along with the full source code.

University email handler interface
The UniversityEmailHandler interface has two methods. The first method,
setNextEmailHandler(), accepts a UniversityEmailHandler argument, which will be
the next handler in the chain of authority. The second method, processEmailHandler(),
is used if the email is processed by the current handler:

public interface UniversityEmailHandler {

 public void setNextEmailHandler(UniversityEmailHandler emailHandler);

 public void processEmailHandler(String emailText);

}

The preceding code explains the handler interface.

Main email handler
MainEmailHandler() is the primary handler and implements the
UniversityEmailHandler interface. The first part of this class contains the
processEmailHandler() method, which performs the search of the email text for the
keywords assigned to each email handler. The following code shows this:

public abstract class MainEmailHandler implements UniversityEmailHandler {

 private UniversityEmailHandler theNextHandlerInTheChain;

 public void setNextEmailHandler(UniversityEmailHandler emailHandler) {
 theNextHandlerInTheChain = emailHandler;
 }

 public void processEmailHandler(String emailText) {

Behavioral Design Patterns Chapter 3

[56]

 // starting value
 boolean keyWordFound = false;

 // check for a matching keyword in emailText
 if (keyWords().length == 0) {
 keyWordFound = true;
 } else {
 for (String oneKeyWord : keyWords()) {
 if (emailText.indexOf(oneKeyWord) >= 0) {
 keyWordFound = true; // change value if match is found
 break; // leave loop if match is found
 }
 }
 }

Next, we check to determine whether the email can be processed by the current email
handler based on the keyword match:

 if (keyWordFound) {
 processEmailHandler(emailText);
 } else {
 // pass along the chain if the email is not processed
 // by the current email handler
 theNextHandlerInTheChain.processEmailHandler(emailText);
 }
 }

The third part of the MainEmailHandler() class contains the handleEmail() method,
which takes the email text as a parameter. It then creates instances of each handler:

 public static void handleEmail(String emailText) {
 UniversityEmailHandler academic = new AcademicEmailHandler();
 UniversityEmailHandler alumni = new AlumniEmailHandler();
 UniversityEmailHandler advising = new AdvisingEmailHandler();
 UniversityEmailHandler finance = new FinanceEmailHandler();
 UniversityEmailHandler hr = new HREmailHandler();
 UniversityEmailHandler admin = new AdminEmailHandler();

The final part of the MainEmailHandler() class sets up the direction for the chain by
making calls to the setNextEmailHandler() method for each of the email handlers
except for the last one, AdminEmailHandler(), since that is our catchall email handler:

 // setup chain direction
 academic.setNextEmailHandler(alumni);
 alumni.setNextEmailHandler(advising);
 advising.setNextEmailHandler(finance);
 finance.setNextEmailHandler(hr);
 hr.setNextEmailHandler(admin);

Behavioral Design Patterns Chapter 3

[57]

 // we do not need to set the next email handler after admin
 // because it is the end of the chain of responsibility

 // this line will start the chain
 academic.processEmailHandler(emailText);
 }
 protected abstract String[] keyWords();
 protected abstract void processEmailFinal(String emailText);
}

The MainEmailHandler() code provided is the primary handler and contains the
processEmailHandler() method, which performs the search of the email text for the
keywords assigned to each email handler.

Academic email handler
The AcademicEmailHandler class extends the MainEmailHandler class. It assigns the
keywords specific to the academic email handler and contains the processEmailFinal()
method:

public class AcademicEmailHandler extends MainEmailHandler {

 protected String[] keyWords() {
 // setup keywords for the receiver team
 return new String[] {"academic"};
 }

 protected void processEmailFinal(String emailText) {
 System.out.println("The Academic Team processed the email.");
 }

 @Override
 public void setNextEmailHandler(UniversityEmailHandler emailHandler) {

 }
}

The processEmailFinal() method of the AcademicEmailHandler class shown informs
the user that the academic email handler took care of the received email.

Behavioral Design Patterns Chapter 3

[58]

Alumni email handler
The AlumnicEmailHandler class extends the MainEmailHandler class. It assigns the
keywords specific to the alumni email handler and contains the processEmailFinal()
method:

public class AlumniEmailHandler extends MainEmailHandler {

 protected String[] keyWords() {
 // setup keywords for the receiver team
 return new String[] {"alumni", "transcript"};
 }

 protected void processEmailFinal(String emailText) {
 System.out.println("The Alumni Team processed the email.");
 }

 @Override
 public void setNextEmailHandler(UniversityEmailHandler emailHandler) {

 }
}

The processEmailFinal() method just shown informs the user that the alumni email
handler took care of the received email.

Advising email handler
The AdvisingEmailHandler class extends the MainEmailHandler class. It assigns the
keywords specific to the advising email handler and contains the processEmailFinal()
method:

public class AdvisingEmailHandler extends MainEmailHandler {

 protected String[] keyWords() {
 // setup keywords for the receiver team
 return new String[] {"advising", "schedule", "course"};
 }

 protected void processEmailFinal(String emailText) {
 System.out.println("The Advising Team processed the email.");
 }

 @Override
 public void setNextEmailHandler(UniversityEmailHandler emailHandler) {

Behavioral Design Patterns Chapter 3

[59]

 }
}

The processEmailFinal() method just shown informs the user that the advising email
handler took care of the received email.

Finance email handler
The FinanceEmailHandler class extends the MainEmailHandler class. It assigns the
keywords specific to the finance email handler and contains the processEmailFinal()
method:

public class FinanceEmailHandler extends MainEmailHandler {

 protected String[] keyWords() {
 // setup keywords for the receiver team
 return new String[] {"financial", "student aid", "tuition"};
 }

 protected void processEmailFinal(String emailText) {
 System.out.println("The Finance Team processed the email.");
 }

 @Override
 public void setNextEmailHandler(UniversityEmailHandler emailHandler) {

 }
}

The processEmailFinal() method just shown informs the user that the finance email
handler took care of the received email.

HR email handler
The HREmailHandler class extends the MainEmailHandler class. It assigns the keywords
specific to the HR email handler and contains the processEmailFinal() method:

public class HREmailHandler extends MainEmailHandler {

 protected String[] assignedKeyWords() {
 // setup keywords for the receiver team
 return new String[]{"career", "job", "faculty"};
 }

 @Override

Behavioral Design Patterns Chapter 3

[60]

 protected String[] keyWords() {
 return new String[0];
 }

 protected void processEmailFinal(String emailText) {
 System.out.println("The Human Resources Team processed the
email.");
 }

 @Override
 public void setNextEmailHandler(UniversityEmailHandler emailHandler) {

 }
}

The processEmailFinal() method just shown informs the user that the HR email handler
took care of the received email.

Admin email handler
The AdminEmailHandler class extends the MainEmailHandler class. Unlike the other
classes, it does not assign any keywords specific to the admin email handler. If an email is
sent to this handler, the last one in the chain of responsibility, it will process the email and
inform the user via the processEmailFinal() method:

public class AdminEmailHandler extends MainEmailHandler {

 protected String[] keyWords() {
 // Here it does not matter what the keywords are
 return new String[0];
 }

 protected void processEmailFinal(String emailText) {
 System.out.println("The Admin Team processed the email.");
 }

 @Override
 public void setNextEmailHandler(UniversityEmailHandler emailHandler) {

 }
}

The processEmailFinal() method just shown informs the user that the admin email
handler took care of the received email.

Behavioral Design Patterns Chapter 3

[61]

This section featured the university email system's source code, demonstrating the chain of
responsibility design pattern.

Exploring the command pattern
The purpose of the command design pattern is to send requests as objects. This pattern, also
referred to as the transaction or action design pattern, permits the sending of requests
without knowing any details about the receiver or even about what is being requested. This
might sound counter-intuitive, and requires that it be looked at from a systems perspective
and not a human-managed operation. With the command pattern, we encapsulate requests
as objects and transmit them to a receiver.

We will look at an example use case, the UML class diagram, and the source code necessary
to implement the command design pattern for this scenario.

Use case
A common use of the command pattern is with user interfaces and related frameworks.
This can be extended to both hardware and software interfaces. To demonstrate the
command pattern, we will model a hardware control box that contains an on/off toggle, a
slider that has a range between 0 and 100, and a digital display for the slider value. Key to
our example is that the hardware control box is manufactured without knowing what
specifically it will be used for. The following diagram depicts this:

Command design pattern—ControlBox example

Behavioral Design Patterns Chapter 3

[62]

In the next section, we will review a UML class diagram associated with our control box
example.

UML class diagram
Core to the control box example is a ControlBox Java class. The UML class diagram
illustrated next shows four attributes—SLIDER_MIN, SLIDER_MAX, poweredOn, and
sliderValue; the first two are capitalized to denote their final status:

UML class diagram—ControlBox example

The UML class diagram also shows six behaviors that are the ControlBox class methods.
Those are shown in Java code in the next section.

Programming the design pattern
In order to implement our control box example, we need to create a ControlBox class
based on the UML diagram in the previous section. The class is presented in the following
sections:

Class variables
Constructor
Accessor methods
Power-related methods
Slider-related methods

Behavioral Design Patterns Chapter 3

[63]

Class variables
There are four class variables in the ControlBox class. The first two set the minimum and
maximum values for the slider and are final int variables. The second two class variables
are poweredOn and sliderValue. The poweredOn variable is of the Boolean type and will
be used to store the state of the power. The sliderValue is an int variable and simply
holds the current value of the slider:

public class ControlBox {

 // Class Variables - Public / Final
 public static final int SLIDER_MIN = 0;
 public static final int SLIDER_MAX = 100;

 // Class Variables - Private
 private boolean poweredOn;
 private int sliderValue;

The initial part of the ControlBox class is provided.

Constructor
The ControlBox class constructor sets the initial values when an instance of the class is
instantiated. The power will be set to off based on the Boolean value of false, and the initial
slidervalue will be set to 0:

// Constructor
public ControlBox () {
 poweredOn = false; // default value
 sliderValue = 0; // default value
}

The ControlBox class constructor does not take any arguments and sets default values.

Accessor methods
There are only two variables that require accessor methods—sliderValue and
poweredOn. Accessor methods for those variables are provided here:

// Accessor Methods
public int getSliderValue() {
 return sliderValue;
}

Behavioral Design Patterns Chapter 3

[64]

public boolean hasPower () {
 return poweredOn;
}

The accessor methods just shown can also be referred to as getter methods.

Power-related methods
Two methods are required to manage power—powerOn() and powerOff():

// Method to turn power on
public void powerOn() {
 poweredOn = true;
}

// Method to turn power off
public void powerOff() {
 poweredOn = false;
}

The preceding methods serves a toggles for the poweredOn variable.

Slider-related methods
The final section of the ControlBox class provides methods to increase or decrease the
slider value. It is important to check two things when adjusting the slider value. First, we
need to ensure the power is on. We can check that by making a call to our hasPower()
method. The second check is to ensure we do not go outside the minimum-maximum
range, as follows:

 // Method to increase slider value
 public void sliderIncrease () {
 if (hasPower()) {
 if (getSliderValue() < SLIDER_MAX) {
 sliderValue++;
 System.out.println(sliderValue); // simulate sending value
to digital display
 }
 }
 }

 // Method to decrease slider value
 public void sliderDecrease () {
 if (hasPower()) {
 if (getSliderValue() > SLIDER_MIN) {

Behavioral Design Patterns Chapter 3

[65]

 sliderValue--;
 System.out.println(sliderValue); // simulate sending value
to digital display
 }
 }
 }

}

The slider value can be used to manage temperature, volume, quantity, or other values
based on what system the control box is integrated with. This demonstrates the command
pattern.

This section featured the source code that demonstrates the command design pattern.

Using the interpreter pattern
The interpreter design pattern is used to establish a grammatical representation and an
interpreter that interprets language. That might sound a bit complex and, although the
concept is simple, their implementation often is not. This design pattern can be used for the
interpretation of interpreted programming languages or languages that are compiled in
byte code or other intermediate languages such as the Microsoft Intermediate Language
(MSIL).

We will look at an example use case, the UML class diagram, and the source code necessary
to implement the interpreter design pattern for this scenario.

Use case
We will demonstrate the interpreter design pattern by using a simple number-to-character
scenario. Our Code Interpreter program will accept numeric input and translate it to a
series of characters. For example, an input string of 319 might return a value of YES. We
will use an expression interface and three classes to demonstrate this relatively simple use
case.

Behavioral Design Patterns Chapter 3

[66]

The following screenshot shows the example program's output, given the user's input:

Code Interpreter output

The preceding screenshot shows the user input as 319.

UML class diagram
As illustrated in the following UML class diagram, our Code Interpreter example
consists of an interface and three classes. All of these four components will be described in
the next section along with their implementation in Java:

UML class diagram—Code Interpreter example

As illustrated, the MapIntToCharacters class implements the Expression interface.

Programming the design pattern
The Code Interpreter application is an example implementation of the interpreter
design pattern. Our application consists of the following components:

Expression interface
MapIntToCharacters class
Conversion class
InterpreterDriver class

Behavioral Design Patterns Chapter 3

[67]

The Expression interface
The Expression interface declares the interpret() method, which receives a
Conversion object as an argument:

interface Expression {

 void interpret(Conversion orignalContent);

}

As shown, the Expression interface consists of a single interpret() method.

The MapIntToCharacters class
The MapIntToCharacters class includes a single String class variable and a constructor
method. The constructor expects a String argument:

public class MapIntToCharacters implements Expression {

 // class variable
 private String tString;

 // constructor
 public MapIntToCharacters(String tString) {
 this.tString = tString;
 }

 @Override
 public void interpret(Conversion orignalContent) {
 orignalContent.convertToCharacters(tString);
 }
}

The MapIntToCharacters class overrides the interpret() method.

Behavioral Design Patterns Chapter 3

[68]

The Conversion class
The Conversion class applies when there is conversion from numbers to letters (int to
char). The class has a single String class variable and a constructor method that is passed
to the user's input. The class has one additional method, the convertToCharacters()
method. That method converts the user's input into a character array and then processes
that array, one character at a time. The processing is implemented with a simple switch
statement. Each numerical value, from 0 through 9, has a corresponding character. The
characters are printed one at a time until the entire character array has been processed.

The first section of our Conversion class follows:

public class Conversion {

 // class variable
 public String userInput;

 // constructor
 public Conversion(String userInput) {
 this.userInput = userInput;
 }

 public void convertToCharacters(String userInput) {

 this.userInput = userInput;

 System.out.print("Decrypted Message: ");
 char answer[] = userInput.toCharArray();

The remaining code from the Conversion class is provided here:

 for (int i=0; i < answer.length; i++) {
 switch (answer[i]) {
 case '0':
 System.out.print("A");
 break;
 case '1':
 System.out.print("E");
 break;
 case '2':
 System.out.print("I");
 break;
 case '3':
 System.out.print("Y");
 break;
 case '4':
 System.out.print("O");

Behavioral Design Patterns Chapter 3

[69]

 break;
 case '5':
 System.out.print("L");
 break;
 case '6':
 System.out.print("R");
 break;
 case '7':
 System.out.print("T");
 break;
 case '8':
 System.out.print("C");
 break;
 case '9':
 System.out.print("S");
 break;
 }
 }
 }
}

The preceding code implements a 10-character mapping of integers. A complete
implementation would account for the entire alphabet or, depending on the language,
alphabets.

InterpreterDriver class
The InterpreterDriver class is the class that drives the application and therefore
contains the main() method. There are two class variables, originatingContent and
theExpression; both are initially set to null.

In addition to the constructor method, there is also an interpret() method that does the
following:

Uses the Scanner class1.
Instantiates a new Expression instance2.
Calls the interpret() method on the new Expression instance3.

Behavioral Design Patterns Chapter 3

[70]

The InterpreterDriver class is provided next:

import java.util.Scanner;

public class InterpreterDriver {

 // class variables
 public Conversion originatingContent = null;
 public Expression theExpression = null;

 public InterpreterDriver(Conversion content) {
 originatingContent = content;
 }

 public void interpret(String tString) {

 Scanner in = new Scanner(System.in);
 theExpression = new MapIntToCharacters(tString);
 theExpression.interpret(originatingContent);
 }

Execution of the InterpreterDriver main() method starts by printing the output
header, CODE INTERPRETER, and prompts users for their input. Next, the Scanner class is
used to obtain user input via their keyboard. That input is used to create a new
Conversion instance. That instance is used to instantiate a new InterpreterDriver
object. Finally, the interpret() method is called on that InterpreterDriver object:

 public static void main(String[] args) {
 System.out.println("\n\nCODE INTERPRETER\n");
 System.out.print("Enter your code: ");
 Scanner in = new Scanner(System.in);
 String userInput = in.nextLine();
 System.out.println("Your code: " + userInput);
 Conversion conversion = new Conversion(userInput);
 InterpreterDriver userCode = new InterpreterDriver(conversion);
 userCode.interpret(userInput);
 System.out.println("\n\n");
 }
}

Behavioral Design Patterns Chapter 3

[71]

The program's output is provided here:

Code Interpreter program—console output

This section featured the source code, demonstrating the interpreter design pattern.

Using the iterator pattern
The purpose of the iterator design pattern is to grant access to an object's members without
sharing the encapsulated data structures. There are two main motivations for using the
iterator design pattern. First, not all object data is stored in the same manner. For example,
an online store that aggregates content from other vendors might have a vendor that uses
an array, another that uses a list, and a third that uses an ArrayList. A second reason is to
avoid exposing data structures. Both the variability of storage approaches and data security
can be addressed with the iterator design pattern.

The iterator design pattern is implemented by using the Iterator interface, part of the
java.util package.

We will look at a simple use case, the UML class diagram, and the source code necessary to
implement the iterator design pattern for this scenario.

Use case
Implementing the iterator design pattern essentially makes use of Java's Iterator
interface. We will use a single class example that creates an ArrayList of strings and uses
an iterator to iterate through the list, printing each element.

Behavioral Design Patterns Chapter 3

[72]

UML class diagram
Java's Iterator interface is part of the java.util package and is a member of the Java
collections framework. As you can see from the UML class diagram, the interface includes
four methods:

UML class diagram—interface Iterator

The forEachRemaining() method iterates through an object's elements. The hasNext()
method returns a Boolean value depending on whether there are more iterations to go
through. The next() method simply returns the next sequential iteration element. The final
method, remove(), removes that last iterated element from the object.

Programming the design pattern
The first part of our source code includes import statements for ArrayList and
Iterator. In the main() method, we create a colonies ArrayList of strings. We then
populate 12 elements to the ArrayList:

import java.util.ArrayList;
import java.util.Iterator;

public class IteratorExample {

 public static void main(String[] args) {

 ArrayList<String> colonies = new ArrayList<>();

 colonies.add("Aerlion");
 colonies.add("Aquaria");
 colonies.add("Canceron");
 colonies.add("Caprica");
 colonies.add("Gemenon");
 colonies.add("Leonis");
 colonies.add("Libran");
 colonies.add("Picon");
 colonies.add("Sagittaron");

Behavioral Design Patterns Chapter 3

[73]

 colonies.add("Scorpia");
 colonies.add("Tauron");
 colonies.add("Virgon");

The second half of the source code does three things. First, it instantiates an iterator named
myIterator. Next, a simple text header is printed to the console. Lastly, the code iterates
through the ArrayList, printing each element:

 // instantiate iterator
 Iterator myIterator = colonies.iterator();

 // console output
 System.out.println("\n\nOriginal Colonies of Kobol:");

 // iterate through the list
 while (myIterator.hasNext())
 System.out.println("\t\t" + myIterator.next());

 }
}

The iteration was able to take place without knowing that the colonies object stored its
data in an ArrayList.

The output of our sample application is illustrated here:

Iterator application output

This section featured the source code and output, demonstrating the iterator design pattern.

Behavioral Design Patterns Chapter 3

[74]

Understanding the mediator pattern
The mediator design pattern is used to permit object interactions without using explicit
object references. This is an advanced use of the object-oriented programming
encapsulation concept. Mediators manage the interactions between two or more objects. A
real-world example is a legal mediator where both sides of a lawsuit communicate to the
mediator, but not directly to each other.

We will look at an example use case, the UML class diagram, and the source code necessary
to implement the mediator design pattern for this scenario.

Use case
To demonstrate the mediator design pattern, we will emulate a widget production system
that includes a hopper for parts, a starter to start the system, an assembly system to
combine hopper components, an accelerator, and an emergency break to manage the speed
of the system.

There are inter-relations between the various components for our mediator to manage.
These inter-relationships are detailed here:

Components in the left column have the listed impact on the components listed in columns two
through six.

Starter Assembly System Hopper Accelerator Decelerator

Starter N/A Powers this
component

Powers this
component

Powers this
component

Powers this
component

Assembly
System

Starter must be on
for the assembly

system to function
N/A Engages

Hopper N/A N/A

Hopper
Starter must be on
for the hopper to

function

Hopper must be
on for the

assembly system
to function

N/A N/A N/A

Accelerator
Starter must be on
for the accelerator

to function

Increases speed of
this component

Increases speed
of this

component
N/A

When
accelerator is
engaged, this
component is
not available

Behavioral Design Patterns Chapter 3

[75]

Emergency
Break

Starter must be on
for the emergency
break to function

Sets speed to zero
for this

component

Sets speed to
zero for this
component

When
emergency

break is
engaged, this
component is
not available

N/A

Widget production system inter-relationships

As you can see from the table, there are 16 inter-relationships among the 5 system
components for the mediator to manage.

UML class diagram
The UML diagram illustrated next documents the six classes required for our
WidgetProductionSystem. The WidgetProductionSystem class serves as the mediator
between the other five classes, which do not interact directly:

UML class diagram—mediator design pattern implementation

Behavioral Design Patterns Chapter 3

[76]

The preceding UML diagram shows six classes required for the implementation of the
WidgetProductionSystem.

Programming the design pattern
The following classes are required to implement the WidgetProductionSystem system:

Starter

AssemblySystem

Hopper

SystemAccelerator

EmergencyBreak

WidgetProductionSystem

All of these classes are detailed in subsequent sections.

Starter
The Starter class includes two class variables, a constructor method, an accessor
method, and two methods that toggle the starter on and off. The constructor is used to
instantiate copies of the class. The accessor method simply returns the value of the
poweredOn variable:

public class Starter {

 private WidgetProductionSystem mediator;
 private boolean poweredOn;

 // Constructor
 public Starter(WidgetProductionSystem mediator) {
 this.mediator = mediator;
 poweredOn = false;

 mediator.mediateStarter(this);
 }

 // accessor
 public boolean isSystemOn() {
 return poweredOn;
 }

 public void turnOn() {

Behavioral Design Patterns Chapter 3

[77]

 poweredOn = true;
 mediator.starterPoweredOn();
 System.out.println("Mediated Event: Started Powered On");
 }

 public void turnOff() {
 poweredOn = false;
 mediator.starterPoweredOff();
 System.out.println("Mediated Event: Starter Powered Off");
 }
}

Also provided are the turnOn() and turnOff() methods, which simply toggle the value
of the powerOn variable.

AssemblySystem
The AssemblySystem class is presented here in two chunks, shown as follows:

The first chunk starts with SystemSpeed enum creation, class variables, and the1.
constructor method. Accessor and mutator methods are also included for the
currentSpeed variable:

public class AssemblySystem {

 public enum SystemSpeed {ZERO, ONE, TWO, THREE, FOUR, FIVE,
 SIX, SEVEN, EIGHT, NINE, TEN};

 private WidgetProductionSystem mediator;
 private boolean enabled;
 private SystemSpeed currentSpeed;

 // constructor
 public AssemblySystem(WidgetProductionSystem mediator) {
 this.mediator = mediator;
 enabled = false;
 currentSpeed = SystemSpeed.ZERO;
 mediator.mediateAssemblySystem(this);
 }

 // accessor
 public SystemSpeed getSystemSpeed() {
 return currentSpeed;
 }

 // mutator

Behavioral Design Patterns Chapter 3

[78]

 public void setSystemSpeed(SystemSpeed speed) {
 if ((isEnabled()) && (getSystemSpeed() != speed)) {
 currentSpeed = speed;
 mediator.assemblySystemSpeedChanged();
 System.out.println("Mediated Event: System Speed
Changed to "
 + currentSpeed + ".");
 }
 }

The second chunk of the AssemblySystem class has methods that enable and2.
disable the system as well as one to check whether it is currently enabled:

 // additional methods
 public void enable() {
 enabled = true;
 mediator.assemblySystemEnabled();
 System.out.println("Mediated Event: System Initialized.");
 }

 public void disable() {
 enabled = false;
 mediator.assemblySystemDisabled();
 System.out.println("Mediated Event: System
Deinitialized.");
 }

 public boolean isEnabled() {
 return enabled;
 }
}

The final method shown returns the Boolean value of Enabled.

Hopper
The Hopper class contains two class variables, a constructor method and an accessor
method, to determine whether the hopper is currently enabled. The class code is as follows:

public class Hopper {

 private WidgetProductionSystem mediator;
 private boolean enabled;

 // constructor
 public Hopper(WidgetProductionSystem mediator) {

Behavioral Design Patterns Chapter 3

[79]

 this.mediator = mediator;
 enabled = false;
 mediator.mediateHopper(this);
 }

 // accessor
 public boolean getHopperEnabled() {
 return enabled;
 }

 public void enable() {
 enabled = true;
 mediator.hopperEnabled();
 System.out.println("Mediated Event: Hopper Initialized.");
 }

 public void disable() {
 enabled = false;
 mediator.hopperDisabled();
 System.out.println("Mediated Event: Hopper Deinitialized.");
 }
}

The final two methods shown, enable() and disable(), toggle the Boolean value of the
enabled variable.

The SystemAccelerator class
The SystemAccelerator class is presented here in two parts. The first part establishes the
class variables, the constructor method, an accessor method that returns the speed, and an
isEnabled() method that returns the value of the enabled variable:

public class SystemAccelerator {

 // class variables
 private WidgetProductionSystem mediator;
 private boolean enabled;
 private int speed;

 // constructor
 public SystemAccelerator(WidgetProductionSystem mediator) {
 this.mediator = mediator;
 enabled = false;
 speed = 0;
 mediator.mediateSystemAcceleration(this);
 }

Behavioral Design Patterns Chapter 3

[80]

 // accessor
 public int getAcceleratorSpeed() {
 return speed;
 }

 public boolean isEnabled() {
 return enabled;
 }

The second part of the SystemAccelerator class contains three methods. The enable()
and disable() methods toggle the value of the enabled variable:

 public void enable() {
 enabled = true;
 mediator.systemAcceleratorEnabled();
 System.out.println("Mediated Event: System Accelerator Enabled.");
 }

 public void disable() {
 enabled = false;
 mediator.systemAcceleratorDisabled();
 System.out.println("Mediated Event: System Accelerator Disabled.");
 }

 public void accelerateToSpeed(int speed) {
 if (isEnabled()) {
 this.speed = speed;
 mediator.systemAcceleratorUsed();
 System.out.println("Mediated Event: System Accelerator Set to "
 + speed + ".");
 }
 }
}

The third method in the SystemAccelerator class is the accelerateToSpeed() method,
which handles the speed change.

EmergencyBreak
The EmergencyBreak class is presented in two parts. The first part defines the class
variables: the constructor method, and the enable() and disable() methods:

public class EmergencyBreak {

 // class variables
 private WidgetProductionSystem mediator;

Behavioral Design Patterns Chapter 3

[81]

 private boolean enabled;
 private boolean applied;

 // constructor
 public EmergencyBreak(WidgetProductionSystem mediator) {
 this.mediator = mediator;
 enabled = false;
 applied = false;
 mediator.mediateEmergencyBreak(this);
 }

 public void enable() {
 enabled = true;
 mediator.setEmergencyBreakEnabled();
 System.out.println("Mediated Event: System Decelerator Enabled.");
 }

 public void disable() {
 enabled = false;
 mediator.setEmergencyBreakDisabled();
 System.out.println("Mediated Event: System Decelerator Disabled.");
 }

The remaining part of the EmergencyBreak class has the isEnabled(), apply(), and
release() methods:

 public boolean isEnabled() {
 return enabled;
 }

 public void apply() {
 if (isEnabled()) {
 applied = true;
 mediator.setEmergencyBreakEngaged();
 System.out.println("Mediated Event: Emergency Break Engaged.");
 }
 }
 public void release() {
 if (isEnabled()) {
 applied = false;
 mediator.setEmergencyBreakDisengaged();
 System.out.println("Mediated Event: Emergency Break
Disengaged.");
 }
 }
}

Behavioral Design Patterns Chapter 3

[82]

As shown, the isEnabled() method simply returns the Boolean value of the enabled
variable. The apply() and release() methods simulate the emergency break being
applied and released.

WidgetProductionSystem
Our example WidgetProductionSystem class manages mediation between the other
classes. The source code is presented in six sequential parts. The first part of the class
defines the class variables and contains the constructor method:

public class WidgetProductionSystem {

 // class variables
 private Starter starter;
 private AssemblySystem assemblySystem;
 private SystemAccelerator systemAccelerator;
 private EmergencyBreak emergencyBreak;
 private Hopper hopper;
 private int currentSpeed;

 // constructor
 public WidgetProductionSystem() {
 currentSpeed = 0;
 }

The second part of the WidgetProductionSystem class contains five mediation methods:

// mediation methods
public void mediateStarter(Starter starter) {
 this.starter = starter;
}

public void mediateAssemblySystem(AssemblySystem assemblySystem) {
 this.assemblySystem = assemblySystem;
}

public void mediateSystemAcceleration(SystemAccelerator systemAccelerator)
{
 this.systemAccelerator = systemAccelerator;
}

public void mediateEmergencyBreak(EmergencyBreak emergencyBreak) {
 this.emergencyBreak = emergencyBreak;
}

public void mediateHopper(Hopper hopper) {

Behavioral Design Patterns Chapter 3

[83]

 this.hopper = hopper;
}

The third part of the WidgetProductionSystem class contains the first two object
interaction methods. The two featured here are starterPoweredOn() and
starterPoweredOff(). Based on the power status, several other component settings are
changed:

// object interaction methods
public void starterPoweredOn() {
 assemblySystem.enable();
 hopper.enable();
 systemAccelerator.enable();
 emergencyBreak.enable();
}

public void starterPoweredOff() {
 assemblySystem.disable();
 hopper.disable();
 systemAccelerator.disable();
 emergencyBreak.disable();
}

Part four of the WidgetProductionSystem class contains seven additional object
interaction methods:

public void assemblySystemEnabled() {
 System.out.println("Mediation Decision: Hopper Enabled.");
}

public void assemblySystemDisabled() {
 System.out.println("Mediation Decision: Hopper Disabled.");
}

public void hopperEnabled() {
 System.out.println("Mediation Decision: Assembly System Enabled.");
}

public void hopperDisabled() {
 System.out.println("Mediation Decision: Assembly System Disabled.");
}

public void assemblySystemSpeedChanged() {
 System.out.println("Mediation Decision: Permissible Speed Change.");
}

public void systemAcceleratorEnabled() {

Behavioral Design Patterns Chapter 3

[84]

 System.out.println("Mediation Decision: Emergency Break Enabled");
}

public void systemAcceleratorDisabled() {
 System.out.println("Mediation Decision: Emergency Break Disabled");
}

The fifth part of the WidgetProductionSystem class contains the
systemAcceleratorUsed() method. This method converts the int speed set to the
appropriate enum system speed:

public void systemAcceleratorUsed() {
 emergencyBreak.disable();
 while (currentSpeed < systemAccelerator.getAcceleratorSpeed()) {
 currentSpeed ++;
 System.out.println("Mediation Event: Speed Changed to " +
currentSpeed + ".");

 if (currentSpeed <= 10) {
 assemblySystem.setSystemSpeed(AssemblySystem.SystemSpeed.ONE);
 } else if (currentSpeed <= 20) {
 assemblySystem.setSystemSpeed(AssemblySystem.SystemSpeed.TWO);
 } else if (currentSpeed <= 30) {
assemblySystem.setSystemSpeed(AssemblySystem.SystemSpeed.THREE);
 } else if (currentSpeed <= 40) {
 assemblySystem.setSystemSpeed(AssemblySystem.SystemSpeed.FOUR);
 } else if (currentSpeed <= 50) {
 assemblySystem.setSystemSpeed(AssemblySystem.SystemSpeed.FIVE);
 } else if (currentSpeed <= 60) {
 assemblySystem.setSystemSpeed(AssemblySystem.SystemSpeed.SIX);
 } else if (currentSpeed <= 70) {
assemblySystem.setSystemSpeed(AssemblySystem.SystemSpeed.SEVEN);
 } else if (currentSpeed <= 80) {
assemblySystem.setSystemSpeed(AssemblySystem.SystemSpeed.EIGHT);
 } else if (currentSpeed <= 90) {
 assemblySystem.setSystemSpeed(AssemblySystem.SystemSpeed.NINE);
 } else {
assemblySystem.setSystemSpeed(AssemblySystem.SystemSpeed.TEN); }
 }
 emergencyBreak.enable();
}

Behavioral Design Patterns Chapter 3

[85]

Next, the WidgetProductionSystem class contains the last four object interaction
methods:

 public void setEmergencyBreakEnabled() {
 System.out.println("Mediation Decision: System Accelerator
Disabled.");
 }

 public void setEmergencyBreakDisabled() {
 System.out.println("Mediation Decision: System Accelerator
Enabled.");
 }

 public void setEmergencyBreakEngaged() {
 systemAccelerator.disable();
 currentSpeed = 0;
 }

 public void setEmergencyBreakDisengaged() {
 assemblySystem.setSystemSpeed(AssemblySystem.SystemSpeed.ZERO);
 currentSpeed = 0;
 }
}

This section featured the source code, demonstrating the mediator design pattern.

Examining the memento pattern
The memento design pattern saves an object's current internal state as a memento so that it
can be referred to and restored to. If you have ever used Ctrl + Z (Windows) or Cmd + Z
(Mac) to undo a change, you were restoring to a previous state using the memento design
pattern. A benefit of using this design pattern is that we honor encapsulation, providing
data protection.

We will look at an example use case, the UML class diagram, and the source code necessary
to implement the memento design pattern for this scenario.

Use case
An example case for using the memento design pattern is with video game progress. When
a player fails a mission and the game is over, the scores and other values are often reset to
an earlier save point. We will use a simple game mission example to demonstrate the
memento design pattern.

Behavioral Design Patterns Chapter 3

[86]

UML class diagram
Our implementation of the memento design pattern involves two classes—GameMission

and GameMissionMemento. All of these classes is detailed along with their source code in
the next section of this chapter:

UML class diagram—memento design pattern implementation

As illustrated in the UML class diagram, the two classes do not share an inheritance
relationship.

Programming the design pattern
The first class in our example is the GameMission class. As you can see, we have two class
variables. The percentageCompleted int is private and the
getPercentageCompleted() accessor method is used to obtain the variable's value. The
second class variable is previousPercentageCompleted. This is assumed private to the
current Java package; there is no associated accessor method for this variable:

public class GameMission {

 // class variables
 private int percentageCompleted;
 int previousPercentageCompleted;

 // constructor
 public GameMission() {
 percentageCompleted = 0;
 previousPercentageCompleted = 0;
 }

 // mutator
 public void setPercentageCompeted(int percentage) {
 previousPercentageCompleted = percentageCompleted;
 percentageCompleted = percentage;
 }

Behavioral Design Patterns Chapter 3

[87]

 // accessor
 public int getPercentageCompleted() {
 return percentageCompleted;
 }
}

The GameMissionMemento class contains three class variables, a constructor method, and
the resetMissionStatus() method. A review of the constructor method reveals different
approaches to gaining access to the GameMission data. The
gameMission.getPercentageCompleted() method call uses the accessor method in the
GameMission class. The gameMission.previousPercentageCompleted statement
accesses the data directly. The following code shows this:

public class GameMissionMemento {

 // class variables
 private GameMission gameMission;
 private int copyOfCurrentCompletionProgress;
 private int copyOfPreviousCompletionProgress;

 // constructor
 public GameMissionMemento(GameMission gameMission) {
 this.gameMission = gameMission;
 copyOfCurrentCompletionProgress =
gameMission.getPercentageCompleted();
 copyOfPreviousCompletionProgress =
gameMission.previousPercentageCompleted;
 }

 public void resetMissionStatus() {
 gameMission.setPercentageCompeted(copyOfCurrentCompletionProgress);
 gameMission.previousPercentageCompleted =
copyOfPreviousCompletionProgress;
 }
}

This section featured the source code, demonstrating the memento design pattern.

Behavioral Design Patterns Chapter 3

[88]

Using the null object pattern
The null object design pattern is relatively straightforward. It is a common task to check for
null values during routine programming. We check for null so that we do not receive a null
pointer exception from the Java Virtual Machine (JVM) at runtime.

The null object design pattern negates the need to search for the null condition. This is
accomplished by creating a null object class. The null object class is designed to implement
the same interface as other classes in the package. No functionality is included in the null
object class.

We will look at an example use case, the UML class diagram, and the source code necessary
to implement the null object design pattern for this scenario.

Use case
We will demonstrate the null object design pattern with a simple TrainStatus interface
that has three methods to activate, deactivate, and check whether the object is currently
activated. Five classes will be used, each implementing the TrainStatus interface. The
NorthernTrain, EasternTrain, SouthernTrain, and WesternTrain classes will be
identical. The NullObjectTrain class will be similar to the other classes in that it will
implement the TrainStatus interface, but it will have no functionality. This is illustrated
with the UML class diagram in the next section and then again with the source code in an
additional section.

Behavioral Design Patterns Chapter 3

[89]

UML class diagram
The following UML class diagram shows the TrainStatus interface, which is
implemented by five additional classes. Each of those classes is identical with the exception
of the NullObjectTrain class, which will have no functionality:

UML class diagram—null object design pattern implementation

As indicated in the UML class diagram, the WesterTrain, NorthernTrain,
EasterTrain, SouthernTrain, and NullObjectTrain classes each implement the
TrainStatus interface.

Programming the design pattern
The source code for the TrainStatus interface follows:

public interface TrainStatus {
 public void activate();
 public void deactivate();
 public boolean isActivated();
}

Behavioral Design Patterns Chapter 3

[90]

The source code for the NorthernTrain, EasternTrain, SouthernTrain, and
WesternTrain classes is identical, so only the WesternTrain class is shown here:

public class WesternTrain implements TrainStatus {

 private boolean activated;

 public void activate() {
 activated = true;
 System.out.println("Train Status Update: Western Train
Activated.");
 }

 public void deactivate() {
 activated = false;
 System.out.println("Train Status Update: Western Train
Deactivated.");
 }

 public boolean isActivated() {
 return activated;
 }
}

The NullObjectTrain class is slightly different from the other classes in that it does not
contain any functionality. Also, the isActivated() method returns false, as this is not
an actual train and will never be activated:

public class NullObjectTrain implements TrainStatus {

 public void activate() {
 // no functionality
 }

 public void deactivate() {
 // no functionality
 }

 public boolean isActivated() {
 return false;
 }
}

Use of the null object design pattern negates the need to test for a null condition.

This section featured the source code, demonstrating the null object design pattern.

Behavioral Design Patterns Chapter 3

[91]

Observing the observer pattern
The observer design pattern requires a one-to-many object dependency. The purpose of the
dependency is to update subscriber objects when a change is made to the publisher object's
state. An example is an online university course discussion forum. There is one forum and
many subscribers. When an update to the forum is made, the subscribers are notified.
Subscribers have the option of unsubscribing when they no longer want to be notified of
changes to the discussion forum.

We will look at an example use case, the UML class diagram, and the source code necessary
to implement the observer design pattern for this scenario.

Use case
We will utilize the discussion forum example to demonstrate the observer design pattern.
Our example will consist of one discussion forum and multiple subscribers. We can also
refer to these subscribers as observers.

UML class diagram
The UML class diagram illustrates a basic implementation of the observer design pattern:

UML class diagram—observer design pattern implementation

As shown in the UML class diagram, the StudentDashboard class extends the
Observable class, and the ForumMonitor implements the Observer interface.

Behavioral Design Patterns Chapter 3

[92]

Programming the design pattern
The StudentDashboard class extends the Observable class and has a single class
variable, the unreadMessages int. There are three methods in this class: the constructor
class and the setter (mutator) and getter (accessor) methods:

public class StudentDashboard extends Observable {

 private int unreadMessages;

 // constructor
 public StudentDashboard() {
 unreadMessages = 0;
 }

 public void setUnreadMessages(int messages) {
 unreadMessages = messages;

 /*
 Add methods here to notify observers of a change
 */

 }

 public int getUnreadMessages() {
 return unreadMessages;
 }
}

The ForumMonitor class implements the Observer interface. It includes a final
UNREAD_ALERT_LEVEL variable that is used as an alert threshold. In our example, an
observer will be alerted if there are more than zero unread messages:

public class ForumMonitor implements Observer {

 public static final int UNREAD_ALERT_LEVEL = 0;

 public void update(Observable observable, Object object) {
 StudentDashboard messages = (StudentDashboard) observable;
 if (messages.getUnreadMessages() > UNREAD_ALERT_LEVEL) {
 System.out.println("You have " + messages.getUnreadMessages()
 + " unread messages.");
 } else {
 System.out.println("No unread messages found.");
 }
 }
}

Behavioral Design Patterns Chapter 3

[93]

In order to complete this example application, the Observer interface and
the Observable class need to be written.

This section featured the source code, demonstrating the observer design pattern.

Understanding the state pattern
The state design pattern allows an object to change its behavior based on internal state
changes. The effect is that the object may seem to change its class. We will use the use case
of a print job queue to demonstrate the state design pattern.

We will look at an example use case, the UML class diagram, and the source code necessary
to implement the state design pattern for this scenario.

Use case
Our state design pattern implementation example is a print-job application. The application
receives a print request and either processes it or puts the job on hold. In our example, the
print-job application can only print one job at a time.

UML class diagram
The solution to the state design pattern implementation requires an abstract
PrinterController class that is extended by both the PrinterOnLine and
PrinterOffLine classes:

Behavioral Design Patterns Chapter 3

[94]

UML class diagram—state design pattern implementation

Also indicated in the UML class diagram are the Printer and Driver classes.

Programming the design pattern
The implementation example for the state design pattern consists of the following classes:

PrinterOnLine

PrinterOffLine

Printer

PrinterController

Driver

PrinterOnLine
The PrinterOnLine class extends the PrinterController class and overrides the
pushPrint() method. When called, this method clears the printer buffer and shuts down.
Here is the code:

public class PrinterOnLine extends PrinterController {

 @Override
 public void pushPrint(Printer printJob) {
 System.out.println("\nClearing buffer and shutting down. . .");
 printJob.setPrinterState(new PrinterOffLine());
 }
}

Behavioral Design Patterns Chapter 3

[95]

As you can see in the code, the pushPrint() method in the PrinterOnLine class results
in the printer going from online to offline.

PrinterOffLine
The PrinterOffLine class extends the PrinterController class and overrides the
pushPrint() method. When called, this method powers the printer on. The printer goes
from being offline to online:

public class PrinterOffLine extends PrinterController {

 @Override
 public void pushPrint(Printer printJob) {
 System.out.println("\nPowering printer on please wait. . .");
 printJob.setPrinterState(new PrinterOnLine());
 }
}

As you can see in the preceding code, the pushPrint() method in the PrinterOffLine
class results in the printer going from offline to online.

Printer
The Printer class has a single class variable, printerState. It contains constructor,
accessor, and mutator methods. Here is the Printer class source code:

public class Printer {

 // class variable
 private PrinterController printerState;

 // constructor
 public Printer(PrinterController pState) {
 this.printerState = pState;
 }

 // accessor / getter
 public PrinterController getPrinterState() {
 return printerState;
 }

 // mutator / setter
 public void setPrinterState(PrinterController pState) {
 this.printerState = pState;

Behavioral Design Patterns Chapter 3

[96]

 }

 public void pushPrint() {
 printerState.pushPrint(this);
 }
}

The Printer class also contains the pushPrint() method, which simulates pushing a
printer's power button.

PrinterController
The PrinterController class contains a single abstract pushPrint() method:

abstract class PrinterController {

 public abstract void pushPrint(Printer printJob);
}

The pushPrint() abstract method shown receives a Printer object as an argument.

Driver
The Driver class is created to test the functionality of the state design pattern
implementation:

public class Driver {

 public static void main(String[] args) {

 PrinterOffLine initialPrinterState = new PrinterOffLine();
 Printer printer = new Printer(initialPrinterState);

 System.out.println("\n");

 printer.pushPrint();
 printer.pushPrint();
 printer.pushPrint();

 System.out.println("\n\n");
 }
}

The Driver class contains a main() method that drives the application's execution.

Behavioral Design Patterns Chapter 3

[97]

Application output
The completed application generates the following lines of console output. The Driver
class contains three calls to the pushPrint() method. As shown, each line of the console
output is created as a result of a call to the printer.pushPrint() method:

State design pattern implementation—application output

This section featured the source code, demonstrating the state design pattern.

Strategizing with the strategy pattern
The strategy design pattern allows you to individually encapsulate a set of interchangeable
algorithms. This results in algorithm variability depending on the calling client. This is
similar to method overloading, which allows a class to have more than one method with
the same name. The difference between the same-named methods is their argument list.

The strategy design pattern differs from the method overloading example when each
algorithm is individually encapsulated.

A sample UML class diagram is provided in the next section.

UML class diagram
As you can see from the UML class diagram, there are multiple options for a single
algorithm, represented here with the sampleAlgorithm() method:

Behavioral Design Patterns Chapter 3

[98]

UML class diagram—strategy design pattern

As illustrated by the UML class diagram, the strategy design pattern allows you to
individually encapsulate a set of interchangeable algorithms.

Understanding the template method pattern
The template method design pattern involves creating an algorithm template with
processing steps relegated to child classes. The purpose is to give the child classes the
ability to specify their own steps while still remaining true to the algorithm structure.

As the design pattern's name suggests, we create a template that can be followed by
subordinate classes. An example is a recipe template that has bakers following the steps to
create the shell and then adding their own pie filling based on their preference. At the end
of the process, all the pies will look similar but will have different fillings.

Another example is creating a syllabus or resume template. Each use of the template can be
used for unique content and would still not alter the template.

Understanding the visitor pattern
The visitor design pattern allows us to perform operations on an object without altering its
structure. Essentially, we can add functionalities to an object with it changing the original
object structure. An example is when a person goes to a hair salon and asks for a haircut.
Once in the chair, the parameters of what is desired are changed. This does not change the
structure of the operation; it just adds new functionality such as having hair colored as well
as cut and styled.

Behavioral Design Patterns Chapter 3

[99]

Using object-oriented programming, we can extend the visitor design pattern so it affects
the way inheritance works. We can extend a class and then add functionality to it in a child
class.

Summary
In this chapter, we learned that behavioral diagrams illustrate how system components
interact to form a system. We also learned that behavioral design patterns focus on the
interaction of objects and classes in a system. We explored the behavioral design pattern
category and 12 individual design patterns, which were then listed. We also looked at
programming challenges and the behavioral design patterns that solve them.

In the next chapter, Creational Design Patterns, we will explore the creational design pattern
category and its individual design patterns—abstract factory, builder, factory method,
prototype, simple factory, and singleton. We will examine the programming challenges and
creational design patterns that solve them.

Questions
Which design pattern would likely be used to restore a system based on previous1.
settings?
What design pattern category does the null object pattern belong to?2.
What is the purpose of the object dependency in the observer design pattern?3.
Which design pattern allows an object to change its behavior based on internal4.
state changes?
Which design pattern allows you to individually encapsulate a set of5.
interchangeable algorithms?
Which design pattern involves creating an algorithm template with processing6.
steps relegated to child classes?
Which design pattern permits objects to be sent to a series of receivers without7.
the sender being concerned about which receiver handles the request?
What other name is the command design pattern referenced?8.
What is the Interpreter design pattern used for?9.
Under which Java interface does the iterator design pattern rely on?10.

Behavioral Design Patterns Chapter 3

[100]

Further reading
Java EE 8 Design Patterns and Best Practices (https:/ /www. packtpub. com/
application- development/ java- ee- 8-design- patterns- and- best- practices)
Learn Design Patterns with Java [Video] (https:/ /www. packtpub. com/ application-
development/ learn- design- patterns- java- video)
Design Patterns and Best Practices in Java (https:/ /www. packtpub. com/
application- development/ design- patterns- and- best- practices- java)

https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java

4
Creational Design Patterns

In the last chapter, Behavioral Design Patterns, we learned that behavioral diagrams illustrate
how system components interact to form a system. We also learned that behavioral design
patterns focus on the interaction of objects and classes in a system. We explored the
behavioral design pattern category and 12 individual design patterns (chain of
responsibility, command, interpreter, iterator, mediator, memento, null object, observer,
state, strategy, template method, and visitor). Our coverage included an examination of
programming challenges and the behavioral design patterns that solve them.

In this chapter, Creational Design Patterns, we will explore the creational design pattern
category and its individual design patterns. We will examine the programming challenges
and creational design patterns that solve them:

Introducing creational design patterns
Abstract factory
Builder
Factory method
Prototype
Simple factory
Singleton

Technical requirements
The code for this chapter can be found in this book's GitHub repository: https:/ /github.
com/PacktPublishing/ Hands- On- Design- Patterns- with- Java/ tree/ master/ Chapter04.

https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter04

Creational Design Patterns Chapter 4

[102]

Introducing creational design patterns
Creational design patterns are used to manage the objects as they are instantiated (created).
In Java, there are two basic creation patterns. When we create classes, we use inheritance.
When creating objects, we can assign the creation task to other objects.

The purposes of creational design patterns are as follows:

Separate object creation from the system
Support reliance on object creation vice inheritance
Encapsulate information regarding which classes are used by a system
Protect object creation details

The six creational design patterns presented in this chapter can be grouped into two
subcategories—those that focus on classes and those that focus on objects. The following
table details these subcategories:

Object Scope Class Scope
Abstract factory pattern Factory pattern
Builder pattern Simple factory pattern
Prototype pattern Singleton pattern

The creational design patterns listed in the preceding table are detailed in the remaining
sections of this chapter. They are presented in alphabetical order to illustrate that one is not
more important than the others.

Understanding the abstract factory design
pattern
Before we look at the abstract factory design pattern, let's first review the term abstract and
how it applies to Java classes and the programs we develop.

The term abstract refers to something not having a definitive existence. In Java, abstract
classes cannot be instantiated, but they can be inherited. Let's consider an example of an
abstract Grandmother class that is extended by a Mother class. A third class, Daughter, is
used to house the main() method. Here is the code for the Grandmother class:

abstract class Grandmother {

 // Constructor

Creational Design Patterns Chapter 4

[103]

 Grandmother() {
 System.out.println("Grandmother constructor executed.");
 }
}

Next, we have the Mother class, which extends Grandmother and has its own constructor
method:

public class Mother extends Grandmother {

 // Constructor
 Mother() {
 System.out.println("Mother constructor executed.");
 }
}

The final class in this example is the Daughter class. Here is the code:

public class Daughter {

 public static void main(String[] args) {
 Mother mom = new Mother();
 }
}

When the application is run, the following results are provided in the console window:

Abstract class sample program output

As you can see in the following screenshot, if we try to instantiate the Grandmother class,
we are presented with the error that the class is abstract and cannot be instantiated:

Error in abstract class instantiation

Creational Design Patterns Chapter 4

[104]

The abstract factory design pattern creates an interface that is used to create multiple
objects without knowledge of the concrete class. A concrete class in Java is a non-abstract
class that implements all of the methods in its hierarchy. This is a high-powered
demonstration of encapsulation. This design pattern allows us to change implementations
without changing source code.

We will look at an example use case, the UML class diagram, and the source code necessary
to implement the abstract factory design pattern for this scenario.

Use case
We will use a motor-home manufacturing example to demonstrate the abstract factory
design pattern. When motor homes are manufactured, there are many details that must be
determined. At a high level, the manufacturer must decide on the type (type A, type B, or
type C), the style (for example, camper van, bus, truck), the frame, engine, and kitchen. Our
example will support type A, type B, and type C motorhomes, all of which require a style,
frame, engine, and kitchen.

The abstract factory design pattern will be used to create object sets, one for each motor-
home type.

UML class diagram
The following UML class diagram shows the relationships between the interfaces and
classes that are used in the abstract factory design pattern implementation:

Creational Design Patterns Chapter 4

[105]

UML class diagram—abstract factory implementation

As indicated in the UML class diagram, our implementation solution will require 5
interfaces and 17 classes.

Creational Design Patterns Chapter 4

[106]

Programming the design pattern
Our solution implementation consists of five interfaces (Type, Style, Frame, Engine, and
Kitchen), a MotorHomeAbstractFactory class, a MotorHomeDriver class, and 15
additional classes, 5 for each type. Here is the complete list of interfaces and classes:

Interfaces General Classes TypeA Classes TypeB Classes TypeC Classes
Type MotorHomeAbstractFactory TypeAFactory TypeBFactory TypeCFactory

Style MotorHomeDriver TypeAStyle TypeBStyle TypeCStyle

Frame TypeAFrame TypeBFrame TypleCFrame

Engine TypeAEngine TypeBEngine TypleCEngine

Kitchen TypeAKitchen TypeBKitchen TypeCKitchen

The preceding table organizes the types of Java classes that were used in the solution. The
classes that are specific to each type are very similar to one another.

Interfaces
Each of the five interfaces in our abstract factory design pattern implementation consist of a
single accessor method. Their source code is listed here:

public interface Type {
 public String getType();
}

public interface Style {
 public String getStyle();
}

public interface Frame {
 public String getFrame();
}

public interface Engine {
 public String getEngine();
}

public interface Kitchen {
 public String getKitchen();
}

As you can see, the interfaces each return a String value.

Creational Design Patterns Chapter 4

[107]

Abstract Factory class
The MotorHomeAbstractFactory class defines four abstract methods. Here is the code:

public abstract class MotorHomeAbstractFactory {
 public abstract Frame createFrame();
 public abstract Style createStyle();
 public abstract Engine createEngine();
 public abstract Kitchen createKitchen();
}

The abstract methods defined in the preceding code correspond to the Factory classes that
are defined in subsequent sections.

TypeA classes
Our solution includes a Factory class for each of the three types of motor homes (type A,
type B, and type C). The TypeAFactory class shown in the following code extends the
MotorHomeAbstractFactory class:

public class TypeAFactory extends MotorHomeAbstractFactory {

 public Frame createFrame() {
 return new TypeAFrame();
 }

 public Style createStyle() {
 return new TypeAStyle();
 }

 public Engine createEngine() {
 return new TypeAEngine();
 }

 public Kitchen createKitchen() {
 return new TypeAKitchen();
 }
}

In addition to a Factory class, we need a class to implement the class hierarchy. Here, you
see can each of the interfaces that were implemented:

public class TypeAStyle implements Style {

 public String getStyle() {

Creational Design Patterns Chapter 4

[108]

 return "[Type A] Style:\t\tOff the Grid";
 }
}

public class TypeAEngine implements Engine {

 public String getEngine() {

 return "[Type A] Engine:\tFord V10";
 }
}

public class TypeAFrame implements Frame {

 public String getFrame() {

 return "[Type A] Frame:\t\tBus";
 }
}

public class TypeAKitchen implements Kitchen {

 public String getKitchen() {

 return "[Type A] Kitchen:\tFull";
 }
}

The four classes defined implement the appropriate accessor method and return a
contextual String.

TypeB classes
Our solution includes a Factory class for each of the three types of motor homes (type A,
type B, and type C). The TypeBFactory class shown here extends the
MotorHomeAbstractFactory class:

public class TypeBFactory extends MotorHomeAbstractFactory {

 public Frame createFrame() {
 return new TypeBFrame();
 }

 public Style createStyle() {
 return new TypeBStyle();

Creational Design Patterns Chapter 4

[109]

 }

 public Engine createEngine() {
 return new TypeBEngine();
 }

 public Kitchen createKitchen() {
 return new TypeBKitchen();
 }
}

In addition to a Factory class, we need a class to implement the class hierarchy. Here, you
can see each of the interfaces implemented:

public class TypeBStyle implements Style {

 public String getStyle() {

 return "[Type B] Style:\t\tWeekender";
 }
}

public class TypeBEngine implements Engine {

 public String getEngine() {

 return "[Type B] Engine:\tFord Transit 350 HD";
 }
}

public class TypeBFrame implements Frame {

 public String getFrame() {

 return "[Type B] Frame:\t\tCamper Van";
 }
}

public class TypeBKitchen implements Kitchen {

 public String getKitchen() {

 return "[Type B] Kitchen:\tCompact";
 }
}

The four classes that were defined implement the appropriate accessor method and
return a contextual String.

Creational Design Patterns Chapter 4

[110]

Type-C classes
Our solution includes a Factory class for each of the three types of motor homes (type A,
type B, and type C). The TypeCFactory class shown in the following code extends the
MotorHomeAbstractFactory class:

public class TypeCFactory extends MotorHomeAbstractFactory {

 public Frame createFrame() {
 return new TypeCFrame();
 }

 public Style createStyle() {
 return new TypeCStyle();
 }

 public Engine createEngine() {
 return new TypeCEngine();
 }

 public Kitchen createKitchen() {
 return new TypeCKitchen();
 }
}

In addition to a Factory class, we need a class to implement the class hierarchy. Here, you
can see each of the interfaces that were implemented:

public class TypeCStyle implements Style {

 public String getStyle() {

 return "[Type C] Style:\t\tExtended Trip";
 }
}

public class TypeCEngine implements Engine {

 public String getEngine() {

 return "[Type C] Engine:\tFord E-450";
 }
}

public class TypeCFrame implements Frame {

Creational Design Patterns Chapter 4

[111]

 public String getFrame() {

 return "[Type C] Frame:\t\tTruck";
 }
}

public class TypeCKitchen implements Kitchen {

 public String getKitchen() {

 return "[Type C] Kitchen:\tFull";
 }
}

The four classes that were defined implement the appropriate accessor method and
return a contextual String.

Driver class
The Driver class for our abstract factory design pattern implementation is the
MotorHomeDriver class. It is presented here in four sequential sections:

The first section defines the main() method and creates an instance of1.
MotorHomeAbstractFactory named mhFactory:

public class MotorHomeDriver {

 public static void main(String[] args) {

 // Step 1
 // create abstract factory
 MotorHomeAbstractFactory mhFactory = null;

The second section of code shows the second step in our process, creating a2.
factory instance. We start by simulating user input where the user would select
which motor home type (type A, type B, or type C) to manufacture. Based on the
user input, descriptive text is printed and a new factory instance is created. When
the program was started, the type of factory was not identified:

// Step 2
// Create a factory instance
String nextMotorHome = "TypeA"; // simulated user input

if (nextMotorHome.equals("TypeA")) {
 System.out.println("\nType A motor home selected");

Creational Design Patterns Chapter 4

[112]

 mhFactory = new TypeAFactory();
} else if (nextMotorHome.equals("TypeB")) {
 System.out.println("\nType B motor home selected");
 mhFactory = new TypeBFactory();
} else if (nextMotorHome.equals("TypeC")) {
 System.out.println("\nType C motor home selected");
 mhFactory = new TypeCFactory();
} else {
 System.out.println("Invalid motor home type entered.");
}

The third section of code creates the motor-home components based on the3.
factory instance that was created in the previous step:

// Step 3
// Create motor home components
Style mhStyle = mhFactory.createStyle();
Frame mhFrame = mhFactory.createFrame();
Engine mhEngine = mhFactory.createEngine();
Kitchen mhKitchen = mhFactory.createKitchen();

The final step is to provide output to the user:4.

 // Step 4
 // Provide Output
 System.out.println("\nComponent list for " + nextMotorHome
+ " motor home");
 System.out.println(mhStyle.getStyle());
 System.out.println(mhFrame.getFrame());
 System.out.println(mhEngine.getEngine());
 System.out.println(mhKitchen.getKitchen());
 }
}

The output results show the output for each possible type (type A, type B, type C) that the
user could select:

Abstract factory implementation—application output

This section provided the source code implementation and console output for our abstract
factory application.

Creational Design Patterns Chapter 4

[113]

Building with the builder design pattern
The builder design pattern is used to create a separation between object instantiation and
representation. The purpose is to permit different representations with the same
instantiation process.

In this context, representation refers to the description of an object.

This design pattern is typically only used for complex objects. Using the builder design
pattern, complex objects are created in separate steps. This allows us to build different
objects based on the building steps taken.

We will look at an example use case, the UML class diagram, and the source code that's
necessary to implement the builder design pattern for this scenario.

Use case
To demonstrate the builder design pattern, we will implement a coffee roaster
manufacturing application. This app will facilitate the creation of two different coffee
roaster models: personal and commercial. There are a total of eight components; some
components are used for both roaster models, and the components indicated as model-
specific indicate that they are different for each roaster model. Additionally, the platform
component is only required for the commercial roaster model. The following table provides
an overview of these components:

Component Personal Roaster Commercial Roaster
Cooling tray Model-Specific Model-Specific
Exhaust system Model-Specific Model-Specific
Gas burner Model-Specific Model-Specific
Inner drum Model-Specific Model-Specific
Main body Model-Specific Model-Specific
Motor Standard Standard
Platform Not required Standard
Thermocouples Standard Standard

As you can see from the preceding table, five of the components are unique to the roaster
model and three are standard. One of the components, the platform, is not required for a
personal roaster build.

Creational Design Patterns Chapter 4

[114]

UML class diagram
The UML class diagram for our Coffee Roaster Manufacturing implementation is
provided here:

UML class diagram—builder design pattern implementation

As indicated in the UML class diagram, our solution includes a Builder interface and five
classes.

Programming the design pattern
The programming solution to our Coffee Roaster Manufacturing implementation of
the builder design pattern consists of a Roaster class, an interface, a Driver class, and
four additional classes. Each is detailed in this section.

Creational Design Patterns Chapter 4

[115]

Roaster class
The first class in our solution is the Roaster class. This class allows for the instantiation of
multiple Roaster objects. The class contains a constructor method and an add() method
for adding components to a roaster, and a display() method for displaying a roaster's
components list:

import java.util.LinkedList;

public class Roaster {

 private LinkedList<String> components;

 public Roaster() {
 components = new LinkedList<>();
 }

 public void add(String component) {
 components.addLast(component);
 }

 public void display() {
 System.out.println("\n\nROASTER BUILD:");
 for (int i=0; i<components.size(); i++) {
 System.out.println(components.get(i));
 }
 }
}

As shown in the preceding code, the java.util.LinkedList package was imported
because the Roaster class made use of a LinkedList object.

Interface
The Builder interface is provided in the following code and consists of eight methods, one
for each roaster component:

public interface Builder {

 void buildCoolingTray();
 void buildExhaustSystem();
 void buildGasBurner();
 void buildPlatform();
 void buildMotor();
 void buildThermocouples();
 void buildInnerDrum();

Creational Design Patterns Chapter 4

[116]

 void buildMainBody();

 Roaster getRoaster();
}

The Builder interface also includes a getRoaster() method that returns a Roaster
object.

Builder classes
Our solution involves two builder classes—PersonalRoaster and CommercialRoaster.
The following code is the first half of the PersonalRoaster class. It implements the
Builder interface and instantiates a Roaster object.

In this code section, there are four methods for building specific components, each utilizing
the add() method:

public class PersonalRoaster implements Builder {

 private Roaster roaster = new Roaster();

 @Override
 public void buildCoolingTray() {
 roaster.add("Personal Roaster Cooling Tray added");
 }

 @Override
 public void buildExhaustSystem() {
 roaster.add("Personal Roaster Exhaust System added");
 }

 @Override
 public void buildGasBurner() {
 roaster.add("Personal Roaster Gas Burner added");
 }

 @Override
 public void buildPlatform() {
 // do nothing - not applicable for personal roasters
 }

It is important to note that the buildPlatform() method does not perform any
functionality in the PersonalRoaster class.

Creational Design Patterns Chapter 4

[117]

The following code is the second half of the PersonalRoaster class. There are four
methods for building specific components, each utilizing the add() method:

 @Override
 public void buildMotor() {
 roaster.add("Standard Motor added");
 }

 @Override
 public void buildThermocouples() {
 roaster.add("Standard Thermocouples added");
 }

 @Override
 public void buildInnerDrum() {
 roaster.add("Personal Roaster Inner Drum added");
 }

 @Override
 public void buildMainBody() {
 roaster.add("Personal Roaster Main body added");
 }

 @Override
 public Roaster getRoaster() {
 return roaster;
 }
}

The PesonalRoaster class also includes a getRoaster() method, which returns a
Roaster object.

The following code is the first half of the CommercialRoaster class. It implements the
Builder interface and instantiates a Roaster object. In this code section, there are four
methods for building specific components, each utilizing the add() method:

public class CommercialRoaster implements Builder {

 private Roaster roaster = new Roaster();

 @Override
 public void buildCoolingTray() {
 roaster.add("Commercial Roaster Cooling Tray added");

 }

 @Override

Creational Design Patterns Chapter 4

[118]

 public void buildExhaustSystem() {
 roaster.add("Commercial Roaster Exhaust System added");

 }

 @Override
 public void buildGasBurner() {
 roaster.add("Commercial Roaster Gas Burner added");

 }

 @Override
 public void buildPlatform() {
 roaster.add("Standard Platform added");

 }

It is important to note that the buildPlatform() method makes a call to the add()
method, unlike the same method in the PersonalRoaster class.

The following code is the second half of the CommercialRoaster class. There are four
methods for building specific components, each utilizing the add() method:

 @Override
 public void buildMotor() {
 roaster.add("Standard Motor added");

 }

 @Override
 public void buildThermocouples() {
 roaster.add("Standard Thermocouples added");

 }

 @Override
 public void buildInnerDrum() {
 roaster.add("Commercial Roaster Inner Drum added");
 }

 @Override
 public void buildMainBody() {
 roaster.add("Commercial Roaster Main body added");

 }

 @Override
 public Roaster getRoaster() {

Creational Design Patterns Chapter 4

[119]

 return roaster;
 }
}

The CommercialRoaster class also includes a getRoaster() method, which returns a
Roaster object.

Director class
The RoasterDirector class creates a Builder instance and then uses a sequence of steps
to build the roaster. The RoasterDirector class is unaware of whether the roaster being
created is for personal or commercial use:

public class RoasterDirector {
 Builder currentBuilder;

 // roaster building steps
 public void buildRoaster(Builder builder) {

 currentBuilder = builder;
 currentBuilder.buildCoolingTray();
 currentBuilder.buildExhaustSystem();
 currentBuilder.buildGasBurner();
 currentBuilder.buildInnerDrum();
 currentBuilder.buildMainBody();
 currentBuilder.buildMotor();
 currentBuilder.buildPlatform();
 currentBuilder.buildThermocouples();
 }
}

The order of the steps in the build process is not important.

Driver class
The RoasterDriver class contains our program's main() method and drives the
application. The functionality starts by creating a RoasterDirector instance and two
Builder instances. Next, the build sequence is called once each for a personal roaster and a
commercial roaster:

public class RoasterDriver {

 public static void main(String[] args) {

Creational Design Patterns Chapter 4

[120]

 RoasterDirector roasterDirector = new RoasterDirector();

 Builder personalRoasterBuilder = new PersonalRoaster();
 Builder commercialRoasterBuilder = new CommercialRoaster();

 // Build a Personal Roaster
 roasterDirector.buildRoaster(personalRoasterBuilder);
 Roaster unit1 = personalRoasterBuilder.getRoaster();
 unit1.display();

 // Build a Commercial Roaster
 roasterDirector.buildRoaster(commercialRoasterBuilder);
 Roaster unit2 = commercialRoasterBuilder.getRoaster();
 unit2.display();
 }
}

The display() method is called after each build sequence completes. As illustrated in the
following screenshot, the components are different for both roaster models:

Builder design pattern implementation—console output

This section provided the source code and the console output for our Coffee Roaster
Manufacturing implementation of the builder design pattern.

Creational Design Patterns Chapter 4

[121]

Exploring the factory method design pattern
The factory method design pattern allows subclasses to determine which class to create.
This is achieved by removing details about which class to create away from the framework.
Instead, the subclasses are given the responsibility for object creation. This design pattern is
useful when the framework is unaware of what is to be instantiated.

We will look at an example use case, the UML class diagram, and the source code that's
necessary to implement the factory method design pattern for this scenario.

Use case
To demonstrate the factory method design pattern, we will create a Mower Selection
Helper implementation. The system will provide helpful information to aid users in their
selection of a lawnmower type. The types that are supported are riding and push. We will
create an abstract Factory class with a method to retrieve the mower type. We will also
create a factory method for the concrete classes for the instantiation of specific mower
objects.

UML class diagram
The UML class diagram for the Mower Selection Helper implementation of the factory
method design pattern consists of an interface that is implemented by two classes.

Creational Design Patterns Chapter 4

[122]

The ConcreteMowerFactory class is where the object instantiation occurs:

UML class diagram—factory method design pattern implementation

As indicated in the UML class diagram, the RidingMower and PushMower classes
implement the Mower interface, and the MowerFactory class is removed from the object
creation process.

Programming the design pattern
Our implementation starts with a Mower interface. It has a single mow() method:

public interface Mower {
 void mow();
}

The following segment of code is the MowerFactor abstract class. There, we will have the
ConcreteMowerFactory subclass:

abstract class MowerFactory {

 public abstract Mower getMowerType(String mowerType);
}

Creational Design Patterns Chapter 4

[123]

The Riding class represents the class object for this type of mower. It implements the
Mower interface. It overrides the mow() method and outputs text that's specific to this type
of Mower:

public class Riding implements Mower {

 @Override
 public void mow() {
 System.out.println("Riding mowers provide safety and comfort.");
 }
}

The Push class represents the class object for the push mower type. It implements the
Mower interface. The Push class overrides the mow() method and outputs text that's specific
to this type of Mower:

public class Push implements Mower {

 @Override
 public void mow() {
 System.out.println("Push mowers are good for small yards.");
 }
}

The ConcreteMowerFactory class that's shown in the following code extends the
MowerFactory class. This class is used to determine which mower type is instantiated
based on the String argument:

public class ConcreteMowerFactory extends MowerFactory {

 @Override
 public Mower getMowerType(String mowerType) {
 if (mowerType.equals("Riding")) {
 return new Riding();
 } else if (mowerType.equals("Push")) {
 return new Push();
 } else {
 System.out.println("Invalid mower type selected.");
 return null;
 }
 }
}

Creational Design Patterns Chapter 4

[124]

The final class in our implementation is the MowerDriver class. This class contains the
main() method and drives the application. The main() method starts by printing a simple
output header. Then, two mower instances are created, one for each mower type:

public class MowerDriver {

 public static void main(String[] args) {

 // output header
 System.out.println("\n\nMOWER SELECTION HELPER");

 // create first mower
 MowerFactory mowerFactory = new ConcreteMowerFactory();
 Mower rideIt = mowerFactory.getMowerType("Riding");
 rideIt.mow();

 // create second mower
 Mower pushIt = mowerFactory.getMowerType("Push");
 pushIt.mow();
 }
}

As shown in the following screenshot, our Mower Selection Helper implementation
prints the output header from the MowerDriver class main() method and then a line from
the mow() method from each of the instantiated objects:

Factory method design pattern implementation—console output

This section provided the source code and the console output for our Mower Selection
Helper implementation of the factory method design pattern.

Using the prototype design pattern
The prototype design pattern allows us to specify a category of objects using a prototype
instance. This instance is then copied in order to create new objects. The prototype design
pattern is ideal for situations when you want object creation to be independent of the
system. For example, we might be developing a game with multiple levels. Each level is
based on a core level and modified thereafter. We can clone the prototype level in order to
create subsequent levels and avoid having to start level creation from scratch.

Creational Design Patterns Chapter 4

[125]

Object creation requires processing time, and reducing the time it takes to create objects is a
goal of the prototype design pattern.

We will look at an example use case, the UML class diagram, and the source code that's
necessary to implement the prototype design pattern for this scenario.

Use case
We will use a game-level creation system as an example application that implements the
prototype design pattern. We will have a BaseLevel prototype class and three concrete
prototype classes, each for a different type of game level. These concrete prototype classes
will implement the BaseLevel clone() method. Different game-level attributes will be
applied individually to the three different game levels.

UML class diagram
The UML class diagram, as shown in the following diagram, shows the implementation of
our game-level creation system. Our implementation has a BaseLevel class, which
includes the clone() method. This method is overridden by each of the three
subclasses—Dungeon, Forest, and City:

UML class diagram—prototype design pattern implementation

Creational Design Patterns Chapter 4

[126]

As indicated in the UML class diagram, the LevelDriver class contains our application's
main() method and is used to drive the program's functionality.

Programming the design pattern
Our game-level creation system starts with the abstract BaseLevel class. This class
implements Java's Cloneable interface. There are three class variables that will be part of
each game level that's created—levelName, numberOfNPCs, and numberOfTokens.
Following the class variables are the three accessor methods, one for each of the variables:

public abstract class BaseLevel implements Cloneable {

 public String levelName;
 public int numberOfNPCs;
 public int numberOfTokens;

 // accessor methods
 public String getLevelName() {
 return levelName;
 }

 public int getNumberOfNPCs() {
 return numberOfNPCs;
 }

 public int getNumberOfTokens() {
 return numberOfTokens;
 }

The second half of the BaseLevel class contains the mutator methods for the class
variables. At the bottom of the class is the clone() method, which is used to create a clone
of the BaseLevel class:

 // mutator methods
 public void setLevelName(String levelName) {
 this.levelName = levelName;
 }

 public void setNumberOfNPCs(int npc) {
 this.numberOfNPCs = npc;
 }

 public void setNumberOfTokens(int tokens) {
 this.numberOfTokens = tokens;

Creational Design Patterns Chapter 4

[127]

 }

 // level clone method
 public BaseLevel clone() throws CloneNotSupportedException {
 return (BaseLevel)super.clone();
 }
}

Our implementation includes three classes that extend the BaseLevel class. The following
code is for the Dungeon class. This class contains a constructor and overrides the clone()
method from the BaseLevel class:

public class Dungeon extends BaseLevel {

 public Dungeon(String name) {
 levelName = name;
 }

 @Override
 public BaseLevel clone() throws CloneNotSupportedException {
 return (Dungeon)super.clone();
 }
}

The Forest class, as shown in the following code, extends the BaseLevel class. This class
contains a constructor and overrides the clone() method from the BaseLevel class:

public class Forest extends BaseLevel {

 public Forest(String name) {
 levelName = name;
 }

 @Override
 public BaseLevel clone() throws CloneNotSupportedException {
 return (Forest)super.clone();
 }
}

Like the Dungeon and Forest classes, the City class, which is shown in the following
code, extends the BaseLevel class. This class contains a constructor and overrides the
clone() method from the BaseLevel class:

public class City extends BaseLevel {

 public City(String name) {
 levelName = name;

Creational Design Patterns Chapter 4

[128]

 }

 @Override
 public BaseLevel clone() throws CloneNotSupportedException {
 return (City)super.clone();
 }
}

The last class that's required to implement our game-level creation system is the
LevelDriver class. This class only contains a main() method. This method is displayed in
two sections, as we will see in the following code snippets. The first section starts with an
output header and then creates a Dungeon object, a Forest object, and a City object. As
each object is created, the game-level name, number of NPCs, and number of Tokens is
provided:

public class LevelDriver {

 public static void main(String[] args) throws
CloneNotSupportedException {

 System.out.println("\n\nGAME LEVEL CREATION\n");

 // Create Dungeon Game Level
 BaseLevel dungeon = new Dungeon("Slasher\'s Dungeon Level 1");
 dungeon.numberOfNPCs = 500;
 dungeon.numberOfTokens = 80;

 // Create Forest Game Level
 BaseLevel forest = new Forest("Acid Rain Forest Level");
 forest.numberOfNPCs = 250;
 forest.numberOfTokens = 120;

 // Create City Game Level
 BaseLevel city = new City("Industrial City Level");
 city.numberOfNPCs = 319;
 city.numberOfTokens = 600;

The second portion of the LevelDriver main() method does two things. First, it creates a
clone of the already created Dungeon object, naming it levelClone1. New values are
provided for the level name, number of NPCs, and Tokens. The second set of tasks this
code performs is to display output to verify the application's functionality:

// Clone Dungeon Object
 BaseLevel levelClone1;
 levelClone1 = dungeon.clone();
 levelClone1.setLevelName("Slasher\'s Dungeon Level 2");
 levelClone1.setNumberOfNPCs(1000);

Creational Design Patterns Chapter 4

[129]

 levelClone1.setNumberOfTokens(40);

 // Display output for functionality verification
 System.out.println("Dungeon Level information");
 System.out.println("Level Name : " + dungeon.getLevelName());
 System.out.println("Number of NPCS : " +
dungeon.getNumberOfNPCs());
 System.out.println("Number of Tokens: " +
dungeon.getNumberOfTokens());

 System.out.println("\nCloned Level information");
 System.out.println("Level Name : " + levelClone1.getLevelName());
 System.out.println("Number of NPCS : " +
levelClone1.getNumberOfNPCs());
 System.out.println("Number of Tokens: " +
levelClone1.getNumberOfTokens());
 }
}

The application's console output is then provided:

Prototype design pattern implementation—console output

This section provided the source code and the console output for our game-level creation
system implementation of the prototype design pattern.

Examining the simple factory design pattern
Earlier in this chapter, we identified the abstract factory design pattern as creating an
interface to create multiple objects without knowledge of the concrete class. We also stated
that the factory method design pattern allows subclasses to determine which class to create.
The simple factory design pattern is used to delegate object creation to a specific class.

Creational Design Patterns Chapter 4

[130]

We will look at an example use case, the UML class diagram, and the source code that's
necessary to implement the simple factory design pattern for this scenario.

Use case
We will implement a lawnmower seat creation system to demonstrate the simple factory
design pattern. Our example will include an abstract LawnMowerSeat class, two subclasses
that extend the LawnMowerSeat class, a factory class, and a Driver class. The following
section contains our system's UML class diagram, which depicts class relationships.

UML class diagram
The UML class diagram for our lawnmower seat creation system illustrates key
relationships among the system's classes. The abstract LawnMowerSeat class is extended by
both the ResidentialLawnMowerSeat class and the CommercialLawnMowerSeat class:

UML class diagram—simple factory deign pattern implementation

As indicated in the UML class diagram, the LawnMowerSeatDriver class contains the
main() method and drives the system's execution.

Creational Design Patterns Chapter 4

[131]

Programming the design pattern
Our lawnmower seat creation system starts with the LawnMowerSeat abstract class. This
class only contains a constructor and, by its abstract nature, cannot be instantiated:

public abstract class LawnMowerSeat {

 public LawnMowerSeat() {

 }
}

The next class is ResidentialLawnMowerSeat. This class extends the LawnMowerSeat
class and contains a constructor that prints class-specific output:

public class ResidentialLawnMowerSeat extends LawnMowerSeat {

 public ResidentialLawnMowerSeat() {

 System.out.println("Residential lawnmower seat with seat belt
created.");

 }
}

The class that's shown in the following code is CommercialLawnMowerSeat. This class
extends the LawnMowerSeat class and contains a constructor that prints class-specific
output:

public class CommercialLawnMowerSeat extends LawnMowerSeat {

 public CommercialLawnMowerSeat() {

 System.out.println("Commercial lawnmower seat with roll bar
created.");
 }
}

Next is our Factory class—the LawnMowerSeatFactory class. This is the class with the
ability to create the residential and commercial iterations of the LawnMowerSeat:

public class LawnMowerSeatFactory {

 public enum LawnMowerType {RESIDENTIAL, COMMERCIAL};

 public static LawnMowerSeat create(LawnMowerType mowerType) {
 if (mowerType == LawnMowerType.RESIDENTIAL) {

Creational Design Patterns Chapter 4

[132]

 return new ResidentialLawnMowerSeat();
 } else if (mowerType == LawnMowerType.COMMERCIAL) {
 return new CommercialLawnMowerSeat();
 } else {
 return null;
 }
 }
}

The last class in our solution is the LawnMowerSeatDriver class. This class contains the
main method and makes calls to the Factory class for object creation:

public class LawnMowerSeatDriver {

 public static void main(String[] args) {

 System.out.println("\n\n");

 // Create a Residential Lawnmower Seat
 LawnMowerSeat residential =
LawnMowerSeatFactory.create(LawnMowerSeatFactory.LawnMowerType.RESIDENTIAL)
;

 // Create a Commercial Lawnmower Seat
 LawnMowerSeat commercial =
LawnMowerSeatFactory.create(LawnMowerSeatFactory.LawnMowerType.COMMERCIAL);

 }
}

After each object is created, contextual text is printed on the console. That output is
displayed here:

Simple factory design pattern implementation—console output

This section provided the source code and the console output for our lawnmower seat
creation system implementation of the simple factory design pattern.

Creational Design Patterns Chapter 4

[133]

Implementing the singleton design pattern
The singleton design pattern is perhaps the easiest of the creational design patterns to
understand and to implement. The purpose of this design pattern is to ensure there is only
one instance of the class, and it must be externally accessible. It is common for security-
based systems to implement the singleton design pattern. An example would be a banking
system that creates new account numbers. It is important that these account numbers are
only generated by a single system.

We will implement the singleton design pattern simply by making the singleton class
constructor private.

We will look at an example use case, the UML class diagram, and the source code that's
necessary to implement the singleton design pattern for this scenario.

Use case
To demonstrate the singleton design pattern, we will create a bank account number
generation system. This system will consist of a singleton class that can only be instantiated
once. Our system will attempt to create more than one instance of the singleton class to
verify our application's functionality.

UML class diagram
As indicated by the UML class diagram, only two classes are required to demonstrate our
singleton design pattern implementation:

UML class diagram—singleton design pattern implementation

The UML class diagram aptly indicates that the AccountDriver class contains the main()
method and will be used to drive the program's execution.

Creational Design Patterns Chapter 4

[134]

Programming the design pattern
The CreateBankAccount class includes a private constructor, which will prevent
attempts to instantiate more than one instance of the CreateBankAccount object. The
getNewAccount() method checks whether the newAccount already exists and provides
contextual feedback to the user:

public class CreateBankAccount {

 private static CreateBankAccount newAccount;

 // constructor
 private CreateBankAccount() {

 }

 public static CreateBankAccount getNewAccount() {
 if (newAccount == null) {
 newAccount = new CreateBankAccount();
 System.out.println("New Account created.");
 } else {
 System.out.println("Account already opened.");
 }
 return newAccount;
 }
}

The Driver class, AccountDriver, prints a header label and then attempts to create two
instances of the CreateBankAccount object, which is shown as follows:

public class AccountDriver {

 public static void main(String[] args) {

 System.out.println("\n\nBank Account Number Generation System");

 // create new account
 CreateBankAccount account1 = CreateBankAccount.getNewAccount();

 // create second account
 CreateBankAccount account2 = CreateBankAccount.getNewAccount();
 }
}

Creational Design Patterns Chapter 4

[135]

As shown by the following console output, the first attempt at object creation was
successful and the subsequent attempt failed. This shows that the singleton design pattern
was properly implemented:

Builder design pattern implementation—console output

This section provided the source code and the console output for our bank account number
generation system implementation of the singleton design pattern.

Summary
In this chapter, Creational Design Patterns, we explored the creational design pattern
category and its individual design patterns: abstract factory, builder, factory method,
prototype, simple factory, and singleton. We learned that creational design patterns are
used to mange object instantiation. The purposes of creational design patterns are to
separate object creation from the system, support reliance on object creation via inheritance,
encapsulate information regarding which classes are used by a system, and to protect object
creation details.

In the next chapter, Structural Design Patterns, we will explore the structural design pattern
category and its individual design patterns of adapter, bridge, composite, facade, flyweight,
and proxy.

Questions
What are the four purposes of creational design patterns?1.
What are the six creational design patterns?2.
What are the two categories of creational design patterns?3.
What is unique about abstract classes in Java?4.
Which design pattern creates an interface that is used to create multiple objects5.
without prior knowledge of the concrete class?
Which design pattern is used to create separation between object instantiation6.
and representation?

Creational Design Patterns Chapter 4

[136]

Which design pattern allows subclasses to determine which class to create?7.
Which design pattern allows us to specify a category of objects using a prototype8.
instance?
Which design pattern is used to delegate object creation to a specific class?9.
Which design pattern ensures there is only one instance of the class?10.

Further reading
Java EE 8 Design Patterns and Best Practices (https:/ /www. packtpub. com/
application- development/ java- ee- 8-design- patterns- and- best- practices)
Learn Design Patterns with Java (https:/ /www. packtpub. com/application-
development/ learn- design- patterns- java- video)
Design Patterns and Best Practices in Java (https:/ /www. packtpub. com/
application- development/ design- patterns- and- best- practices- java)

https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java

5
Structural Design Patterns

In the last chapter, Creational Design Patterns, we explored the creational design pattern
category and its individual design patterns, namely, abstract factory, builder, the factory
method, prototype, simple factory, and singleton. We learned that creational design
patterns are used to manage object instantiation. The purposes of creational design patterns
are to separate object creation from the system, support reliance on object creation vice
inheritance, encapsulate information regarding which classes are used by a system, and to
protect object creation details.

In this chapter, Structural Design Patterns, we will explore the structural design pattern
category. Structural design patterns are used to identify how system components are
related. Seven specific structural design patterns, listed here, will be covered in this chapter.
We will examine the programming challenges and creational design patterns that solve
them:

Introduction to creational design patterns
Adapter
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

Technical requirements
The code for this chapter can be found at https:/ /github. com/ PacktPublishing/ Hands-
On-Design-Patterns- with- Java/ tree/ master/ Chapter05.

https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-JAVA-11/tree/master/Chapter05

Structural Design Patterns Chapter 5

[138]

Introduction to structural design patterns
Structural design patterns focus on how objects and classes are combined to form a system.
There are two categories of structural design patterns:

Object design patterns: Structural object design patterns are used to describe
how to create objects with new functionality
Class design patterns: Structural class design patterns utilize inheritance to
create interfaces and combine multiple classes to form a larger structure

Examples of both the approaches are provided in this chapter.

The seven structural design patterns presented in this chapter all have an object scope, with
the exception of the adapter design pattern. The adapter design pattern has both object and
class scope, as illustrated in the following table:

Object scope Class scope
Adapter object pattern Adapter class pattern
Bridge pattern
Composite pattern
Decorator pattern
Facade pattern
Flyweight pattern
Proxy pattern

The structural design patterns listed in the preceding table are detailed in the remaining
sections of this chapter. They are presented in alphabetical order to illustrate that one is not
more important than the others.

Understanding the adapter design pattern
The adapter design pattern is used to convert an interface of one class into another interface
expected by the system. This design pattern empowers classes to work in concert with one
another regardless of the compatibility of their interfaces.

Consider the real-world case of a motorhome. In order to connect to shore power, an
electric cord is plugged into the motorhome. The other end of that cord is plugged into a
power source receptacle. If the power receptacle does not fit the plug, an adapter is
required. We can translate this real-world scenario into a computer model. The motorhome
and power source receptacles are both classes with their own interfaces. These interfaces
restrict the two classes from communicating with each other without the use of an adapter.

Structural Design Patterns Chapter 5

[139]

Use case
We will use a real estate land area calculation program to demonstrate how to implement
the adapter design pattern. We will have two similar classes that do not inherit from the
same class and cannot communicate directly with each other without an adapter. The Lot
class will simply contain a length and width so acreage can be computed as square feet.
This assumes small lot sizes. The Estate class acreage will be computed as acreage as
those lots sizes are much larger.

UML class diagram
As indicated by the following UML class diagram, the AcreageDeterminatorAdapter
class is the adapter that facilitates communication between the Lot and Estate classes:

UML class diagram—adapter design pattern implementation

As illustrated, the AdapterDriver class is used to drive the application and contains the
main() method.

Structural Design Patterns Chapter 5

[140]

Programming the design pattern
The Lot class shown here only contains two variables that can be used to calculate the
square footage land area of instances of the Lot class:

public class Lot {

 // class variables
 public double length;
 public double width;
}

The Estate class contains the same two variables as the Lot class and also contains a
constructor method:

public class Estate {

 // class variables
 public double length;
 public double width;

 // constructor
 public Estate(int length, int width) {
 this.length = length;
 this.width = width;
 }
}

The AcreageDeterminator class is used to compute the square footage of a Lot instance:

public class AcreageDeterminator {
 Lot lot;

 public double determineAcreage(Lot tLot) {
 lot = tLot;
 return lot.length * lot.width;
 }
}

Structural Design Patterns Chapter 5

[141]

The AcreageDeterminatorAdapter class is the adapter class that permits the
communication between the Lot and Estate classes. The class uses instances of
AcreageDeterminator and Estate to determine acreage. The determineAcreage()
method creates instances of both the Lot and Estate classes. The Estate instance values
are assigned to the Lot instance variables. Then, the method performs the calculation
specific to the Estate instance and returns that value, which is shown in the following
code:

public class AcreageDeterminatorAdapter {

 AcreageDeterminator determinator;
 Estate estate;

 public double determineAcreage(Estate tEstate) {
 determinator = new AcreageDeterminator();
 estate = tEstate;
 Lot tLot = new Lot();

 tLot.length = estate.length;
 tLot.width = estate.width;

 return (determinator.determineAcreage(tLot) / 43560);
 }
}

The AdapterDriver class is the application's class that contains the main() method. This
method contains some housekeeping functionality to include an output header and to
allow formatting the output for two decimal places. The core functionality in the main()
method is to create AcreageDeterminatorAdapter and Estate instances. The Estate
instance is created with sample values of 2300 and 6325 for length and width respectively.
A call is made to the determineAcreage() method of the
AcreageDeterminatorAdapter instance, with the Estate instance used as a parameter
to the method call. The following code shows this:

import java.text.DecimalFormat;

public class AdapterDriver {

 private static DecimalFormat acreageFormat = new DecimalFormat(".##");

 public static void main(String[] args) {

 System.out.println("\n\nReal Estate Land Area Calculation");
 AcreageDeterminatorAdapter adAdapter = new
AcreageDeterminatorAdapter();

Structural Design Patterns Chapter 5

[142]

 Estate estate = new Estate(2300, 6325);

 System.out.print("Estate Acreage: ");
System.out.print(acreageFormat.format(adAdapter.determineAcreage(estate)));
 }
}

The application's console output is displayed here:

Adapter design pattern implementation—console output

This section provided the source code and the console output for our real estate land area
calculation program implementation of the adapter design pattern.

Crossing the bridge design pattern
The bridge design pattern simply separates abstraction from implementation. This design
pattern involves creating a bridge between abstraction and implementation. Before
exploring this design pattern further, it is important to thoroughly understand how
abstraction works in Java.

Learning about abstraction
Abstraction is one of the core principles of Object-Oriented Programming (OOP) and is
used to hide object implementation details. It is important to understand abstraction to
support correct implementation.

An example of abstraction is when we have an abstract User class and multiple subclasses
that inherit from it. For example, we might have a Learning Management System (LMS)
User class and three subclasses—Student, Teacher, and Administrator. We can
implement a method overriding the inherited methods that would otherwise expose the
implementation details. More specifically, the superclass defines the methods and the
subclasses implement them.

As you can see in the following UML diagram, the Student, Teacher, and
Administrator classes all inherit from the User class and override the
computeCredits() method:

Structural Design Patterns Chapter 5

[143]

UML class diagram—abstraction example

The preceding abstraction example illustrates how the Student, Teacher, and
Administrators subclasses have different class variables and all implement the same
computeCredits() method from the superclass.

Implementing the abstraction example
The User class, shown here, is abstract and has three class variables. A default constructor
has been added. In addition, the computeCredits() method has been made abstract and
therefore cannot have a method body:

public abstract class User {

 // class variables
 private String name;
 private String userID;
 private int downloadCredits;

 // constructor
 public User(String name, String userID, int downloadCredits) {
 this.name = name;
 this.userID = userID;
 this.downloadCredits = downloadCredits;
 }

 // abstract method
 public abstract int computeCredits();

Structural Design Patterns Chapter 5

[144]

The second half of the User class is provided in the following code block. It contains the
accessor and mutator methods for each of the three class variables:

 // accessor methods
 public String getName() {
 return name;
 }

 public String getUserID() {
 return userID;
 }

 public int getDownloadCredits() {
 return downloadCredits;
 }

 // mutator methods
 public void setName(String name) {
 this.name = name;
 }

 public void setUserID(String userID) {
 this.userID = userID;
 }

 public void setDownloadCredits(int downloadCredits) {
 this.downloadCredits = downloadCredits;
 }
}

The Student class extends the User class. It contains a private variable named
gradeLevel and a constructor method. The constructor uses both the super constructor's
and its own. The class has its own implementation of the User class computeCredits()
method. The calculation is unique to the Student class:

public class Student extends User {

 private int gradeLevel;

 public Student(String name, String userID, int downloadCredits, int
gradeLevel) {
 super(name, userID, downloadCredits);
 this.gradeLevel = gradeLevel;
 }

 @Override
 public int computeCredits() {

Structural Design Patterns Chapter 5

[145]

 return getDownloadCredits() * gradeLevel;
 }
}

The Teacher class extends the User class. It contains a private variable named
teachingStatus and a constructor method. The constructor uses both the super
constructor's and its own. The class has its own implementation of the User class
computeCredits() method. The calculation is unique to the Teacher class:

public class Teacher extends User {

 private int teachingStatus;

 public Teacher(String name, String userID, int downloadCredits, int
teachingStatus) {
 super(name, userID, downloadCredits);
 this.teachingStatus = teachingStatus;
 }

 @Override
 public int computeCredits() {
 return getDownloadCredits() * teachingStatus;
 }
}

The Administrator class extends the User class. It implements the User class constructor
method without modification. The class has its own implementation of the User class
computeCredits() method. Since administrative users are not permitted download
credits, 0 is returned:

public class Administrator extends User {

 public Administrator(String name, String userID, int downloadCredits) {
 super(name, userID, downloadCredits);
 }

 @Override
 public int computeCredits() {
 return 0;
 }
}

The four preceding classes demonstrate how to implement abstraction in Java. Armed with
this knowledge, we can explore the bridge design pattern.

Structural Design Patterns Chapter 5

[146]

Use case
To demonstrate the bridge design pattern and how abstraction and implementation can be
efficiently decoupled, we will use Medication Administering System. This system will
support the administering of specific mediations to both adult and children patients. The
dosage will be variable. Using the bridge design pattern, we will create a bridge between
the Medicine interface and the Patient superclass.

UML class diagram
The UML class diagram provided here shows the seven classes involved in Medication
Administering System. The Antibiotic and PainRelief classes implement the
Medicine interface. The Adult and Child classes extend the Patient class. Our system's
bridge is between the Medicine interface and Patient class:

UML class diagram—bridge design pattern implementation

As illustrated in the preceding image, the BridgeDriver class is used to drive the
application and contains the main() method.

Structural Design Patterns Chapter 5

[147]

Programming the design pattern
Medication Administering System starts with a Medicine interface. Let's see how
that works:

As shown here, the interface contains an administerMedication() method:1.

public interface Medicine {

 void administerMedication(int amount);
}

The Antibiotic class is one of the two classes that implement the Medicine2.
interface. The class overrides the administerMedication() method:

public class Antibiotic implements Medicine {
 @Override
 public void administerMedication(int amount) {
 System.out.print(amount + " antibiotic pills
administered.");
 }
}

The PainRelief class is the second of the two classes that implement the3.
Medicine interface. The class overrides the administerMedication() method
with tailored output text:

public class PainRelief implements Medicine {

 @Override
 public void administerMedication(int amount) {
 System.out.print(amount + " pain relief pills
administered.");
 }
}

The Patient class is the superclass to the Adult and Child classes. It includes4.
two abstract methods: selectPatient() and modifyMedication(). These
abstract methods will have to be implemented by the Adult and Child classes:

abstract class Patient {

 protected Medicine medicine;
 protected Patient(Medicine med) {
 this.medicine = med;
 }

Structural Design Patterns Chapter 5

[148]

 abstract void selectPatient(int dose);
 abstract void modifyMedication(int dose, int increment);
}

The Adult class extends the Patient superclass and overrides the abstract5.
methods of selectPatient() and modifyMedication(). The
selectPatient() method is used for issuing new doctor dosage orders. The
modifyMedication() method is used to modify the dosage for an already
prescribed medication:

public class Adult extends Patient {

 protected Adult(Medicine med) {
 super(med);
 }

 @Override
 void selectPatient(int dose) {
 System.out.print("\tDoctor\'s Order: ");
 medicine.administerMedication(dose);

 }

 @Override
 void modifyMedication(int dose, int increment) {

 String message = "";

 if (increment < 0) {
 dose = dose - Math.abs(increment);
 message = "minus ";
 } else {
 dose = dose + increment;
 message = "plus ";
 }

 System.out.println("\n\tDoctor-ordered dosage change: " +
 message + Math.abs(increment) + " pills.");
 selectPatient(dose);
 }
}

Structural Design Patterns Chapter 5

[149]

The Child class extends the Patient superclass and overrides the abstract6.
methods of selectPatient() and modifyMedication(). As with the Adult
class, the selectPatient() method is used for issuing new doctor dosage
orders. The modifyMedication() method is used to modify the dosage for an
already prescribed medication:

public class Child extends Patient {

 public Child(Medicine med) {
 super(med);
 }

 @Override
 void selectPatient(int dose) {
 System.out.print("\tDoctor\'s Order: ");
 medicine.administerMedication(dose);
 }

 @Override
 void modifyMedication(int dose, int increment) {

 String message = "";

 if (increment < 0) {
 dose = dose - Math.abs(increment);
 message = "minus ";
 } else {
 dose = dose + increment;
 message = "plus ";
 }

 System.out.println("\n\tDoctor-ordered dosage change: " +
 message + Math.abs(increment) + " pills.");
 selectPatient(dose);
 }
}

The final class in our system is the BridgeDriver class that contains the main()7.
method. There are two code blocks in the main() method: one for administering
antibiotic pills to an adult patient, and the other to administer pain relief pills to a
child patient:

public class BridgeDriver {

 public static void main(String[] args) {

 System.out.println("\n\nMedication Administering

Structural Design Patterns Chapter 5

[150]

System\n");

 // administer antibiotic pills to adult
 System.out.println("Adult Patient:");
 Medicine antibiotic = new Antibiotic();
 Patient adultPatient = new Adult(antibiotic);
 adultPatient.selectPatient(2);
 adultPatient.modifyMedication(2, 2);

 // administer pain relief pills to child
 System.out.println("\n\nChild Patient:");
 Medicine painRelief = new PainRelief();
 Patient childPatient = new Child(painRelief);
 childPatient.selectPatient(4);
 childPatient.modifyMedication(4, -2);

 System.out.println("\n\n");
 }
}

The application's console output is displayed here:

Bridge design pattern implementation—console output

This section provided the source code and the console output for our Medication
Administering System implementation of the bridge design pattern.

Structural Design Patterns Chapter 5

[151]

Combining objects with the composite
design pattern
The composite design pattern allows us to create an object tree structure. We can then treat
both objects and the tree structures in the same manner, as individual objects. Without this
design pattern, we can run into problems when we create structures from multiple objects.
The problems stem from the need to treat primitive objects and the composite differently.
The composite design pattern was created to overcome the aforementioned problem.

In order to implement the composite design pattern, we first create an abstract class to
represent the primitive and tree structures.

Use case
To implement the composite design pattern, we will create a kitchen staff management
system that includes a KitchenStaff interface and a Chef class. We will use the following
chef hierarchy in our implementation—Executive Chef, Head Chef, Sous Chef, Line
Chef, and Commis Chef. Using the composite design pattern, we will be able to treat the
chef tree structure as if it were a single object.

UML class diagram
The following UML class diagram illustrates the relationships between the three classes in
our implementation of the composite design pattern. The KitchenStaff interface is
implemented by the Chef class.

Structural Design Patterns Chapter 5

[152]

The staffList class also has a direct relationship with the interface:

UML class diagram—composite design pattern implementation

As illustrated here, the KitchenStaffDriver class is used to drive the application and
contains the main() method.

Programming the design pattern
Our program begins with a KitchenStaff interface that contains an empty
getDetails() method:

public interface KitchenStaff {

 public String getDetails();
}

The Chef class, shown here, implements the KitchenStaff class. It contains three class
variables and a constructor:

import java.util.ArrayList;
import java.util.List;

Structural Design Patterns Chapter 5

[153]

public class Chef implements KitchenStaff {

 private String name;
 private String role;
 private List<KitchenStaff> staffList;

 Chef(String name, String role) {
 this.name = name;
 this.role = role;
 staffList = new ArrayList<KitchenStaff>();
 }

The next section of the Chef class contains three methods—add(), fire(), and
getStaffList():

public void add(Chef chef) {
 staffList.add(chef);
}

public void fire(Chef chef) {
 staffList.remove(chef);
}

public List<KitchenStaff> getStaffList() {
 return staffList;
}

The last section of the Chef class contains three accessor methods—getDetails(),
which is overridden from the KitchenStaff interface, getName(), and getRole():

 @Override
 public String getDetails() {
 return (name + " is assigned the role of " + role);
 }

 public String getName() {
 return name;
 }

 public String getRole() {
 return role;
 }
}

Structural Design Patterns Chapter 5

[154]

Our program's Driver class is the KitchenStaffDriver class. The first part of this class,
shown here, instantiates several Chef objects. The purpose of these objects is for illustration
purposes:

import java.util.List;

public class KitchenStaffDriver {

 public static void main(String[] args) {

 // create sample data
 Chef execChef = new Chef("Gemma Patron", "Executive Chef");
 Chef headChef = new Chef("Tiksha Century", "Head Chef");
 Chef sousChef1 = new Chef ("Tilly Hope", "Sous Chef");
 Chef sousChef2 = new Chef ("Pat Stringe", "Sous Chef");
 Chef lineChef1 = new Chef ("Seth Arpage", "Line Chef");
 Chef lineChef2 = new Chef ("Diego Salazar", "Line Chef");
 Chef lineChef3 = new Chef ("Cersei Butrix", "Line Chef");
 Chef lineChef4 = new Chef ("Marissa Parth", "Line Chef");
 Chef commisChef1 = new Chef ("Johnny Ferd", "Commis Chef");
 Chef commisChef2 = new Chef ("Kay Fleping", "Commis Chef");

The second part of the KitchenStaffDriver class subordinates Head Chef to Executive
Chef, Sous Chef to Head Chef, Line Chef to Sous Chefs, and Commis Chef to Line
Chef:

// establish Executive Chef at top of tree structure
// make Head Chef subordinate to Executive Chef
execChef.add(headChef);

// subordinate Sous Chefs to Head Chef
headChef.add(sousChef1);
headChef.add(sousChef2);

// subordinate Line Chefs to Sous Chefs
sousChef1.add(lineChef1);
sousChef1.add(lineChef2);
sousChef1.add(lineChef3);
sousChef1.add(lineChef4);

// subordinate Commmis Chefs under Line Chef 1
lineChef1.add(commisChef1);
lineChef1.add(commisChef2);

Structural Design Patterns Chapter 5

[155]

In the next section of code, we use null to indicate no subordinates. This establishes the end
of the tree structure:

// no subordinates to other Line Chefs
lineChef2.add(null);
lineChef3.add(null);
lineChef4.add(null);

// no subordinates to Commis Chefs
commisChef1.add(null);
commisChef2.add(null);

The Driver class also provides console output based on the sample data. The
getDetails() method is used to retrieve details from Executive Chef. Next, details are
provided using the getStaffList() and getDetails() methods for Sous Chef, Line
Chef, and Commis Chef. Output is provided in tabbed form to indicate the tree structure:

// provide console output
System.out.println("\n\nKitchen Staff Management System\n");
System.out.println(execChef.getDetails());

List<KitchenStaff> head = execChef.getStaffList();
for (int i=0; i < head.size(); i++) {
 System.out.println("\t" + head.get(i).getDetails());
}

List<KitchenStaff> sous = headChef.getStaffList();
for (int i=0; i < sous.size(); i++) {
 System.out.println("\t\t" + sous.get(i).getDetails());
}

List<KitchenStaff> line = sousChef1.getStaffList();
for (int i=0; i < line.size(); i++) {
 System.out.println("\t\t\t" + line.get(i).getDetails());
}

List<KitchenStaff> commis = lineChef1.getStaffList();
for (int i=0; i < commis.size(); i++) {
 System.out.println("\t\t\t\t" + commis.get(i).getDetails());
}

The final section of the KitcheStaffDriver class processes a firing event for a line chef.
The fire() method is used to remove the chef from the staff list. Finally, an updated list of
line chefs is provided for visual verification of the code:

 // firing a line chef
 System.out.println("\n\nKITCHEN STAFF UPDATE");

Structural Design Patterns Chapter 5

[156]

 System.out.println("\t" + lineChef1.getName() +
 ", " + lineChef1.getRole() + ", has been terminated.");
 sousChef1.fire(lineChef1);
 System.out.println("\nHere is the updated list of Line Chefs:");
 List<KitchenStaff> newLine = sousChef1.getStaffList();
 for (int i=0; i < newLine.size(); i++) {
 System.out.println("\t" + newLine.get(i).getDetails());
 }
 }
}

The application's console output is displayed here:

Composite design pattern implementation—console output

This section provided the source code and the console output for our kitchen staff
management system implementation of the composite design pattern.

Understanding the decorator design pattern
The decorator design pattern allows us to assign responsibilities to an object without
impacting the class. Without the decorator design pattern, we can assign responsibilities to
objects through inheritance. A more streamlined approach is to use the decorator design
pattern to assign additional responsibilities to specific objects. The key goal is to add the
additional responsibility to objects dynamically and without impacting other objects.

Structural Design Patterns Chapter 5

[157]

This design pattern is commonly used with graphical software that includes layering
objects over one another. For example, building a Graphical User Interface (GUI) or
creating a Heads Up Display (HUD) for a game.

The decorator design pattern is occasionally referred to as a wrapper design pattern
because the decorator essential wraps around the object and its dynamically created
responsibilities.

Use case
We will create a Printer Buffer Flusher Demo application to demonstrate how to
implement the decorator design pattern. We have a flushBuffer() method that will not
be modified. Functionality will be added using decorators. As you will see, the new
functionality works without impacting the original flushBuffer() functions.

UML class diagram
The following UML class diagram shows that our Printer Buffer Flusher Demo
application includes a Printer class and a ConcretePrinter class that extends the
Printer class. There are also two concrete decorator classes (ConcreteDecorator1 and
ConcreteDecorator2) that extend the AbstractDecorator class:

UML class diagram—decorator design pattern implementation

Structural Design Patterns Chapter 5

[158]

As illustrated here, the DecoratorDriver class is used to drive the application and
contains the main() method.

Programming the design pattern
Our Printer Buffer Flusher Demo application starts with an abstract Printer class
that has an empty flushBuffer() method. Since it is an abstract method, it cannot have a
method body. The following code shows this:

abstract class Printer {
 public abstract void flushBuffer();
}

Next, we have a ConcretePrinter class that extends the Printer class. The
flushBuffer() method is overridden and includes a contextual message that is printed to
the console:

public class ConcretePrinter extends Printer {

 @Override
 public void flushBuffer() {
 System.out.println("Message from Concrete Printer: Printer Buffer
Flushed");
 }
}

The AbstractDecorator class is abstract and extends the Printer class. The class
instantiates a Printer object, has a selectPrinterToFlush() method and the
flushBuffer() method:

abstract class AbstractDecorator extends Printer {

 protected Printer printer;

 public void selectPrinterToFlush(Printer ptr) {
 printer = ptr;
 }

 public void flushBuffer() {
 if (printer != null) {
 printer.flushBuffer();
 }
 }
}

Structural Design Patterns Chapter 5

[159]

The first concrete decorator class, ConcreteDecorator1, extends the abstract
AbstractDecorator class. The flushBuffer() method is implemented and includes
contextual text for console output:

public class ConcreteDecorator1 extends AbstractDecorator {

 public void flushBuffer() {
 super.flushBuffer();
 System.out.println("Message from Concrete Decorator 1: " +
 "Printer Buffer Flushed");
 }
}

The second concrete decorator class, ConcreteDecorator2, extends the abstract
AbstractDecorator class. The flushBuffer() method is implemented and includes
contextual text for console output. This output varies from the first concrete decorator class
for illustration purposes:

public class ConcreteDecorator2 extends AbstractDecorator {

 public void flushBuffer() {

 System.out.println("\n[START] Concrete Decorator 2 Wrapper [
START]");
 super.flushBuffer();
 System.out.println("Message from Concrete Decorator 2: " +
 "Printer Buffer Flushed");
 System.out.println("[END] Concrete Decorator 2 Wrapper [END]");
 }
}

The last class in our Printer Buffer Flusher Demo implementation of the decorator
design pattern is the DecoratorDriver class. This is the Driver class for the application
and includes the main() method. After printing a decorative header, a ConcretePrinter
instance is created and then two concrete decorators are created:

public class DecoratorDriver {

 public static void main(String[] args) {

System.out.println("\n\n===
===");
 System.out.println("\t\t\tPrinter Buffer Flusher Demo");
System.out.println("=="
);
 ConcretePrinter concreteFlush = new ConcretePrinter();

Structural Design Patterns Chapter 5

[160]

 // create concrete decorator
 ConcreteDecorator1 cd1 = new ConcreteDecorator1();
 // decorate cd1
 cd1.selectPrinterToFlush(concreteFlush);
 cd1.flushBuffer();

 // create concrete decorator
 ConcreteDecorator2 cd2 = new ConcreteDecorator2();
 // decorate cd2
 cd2.selectPrinterToFlush(cd1);
 cd2.flushBuffer();
 }
}

The application's console output is displayed here:

Decorator design pattern implementation—console output

This section provided the source code and the console output for our Printer Buffer
Flusher Demo implementation of the decorator design pattern.

Implementing the facade design pattern
The facade design pattern creates an interface that is served as an interface to other
interfaces within a system or subsystem. The benefits of using this design pattern are that
subsystems are less complex, the reliance components is reduced, and communication
between system components is minimized.

Consider the following illustrations. The image on the left shows the organization of a
system and subsystems without a facade interface. The right-hand image shows the facade
interface layered between the main classes and the subsystem:

Structural Design Patterns Chapter 5

[161]

System representation with and without a facade interface

As indicated in the diagram, the facade interface serves as an interface between the system
and subsystem. It can also be correction inferred that the facade interface will prevent the
unnecessary exposure of details to the system.

Use case
To demonstrate the facade design pattern, we will create a meal assembly service
application. The app will assemble meals with protein, vegetable, and starch components.
Our classes will be organized into multiple Java projects to help protect information details.
Here is an overview of the package organization:

Package structure of meal assembly service app

As illustrated in the previous image, there are three Java packages and five classes in the
meal assembly service application.

Structural Design Patterns Chapter 5

[162]

UML class diagram
The UML class diagram shows that the MealFacade class serves as a facade for the
MealProtein, MealVegetable, and MealStarch classes:

UML class diagram—facade design pattern implementation

As illustrated, the FacadeDriver class is used to drive the application and contains the
main() method.

Programming the design pattern
The MealProtein class is one of the three component classes of a meal. Let's see how that
goes:

It contains a protein class variable and the mutator method to assign the1.
provided input to the class variable:

package CH5Facade.MealComponents;

public class MealProtein {

 private String protein;

 public void setProtein(String protein) {
 this.protein = protein;

Structural Design Patterns Chapter 5

[163]

 System.out.println("\t\tProtein (" + this.protein + ")
added to meal.");
 }
}

The MealVegetable class is similar to the MealProtein class as it is one of the2.
three component classes of a meal. It contains a vegetable class variable and the
mutator method to assign the provided input to the class variable:

package CH5Facade.MealComponents;

public class MealVegetable {

 private String vegetable;

 public void setVegetable(String vegetable) {
 this.vegetable = vegetable;
 System.out.println("\t\tVegetable (" + this.vegetable + ")
added to meal.");
 }
}

The MealStarch class is the third component class of a meal. It contains a3.
starch class variable and the mutator method to assign the provided input to
the class variable:

package CH5Facade.MealComponents;

public class MealStarch {

 private String starch;

 public void setStarch(String starch) {
 this.starch = starch;
 System.out.println("\t\tStarch (" + this.starch + ") added
to meal.");
 }
}

The MealFacade class is in its own package and imports the MealProtein,4.
MealVegetable, and MealStarch classes. The first part of the MealFacade
class is provided here. This segment of code defines three class variables and
contains the constructor method:

package CH5Facade.MealFacade;

import CH5Facade.MealComponents.MealProtein;

Structural Design Patterns Chapter 5

[164]

import CH5Facade.MealComponents.MealVegetable;
import CH5Facade.MealComponents.MealStarch;

public class MealFacade {

 MealProtein newProtein;
 MealVegetable newVegetable;
 MealStarch newStarch;

 public MealFacade() {
 newProtein = new MealProtein();
 newVegetable = new MealVegetable();
 newStarch = new MealStarch();
 }

The final part of the MealFacade class, provided in the following code block,5.
contains the assembleMeal() method. This method provides console output for
the beginning and ending of the meal assembly process. It makes calls to the
setProtein(), setVegetable(), and setStarch() methods:

 public void assembleMeal(String protein, String vegetable,
String starch) {

 System.out.println("\n\tMeal assembly process initiated. .
. ");
 newProtein.setProtein(protein);
 newVegetable.setVegetable(vegetable);
 newStarch.setStarch(starch);
 System.out.println("\tMeal assembly process completed. . .
\n");
 }
}

Our application's driver class, FacadeDriver, contains the main() method. That6.
method starts by printing a decorative header to the console. Next, a series of
three meals are created by first instantiating a MealFacade object and then
calling that object's assembleMeal() method:

package CH5Facade;

import CH5Facade.MealFacade.MealFacade;

public class FacadeDriver {

 public static void main(String[] args) {

System.out.println("\n\n===

Structural Design Patterns Chapter 5

[165]

===========");
 System.out.println("\t\t\tMeal Assembly Service Demo");
System.out.println("===
=======");

 // assemble three meals
 MealFacade meal1 = new MealFacade();
 meal1.assembleMeal("Steak", "Asparagus", "Wild Rice");

 MealFacade meal2 = new MealFacade();
 meal2.assembleMeal("Chicken", "Green Beans", "Potato
Wedges");

 MealFacade meal3 = new MealFacade();
 meal3.assembleMeal("Meatloaf", "Brussel Sprouts", "Mashed
Potatoes");
 }
}

The application's console output is displayed here:

Facade design pattern implementation—console output

This section provided the source code and the console output for our meal assembly service
implementation of the facade design pattern.

Structural Design Patterns Chapter 5

[166]

Soaring with the flyweight design pattern
The flyweight design patterns offer great efficiency and improved processing when dealing
with a large number of similar objects. The pattern uses sharing of identical object
components. Consider programming a video game that has thousands of tile objects that
are used to build architectural structures. The tile objects will likely only have a color
attribute. So repeating the Tiles tile = new Tiles("beige") line of code 1,000 times
is not efficient, especially since all of the objects will contain the same attribute value. The
flyweight design pattern addresses this issue by permitting the reference of numerous
same-type objects that have the same state.

Use case
We will create a Mattress Manufacturing Factory Demo application to implement the
flyweight design pattern. We will create an interface, a Mattress class, a
MattressFactory class, and a Driver class. Our application will facilitate the ability to
create mattresses of size crib, twin, and full. If a mattress already exists, then new objects
will not be created; instead, MattressFactory will provide the size and then the mattress
firmness can be determined.

UML class diagram
The following UML class diagram visually details the class relationship for the mattress
manufacturing factory application implementation of the flyweight design pattern:

UML class diagram—flyweight design pattern implementation

As illustrated, the MattressDriver class is used to drive the application and contains the
main() method.

Structural Design Patterns Chapter 5

[167]

Programming the design pattern
We will consider the following case to understand the programming design pattern:

Our Mattress Manufacturing Factory Demo project starts with a1.
MattressInterface interface. That interface contains a print() method with
no body:

public interface MattressInterface {

 void print();
}

The Mattress class implements MattressInterface. It contains two class2.
variables (mattressSize and mattressFirmness). The class also contains the
setMattressFirmness() mutator method and overrides the interface's
print() method:

public class Mattress implements MattressInterface {
 // class variables
 String matrressSize;
 public String mattressFirmness;

 // constructor
 public Mattress(String matrressSize) {
 this.matrressSize = matrressSize;
 }

 // mutator
 public void setMattressFirmness(String mattressFirmness) {
 this.mattressFirmness = mattressFirmness;
 }

 @Override
 public void print() {
 System.out.println("\t\tThis is a " + mattressFirmness +
 " " + matrressSize + " mattress.");
 }
}

The MattressFactory class, presented here in two sections, relies on Java's3.
HashMap and Map packages:

import java.util.HashMap;
import java.util.Map;

Structural Design Patterns Chapter 5

[168]

public class MattressFactory {

 Map<String, MattressInterface> sizes = new HashMap<String,
MattressInterface>();

 public int numberOfMattresses() {
 return sizes.size();
 }

The second section of the MattressFactory class contains the4.
getFactoryMattress() method. This method includes exception handling and
a switch construct based on the mattress size. Here is the first section of that
method:

public MattressInterface getFactoryMattress(String mSize) throws
Exception {
 MattressInterface mattressSize = null;
 if (sizes.containsKey(mSize)) {
 mattressSize = sizes.get(mSize);
 } else {
 switch (mSize) {
 // switch statements go here
 }
 }
 return mattressSize;
 }
}

The switch() code block for the getFactoryMattress() method is provided5.
here:

 switch (mSize) {
 case "Crib":
 System.out.println("\tA Crib Mattress did not exist, but
does now");
 mattressSize = new Mattress("Crib");
 sizes.put("Crib", mattressSize);
 break;

 case "Twin":
 System.out.println("\tA Twin Mattress did not exist, but
does now");
 mattressSize = new Mattress("Twin");
 sizes.put("Twin", mattressSize);
 break;

 case "Full":

Structural Design Patterns Chapter 5

[169]

 System.out.println("\tA Full Mattress did not exist, but
does now");
 mattressSize = new Mattress("Full");
 sizes.put("Full", mattressSize);
 break;

 default:
 throw new Exception("\tMattress Creation Request Error: " +
 invalid mattress size defined.");

The final class is the MattressDriver class that contains the main() method.6.
After printing a decorative header to the console, there are three for loops, each
for a different size of mattress. Each of these loops attempts to create five
mattress objects. As designed, our implementation only supports creating one of
each size:

public class MattressDriver {

 public static void main(String[] args) throws Exception {

 MattressFactory theFactory = new MattressFactory();

System.out.println("\n\n===
===========");
 System.out.println("\t\t\tMattress Manufacturing Factory
Demo");
System.out.println("===
=======");

 Mattress newMattress;

 for (int i = 0; i < 5; i++) {
 newMattress =
(Mattress)theFactory.getFactoryMattress("Crib");
 newMattress.setMattressFirmness("Firm");
 newMattress.print();
 }

 for (int i = 0; i < 5; i++) {
 newMattress =
(Mattress)theFactory.getFactoryMattress("Twin");
 newMattress.setMattressFirmness("Soft");
 newMattress.print();
 }

 for (int i = 0; i < 5; i++) {
 newMattress =

Structural Design Patterns Chapter 5

[170]

(Mattress)theFactory.getFactoryMattress("Full");
 newMattress.setMattressFirmness("Extra Firm");
 newMattress.print();
 }
 }
}

The application's console output is displayed here:

Flyweight design pattern implementation—console output

This section provided the source code and the console output for our mattress
manufacturing factory implementation of the flyweight design pattern.

Implementing the proxy design pattern
Proxy, in the Java context, is defined as having the authority to represent another object.
The proxy design pattern is true to its name in that it establishes a placeholder so that an
object other than itself can control access. Pointer object references lack sophistication.
Proxy references can accomplish the following with regards to an object reference:

Utilize smart pointers that can count the number of references to a given object.
This supports garbage collection.
Object locking so it cannot be modified by other objects.
Memory loading enhancements.

Structural Design Patterns Chapter 5

[171]

The primary justification for using the proxy design pattern is to save the tremendous
memory and processing time that is required to create complex objects.

Use case
We will create a proxy weather forecast application to demonstrate the proxy design
pattern implementation. We will create an abstract class and extend it with a concrete
class. Next, we will create a Proxy class for the Driver class to reference. We will organize
our classes into two packages, one for the master classes and the other for proxy classes.

UML class diagram
Our weather forecast application consists of four classes—Weather, ConcreteWeather,
Proxy, and ProxyDriver:

UML class diagram—proxy design pattern implementation

As illustrated, the ProxyDriver class is used to drive the application and contains the
main() method.

Structural Design Patterns Chapter 5

[172]

Programming the design pattern
The first class in our solution is the abstract Weather class. It contains the empty whoAmI()
method:

package Proxy.MasterClasses;

public abstract class Weather {

 public abstract void whoAmI();
}

The ConcreteWeather class extends the Weather class. It is a concrete class because it
implements all of the hierarchical methods. Specifically, the ConcreteWeather class
overrides the whoAmI() method. This method simply outputs to the console, informing the
user where the method call came from and provides a weather forecast:

package Proxy.MasterClasses;

public class ConcreteWeather extends Weather {

 @Override
 public void whoAmI() {
 System.out.println("\tMethod Call from " +
 this.getClass().getSimpleName() + " class");
 System.out.println("\t\tWeather forcast is sunny\n");
 }
}

The Proxy class also extends the abstract Weather class. The class overrides the whoAmI()
method. This method simply outputs to the console, informing the user where the method
call came from and provides a weather forecast:

package Proxy.ProxyClasses;

import Proxy.MasterClasses.ConcreteWeather;
import Proxy.MasterClasses.Weather;

public class Proxy extends Weather {

 ConcreteWeather concreteWeather;

 @Override
 public void whoAmI() {
 System.out.println("\tMethod Call from " +
 this.getClass().getSimpleName() + " class");
 System.out.println("\t\tWeather forcast is overcast and rain\n");

Structural Design Patterns Chapter 5

[173]

 if (concreteWeather == null) {
 concreteWeather = new ConcreteWeather();
 }
 concreteWeather.whoAmI();
 }
}

The final class in our solution is the ProxyDriver class, which contains the main()
method. This method produces decorative console output, creates a new Proxy instance,
and then calls the whoAmI() method on the new object:

package Proxy.ProxyClasses;

public class ProxyDriver {

 public static void main(String[] args) {

System.out.println("\n\n===
===");
 System.out.println("\t\t\tProxy Weather Forecast Demo");
System.out.println("=="
);

 Proxy proxyCall = new Proxy();
 proxyCall.whoAmI();
 }
}

The application's console output is displayed here:

Proxy design pattern implementation—console output

This section provided the source code and the console output for our proxy weather
forecast implementation of the proxy design pattern.

Structural Design Patterns Chapter 5

[174]

Summary
In this chapter, we reviewed seven structural design patterns that focus on how objects and
classes are combined to form a system. The two structural design pattern categories were
identified as object design patterns and class design patterns. The structural object design
patterns are used to describe how to create objects with new functionality. Structural class
design patterns utilize inheritance to create interfaces and combine multiple classes to form
a larger structure. Examples of both approaches are provided in this chapter using multiple
design pattern implementations.

In the next chapter, we will shift our focus to architectural design patterns. The chapter
starts with an overview of architectural design patterns and covers the application, layered,
and microservice design patterns.

Questions
What is the focus of structural design patterns?1.
What are the seven structural design patterns?2.
Which structural design pattern has both a class and object scope?3.
Which structural design pattern category is used to describe how to create objects4.
with new functionality?
Which design pattern is used to convert an interface of one class into another5.
interface expected by the system?
Which design pattern allows us to create an object tree structure and treat both6.
objects and the tree structures in the same manner?
Which design pattern is commonly used with graphical software that includes7.
layering objects over one another?
Which design pattern creates an interface that serves as an interface to other8.
interfaces within a system or subsystem?
Which design pattern uses sharing of identical object components in its9.
implementation?
Which design pattern's purpose is to save memory and processing required to10.
create complex objects?

Structural Design Patterns Chapter 5

[175]

Further reading
Java EE 8 Design Patterns and Best Practices (https:/ /www. packtpub. com/
application- development/ java- ee- 8-design- patterns- and- best- practices)
Learn Design Patterns with Java (https:/ /www. packtpub. com/application-
development/ learn- design- patterns- java- video)
Design Patterns and Best Practices in Java (https:/ /www. packtpub. com/
application- development/ design- patterns- and- best- practices- java)

https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java

3
Section 3: New Design Patterns

In this section, the categories of architectural, functional, and reactive will be explored. For
each of these categories, their design patterns will be explained, along with step-by-step
instructions on how to solve the underlying design challenge. The architectural category
contains 16 design patterns, the functional category contains 7 design patterns, and the
reactive category contains 15 design patterns.

The following chapters will be covered:

Chapter 6, Architectural Patterns – Part I
Chapter 7, Architectural Patterns – Part II
Chapter 8, Functional Design Patterns
Chapter 9, Reactive Design Patterns

6
Architectural Patterns - Part I

Architectural patterns are important to system designers as a system's architecture is one of
the building blocks for creating a system. These patterns can teach us a lot about the
principles behind the application of software design and, in some cases, hardware
connectivity.

In this chapter, we will explore what constitutes an architectural design pattern and will
look at several specific architectural design patterns. We will cover additional architectural
patterns in the next chapter, Architectural Patterns – Part II.

Specifically, in this chapter, we will start with an introduction to architectural design
patterns, and look at the patterns in the following list, along with their pattern diagrams
and use cases to demonstrate their applicability and implementation:

Introducing architectural patterns
Blackboard pattern
Broker pattern
Client-server pattern
Event-driven pattern
Extract-transform-load pattern
Layered pattern
Master-slave pattern
Microkernel pattern

There are no technical requirements associated with this chapter, so we will start directly
with the first topic.

Architectural Patterns - Part I Chapter 6

[178]

Introducing architectural patterns
Traditional design patterns, which have been categorized as behavioral, creational, and
structural, remain valid in modern programming, including with Java. Architectural
patterns differ from design patterns in scope—architectural patterns, as you might surmise
from its name, has a broader scope. Generally speaking, architectural patterns take a
holistic view of systems and group components for illustrative purposes. The visual
depiction of architectural patterns does not use UML class diagrams like the
aforementioned design patterns do. Instead, a nonprescriptive approach is taken for
visually documenting architectural patterns.

Architectural patterns work at the system level, and it is common for design to be dropped
from the architectural design pattern title. Regardless of which label is used, architectural
patterns or architectural design patterns, provide the design of an entire system or group of
system components.

We will cover eight architectural patterns in this chapter. They have been presented
alphabetically, as there is no order of importance. Let's begin with the first one.

Understanding the blackboard pattern
The blackboard architectural pattern is used for large systems that do not have a definitive
solution. This pattern is often used to design frameworks for speech recognition, computer
games, and dynamic systems with artificial intelligence or machine learning.

We will now look at the following implementations of the blackboard architectural pattern:

Coffee shop automation
Warehouse security bot

Coffee shop automation example
Our first example of the blackboard architectural pattern features coffee shop automation.
Let's say that we want to program an android (robot) to run a coffee shop. This android will
be on duty for 24 hours each day and will have multiple tasks, as shown in the following
list:

Taking and filling customer orders
Handling payments
Bussing tables

Architectural Patterns - Part I Chapter 6

[179]

Washing dishes, cups, and so on
Inventory, ordering, receiving, and stocking supplies
Opening and closing the coffee shop
Night-time deep cleaning

In order for the android to perform its functions, it will need access to acknowledge
systems. It will also need to be able to learn from its interactions with the environment and
the coffee shop customers. A high-level view of the system is shown here:

Blackboard pattern - coffee shop automation

As illustrated in this blackboard pattern diagram, the android has access to seven distinct
knowledge sources. This access is depicted with double arrows to signify that the
knowledge systems will learn from the android's interactions with customers and the
environment. Examples of this could include learning a custom drink, remembering the
orders of repeat customers, knowing how to clean the mugs, and so on.

In this implementation of the blackboard architectural pattern, the blackboard resides in
memory and has read and write access to the knowledge systems.

Architectural Patterns - Part I Chapter 6

[180]

The following UML class diagram indicates the significance of the knowledge sources in
the blackboard pattern:

UML class diagram - coffee shop automation

The Android component illustrated in the UML class diagram is referred to as the control
component in the blackboard architectural pattern.

Architectural Patterns - Part I Chapter 6

[181]

Warehouse security bot example
In this example of the blackboard architectural pattern, we will consider an automated
warehouse security bot. This bot will use a stun gun to shoot intruders. Our bot will have
three basic responsibilities:

Correctly identify intruders and authorized warehouse workers
Navigate the warehouse
Move to within the stun gun's effective range

Each of these responsibilities can be viewed as a component in our system. These
components will be Intruder Identification, Navigation, and Ballistics. The following
UML class diagram illustrates the relationship between the Bot, the control component, and
the rest of the system:

UML class diagram - warehouse security bot

The Intruder Identification, Navigation, and Ballistics components in the UML class
diagram are the knowledge sources in the warehouse security bot implementation.

This section provided two implementation examples of the blackboard architectural
pattern.

Architectural Patterns - Part I Chapter 6

[182]

Understanding the broker pattern
The broker architectural pattern is used to architect distributed systems. These systems
make use of a middleman component to coordinate and communicate between
components. This decoupling of components removes dependencies and can result in
greater system-wide efficiencies.

The middleman component's mission means that it is essential for it to be able to receive
requests and broker the proper service or request. As illustrated by the following diagram,
the middleman brokers requests from both the Server and the Client:

Broker pattern overview

The broker architectural pattern is similar to the facade design pattern covered in Chapter
5, Structural Design Patterns. The facade design pattern established an interface to serve as a
medium between the system and its subsystems.

There is an option in the broker architectural pattern for the middleman to permit direct
communication between the Client and the Server. As shown in the following diagram, the
middleman still manages the communication, but the two components (Client and Server)
communicate directly:

Broker pattern alternative

Architectural Patterns - Part I Chapter 6

[183]

We will look at the following implementations of the broker architectural pattern:

University enterprise information system
Luxury cruise reservation system

University enterprise information system
example
Let's consider an example of a university enterprise information system design using the
broker architectural pattern. The university will operate two campuses, each with their own
servers. All servers can send and receive requests. The Bridge is used to encapsulate
processes between multiple brokers, typically local and remote. This setup is shown in the
following diagram:

Broker pattern- university enterprise information system

As you can see in the preceding diagram, proxies are used to protect implementation
details, memory addresses, and other information from other system components.

Architectural Patterns - Part I Chapter 6

[184]

Luxury cruise reservation system example
Another implementation of the broker architectural pattern is a luxury cruise reservation
system. In this example, the cruise lines each have their own server, and there is a Cruise
Line Proxy. The Middleman / Broker component brokers reservations based on requests
from clients and responses from the cruise lines. The following diagram provides an
overview of the reservation system, highlighting the interconnectivity component:

Broker pattern - luxury cruise reservation system

This section provided two implementation examples of the broker architectural pattern.

Architectural Patterns - Part I Chapter 6

[185]

Understanding the client-server pattern
The client-server architectural pattern is one of the more commonly known architectural
patterns, especially with network architectures. This architectural pattern consists of two
component types—client components and server components. Simply stated, the server
listens to requests from clients and provides the requested services.

The following diagram provides a high-level view of the client-server pattern. The
connections between clients and the server can vary and include common connections such
as TCP/IP:

Client-server pattern

We will look at the following implementations of the client-server architectural pattern:

Coffee shop
Three-tier network

Coffee shop example
The following diagram depicts a simple coffee shop architecture to demonstrate the client-
server architectural pattern. The Client has local connections to their POS (short for point
of sale) system and inventory system. The Client communicates with the Server, which has
its own external connections.

Architectural Patterns - Part I Chapter 6

[186]

The architecture illustrated highlights the connectivity of the system's components,
specifically the separation between the Client and Server, as well as how the Client
accesses the Database via the Server:

Client-server pattern - coffee shop example

In the preceding diagram, the Client and Server would likely communicate via TCP/IP.

Three-tier example
In networking, there are several client-server architectures. The one depicted next is a three-
tier client-server architecture. The first tier is the Client, which has direct communication
with two Application Servers. These Application Servers have direct communication with
the Database Server. The example given in the following diagram shows a typical client-
server structure, using a three-tiered approach:

Architectural Patterns - Part I Chapter 6

[187]

Client-server pattern example - three-tier example

This section provided two implementation examples of the client-server architectural
pattern.

Understanding the event-driven pattern
The event-driven architectural pattern is for highly adaptable, distributed systems. It is
used to implement applications that involve transmitting events in a decentralized system.
With this pattern, events have publishers and consumers. Using this pattern allows for
more efficient development of large distributed systems.

This pattern can be used for web systems, business processes, games, and almost any
application you can think of that has events. Events can be button-clicks, inputs via a
stream, automated analysis results, in-game conditions, such as collision detection, and so
on.

The event-driven architectural pattern comes in two forms—broker and mediator. We will
look at both of these pattern forms in the following sections.

Event-driven architectural pattern – broker
The broker form of the event-driven architectural pattern uses a sequence of mediated
events instead of a central mediator. This form involves an initial event followed by a series
of processing steps.

Architectural Patterns - Part I Chapter 6

[188]

As illustrated in the following diagram, there is no mediator that controls the Initiating
Event. The Event Processors are each responsible for processing events and then initiating
new events when processing is completed:

Event-driven pattern - broker form

An initiating event starts the process, and the chain of events continues until there are no
published events that exist for that specific initiating event.

Event-driven architectural pattern – mediator
The mediator form of the event-driven architectural pattern is usually employed for
multiple-step events, with each step requiring coordination.

The following diagram shows the mediator form of the event-driven architectural pattern.
The Initiating Event is what starts the process. The events listed in the Event Mediator
section are the steps that must be taken for the given process. The straight line to the left of
Event 2 and Event 3 signify that those steps can take place simultaneously. The Event
Mediator creates a Processing Event for each of the initial event steps:

Architectural Patterns - Part I Chapter 6

[189]

Event-driven pattern - mediator form

The processing event is sent to an event queue awaiting processing by the event processor.

This section provided both forms of the event-driven architectural pattern.

Understanding the extract-transform-load
pattern
The extract-transform-load architectural pattern, as the name suggests, has the following
three stages:

Extract data from external sources1.
Transform the extracted data as needed2.
Load the newly transformed data into a repository specific to the current system3.

The most common uses of the extract-transform-load pattern is in business intelligence,
data warehousing, knowledge management systems, and customer relationship
management systems.

We will look at the extract, transform, and load steps as they apply to the similarly-named
architectural pattern in the next sections. We will use the example of a sales tool that mines
various sources of customer leads, transforms that data into a common form, and then
loads the data into a central database.

Architectural Patterns - Part I Chapter 6

[190]

Extract
For our sales tool example, let's obtain data from two sources that have different
formatting.

Our first data source is from an XML file provided by an affiliate insurance company's
salesforce. That file has the following encoding:

. . .
<CUSTID>350032</CUSTID>
<POLICY_TYPE>term</POLICY_TYPE>
<NAME>Neo Anderson</NAME>
<STREET>1 White Rabbit Trail</STREET>
<CITY>Zion</CITY>
<STATE>MZ</STATE>
<ZIP>00000</ZIP>
<EMAIL>neo.anderson@matrix.net</EMAIL>
<PHONE>000-000-0000</PHONE>
. . .

As the ellipsis indicates, there would be far more data elements for each record in the XML
document.

A secondary data source might come from a purchased list of sales leads. This might come
in a Comma Separated Values (CSV) format, as shown in the following code:

350032,term,Neo
Anderson,Zion,MZ,00000,neo.anderson@matrix.net,000-000-0000,. . .

For our example, we can assume that we have several thousands of names captured from
each of the data sources defined. Our next step is to transform this data into a common
form that is compatible with our system and the implemented data storage solution.

Transform
With the extracted data now accessible to us, we can implement the second step and
transform the data into our desired form. A real-world implementation would include
source code to convert the data. The transformation process would include the following
sequential steps:

Determine how to chunk data.1.
Grab chunk.2.

Architectural Patterns - Part I Chapter 6

[191]

Process records:3.
Convert fields as necessary.
Add default values as necessary.
Flag incomplete records.

Continue step 3 until all records in the current chunk are completed.4.
Repeat step 2 until all chunks have been processed.5.

The first step, determine how to chunk data, is important because the datasets are very large
and server-side scripting would most certainly time out. You might, as an example, process
100 records at a time. With this as our example, step 2 would simply involve reading the
first 100 records.

The third step is where we process records, one at a time. We will want to convert data
fields as needed. For example, say that the name Neo Anderson is provided and we want to
convert it to Anderson, Neo or break the data up into two separate fields for first and last
name. Also in step three, we will assign default values for any blank fields. This will be
determined by our policy. Another important processing part of step three is to flag
incomplete records. If, for example, you are processing sales leads and your sales force
requires phone numbers, then records with no phone numbers might be flagged. In one
case, they might be flagged as inquire by email, provided an email address is given. In the
case that both the phone number and email address are not provided, the record might be
flagged for deletion.

Converting CSV data to a MySQL database, for example, is somewhat complex. As an
example, a method would need to be written to parse the CSV file one line at a time and
that record processed, and when completed, this would generate an SQL INSERT query.
You will use that query as part of the Load step, which will be covered in the next section.

Load
The loading process is usually straightforward. The specifics will be unique to the system
and the selected core database or other data repository. Typically, this will involve the
following steps:

Open the database1.
Write new records2.
Close the database3.

Architectural Patterns - Part I Chapter 6

[192]

Here is an example statement for step 1, Open the database:

. . .
Connection con = null;
con =
csvParser.getConnection("jdbc:oracle:thin:PACKT/ETL@localhost:1500:leadsDB"
);
. . .

Writing the records involves the process of inserting them into the current database. Here is
an example:

. . .
INSERT INTO Leads (leadName, leadPhone, leadEmail, leadAddress, leadCity,
leadState, leadZip) VALUES ('Neo Anderson', '000-000-0000',
'neo.anderson@matrix.net', '1 White Rabbit Trail', 'Zion', 'MZ', '00000');
. . .

The actual field values are displayed. A real implementation would use variable names.

Closing the database would involve a statement such as the following:

. . .
con.close();
if (con.isClosed()) {
 System.out.println("Database successfully closed.");
}
. . .

This section detailed the steps involved in implementing the extract-transform-load
architectural pattern.

Understanding the layered pattern
The layered architectural pattern composes a system so that it is layered into subtasks. A
system's layers have a defined set of responsibilities, specific to the implementation. This is
a commonly used pattern and can be found in most robust systems, especially those that
take advantage of distributed computing, such as cloud computing or cloud storage.

Architectural Patterns - Part I Chapter 6

[193]

The layered pattern is core to much modern computing infrastructure. The International
Standards Organization (ISO) Open Systems Interconnection (OSI) has a seven-layer
model. This OSI model has been widely implemented and remains relevant in modern
software architectures.

You can learn more about the ISO OSI seven-layer model from Microsoft's
online documentation at https:/ /docs. microsoft. com/ en- us/windows-
hardware/ drivers/ network/ windows- network- architecture- and- the-
osi-model.

The seven-layer model consists of two parallel stacks, each with seven layers. The bottom-
most layer is a physical layer with direct communication between the two stacks. The stacks
in the following list, in top-down order, represent the communication between two
computers:

Application
Presentation
Session
Application
Network
Data link
Physical

Here are a few key concepts about these layers:

A change to one layer does not impact other layers
Layers can have different protocols
Each layer has unique responsibilities
Calls between layers flow downward

We will look at the following implementations of the layered architectural pattern:

Traditional operating system layers
Mobile operating system layers
Business application layers

https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model

Architectural Patterns - Part I Chapter 6

[194]

Traditional operating system layers example
One of the great benefits of the layered architectural pattern is that changes to one layer do
not negatively impact the other layers. For example, if you purchased a new color printer
for your computer, you would merely need to update the Hardware Device Drivers layer
by adding the new driver. The operating system layers are shown in the following diagram:

Traditional operating system layers

This operating system layer diagram depicts the use of the layered architectural pattern. As
you will see in the next example, there do not have to be seven layers to implement this
architectural pattern.

Mobile operating system layers example
Modern mobile operating systems have a different architectural pattern. We will look at the
layers of iOS as an example. As illustrated in the following diagram, the five iOS layers
include a touch layer that the user interacts with:

Mobile operating system layers

Architectural Patterns - Part I Chapter 6

[195]

Let's look at this in detail:

The communication path is downward, flowing all the way down to the
Hardware layer.
Immediately above the Hardware layer is the Core OS Layer. This layer has
several responsibilities that include memory management, Bluetooth, security
services, local authentication, and more.
This includes responsibilities such as iCloud storage, HealthKit, HomeKit,
address book, accounts, social media interfaces, peer-to-peer services, and file-
sharing.
The Media Layer is segmented into three frameworks:

Graphics: The graphics framework includes UI graphics, core
graphics, animation optimization, advanced image support, and
graphics rendering.
Audio: The audio framework includes a framework for accessing
iTunes and handles audio and video recording and playback. It
also has an advanced audio framework.
Video: The video framework provides recording and playback of
video, presenting video, and interfaces for a variety of video data
types.

The top layer, the Cocoa Touch Layer, is the touch-based user interface that users
see. There are many frameworks in the Cocoa Touch Layer that include the
Event UI Kit, Game Kit, iAd, Map Kit, Push Kit, and the UI Kit.

Business application layers example
We use the layers architectural pattern to isolate functionality. When an event or request is
initiated in one layer, one of three things can occur:

The request is passed to the next layer
The request is processed and then passed to the next layer
The request is processed and then closed without being passed to the next layer

Architectural Patterns - Part I Chapter 6

[196]

The following screenshot shows how each layer has one or more components and has the
ability to close requests so they are not unnecessarily passed to additional layers:

Business application layers

This section provided three implementation examples of the layered architectural pattern.

Understanding the master–slave pattern
The master–slave architectural pattern is used to improve system reliability and
performance by dividing work between the master and slave components. Each component
has distinct responsibilities. All slave components have identical or at least similar work,
and that work must be defined prior to runtime. This pattern is not a divide-and-conquer
approach to architecture; rather, it is one where the slaves' work is predefined and must be
coordinated. The goal of the master–slave architectural pattern is to improve software
efficiency.

The following diagram provides an overview of how the master–slave architectural pattern
works. There are one or more Clients that can submit requests or initiate events with the
Master:

Architectural Patterns - Part I Chapter 6

[197]

Master–slave pattern

The master performs the following functions:

Maintains a list of slaves
Divides the work
Tasks slaves
Accepts completed work from slaves
Compiles results
Provides feedback to clients

Distributing the workload among multiple slaves inherently results in greater efficiency.
Processing multiple workloads at the same time is referred to as parallel processing.
Another benefit of this pattern is that changes to the slaves do not impact the master. The
same is true when a master needs to be updated—the slaves are not impacted.

We will now look at the following implementations of the master–slave architectural
pattern:

Single client example
Cloud storage example

Architectural Patterns - Part I Chapter 6

[198]

Single client example
Masters have a special relationship with clients. They receive requests from clients and then
distribute the work to the slaves. As illustrated in the following diagram, the results from
the slaves are combined and provided to the client:

Master–slave pattern - single client example

Masters must determine how to divide the work among the slaves. There are several
approaches to this to ensure that the number of components and memory size are included.
Processing time is often an additional factor to consider for the division of work among the
slaves in the system.

Architectural Patterns - Part I Chapter 6

[199]

Cloud storage example
Modern applications use cloud storage for databases and other data sources. Sophisticated
systems usually include data replication for the purpose of faster access times and to
prevent data loss or single-source failures. The following diagram depicts a system
architecture using the master–slave pattern that includes redundant data storage:

Master–slave pattern - cloud storage example

The preceding diagram shows a master–slave pattern in addition to a second master
database and three database slaves. The database is replicated so that there are multiple
read-only access points. This schema will result in greater efficiencies.

This section provided two implementation examples of the master–slave architectural
pattern.

Architectural Patterns - Part I Chapter 6

[200]

Understanding the microkernel pattern
The microkernel architectural pattern is also referred to as a plug-in architectural pattern.
We typically use this pattern when we create systems with interchangeable components,
illustrated in the following diagram as a plug-in:

Microkernel pattern

The general framework of the microkernel architectural pattern is illustrated in the
previous diagram. The microkernel contains a system's core logic and functionality. The
plug-ins each have a specific functionality and contain application programming
interfaces (APIs) for the microkernel to reference.

There are five components involved in the microkernel pattern, as shown in the following
list:

The microkernel: The microkernel is the core of this architectural pattern. It
provides core processing and serves as the middleman between other parts of the
architecture. All resources are managed by the microkernel, which also manages
communications with the system's remaining components.
One or more clients: The client represents the entity using the system. This can
be a person or a system. The client uses external plug-ins to interface with the
microkernel.

Architectural Patterns - Part I Chapter 6

[201]

Internal plug-ins: The internal plug-ins are called by the microkernel when their
specific services are required. These services are internal to the microkernel, so
the microkernel controls access to them.
External plug-ins: The external plug-ins are external to the microkernel, which
means they can be accessed directly by the clients. The microkernel API
empowers the external plug-ins to process client requests.
Adapters: The adapters are used to create an interface between the client and
external plug-ins. As previously indicated, these adapters permit external plug-
ins to process client requests directly.

This pattern results in tremendous extensibility and flexibility. Like object-oriented
programming, each plug-in can be developed by different development teams, decreasing
the overall development time.

We will look at the following implementations of the microkernel architectural pattern:

Construction quote
Optical disk player

Construction quote example
Let's assume we have an automated building construction quotation system where the
microkernel receives all the inputs needed and makes calls to various plug-ins, each with a
specialized quotation function. This pattern is displayed in the following diagram and
indicates the inputs to the microkernel:

Microkernel pattern - construction quotation system

Architectural Patterns - Part I Chapter 6

[202]

The preceding diagram shows specialized plug-ins that each perform a complex series of
rules, logic, and calculations. One of the benefits of the microkernel architectural pattern is
that if the Electrical Module, for example, changes because of new state and local codes, the
rest of the system does not need to change. The associated API will still be utilized to access
the Electrical Module and will not be aware that changes were made.

Optical disc player example
Modern optical disc players consist of hardware and software. The software is embedded
on the hardware's components. These players can accept audio CDs, video CDs, DVDs, and
Blu-ray discs, as shown in the following diagram. Each of these optical forms is processed
differently because of the technology used to write data on the discs:

Microkernel pattern implementation - optical disc player

As illustrated, the diagram shows the external plug-ins for the Audio CD Module, Video
CD Module, DVD Module, and Blu-Ray Module. This system would also include internal
plug-ins to handle functionality, such as volume control, audio and video output, power
settings, and more.

This section provided two implementation examples of the microkernel architectural
pattern.

Architectural Patterns - Part I Chapter 6

[203]

Summary
In this chapter, we looked at eight architectural patterns—blackboard, broker, client-server,
event-driven, extract-transform-load, layered, master–slave, and microkernel. We learned
that architectural patterns describe the design of an entire system or group of system
components. This chapter explained how architectural patterns take a holistic view of
systems and group components for illustrative purposes. In addition, the visual depiction
of architectural patterns do not use UML class diagrams, as the behavioral, creational, and
structural design patterns do. Instead, a nonprescriptive approach is taken for visually
documenting architectural patterns. Understanding how to select and implement these
patterns strengthens your ability to design and develop efficient software systems.

In the next chapter, we will continue our exploration of the architectural patterns.
Specifically, we will review the microservices, model-view-controller, naked objects, peer-
to-peer, pipe-filter, serverless, service-oriented, and space-based patterns.

Questions
What is the scope of architectural patterns?1.
What approach is taken for visually documenting architectural patterns?2.
Which pattern is used for large systems that do not have a definitive solution?3.
Which pattern uses a middleman component to coordinate and communicate4.
between components?
Which pattern consists of two component types—client components and server5.
components?
Which pattern has both broker and mediator forms?6.
Which pattern involves the transformation of data from external sources?7.
Which pattern is based on an OSI standard from the ISO?8.
Which pattern is used to improve system reliability and performance by dividing9.
work?
Which pattern is also referred to as a plug-in architectural pattern?10.

Architectural Patterns - Part I Chapter 6

[204]

Further reading
Java EE 8 Design Patterns and Best Practices (https:/ /www. packtpub. com/
application- development/ java- ee- 8-design- patterns- and- best- practices)
Learn Design Patterns with Java [Video] (https:/ /www. packtpub. com/ application-
development/ learn- design- patterns- java- video)
Design Patterns and Best Practices in Java (https:/ /www. packtpub. com/
application- development/ design- patterns- and- best- practices- java)

https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java

7
Architectural Patterns - Part II

In the previous chapter, Architectural Patterns – Part I, we explored the architectural pattern
category and eight specific patterns—blackboard, broker, client-server, event-driven,
extract-transform-load, layered, master–slave, and microkernel. Each of these eight
architectural patterns was explained along with diagrams.

In this chapter, we will continue our exploration of the architectural patterns. Specifically,
we will review the architectural patterns listed next, along with an examination of
programming challenges and the architectural patterns to solve them:

Microservices pattern
Model-view-controller pattern
Naked objects pattern
Peer-to-peer (P2P) pattern
Pipe-filter pattern
Serverless pattern
Service-oriented pattern
Space-based pattern

We will cover the eight architectural patterns in this chapter. They have been presented
alphabetically, as there is no order of importance.

Technical requirements
The code for this chapter can be found at https://github.com/PacktPublishing/Hands-
On-Design-Patterns-with-Java/tree/master/Chapter07.

https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter07

Architectural Patterns - Part II Chapter 7

[206]

Understanding the microservices pattern
The microservices architectural pattern is used for breaking a system into several smaller
services, or microservices, that have limited interdependencies. The benefits of this pattern
include the following:

The modular nature of the pattern permits individual microservices to be used
elsewhere
Processing efficiency
Easily maintainable code

As illustrated next, there is a central point that interfaces with the microservices that
comprise the system. In this example, the central point is the System Interface:

Microservices pattern

The previous diagram also indicates how some microservices can communicate with other
microservices. This architectural pattern mandates that the microservices be loosely
coupled, so the only true interdependency should be communications.

Software development using the microservices pattern consists of developing each
microservice separately, which is a preferred approach, especially for large systems. This
also permits the development of multiple microservices simultaneously by different teams,
accelerating delivery time. Systems designed with this pattern are also apt to be highly
scalable. Additional microservices can be added, and for those that are heavily used, they
can be replicated.

Architectural Patterns - Part II Chapter 7

[207]

In the next sections, we will explore the following example implementations of the
microservices architectural pattern:

Logistics example
eCommerce example

Logistics example
The following diagram illustrates the implementation of the microservices architectural
pattern for a logistics company. There are two interfaces, Mobile Interface and Web
Interface, that serve as user gateways into the system. These interfaces receive user
requests and route them to the proper microservice. Both interfaces have access to all
microservices:

Microservices pattern—logistics example implementation

Architectural Patterns - Part II Chapter 7

[208]

The previous diagram also indicates that some of the microservices have communication
links with other microservices. For example, the Scheduling Service has a communication
link with the Routing System and the Inventory System has a communication link with
the Accounting microservice.

eCommerce example implementation
The eCommerce implementation example is different than the logistics example; in this,
there is a Common Gateway that receives requests from a variety of sources, illustrated
here as mobile operating systems and web browsers:

Microservices pattern—eCommerce example implementation

The Common Gateway interfaces between the various microservices, each of which have
their own database. These microservices can work in isolation of the others.

This section provided example implementations of the microservices architectural pattern.

Architectural Patterns - Part II Chapter 7

[209]

Understanding the model-view-controller
pattern
The model-view-controller architectural pattern is one of the most commonly used patterns
in modern software design and development. It is used in desktop and mobile applications.
The pattern segments systems into model, view, and controller components. The model
component is used to store application data and logic. The view is where visual elements
are provided to the user. The controller processes input and communicates, as appropriate,
to the model and view components.

The model-view-controller pattern is most commonly referred to as MVC
throughout the software industry.

The View is used to present data to the user. This enables the user to interact with, or use,
the Controller. The Controller manipulates the Model, which then updates the View:

MVC pattern—overview

As illustrated, the user is viewed as the most important part of this pattern, even though it
is not an official part of the MVC pattern. With a user-centric purpose, the MVC
architectural pattern is often used for UI-rich applications such as mobile apps.

Architectural Patterns - Part II Chapter 7

[210]

As with other patterns that segment systems, the MVC pattern design allows different
teams to simultaneously work on the different core components—model, view, and
controller. This also makes the system maintainable, since each component can be updated
without impacting the others.

In the next section, we will explore the Book MVC example implementation of the MVC
architectural pattern.

Book model-view-controller example
implementation
To demonstrate this architectural pattern, we will use a Book class example. Our example
will include a Book class, a BookView class, a BookController class, and a
MVCArchitecturalPattern class. Let's look at each of these classes followed by the
program's output.

Book class
The Book class establishes the class structure with three class variables: isbn, title, and
year. Accessor and mutator (getters and setters) methods are provided for each of the
class variables:

public class Book {

 private String isbn;
 private String title;
 private int year;

 // accessor methods
 public String getISBN() {
 return isbn;
 }

 public String getTitle() {
 return title;
 }

 public int getYear() {
 return year;
 }

Architectural Patterns - Part II Chapter 7

[211]

 // mutator methods
 public void setISBN(String isbn) {
 this.isbn = isbn;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public void setYear(int year) {
 this.year = year;
 }
}

The Book class defined previously represents the model component of our MVC
architectural pattern.

BookView class
The BookView class contains a single method for printing a book's detail to the console:

public class BookView {

 public void printBookData(String bookTitle, String bookISBN, int
bookYear) {
 System.out.println("\nBook Title : " + bookTitle);
 System.out.println("ISBN-13 : " + bookISBN);
 System.out.println("Pub. Year : " + bookYear + "\n");
 }
}

The BookView class just shown contains the printBookData() method for providing
output to the user, and represents the view component of our MVC architectural pattern.

The BookController class
The BookController class is presented next in three sections. The first section contains
two private class variables: model and view. The constructor method is also provided:

public class BookController {
 private Book model;
 private BookView view;

 // constructor
 public BookController(Book model, BookView view) {

Architectural Patterns - Part II Chapter 7

[212]

 this.model = model;
 this.view = view;
 }

The second section of the BookController class consists of three accessor methods and
three mutator methods:

// accessor methods
public String getBookTitle() {
 return model.getTitle();
}

public String getBookISBN() {
 return model.getISBN();
}

public int getBookYear() {
 return model.getYear();
}

// mutator methods
public void setBookTitle(String title) {
 model.setTitle(title);
}

public void setBookISBN(String isbn) {
 model.setISBN(isbn);
}

public void setBookYear(int year) {
 model.setYear(year);
}

The final section of the BookController class contains the updateView() method. As
you can see, the method does not accept parameters and calls the view object's
printBookData() method, as shown:

 // update view method
 public void updateView() {
 view.printBookData(model.getTitle(), model.getISBN(),
model.getYear());
 }
}

The BookController class, as shown in the previous three sections of code, comprises the
controller component of the MVC architectural pattern.

Architectural Patterns - Part II Chapter 7

[213]

The MVCArchitecturalPattern class
The MVCArchitecturalPattern class contains the main() method to drive the program.
This class also contains the pullBookDetails() method that gets details from the Book
object instance:

public class MVCArchitecturalPattern {

 public static void main(String[] args) {

 Book model = pullBookDetails();

 BookView view = new BookView();

 BookController con = new BookController(model, view);

 con.updateView();

 con.setBookTitle("Mastering Java 11");
 con.setBookISBN("978-1789137613");
 con.setBookYear(2018);
 con.updateView();
 }

 private static Book pullBookDetails() {
 Book book = new Book();
 book.setTitle("Mastering Java 9");
 book.setISBN("978-1786468734");
 book.setYear(2017);
 return book;
 }
}

There are two sets of output, each generated from the updateView() method, as shown
here:

MVC pattern—book example output

Architectural Patterns - Part II Chapter 7

[214]

This section provided the source code and console output for the book implementation of
the MVC architectural pattern.

Understanding the naked object pattern
The naked objects architectural pattern mandates domain object encapsulation of object
data. In addition, a user interface has to be created for the following actions:

Instantiating objects
Object retrieval
Object data retrieval
Method invocation

An additional requirement of the naked objects architectural pattern is that the
aforementioned user interface must be auto-generated based on the domain object
definitions. The core goal is to create behaviorally complete objects, with their attributes
and behaviors encapsulated, and for the view and controllers to be generic in nature:

Naked object pattern—overview

Architectural Patterns - Part II Chapter 7

[215]

The naked objects architectural pattern is relatively complex to implement and has resulted
in two open source projects as listed here:

Naked Objects: A .NET version with information available at this URL (https:/
/github. com/ NakedObjectsGroup/ NakedObjectsFramework)
Apache Isis: A Java version of the naked objects pattern with information
available at this URL (http:/ /isis. apache. org)

Implementing the naked objects architectural pattern is beyond the scope of this book. The
open source projects listed are suggested as a great way to delve deeper into this specific
pattern.

Understanding the peer-to-peer pattern
The peer-to-peer (P2P) architectural pattern, consists of a series of nodes, each with the
same set of functions to perform. With this pattern, there is no central controller and all
nodes are created equally. The peer nodes act as both receivers and distributors of data and
resources.

There are several benefits to this pattern:

It only requires two nodes
Additional nodes can join
Nodes can drop out
It's great for sharing resources
It's great for sharing processing

However, there is also one major disadvantage:

It's highly vulnerable to Denial-of-Service (DoS) attacks

In the following sections, we will explore the following example implementations of the
P2P architectural pattern:

File sharing
Networking

https://github.com/NakedObjectsGroup/NakedObjectsFramework
https://github.com/NakedObjectsGroup/NakedObjectsFramework
https://github.com/NakedObjectsGroup/NakedObjectsFramework
https://github.com/NakedObjectsGroup/NakedObjectsFramework
https://github.com/NakedObjectsGroup/NakedObjectsFramework
https://github.com/NakedObjectsGroup/NakedObjectsFramework
https://github.com/NakedObjectsGroup/NakedObjectsFramework
https://github.com/NakedObjectsGroup/NakedObjectsFramework
https://github.com/NakedObjectsGroup/NakedObjectsFramework
https://github.com/NakedObjectsGroup/NakedObjectsFramework
http://isis.apache.org
http://isis.apache.org
http://isis.apache.org
http://isis.apache.org
http://isis.apache.org
http://isis.apache.org
http://isis.apache.org
http://isis.apache.org
http://isis.apache.org

Architectural Patterns - Part II Chapter 7

[216]

File sharing example implementation
A typical file sharing P2P network would have each peer connected to two others as
illustrated:

P2P pattern—file sharing example implementation

As illustrated in the next diagram, the network formation of the P2P pattern does not limit
any peer from directly communicating with any other peer:

P2P pattern—additional file sharing example implementation

Architectural Patterns - Part II Chapter 7

[217]

There are great risks associated with P2P file sharing implementations:

Malware risks are high because of the possibility of embedding them in files
Lack of data privacy
Increased potential for file and software piracy

Networking example implementation
When the P2P architectural pattern is applied to physical computer networks, those
networks have the following characteristics:

There is no dedicated server on the network
All computers on the network are considered peers
All peers can share
All peers are both clients and servers
There is a lack of centralized control
Resources are shared and not controlled centrally

Here is a diagram of a typical P2P network:

P2P pattern—networking example implementation

Architectural Patterns - Part II Chapter 7

[218]

As illustrated next, P2P networks empower every peer to directly communicate with every
other peer:

P2P pattern—additional networking example implementation

This section provided example implementations of the P2P architectural pattern.

Understanding the pipe-filter pattern
The pipe-filter, or pipe and filter, architectural pattern is a robust architecture that can
contain any number of filters. The pattern starts by taking data from multiple sources and
then passes them through sequential filters to transform the data from one format to
another. The filters are connected via pipes. The next diagram shows an overview of the
pipe-filter pattern with three sequential filters:

Pipe-filter pattern—overview

Architectural Patterns - Part II Chapter 7

[219]

We can take a deeper look at this pattern with a UML sequence diagram. This diagram
illustrates the data flow and the utility of the pipes connecting the filters:

Pipe-filter pattern—UML sequence diagram

In the next sections, we will explore the following example implementations of the pipe-
filter architectural pattern:

Simple transformation
Complex transformation

Simple transformation example implementation
A simple transformation of data might consist of collecting data from various sources, each
in a different format, and passing it through two filters before the data is considered final.
An example would be data sources from different systems or in different languages. In
order for any business logic to process the data, it must first be transformed into a common,
standard format expected by the system.

Architectural Patterns - Part II Chapter 7

[220]

The next diagram provides a high-level look at that process:

Pipe-filter pattern—simple transformation example implementation

A more complex transformation process is provided in the next section.

Complex transformation example implementation
The next diagram illustrates a complex transformation example of the pipe-filter pattern.
There are three data sources, two of which can be processed by Filter 1. There is a Pipe
between Filter 1 and Filter 2 that serves as a conduit for the data. After the data passes
through Filter 2, the transformed data is ready to be processed by the System Logic. Data
Source 3 is read by Filter A and then piped to Filter B, which transforms the data for
System Logic processing:

Architectural Patterns - Part II Chapter 7

[221]

Pipe-filter pattern—complex transformation example implementation

As illustrated in the previous diagram, each filter has several processes.

This section provided example implementations of the pipe-filter architectural pattern.

Understanding the serverless pattern
The implementation of serverless architectural patterns is becoming more prevalent due to
the advent of Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a
Service (SaaS), Backend as a Service (BaaS), Mobile Backend as a Service (MBaaS), and
Functions as a Service (FaaS) cloud-based offerings. Serverless architectural patterns are
simply patterns that do not incorporate dedicated on-premises servers.

The term on-premises refers to components that physically reside at an
organization's actual location.

Architectural Patterns - Part II Chapter 7

[222]

This does not indicate typical server-side scripting, and that functionality does not exist;
rather, these components are managed by third-party services such as cloud-based services.
The largest providers of these services are Amazon, Google, Microsoft, IBM, and Oracle.

The benefits of implementing a serverless architectural pattern include the following:

Cost-effectiveness
High scalability
High flexibility
Faster upgrades, changes, deployments
Benefit from applications running closer to the end-user's region

Some of the disadvantages include the following:

A sense of loss of control
Inability to easily switch between cloud-service solutions (for example, Amazon
AWS to Microsoft Azure)
Potential performance issues (that is, multi-latency)

In the following sections, we will explore the following example implementations of the
serverless architectural pattern.

IaaS implementation
A typical Infrastructure as a Service (IaaS) implementation involves a clear separation of
responsibilities between the on-premises organization and the IaaS provider:

Serverless pattern—example IaaS implementation

It is important that for appropriate responsibility division that the servers and networking
are taken care of by the IaaS provider.

Architectural Patterns - Part II Chapter 7

[223]

PaaS implementation
The Platform as a Service (PaaS) implementation of a serverless architecture pattern
involves a larger set of responsibilities for the cloud service provider compared to the IaaS
implementation:

Serverless pattern—example PaaS implementation

As illustrated, the PaaS implementation only requires the on-premises staff to manage data
and applications.

SaaS implementation
The Software as a Service (SaaS) implementation of the serverless architectural pattern
involves full responsibility for the SaaS provider:

Serverless pattern—example SaaS implementation

As illustrated, the SaaS implementation only requires the on-premises use of internet
browsers to access the software services.

Architectural Patterns - Part II Chapter 7

[224]

BaaS implementation
The Backend as a Service (BaaS) implementation of the serverless architectural pattern
involves client-side, on-premises access via a browser:

Serverless pattern—example BaaS implementation

As illustrated, the BaaS implementation only requires the on-premises use of internet
browsers to access the backend administrative services.

MBaaS implementation
The Mobile Backend as a Service (MBaaS) implementation of the serverless architectural
pattern involves client-side access to services via mobile devices and a browser. It is
common to have mobile apps connect directly with backend services and a browser
interface for oversight, reporting, and management:

Serverless pattern—example MBaaS implementation

The MBaaS implementation is commonly used for enterprise mobile applications.

Architectural Patterns - Part II Chapter 7

[225]

FaaS implementation
The Functions as a Service (FaaS) implementation of the serverless architectural pattern
allows for isolated functions to run on demand. Developing with this pattern results in
rapid builds because the developers focus on the functionality, and others focus on the
operational environment. The key benefit to this approach is fast processing times:

Serverless pattern—example FaaS implementation

This section provided example implementations of the serverless architectural pattern.

Understanding the service-oriented pattern
The service-oriented architectural pattern, also referred to as Service-Oriented
Architecture (SOA), establishes interoperable services through methodologies and rules.
Web services are typically designed with an SOA pattern. These interoperable services
consist of organized, deployable services with the following characteristics:

Runs independently of other services
Handles a specific computational task
Has access to other services

The SOA pattern can be used to design a group of organized services to provide a cohesive
set of services. There are several benefits to adopting this pattern, some of which are listed
here:

Since the architecture comprises several services, each service can be modified in
isolation of the others
Increased system flexibility and adaptability
The system is easier to maintain because of its modularity
Individual services can be used in multiple systems

Architectural Patterns - Part II Chapter 7

[226]

The following diagram provides an overview of how the service-oriented architectural
pattern can be implemented. The example provided starts with a Web Interface, which
serves as the entry point to obtaining services in this pattern. A Web Interface is used to
highlight the applicability of this architectural pattern to web services:

Service-oriented pattern—overview

As illustrated, the services can be gateways to other services and databases, and other
resources can be shared among multiple services.

The next diagram illustrates the possible complexity of individual services within a service-
oriented architectural pattern implementation. An individual service is likely to have
multiple steps and business logic:

Architectural Patterns - Part II Chapter 7

[227]

Service-oriented pattern—detailed view

This section detailed the service-oriented architectural pattern and provided both an
overview diagram and a service-level detailed illustration.

Understanding the space-based pattern
The space-based architectural pattern is designed to avoid functional collapse under a high
load and maximize scaling. Cloud-based architectures typically implement the space-based
architectural pattern. Key to the success of this pattern is the use of distributing shared
memory.

This complex approach involves the following:

Eliminating central database constraints
Implementing data grids
Replicating data grids in memory
Maintaining application data in the replicated memory

Architectural Patterns - Part II Chapter 7

[228]

With this approach, data is replicated in memory for each processor in use. The next
diagram provides an overview of the space-based architectural pattern. Each Processing
Unit has connectivity to other processing units as well as linkage to the data grids via
middleware that manages the communication between processing units and data grids:

Space-based pattern—overview

The processing units can be complex and will include one or more logic modules, data, and
a data replication engine.

Summary
In this chapter, we explored the eight additional architectural patterns (after the eight
architectural patterns covered in Chapter 6, Architectural Patterns - Part I). The patterns
covered in this chapter were microservices, model-view-controller, naked objects, P2P,
pipe-filter, serverless, service-oriented, and space-based. Each of these architectural
patterns was explained along with diagrams of example implementations. Having a firm
understanding of the 16 architectural patterns and knowing how to implement them will
broaden your ability to design and develop efficient software systems.

In the next chapter, Functional Design Patterns, we will explore the functional design pattern
category and its individual design patterns. Specifically, we will cover the execute around,
lambda, loan, MapReduce, memoization, streams, and tail call patterns. We will examine
the programming challenges and creational design patterns that solve them.

Architectural Patterns - Part II Chapter 7

[229]

Questions
What are three benefits of the microservices pattern?1.
How does the space-based pattern accomplish its goal?2.
Which pattern is used when breaking a system into several smaller services?3.
Which pattern segments systems into three distinct components?4.
Which pattern requires behaviorally complete objects?5.
Which pattern consists of a series of nodes, each with the same set of functions to6.
perform?
Which pattern involves passing data through sequential filters to transform the7.
data?
Which pattern includes a MBaaS approach?8.
Which pattern establishes interoperable services through methodologies and9.
rules?
Which pattern is designed to avoid functional collapse under a high load?10.

Further reading
Java EE 8 Design Patterns and Best Practices (https:/ /www. packtpub. com/
application- development/ java- ee- 8-design- patterns- and- best- practices)
Learning Design Patterns with Java [Video] (https:/ / www.packtpub. com/
application- development/ learn- design- patterns- java- video)
Design Patterns and Best Practices in Java (https:/ /www. packtpub. com/
application- development/ design- patterns- and- best- practices- java)

https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java

8
Functional Design Patterns

In the previous chapter, Architectural Patterns – Part II, we concluded our coverage of
architectural patterns. In addition to the eight architectural patterns covered in Chapter 6,
Architectural Patterns – Part I, the patterns covered in Chapter 7, Architectural Patterns – Part
II, were the microservices, model-view-controller, naked objects, peer-to-peer, pipe-filter,
serverless, service-oriented, and space-based architectural patterns. Each of these
architectural patterns was explained along with a diagram.

In this chapter, we will explore the functional design pattern category and its individual
design patterns listed next. We will examine the programming challenges and functional
design patterns that solve them:

Introducing functional design patterns
Understanding the execute around pattern
Understanding the lambda design pattern
Understanding the loan design pattern
Understanding the MapReduce design pattern
Understanding the memoization design pattern
Understanding the streams design pattern
Understanding the tail call design pattern

These design patterns are important when designing systems that use functional
programming.

Technical requirements
The code for this chapter can be found at https:/ /github. com/ PacktPublishing/ Hands-
On-Design-Patterns- with- Java/ tree/ master/ Chapter08.

https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter08

Functional Design Patterns Chapter 8

[231]

Introducing functional design patterns
Functional design patterns are not the same as functional programming. While they can
both be considered programming paradigms, functional programming can be defined as an
approach to structuring computer programs that model computational functionality such
as mathematical functions. The term functional design patterns refers to the use of functional
programming to solve computational problems.

The following table provides an overview of how functional programming fits into the
general programming approach landscape, especially when compared to object-oriented
programming:

Programming Approach Description
Functional programming Uses a style similar to mathematical functions.
Object oriented programming Uses an object-centric approach. Objects contain attributes and behaviors.
Parallel-programming Uses shared memory. Processes can be executed several times at once.

Programming approach overview

A key concept of functional design is that the individual functions have a set of rules. For
example, functions in a functional programming approach honor the following:

They do not mutate any data
They provide consistent results, given the same set of arguments
They exist to provide a return value

Let's look at two short examples. This first example shows how a variable is mutated:

void calculateAge(int years) {
 years = years + 1;
}

The next example accepts the same argument as the previous example but does not mutate
it. Instead, it returns a value based on the argument and a calculation:

int calculateAge(int years) {
 return years + 1;
}

Functional Design Patterns Chapter 8

[232]

The advantages to using a functional approach include easier debugging and the ability to
pass functions as parameters. You will explore the latter advantage in the Understanding the
lambda design pattern section. Additional advantages include the high applicability to
mathematical, statistical, concurrency, and parallelism applications.

The general disadvantages of implementing the functional design patterns include code
complexity, code readability, and application performance.

The functional design patterns listed in the table you have just seen are detailed in the
remaining sections of this chapter. They are presented in alphabetical order to illustrate that
one is not more important than the others.

Understanding the execute around design
pattern
The execute around functional design pattern is used when processes have pre- and post-
processing that always occur. This allows us to focus on the core function and not on the
processing that comes before or after. The pre- and post-processing code can exist once,
instead of being part of each core process. This can result in a big win.

Consider a system with hundreds of individual classes that are run on an ad hoc nature
based on business logic. Instead of each of those hundreds of processes including the pre-
and post-processing code, that code can be located in one class.

The pre- and post-processing actions are paired and included in the object that requires
those actions. This is done instead of including those actions in a class that uses the object.
So, we are including the actions in the object itself, not in a class that uses the object.

Demonstrated implementation
At a high level, we can consider the following routine flow of generic operations. We start
with a preProcessing() method followed by a commonTask() method, and, finally, a
postProcessing() method:

preProcessing();
commonTask();
postProcessing();

Functional Design Patterns Chapter 8

[233]

Consider a system that processes electronic files, maybe for a banking application. Each of
these files represents an individual transaction. There are a vast number of different types
of transactions, each governed by a separate class in the system. Thousands of these files
are processed every hour. Explicitly including the preProcessing() and
postProcessing() methods as part of the individual classes is wasteful and should be
avoided. To accomplish this, we can implement our bank transaction system with syntax as
displayed here:

Transaction preProcessDuring: [this performBankingOperation: Transaction]

We can use the execute around design pattern to encapsulate a pair of actions in the actual
objects that require the pair of actions instead of encapsulating the actions in a code that
uses the object. The goal of this design pattern is to avoid duplicated code in classes.

This section provided an overview of the execute around functional design pattern along
with representative sample implementation source code.

Understanding the lambda design pattern
Lambda functionality was introduced in Java 8 and has forever changed the landscape of
programming in Java. The lambda functional design pattern uses lambda functions, also
referred to as anonymous functions. These functions are passed as arguments to other
functions.

Lambda functions have three parts:

A single parameter: (argument)
The arrow operator: ->
The body: (body)

As with anything else in Java, there are a bunch of rules associated with even this
seemingly simple syntax:

If the parameter on the left has its type explicitly stated, it and the parameter
must be encased in parenthesis, for example, (String a)
The body can only call a single method
The body must return a result
For bodies with only one parameter, you do not need braces or a semicolon
For bodies with more than one parameter, you do need braces and a semicolon
You cannot re-declare a local variable

Functional Design Patterns Chapter 8

[234]

The syntax of a lambda function is as follows:

(argument) -> (body)

An example of this syntax is this:

// Example 1
a->a.canHop();

The previous line of code does the same thing as the following line of code:

// Example 2
(Animal a)->{return a.canHop();}

When comparing the previous two examples, we see the following differences:

There is only one parameter whose type is not explicitly stated; then parenthesis
can be omitted
We can omit braces when we have only a single statement

Accessing variables
The following syntax illustrates how to access via a lambda expression:

boolean varName = false;
doSomething(objectName, obj -> obj.methodName() == varName);

It is important to note that, when accessing local variables via lambda expressions, you
cannot change their value.

Implementing lambda with a single parameter
To demonstrate use of the lambda design pattern, we will create a functional interface and
a main Driver class. The functional interface will contain an abstract method with a single
int parameter. Here is that interface:

public interface FunctionalGift {

 void abstractMethod(int number);
}

Functional Design Patterns Chapter 8

[235]

The FunctionalGift interface is a functional interface because it has only one abstract
method.

Of note, we can use the @FunctionalInterface annotation for code
clarity.

The Driver class provided next contains the main() method for our program. That
method contains a lambda expression that implements the FunctionalGift interface. The
interface implements the abstractMethod() method by default. Our
myObject.abstractMethod() statements call the lambda expression:

public class Driver {

 public static void main(String[] args) {

 System.out.println();
 FunctionalGift myObject = (int number)->System.out.println
 (number + " squared is " + (number*number));

 myObject.abstractMethod(1);
 myObject.abstractMethod(2);
 myObject.abstractMethod(3);
 myObject.abstractMethod(4);
 myObject.abstractMethod(5);
 }
}

The output of the previous program is provided here:

Lambda design pattern with single parameter—console output

In the next section, we will use the same FunctionalGift interface and create a new
Driver class to demonstrate the use of lambda expressions with multiple arguments.

Functional Design Patterns Chapter 8

[236]

Implementing lambda with multiple parameters
Our example implementation of lambda with multiple parameters will consist of the
FunctionalGift interface that is provided next. We will also have a Driver class that
accepts user input for two types of tokens (blue and red), implements basic math, and
then provides a random gift to the user who submitted the tokens. Here is the
FunctionalGift interface:

public interface FunctionalGift {

 void abstractMethod(int number);

}

Our implementation's Driver class is presented in five sequential sections. The first
section, provided next, includes two import statements—java.util.Random and
java.util.Scanner. We will use the Scanner class in the second section of the code and
the Random class in the fifth section. This first section of code also includes two interfaces:
one that takes two int parameters and one that takes a single String parameter:

import java.util.Random;
import java.util.Scanner;

public class Driver {

 interface FirstFunctionalInterface {
 int calculation(int a, int b);
 }

 interface SecondFunctionalInterface {
 void displayResults(String message);
 }

 private int calculate(int a, int b, FirstFunctionalInterface
firstObject) {
 return firstObject.calculation(a, b);
 }

The second section of the Driver class code is the beginning of the main() method. The
method starts by obtaining user input, prompting for the number of blue and then red
tokens. We utilize the Scanner class to obtain this input. After the input is received, we
display a decorative output header:

public static void main(String[] args) {

 // Obtain user input

Functional Design Patterns Chapter 8

[237]

 System.out.println();
 Scanner in = new Scanner(System.in);
 System.out.println("How many blue tokens do you have to exchange: ");
 int blueTokens = in.nextInt();
 System.out.println("How many red tokens do you have to exchange: ");
 int redTokens = in.nextInt();

 // Display system header
 System.out.println("\n======================");
 System.out.println("TOKEN-TO-GIFT EXCHANGE");
 System.out.println("======================");

Our third section of the Driver class code is the second part of the main() method. This
section of code starts with a lambda expression for calculating the sum of the tokens
entered by the user. Next, a second lambda expression is used to calculate the sum of the
two tokens squared. Finally, we instantiate a firstObject object to test our lambda
expressions:

 // add blue and red tokens
 FirstFunctionalInterface sum = (int nbr1, int nbr2) -> nbr1 + nbr2;

 FirstFunctionalInterface superSquare = (int nbr1, int nbr2) ->
 ((nbr1 * nbr1) + (nbr2 * nbr2));

 Driver firstObject = new Driver();

Our fourth section of the Driver class code is the third and final part of the main()
method.

In this section, we generate output to the user on six lines:

The first two lines echo the number of blue and red tokens entered by the user.
The third line provides the sum of the tokens using a lambda expression.
The fourth line also uses a lambda expression and provides the sum of the
individual squared token values.
The output of line five is simply a decorative separator.
The final output line provides the result of a displayResults() method call:

 // Generate output
 System.out.println(blueTokens + " blue tokens submitted");
 System.out.println(redTokens + " red tokens submitted");
 System.out.println(firstObject.calculate(blueTokens, redTokens, sum) +
 " total tokens submitted");

 System.out.println(firstObject.calculate(blueTokens, redTokens,
superSquare) +

Functional Design Patterns Chapter 8

[238]

 " SuperSquare number result");

 System.out.println("==");
 SecondFunctionalInterface secondObject = message ->
 System.out.println("Your gift is a pound of " + message);

 secondObject.displayResults(selectGift());
}

The fifth and final section of our Driver class contains the selectGift() method. This
method simply creates an array with five precious metal types and generates a random
number between 0 and 4. The random number is used as the index of the giftArray. The
value at that index of the array is returned:

 public static String selectGift() {
 String[] giftArray = new String[]
 {"Gold", "Silver", "Platinum", "Titanium", "Copper"};
 Random giftNumber = new Random();
 int giftToGive = giftNumber.nextInt(4);

 return giftArray[giftToGive];
 }
}

Here is the output of our program:

Lambda design pattern with multiple parameters—console output

This section provided the source code and the console output for two implementations of
the lambda functional design pattern.

Functional Design Patterns Chapter 8

[239]

Understanding the loan design pattern
The loan functional design pattern can be used to create resource-aware applications. With
this pattern, we are not creating code that has to manage resources such as memory; rather,
we want to control how the resources are used. Of key significance is ensuring that garbage
collection occurs on our terms rather than waiting for Java's default garbage collection
system to kick into action. In this section, we will look at an implementation example
regarding file processing. Our example will include a look at file-processing source code
before the loan design pattern is implemented, and then we will modify the code using the
loan design pattern. We will see how the two approaches can be used with the same results.

Implementing file processing
In order to understand the power of the loan design pattern, we will implement a file-
processing application demonstrating source code before and after using the loan pattern.
Our application will simulate the opening and closing of a file with an additional four
processing steps. The workflow is as depicted in this diagram:

File-processing workflow

Functional Design Patterns Chapter 8

[240]

Our implementation will consist of a FileToProcess class and a Driver class. The
FileToProcess class is provided next in two sections. This class contains a default
constructor and six public methods, each providing console output to indicate that the
method was called. This first section includes the class header, the constructor method, and
the openFile() method. As you can see, the openFile() method simply outputs a text
statement to the console, simulating that the file is open. This application is for
demonstrative purposes and does not actually open or process any files:

public class FileToProcess {

 // constructor
 public FileToProcess() {
 }

 public FileToProcess openFile() {
 System.out.println("\nFile opened for processing");
 return this;
 }

The second part of the FileToProcess class contains the processMetaData(),
analyzeHeader(), checkSpelling(), checkGrammar(), and closeFile() methods.
Each of these methods simply outputs text to the console:

 public FileToProcess processMetaData() {
 System.out.println("\tProcessing metadata. . .");
 return this;
 }

 public FileToProcess analyzeHeader() {
 System.out.println ("\tAnalyzing header. . .");
 return this;
 }

 public FileToProcess checkSpelling() {
 System.out.println("\tChecking spelling. . . ");
 return this;
 }

 public FileToProcess checkGrammar() {
 System.out.println("\tChecking grammar. . . ");
 return this;
 }

 public void closeFile() {
 System.out.println("File closed");
 }
}

Functional Design Patterns Chapter 8

[241]

Our application's Driver class contains the main() method. That method, provided next,
starts by creating an instance of a FileToProcess class named myFile. We then use
method chaining to call each of the methods in the FileToProcess class. These six chained
method calls are called and executed in the specific order we desire and as specified in the
previously provided workflow:

public class Driver {

 public static void main(String[] args) {
 FileToProcess myFile = new FileToProcess();

 myFile.openFile().processMetaData().analyzeHeader()
 .checkSpelling().checkGrammar().closeFile();
 }
}

Here is the output of our application:

Loan design pattern—file-processing implementation console output

Our application works well and does not yet implement the loan functional design pattern.
The problem with the application, as it is currently written, is that we place the onus on the
developer to ensure the six methods are called in the specific order intended by the
workflow. If the application was programmed with improper logic, such as closing the file
before opening it or performing a processing step after the file is closed, we will run into
problems. These potential problems could be overcome with a bunch of code that tests
whether specific processes were completed prior to others starting. This would be tedious
and would not result in a clean code base for an application.

Let's use the loan design pattern to enforce this functionality. First, we will update the
FileToProcess class in our previous example and rename it FileToProcess2. Here is
the first section of that class:

import java.util.function.Consumer;

public class FileToProcess2 {

 // constructor

Functional Design Patterns Chapter 8

[242]

 protected FileToProcess2() {
 openFile();
 }

 public static void processFile(final Consumer<FileToProcess2> block) {
 final FileToProcess2 theFile = new FileToProcess2();

 block.accept(theFile);

 theFile.closeFile();
 }

We changed the constructor so that a call is made to the openFile() method when a
FileToProcess2 object is instantiated. This gives the object the responsibility for opening
the file.

As you can see from the previous code segment, we import Java's Consumer class, which is
used to implement functional programming.

The remaining portion of the FileToProcess2 class simply contains the individual
processing methods along with the closeFile() method, each providing contextual
output to the console. Here is that code:

 public FileToProcess2 openFile() {
 System.out.println("\nFile opened for processing by constructor");
 return this;
 }

 public FileToProcess2 processMetaData() {
 System.out.println("\tProcessing metadata. . .");
 return this;
 }

 public FileToProcess2 analyzeHeader() {
 System.out.println ("\tAnalyzing header. . .");
 return this;
 }

 public FileToProcess2 checkSpelling() {
 System.out.println("\tChecking spelling. . . ");
 return this;
 }

 public FileToProcess2 checkGrammar() {
 System.out.println("\tChecking grammar. . . ");
 return this;
 }

Functional Design Patterns Chapter 8

[243]

 public void closeFile() {
 System.out.println("File closed");
 }
}

Next, we can modify the Driver class from the previous example and rename it Driver2.
Here is the updated Driver2 class source code:

public class Driver2 {

 public static void main(String[] args) {

 FileToProcess2.processFile(theFile -> theFile.processMetaData()
 .analyzeHeader().checkSpelling().checkGrammar());
 }
}

The output for our application is the same as with our previous example with one small
difference. We updated the openFile() method to indicate that the simulated file was
opened for processing by the constructor. Here is the updated console output from our
application:

Loan design pattern—updated file-processing implementation console output

This section provided the source code and the console output for our file-processing
implementation of the loan functional design pattern.

Understanding the MapReduce design
pattern
The MapReduce functional design pattern is used for large-scale parallel-programming.
Google developed this functional design pattern to take large tasks and break them up into
smaller tasks. These smaller tasks are then run in parallel and produce a consolidated
result. The goal of the MapReduce functional design pattern was for performance gains
when processing large datasets, also referred to as big data.

Functional Design Patterns Chapter 8

[244]

Big-data processing and detailed analysis of the MapReduce functional design pattern are
complex concepts and are beyond the scope of this chapter. In order to appreciate the
MapReduce design pattern, we will briefly cover the following implementation approaches:

Input-Map-Output
Input-Map-Reduce-Output
Input-Multiple Maps-Reduce-Output
Input-Map-Combiner-Reduce-Output

Input-Map-Output
The Input-Map-Output form of the MapReduce functional design pattern can be used
without the reduce component. This will be implemented when there is a need to change
data formats and not perform aggregate calculations. An overview of the process is
provided in the following diagram:

MapReduce design pattern—Input-Map-Output

To demonstrate this approach, we will use the scenario of a faculty registry system that is
being cleaned up. We will handle each step in this pattern in the subsections that follow.

Input
For our example, let's assume that we have a faculty registry containing over 4,000 full-time
and adjunct instructors for a non-specific university. The registry names have become
corrupted over the years, mostly due to poor data entry controls. For example, here are
several different forms of current faculty entries (displayed here for a single faculty
member for comparison). The faculty member listed next has the full name Thomas A.
Anderson and a nickname of Neo:

Thomas Anderson
Thomas A. Anderson

Functional Design Patterns Chapter 8

[245]

Anderson, Thomas
Anderson, T. A.
Anderson, Thomas A.
Neo Anderson
Anderson, Neo
N. Anderson
T. Anderson
T. A. Anderson

Having these many possible variations makes the faculty look up and search for problems.
In addition to the different forms, capitalization might be inconsistent.

Map
The map component might consist of creating keys based on the last name. Given our
scenario, we might need to reference an additional data field to ensure we properly identify
the last name.

We would do the same for the first name. For the middle name, we might allow middle
initials as well as middle names, as it might be difficult to obtain any missing data.

Output
Our final output would be a list of names in the proper format to include capitalization.
Our selected format might be this:

Last name, First Name <Middle initial OR Middle name>

The final results would be an updated faculty registry with each entry in the same format.

Input-Map-Reduce-Output
To illustrate the Input-Map-Reduce-Output form of the MapReduce functional design
pattern, we will use the scenario of student grade-point averages by school year. An
overview of the process is provided in this diagram:

Functional Design Patterns Chapter 8

[246]

MapReduce design pattern—Input-Map-Reduce-Output

We will handle each step of this pattern in the subsections that follow.

Input
Here is the data used for the Input-Map-Output scenario:

Student Grade Grade-Point Average
Tom Zarek Freshman 3.8
William Adama Senior 4.0
Galen Tyrol Senior 2.7
Gaius Baltar Sophomore 3.1
D'Anna Biers Junior 3.9
Kara Thrace Junior 2.6
Sharon Valeri Sophomore 3.2
Laura Roslin Senior 3.9
Saul Tigh Freshman 3.3
Felix Gaeta Freshman 3.4
Tory Foster Junior 2.8
Anastasia Dualla Sophomore 3.0

As you can see, we have several students in each of the grade categories.

Functional Design Patterns Chapter 8

[247]

Map
Looking at the representative data in the previous section, we know we create a data grade
key and then key-value pairs. Here is how that would look given our previous dataset:

{ (Freshman, 3.8), (Senior, 4.0), (Senior, 2.7),
 (Sophomore, 3.1), (Junior, 3.9), (Junior, 2.6),
 (Sophomore, 3.2), (Senior, 3.9), (Freshman, 3.3),
 (Freshman, 3.4), (Junior, 2.8), (Sophomore, 3.0) }

The next step will be reduce.

Reduce
Give your key-value pair maps; we can reduce that data into an intermediate form as
indicated:

{
 (Freshman [3.8, 3.3, 3.4]),
 (Sophomore [3.1, 3.2, 3.0]),
 (Junior [3.9, 2.6, 2.8]),
 (Senior [4.0, 2.7, 3.9])
}

Our last step is the output from the reduce process.

Output
The final output of the Input-Map-Reduce-Output implementation is provided here:

{
 (Freshman, 3.5),
 (Sophomore, 3.1),
 (Junior, 3.1),
 (Senior, 3.5)
}

The results provided are the aggregate grade-point averages based on the school year.

Functional Design Patterns Chapter 8

[248]

Input-Multiple Maps-Reduce-Output
The Input-Multiple Maps-Reduce-Output implementation of the MapReduce functional
design pattern is similar to the Input-Map-Reduce-Output implementation. With multiple
maps, there would be multiple sources of input, each with different formats.

An overview of the workflow is illustrated in this diagram:

MapReduce design pattern—Input-Multiple Maps-Reduce-Output

We will handle each step in this pattern in the subsections that follow.

Input
To extend our university faculty registry example, we might be combining two registries:
one for the full-time faculty and one for the adjunct faculty. This scenario is relevant for
multiple data sources, with different formatting schemas, that can be aggregated into a
single output.

Functional Design Patterns Chapter 8

[249]

Multiple maps
The following diagram shows how more than one map component can exist, each with a
separate input stream, database source, or data file:

MapReduce design pattern—multiple maps

The last two components of this approach are reduce and output, which work as with the
Input-Map-Reduce-Output implementation detailed earlier.

Input-Map-Combiner-Reduce-Output
The Input-Map-Combiner-Reduce-Output approach introduces the combiner into the
process. A combiners is a smaller version of a reducer. This diagram illustrates where
combiners fall within the workflow:

MapReduce design pattern—Input-Map-Combiner-Reduce-Output

Functional Design Patterns Chapter 8

[250]

The combiners reside after the map component and before the reduce component.
Referencing this from a code perspective, the Combiner class would receive input from the
Map class and pass the results to the Reduce class.

This section provided an overview of four implementations of the MapReduce functional
design pattern.

Understanding the memoization design
pattern
The memoization functional design pattern stores the results of key functions so that
overall processing efficiency is increased. When there are specific processes that have the
same output each time they are invoked, it is less costly, from a processing time
perspective, to cache the results instead of recalculating them each time.

The Fibonacci sequence is often used to demonstrate memoization, so it shall be used here
as well.

Fibonacci numbers are a mathematical construct where each number is the
sum of the two preceding numbers. The Fibonacci sequence starts with
the numbers 0 and 1.

Let's start by looking at a standard implementation of the Fibonacci sequence. Here is the
source code:

public class FibonacciTest1 {

 public static int computeFibonacciNumber(int number) {

 // this checks for the fibonacci base of 0 and 1
 if ((number == 0) || (number == 1)) {
 return number;
 }

 System.out.println("Computing computeFibonacciNumber(int " + number
+ ")...");

 return (computeFibonacciNumber(number - 1)) +
(computeFibonacciNumber(number - 2));
 }

 public static void main(String[] args) {

Functional Design Patterns Chapter 8

[251]

 System.out.println();
 computeFibonacciNumber(7);
 }
}

Next, let's show an example of the output of the FibonacciTest1 class. As you can see,
there were several duplicate-processing steps that took place:

Fibonacci processing output—without memoization design pattern

As you can see, there is great computational waste. With this example, there are 20 output
lines, signifying 20 calls to the computeFibonacciNumber() method. A review of this
table highlights the duplicative nature of the method calls:

Method Call Times Processed
computeFibonacciNumber(int 7) 1
computeFibonacciNumber(int 6) 1
computeFibonacciNumber(int 5) 2
computeFibonacciNumber(int 4) 3
computeFibonacciNumber(int 3) 5
computeFibonacciNumber(int 2) 8

Functional Design Patterns Chapter 8

[252]

As you can see, there is a lot of processing waste. If we started with a larger number, the
amount of waste would skyrocket. For example, if we started with
computeFibonacciNumber(300), there would be a total of 24,372 output lines. As you
can see from the next table, computeFibonacciNumber(int 3) would be processed
5,757 times and computeFibonacciNumber(int 2) would be processed 9,315 times:

Method Call Times Processed
computeFibonacciNumber(int 7) 839
computeFibonacciNumber(int 6) 1,358
computeFibonacciNumber(int 5) 2,198
computeFibonacciNumber(int 4) 3,558
computeFibonacciNumber(int 3) 5,757
computeFibonacciNumber(int 2) 9,315

The previous table is abbreviated for representative brevity and only shows int values of 7
and below.

If you are running this test on your computer, please note that it can take a
long time to process large Fibonacci numbers.

Let's now try this same application using the memoization design pattern. We will use a
hash map in our solution. The first section of our FibonacciTest2 class is displayed next.
The class imports two classes (java.util.Map and java.util.HashMap) in order to
implement the HashMap instance. The start of the computeFibonacciNumber() method is
also in this section and checks to see whether the number is equal to one of the Fibonacci
base numbers (0 or 1):

import java.util.Map;
import java.util.HashMap;

class FibonacciTest2 {

 private static Map<Integer, Integer> memoization = new HashMap<>();

 public static int computeFibonacciNumber(int number) {

 // this checks for the fibonacci base of 0 and 1
 if ((number == 0) || (number == 1)) {
 return number;
 }

Functional Design Patterns Chapter 8

[253]

The second section of our FibonacciTest2 class is the final section of the
computeFibonacciNumber() method and shows three steps. The first step is to check
whether a calculation has already been made. If it has, then we retrieve the result from our
HashMap instead of performing the calculation. The second step performs the calculation if
it has not already been calculated. The third step is to add the result to the HashMap, the
first time the calculation is performed:

 // Step 1: Check if calculation has already been made
 if (memoization.containsKey(number)) {
 System.out.println("First time computing memoization " + number);
 return memoization.get(number);
 }

 // Step 2: Calculate if not already calculated
 System.out.println("Computing computeFibonacciNumber(int " + number +
")...");
 int fibonacciResult = (computeFibonacciNumber(number - 1)) +
(computeFibonacciNumber(number - 2));

 // Step 3: Add result to Map
 memoization.put(number, fibonacciResult);

 return fibonacciResult;
}

The final section of our FibonacciTest2 class is the main() method, which prints a blank
line and then invokes the computeFibonacciNumber() method, passing 7 as the
parameter:

 public static void main(String[] args) {

 System.out.println();
 computeFibonacciNumber(7);
 }
}

Functional Design Patterns Chapter 8

[254]

The result of the application is provided in the following screenshot of the console output:

Fibonacci processing output—with memoization design pattern

This section provided the source code and the console output for our implementations of
the memoization functional design pattern.

Understanding the streams design pattern
The streams functional design pattern presents a pipeline functionality used to transform
data. In this sense, transforming data is different from mutating data. Data is transformed
in the stream, but not mutated. In order to obtain the transformed data, a call must be made
to the terminal operation. Once a stream is closed, it can no longer be accessed, nor can the
transformed data.

The following table provides a lexicon of terminology relevant to the streams functional
design pattern:

Term Explanation
Stream A pipeline of functionality.
Transform Changing data in the stream.
Mutation Permanently changing data.
Creator Creating a stream generates an infinite sequential unordered stream.
Intermediate operation Returns a stream and supports querying when a terminal operation is executed.
Terminal operation Provides a non-stream result.

Functional Design Patterns Chapter 8

[255]

The following diagram depicts how the streams functional design pattern workflow is
implemented:

Streams functional design pattern—overview

We will next take a closer look at the intermediate operations followed by the terminal
operation.

Stream intermediate operations
There are eight intermediate operations for streams. These operations are methods and are
listed next, separated by their return type:

Stream IntStream LongStream DoubleStream
district() flatMapToInt() flatMapToLong() flatMapToDouble()

filter() maptoInt() mapToLong() mapToDouble()

flatMap()

limit()

map()

peek()

skip()

sorted()

Understanding the return type of these stream operations will help with their
implementation.

Functional Design Patterns Chapter 8

[256]

Stream terminal operations
There are 13 terminal operations for streams. These operations are methods and are listed
in alphabetical order next:

allMatch()

anyMatch()

collect()

count()

findAny()

findFirst()

forEach()

forEachOrdered()

max()

min()

noneMatch()

reduce()

toArray()

Programming the streams design pattern
The StreamExample class provided next demonstrates the streams design pattern. The
class imports the Stream class, which is part of the java.util.stream package. There are
three chained calls made to the peek(), limit(), and forEach() methods:

import java.util.stream.Stream;

public class StreamExample {

 public static void main(String[] args) {

 System.out.println();

 Stream.iterate(0, x->x+3)
 .peek(number -> System.out.print("\nPeeked at: "))
 .limit(7)
 .forEach(System.out::println);
 }
}

Functional Design Patterns Chapter 8

[257]

The output of the StreamExample class is provided here:

Streams design pattern implementation—console output

This section provided the source code and the console output for our streamSample
implementation of the streams functional design pattern.

Understanding the tail call design pattern
The tail call functional design pattern is a subroutine, or a tail-recursive function, that is
executed at the end of a procedure. This design pattern is also referred to as the Tail Call
Optimization (TCO). The concept of this pattern is straightforward. The tail call is the last
call performed by a method.

In the next section, we will implement the tail call functional design pattern.

Programming the tail call design pattern
To demonstrate the tail call functional design pattern, we will implement a Lucky 7
application consisting of a single TailCallExample class. This class will prompt the user
for a number and perform multiple mathematical on the number that will result in 7,
regardless of the input.

Functional Design Patterns Chapter 8

[258]

The first section of code starts with the import statement. We will use the Scanner class to
obtain user input from the console window. The following code also contains
theInitialNumber, an int class variable. Next is the first section of the main() method,
which simply prompts the user for input and stores the result in the theInitialNumber
class variable. This value will be used throughout our application:

import java.util.Scanner;

public class TailCallExample {

 public static int theInitialNumber;

 public static void main(String[] args) {

 Scanner in = new Scanner(System.in);
 System.out.println("\n\nI can turn your number into 7.");
 System.out.print("Enter a number: ");
 theInitialNumber = in.nextInt();

The second section of the TailCallExample class is provided next and completes the
main() method. This section of code prints a decorative header to the console window. It
also prints the value of theInitialNumber to the console window for reference. Next, the
result label is printed along with the results based on the
executeThisMethod(theInitialNumber) method call. This method call is the last call
for this method and is therefore the tail call:

 // Display system header
 System.out.println("\n=========================");
 System.out.println("ANY NUMBER CAN BE LUCKY 7");
 System.out.println("=========================");

 System.out.println("\nThe initial number: " + theInitialNumber);

 System.out.println("The tail call sent this as the result: " +
 (excecuteThisMethod(theInitialNumber))); // tail call
}

Functional Design Patterns Chapter 8

[259]

The next section of the TailCallExample class is the executeThisMethod() method. As
you will see in the next code block, the method has a local funWithNumbers variable. The
method also invokes the following methods in sequential order—operation1(),
operation2(), operation3(), operation4(), and operation5(). Finally, the
return(funWithNumbers) statement is executed. The operation5() method call is the
last one called in the executeThisMethod() method, making it the tail call. It might be
tempting to assume the return statement is the tail call, but it is not a method, so it cannot
be the tail call for this or any method:

private static int excecuteThisMethod(int theNumber) {

 int funWithNumbers;

 funWithNumbers = operation1(theNumber);

 funWithNumbers = operation2(funWithNumbers);

 funWithNumbers = operation3(funWithNumbers);

 funWithNumbers = operation4(funWithNumbers);

 funWithNumbers = operation5(funWithNumbers); // tail call

 return(funWithNumbers);
}

The final segment of the TailCallExample class is provided next and contains the
operation1(), operation2(), operation3(), operation4(), and operation(5)
methods. Each one of those methods makes a call to the println() method, which is, in
each case, the tail call for those methods:

 private static int operation1(int theNbr) {
 System.out.println("\t+ 9 = " + (theNbr + 9)); // tail call
 return theNbr + 9;
 }
 private static int operation2(int theNbr) {
 System.out.println("\t* 2 = " + (theNbr * 2)); // tail call
 return theNbr * 2;
 }
 private static int operation3(int theNbr) {
 System.out.println("\t- 4 = " + (theNbr - 4)); // tail call
 return theNbr - 4;
 }
 private static int operation4(int theNbr) {
 System.out.println("\t/ 2 = " + (theNbr / 2)); // tail call
 return theNbr / 2;

Functional Design Patterns Chapter 8

[260]

 }
 private static int operation5(int theNbr) {
 System.out.println("\t- initial number = " + (theNbr -
theInitialNumber)); // tail call
 return (theNbr - theInitialNumber);
 }
}

The output for our application is provided here:

Tail call design pattern implementation—console output

This section provided the source code and the console output for our Lucky 7
implementation of the tail call functional design pattern.

Summary
In this chapter, we examined the functional design pattern category and eight specific
design patterns. We learned that functional design patterns are not the same as functional
programming and that they are both considered programming paradigms. The term
functional design patterns refers to the use of functional programming to solve computational
problems. The functional design patterns covered in this chapter were the execute around
pattern, the lambda pattern, the loan pattern, the MapReduce pattern, the memoization
pattern, the streams pattern, and the tail call pattern.

In the next chapter, Reactive Design Patterns, we will explore the reactive design pattern
category and its individual design patterns of asynchronous communication, autoscaling,
bounded queue, bulkhead, caching, circuit breaker, event-driven communication, fail fast,
failure handling, fan-out and quickest reply, idempotency, monitoring, publisher-
subscriber, self-containment, and stateless.

Functional Design Patterns Chapter 8

[261]

Questions
What are the three rules for functions using a functional design approach?1.
List seven functional design patterns.2.
What functional model is used by functional programming?3.
Which design pattern encapsulates a pair of actions in the actual objects that4.
require the pair of actions?
Which design pattern uses anonymous functions?5.
Which design pattern can be used to create resource-aware applications?6.
Which design pattern is used for large-scale parallel-programming?7.
Which design pattern stores the results of key functions so that the overall8.
processing efficiency is increased?
Which design pattern presents a pipeline functionality used to transform data?9.
Which design pattern is a subroutine that is executed at the end of a procedure?10.

Further reading
Java EE 8 Design Patterns and Best Practices (https:/ /www. packtpub. com/
application- development/ java- ee- 8-design- patterns- and- best- practices)
Learn Design Patterns with Java [Video] (https:/ /www. packtpub. com/ application-
development/ learn- design- patterns- java- video)
Design Patterns and Best Practices in Java (https:/ /www. packtpub. com/
application- development/ design- patterns- and- best- practices- java)
Learning Big Data with Amazon Elastic MapReduce (https:/ /www. packtpub. com/
virtualization- and- cloud/ learning- big- data- amazon- elastic- mapreduce)

https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce
https://www.packtpub.com/virtualization-and-cloud/learning-big-data-amazon-elastic-mapreduce

9
Reactive Design Patterns

In the previous chapter, Functional Design Patterns, we examined the functional design
pattern category and compared functional design to functional programming. We reviewed
and implemented the execute around pattern, lambda pattern, loan pattern, MapReduce
pattern, memoization pattern, streams pattern, and tail call pattern.

In this chapter, we will explore the reactive design pattern category and its individual
design patterns of asynchronous communication, autoscaling, bounded queue, bulkhead,
caching, circuit breaker, event-driven communication, fail fast, failure-handling, fan-out
and quickest reply, idempotency, monitoring, publisher-subscriber, self-containment, and
stateless. Our exploration of the reactive design patterns is fueled by the desire to design
and develop systems that have characteristics of resilient, reliable, scalable, and message-
driven. Implementing the design patterns can help us achieve those system characteristics.

Specifically, we will cover the following in this chapter:

Introducing reactive design patterns
Asynchronous communication design pattern
Autoscaling design pattern
Bounded queue design pattern
Bulkhead design pattern
Caching design pattern
Circuit-breaker design pattern
Event-driven communication design pattern
Fail-fast design pattern
Failure-handling design pattern
Fan-out and quickest-reply design pattern
Idempotency design pattern
Monitoring design pattern

Reactive Design Patterns Chapter 9

[263]

Publisher-subscriber design pattern
Self-containment design pattern
Stateless design pattern

Technical requirements
The code for this chapter can be found at
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/mast

er/Chapter09.

Introducing reactive design patterns
Reactive design patterns exist to provide system architects, engineers, and developers with
the ability to create systems that are, at their core, responsive and scalable. Using a reactive
design pattern helps ensure that a system will be both maintainable and able to react to
external changes such as resource changes and new connectivity. One of the goals of
creating systems with one of these design patterns was to avoid redesigning the system
because it was not responsive to change.

The concept of designing systems that are reactive to change can be considered an
approach to future-proofing a system. We want, as much as possible, to design our systems
so they can react to events and changes for the foreseeable future.

Reactive design patterns were generated from reactive programming and documented in
the form of a Reactive Manifesto. This is a document that outlines rules and approaches to
using reactive programming and reactive design patterns. This manifesto establishes four
characteristics:

Responsive
Resilient
Elastic
Message-driven

Each of these characteristics is explained in the sections that follow.

https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Design-Patterns-with-Java/tree/master/Chapter09

Reactive Design Patterns Chapter 9

[264]

Responsive
When a system is responsive, it is said to be able to respond to events quickly. This does not
simply refer to processing data or objects; it is more significant than that. The desired level
of responsiveness includes rapid identification of issues, a determination of what type of
response is necessary, and then the actual response.

We will highlight the responsive nature of the reactive design patterns featured in this
chapter.

Resilient
Resilient systems are ones that have a tremendous up-time and are impervious to errors.
Designing a system to be resilient involves extensive error-handling, data redundancy,
distributed processing, and other concepts that will be further explored in this chapter.
Resilient systems do not have a single point of failure. For example, instead of having a
single database, a resilient system might employ replication of a database. Labeling a
system as resilient not only signifies that the overall system is resilient but that the
components and sub-components are as well.

We will highlight the resilient nature of the reactive design patterns featured in this
chapter.

Elastic
An elastic system has the ability to upscale and downscale based on system needs. An
example of this might be when an eCommerce site needs additional servers, gateways, and
other system components to react to an exponential increase in site visits during a holiday
season.

It is important to highlight that the elasticity of a system includes the ability to both upscale
and downscale system resources. Depending on the system used, this elasticity can be
controlled using predictive analysis and specialized algorithms to detect when specific
system components reach specific high and low levels.

We will highlight the elastic nature of the reactive design patterns featured in this chapter.

Reactive Design Patterns Chapter 9

[265]

Message-driven
The fourth characteristic of reactive design patterns is that they are message-driven. This
characteristic means that reactive systems have a reliance on the messages that are passed
between system components. This message passing is asynchronous and enables a system
to isolate system failures. The strong reliance on message passing enables elasticity, node-
control, and processing load control.

We will highlight the message-driven nature of the reactive design patterns featured in this
chapter.

The four characteristics of reactive design patterns (responsive, resilient,
elastic, and message-driven) are also the four principles of reactive
programming and reactive design patterns.

Each of the reactive design patterns in this chapter can be assigned to one or more of the
four characteristics defined previously.

The following table provides that categorical grouping:

Responsive Resilient Elastic Message-driven
Asynchronous communication Bounded queue Autoscaling Event-driven communication
Caching Bulkhead Self-contained Idempotency
Fail-fast Circuit breaker Stateless Publisher-subscriber
Fan-out and quickest reply Failure-handling

Monitoring

Reactive design pattern groupings

The reactive design features in the remainder of this chapter are presented in alphabetical
order to illustrate that one is not more important than the others.

Reactive Design Patterns Chapter 9

[266]

Understanding the asynchronous
communication design pattern
Earlier in this chapter, we identified one of the reactive design principles as asynchronous
message-driven communication. That principle is core to the asynchronous communication
design pattern:

First, the client sends a request message to a server1.
Next, the server sends an acknowledgement message to the client immediately2.
and then takes whatever time is necessary to process the request
Once the request is fully processed, the response message is sent from the server3.
to the client

This diagram illustrates three components of asynchronous communication:

Asynchronous communication design pattern implementation—overview

This method of communication is efficient because it allows the client to send multiple
request messages to the server and not dedicate processing resources, and anticipate a
response message from the server. The client understands that the server will eventually
send the response message and it can allocate the processing resources at that time.

Reactive Design Patterns Chapter 9

[267]

Implementing the asynchronous communication
design pattern
The most common approach to implementing the asynchronous communication reactive
design pattern is with asynchronous callbacks. The basic process of implementing
asynchronous callbacks is illustrated next. The process starts with the client authenticating
itself to the server. The client sends the request message to the server and subscribes to the
server. The server sends an immediate acknowledgement message, processes the request,
and then sends a response message. The client receives the response and conducts any
follow-on processing:

Asynchronous communication design pattern implementation—details

The next UML diagram depicts the class structure of an implementation example. The
solution includes a CallbackListener interface and CallerOne and CallerTwo classes.
Only the CallerOne class implements the CallbackListener interface:

Reactive Design Patterns Chapter 9

[268]

UML class diagram—asynchronous communication design pattern implementation

Let's take a look at an example of this design pattern in code. The first segment of code is
the CallbackListener interface. It contains a simple processCallback() method that
the CallerOne class will override. The CallerTwo class will not override the method, but
will still contain its own processCallback() method as it does not implement the
CallbackListener interface:

package CH9AsynchronousCommunication;

public interface CallbackListener {

 void processCallback();
}

The CallerOne class is provided next in four sequential sections. The first section,
provided next, contains the package declaration as well as four import statements. The
classes imported will support the doSomething2() method:

package CH9AsynchronousCommunication;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.ListIterator;

public class CallerOne implements CallbackListener {

Reactive Design Patterns Chapter 9

[269]

The second section of the CallerOne class is provided next. The CallerOne class has three
methods; the first of them, the processCallback() method, is shown here. When called,
this method prints to the console window to simulate processing messages. Two method
calls, one each to doSomething1() and doSomething2(), are made for further message
processing simulation:

@Override
public void processCallback()
{
 System.out.println("\nAsynchronous Task Completed Followed by
Callback.");

 System.out.println("\tSimulated processing from Caller One . . . ");
 doSomething1(34, 12);

 System.out.println("\tSimulated processing from Caller Two . . . ");
 doSomething2("nrettaP ngiseD noitacinummoC suonorhcnysA");
 System.out.println();
}

The third section of the CallerOne class contains the doSomething1() method and is
provided next. This method simply determines the larger of the two int arguments and
provides output to the console window. The doSomething1() method was included in the
example implementation of the asynchronous communication reactive design pattern to
simulate additional processing:

public void doSomething1(int x, int y) {

 // determine and output max value
 System.out.println("\t\tThe largest number is " + Math.max(x, y));
}

The fourth and final section of the CallerOne class is provided next and contains the
doSomething2() method. This method simply takes the String argument and prints the
same String, in reverse character order, to the console window. This is accomplished
using an ArrayList, and a ListIterator. The doSomething2() method was included in
the example to simulate additional processing of our implementation of the asynchronous
communication reactive design pattern:

 public void doSomething2(String backwardsPhrase) {

 // reverse a string
 char[] phrase = backwardsPhrase.toCharArray();
 List<Character> newPhrase = new ArrayList<>();

 for (char character: phrase)

Reactive Design Patterns Chapter 9

[270]

 newPhrase.add(character);

 Collections.reverse(newPhrase);
 ListIterator myInterator = newPhrase.listIterator();

 System.out.print("\t\tResultant Phrase: ");
 while (myInterator.hasNext())
 System.out.print(myInterator.next());
 }
}

The CallerTwo class is presented in three sections. The first section, provided next, creates
a callbackListener object. The next operation performed by this class is to register
callbackLister. This is done with the registerCallbackListener() method:

package CH9AsynchronousCommunication;

public class CallerTwo {

 // create callbackListener object
 private CallbackListener callbackListener;

 // setting up the callbacklistener
 public void registerCallbackListener(CallbackListener callbackListener)
 {
 this.callbackListener = callbackListener;
 }

The second section of the CallerTwo class includes the processCallback() method. This
is an asynchronous operation for the CallerTwo class. We accomplish this by creating a
new thread for the operation and using a lambda expression.

More information on lambda expressions can be found in Chapter 8,
Functional Design Patterns.

As you can see from the following code, we must check to see whether the
callbackListener is registered. If it does not exist, we call the processCallback()
method from the CallerOne class:

// asynchronous operation for CallerTwo
public void processCallback()
{
 // a new thread for the asynchronous operations using lambda
 new Thread(() -> {

Reactive Design Patterns Chapter 9

[271]

 // simulated processing
 System.out.println("\nAsynchronous operations taking place . . .");
 System.out.println("\tSimulated processing from Caller Two. . . ");

 // check if callbackListener exists
 if (callbackListener != null) {

 // use processCallback() method of CallerOne
 callbackListener.processCallback();
 }
 }).start();
}

The final section of the CallerTwo class is the main() method. As you can see from the
following code, there are only four lines of code. The first line creates an instance of
CallerTwo named asynchronousMessage. The second line creates a CallbackListener
instance and calls it callbackListener. Our third line calls the
registerCallbackListerner() method of the asynchronousMessage object, passing
the callbackListener created on the second line as the parameter. The fourth line calls
the processCallback() method of the asynchronousMessage object:

 public static void main(String[] args)
 {
 CallerTwo asynchronousMessage = new CallerTwo(); // line 1

 CallbackListener callbackListener = new CallerOne(); // line 2

 asynchronousMessage.registerCallbackListener(callbackListener); //
line 3

 asynchronousMessage.processCallback(); // line 4
 }
}

Reactive Design Patterns Chapter 9

[272]

The output of our program, using the CallerTwo class as our Driver class, is provided
here:

Asynchronous communication design pattern implementation—console output

This section provided the source code and the console output for our implementation of the
asynchronous communication reactive design pattern.

Understanding the autoscaling design
pattern
The autoscaling design pattern typically refers to the ability to auto-scale processing and
storage capacity, both by increasing and decreasing assets. This is one of the greatest
benefits of using a cloud-based Infrastructure as a Service (IaaS). The concept is simply
that when you need additional capacity, your system is automatically scaled. Using the
autoscaling reactive design pattern, our systems can automatically react to increases and
decreases of system events such as increased or decreased web page visits, number of
transactions, larger datasets, and so on.

As an example, we might have designed an online store with the ability to support 100
simultaneous potential customers. What if, during the holiday season, we receive 1,000
simultaneous users all querying our product catalog and processing orders? Our system
might not be able to handle it. So, let's plan for 1,000 simultaneous users. If our site receives
10,000 simultaneous users, we still have a problem. If we decide to plan for 100,000
simultaneous users, our online store might perform well. The downside of that approach is
that we do not want to waste capacity, because it is expensive.

Reactive Design Patterns Chapter 9

[273]

The ideal solution is to design a system that is auto-scalable, but up and down. The
following diagram shows the large divide between the low usage and high usage for a
given system. As you can see, if our system was designed for low usage or even slightly
higher usage, such as 20 or 30 million simultaneous users, the system would still fall short
at least four months of the year. If we designed our system for high usage, 100 million
simultaneous users, our system would perform well, but would have excess capacity 11 of
the 12 months:

Autoscaling design pattern—usage disparity

Let's look at the same diagram but with a graph that shows the ideal capacity based on the
usage. Here you can see that capacity is slightly above the usage. When we employ
autoscaling, we always want a bit more capacity than we are using so there are no access-
or system-related issues:

Reactive Design Patterns Chapter 9

[274]

Autoscaling design pattern—ideal capacity-usage ratio

Now that we have some knowledge of autoscaling, let's look at the two types of
autoscaling:

Horizontal scaling
Vertical scaling

We will review both of these autoscaling types in the next two sections.

Horizontal scaling
An example of horizontal scaling is when we increase or decrease our processing load such
as with more servers or database servers. Since we only scale when our system requires it,
we only pay for what we use. This underscores the importance of never having too much
nor too little processing capability.

When we horizontally scale, we are scaling out. An easy way to remember this is that you
would need to zoom out of your system's diagrams to see the additional servers on the
same horizontal level.

Reactive Design Patterns Chapter 9

[275]

Vertical scaling
Vertical scaling, also referred to as scaling up, involves adding increasing capacity with
additional hardware. Examples include faster or more processors and adding memory
capacity. Another example of vertical scaling would be to increase a database instance with
larger RAM allocation.

Implementing autoscaling
To implement autoscaling, we would need to consult the operating instructions for our
cloud-based service such as Amazon Web Services (AWS), Microsoft Azure, Google Cloud
Platform, IBM Cloud, Oracle Cloud, and so on.

This section provided an overview of the autoscaling reactive design pattern.

Understanding the bounded queue design
pattern
Bounded queues are those that have a fixed number of elements. To implement a bounded
queue in Java, we need to use the java.util.concurrent package. If we used the
java.util package, our queues would not be bounded.

Let's implement the bounded queue reactive design pattern with a two-class program. Our
implementation will consist of a Bounded class that extends the Thread class. We will also
add a Driver class to contain our solution's main() method.

This first segment of code is the beginning of the Bounded class. It contains the import
statement for the java.util.concurrent.BlockingQueue class. It also contains the class
definition showing that it extends the Thread class. There is an inputValue class variable
of a BlockingQueue type. Next, we have the class constructor method that takes a
BlockingQueue object as an argument:

package CH9BoundedQueue;

import java.util.concurrent.BlockingQueue;

public class Bounded extends Thread {

 private BlockingQueue<Integer> inputValue;

Reactive Design Patterns Chapter 9

[276]

 Bounded(BlockingQueue<Integer> blockingQueue) {
 this.inputValue = blockingQueue;
 }

The segment of the next code is the remaining portion of the Bounded class. It contains the
run() method, which contains a try / catch statement. If the input value is not null, then
the number will be squared and the appropriate results sent to the console:

 public void run() {
 try {
 while (true) {
 Integer myInteger = inputValue.take();

 if (myInteger == null) {
 break;
 }
 System.out.println(myInteger + " squared is " +
 (myInteger * myInteger));
 }
 } catch (InterruptedException e) {
 System.out.println("Interrupted Exception Encountered.");
 }
 }
}

The next two segments of code comprise the Driver class. The first section, shown next,
imports ArrayBlockingQueue and BlockingQueue. The main() method is declared and,
as indicated, it throws the InterruptedException exception error. Lastly, the
boundedSize int variable is set to 10:

package CH9BoundedQueue;

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;

public class Driver {

 public static void main(String[] args) throws InterruptedException {

 int boundedSize = 10;

Reactive Design Patterns Chapter 9

[277]

The second portion of our main() method creates a BlockingQueue named
blockingQueue. The boundedThread int is also created, as is the bounded array of the
Bounded type. After a blank line is printed to the console, we have two for loops. The first
for loop populates the bounded array and calls the Thread start() method. The second
for loop puts elements into the blockingQueue queue:

 BlockingQueue<Integer> blockingQueue = new
ArrayBlockingQueue<>(boundedSize);

 int boundedThread = 2;

 Bounded[] bounded = new Bounded[boundedThread];

 System.out.println();

 for (int i=0; i < bounded.length; i++) {
 bounded[i] = new Bounded(blockingQueue);
 bounded[i].start();
 }

 for (int i=1; i < 11; i++) {
 blockingQueue.put(i);
 }
 }
}

The output of our implementation is illustrated next:

Bounded queue design pattern implementation—console output

This section provided the source code and the console output for our implementation of the
bounded queue reactive design pattern.

Reactive Design Patterns Chapter 9

[278]

Understanding the bulkhead design pattern
Bulkheads on ships help isolate areas of the ship so that damage such as flooding, fire, or
explosion impacts only one section of the ship and is not spread to other sections.
Bulkheads also establish the stability of the overall ship. The bulkhead design pattern is
based on the ship example. Instead of a ship, we are protecting the system.

Most non-trivial systems will involve multiple components. When those components are
implemented in a manner that they are interdependent, systems can fail. As an example,
review the system design illustrated next. As you can see, there are several points of failure.
If the Server fails, nothing is accessible. Also, if one of the three modules fails, the
connected database is inaccessible. These scenarios would make the entire system unusable:

System without the bulkhead design pattern

Reactive Design Patterns Chapter 9

[279]

Now let's take a look at what this same system would look like with the bulkhead design
pattern implemented. Here, you can see a simulated bulkhead between the load balancers.
These load balancers will determine to which server requests get routed. This provides
isolation from server errors; when one server goes down, the other can be used. Also, in a
dynamic cloud-computing environment, you would likely have a fail-safe set up to
automatically spin up a new server instance as soon as one goes down. This would help
ensure consistent up-time:

System with bulkhead design pattern

The preceding diagram also depicts how bulkheads can separate replicated processing
models.

The bulkhead reactive design pattern is applied at the architectural level and most
frequently when implementing cloud-based solutions.

This section provided an overview of the bulkhead reactive design pattern.

Reactive Design Patterns Chapter 9

[280]

Understanding the caching design pattern
The concept of caching is to temporarily store data that makes accessing it faster. Caching is
employed to help save on the use of resources. When we retrieve data, it should be made
available for future requests for the same data. Implementing this saves on the processing
time required for continual retrieval of the same data.

The next diagram provides a conceptual view of how caching is architected into a system.
As you can see, there are several caches and a cache-management system that controls what
is in a cache and how it is accessed. The diagram illustrates how redundancy can also be
built into a caching system:

Conceptual view of caching

There is no single method of implementing caching in Java. In the next section, we will
review one possible approach for implementing this design pattern.

Reactive Design Patterns Chapter 9

[281]

Implementing the caching design pattern in Java
We will demonstrate the implementation of the caching design pattern with a simple
example. We will create a Player class that is used to record a basketball team's all-time
top scorers. We will create a pairing with jersey numbers and total points. We will also
have an ExampleCache class and a ClassDriver class.

The Player class is provided next. It has four class variables and a constructor method:

public class Player {

 int playerJersey;
 int playerPoints;
 Player before;
 Player next;

 // constructor
 public Player(int jersey, int points) {
 this.playerJersey = jersey;
 this.playerPoints = points;
 }
}

The ExampleCache class is presented in five sequential segments. The first segment
contains the import statement for the HashMap class and the five class variables:

import java.util.HashMap;

public class ExampleCache {

 // class variables
 private HashMap<Integer, Player> map;
 private int cacheCapacity;
 private int cacheCount;
 private Player playerHead;
 private Player playerTail;

The second segment of the ExampleCache class contains the constructor method. Here,
you can see we are taking the cache's capacity as an argument:

// constructor
public ExampleCache(int cCapacity) {
 this.cacheCapacity = cCapacity;

 map = new HashMap<>();
 playerHead = new Player(0,0);
 playerTail = new Player(0,0);

Reactive Design Patterns Chapter 9

[282]

 playerHead.next = playerTail;
 playerTail.before = playerHead;
 playerHead.before = null;
 playerTail.next = null;
 cacheCount = 0;
}

The third segment of the ExampleCache class is provided next. Here, we have the
addToPlayerHead() and deletePlayer() methods, each taking a Player object as an
argument:

public void addToPlayerHead(Player player) {
 player.next = playerHead.next;
 player.next.before = player;
 player.before = playerHead;
 playerHead.next = player;
}

public void deletePlayer(Player player) {
 player.before.next = player.next;
 player.next.before = player.before;
}

The next code is the fourth segment of the ExampleCache class. It contains the
retrieve() method. This method works by receiving a playerJersey int. If the jersey
number is found in the cache, the matching total points score is provided; otherwise, an
appropriate message is displayed on the console:

public int retrieve(int playerJersey) {
 if (map.get(playerJersey) != null) {
 Player player = map.get(playerJersey);
 int result = player.playerPoints;
 deletePlayer(player);
 addToPlayerHead(player);
 System.out.println("\t\t\t\t\t\t\t\t\tRETRIEVED: jersey -> " +
playerJersey +
 "\tPoints-> " + result);
 return result;
 }
 System.out.println("\t\t\t\t\t\t\t\t\tRETRIEVED: jersey-> " +
playerJersey +
 "\tPoints-> " + " no value");
 return -1;
}

Reactive Design Patterns Chapter 9

[283]

The fifth and final segment of the ExampleCache class is provided next. It is used to set the
jersey and total points pair so they can be added to the cache:

 public void put(int jersey, int points) {
 System.out.println("SETTING: " + jersey + " (jersey) & " +
 points + " (points)");
 if (map.get(jersey) != null) {
 Player player = map.get(jersey);
 player.playerPoints = points;
 deletePlayer(player);
 addToPlayerHead(player);
 } else {
 Player player = new Player(jersey, points);
 map.put(jersey, player);
 if (cacheCount < cacheCapacity) {
 cacheCount++;
 addToPlayerHead(player);
 } else {
 map.remove(playerTail.before.playerJersey);
 deletePlayer(playerTail.before);
 addToPlayerHead(player);
 }
 }
 }
}

The CacheDriver class is provided in two sections. This first section is the first half of the
main() method. It creates the ExampleCache instance and puts six pairs of jersey numbers
and total points in the cache:

public class CacheDriver {

 public static void main(String[] args) {

 System.out.println("\nChapter 9 Caching System.");

 ExampleCache myCache = new ExampleCache(5);

 myCache.put(8, 33643); // K.Bryant
 myCache.put(14, 25192); // J.West
 myCache.put(22, 23149); // E.Baylor
 myCache.put(24, 33643); // K.Bryant
 myCache.put(32, 17707); // E.Johnson
 myCache.put(33, 24176); // K.Jabbar

Reactive Design Patterns Chapter 9

[284]

The second half of the main() method is provided next. Here, we simply print six lines,
one for each player, to the console. This output includes text and the results of the
retrieve() method calls:

 System.out.println("From Cache Driver: Jersey-> 8\tPoints-> " +
 myCache.retrieve(8));
 System.out.println("From Cache Driver: Jersey-> 14\tPoints-> " +
 myCache.retrieve(14));
 System.out.println("From Cache Driver: Jersey-> 22\tPoints-> " +
 myCache.retrieve(22));
 System.out.println("From Cache Driver: Jersey-> 24\tPoints-> " +
 myCache.retrieve(24));
 System.out.println("From Cache Driver: Jersey-> 32\tPoints-> " +
 myCache.retrieve(32));
 System.out.println("From Cache Driver: Jersey-> 33\tPoints-> " +
 myCache.retrieve(33));
 }
}

The output of our program is displayed next. As you can see, our six calls to the put()
method resulted in six output lines indicating that the jersey points pairs were added to
the cache. Next are pairs of lines initiated by the myCache.retrieve() calls in the main()
method, located in the CacheDriver class. The RETRIEVED line is generated from the
retrieve() method in the ExampleCache class and the From Cache lines are printed to
the console from within the main() method. As you can see, although we had six pairs,
only five of them were stored in the cache. This was because our cache was too small for all
the data. To make space, the cache removed the last recently used entry:

Caching design pattern implementation—console output

Reactive Design Patterns Chapter 9

[285]

This section provided the source code and the console output for our implementation of the
caching reactive design pattern.

Understanding the circuit-breaker design
pattern
The circuit-breaker design pattern is based on the same concept as an electrical circuit. As
you can see in the following diagram, when the circuit is open, the flow of electricity is
impeded and cannot flow between the two points—the power source and light bulb in our
example. When the circuit is closed, electricity is unimpeded and the light bulb can receive
power:

Circuit breaker—light-switch example

The circuit-breaker design pattern is modeled after electrical circuits. This design pattern
has three possible states:

Open: If the state is open, then an error will be returned.
Closed: This is the preferred state where functionality is permitted.
Half-Open: This state is used after an open state error and a wait period. The
function will allow one use as a test.

If the test is successful, the circuit will be closed and processing will resume. If the test fails,
then the circuit will remain open.

Reactive Design Patterns Chapter 9

[286]

Use case
Systems that have a high volume of method calls that are susceptible to failure can benefit
from using the circuit-breaker design pattern. These failures can be caused by intermittent
access, timeouts, and so on. In order to implement the circuit-breaker pattern, we encase a
method or a set of functionality in a circuit breaker. The next diagram illustrates this
approach:

Circuit breaker design pattern—overview

This design pattern can help systems achieve the resilient component of reactive design
patterns.

This section provided an overview of the circuit-breaker reactive design pattern.

Understanding the event-driven
communication design pattern
The event-driven communication design pattern is based on initiating events such as a
query or node request. This event initiates communication between multiple components.
The communications between system components can be managed as messages.

Reactive Design Patterns Chapter 9

[287]

To manage these messages, we implement a scheduler to listen to the initiating events and
then process the necessary communication via handlers. As illustrated next, the scheduler
plays a critical role in the overall communication management system, so care should be
taken to make sure it catches exceptions and processes them appropriately:

Event-drive communication design pattern implementation—overview

The handlers illustrated in the preceding diagram represent a module of code that is
generally short with respect to the amount of functionality that it provides. So, you can see
that there can be a lot of handlers in a system. Moreover, there can be a plethora of
initiating events happening at the same time. This underscores the significance of ensuring
exceptions are handled so processes do not fail.

This section provided an overview of the event-driven communication reactive design
pattern.

Understanding the fail-fast design pattern
The fail-fast reactive design pattern stipulates that if something is going to fail, let it happen
as fast as possible. The intention is not to perform any unnecessary processing because
something is going to fail. We should also be mindful of wasting user time. A scenario
would be if a user was given the opportunity to complete a survey and receive a gift card
for completing it. If the user answered the first 25 questions and then the survey indicated
the user was not eligible for the survey or the gift card, the result would be dreadful. In this
scenario, the disqualifying determination should be made much earlier.

Reactive Design Patterns Chapter 9

[288]

Programming the design pattern
Let's take a look at an example. The FailFastImplementation1 class code is provided
next in two sections. This class demonstrates the use of Iterator to catch an exception.
The first section of our code consists of the import statements and the start of the main()
method. The main() method starts by printing a blank line and then creates a HashMap of
first and last names. Four key-value pairs are added using the put() method:

package CH9FailFast;
import java.util.ConcurrentModificationException;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;

public class FailFastImplementation1 {

 public static void main(String[] args) throws
ConcurrentModificationException {

 System.out.println();

 Map<String, String> firstLast = new HashMap<String, String>();
 firstLast.put("Kay", "Brentwood");
 firstLast.put("Daisy", "Jinsen");
 firstLast.put("Frank", "Corsack");
 firstLast.put("Hugo", "Trapleton");

The next section of code completes the main() method and the
FailFastImplementation1 class. Here, we create an Iterator instance and then use a
while loop, checking to see whether the iterator has a next element using the hasNext()
method. Inside the while loop, we use a try-catch block to catch the
ConcrrentModificationException error:

 Iterator iterator = firstLast.keySet().iterator();

 while (iterator.hasNext()) {

 try {
 System.out.println(firstLast.get(iterator.next()));
 } catch (ConcurrentModificationException e) {
 System.out.println("Encountered Exception: Failing Fast!");
 return;
 }
 }
 }
}

Reactive Design Patterns Chapter 9

[289]

The program's output is provided next. No exceptions were found and the program did not
fail-fast or even fail at all:

Fail-fast design pattern implementation—console output without failure

In the next section, we will modify our FailFastImplementation1 program and
introduce an event that will cause the program to fail. We will use a
FailFastImplementation2 class to demonstrate this failure.

Introducing a fail event
Our FailFastImplementation2 class is similar to our FailFastImplementation1 class
from the previous section. We start with the import statements, the class definition and, the
main() method definition, and then output a blank line to the console. Here is that code:

package CH9FailFast;

import java.util.ConcurrentModificationException;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;

public class FailFastImplementation2 {

 public static void main(String[] args) throws
ConcurrentModificationException {
 System.out.println();

 Map<String, String> firstLast = new HashMap<String, String>();
 firstLast.put("Kay", "Brentwood");
 firstLast.put("Daisy", "Jinsen");
 firstLast.put("Frank", "Corsack");
 firstLast.put("Hugo", "Trapleton");

Reactive Design Patterns Chapter 9

[290]

In our next section of code, we create a HashMap containing first and last names.

The Iterator class next() method performs a check on the modCount flag. This is a part
of the Iterator class. If the modCount flag was changed after the creation of the
Iterator, then the ConcurrentModificationException will be thrown. As you can see
with the modified code next, we added a firstLast.put("Ingrid", "Lithingson");
statement after the Iterator instance was created. This will throw the aforementioned
exception. Here is the rest of the FailFastImplementation2 class:

 Iterator iterator = firstLast.keySet().iterator();

 while (iterator.hasNext()) {

 try {
 System.out.println(firstLast.get(iterator.next()));
 } catch (ConcurrentModificationException e) {
 System.out.println("Encountered Exception: Failing
Fast!");
 return;
 }
 firstLast.put("Ingrid", "Lithingson");
 }
 }
}

As you can see from the next screenshot, the fail-fast output was provided quickly:

Fail-fast design pattern implementation—console output with failure

This section provided the source code and the console output for our implementation of the
fail-fast reactive design pattern.

Reactive Design Patterns Chapter 9

[291]

Understanding the failure-handling design
pattern
When we consider the resilient characteristic of reactive systems, systems and component
failures are of utmost concern. It is important to handle these failures in a manner that we
determine, which suggests we need to take a purposeful approach to failure-handling. This
design pattern has two major components:

Failure isolation
Controlled failure

We will look at each of these components next.

Failure isolation
Isolating failure is ensuring that one component's failure does not impact other
components. As an example, assume that you are developing an information system for an
auto dealer. There are a lot of departments and functions used by the auto dealer and they
hope to have their system operational as close to 100% of the time as possible.

Consider the following diagram. There are several components that rely on others. For
example, the Parts Procurement service cannot be used if the Payment Gateway is down,
nor can Service Orders be processed. If the Parts Procurement and Service Orders services
were not reliant on the Payment Gateway, they could still be used by the auto dealer.
When the Payment Gateway is down, jobs will be queued from the Parts Procurement and
Service Order services. Once the Payment Gateway is back online, these jobs will be
processed:

Failure-handling—poor isolation example

Reactive Design Patterns Chapter 9

[292]

In the next section, we will continue the auto dealer scenario and focus on controlled
failure.

Controlled failure
The next diagram shows a change to our auto dealer information system architecture. We
moved the Payment Gateway API to be subordinate to Parts Procurement and Service
Orders components, which are now labeled Local Services. Both of those services are no
longer halted when the Payment Gateway is offline:

Failure-handling—good isolation example

Now that our structure is aligned for better isolation, we can control the failure. We will
demonstrate this in a single ControlledFailure class. That class is provided next in three
sections. The first section contains the checkStatus() method. This method checks to see
whether a status is currently online. A divide-by-zero error is introduced to simulate a
system being offline:

package CH9FailureHandling;

public class ControlledFailure {

 static int checkStatus(String component, int port){

 System.out.println("\n\tChecking status of : " + component);
 // artificial introduction of divide by zero error
 int result = (port / 0);

 return result;
 }

Reactive Design Patterns Chapter 9

[293]

The second section of the ControlledFailure class contains the
processServiceOrder() method. This method would be used as part of service order
processing. Before submitting the information to the payment gateway, we can check to see
whether it is offline. This will allow us to gracefully handle the error instead of the user
receiving a harsh runtime error directly from JVM:

static int processServiceOrder(String process, int serviceOrderNbr) {

 int gatewayStatus = 0;

 try
 {
 gatewayStatus = checkStatus(process, serviceOrderNbr);
 }
 catch(NumberFormatException ex)
 {
 System.out.println("Error detected: " + ex.getMessage());
 }
 return gatewayStatus;
}

The final section of the ControlledFailure class contains the main() method, which
includes a try-catch block to catch and handle exceptions:

 public static void main(String args[]){
 String processToCheck = "Payment Gateway";
 int serviceOrderNumber = 319;

 try
 {
 System.out.println("\nService order processing . . . ");
 int serviceOrder = processServiceOrder(processToCheck,
serviceOrderNumber);

 }
 catch(ArithmeticException ex)
 {
 System.out.println("\n\tPayment Gateway is offline. Your orders
" +
 "\n\twill be automatically processed via batch "+
 "\n\twhen the gateway is back online.");

 System.out.println("\n. . . continue processing service
order.");
 }
 }
}

Reactive Design Patterns Chapter 9

[294]

Here is the output of our program. You can see that we inform the user that their service
order is being processed and, when we receive an error, we provide information to the
user. At that point, they can continue using the system despite the payment gateway's
offline status:

Failure-handling design pattern implementation—console output

This section provided the source code and the console output for our auto dealer
information system implementation of the failure-handling reactive design pattern.

Understanding the fan-out and quickest-
reply design pattern
The fan-out and quickest-reply reactive design pattern emphasizes rapid processing.
Financial software that provides real-time, or near real-time, stock information uses this
design pattern. The concept is to provide sufficient processing instances so requests can be
processed without waiting in a queue.

Reactive Design Patterns Chapter 9

[295]

To implement the fan-out and quickest-reply design pattern, we send each request to
multiple processing modules. Each of those modules would process the request and send
the results back to the requestor. The requestor would use the quickest reply, the first one
received, and simply ignore the rest:

Fan-out and quickest-reply design pattern

As you would expect, the extra processing could make it a costly use of resources, so this
approach should only be used when quick replies are of utmost importance.

This section provided an overview of the fan-out and quickest-reply design pattern.

Understanding the idempotency design
pattern
In computer science, the term idempotent means an element whose value remains
unchanged after repeated calculation. Consider the example of a hospital information
system that adds one day to the length of stay for a patient record. It would be important
that the system performs the addition the first time and ignore other requests within the
calendar day.

To provide an example of this design pattern, we will create a hospital information system
that maintains patient records. Each time an event occurs with a patient, a message is sent
to update the number of days the patient has been in the hospital. It is important that we do
not count the patient as being at the hospital more than once per day, to avoid overcharges.

Reactive Design Patterns Chapter 9

[296]

The source code for the implementation of the idempotency design pattern is provided in
the next section.

Programming the design pattern
Our hospital information system implementation of the idempotency reactive design
pattern will consist of the Patient class and the IdempotencyDriver class. The Patient
class is provided in three sections, with the first section appearing next.

In this first section of the Patient class, we define the three class variables and create the
constructor method. The constructor only has one argument and that is for the patientID
number. When a Patient instance is created, the lengthOfStay variable is set to 0 and
dayCounted is set to false:

package CH9IdempotencyExample;

public class Patient {

 String patientID;
 int lengthOfStay;
 boolean dayCounted;

 // constructor
 public Patient (String patientID) {
 this.patientID = patientID;
 this.lengthOfStay = 0;
 this.dayCounted = false;
 }

The second part of the Patient class contains the three accessor methods. These methods
are used to retrieve values of the class variable:

// accessor methods
public String getPatientID() {
 return this.patientID;
}

public int getLengthOfStay() {
 return this.lengthOfStay;
}

public boolean getDayCounted() {
 return this.dayCounted;
}

Reactive Design Patterns Chapter 9

[297]

The final section of the Patient class contains the mutator methods. The
setPatientID() and setDayCounted() mutator methods are straightforward. The
setLengthOfStay() method has a logic check to see whether the current value of the
dayCounted variable is true or false. If the day has already been counted, the value will be
true; otherwise, it will be false. If the day has not been counted, the lengthOfStay will be
incremented and the dayCounted value will be changed to true:

 // mutator methods
 public void setPatientID(String patientID) {
 this.patientID = patientID;
 }

 public void setLengthOfStay(int lengthOfStay) {

 if (this.dayCounted) {
 System.out.println("\tIdempotency Implemented: Length of Stay
already computed.");
 } else {
 this.lengthOfStay += lengthOfStay;
 this.dayCounted = true;
 }
 }

 public void setDayCounted(boolean counted) {
 this.dayCounted = counted;
 }
}

The IdempotencyDriver class is the driver class for our hospital information system. The
first section of that code is provided next and contains the main() method. That method
contains a decorative header for console output and a local tID String variable:

package CH9IdempotencyExample;

public class IdempotencyDriver {

 public static void main(String[] args) {

 System.out.println("\n =
");
 System.out.println("\t\tHOSPITAL INFORMATION SYSTEM");
 System.out.println(" =
");

 String tID = "XP330019";

Reactive Design Patterns Chapter 9

[298]

The second and final portion of the IdempotencyDriver class is provided next. There are
three sections of this code, each separated by inline comments. The first section,
Admission, creates a Patient instance and makes a call to the setLengthOfStay()
method. The second section, Lab Work, attempts to alter the lengthOfStay variable's
value. The third section, Next Day, starts by setting the dayCounted value to false. It then
makes a call to the setLengthOfStay() method:

 // Admission
 Patient patient = new Patient(tID);
 System.out.println("\nPatient " + patient.getPatientID() + "
admitted.");
 patient.setLengthOfStay(1);
 System.out.println("\tLength of stay : " +
patient.getLengthOfStay());

 // Lab Work
 System.out.println("\nPatient " + patient.getPatientID() + "
received lab work.");
 patient.setLengthOfStay(1);
 System.out.println("\tLength of stay : " +
patient.getLengthOfStay());

 // Next Day
 patient.setDayCounted(false);
 System.out.println("\nPatient " + patient.getPatientID() + "
received surgery.");
 patient.setLengthOfStay(1);
 System.out.println("\tLength of stay : " +
patient.getLengthOfStay());
 }

}

Reactive Design Patterns Chapter 9

[299]

The console output for our program is provided next. As you can see, idempotency was
implemented for the second attempt to update the patient's length of stay on their first day:

Idempotency design pattern implementation—console output

This section provided the source code and the console output for our hospital information
system implementation of the idempotency reactive design pattern.

Understanding the monitoring design
pattern
The monitoring design pattern is self-explanatory. In order to ensure our systems are
reactive, specifically resilient, we need to monitor them. Modern large-scale systems are
typically housed in a cloud-based system such as AWS, Google Compute, IBM Cloud, and
Oracle Cloud. Each of these services provides graphical dashboards and an alert system.

The alerts can be customized based on the system administrator's determination and upper
and lower thresholds for each service and system.

This section provided a brief overview of the monitoring reactive design pattern.

Reactive Design Patterns Chapter 9

[300]

Understanding the publisher-subscriber
design pattern
The publisher-subscriber design pattern establishes two entities: a publisher that sends
messages based on events and a subscriber that subscribes to those events. With this design
pattern, publishers transmit messages and subscribers listen for them and then take the
appropriate action or inaction.

As illustrated next, the Publisher publishes events. The Subscribers subscribe to the
events. Once an event is heard, the Subscriber provides the computation or processing as
appropriate for the event:

Publisher-subscriber design pattern—overview

This design pattern is event-driven and can be implemented by using the event-driven
architecture, the observer pattern, and the message broker pattern, covered in previous
chapters of this book.

This section provided a brief overview of the publisher-subscriber design pattern.

Reactive Design Patterns Chapter 9

[301]

Understanding the self-containment design
pattern
Systems that employ the self-containment reactive design pattern are not reliant on non-
system components. This design pattern can also be applied at the system component level.
In that instance, a system component would be self-contained and not rely on other system
components.

To examine the self-containment reactive design pattern, let's first consider a system
diagram depicting a lack of self-containment. As you can see from the next diagram, the
Financial Services API is the only system component with access to the Payment Gateway
and the related database. Both the New Vehicle Sales and service department sales shown
by Service Dept Sales nodes, rely on the Financial Services API for access to its sub-
components:

System in need of the self-containment design pattern

This architecture is not advised, as the reliance that the New Vehicle Sales and Service
Dept Sales components have on the Financial Services API could result in bottlenecks,
data collisions, and an interruption of service.

Next, let's examine a modified version of the same system, this time implementing the self-
containment design pattern. In the following diagram, the New Vehicle Sales and Service
Dept Sales components have direct access to the Payment Gateway and related database.
This makes them self-contained and not reliant on other system components:

Reactive Design Patterns Chapter 9

[302]

Modified system implementing the self-containment design pattern

This section provided an overview of the self-containment reactive design pattern.

Understanding the stateless design pattern
When we implement the stateless design pattern, we create classes and objects that do not
retain state changes. In this approach, each use of the object, as an example, uses the object
in its organic form. In our context, state refers to the values of the object's variables. So,
there is no definitive list of states. The state of an object is specific to a moment in time.

Implementing the stateless design pattern is appropriate for the following cases:

When we want to clone services
When the current state of an object dictates that object's behavior
When object behavior is a runtime decision and that behavior is state-dependent
When you want to process the state of an object as if it were an object

In the next section, we will review the UML class diagram for an implementation of the
stateless reactive design pattern.

Reactive Design Patterns Chapter 9

[303]

Use case
We will create a CORGI STATELESS SYSTEM as an example implementation of the stateless
reactive design pattern. Our system will comprise the following classes:

CorgiState (interface)
Corgi

CorgiAwake

CorgiEat

CorgiPlay

CorgiSit

CorgiSleep

CorgiWalk

StatelessDriver

Our system will create a Corgi instance and permit the changing of states and
demonstrating the stateless design pattern. We will prohibit changing from the Sleep state
to any state other than the Awake state.

The next section will provide a UML class diagram to detail each of these classes.

UML class diagram
Our CORGI STATELESS SYSTEM example implementation of the stateless reactive design
pattern will consist of eight classes. Those classes and their relationships are depicted in
this UML class diagram:

Reactive Design Patterns Chapter 9

[304]

UML class diagram—stateless design pattern implementation

In the next section, we will program our implementation of the stateless design pattern.

Programming the design pattern
Our CORGI STATELESS SYSTEM consists of eight classes. Our first class is the CorgiState
interface. As shown next, there are five interface methods—awake(), eat(), play(),
sleep(), and walk(). Each of these methods represents a state for instances of the Corgi
class:

package CH9Stateless;
public interface CorgiState {

 void awake();
 void eat();
 void play();
 void sit();
 void sleep();
 void walk();
}

Reactive Design Patterns Chapter 9

[305]

Our primary object class for the application is the Corgi class, which implements the
CorgiState interface. The class is provided in the next eight code sections:

The first section contains the class definition and the class variables. These class1.
variables represent the possible states a Corgi object can have:

package CH9Stateless;

public class Corgi implements CorgiState {

 // class variables
 private CorgiState corgiAwake;
 private CorgiState corgiEat;
 private CorgiState corgiPlay;
 private CorgiState corgiSleep;
 private CorgiState corgiSit;
 private CorgiState state;

The second section of the Corgi class contains the constructor method. After2.
constructor, the Awake state is set so that when a Corgi is instantiated, its
default state will be Awake:

 // constructor
 public Corgi(){
 this.corgiAwake = new CorgiAwake(this);
 this.corgiEat = new CorgiEat(this);
 this.corgiPlay = new CorgiPlay(this);
 this.corgiSleep = new CorgiSleep(this);
 this.corgiSit = new CorgiSit(this);

 this.state = corgiAwake;
 }

The third section of our Corgi class contains the first three overridden methods3.
from the CorgiState interface:

// overriding interface methods
@Override
public void awake() {
 state.awake();
 setState(getCorgiSit());
}

@Override
public void walk() {
 state.walk();
 setState(getCorgiSit());

Reactive Design Patterns Chapter 9

[306]

}

@Override
public void sit() {
 state.sit();
 setState(getCorgiSit());
}

The fourth section of our Corgi class contains the remaining three overridden4.
methods from the CorgiState interface:

@Override
public void eat() {
 state.eat();
 setState(getCorgiSit());
}

@Override
public void play() {
 state.play();
 setState(getCorgiSit());
}

@Override
public void sleep() {
 state.sleep();
}

The fifth section of the Corgi class contains the first three accessor methods for5.
the class variables:

// accessor methods
public CorgiState getCorgiAwake() {
 return corgiAwake;
}

public CorgiState getCorgiEat() {
 return corgiEat;
}

public CorgiState getCorgiPlay() {
 return corgiPlay;
}

The sixth section of the Corgi class contains the remaining accessor methods6.
for the class variables:

public CorgiState getCorgiSleep() {

Reactive Design Patterns Chapter 9

[307]

 return corgiSleep;
}

public CorgiState getState() {
 return state;
}

public CorgiState getCorgiSit() {
 return corgiSit;
}

The seventh section of the Corgi class contains the first three mutator methods7.
for the class variables:

// mutator methods
 public void setCorgiState(CorgiState state){
 this.state = state;
 }

 public void setCorgiAwake(CorgiState corgiAwake) {
 this.corgiAwake = corgiAwake;
 }

 public void setCorgiEat(CorgiState corgiEat) {
 this.corgiEat = corgiEat;
 }

The eighth and final section of the Corgi class contains the remaining mutator8.
methods for the class variables:

 public void setCorgiPlay(CorgiState corgiPlay) {
 this.corgiPlay = corgiPlay;
 }

 public void setCorgiSleep(CorgiState corgiSleep) {
 this.corgiSleep = corgiSleep;
 }

 public void setState(CorgiState state) {
 this.state = state;
 }

 public void setCorgiSit(CorgiState corgiSit) {
 this.corgiSit = corgiSit;
 }
}

Reactive Design Patterns Chapter 9

[308]

Now that our CorgiState interface and Corgi class have been completed, we need a class
for each of the four states (awake, eat, play, sleep, and sit). We will also need a Driver
class. All of these six classes are provided next.

Our next class is the CorgiAwake class and is provided in the following two sections. The
class implements the CorgiState interface and provides for the concrete state of
CorgiAwake. The section that follows contains the constructor method and the first
three overridden methods for the CorgiState interface:

package CH9Stateless;

public class CorgiAwake implements CorgiState{

 private final Corgi corgi;

 public CorgiAwake(Corgi corgi) {
 this.corgi = corgi;
 }

 @Override
 public void awake() {
 System.out.println("The Corgi is AWAKE.");
 }

 @Override
 public void walk() {
 System.out.println("The Corgi is WALKING.");
 }

 @Override
 public void sit() {
 System.out.println("The Corgi is SITTING.");
 }

The second half of the CorgiAwake class is provided next and contains the remaining
overridden methods from the CorgiState interface:

 @Override
 public void eat() {
 System.out.println("The Corgi is EATING.");
 corgi.setCorgiState(corgi.getCorgiEat());
 }

 @Override
 public void play() {
 System.out.println("The Corgi is PLAYING.");
 corgi.setCorgiState(corgi.getCorgiPlay());

Reactive Design Patterns Chapter 9

[309]

 }

 @Override
 public void sleep() {
 corgi.setState(corgi.getCorgiSleep());
 System.out.println("The Corgi is SLEEPING.");
 }
}

Our next class is the CorgiEat class and is provided next in two sections. The class
implements the CorgiState interface and provides for the concrete state of CorgiEat. The
next section contains the constructor method and the first three overridden methods for the
CorgiState interface:

package CH9Stateless;

public class CorgiEat implements CorgiState{

 private final Corgi corgi;

 public CorgiEat(Corgi corgi){
 this.corgi = corgi;
 }

 @Override
 public void awake() {
 System.out.println("The Corgi is AWAKE.");
 }

 @Override
 public void walk() {
 System.out.println("The Corgi is WALKING.");
 }

 @Override
 public void sit() {
 System.out.println("The Corgi is SITTING.");
 }

The second half of the CorgiEat class is provided next and contains the remaining
overridden methods from the CorgiState interface:

 @Override
 public void eat() {
 System.out.println("The Corgi is EATING");
 corgi.setCorgiState(corgi.getCorgiSleep());
 }

Reactive Design Patterns Chapter 9

[310]

 @Override
 public void play() {
 System.out.println("The Corgi is PLAYING");
 }

 @Override
 public void sleep() {
 System.out.println("The Corgi is SLEEPING.");
 }
}

Our next class is the CorgiPlay class and is provided next in two sections. The class
implements the CorgiState interface and provides for the concrete state of CorgiPlay.
The following section contains the constructor method and the first three overridden
methods for the CorgiState interface:

package CH9Stateless;

public class CorgiPlay implements CorgiState {

 private final Corgi corgi;

 public CorgiPlay(Corgi corgi){
 this.corgi = corgi;
 }

 @Override
 public void awake() {
 System.out.println("The Corgi is AWAKE.");
 }
 @Override
 public void walk() {
 System.out.println("The Corgi is WALKING.");
 }

 @Override
 public void sit() {
 System.out.println("The Corgi is SITTING.");
 }

The second half of the CorgiPlay class is provided next and contains the remaining
overridden methods from the CorgiState interface:

@Override
 public void eat() {
 System.out.println("The Corgi is EATING.");
 corgi.setCorgiState(corgi.getCorgiSleep());

Reactive Design Patterns Chapter 9

[311]

 }

 @Override
 public void play() {
 System.out.println("The Corgi is PLAYING.");
 }

 @Override
 public void sit() {
 System.out.println("The Corgi is SITTING and waiting for action...");
 }

 @Override
 public void sleep() {
 System.out.println("The Corgi is SLEEPING.");
 }
}

Our next class is the CorgiSleep class and is provided in the next two sections. The class
implements the CorgiState interface and provides for the concrete state of CorgiSleep.
The next section contains the constructor method and the first two overridden methods for
the CorgiState interface:

package CH9Stateless;

public class CorgiSleep implements CorgiState{

 private final Corgi corgi;

 public CorgiSleep(Corgi corgi){
 this.corgi = corgi;
 }

 @Override
 public void awake() {
 System.out.println("The Corgi is AWAKE.");
 }

 @Override
 public void walk() {
 System.out.println("The Corgi cannot WALK when it is SLEEPING.");
 }
 @Override
 public void sit() {
 System.out.println("The Corgi is SITTING.");
 }

Reactive Design Patterns Chapter 9

[312]

The second half of the CorgiSleep class is provided next and contains the remaining
overridden methods from the CorgiState interface:

 @Override
 public void eat() {
 System.out.println("The Corgi cannot EAT when it is SLEEPING.");
 corgi.setCorgiState(corgi.getCorgiSleep());
 }

 @Override
 public void play() {
 System.out.println("The Corgi cannot PLAY when it is SLEEPING.");
 }

 @Override
 public void sleep() {
 System.out.println("The Corgi is SLEEPING.");
 }
}

Our next class is the CorgiSit class and is provided in the following two snippets. The
class implements the CorgiState interface and provides for the concrete state of
CorgiSit. The next section contains the constructor method and the first two overridden
methods for the CorgiState interface:

package CH9Stateless;
public class CorgiSit implements CorgiState{

 private final Corgi corgi;

 public CorgiSit(Corgi corgi){
 this.corgi = corgi;
 }

 @Override
 public void awake() {
 System.out.println("\tThe Corgi is now AWAKE.");
 corgi.setState(corgi.getCorgiAwake());
 }

 @Override
 public void walk() {
 System.out.println("The Corgi is SITTING and waiting for
action...");
 corgi.setState(corgi.getCorgiAwake());
 System.out.println("\tThe Corgi is now WALKING");
 }

Reactive Design Patterns Chapter 9

[313]

The second half of the CorgiSit class is provided next and contains the remaining
overridden methods from the CorgiState interface:

 @Override
 public void eat() {
 System.out.println("The Corgi is SITTING and waiting for
action...");
 corgi.setCorgiState(corgi.getCorgiEat());
 System.out.println("\tThe Corgi is now EATING.");
 }

 @Override
 public void play() {
 System.out.println("The Corgi is SITTING and waiting for
action...");
 corgi.setCorgiState(corgi.getCorgiPlay());
 System.out.println("\tThe Corgi is now PLAYING.");
 }

 @Override
 public void sleep() {
 System.out.println("Shhh; the Corgi is sleeping.");
 corgi.setState(corgi.getCorgiSleep());
 System.out.println("\tThe Corgi is now SLEEPING.");
 }
}

Our next class is the CorgiWalk class and is provided in the following two sections. The
class implements the CorgiState interface and provides for the concrete state of
CorgiWalk. The next section contains the constructor method and the first three
overridden methods for the CorgiState interface:

package CH9Stateless;

public class CorgiWalk implements CorgiState {

 private final Corgi corgi;

 public CorgiWalk(Corgi corgi){
 this.corgi = corgi;
 }

 @Override
 public void awake() {
 System.out.println("The Corgi is AWAKE.");
 }

Reactive Design Patterns Chapter 9

[314]

 @Override
 public void walk() {
 System.out.println("The Corgi is WALKING.");
 }

 @Override
 public void sit() {
 System.out.println("The Corgi is SITTING.");
 }

The second half of the CorgiWalk class is provided next and contains the remaining
overridden methods from the CorgiState interface:

 @Override
 public void eat() {
 System.out.println("The Corgi is EATING.");
 corgi.setCorgiState(corgi.getCorgiSleep());
 }

 @Override
 public void play() {
 System.out.println("The Corgi is PLAYING.");
 }

 @Override
 public void sleep() {
 System.out.println("The Corgi is SLEEPING.");
 }
}

Our last class for the CORGI STATELESS SYSTEM implementation of the stateless design
pattern is the StatelessDriver class. This class contains the main() method and drives
the application:

package CH9Stateless;

public class StatelessDriver {

 public static void main(String[] args) {

 System.out.println("\n = = = = = = = = = = = = = = =");
 System.out.println("\tCORGI STATELESS SYSTEM");
 System.out.println(" = = = = = = = = = = = = = = =\n");

 Corgi corgi = new Corgi();

 corgi.awake();
 corgi.walk();

Reactive Design Patterns Chapter 9

[315]

 corgi.play();
 corgi.eat();
 corgi.walk();
 corgi.sleep();

 corgi.play();
 corgi.sleep();
 corgi.eat();
 }
}

The output of our application is as follows. As you can see, we did not permit any action
from the sleep state other than AWAKE:

Stateless design pattern implementation—console output

This section provided the source code and the console output for our CORGI STATELESS
SYSTEM implementation of the stateless reactive design pattern.

Reactive Design Patterns Chapter 9

[316]

Summary
In this chapter, we explored the reactive design pattern category and its individual design
patterns of asynchronous communication, autoscaling, bounded queue, bulkhead, caching,
circuit breaker, event-driven communication, fail-fast, failure-handling, fan-out, quickest
reply, idempotency, monitoring, publisher-subscriber, self-containment, and stateless. We
also reviewed use cases for the design patterns and how they can contribute to well-
designed and-developed systems that are reactive to internal and external changes.

You now have the necessary knowledge of the Universal Modeling Language (UML),
Object-Oriented Programming (OOP), and over 60 design patterns to enhance your
software design and development capabilities.

The design patterns in this book are not time-bound and will remain valid for several
decades to come.

Questions
What are the main purposes of reactive design patterns?1.
What are the four characteristics of reactive design patterns?2.
Which design pattern allows the client to send multiple request messages to the3.
server and not dedicate processing resources and anticipate a response message
from the server?
What are the two types of autoscaling relevant to the autoscaling design pattern?4.
What type of queues have a fixed number of elements ?5.
Which design pattern uses open, closed, and half-open states?6.
Which design pattern includes failure isolation?7.
Which design pattern includes elements whose value remains unchanged after8.
repeated calculation?
Which design pattern is event-based and relies on subscribers?9.
Which design pattern employs self-sufficiency?10.

Reactive Design Patterns Chapter 9

[317]

Further reading
Java EE 8 Design Patterns and Best Practices (https:/ /www. packtpub. com/
application- development/ java- ee- 8-design- patterns- and- best- practices)
Learning Design Patterns with Java [Video] (https:/ / www.packtpub. com/
application- development/ learn- design- patterns- java- video)
Design Patterns and Best Practices in Java (https:/ /www. packtpub. com/
application- development/ design- patterns- and- best- practices- java)
What is the Reactive Manifesto? (https:/ /hub. packtpub. com/ what- is-the-
reactive- manifesto/)

https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/java-ee-8-design-patterns-and-best-practices
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/learn-design-patterns-java-video
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://www.packtpub.com/application-development/design-patterns-and-best-practices-java
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/
https://hub.packtpub.com/what-is-the-reactive-manifesto/

Assessments

Chapter 1
Behavioral and structural1.
UML was originally created to visually document object-oriented systems2.
Activity diagram, interaction diagram, state machine diagram, and use-case3.
diagram
Activity diagrams illustrate the flow of processes in a system4.
Use-case diagrams document the interactions between users and the system5.
Actors are a system's users6.
Structural diagrams illustrate components of a system7.
Class diagram8.
The composite structure UML diagram shows the runtime structure of a system9.
The deployment diagram provides a visual representation of a system's10.
hardware and software

Chapter 2
Portability, inheritance, encapsulation, and polymorphism1.
The class structure lends itself well to portability2.
Encapsulation3.
In OOP, polymorphism states that different types of objects can be accessed via a4.
common interface
In Java, we can use the this keyword as a reference to the current object5.
Accessor methods are those that allow an object's data to be accessed6.
Mutator methods allow the object's instance variables to be changed7.
Constructors are a special kind of method that are run when an object is8.
initialized
Their definition has a unique set of parameters9.
Left to right10.

Assessments

[319]

Chapter 3
Memento design pattern1.
Behavioral design patterns2.
The purpose of the dependency is to update subscriber objects when a change is3.
made to the publisher object's state
State design pattern4.
Strategy design pattern5.
Template method design pattern6.
Chain of Responsibility design pattern7.
Transaction or action design pattern8.
The interpreter design pattern is used to establish a grammatical representation9.
and an interpreter that interprets language
The Iterator interface10.

Chapter 4
The purposes of creational design patterns are as follows:1.

Separate object creation from the system
Support reliance on object creation vice inheritance
Encapsulate information regarding which classes are used by a system
Protect object creation details

Abstract factory, builder, factory method, prototype, simple factory, and2.
singleton
Object scope and class scope3.
In Java, abstract classes cannot be instantiated, but they can be inherited4.
Abstract factory design pattern5.
Builder design pattern6.
Factory method design pattern7.
Prototype design pattern8.
Simple factory design pattern9.
Singleton design pattern10.

Assessments

[320]

Chapter 5
How objects and classes are combined to form a system1.
Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Proxy2.
Adapter design pattern3.
Structural class design pattern4.
Adapter design pattern5.
Composite design pattern6.
Decorator design pattern7.
Facade design pattern8.
Flyweight design pattern9.
Proxy design pattern10.

Chapter 6
Architectural patterns take a holistic view of systems and group components1.
A non-prescriptive approach is taken for visually documenting architectural2.
patterns
Blackboard pattern3.
Broker pattern4.
Client-server pattern5.
Event-driven pattern6.
Extract-transform-load pattern7.
Layered pattern8.
Master-slave pattern9.
Microkernel pattern10.

Assessments

[321]

Chapter 7
Modularity, processing efficiency, and maintainable code1.
By splitting up both the processing and the storage between multiple servers2.
Microservices pattern3.
Model-view-controller pattern4.
Naked objects pattern5.
Peer-to-peer pattern6.
Pipe-filter pattern7.
Serverless pattern8.
Service-oriented pattern9.
Space-based pattern10.

Chapter 8
Functional rules:1.

They do not mutate any data
They provide consistent results, given the same set of arguments
They exist to provide a return value

Execute Around, Lambda, Loan, MapReduce, Memorization, Streams, Tail Call2.
Mathematical functions3.
Execute around4.
Lambda5.
Loan6.
MapReduce7.
Memoization8.
Streams9.
Tail call10.

Assessments

[322]

Chapter 9
The purpose of reactive design patterns is to provide system architects,1.
engineers, and developers with the ability to create systems that are, at their core,
responsive and scalable
Responsive, resilient, elastic, and message-driven2.
Asynchronous communication design pattern3.
Vertical scaling and horizontal scaling4.
Bounded queues5.
Circuit-breaker design pattern6.
Failure-handling design pattern7.
Idempotency design pattern8.
Publisher–subscriber design pattern9.
Self-containment design pattern10.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Java 11 Cookbook - Second Edition
Nick Samoylov , Mohamed Sanaulla

ISBN: 9781789132359

Set up JDK and understand what's new in the JDK 11 installation
Implement object-oriented designs using classes and interfaces
Manage operating system processes
Create a modular application with clear dependencies
Build graphical user interfaces using JavaFX
Use the new HTTP Client API
Explore the new diagnostic features in Java 11
Discover how to use the new JShell REPL tool

https://www.packtpub.com/application-development/java-11-cookbook-second-edition

Other Books You May Enjoy

[324]

Mastering Java 11 - Second Edition
Dr. Edward Lavieri

ISBN: 9781789137613

Write modular Java applications
Migrate existing Java applications to modular ones
Understand how the default G1 garbage collector works
Leverage the possibilities provided by the newly introduced Java Shell
Performance test your application effectively with the JVM harness
Learn how Java supports the HTTP 2.0 standard
Find out how to use the new Process API
Explore the additional enhancements and features of Java 9, 10, and 11

https://www.packtpub.com/application-development/mastering-java-11-second-edition

Other Books You May Enjoy

[325]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
abstract factory design pattern
 about 102, 104
 Abstract Factory class 107
 driver class 111
 interfaces 106
 programming 106
 type-C classes 110
 typeA classes 107
 typeB classes 108
 UML class diagram 104
 use case 104
abstraction
 about 142
 example, implementing 143
activity diagrams 9
adapter design pattern
 about 138
 programming 140, 142
 UML class diagram 139
 use case 139
Amazon Web Services (AWS) 275
approaches, OOP
 accessors 30
 constructors 31
 constructors, overloading 32, 34
 driver class 31
 method call chaining process 35, 36
 methods, overloading 32, 34
 mutators 30
architectural patterns 178
asynchronous communication design pattern
 about 266
 implementing 267, 268, 269, 270, 272
autoscaling design pattern
 about 272, 273

 horizontal scaling 274
 implementing 275
 vertical scaling 275

B
Backend as a Service (BaaS) 221, 224
behavioral design patterns
 about 51
 chain of responsibility pattern 51, 52
 command pattern 52, 61
 interpreter pattern 52, 65
 iterator pattern 52
 iterator pattern, using 71
 mediator pattern 52, 74
 memento pattern 52
 memento pattern, examining 85
 null object pattern 52
 null object pattern, using 88
 observer pattern 52
 observer pattern, observing 91
 state pattern 52, 93
 strategy pattern 97
 template method pattern 98
 visitor pattern 98
behavioral UML diagrams
 about 8
 activity diagrams 9
 interaction diagrams 10, 11
 state machine diagrams 13
 use case diagrams 14, 15
benefits, OOP
 encapsulation 25
 polymorphism 25, 27
 portability 23
blackboard pattern
 about 178, 180
 coffee shop automation example 178

[327]

 warehouse security bot example 181
book model-view-controller example

implementation, MVC pattern
 about 210
 Book class 210
 BookController class 211
 BookView class 211
 MVCArchitecturalPattern class 213
bounded queue design pattern 275
Bridge 183
bridge design pattern
 abstraction 142
 abstraction example, implementing 143, 145
 crossing 142
 programming 147, 149, 150
 UML class diagram 146
 use case 146
broker pattern
 about 182
 luxury cruise reservation system example 184
 university enterprise information system example

183

builder design pattern
 builder classes 116, 117, 119
 Builder interface 115
 Director class 119
 driver class 119
 programming 114
 roaster class 115
 UML class diagram 114
 use case 113
 used, for building objects 113
bulkhead design pattern 278, 279
business application layers example 195

C
caching design pattern
 about 280
 implementing, in Java 281, 282, 284
chain of responsibility pattern
 academic email handler, using 57
 admin email handler 60
 AlumnicEmailHandler class 58
 email handler, advising 58
 finance email handler 59

 HR email handler 59
 MainEmailHandler(), using 55
 programming 54
 UML class diagram 54
 University email handler interface, using 55
 use case 53
circuit-breaker design pattern
 about 285
 use case 286
class diagrams 16
client-server pattern
 about 185
 coffee shop example 185
 three-tier example 186
cloud storage example 199
coffee shop automation example 178, 179, 180
coffee shop example 185
command pattern
 accessor methods 63
 class variables 63
 constructor 63
 exploring 61
 power-related methods 64
 programming 62
 slider-related methods 64
 UML class diagram 62
 use case 61
communication diagrams 12
component diagrams 17
composite design pattern
 programming 152, 155, 156, 158, 160
 UML class diagram 151, 157
 use case 151
 used, for combining objects 151
composite structure diagrams 17, 18
construction quote example 201
creational design patterns 102

D
decorator design pattern
 about 156
 use case 157
deployment diagrams 18
design pattern principles
 about 37

[328]

 concise objects, creating 37
 encapsulation 37
 inheritance 38, 39

E
event-driven architectural pattern
 about 187
 broker form 187, 188
 mediator form 188
event-driven communication design pattern 286,

287

execute around design pattern
 about 232
 implementation 232
extract-transform-load pattern
 about 189
 data, transforming 190
 extract 190
 loading process 191

F
facade design pattern
 implementing 160
 programming 162, 165
 UML class diagram 162
 use case 161
factory design pattern
 examining 129
 programming 131, 132
 UML class diagram 130
 use case 130
factory method design pattern
 exploring 121
 programming 122, 123, 124, 126, 127, 129
 UML class diagram 121, 125
 use case 121, 125
 using 124
fail-fast design pattern
 about 287
 fail event 290
 programming 288, 289
failure-handling design pattern
 about 291
 controlled failure 292, 294
 failure isolation 291

fan-out design pattern 294
flyweight design pattern
 programming 167, 170
 soaring with 166
 UML class diagram 166
 use case 166
fork 9
functional design patterns 231
Functions as a Service (FaaS) 222, 225

G
Graphical User Interface (GUI) 157

H
Heads Up Display (HUD) 157
horizontal scaling 274

I
idempotency design pattern
 about 295
 programming 296, 297, 298
Infrastructure as a Service (IaaS) 221, 222, 272
interaction diagrams
 about 10, 11
 communication diagrams 12
 sequence diagrams 11
 timing diagrams 12
International Standards Organization (ISO) 193
interpreter pattern
 Conversion class 68
 Expression interface 67
 InterpreterDriver class 69, 71
 MapIntToCharacters class 67
 programming 66
 UML class diagram 66
 use case 65
 using 65
ISO OSI seven-layer model
 reference 193
iterator pattern
 programming 72
 UML class diagram 72
 use case 71
 using 71

[329]

J
Java
 caching design pattern, implementing 281, 282,

284

L
lambda design pattern
 about 233
 lambda, implementing with multiple parameters

236, 238
 lambda, implementing with single parameter 234
 sections 233
layered pattern
 about 192, 193
 business application layers example 195
 mobile operating system layers example 194
 traditional operating system layers example 194
Learning Management System (LMS) 142
loan design pattern
 about 239
 file processing implementation 239, 241, 243
luxury cruise reservation system example 184

M
MapReduce design pattern
 about 243
 Input-Map-Combiner-Reduce-Output form 249
 Input-Map-Output form 244, 245
 Input-Map-Reduce-Output form 245, 246, 247
 Input-Multiple Maps-Reduce-Output form 248,

249

master–slave architectural pattern
 about 196
 cloud storage example 199
 single client example 198
mediator pattern
 about 74
 AssemblySystem class 77
 EmergencyBreak class 80
 Hopper class 78
 programming 76
 starter class 76
 SystemAccelerator class 79
 UML class diagram 75

 use case 74
 WidgetProductionSystem class 82, 84, 85
memento pattern
 programming 86
 UML class diagram 86
 use case 85
memoization design pattern 250, 252, 254
microkernel architectural pattern
 about 200
 adapters 201
 construction quote example 201
 external plug-ins 201
 internal plug-ins 201
 microkernel 200
 one or more clients 200
 optical disc player example 202
microservices pattern
 about 206
 eCommerce example implementation 208
 logistics example 207
 Mobile Interface 207
 Web Interface 207
Microsoft Intermediate Language (MSIL) 65
Mobile Backend as a Service (MBaaS) 221, 224
mobile operating system layers example 194
model-view-controller pattern (MVC)
 about 209, 210
 book model-view-controller example

implementation 210
 Controller 209
monitoring design pattern 299

N
naked object pattern
 about 214, 215
 Apache Isis, reference 215
 Naked Objects, reference 215
null object pattern
 programming 89
 UML class diagram 89
 use case 88
 using 88

[330]

O
object diagrams 19
Object-Oriented Programming (OOP)
 about 23
 approaches 29
 benefits 23
 inheritance 24
 instance variables 29
 sample class 27, 28
 this reference 29
observer pattern
 observing 91
 programming 92, 93
 UML class diagram 91
 use case 91
observers 91
OOP class
 exploring 41, 42, 44, 46
Open Systems Interconnection (OSI) 193
optical disc player example 202

P
package diagrams 20
peer-to-peer pattern (P2P)
 about 215
 benefits 215
 disadvantage 215
 file sharing example implementation 216
 networking example implementation 217
pipe-filter pattern
 about 218
 complex transformation example implementation

220

 networking example implementation 219
 simple transformation example implementation

219

Platform as a Service (PaaS) 221, 223
proxy design pattern
 implementing 170
 programming 172, 173
 UML class diagram 171
 use case 171
publisher-subscriber design pattern 300

Q
quickest-reply reactive design pattern 294

R
reactive design patterns
 about 263
 elastic 264
 message-driven 265
 resilient 264
 responsive 264

S
self-containment design pattern 301
sequence diagrams 11
serverless pattern
 about 221
 BaaS implementation 224
 FaaS implementation 225
 IaaS implementation 222
 implementing, benefits 222
 MBaaS implementation 224
 SaaS implementation 223
Service-Oriented Architecture (SOA) 225
service-oriented pattern 225, 226
single client example 198
singleton design pattern
 implementing 133
 programming 134, 135
 UML class diagram 133
 use case 133
Software as a Service (SaaS) 221, 223
space-based pattern 227
state machine diagrams 13
state pattern
 about 93
 application output 97
 Driver class 96
 Printer class 95
 PrinterController class 96
 PrinterOffLine class 95
 PrinterOnLine class 94
 programming 94
 UML class diagram 93
 use case 93

stateless design pattern
 about 302
 programming 304, 306, 307, 309, 311, 312,

313, 315
 UML class diagram 303
 use case 303
strategy pattern
 UML class diagram 97
 used, for strategizing 97
streams design pattern
 about 254
 programming 256
 stream intermediate operations 255
 stream terminal operations 256
structural design patterns
 class design patterns 138
 object design patterns 138
structural UML diagrams
 about 15
 class diagrams 16
 component diagrams 17
 composite structure diagrams 17, 18
 deployment diagrams 18
 object diagrams 19
 package diagrams 20

T

tail call design pattern
 about 257
 programming 257, 260
Tail Call Optimization (TCO) 257
template method pattern 98
three-tier example 186
timing diagrams 12
traditional operating system layers example 194

U
Unified Modeling Language (UML) 7, 8
university enterprise information system example

183

use case diagrams 14, 15

V
vertical scaling 275
visitor pattern 98

W
warehouse security bot example, components
 Ballistics 181
 Intruder Identification 181
 Navigation 181
warehouse security bot example
 about 181
 responsibilities 181
Web Interface 226

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Introducing Design Patterns
	Chapter 1: Unified Modeling Language Primer
	Technical requirements
	Introducing UML
	Understanding behavioral UML diagrams
	Activity diagrams
	Interaction diagrams
	Sequence diagrams
	Communication diagrams
	Timing diagrams

	State machine diagrams
	Use case diagrams

	Understanding structural UML diagrams
	Class diagrams
	Component diagrams
	Composite structure diagrams
	Deployment diagrams
	Object diagrams
	Package diagrams

	Summary
	Questions
	Further reading

	Chapter 2: Object-Oriented Design Patterns
	Technical requirements
	Introduction to object-oriented programming
	Primary benefits of OOP
	Portability
	Inheritance
	Encapsulation
	Polymorphism

	Sample OOP class
	Instance variables
	The this reference

	Object-oriented programming approaches
	Accessors and mutators
	Driver class
	Constructors
	Overloading constructors and methods
	Method call chaining

	Principles of design patterns
	Creating concise objects
	Encapsulating to protect
	Being purposeful with inheritance

	Learning the complete OOP class
	Summary
	Questions
	Further reading

	Section 2: Original Design Patterns
	Chapter 3: Behavioral Design Patterns
	Technical requirements
	Introducing behavioral design patterns
	Understanding the chain of responsibility pattern
	Use case
	UML class diagram
	Programming the design pattern
	University email handler interface
	Main email handler
	Academic email handler
	Alumni email handler
	Advising email handler
	Finance email handler
	HR email handler
	Admin email handler

	Exploring the command pattern
	Use case
	UML class diagram
	Programming the design pattern
	Class variables
	Constructor
	Accessor methods
	Power-related methods
	Slider-related methods

	Using the interpreter pattern
	Use case
	UML class diagram
	Programming the design pattern
	The Expression interface
	The MapIntToCharacters class
	The Conversion class
	InterpreterDriver class

	Using the iterator pattern
	Use case
	UML class diagram
	Programming the design pattern

	Understanding the mediator pattern
	Use case
	UML class diagram
	Programming the design pattern
	Starter
	AssemblySystem
	Hopper
	The SystemAccelerator class
	EmergencyBreak
	WidgetProductionSystem

	Examining the memento pattern
	Use case
	UML class diagram
	Programming the design pattern

	Using the null object pattern
	Use case
	UML class diagram
	Programming the design pattern

	Observing the observer pattern
	Use case
	UML class diagram
	Programming the design pattern

	Understanding the state pattern
	Use case
	UML class diagram
	Programming the design pattern
	PrinterOnLine
	PrinterOffLine
	Printer
	PrinterController
	Driver
	Application output

	Strategizing with the strategy pattern
	UML class diagram

	Understanding the template method pattern
	Understanding the visitor pattern
	Summary
	Questions
	Further reading

	Chapter 4: Creational Design Patterns
	Technical requirements
	Introducing creational design patterns
	Understanding the abstract factory design pattern
	Use case
	UML class diagram
	Programming the design pattern
	Interfaces
	Abstract Factory class
	TypeA classes
	TypeB classes
	Type-C classes
	Driver class

	Building with the builder design pattern
	Use case
	UML class diagram
	Programming the design pattern
	Roaster class
	Interface
	Builder classes
	Director class
	Driver class

	Exploring the factory method design pattern
	Use case
	UML class diagram
	Programming the design pattern

	Using the prototype design pattern
	Use case
	UML class diagram
	Programming the design pattern

	Examining the simple factory design pattern
	Use case
	UML class diagram
	Programming the design pattern

	Implementing the singleton design pattern
	Use case
	UML class diagram
	Programming the design pattern

	Summary
	Questions
	Further reading

	Chapter 5: Structural Design Patterns
	Technical requirements
	Introduction to structural design patterns
	Understanding the adapter design pattern
	Use case
	UML class diagram
	Programming the design pattern

	Crossing the bridge design pattern
	Learning about abstraction
	Implementing the abstraction example

	Use case
	UML class diagram
	Programming the design pattern

	Combining objects with the composite design pattern
	Use case
	UML class diagram
	Programming the design pattern

	Understanding the decorator design pattern
	Use case
	UML class diagram
	Programming the design pattern

	Implementing the facade design pattern
	Use case
	UML class diagram
	Programming the design pattern

	Soaring with the flyweight design pattern
	Use case
	UML class diagram
	Programming the design pattern

	Implementing the proxy design pattern
	Use case
	UML class diagram
	Programming the design pattern

	Summary
	Questions
	Further reading

	Section 3: New Design Patterns
	Chapter 6: Architectural Patterns - Part I
	Introducing architectural patterns
	Understanding the blackboard pattern
	Coffee shop automation example
	Warehouse security bot example

	Understanding the broker pattern
	University enterprise information system example
	Luxury cruise reservation system example

	Understanding the client-server pattern
	Coffee shop example
	Three-tier example

	Understanding the event-driven pattern
	Event-driven architectural pattern – broker
	Event-driven architectural pattern – mediator

	Understanding the extract-transform-load pattern
	Extract
	Transform
	Load

	Understanding the layered pattern
	Traditional operating system layers example
	Mobile operating system layers example
	Business application layers example

	Understanding the master–slave pattern
	Single client example
	Cloud storage example

	Understanding the microkernel pattern
	Construction quote example
	Optical disc player example

	Summary
	Questions
	Further reading

	Chapter 7: Architectural Patterns - Part II
	Technical requirements
	Understanding the microservices pattern
	Logistics example
	eCommerce example implementation

	Understanding the model-view-controller pattern
	Book model-view-controller example implementation
	Book class
	BookView class
	The BookController class
	The MVCArchitecturalPattern class

	Understanding the naked object pattern
	Understanding the peer-to-peer pattern
	File sharing example implementation
	Networking example implementation

	Understanding the pipe-filter pattern
	Simple transformation example implementation
	Complex transformation example implementation

	Understanding the serverless pattern
	IaaS implementation
	PaaS implementation
	SaaS implementation
	BaaS implementation
	MBaaS implementation
	FaaS implementation

	Understanding the service-oriented pattern
	Understanding the space-based pattern
	Summary
	Questions
	Further reading

	Chapter 8: Functional Design Patterns
	Technical requirements
	Introducing functional design patterns
	Understanding the execute around design pattern
	Demonstrated implementation

	Understanding the lambda design pattern
	Accessing variables
	Implementing lambda with a single parameter
	Implementing lambda with multiple parameters

	Understanding the loan design pattern
	Implementing file processing

	Understanding the MapReduce design pattern
	Input-Map-Output
	Input
	Map
	Output

	Input-Map-Reduce-Output
	Input
	Map
	Reduce
	Output

	Input-Multiple Maps-Reduce-Output
	Input
	Multiple maps

	Input-Map-Combiner-Reduce-Output

	Understanding the memoization design pattern
	Understanding the streams design pattern
	Stream intermediate operations
	Stream terminal operations
	Programming the streams design pattern

	Understanding the tail call design pattern
	Programming the tail call design pattern

	Summary
	Questions
	Further reading

	Chapter 9: Reactive Design Patterns
	Technical requirements
	Introducing reactive design patterns
	Responsive
	Resilient
	Elastic
	Message-driven

	Understanding the asynchronous communication design pattern
	Implementing the asynchronous communication design pattern

	Understanding the autoscaling design pattern
	Horizontal scaling
	Vertical scaling
	Implementing autoscaling

	Understanding the bounded queue design pattern
	Understanding the bulkhead design pattern
	Understanding the caching design pattern
	Implementing the caching design pattern in Java

	Understanding the circuit-breaker design pattern
	Use case

	Understanding the event-driven communication design pattern
	Understanding the fail-fast design pattern
	Programming the design pattern
	Introducing a fail event

	Understanding the failure-handling design pattern
	Failure isolation
	Controlled failure

	Understanding the fan-out and quickest-reply design pattern
	Understanding the idempotency design pattern
	Programming the design pattern

	Understanding the monitoring design pattern
	Understanding the publisher-subscriber design pattern
	Understanding the self-containment design pattern
	Understanding the stateless design pattern
	Use case
	UML class diagram
	Programming the design pattern

	Summary
	Questions
	Further reading

	Assessments
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9

	Other Books You May Enjoy
	Index

