

Spring 5 Design Patterns

Master efficient application development with patterns such
as proxy, singleton, the template method, and more

Dinesh Rajput

BIRMINGHAM - MUMBAI

Spring 5 Design Patterns

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2017

Production reference: 1031017

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-945-9

www.packtpub.com

http://www.packtpub.com

Credits

Author
Dinesh Rajput

Copy Editor
Sonia Mathur

Reviewer
Rajeev Kumar Mohan

Project Coordinator
Prajakta Naik

Commissioning Editor
Merint Mathew

Proofreader
Safis Editing

Acquisition Editor
Karan Sadawana

Indexer
Rekha Nair

Content Development Editor
Lawrence Veigas

Graphics
Abhinash Sahu

Technical Editor
Supriya Thabe

Production Coordinator
Arvindkumar Gupta

About the Author
Dinesh Rajput is the chief editor of a website Dineshonjava, a technical blog dedicated to
the Spring and Java technologies. It has a series of articles related to Java technologies.
Dinesh has been a Spring enthusiast since 2008 and is a Pivotal Certified Spring
Professional, an author, and a blogger. He has more than 10 years of experience with
different aspects of Spring and Java design and development. His core expertise lies in the
latest version of Spring Framework, Spring Boot, Spring Security, creating REST APIs,
Microservice Architecture, Reactive Pattern, Spring AOP, Design Patterns, Struts,
Hibernate, Web Services, Spring Batch, Cassandra, MongoDB, and Web Application Design
and Architecture.

He is currently working as a technology manager at a leading product and web
development company. He worked as a developer and tech lead at the Bennett, Coleman &
Co. Ltd and was the first developer in his previous company, Paytm. Dinesh is passionate
about the latest Java technologies and loves to write technical blogs related to it. He is a
very active member of the Java and Spring community on different forums. When it comes
to the Spring Framework and Java, Dinesh tops the list!

Through the course of writing this book, I contacted many people who helped me to clarify
many dark corners of Reactive Patterns and GoF patterns. First of all, many thanks to the
reviewer of this book, Rajeev Kumar Mohan, who is a technology consultant and trainer.

Special thanks go to Naveen Jain, who helped me create some real-world scenarios for all
GoF design patterns, as mentioned in the examples.

And of course, my thanks to my lovely wife Anamika for encouraging me and supporting
me in the writing of this book. Also thanks to my dear son Arnav for playing mobile games
with me; it made me feel refreshed at the time of writing this book.

Finally, this book took shape from the work of Packt editors, Lawrence Veigas and Karan,
who guided me through the writing process and Supriya, who joined at the last stage of the
publishing process and brought many suggestions on how to make the book better and
more useful for readers.

About the Reviewer
Rajeev Kumar Mohan has over 17 years of experience in IT, Software Development, and
Corporate Training. He has worked for various IT majors like IBM, Pentasoft, Sapient, and
Deft Infosystems. He started career as a programmer and managed various projects.

He is subject matter expert in Java, J2EE and related Frameworks, Android, and many UI
Technologies. Besides SCJP and SCWCD, Rajeev has completed four masters.

He is Organic Chemistry and Computer Science master MCA and MBA. Rajeev is
recruitment consultant and impaneled training consultant for HCL, Amdocs, Steria, TCS,
Wipro, Oracle University, IBM, CSC, Genpact , Sapient Infosys and Capgemini.

Rajeev is the founder of Greater Noida based firm SNS Infotech. He also worked for the
National Institute Of Fashion Technology [NIFT].

I would like to thank God to provide me opportunity to review the book. I would also like to
thank my kids Sana and Saina and wife Nilam for their cooperation and for encouraging
and allowing me to finish the review on time.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1788299450.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1788299450
https://www.amazon.com/dp/1788299450
https://www.amazon.com/dp/1788299450
https://www.amazon.com/dp/1788299450
https://www.amazon.com/dp/1788299450
https://www.amazon.com/dp/1788299450
https://www.amazon.com/dp/1788299450
https://www.amazon.com/dp/1788299450
https://www.amazon.com/dp/1788299450
https://www.amazon.com/dp/1788299450
https://www.amazon.com/dp/1788299450
https://www.amazon.com/dp/1788299450
https://www.amazon.com/dp/1788299450

I want to dedicate this book to my parents, my lovely wife, and my dear son Arnav.

Specially dedicated to my Grand Father Late Mr. Arjun Singh

Table of Contents
Preface 1

Chapter 1: Getting Started with Spring Framework 5.0 and Design
Patterns 7

Introducing Spring Framework 8
Simplifying application development using Spring and its pattern 9

Using the power of the POJO pattern 10
Injecting dependencies between POJOs 11

How DI works and makes things easy for development and testing 12
Using factory helper pattern for dependent components 13

Using DI pattern for dependent components 15
Applying aspects for cross cutting concerns 19

How Spring AOP works 21
Applying the template pattern to eliminate boilerplate code 25

The Template Design pattern in Spring 26
Using a Spring container to manage beans with the Factory pattern 28

Bean factory 29
Application contexts 29
Creating a container with an application context 29

Life of a bean in the container 31
Spring modules 33

Core Spring container 34
Spring's AOP module 34
Spring DAO - data access and integration 34
Spring's ORM 35
Spring web MVC 35

New features in Spring Framework 5.0 35
Summary 37

Chapter 2: Overview of GOF Design Patterns - Core Design Patterns 38

Introducing the power of design patterns 40
Common GoF Design Pattern overview 41
Creational design patterns 42

Factory design pattern 42
Implementing the Factory design pattern in Spring Framework 43
Sample implementation of the Factory design pattern 44

Abstract factory design pattern 47

[ii]

Common problems where you should apply the Abstract factory design pattern 47
Implementing the Abstract factory design pattern in the Spring Framework 48
Sample implementation of the Abstract Factory design pattern 48

Singleton design pattern 53
Common problems where you should apply Singleton pattern 54
Singleton design pattern implementation in the Spring Framework 54
Sample implementation of the Singleton design pattern 55

Prototype design pattern 56
Benefits of the Prototype design pattern 56
UML class structure 57
Sample implementation of the Prototype design pattern 58

Builder design pattern 60
Benefits of the Builder pattern: 60
UML class structure 60
Implementing the Builder pattern in the Spring Framework 61
Common problems where you should apply Builder pattern 61
Sample implementation of the Builder design pattern 62

Summary 64

Chapter 3: Consideration of Structural and Behavioral Patterns 65

Examining the core design patterns 66
Structural design patterns 66

The adapter design pattern 67
Benefits of the adapter pattern 67
Common requirements for the adapter pattern 68
Implementation of the adapter design pattern in the Spring Framework 68
Sample implementation of the adapter design pattern 69

The Bridge design pattern 71
Benefits of the Bridge pattern 72
Common problems solved by the Bridge design pattern 72
Implementing the Bridge design pattern in the Spring Framework 72
Sample implementation of the Bridge design pattern 73

Composite design pattern 77
Common problems solved by the composite pattern 78
UML structure of the Composite design pattern 78
Sample implementation of the Composite design pattern 80

Decorator design pattern 82
Common problems solved by the Decorator pattern 83
Implementing the Decorator pattern 86
Decorator design pattern in the Spring Framework 88

Facade Design Pattern 89
Knowing when to use the Facade Pattern 89
Implementing the Facade design pattern 92
The UML structure for the Facade design pattern 93
Facade Pattern in the Spring Framework 94

Proxy design pattern 95
Purpose of the Proxy pattern 95

[iii]

UML structure for the Proxy design pattern 95
Implementing the Proxy design pattern 96
Proxy pattern in the Spring Framework 97

Behavioral design patterns 97
Chain of Responsibility design pattern 98

Chain of Responsibility pattern in the Spring Framework 99
Command design pattern 99

Command design pattern in the Spring Framework 100
Interpreter Design pattern 101

Interpreter design pattern in the Spring Framework 102
Iterator Design Pattern 102

Iterator design pattern in the Spring Framework 103
Observer pattern in the Spring Framework 106
Template Design Pattern 106

JEE design patterns 107
Summary 109

Chapter 4: Wiring Beans using the Dependency Injection Pattern 110

The dependency injection pattern 112
Solving problems using the dependencies injection pattern 112

Without dependency injection 113
With dependency injection pattern 116

Types of dependency injection patterns 118
Constructor-based dependency injection pattern 118
Setter-based dependency injection 120

Configuring the dependency injection pattern with Spring 123
Dependency injection pattern with Java-based configuration 124

Creating a Java configuration class - AppConfig.java 125
Declaring Spring beans into configuration class 125
Injecting Spring beans 126
Best approach to configure the dependency injection pattern with Java 127

Dependency injection pattern with XML-based configuration 128
Creating an XML configuration file 129

Declaring Spring beans in an XML file 129
Injecting Spring beans 130

Using constructor injection 130
Using setter injection 131

Dependency injection pattern with Annotation-based configuration 133
What are Stereotype annotations? 134

Creating auto searchable beans using Stereotype annotations 135
Searching beans using component scanning 137
Annotating beans for autowiring 139

Using @Autowired with setter method 141
Using @Autowired with the fields 141

The Autowiring DI pattern and disambiguation 142

[iv]

Resolving disambiguation in Autowiring DI pattern 143
Implementing the Abstract Factory Pattern in Spring (FactoryBean interface) 144

Implementation of FactoryBean interface in Spring 145
Sample implementation of FactoryBean interface 145

Best practices for configuring the DI pattern 147
Summary 149

Chapter 5: Understanding the Bean Life Cycle and Used Patterns 150

The Spring bean life cycle and its phases 151
The initialization phase 152

Creating the application context from configuration 152
Load bean definitions 154
Initializing bean instances 157
Customizing beans using a BeanPostProcessor 158
The Initializer extension point 160

The Use phase of beans 163
Implementing the Decorator and Proxy patterns in Spring using Proxies 164

The destruction phase of the beans 165
Understanding bean scopes 168

The singleton bean scope 169
The prototype bean scope 170
The session bean scope 170
The request bean scope 171
Other scopes in Spring 171

Custom scopes 171
Creating custom scopes 171

Summary 174

Chapter 6: Spring Aspect Oriented Programming with Proxy and
Decorator pattern 175

Proxy pattern in Spring 177
Proxying classes using Decorator pattern in Spring 177

What are cross-cutting concerns? 178
What is Aspect-Oriented Programming? 179

Problems resolved by AOP 180
Code tangling 180
Code scattering 181

How AOP Works to solve problems 183
Core AOP terminology and concepts 184

Advice 184
Join Point 186
Pointcut 186
Aspect 186

[v]

Weaving 186
Defining pointcuts 187

Writing pointcuts 188
Creating aspects 190

Define aspects using Annotation 191
Implementing Advice 193

Advice type - Before 193
Before Advice example 193

Advice Types: After Returning 194
After Returning Advice example 195

Advice Types: After Throwing 195
After Throwing Advice example 196

Advice Types: After 197
After Advice example 197

Advice Types - Around 198
Around Advice example 198

Define aspects using XML configuration 200
Understanding AOP proxies 202
Summary 204

Chapter 7: Accessing a Database with Spring and JDBC Template
Patterns 205

The best approach to designing your data-access 206
The resource management problem 209
Implementing the template design pattern 210

Problems with the traditional JDBC 211
Solving problems with Spring's JdbcTemplate 212

Configuring the data source and object pool pattern 214
Configuring a data source using a JDBC driver 215
Configuring the data source using pool connections 217

Implementing the Builder pattern to create an embedded data source 219
Abstracting database access using the DAO pattern 220

The DAO pattern with the Spring Framework 221
Working with JdbcTemplate 222
When to use JdbcTemplate 222

Creating a JdbcTemplate in an application 223
Implementing a JDBC-based repository 223
Jdbc callback interfaces 225

Creating a RowMapper class 225
Implementing RowCallbackHandler 226
Implementing ResultSetExtractor 227

Best practices for Jdbc and configuring JdbcTemplate 229

[vi]

Summary 230

Chapter 8: Accessing Database with Spring ORM and Transactions
Implementing Patterns 231

ORM Framework and the patterns used 233
Resource and transaction management 234
Consistent exception handling and translation 235

The data access object pattern 236
Creating DAOs using the Factory design pattern in Spring 237
The Data Mapper pattern 238
The domain model pattern 239
Proxy for the lazy loading pattern 240
Spring's Hibernate template pattern 240

Integrating Hibernate with Spring 240
Configuring Hibernate's SessionFactory in a Spring container 241
Implementing DAOs based on the plain Hibernate API 242

Transaction management strategies in Spring 244
Declarative transaction demarcation and implementation 245
Deploying the transaction manager 246

Step 1 - Implementing the transaction manager 246
Step 2 - Declaring the transaction demarcation 247

Programmatic transaction demarcation and implementation 250
Best practices for Spring ORM and transaction module in an
application 252
Summary 253

Chapter 9: Improving Application Performance Using Caching Patterns 255

What is cache? 256
Where do we use caching? 257

Understanding cache abstraction 257
Enabling caching via the Proxy pattern 258

Enabling the caching proxy using Annotation 259
Enabling the Caching Proxy using the XML namespace 260

Declarative Annotation-based caching 261
The @Cacheable annotation 261
The @CachePut annotation 262

Customizing the cache key 263
Conditional caching 264

The @CacheEvict annotation 265
The @Caching annotation 266
The @CacheConfig annotation 266

[vii]

Declarative XML-based caching 267
Configuring the cache storage 270

Setting up the CacheManager 270
Third-party cache implementations 271

Ehcache-based cache 271
XML-based configuration 272

Creating custom caching annotations 273
Top caching best practices to be used in a web application 274
Summary 276

Chapter 10: Implementing the MVC Pattern in a Web Application using
Spring 277

Implementing the MVC pattern in a web application 278
Model 2 architecture MVC pattern with Spring 280

The Front Controller design pattern 281
Processing the life of a request 282
Configuring DispatcherServlet as the Front Controller 287

Defined by XML configuration 287
Defined by Java configuration 288

Enabling the Spring MVC 291
Implementing controllers 293

Defining a controller with @Controller 293
Mapping requests with @RequestMapping 294

@RequestMapping at method level 295
@RequestMapping at the class level 296
Defining @RequestMapping handler methods 298

Passing model data to the view 299
Accepting request parameters 300

Taking query parameters 301
Taking request parameters via path variables 302

Processing forms of a web page 303
Implementing a form handling controller 305

Data binding with Command Design pattern 308
Using @ModelAttributes for customizing data binding 310

Validating forms input parameters 311
Implementing View in the MVC pattern 314

Defining ViewResolver in the Spring MVC 315
Implement the View 315
Register ViewResolver with Spring MVC 316

The View Helper pattern 318
Composite View pattern using Apache tile view resolver 320

Configuring a Tiles ViewResolver 321

[viii]

Best practices for web application design 323
Summary 324

Chapter 11: Implementing Reactive Design Patterns 326

Understanding application requirement over the years 327
Understanding the reactive pattern 328

The reactive pattern traits 329
Responsiveness 330
Resilience 331
Scalable 332
Message-driven architecture 333

Blocking calls 334
Non-blocking calls 335
Back-pressure 336
Implementing reactive with the Spring 5 Framework 337

Reactive Streams 337
Spring Web reactive module 338

Implementing a reactive web application at the server side 340
The Annotation-based programming model 341
The functional programming model 343
Implementing a Reactive Client-Side application 349

Request and response body conversion 351
Summary 352

Chapter 12: Implementing Concurrency Patterns 353

Active object pattern 354
Monitor object pattern 355
Half-Sync/Half-Async patterns 357
Leader/follower pattern 358
Reactor pattern 359
Thread-specific storage pattern 361

Best practices for concurrency module 361
Summary 363

Index 364

Preface
Spring 5 Design Patterns is for all Java developers who want to learn Spring for the
enterprise application. Therefore, enterprise Java developers will find it particularly useful
in the understanding of design patterns used by the Spring Framework and how it solves
common design problems in the enterprise application, and they will fully appreciate the
examples presented in this book. Before reading this book, readers should have basic
knowledge of Core Java, JSP, Servlet, and XML.

Spring 5 Framework is newly launched by Pivotal with reactive programming. Spring 5
introduces many new features and enhancements from its previous version. We will discuss
all this in the book. Spring 5 Design Patterns will give you in-depth insight about the Spring
Framework.

The great part of today's Spring Framework is that all companies have already taken it as a
primary framework for development of the enterprise application. For Spring, no external
enterprise server is needed to start working with it.

The goals of writing this book are to discuss all design patterns used behind the Spring
Framework and how they are implemented in the Spring Framework. Here, the author has
also given you some best practices that must be used in the design and development of the
application.

The book contains 12 chapters that cover everything from the basics to more complex
design pattern such as reactive programming.

Spring 5 Design Patterns is divided into three sections. The first section introduces you to
the essentials of the design patterns and the Spring Framework. The second section steps
behind the front end and shows where Spring fits in the back end of an application. The
third section expands on this by showing how to build web applications with Spring and
introducing a new feature of the Spring 5 reactive programming. This part also shows how
to handle concurrency in the enterprise application.

Preface

[2]

What this book covers
Chapter 1, Getting Started with the Spring Framework 5.0 and Design Patterns,gives an
overview of the Spring 5 Framework and all new features of the Spring 5 Framework,
including some basic examples of DI and AOP. You’ll also get an overview of the great
Spring portfolio.

Chapter 2, Overview of GOF Design Patterns - Core Design Patterns,gives an overview of the
Core Design Pattern of the GoF Design Patterns family, including some best practices for an
application design. You'll also get an overview of the common problems solving with
design patterns.

Chapter 3, Consideration of the Structural and the Behavioural Patterns, gives an overview of
the Structural and Behavioural Design Pattern of the GoF Design Patterns family, including
some best practices for an application design. You’ll also get an overview of the common
problem solving with design patterns.

Chapter 4, Wiring Beans using Dependency Injection Pattern, explores dependency injection
pattern and detail about the configuration of Spring in an application, showing you various
ways of configurations in your application. This includes a configuration with XML,
Annotation, Java, and Mix.

Chapter 5, Understanding the Bean Life cycle and Used Patterns, gives an overview of Spring
Bean Life cycle managed by the Spring container, including an understanding of Spring
containers and IoC. You'll also get an overview of the Spring bean life cycle callback
handlers and post processors.

Chapter 6, Spring Aspect Oriented Programming with Proxy and Decorator Pattern, explores
how to use Spring AOP to decouple cross-cutting concerns from the objects that they
service. This chapter also sets the stage for later chapters where you'll use AOP to provide
declarative services such as transactions, security, and caching.

Chapter 7, Accessing Database with Spring and JDBC Template Pattern, explores how to access
the data with Spring and JDBC; here, you’ll see how to use Spring's JDBC abstraction and
JDBC Template to query relational databases in a way that is far simpler than native JDBC.

Chapter 8, Accessing Database with Spring ORM and Transactions Implementing Patterns,
shows how Spring integrates with the ORM Frameworks, such as Hibernate and other
implementations of the Java Persistence API (JPA) with Spring Transaction Management.
Also, this contains magic provided by Spring Data JPA for on-the-fly queries generation.

Preface

[3]

Chapter 9, Improving Performance of Application using Caching Patterns, shows how to
improve application performance by avoiding the database altogether if the data needed is
readily available. So, I will show you how Spring provides support for caching data.

Chapter 10, Implementing MVC Pattern in a Web Application using Spring, gives a quick
overview of developing a web application with the Spring MVC. You'll learn the MVC
pattern, Front Controller pattern, Dispatcher Servlet with the basics of Spring MVC, a web
framework built on the principles of the Spring Framework. You'll discover how to write
controllers to handle web requests and see how to transparently bind request parameters
and payload to your business objects while providing validation and error handling at the
same time. This chapter also gives a brief introduction to view and view resolver in the
Spring MVC.

Chapter 11, Implementing Reactive Design Pattern, explores the Reactive Programming
Model, which is programming with asynchronous data streams. You'll see how the Reactive
System is implemented in the Spring Web Module.

Chapter 12, Implementing Concurrency Patterns, takes a closer look at concurrency when
handling multiple connections inside a web server. As outlined in our architectural model,
request handling is decoupled from application logic.

What you need for this book
This book can be read without a computer or laptop at hand, in which case you need
nothing more than the book itself. Although to follow the examples in the book, you need
Java 8, which you can download from http:/ /www. oracle. com/ technetwork/ java/ javase/
downloads/jdk8-downloads- 2133151. html. You will also need your favorite IDE for the
examples, but I have used the Software Spring Tool Suite; download the latest version of
Spring Tool Suite (STS) from https:/ / spring. io/ tools/ sts/ all according to your system
OS. The Java 8 and STS work on a variety of platforms--Windows, macOS, and Linux.

Who this book is for
Spring 5 Design Patterns is for all Java developers who want to learn Spring for the
enterprise application. Therefore, enterprise Java developers will find it particularly useful
in the understanding of design patterns used by Spring Framework and how it solves
common design problems in the enterprise application, and they will fully appreciate the
examples presented in this book. Before reading this book, readers should have basic
knowledge of Core Java, JSP, Servlet, and XML.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows: "In our code, we have a
TransferServiceImpl class, and its constructor takes two arguments:"

A block of code is set as follows:

 public class JdbcTransferRepository implements TransferRepository{
 JdbcTemplate jdbcTemplate;
 public setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }
 // ...
 }

New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book--what you liked or disliked. Reader feedback is important to us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply email feedback@packtpub.com, and mention the book's
title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:/ /www.
packtpub.com. If you purchased this book elsewhere, you can visit http:/ /www. packtpub.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your email address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Spring5- Design- Patterns. We also have other code bundles from our
rich catalog of books and videos available at https:/ /github. com/ PacktPublishing/ .
Check them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Spring5-Design-Patterns
https://github.com/PacktPublishing/Spring5-Design-Patterns
https://github.com/PacktPublishing/Spring5-Design-Patterns
https://github.com/PacktPublishing/Spring5-Design-Patterns
https://github.com/PacktPublishing/Spring5-Design-Patterns
https://github.com/PacktPublishing/Spring5-Design-Patterns
https://github.com/PacktPublishing/Spring5-Design-Patterns
https://github.com/PacktPublishing/Spring5-Design-Patterns
https://github.com/PacktPublishing/Spring5-Design-Patterns
https://github.com/PacktPublishing/Spring5-Design-Patterns
https://github.com/PacktPublishing/Spring5-Design-Patterns
https://github.com/PacktPublishing/Spring5-Design-Patterns
https://github.com/PacktPublishing/Spring5-Design-Patterns
https://github.com/PacktPublishing/Spring5-Design-Patterns
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books--may be a mistake in the text or the code--
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ /www. packtpub. com/ submit- errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https:/ /www. packtpub. com/ books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

1
Getting Started with Spring
Framework 5.0 and Design

Patterns
This chapter will help you gain a better understanding of the Spring Framework with
modules, and use the design patterns that are responsible for the success of Spring. This
chapter will cover every major module of the Spring Framework. We begin with an
introduction to the Spring Framework. We will have a look at the new features and
enhancement introduced in Spring 5. We will also understand the design patterns used in
the major modules of the Spring Framework.

At the end of this chapter, you will understand how Spring works, and how Spring solves
the common problems of the design level of the enterprise application by using design
patterns. You will know how to improve loose coupling between the components of
applications and how to simplify application development by using Spring with design
patterns.

This chapter will cover the following topics:

Introduction of the Spring Framework
Simplifying application development using Spring and its pattern

Using the power of the POJO pattern
Injecting dependencies
Applying aspects to address cross-cutting concerns
Applying a template pattern to eliminate boilerplate code

Getting Started with Spring Framework 5.0 and Design Patterns

[8]

Creating a Spring container for containing beans using the Factory pattern
Creating a container with an application context
The life of a bean in the container

Spring modules
New features in Spring Framework 5.0

Introducing Spring Framework
In the early days of Java, there were lots of heavier enterprise Java technologies for
enterprise applications that provided enterprise solutions to programmers. However, it was
not easy to maintain the applications because it was tightly coupled with the framework. A
couple of years ago, apart from Spring, all Java technologies were heavier, like EJB. At the
time, Spring was introduced as an alternative technology especially made for EJB because
Spring provided a very simple, leaner, and lighter programming model compared with
other existing Java technologies. Spring makes this possible by using many available design
patterns, but it focused on the Plain Old Java Object (POJO) programming model. This
model provided the simplicity to the Spring Framework. It also empowered ideas such as
the dependency injection (DI) pattern and Aspect-Oriented Programming (AOP) by using
the Proxy pattern and Decorator pattern.

The Spring Framework is an open source application framework and a Java-based platform
that provides comprehensive infrastructure support for developing enterprise Java
applications. So developers don't need to care about the infrastructure of the application;
they should be focused on the business logic of the application rather than handling the
configuration of the application. All infrastructure, configuration, and meta-configuration
files, either Java-based configuration or XML-based configuration, both are handled by the
Spring Framework. So this framework makes you more flexible in building an application
with a POJOs programming model rather than a non-invasive programming model.

The Spring Inversion of Control (IoC) container is the heart of the entire framework. It
helps glue together the different parts of the application, thus forming a coherent
architecture. Spring MVC components can be used to build a very flexible web tier. The IOC
container simplifies the development of the business layer with POJOs.

Getting Started with Spring Framework 5.0 and Design Patterns

[9]

Spring simplifies the application development and removes a lot of the dependency on the
other APIs. Let's see some examples of how you, as an application developer, can benefit
from the Spring platform:

All application classes are simple POJO classes--Spring is not invasive. It does not
require you to extend framework classes or implement framework interfaces for
most use cases.
Spring applications do not require a Java EE application server, but they can be
deployed on one.
You can execute a method in a database transaction by using transaction
management in Spring Framework without having any third-party transactional
API.
Using Spring, you can use a Java method as a request handler method or remote
method, like a service() method of a servlet API, but without dealing with the
servlet API of the servlet container.
Spring enables you to use a local java method as a message handler method
without using a Java Message Service (JMS) API in the application.
Spring also enables you to use the local java method as a management operation
without using a Java Management Extensions (JMX) API in the application.
Spring serves as a container for your application objects. Your objects do not have
to worry about finding and establishing connections with each other.
Spring instantiates the beans and injects the dependencies of your objects into the
application--it serves as a life cycle manager of the beans.

Simplifying application development using
Spring and its pattern
Developing an enterprise application using the traditional Java platform has a lot of
limitations when it comes to organizing the basic building blocks as individual components
for reusability in your application. Creating reusable components for basic and common
functionality is best design practice, so you cannot ignore it. To address the reusability
problem in your application, you can use various design patterns, such as the Factory
pattern, Abstract Factory pattern, Builder pattern, Decorator pattern, and Service Locator
pattern, to compose the basic building blocks into a coherent whole, such as class and object
instances, to promote the reusability of components. These patterns address the common
and recursive application problems. Spring Framework simply implements these patterns
internally, providing you with an infrastructure to use in a formalized way.

Getting Started with Spring Framework 5.0 and Design Patterns

[10]

There are lots of complexities in enterprise application development, but Spring was
created to address these, and makes it possible to simplify the process for developers.
Spring isn't only limited to server-side development--it also helps simplifies things
regarding building projects, testability, and loose coupling. Spring follows the POJO
pattern, that is, a Spring component can be any type of POJO. A component is a self-
contained piece of code that ideally could be reused in multiple applications.

Since this book is focused on all design patterns that are adopted by the Spring Framework
to simplify Java development, we need to discuss or at least provide some basic
implementation and consideration of design patterns and the best practices to design the
infrastructure for enterprise application development. Spring uses the following strategies
to make java development easy and testable:

Spring uses the power of the POJO pattern for lightweight and minimally invasive
development of enterprise applications
It uses the power of the dependency injection pattern (DI pattern) for loose
coupling and makes a system interface oriented
It uses the power of the Decorator and Proxy design pattern for declarative
programming through aspects and common conventions
It uses the power of the Template Design pattern for eliminating boilerplate code
with aspects and templates

In this chapter, I'll explain each of these ideas, and also show concrete examples of how
Spring simplifies Java development. Let's start with exploring how Spring remains
minimally invasive by encouraging POJO-oriented development by using the POJO pattern.

Using the power of the POJO pattern
There are many other frameworks for Java development that lock you in by forcing you to
extend or implement one of their existing classes or interfaces; Struts, Tapestry, and earlier
versions of EJB had this approach. The programming model of these frameworks is based
on the invasive model. This makes it harder for your code to find bugs in the system, and
sometimes it will render your code unintelligible. However, if you are working with Spring
Framework, you don't need to implement or extend its existing classes and interfaces, so
this is simply POJO-based implementation, following a non-invasive programming model.
It makes it easier for your code to find bugs in the system, and keeps the code
understandable.

Getting Started with Spring Framework 5.0 and Design Patterns

[11]

Spring allows you to do programming with very simple non Spring classes, which means
there is no need to implement Spring-specific classes or interfaces, so all classes in the
Spring-based application are simply POJOs. That means you can compile and run these files
without dependency on Spring libraries; you cannot even recognize that these classes are
being used by the Spring Framework. In Java-based configuration, you will use Spring
annotations, which is the worst case of the Spring-based application.

Let's look at this with the help of the following example:

 package com.packt.chapter1.spring;
 public class HelloWorld {
 public String hello() {
 return "Hello World";
 }
 }

The preceding class is a simple POJO class with no special indication or implementation
related to the framework to make it a Spring component. So this class could function
equally well in a Spring application as it could in a non-Spring application. This is the
beauty of Spring's non-invasive programming model. Another way that Spring empowers
POJO is by collaborating with other POJOs using the DI pattern. Let's see how DI works to
help decouple components.

Injecting dependencies between POJOs
The term dependency injection is not new-it is used by PicoContainer. Dependency injection
is a design pattern that promotes loose coupling between the Spring components--that is,
between the different collaborating POJOs. So by applying DI to your complex
programming, your code will become simpler, easier to understand, and easier to test.

In your application, many objects are working together for a particular functionality as per
your requirement. This collaboration between the objects is actually known as dependency
injection. Injecting dependency between the working components helps you to unit test
every component in your application without tight coupling.

In a working application, what the end user wants is to see the output. To create the output,
a few objects in the application work together and are sometimes coupled. So when you are
writing these complex application classes, consider the reusability of these classes and make
these classes as independent as possible. This is a best practice of coding that will help you
in unit testing these classes independently.

Getting Started with Spring Framework 5.0 and Design Patterns

[12]

How DI works and makes things easy for development
and testing
Let's look at DI pattern implementation in your application. It makes things easy to
understand, loosely coupled, and testable across the application. Suppose we have a simple
application (something more complex than a Hello World example that you might make in
your college classes). Every class is working together to perform some business task and
help build business needs and expectations. That means that each class in the application
has its measure of responsibility for a business task, together with other collaborating
objects (its dependencies). Let's look at the following image. This dependency between the
objects can create complexity and tight coupling between the dependent objects:

The TransferService component is traditionally dependent on two other components: TransferRepository and AccountRepository

A typical application system consists of several parts working together to carry out a use
case. For example, consider the TransferService class, shown next.

TransferService using direct instantiation:

 package com.packt.chapter1.bankapp.transfer;
 public class TransferService {
 private AccountRepository accountRepository;
 public TransferService () {
 this.accountRepository = new AccountRepository();
 }
 public void transferMoney(Account a, Account b) {
 accountRepository.transfer(a, b);
 }
 }

Getting Started with Spring Framework 5.0 and Design Patterns

[13]

The TransferService object needs an AccountRepository object to make money
transfer from account a to account b. Hence, it creates an instance of the
AccountRepository object directly and uses it. But direct instantiation increases coupling
and scatters the object creation code across the application, making it hard to maintain and
difficult to write a unit test for TransferService, because, in this case, whenever you
want to test the transferMoney() method of the TransferService class by using the
assert to unit test, then the transfer() method of the AccountRepository class is also
called unlikely by this test. But the developer is not aware about the dependency of
AccountRepository on the TransferService class; at least, the developer is not able to
test the transferMoney() method of the TransferService class using unit testing.

In enterprise applications, coupling is very dangerous, and it pushes you to a situation
where you will not be able to do any enhancement in the application in the future, where
any further changes in such an application can create a lot of bugs, and where fixing these
bugs can create new bugs. Tightly coupled components are one of the reasons for major
problems in these applications. Unnecessary tightly coupled code makes your application
non-maintainable, and as time goes by, its code will not be reused, as it cannot be
understood by other developers. But sometimes a certain amount of coupling is required for
an enterprise application because completely uncoupled components are not possible in
real-world cases. Each component in the application has some responsibility for a role and
business requirement, to the extent that all components in the application have to be aware
of the responsibility of the other components. That means coupling is necessary sometimes,
but we have to manage the coupling between required components very carefully.

Using factory helper pattern for dependent components
Let's try another method for dependent objects using the Factory pattern. This design
pattern is based on the GOF factory design pattern to create object instances by using a
factory method. So this method actually centralizes the use of the new operator. It creates
the object instances based on the information provided by the client code. This pattern is
widely used in the dependency injection strategy.

Getting Started with Spring Framework 5.0 and Design Patterns

[14]

TransferService using factory helper:

 package com.packt.chapter1.bankapp.transfer;
 public class TransferService {
 private AccountRepository accountRepository;
 public TransferService() {
 this.accountRepository =
 AccountRepositoryFactory.getInstance("jdbc");
 }
 public void transferMoney(Account a, Account b) {
 accountRepository.transfer(a, b);
 }
 }

In the preceding code, we use the Factory pattern to create an object of
AccountRepository. In software engineering, one of the best practices of application
design and development is program-to-interface (P2I). According to this practice, concrete
classes must implement an interface that is used in the client code for the caller rather than
using a concrete class. By using P2I, you can improve the preceding code. Therefore, we can
easily replace it with a different implementation of the interface with little impact on the
client code. So programming-to-interface provides us with a method involving low
coupling. In other words, there is no direct dependency on a concrete implementation
leading to low coupling. Let's look at the following code. Here, AccountRepository is an
interface rather than a class:

 public interface AccountRepository{
 void transfer();
 //other methods
 }

So we can implement it as per our requirement, and it is dependent upon the client's
infrastructure. Suppose we want an AccountRepository during the development phase
with JDBC API. We can provide a JdbcAccountRepositry concrete implementation of the
AccountRepositry interface, as shown here:

 public class JdbcAccountRepositry implements AccountRepositry{
 //...implementation of methods defined in AccountRepositry
 // ...implementation of other methods
 }

Getting Started with Spring Framework 5.0 and Design Patterns

[15]

In this pattern, objects are created by factory classes to make it easy to maintain, and this
avoids scattering the code of object creation across other business components. With a
factory helper, it is also possible to make object creation configurable. This technique
provides a solution for tight coupling, but we are still adding factory classes to the business
component for fetching collaborating components. So let's see the DI pattern in the next
section and look at how to solve this problem.

Using DI pattern for dependent components
According to the DI pattern, dependent objects are given their dependencies at the time of
the creation of the objects by some factory or third party. This factory coordinates each
object in the system in such a way that each dependent object is not expected to create their
dependencies. This means that we have to focus on defining the dependencies instead of
resolving the dependencies of collaborating objects in the enterprise application. Let's look
at the following image. You will learn that dependencies are injected into the objects that
need them:

Dependency injection between the different collaborating components in the application

To illustrate this point, let's look at TransferService in the next section--a
TransferService has dependency with AccountRepository and
TransferRepository. Here, TransferService is capable of transferring money by any
kind implementation of TransferRepository, that is, we can either use
JdbcTransferRepository or JpaTransferRepository, depending on whichever comes
along according to the deployment environment.

Getting Started with Spring Framework 5.0 and Design Patterns

[16]

TransferServiceImpl is flexible enough to take on any TransferRepository it's given:

 package com.packt.chapter1.bankapp;
 public class TransferServiceImpl implements TransferService {
 private TransferRepository transferRepository;
 private AccountRepository accountRepository;
 public TransferServiceImpl(TransferRepository transferRepository,
 AccountRepository accountRepository) {
 this.transferRepository =
 transferRepository;//TransferRepository is injected
 this.accountRepository = accountRepository;
 //AccountRepository is injected
 }
 public void transferMoney(Long a, Long b, Amount amount) {
 Account accountA = accountRepository.findByAccountId(a);
 Account accountB = accountRepository.findByAccountId(b);
 transferRepository.transfer(accountA, accountB, amount);
 }
 }

Here you can see that TransferServiceImpl doesn't create its own repositories
implementation. Instead, we have given the implementation of repositories at the time of
construction as a constructor argument. This is a type of DI known as constructor injection.
Here we have passed the repository interface type as an argument of the constructor. Now
TransferServiceImpl could use any implementation of repositories, either JDBC, JPA, or
mock objects. The point is that TransferServiceImpl isn't coupled to any specific
implementation of repositories. It doesn't matter what kind of repository is used to transfer
an amount from one account to another account, as long as it implements the repositories
interfaces. If you are using the DI pattern of the Spring Framework, loose coupling is one of
the key benefits. The DI pattern always promotes P2I, so each object knows about its
dependencies by their associated interface rather than associated implementation, so the
dependency can easily be swapped out with another implementation of that interface
instead of changing to its dependent class implementation.

Spring provides support for assembling such an application system from its parts:

Parts do not worry about finding each other
Any part can easily be swapped out

The method for assembling an application system by creating associations between
application parts or components is known as wiring. In Spring, there are many ways to
wire collaborating components together to make an application system. For instance, we
could use either an XML configuration file or a Java configuration file.

Getting Started with Spring Framework 5.0 and Design Patterns

[17]

Now let's look at how to inject the dependencies of TransferRepository and
AccountRepository into a TransferService with Spring:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">
 <bean id="transferService"
 class="com.packt.chapter1.bankapp.service.TransferServiceImpl">
 <constructor-arg ref="accountRepository"/>
 <constructor-arg ref="transferRepository"/>
 </bean>
 <bean id="accountRepository" class="com.
 packt.chapter1.bankapp.repository.JdbcAccountRepository"/>
 <bean id="transferRepository" class="com.
 packt.chapter1.bankapp.repository.JdbcTransferRepository"/>
 </beans>

Here, TransferServiceImpl, JdbcAccountRepository, and
JdbcTransferRepository are declared as beans in Spring. In the case of the
TransferServiceImpl bean, it's constructed, passing a reference to the
AccountRepository and TransferRepository beans as constructor arguments. You
might like to know that Spring also allows you to express the same configuration using
Java.

Spring offers Java-based configuration as an alternative to XML:

 package com.packt.chapter1.bankapp.config;

 import org.springframework.context.annotation.Bean;
 import org.springframework.context.annotation.Configuration;

 import com.packt.chapter1.bankapp.repository.AccountRepository;
 import com.packt.chapter1.bankapp.repository.TransferRepository;
 import
 com.packt.chapter1.bankapp.repository.jdbc.JdbcAccountRepository;
 import
 com.packt.chapter1.bankapp.repository.jdbc.JdbcTransferRepository;
 import com.packt.chapter1.bankapp.service.TransferService;
 import com.packt.chapter1.bankapp.service.TransferServiceImpl;

 @Configuration
 public class AppConfig {
 @Bean
 public TransferService transferService(){
 return new TransferServiceImpl(accountRepository(),

Getting Started with Spring Framework 5.0 and Design Patterns

[18]

 transferRepository());
 }
 @Bean
 public AccountRepository accountRepository() {
 return new JdbcAccountRepository();
 }
 @Bean
 public TransferRepository transferRepository() {
 return new JdbcTransferRepository();
 }
 }

The benefits of the dependency injection pattern are the same whether you are using an
XML-based or a Java-based configuration:

Dependency injection promotes loose coupling. You can remove hard-coded
dependencies with best practice P2I, and you could provide dependencies from
outside the application by using the Factory pattern and its built-in swappable
and pluggable implementation
The DI pattern promotes the composition design of object-oriented programming
rather than inheritance programming

Although TransferService depends on an AccountRepository and
TransferRepository, it doesn't care about what type (JDBC or JPA) of implementations
of AccountRepository and TransferRepository are used in the application. Only
Spring, through its configuration (XML- or Java-based), knows how all the components
come together and are instantiated with their required dependencies using the DI pattern.
DI makes it possible to change those dependencies with no changes to the dependent
classes--that is, we could use either a JDBC implementation or a JPA implementation
without changing the implementation of AccountService.

In a Spring application, an implementation of the application context (Spring offers
AnnotationConfigApplicationContext for Java-based and
ClassPathXmlApplicationContext for XML-based implementations) loads bean
definitions and wires them together into a Spring container. The application context in
Spring creates and wires the Spring beans for the application at startup. Look into the
implementation of the Spring application context with Java-based configuration--It loads
the Spring configuration files (AppConfig.java for Java and Sprig.xml for XML) located
in the application's classpath. In the following code, the main() method of the
TransferMain class uses a AnnotationConfigApplicationContext class to load the
configuration class AppConfig.java and get an object of the AccountService class.

Getting Started with Spring Framework 5.0 and Design Patterns

[19]

Spring offers Java-based configuration as an alternative to XML:

 package com.packt.chapter1.bankapp;

 import org.springframework.context.ConfigurableApplicationContext;
 import
 org.springframework.context.annotation
 .AnnotationConfigApplicationContext;

 import com.packt.chapter1.bankapp.config.AppConfig;
 import com.packt.chapter1.bankapp.model.Amount;
 import com.packt.chapter1.bankapp.service.TransferService;

 public class TransferMain {

 public static void main(String[] args) {
 //Load Spring context
 ConfigurableApplicationContext applicationContext =
 new AnnotationConfigApplicationContext(AppConfig.class);
 //Get TransferService bean
 TransferService transferService =
 applicationContext.getBean(TransferService.class);
 //Use transfer method
 transferService.transferAmmount(100l, 200l,
 new Amount(2000.0));
 applicationContext.close();
 }

 }

Here we have a quick introduction to the dependency injection pattern. You'll learn a lot
more about the DI pattern in the coming chapters of this book. Now let's look at another
way of simplifying Java development using Spring's declarative programming model
through aspects and proxy patterns.

Applying aspects for cross cutting concerns
In a Spring application, the DI pattern provides us with loose coupling between
collaborating software components, but Aspect-Oriented Programming in Spring (Spring
AOP) enables you to capture common functionalities that are repetitive throughout your
application. So we can say that Spring AOP promotes loose coupling and allows cross-
cutting concerns, listed as follows, to be separated in a most elegant fashion. It allows these
services to be applied transparently through declaration. With Spring AOP, it is possible to
write custom aspects and configure them declaratively.

Getting Started with Spring Framework 5.0 and Design Patterns

[20]

The generic functionalities that are needed in many places in your application are:

Logging and tracing
Transaction management
Security
Caching
Error handling
Performance monitoring
Custom business rules

The components listed here are not part of your core application, but these components
have some additional responsibilities, commonly referred to as cross-cutting concerns
because they tend to cut across multiple components in a system beyond their core
responsibilities. If you put these components with your core functionalities, thereby
implementing cross-cutting concerns without modularization, it will have two major
problems:

Code tangling: A coupling of concerns means that a cross-cutting concern code,
such as a security concern, a transaction concern, and a logging concern, is
coupled with the code for business objects in your application.
Code scattering: Code scattering refers to the same concern being spread across
modules. This means that your concern code of security, transaction, and logging
is spread across all modules of the system. In other words, you can say there is a
duplicity of the same concern code across the system.

The following diagramillustrates this complexity. The business objects are too intimately
involved with the cross-cutting concerns. Not only does each object know that it's being
logged, secured, and involved in a transactional context, but each object is also responsible
for performing those services assigned only to it:

Getting Started with Spring Framework 5.0 and Design Patterns

[21]

Cross-cutting concerns, such as logging, security and transaction, are often scattered about in modules where those tasks are not their primary concern

Spring AOP enables the modularization of cross-cutting concerns to avoid tangling and
scattering. You can apply these modularized concerns to the core business components of
the application declaratively without affecting the aforementioned the above components.
The aspects ensure that the POJOs remain plain. Spring AOP makes this magic possible by
using the Proxy Design Pattern. We will discuss the Proxy Design pattern more in the
coming chapters of this book.

How Spring AOP works
The following points describe the work of Spring AOP:

Implement your mainline application logic: Focusing on the core problem
means that, when you are writing the application business logic, you don't need
to worry about adding additional functionalities, such as logging, security, and
transaction, between the business codes-Spring AOP takes care of it.
Write aspects to implement your cross-cutting concerns: Spring provides many
aspects out of the box, which means you can write additional functionalities in
the form of the aspect as independent units in Spring AOP. These aspects have
additional responsibilities as cross-cutting concerns beyond the application logic
codes.
Weave the aspects into your application: Adding the cross-cutting behaviors to
the right places, that is, after writing the aspects for additional responsibilities,
you could declaratively inject them into the right places in the application logic
codes.

Getting Started with Spring Framework 5.0 and Design Patterns

[22]

Let's look at an illustration of AOP in Spring:

AOP-based system evolution--this leaves the application components to focus on their specific business functionalities

In the preceding diagram, Spring AOP separates the cross-cutting concerns, for example,
security, transaction, and logging, from the business modules, that is, BankService,
CustomerService, and ReportingService. These cross-cutting concerns are applied to
predefined points (stripes in the preceding diagram) of the business modules at the running
time of the application.

Suppose that you want to log the messages before and after calling the
transferAmmount() method of TransferService using the services of a
LoggingAspect. The following listing shows the LoggingAspect class you might use.

LoggingAspect call is used for logging the system for TransferService:

 package com.packt.chapter1.bankapp.aspect;

 import org.aspectj.lang.annotation.After;
 import org.aspectj.lang.annotation.Aspect;
 import org.aspectj.lang.annotation.Before;

 @Aspect
 public class LoggingAspect {
 @Before("execution(* *.transferAmount(..))")
 public void logBeforeTransfer(){

Getting Started with Spring Framework 5.0 and Design Patterns

[23]

 System.out.println("####LoggingAspect.logBeforeTransfer()
 method called before transfer amount####");
 }
 @After("execution(* *.transferAmount(..))")
 public void logAfterTransfer(){
 System.out.println("####LoggingAspect.logAfterTransfer() method
 called after transfer amount####");
 }
 }

To turn LoggingAspect into an aspect bean, all you need to do is declare it as one in the
Spring configuration file. Also, to make it an aspect, you have to add the @Aspect
annotation to this class. Here's the updated AppConfig.java file, revised to declare
LoggingAspect as an aspect.

Declaring LoggingAspect as an aspect and enabling the Apsect proxy feature of Spring
AOP:

 package com.packt.chapter1.bankapp.config;

 import org.springframework.context.annotation.Bean;
 import org.springframework.context.annotation.Configuration;
 import
 org.springframework.context.annotation.EnableAspectJAutoProxy;

 import com.packt.chapter1.bankapp.aspect.LoggingAspect;
 import com.packt.chapter1.bankapp.repository.AccountRepository;
 import com.packt.chapter1.bankapp.repository.TransferRepository;
 import
 com.packt.chapter1.bankapp.repository.jdbc.JdbcAccountRepository;
 import
 com.packt.chapter1.bankapp.repository.jdbc.JdbcTransferRepository;
 import com.packt.chapter1.bankapp.service.TransferService;
 import com.packt.chapter1.bankapp.service.TransferServiceImpl;

 @Configuration
 @EnableAspectJAutoProxy
 public class AppConfig {
 @Bean
 public TransferService transferService(){
 return new TransferServiceImpl(accountRepository(),
 transferRepository());
 }
 @Bean
 public AccountRepository accountRepository() {
 return new JdbcAccountRepository();
 }

Getting Started with Spring Framework 5.0 and Design Patterns

[24]

 @Bean
 public TransferRepository transferRepository() {
 return new JdbcTransferRepository();
 }
 @Bean
 public LoggingAspect loggingAspect() {
 return new LoggingAspect();
 }
 }

Here, we're using Spring's AOP configuration based on Java to declare the LoggingAspect
bean as an aspect. First, we declare LoggingAspect as a bean. Then we annotate that bean
with the @Aspect annotation.

We annotate logBeforeTransfer() of LoggingAspect with the @Before annotation so
that this method is called before the transferAmount() is executed. This is called before
advice. Then, we annotate another method of LoggingAspect with the @After annotation
to declare that the logAfterTransfer() method should be called after
transferAmount() has executed. This is known as after advice.

@EnableAspectJAutoProxy is used to enable Spring AOP features in the application. This
annotation actually forces you to apply proxy to some of the components that are defined in
the spring configuration file. We'll talk more about Spring AOP later, in Chapter 6, Spring
Aspect Oriented Programming with Proxy and Decorator Pattern. For now, it's enough to know
that you've asked Spring to call logBeforeTransfer() and logAferTransfer() of
LoggingAspect before and after the transferAmount() method of the
TransferService class. For now, there are two important points to take away from this
example:

LoggingAspect is still a POJO (if you ignore the @Aspect annotation or are
using XML-based configuration)--nothing about it indicates that it's to be used as
an aspect.
It is important to remember that LoggingAspect can be applied to
TransferService without TransferService needing to explicitly call it. In
fact, TransferService remains completely unaware of the existence of
LoggingAspect.

Let's move to another way that Spring simplifies Java development.

Getting Started with Spring Framework 5.0 and Design Patterns

[25]

Applying the template pattern to eliminate
boilerplate code
At one point in the enterprise application, we saw some code that looked like code we had
already written before in the same application. That is actually boilerplate code. It is code
that we often have to write again and again in the same application to accomplish common
requirements in different parts of the application. Unfortunately, there are a lot of places
where Java APIs involve a bunch of boilerplate code. A common example of boilerplate
code can be seen when working with JDBC to query data from a database. If you've ever
worked with JDBC, you've probably written something in code that deals with the
following:

Retrieving a connection from the connection pool
Creating a PreparedStatement object
Binding SQL parameters
Executing the PreparedStatement object
Retrieving data from the ResultSet object and populating data container objects
Releasing all database resources

Let's look at the following code, it contains boilerplate code with the JDBC API of the Java:

 public Account getAccountById(long id) {
 Connection conn = null;
 PreparedStatement stmt = null;
 ResultSet rs = null;
 try {
 conn = dataSource.getConnection();
 stmt = conn.prepareStatement(
 "select id, name, amount from " +
 "account where id=?");
 stmt.setLong(1, id);
 rs = stmt.executeQuery();
 Account account = null;
 if (rs.next()) {
 account = new Account();
 account.setId(rs.getLong("id"));
 account.setName(rs.getString("name"));
 account.setAmount(rs.getString("amount"));
 }
 return account;
 } catch (SQLException e) {
 } finally {
 if(rs != null) {

Getting Started with Spring Framework 5.0 and Design Patterns

[26]

 try {
 rs.close();
 } catch(SQLException e) {}
 }
 if(stmt != null) {
 try {
 stmt.close();
 } catch(SQLException e) {}
 }
 if(conn != null) {
 try {
 conn.close();
 } catch(SQLException e) {}
 }
 }
 return null;
 }

In the preceding code, we can see that the JDBC code queries the database for an account
name and amount. For this simple task, we have to create a connection, then create a
statement, and finally query for the results. We also have to catch SQLException, a
checked exception, even though there's not a lot you can do if it's thrown. Lastly, we have to
clean up the mess, closing down the connection statement and result set. This could also
force it to handle JDBC's exception, so you must catch SQLException here as well. This
kind of boilerplate code seriously hurts reusability.

Spring JDBC solves the problem of boilerplate code by using the Template Design pattern,
and it makes life very easy by removing the common code in templates. This makes the
data access code very clean and prevents nagging problems, such as connection leaks,
because the Spring Framework ensures that all database resources are released properly.

The Template Design pattern in Spring
Let's see how to go about using the Template Design pattern in spring:

Define the outline or skeleton of an algorithm

Leave the details for specific implementations until later.1.
Hide away large amounts of boilerplate code.2.

Spring provides many template classes:
JdbcTemplate

JmsTemplate

Getting Started with Spring Framework 5.0 and Design Patterns

[27]

RestTemplate

WebServiceTemplate

Most hide low-level resource management

Let's look at the same code that we used earlier with Spring's JdbcTemplate and how it
removes the boilerplate code.

Use JdbcTemplates to let your code the focus on the task:

 public Account getAccountById(long id) {
 return jdbcTemplate.queryForObject(
 "select id, name, amoount" +
 "from account where id=?",
 new RowMapper<Account>() {
 public Account mapRow(ResultSet rs,
 int rowNum) throws SQLException {
 account = new Account();
 account.setId(rs.getLong("id"));
 account.setName(rs.getString("name"));
 account.setAmount(rs.getString("amount"));
 return account;
 }
 },
 id);
 }

As you can see in the preceding code, this new version of getAccountById() is much
simpler as compared to the boiler plate code, and here the method is focused on selecting
an account from the database rather than creating a database connection, creating a
statement, executing the query, handling the SQL exception, and finally closing the
connection as well. With the template, you have to provide the SQL query and a
RowMapper used for mapping the resulting set data to the domain object in the template's
queryForObject() method. The template is responsible for doing everything for this
operation, such as database connection and so on. It also hides a lot of boilerplate code
behind the framework.

We have seen in this section how Spring attacks the complexities of Java development with
the power of POJO-oriented development and patterns such as the DI pattern, the Aspect-
using Proxy pattern, and the Template method design pattern.

In the next section, we will look at how to use a Spring container to create and manage the
Spring beans in the application.

Getting Started with Spring Framework 5.0 and Design Patterns

[28]

Using a Spring container to manage beans
with the Factory pattern
Spring provides us with a container, and our application objects live in this Spring
container. As shown in the following diagram, this container is responsible for creating and
managing the objects:

In a Spring application, our application objects live in this Spring container

The Spring Container also wires the many Object together according to its configuration. It
is configured with some initialized parameters, and manages their complete life cycle from
start to finish.

Basically, there are two distinct types of Spring container:

Bean factory
Application contexts

Getting Started with Spring Framework 5.0 and Design Patterns

[29]

Bean factory
In the Spring Framework, the org.springframework.beans.factory.BeanFactory
interface provides the bean factory, which is a Spring IoC container. XmlBeanFactory is an
implementation class for this interface. This container reads the configuration metadata
from an XML file. It is based on the GOF factory method design pattern--it creates,
manages, caches, and wires the application objects in a sophisticated manner. The bean
factory is merely an object pool where objects are created and managed by configuration.
For small applications, this is sufficient, but enterprise applications demand more, so spring
provides another version of the spring container with more features.

In the next section, we will learn about the application context and how Spring creates it in
the application.

Application contexts
In the Spring Framework, the org.springframework.context.ApplicationContext
interface also provides Spring's IoC container. It is simply a wrapper of the bean factory,
providing some extra application context services, such as support for AOP and, hence,
declarative transaction, security, and instrumentation support such as support for message
resources required for internationalization, and the ability to publish application events to
interested event listeners.

Creating a container with an application context
Spring provides several flavors of application context as a bean container. There are
multiple core implementations of the ApplicationContext interface, as shown here:

FileSystemXmlApplicationContext: This class is an implementation of
ApplicationContext that loads application context bean definitions from the
configuration files (XML) located in the file system.
ClassPathXmlApplicationContext: This class is an implementation of
ApplicationContext that loads application context bean definitions from the
configuration files (XML) located in the classpath of the application.
AnnotationConfigApplicationContext: This class is an implementation of
ApplicationContext that loads application context bean definitions from the
configuration classes (Java based) from the class path of the application.

Getting Started with Spring Framework 5.0 and Design Patterns

[30]

Spring provides you with a web-aware implementation of the ApplicationContext
interface, as shown here:

XmlWebApplicationContext: This class is a web-aware implementation of
ApplicationContext that loads application context bean definitions from the
configuration files (XML) contained in a web application.
AnnotationConfigWebApplicationContext: This class is a web-aware
implementation of ApplicationContext that loads Spring web application
context bean definitions from one or more Java-based configuration classes.

We can use either one of these implementations to load beans into a bean factory. It
depends upon our application configuration file locations. For example, if you want to load
your configuration file spring.xml from the file system in a specific location, Spring
provides you with a FileSystemXmlApplicationContext, class that looks for the
configuration file spring.xml in a specific location within the file system:

 ApplicationContext context = new
 FileSystemXmlApplicationContext("d:/spring.xml");

In the same way, you can also load your application configuration file spring.xml from
the classpath of your application by using a ClassPathXmlApplicationContext class
provided by Spring. It looks for the configuration file spring.xml anywhere in the
classpath (including JAR files):

 ApplicationContext context = new
 ClassPathXmlApplicationContext("spring.xml");

If you are using a Java configuration instead of an XML configuration, you can use
AnnotationConfigApplicationContext:

 ApplicationContext context = new
 AnnotationConfigApplicationContext(AppConfig.class);

After loading the configuration files and getting an application context, we can fetch beans
from the Spring container by calling the getBean() method of the application context:

 TransferService transferService =
 context.getBean(TransferService.class);

In the following section, we will learn about the Spring bean life cycle, and how a Spring
container reacts to the Spring bean to create and manage it.

Getting Started with Spring Framework 5.0 and Design Patterns

[31]

Life of a bean in the container
The Spring application context uses the Factory method design pattern to create Spring
beans in the container in the correct order according to the given configuration. So the
Spring container has the responsibility of managing the life cycle of the bean from creation
to destruction. In the normal java application, Java's new keyword is used to instantiate the
bean, and it's ready to use. Once the bean is no longer in use, it's eligible for garbage
collection. But in the Spring container, the life cycle of the bean is more elaborate. The
following image shows the life cycle of a typical Spring bean:

The life cycle of a Spring bean in the Spring container is as follows:

Load all bean definitions, creating an ordered graph.1.
Instantiate and run BeanFactoryPostProcessors (you can update bean2.
definitions here).
Instantiate each bean.3.

Getting Started with Spring Framework 5.0 and Design Patterns

[32]

Spring injects the values and bean references into the beans' properties.4.
Spring passes the ID of the bean to the setBeanName() method of the5.
BeanNameAware interface if any bean implements it.
Spring passes the reference of the bean factory itself to the setBeanFactory()6.
method of BeanFactoryAware if any bean implements it.
Spring passes the reference of the application context itself to the7.
setApplicationContext() method of ApplicationContextAware if any
bean implements it.
BeanPostProcessor is an interface, and Spring allows you to implement it with8.
your bean, and modifies the instance of the bean before the initializer is invoked
in the Spring bean container by calling its
postProcessBeforeInitialization().
If your bean implements the InitializingBean interface, Spring calls its9.
afterPropertiesSet() method to initialize any process or loading resource for
your application. It's dependent on your specified initialization method. There
are other methods to achieve this step, for example, you can use the init-
method of the <bean> tag, the initMethod attribute of the @Bean annotation,
and JSR 250's @PostConstruct annotation.
BeanPostProcessor is an interface, and spring allows you to implement it with10.
your bean. It modifies the instance of the bean after the initializer is invoked in
the spring bean container by calling its postProcessAfterInitialization().
Now your bean is ready to use in the step, and your application can access this11.
bean by using the getBean() method of the application context. Your beans
remain live in the application context until it is closed by calling the close()
method of the application context.
If your bean implements the DisposibleBean interface, Spring calls its12.
destroy() method to destroy any process or clean up the resources of your
application. There are other methods to achieve this step-for example, you can
use the destroy-method of the <bean> tag, the destroyMethod attribute of the
@Bean annotation, and JSR 250's @PreDestroy annotation.
These steps show the life cycle of Spring beans in the container.13.
The next section describes the modules that are provided by the Spring14.
Framework.

Getting Started with Spring Framework 5.0 and Design Patterns

[33]

Spring modules
Spring Framework has several distinct modules for a specific set of functionalities, and they
work more or less independently of the others. This system is very flexible, so the developer
can choose only those required for the enterprise application. For example, a developer can
just use the Spring DI module and build the rest of the application with non-Spring
components. So, Spring provides integration points to work with other frameworks and
APIs--for example, you can use the Spring Core DI pattern only with the Struts application.
In case the development team is more proficient in using Struts, it can be used instead of
Spring MVC while the rest of the application uses Spring components and features, such as
JDBC and transactions. So while the developers need to deploy the required dependencies
with the Struts application, there is no need to add a whole Spring Framework.

Here is an overview of the entire module structure:

The various modules of the Spring Framework

Let's look at each of Spring's modules and see how each fits in to the bigger picture.

Getting Started with Spring Framework 5.0 and Design Patterns

[34]

Core Spring container
This module of the Spring Framework uses lot of the design pattern such as the Factory
method design pattern, DI pattern, Abstract Factory Design pattern, Singleton Design
pattern, Prototype Design pattern, and so on. All other Spring modules are dependent on
this module. You'll implicitly use these classes when you configure your application. It is
also called the IoC container and is central to Spring's support for dependency injection,
which manages how the beans in a Spring application are created, configured, and
managed. You can create Spring container either by using the implementations of
BeanFactory or the implementations of the ApplicationContext. This module contains
the Spring bean factory, which is the portion of Spring that provides the DI.

Spring's AOP module
Spring AOP is a Java-based AOP Framework with AspectJ integration. It uses dynamic
proxies for aspect weaving and focuses on using AOP to solve enterprise problems. This
module is based on Proxy and Decorator Design patterns. This module enables the
modularization of cross-cutting concerns to avoid tangling and eliminate scattering. Like
DI, it supports loose coupling between the core business service and cross-cutting concerns.
You can implement your custom aspects and configure them declaratively in your
application without impacting on the code of business objects. It provides much flexibility
in the code; you could remove or change the aspect logic without touching the code of the
business objects. This is a very important module of the spring framework, so I will discuss
it in detail in Chapter 6, Spring Aspect Oriented Programming with Proxy and Decorator Pattern
of this book.

Spring DAO - data access and integration
Spring DAO and Spring JDBC make life very easy by using templates to remove the
common code. The templates implement the GOF template method design pattern and
provide suitable extension points to plug in custom code. If you are working with a
traditional JDBC application, you have to write lots of boilerplate code to, for example,
create a database connection, create a statement, find a result set, handle SQLException, and
finally close the connection. If you are working with a Spring JDBC Framework with a DAO
layer, then you do not have to write boilerplate code, unlike a traditional JDBC application.
That means that Spring allows you to keep your application code clean and simple.

Getting Started with Spring Framework 5.0 and Design Patterns

[35]

Spring's ORM
Spring also provides support to ORM solutions, and it provides integration with ORM tools
for easy persistence of POJO objects in relational databases. This module actually provides
an extension to the Spring DAO module. Like JDBC-based templates, Spring provides ORM
templates to work with leading ORM products, such as Hibernate, JPA, OpenJPA, TopLink,
iBATIS, and so on.

Spring web MVC
Spring provides a web and remote module for the enterprise web application. This module
helps build highly flexible web applications, leveraging the complete benefits of the Spring
IOC container. This module of Spring uses the patterns such as the MVC architectural
pattern, Front Controller pattern, and the DispatcherServlet Pattern, and it seamlessly
integrates with the servlet API. The Spring web module is very pluggable and flexible. We
can add any of the view technologies, such as JSP, FreeMarker, Velocity, and so on. We can
also integrate it with other frameworks, such as Struts, Webwork, and JSF, using spring IOC
and DI.

New features in Spring Framework 5.0
Spring 5.0 is the freshest release of Spring available. There are a lot of exciting new features
in Spring 5.0, including the following:

Support for JDK 8 + 9 and Java EE 7 Baseline:

Spring 5 supports Java 8 as a minimum requirement, as the entire framework
codebase is based on Java 8.

Spring Framework required at least Java EE 7 to run Spring Framework 5.0
applications. That means it requires Servlet 3.1, JMS 2.0, JPA 2.1.

Deprecated and removed packages, classes, and methods:

In Spring 5.0, some packages have been either removed or deprecated. It has
had a package called mock.static removed from the spring-aspects
module, and hence there is no support for
AnnotationDrivenStaticEntityMockingControl.

Getting Started with Spring Framework 5.0 and Design Patterns

[36]

Packages such as web.view.tiles2 and orm.hibernate3/hibernate4
have also been removed as of Spring 5.0. Now, in the latest spring
framework, Tiles 3 and Hibernate 5 are being used.

The Spring 5.0 framework doesn't support Portlet, Velocity, JasperReports,
XMLBeans, JDO, Guava (and so on) anymore.

Some deprecated classes and methods of earlier versions of Spring have been
removed as of Spring 5.0.

Adding the new reactive programming model:

This model of programming has been introduced in the Spring 5.0
Framework. Let's look at the following listed point about the reactive
programming model.

Spring 5 introduced the Spring-core module DataBuffer and
encoder/decoder abstractions with non-blocking semantics into the reactive
programming model.

Using the reactive model, Spring 5.0 provides the Spring-web module for
HTTP message codec implementations with JSON (Jackson) and XML
(JAXB) support.

The Spring reactive programming model added a new spring-web-
reactive module with reactive support for the @Controller programming
model, adapting reactive streams to Servlet 3.1 containers, as well as non-
Servlet runtimes, such as Netty and Undertow.

Spring 5.0 also introduced a new WebClient with reactive support on the
client side to access services.

As listed here, you can see that there are a lot of exciting new features and enhancements in
the Spring Framework 5. So in this book, we will look at many of these new features with
examples and their adopted design patterns.

Getting Started with Spring Framework 5.0 and Design Patterns

[37]

Summary
After reading this chapter, you should now have a good overview of the Spring Framework
and its most-used design patterns. I highlighted the problem with the J2EE traditional
application, and how Spring solves these problems and simplifies Java development by
using lots of design patterns and good practices to create an application. Spring aims to
make enterprise Java development easier and to promote loosely coupled code. We have
also discussed Spring AOP for cross-cutting concerns and the DI pattern for use with loose
coupling and pluggable Spring components so that the objects don't need to know where
their dependencies come from or how they're implemented. Spring Framework is an
enabler for best practices and effective object design. Spring Framework has two important
features--First it has a Spring container to create and manage the life of beans and second it
provides support to several modules and integration to help simplify Java development.

2
Overview of GOF Design

Patterns - Core Design Patterns
In this chapter, you'll be given an overview of GOF Design Patterns, including some best
practices for making an application design. You'll also get an overview of common
problem--solving with design patterns.

I will explain the design patterns that are commonly used by the Spring Framework for
better design and architecture. We are all in a global world, which means that if we have
services in the market, they can be accessed across the Globe. Simply put, now is the age of
the distributed computing system. So first, what is a distributed system? It's an application
that is divided into smaller parts that run simultaneously on different computers and the
smaller parts communicate over the network, generally using protocols. These smaller parts
are called tiers. So if we want to create a distributed application, n-tier architecture is a
better choice for that type of application. But developing an n-tier distributed application is
a complex and challenging job. Distributing the processing into separate tiers leads to better
resource utilization. It also support the allocation of tasks to experts who are best suited to
work and develop a particular tier. Many challenges exist in developing distributed
applications, some of which are detailed here:

Integration between the tiers
Transaction management
Concurrency handling of enterprise data
Security of the application and so on

Overview of GOF Design Patterns - Core Design Patterns

[39]

So my focus in this book is on simplifying Java EE application design and development by
applying patterns and best practices with the Spring Framework. In this book, I will cover
some common GOF Design Patterns, and how Spring adopted these for providing the best
solutions to the aforementioned listed problems of enterprise application because the
design of distributed objects is an immensely complicated task, even for experienced
professionals. You need to consider critical issues, such as scalability, performance,
transactions, and so on, before drafting a final solution. That solution is described as a
pattern.

At the end of this chapter, you will understand how design patterns provide the best
solution to address any design-related and development-related issues, and how to start
development with the best practices. Here, you will get more ideas about GOF Design
Patterns, with real-life examples. You will get information about how the Spring
Framework implements these design patterns internally to provide the best enterprise
solution.

This chapter will cover the following points:

Introducing the power of design patterns
Common GOF Design Patterns overview

Core design patterns
Creational design patterns
Structural design patterns
Behavioral design patterns

J2EE design patterns
Design patterns at presentation layer
Design patterns at business layer
Design patterns at integration layer

Some best practices for Spring application development

Overview of GOF Design Patterns - Core Design Patterns

[40]

Introducing the power of design patterns
So what is a design pattern? Actually, the phrase design pattern is not associated with any
programming language, and also it doesn't provide language-specific solutions to
problems. A design pattern is associated with the solution to repetitive problems. For
example, if any problem occurs frequently, a solution to that problem has been used
effectively. Any non-reusable solution to a problem can't be considered a pattern, but the
problem must occur frequently in order to have a reusable solution, and to be considered as
a pattern. So a design pattern is a software engineering concept describing recurring
solutions to common problems in software design. Design patterns also represent the best
practices used by experienced object-oriented software developers.

When you make a design for an application, you should consider all the solutions to
common problems, and these solutions are called design patterns. The understanding of
design patterns must be good across the developer team so that the staff can communicate
with each other effectively. In fact, you may be familiar with some design patterns;
however, you may not have used well-known names to describe them. This book will take
you through a step-by-step approach and show you examples that use Java while you learn
design pattern concepts.

A design pattern has three main characteristics:

A Design pattern is specific to a particular scenario rather than a specific platform.
So its context is the surrounding condition under which the problem exists. The
context must be documented within the pattern.
Design patterns have been evolved to provide the best solutions to certain problems
faced during software development. So this should be limited by the context in
which it is being considered.
Design patterns are the remedy for the problems under consideration.

For example, if a developer is referring to the GOF Singleton design pattern and signifies
the use of a single object, then all developers involved should understand that you need to
design an object that will only have a single instance in the application. So the Singleton
design pattern will be composed of a single object and the developers can tell each other
that the program is following a Singleton pattern.

Overview of GOF Design Patterns - Core Design Patterns

[41]

Common GoF Design Pattern overview
The authors Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides are often
referred to as the GoF, or Gang of Four. They published a book titled Design Patterns:
Elements of Reusable Object-Oriented Software, which initiated the concept of design patterns
in software development.

In this chapter, you will learn what GOF patterns are and how they help solve common
problems encountered in object-oriented design.

The Gang of Four (GoF) patterns are 23 classic software design patterns providing
recurring solutions to common problems in software design. The patterns are defined in the
book Design Patterns: Elements of Reusable Object-Oriented Software. These patterns are
categorized into two main categories:

Core Design Patterns
J2EE Design Patterns

Furthermore, Core Design Patterns are also subdivided into three main categories of design
pattern, as follows:

Creational Design Pattern: Patterns under this category provide a way to
construct objects when constructors will not serve your purpose. The creation
logic of objects is hidden. The programs based on these patterns are more flexible
in deciding object creation according to your demands and your use cases for the
application.
Structural Design Pattern: Patterns under this category deal with the
composition of classes or objects. In the enterprise application, there are two
commonly used techniques for reusing functionality in object-oriented systems:
one is class Inheritance and the other is the Object Composition Concept of
inheritance. The Object Composition Concept of inheritance is used to compose
interfaces and define ways to compose objects to obtain new functionalities.
Behavioral Design Pattern: Patterns under this category, characterize the ways in
which classes or objects interact and distribute responsibility. These design
patterns are specifically concerned with communication between objects. The
behavioral design pattern is used to control and reduce complicated application
flow in the enterprise application.

Overview of GOF Design Patterns - Core Design Patterns

[42]

Now, let's look at the other category, the JEE Design patterns. This is the other main
category of design patterns. Application design can be immensely simplified by applying
Java EE design patterns. Java EE design patterns have been documented in Sun's Java
Blueprints. These Java EE Design patterns provide time-tested solution guidelines and best
practices for object interaction in the different layers of a Java EE application. These design
patterns are specifically concerned with the following listed layers:

Design pattern at the presentation layer
Design pattern at the business layer
Design pattern at the integration layer

Let's explore creational design patterns in the upcoming section.

Creational design patterns
Let's look at the underlying design patterns of this category and how Spring Framework
adopts them to provide loose coupling between components and create and manage the
lifecycle of Spring components. Creational design patterns are associated with the method
of object creation. The creation logic of the object is hidden to the caller of this object.

We are all aware of how to create an object using the new keyword in Java, as follows:

 Account account = new Account();

But this way is not suitable for some cases, because it is a hardcoded way of creating an
object. It is also not a best practice to create an object because the object might be changed
according to the nature of the program. Here, the creational design pattern provides the
flexibility to create an object according to the nature of the program.

Now let's look at the different design patterns under this category.

Factory design pattern
Define an interface for creating an object, but let subclasses decide which class to
instantiate. Factory Method lets a class defer instantiation to subclasses.
- GOF Design Pattern

Overview of GOF Design Patterns - Core Design Patterns

[43]

The Factory design pattern is a creational design pattern. The Factory design pattern is also
known as the Factory method design pattern. According to this design pattern, you get an
object of a class without exposing the underlying logic to the client. It assigns a new object
to the caller by using a common interface or abstract class. This means that the design
pattern hides the actual logic of the implementation of an object, how to create it, and which
class to instantiate it in. So the client shouldn't worry about creating, managing, and
destroying an object-the Factory pattern takes responsibility for these tasks. The Factory
pattern is one of the most-used design patterns in Java.

Let's look at the benefits of the Factory pattern:

The Factory pattern promotes loose coupling between collaborating components
or classes by using interfaces rather than binding application-specific classes into
the application code
Using this pattern, you can get an implementation of an object of classes that
implement an interface, at runtime
The object life cycle is managed by the factory implemented by this pattern

Now let's discuss some common problems where you should apply the Factory design
pattern:

This pattern removes the burden on the developer to create and manage the
objects
This pattern removes the tight coupling between collaboration components
because a component doesn't know what subclasses it will be required to create
Avoid hard code to create an object of the class

Implementing the Factory design pattern in Spring
Framework
Spring Framework transparently uses this Factory design pattern to implement Spring
containers using BeanFactory and ApplicationContext interfaces. Spring's container
works based on the Factory pattern to create spring beans for the Spring application and
also manages the life cycle of every Spring bean. BeanFactory and ApplicationContext
are factory interfaces, and Spring has lots of implementing classes. The getBean()method
is the factory method that gives you Spring beans accordingly.

Let's see a sample implementation of the Factory design pattern.

Overview of GOF Design Patterns - Core Design Patterns

[44]

Sample implementation of the Factory design pattern
There are two classes SavingAccount and CurrentAccount implementing an interface
Account. So, you can create a Factory class with a method that takes one or more
arguments and its return type is Account. This method is known as the Factory method
because it creates the instances of either CurrentAccount or SavingAccount. The
Account interface is used for loose coupling. So, according to the passed arguments in the
factory method, it chooses which subclass to instantiate. This factory method will have the
superclass as its return type:

UML Diagram for the Factory design pattern

Let's look at this design pattern in the following example. Here, I am going to create an
Account interface and some concrete classes that implement the Account interface:

 package com.packt.patterninspring.chapter2.factory;
 public interface Account {
 void accountType();
 }

Overview of GOF Design Patterns - Core Design Patterns

[45]

Now let's create SavingAccount.java, which will implement the Account interface:

 package com.packt.patterninspring.chapter2.factory;
 public class SavingAccount implements Account{
 @Override
 public void accountType() {
 System.out.println("SAVING ACCOUNT");
 }
 }

Same with CurrentAccount.java, it will also implement the Account interface:

 package com.packt.patterninspring.chapter2.factory;
 public class CurrentAccount implements Account {
 @Override
 public void accountType() {
 System.out.println("CURRENT ACCOUNT");
 }
 }

A Factory class AccountFactory is now going to be defined. AccountFactory generates
an object of the concrete class, either SavingAccount or CurrentAccount, based on the
account type given as an argument to the Factory method:

AccountFactory.java is a Factory to produce the Account type object:

 package com.packt.patterninspring.chapter2.factory.pattern;
 import com.packt.patterninspring.chapter2.factory.Account;
 import com.packt.patterninspring.chapter2.factory.CurrentAccount;
 import com.packt.patterninspring.chapter2.factory.SavingAccount;
 public class AccountFactory {
 final String CURRENT_ACCOUNT = "CURRENT";
 final String SAVING_ACCOUNT = "SAVING";
 //use getAccount method to get object of type Account
 //It is factory method for object of type Account
 public Account getAccount(String accountType){
 if(CURRENT_ACCOUNT.equals(accountType)) {
 return new CurrentAccount();
 }
 else if(SAVING_ACCOUNT.equals(accountType)){
 return new SavingAccount();
 }
 return null;
 }
 }

Overview of GOF Design Patterns - Core Design Patterns

[46]

FactoryPatternMain is the main calling class of AccountFactory to get an Account
object. It will pass an argument to the factory method that contains information of the
account type, such as SAVING and CURRENT. AccountFactory returns the object of the type
that you passed to the factory method.

Let's create a demo class FactoryPatterMain.java to test the factory method design
pattern:

 package com.packt.patterninspring.chapter2.factory.pattern;
 import com.packt.patterninspring.chapter2.factory.Account;
 public class FactoryPatterMain {
 public static void main(String[] args) {
 AccountFactory accountFactory = new AccountFactory();
 //get an object of SavingAccount and call its accountType()
 method.
 Account savingAccount = accountFactory.getAccount("SAVING");
 //call accountType method of SavingAccount
 savingAccount.accountType();
 //get an object of CurrentAccount and call its accountType()
 method.
 Account currentAccount = accountFactory.getAccount("CURRENT");
 //call accountType method of CurrentAccount
 currentAccount.accountType();
 }
 }

You can test this file and see the output on the console, which should look like this:

Now that we've seen the Factory design pattern, let's turn to a different variant of it-the
Abstract factory design pattern.

Overview of GOF Design Patterns - Core Design Patterns

[47]

Abstract factory design pattern
Provide an interface for creating families of related or dependent objects without specifying
their concrete classes. - GOF Design Patterns

The Abstract Factory pattern comes under the creational design pattern. It is a high-level
design pattern compared to the factory method design pattern. According to this design
pattern, you just define an interface or abstract class to create a related dependent object
without specifying its concrete subclass. So here, the abstract factory returns a factory of
classes. Let me simplify it for you. You have a set of factory method design patterns, and
you just put these factories under a factory using the factory design pattern, which means
that it is simply a factory of factories. And there is no need to take the knowledge about all
of the factories into the factory--you can make your program using a top-level factory.

In the Abstract Factory pattern, an interface is responsible for creating a factory of related
objects without explicitly specifying their classes. Each generated factory can give the
objects as per the Factory pattern.

The benefits of the Abstract Factory pattern are as follows:

The Abstract Factory Design provides loose coupling between the component
families. It also isolates the client code from concrete classes.
This design pattern is a higher-level design than the Factory pattern.
This pattern provides better consistency at construction time of objects across the
application.
This pattern easily swaps component families.

Common problems where you should apply the
Abstract factory design pattern
When you design a Factory pattern for object creation in your application, there are times
when you want a particular set of related objects to be created with certain constraints and
apply the desired logic across the related objects in your application. You can achieve this
design by creating another factory inside the factory for a set of related objects and apply
the required constraints. You can also program the logic to a set of related objects.

When you want to customize the instantiation logic of related objects, then you could use
this design pattern.

Overview of GOF Design Patterns - Core Design Patterns

[48]

Implementing the Abstract factory design pattern in the
Spring Framework
In the Spring Framework, the FactoryBean interface is based on the Abstract Factory
design pattern. Spring provides a lot of implementation of this interface, such as
ProxyFactoryBean, JndiFactoryBean, LocalSessionFactoryBean,
LocalContainerEntityManagerFactoryBean, and so on. A FactoryBean is also useful
to help Spring construct objects that it couldn't easily construct itself. Often this is used to
construct complex objects that have many dependencies. It might also be used when the
construction logic itself is highly volatile and depends on the configuration.

For example, in Spring Framework, one of the FactoryBean implementations is
LocalSessionFactoryBean, which is used to get a reference of a bean that was associated
with the hibernate configuration. It is a specific configuration concerning the data source. It
should be applied before you get an object of SessionFactory. You can use the
LocalSessionFactoryBean to apply the specific data source configuration in a consistent
way. You may inject the result of a FactoryBean's getObject() method into any other
property.

Let's create a sample implementation of the Abstract Factory design pattern.

Sample implementation of the Abstract Factory design
pattern
I am going to create a Bank and Account interface and some concrete classes implementing
these interfaces. Here, I also create an abstract factory class, AbstractFactory. I have
some factory classes, BankFactory and AccountFactory; these classes extend the
AbstractFactory class. I will also create a FactoryProducer class to create the factories.

Overview of GOF Design Patterns - Core Design Patterns

[49]

Let's see this design pattern in the following image:

UML diagram for the Abstract Factory design pattern

Create a demo class, AbstractFactoryPatternMain; it uses FactoryProducer to get an
AbstractFactory object. Here, I pass information such as ICICI, YES to
AbstractFactory to get an object of Bank, and I also pass information such as SAVING,
CURRENT to AbstractFactory to get an Account type.

Here is the code for Bank.java, which is an interface:

 package com.packt.patterninspring.chapter2.model;
 public interface Bank {
 void bankName();
 }

Overview of GOF Design Patterns - Core Design Patterns

[50]

Now let's create ICICIBank.java, which implements the Bank interface:

 package com.packt.patterninspring.chapter2.model;
 public class ICICIBank implements Bank {
 @Override
 public void bankName() {
 System.out.println("ICICI Bank Ltd.");
 }
 }

Let's create another YesBank.java, an implementing Bank interface:

 package com.packt.patterninspring.chapter2.model;
 public class YesBank implements Bank{
 @Override
 public void bankName() {
 System.out.println("Yes Bank Pvt. Ltd.");
 }
 }

In this example, I am using the same interface and implementing classes of Account as I
used in the Factory pattern example in this book.

AbstractFactory.java is an abstract class that is used to get factories for Bank and
Account objects:

 package com.packt.patterninspring.chapter2.abstractfactory.pattern;
 import com.packt.patterninspring.chapter2.model.Account;
 import com.packt.patterninspring.chapter2.model.Bank;
 public abstract class AbstractFactory {
 abstract Bank getBank(String bankName);
 abstract Account getAccount(String accountType);
 }

BankFactory.java is a factory class extending AbstractFactory to generate an object of
the concrete class based on the given information:

 package com.packt.patterninspring.chapter2.abstractfactory.pattern;
 import com.packt.patterninspring.chapter2.model.Account;
 import com.packt.patterninspring.chapter2.model.Bank;
 import com.packt.patterninspring.chapter2.model.ICICIBank;
 import com.packt.patterninspring.chapter2.model.YesBank;
 public class BankFactory extends AbstractFactory {
 final String ICICI_BANK = "ICICI";
 final String YES_BANK = "YES";
 //use getBank method to get object of name bank
 //It is factory method for object of name bank
 @Override

Overview of GOF Design Patterns - Core Design Patterns

[51]

 Bank getBank(String bankName) {
 if(ICICI_BANK.equalsIgnoreCase(bankName)){
 return new ICICIBank();
 }
 else if(YES_BANK.equalsIgnoreCase(bankName)){
 return new YesBank();
 }
 return null;
 }
 @Override
 Account getAccount(String accountType) {
 return null;
 }
 }

AccountFactory.java is a factory class that extends AbstractFactory.java to generate
an object of the concrete class based on the given information:

 package com.packt.patterninspring.chapter2.abstractfactory.pattern;
 import com.packt.patterninspring.chapter2.model.Account;
 import com.packt.patterninspring.chapter2.model.Bank;
 import com.packt.patterninspring.chapter2.model.CurrentAccount;
 import com.packt.patterninspring.chapter2.model.SavingAccount;
 public class AccountFactory extends AbstractFactory {
 final String CURRENT_ACCOUNT = "CURRENT";
 final String SAVING_ACCOUNT = "SAVING";
 @Override
 Bank getBank(String bankName) {
 return null;
 }
 //use getAccount method to get object of type Account
 //It is factory method for object of type Account
 @Override
 public Account getAccount(String accountType){
 if(CURRENT_ACCOUNT.equals(accountType)) {
 return new CurrentAccount();
 }
 else if(SAVING_ACCOUNT.equals(accountType)){
 return new SavingAccount();
 }
 return null;
 }
 }

Overview of GOF Design Patterns - Core Design Patterns

[52]

FactoryProducer.java is a class that creates a Factory generator class to get factories by
passing a piece of information, such as Bank or Account:

 package com.packt.patterninspring.chapter2.abstractfactory.pattern;
 public class FactoryProducer {
 final static String BANK = "BANK";
 final static String ACCOUNT = "ACCOUNT";
 public static AbstractFactory getFactory(String factory){
 if(BANK.equalsIgnoreCase(factory)){
 return new BankFactory();
 }
 else if(ACCOUNT.equalsIgnoreCase(factory)){
 return new AccountFactory();
 }
 return null;
 }
 }

FactoryPatterMain.java is a demo class for the Abstract Factory design pattern.
FactoryProducer is a class to get AbstractFactory in order to get the factories of
concrete classes by passing a piece of information, such as the type:

 package com.packt.patterninspring.chapter2.factory.pattern;
 import com.packt.patterninspring.chapter2.model.Account;
 public class FactoryPatterMain {
 public static void main(String[] args) {
 AccountFactory accountFactory = new AccountFactory();
 //get an object of SavingAccount and call its accountType()
 method.
 Account savingAccount = accountFactory.getAccount("SAVING");
 //call accountType method of SavingAccount
 savingAccount.accountType();
 //get an object of CurrentAccount and call its accountType()
 method.
 Account currentAccount = accountFactory.getAccount("CURRENT");
 //call accountType method of CurrentAccount
 currentAccount.accountType();
 }
 }

Overview of GOF Design Patterns - Core Design Patterns

[53]

You can test this file and see the output on the console:

Now that we've seen the abstract Factory design pattern, let's turn to a different variant of
it-the singleton design pattern.

Singleton design pattern
Ensure a class has only one instance and provide a global point of access to it - GOF
Design Patterns

The Singleton pattern is a creational design pattern, it is one of the simplest design patterns
in Java. According to the singleton design pattern, the class provides the same single object
for each call--that is, it is restricting the instantiation of a class to one object and provides a
global point of access to that class. So the class is responsible for creating an object and also
ensures that only a single object should be created for each client call for this object. This
class doesn't allow a direct instantiation of an object of this class. It allows you to get an
object instance only by an exposed static method.

This is useful when exactly one object is needed to coordinate actions across the system.
You can create a single pattern using two forms, as listed here:

Early instantiation: Creation of instance at load time
Lazy instantiation: Creation of instance when required

Overview of GOF Design Patterns - Core Design Patterns

[54]

Benefits of the Singleton pattern:

It provides controller access to crucial (usually heavy object) classes, such as the
connection class for DB and the SessionFactory class in hibernate
It saves heaps of memory
It is a very efficient design for multithreaded environments
It is more flexible because the class controls the instantiation process, and the
class has the flexibility to change the instantiation process
It has low latency

Common problems where you should apply Singleton
pattern
The Singleton pattern solves only one problem--if you have a resource that can only have a
single instance, and you need to manage that single instance, then you need a singleton.
Normally, if you want to create a database connection with the given configuration in the
distributed and multithread environment, it might be the case that every thread can create a
new database connection with a different configuration object, if you don't follow the
singleton design. With the Singleton pattern, each thread gets the same database connection
object with the same configuration object across the system. It is mostly used in
multithreaded and database applications. It is used in logging, caching, thread pools,
configuration settings, and so on.

Singleton design pattern implementation in the Spring
Framework
The Spring Framework provides a Singleton scoped bean as a singleton pattern. It is similar
to the singleton pattern, but it's not exactly the same as the Singleton pattern in Java.
According to the Singleton pattern, a scoped bean in the Spring Framework means a single
bean instance per container and per bean. If you define one bean for a particular class in a
single Spring container, then the Spring container creates one and only one instance of the
class defined by that bean definition.

Let's create a sample application of the singleton design pattern.

Overview of GOF Design Patterns - Core Design Patterns

[55]

Sample implementation of the Singleton design pattern
In the following code example, I will be creating a class with a method to create an instance
of this class if one does not exist. If the instance is already present, then it will simply return
the reference of that object. I have also taken thread safety into consideration, and so I have
used a synchronized block here before creating the object of that class.

Let's check out the UML diagram for the Singleton design pattern:

 package com.packt.patterninspring.chapter2.singleton.pattern;
 public class SingletonClass {
 private static SingletonClass instance = null;
 private SingletonClass() {
 }
 public static SingletonClass getInstance() {
 if (instance == null) {
 synchronized(SingletonClass.class){
 if (instance == null) {
 instance = new SingletonClass();
 }
 }
 }
 return instance;
 }
 }
 }

One thing to be noted in the preceding code is that I have written a private constructor of
the SingletonClass class to make sure that there is no way to create the object of that
class. This example is based on lazy initialization, which means that the program creates an
instance on demand the first time. So you could also eagerly instantiate the object to
improve the runtime performance of your application. Let's see the same SingletonClass
with eager initialization:

 package com.packt.patterninspring.chapter2.singleton.pattern;
 public class SingletonClass {
 private static final SingletonClass INSTANCE =
 new SingletonClass();
 private SingletonClass() {}
 public static SingletonClass getInstance() {
 return INSTANCE;
 }
 }

Now that we've seen the singleton design pattern, let's turn to a different variant of it--the
Prototype design pattern.

Overview of GOF Design Patterns - Core Design Patterns

[56]

Prototype design pattern
Specify the kind of objects to create using a prototypical instance, and create new objects by
copying this prototype. - GOF Design Patterns

The Prototype pattern comes under the creational design pattern family of GOF patterns in
software development. This pattern is used to create the objects by using a clone method of
objects. It is determined by a prototypical instance. In the enterprise application, object
creation is costly in terms of creating and initializing the initial properties of objects. If such
a type of object is already in your hand, then you go for the prototype pattern; you just copy
an existing similar object instead of creating it, which is time-consuming.

This pattern involves implementing a prototype interface, it creates a clone of the current
object. This pattern is used when the direct creation of the object is costly. For example, say
that an object is to be created after a costly database operation. We can cache the object,
returns its clone on the next request, and update the database as and when it is needed, thus
reducing database calls.

Benefits of the Prototype design pattern
The following list shows the benefits of using the Prototype pattern:

Reduces the time to create the time-consuming objects by using the prototype
pattern
This pattern reduces subclassing
This pattern adds and removes objects at runtime
This pattern configures the application with classes dynamically

Let's see the UML class structure of the Prototype design pattern.

Overview of GOF Design Patterns - Core Design Patterns

[57]

UML class structure
The following UML diagram shows all the components of the Prototype design pattern:

UML diagram for Prototype design pattern

Let's see these components as listed in following points:

Prototype: The Prototype is an interface. It is uses the clone method to create
instances of this interface type.

ConcretePrototype: This is a concrete class of the Prototype interface to
implement an operation to clone itself.

Client: This is a caller class to create a new object of a Prototype interface by
calling a clone method of the prototype interface.

Let's see a sample implementation of the prototype design pattern.

Overview of GOF Design Patterns - Core Design Patterns

[58]

Sample implementation of the Prototype design pattern
I am going to create an abstract Account class and concrete classes extending the Account
class. An AccountCache class is defined as a next step, which stores account objects in a
HashMap and returns their clone when requested. Create an abstract class implementing the
Clonable interface.

 package com.packt.patterninspring.chapter2.prototype.pattern;
 public abstract class Account implements Cloneable{
 abstract public void accountType();
 public Object clone() {
 Object clone = null;
 try {
 clone = super.clone();
 }
 catch (CloneNotSupportedException e) {
 e.printStackTrace();
 }
 return clone;
 }
 }

Now let's create concrete classes extending the preceding class:

Here's the CurrentAccount.java file:

 package com.packt.patterninspring.chapter2.prototype.pattern;
 public class CurrentAccount extends Account {
 @Override
 public void accountType() {
 System.out.println("CURRENT ACCOUNT");
 }
 }

Here's how SavingAccount.java should look:

 package com.packt.patterninspring.chapter2.prototype.pattern;
 public class SavingAccount extends Account{
 @Override
 public void accountType() {
 System.out.println("SAVING ACCOUNT");
 }
 }

Overview of GOF Design Patterns - Core Design Patterns

[59]

Let's create a class to get concrete classes in the AccountCache.java file:

 package com.packt.patterninspring.chapter2.prototype.pattern;
 import java.util.HashMap;
 import java.util.Map;
 public class AccountCache {
 public static Map<String, Account> accountCacheMap =
 new HashMap<>();
 static{
 Account currentAccount = new CurrentAccount();
 Account savingAccount = new SavingAccount();
 accountCacheMap.put("SAVING", savingAccount);
 accountCacheMap.put("CURRENT", currentAccount);
 }
 }

PrototypePatternMain.java is a demo class that we will use to test the design pattern
AccountCache to get the Account object by passing a piece of information, such as the
type, and then call the clone() method:

 package com.packt.patterninspring.chapter2.prototype
 .pattern;
 public class PrototypePatternMain {
 public static void main(String[] args) {
 Account currentAccount = (Account)
 AccountCache.accountCacheMap.get("CURRENT").clone();
 currentAccount.accountType();
 Account savingAccount = (Account)
 AccountCache.accountCacheMap.get("SAVING") .clone();
 savingAccount.accountType();
 }
 }

We've covered this so far and it's good. Now let's look at the next design pattern.

Overview of GOF Design Patterns - Core Design Patterns

[60]

Builder design pattern
Separate the construction of a complex object from its representation so that the same
construction process can create different representations. - GOF Design Patterns

The Builder design pattern is used to construct a complex object step by step, and finally it
will return the complete object. The logic and process of object creation should be generic so
that you can use it to create different concrete implementations of the same object type. This
pattern simplifies the construction of complex objects and it hides the details of the object's
construction from the client caller code. When you are using this pattern, remember you
have to build it one step at a time, which means you have to break the object construction
login into multiple phases, unlike other patterns, such as the abstract factory and the factory
method pattern, which the object in a single step.

Benefits of the Builder pattern:
This pattern provides you with complete isolation between the construction and
representation of an object
This pattern allows you to construct the object in multiple phases, so you have
greater control over the construction process
This pattern provides the flexibility to vary an object's internal representation

UML class structure
The following UML diagram shows all the components of the Builder design pattern:

Overview of GOF Design Patterns - Core Design Patterns

[61]

UML diagram for the Builder design pattern:

Builder (AccountBuilder): This is an abstract class or interface for creating the
details of an Account object.

ConcreteBuilder: This is an implementation to construct and assemble details of
the account by implementing the Builder interface.

Director: This constructs an object using the Builder interface.

Product (Account): This represents the complex object under construction.
AccountBuilder builds the account's internal representation and defines the
process by which it's assembled.

Implementing the Builder pattern in the Spring
Framework
The Spring Framework implements the Builder design pattern transparently in some
functionalities. The following classes are based on the Builder design pattern in the Spring
Framework:

EmbeddedDatabaseBuilder

AuthenticationManagerBuilder

UriComponentsBuilder

BeanDefinitionBuilder

MockMvcWebClientBuilder

Common problems where you should apply Builder
pattern
In an enterprise application, you can apply the Builder pattern where the object creation has
been done by using multiple steps. In each step, you do a portion of the process. In this
process, you set some required parameters and some optional parameters, and after the
final step, you will get a complex object.

The Builder pattern is an object creation software design pattern. The intention is to abstract
the steps of construction so that different implementations of these steps can construct
different representations of objects. Often, the Builder pattern is used to build products in
accordance with the composite pattern.

Overview of GOF Design Patterns - Core Design Patterns

[62]

Sample implementation of the Builder design pattern
In the following code example, I am going to create an Account class that has
AccountBuilder as an inner class. The AccountBuilder class has a method to create an
instance of this class:

 package com.packt.patterninspring.chapter2.builder.pattern;
 public class Account {
 private String accountName;
 private Long accountNumber;
 private String accountHolder;
 private double balance;
 private String type;
 private double interest;
 private Account(AccountBuilder accountBuilder) {
 super();
 this.accountName = accountBuilder.accountName;
 this.accountNumber = accountBuilder.accountNumber;
 this.accountHolder = accountBuilder.accountHolder;
 this.balance = accountBuilder.balance;
 this.type = accountBuilder.type;
 this.interest = accountBuilder.interest;
 }
 //setters and getters
 public static class AccountBuilder {
 private final String accountName;
 private final Long accountNumber;
 private final String accountHolder;
 private double balance;
 private String type;
 private double interest;
 public AccountBuilder(String accountName,
 String accountHolder, Long accountNumber) {
 this.accountName = accountName;
 this.accountHolder = accountHolder;
 this.accountNumber = accountNumber;
 }
 public AccountBuilder balance(double balance) {
 this.balance = balance;
 return this;
 }
 public AccountBuilder type(String type) {
 this.type = type;
 return this;
 }
 public AccountBuilder interest(double interest) {
 this.interest = interest;
 return this;

Overview of GOF Design Patterns - Core Design Patterns

[63]

 }
 public Account build() {
 Account user = new Account(this);
 return user;
 }
 }
 public String toString() {
 return "Account [accountName=" + accountName + ",
 accountNumber=" + accountNumber + ", accountHolder="
 + accountHolder + ", balance=" + balance + ", type="
 + type + ", interest=" + interest + "]";
 }
 }

AccountBuilderTest.java is a demo class that we will use to test the design pattern.
Let's look at how to build an Account object by passing the initial information to the object:

 package com.packt.patterninspring.chapter2.builder.pattern;
 public class AccountBuilderTest {
 public static void main(String[] args) {
 Account account = new Account.AccountBuilder("Saving
 Account", "Dinesh Rajput", 1111l)
 .balance(38458.32)
 .interest(4.5)
 .type("SAVING")
 .build();
 System.out.println(account);
 }
 }

You can test this file and see the output on the console:

Now, we've seen the Builder design pattern. In the upcoming Chapter 3, Consideration of
Structural and Behavioural Patterns, I will explore another part of the GOF Design Patterns
family.

Overview of GOF Design Patterns - Core Design Patterns

[64]

Summary
After reading this chapter, the reader should now have a good idea about the overview of
GOF creational design patterns and its best practices. I highlighted the problems that come
from not using design patterns in enterprise application development, and how Spring
solves these problems by using the creational design patterns and good practices in the
application. In this chapter, I have mentioned only one of the Creational Design pattern
categories out of the three main categories of the GOF Design Patterns. The Creational
design pattern is used for the creation of object instances, and also applies constraints at the
creation time in the enterprise application in a specific manner using the Factory, Abstract
Factory, Builder, Prototype, and Singleton patterns. In the next chapter, we will look at the
other categories of the GOF Design Patterns-the structural design pattern and the
behavioral design pattern. The structural design pattern is used to design the structure of an
enterprise application by dealing with the composition of classes or objects so that it
reduces the application's complexity and improves the reusability and performance of the
application. The Adapter Pattern, Bridge Pattern, Composite Pattern, Decorator Pattern,
Facade Pattern, and Flyweight Pattern come under this category of the pattern. The
Behavioral design pattern characterizes the ways in which classes or objects interact and
distribute responsibility. The patterns that come under this category are specifically
concerned with communication between objects. Let's move to complete the remaining GOF
patterns in the next chapter.

3
Consideration of Structural and

Behavioral Patterns
You have seen implementations and examples of the creational design pattern from the
GOF pattern family in Chapter 2, Overview of GOF Design Patterns - Core Design Patterns.
Now, in this chapter, you'll be given an overview of other parts of GOF Design Patterns,
they are the structural and behavioral design patterns, including some best practices for
application design. You'll also get an overview of common problem solving with these
design patterns.

At the end of this chapter, you will understand how these design patterns provide the best
solution to address the design and development related issues in the object composition
and delegating responsibilities between the working objects in the application. You will get
information about how the Spring Framework implements the structural and behavioral
designs pattern internally to provide best enterprise solutions.

This chapter will cover the following points:

Implementing the structural design patterns
Implementing the behavioral design patterns
J2EE design patterns

Consideration of Structural and Behavioral Patterns

[66]

Examining the core design patterns
Let's continue our journey into the core design patterns:

Structural design pattern: Patterns under this category deal with the composition
of classes or objects. In the enterprise application, there are two common
techniques for reusing functionality in object-oriented systems as follows:

Inheritance: It is used to inherit commonly used states and
behaviors from other classes.
Composition: It is used to compose the other objects as instance
variables of classes. It defines ways to compose objects to obtain
new functionalities.

Behavioral design pattern: Patterns under this category characterize the ways in
which classes or objects interact with and distribute responsibility. These patterns
define the methods of communication between the objects in the enterprise
application. So here, you will learn how to use behavioral patterns to reduce
complicated flow control. Furthermore, you will use behavioral patterns to
encapsulate algorithms and dynamically select them at runtime.

Structural design patterns
In the previous section, we discussed creational design patterns and how they provide the
best solutions for object creation according to business demands. Creational design patterns
only provide a solution for creating objects in the application with how these objects merge
with each other in the application for a specific business goal, the structural design pattern
comes into the picture. In this chapter, we will be exploring structural patterns, and how
these patterns are useful to define the relationship between the objects either using
inheritance or composition for larger structures of an application. Structural patterns allow
you to solve many problems related to structuring the relationship between the objects.
They show you how to glue different parts of a system together in a flexible and extensible
fashion. Structural patterns help you guarantee that when one of the parts changes, the
entire structure does not need to change; in a car you could replace the tyres with different
vendors without impacting the other parts of that car. They also show you how to recast
parts of the system that do not fit (but that you need to use) into parts that do fit.

Consideration of Structural and Behavioral Patterns

[67]

The adapter design pattern
Convert the interface of a class into another interface clients expect. Adapter lets classes
work together that couldn't otherwise because of incompatible interfaces.
-GoF Design Patterns: Elements of Reusable Object-Oriented Software

Adapter design patterns come under the structural design pattern, according to this design
pattern two incompatible classes work together that couldn't otherwise because of
incompatible interfaces. This pattern works as a bridge between two incompatible
interfaces. This pattern is used when two inferences of the application are incompatible in
their functionalities, but these functionalities need to be integrated as a business
requirement.

There are many real-life examples where we can use the adapter pattern. Suppose you have
different types of electric plugs such as cylindrical and rectangular plugs, as shown in the
following figure. You can use an adapter in between to fit a rectangular plug in a cylindrical
socket assuming voltage requirements are met:

Benefits of the adapter pattern
Let's look at the following benefits of using the adapter design pattern in the application.

The adapter pattern allows you to communicate and interact with two or more
incompatible objects
This pattern promotes the reusability of older existing functionalities in your
application

Consideration of Structural and Behavioral Patterns

[68]

Common requirements for the adapter pattern
The following are the common requirements for this design pattern to addresses the design
problems:

If you are to use this pattern in your application, there is a need to use an existing
class with an incompatible interface.
Another use of this pattern in your application is when you want to create a
reusable class that collaborates with classes that have incompatible interfaces.
There are several existing subclasses to be used, but it's impractical to adapt their
interface by sub classing each one. An object adapter can adapt the interface of its
parent class.

Let's see how Spring implements the adapter design pattern internally.

Implementation of the adapter design pattern in the Spring Framework
Spring Framework uses the adapter design pattern to implement a lot of functionality
across the framework transparently. The following are some listed classes based on the
adapter design pattern in the Spring Framework:

JpaVendorAdapter

HibernateJpaVendorAdapter

HandlerInterceptorAdapter

MessageListenerAdapter

SpringContextResourceAdapter

ClassPreProcessorAgentAdapter

RequestMappingHandlerAdapter

AnnotationMethodHandlerAdapter

WebMvcConfigurerAdapter

The UML diagram for the adapter pattern

Let's understand the preceding UML diagram that illustrates the components of the adapter
design pattern:

Consideration of Structural and Behavioral Patterns

[69]

The Target Interface: This is the desired interface class that will be used by the
clients
The Adapter class: This class is a wrapper class that implements the desired
target interface and modifies the specific request available from the Adaptee class
The Adaptee class: This is the class that is used by the Adapter class to reuse the
existing functionalities and modify them for desired use
Client: This class will interact with the Adapter class

Let's look at the following sample implementation of the adapter design pattern.

Sample implementation of the adapter design pattern
I am going to create an example that shows the actual demonstration of the adapter design
pattern, so let's discuss this example, I am creating this example based on making payment
through a payment gateway. Suppose I have one old payment gateway and also have the
latest advanced payment gateway, and both gateways are unrelated to each other, so my
requirement is, I want to migrate from the old payment gateway to an advanced payment
gateway while changing my existing source code. I am creating an adapter class to solve
this problem. This adapter class is working as a bridge between two different payment
gateways, let's look at the following code:

Consideration of Structural and Behavioral Patterns

[70]

Let's now create an interface for the old payment gateway:

 package com.packt.patterninspring.chapter3.adapter.pattern;
 import com.packt.patterninspring.chapter3.model.Account;
 public interface PaymentGateway {
 void doPayment(Account account1, Account account2);
 }

Let's now create an implementation class for the old payment gateway
PaymentGateway.java:

 package com.packt.patterninspring.chapter3.adapter.pattern;
 import com.packt.patterninspring.chapter3.model.Account;
 public class PaymentGatewayImpl implements PaymentGateway{
 @Override
 public void doPayment(Account account1, Account account2){
 System.out.println("Do payment using Payment Gateway");
 }
 }

The following interface and its implementation have new and advanced functionalities for
the payment gateway:

 package com.packt.patterninspring.chapter3.adapter.pattern;
 public interface AdvancedPayGateway {
 void makePayment(String mobile1, String mobile2);
 }

Let's now create an implementation class for the advance payment gateway interface:

 package com.packt.patterninspring.chapter3.adapter.pattern;
 import com.packt.patterninspring.chapter3.model.Account;
 public class AdvancedPaymentGatewayAdapter implements
 AdvancedPayGateway{
 private PaymentGateway paymentGateway;
 public AdvancedPaymentGatewayAdapter(PaymentGateway
 paymentGateway) {
 this.paymentGateway = paymentGateway;
 }
 public void makePayment(String mobile1, String mobile2) {
 Account account1 = null;//get account number by
 mobile number mobile
 Account account2 = null;//get account number by
 mobile number mobile
 paymentGateway.doPayment(account1, account2);
 }
 }

Consideration of Structural and Behavioral Patterns

[71]

Let's see a demo class for this pattern as follows:

 package com.packt.patterninspring.chapter3.adapter.pattern;
 public class AdapterPatternMain {
 public static void main(String[] args) {
 PaymentGateway paymentGateway = new PaymentGatewayImpl();
 AdvancedPayGateway advancedPayGateway = new
 AdvancedPaymentGatewayAdapter(paymentGateway);
 String mobile1 = null;
 String mobile2 = null;
 advancedPayGateway.makePayment(mobile1, mobile2);
 }
 }

In the preceding class, we have the old payment gateway object as the PaymentGateway
interface, but we convert this old payment gateway implementation to the advanced form
of the payment gateway by using the AdvancedPaymentGatewayAdapter adapter class.
Let's run this demo class and see the output as follows:

Now that we've seen the adapter design pattern, let's turn to a different variant of it--the
Bridge design pattern.

The Bridge design pattern
Decouple an abstraction from its implementation so that the two can vary independently
- GoF Design Patterns: Elements of Reusable Object-Oriented Software

In software engineering, one of the most popular notions is preferred composition over
inheritance. Bridge design pattern promotes this popular notion. Similar to the adapter
pattern, this pattern also comes under the structural design pattern family of the GoF
Design Pattern. The approach of the Bridge pattern is to decouple an abstraction used by
the client code from its implementation; that means it separates the abstraction and its
implementation in to separate class hierarchies. And also, Bridge pattern prefers
composition over inheritance because inheritance isn't always flexible and it breaks the
encapsulation, so any change made in the implementer affects the abstraction used by the
client code.

Consideration of Structural and Behavioral Patterns

[72]

The bridge provides a way to communicate between two different independent
components in software development, and a bridge structure provides you with a way to
decouple the abstract class and the implementer class. So any change made in either the
implementation class or the implementer (that is, the interface) doesn't affect the abstract
class or its refined abstraction class. It makes this possible by using composition between
the interface and the abstraction. Bridge pattern uses an interface as a bridge between the
concrete classes of an abstract class and implementing classes of that interface. You can
make changes in both types of class without any impact on the client code.

Benefits of the Bridge pattern
Following are the benefits of the Bridge design pattern:

The Bridge design pattern allows you to separate the implementation and the
abstraction
This design pattern provides the flexibility to change both types of classes
without side effects in the client code
This design pattern allows the hiding of actual implementation details from the
client by using abstraction between them

Common problems solved by the Bridge design pattern
Following are the common problems addressed by the Bridge design pattern:

Removes a permanent binding between the functional abstraction and its
implementation
You can make changes to the implementing classes without affecting the
abstraction and client code
You can extend the abstraction and its implementation using subclasses

Implementing the Bridge design pattern in the Spring Framework
The following Spring modules are based on the Bridge design pattern:

ViewRendererServlet: It is a bridge servlet, mainly for Portlet MVC support
The Bridge design pattern: The Bridge design pattern is used in the Spring
logging process

Let's see a sample implementation of the Bridge design pattern.

Consideration of Structural and Behavioral Patterns

[73]

Sample implementation of the Bridge design pattern
Let's look at the following example, where we will demonstrate the use of the Bridge design
pattern. Suppose you want to open two types of accounts, one is a Savings Account and the
other is a Current Account in the banking system.

System without using the Bridge design pattern

Let's look at an example without using the Bridge design pattern. In the following figure,
you can see the relationship between the Bank and Account interfaces:

System without using the Bridge design pattern

Let's create a design without using the Bridge design pattern. First create an interface or an
abstract class, Bank. And then create its derived classes: IciciBank and HdfcBank. To open
an account in the bank, first decide on the types of account classes--Saving Account and
Current Account, these classes extend the specific banks classes (HdfcBank and IciciBank).
There is a simple deep inheritance hierarchy in this application. So what is wrong with this
design as compared to the preceding figure? You will notice that in this design, there are
two parts, one is the abstraction part and the other is the implementation part. Client code
interacts with the abstraction part. Client code can only access new changes or new
functionalities of the implementation part when you will update the abstraction part,
meaning the parts, the abstraction, and the implementation, are tightly coupled with each
other.

Consideration of Structural and Behavioral Patterns

[74]

Now let's see how to improve this example using the Bridge design pattern:

System with the Bridge design pattern

In the following figure, we create a relation between the Bank and Account interface by
using the Bridge design pattern:

System using Bridge Design Pattern

UML structure for the Bridge design pattern

Let's look at the following figure of how the Bridge design pattern solves these design
issues, as seen in the example where we did not use the Bridge design pattern. Bridge
pattern separates the abstraction and implementation into two class hierarchies:

UML for Bridge design pattern

We have an Account interface that is acting as a bridge implementer and the concrete
classes SavingAccount, and CurrentAccount implementing the Account interface. The
Bank is an abstract class and it will use object of Account.

Consideration of Structural and Behavioral Patterns

[75]

Let's create a bridge implementer interface.

Following is the Account.java file:

 package com.packt.patterninspring.chapter3.bridge.pattern;
 public interface Account {
 Account openAccount();
 void accountType();
 }

Create concrete bridge implementer classes to implement the implementer interface. Let's
create a SavingAccount class as an implementation of Account.

Following is the SavingAccount.java file:

 package com.packt.patterninspring.chapter3.bridge.pattern;
 public class SavingAccount implements Account {
 @Override
 public Account openAccount() {
 System.out.println("OPENED: SAVING ACCOUNT ");
 return new SavingAccount();
 }
 @Override
 public void accountType() {
 System.out.println("##It is a SAVING Account##");
 }
 }

Create a CurrentAccount class that implements the Account interface.

Following is the CurrentAccount.java file:

 package com.packt.patterninspring.chapter3.bridge.pattern;
 public class CurrentAccount implements Account {
 @Override
 public Account openAccount() {
 System.out.println("OPENED: CURRENT ACCOUNT ");
 return new CurrentAccount();
 }
 @Override
 public void accountType() {
 System.out.println("##It is a CURRENT Account##");
 }
 }

Consideration of Structural and Behavioral Patterns

[76]

Create abstraction in the Bridge design pattern, but first, create the interface Bank.

Following is the Bank.java file:

 package com.packt.patterninspring.chapter3.bridge.pattern;
 public abstract class Bank {
 //Composition with implementor
 protected Account account;
 public Bank(Account account){
 this.account = account;
 }
 abstract Account openAccount();
 }

Let's implement the first abstraction for the Bank interface and see the following
implementation class for the Bank interface.

Following is the IciciBank.java file:

 package com.packt.patterninspring.chapter3.bridge.pattern;
 public class IciciBank extends Bank {
 public IciciBank(Account account) {
 super(account);
 }
 @Override
 Account openAccount() {
 System.out.print("Open your account with ICICI Bank");
 return account;
 }
 }

Let's implement the second abstraction for the Bank interface and look at the following
implementation class for the Bank interface.

Following is the HdfcBank.java file:

 package com.packt.patterninspring.chapter3.bridge.pattern;
 public class HdfcBank extends Bank {
 public HdfcBank(Account account) {
 super(account);
 }
 @Override
 Account openAccount() {
 System.out.print("Open your account with HDFC Bank");
 return account;
 }
 }

Consideration of Structural and Behavioral Patterns

[77]

Create a demonstration class of the Bridge design pattern.

Following is the BridgePatternMain.java file:

 package com.packt.patterninspring.chapter3.bridge.pattern;
 public class BridgePatternMain {
 public static void main(String[] args) {
 Bank icici = new IciciBank(new CurrentAccount());
 Account current = icici.openAccount();
 current.accountType();
 Bank hdfc = new HdfcBank(new SavingAccount());
 Account saving = hdfc.openAccount();
 saving.accountType();
 }
 }

Let's run this demo class and see the following output in the console:

Now that we've seen the Bridge design pattern, let's turn to a different variant of it--the
composite design pattern.

Composite design pattern
Compose objects into tree structures to represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions of objects uniformly.
-GoF Design Patterns

In software engineering, the composite pattern comes under the structural design pattern.
According to this pattern, a group of objects of the same type are treated as a single object
by the client. The idea behind the Composite design pattern is to compose a set of objects
into a tree structure to represent a module of a larger structural application. And this
structure for clients is a single unit or instance uniformly.

Consideration of Structural and Behavioral Patterns

[78]

The motivation behind the Composite design pattern is that objects in the system are
grouped into the tree structure, and a tree structure is a combination of the node-leaf and
branches. In the tree structure, nodes have a number of leaves and other nodes. Leaf doesn't
have anything, which means there is no child of leaf in the tree. Leaf is treated as the end
point of tree-structured data.

Let's look at the following figure, which represents data in the tree structure in the form of
node and leaf:

Tree structured data using nodes and leaves

Common problems solved by the composite pattern
As a developer, it is more difficult to design an application so that the client can access your
objects uniformly across the application, even if that object was a composition of objects or
an individual object. This design pattern resolves difficulties and allows you to design
objects in such a way that you can use that object as a composition of objects and a single
individual object.

This pattern solves the challenges faced when creating hierarchical tree structures to
provide clients with a uniform way to access and manipulate objects in the tree. The
composite pattern is a good choice; it is less complex in this situation to treat primitives and
composites as homogeneous.

UML structure of the Composite design pattern
Composite design pattern is based on the composition of similar types of objects into the
tree structure, as you know that each tree has three main parts branch, node, and leaf. So
let's have a look at the following terms used in this design pattern.

Consideration of Structural and Behavioral Patterns

[79]

Component: It is basically a branch of the tree and the branch has other branches, nodes,
and leaves. Component provides the abstraction for all components, including composite
objects. In the composition pattern, component is basically declared as an interface for
objects.

Leaf: It is an object that implements all component methods.

Composite: It is represented as a node in the tree structure, it has other nodes and leaves,
and it represents a composite component. It has methods to add the children, that is, it
represents a collection of the same type of objects. It has other component methods for its
children.

Let's look at the following UML diagram for this design pattern:

UML diagram for the Composite Design Pattern

Benefits of the Composite design pattern

This pattern provides the flexibility to add new component to process
dynamically, with change in the existing components
This pattern allows you to create a class hierarchy that contains individual and
composite objects

Consideration of Structural and Behavioral Patterns

[80]

Sample implementation of the Composite design pattern
In the following example, I am implementing an Account interface, which can be either a
SavingAccount and CurrentAccount or a composition of several accounts. I have a
CompositeBankAccount class, which acts as a composite pattern actor class. Let's look at
the following code for this example.

Create an Account interface that will be treated as a component:

 public interface Account {
 void accountType();
 }

Create a SavingAccount class and CurrentAccount class as an implementation of the
component and that will also be treated as a leaf:

Following is the SavingAccount.java file:

 public class SavingAccount implements Account{
 @Override
 public void accountType() {
 System.out.println("SAVING ACCOUNT");
 }
 }

Following is the CurrentAccount.java file:

 public class CurrentAccount implements Account {
 @Override
 public void accountType() {
 System.out.println("CURRENT ACCOUNT");
 }
 }

Create a CompositeBankAccount class that will be treated as a Composite and implements
the Account interface:

Following is the CompositeBankAccount.java file:

 package com.packt.patterninspring.chapter3.composite.pattern;
 import java.util.ArrayList;
 import java.util.List;
 import com.packt.patterninspring.chapter3.model.Account;
 public class CompositeBankAccount implements Account {
 //Collection of child accounts.
 private List<Account> childAccounts = new ArrayList<Account>();
 @Override

Consideration of Structural and Behavioral Patterns

[81]

 public void accountType() {
 for (Account account : childAccounts) {
 account.accountType();
 }
 }
 //Adds the account to the composition.
 public void add(Account account) {
 childAccounts.add(account);
 }
 //Removes the account from the composition.
 public void remove(Account account) {
 childAccounts.remove(account);
 }
 }

Create a CompositePatternMain class that will also be treated as a Client:

Following is the CompositePatternMain.java file:

 package com.packt.patterninspring.chapter3.composite.pattern;
 import com.packt.patterninspring.chapter3.model.CurrentAccount;
 import com.packt.patterninspring.chapter3.model.SavingAccount;
 public class CompositePatternMain {
 public static void main(String[] args) {
 //Saving Accounts
 SavingAccount savingAccount1 = new SavingAccount();
 SavingAccount savingAccount2 = new SavingAccount();
 //Current Account
 CurrentAccount currentAccount1 = new CurrentAccount();
 CurrentAccount currentAccount2 = new CurrentAccount();
 //Composite Bank Account
 CompositeBankAccount compositeBankAccount1 = new
 CompositeBankAccount();
 CompositeBankAccount compositeBankAccount2 = new
 CompositeBankAccount();
 CompositeBankAccount compositeBankAccount = new
 CompositeBankAccount();
 //Composing the bank accounts
 compositeBankAccount1.add(savingAccount1);
 compositeBankAccount1.add(currentAccount1);
 compositeBankAccount2.add(currentAccount2);
 compositeBankAccount2.add(savingAccount2);
 compositeBankAccount.add(compositeBankAccount2);
 compositeBankAccount.add(compositeBankAccount1);
 compositeBankAccount.accountType();
 }
 }

Consideration of Structural and Behavioral Patterns

[82]

Let's run this demo class and see the following output at the console:

Now that we have discussed the composite design pattern, let's turn to the decorator design
pattern.

Decorator design pattern
Attach additional responsibilities to an object dynamically. Decorators provide a flexible
alternative to sub classing for extending functionality.
- GOF Design Pattern

In software engineering, the common intent of all GOF structural patterns is to simplify the
complex relationship between objects and classes in a flexible enterprise application. The
decorator pattern is a special type of design pattern among these that comes under the
structural design pattern, which allows you to add and remove behaviors for an individual
object at runtime dynamically or statically, without changing the existing behavior of other
associated objects from the same class. This design pattern does this without violating the
Single Responsibility Principle or the SOLID principle of object-oriented programming.

This design pattern uses the compositions over the inheritance for objects associations; it
allows you to divide the functionality into different concrete classes with a unique area of
concern.

Benefits of the Decorator design pattern

This pattern allows you to extend functionality dynamically and statically
without altering the structure of existing objects
By using this pattern, you could add a new responsibility to an object
dynamically
This pattern is also known as Wrapper

Consideration of Structural and Behavioral Patterns

[83]

This pattern uses the compositions for object relationships to maintain SOLID
principles
This pattern simplifies coding by writing new classes for every new specific
functionality rather than changing the existing code of your application

Common problems solved by the Decorator pattern
In an enterprise application, there is a business requirement or there might be a future plan
to extend the behavior of the product by adding new functionalities. To achieve this, you
could use inheritance to extend the behavior of an object. But inheritance should be done at
compile time and methods are also available for other instances of that class. Because of the
code modification, there is a violation of the Open Closed Principle. To avoid this violation
of the SOLID principle, you can attach new responsibility to an object dynamically. This is
the situation where the decorator design pattern comes into the picture and addresses this
issue in a very flexible way. Let's look at the following example of how to implement this
design pattern into a real case study.

Consider that a bank offers multiple accounts with different benefits to customers. It
divides the customers into three categories--senior citizens, privileged, and young. The
bank launches a scheme on the savings account for senior citizens--if they open a savings
account in this bank, they will be provided medical insurance of up to $1,000. Similarly, the
bank also provides a scheme for the privileged customers as an accident insurance of up to
$1,600 and an overdraft facility of $84. There is no scheme for the young.

To address the new requirement, we can add new subclasses of SavingAccount; one each
to represent a saving account with additional benefits as decoration, and this is what our
design looks like now:

Application design with inheritance without using the Decorator Design Pattern

Consideration of Structural and Behavioral Patterns

[84]

This design will be very complex as I will add more benefit schemes to the SavingAccount,
but what would happen when the bank launches the same scheme for CurrentAccount?
Clearly, this design is flawed, but this is an ideal use case for the decorator pattern. This
pattern allows you to add runtime dynamic behavior. In this case, I will create an abstract
AccountDecorator class to implement Account. And furthermore, I will create the
SeniorCitizen class and Privilege class, which extends AccountDecorator because young
does not have any extra benefits, so the SavingAccount class does not extend
AccountDecorator. This is how the design will be:

Application design with composition using the decorator design pattern

The preceding figure follows the Decorator design pattern by creating AccountDecorator as
a Decorator in this pattern, and focuses on important things to observe the relationship
between Account and AccountDecorator. This relationship is as follows:

Is-a relationship between the AccountDecorator and Account, that is,
inheritance for the correct type
Has-a relationship between the AccountDecorator and Account, that is,
composition in order to add new behavior without changing the existing code

Consideration of Structural and Behavioral Patterns

[85]

Let's look at the UML structure:

UML for the Decorator design pattern

The classes and objects participating in this pattern are:

Component (Account): It is an interface for objects that can have responsibilities
added to them dynamically
ConcreteComponent (SavingAccount): It is a concrete class of component
interface and it defines an object to which additional responsibilities can be
attached
Decorator (AccountDecorator): It has a reference to a Component object and
defines an interface that conforms to the interface of the component
ConcreteDecorator (SeniorCitizen and Privilege): It is a concrete
implementation of Decorator and it adds responsibilities to the component

Consideration of Structural and Behavioral Patterns

[86]

Implementing the Decorator pattern
Let's look at the following code to demonstrate the Decorator design pattern.

Create a component class:

Following is the Account.java file:

 package com.packt.patterninspring.chapter3.decorator.pattern;
 public interface Account {
 String getTotalBenefits();
 }

Create concrete components classes:

Following is the SavingAccount.java file:

 package com.packt.patterninspring.chapter3.decorator.pattern;
 public class SavingAccount implements Account {
 @Override
 public String getTotalBenefits() {
 return "This account has 4% interest rate with per day
 $5000 withdrawal limit";
 }
 }

Let's create another concrete class for Account component:

Following is the CurrentAccount.java file:

 package com.packt.patterninspring.chapter3.decorator.pattern;
 public class CurrentAccount implements Account {
 @Override
 public String getTotalBenefits() {
 return "There is no withdrawal limit for current account";
 }
 }

Let's create a Decorator class for Account component. This decorator class apply other run
time behavior to the Account component classes.

Following is the AccountDecorator.java file:

 package com.packt.patterninspring.chapter3.decorator.pattern;
 public abstract class AccountDecorator implements Account {
 abstract String applyOtherBenefits();
 }

Consideration of Structural and Behavioral Patterns

[87]

Let's create a ConcreteDecorator class to implement the AccountDecorator class.
Following class SeniorCitizen is extended AccountDecorator class to access other run
time behavior such as applyOtherBenefits().

Following is the SeniorCitizen.java file:

 package com.packt.patterninspring.chapter3.decorator.pattern;
 public class SeniorCitizen extends AccountDecorator {
 Account account;
 public SeniorCitizen(Account account) {
 super();
 this.account = account;
 }
 public String getTotalBenefits() {
 return account.getTotalBenefits() + " other benefits are
 "+applyOtherBenefits();
 }
 String applyOtherBenefits() {
 return " an medical insurance of up to $1,000 for Senior
 Citizen";
 }
 }

Let's create another ConcreteDecorator class to implement the AccountDecorator class.
Following class Privilege is extended AccountDecorator class to access other run time
behavior such as applyOtherBenefits().

Following is the Privilege.java file:

 package com.packt.patterninspring.chapter3.decorator.pattern;
 public class Privilege extends AccountDecorator {
 Account account;
 public Privilege(Account account) {
 this.account = account;
 }
 public String getTotalBenefits() {
 return account.getTotalBenefits() + " other benefits are
 "+applyOtherBenefits();
 }
 String applyOtherBenefits() {
 return " an accident insurance of up to $1,600 and
 an overdraft facility of $84";
 }
 }

Consideration of Structural and Behavioral Patterns

[88]

Let's now write some test code to see how the Decorator pattern works at runtime:

Following is the DecoratorPatternMain.java file:

 package com.packt.patterninspring.chapter3.decorator.pattern;
 public class DecoratorPatternMain {
 public static void main(String[] args) {
 /*Saving account with no decoration*/
 Account basicSavingAccount = new SavingAccount();
 System.out.println(basicSavingAccount.getTotalBenefits());
 /*Saving account with senior citizen benefits decoration*/
 Account seniorCitizenSavingAccount = new SavingAccount();
 seniorCitizenSavingAccount = new
 SeniorCitizen(seniorCitizenSavingAccount);
 System.out.println
 (seniorCitizenSavingAccount.getTotalBenefits());
 /*Saving account with privilege decoration*/
 Account privilegeCitizenSavingAccount = new SavingAccount();
 privilegeCitizenSavingAccount = new
 Privilege(privilegeCitizenSavingAccount);
 System.out.println
 (privilegeCitizenSavingAccount.getTotalBenefits());
 }
 }

Let's run this demo class and see the following output at the console:

Decorator design pattern in the Spring Framework
The Spring Framework uses the Decorator design pattern to build important functionalities
such as transactions, cache synchronization, and security-related tasks. Let's look at some
functionalities where Spring implements this pattern transparently:

Weaving the advice into the Spring application. It uses the Decorator pattern via
the CGLib proxy. It works by generating a subclass of the target class at runtime.
BeanDefinitionDecorator : It is used to decorate the bean definition via
applied custom attributes.
WebSocketHandlerDecorator: It is used to decorate a WebSocketHandler with
additional behaviors.

Consideration of Structural and Behavioral Patterns

[89]

Now let's turn to another GOF Design Pattern - Facade design pattern.

Facade Design Pattern
Provide a unified interface to a set of interfaces in a subsystem. Facade defines a higher-
level interface that makes the subsystem easier to use.
- GOF Design Patterns

The Facade design pattern is nothing but an interface of interfaces to simplify interactions
between the client code and subsystem classes. This design comes under the GOF structural
design pattern.

Benefits of Facade Pattern:

This pattern reduces the complexities for clients to interact with subsystems
This pattern consolidates all the business services as single interfaces to make
them more understandable
This pattern reduces dependencies of client code on the inner workings of a
system

Knowing when to use the Facade Pattern
Suppose you are designing a system, and this system has a very large number of
independent classes and also has a set of services to be implemented. This system is going
to be very complex, so the Facade pattern comes into the picture and reduces the
complexities of the larger system and simplifies interactions of the client code with a set of
classes from a subsystem of the large complex system.

Consideration of Structural and Behavioral Patterns

[90]

Suppose you want to develop a bank enterprise application with a large number of services
to perform a task, for example, AccountService for getting the Account by accountId,
PaymentService for payment gateway services, and TransferService for the amount
transfer from one account to another account. A client code of the application interacts with
all these services to transfer money from one account to another account. This is how
different clients interact with the amount transfer process of the bank system. As shown in
the following figure, here you can see client code that directly interacts with the subsystem
classes and client also should aware about the internal working of subsystem classes, so it is
simply a violation of the SOLID design principles because client code is tightly coupled
with the classes of subsystem of your banking application:

Banking Application Subsystem without Facade Design Pattern

Consideration of Structural and Behavioral Patterns

[91]

Rather than client code directly interacting with the classes of a subsystem, you could
introduce one more interface, which makes the subsystems easier to use, as shown in the
following figure. This interface is known as a Facade interface, it is based on the Facade
pattern, and it is a simple way to interact with the subsystems:

Banking Application Subsystem with Facade design pattern

Consideration of Structural and Behavioral Patterns

[92]

Implementing the Facade design pattern
Let's look into the following listings to demonstrate the Facade design pattern.

Create subsystem service classes for your Bank application: Let's see the following
PaymentService class for the subsystem.

Following is the PaymentService.java file:

 package com.packt.patterninspring.chapter3.facade.pattern;
 public class PaymentService {
 public static boolean doPayment(){
 return true;
 }
 }

Let's create another service class AccountService for the subsystem.

Following is the AccountService.java file:

 package com.packt.patterninspring.chapter3.facade.pattern;
 import com.packt.patterninspring.chapter3.model.Account;
 import com.packt.patterninspring.chapter3.model.SavingAccount;
 public class AccountService {
 public static Account getAccount(String accountId) {
 return new SavingAccount();
 }
 }

Let's create another service class TransferService for the subsystem.

Following is the TransferService.java file:

 package com.packt.patterninspring.chapter3.facade.pattern;
 import com.packt.patterninspring.chapter3.model.Account;
 public class TransferService {
 public static void transfer(int amount, Account fromAccount,
 Account toAccount) {
 System.out.println("Transfering Money");
 }
 }

Create a Facade Service class to interact with the subsystem: Let's see the following Facade
interface for the subsystem and then implement this Facade interface as a global banking
service in the application.

Consideration of Structural and Behavioral Patterns

[93]

Following is the BankingServiceFacade.java file:

 package com.packt.patterninspring.chapter3.facade.pattern;
 public interface BankingServiceFacade {
 void moneyTransfer();
 }

Following is the BankingServiceFacadeImpl.java file:

 package com.packt.patterninspring.chapter3.facade.pattern;
 import com.packt.patterninspring.chapter3.model.Account;
 public class BankingServiceFacadeImpl implements
 BankingServiceFacade{
 @Override
 public void moneyTransfer() {
 if(PaymentService.doPayment()){
 Account fromAccount = AccountService.getAccount("1");
 Account toAccount = AccountService.getAccount("2");
 TransferService.transfer(1000, fromAccount, toAccount);
 }
 }
 }

Create the client of the Facade:

Following is the FacadePatternClient.java file:

 package com.packt.patterninspring.chapter3.facade.pattern;
 public class FacadePatternClient {
 public static void main(String[] args) {
 BankingServiceFacade serviceFacade = new
 BankingServiceFacadeImpl();
 serviceFacade.moneyTransfer();
 }
 }

The UML structure for the Facade design pattern
The classes and objects participating in this pattern are:

Facade (BankingServiceFacade)

Consideration of Structural and Behavioral Patterns

[94]

This is a Facade interface that knows which subsystem classes are responsible for a request.
This interface is responsible for delegating client requests to appropriate subsystem objects.

Subsystem classes (AccountService, TransferService, PaymentService)

These interfaces are actually subsystem functionalities of the banking process system
application. These are responsible for handling processes assigned by the Facade object. No
interfaces in this category have a reference to the Facade object; they don't have
implementation details of Facade. These are totally independent of Facade objects.

Let's see the following UML diagram for this pattern:

UML diagram for Facade design pattern

Facade Pattern in the Spring Framework
In the enterprise application, if you are working in Spring applications, the facade pattern is
used commonly in the business service layer of the application to consolidate all services.
And you could also apply this pattern on DAOs on the persistent layer.

Now that we've seen the Facade design pattern, let's turn to a different variant of it--Proxy
design pattern.

Consideration of Structural and Behavioral Patterns

[95]

Proxy design pattern
Provide a surrogate or placeholder for another object to control access to it.
-GOF Design Patterns

Proxy design pattern provides an object of a class with the functionality of another class
with having it. This pattern comes under the structural design pattern of GOF Design
Patterns. The intent of this design pattern is to provide an alternate class for another class ,
along with its functionality, to the outside world.

Purpose of the Proxy pattern
Let's look at the following points:

This pattern hides the actual object from the outside world.
This pattern can improve the performance because it is creating an object on
demand.

UML structure for the Proxy design pattern
Let's see the following UML diagram for this pattern:

UML diagram for Proxy design pattern

Consideration of Structural and Behavioral Patterns

[96]

Now let's look at the different components of this UML diagram:

Subject: Actual interface to be implemented by Proxy and RealSubject.
RealSubject: Real implementation of Subject. It is a real object that represented
by the proxy.
Proxy: It is a proxy object and it is also the implementation of the real object
Subject. It maintains the references to the real object.

Implementing the Proxy design pattern
Let's look into following code to demonstrate the Proxy pattern.

Create a Subject.

Following is the Account.java file:

 public interface Account {
 void accountType();
 }

Create a RealSubject class that implements Subject, let's see the following class as
RealSubject class for the Proxy design pattern.

Following is the SavingAccount.java file:

 public class SavingAccount implements Account{
 public void accountType() {
 System.out.println("SAVING ACCOUNT");
 }
 }

Consideration of Structural and Behavioral Patterns

[97]

Create a Proxy class which implements Subject and having the Real Subject

Following is the ProxySavingAccount.java file:

 package com.packt.patterninspring.chapter2.proxy.pattern;
 import com.packt.patterninspring.chapter2.model.Account;
 import com.packt.patterninspring.chapter2.model.SavingAccount;
 public class ProxySavingAccount implements Account{
 private Account savingAccount;
 public void accountType() {
 if(savingAccount == null){
 savingAccount = new SavingAccount();
 }
 savingAccount.accountType();
 }
 }

Proxy pattern in the Spring Framework
Spring Framework uses the Proxy design pattern in the Spring AOP module transparently.
As I have discussed in Chapter 1, Getting Started with Spring Framework 5.0 and Design
Patterns. In Spring AOP, you create proxies of the object to apply cross cutting concern
across the point cut in the Spring application. In the Spring, other modules also implement
the Proxy pattern, such as RMI, Spring's HTTP Invoker, Hessian, and Burlap.

Let's see the next section about Behavioral design pattern with its underlying patterns and
example.

Behavioral design patterns
The intent of Behavioral design pattern is the interaction and cooperation between a set of
objects to perform a task that no single object can carry out by itself. The interaction
between the objects should be such that they should be loosely coupled. Patterns under this
category, characterize the ways in which classes or objects interact and distribute
responsibility. Let's see in the next sections, different variants of the Behavioral design
patterns.

Consideration of Structural and Behavioral Patterns

[98]

Chain of Responsibility design pattern
Avoid coupling the sender of a request to its receiver by giving more than one object a
chance to handle the request. Chain the receiving objects and pass the request along the
chain until an object handles it.
-GOF Design Patterns

Chain of responsibility design pattern comes under the Behavioral design pattern of GOF
patterns family. According to this pattern, sender and receiver of a request are decoupled.
The sender sends a request to the chain of receivers and any one of receivers in the chain
can handle the request. In this pattern, the receiver object has the reference of another
receiver object so that if it does not handle the request then it passes the same request to the
other receiver object.

For example, in a banking System, you could use any ATM to withdraw the money in any
place, so it is one of the live examples of the Chain of Responsibility design pattern.

There are following benefits of this pattern:

This pattern reduces the coupling between sender and receiver objects in the
system to handle a request.
This pattern is more flexible to assign the responsibility to another referenced
object.
This pattern makes a chain of objects using composition, and this set of objects
work as a single unit.

Let's see the following UML diagram showing all components of a chain of responsibility
design pattern:

UML Diagram for Chain of Responsibility design pattern

Consideration of Structural and Behavioral Patterns

[99]

Handler: This is an abstract class or interface in the system to handle request.
ConcreteHandler: These are concrete classes which implement Handler to
handle the request, or it passes same request to the next successor of the handler
chain.
Client: It is main application class to initiate the request to the handler objects on
the chain.

Chain of Responsibility pattern in the Spring Framework
Spring Security project implemented the Chain of Responsibility pattern in the Spring
Framework. Spring Security allows you to implement authentication and authorization
functionality in your application by using chains of security filters. This is a highly
configurable framework. You can add your custom filter with this chain of filters to
customize the functionality because of Chain of Responsibility design pattern.

Now that we've seen the Chain of responsibility design pattern, let's turn to a different
variant of it--Command design pattern.

Command design pattern
Encapsulate a request as an object, thereby letting you parameterize clients with different
requests, queue or log requests, and support undoable operations
-GOF Design Patterns

The Command design pattern falls under the Behavioral pattern family of the GOF patterns,
this pattern is a very simple data-driven pattern which allows you to encapsulate your
request data into an object and pass that object as a command to the invoker method, and it
return the command as another object to the caller.

The following lists the benefits of using the Command pattern:

This pattern enables you to transfer data as an object between the system
components sender and receiver.
This pattern allows you to parameterize objects by an action to perform.
You could easily add new commands in the system without changing existing
classes.

Consideration of Structural and Behavioral Patterns

[100]

Let's look at the following UML diagram showing all components of Command design
pattern:

UML Diagram for Command Design Pattern

Command: It is an interface or abstract class having an action to perform in the
system.

ConcreteCommand: It is a concrete implementation of the Command interface and
defining an action will be performed.

Client: This is a main class, it creates a ConcreteCommand object and sets its
receiver.

Invoker: It is a caller to invoke the request to carry the command object.

Receiver: It is simple handler method which performs the actual operation by
ConcreteCommand.

Command design pattern in the Spring Framework
Spring MVC has implemented the Command design pattern in the Spring Framework. In
your enterprise applications using the Spring Framework, you often see the concepts of the
Command pattern applied through the use of Command objects.

Now that we've seen Command design pattern, let's turn to a different variant of it--
Interpreter design pattern.

Consideration of Structural and Behavioral Patterns

[101]

Interpreter Design pattern
Given a language, define a representation for its grammar along with an interpreter that
uses the representation to interpret sentences in the language.
-GOF Design Pattern

Interpreter design pattern allows you to interpret an expression language in the
programming to define a representation for its grammar. This type of a pattern comes
under the Behavioral design pattern family of GOF patterns.

The following lists the benefits of using the Interpreter pattern:

This pattern allows you to change and extend the grammar easily.
Using the expression language is very easy

Let's see the following UML diagram is showing all components of Interpreter design
pattern:

UML diagram for Interpreter design pattern

AbstractExpression: It is an interface to execute a task by using interpret()
operation.
TerminalExpression: It is an implementation of above interface and it
implements interpret() operation for terminal expressions.

Consideration of Structural and Behavioral Patterns

[102]

NonterminalExpression: It is also an implementation of above interface and it
implements interpret() operation for non-terminal expressions.
Context: It is a String expression and contains information that is global to the
interpreter.
Client: It is the main class to invoke the Interpret operation.

Interpreter design pattern in the Spring Framework
In the Spring Framework, Interpreter pattern is used with the Spring Expression Language
(SpEL). Spring added this new feature from Spring 3.0, you can use it in your enterprise
application using the Spring Framework.

Now that we've seen Interpreter design pattern, let's turn to a different variant of it--Iterator
design pattern.

Iterator Design Pattern
Provide a way to access the elements of an aggregate object sequentially without Exposing
its underlying representation.
-GOF Design Pattern

This is a very commonly used design pattern in the programming language as like in Java.
This pattern comes from the Behavioral Design Pattern family of GOF pattern. This pattern
allows you to access the items from the collection object in sequence without information its
internal representation.

These are following benefits of the Iterator pattern:

Easily access the items of the collection.
You can use multiple to access the item from the collection because it support lot
of variations in the traversal.
It provides a uniform interface for traversing different structures in a collection.

Consideration of Structural and Behavioral Patterns

[103]

Let's see the following UML diagram is showing all components of Iterator design pattern:

UML Diagram for Iterator Design Pattern

Iterator: It is an interface or abstract class for accessing and traversing items of
the collections.
ConcreteIterator: It is an implementation of the Iterator interface.
Aggregate: It is an interface to create an Iterator object.
ConcreteAggregate: It is the implementation of the Aggregate interface, it
implements the Iterator creation interface to return an instance of the proper
ConcreteIterator.

Iterator design pattern in the Spring Framework
The Spring Framework also extends the Iterator pattern through the CompositeIterator
class. Mainly this pattern used in the Collection Framework of Java for iterating the
elements in sequence.

Now that we've seen Iterator design pattern, let's turn to a different variant of it--Observer
design pattern.

Consideration of Structural and Behavioral Patterns

[104]

Observer Design Pattern

Define a one-to-many dependency between objects so that when one object changes state,
all its dependents are notified and updated automatically
-GOF Design Pattern

Observer pattern is one of very common design pattern, This pattern is a part of the
Behavioral design pattern family of GOF pattern that addresses responsibilities of objects in
an application and how they communicate between them at runtime. According to this
pattern, sometimes objects make a one-to-many relationship between the objects in your
application, such that if one object is modified, it's notified to other dependent objects
automatically.

For example, Facebook post comments are one of the examples of the observer design
pattern. If you comment on a post of your friend then you are always notified by this post
whenever anyone else comments on the same post again.

The Observer pattern provides communication between decoupled objects. It makes a
relationship between objects mostly a one-to-many relationship. In this pattern, there is an
object which is known as the subject. Whenever there is any change in the state of this
subject, it will be notified to its list of dependents accordingly. This list of dependents is
known as observers. The following figure illustrates the Observer pattern:

Use case of the Observer design pattern

Consideration of Structural and Behavioral Patterns

[105]

There are following lists of the benefits of using the Observer pattern:

This pattern provides decoupled relationship between the subject and observer
It provides support for broadcasting

Let's see the following UML diagram is showing all components of Observer design
pattern:

UML Diagram for Observer Design Pattern

Subject: It is an interface. It has information about its observers.
ConcreteSubject: It is a concrete implementation of Subject, it has information
about all its observers to be notified when its state changes.
Observer: It is an interface to be notified of changes in a subject.
ConcreteObserver: It is a concrete implementation of Observer, it keeps its state
consistent with the subject's state.

Consideration of Structural and Behavioral Patterns

[106]

Observer pattern in the Spring Framework
In the Spring Framework, the Observer design pattern is used to implement event handling
function of ApplicationContext. Spring provides us the ApplicationEvent class and
ApplicationListener interface to enable event handling in Spring
ApplicationContext. Any bean in your Spring application implements the
ApplicationListener interface, it will receive an ApplicationEvent every time the
ApplicationEvent is published by an event publisher. Here, the event publisher is the
subject and the bean that implements ApplicationListener is the observer.

Now that we've seen Observer design pattern, let's turn to a different variant of it--
Template design pattern.

Template Design Pattern
Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.
Template Method lets subclasses redefine certain steps of an algorithm without changing
the algorithm's structure.
60; -GOF Design Patterns

In Template design pattern, an abstract class wraps some defined ways to its method. That
method allows you to override parts of the method without rewriting it. You could use its
concrete class to your application to perform similar type actions. This design pattern comes
under the Behavior design pattern family of GOF pattern.

There are following lists the benefits of using the Template pattern:

It reduces the boilerplate codes in the application by reusing code.
This pattern creates a template or way to reuse multiple similar algorithms to
perform some business requirements.

Consideration of Structural and Behavioral Patterns

[107]

Let's see the following UML diagram is showing the components of Template design
pattern:

UML Diagram for Template design pattern

AbstractClass: This is an abstract class that contains a template method defining
the skeleton of an algorithm.
ConcreteClass: This is a concrete subclass of AbstractClass that implements the
operations to carry out the algorithm-specific primitive steps.

Let's see the next section about J2EE design patterns in the enterprise distributed
applications

JEE design patterns
It is other main category of design patterns. Application design can be immensely
simplified by applying Java EE design patterns. Java EE design patterns have been
documented in Sun's Java Blueprints. These Java EE design patterns provide time-tested
solution guidelines and best practices for object interaction in the different layer of a Java
EE application. These design patterns are specifically concerned with the following listed
layers:

Design pattern at presentation layer
Design pattern at business layer
Design pattern at integration layer

Consideration of Structural and Behavioral Patterns

[108]

These design patterns are specifically concerned with the following listed layers.

Design pattern at presentation layer:
View Helper: It separates views from the business logic of an
enterprise J2EE application.
Front Controller: It provides a single point of action to handle the
all coming requests to the J2EE web application, it forwards the
request to specific application controller to access model and view
for presentation tier resources.
Application Controller-The request actually handled by the
Application Controller, it acts as a front controller helper. It
responsible for the coordination with the business models and
view components.
Dispatcher View-It is related to the view only and it executes
without business logic to prepare a response to the next view.
Intercepting filters -In the J2EE web application, you could
configure multiple interceptors for pre and post processing an
user's request such as tracking and auditing user's requests.

Design pattern at business layer:
Business Delegate-It acts as a bridge between application
controllers and business logic
Application Service-It provides business logics to implement the
model as simple Java objects for presentation layer

Design pattern at integration layer:
Data Access Object-It is implemented for accessing business data
and it separates data access logic from business logic in the
enterprise application.
Web Service Broker-It encapsulates the logic to access the external
application's resources and it is exposed as web services.

Consideration of Structural and Behavioral Patterns

[109]

Summary
After reading this chapter, the reader should now have a good idea about GOF Design
Patterns and their best practices. I highlighted the problems that come if you don't
implement design patterns in your enterprise application and how Spring solves these
problems by using lots of design patterns and good practices to create an application. In the
preceding chapter too, I have mentioned the three main categories of GOF Design Patterns
such as Creational Design Pattern; it is useful for creation of object instances and also to
apply some constraints at the creation time of the enterprise application by specific manner
by Factory, Abstract Factory, Builder, Prototype and Singleton pattern. The second main
category is the Structural design pattern, it is used for design structure of the enterprise
application by dealing with the composition of classes or objects so that it reduces
application complexity and improve the reusability and performance of the application.
They are Adapter pattern, Bridge pattern, Composite pattern, Decorator pattern, and
Facade pattern come under this category of patterns. Finally, one more main category of the
pattern is Behavioral design pattern, it characterizes the ways in which classes or objects
interact and distribute responsibility. Patterns come under this category are specifically
concerned with communication between objects.

4
Wiring Beans using the

Dependency Injection Pattern
In the previous chapter, you learned about the Gang of Four (GOF) design patterns with
examples and use cases of each. Now, we will go into more detail about injecting beans and
the configuration of dependencies in a Spring application, where you will see the various
ways of configuring dependencies in a Spring application. This includes configuration with
XML, Annotation, Java, and Mix.

Everyone loves movies, right? Well, if not movies, how about plays, or dramas, or theatre?
Ever wondered what would happen if the different team members didn't speak to each
other? By team I don't just mean the actors, but the sets team, make-up personnel, audio-
visual guys, sound system guys, and so on. It is needless to say that every member has an
important contribution towards the end product, and an immense amount of coordination
is required between these teams.

A blockbuster movie is a product of hundreds of people working together toward a
common goal. Similarly, great software is an application where several objects work
together to meet some business target. As a team, every object must be aware of the other,
and communicate with each other to get their jobs done.

Wiring Beans using the Dependency Injection Pattern

[111]

In a banking system, the money transfer service must be aware of the account service, and
the account service must be aware of the accounts repository, and so on. All these
components work together to make the banking system workable. In Chapter 1, Getting
Started with Framework 5.0 and Design Patterns, you saw the same banking example created
with the traditional approach, that is, creating objects using construction and direct object
initiation. This traditional approach leads to complicated code, is difficult to reuse and unit
test, and is also highly coupled to one another.

But in Spring, objects have a responsibility to do their jobs without the need to find and
create the other dependent objects that are required in their jobs. The Spring container takes
the responsibility to find or create the other dependent objects, and to collaborate with their
dependencies. In the previous example of the banking system, the transfer service depends
on the account service, but it doesn't have to create the account service, so the dependency
is created by the container, and is handed over to the dependent objects in the application.

In this chapter, we will discuss the behind-the-scenes story of the Spring-based application
with reference to the dependency injection (DI) pattern, and how it works. By the end of
this chapter, you will understand how the objects of your Spring-based application create
associations between them, and how Spring wires these objects for a job done. You will also
learn many ways to wire beans in Spring.

This chapter will cover the following topics:

The dependency injection pattern
Types of dependency injection patterns
Resolving dependency using the Abstract Factory pattern
Lookup-method injection pattern
Configuring beans using the Factory pattern
Configuring dependencies
Common best practices for configuring dependencies in an application

Wiring Beans using the Dependency Injection Pattern

[112]

The dependency injection pattern
In any enterprise application, coordination between the working objects is very important
for a business goal. The relationship between objects in an application represents the
dependency of an object, so each object would get the job done with coordination of the
dependent objects in the application. Such required dependencies between the objects tend
to be complicated and with tight-coupled programming in the application. Spring provides
a solution to the tight-coupling code of an application by using the dependency injection
pattern. Dependency injection is a design pattern, which promotes the loosely coupled
classes in the application. This means that the classes in the system depend on the behavior
of others, and do not depend on instantiation of object of the classes. The dependency
injection pattern also promotes programming to interface instead of programming to
implementation. Object dependencies should be on an interface, and not on concrete
classes, because a loosely coupled structure offers you greater reusability, maintainability,
and testability.

Solving problems using the dependencies
injection pattern
In any enterprise application, a common problem to handle is how to configure and wire
together the different elements to achieve a business goal--for example, how to bind
together the controllers at the web layer with the services and repository interfaces written
by different members of the team without knowing about the controllers of the web layers.
So, there are a number frameworks that provide a solution for this problem by using
lightweight containers to assemble the components from different layers. Examples of such
types of frameworks are PicoContainer and Spring Framework.

The containers of PicoContainer and Spring use a number of design patterns to solve the
problem of assembling the different components of different layers. Here, I am going to
discuss one of these design patterns--the dependency injection pattern. Dependency
injection provides us with a decoupled and loosely coupled system. It ensures construction
of the dependent object. In the following example, we'll demonstrate how the dependency
injection pattern solves the common problems related to collaboration between the various
layered components.

Wiring Beans using the Dependency Injection Pattern

[113]

Without dependency injection
In the following Java example, first of all, let's see what is a dependency between two
classes? Take a look at the following class diagram:

TransferService has dependencies with AccountRepository and TransferRepository for transferAmount() method with Direct Instantiation of repositories classes.

As seen in the preceding diagram, the TransferService class contains two member
variables, AccountRepository and TransferRepository. These are initialized by the
TransferService constructor. TransferService controls which implementation of the
repositories is used. It also controls their construction. In this situation, TransferService is
said to have a hard-coded dependency on the following example:

Wiring Beans using the Dependency Injection Pattern

[114]

Following is the TransferServiceImpl.java file:

 public class TransferServiceImpl implements TransferService {
 AccountRepository accountRepository;
 TransferRepository transferRepository;
 public TransferServiceImpl(AccountRepository accountRepository,
 TransferRepository transferRepository) {
 super();
 // Specify a specific implementation in the constructor
 instead of using dependency injection
 this.accountRepository = new JdbcAccountRepository();
 this.transferRepository = new JdbcTransferRepository();
 }
 // Method within this service that uses the accountRepository and
 transferRepository
 @Override
 public void transferAmmount(Long a, Long b, Amount amount) {
 Account accountA = accountRepository.findByAccountId(a);
 Account accountB = accountRepository.findByAccountId(b);
 transferRepository.transfer(accountA, accountB, amount);
 }
 }

In the preceding example, the TransferServiceImpl class has dependencies of two
classes, that is AccountRepository and TransferRepository. The
TransferServiceImpl class has two member variables of the dependent classes, and
initializes them through its constructor by using the JDBC implementation of repositories
such as JdbcAccountRepository and JdbcTransferRepository. The
TransferServiceImpl class is tightly coupled with the JDBC implementation of
repositories; in case the JDBC implementation is changed to a JPA implementation, you
have to change your TransferServiceImpl class as well.

According to the SOLID (Single Responsibility Principle, Open Closed Principle, Liskov's
Substitution Principle, Interface Segregation Principle, Dependency Inversion Principle)
principles, a class should have a single responsibility in the application, but in the preceding
example, the TransferServiceImpl class is also responsible for constructing the objects of
JdbcAccountRepository and JdbcTransferRepository classes. We can't use direction
instantiation of objects in the class.

Wiring Beans using the Dependency Injection Pattern

[115]

In our first attempt to avoid the direct instantiation logic in the TransferServiceImpl
class, we can use a Factory class that creates instances of TransferServiceImpl.
According to this idea, TransferServiceImpl minimizes the dependency from
AccountRepository and TransferRepository--earlier we had a tightly coupled
implementation of the repositories, but now it refers only to the interface, as shown in the
following diagram:

TransferService has dependencies with AccountRepository and TransferRepository for transferAmount() method with Factory of repositories classes.

But the TransferServiceImpl class is, again, tightly coupled with the implementation of
the RepositoryFactory class. Moreover, this process is not suitable for cases where we
have more number of dependencies, which increases either the Factory classes or the
complexity of the Factory class. The repository classes can also have other dependencies.

The following code uses the Factory class to get the AccountRepository and
TransferRepository classes:

Following is the TransferServiceImpl.java file:

 package com.packt.patterninspring.chapter4.bankapp.service;
 public class TransferServiceImpl implements TransferService {
 AccountRepository accountRepository;
 TransferRepository transferRepository;
 public TransferServiceImpl(AccountRepository accountRepository,
 TransferRepository transferRepository) {
 this.accountRepository = RepositoryFactory.getInstance();
 this.transferRepository = RepositoryFactory.getInstance();

Wiring Beans using the Dependency Injection Pattern

[116]

 }
 @Override
 public void transferAmount(Long a, Long b, Amount amount) {
 Account accountA = accountRepository.findByAccountId(a);
 Account accountB = accountRepository.findByAccountId(b);
 transferRepository.transfer(accountA, accountB, amount);
 }
 }

In the preceding code example, we have minimized tight coupling, and removed direction
object instantiation from the TransferServiceImpl class, but this is not the optimal
solution.

With dependency injection pattern
The Factory idea avoids direct instantiation of an object of a class, and we also have to
create another module that is responsible for wiring the dependencies between classes. This
module is known as a dependency injector, and is based on the Inversion of Control (IoC)
pattern. According to the IoC Framework, the Container it is responsible for object
instantiation, and to resolve the dependencies among classes in the application. This
module has its own life cycle of construction and destruction for the object defined under its
scope.

In the following diagram, we have used the dependency injection pattern to resolve the
dependencies of the TransferServiceImpl class:

Using dependency injection design pattern to resolve dependencies for TransferService.

Wiring Beans using the Dependency Injection Pattern

[117]

In the following example, we have used an interface to resolve the dependencies:

Following is the TransferServiceImpl.java file:

 package com.packt.patterninspring.chapter4.bankapp.service;
 public class TransferServiceImpl implements TransferService {
 AccountRepository accountRepository;
 TransferRepository transferRepository;
 public TransferServiceImpl(AccountRepository accountRepository,
 TransferRepository transferRepository) {
 this.accountRepository = accountRepository;
 this.transferRepository = transferRepository;
 }
 @Override
 public void transferAmmount(Long a, Long b, Amount amount) {
 Account accountA = accountRepository.findByAccountId(a);
 Account accountB = accountRepository.findByAccountId(b);
 transferRepository.transfer(accountA, accountB, amount);
 }
 }

In the TransferServiceImpl class, we passed references of the AccountRepository and
TransferRepository interfaces to the constructor. Now the TransferServiceImpl class
is loosely coupled with the implementation repository class (use any flavor, either JDBC or
JPA implementation of repository interfaces), and the framework is responsible for wiring
the dependencies with the involved dependent class. Loose coupling offers us greater
reusability, maintainability, and testability.

The Spring Framework implements the dependency injection pattern to resolve
dependencies among the classes in a Spring application. Spring DI is based on the IoC
concept, that is, the Spring Framework has a container where it creates, manages, and
destructs the objects; it is known as a Spring IoC container. The objects lying within the
Spring container are known as Spring beans. There are many ways to wire beans in a
Spring application. Let's take a look at the three most common approaches for configuring
the Spring container.

In the following section, we'll look at the types of the dependency injection pattern; you can
configure the dependencies by using either one of them.

Wiring Beans using the Dependency Injection Pattern

[118]

Types of dependency injection patterns
The following are the types of dependency injections that could be injected into your
application:

Constructor-based dependency injection
Setter-based dependency injection

Constructor-based dependency injection pattern
Dependency injection is a design pattern to resolve the dependencies of dependent classes,
and dependencies are nothing but object attributes. The injector has to be constructed for
the dependent objects by using one of the ways constructor injection or setter injection. A
constructor injection is one of the ways of fulfilling these object attributes at the time of
creation to instantiate the object. An object has a public constructor that takes dependent
classes as constructor arguments to inject the dependencies. You can declare more than one
constructor into the dependent class. Earlier, only the PicoContainer Framework is used a
constructor-based dependency injection to resolve dependencies. Currently, the Spring
Framework also supports constructor injections to resolve dependencies.

Advantages of the constructor injection pattern

The following are the advantages if you use a constructor injection in your Spring
application:

Constructor-based dependency injection is more suitable for mandatory
dependencies, and it makes a strong dependency contract
Constructor-based dependency injection provides a more compact code structure
than others
It supports testing by using the dependencies passed as constructor arguments to
the dependent class
It favors the use of immutable objects, and does not break the information hiding
principle

Wiring Beans using the Dependency Injection Pattern

[119]

Disadvantages of constructor injection pattern

The following is the only drawback of this constructor-based injection pattern:

It may cause circular dependency. (Circular dependency means that the
dependent and the dependency class are also dependents on each other, for
example, class A depends on Class B and Class B depends on Class A)

Example of constructor-based dependency injection pattern

Let's see the following example for constructor-based dependency injection. In the
following code, we have a TransferServiceImpl class, and its constructor takes two
arguments:

 public class TransferServiceImpl implements TransferService {
 AccountRepository accountRepository;
 TransferRepository transferRepository;
 public TransferServiceImpl(AccountRepository accountRepository,
 TransferRepository transferRepository) {
 this.accountRepository = accountRepository;
 this.transferRepository = transferRepository;
 }
 // ...
 }

The repositories will also be managed by the Spring container, and, as such, will have the
datasource object for database configuration injected into them by the container, as
follows:

Following is the JdbcAccountRepository.java file:

 public class JdbcAccountRepository implements AccountRepository{
 JdbcTemplate jdbcTemplate;
 public JdbcAccountRepository(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }
 // ...
 }

Wiring Beans using the Dependency Injection Pattern

[120]

Following is the JdbcTransferRepository.java file:

 public class JdbcTransferRepository implements TransferRepository{
 JdbcTemplate jdbcTemplate;
 public JdbcTransferRepository(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }
 // ...
 }

You can see in the preceding code the JDBC implementation of the repositories as
AccountRepository and TransferRepository. These classes also have one argument
constructor to inject the dependency with the DataSource class.

Let's see another way of implementing a dependency injection in the enterprise application,
which is setter injection.

Setter-based dependency injection
The injector of the container has another way to wire the dependency of the dependent
object. In setter injection, one of the ways to fulfil these dependencies is by providing a
setter method in the dependent class. Object has a public setter methods that takes
dependent classes as method arguments to inject dependencies. For setter-based
dependency injection, the constructor of the dependent class is not required. There are no
changes required if you change the dependencies of the dependent class. Spring Framework
and PicoContainer Framework support setter injection to resolve the dependencies.

Advantages of setter injection

The following are the advantages if you use the setter injection pattern in your Spring
application:

Setter injection is more readable than the constructor injection
Setter injection solves the circular dependency problem in the application
Setter injection allows costly resources or services to be created as late as possible,
and only when required
Setter injection does not require the constructor to be changed, but dependencies
are passed through public properties that are exposed

Wiring Beans using the Dependency Injection Pattern

[121]

Disadvantage of the setter injection

The following are the drawbacks of the setter injection pattern:

Security is lesser in the setter injection pattern, because it can be overridden
A setter-based dependency injection does not provide a code structure as
compact as the constructor injection
Be careful whenever you use setter injection, because it is not a required
dependency

Example of a setter-based dependency injection

Let's see the following example for setter-based dependency injection. The following
TransferServiceImpl class, has setter methods with one argument of the repository type:

Following is the TransferServiceImpl.java file:

 public class TransferServiceImpl implements TransferService {
 AccountRepository accountRepository;
 TransferRepository transferRepository;
 public void setAccountRepository(AccountRepository
 accountRepository) {
 this.accountRepository = accountRepository;
 }
 public void setTransferRepository(TransferRepository
 transferRepository) {
 this.transferRepository = transferRepository;
 }
 // ...
 }

Similarly, let's define a setter for the repositories' implementations as follows:

Following is the JdbcAccountRepository.java file:

 public class JdbcAccountRepository implements AccountRepository{
 JdbcTemplate jdbcTemplate;
 public setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }
 // ...
 }

Wiring Beans using the Dependency Injection Pattern

[122]

Following is the JdbcTransferRepository.java file:

 public class JdbcTransferRepository implements TransferRepository{
 JdbcTemplate jdbcTemplate;
 public setDataSource(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }
 // ...
 }

You can see in the preceding code the JDBC implementation of the repositories as
AccountRepository and TransferRepository. These classes have a setter method with
one argument to inject the dependency with the DataSource class.

Constructor versus setter injection and best practices

The Spring Framework provides support for both types of dependency injection patterns.
Both, the constructor and setter injection pattern, assemble the elements in the system. The
choice between the setter and constructor injections depends on your application
requirement, and the problem at hand. Let's see the following table, which lists some
differences between the constructor and setter injections, and some best practices to select
which one is suitable in your application.

Constructors injection Setter injection

A class with constructor takes arguments; it
is very compact sometimes, and clear to
understand what it creates.

Here, the object is constructed, but it is not
clear whether its attributes are initialized or
not.

This is a better choice when the dependency
is mandatory.

This is suitable when the dependency is not
mandatory.

It allows you to hide the object attributes
that are immutable, because it does not have
setters for these object attributes. To ensure
the immutable nature of the object, use the
constructor injection pattern instead of the
setter injection.

It doesn't ensure the immutable nature of
the object.

It creates circular dependency in your
application.

It solves the problem of circular
dependency in your application. In this
case, the setter injection is a better choice
than constructor.

Wiring Beans using the Dependency Injection Pattern

[123]

It is not suitable for scalar value
dependencies in the application.

If you have simple parameters such as
strings and integers as dependencies, the
setter injection is better to use, because each
setter name indicates what the value is
supposed to do.

In the next section, you'll learn how to configure the injector to find the beans and wire
them together, and how the injector manages the beans. Here, I will use the Spring
configuration for the dependency injection pattern.

Configuring the dependency injection
pattern with Spring
In this section, I will explain the process required to configure dependencies in an
application. The mainstream injectors are Google Guice, Spring, and Weld. In this chapter, I
am using the Spring Framework, so, we will see the Spring configuration here. The
following diagram is a high-level view of how Spring works:

How Spring works using dependency injection pattern

Wiring Beans using the Dependency Injection Pattern

[124]

In the preceding diagram, the Configuration Instruction is the meta configuration of your
application. Here, we define the dependencies in Your Application Classes (POJOs), and
initialize the Spring container to resolve the dependency by combining the POJOs and
Configuration Instructions, and finally, you have a fully configured and executable system
or application.

As you have seen in the preceding diagram, the Spring container creates the beans in your
application, and assembles them for relationships between those objects via the DI pattern.
The Spring container creates the beans based on the configuration that we give to the
framework, so, it's your responsibility to tell Spring which beans to create, and how to wire
them together.

Spring is very flexible in configuring the dependency of Spring beans. The following are
three ways to configure the metadata of your application:

Dependency injection pattern with Java-based configuration—it is an explicit1.
configuration in Java.
Dependency injection pattern with Annotation-based configuration—it is an2.
implicit bean discovery, and automatic wiring.
Dependency injection pattern with XML-based configuration—it is an explicit3.
configuration in XML.

Spring provides three choices to wire beans in Spring. You must select one of the choices,
but no single choice is the best match for any application. It depends on your application,
and you can also mix and match these choices into a single application. Let's now discuss
the dependency injection pattern with Java-based configuration in detail.

Dependency injection pattern with Java-
based configuration
As of Spring 3.0, it provides a Java-based Spring configuration to wire the Spring beans.
Take a look at the following Java configuration class (AppConfig.java) to define the
Spring bean and their dependencies. The Java-based configuration for dependency injection
is a better choice, because it is more powerful and type-safe.

Wiring Beans using the Dependency Injection Pattern

[125]

Creating a Java configuration class -
AppConfig.java
Let's create an AppConfig.java configuration class for our example:

 package com.packt.patterninspring.chapter4.bankapp.config;
 import org.springframework.context.annotation.Configuration;
 @Configuration
 public class AppConfig {
 //..
 }

The preceding AppConfig class is annotated with the @Configuration annotation, which
indicates that it is a configuration class of the application that contains the details on bean
definitions. This file will be loaded by the Spring application context to create beans for
your application.

Let's now see how you can declare the TransferService, AccountRepository and
TransferRepository beans in AppConfig.

Declaring Spring beans into configuration class
To declare a bean in a Java-based configuration, you have to write a method for the desired
type object creation in the configuration class, and annotate that method with @Bean. Let's
see the following changes made in the AppConfig class to declare the beans:

 package com.packt.patterninspring.chapter4.bankapp.config;
 import org.springframework.context.annotation.Bean;
 import org.springframework.context.annotation.Configuration;
 @Configuration
 public class AppConfig {
 @Bean
 public TransferService transferService(){
 return new TransferServiceImpl();
 }
 @Bean
 public AccountRepository accountRepository() {
 return new JdbcAccountRepository();
 }
 @Bean
 public TransferRepository transferRepository() {
 return new JdbcTransferRepository();
 }
 }

Wiring Beans using the Dependency Injection Pattern

[126]

In the preceding configuration file, I declared three methods to create instances for
TransferService, AccountRepository, and TransferRepository. These methods are
annotated with the @Bean annotation to indicate that they are responsible for instantiating,
configuring, and initializing a new object to be managed by the Spring IoC container. Each
bean in the container has a unique bean ID; by default, a bean has an ID same as the @Bean
annotated method name. In the preceding case, the beans will be named as
transferService, accountRepository, and transferRepository. You can also
override that default behavior by using the name attribute of the @Bean annotation as
follows:

 @Bean(name="service")
 public TransferService transferService(){
 return new TransferServiceImpl();
 }

Now "service" is the bean name of that bean TransferService.

Let's see how you can inject dependencies for the TransferService,
AccountRepository, and TransferRepository beans in AppConfig.

Injecting Spring beans
In the preceding code, I declared the beans TransferService, AccountRepository, and
TransferRepository; these beans had no dependencies. But, actually, the
TransferService bean depends on AccountRepository and TransferRepository.
Let's see the following changes made in the AppConfig class to declare the beans:

 package com.packt.patterninspring.chapter4.bankapp.config;
 import org.springframework.context.annotation.Bean;
 import org.springframework.context.annotation.Configuration;
 @Configuration
 public class AppConfig {
 @Bean
 public TransferService transferService(){
 return new TransferServiceImpl(accountRepository(),
 transferRepository());
 }
 @Bean
 public AccountRepository accountRepository() {
 return new JdbcAccountRepository();
 }
 @Bean
 public TransferRepository transferRepository() {
 return new JdbcTransferRepository();

Wiring Beans using the Dependency Injection Pattern

[127]

 }
 }

In the preceding example, the simplest way to wire up beans in a Java-based configuration
is to refer to the referenced bean's method. The transferService() method constructs the
instance of the TransferServiceImpl class by calling the arguments constructor that
takes AccountRepository and TransferRepository. Here, it seems that the constructor
of the TransferServiceImpl class is calling the accountRepository() and
transferRepository() methods to create instances of AccountRepository and
TransferRepository respectively, but it is not an actual call to create instances. The
Spring container creates instances of AccountRepository and TransferRepository,
because the accountRepository() and transferRepository() methods are annotated
with the @Bean annotation. Any call to the bean method by another bean method will be
intercepted by Spring to ensure the default singleton scope (this will be discussed further in
Chapter 5, Understanding the Bean Life cycle and Used Patterns) of the Spring beans by that
method is returned rather than allowing it to be invoked again.

Best approach to configure the dependency injection
pattern with Java
In the previous configuration example, I declared the transferService() bean method to
construct an instance of the TransferServiceImpl class by using its arguments
constructor. The bean methods, accountRepository() and transferRepository(), are
passed as arguments of the constructor. But in an enterprise application, a lot of
configuration files depend on the layers of the application architecture. Suppose the service
layer and the infrastructure layer have their own configuration files. That means that the
accountRepository() and transferRepository() methods may be in different
configuration files, and the transferService() bean method may be in another
configuration file. Passing bean methods into the constructor is not a good practice for
configuration of the dependency injection pattern with Java. Let's see a different and the
best approach to configuring the dependency injection:

 package com.packt.patterninspring.chapter4.bankapp.config;
 import org.springframework.context.annotation.Bean;
 import org.springframework.context.annotation.Configuration;
 @Configuration
 public class AppConfig {
 @Bean
 public TransferService transferService(AccountRepository
 accountRepository, TransferRepository transferRepository){
 return new TransferServiceImpl(accountRepository,
 transferRepository);

Wiring Beans using the Dependency Injection Pattern

[128]

 }
 @Bean
 public AccountRepository accountRepository() {
 return new JdbcAccountRepository();
 }
 @Bean
 public TransferRepository transferRepository() {
 return new JdbcTransferRepository();
 }
 }

In the preceding code, the transferService() method asks for AccountRepository and
TransferRepository as parameters. When Spring calls transferService() to create
the TransferService bean, it autowires AccountRepository and
TransferRepository into the configuration method. With this approach, the
transferService() method can still inject AccountRepository and
TransferRepository into the constructor of TransferServiceImpl without explicitly
referring to the accountRepository() and transferRepository()@Bean methods.

Let's now take a look at dependency injection pattern with XML-based configuration.

Dependency injection pattern with XML-
based configuration
Spring provides dependency injection with XML-based configuration from the very
beginning. It is the primary way of configuring a Spring application. According to me,
every developer should have an understanding of how to use XML with a Spring
application. In this section, I am going to explain the same example as discussed in the
previous section of Java-based configuration with reference to XML-based configuration.

Wiring Beans using the Dependency Injection Pattern

[129]

Creating an XML configuration file
In the section on Java-based configuration, we had created an AppConfig class annotated
with the @Configuration annotation. Similarly, for XML-based configuration, we will
now create an applicationContext.xml file rooted with a <beans> element. The
following simplest possible example shows the basic structure of XML-based configuration
metadata:

Following is the applicationContext.xml file:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">
 <!-- Configuration for bean definitions go here -->
 </beans>

The preceding XML file is a configuration file of the application which contains the details
on bean definitions. This file is also loaded by the XML-flavored implementation of
ApplicationContext to create beans for your application. Let's see how you can declare
the TransferService, AccountRepository and TransferRepository beans in the
preceding XML file.

Declaring Spring beans in an XML file
As with Java, we have to declare a class as a Spring bean into Spring's XML-based
configuration by using an element of the Spring-beans schema as a <bean> element. The
<bean> element is the XML analogue to JavaConfig's @Bean annotation. We add the
following configuration to the XML-based configuration file:

 <bean id="transferService"
 class="com.packt.patterninspring.chapter4.
 bankapp.service.TransferServiceImpl"/>
 <bean id="accountRepository"
 class="com.packt.patterninspring.chapter4.
 bankapp.repository.jdbc.JdbcAccountRepository"/>
 <bean id="transferService"
 class="com.packt.patterninspring.chapter4.
 bankapp.repository.jdbc.JdbcTransferRepository"/>

Wiring Beans using the Dependency Injection Pattern

[130]

In the preceding code, I have created a very simple bean definition. In this configuration,
the <bean> element has an id attribute to identify the individual bean definition. The
class attribute is expressed as the fully qualified class name to create this bean. The value
of the id attribute refers to collaborating objects. So let's see how to configure the
collaborating beans to resolve the dependencies in the application.

Injecting Spring beans
Spring provides these two ways to define the DI pattern to inject the dependency with the
dependent bean in an application:

Using constructor injection
Using setter injection

Using constructor injection
For the DI pattern with the construction injection, Spring provides you two basic options as
the <constructor-arg> element and c-namespace introduced in Spring 3.0. c-namespace
has less verbosity in the application, which is the only difference between them--you can
choose any one. Let's inject the collaborating beans with the construction injection as
follows:

 <bean id="transferService"
 class="com.packt.patterninspring.chapter4.
 bankapp.service.TransferServiceImpl">
 <constructor-arg ref="accountRepository"/>
 <constructor-arg ref="transferRepository"/>
 </bean>
 <bean id="accountRepository"
 class="com.packt.patterninspring.chapter4.
 bankapp.repository.jdbc.JdbcAccountRepository"/>
 <bean id="transferRepository"
 class="com.packt.patterninspring.chapter4.
 bankapp.repository.jdbc.JdbcTransferRepository"/>

In the preceding configuration, the <bean> element of TransferService has two
<constructor-arg>. This tells it to pass a reference to the beans whose IDs are
accountRepository and transferRepository to the constructor of
TransferServiceImpl.

Wiring Beans using the Dependency Injection Pattern

[131]

As of Spring 3.0, the c-namespace, similarly, has a more succinct way of expressing
constructor args in XML. For using this namespace, we have to add its schema in the XML
file, as follows:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:c="http://www.springframework.org/schema/c"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">
 <bean id="transferService"
 class="com.packt.patterninspring.chapter4.
 bankapp.service.TransferServiceImpl"
 c:accountRepository-ref="accountRepository" c:transferRepository-
 ref="transferRepository"/>
 <bean id="accountRepository"
 class="com.packt.patterninspring.chapter4.
 bankapp.repository.jdbc.JdbcAccountRepository"/>
 <bean id="transferRepository"
 class="com.packt.patterninspring.chapter4.
 bankapp.repository.jdbc.JdbcTransferRepository"/>
 <!-- more bean definitions go here -->
 </beans>

Let's see how to set up these dependencies with the setter injection.

Using setter injection
Using the injection, Spring also provides you with two basic options as the <property>
element and p-namespace introduced in Spring 3.0. The p-namespace also reduced
verbosity of code in the application, which is the only difference between them, you can
choose any one. Let's inject the collaborating beans with the setter injection as follows:

 <bean id="transferService"
 class="com.packt.patterninspring.chapter4.
 bankapp.service.TransferServiceImpl">
 <property name="accountRepository" ref="accountRepository"/>
 <property name="transferRepository" ref="transferRepository"/>
 </bean>
 <bean id="accountRepository"
 class="com.packt.patterninspring.chapter4.
 bankapp.repository.jdbc.JdbcAccountRepository"/>
 <bean id="transferRepository"
 class="com.packt.patterninspring.chapter4.
 bankapp.repository.jdbc.JdbcTransferRepository"/>

Wiring Beans using the Dependency Injection Pattern

[132]

In the preceding configuration, the <bean> element of TransferService has two
<property> elements which tell it to pass a reference to the beans whose IDs are
accountRepository and transferRepository to the setter methods of
TransferServiceImpl, as follows:

 package com.packt.patterninspring.chapter4.bankapp.service;

 import com.packt.patterninspring.chapter4.bankapp.model.Account;
 import com.packt.patterninspring.chapter4.bankapp.model.Amount;
 import com.packt.patterninspring.chapter4.bankapp.
 repository.AccountRepository;
 import com.packt.patterninspring.chapter4.bankapp.
 repository.TransferRepository;

 public class TransferServiceImpl implements TransferService {
 AccountRepository accountRepository;
 TransferRepository transferRepository;
 public void setAccountRepository(AccountRepository
 accountRepository) {
 this.accountRepository = accountRepository;
 }
 public void setTransferRepository(TransferRepository
 transferRepository) {
 this.transferRepository = transferRepository;
 }
 @Override
 public void transferAmmount(Long a, Long b, Amount amount) {
 Account accountA = accountRepository.findByAccountId(a);
 Account accountB = accountRepository.findByAccountId(b);
 transferRepository.transfer(accountA, accountB, amount);
 }
 }

In the preceding file, if you use this Spring bean without setter methods, the properties
accountRepository and transferRepository will be initialized as null without
injecting the dependency.

Wiring Beans using the Dependency Injection Pattern

[133]

As of Spring 3.0, the p-namespace, similarly, has a more succinct way of expressing
property in XML. For using this namespace, we have to add its schema in the XML file as
follows:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">
 <bean id="transferService"
 class="com.packt.patterninspring.chapter4.bankapp.
 service.TransferServiceImpl"
 p:accountRepository-ref="accountRepository" p:transferRepository-
 ref="transferRepository"/>
 <bean id="accountRepository"
 class="com.packt.patterninspring.chapter4.
 bankapp.repository.jdbc.JdbcAccountRepository"/>
 <bean id="transferRepository"
 class="com.packt.patterninspring.chapter4.
 bankapp.repository.jdbc.JdbcTransferRepository"/>
 <!-- more bean definitions go here -->
 </beans>

Let's now take a look at the dependency injection pattern with Annotation-based
configuration.

Dependency injection pattern with
Annotation-based configuration
As discussed in the previous two sections, we defined the DI pattern with Java-and XML-
based configurations, and these two options define dependencies explicitly. It creates the
Spring beans by using either the @Bean annotated method in the AppConfig Java file, or the
<bean> element tag in the XML configuration file. By these methods, you can also create the
bean for those classes which lie outside the application, that is, classes that exist in third-
party libraries. Now let's discuss another way to create Spring beans, and define the
dependencies between them by using implicit configuration through the Stereotype
annotations.

Wiring Beans using the Dependency Injection Pattern

[134]

What are Stereotype annotations?
The Spring Framework provides you with some special annotations. These annotations are
used to create Spring beans automatically in the application context. The main stereotype
annotation is @Component. By using this annotation, Spring provides more Stereotype meta
annotations such as @Service, used to create Spring beans at the Service layer,
@Repository, which is used to create Spring beans for the repositories at the DAO layer,
and @Controller, which is used to create Spring beans at the controller layer. This is
depicted in the following diagram:

By using these annotations, Spring creates automatic wiring in these two ways:

Component scanning: In this, Spring automatically searches the beans to be
created in the Spring IoC container
Autowiring: In this, Spring automatically searches the bean dependencies in the
Spring IoC container

Implicitly, the DI pattern configuration reduces the verbosity of an application, and
minimizes explicit configuration. Let's demonstrate component scanning and autowiring in
the same example as discussed previously. Here, Spring will create the beans for
TransferService, TransferRepository, and AccountRepository by discovering
them, and automatically inject them to each other as per the defined dependencies.

Wiring Beans using the Dependency Injection Pattern

[135]

Creating auto searchable beans using Stereotype
annotations
Let's see the following TransferService interface. Its implementation is annotated with
@Component. Please refer to the following code:

 package com.packt.patterninspring.chapter4.bankapp.service;
 public interface TransferService {
 void transferAmmount(Long a, Long b, Amount amount);
 }

The preceding interface is not important for this approach of configuration--I have taken it
just for loose coupling in the application. Let's see its implementation, which is as follows:

 package com.packt.patterninspring.chapter1.bankapp.service;
 import org.springframework.stereotype.Component;
 @Component
 public class TransferServiceImpl implements TransferService {
 @Override
 public void transferAmmount(Long a, Long b, Amount amount) {
 //business code here
 }
 }

You can see in the preceding code that TransferServiceImpl is annotated with the
@Component annotation. This annotation is used to identify this class as a component class,
which means, it is eligible to scan and create a bean of this class. Now there is no need to
configure this class explicitly as a bean either by using XML or Java configuration--Spring is
now responsible for creating the bean of the TransferServiceImpl class, because it is
annotated with @Component.

As mentioned earlier, Spring provides us meta annotations for the @Component annotation
as @Service, @Repository, and @Controller. These annotations are based on a specific
responsibility at different layers of the application. Here, TransferService is the service
layer class; as a best practice of Spring configuration, we have to annotate this class with the
specific annotation, @Service, rather than with the generic annotation, @Component, to
create the bean of this class. The following is the code for the same class annotated with the
@Service annotation:

 package com.packt.patterninspring.chapter1.bankapp.service;
 import org.springframework.stereotype.Service;
 @Service
 public class TransferServiceImpl implements TransferService {
 @Override
 public void transferAmmount(Long a, Long b, Amount amount) {

Wiring Beans using the Dependency Injection Pattern

[136]

 //business code here
 }
 }

Let's see other classes in the application--these are the implementation classes of
AccountRepository--and the TransferRepository interfaces are the repositories
working at the DAO layer of the application. As a best practice, these classes should be
annotated with the @Repository annotation rather than using the @Component annotation
as shown next.

JdbcAccountRepository.java implements the AccountRepository interface:

 package com.packt.patterninspring.chapter4.bankapp.repository.jdbc;
 import org.springframework.stereotype.Repository;
 import com.packt.patterninspring.chapter4.bankapp.model.Account;
 import com.packt.patterninspring.chapter4.bankapp.model.Amount;
 import com.packt.patterninspring.chapter4.bankapp.repository.
 AccountRepository;
 @Repository
 public class JdbcAccountRepository implements AccountRepository {
 @Override
 public Account findByAccountId(Long accountId) {
 return new Account(accountId, "Arnav Rajput", new
 Amount(3000.0));
 }
 }

And JdbcTransferRepository.java implements the TransferRepository interface:

 package com.packt.patterninspring.chapter4.bankapp.repository.jdbc;
 import org.springframework.stereotype.Repository;
 import com.packt.patterninspring.chapter4.bankapp.model.Account;
 import com.packt.patterninspring.chapter4.bankapp.model.Amount;
 import com.packt.patterninspring.chapter4.bankapp.
 repository.TransferRepository;
 @Repository
 public class JdbcTransferRepository implements TransferRepository {
 @Override
 public void transfer(Account accountA, Account accountB, Amount
 amount) {
 System.out.println("Transfering amount from account A to B via
 JDBC implementation");
 }
 }

Wiring Beans using the Dependency Injection Pattern

[137]

In Spring, you have to enable component scanning in your application, because it is not
enabled by default. You have to create a configuration Java file, and annotate it with
@Configuration and @ComponentScan. This class is used to search out classes annotated
with @Component, and to create beans from them.

Let's see how Spring scans the classes which are annotated with any stereotype annotations.

Searching beans using component scanning
The following minimum configuration is required to search beans using component
scanning in a Spring application:

 package com.packt.patterninspring.chapter4.bankapp.config;

 import org.springframework.context.annotation.ComponentScan;
 import org.springframework.context.annotation.Configuration;

 @Configuration
 @ComponentScan
 public class AppConfig {
 }

The AppConfig class defines a Spring wiring configuration class same as the Java-based
Spring configuration in the previous section. There is one thing to be observed here--the
AppConfig file has one more @ComponentScan, as earlier it had only the @Configuration
annotation. The configuration file AppConfig is annotated with @ComponentScan to enable
component scanning in Spring. The @ComponentScan annotation scans those classes that
are annotated with @Component by default in the same package as the configuration class.
Since the AppConfig class is in the
com.packt.patterninspring.chapter4.bankapp.config package, Spring will scan
only this package and its sub packages. But our component application classes are in the
com.packt.patterninspring.chapter1.bankapp.service and
com.packt.patterninspring.chapter4.bankapp.repository.jdbc packages, and
these are not subpackages of
com.packt.patterninspring.chapter4.bankapp.config. In this case, Spring allows
to override the default package scanning of the @ComponentScan annotation by setting a
base package for component scanning. Let's specify a different base package. You only need
to specify the package in the value attribute of @ComponentScan, as shown here:

 @Configuration
 @ComponentScan("com.packt.patterninspring.chapter4.bankapp")
 public class AppConfig {
 }

Wiring Beans using the Dependency Injection Pattern

[138]

Or you can define the base packages with the basePackages attribute, as follows:

 @Configuration
 @ComponentScan(basePackages="com.packt.patterninspring.
 chapter4.bankapp")
 public class AppConfig {
 }

In the @ComponentScan annotation, the basePackages attribute can accept an array of
Strings, which means that we can define multiple base packages to scan component classes
in the application. In the previous configuration file, Spring will scan all classes of
com.packt.patterninspring.chapter4.bankapp package, and all the subpackages
underneath this package. As a best practice, always define the specific base packages where
the components classes exist. For example, in the following code, I define the base packages
for the service and repository components:

 package com.packt.patterninspring.chapter4.bankapp.config;
 import org.springframework.context.annotation.ComponentScan;
 import org.springframework.context.annotation.Configuration;
 @Configuration
 @ComponentScan(basePackages=
 {"com.packt.patterninspring.chapter4.
 bankapp.repository.jdbc","com.packt.patterninspring.
 chapter4.bankapp.service"})
 public class AppConfig {
 }

Now Spring scans only
com.packt.patterninspring.chapter4.bankapp.repository.jdbc and
com.packt.patterninspring.chapter4.bankapp.service packages, and its
subpackages if they exist. instead of doing a wide range scanning like in the earlier
examples.

Rather than specify the packages as simple String values of the basePackages attribute of
@ComponentScan, Spring allows you to specify them via classes or interfaces as follows:

 package com.packt.patterninspring.chapter4.bankapp.config;
 import org.springframework.context.annotation.ComponentScan;
 import org.springframework.context.annotation.Configuration;
 import com.packt.patterninspring.chapter4.bankapp.
 repository.AccountRepository;
 import com.packt.patterninspring.chapter4.
 bankapp.service.TransferService;
 @Configuration
 @ComponentScan(basePackageClasses=
 {TransferService.class,AccountRepository.class})

Wiring Beans using the Dependency Injection Pattern

[139]

 public class AppConfig {

 }

As you can see in the preceding code, the basePackages attribute has been replaced with
basePackageClasses. Now Spring will identify the component classes in those packages
where basePackageClasses will be used as the base package for component scanning.

It should find the TransferServiceImpl, JdbcAccountRepository, and
JdbcTransferRepository classes, and automatically create the beans for these classes in
the Spring container. Explicitly, there is no need to define the bean methods for these classes
to create Spring beans. Let's turn on component scanning via XML configuration, then you
can use the <context:component-scan> element from Spring's context namespace. Here
is a minimal XML configuration to enable component scanning:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">
 <context:component-scan base-
 package="com.packt.patterninspring.chapter4.bankapp" />
 </beans>

In the preceding XML file, the <context:component-scan> element is same the
@ComponentScan annotation in the Java-based configuration for component scanning.

Annotating beans for autowiring
Spring provides support for automatic bean wiring. This means that Spring automatically
resolves the dependencies that are required by the dependent bean by finding other
collaborating beans in the application context. Bean Autowiring is another way of DI
pattern configuration. It reduces verbosity in the application, but the configuration is spread
throughout the application. Spring's @Autowired annotation is used for auto bean wiring.
This @Autowired annotation indicates that autowiring should be performed for this bean.

Wiring Beans using the Dependency Injection Pattern

[140]

In our example, we have TransferService which has dependencies of
AccountRepository and TransferRepository. Its constructor is annotated with
@Autowired indicating that when Spring creates the TransferService bean, it should
instantiate that bean by using its annotated constructor, and pass in two other beans,
AccountRepository and TransferRepository, which are dependencies of the
TransferService bean. Let's see the following code:

 package com.packt.patterninspring.chapter4.bankapp.service;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.stereotype.Service;
 import com.packt.patterninspring.chapter4.bankapp.model.Account;
 import com.packt.patterninspring.chapter4.bankapp.model.Amount;
 import com.packt.patterninspring.chapter4.bankapp.
 repository.AccountRepository;
 importcom.packt.patterninspring.chapter4.
 bankapp.repository.TransferRepository;
 @Service
 public class TransferServiceImpl implements TransferService {
 AccountRepository accountRepository;
 TransferRepository transferRepository;
 @Autowired
 public TransferServiceImpl(AccountRepository accountRepository,
 TransferRepository transferRepository) {
 super();
 this.accountRepository = accountRepository;
 this.transferRepository = transferRepository;
 }
 @Override
 public void transferAmmount(Long a, Long b, Amount amount) {
 Account accountA = accountRepository.findByAccountId(a);
 Account accountB = accountRepository.findByAccountId(b);
 transferRepository.transfer(accountA, accountB, amount);
 }
 }

Note--As of Spring 4.3, the @Autowired annotation is no more required if
you define only one construct with arguments in that class. If class has
multiple argument constructors, then you have to use the @Autowired
annotation on any one of them.

The @Autowired annotation is not limited to the construction; it can be used with the setter
method, and can also be used directly in the field, that is, an autowired class property
directly. Let's see the following line of code for setter and field injection.

Wiring Beans using the Dependency Injection Pattern

[141]

Using @Autowired with setter method
Here you can annotate the setter method's setAccountRepository and
setTransferRepository with the @Autowired annotation. This annotation can be used
with any method. There is no specific reason to use it with the setter method only. Please
refer to the following code:

 public class TransferServiceImpl implements TransferService {
 //...
 @Autowired
 public void setAccountRepository(AccountRepository
 accountRepository) {
 this.accountRepository = accountRepository;
 }
 @Autowired
 public void setTransferRepository(TransferRepository
 transferRepository) {
 this.transferRepository = transferRepository;
 }
 //...
 }

Using @Autowired with the fields
Here you can annotate those class properties which are required for this class to achieve a
business goal. Let's see the following code:

 public class TransferServiceImpl implements TransferService {
 @Autowired
 AccountRepository accountRepository;
 @Autowired
 TransferRepository transferRepository;
 //...
 }

Wiring Beans using the Dependency Injection Pattern

[142]

In the preceding code, the @Autowired annotation resolves the dependency by type and
then by name if the property name is the same as the bean name in the Spring container. By
default, the @Autowired dependency is a required dependency--it raises an exception if the
dependency is not resolved, it doesn't matter whether we have used it with a constructor or
with the setter method. You can override the required behavior of the @Autowired
annotation by using the required attribute of this annotation. You can set this attribute
with the Boolean value false as follows:

 @Autowired(required = false)
 public void setAccountRepository(AccountRepository
 accountRepository) {
 this.accountRepository = accountRepository;
 }

In the preceding code, we have set the required attribute with the Boolean value false. In
this case, Spring will attempt to perform autowiring, but if there are no matching beans, it
will leave the bean unwired. But as a best practice of code, you should avoid setting its
value as false until it is absolutely necessary.

The Autowiring DI pattern and disambiguation
The @Autowiring annotation reduces verbosity in the code, but it may create some
problems when two of the same type of beans exist in the container. Let's see what happens
in that situation, with the following example:

 @Service
 public class TransferServiceImpl implements TransferService {
 @Autowired
 public TransferServiceImpl(AccountRepository accountRepository) {
 ... }
 }

The preceding snippet of code shows that the TransferServiceImpl class has a
dependency with a bean of type AccountRepository, but the Spring container contains
two beans of the same type, that is, the following:

 @Repository
 public class JdbcAccountRepository implements AccountRepository
 {..}
 @Repository
 public class JpaAccountRepository implements AccountRepository {..}

Wiring Beans using the Dependency Injection Pattern

[143]

As seen from the preceding code, there are two implementations of the
AccountRepository interface--one is JdbcAccountRepository and another is
JpaAccountRepository. In this case, the Spring container will throw the following
exception at startup time of the application:

 At startup: NoSuchBeanDefinitionException, no unique bean of type
 [AccountRepository] is defined: expected single bean but found 2...

Resolving disambiguation in Autowiring DI pattern
Spring provides one more annotation, @Qualifier, to overcome the problem of
disambiguation in autowiring DI. Let's see the following snippet of code with the
@Qualifier annotation:

 @Service
 public class TransferServiceImpl implements TransferService {
 @Autowired
 public TransferServiceImpl(@Qualifier("jdbcAccountRepository")
 AccountRepository accountRepository) { ... }

Now I have wired the dependency by name rather than by type by using the @Qualifier
annotation. So, Spring will search the bean dependency with the name
"jdbcAccountRepository" for the TransferServiceImpl class. I have given the names
of the beans as follows:

 @Repository("jdbcAccountRepository")
 public class JdbcAccountRepository implements AccountRepository
 {..}
 @Repository("jpaAccountRepository")
 public class JpaAccountRepository implements AccountRepository {..}

@Qualifier, also available with the method injection and field injection component names,
should not show implementation details unless there are two implementations of the same
interface.

Let's now discuss some best practices to choose the DI pattern configuration for your Spring
application.

Wiring Beans using the Dependency Injection Pattern

[144]

Resolving dependency with Abstract Factory pattern

If you want to add the if...else conditional configuration for a bean, you can do so, and
also add some custom logic if you are using Java configuration. But in the case of an XML
configuration, it is not possible to add the if...then...else conditions. Spring provides
the solution for conditions in an XML configuration by using the Abstract Factory Pattern.
Use a factory to create the bean(s) you want, and use any complex Java code that you need
in the factory's internal logic.

Implementing the Abstract Factory Pattern in Spring
(FactoryBean interface)
The Spring Framework provides the FactoryBean interface as an implementation of the
Abstract Factory Pattern. A FactoryBean is a pattern to encapsulate interesting object
construction logic in a class. The FactoryBean interface provides a way to customize the
Spring IoC container's instantiation logic. You can implement this interface for objects that
are themselves factories. Beans implementing FactoryBean are auto-detected.

The definition of this interface is as follows:

 public interface FactoryBean<T> {
 T getObject() throws Exception;
 Class<T> getObjectType();
 boolean isSingleton();
 }

As per the preceding definition of this interface, the dependency injection using the
FactoryBean and it causes getObject() to be invoked transparently. The isSingleton()
method returns true for singleton, else it returns false. The getObjectType() method
returns the object type of the object returned by the getObject() method.

Wiring Beans using the Dependency Injection Pattern

[145]

Implementation of FactoryBean interface in Spring
FactoryBean is widely used within Spring as the following:

EmbeddedDatabaseFactoryBean

JndiObjectFactoryBean

LocalContainerEntityManagerFactoryBean

DateTimeFormatterFactoryBean

ProxyFactoryBean

TransactionProxyFactoryBean

MethodInvokingFactoryBean

Sample implementation of FactoryBean interface
Suppose you have a TransferService class whose definition is thus:

 package com.packt.patterninspring.chapter4.bankapp.service;
 import com.packt.patterninspring.chapter4.
 bankapp.repository.IAccountRepository;
 public class TransferService {
 IAccountRepository accountRepository;
 public TransferService(IAccountRepository accountRepository){
 this.accountRepository = accountRepository;
 }
 public void transfer(String accountA, String accountB, Double
 amount){
 System.out.println("Amount has been tranferred");
 }
 }

And you have a FactoryBean whose definition is thus:

 package com.packt.patterninspring.chapter4.bankapp.repository;
 import org.springframework.beans.factory.FactoryBean;
 public class AccountRepositoryFactoryBean implements
 FactoryBean<IAccountRepository> {
 @Override
 public IAccountRepository getObject() throws Exception {
 return new AccountRepository();
 }
 @Override
 public Class<?> getObjectType() {
 return IAccountRepository.class;
 }
 @Override

Wiring Beans using the Dependency Injection Pattern

[146]

 public boolean isSingleton() {
 return false;
 }
 }

You could wire up an AccountRepository instance using a hypothetical
AccountRepositoryFactoryBean like this:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:c="http://www.springframework.org/schema/c"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">
 <bean id="transferService" class="com.packt.patterninspring.
 chapter4.bankapp.service.TransferService">
 <constructor-arg ref="accountRepository"/>
 </bean>
 <bean id="accountRepository"
 class="com.packt.patterninspring.chapter4.
 bankapp.repository.AccountRepositoryFactoryBean"/>
 </beans>

In the preceding example, the TransferService class depends on the
AccountRepository bean, but in the XML file, we have defined
AccountRepositoryFactoryBean as an accountRepository bean. The
AccountRepositoryFactoryBean class implements the FactoryBean interface of Spring.
The result of the getObject method of FactoryBean will be passed, and not the actual
FactoryBean itself. Spring injects that object returned by FactoryBean's
getObjectType() method, and the object type returned by FactoryBean's
getObjectType(); the scope of this bean is decided by the FactoryBean's
isSingleton() method.

The following is the same configuration for the FactoryBean interface in a Java
Configuration:

 package com.packt.patterninspring.chapter4.bankapp.config;
 import org.springframework.context.annotation.Bean;
 import org.springframework.context.annotation.Configuration;
 import com.packt.patterninspring.chapter4.bankapp.
 repository.AccountRepositoryFactoryBean;
 import com.packt.patterninspring.chapter4.
 bankapp.service.TransferService;
 @Configuration
 public class AppConfig {
 public TransferService transferService() throws Exception{

Wiring Beans using the Dependency Injection Pattern

[147]

 return new TransferService(accountRepository().getObject());
 }
 @Bean
 public AccountRepositoryFactoryBean accountRepository(){
 return new AccountRepositoryFactoryBean();
 }
 }

As other normal beans in the Spring container, the Spring FactoryBean also has all the
other characteristics of any other Spring bean, including the life cycle hooks and services
that all beans in the Spring container enjoy.

Best practices for configuring the DI pattern
The following are the best practices for configuring the DI pattern:

Configuration files should be separated categorically. Application beans should
be separate from infrastructure beans. Currently, it's a bit difficult to follow.

Always specify the component name; never rely on generated names by the
container.
It is a best practice to give a name along with a description of what the pattern
does, where to apply it, and the problems it addresses.

Wiring Beans using the Dependency Injection Pattern

[148]

The best practices for component scanning are as follows:
The components are scanned at startup, and it scans the JAR
dependencies as well.
Bad practice: It scans all the packages of com and org. It increases
the startup time of the application. Avoid such type of component
scanning:

 @ComponenttScan (({{ "org", "com" }}))

Optimized: It scans only the specific packages as defined by us.

 @ComponentScan ({
 "com.packt.patterninspring.chapter4.
 bankapp.repository",
 "com.packt.patterninspring.chapter4.bankapp.service"}
)

Best practices in choosing implicit configuration:
Choose annotation-based configurations for frequently changing
beans
It allows for very rapid development
It is a single place to edit the configuration

Best practices in choosing explicit via Java configuration:
It is centralized in one place
Strong type checking enforced by the compiler
Can be used for all classes

Spring XML Best Practices: XML has been around for a long time, there are many
shortcuts and useful techniques available in XML configuration as well, they are
listed follow:

factory-method and factory-bean attributes
Bean Definition Inheritance
Inner Beans
p and c namespaces
Using collections as Spring beans

Wiring Beans using the Dependency Injection Pattern

[149]

Summary
After reading this chapter, you should now have a good idea about DI design patterns, and
the best practices for applying those patterns. Spring deals with the plumbing part, so, you
can focus on solving the domain problem by using the dependency injection pattern. The DI
pattern frees the object of the burden of resolving its dependencies. Your object is handed
everything that it needs to work. The DI pattern simplifies your code, improves code
reusability, and testability. It promotes programming to interfaces, and conceals the
implementation details of dependencies. The DI pattern allows for centralized control over
the object's life cycle. You can configure DI via two ways--explicit configuration and
implicit configuration. Explicit configuration can be configured through XML-or Java-based
configuration; it provides centralized configuration. But implicit configuration is based on
annotations. Spring provides stereotype annotations for Annotation-based configuration.
This configuration reduces the verbosity of code in the application, but it spreads out across
the application files.

In the upcoming Chapter 5, Understanding the Bean Life Cycle and Used Patterns, we will
explore the life cycle of the Spring bean in the container.

5
Understanding the Bean Life

Cycle and Used Patterns
In the previous chapter, you saw how Spring creates beans in the container. You also
learned how to configure the dependency injection pattern using XML, Java, and
Annotation. In this chapter, we will go into more detail, beyond injecting beans and the
configuration of dependencies in a Spring application. Here, you will explore the life and
scope of beans in the container, and learn how the Spring container works on the defined
Spring bean configuration with XML, Annotation, and Java. Spring allows us to control not
only the various configurations for the DI pattern and dependency values that are to be
injected into the object created from a particular bean definition, but also the life and scope
of the beans created from a particular bean definition.

When I was writing this chapter, my two and a half year old son, Arnav, came to me and
started playing a video game on my mobile. He was wearing a T-Shirt, which had an
interesting quote on it, and these lines described his whole day. The lines went like this--
My Perfect Day: Wake up, Play Video Games, Eat, Play Video Games, Eat, Play Video Games, and
Sleep.

Actually, these lines perfectly reflected his life cycle for each day, as he woke up, played,
ate, and played again before, finally, going to sleep. With this example, I just wanted to
demonstrate that everything has a life cycle. We could discuss the life cycle of a butterfly, a
star, a frog, or a plant. But let's talk about something more interesting--the life cycle of a
bean!

Understanding the Bean Life Cycle and Used Patterns

[151]

Every bean in the Spring container has a life cycle and its own scope. The Spring container
manages the life of the beans in a Spring application. We can customize it in some phases by
using Spring-aware interfaces. This chapter will talk about the life of a bean in the
container, and how it is managed using design patterns in the various phases of its life. By
the end of this chapter, you would have a fair idea of the bean life cycle and its various
phases in the container. You will also learn about the many types of bean scope in Spring.
This chapter will cover the following points:

The Spring bean life cycle, and its phases, which are listed as follows:
The initialization phase
The Use phase
The destruction phase

Spring callbacks
Understanding bean scopes

Singleton pattern
Prototype pattern
Custom scopes
Other bean scopes

Now let's take a moment to see how Spring manages the life cycle of a bean from creation to
destruction in the Spring application

The Spring bean life cycle and its phases
In a Spring application, the term life cycle applies to any class of application--Standalone
Java, Spring Boot application, or Integration/System Test. Also, life cycle applies to all three
dependency injection styles--XML, Annotations, and Java configuration. You define the
configuration for beans as per business goals. But Spring creates these beans and manages
the life cycle of the Spring beans. Spring loads the bean configurations either in Java or XML
through ApplicationContext. After loading these beans, the Spring container handles the
creation and instantiation of these beans as per your configuration. Let's divide the Spring
application life cycle into three phases as follows:

The initialization phase
The Use phase
The destruction phase

Understanding the Bean Life Cycle and Used Patterns

[152]

Please refer to the following diagram:

As you can see in the preceding diagram, each Spring bean goes through these three phases
in the complete life cycle. Each phase has some set of operations to be performed for each
Spring bean (depending on the configuration). Spring fits in to manage your application life
cycle. It plays an important role in all three phases.

Now let's take a moment to see how Spring works in the first, initialization phase.

The initialization phase
In this phase, first of all Spring loads all the configuration files of any style-XML,
Annotations, and Java configuration. This phase prepares the beans for use. The application
is not usable until this phase is complete. This phase, actually, creates the application
services for use, and it allocates the system resources to the bean. Spring provides
ApplicationContext to load the bean configurations; once the application context is
created, the initialization phase completes. Let's see how Spring loads the configuration files
in Java or XML.

Creating the application context from configuration
Spring provides multiple implementations of ApplicationContext to load the various
styles of configuration file. These are listed next:

For Java configuration, the following is used:

 ApplicationContext context = new
 AnnotationConfigApplicationContext(AppConfig.class);

Understanding the Bean Life Cycle and Used Patterns

[153]

For XML configuration, the implementation is as follows:

 ApplicationContext context = new
 ClassPathXmlApplicationContext("applicationContext.xml");

In the preceding codes, Spring loads the Java configuration files by using the
AnnotationConfigApplicationContext class, and the XML configuration files by using
the ClassPathXmlApplicationContext class for the Spring container. Spring behaves
the same for all types of configuration. It does not matter what configuration styles you use
in your application. The following diagram shows what exactly happens in this phase:

As you can see in the preceding diagram, the initialization phase is divided into these two
steps:

Load bean definitions
Initialize bean instances

Understanding the Bean Life Cycle and Used Patterns

[154]

Load bean definitions
In this step, all the configuration files--@Configuration classes or XML files-are processed.
For Annotation-based configuration, all the classes annotated with @Components are
scanned to load the bean definitions. All XML files are parsed, and the bean definitions are
added to a BeanFactory. Each bean is indexed under its id. Spring provides multiple
BeanFactoryPostProcessor beans, so, it is invoked to resolve runtime dependencies
such as reading values from external property files. In a Spring application,
BeanFactoryPostProcessor can modify the definition of any bean. The following
diagram describes this step:

As shown in the preceding diagram, Spring first loads the bean definitions, and then calls
BeanFactoryProcessor for some beans to modify its definitions accordingly. Let's see this
with an example. We have two configuration files--AppConfig.java and
InfraConfig.java, which are defined as follows:

Following is the AppConfig.java file:

 @Configuration
 public class AppConfig {
 @Bean
 public TransferService transferService(){ ... }
 @Bean
 public AccountRepository accountRepository(DataSource
 dataSource){ ... }
 }

Following is the InfraConfig.java file:

 @Configuration
 public class InfraConfig {
 @Bean
 public DataSource dataSource () { ... }
 }

Understanding the Bean Life Cycle and Used Patterns

[155]

These Java configuration files are loaded by the ApplicationContext to the container, and
indexed with its id, as shown in the following diagram:

In the last diagram, Spring beans are indexed under its IDs into Spring's BeanFactory, and
then, that BeanFactory object is passed as an argument to the postProcess() method of
BeanFactoryPostProcessor. The BeanFactoryPostProcessor can modify the bean
definition for some beans; this depends on the bean configurations provided by the
developer. Let's see how BeanFactoryPostProcessor works, and how to override it in
our application:

BeanFactoryPostProcessor works on the bean definitions or the configuration1.
metadata of the bean before the beans are actually created.
Spring provides several useful implementations of2.
BeanFactoryPostProcessor, such as reading properties and registering a
custom scope.
You can write your own implementation of the BeanFactoryPostProcessor3.
interface.
If you define a BeanFactoryPostProcessor in one container, it will only be4.
applied to the bean definitions in that container.

The following is the code snippet for BeanFactoryPostProcessor:

 public interface BeanFactoryPostProcessor {
 public void postProcessBeanFactory
 (ConfigurableListableBeanFactory
 beanFactory);
 }

Understanding the Bean Life Cycle and Used Patterns

[156]

Let's now see the following examples of the BeanFactoryPostProcessor extension point:

Reading external property files (database.properties)

Here, we'll use the DataSource bean to be configured with the database values such as
username, password, db url, and driver, as follows:

 jdbc.driver=org.hsqldb.jdbcDriver
 jdbc.url=jdbc:hsqldb:hsql://production:9002
 jdbc.username=doj
 jdbc.password=doj@123

The following is the DataSource bean definition in the configuration file:

 @Configuration
 @PropertySource ("classpath:/config/database.properties")
 public class InfraConfig {
 @Bean
 public DataSource dataSource(
 @Value("${jdbc.driver}") String driver,
 @Value("${jdbc.url}") String url,
 @Value("${jdbc.user}") String user,
 @Value("${jdbc.password}") String pwd) {
 DataSource ds = new BasicDataSource();
 ds.setDriverClassName(driver);
 ds.setUrl(url);
 ds.setUser(user);
 ds.setPassword(pwd));
 return ds;
 }
 }

So, in the preceding code, how do we resolve the @Value and ${..} variables? We need a
PropertySourcesPlaceholderConfigurer to evaluate them. This is a
BeanFactoryPostProcessor. If you are using the XML configuration, the
<context:property-placeholder/> namespace creates a
PropertySourcesPlaceholderConfigurer for you.

Loading the bean definition is a one-time process at the time of loading the configuration
file, but the initializing phase for bean instances is executed for each bean in the container.
Let's have a look at the initialization of bean instances in the application.

Understanding the Bean Life Cycle and Used Patterns

[157]

Initializing bean instances
After loading the bean definitions into the BeanFactory, the Spring IoC container
instantiates the beans for the application; the following diagram shows the process flow:

As you can see in the preceding diagram, the bean initialization step is executed for each
bean in the container. We can summarize the bean creation process as follows:

Each bean is eagerly instantiated by default. It is created in the right order with
its dependencies injected unless marked as lazy.
Spring provides multiple BeanPostProcessor, so, each bean goes through a
post-processing phase such as BeanFactoryPostProcessor, which can modify
the bean definition. However, the BeanPostProcessor can change the instance
of the bean.
After execution of this phase, the bean is fully initialized and ready for use. It is
tracked by its id till the context is destroyed, except for the prototype beans.

In the next section, we'll discuss how to customize the Spring container by using a
BeanPostProcessor.

Understanding the Bean Life Cycle and Used Patterns

[158]

Customizing beans using a BeanPostProcessor
The BeanPostProcessor is an important extension point in Spring. It can modify bean
instances in any way. It is used to enable a powerful feature such as the AOP proxy. You
can write your own BeanPostProcessor in your application to create a custom post-
processor--the class must implement the BeanPostProcessor interface. Spring provides
several implementations of BeanPostProcessor. In Spring, the BeanPostProcessor
interface has two callback methods, as follows:

 public interface BeanPostProcessor {
 Object postProcessBeforeInitialization(Object bean, String
 beanName) throws BeansException;
 Object postProcessAfterInitialization(Object bean, String
 beanName) throws BeansException;
 }

You can implement these two methods of the BeanPostProcessor interface to provide
your own custom logic for bean instantiation, dependency-resolution, and so on. You can
configure multiple BeanPostProcessor implementations to add custom logic to the
Spring container. You can also manage the order of execution of these
BeanPostProcessor by setting the order property. BeanPostProcessor work on Spring
bean instances after instantiation of the bean by the Spring container. The scope of the
BeanPostProcessor is within the Spring container, which means that beans that are
defined in one container are not post-processed by a BeanPostProcessor defined in
another container.

Any class in a Spring application is registered as a post-processor with the container; it
is created for each bean instance by the Spring container. And the Spring container calls the
postProcessBeforeInitialization() method before the container initialization
methods (Initializing Bean's afterPropertiesSet() and the bean's init method). It also
calls the postProcessAfterInitialization() method after any bean initialization
callbacks. The Spring AOP uses the post-processor to provide proxy-wrapping logic
(Proxy design pattern) although we can take any action by using the post-processor.

Spring's ApplicationContext automatically detects those beans which implement the
BeanPostProcessor interface, and registers these beans as post-processors. These
beans are called at the time of any other bean creation. Let's explore the following example
of BeanPostProcessor.

Understanding the Bean Life Cycle and Used Patterns

[159]

Let's create a custom bean post-processor as follows:

 package com.packt.patterninspring.chapter5.bankapp.bpp;
 import org.springframework.beans.BeansException;
 import org.springframework.beans.factory.config.BeanPostProcessor;
 import org.springframework.stereotype.Component;
 @Component
 public class MyBeanPostProcessor implements
 BeanPostProcessor {
 @Override
 public Object postProcessBeforeInitialization
 (Object bean, String beanName) throws BeansException {
 System.out.println("In After bean Initialization
 method. Bean name is "+beanName);
 return bean;
 }
 public Object postProcessAfterInitialization(Object bean, String
 beanName) throws BeansException {
 System.out.println("In Before bean Initialization method. Bean
 name is "+beanName);
 return bean;
 }
 }

This example illustrates basic usage, here this example shows a post-processor prints the
string to the system console for each bean registered with the container. This
MyBeanPostProcessor class annotated with @Component that means this class same as
other bean class in the application context, now run the following demo class. Please refer to
the following code:

 public class BeanLifeCycleDemo {
 public static void main(String[] args) {
 ConfigurableApplicationContext applicationContext = new
 AnnotationConfigApplicationContext(AppConfig.class);
 applicationContext.close();
 }
 }

Understanding the Bean Life Cycle and Used Patterns

[160]

This is the output that we'll get on the console:

As you can see in the preceding output, a string of both the callback methods is printed for
each bean method in the Spring container. Spring provides many pre-implemented
BeanPostProcessor for some specific features, as follows:

RequiredAnnotationBeanPostProcessor

AutowiredAnnotationBeanPostProcessor

CommonAnnotationBeanPostProcessor

PersistenceAnnotationBeanPostProcessor

The namespace <context:annotation-config/> in the XML configuration enables
several post-processor in the same application context in which it is defined.

Let us now move on to our next section, and see how we can enable the Initializer extension
point by using BeanPostProcessor.

The Initializer extension point
This special case of a bean post-processor causes init (@PostConstruct) methods to
be called. Internally, Spring uses several BeanPostProcessors (BPPs)
CommonAnnotationBeanPostProcessor to enable initialization. The following diagram
illustrates the relationship between initializer and BPPs.

Now let's see the following example for the Initializer extension point in XML:

Understanding the Bean Life Cycle and Used Patterns

[161]

Namespace <context:annotation-config/> explicitly enables many post-processor,
let see the following configuration file in XML:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:c="http://www.springframework.org/schema/c"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/
 spring-context-4.3.xsd">
 <context:annotation-config/>
 <bean id="transferService"
 class="com.packt.patterninspring.chapter5.
 bankapp.service.TransferService"/>
 <bean id="accountRepository"
 class="com.packt.patterninspring.chapter5.
 bankapp.repository.JdbcAccountRepository"
 init-method="populateCache"/>
 </beans>

In the preceding configuration code, you can see that I have defined some beans out of
which one of the bean accountRepository repository has the init method attribute of
the bean tag; this attribute has a value, populateCache. This is nothing but an
initializer method of the accountRepository bean. It is called by the container at the
time of bean initialization if the post-processor is explicitly enabled by the
<context:annotation-config/> namespace. Let's see the JdbcAccountRepository
class, shown as follows:

 package com.packt.patterninspring.chapter5.bankapp.repository;
 import com.packt.patterninspring.chapter5.bankapp.model.Account;
 import com.packt.patterninspring.chapter5.bankapp.model.Amount;
 import com.packt.patterninspring.chapter5.
 bankapp.repository.AccountRepository;
 public class JdbcAccountRepository implements AccountRepository {
 @Override
 public Account findByAccountId(Long accountId) {
 return new Account(accountId, "Arnav Rajput", new
 Amount(3000.0));
 }
 void populateCache(){
 System.out.println("Called populateCache() method");
 }
 }

Understanding the Bean Life Cycle and Used Patterns

[162]

In the Java configuration, we can use initMethod attribute of the @Bean annotation as
follows:

 @Bean(initMethod = "populateCache")
 public AccountRepository accountRepository(){
 return new JdbcAccountRepository();
 }

In the Annotation-based configuration, we can use the JSR-250 annotation,
@PostConstruct as follows:

 @PostConstruct
 void populateCache(){
 System.out.println("Called populateCache() method");
 }

We have seen the first phase of a bean life cycle, where Spring loads the bean definitions by
using XML-, Java-, and Annotation-based configuration, and after that, the Spring container
initializes each bean in the correct order in the Spring application. The next diagram gives
an overview of the first phase of the configuration life cycle:

Understanding the Bean Life Cycle and Used Patterns

[163]

The last diagram shows Spring bean metadata in any style-XML, Annotation, or Java-
loaded by the respective implementation of ApplicationContext. All XML files are
parsed, and loaded with the bean definitions. In Annotation configuration, Spring scans all
the components, and loads the bean definitions. In the Java configuration, Spring reads all
the @Bean methods to load the bean definitions. After loading the bean definitions from all
styles of configurations, BeanFactoryPostProcessor comes into the picture to modify
the definition of some beans, and then the container instantiates the beans. Finally,
BeanPostProcessor works on the beans, and it can modify and change the bean object.
This is the initialization phase. Now let's see the next Use phase of a bean in its life cycle.

The Use phase of beans
In a Spring application, all Spring beans spend 99.99% of their time in this phase. If the
initialization phase is completed successfully, then the Spring beans come into this phase.
Here, beans are used by clients as application services. These beans process client requests,
and carry out application behaviors. In the Use phase, let's see how to invoke a bean
obtained from the context in the application where it is used. Please refer to the following
code:

 //Get or create application context from somewhere
 ApplicationContext applicationContext = new
 AnnotationConfigApplicationContext(AppConfig.class);

 // Lookup the entry point into the application
 TransferService transferService =
 context.getBean(TransferService.class);
 // and use it
 transferService.transfer("A", "B", 3000.1);

Suppose the return service returns a raw object, then it is simply invoked directly; nothing
special here. But if your bean has been wrapped in a proxy, then things become more
interesting. Let's explore the following diagram to understand this more clearly:

Understanding the Bean Life Cycle and Used Patterns

[164]

In the preceding diagram, you can see the service method call through the Proxy class; it
is created in the init phase by dedicated BeanPostProcessor. It wraps your beans in a
dynamic proxy, which adds behavior to your bean transparently. It is an implementation of
the Decorator Design pattern and Proxy Design pattern.

Let's see how Spring creates a proxy for your bean in the Spring application.

Implementing the Decorator and Proxy patterns in
Spring using Proxies
Spring uses two types of proxy in a Spring application. The following are the kind of
proxies used by Spring:

JDK Proxy: This is also known as a dynamic proxy. Its API is built into the JDK.
For this proxy, the Java interface is required.
CGLib Proxy: This is NOT built into JDK. However, it is included in Spring JARS,
and is used when the interface is not available. It cannot be applied to final
classes or methods.

Understanding the Bean Life Cycle and Used Patterns

[165]

Let's see the features of both the proxies in the following diagram:

This is all about the Use Phase of the Spring Bean life cycle. Now let's move to the next
phase of life cycle, that is, the destruction phase.

The destruction phase of the beans
In this phase, Spring releases any system resource acquired by the application services.
These are eligible for garbage collection. When you close an application context, the
destruction phase completes. Let's see the following lines of code in this phase:

 //Any implementation of application context

 ConfigurableApplicationContext applicationContext = new
 AnnotationConfigApplicationContext(AppConfig.class);

 // Destroy the application by closing application context.
 applicationContext.close();

Understanding the Bean Life Cycle and Used Patterns

[166]

In the preceding code, what do you think happens when we call the
applicationContext.close() method in this phase? The process that takes place is
given as follows :

Any bean implementing the
org.springframework.beans.factory.DisposableBean interface gets a
callback from the container when it is destroyed. The DisposableBean interface
specifies a single method:

 void destroy() throws Exception;

The bean instances are destroyed if instructed to call their destroy methods.
Beans must have a destroy method defined, that is, a no-arg method returning
void.
The context then destroys itself, and this context is not usable again.
Only GC actually destroys objects and remember, it is called only when the
ApplicationContext/JVM exit normally. It is not called for prototype beans.

Let's see how to implement it with the XML Configuration:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:c="http://www.springframework.org/schema/c"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-
 4.3.xsd">
 <context:annotation-config/>
 <bean id="transferService"
 class="com.packt.patterninspring.chapter5.
 bankapp.service.TransferService"/>
 <bean id="accountRepository"
 class="com.packt.patterninspring.chapter5.
 bankapp.repository.JdbcAccountRepository"
 destroy-method="clearCache"/>
 </beans>

Understanding the Bean Life Cycle and Used Patterns

[167]

In the configuration, the accountRepository bean has a destroy method named
clearCache:

 package com.packt.patterninspring.chapter5.bankapp.repository;
 import com.packt.patterninspring.chapter5.bankapp.model.Account;
 import com.packt.patterninspring.chapter5.bankapp.model.Amount;
 import com.packt.patterninspring.chapter5.bankapp.
 repository.AccountRepository;
 public class JdbcAccountRepository implements AccountRepository {
 @Override
 public Account findByAccountId(Long accountId) {
 return new Account(accountId, "Arnav Rajput", new
 Amount(3000.0));
 }
 void clearCache(){
 System.out.println("Called clearCache() method");
 }
 }

Let's see the same configuration with Java. In the Java configuration, we can use the
destroyMethod attribute of the @Bean annotation as follows:

 @Bean (destroyMethod="clearCache")
 public AccountRepository accountRepository() {
 return new JdbcAccountRepository();
 }

We can do the same using Annotations. Annotations require annotation-config or the
component scanner to be activated by using <context:component-scan ... />, as
seen in the following:

 public class JdbcAccountRepository {
 @PreDestroy
 void clearCache() {
 // close files, connections...
 // remove external resources...
 }
 }

Understanding the Bean Life Cycle and Used Patterns

[168]

You have now seen the Spring bean life cycle in all its phases. In the initialization phase,
Bean Post Processors for initialization and proxies. In the Use phase, Spring beans use the
magic of proxy. Finally, in the destruction phase, it allows the application to terminate
cleanly.

Now that you have seen the bean life cycle, let's learn about bean scopes, and how to create
custom bean scopes in the Spring container.

Understanding bean scopes
In Spring, each bean has one scope in the container. You can control not only the bean
metadata and its life, but also the scope of that bean. You can create a custom scope of the
bean, and register it with the container. You can decide the scope of the bean by configuring
it with the bean definition with the XML-, Annotations-, or Java-based configuration.

The Spring application context creates all beans by using a singleton scope. That means, it is
always the same bean each time; it doesn't matter how many times it is injected into another
bean or called by other services. Because of this singleton behavior, the scope reduces the
cost of instantiating. It is suitable for stateless objects in the application.

In a Spring application, sometimes it is required to save the state of some objects that aren't
safe for reuse. For such a requirement, declaring the bean scope as a singleton is not safe,
because it may cause unexpected problems when reused later. Spring provides another
scope for such a requirement, which is known as the prototype scope of the Spring bean.

Spring defines several scopes under which a bean can be created, and these are as follows:

Understanding the Bean Life Cycle and Used Patterns

[169]

The singleton bean scope
In Spring, any bean that has a singleton scope has only one instance of the bean created for
an application context, where it is defined for the entire application. This is the default
behavior of the Spring container. But it is different from the singleton pattern as defined in
the Gang of Four (GoF) patterns book. In Java, singleton means per object of a particular
class per Classloader in the JVM. But in Spring, it implies per instance of a bean per bean
definition per Spring IoC container. This is explained in the following diagram:

As you can see in the preceding diagram, the same instance of the object is defined by the
bean definition, accountRepository, injected to other collaborating beans in the same IoC
container. Spring stores all singleton bean instances in a cache, and all collaborating beans
fetch the dependency of that object returned by the cache.

Understanding the Bean Life Cycle and Used Patterns

[170]

The prototype bean scope
In Spring, any bean defined with the prototype scope has one instance of the bean created
for every time the bean is injected into other collaborating beans. The following figure
illustrates the Spring prototype scope:

As you can see in the preceding diagram, an accountRepository class is configured as a
prototype bean, and the container creates a brand new instance for each time that bean is
injected into other beans.

The session bean scope
A new instance is created once for every user session in the web environment only.

Consider the following XML configuration for a bean definition:

 <bean id="..." class="..." scope="session"/>

Understanding the Bean Life Cycle and Used Patterns

[171]

The request bean scope
A new instance is created once for every request in the web environment only.

Consider the following XML configuration for a bean definition:

 <bean id="..." class="..." scope="request"/>

Other scopes in Spring
Spring has other more specialized scopes, which are as follows:

WebSocket scope
Refresh scope
Thread scope (defined, but not registered by default)

Spring also supports the creation of your own custom scope for a bean. We'll discuss this in
the following section.

Custom scopes
We can create a custom scope of any bean, and register this scope with the application
context. Let's see how to create a custom bean scope with the following example.

Creating custom scopes
For creating your customer scope in the Spring IoC container, Spring provides the
org.springframework.beans.factory.config.Scope interface. You have to
implement this interface to create your own custom scopes. Take a look at the following
MyThreadScope class as a custom scope in the Spring IoC container:

 package com.packt.patterninspring.chapter5.bankapp.scope;
 import java.util.HashMap;
 import java.util.Map;
 import org.springframework.beans.factory.ObjectFactory;
 import org.springframework.beans.factory.config.Scope;

 public class MyThreadScope implements Scope {
 private final ThreadLocal<Object> myThreadScope = new
 ThreadLocal<Object>() {
 protected Map<String, Object> initialValue() {
 System.out.println("initialize ThreadLocal");

Understanding the Bean Life Cycle and Used Patterns

[172]

 return new HashMap<String, Object>();
 }
 };
 @Override
 public Object get(String name, ObjectFactory<?> objectFactory) {
 Map<String, Object> scope = (Map<String, Object>)
 myThreadScope.get();
 System.out.println("getting object from scope.");
 Object object = scope.get(name);
 if(object == null) {
 object = objectFactory.getObject();
 scope.put(name, object);
 }
 return object;
 }
 @Override
 public String getConversationId() {
 return null;
 }
 @Override
 public void registerDestructionCallback(String name, Runnable
 callback) {
 }
 @Override
 public Object remove(String name) {
 System.out.println("removing object from scope.");
 @SuppressWarnings("unchecked")
 Map<String, Object> scope = (Map<String, Object>)
 myThreadScope.get();
 return scope.remove(name);
 }
 @Override
 public Object resolveContextualObject(String name) {
 return null;
 }
 }

Understanding the Bean Life Cycle and Used Patterns

[173]

In the preceding code, we have overridden multiple methods of the Scope interface as
follows:

Object get(String name, ObjectFactory objectFactory): This method returns the
object from the underlying scope
Object remove(String name): This method removes the object from the
underlying scope
void registerDestructionCallback(String name, Runnable destructionCallback):
This method registers the destruction callbacks, and is executed when the
specified object with this custom scope is destroyed

Now let's see how to register this custom scope with the Spring IoC container, and how to
use it in the Spring application.

You can register this custom bean scope with the Spring IoC container declaratively by
using the CustomScopeConfigurer class as follows :

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">
 <bean class="org.springframework.beans.factory.
 config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="myThreadScope">
 <bean class="com.packt.patterninspring.chapter5.
 bankapp.scope.MyThreadScope"/>
 </entry>
 </map>
 </property>
 </bean>
 <bean id="myBean" class="com.packt.patterninspring.chapter5.
 bankapp.bean.MyBean" scope="myThreadScope">
 <property name="name" value="Dinesh"></property>
 </bean>
 </beans>

Understanding the Bean Life Cycle and Used Patterns

[174]

As you can see in the preceding configuration file, I have registered my custom bean scope
named myThreadScope with the application context by using the
CustomScopeConfigurer class. This custom scope that I am using is similar to the
singleton or prototype scope through the scope attribute of the bean tag in the XML
configuration.

Summary
After reading this chapter, you should now have a good idea about the Spring bean life
cycle in the container, and the several types of bean scope in a container. You now know
that there are three phases of the Spring bean life cycle in the container. The first is the
initialization phase. In this phase, Spring loads the bean definitions from XML, Java, or
Annotation configurations. After loading these beans, the container constructs each bean,
and applies the post-process logic on that bean.

The next is the Use phase, in which the Spring beans are ready to be used, and Spring
shows the magic of the proxy pattern.

Finally, the last phase is the destruction phase. In this phase, when the application calls the
close() method of Spring's ApplicationContext, the container calls the clean-up
method of each bean to release resources.

In Spring, you can control not only the bean life cycle but also the scope of the bean in the
container. The default scope of a bean in the Spring IoC container is the Singleton, but you
can override the default scope by defining other scope prototypes with the bean using the
scope attribute of the bean tag in XML or the @Scope annotation in Java. You can also create
your own custom scope, and register it with the container.

Now we'll turn to the magic chapter of this book, that is, Spring Aspect-Oriented
Programming (AOP). Much as dependency injection helps decouple components from the
other components they collaborate with, AOP helps decouple your application components
from tasks that span multiple components in an application. Let's move on to the next
chapter, covering Spring Aspect Oriented Programming with Proxy and Decorator Design
Pattern.

6
Spring Aspect Oriented

Programming with Proxy and
Decorator pattern

Before you start reading this chapter, I want to share something with you; as I was writing
this chapter, my wife Anamika, was taking a selfie and uploading it to several social media
sites such as Facebook and WhatsApp. She keeps a track of the likes, However, uploading
more photos uses more mobile data, and mobile data costs money. I rarely use social media
as I prefer to avoid paying more to the internet company. Every month, the internet
company knows how much to bill us. Now consider what would happen if the internet
usage, total call duration and bill calculation was meticulously planned and managed by
us? It's possible that some obsessive internet users would manage it and I'm really clueless
as to how.

Calculating billing for internet usage and calls is an important function, but it is still not
predominant for most internet users. For those like my wife, taking selfies, uploading
photos to social media, and watching videos on YouTube are the kinds of things that most
internet users are actively involved in. Managing and calculating their internet bill is a
passive action for internet users.

Similarly some modules of the enterprise applications are like the internet billing calculator
for our internet usage. There are some modules in the application that have important
functionalities that need to be placed at multiple points in the application. But it is
unexpected to explicitly call these functionalities at every points. Functionalities such as
logging, security, and transaction management are important for your application but your
business objects are not actively participating in it because your business objects need to
focus on the business domain problems they're designed for, and leave certain aspects to be
handled by someone else.

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[176]

In software development, there are specific tasks to be performed at certain points in an
application. These tasks or functions are known as cross-cutting concerns. In an
application, all cross-cutting concerns are separate from the business logic of this
application. Spring provides a module Aspect-Oriented Programming (AOP) to separate
these cross-cutting concerns from the business logic.

As in Chapter 4, Wiring Beans using Dependency Injection Pattern, you learned about the
dependency injection to configure and resolve dependencies of collaborating objects in the
application. Whereas DI promotes programming to interface and decoupling application
objects from each other, Spring AOP promotes decoupling between the application's
business logic and the cross-cutting concerns in the application.

In our bankapp example, transferring money from one account to another account is a
business logic but logging this activity and securing the transaction are cross-cutting
concerns in our bankapp application. That means logging, security, and transaction are
common examples of the application of aspects.

In this chapter, you will explore Spring's support for aspects. It will cover the following
points:

Proxy pattern in Spring
Adapter design pattern to handle load time weaving
Decorator design pattern
Aspect-oriented programming
Problems resolved by AOP
Core AOP concepts
Defining point cuts
Implementing Advices
Creating aspects
Understanding AOP proxies

Before we go further into our Spring AOP discussion, let's first understand the
implemented patterns under the Spring AOP Framework, and see how these patterns are
applied.

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[177]

Proxy pattern in Spring
Proxy design pattern provides an object of class that has the functionality of another class.
This pattern comes under the structural design pattern of GOF design patterns. According
to GOF pattern, Provide a surrogate or placeholder for another object to control access to it. The
intent of this design pattern is to provide a different class for another class with its
functionality to the outer world.

Proxying classes using Decorator pattern in
Spring
As you have seen in Chapter 3, Consideration of Structural and Behavioral Patterns, according
to GOF book, Attach additional responsibilities to an object dynamically. Decorators provide a
flexible alternative to subclassing for extending functionality. This pattern allows you to add and
remove behaviors to an individual object at the runtime dynamically or statically without
changing the existing behavior of other associated objects from the same class.

In Spring AOP, CGLIB is used to create the proxy in the application. CGLIB proxying works
by generating a subclass of the target class at runtime. Spring configures this generated
subclass to delegate method calls to the original target--the subclass is used to implement
the Decorator pattern, weaving in the advice.

Spring provides two ways to create the proxy in the application.

CGLIB proxy
JDK proxy or dynamic proxy

Let's see the following table:

JDK proxy CGLIB proxy

Also called dynamic proxies NOT built into JDK

API is built into the JDK Included in Spring JARs

Requirements: Java interface(s) Used when interface not available

All interfaces proxied Cannot be applied to final classes or methods

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[178]

Let's see the following figure:

Note--CGLIB proxying has one issue to be considered, that is, final
methods can't be advised, as they can't be overridden.

In the following section let's learn more about the cross-cutting concerns.

What are cross-cutting concerns?
In any application, there is some generic functionality that is needed in many places. But
this functionality is not related to the application's business logic. Suppose you perform a
role-based security check before every business method in your application. Here security is
a cross-cutting concern. It is required for any application but it is not necessary from the
business point of view, it is a simple generic functionality we have to implement in many
places in the application. The following are examples of the cross-cutting concerns for the
enterprise application.

Logging and tracing
Transaction management
Security
Caching

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[179]

Error handling
Performance monitoring
Custom business rules

Let's see how we will implement these cross-cutting concerns in our application by using
aspects of Spring AOP.

What is Aspect-Oriented Programming?
As mentioned earlier, Aspect-Oriented Programming (AOP) enables modularization of
cross-cutting concerns. It complements Object-oriented programming (OOP) which is
another programing paradigm. OOP has class and object as key elements but AOP has
aspect as key element. Aspects allow you to modularize some functionality across the
application at multiple points. This type of functionality is known as cross-cutting
concerns. For example, security is one of the cross-cutting concerns in the application,
because we have to apply it at multiple methods where we want security. Similarly,
transaction and logging are also cross-cutting concerns for the application and many more.
Let's see in the following figure how these concerns are applied to the business modules:

As you can see in the preceding figure, there are three main business modules as
TransferService, AccountService, and BankService. All business modules require some
common functionality such as Security, Transaction management and Logging.

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[180]

Let's check out what problems we have to face in the application if we do not use the Spring
AOP.

Problems resolved by AOP
As stated earlier, aspects enable modularization of cross-cutting concerns. So if you are not
using aspects, then modularization of some cross-cutting functionality is not possible. It
tends to mix the cross-cutting functionality with the business modules. If you use a
common object-oriented principle to reuse the common functionalities such as security,
logging and transaction management, you need to use inheritance or composition. But here
using inheritance can violate the single responsibility of SOLID principles and also increase
object hierarchy. Also, the composition can be complicated to handle across the application.
That means, failing to modularize cross-cutting concerns leads to two main problems as
follows:

Code tangling
Code scattering

Code tangling
It is a coupling of concerns in the application. Code tangling occurs when there is a mixing
of cross-cutting concerns with the application's business logic. It promotes tight coupling
between the cross-cutting and business modules. Let's see the following code to understand
more about code tangling:

 public class TransferServiceImpl implements TransferService {
 public void transfer(Account a, Account b, Double amount) {
 //Security concern start here
 if (!hasPermission(SecurityContext.getPrincipal()) {
 throw new AccessDeniedException();
 }
 //Security concern end here
 //Business logic start here
 Account aAct = accountRepository.findByAccountId(a);
 Account bAct = accountRepository.findByAccountId(b);
 accountRepository.transferAmount(aAct, bAct, amount);
 ...
 }
 }

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[181]

As you can see in the preceding code, security concern code (highlighted) is mixing with
application's business logic code. This situation is an example of code tangling. Here we
have only included security concern, but in the enterprise application you have to
implement multiple cross-cutting concerns such as logging, transaction management and so
on. In such cases, it will be even more complicated to manage the code and make any
change to the code, which may cause critical bugs in the code as follows in the figure:

In the preceding figure, you can see there are three cross-cutting concerns which are
distributed across the TransferService business class and cross-cutting concerns logic
mixing with AccountService's business logic. This coupling between the concerns and
application's logic is called code tangling. Let's see another main problem if we are using
aspects for cross-cutting concern.

Code scattering
This means that the same concern is spread across modules in the application. Code
scattering promotes the duplicity of the concern's code across the application modules. Let's
see the following code to understand more about code scattering:

 public class TransferServiceImpl implements TransferService {
 public void transfer(Account a, Account b, Double amount) {
 //Security concern start here
 if (!hasPermission(SecurityContext.getPrincipal()) {
 throw new AccessDeniedException();
 }

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[182]

 //Security concern end here
 //Business logic start here
 ...
 }
 }

 public class AccountServiceImpl implements AccountService {
 public void withdrawl(Account a, Double amount) {
 //Security concern start here
 if (!hasPermission(SecurityContext.getPrincipal()) {
 throw new AccessDeniedException();
 }
 //Security concern end here
 //Business logic start here
 ...
 }
 }

As you can see in the preceding code, there are two modules for the application,
TransferService and AccountService. Both modules have the same cross-cutting
concern code for the security. The bold highlighted code in both business modules are the
same, it means there is code duplication here. The following figure illustrates code
scattering:

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[183]

In the preceding figure, there are three business modules TransferService, AccountService,
and BankService. Each business module contains cross-cutting concerns such as Security,
Logging and Transaction management. All modules have the same code of concerns in the
application. It is actually duplication of concerns code across the application.

Spring AOP provides solution for these two problems that is, code tangling and code
scattering in the Spring application. Aspects enable modularization of cross-cutting
concerns to avoid tangling and to eliminate scattering. Let's see in further section how AOP
solves these problems.

How AOP Works to solve problems
Spring AOP allows you to keep cross-cutting concern logic separate from the mainline
application logic. That means, you can implement your mainline application logic and only
focus on the core problem of the application. And you can write aspects to implement your
cross-cutting concerns. Spring provides many aspects out-of-the-box. After creating the
aspects, you can add these aspects that is, cross-cutting behaviors to the right places into
your application. Let's see the following figure that illustrates the functionality of AOP:

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[184]

As you can see in the preceding figure, all aspects such as Security, Logging, and
Transaction aspect are implemented separately in the application. We have added these
aspects at the right places in the applications. Now our application logic is separate from
the concerns. Let's see the following section defining the core AOP concepts and use AOP's
terminology in your application.

Core AOP terminology and concepts
As with other technologies, AOP has its own vocabularies. Let's start to learn some core
AOP concepts and terminology. Spring used the AOP paradigm for the Spring AOP
module. But unfortunately, terms used in the Spring AOP Framework are Spring-specific.
These terms are used to describe AOP modules and features, but these aren't intuitive. In
spite of this, these terms are used in order to understand AOP. Without an understanding
of the AOP idiom you will not be able to understand AOP functionality. Basically, AOP is
defined in terms of advice, pointcuts, and join points. Let's see the following figure that
illustrates about the core AOP concepts and how they are tied together in the framework:

In the preceding figure, you can see an AOP functionality, it is known as Advices and it is
implemented into multiple points. These points are known as Joint Points, these are
defined by using an expression. These expression are known as pointcuts. Let's understand
these terms in detail using an example (remember my wife's internet bill story?).

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[185]

Advice
An internet plan is used for calculating the bill according to data usage in MB or GB by the
internet company. The internet company has a list of customers, also and they also
company calculates the internet bill for them. So calculating bills and sending it to the
customers is a core job for the internet company but not for customers. Likewise, each
aspect has its own main job and also has a purpose for doing this job. The job of an aspect is
known as advice in the AOP.

As you know now, advice is a job, aspect will perform this job, so there are some questions
that come to in mind, when to perform this job and what will be in this job. Will this job be
performed before a business method is invoked? Or will it be performed after the business
method is invoked? Or will it be performed both before and after method invocation? Or it
will be performed when business method throws an exception. Sometime this business
method is also called the advised method. Let's see the following five kinds of advises used
by Spring aspects:

Before: Advice's job executes before the advised method is invoked.

If the advice throws an exception, target will not be called - this is a valid
use of a Before Advice.

After: Advice's job executes after the advised method completes regardless of
whether an exception has been thrown by the target or not.
After-returning: Advice's job executes after the advised method successfully
completes. For example, if a business method returns without throwing an
exception.
After-throwing: Advice's job executes if the advised method exits by throwing an
exception.
Around: This is one of the most powerful advice of Spring AOP, this advice
surrounds the advised method, providing some advice's job before and after the
advised method is invoked.

In short, advice's job code to be executed at each selected point that is, Join Point, let's look
into another term of AOP.

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[186]

Join Point
The internet company provides internet to many customers. Each customer has an internet
plan and that plan needs to be used for their bill calculation. With the help of each internet
plan, the company could potentially calculates the internet bill for all customers. Similarly,
your application may have multiple number of places to apply advice. These places in the
application are called join points. A join point is a point in the execution of a program such
as a method call or exception thrown. In these points, Spring aspect inserts concern
functionality in your application. Let's see how AOP knows about the join points and
discuss another term of AOP concepts.

Pointcut
Internet company makes a number of internet plans according to usage of internet data
(customers like my wife need more data) because it is not possible for any internet company
to provide same plan for all customers or a unique plan for each customer. Instead, each
plan is assigned to the subset of the customers. In the same way, an advice is not necessary
to apply to all join points in an application. You can define an expression that selects one or
more Join Points in the application. This expression is known as pointcut. It helps to narrow
down the join points advised by an aspect. Let's see another term of AOP that is Aspect.

Aspect
An internet company knows which customer has what internet plan. On the basis of this
information the internet company calculates an internet bill and sends it to the customer. In
this example internet company is an aspect, internet plans are pointcuts and customers are
join points, and calculating internet bills by the company is an advice. Likewise, in your
application, an aspect is a module that encapsulates pointcuts and advice. Aspects know
what it does; where and when it does it in the application. Let's see how AOP applies the
aspect to the business methods.

Weaving
Weaving is a technique by which aspects are combined with the business code. This is a
process of applying aspects to a target object by creating a new proxy object. Weaving can
be done at the compile time or at class load time, or at runtime. Spring AOP uses the
runtime weaving by using proxy pattern.

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[187]

You have seen lot of terms used in the AOP. You must know about this terminology
whenever your learn about any AOP Framework either AspectJ or Spring AOP. Spring has
used AspectJ Framework to implement Spring AOP Framework. Spring AOP supports
limited features of AspectJ. Spring AOP provides proxy-based AOP solution. Spring only
supports the method joint points. Now you have some basic idea about Spring AOP and
how it works, let's move on the next topics how to define pointcuts in the Spring's
declarative AOP model.

Defining pointcuts
As mentioned before, pointcuts are used to define a point where advice would be applied.
So pointcut is one of the most important elements of an aspect in the application. Let's
understand how to define pointcuts. In Spring AOP, we can use expression language to
define the pointcuts. Spring AOP uses AspectJ's pointcut expression language for selecting
where to apply advice. Spring AOP supports a subset of the pointcut designators available
in AspectJ because as you know, Spring AOP is proxy-based and some designators do not
support proxy-based AOP. Let's see following table has Spring AOP supported designators.

Spring supported
AspectJ designators

Description

execution It matches the join points by method executions, it is primary
pointcut designator supported by Spring AOP.

within It matches the join points by limit within certain types.

this It limits matching to join points where the bean reference is an
instance of the given type.

target It limits matching to join points where the target object is of a
given type.

args It limits matching to join points where the arguments are instances
of the given types.

@target It limits matching to join points where the target object has an
annotation of the given type.

@args It limits matching to join points where the runtime, type of the
actual arguments passed have annotations of the given type.

@within It limits matching to join points where the declared type of the
target object has the given type annotation.

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[188]

@annotation It limits matching to join points where the subject of the join point
has the given annotation.

As listed earlier, Spring supported pointcut designators, execution is primary pointcut
designator. So here I will only show you how to define pointcuts using execution
designators. Let's see how to write the pointcut expression in the application.

Writing pointcuts
We can write pointcuts by using execution designator as follows:

execution(<method pattern>): The method must match the pattern as defined
follows
Can chain together to create composite pointcuts by using following operators:
&& (and), || (or), ! (not)
Method pattern: Following is method pattern:

[Modifiers] ReturnType [ClassType]

MethodName ([Arguments]) [throws ExceptionType]

In the preceding method pattern, values within bracket [] that is, modifiers, ClassType,
arguments and exceptions are all optional values. There is no need to define it for every
pointcut using execution designator. Value without brackets such as ReturnType, and
MethodName are mandatory to define.

Let's define a TransferService interface:

 package com.packt.patterninspring.chapter6.bankapp.service;
 public interface TransferService {
 void transfer(String accountA, String accountB, Long amount);
 }

TransferService is a service for transferring amounts from one to another account. Let's
say that you want to write a logging aspect that triggers off TransferService's
transfer() method. The following figure illustrates a pointcut expression that can be used
to apply advice whenever the transfer() method is executed:

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[189]

As in the preceding figure, you can see, I used the execution() designator to select join
point TransferService's transfer() method. In preceding expression in figure, I have
used an asterisk at the beginning of the expression. This means that method can return any
type. And after asterisk, I have specified a fully qualified class name and name of method as
transfer(). As method arguments, I have used double dot (..), it means that the pointcut
can select a method whose name is transfer() with no parameter or any number of
parameters.

Let's see following some more pointcut expressions to select join points:

Any class or package:
execution(void transfer*(String)): Any method starting with
transfer that takes a single String parameter and has a void return
type
execution(* transfer(*)): Any method named transfer() that
takes a single parameter
execution(* transfer(int, ..)): Any method named transfer whose
first parameter is an int (the ".." signifies zero or more parameters
may follow)

Restrict by class:
execution(void
com.packt.patterninspring.chapter6.bankapp.service.T

ransferServiceImpl.*(..)): Any void method in the
TransferServiceImpl class, it is including any sub-class, but will
be ignored if a different implementation is used.

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[190]

Restrict by interface:
execution(void
com.packt.patterninspring.chapter6.bankapp.service.T

ransferService.transfer(*)): Any void transfer() method
taking one argument, in any object implementing
TransferService, it is more flexible choice--works if
implementation changes.

Using Annotations
execution(@javax.annotation.security.RolesAllowed

void transfer*(..)): Any void method whose name starts
with transfer that is annotated with the @RolesAllowed
annotation.

Working with packages
execution(* com..bankapp.*.*(..)): There is one directory
between com and bankapp
execution(* com.*.bankapp.*.*(..)): There may be several
directories between bankapp and com
execution(* *..bankapp.*.*(..)): Any sub-package called
bankapp

Now that you have seen that the basics of writing pointcuts, let's see how to write the
advice and declare the aspects that use those pointcuts

Creating aspects
As I said earlier, aspects is one of the most important terms in the AOP. Aspect merges the
pointcuts and advices in the application. Let's see how to define aspect in the application.

You've already defined the TransferService interface as the subject of your aspect's
pointcuts. Now let's use AspectJ annotations to create an aspect.

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[191]

Define aspects using Annotation
Suppose in your bank application, you want to generate log for a money transfer service for
auditing and tracking to understand customers' behaviors. A business never succeeds
without understanding its customers. Whenever you will think about it from the
perspective of a business, an auditing is required but isn't central to the function of the
business itself; it's a separate concern. Therefore, it makes sense to define the auditing as an
aspect that's applied to a transfer service. Let's see the following code which shows the
Auditing class that defines the aspects for this concern:

 package com.packt.patterninspring.chapter6.bankapp.aspect;

 import org.aspectj.lang.annotation.AfterReturning;
 import org.aspectj.lang.annotation.AfterThrowing;
 import org.aspectj.lang.annotation.Aspect;
 import org.aspectj.lang.annotation.Before;

 @Aspect
 public class Auditing {

 //Before transfer service
 @Before("execution(* com.packt.patterninspring.chapter6.bankapp.
 service.TransferService.transfer(..))")
 public void validate(){
 System.out.println("bank validate your credentials before
 amount transferring");
 }

 //Before transfer service
 @Before("execution(* com.packt.patterninspring.chapter6.bankapp.
 service.TransferService.transfer(..))")
 public void transferInstantiate(){
 System.out.println("bank instantiate your amount
 transferring");
 }

 //After transfer service
 @AfterReturning("execution(* com.packt.patterninspring.chapter6.
 bankapp.service.TransferService.transfer(..))")
 public void success(){
 System.out.println("bank successfully transferred amount");
 }

 //After failed transfer service
 @AfterThrowing("execution(* com.packt.patterninspring.chapter6.
 bankapp.service.TransferService.transfer(..))")
 public void rollback() {

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[192]

 System.out.println("bank rolled back your transferred amount");
 }
 }

As you can see how the Auditing class is annotated with @Aspect annotation. It means
this class is not just Spring bean, it is an aspect of the application. And Auditing class has
some methods, these are advices and define some logic within these methods. As we know
that before beginning to transfer amount from an account to another, bank will validate
(validate ()) the use credentials and after that instantiate (transferInstantiate())
this service. After successful validation (success ()) amount is transferred and the bank
audits it. But if the amount transferring fails in any case, then the bank should roll back
(rollback ()) that amount.

As you can see, all methods of Auditing aspects are annotated with advice annotations to
indicate when those methods should be called. Spring AOP provides five type advice
annotations for defining advice. Let's see in the following table:

Annotation Advice

@Before It is used for before advice, advice's method executes before the
advised method is invoked.

@After It is used for after advice, advice's method execute after the advised
method executes normally or abnormally doesn't matter.

@AfterReturning It used for after returning advice, advice's method execute after the
advised method complete successfully.

@AfterThrowing It used for after throwing advice, advice's method execute after the
method terminate abnormally by throwing an exception.

@Around It is used for around advice, advice's method executes before and
after the advised method invoked.

Let's see the implementation of advices and how these work in the application.

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[193]

Implementing Advice
As you know that, Spring provides five types of advices, let's see work flow of one by one.

Advice type - Before
Let's see the following figure for before advice. This advice executes the before the target
method:

As you can see in figure, before advice is executed first and then it calls the Target method.
As we know that Spring AOP is proxy-based. So a Proxy object is created of target class. It is
based on Proxy design pattern and Decorator Design Pattern.

Before Advice example
Let's see the use of @Before annotation:

 //Before transfer service
 @Before("execution(* com.packt.patterninspring.chapter6.
 bankapp.service.TransferService.transfer(..))")
 public void validate(){
 System.out.println("bank validate your credentials before amount
 transferring");
 }

 //Before transfer service
 @Before("execution(* com.packt.patterninspring.chapter6.

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[194]

 bankapp.service.TransferService.transfer(..))")
 public void transferInstantiate(){
 System.out.println("bank instantiate your amount transferring");
 }

Note--if the advice throws an exception, target will not be called--this is a
valid use of a Before Advice.

Now you have seen the before advice, let's have a look into another type advice.

Advice Types: After Returning
Let's see the following figure for after returning advice. This advice executes the after the
Target method executed successfully:

As you can see in figure, the after returning advice is executed after the target returns
successfully. This advice will never execute if target throws any exception in the
application.

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[195]

After Returning Advice example
Let's see the use of the @AfterReturning annotation:

 //After transfer service
 @AfterReturning("execution(* com.packt.patterninspring.chapter6.
 bankapp.service.TransferService.transfer(..))")
 public void success(){
 System.out.println("bank successfully transferred amount");
 }

Now you have seen the after returning advice, let's move to another type advice in the
Spring AOP.

Advice Types: After Throwing
Let's see the following figure for after throwing advice. This advice executes the after the
target method terminated abnormally. It mean the target method throws any exception,
then this advice will be executed. Please refer to the following diagram:

As you can see in figure, the after throwing advice is executed after the target throws an
exception. This advice will never execute if the target doesn't throw any exception in the
application.

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[196]

After Throwing Advice example
Let's see the use of the @AfterThrowing annotation:

 //After failed transfer service
 @AfterThrowing("execution(* com.packt.patterninspring.chapter6.
 bankapp.service.TransferService.transfer(..))")
 public void rollback() {
 System.out.println("bank rolled back your transferred amount");
 }

You can also use the @AfterThrowing annotation with the throwing attribute, it only
invokes advice if the right exception type is thrown:

 //After failed transfer service
 @AfterThrowing(value = "execution(*
 com.packt.patterninspring.chapter6.
 bankapp.service.TransferService.transfer(..))", throwing="e"))
 public void rollback(DataAccessException e) {
 System.out.println("bank rolled back your transferred amount");
 }

Execute every time a TransferService class throws an exception of type
DataAccessException.

The @AfterThrowing advice will not stop the exception from
propagating. However, it can throw a different type of exception.

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[197]

Advice Types: After
Let's see the following figure for AfterAdvice. This advice executes after the Target method
is terminated normally or abnormally. It doesn't matter that Target method throws any
exception or executes without any exception:

As you can see in figure, the after advice is executed after the target method terminates by
throwing any exception or normally.

After Advice example
Let's see the use of @After annotation:

 //After transfer service
 @After ("execution(* com.packt.patterninspring.chapter6.
 bankapp.service.TransferService.transfer(..))")
 public void trackTransactionAttempt(){
 System.out.println("bank has attempted a transaction");
 }

Use @After annotation called regardless of whether an exception has been thrown by the
target or not.

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[198]

Advice Types - Around
Let's see the following figure for AroundAdvice. This advice executes both times before and
after the Target method is invoked. This advice is very powerful advice of Spring AOP.
Many features of the Spring Framework are implemented by using this advice. This is the
only advice in Spring which has capability to stop or proceed the target method execution.
Please refer to the following diagram:

As you can see in the preceding figure, AroundAdvice executed two times, first time it is
executed before the advised method and second time it is executed after advised method is
invoked. And also this advice calls the proceed() method to execute the advised method
in the application. Let's see the following example:

Around Advice example
Let's see the use of the @Around annotation:

 @Around(execution(* com.packt.patterninspring.chapter6.
 bankapp.service.TransferService.createCache(..)))
 public Object cache(ProceedingJoinPoint point){
 Object value = cacheStore.get(CacheUtils.toKey(point));
 if (value == null) {
 value = point.proceed();
 cacheStore.put(CacheUtils.toKey(point), value);
 }
 return value;
 }

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[199]

Here I used @Around annotation and a ProceedingJoinPoint, it inherits from Join Point
and adds the proceed() method. As you can see in this example, this advice proceeds to
target only if value is not already in the cache.

You have seen how to implement the advice in the application using annotations and how
to create aspect and how to define pointcuts by annotations. In this example, we are using
Auditing as an aspect class and it is annotated with @Aspect annotation, but this
annotation will not work if you don't enable AOP proxy behavior of the Spring.

Let's see the following Java configuration file, AppConfig.java, you can turn on auto-
proxying by applying the @EnableAspectJAutoProxy annotation at the class level:

 package com.packt.patterninspring.chapter6.bankapp.config;

 import org.springframework.context.annotation.Bean;
 import org.springframework.context.annotation.ComponentScan;
 import org.springframework.context.annotation.Configuration;
 import org.springframework.context.annotation.
 EnableAspectJAutoProxy;

 import com.packt.patterninspring.chapter6.bankapp.aspect.Auditing;

 @Configuration
 @EnableAspectJAutoProxy
 @ComponentScan
 public class AppConfig {
 @Bean
 public Auditing auditing() {
 return new Auditing();
 }
 }

If you're using XML configuration, let's see how to wire your beans in Spring and how to
enable Spring AOP feature by using the <aop:aspectj-autoproxy> element from
Spring's AOP namespace:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[200]

 context.xsd">
 <context:component-scan base-
 package="com.packt.patterninspring.chapter6.bankapp" />
 <aop:aspectj-autoproxy />
 <bean class="com.packt.patterninspring.chapter6.
 bankapp.aspect.Auditing" />
 </beans>

Let's see how you can declare aspects in a Spring XML configuration file.

Define aspects using XML configuration
As we know that, we can configure beans in the XML based configuration, similarly you
can declare aspects in the XML configuration. Spring provides another AOP namespace and
it offers many elements that are used to declare aspects in XML, let's see in the following
tables:

Annotation Parallel XML element Purpose of XML element

@Before <aop:before> It defines before advice.

@After <aop:after> It defines after advice.

@AfterReturning <aop:after-returning> It defines after returning
advice.

@AfterThrowing <aop:after-throwing> It defines after throwing
advice.

@Around <aop:around> It defines around advice.

@Aspect <aop:aspect> It defines an aspect.

@EnableAspectJAutoProxy <aop:aspectj-autoproxy> It enables annotation-driven
aspects using @AspectJ.

@Pointcut <aop:pointcut> It defines a pointcut.

-- <aop:advisor> It define AOP adviser

-- <aop:config> It is top level AOP element

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[201]

As you can see in the preceding table, a number of AOP namespace elements are parallel to
the corresponding annotation available in the Java based configuration. Let's see the
following same example in the XML based configuration, first have a look into the aspect
class Auditing. Let's remove all of those AspectJ annotations as shown in following code:

 package com.packt.patterninspring.chapter6.bankapp.aspect;

 public class Auditing {
 public void validate(){
 System.out.println("bank validate your credentials before
 amount transferring");
 }
 public void transferInstantiate(){
 System.out.println("bank instantiate your amount
 transferring");
 }
 public void success(){
 System.out.println("bank successfully transferred amount");
 }
 public void rollback() {
 System.out.println("bank rolled back your transferred amount");
 }
 }

As you can see the preceding code, now our aspect class doesn't indicate that it is an aspect
class. It is a basic Java POJO class with some methods. Let's see in next section how to
declare advices in XML configuration:

 <aop:config>
 <aop:aspect ref="auditing">
 <aop:before pointcut="execution(*
 com.packt.patterninspring.chapter6.bankapp.
 service.TransferService.transfer(..))"
 method="validate"/>
 <aop:before pointcut="execution(*
 com.packt.patterninspring.chapter6.bankapp.
 service.TransferService.transfer(..))"
 method="transferInstantiate"/>
 <aop:after-returning pointcut="execution(*
 com.packt.patterninspring.chapter6.
 bankapp.service.TransferService.transfer(..))"
 method="success"/>
 <aop:after-throwing pointcut="execution(*
 com.packt.patterninspring.chapter6.bankapp.
 service.TransferService.transfer(..))"
 method="rollback"/>
 </aop:aspect>

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[202]

 </aop:config>

As you can see, <aop-config> is using a top level element. In <aop:config>, you declare
other elements like <aop:aspect>, this element has ref attribute and it references to the
POJO bean Auditing. It indicates that Auditing is an aspect class in the application. Now
<aop-aspect> element has advices and pointcuts elements. All logics are same as we have
defined in Java configuration.

Let's see in the next section how spring create AOP proxy.

Understanding AOP proxies
As you know that, Spring AOP is proxy-based. It mean Spring creates the proxy to weave
the aspect between the business logic that is, in target object. It is based on the Proxy and
Decorator design pattern. Let's see TransferServiceImpl class as an implementation of
TransferService interface:

 package com.packt.patterninspring.chapter6.bankapp.service;
 import org.springframework.stereotype.Service;
 public class TransferServiceImpl implements TransferService {
 @Override
 public void transfer(String accountA, String accountB, Long
 amount) {
 System.out.println(amount+" Amount has been tranfered from
 "+accountA+" to "+accountB);
 }
 }

Caller invokes this service (transfer() method) directly by the object reference, let's see
the following figure to illustrate more:

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[203]

As you can see that caller could directly call the service and do the task assigned to it.

But you declare this TransferService as a target for the aspect. Since this is done, things
change slightly. Now this class wrapped by proxy and client code actually doesn't call this
service directly, it calls routed by this proxy. Let's see the following diagram.

As you can see in the preceding diagram, Spring apply the AOP-proxy to the object in the
following sequence:

Spring creates a proxy weaving aspect and target.1.
Proxy also implements target interface, that is, TransferServive interface.2.
All calls for transfer service method transfer() routed through proxy3.
interceptor.
Matching advice is executed.4.
Then target method is executed.5.

As preceding list, is the flow when you call the method that has the proxy created by
Spring.

You have seen in this chapter the Spring AOP Framework, it has actually implemented
some part of the AspectJ Framework using proxy-based aspect weaving. I think, this gave
good knowledge about Spring AOP.

Spring Aspect Oriented Programming with Proxy and Decorator pattern

[204]

Summary
In this chapter, we have seen the Spring AOP Framework and used design patterns behind
this module. AOP is a very powerful paradigm and it complements the Object oriented
programming. Aspect-Oriented Programming (AOP) modularizes cross-cutting concerns
such as Logging, Security and Transaction. An aspect is a Java class annotated with
@Aspect annotation. It defines a module containing the crosscutting behavior. This module
separates from the application's business logic. We can reuse it in our application with other
business modules without making any changes.

In Spring AOP, behavior is implemented as an advice method. You have learned in Spring,
there are five types as Before, AfterThrowing, AfterReturning, After and Around. Around
advice is a very powerful advice, there are interesting features implemented by using
Around advice. You've learned how to weave these advices using load time weaving.

You have seen how to declare Pointcuts in the Spring application and pointcuts select
joinpoints where advice applies.

Now we'll move to the essential part and look at how spring works in the backend to
connect with database and read data for the application. Starting in the next chapter, you'll
see how to build applications using JDBC template in Spring.

7
Accessing a Database with
Spring and JDBC Template

Patterns
In earlier chapters, you learned about Spring core modules like the Spring IoC container,
the DI pattern, container life cycle, and the used design patterns. Also you have seen how
Spring makes magic using AOP. Now is the right time to move into the battlefield of real
Spring applications with persisting data. Do you remember your first application during
college days where you dealt with database access? That time, you probably, had to write
boring boilerplate code to load database drivers, initialize your data-access framework,
open connections, handle various exceptions, and to close connections. You also had to be
very careful about that code. If anything went wrong, you would not have been able to
make a database connection in your application, even though you would've invested a lot
of time in such boring code, apart from writing the actual SQL and business code.

Because we always try to make things better and simpler, we have to focus on the solution
to that tedious work for data-access. Spring comes with a solution for the tedious and
boring work for data-access--it removes the code of data access. Spring provides data-access
frameworks to integrate with a variety of data-access technologies. It allows you to use
either JDBC directly or any object-relational mapping (ORM) framework, like Hibernate,
to persist your data. Spring handles all the low-level code for data access work in your
application; you can just write your SQL, application logic, and manage your application's
data rather than investing time in writing code for making and closing database
connections, and so on.

Accessing a Database with Spring and JDBC Template Patterns

[206]

Now, you can choose any technology, such as JDBC, Hibernate, the Java Persistence API
(JPA), or others. to persist your application's data. Irrespective of what you choose, Spring
provides support for all these technologies for your application. In this chapter, we will
explore Spring's support for JDBC. It will cover the following points:

The best approach to designing your data access
Implementing the template design pattern
Problems with the traditional JDBC
Solving problems with the Spring JdbcTemplate
Configuring the data source
Using the object pool design pattern to maintain database connections
Abstracting database access by the DAO pattern
Working with JdbcTemplate
The Jdbc callback interfaces
Best practices for configuring JdbcTemplate in the application

Before we go on to discuss more about JDBC and the template design pattern, let's first see
the best approach to define the data-access tier in the layered architecture.

The best approach to designing your data-
access
In previous chapters, you have seen that one of Spring's goals is to allow you to develop
applications by following one of the OOPs principles of coding to interfaces. Any enterprise
application needs to read data and write data to any kind of database, and to meet this
requirement, we have to write the persistence logic. Spring allows you to avoid the
scattering of persistence logic across all the modules in your application. For this, we can
create a different component for data access and persistence logic, and this component is
known as a data access object (DAO). Let's see, in the following diagram, the best approach
to create modules in layered applications:

Accessing a Database with Spring and JDBC Template Patterns

[207]

As you can see in the preceding diagram, for a better approach, many enterprise
applications consist of the following three logical layers:

The service layer (or application layer): This layer of the application exposes
high-level application functions like use-cases and business logic. All application
services are defined here.
The data access layer: This layer of the application defines an interface to the
application's data repository (such as a Relational or NoSQL database). This layer
has the classes and interfaces which have the data-access logic's data persisting in
the application.
The infrastructure layer: This layer of the application exposes low-level services
to the other layers, such as configuring DataSource by using the database URL,
user credentials, and so on. Such configuration comes under this layer.

Accessing a Database with Spring and JDBC Template Patterns

[208]

In the previous figure, you can see that the Service Layer collaborates with the Data Access
Layer. To avoid coupling between the application logic and data-access logic, we should
expose their functionality through interfaces, as interfaces promote decoupling between the
collaborating components. If we use the data-access logic by implementing interfaces, we
can configure any particular data-access strategy to the application without making any
changes in the application logic in the Service Layer. The following diagram shows the
proper approach to designing our data-access layer:

As shown in the preceding figure, your application service objects, that is, TransferService,
don't handle their own data access. Instead, they delegate data access to the repositories.
The repository's interface, that is, AccountRepository in your application, keeps it loosely
coupled to the service object. You could configure any variant of the implementations-either
the Jpa implementation of AccountRepository (JpaAccountRepository), or the Jdbc
implementation of AccountRepository (JdbcAccountRepository).

Spring not only provides loose coupling between the application components working at
the different layers in the layered architecture, but also helps to manage the resources in the
enterprise layered architecture application. Let's see how Spring manages the resources,
and what design pattern is using by Spring to solve the resource management problem.

Accessing a Database with Spring and JDBC Template Patterns

[209]

The resource management problem
Let's understand the resource management problem with the help of a real example. You
must've ordered pizza online sometime. If so, what are the steps involved in the process,
from the time of ordering the pizza till its delivery? There are many steps to this process--
We first go to the online portal of the pizza company, select the size of the pizza and the
toppings. After that, we place our order and check out. The order is accepted by the nearest
pizza shop; they prepare our pizza accordingly, put the toppings on accordingly, wrap this
pizza in the bag, the delivery boy comes to your place and hands over the pizza to you, and,
finally, you enjoy your pizza with your friend. Even though there are many steps to this
process, you're actively involved in only a couple of them. The pizza company is
responsible for cooking the pizza and delivering it smoothly. You are involved only when
you need to be, and other steps are taken care of by the pizza company. As you saw in this
example, there are many steps involved in managing this process, and we also have to
assign the resources to each step accordingly such that it is treated as a complete task
without any break in the flow. This is a perfect scenario for a powerful design pattern, the
template method pattern. The Spring framework implements this template design pattern
to handle such type scenarios in the DAO layer of an application. Let's see what problems
we face if we don't use Spring, and work with the traditional application instead.

In a traditional application, we work with the JDBC API to access the data from the
database. It is a simple application where we access and persist the data using the JDBC
API, and for this application, the following steps are required:

Define the connection parameters.1.
Access a data source, and establish a connection.2.
Begin a transaction.3.
Specify the SQL statement.4.
Declare the parameters, and provide parameter values.5.
Prepare and execute the statement.6.
Set up the loop to iterate through the results.7.
Do the work for each iteration--execute the business logic.8.
Process any exception.9.
Commit or roll back the transaction.10.
Close the connection, statement, and resultset.11.

Accessing a Database with Spring and JDBC Template Patterns

[210]

If you use the Spring Framework for the same application, then you have to write the code
for some steps of the preceding list of steps, while spring takes care of all the steps
involving the low-level processes such as establishing a connection, beginning a transaction,
processing any exception in the data layer, and closing the connection. Spring manages
these steps by using the Template method design pattern, which we'll study in the next
section.

Implementing the template design pattern
Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.
Template Method lets subclasses redefine certain steps of an algorithm without changing
the algorithm's structure.

-GOF Design Pattern

We discussed the Template method design pattern in Chapter 3, Consideration of Structural
and Behavioral Patterns. It is widely used, and comes under the structural design pattern of
the GOF design pattern family. This pattern defines the outline or skeleton of an algorithm,
and leaves the details to specific implementations later. This pattern hides away large
amounts of boilerplate code. Spring provides many template classes, such as
JdbcTemplate, JmsTemplate, RestTemplate, and WebServiceTemplate. Mostly, this
pattern hides the low-level resource management as discussed earlier in the pizza example.

In the example, the process is ordering a pizza for home delivery from an online portal. The
process followed by the pizza company has some fixed steps for each customer, like taking
the order, preparing the pizza, adding the toppings according to the customer's
specifications, and delivering it to the customer's address. We can add these steps, or define
these steps to a specific algorithm. The system can then implement this algorithm
accordingly.

Spring implements this pattern to access data from a database. In a database, or any other
technology, there are some steps that are always common, such as establishing a connection
to the database, handling transactions, handling exceptions, and some clean up actions
which are required for each data access process. But there are also some steps which are not
fixed, but depend on the application's requirement. It is the responsibility of the developer
to define these steps. But spring allows us to separate the fixed and dynamic parts of the
data-access process into different parts as templates and callbacks. All fixed steps come
under the template, and dynamic custom steps come under callbacks. The following figure
describes the two in detail:

Accessing a Database with Spring and JDBC Template Patterns

[211]

As you can see in the preceding figure, all the fixed parts of the process for data access
wraps to the template classes of the Spring Framework as open and close connection, open
and close statements, handling exceptions, and managing resources. But the other steps like
writing SQLs, declaring connection parameters, and so on are parts of the callbacks, and
callbacks are handled by the developer.

Spring provides several implementations of the Template method design pattern such as
JdbcTemplate, JmsTemplate, RestTemplate, and WebServiceTemplate, but in this
chapter, I will explain only its implementation for the JDBC API as JdbcTemplate. There is
another variant of JdbcTemplate-NamedParameterJdbcTemplate, which wraps a
JdbcTemplate to provide named parameters instead of the traditional JDBC "?"
placeholders.

Problems with the traditional JDBC
The following are the problems we have to face whenever we work with the traditional
JDBC API:

Redundant results due to error-prone code: The traditional JDBC API required a
lot of tedious code to work with the data access layer. Let's see the following code
to connect the Database and execute the desired query:

 public List<Account> findByAccountNumber(Long accountNumber) {
 List<Account> accountList = new ArrayList<Account>();
 Connection conn = null;
 String sql = "select account_name,
 account_balance from ACCOUNT where account_number=?";
 try {
 DataSource dataSource = DataSourceUtils.getDataSource();
 conn = dataSource.getConnection();

Accessing a Database with Spring and JDBC Template Patterns

[212]

 PreparedStatement ps = conn.prepareStatement(sql);
 ps.setLong(1, accountNumber);
 ResultSet rs = ps.executeQuery();
 while (rs.next()) {
 accountList.add(new Account(rs.getString(
 "account_name"), ...));
 }
 } catch (SQLException e) { /* what to be handle here? */ }
 finally {
 try {
 conn.close();
 } catch (SQLException e) { /* what to be handle here ?*/ }
 }
 return accountList;
 }

As you can see in the preceding code, there are some lines which are highlighted; only this
bold code matters-the rest is boilerplate. Also, this code handles the SQLException in the
application inefficiently, because the developer doesn't know what should be handled there.
Let's now look at another problem in the traditional JDBC code.

Leads to poor exception handling: In the preceding code, the exceptions in the
application are handled very poorly. The developers are not aware of what
exceptions are to be handled here. SQLException is a checked Exception, which
means it forces the developers to handle errors, but if you can't handle it, you
must declare it. It is a very bad way of handling exceptions, and the intermediate
methods must declare exception(s) from all methods in the code. It is a form of
tight coupling.

Solving problems with Spring's JdbcTemplate
Spring's JdbcTemplate solves both the problems listed in the last section. JdbcTemplate
greatly simplifies the use of the JDBC API, and it eliminates repetitive boilerplate code. It
alleviates the common causes of bugs, and handles SQLExceptions properly without
sacrificing power. It provides full access to the standard JDBC constructs. Let's see the same
code using Spring's JdbcTemplate class to solve these two problems:

Removing redundant code from the application using JdbcTemplate: Suppose
you want a count of the accounts in a bank. The following code is required if you
use the JdbcTemplate class:

 int count = jdbcTemplate.queryForObject("SELECT COUNT(*)
 FROM ACCOUNT", Integer.class);

Accessing a Database with Spring and JDBC Template Patterns

[213]

If you want to access the list of accounts for a particular user ID:

 List<Account> results = jdbcTemplate.query(someSql,
 new RowMapper<Account>() {
 public Account mapRow(ResultSet rs, int row) throws
 SQLException {
 // map the current row to an Account object
 }
 });

As you can see in the preceding code, you don't need to write the code for Open
and Close database connection, for preparing a statement to execute query, and so
on.

Data Access Exceptions: Spring provides a consistent exception hierarchy to
handle technology-specific exceptions like SQLException to its own exception
class hierarchy with DataAccessException as the root exception. Spring wraps
these original exceptions into different unchecked exceptions. Now Spring does
not force the developers to handle these exceptions at development time. Spring
provides the DataAccessException hierarchy to hide whether you are using
JPA, Hibernate, JDBC, or similar. Actually, it is a hierarchy of sub-exceptions, and
not just one exception for everything. It is consistent across all the supported data
access technologies. The following diagram depicts the Spring Data Access
Exception hierarchy:

Accessing a Database with Spring and JDBC Template Patterns

[214]

As you can see in the preceding figure, Spring's DataAccessException extends
the RuntimeException, that is, it is an unchecked exception. In an enterprise
application, unchecked exceptions can be thrown up the call hierarchy to the best
place to handle it. The good thing is that the methods in between don't know
about it in the application.

Let's first discuss how to configure Spring with a data source to be able to connect the
database, before declaring the templates and repositories in a Spring application.

Configuring the data source and object pool
pattern
In the Spring Framework, DataSource is part of the JDBC API, and it provides a connection
to the database. It hides many boilerplate codes for connection pooling, exception handling,
and transaction management issues from the application code. As a developer, you let it
focus on your business logic only. Don't worry about connection pooling, exception
handling, and managing transactions; it is the responsibility of the application
administrators how they set up the container managed data source in production. You just
write the code, and test that code.

In an enterprise application, we can retrieve DataSource in several ways. We can use the
JDBC driver to retrieve DataSource, but it is not the best approach to create DataSource in
the production environment. As performance is one of the key issues during application
development, Spring implements the object pool pattern to provide DataSource to the
application in a very efficient way. The object pool pattern says that creation of objects is
expensive rather than reuse.

Spring allows us to implement the object pool pattern for reusing the DataSource object in
the application. You can use either the application server and container-managed pool
(JNDI), or you can create a container by using third-party libraries such as DBCP, c3p0, and
so on. These pools help to manage the available data sources in a better way.

Accessing a Database with Spring and JDBC Template Patterns

[215]

In your Spring application, there are several options to configure the data-source beans, and
they are as follows:

Configuring data source using a JDBC driver
Implementing the object pool design pattern to provide data source objects

Configuring the data source using JNDI
Configuring the data source using pool connections

Implementing the Builder pattern to create an
embedded data source

Let's see how to configure a data-source bean in a Spring application.

Configuring a data source using a JDBC driver
Using a JDBC driver to configure a data-source bean is the simplest data source in Spring.
The three data source classes provided by Spring are as follows:

DriverManagerDataSource: It always creates a new connection for every
connection request
SimpleDriverDataSource: It is similar to the DriverManagerDataSource
except that it works with the JDBC driver directly
SingleConnectionDataSource: It returns the same connection for every
connection request, but it is not a pooled data source

Let's see the following code for configuring a data source bean using the
DriverManagerDataSource class of Spring in your application:

In Java-based configuration, the code is as follows:

 DriverManagerDataSource dataSource = new DriverManagerDataSource();
 dataSource.setDriverClassName("org.h2.Driver");
 dataSource.setUrl("jdbc:h2:tcp://localhost/bankDB");
 dataSource.setUsername("root");
 dataSource.setPassword("root");

Accessing a Database with Spring and JDBC Template Patterns

[216]

In XML-based configuration, the code will be like this:

 <bean id="dataSource"
 class="org.springframework.jdbc.datasource
 .DriverManagerDataSource">
 <property name="driverClassName" value="org.h2.Driver"/>
 <property name="url" value="jdbc:h2:tcp://localhost/bankDB"/>
 <property name="username" value="root"/>
 <property name="password" value="root"/>
 </bean>

The data source defined in the preceding code is a very simple data source, and we can use
it in the development environment. It is not a suitable data source for production. I,
personally, prefer to use JNDI to configure the data source for the production environment.
Let's see how.

Let's implement the object pool design pattern to provide data source objects by configuring
the data source using JNDI.

In a Spring application, you can configure a data source by using the JNDI lookup. Spring
provides the <jee:jndi-lookup> element from Spring's JEE namespace. Let's see the code
for this configuration.

In XML configuration, the code is given as follows:

 <jee:jndi-lookup id="dataSource"
 jndi-name="java:comp/env/jdbc/datasource" />

In Java configuration, the code is as follows:

 @Bean
 public JndiObjectFactoryBean dataSource() {
 JndiObjectFactoryBean jndiObject = new JndiObjectFactoryBean();
 jndiObject.setJndiName("jdbc/datasource");
 jndiObject.setResourceRef(true);
 jndiObject.setProxyInterface(javax.sql.DataSource.class);
 return jndiObject;
 }

Accessing a Database with Spring and JDBC Template Patterns

[217]

Application servers like WebSphere or JBoss allow you to configure data sources to be
prepared via JNDI. Even a web container like Tomcat allows you to configure data sources
to be prepared via JNDI. These servers manage the data sources in your application. It is
beneficial, because the performance of the data source will be greater, as the application
servers are often pooled. And they can be managed completely external to the application.
This is one of the best ways to configure a data source to be retrieved via JNDI. If you are
not able to retrieve through the JNDI lookup in production, you can choose another, better
option, which we'll discuss next.

Configuring the data source using pool
connections
The following open-sources technologies provide pooled data sources:

Apache commons DBCP
c3p0
BoneCP

The following code configures DBCP's BasicDataSource.

The XML-based DBCP configuration is given as follows:

 <bean id="dataSource"
 class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close">
 <property name="driverClassName" value="org.h2.Driver"/>
 <property name="url" value="jdbc:h2:tcp://localhost/bankDB"/>
 <property name="username" value="root"/>
 <property name="password" value="root"/>
 <property name="initialSize" value="5"/>
 <property name="maxActive" value="10"/>
 </bean>

Accessing a Database with Spring and JDBC Template Patterns

[218]

The Java-based DBCP configuration is as follows:

 @Bean
 public BasicDataSource dataSource() {
 BasicDataSource dataSource = new BasicDataSource();
 dataSource.setDriverClassName("org.h2.Driver");
 dataSource.setUrl("jdbc:h2:tcp://localhost/bankDB");
 dataSource.setUsername("root");
 dataSource.setPassword("root");
 dataSource.setInitialSize(5);
 dataSource.setMaxActive(10);
 return dataSource;
 }

As you can see in the preceding code, there are many other properties which are introduced
for a pooled data sources provider. The properties of the BasicDataSource class in Spring
are listed next:

initialSize: This is the number of connections created at the time of
initialization of the pool.
maxActive: This is the maximum number of connections that can be allocated
from the pool at the time of initialization of the pool. If you set this value to 0,
that means there's no limit.
maxIdle: This is the maximum number of connections that can be idle in the pool
without extras being released. If you set this value to 0, that means there's no
limit.
maxOpenPreparedStatements: This is the maximum number of prepared
statements that can be allocated from the statement pool at the time of
initialization of the pool. If you set this value to 0, that means there's no limit.
maxWait: This is the maximum waiting time for a connection to be returned to
the pool before an exception is thrown. If you set it to 1, it means wait
indefinitely.
minEvictableIdleTimeMillis: This is the maximum time duration a
connection can remain idle in the pool before it's eligible for eviction.
minIdle: This is the minimum number of connections that can remain idle in the
pool without new connections being created.

Accessing a Database with Spring and JDBC Template Patterns

[219]

Implementing the Builder pattern to create
an embedded data source
In application development, the embedded database is very useful, because it doesn't
require a separate database server that your application connects. Spring provides one more
data source for embedded databases. It is not powerful enough for the production
environment. We can use the embedded data source for the development and testing
environment. In Spring, the jdbc namespace configures an embedded database, H2, as
follows:

In XML configuration, H2 is configured as follows:

 <jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script location="schema.sql"/>
 <jdbc:script location="data.sql"/>
 </jdbc:embedded-database>

In Java configuration, H2 is configured as follows:

 @Bean
 public DataSource dataSource(){
 EmbeddedDatabaseBuilder builder =
 new EmbeddedDatabaseBuilder().setType(EmbeddedDatabaseType.H2);
 builder.addScript("schema.sql");
 builder.addScript("data.sql");
 return builder.build();
 }

As you can see in the preceding code, Spring provides the EmbeddedDatabaseBuilder
class. It actually implements the Builder design pattern to create the object of the
EmbeddedDatabaseBuilder class.

Let's see one more design pattern in the next section.

Accessing a Database with Spring and JDBC Template Patterns

[220]

Abstracting database access using the DAO
pattern
The data access layer works as an aspect between the business layer and the database. Data
accessing depends on the business call, and it varies depending on the source of the data for
example database, flat files, XML, and so on. So, we can abstract all access by providing an
interface. This is known as the data access object pattern. From the application's point of
view, it makes no difference when it accesses a relational database or parses XML files using
a DAO.

In an earlier version, EJB provided entity beans managed by the container; they were
distributed, secure, and transactional components. These beans were very transparent to the
client, that is, for the service layer in the application, they had automatic persistence
without the care of underlying database. But mostly, the features offered by these entity
beans were not required for your application, as you needed to persist data to the database.
Due to this, some non-required features of the entity beans, like network traffic, increased,
and your application's performance was impacted. And that time, the entity beans needed
to run inside the EJB containers, which is why it was very difficult to test.

In a nutshell, if you are working with the traditional JDBC API or earlier EJB versions, you
will face the following problems in your application:

In a traditional JDBC application, you merge the business tier logic with
persistence logic.
The Persistence tier or DAO layer is not consistent for the service layer or
business tier. But DAO should be consistent for the service layer in an enterprise
application.
In a traditional JDBC application, you have to handle a lot of boilerplate code like
making and closing connection, preparing statement, handling exceptions, and so
on. It degrades reusability and increases development time.
With EJB, the entity bean was created as an overhead to the application, and was
difficult to test.

Let's see how spring solves these problems.

Accessing a Database with Spring and JDBC Template Patterns

[221]

The DAO pattern with the Spring Framework
Spring provides a comprehensive JDBC module to design and develop JDBC-based DAOs.
These DAOs in the application take care of all the boilerplate code of the JDBC API, and
help to provide a consistent API for data access. In the Spring JDBC, DAO is a generic object
to access data for the business tier, and it provides a consistent interface to the services at
the business tier. The main goal behind the DAO's classes is to abstract the underlying data
access logic from the services at the business tier.

In our previous example, we saw how the pizza company helped us to understand the
resource management problem, and now, we will continue with our bank application. Let's
see the following example on how to implement DAOs in an application. Suppose, in our
bank application, we want the total number accounts in a branch in the city. For this, we
will first create an interface for the DAO. It promotes programming to interface, as
discussed earlier. It is one of the best practices of the design principles. This DAO interface
will be injected with the services at the business tier, and we can create a number of
concrete classes of the DAO interface according to the underlying databases in the
application. That means our DAO layer will be consistent for the business layer. Let's create
a DAO interface as following:

 package com.packt.patterninspring.chapter7.bankapp.dao;
 public interface AccountDao {
 Integer totalAccountsByBranch(String branchName);
 }

Let's see a concrete implementation of the DAO interface using Spring's JdbcDaoSupport
class:

 package com.packt.patterninspring.chapter7.bankapp.dao;

 import org.springframework.jdbc.core.support.JdbcDaoSupport;
 public class AccountDaoImpl extends JdbcDaoSupport implements
 AccountDao {
 @Override
 public Integer totalAccountsByBranch(String branchName) {
 String sql = "SELECT count(*) FROM Account WHERE branchName =
 "+branchName;
 return this.getJdbcTemplate().queryForObject(sql,
 Integer.class);
 }
 }

Accessing a Database with Spring and JDBC Template Patterns

[222]

In the preceding code, you can see that the AccountDaoImpl class implements the
AccountDao DAO interface, and it extends Spring's JdbcDaoSupport class to ease
development with JDBC-based. This class provides a JdbcTemplate to its subclasses by
using getJdbcTemplate(). The JdbcDaoSupport class is associated with a data source,
and supplies the JdbcTemplate object for use in the DAO.

Working with JdbcTemplate
As you learned earlier, Spring's JdbcTemplate solves two main problems in the
application. It solves the redundant code problem as well as poor exception handling of the
data access code in the application. Without JdbcTemplate in your application, only 20%
of the code is required for querying a row, but 80% is boilerplate which handles exceptions
and manages resources. If you use JdbcTemplate, then there is no need to worry about the
80% boilerplate code. Spring's JdbcTemplate, in a nutshell, is responsible for the
following:

Acquisition of the connection
Participation in the transaction
Execution of the statement
Processing of the result set
Handling any exceptions
Release of the connection

Let's see when to use JdbcTemplate in the application, and how to create it.

When to use JdbcTemplate
JdbcTemplate is useful in standalone applications, and anytime when JDBC is needed. It is
suitable in utility or test code to clean up messy legacy code. Also, in any layered
application, you can implement a repository or data access object. Let's see how to create it
in an application.

Accessing a Database with Spring and JDBC Template Patterns

[223]

Creating a JdbcTemplate in an application
If you want to create an object of the JdbcTemplate class to access data in your Spring
application, you need to remember that it requires a DataSource to create the database
connection. Let's create a template once, and reuse it. Do not create one for each thread, it is
thread-safe after construction:

 JdbcTemplate template = new JdbcTemplate(dataSource);

Let's configure a JdbcTemplate bean in Spring with the following @Bean method:

 @Bean
 public JdbcTemplate jdbcTemplate(DataSource dataSource) {
 return new JdbcTemplate(dataSource);
 }

In the preceding code, we use the constructor injection to inject the DataSource with the
JdbcTemplate bean in the Spring application. The dataSource bean being referenced can
be any implementation of javax.sql.DataSource. Let's see how to use the
JdbcTemplate bean in your JDBC-based repository to access the database in your
application.

Implementing a JDBC-based repository
We can use the Spring's JdbcTemplate class to implement the repositories in a Spring
application. Let's see how to implement the repository class based on the JDBC template:

 package com.packt.patterninspring.chapter7.bankapp.repository;

 import java.sql.ResultSet;
 import java.sql.SQLException;

 import javax.sql.DataSource;

 import org.springframework.jdbc.core.JdbcTemplate;
 import org.springframework.jdbc.core.RowMapper;
 import org.springframework.stereotype.Repository;
 import com.packt.patterninspring.chapter7.bankapp.model.Account;
 @Repository
 public class JdbcAccountRepository implements AccountRepository{
 JdbcTemplate jdbcTemplate;
 public JdbcAccountRepository(DataSource dataSource) {
 super();
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

Accessing a Database with Spring and JDBC Template Patterns

[224]

 @Override
 public Account findAccountById(Long id){
 String sql = "SELECT * FROM Account WHERE id = "+id;
 return jdbcTemplate.queryForObject(sql,
 new RowMapper<Account>(){
 @Override
 public Account mapRow(ResultSet rs, int arg1) throws
 SQLException {
 Account account = new Account(id);
 account.setName(rs.getString("name"));
 account.setBalance(new Long(rs.getInt("balance")));
 return account;
 }
 });
 }
 }

In the preceding code, the DataSource bean is injected with the JdbcAccountRepository
class by using the constructor injection. By using this DataSource, we created a
JdbcTemplate object for accessing the data. The following methods are provided by
JdbcTemplate to access data from the database:

queryForObject(..): This is a query for simple java types (int, long, String,
Date ...) and for custom domain objects.
queryForMap(..): This is used when expecting a single row. JdbcTemplate
returns each row of a ResultSet as a Map.
queryForList(..): This is used when expecting multiple rows.

Note that queryForInt and queryForLong have been deprecated since
Spring 3.2; you can just use queryForObject instead (API improved in
Spring 3).

Often, it is useful to map relational data into domain objects, for example, a ResultSet to
an Account in the last code. Spring's JdbcTemplate supports this by using a callback
approach. Let's discuss Jdbc callback interfaces in the next section.

Accessing a Database with Spring and JDBC Template Patterns

[225]

Jdbc callback interfaces
Spring provides three callback interfaces for JDBC as follows:

Implementing RowMapper: Spring provides a RowMapper interface for mapping
a single row of a ResultSet to an object. It can be used for both single and
multiple row queries. It is parameterized as of Spring 3.0:

 public interface RowMapper<T> {
 T mapRow(ResultSet rs, int rowNum)
 throws SQLException;
 }

Let's understand this with the help of an example.

Creating a RowMapper class
In the following example, a class, AccountRowMapper, implements the RowMapper
interface of the Spring Jdbc module:

 package com.packt.patterninspring.chapter7.bankapp.rowmapper;

 import java.sql.ResultSet;
 import java.sql.SQLException;
 import org.springframework.jdbc.core.RowMapper;
 import com.packt.patterninspring.chapter7.bankapp.model.Account;
 public class AccountRowMapper implements RowMapper<Account>{
 @Override
 public Account mapRow(ResultSet rs, int id) throws SQLException {
 Account account = new Account();
 account.setId(new Long(rs.getInt("id")));
 account.setName(rs.getString("name"));
 account.setBalance(new Long(rs.getInt("balance")));
 return account;
 }
 }

In the preceding code, a class, AccountRowMapper, maps a row of the result set to the
domain object. This row-mapper class implements the RowMapper callback interface of the
Spring Jdbc module.

Accessing a Database with Spring and JDBC Template Patterns

[226]

Query for single row with JdbcTemplate

Let's now see how the row-mapper maps a single row to the domain object in the
application in the following code:

 public Account findAccountById(Long id){
 String sql = "SELECT * FROM Account WHERE id = "+id;
 return jdbcTemplate.queryForObject(sql, new AccountRowMapper());
 }

Here, there is no need to add typecasting for the Account object. The AccountRowMapper
class maps the rows to the Account objects.

Query for multiple rows

The following code shows how the row mapper maps multiple rows to the list of domain
objects:

 public List<Account> findAccountById(Long id){
 String sql = "SELECT * FROM Account ";
 return jdbcTemplate.queryForList(sql, new AccountRowMapper());
 }

RowMapper is the best choice when each row of a ResultSet maps to a domain object.

Implementing RowCallbackHandler
Spring provides a simpler RowCallbackHandler interface when there is no return object. It
is used to stream rows to a file, converting the rows to XML, and filtering them before
adding to a collection. But filtering in SQL is much more efficient, and is faster than the JPA
equivalent for big queries. Let's look at the following example:

 public interface RowCallbackHandler {
 void processRow(ResultSet rs) throws SQLException;
 }

Example for using a RowCallbackHandler

The following code is an example of a RowCallbackHandler in the application:

 package com.packt.patterninspring.chapter7.bankapp.callbacks;
 import java.sql.ResultSet;
 import java.sql.SQLException;
 import org.springframework.jdbc.core.RowCallbackHandler;
 public class AccountReportWriter implements RowCallbackHandler {
 public void processRow(ResultSet resultSet) throws SQLException {

Accessing a Database with Spring and JDBC Template Patterns

[227]

 // parse current row from ResultSet and stream to output
 //write flat file, XML
 }
 }

In preceding code, we have created a RowCallbackHandler implementation; the
AccountReportWriter class implements this interface to process the result set returned
from the database. Let's see the following code how to use AccountReportWriter call back
class:

 @Override
 public void generateReport(Writer out, String branchName) {
 String sql = "SELECT * FROM Account WHERE branchName = "+
 branchName;
 jdbcTemplate.query(sql, new AccountReportWriter());
 }

RowCallbackHandler is the best choice when no value should be returned from the
callback method for each row, especially for large queries.

Implementing ResultSetExtractor
Spring provides a ResultSetExtractor interface for processing an entire ResultSet at
once. Here, you are responsible for iterating the ResultSet, for example, for mapping the
entire ResultSet to a single object. Let's see the following example:

 public interface ResultSetExtractor<T> {
 T extractData(ResultSet rs) throws SQLException,
 DataAccessException;
 }

Example for using a ResultSetExtractor

The following line of code implements the ResultSetExtractor interface in the
application:

 package com.packt.patterninspring.chapter7.bankapp.callbacks;

 import java.sql.ResultSet;
 import java.sql.SQLException;
 import java.util.ArrayList;
 import java.util.List;

 import org.springframework.dao.DataAccessException;
 import org.springframework.jdbc.core.ResultSetExtractor;

Accessing a Database with Spring and JDBC Template Patterns

[228]

 import com.packt.patterninspring.chapter7.bankapp.model.Account;

 public class AccountExtractor implements
 ResultSetExtractor<List<Account>> {
 @Override
 public List<Account> extractData(ResultSet resultSet) throws
 SQLException, DataAccessException {
 List<Account> extractedAccounts = null;
 Account account = null;
 while (resultSet.next()) {
 if (extractedAccounts == null) {
 extractedAccounts = new ArrayList<>();
 account = new Account(resultSet.getLong("ID"),
 resultSet.getString("NAME"), ...);
 }
 extractedAccounts.add(account);
 }
 return extractedAccounts;
 }
 }

This preceding class, AccountExtractor, implements ResultSetExtractor, and it is
used to create an object for the entire data of the result set returned from the database. Let's
see how to use this class in your application:

 public List<Account> extractAccounts() {
 String sql = "SELECT * FROM Account";
 return jdbcTemplate.query(sql, new AccountExtractor());
 }

The previous code is responsible for accessing all the accounts of a bank, and for preparing
a list of accounts by using the AccountExtractor class. This class implements the
ResultSetExtractor callback interface of the Spring Jdbc module.

ResultSetExtractor is the best choice when multiple rows of a ResultSet map to a
single object.

Accessing a Database with Spring and JDBC Template Patterns

[229]

Best practices for Jdbc and configuring
JdbcTemplate
Instances of the JdbcTemplate class are thread-safe once configured. As a best practice of
configuring the JdbcTemplate in a Spring application, it should be constructed in the
constructor injection or setter injection of the data source bean in your DAO classes by
passing that data source bean as a constructor argument of the JdbcTemplate class. This
leads to DAOs that look, in part, like the following:

 @Repository
 public class JdbcAccountRepository implements AccountRepository{
 JdbcTemplate jdbcTemplate;
 public JdbcAccountRepository(DataSource dataSource) {
 super();
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }
 //...
 }
 Let's see some best practices to configure a database and write
 the code for the DAO layer:

If you want to configure the embedded database at the time of development of
the application, as the best practice, the embedded database will always be
assigned a uniquely generated name. This is because in the Spring container, the
embedded database is made available by configuring a bean of type
javax.sql.DataSource, and that data source bean is injected to the data access
objects.
Always use object pooling; this can be achieved in two ways:

Connection pooling: It allows the pool manager to keep the
connections in a pool after they are closed
Statement pooling: It allows the driver to reuse the prepared
Statement objects.

Choose the commit mode carefully
Consider removing the auto-commit mode for your
application, and use manual commit instead to better
control the commit logic, as follows:

 Connection.setAutoCommit(false);

Accessing a Database with Spring and JDBC Template Patterns

[230]

Summary
An application without data is like a car without fuel. Data is the heart of an application.
Some applications may exist in the world without data, but these applications are simply
showcase applications such as static blogs. Data is an important part of an application, and
you need to develop data-access code for your application. This code should very simple,
robust, and customizable.

In a traditional Java application, you could use JDBC to access the data. It is a very basic
way, but sometimes, it is very messy to define specifications, handle JDBC exceptions, make
database connections, load drivers, and so on. Spring simplifies these things by removing
the boilerplate code and simplifying JDBC exception handling. You just write your SQL that
should be executed in the application, and the rest is managed by the Spring framework.

In this chapter, you have seen how Spring provides support at the backend for data access
and data persistence. JDBC is useful, but using the JDBC API directly is a tedious and error-
prone task. JdbcTemplate simplifies data access, and enforces consistency. Data access
with Spring uses the layered architecture principles-the higher layers should not know
about data management. It isolates SQLException via Data Access Exceptions, and creates a
hierarchy to make them easier to handle.

In the next chapter, we'll continue to discuss data access and persistence with the ORM
framework, like Hibernate and JPA.

8
Accessing Database with

Spring ORM and Transactions
Implementing Patterns

In Chapter 7, Accessing Database with Spring and JDBC Template Patterns, we have learned
how to access database using JBDC and how Spring can remove boilerplate code from the
developer end to the framework by using template pattern and callbacks. In this chapter,
we will learn one advanced step of accessing database using the Object Relational
Mapping (ORM) Framework and managing transactions across the application.

When my son, Arnav, was one and a half years old, he used to play with a dummy mobile
phone. But as he grew up, his needs too outgrew dummy mobiles to smartphones.

Similarly, when your application has a small set of data for a business tier, then JDBC works
fine, but as your application grows and becomes more complex, it becomes difficult to map
tables to the objects in the application. JDBC is the dummy small phone of the data access
world. But with complex applications, we need Object Relational Mapping solutions that
are able to map object properties to database columns. We also need more sophisticated
platforms for our application at the data access layer, which create the queries and
statements independently from the database technologies for us, and which we can define
declaratively or programmatically.

Accessing Database with Spring ORM and Transactions Implementing Patterns

[232]

Many ORM Frameworks are available to provide services at the data access layer of an
application. Examples of such services include object relational mapping, lazy loading of
data, eager loading of data, cascading, and so on. These ORM services save you from
writing a lot of code for error handling, and managing resources in the application. The
ORM Frameworks decrease the development time, and help to write error-free code, so that
you just focus on the business requirements only. Spring doesn't implement its own ORM
solution, but it provides support for many persistence frameworks such as Hibernate, the
Java Persistence API (JPA), iBATIS, and Java Data Objects (JDO). Spring also provides
integration points to the ORM Frameworks so that we can easily integrate the ORM
Framework in our Spring application.

Spring provides support for all these technologies in your application. In this chapter, we
will explore Spring's support for ORM solutions, and cover the following topics:

ORM Framework and used patterns
The data access object pattern
Creating DAOs using the Factory design pattern in Spring
The Data Mapper pattern
The domain model pattern
Proxy for the lazy loading pattern
The Hibernate template pattern

Integrating Hibernate with Spring
Configuring Hibernate's SessionFactory in a Spring container
Implementing DAOs based on plain Hibernate API
Transaction management strategies in Spring
Declarative transaction implementation and demarcation
Programmatic transaction implementation and demarcation
Best practices for Spring ORM and transaction modules in the
application

Before we go on to discuss more about the ORM Frameworks, let's first look at some design
patterns used in the data access layer (DAL) of the application.

Accessing Database with Spring ORM and Transactions Implementing Patterns

[233]

ORM Framework and the patterns used
Spring provides support for several ORM Frameworks, such as Hibernate, the Java
Persistence API (JPA), iBATIS, and Java Data Objects (JDO). By using any ORM solution
in your application, you can easily persist and access data in the form of POJO objects from
relational databases. The Spring ORM module is an extension of the previously discussed
Spring JDBC DAO module. Spring provides ORM templates, such as JDBC-based
templates, to work in the integration tier or data access layer. The following are the ORM
Frameworks and integration supported by the Spring Framework:

Hibernate
Java Persistence API
Java Data Objects
iBATIS
Data access object implementations
Transaction strategies

You can use Spring's dependency injection feature to configure ORM solutions in your
application. Spring also adds important enhancements to the ORM layer in your data access
applications. The following are the benefits of using the Spring Framework to create your
ORM DAOs:

Easier development and testing: Spring's IoC container manages the beans for
ORM DAOs. You can easily swap the implementation of the DAO interface by
using Spring's dependency injection feature. It also makes it easy to test
persistence-related code in isolation.
Common data access exceptions: Spring provides a consistent data exception
hierarchy to handle exceptions at the persistence layer. It wraps all the checked
exceptions from the ORM tool, and converts these exceptions to unchecked
general exceptions which are not related to any specific ORM solution and are
DB-specific.
General resource management: Resources such as DataSource, DB connections,
Hibernates SessionFactory, JPA EntityManagerFactory, and others are
managed by the Spring IoC container. Spring also manages transactions--local or
global--using JTA.
Integrated transaction management: Spring provides declarative and
programmatic transaction management in your application. For declarative
transaction management, you can use the @Transactional annotation.

Accessing Database with Spring ORM and Transactions Implementing Patterns

[234]

The main approach to Spring's integration with the ORM solution is loose coupling between
the application's layers; that is, the business layer and the data access layer. It is clear
application layering, and is independent of any specific database and transaction
technology. Business services in the application are no longer dependent on data access and
a specific transaction strategy. Because Spring manages the resources used in the
integration layer, you don't need to look up resources for specific data access technologies.
Spring provides templates for the ORM solution to remove the boilerplate codes, and it
provides a consistent approach across all ORM solutions.

In Chapter 7, Accessing Database with Spring and JDBC Template Patterns, you saw how
Spring solves two major problems of the integration layer in the application. The first
problem was redundant code for managing resources from the application, and the second
problem was handling checked exceptions in the application at development time. Similarly,
the Spring ORM module also provides solutions to these two problems, as we'll discuss in
the following sections.

Resource and transaction management
In the Spring JDBC module, resources such as connection handling, statements handling,
and exceptions handling are managed by the Spring's JdbcTemplate. It also translates SQL
error codes of the database specific to meaningful unchecked exception classes. The same is
true for the Spring ORM module--Spring manages both local and global transactions in the
enterprise application by using the respective Spring transaction managers. Spring provides
transaction managers for all supported ORM technologies. For example, Spring offers the
Hibernate transaction manager for Hibernate, the JPA transaction manager for JPA, and
JTA support for global or distributed transactions.

Accessing Database with Spring ORM and Transactions Implementing Patterns

[235]

Consistent exception handling and translation
In the Spring JDBC module, Spring provides DataAccessException to handle all types of
database-specific SQL error code, and generates meaningful exception classes. In the Spring
ORM module, as we already know, Spring supports integration for several ORM solutions,
such as Hibernate, JPA, or JDO in a DAO, and these persistence technologies provide their
own native exception classes as HibernateException, PersistenceException, or
JDOException depending on the technology. These native exceptions of the ORM
Frameworks are unchecked exceptions, so we don't have to handle them in the application.
The caller of the DAO services cannot do specific handling unless the application is strongly
ORM based, or does not need any special exception treatment. Spring provides a consistent
approach throughout the ORM Frameworks; you don't need to implement specific code for
any ORM in a Spring application. It enables exception translation by using the
@Repository annotation. If any class in the Spring application is annotated with
@Repository annotation, then that class is eligible for Spring DataAccessException
translation. Take for example the following code for the AccountDaoImpl class:

 @Repository
 public class AccountDaoImpl implements AccountDao {
 // class body here...
 }

 <beans>
 <!-- Exception translation bean post processor -->
 <bean class="org.springframework.dao.annotation.
 PersistenceExceptionTranslationPostProcessor"/>
 <bean id="accountDao" class="com.packt.patterninspring.chapter8.
 bankapp.dao.AccountDaoImpl"/>
 </beans>

As you can see in the preceding code, the
PersistenceExceptionTranslationPostProcessor class is a bean post processor,
which automatically searches for all exception translators and also advises all the registered
beans annotated with the @Repository annotation in the container. It applies the
discovered exception translators to those annotated beans, and these translators can
intercept and apply the appropriate translation on the thrown exceptions.

Let's see some more design patterns that are implemented in the Spring ORM module to
provide the best enterprise solution for the integration tier of an enterprise application.

Accessing Database with Spring ORM and Transactions Implementing Patterns

[236]

The data access object pattern
The data access object (DAO) pattern is a very popular design pattern for the persistent
layer in a J2EE application. It separates the business logic layer and persistence layer. The
DAO pattern is based on the encapsulation and abstraction object-oriented principles. The
context for using the DAO pattern is to access and persist data depending on the underlying
vendor implementation and type of storage, such as object-oriented database, flat files,
relational databases, and so on. Using the DAO pattern, you can create a DAO interface,
and implement this DAO interface to abstract and encapsulate all access to the data source.
This DAO implementation manages the database's resources like connections with the data
source.

The DAO interfaces are very generic to all the underlying data source mechanisms, and
don't need to change for any changes in the low-level persistence technologies. This pattern
allows you to adopt any different data access technologies without affecting the business
logic in the enterprise application. Let's see the following figure to understand more about
the DAO pattern:

As you can see in the preceding diagram, the following participants work on this pattern:

BusinessObject: This object works on the business layer, and is a client for the
data access layer. It requires data for business modeling, and for preparing Java
objects for the helper or controllers in the application.

Accessing Database with Spring ORM and Transactions Implementing Patterns

[237]

DataAccessObject: This is a primary object of the DAO pattern. This object hides
all the low-level implementation of the underlying database implementation for
the BusinessObject.
DataSource: This is also an object to contain all the low-level information about
the underlying database implementation, such as an RDBMS, flat files, or XML.
TransferObject: This is also an object, and it is used as a data carrier. This object
is used by DataAccessObject to return data to the business object.

Let's see the following example of the DAO pattern, where AccountDao is a
DataAccessObject interface, and AccountDaoImpl is the implementation class of the
AccountDao interface:

 public interface AccountDao {
 Integer totalAccountsByBranch(String branchName);
 }

 public class AccountDaoImpl extends JdbcDaoSupport implements
 AccountDao {
 @Override
 public Integer totalAccountsByBranch(String branchName) {
 String sql = "SELECT count(*) FROM Account WHERE branchName =
 "+branchName;
 return this.getJdbcTemplate().queryForObject(sql,
 Integer.class);
 }

 }

Creating DAOs using the Factory design pattern
in Spring
As we know, there are a lot of design patterns that play a role in the Spring Framework. As
discussed in Chapter 2, Overview of GOF Design Patterns--Core Design patterns, the Factory
pattern is a creational design pattern, and it is used to create an object without exposing the
underlying logic to the client, and to assign a new object to the caller using a common
interface or abstract class. You can make the DAO pattern highly flexible by using the
Factory method and Abstract Factory design patterns.

Accessing Database with Spring ORM and Transactions Implementing Patterns

[238]

Let's see in our example where do we are implementing this strategy in which a factory
produces the DAOs for a single database implementation. Please refer to the following
diagram:

You can see in the preceding diagram that the AccountDao object is produced by
AccountDaoFactory, and AccountDaoFactory is a factory for AccountDao. We can change
the underlying database at any time such that we do not need to change the business code--
the factory takes care of these things, Spring provides support to maintain all the DAOs in
the bean factory and in the factory for DAOs as well.

The Data Mapper pattern
A layer of Mappers that moves data between objects and a database while keeping them
independent of each other and the mapper itself.
- By Martin Fowler: Patterns of Enterprise Application Architecture

Accessing Database with Spring ORM and Transactions Implementing Patterns

[239]

The ORM Framework provides mapping between the object and relational databases,
because we know that Objects and tables in the relational databases have different ways of
storing the data for the application. Also, objects and tables have mechanisms for
structuring data. In your Spring application, if you use any ORM solution such as
Hibernate, JPA, or JDO, then you don't need worry about the mapping mechanism between
the object and relational databases. Let's see the following diagram to understand more
about the Data Mapper pattern:

As shown in the preceding diagram, Account, an object, is mapped to the relational
database through AccountMapper. It works like a mediator layer between the Java object
and the underlying database in the application. Let's see another pattern used in the data
access layer.

The domain model pattern
An object model of the domain that incorporates both behaviour and data.
-by Martin Fowler: Patterns of Enterprise Application Architecture

A domain model is an object that has behavior and data, so, the behavior defines the
business logic of the enterprise application, and data is information about the business's
output. A domain model combines data and process. In an enterprise application, data
model lies under the business layer to insert the business logic, and it returns data from the
business behaviors. Let's see the following diagram for more clarity on this:

Accessing Database with Spring ORM and Transactions Implementing Patterns

[240]

As you can see in the preceding diagram, we have defined two domain models in our
application as per as our business requirements. Business behavior for transferring money
from one account to another account has been defined in the TransferService class. The
classes TransferService and AccountService come under the domain model pattern in the
enterprise application.

Proxy for the lazy loading pattern
Lazy loading is a design pattern, and this design pattern is used by some ORM solutions
such as Hibernate in the enterprise application to defer initialization of an object until it is
called by another object at a point where it is needed. The purpose of this design pattern is
memory optimization in the application. The lazy loading design pattern in Hibernate is
achieved by using a virtual proxy object. In Lazy loading demonstration, we use a proxy,
but this is not part of the proxy pattern.

Spring's Hibernate template pattern
Spring provides a helper class to access data in the DAO layer--this class is based on the
GoF template method design pattern. Spring provides the HibernateTemplate class for
providing database operations such as save, create, delete, and update. The
HibernateTemplate class ensures that only one Hibernate session is used per transaction.

Let's see Spring's support for Hibernate in the next section.

Integrating Hibernate with Spring
Hibernate is a persistence ORM Framework, it is open source, and it provides not only
simple object relationship mapping between Java objects and database tables, but also
provides a lot of sophisticated features for your application to improve performance, and
helps in better resource utilization such as caching, lazy loading, eager fetching, and
distributed caching.

Spring Framework provides full support to integrate the Hibernate Framework, and Spring
has some inbuilt libraries for full utilization of the Hibernate Framework. We can use
Spring's DI pattern and IoC container to configure Hibernate in your application.

Let's see in the following section how to configure Hibernate in the Spring IoC container.

Accessing Database with Spring ORM and Transactions Implementing Patterns

[241]

Configuring Hibernate's SessionFactory in a
Spring container
As the best approach for configuring Hibernate and other persistence technologies in any
enterprise application, business objects should be separate from the hard-coded resource
lookups such as a JDBC DataSource or Hibernate SessionFactory. You can define these
resources as beans in the Spring container. But business objects require the references of
these resources, such as SessionFactory and JDBC DataSource, to access them. Let's see
the following DAO class which has SessionFactory to access data for the application:

 public class AccountDaoImpl implements AccountDao {
 private SessionFactory sessionFactory;

 public void setSessionFactory(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 }
 //.....
 }

As you can see in the preceding code, the DAO class, AccountDaoImpl, follows the
dependency injection pattern. It is injected with Hibernate's SessionFactory object to
access the data, and fits nicely into a Spring IoC container. Here, Hibernate's
SessionFactory is singleton object; it produces the main object of
org.hibernate.Session interface of Hibernate. SessionFactory manages the Session
object of Hibernate, and is also responsible for opening and closing the Session object. The
Session interface has actual data-access functionality such as save, update, delete, and
load objects from the database. In the application, AccountDaoImp or any other repository
uses this Hibernate Session object to perform all of its persistence needs.

Spring provides inbuilt Hibernate modules, and you could use Spring's Hibernate session-
factory beans in your application.

The org.springframework.orm.hibernate5.LocalSessionFactoryBean bean is the
implementation of the FactoryBean interface of Spring. LocalSessionFactoryBean is
based on the Abstract Factory pattern, and it produces Hibernate SessionFactory in the
application. You can configure the Hibernate SessionFactory as a bean in Spring's
context in your application as follows:

 @Bean
 public LocalSessionFactoryBean sessionFactory(DataSource
 dataSource) {
 LocalSessionFactoryBean sfb = new LocalSessionFactoryBean();
 sfb.setDataSource(dataSource);

Accessing Database with Spring ORM and Transactions Implementing Patterns

[242]

 sfb.setPackagesToScan(new String[] {
 "com.packt.patterninspring.chapter8.bankapp.model" });
 Properties props = new Properties();
 props.setProperty("dialect",
 "org.hibernate.dialect.H2Dialect");
 sfb.setHibernateProperties(props);
 return sfb;
 }

In the preceding code, we have configured SessionFactory as a bean by using the
Spring's LocalSessionFactoryBean class. This bean method takes DataSource as an
argument; DataSource specifies how and where to find a database connection. We also
specified a property, setPackagesToScan, for LocalSessionFactoryBean with a
package named "com.packt.patterninspring.chapter8.bankapp.model" to be
scanned, and set a property of SessionFactory is hibernateProperties to find what
kind of database we will deal with in the application.

Let's see how to implement DAOs for the persistence layer of the application after
configuring the Hibernate SessionFactory bean in the Spring application context.

Implementing DAOs based on the plain Hibernate
API
Let's create the following DAO implanting class:

 package com.packt.patterninspring.chapter8.bankapp.dao;

 import org.hibernate.SessionFactory;
 import org.springframework.stereotype.Repository;
 import org.springframework.beans.factory.annotation.Autowired;
 @Repository
 public class AccountDaoImpl implements AccountDao {
 @Autowired
 private SessionFactory sessionFactory;

 public void setSessionFactory(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 }
 @Override
 public Integer totalAccountsByBranch(String branchName) {
 String sql = "SELECT count(*) FROM Account WHERE branchName =
 "+branchName;
 return this.sessionFactory.getCurrentSession().createQuery(sql,
 Integer.class).getSingleResult();

Accessing Database with Spring ORM and Transactions Implementing Patterns

[243]

 }
 @Override
 public Account findOne(long accountId) {
 return (Account)
 this.sessionFactory.currentSession().
 get(Account.class, accountId);
 }
 @Override
 public Account findByName(String name) {
 return (Account) this.sessionFactory.currentSession().
 createCriteria(Account.class)
 .add(Restrictions.eq("name", name))
 .list().get(0);
 }
 @Override
 public List<Account> findAllAccountInBranch(String branchName) {
 return (List<Account>) this.sessionFactory.currentSession()
 .createCriteria(Account.class).add(Restrictions.eq("branchName",
 branchName)).list();
 }
 }

As you can see in the preceding code, AccountDaoImpl is a DAO implementation class,
which is injected with Hibernate's SessionFactory bean by using the @Autowired
annotation. The DAO implementations described earlier will throw unchecked Hibernate
PersistenceExceptions--it is not desirable to let these propagate up to the service layer
or other users of the DAOs. But the Spring AOP module allows translation to Spring's rich,
vendor-neutral DataAccessException hierarchy--it hides the access technology used.
Spring provides this capability out of the box by annotating the DAO implementation class
with @Repository, and you just need to define a Spring-provided BeanPostProcessor,
that is, PersistenceExceptionTranslationPostProcessor.

Let's add an exception translation to our Hibernate DAO implementation class; we can do
this by just adding a PersistenceExceptionTranslationPostProcessor bean to the
Spring application context, as follows:

 @Bean
 public BeanPostProcessor persistenceTranslation() {
 return new PersistenceExceptionTranslationPostProcessor();
 }

The preceding registered bean PersistenceExceptionTranslationPostProcessor is
responsible for adding an adviser for the beans which are annotated with the @Repository
annotation, and it is re-thrown as a Spring-specific unchecked data access exception for any
platform-specific exceptions caught in the code.

Accessing Database with Spring ORM and Transactions Implementing Patterns

[244]

Let's see, in the next section, how Spring manages transactions across the business and
persistence layers of the Spring application.

Transaction management strategies in
Spring
Spring provides comprehensive support for transaction management in a Spring
application. This is one the most compelling features of the Spring Framework. Mostly, this
feature forces software industries to develop enterprise applications with the Spring
Framework. The Spring Framework provides a consistent way to manage transactions
across the application using any persistence technology, such as Java Transaction API ,
JDBC, Hibernate, Java Persistence API, and Java Data Objects. Spring supports declarative
transaction management as well as programmatic transaction management.

There are two types of Java transactions, which are as follows:

Local transactions - single resource: Local transactions managed by the
underlying resource; these are resource-specific. Let's explain this with the help
of the following diagram:

As you can see in the preceding diagram, there is a transaction working between
the application and the database platforms to ensure that every unit of task
follows the ACID property of the databases.

Global (distributed) transactions - multiple: Global transactions, which are
managed by separate, dedicated transaction managers, enable you to work with
multiple transactional resources. Take a look at the following diagram to
understand more about Global or distributed transactions:

Accessing Database with Spring ORM and Transactions Implementing Patterns

[245]

As you can see in the last diagram, a Transaction Manager works with multiple
database technologies in the application. A global transaction is independent of
platform-specific persistence technologies.

Spring provides the same API for both types of transactions in Java applications. The Spring
Framework provides a consistent programming model in any environment by either
configuring the transactions declaratively, or by configuring the transaction
programmatically.

Let's move on to the following sections to see how to configure transactions in Spring
applications.

Declarative transaction demarcation and
implementation
Spring supports declarative transaction management. Spring separates transaction
demarcation from transaction implementation. Demarcation is expressed declaratively via
the Spring AOP. We always recommend using Spring's declarative transaction demarcation
and implementation in your Spring application, because the declarative programming
model enables you to replace the external transaction demarcation API from the code, and
you can configure it by using Spring AOP transaction interceptor. Transactions are,
basically, cross-cutting concerns; this declarative transaction model allows you to keep your
application's business logic separate from the repetitive transaction demarcation code.

As mentioned earlier, Spring provides a consistent model for handling transactions in a
Spring application, and provides an interface PlatformTransactionManager to hide the
implementation details. There are several implementations available for this interface in the
Spring Framework, and some of these are listed next:

DataSourceTransactionManager

HibernateTransactionManager

JpaTransactionManager

JtaTransactionManager

WebLogicJtaTransactionManager

WebSphereUowTransactionManager

Accessing Database with Spring ORM and Transactions Implementing Patterns

[246]

The following is a key interface:

 public interface PlatformTransactionManager {
 TransactionStatus getTransaction(
 TransactionDefinition definition) throws TransactionException;
 void commit(TransactionStatus status) throws
 TransactionException;
 void rollback(TransactionStatus status) throws
 TransactionException;
 }

In the preceding code, the getTransaction() method returns a TransactionStatus
object. This object contains the status of transactions; either it is new or it returns existing in
the current call stack. It depends on the TransactionDefinition parameter. As in JDBC
or ORM modules, Spring also provides a consistent way to handle exceptions thrown by
any transaction manager. The getTransaction() method throws a
TransactionException exception, which is an unchecked exception.

Spring uses the same API for global and local transactions in the application. Very minor
changes are required to move from local transaction to the global transaction in the
application-that is just change the transaction manager.

Deploying the transaction manager
There are two steps for deploying a transaction in your Spring application. The first step is
that you have to implement or configure a pre-implemented Spring transaction manager
class with your application. The second step is to declare transaction demarcation, that is,
where you want to place the Spring transaction.

Step 1 - Implementing the transaction manager
Create the bean for the required implementation just like any other Spring bean. You can
configure, as appropriate, the transaction manager for any persistence technologies such as
JDBC, JMS, JTA, Hibernate, JPA, and so on. But in the following example, here is the
manager for a DataSource using JDBC:

Accessing Database with Spring ORM and Transactions Implementing Patterns

[247]

In Java configuration, let's see how to define the transactionManager bean in the
application:

 @Bean
 public PlatformTransactionManager transactionManager(DataSource
 dataSource) {
 return new DataSourceTransactionManager(dataSource);
 }

In XML configuration, the bean can be created like this:

 <bean id="transactionManager"
 class="org.springframework.jdbc.datasource.
 DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
 </bean>

In the preceding code, we use dataSource bean; a dataSource bean must be defined
elsewhere. The bean ID, "transactionManager", is the default name. We can change it,
but then must specify the alternative name everywhere, and that is not so easy to do!

Step 2 - Declaring the transaction demarcation
As the best approach, the service layer of the application is the best place to demarcate the
transactions. Let's see this in the following code:

 @Service
 public class TransferServiceImpl implements TransferService{
 //...
 @Transactional
 public void transfer(Long amount, Long a, Long b){
 // atomic unit-of-work
 }
 //...
 }

Accessing Database with Spring ORM and Transactions Implementing Patterns

[248]

As you can see in the preceding code, TransferServiceImpl is our service class at the
service layer of the application. This service is the best place to demarcate the transactions
for units of work. Spring provides the @Transactional annotation to demarcate the
transactions; this annotation can be used at either the class level or the method level of the
service classes in the application. Let's look @Transactional at the class level:

 @Service
 @Transactional
 public class TransferServiceImpl implements TransferService{
 //...
 public void transfer(Long amount, Account a, Account b){
 // atomic unit-of-work
 }
 public Long withdraw(Long amount, Account a){
 // atomic unit-of-work
 }
 //...
 }

If you declare the @Transactional annotation at the class level, all business methods in
this service will be transactional methods.

Note--Method visibility should be public if you are using the
@Transactional annotation. If you use this annotation with a non-public
method, such as protected, private, or package-visible, no error or
exception is thrown, but this annotated method does not show the
transactional behavior.

But only using this annotation in the Spring application is not enough. We have to enable
the transaction management feature of the Spring Framework by using the
@EnableTransactionManagement annotation in the Java configuration file of Spring, or
we can use the namespace <tx:annotation-driven/> in the XML configuration file. Let's
look the following code, for example:

 @Configuration
 @EnableTransactionManagement
 public class InfrastructureConfig {
 //other infrastracture beans definitions
 @Bean
 public PlatformTransactionManager transactionManager(){
 return new DataSourceTransactionManager(dataSource());
 }
 }

Accessing Database with Spring ORM and Transactions Implementing Patterns

[249]

As you can see in the preceding code, InfrastructureConfig is the Java configuration
file of the Spring application--here, we define infrastructure-related beans, and one of the
transactionManager beans too has been defined here. This configuration class annotated
with one more annotation is @EnableTransactionManagement--this annotation defines a
Bean Post-Processor in the application, and it proxies @Transactional beans. Now, take a
look at the following diagram:

As you see in the preceding diagram, the TransferServiceImpl class is wrapped in a
Spring proxy.

But to know what happens exactly with the @Transactional beans in the application, let's
see the following steps:

The target object is wrapped in a proxy; it uses an Around advice as we have1.
discussed in Chapter 6, Spring Aspect Oriented Programming with Proxy &
Decorator Pattern.
The Proxy implements the following behavior:2.

1. Start transaction before entering the business method.

2. Commit at the end of the business method.

3. Roll back if the business method throws a RuntimeException--it is the
default behavior of a Spring transaction, but you can override it for checked
and custom exceptions also.

The transaction context is now bound to the current thread in the application.3.
All steps controlled by the configuration either in XML, Java or Annotations.4.

Accessing Database with Spring ORM and Transactions Implementing Patterns

[250]

Now take a look at the following diagram of a local JDBC configuration with the associated
transaction manager:

In the previous diagram, we have defined a local data source using JDBC and a DataSource
Transaction Manager.

In the next section, we'll discuss how to implement and demarcate transactions
programmatically in the application.

Programmatic transaction demarcation and
implementation
Spring allows you to implement and demarcate transactions programmatically in the
application by using the TransactionTemplate and a PlatformTransactionManager
implementation directly. But declarative transaction management is highly recommended,
because it provides a clean code and a very flexible configuration.

Accessing Database with Spring ORM and Transactions Implementing Patterns

[251]

Let's see how to implement the transactions in the application programmatically:

 package com.packt.patterninspring.chapter8.bankapp.service;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.stereotype.Service;
 import org.springframework.transaction.PlatformTransactionManager;
 import org.springframework.transaction.TransactionStatus;
 import org.springframework.transaction.support.TransactionCallback;
 import org.springframework.transaction.support.TransactionTemplate;

 import com.packt.patterninspring.chapter8.bankapp.model.Account;
 import com.packt.patterninspring.chapter8.bankapp.
 repository.AccountRepository;

 @Service
 public class AccountServiceImpl implements AccountService {
 //single TransactionTemplate shared amongst all methods in this
 instance
 private final TransactionTemplate transactionTemplate;
 @Autowired
 AccountRepository accountRepository;
 // use constructor-injection to supply the
 PlatformTransactionManager
 public AccountServiceImpl(PlatformTransactionManager
 transactionManager) {
 this.transactionTemplate = new
 TransactionTemplate(transactionManager);
 }
 @Override
 public Double cheeckAccountBalance(Account account) {
 return transactionTemplate.execute(new
 TransactionCallback<Double>() {
 // the code in this method executes in a transactional
 context
 public Double doInTransaction(TransactionStatus status) {
 return accountRepository.checkAccountBalance(account);
 }
 }); }
 }

Accessing Database with Spring ORM and Transactions Implementing Patterns

[252]

In the preceding application code, we have used TransactionTemplate explicitly to
execute the application logic in a transactional context. The TransactionTemplate is also
based on the template method design pattern, and it has the same approach as other
templates in the Spring Framework, such as the JdbcTemplate. Similar to JdbcTemplate,
TransactionTemplate also uses a callback approach, and it makes application code free
from having the boilerplate code for managing transactional resources. We constructed an
object of the TransactionTemplate class in the Service class construction, and passed an
object of PlatformTransactionManager as an argument to the constructor of the
TransactionTemplate class. We also wrote a TransactionCallback implementation
that contains the business logic code of your application, which shows tight coupling
between the application logic and transactional code.

We have seen in this chapter how efficiently Spring manages transactions in an enterprise
application. Let's now study some best practices that we have to keep in mind whenever we
work on the any enterprise application.

Best practices for Spring ORM and
transaction module in an application
The following are the practices that we have to follow in the design and development of an
application:

Avoid using Spring's HibernateTemplate helper class in the DAO implementation, and
use SessionFactory and EntityManager in your application. Because of the contextual
session capability of Hibernate, use SessionFactory directly in your DAOs. Additionally,
use getCurrentSession() method to access the transactional current session in order to
perform persistence operations in the application. Please refer to the following code:

 @Repository
 public class HibernateAccountRepository implements
 AccountRepository {
 SessionFactory sessionFactory;
 public HibernateAccountRepository(SessionFactory
 sessionFactory) {
 super();
 this.sessionFactory = sessionFactory;
 }
 //...
 }

Accessing Database with Spring ORM and Transactions Implementing Patterns

[253]

In your application, always use the @Repository annotation for data access objects or
repositories; it provides exception translation. Please refer to the following code:

 @Repository
 public class HibernateAccountRepository{//...}

The service layer must be separate even though business methods in the services only
delegate their responsibilities to the corresponding DAO methods.

Always implement transactions at the service layer of the application and not the DAO
layer--this is the best place for transactions. Please refer to the following code:

 @Service
 @Transactional
 public class AccountServiceImpl implements AccountService {//...}

Declarative transaction management is more powerful and convenient to configure in the
application, and is a highly recommend approach to use in a Spring application. It separates
the cross-cutting concerns from business logic.

Always throw runtime exceptions instead of checked exceptions from the service layer.

Be careful of the readOnly flag for the @Transactional annotation. Mark transactions as
readOnly=true when service methods only contain queries.

Summary
In Chapter 7, Accessing Database with Spring and JDBC Template Patterns, we saw that Spring
provides JdbcTemplate class based on the GOF template method design pattern. This class
handles all the required boilerplate codes underlying the tradition JDBC API. But when we
work with the Spring JDBC module, mapping tables to the objects becomes very tedious. In
this chapter, we saw the solution to map objects to tables in a relational database--we can do
much more with a relational database by using ORM in a complex application. Spring
supports integration with several ORM solutions like Hibernate, JPA, and others. These
ORM Frameworks enable the declarative programming model for the data persistence
instead of using the JDBC programming model.

Accessing Database with Spring ORM and Transactions Implementing Patterns

[254]

We also looked at the several design patterns that are implemented in the data access layer
or integration tier. These patterns are implemented as a feature in the Spring Framework as
proxy pattern for lazy loading, Facade pattern for integration with business tier, DAO
patterns for data accessing, and so on.

In the next chapter, we'll see how we can improve our application's performance in
production by using Spring's support for cache patterns.

9
Improving Application

Performance Using Caching
Patterns

In previous chapters, we have seen how Spring works in the backend to access data for the
application. We also saw how the Spring JDBC Module provides the JdbcTemplate helper
class for database access. Spring provides support for integration with ORM solutions such
as Hibernate, JPA, JDO, and so on, and manages transactions across application. Now, in
this chapter, we will see how Spring provides caching support to improve application
performance.

Do you ever face a volley of questions from your wife when you return home very late in
the night from your office? Yes, I know it is very irritating to answer so many questions
when you are tired and exhausted. It is even more irritating when you're asked the same
questions over and over again..

Some questions can be answered with a Yes or No, but for some questions, you have to
explain in detail. Consider what will happen if you are asked another lengthy question
again after some time! Similarly, there are some stateless components in an application,
where the components have been designed in such a way that they ask the same questions
over and over again to complete each task individually. Similar to some questions asked by
your wife, some questions in the system take a while to fetch the appropriate data--it may
have some major complex logic behind it, or maybe, it has to fetch data from the database,
or call a remote service.

Improving Application Performance Using Caching Patterns

[256]

If we know that the answer of a question is not likely to change frequently, we can
remember the answer to that question for later when it is asked again by the same system. It
doesn't make sense to go through the same channel to fetch it again, as it will impact your
application's performance, and will be a wasteful use of your resources. In an enterprise
application, caching is a way to store those frequently needed answers so that we fetch from
the cache instead of going through the proper channel to get the answer for the same
question over and over again. In this chapter, we will discuss Spring's Cache Abstraction
feature, and how Spring declaratively supports caching implementation. It will cover the
following points:

What is a cache?
Where do we do this caching?
Understanding the cache abstraction
Enabling caching via the Proxy pattern
Declarative Annotation-based caching
Declarative XML-based caching
Configuring the cache storage
Implementing custom cache annotations
Caching best practices

Let's begin.

What is cache?
In very simple terms, cache is a memory block where we store preprocessed information for
the application. In this context, a key-value storage, such as a map, may be a cache in the
application. In Spring, cache is an interface to abstract and represent caching. A cache
interface provides some methods for placing objects into a cache storage, it can retrieve
from the cache storage for given key, it can update the object in the cache storage for a given
key, it remove the object from the cache storage for a given key. This cache interface
provides many functions to operate with cache.

Improving Application Performance Using Caching Patterns

[257]

Where do we use caching?
We use caching in cases where a method always returns the same result for the same
argument(s). This method could do anything such as calculate data on the fly, execute a
database query, and request data via RMI, JMS, and a web-service, and so on. A unique key
must be generated from the arguments. That's the cache key.

Understanding cache abstraction
Basically, caching in Java applications is applied to the Java methods to reduce the number
of executions for the same information available in the cache. That means, whenever these
Java methods are invoked, the cache abstraction applies the cache behavior to these
methods based on the given arguments. If the information for the given argument is already
available in the cache, then it is returned without having to execute the target method. If the
required information is not available in the cache, then the target method is executed, and
the result is cached and returned to the caller. Cache abstraction also provides other cache-
related operations such as updating and/or removing the contents in the cache. These
operations are useful when the data changes in the application sometimes.

Spring Framework provides cache abstraction for Spring applications by using the
org.springframework.cache.Cache and
org.springframework.cache.CacheManager interfaces. Caching requires the use of an
actual storage to store the cache data. But cache abstraction only provides caching logic. It
doesn't provide any physical storage to store the cached data. So, developers need to
implement the actual storage for caching in the application. If you have a distributed
application, then you will need to configure your cache provider accordingly. It depends on
the use cases of your application. You can either make a copy of the same data across nodes
for a distributed application, or you can make a centralized cache.

There are several cache providers in the market, which you could use as per as your
application requirement. Some of them are as follows:

Redis
OrmLiteCacheClient

Memcached

In Memory Cache
Aws DynamoDB Cache Client
Azure Cache Client

Improving Application Performance Using Caching Patterns

[258]

To implement cache abstraction in your application, you have to take care of the following
tasks:

Caching declaration: This means that you have to recognize those methods in the
application that need to be cached, and annotate these methods either with
caching annotations, or you can use XML configuration by using Spring AOP
Cache configuration: This means that you have to configure the actual storage
for the cached data--the storage where the data is stored and read from

Let's now see how we can enable Spring's cache abstraction in a Spring application.

Enabling caching via the Proxy pattern
You can enable Spring's cache abstraction in the following two ways:

Using Annotation
Using the XML namespace

Spring transparently applies caching to the methods of Spring beans by using AOP. Spring
applies proxy around the Spring beans where you declare the methods that need to be
cached. This proxy adds the dynamic behavior of caching to the Spring beans. The
following diagram illustrates the caching behavior:

In the preceding diagram, you can see that Spring applies Proxy to the AccountServiceImpl
class to add the caching behavior. Spring uses the GoF proxy pattern to implement caching
in the application.

Improving Application Performance Using Caching Patterns

[259]

Let's look at how to enable this feature in a Spring application.

Enabling the caching proxy using Annotation
As you already know, Spring provides lots of features, but they are, mostly, disabled. You
must enable these feature before using it. If you want to use Spring's cache abstraction in
your application, you have to enable this feature. If you are using Java configuration, you
can enable cache abstraction of Spring by adding the @EnableCaching annotation to one of
your configuration classes. The following configuration class shows the @EnableCaching
annotation:

 package com.packt.patterninspring.chapter9.bankapp.config;

 import org.springframework.cache.CacheManager;
 import org.springframework.cache.annotation.EnableCaching;
 import org.springframework.cache.concurrent.
 ConcurrentMapCacheManager;
 import org.springframework.context.annotation.Bean;
 import org.springframework.context.annotation.ComponentScan;
 import org.springframework.context.annotation.Configuration;

 @Configuration
 @ComponentScan(basePackages=
 {"com.packt.patterninspring.chapter9.bankapp"})
 @EnableCaching //Enable caching
 public class AppConfig {
 @Bean
 public AccountService accountService() { ... }

 //Declare a cache manager
 @Bean
 public CacheManager cacheManager() {
 CacheManager cacheManager = new ConcurrentMapCacheManager();
 return cacheManager;
 }
 }

In the preceding Java configuration file, we added the @EnableCaching annotation to the
configuration class AppConfig.java; this annotation indicates to the Spring Framework to
enable Spring cache behavior for the application.

Let's now look at how to enable Spring's cache abstraction by using XML configuration.

Improving Application Performance Using Caching Patterns

[260]

Enabling the Caching Proxy using the XML
namespace
If you're configuring your application with XML, you can enable annotation-driven caching
with the <cache:annotation-driven> element from Spring's cache namespace, as
follows:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:cache="http://www.springframework.org/schema/cache"
 xsi:schemaLocation="http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc-4.3.xsd
 http://www.springframework.org/schema/cache
 http://www.springframework.org/schema/cache/spring-cache-4.3.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-4.3.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-4.3.xsd">
 <!-- Enable caching -->
 <cache:annotation-driven />
 <context:component-scan base-
 package="com.packt.patterninspring.chapter9.bankapp"/>
 <!-- Declare a cache manager -->
 <bean id="cacheManager"
 class="org.springframework.cache.concurrent.
 ConcurrentMapCacheManager" />
 </beans>

As seen in the preceding configuration files, whether you use Java configuration or XML
configuration, the annotation @EnableCaching and namespace <cache:annotation-
driven> enables Spring's cache abstraction by creating an aspect with pointcuts that trigger
off of Spring's caching annotations.

Let's see how to use Spring's caching annotations to define cache boundaries.

Improving Application Performance Using Caching Patterns

[261]

Declarative Annotation-based caching
In Spring applications, Spring's abstraction provides the following Annotations for caching
declaration:

@Cacheable: This indicates that before execution of the actual method, look at
the return value of that method in the cache. If the value is available, return this
cached value, if the value is not available, then invoke the actual method, and put
the returned value into the cache.
@CachePut: This updates the cache without checking if the value is available or
not. It always invokes the actual method.
@CacheEvict: This is responsible for triggering cache eviction.
@Caching: This is used for grouping multiple annotations to be applied on a
method at once.
@CacheConfig: This indicates to Spring to share some common cache-related
settings at the class level.

Let us now take a closer look at each annotation.

The @Cacheable annotation
@Cacheable marks a method for caching. Its result is stored in a cache. For all subsequent
invocations of that method with the same arguments, it will fetch data from the cache using
a key. The method will not be executed. The following are the @Cacheable attributes:

value: This is the name of cache to use
key: This is the key for each cached data item
condition: This is a SpEL expression to evaluate true or false; if it is false, then the
result of caching is not applied to the method call
unless: This too is a SpEL expression; if it is true, it prevents the return value
from being put in the cache

You can use SpEL and argument(s) of method. Let's look at the following code for the
simplest declaration of the @Cacheable annotation. It requires the name of the cache
associated with that method. Please refer to the following code:

 @Cacheable("accountCache ")
 public Account findAccount(Long accountId) {...}

Improving Application Performance Using Caching Patterns

[262]

In the preceding code, the findAccount method is annotated with the @Cacheable
annotation. This means that this method is associated with a cache. The name of the cache is
accountCache. Whenever this method is called for a particular accountId, the cache is
checked for the return value of this method for the given accountId. You can also give
multiple names to the cache as shown next:

 @Cacheable({"accountCache ", "saving-accounts"})
 public Account findAccount(Long accountId) {...}

The @CachePut annotation
As mentioned earlier, the @Cacheable and @CachePut annotations both have the same
goal, that is, to populate a cache. But their working is slightly different from each other.
@CachePut marks a method for caching, and its result is stored in a cache. For each
invocation of that method with the same arguments, it always invokes the actual method
without checking whether the return value of that method is available in the cache or not.
The following are @CachePut attributes:

value: This is the name of the cache to use
key: This is the key for each cached data item
condition: This is a SpEL expression to evaluate true or false; if false, then the
result of caching is not applied to the method call
unless: This is also a SpEL expression; if it is true, it prevents the return value
from being put in the cache

You can also use SpEL and argument(s) of method for the @CachePut annotation. The
following code is the simplest declaration of the @CachePut annotation:

 @CachePut("accountCache ")
 public Account save(Account account) {...}

Improving Application Performance Using Caching Patterns

[263]

In the preceding code, when save() is invoked, it saves the Account. Then the returned
Account is placed in the accountCache cache.

As mentioned earlier, the cache is populated by the method based on the argument of the
method. It is actually a default cache key. In case of the @Cachable annotation, the
findAccount(Long accountId) method has accountId as an argument, the accountId
is used as the cache key for this method. But in case of the @CachePut annotation, the only
parameter of save() is an Account. It is used as the cache key. It doesn't seem fine to use
Account as a cache key. In this case, you need the cache key to be the ID of the newly saved
Account and not the Account itself. So, you need to customize the key generation behavior.
Let's see how you can customize the cache key.

Customizing the cache key
You can customize the cache key by using a key attribute of @Cacheable and the
@CachePut annotation. The cache key is derived by a SpEL expression using properties of
the object as highlighted key attribute in the following snippet of code. Let's look at the
following examples:

 @Cacheable(cacheNames=" accountCache ", key="#accountId")
 public Account findAccount(Long accountId)

 @Cacheable(cacheNames=" accountCache ", key="#account.accountId")
 public Account findAccount(Account account)

 @CachePut(value=" accountCache ", key="#account.accountId")
 Account save(Account account);

You can see in the preceding code snippets how we have created the cache key by using the
key attribute of the @Cacheable annotation.

Let's see another attribute of these annotations in a Spring application.

Improving Application Performance Using Caching Patterns

[264]

Conditional caching
Spring's caching annotations allow you to turn off caching for some cases by using the
condition attribute of @Cacheable and @CachePut annotations. These are given a SpEL
expression to evaluate the conditional value. If the value of the conditional expression is
true, the method is cached. If the value of the conditional expression is false, the method is
not cached, but is executed every time without performing any caching operations no
matter what values in the cache or what arguments are used. Let's see an example. The
following method will be cached only if the passed argument has a value greater than or
equal to 2000:

 @Cacheable(cacheNames="accountCache", condition="#accountId >=
 2000")
 public Account findAccount(Long accountId);

There is a one more attribute of the @Cacheable and @CachePut annotations-- unless.
This is also given a SpEL expression. This attribute may seem the same as the condition
attribute but there is some difference between them. Unlike condition, the unless
expressions are evaluated after the method has been called. It prevents the value from being
placed in the cache. Let's see the following example--We only want to cache when the bank
name does not contain HDFC:

 @Cacheable(cacheNames="accountCache", condition="#accountId >=
 2000", unless="#result.bankName.contains('HDFC')")
 public Account findAccount(Long accountId);

As you can see in the preceding code snippet, we have used both attributes--condition
and unless. But the unless attribute has a SpEL expression as
#result.bankName.contains('HDFC'). In this expression, the result is a SpEL extension
or cache SpEL metadata. The following is a list of the caching metadata that is available in
SpEL:

Expression Description

#root.methodName The name of the cached method

#root.method The cached method, that is, the method being invoked

#root.target It evaluates the target object being invoked

#root.targetClass It evaluates the class of the target object being invoked

#root.caches An array of caches against which the current method is executed

#root.args An array of the arguments passed into the cached method

Improving Application Performance Using Caching Patterns

[265]

#result The return value from the cached method; only available in unless
expressions for @CachePut

Spring's @CachePut and @Cacheable annotations should never be used
on the same method, because they have different behaviors. The
@CachePut annotation forces the execution of the cache method in order
to update the caches. But the @Cacheable annotation executes the cached
method only if the return value of the method is not available on the
cache.

You have seen how to add information to the cache by using Spring's @CachePut and
@Cacheable annotations in a Spring application. But how can we remove that information
from the cache? Spring's cache abstraction provides another annotation for removing
cached data from the cache--the @CacheEvict annotation. Let's see how to remove the
cached data from the cache by using the @CacheEvict annotation.

The @CacheEvict annotation
Spring's cache abstraction not only allows populating caches, but also allows removing the
cached data from the cache. There is a stage in the application where you have to remove
stale or unused data from the cache. In that case, you can use the @CacheEvict annotation,
because it doesn't add anything to the cache unlike the @Cacheable annotation. The
@CacheEvict annotation is used only to perform cache eviction. Let's see how this
annotation makes the remove() method of AccountRepository as a cache eviction:

 @CacheEvict("accountCache ")
 void remove(Long accountId);

As you can see in the preceding code snippet, the value associated with the argument,
accountId, is removed from the accountCache cache when the remove() method is
invoked. The following are @Cacheable attributes:

value: This is an array of names of the cache to use
key: This is a SpEL expression to evaluate the cache key to be used
condition: This is a SpEL expression to evaluate true or false; if it is false, then the
result of caching is not being applied to the method call
allEntries: This implies that if the value of this attribute is true, all entries will be
removed from the caches

Improving Application Performance Using Caching Patterns

[266]

beforeInvocation: This means that if the value of this attribute is true, the entries
are removed from the cache before the method is invoked, and if the value of this
attribute is false (the default), the entries are removed after a successful method
invocation

We can use the @CacheEvict annotation on any method, even a void
one, because it only removes the value from the cache. But in case of the
@Cacheable and @CachePut annotations, we have to use a non-void
return value method, because these annotations require a result to be
cached.

The @Caching annotation
Spring's cache abstraction allows you to use multiple annotations of the same type for
caching a method by using the @Caching annotation in a Spring application. The @Caching
annotation groups other annotations such as @Cacheable, @CachePut, and @CacheEvict
for the same method. For example:

 @Caching(evict = {
 @CacheEvict("accountCache "),
 @CacheEvict(value="account-list", key="#account.accountId") })
 public List<Account> findAllAccount(){
 return (List<Account>) accountRepository.findAll();
 }

The @CacheConfig annotation
Spring's cache abstraction allows you to annotate @CacheConfig at the class level to avoid
repeated mentioning in each method. In some cases, applying customizations of the caches
to all methods can be quite tedious. Here, you can use the @CacheConfig annotation to all
operations of the class. For example:

 @CacheConfig("accountCache ")
 public class AccountServiceImpl implements AccountService {

 @Cacheable
 public Account findAccount(Long accountId) {
 return (Account) accountRepository.findOne(accountId);
 }
 }

Improving Application Performance Using Caching Patterns

[267]

You can see in the preceding code snippet that the @CacheConfig annotation is used at the
class level, and it allows you to share the accountCache cache with all the cacheable
methods.

Since Spring's cache abstraction module uses proxies, you should use the
cache annotations only with public visibility methods. In all non-public
methods, these annotations do not raise any error, but non-public methods
annotated with these annotations do not show any caching behaviors.

We have already seen that Spring also offers XML namespace to configure and implement
cache in a Spring application. Let's see how in the next section.

Declarative XML-based caching
To keep your configuration codes of caching separate from business codes, and to maintain
loose coupling between the Spring-specific annotations and your source code, XML-based
caching configuration is much more elegant than the annotation-based one. So, to configure
Spring cache with XML, let's use the cache namespace along with the AOP namespace,
because caching is an AOP activity, and it uses the Proxy pattern behind the declarative
caching behavior.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:cache="http://www.springframework.org/schema/cache"
 xsi:schemaLocation="http://www.springframework.org/schema/cache
 http://www.springframework.org/schema/cache/spring-cache-4.3.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-4.3.xsd">
 <!-- Enable caching -->
 <cache:annotation-driven />
 <!-- Declare a cache manager -->
 <bean id="cacheManager"class="org.springframework.cache.
 concurrent.ConcurrentMapCacheManager" />
 </beans>

Improving Application Performance Using Caching Patterns

[268]

You can see in the preceding XML file that we have included the cache and aop
namespaces. The cache namespace defines the caching configurations by using the
following elements:

XML element Caching Description

<cache:annotation-driven> It is equivalent to @EnableCaching in Java
configuration, and is used to enable the caching
behavior of Spring.

<cache:advice> It defines caching advice

<cache:caching> It is equivalent to the @Caching annotation, and is used
to group a set of caching rules within the caching advice

<cache:cacheable> It is equivalent to the @Cacheable annotation; it makes
any method cacheable

<cache:cache-put> It is equivalent to the @CachePut annotation, and is
used to populate a cache

<cache:cache-evict> It is equivalent to the @CacheEvict annotation, and is
used for cache eviction.

Let's see the following example based on XML-based configuration.

Create a configuration file, spring.xml as follows:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:cache="http://www.springframework.org/schema/cache"
 xsi:schemaLocation="http://www.springframework.org/schema/cache
 http://www.springframework.org/schema/cache/spring-cache-4.3.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-4.3.xsd">
 <context:component-scan base-
 package="com.packt.patterninspring.chapter9.bankapp.service,
 com.packt.patterninspring.chapter9.bankapp.repository"/>

 <aop:config>

Improving Application Performance Using Caching Patterns

[269]

 <aop:advisor advice-ref="cacheAccount" pointcut="execution(*
 com.packt.patterninspring.chapter9.bankapp.service.*.*(..))"/>
 </aop:config>
 <cache:advice id="cacheAccount">
 <cache:caching>
 <cache:cacheable cache="accountCache" method="findOne" />
 <cache:cache-put cache="accountCache" method="save"
 key="#result.id" />
 <cache:cache-evict cache="accountCache" method="remove" />
 </cache:caching>
 </cache:advice>

 <!-- Declare a cache manager -->
 <bean id="cacheManager" class="org.springframework.cache.concurrent.
 ConcurrentMapCacheManager" />
 </beans>

In the preceding XML configuration file, the highlighted code is the Spring cache
configuration. In the cache configuration, the first thing that you see is the declared
<aop:config> then <aop:advisor>, which have references to the advice whose ID is
cacheAccount, and also has a pointcut expression to match the advice. The advice is
declared with the <cache:advice> element. This element can have many
<cache:caching> elements. But, in our example, we have only one <cache:caching>
element, which has a <cache:cacheable> element, a <cache:cache-put>, and one
<cache:cache-evict> element; each declare a method from the pointcut as being
cacheable.

Let's see the Service class of the application with cache annotations:

 package com.packt.patterninspring.chapter9.bankapp.service;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.cache.annotation.CacheEvict;
 import org.springframework.cache.annotation.CachePut;
 import org.springframework.cache.annotation.Cacheable;
 import org.springframework.stereotype.Service;

 import com.packt.patterninspring.chapter9.bankapp.model.Account;
 import com.packt.patterninspring.chapter9.
 bankapp.repository.AccountRepository;

 @Service
 public class AccountServiceImpl implements AccountService{
 @Autowired
 AccountRepository accountRepository;

Improving Application Performance Using Caching Patterns

[270]

 @Override
 @Cacheable("accountCache")
 public Account findOne(Long id) {
 System.out.println("findOne called");
 return accountRepository.findAccountById(id);
 }

 @Override
 @CachePut("accountCache")
 public Long save(Account account) {
 return accountRepository.save(account);
 }

 @Override
 @CacheEvict("accountCache")
 public void remove(Long id) {
 accountRepository.findAccountById(id);
 }
 }

In the preceding file definition, we have used Spring's cache annotations to create the cache
in the application. Now let's see how to configure the cache storage in an application.

Configuring the cache storage
Spring's cache abstraction provides a lot of storage integration. Spring provides
CacheManager for each memory storage. You can just configure CacheManager with the
application. Then the CacheManager is responsible for controlling and managing the
Caches. Let's explore how to set up the CacheManager in an application.

Setting up the CacheManager
You must specify a cache manager in the application for storage, and some cache provider
given to the CacheManager, or you can write your own CacheManager. Spring provides
several cache managers in the org.springframework.cache package, for example,
ConcurrentMapCacheManager, which creates a ConcurrentHashMap for each cache
storage unit.

 @Bean
 public CacheManager cacheManager() {
 CacheManager cacheManager = new ConcurrentMapCacheManager();
 return cacheManager;
 }

Improving Application Performance Using Caching Patterns

[271]

SimpleCacheManager, ConcurrentMapCacheManager, and others are cache managers of
the Spring Framework's cache abstraction. But Spring provides support for integration with
third-party cache managers, as we will see in the following section.

Third-party cache implementations
Spring's SimpleCacheManager is ok for testing, but has no cache control options
(overflow, eviction). So we have to use third-party alternatives like the following:

Terracotta's EhCache
Google's Guava and Caffeine
Pivotal's Gemfire

Let's see one of the configurations of third-party cache managers.

Ehcache-based cache
Ehcache is one of the most popular cache providers. Spring allows you to integrate with
Ehcache by configuring EhCacheCacheManager in the application. Take for example, the
following Java configuration:

 @Bean
 public CacheManager cacheManager(CacheManager ehCache) {
 EhCacheCacheManager cmgr = new EhCacheCacheManager();
 cmgr.setCacheManager(ehCache);
 return cmgr;
 }
 @Bean
 public EhCacheManagerFactoryBean ehCacheManagerFactoryBean() {
 EhCacheManagerFactoryBean eh = new EhCacheManagerFactoryBean();
 eh.setConfigLocation(new
 ClassPathResource("resources/ehcache.xml"));
 return eh;
 }

Improving Application Performance Using Caching Patterns

[272]

In the preceding code, the bean method, cacheManager(), creates an object of
EhCacheCacheManager, and set it with the CacheManager of Ehcache. Here, Ehcache's
CacheManager is injected into Spring's EhCacheCacheManager. The second bean method,
ehCacheManagerFactoryBean(), creates and returns an instance of
EhCacheManagerFactoryBean. Because it's a Factory bean, it will return an instance of
CacheManager. An XML file, ehcache.xml, has the Ehcache configuration. Let's refer to
the following code for ehcache.xml:

 <ehcache>
 <cache name="accountCache" maxBytesLocalHeap="50m"
 timeToLiveSeconds="100">
 </cache>
 </ehcache>

The contents of the ehcache.xml file vary from application to application, but you need to
declare, at least, a minimal cache. For example, the following Ehcache configuration
declares a cache named accountCache with 50 MB of maximum heap storage and a time-to-
live of 100 seconds:

XML-based configuration
Let's create XML based configuration for the Eache, and it is configuring here
EhCacheCacheManager. Please refer to the following code:

 <bean id="cacheManager"
 class="org.springframework.cache.ehcache.EhCacheCacheManager"
 p:cache-manager-ref="ehcache"/>

 <!-- EhCache library setup -->
 <bean id="ehcache"
 class="org.springframework.cache.ehcache.
 EhCacheManagerFactoryBean" p:config-
 location="resources/ehcache.xml"/>

Similarly, in case of the XML configuration, you have to configure the cache manager for
ehcache, configure the EhCacheManagerFactoryBean class, and set the config-location
value with ehcache.xml, which has the Ehcache configuration as defined in the previous
section.

Improving Application Performance Using Caching Patterns

[273]

There are many more third-party caching storages which have integration support with the
Spring Framework. In this chapter, I have discussed only the ECache manager.

In the following section, we'll discuss how Spring allows you to create your own custom
annotation for caching.

Creating custom caching annotations
Spring's cache abstraction allows you to create custom caching annotations for your
application to recognize the cache method for the cache population or cache eviction.
Spring's @Cacheable and @CacheEvict annotations are used as Meta annotations to create
custom cache annotation. Let's see the following code for custom annotations in an
application:

 @Retention(RetentionPolicy.RUNTIME)
 @Target({ElementType.METHOD})
 @Cacheable(value="accountCache", key="#account.id")
 public @interface SlowService {
 }

In the preceding code snippet, we have defined a custom annotation named as
SlowService, which is annotated with Spring's @Cacheable annotation. If we use
@Cacheable in the application, then we have to configure it as the following code:

 @Cacheable(value="accountCache", key="#account.id")
 public Account findAccount(Long accountId)

Let's replace the preceding configuration with our defined custom annotation, with the
following code:

 @SlowService
 public Account findAccount(Long accountId)

As you can see, we use only the @SlowService annotation to make a method cacheable in
the application.

Now let's move on to the next section, where we'll see which are the best practices we
should consider at the time of cache implementation in anapplication.

Improving Application Performance Using Caching Patterns

[274]

Top caching best practices to be used in a
web application
In your enterprise web application, proper use of caching enables the web page to be
rendered very fast, minimizes the database hits, and reduces the consumption of the
server's resources such as memory, network, and so on. Caching is a very powerful
technique to boost your application's performance by storing stale data in the cache
memory. The following are the best practices which should be considered at the time of
design and development of a web application:

In your Spring web application, Spring's cache annotations such as @Cacheable,
@CachePut, and @CacheEvict should be used on concrete classes instead of
application interfaces. However, you can annotate the interface method as well,
using interface-based proxies. Remember that Java annotations are not inherited
from interfaces, which means that if you are using class-based proxies by setting
the attribute proxy-target-class="true", then Spring cache annotations are
not recognized by the proxying.
If you have annotated any method with the @Cacheable, @CachePut, or
@CacheEvict annotations, then never call it directly by another method of the
same class if you want to benefit from the cache in the application. This is because
in direct calling of a cached method, the Spring AOP proxy is never applied.
In an enterprise application, Java Maps or any key/value collections should never
be used as a Cache. Any key/value collection cannot be a Cache. Sometimes,
developers use java map as a custom caching solution, but it is not a caching
solution, because Cache provides more than a key/value storage, like the
following:

Cache provides eviction policies
You can set the max size limit of Cache
Cache provides a persistent store
Cache provides weak reference keys
Cache provides statistics

The Spring Framework provides the best declarative
approach to implement and configure the Cache
solution in an application. So, always use the cache
abstraction layer--it provides flexibility in the
application. We know that the @Cacheable
annotation allows you to separate business logic
code from the caching cross-cutting concern.

Improving Application Performance Using Caching Patterns

[275]

Be careful whenever you use cache in the
application. Always use cache in a place where it is
actually required such as a web service or an
expensive database call, because every caching API
has an overhead.
At the time of cache implementation in an
application, you have to ensure that the data in the
cache is in sync with the data storage. You can use
distributed cache managers like Memcached for
proper cache strategy implementation to provide
considerable performance.
You should use cache only as second option if data
fetching is very difficult from the database because
of slow database queries. It is because, whenever we
use caching behavior in the application, first the
value is checked in the cache if not available then it
execute actual method, so it would be unnecessary.

In this chapter, we saw how caching helps to improve the performance of
anapplication. Caching mostly works on the service layer of the application. In
your application, there is a data returned by a method; we can cache that data if
the application code calls it over and over again from the same requirement.
Caching is a great way to avoid execution of the application method for the same
requirements. The return value of the method for a specific parameter is stored in
a cache whenever this method is invoked for the first time. For further calls of the
same method for same parameter, the value is retrieved from that cache. Caching
improves application performance by avoiding some resource and time
consuming operations for same answers like performing a database query.

Improving Application Performance Using Caching Patterns

[276]

Summary
Spring provides Cache Manager to manage caching in a Spring application. In this chapter,
you have seen how to define the caching manager for a particular caching technology.
Spring provides some annotations for caching such as @Cacheable, @CachePut, and
@CacheEvict, which we can use in our Spring application. We can also configure caching
in the Spring application by using the XML configuration. Spring framework provides
cache namespace to achieve this. The <cache:cacheable>, <cache:cache-put>, and
<cache:cache-evict> elements are used instead of the corresponding annotations.

Spring makes it possible to manage caching in anapplication by using Aspect-Oriented
Programming. Caching is a cross-cutting concern for the Spring Framework. That means,
caching is as an aspect in the Spring application. Spring implements caching by using
around advice of the Spring AOP module.

In the next Chapter 10, Implementing MVC Pattern in a Web Application using Spring, we will
explore how Spring we can use in the web layer and with the MVC pattern.

10
Implementing the MVC Pattern

in a Web Application using
Spring

In the last couple of chapters in the book, we have seen that all examples were based on a
standalone application using the Spring Framework. We have seen how Spring works to
provide important features, such as the dependency injection pattern, bean life cycle
management, AOP, cache management, and Spring, in the backend using the JDBC and
ORM modules. In this chapter, we will see how Spring works in the web environment to
address some common problems of any web application, such as workflow, validations,
and state management.

Like other modules in the Spring Framework, Spring has introduced its own web
framework, known as Spring Web MVC. It is based on the Model-View-Controller (MVC)
pattern. Spring Web MVC supports the presentation tier, and helps you to build a flexible
and loosely coupled web-based application. The Spring MVC module addresses the
problem of testing the web components in the enterprise application. It allows you to write
the test case without using request and response objects in the application. Here, we will
discuss more about it.

In this chapter, we will not only discuss the internals of Spring MVC, but also about the
different layers of a web application. We will see here the implementation of the MVC
pattern including what it is, and why we should use it. We will explore the following topics
in this chapter about Spring's MVC web framework:

Implementing MVC patterns on a web application
Implementing controllers patterns

Implementing the MVC Pattern in a Web Application using Spring

[278]

Configuring DispatcherServlet as the Front Controller pattern
Enabling Spring MVC and proxying
Accepting request parameters
Processing the forms of a web page
Implementing a view in the MVC pattern
Creating JSP views in a web application
The View Helper pattern
The Composite View pattern with Apache Tiled ViewResolver

Let's look at all the aforementioned topics in detail.

Implementing the MVC pattern in a web
application
The Model View Controller pattern (MVC pattern) is a J2EE design pattern. It was first
introduced by Trygve Reenskaug in his own project to separate the different components of
the application. That time, he used this pattern on a desktop-based application. The main
approach of this pattern is to promote the separation of concerns principle of the software
industry. The MVC pattern divides the system into three kinds of components. Each
component in the system has specific responsibilities. Let's see these three components of
this pattern:

Model: The model in the MVC pattern is responsible for maintaining data for the
view so that it can be rendered in any view template. In short, we can say that the
model is a data object, such as a SavingAccount in the banking system, and list
of accounts of a branch of any bank.
View: The view in the MVC pattern is responsible for rendering the model to
itself in a web application for representation of a page. It presents the data of the
model in a readable format to the user. There are several technologies that
provide the view, such as JSP, JSF page, PDF, XML, and so on.
Controller: This is an actual actionable component in the MVC pattern. In
Software, the controller code controls the interaction between the view and
model. Interactions such as form submission or clicking a link are part of the
controller in an enterprise application. The controller is also responsible for
creating and updating the model, and forwarding this model to the view for
rendering.

Implementing the MVC Pattern in a Web Application using Spring

[279]

Take a look at the following diagram to understand more about the MVC pattern:

As you can see in the preceding diagram, there are three components in an application, and
each component has its own responsibility. As we've already said, the MVC pattern is all
about separation of concerns. In a software system, separation of concerns is very important
to make the components flexible and easy to test with a clean code structure. In the MVC
pattern, the User interacts with the Controller component through the View component,
and the Controller component triggers the actual action to prepare the Model component.
That Model component propagates the changes to the View, and finally, the View
component renders the model in front of the User. This is the whole idea behind the
implementation of the MVC pattern. This approach of MVC pattern properly fits most of
the applications, especially, desktop applications. This MVC pattern is also known as Model
1 architecture.

But in case you are working with an enterprise web application, things will be slightly
different from a desktop application, because keeping a model across the request life cycle
can be quite difficult due to the stateless nature of an HTTP protocol. Let's see another
modified version of the MVC pattern in the following section, and how the Spring
framework adopts it to create the enterprise web application.

Implementing the MVC Pattern in a Web Application using Spring

[280]

Model 2 architecture MVC pattern with
Spring
The Model 1 architecture is not very straightforward for a web application. Model 1 also has
decentralized navigation control, because in this architecture, each user contains a separate
controller and also different logic to determine the next page. That time for web application,
Model 1 architecture has Servlet and JSP as the main technologies to develop the web
applications.

For a web application, the MVC pattern is implemented as a Model 2 architecture. This
pattern provides centralized navigation control logics to easily test and maintain the web
application, and it also provides better separation of concerns than Model 1 architecture for
web applications. The difference between the MVC pattern based on Model 1 Architecture
and the modified MVC pattern based on Model 2 architecture is that the latter incorporates
a front controller that dispatches all incoming requests to other controllers. These
controllers handle the incoming request, return the model, and select the view. take a look
at the following diagram to better understand the Model 2 architecture MVC pattern:

As you can see in the preceding diagram, a new component is introduced for the MVC
pattern, that is, the front controller. It is implemented as a javax.servlet.Servlet
servlet such as ActionServlet in struts, FacesServlet in JSF, and DispatcherServlet
in Spring MVC. It handles the incoming requests, and delegates the requests to the specific
application controller. That application controller creates and updates the model, and
delegates it to the front controller for rendering. Finally, the Front Controller determines
the specific view, and renders that model data.

Implementing the MVC Pattern in a Web Application using Spring

[281]

The Front Controller design pattern
The Front Controller design pattern is a J2EE pattern; it provides solutions for the following
application design problems:

In a web application based on the Model 1 architecture, too many controllers are
required to handle too many requests. It is difficult to maintain and reuse them.
Each request has its own point of entry in the web application; it should be a
single point of entry for each request.
JSP and Servlet are the main components of the Model 1 MVC pattern, so, these
components handle both action and view, violating the Single Responsibility
principle.

The Front Controller provides the solution to the aforementioned design problems of the
web application. In a web application, it works as the main component which routes all
requests into framework control. This means that too many requests land on a single
controller (Front Controller), and then, these requests are delegated to the specific
controllers. Front Controller provides centralized control, and improves the reusability and
manageability, because, typically, only the resource is registered with the web container.
This controller not only handles too many requests, but also has following responsibilities:

It initializes the framework to cater to the requests
It loads the map of all URLs and the components responsible for handling the
request
It prepares the map for the views

Let's see the following diagram for Front Controller:

Implementing the MVC Pattern in a Web Application using Spring

[282]

As you can see in the preceding diagram, all application requests land at the Front
Controller, and it delegates these requests to the configured application controllers.

The Spring Framework provides a module based on the MVC pattern, that is, Model 2
architecture implementation. The Spring MVC module provides out-of-the-box front
controller pattern implementation by introducing the
org.springframework.web.servlet.DispatcherServlet class. This is a simple
servlet class, and the backbone of the Spring MVC framework. And this Servlet is
integrated with the Spring IoC container to benefit the Spring's dependency pattern.
Spring's web framework uses Spring for its own configuration, and all controllers are
Spring beans; these controllers are testable artifacts.

Let's dive into the internals of Spring MVC in this Chapter, and have a closer look at
org.springframework.web.servlet.DispatcherServlet in the Spring MVC
framework, and how it handles all incoming requests to the web application.

Processing the life of a request
Have you ever played a wooden labyrinth board game, a maze puzzle with a steel ball bearing?
You might have played it in your childhood. It was a very crazy game. The goal of this
game is to send all the steel ball bearings to the center of the wooden labyrinth board
through interlinked curvy paths, and these curvy paths have cuts leading to a second curve
near the center. All the balls need to navigate to the center of the wooden labyrinth board
through these cuts between the curvy paths. If one steel ball reaches the center, then we
have to be careful about this ball so that it does not move away from the center when trying
to move another ball to the center. You can see this in the following diagram:

Implementing the MVC Pattern in a Web Application using Spring

[283]

The Spring MVC framework is similar to this Wooden Labyrinth board game at first glance.
Instead of the moving the steel ball bearings through various curvy paths and cuts, the
Spring MVC framework moves web application requests through various components such
as the Front Controller, that is, the dispatcher Servlet, handler mappings, controllers, and
view resolvers.

Let's see the request processing flow in the Spring MVC Framework for a web application.
The request processing workflow of the Spring Web MVC DispatcherServlet is
illustrated in the following diagram:

Implementing the MVC Pattern in a Web Application using Spring

[284]

As you already know, the front controller plays a very important role in the Model 2 MVC
pattern, because it has the responsibility to handle all incoming requests to the web
application, and prepare the response to the browser. In the Spring MVC framework,
org.springframework.web.servlet.DispatcherServlet plays the role of the Front
Controller of the Model 2 MVC pattern. As you can see in the last diagram, this
DispatcherServlet uses many other components to fulfill its own role. Let's see the step-
by-step request processing in the Spring MVC framework:

A user clicks on the browser or submits a web form of the application. The1.
request leaves the browser, either with some additional information or with
common information. This request lands at Spring's DispatcherServlet, which
is a simple servlet class as other java-based web applications. It is a Front
Controller of the Spring MVC framework, and funnels all the incoming requests
through the single point. The Spring MVC framework centralizes the request
flow control by using this Front Controller.
After landing a request at Spring's DispatcherServlet, it delegates that request2.
to the Spring MVC controller, that is, application controller. Although, , there
may be several controllers in a Spring web application, but each request must be
delegated to the specific controller. For that, Spring's DispatcherServlet takes
help of the handler mappings configured in the web application. Handler
mapping decides the particular controller by using the URL and request
parameters.
Once a particular application controller is decided by Spring's3.
DispatcherServlet with the help of the handler mapping configuration,
DispatcherServlet dispatches that request to the selected controller. This is
the actual controller responsible for processing information according to the
user's request and its parameters.
Spring MVC's controller executes the business logic by using business services of4.
the application, and it creates the model which wraps the information to be
carried back to the user, and is displayed in the browser. This model carries
information according to the user's request. But this model is not formatted, and
we can use any view template technology to render the model information in the
browser. That is why Spring MVC's controller also returns a logic view name
along with the model. Why does it return a logic view name? This is because
Spring MVC's controller is not tied to any specific view technology such as JSP,
JSF, Thymeleaf, and so on.

Implementing the MVC Pattern in a Web Application using Spring

[285]

Once again, Spring MVC's DispatcherServlet takes the help of the view5.
resolver; it is configured in the web application to resolve the view. According to
the configured ViewResolver, it resolves the actual view name instead of the
logic view name. Now DispatcherServlet has the view as well to render the
model information.
Spring MVC's DispatcherServlet renders the model to the view, and6.
generates a user-readable format of the model's information.
Finally, that information creates a response, and returns it to the user's browser7.
by DispatcherServlet.

As you can see, there are several steps and components involved in serving a request of the
application. Most of these components are related to the Spring MVC framework, and these
components have their own specific responsibility to serve a request.

Till now, you have learned that DispatcherServlet is a key component in processing
requests with Spring MVC. It is the heart of the Spring Web MVC. It is a front controller
that coordinates all request handling activities analogous to Struts ActionServlet / JSF
FacesServlet. It delegates to the web infrastructure beans, and invokes user web
components. It is also highly flexible, configurable, and fully customizable. It is very
flexible, because all the components used by this servlet are interfaces for all the
infrastructure beans. The following table lists some of the involved interfaces provided by
the Spring MVC Framework:

Spring MVC Component Role in request
processing

org.springframework.web.multipart.MultipartResolver It handles
multipart
requests such as
file uploads

org.springframework.web.servlet.LocaleResolver It handles locale
resolution and
modification

org.springframework.web.servlet.ThemeResolver It handles
theming
resolution and
modification

Implementing the MVC Pattern in a Web Application using Spring

[286]

org.springframework.web.servlet.HandlerMapping It maps all
incoming
requests to the
handler objects.

org.springframework.web.servlet.HandlerAdapter It is based on
the Adapter
pattern, and is
used for the
handler object
type to execute
the handler

org.springframework.web.servlet.HandlerExceptionResolver It handles the
exceptions
thrown during
handler
execution

org.springframework.web.servlet.ViewResolver It translates the
logical view
name to an
actual view
implementation

The components listed in the preceding table work on the Spring MVC Framework for the
request processing life cycle in a web application. In the upcoming section, we'll see how to
configure the Spring MVC's main component, that is, DispatcherServlet. We'll also take
a closer look at the different ways of implementation and configuration based on either Java
or XML.

Implementing the MVC Pattern in a Web Application using Spring

[287]

Configuring DispatcherServlet as the Front Controller
In a Java-based web application, all servlets are defined in the web.xml file. It is loaded in a
web container at the bootstrap, and maps each servlet to a particular URL pattern. Similarly,
the org.springframework.web.servlet.DispatcherServlet is the centerpiece of the
Spring MVC; it needs to be configured in the same file--web.xml, and it is loaded at the
bootstrap of the web application. At the time of bootstrapping, DispatcherServlet is
invoked to create Spring's
org.springframework.web.context.WebApplicationContext by loading the beans'
configuration through Java, XML, or annotation-based. The servlet tries to fetch all the
required components from this web application context. It has the responsibility to route
the request through all the other components.

WebApplicationContext is a web version of the ApplicationContext,
as discussed in previous chapters of this book. It has some additional
capabilities necessary for web applications other than the
ApplicationContext, such as servlet-specific scope request, session, and
so on. The WebApplicationContext is bound in the ServletContext;
you can also access it by using the static method of the
RequestContextUtils class. Let's see the following code snippet for this:
ApplicationContext webApplicationContext =
RequestContextUtils.findWebApplicationContext(request);

Defined by XML configuration
As you know, web.xml is the root file of any web application, placed in the WEB-INF
directory. It has a servlet specification, and contains all the servlet configuration to be
bootstrapped. Let's see the required code of the DispatcherServlet configuration in the
web application, which is as follows:

 <web-app version="3.0"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd
 metadata-complete="true">
 <servlet>
 <servlet-name>bankapp</servlet-name>
 <servlet-
class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>

Implementing the MVC Pattern in a Web Application using Spring

[288]

 <servlet-name>bankapp</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
 </web-app>

The preceding code is the minimum required code to configure the DispatcherServlet in
a Spring web application using XML-based configuration.

There is nothing is special in the web.xml file; typically, it defines only
one servlet configuration very similar to the traditional Java web
application. But DispatcherServlet loads a file which contains the spring
beans configuration for the application. By default, it loads a file named
[servletname]-servlet.xml from the WEB-INF directory. In our case,
the file name should be bankapp-servlet.xml in the WEB-INF
directory.

Defined by Java configuration
In this chapter, instead of the XML configuration, we will use Java to configure
DispatcherServlet in the servlet container for our web application. Servlet 3.0 and later
supports java-based bootstrapping, so, we can avoid using the web.xml file. Instead of this,
we can create a java class that implements the
javax.servlet.ServletContainerInitializer interface. Spring MVC provides the
WebApplicationInitializer interface to ensure that your spring configuration is loaded
and initialized in any Servlet 3 container. But the Spring MVC framework makes it even
easier by providing an abstract class implementation of the WebApplicationInitializer
interface. By using this abstract class, you just map your servlet mapping, and provide the
root and MVC configuration classes. I, personally, prefer this way of configuration in my
web application. The following is the code for this configuration class:

 package com.packt.patterninspring.chapter10.bankapp.web;

 import
org.springframework.web.servlet.support.AbstractAnnotationConfigDispatcherS
ervletInitializer;

 import com.packt.patterninspring.chapter10.bankapp.config.AppConfig;
 import
com.packt.patterninspring.chapter10.bankapp.web.mvc.SpringMvcConfig;

 public class SpringApplicationInitilizer extends
AbstractAnnotationConfigDispatcherServletInitializer
 {
 // Tell Spring what to use for the Root context: as ApplicationContext

Implementing the MVC Pattern in a Web Application using Spring

[289]

- "Root" configuration
 @Override
 protected Class<?>[] getRootConfigClasses() {
 return new Class <?>[]{AppConfig.class};
 }
 // Tell Spring what to use for the DispatcherServlet context:
WebApplicationContext- MVC
 configuration
 @Override
 protected Class<?>[] getServletConfigClasses() {
 return new Class <?>[]{SpringMvcConfig.class};
 }
 // DispatcherServlet mapping, this method responsible for URL pattern
as like in web.xml file
 <url-pattern>/</url-pattern>
 @Override
 protected String[] getServletMappings() {
 return new String[]{"/"};
 }
 }

As seen in the preceding code, the SpringApplicationInitializer class extends the
AbstractAnnotationConfigDispatcherServletInitializer class. It asks only the
required information from the developer, and all configurations related to the
DispatcherServlet are configured by this class using the servlet container interfaces.
Take a look at the following diagram to understand more about the
AbstractAnnotationConfigDispatcherServletInitializer class and its
implementation to configure the DispatcherServlet in the application:

Implementing the MVC Pattern in a Web Application using Spring

[290]

You have seen that the SpringApplicationInitilizer class overrides three methods of
the AbstractAnnotationConfigDispatcherServletInitializer class, that is,
getServletMappings(), getServletConfigClasses(), and
getRootConfigClasses(). The method getServletMappings() defines the servlet
mapping-in our application, it's mapped to "/". The method
getServletConfigClasses() asks DispatcherServlet to load its application context
with the beans defined in the SpringMvcConfig configuration class. This configuration file
has bean definitions related to the web components such as controllers, view resolvers, and
handler mappings. A Spring web application has another application context, and it is
created by ContextLoaderListener. So, another method, getRootConfigClasses(),
loads the other beans such as services, repositories, data-source, and other application beans
typically required in the middle-tier and data-tier of the application defined in the
AppConfig configuration class.

The Spring Framework provides a listener class--
ContextLoaderListener. It is responsible for bootstrapping the backend
application context.

Let's see the following diagram to understand more about the Spring web application
design after starting up the servlet container:

Implementing the MVC Pattern in a Web Application using Spring

[291]

As you can see in the last diagram, the web component beans definitions configuration
classes returned by the getServletConfigClasses() method are loaded by the
DispatcherServlet, and the other application beans definition configuration classes
returned by the getRootConfigClasses() method are loaded by the
ContextLoaderListener.

A Java-based web configuration will only work when deploying to a
server that supports Servlet 3.0, such as Apache Tomcat 7 or higher.

Let's see how to enable more features of the Spring MVC Framework in the coming section.

Enabling the Spring MVC
There are many ways to configure the DispatcherServlet and other web components.
There are many features of the Spring MVC framework which are not enabled by default,
such as HttpMessageConverter, Support for validating @Controller inputs with
@Valid, and so on. So, we can enable these features by using either a Java-based
configuration or XML configuration.

To enable the MVC Java config, add the annotation @EnableWebMvc to one of your
@Configuration classes, as follows:

 import org.springframework.context.annotation.Configuration;
 import org.springframework.web.servlet.config.annotation.EnableWebMvc;
 @Configuration
 @EnableWebMvc
 public class SpringMvcConfig {
 }

In XML configuration, we can use MVC namespace, there is an <mvc:annotation-
driven> element that you can use to enable the annotation-driven Spring MVC.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc.xsd">

Implementing the MVC Pattern in a Web Application using Spring

[292]

 <mvc:annotation-driven/>

 </beans>

The Spring MVC advanced feature can be enabled in a Spring web application either by
using the @EnableWebMvc annotation, or by using the XML namespace
<mvc:annotation-driven/>. The Spring MVC Framework also allows you to customize
the default configuration in Java by extending the WebMvcConfigurerAdapter class, or by
implementing the WebMvcConfigurer interface. Let's see the modified configuration file
after adding a bit more configuration:

 package com.packt.patterninspring.chapter10.bankapp.web.mvc;

 import org.springframework.context.annotation.Bean;
 import org.springframework.context.annotation.ComponentScan;
 import org.springframework.context.annotation.Configuration;
 import org.springframework.web.servlet.ViewResolver;
 import
org.springframework.web.servlet.config.annotation.DefaultServletHandlerConf
igurer;
 import org.springframework.web.servlet.config.annotation.EnableWebMvc;
 import
org.springframework.web.servlet.config.annotation.WebMvcConfigurerAdapter;
 import
org.springframework.web.servlet.view.InternalResourceViewResolver;

 @Configuration
 @ComponentScan(basePackages = {"
com.packt.patterninspring.chapter10.bankapp.web.controller"})
 @EnableWebMvc
 public class SpringMvcConfig extends WebMvcConfigurerAdapter{
 @Bean
 public ViewResolver viewResolver(){
 InternalResourceViewResolver viewResolver = new
InternalResourceViewResolver();
 viewResolver.setPrefix("/WEB-INF/view/");
 viewResolver.setSuffix(".jsp");
 return viewResolver;
 }
 @Override
 public void
configureDefaultServletHandling(DefaultServletHandlerConfigurer configurer)
{
 configurer.enable();
 }
 }

Implementing the MVC Pattern in a Web Application using Spring

[293]

As seen in the preceding code, the configuration class SpringMvcConfig is annotated with
@Configuration, @ComponentScan, and @EnableWebMvc. Here, the
com.packt.patterninspring.chapter10.bankapp.web.controller package will be
scanned for components. This class extends the WebMvcConfigurerAdapter class, and
overrides the configureDefaultServletHandling() method. We have also configured
a ViewResolver bean.

Till now, you have learned what is the MVC pattern and architecture, and how to set up
DispatcherServlet and enable the essential Spring MVC components for a Spring web
application. In the upcoming section, we'll discuss how to implement controllers in a Spring
application, and how these controllers handle web requests.

Implementing controllers
As we have seen in the MVC pattern, controllers are also one of the crucial components of
the MVC pattern. They are responsible for executing the actual request, preparing the
model, and sending this model along with logical view name to the front controller. In a
web application, the controllers work between the web layer and the core application layer.
In the Spring MVC framework, controllers are also more like POJO classes with methods;
these methods are known as handlers, because these are annotated with the
@RequestMapping annotation. Let's see how to define controller classes in a Spring web
application.

Defining a controller with @Controller
Let's create a controller class for our bank application. HomeController is a controller class
that handles requests for / and renders the homepage of the bank application:

 package com.packt.patterninspring.chapter10.bankapp.web.controller;

 import org.springframework.stereotype.Controller;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RequestMethod;

 @Controller
 public class HomeController {
 @RequestMapping(value = "/", method = RequestMethod.GET)
 public String home (){
 return "home";
 }
 }

Implementing the MVC Pattern in a Web Application using Spring

[294]

As you can see in the preceding code, the HomeController class contains the home()
method. It is a handler method, because it is annotated with the @RequestMapping
annotation. It specifies that this method handles all the requests that are mapped to the /
URL. Another thing to notice is that our controller class, HomeController, is also
annotated with the @Controller annotation. As we know, @Controller is a stereotype
annotation, and it is also used to create the bean in the Spring IoC container similar to the
other Meta annotations of the @Component annotation such as @Service and
@Repository. Yes, this annotation specifies any class as the controller, and adds some
more capability of Spring MVC to that class. You could also use the @Component annotation
instead of @Controller to create Spring beans in a web application, but in this case, that
bean does not have the capability of the Spring MVC framework such as exception handling
at web layer, handler mapping, and so on.

Let's take a closer look at the @RequestMapping annotation, and also the composed
variants of the @RequestMapping annotation.

Mapping requests with @RequestMapping
The previously defined HomeController class has only one handler method, and this
method is annotated with the @RequestMapping annotation. Here, I have used two
attributes of this annotation--one is value to map the HTTP request to the / pattern, and the
other attribute is a method for supporting the HTTP GET method. We can define multiple
URL mappings with one handler method. Let's see this in the following code snippet:

 @Controller
 public class HomeController {
 @RequestMapping(value = {"/", "/index"}, method = RequestMethod.GET)
 public String home (){
 return "home";
 }
 }

Implementing the MVC Pattern in a Web Application using Spring

[295]

In the preceding code, the @RequestMapping annotation has an array of string values for
the value attribute of this annotation. Now, this handler method is mapped with two URL
patterns, such as / and /index. The Spring MVC's @RequestMapping annotation supports
several HTTP methods such as GET, POST, PUT, DELETE, and so on. As of version 4.3, Spring
composed @RequestMapping variants, and now provides simple methods for the mapping
of common HTTP methods, as shown in the following expressions:

 @RequestMapping + HTTP GET = @GetMapping
 @RequestMapping + HTTP POST = @PostMapping
 @RequestMapping + HTTP PUT = @PutMapping
 @RequestMapping + HTTP DELETE = @DeleteMapping

This is the modified version of HomeController with composed annotation mappings:

 @Controller
 public class HomeController {
 @GetMapping(value = {"/", "/index"})
 public String home (){
 return "home";
 }
 }

We can use the @RequestMapping annotation at both locations: at the class level, and at the
method level. Let's see examples for this:

@RequestMapping at method level
Spring MVC allows you to use the @RequestMapping annotation at the method level to
make this method as handler method in the Spring web application. Let's see how to use it
in the following class:

 package com.packt.patterninspring.
 chapter10.bankapp.web.controller;
 import org.springframework.stereotype.Controller;
 import org.springframework.ui.ModelMap;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RequestMethod;

 import com.packt.patterninspring.chapter10.bankapp.model.User;

 @Controller
 public class HomeController {
 @RequestMapping(value = "/", method = RequestMethod.GET)
 public String home (){
 return "home";

Implementing the MVC Pattern in a Web Application using Spring

[296]

 }
 @RequestMapping(value = "/create", method = RequestMethod.GET)
 public String create (){
 return "addUser";
 }
 @RequestMapping(value = "/create", method = RequestMethod.POST)
 public String saveUser (User user, ModelMap model){
 model.put("user", user);
 return "addUser";
 }
 }

As you can see in the preceding code, I have used the @RequestMapping annotation with
three methods home(), create(), and saveUser(). Here I have also used the attributes
"value" and "method" of this annotation. The "value" attribute has the request mapping with
request URL and "method" attribute is used to define the HTTP request methods such GET
or POST. Mapping rules are, typically, URL-based, and, optionally, use wild cards, as
shown here:

 - /create
 - /create/account
 - /edit/account
 - /listAccounts.htm - Suffix ignored by default.
 - /accounts/*

In the preceding example, the handler methods have some arguments as well, so we can
pass any number of arguments of any type. The Spring MVC will handle these arguments
as request parameters. Let's see first how to define @RequestMapping at the class level,
then we will discuss the request parameters.

@RequestMapping at the class level
The Spring MVC allows you to use the @RequestMapping annotation at the class level.
This means we can annotate the controller class with @RequestMapping, as shown in the
following code snippet:

 package com.packt.patterninspring.chapter10.bankapp.web.controller;

 import org.springframework.stereotype.Controller;
 import org.springframework.ui.ModelMap;
 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RequestMethod;

 @Controller
 @RequestMapping("/")

Implementing the MVC Pattern in a Web Application using Spring

[297]

 public class HomeController {
 @RequestMapping(method=GET)
 public String home() {
 return "home";
 }
 }

As you have seen in the preceding code, the HomeController class is annotated with the
@RequestMapping and @Controller annotations. But the HTTP method is still defined
above the handler methods. Class-level mapping is applied with all the handler methods
defined under this controller.

After the Spring MVC configuration, we created a controller class with the handler
methods. Let's test this controller before moving ahead with more details. In this book, I
haven't use any JUnit test cases, so here, I will just run this web application on the Tomcat
container. You can see the output on the browser as follows:

The last image is the homepage of our Bank Management System web application.

Before Spring 3.1, the Spring MVC mapped the requests to handler
methods using two steps. First, the controller was selected by
DefaultAnnotationHandlerMapping, and then, the actual method was
mapped with the incoming requests by the
AnnotationMethodHandlerAdapter. But as of Spring 3.1, Spring MVC
maps the requests, in one step, directly to the handler methods by using
RequestMappingHandlerMapping.

In the next section, we'll see how to define the handler methods, and the return type and
parameters allowed for the handler methods in Spring MVC.

Implementing the MVC Pattern in a Web Application using Spring

[298]

Defining @RequestMapping handler methods
In the Spring MVC Framework, the @RequestMapping handler methods are very flexible in
defining signatures. You can pass any number of arguments in any order. These methods
support most type of arguments, and are also very flexible in the return type as well. It can
have several return types, some of which are listed next:

Supported method argument types
Request or response objects (Servlet API)
Session object (Servlet API)
java.util.Locale

java.util.TimeZone

java.io.InputStream / java.io.Reader
java.io.OutputStream / java.io.Writer
java.security.Principal

@PathVariable

@RequestParam

@RequestBody

@RequestPart

java.util.Map / org.springframework.ui.Model /
org.springframework.ui.ModelMap

org.springframework.validation.Errors /
org.springframework.validation.BindingResult

Supported method return types:
ModelAndView

Model

Map

View

String

void

HttpEntity<?> or ResponseEntity<?>
HttpHeaders

Callable<?>

DeferredResult<?>

Implementing the MVC Pattern in a Web Application using Spring

[299]

I have listed some of the supported return types and method argument types. It seems that
Spring MVC is very flexible and customizable in the nature of defining the request handler
methods unlike other MVC frameworks.

In the Spring MVC framework, even the handler method can have any
ordering of the arguments, but in case of Errors or BindingResult
parameters, we have to put these parameters first, followed by the model
object for being bound immediately, because the handler method might
have any number of model objects, and Spring MVC creates separate
instances of the Errors or BindingResult for each of them. For example:

Invalid location

@PostMapping
public String saveUser(@ModelAttribute ("user") User
user, ModelMap model, BindingResult result){...}

Valid location

@PostMapping
public String saveUser(@ModelAttribute ("user") User
user, BindingResult result, ModelMap model){...}

Let's see how to pass model data to the view layer in the upcoming section.

Passing model data to the view
As of now, we have implemented a very simple HomeCotroller, and tested it. But in the
web application, we have also passed model data to the view layer. That model data we
passed in the model (in a simple word, it is Map), and that model is returned by the
controller along with logical view name. As you already know, Spring MVC supports
several return types of the handler method. Let's see the following example:

 package com.packt.patterninspring.chapter10.bankapp.web.controller;

 import java.util.List;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.stereotype.Controller;
 import org.springframework.ui.ModelMap;
 import org.springframework.web.bind.annotation.GetMapping;
 import org.springframework.web.bind.annotation.PostMapping;

Implementing the MVC Pattern in a Web Application using Spring

[300]

 import com.packt.patterninspring.chapter10.bankapp.model.Account;
 import
com.packt.patterninspring.chapter10.bankapp.service.AccountService;

 @Controller
 public class AccountController {
 @Autowired
 AccountService accountService;
 @GetMapping(value = "/open-account")
 public String openAccountForm (){
 return "account";
 }
 @PostMapping(value = "/open-account")
 public String save (Account account, ModelMap model){
 account = accountService.open(account);
 model.put("account", account);
 return "accountDetails";
 }
 @GetMapping(value = "/all-accounts")
 public String all (ModelMap model){
 List<Account> accounts = accountService.findAllAccounts();
 model.put("accounts", accounts);
 return "accounts";
 }
 }

As you can see in the preceding example, the AccountController class has three handler
methods. Two handler methods return the model data along with the logical view name.
But in this example, I am using Spring MVC's ModelMap, so, we don't need to forcefully
return as logical view, it binds automatically with the response.

Next you'll learn how to accept request parameters.

Accepting request parameters
In a Spring web application, sometimes, we just read the data from the server side like in
our example. Reading data for all the accounts was a simple read call, and no request
parameter was required. But in case you want to fetch data for a particular account, then
you have to pass the account ID with the request parameters. Similarly, for creating a new
Account in the bank, you have to pass an account object as a parameter. In Spring MVC, we
can accept the request parameters in the following ways:

Taking query parameters

Implementing the MVC Pattern in a Web Application using Spring

[301]

Taking request parameters via path variables
Taking form parameters

Let's look at each of these ways one by one.

Taking query parameters
In a web application, we can fetch the request parameters from the request-the account ID
in our example if you want to access the details of a particular account. Let's fetch the
account ID from the request parameter using the following code:

 @Controller
 public class AccountController {
 @GetMapping(value = "/account")
 public String getAccountDetails (ModelMap model, HttpServletRequest
request){
 String accountId = request.getParameter("accountId");
 Account account = accountService.findOne(Long.valueOf(accountId));
 model.put("account", account);
 return "accountDetails";
 }
 }

In the preceding code snippet, I have used the traditional way to access the request
parameters. The Spring MVC framework provides an annotation, @RequestParam, to
access the request parameters. Let's use the @RequestParam annotation to bind the request
parameters to a method parameter in your controller. The following code snippet shows the
usage of the @RequestParam annotation. It extracts the parameter from the request, and
performs type conversion as well:

 @Controller
 public class AccountController {
 @GetMapping(value = "/account")
 public String getAccountDetails (ModelMap model,
@RequestParam("accountId") long accountId){
 Account account = accountService.findOne(accountId);
 model.put("account", account);
 return "accountDetails ";
 }
 }

Implementing the MVC Pattern in a Web Application using Spring

[302]

In the preceding code, we access the request parameter by using the @RequestParam
annotation, and you can also notice that I didn't use the type conversion from String to
Long, it will be done automatically by this annotation. One more thing to note here is that
parameters using this annotation are required by default, but Spring allows you to override
this behavior by using the required attribute of the @RequestParam annotation.

 @Controller
 public class AccountController {
 @GetMapping(value = "/account")
 public String getAccountDetails (ModelMap model,
 @RequestParam(name = "accountId") long accountId
 @RequestParam(name = "name", required=false) String name){
 Account account = accountService.findOne(accountId);
 model.put("account", account);
 return " accountDetails ";
 }
 }

Now let's see how to use path variables to take input as part of the request path.

Taking request parameters via path variables
Spring MVC allows you to pass parameters in the URI instead of passing them through
request parameters. The passed values can be extracted from the request URLs. It is based
on URI templates. It is not a Spring-specific concept, and is used in many frameworks by
using {...} placeholders and the @PathVariable annotation. It allows clean URLs
without request parameters. The following is an example:

 @Controller
 public class AccountController {
 @GetMapping("/accounts/{accountId}")
 public String show(@PathVariable("accountId") long accountId, Model
model) {
 Account account = accountService.findOne(accountId);
 model.put("account", account);
 return "accountDetails";
 }
 ...
 }

In the previous handler, the method can handle the request like this:

http://localhost:8080/Chapter-10-Spring-MVC-pattern/account?accountId=1000

Implementing the MVC Pattern in a Web Application using Spring

[303]

But in the preceding example, the handler method can handle the request such as:

http://localhost:8080/Chapter-10-Spring-MVC-pattern/accounts/2000

We have seen in the preceding code and images how to pass a value either by using request
parameters or using path parameters. Both ways are fine if you are passing small amounts
of data on a request. But in some cases, we have to pass a lot of data to the server, such as
form submission. Let's see how to write controller methods that handle form submissions.

Processing forms of a web page
As you know, in any web application, we can send and receive data from the server. In a
web application, we send the data by filling out forms, and submitting this form to the
server. Spring MVC also provides support for form handling of the client end by displaying
the form, validating the form data, and submitting this form data.

Basically, Spring MVC handles the form displaying and form processing first. In the Bank
management application, you will need to create a new user, and open a new account in the
bank, so, let's create a controller class, AccountController, with a single request-handling
method for displaying the account open form, as follows:

 package com.packt.patterninspring.chapter10.bankapp.web.controller;

 import org.springframework.stereotype.Controller;
 import org.springframework.web.bind.annotation.GetMapping;

Implementing the MVC Pattern in a Web Application using Spring

[304]

 @Controller
 public class AccountController {
 @GetMapping(value = "/open-account")
 public String openAccountForm (){
 return "accountForm";
 }
 }

The openAccountForm() method's @GetMapping annotation declares that it will handle
the HTTP GET requests for /open-account. It's a simple method, taking no input and only
returning a logical view named accountForm. We have configured
InternalResourceViewResolver, which means that the JSP at /WEB-
INF/views/accountForm.jsp will be called on to render the open account form.

Here's the JSP you'll use for now:

 <%@ taglib prefix = "c" uri = "http://java.sun.com/jsp/jstl/core" %>
 <html>
 <head>
 <title>Bank Management System</title>
 <link rel="stylesheet" type="text/css" href="<c:url
value="/resources/style.css" />" >
 </head>
 <body>
 <h1>Open Account Form</h1>
 <form method="post">
 Account Number:

 <input type="text" name="id">

 Account Name:

 <input type="text" name="name">

 Initial Balance:

 <input type="text" name="balance">

 <input type="submit" value="Open Account">
 </form>
 </body>
 </html>

As you can see in the preceding code, we have an open account form. It has some fields
such as AccountId, Account Name, and Initial Balance. This JSP page has the <form>
tag for the form, and this <form> tag doesn't have any action parameter. This means that
when we submit this form, it will post the form data to the same URI /open-account with
the POST HTTP method call. The following screenshot displays the account form:

Implementing the MVC Pattern in a Web Application using Spring

[305]

Let's add another method to handle the call for the HTTP POST method with the same URI,
/open-account.

Implementing a form handling controller
Let's see the same AccountController class by adding another handler method to handle
the HTTP POST request for the URI /open-account in the web application:

 package com.packt.patterninspring.chapter10.bankapp.web.controller;

 import java.util.List;

 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.stereotype.Controller;
 import org.springframework.ui.ModelMap;
 import org.springframework.web.bind.annotation.GetMapping;
 import org.springframework.web.bind.annotation.PathVariable;
 import org.springframework.web.bind.annotation.PostMapping;

 import com.packt.patterninspring.chapter10.bankapp.model.Account;
 import
com.packt.patterninspring.chapter10.bankapp.service.AccountService;

 @Controller
 public class AccountController {
 @Autowired
 AccountService accountService;
 @GetMapping(value = "/open-account")

Implementing the MVC Pattern in a Web Application using Spring

[306]

 public String openAccountForm (){
 return "accountForm";
 }
 @PostMapping(value = "/open-account")
 public String save (Account account){
 accountService.open(account);
 return "redirect:/accounts/"+account.getId();
 }
 @GetMapping(value = "/accounts/{accountId}")
 public String getAccountDetails (ModelMap model, @PathVariable Long
accountId){
 Account account = accountService.findOne(accountId);
 model.put("account", account);
 return "accountDetails";
 }
 }

As you can see in the preceding code, we have added two more handler methods in the
AccountController method, and also injected the service AccountService with this
controller to save the account details in the database. Whenever we process the POST
request from the open account form, the controller accepts the account form data, and saves
it to the database by using the injected account service. It will accept the account form data
as an Account object. You may also notice here that after processing the form data using the
HTTP POST method, the handler method redirects to the account details page. It is also a
better practice to redirect after POST submission to prevent accidentally submitting the form
twice. The following screen is displayed after submission of the request:

Implementing the MVC Pattern in a Web Application using Spring

[307]

As you can see in the preceding output on the browser, this page is rendered after
submitting the account form. Because we have added one request handler method, this
handler method handles the request, and renders another web page including the account
details. The following JSP page is rendered as the view of the preceding output:

 <%@ taglib prefix = "c" uri = "http://java.sun.com/jsp/jstl/core" %>
 <html>
 <head>
 <title>Bank Management System</title>
 <link rel="stylesheet" type="text/css" href="<c:url
value="/resources/style.css" />" >
 </head>
 <body>
 <h1>${message} Account Details</h1>
 <c:if test="${not empty account }">
 <table border="1">
 <tr>
 <td>Account Number</td>
 <td>Account Name</td>
 <td>Account Balance</td>
 </tr>
 <tr>
 <td>${account.id }</td>
 <td>${account.name }</td>
 <td>${account.balance }</td>
 </tr>
 </table>
 </c:if>
 </body>
 </html>

In this last code, the handler method sends the Account object to the model, and also
returns the logical view name. This JSP page renders the Account object taken from the
response.

One thing to be noticed here is that the Account object has ID, name, and
balance properties, which will be populated from the request parameters
of the same name as the field name in the account form. If any object
property name matches the field name of the HTML form, then this
property will be initialized with a NULL value.

Implementing the MVC Pattern in a Web Application using Spring

[308]

Data binding with Command Design pattern
Encapsulate a request as an object, thereby letting you parameterize clients with different
requests, queue or log requests, and support undoable operations.
- GOF Design Pattern

You learned about the Command Design pattern in Chapter 3, Consideration of Structural
and Behavioral Patterns. It is a part of the Behavioral pattern family of the GOF pattern. It is a
very simple data-driven pattern. It allows you to encapsulate your request data into an
object, and pass that object as a command to the invoker method, and that method returns
the command as another object to the caller.

Spring MVC implements the Command Design pattern to bind the request data from the
web form as an Object, and passes that object to the request handler method in the
controller class. Here, we will explore how to use this pattern to bind the request data to the
Object, and also explore the benefits and possibilities of using data binding. In the following
class, the Account java bean is a simple object with three properties--id, name, and
balance:

 package com.packt.patterninspring.chapter10.bankapp.model;

 public class Account{
 Long id;
 Long balance;
 String name;
 public Long getId() {
 return id;
 }
 public void setId(Long id) {
 this.id = id;
 }
 public Long getBalance() {
 return balance;
 }
 public void setBalance(Long balance) {
 this.balance = balance;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 @Override
 public String toString() {

Implementing the MVC Pattern in a Web Application using Spring

[309]

 return "Account [id=" + id + ", balance=" + balance + ", name=" +
name + "]";
 }
 }

Either we submit the web form with the input text fields' names the same as the Object
properties' name, or we receive the request as
http://localhost:8080/Chapter-10-Spring-MVC-pattern/account?id=10000. In
both cases, behind the scenes, Spring calls the setter methods of the Account class to bind
the request data or web form data to the object. Spring also allows you to bind indexed
collections such as List, Map, and others.

We can also customize data binding. Spring provides these two ways to customize data
binding:

Global Customization: It customizes the data-binding behavior across the web
application for a particular Command Object
Per Controller Customization: It customizes the data-binding behavior per
controller class for a particular Command Object

Here, I will discuss only the per controller customization. Let's see the following code
snippet for customizing data binding for the Account object:

 package com.packt.patterninspring.chapter10.bankapp.web.controller;

 @Controller
 public class AccountController {
 @Autowired
 AccountService accountService;

 @InitBinder
 public void initBinder(WebDataBinder binder) {
 binder.initDirectFieldAccess();
 binder.setDisallowedFields("id");
 binder.setRequiredFields("name", "balance");
 }

 }

Implementing the MVC Pattern in a Web Application using Spring

[310]

As you can see in the preceding code, AccountController has a
initBinder(WebDataBinder binder) annotated with the @InitBinder annotation.
This method must have a void return type, and have an
org.springframework.web.bind.WebDataBinder as a method argument. The
WebDataBinder object has several methods; we have used some them in the preceding
code. WebDataBinder is used to customize the data binding.

Using @ModelAttributes for customizing data
binding
Spring MVC provides one more annotation, @ModelAttributes, for binding data to the
Command object. It is another way to bind the data and to customize the data binding. This
annotation allows you to control the creation of the Command object. In a Spring MVC
application, this annotation can be used on a method and on method arguments. Let's see
the following examples:

Using @ModelAttribute on methods

We can use the ModelAttribute annotation on methods to create an object to be
used in our form, as follows:

 package com.packt.patterninspring.chapter10.bankapp.web.controller;

 @Controller
 public class AccountController {

 @ModelAttribute
 public Account account () {
 return new Account();
 }

 }

Using @ModelAttribute on method arguments

We can also use this annotation on a method argument. In this case, the handler method's
arguments are looked up from the model object. If these are not available in the model, then
they are created by using the default constructor:

 package com.packt.patterninspring.chapter10.bankapp.web.controller;

Implementing the MVC Pattern in a Web Application using Spring

[311]

 @Controller
 public class AccountController {
 ...
 @PostMapping(value = "/open-account")
 public String save (@ModelAttribute("account") Account account){
 accountService.open(account);
 return "redirect:/accounts/"+account.getId();
 }

 }

As you can see in the last code snippet, the @ModelAttribute annotation is used on the
method argument. This means that the Account object fetches from the model object. If it is
not there, it will be created by using the default constructor.

When the @ModelAttribute annotation is put on a method, this method
will be called before the request handling method is called.

Till now, we have seen how Spring MVC handles requests and request parameters either in
the traditional way or by using the @RequestParam, @PathVariable annotations. We have
also seen how to process the form web page and handle the POST request with the form
data binding to an object in the controller layers. Now let's move to see how to validate if
the submitted form data is valid or invalid for the business.

Validating forms input parameters
In a web application, validation of the web form data is very important, because end users
can submit any thing. Suppose in an application, a user submits the account form by filling
in the account name, then it could create the new account in the bank with account holder
name. So, we have to ensure the validity of the form data before creating the new record in
the database. You do not need to handle the validation logic in the handler method. Spring
provides support for the JSR-303 API. As of Spring 3.0, Spring MVC supports this Java
Validation API. There isn't much configuration required to configure the Java Validation
API in your Spring web application-you just add the implementation of this API in your
application class path such as Hibernate Validator.

Implementing the MVC Pattern in a Web Application using Spring

[312]

The Java Validation API has several annotations to validate the properties of the Command
object. We can place constraints on the value of the properties of the Command object. In this
chapter, I have not explored all these annotations, but let's see the following examples with
some of these annotations:

 package com.packt.patterninspring.chapter10.bankapp.model;

 import javax.validation.constraints.NotNull;
 import javax.validation.constraints.Size;

 public class Account{
 // Not null
 @NotNull
 Long id;
 // Not null
 @NotNull
 Long balance;
 // Not null, from 5 to 30 characters
 @NotNull
 @Size(min=2, max=30)
 String name;
 public Long getId() {
 return id;
 }
 public void setId(Long id) {
 this.id = id;
 }
 public Long getBalance() {
 return balance;
 }
 public void setBalance(Long balance) {
 this.balance = balance;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 @Override
 public String toString() {
 return "Account [id=" + id + ", balance=" + balance + ", name=" +
name + "]";
 }
 }

Implementing the MVC Pattern in a Web Application using Spring

[313]

As you can see in the preceding code, the properties of the Account class are now annotated
with @NotNull to ensure that the value must not be null, and some properties are also
annotated with the @Size annotation to ensure the count of characters between the
minimum and maximum lengths.

Only annotating the properties of the Account object is not enough. We have to annotate
the save() method argument of the AccountController class as follows:

 package com.packt.patterninspring.chapter10.bankapp.web.controller;

 @Controller
 public class AccountController {

 @PostMapping(value = "/open-account")
 public String save (@Valid @ModelAttribute("account") Account account,
Errors errors){
 if (errors.hasErrors()) {
 return "accountForm";
 }
 accountService.open(account);
 return "redirect:/accounts/"+account.getId();
 }

 }

As you can see in the preceding code, the Account parameter is now annotated with
@Valid to indicate to Spring that the command object has validation constraints that should
be enforced. Let's see the output when we submit the web open account form while filling
invalid data:

Implementing the MVC Pattern in a Web Application using Spring

[314]

As I had submitted this form without data, it has been redirected to the same page with
validation errors. Spring also allows you to customize these validation messages by
configuring these messages into the properties file.

As of now, in this chapter, you have learned about the controller component of the MVC
pattern. You also learned how to create and configure in a web application. Let's explore
another component of the MVC pattern, view, in the upcoming section.

Implementing View in the MVC pattern
View is the most important component of the MVC pattern. The controller returns the
model to the front controller along with the logical view name. The front controller resolves
to the actual view by using the configured view resolver. Spring MVC provides several
view resolvers to support multiple view technologies, such as JSP, Velocity, FreeMarker,
JSF, Tiles, Thymeleaf, and so on. You have to configure the view resolver according to the
view technology that you use in your web application. Take a look at the following figure to
understand more about the view pattern in Spring MVC:

As you can see in the diagram, Spring MVC's Front Controller has several view resolvers
according to the different view technologies. But in this chapter, we will use only JSP as the
view technology, and so, we will explore only the JSP-related view resolver,
InternalResourveViewResolver.

Implementing the MVC Pattern in a Web Application using Spring

[315]

A View renders the web output. There are many built-in views available for JSPs, XSLT,
templating approaches (Velocity, FreeMarker), and others. Spring MVC also has view
support classes for creating PDFs, Excel spreadsheets, and so on.

Controllers, typically, return a logical view name in String MVC, but Spring's
ViewResolvers select a View based on the view name. Let's see how to configure the
ViewResolver in a Spring MVC application.

Defining ViewResolver in the Spring MVC
In Spring MVC, the DispatcherServlet delegates to a ViewResolver to obtain the View
implementation based on the view name. The default ViewResolver treats the view name
as a web application-relative file path, that is, a JSP--/WEB-INF/views/account.jsp. We
can override this default by registering a ViewResolver bean with the
DispatcherServlet. In our web application, we have used
InternalResourceViewResolver, because it is related to the JSP view, but there are
several other options available in Spring MVC, as mentioned in the previous section.

Implement the View
The following code renders the view in the MVC pattern:

accountDetails.jsp:

 <%@ taglib prefix = "c" uri = "http://java.sun.com/jsp/jstl/core" %>
 <html>
 <head>
 <title>Bank Management System</title>
 <link rel="stylesheet" type="text/css" href="<c:url
value="/resources/style.css" />" >
 </head>
 <body>
 <h1>${message} Account Details</h1>
 <c:if test="${not empty account }">
 <table border="1">
 <tr>
 <td>Account Number</td>
 <td>Account Name</td>
 <td>Account Balance</td>
 </tr>
 <tr>
 <td>${account.id }</td>
 <td>${account.name }</td>

Implementing the MVC Pattern in a Web Application using Spring

[316]

 <td>${account.balance }</td>
 </tr>
 </table>
 </c:if>
 </body>
 </html>

As you can see in the preceding code, Spring MVC renders this view when the controller
will be returned accountDetails as the logical view name. But how is it resolved by
Spring MVC? Let's see the configuration of the ViewResolver in the Spring configuration
file.

Register ViewResolver with Spring MVC
Let's register the JSP-related ViewResolver, that is, configure
InternalResourceViewResolver in the Spring web application, as follows:

 package com.packt.patterninspring.chapter10.bankapp.web.mvc;

 import org.springframework.context.annotation.Bean;
 import org.springframework.context.annotation.ComponentScan;
 import org.springframework.context.annotation.Configuration;
 import org.springframework.web.servlet.ViewResolver;
 import org.springframework.web.servlet.config.annotation.EnableWebMvc;
 import
org.springframework.web.servlet.config.annotation.WebMvcConfigurerAdapter;
 import
org.springframework.web.servlet.view.InternalResourceViewResolver;

 @Configuration
 @ComponentScan(basePackages =
{"com.packt.patterninspring.chapter10.bankapp.web.controller"})
 @EnableWebMvc
 public class SpringMvcConfig extends WebMvcConfigurerAdapter{

 @Bean
 public ViewResolver viewResolver(){
 InternalResourceViewResolver viewResolver = new
InternalResourceViewResolver();
 viewResolver.setPrefix("/WEB-INF/views/");
 viewResolver.setSuffix(".jsp");
 return viewResolver;
 }

 }

Implementing the MVC Pattern in a Web Application using Spring

[317]

As in the preceding code, suppose the controller returns with the logical view name,
accountDetails. All the JSP files for views are placed in the /WEB-INF/views/ directory
of the web application. The accountDetails.jsp view file for account details. As per the
preceding configuration file, the actual view name is derived by adding the prefix /WEB-
INF/views/ and the postfix .jsp to the logical view name returned by the application
controller. If the application controller returns accountDetails as the logical view name,
then ViewResolver changes it to the physical by adding a prefix and postfix to the logical
view name; finally, it is changed to /WEB-INF/views/accountDetails.jsp in the our
application. The following diagram illustrates how Spring MVC's Front Controller resolves
the view in a Spring web application:

Implementing the MVC Pattern in a Web Application using Spring

[318]

This last diagram illustrates the whole picture of the Spring MVC request flow with all the
components (Model, View, and Controllers) of the MVC pattern, and the Front controller
pattern. Any request, either HTTP GET or POST, lands at the Front Controller first, which is,
actually, the DispatcherServlet in Spring MVC. The controllers in a Spring web
application are responsible for generating and updating the Model, and the Model is
another component of the MVC pattern. Finally, the controller returns that model along
with the logical view name to the DispatcherServlet. It consults with the configured
view resolver, and resolves the physical path of the view. The View is another component
of the MVC pattern.

In the next section, we'll elaborate on the View Helper pattern, and how Spring support the
pattern in a Spring web application.

The View Helper pattern
The View Helper pattern separates the static view, such as JSP, from the processing of the
business model data. The View Helper pattern is used in the presentation layer by adapting
the model data and the View components. The View Helper can format the model data
according to the business requirement, but it cannot generate model data for the business.
The following diagram illustrates the View Helper pattern:

Implementing the MVC Pattern in a Web Application using Spring

[319]

We know that View is the a static and formatted component of the MVC pattern, but
sometimes, we need some business processing the presentation layer. If you are using JSPs,
then you could use a scriptlet for the business processing at the the view layer, but using a
scriptlet is not a best practice, because it promotes tight coupling between the view and
business logic. But some View Helper classes based on the View Helper pattern take over
that responsibility of business processing at the presentation layer. Some of the technologies
based on the View Helper pattern areas follows:

The JavaBeans View helper
The tag LibraryView helper

Using JSTL tags
Using spring tags
Using third-party tag Library

The following tag libraries are used in our web application in this chapter:

 <%@ taglib prefix = "c" uri = "http://java.sun.com/jsp/jstl/core" %>
 <c:if test="${not empty account }">

 </c:if>

 <%@ taglib prefix="form" uri="http://www.springframework.org/tags/form"
%>
 <form:form method="post" commandName="account">

 ...
 </form:form>

As you can see in the preceding code, I have used the JSTL tag library for the check not
empty account in the model, and the Spring tag library to create the open account form in
the web application.

In the next section, you'll learn about the Composite View pattern, and how Spring MVC
supports it to implement it in the web application.

Implementing the MVC Pattern in a Web Application using Spring

[320]

Composite View pattern using Apache tile view
resolver
In a web application, the View is one of the most important components. Developing this
component is not as easy as seems. It is very complicated to maintain, and a daunting task.
Whenever we create the view for a web application, we always focus on the reusability of
the view components. We can define some static templates that can be reused in other view
pages in the same web application. According to the Composite Design pattern of the GOF
pattern, we compose sub-view components for a particular view component. The
Composite View pattern promotes reusability of views, and is easy to maintain due to the
multiple sub-views instead of creating a large and complicated view. The following
diagram illustrates the Composite View pattern:

>

As you can see in the previous diagram, we can create multiple sub-views to create the view
in a web application, and these sub-views will be reused across the web application.

Spring MVC provides support for implementation of the Composite View pattern through
frameworks such as SiteMesh and Apache tiles. Here we will explore Apache Tiles with a
Spring MVC application. Let's see how to configure the Apache Tiles ViewResolver.

Implementing the MVC Pattern in a Web Application using Spring

[321]

Configuring a Tiles ViewResolver
Let's configure Apache Tiles in the Spring MVC application. In order to configure it, we
have to configure two beans in the Spring configuration file as follows:

 package com.packt.patterninspring.chapter10.bankapp.web.mvc;

 @Configuration
 @ComponentScan(basePackages =
{"com.packt.patterninspring.chapter10.bankapp.web.controller"})
 @EnableWebMvc
 public class SpringMvcConfig extends WebMvcConfigurerAdapter{

 @Bean
 public TilesConfigurer tilesConfigurer() {
 TilesConfigurer tiles = new TilesConfigurer();
 tiles.setDefinitions(new String[] {
 "/WEB-INF/layout/tiles.xml"
 });
 tiles.setCheckRefresh(true);
 return tiles;
 }
 @Bean
 public ViewResolver viewResolver() {
 return new TilesViewResolver();
 }
 ...
 }

In the preceding configuration file, we configured two beans, TilesConfigurer and the
TilesViewResolver bean. The first bean, TilesConfigurer, has the responsibility to
locate and load tile definitions, and, generally, coordinate Tiles. The second bean,
TilesViewResolver, is responsible for resolving logical view names to tile definitions.
The XML file tiles.xml has the tile definitions in the application. Let's see the following
code for the tiles configuration file:

 <tiles-definitions>
 <definition name="base.definition" template="/WEB-
INF/views/mainTemplate.jsp">
 <put-attribute name="title" value=""/>
 <put-attribute name="header" value="/WEB-INF/views/header.jsp"/>
 <put-attribute name="menu" value="/WEB-INF/views/menu.jsp"/>
 <put-attribute name="body" value=""/>
 <put-attribute name="footer" value="/WEB-INF/views/footer.jsp"/>
 </definition>
 <definition extends="base.definition" name="openAccountForm">
 <put-attribute name="title" value="Account Open Form"/>

Implementing the MVC Pattern in a Web Application using Spring

[322]

 <put-attribute name="body" value="/WEB-INF/views/accountForm.jsp"/>
 </definition>
 <definition extends="base.definition" name="accountsList">
 <put-attribute name="title" value="Employees List"/>
 <put-attribute name="body" value="/WEB-INF/views/accounts.jsp"/>
 </definition>
 ...
 ...
 </tiles-definitions>

In the preceding code, the <tiles-definitions> element has multiple <definition>
elements. Each <definition> element defines a tile, and each tile references a JSP
template. Some <definition> elements extend the base tile definition, because the base
tile definition has the common layout for all the views in the web application.

Let's see the base definition template, that is, mainTemplate.jsp:

 <%@ taglib uri="http://www.springframework.org/tags" prefix="s" %>
 <%@ taglib uri="http://tiles.apache.org/tags-tiles" prefix="t" %>
 <%@ page session="false" %>
 <html>
 <head>
 <title>
 <tiles:insertAttribute name="title" ignore="true"/>
 </title>
 </head>
 <body>
 <table border="1″ cellpadding="2″ cellspacing="2″ align="left">
 <tr>
 <td colspan="2″ align="center">
 <tiles:insertAttribute name="header"/>
 </td>
 </tr>
 <tr>
 <td>
 <tiles:insertAttribute name="menu"/>
 </td>
 <td>
 <tiles:insertAttribute name="body"/>
 </td>
 </tr>
 <tr>
 <td colspan="2″ align="center">
 <tiles:insertAttribute name="footer"/>
 </td>
 </tr>
 </table>

Implementing the MVC Pattern in a Web Application using Spring

[323]

 </body>
 </html>

In this preceding JSP file, I have used the <tiles:insertAttribute> JSP tag from the
tiles tag library to insert other templates.

Let's now see some best practices used to design and develop a web application.

Best practices for web application design
The following are some of the best practices that must be considered while designing and
developing a web application:

Spring MVC is the best choice to design and develop a web application because
of the Spring DI pattern and the very flexible MVC pattern with Spring. Spring's
DispatcherServlet, too, is very flexible and customizable.
In any web application using the MVC pattern, the front controller should be
generic and as lightweight as possible.
It is important to maintain a clear separation of concerns across the layers of the
web application. Separating layers improves the clean design of the application.
If an application layer has too many dependencies with the other layers, as a best
approach, introduce another layer to reduce the dependency of that layer.
Never inject a DAO object to the controllers in the web application; always inject
a services object to the controller. The DAO objects must be injected with the
service layers so that the service layer talks to the data access layer, and the
presentation layer talks to the service layer.
Application layers such service, DAO, and presentation layers must be pluggable,
and must not be bound with the implementation, that is, using interfaces reduces
the actual coupling to concrete implementations, as we know that loosely
coupled layered applications are easier to test and maintain.
It is strongly recommended to place JSP files in the WEB-INF directory, because
this location is not accessed by any client.
Always specify the name of the command object in the JSP file.
JSP files must not have any business logic and business processing. For such a
requirement, we strongly recommend the use of View helper classes such as tags,
libraries, JSTL, and so on.

Implementing the MVC Pattern in a Web Application using Spring

[324]

Remove the programming logic from template-based views like JSP.
Create reusable components that can be used to combine model data across
views.
Each component of the MVC pattern must have a consistent behavior for which
the MVC introduced it. This means that the controller should follow the Single
Responsibility Principle. Controllers are responsible only for delegating business
logic invocation and view selection.
Finally, be consistent with naming of the configuration files. For example, web
beans such as controllers, interceptors, and view resolvers must be defined in
separate configuration files. Other application beans such as services,
repositories, and so on must be defined into another, separate file. Similarly for
security concerns.

Summary
In this chapter, you've seen how the Spring Framework allows you to develop a flexible and
loosely coupled web-based application. Spring employs annotations for near-POJO
development model in your web application. You learned that with Spring MVC, you can
create a web-based application by developing controllers that handle requests, and these
controllers are very easy to test. In this chapter, we covered the MVC pattern, including its
origins and what problems it solves. The Spring Framework has implemented MVC
patterns, which means that for any web application, there are three components--Model,
View, and Controller.

Spring MVC implements the Application Controller and Front Controller patterns. Spring's
dispatcher servlet (org.springframework.web.servlet.DispatcherServlet) works
as a Front Controller in a web-based application. This dispatcher or front controller routes
all requests to the application controller by using handler mapping. In Spring MVC, the
controller classes have extremely flexible request handler methods. And these handler
methods handle all the requests of a web application. There several ways, as we explained
in this chapter, to handle request parameters. The @RequestParam annotation is one of the
ways to handle request parameters, and it is also very easy to test without using the http
request object in test cases.

Implementing the MVC Pattern in a Web Application using Spring

[325]

In this chapter, we explored the request processing workflow, and discussed all the
components which play a role in this workflow. The DispatcherServlet can be
considered the main component in Spring MVC; it plays the role of a front controller in
Spring MVC. Another main component is the view resolver, which has the responsibility to
render the model data to any view template such JSP, Thymeleaf, FreeMarker, velocity, pdf,
xml and so on depending om the configured view resolver in the web application. Spring
MVC provides support for several view technologies, but, in this chapter, we briefly looked
at how to write views for your controllers using JSPs. We can also add consistent layouts to
your views using Apache tiles.

And finally, we covered the web application architecture, and discussed the different layers
in a web application such as domain, user interface, web, service, and data access. We
created a small bank management web application, and deployed it to the tomcat server.

11
Implementing Reactive Design

Patterns
In this chapter, we will explore one of the most important features of the Spring 5
Framework, which is reactive pattern programming. The Spring 5 Framework introduced
this new feature with the Spring web reactive module. We will discuss this module in this
chapter. Before that, let's have a look at reactive patterns. What is the reactive pattern, and
why is it growing more popular nowadays? I will start my discussion on reactive pattern
with the following statement made by Satya Nadella, CEO, Microsoft Corporation:

Every business out there now is a software company, is a digital company.

The topics we will cover here are as follows:

Why reactive pattern?
The reactive pattern principles
Blocking calls
Non-blocking calls
Back-pressure
Implementing the reactive pattern using the Spring Framework
The Spring web reactive module

Implementing Reactive Design Patterns

[327]

Understanding application requirement over
the years
If you go back 10 to 15 years, there were very few internet users, and far less online portals
for end users compared to what we have today. Nowadays, we cannot think of a life
without a computer or without any online system. In short, we have become extremely
dependent on computers and online computing for personal as well as business use. Every
business model is moving towards digitalization. The Prime Minister of India, Mr.
Narendra Damodardas Modi has launched a Digital India campaign to ensure that the
Government's services are made available to citizens electronically by improved online
infrastructure, increasing internet connectivity, and by making the country digitally
empowered in the field of technology.

All this implies that the number of internet users is increasing dramatically. According to
the Ericsson Mobility Report,

The Internet of Things (IoT) is expected to surpass mobile phones as the largest category of
connected devices in 2018.

There has been a tremendous growth of mobile internet users, and there is no sign of that
slowing down anytime soon. In these sectors, by definition, the server side has to handle
millions of connected devices concurrently. The following table compares the infrastructure
and application requirements today with the requirement from 10 years back:

Requirements Now Ten years ago

Server nodes More than 1000 nodes required. Ten nodes were enough.

Response times Takes milliseconds to serve requests,
and send back responses.

Took seconds to response.

Maintenance
downtimes

Currently, there is no or zero
maintenance downtime required.

Took hours of maintenance
downtime.

Data volume Data for the current application that
increased to TBs from PBs.

Data was in GBs.

Implementing Reactive Design Patterns

[328]

You can see the differences in the requirement of resources in the preceding table. These
requirements have increased, because we now expect responses immediately, within the
second. At the same time, the complexity of tasks given to computers have also increased.
These tasks are not just pure computation in a mathematical sense, but also in requesting
the responses to be distilled from enormous amounts of data. So, now we have to focus the
performance of such systems by designing a single computer in the form of multi-core
CPUs, possibly, combined in multi-socket servers. The first thing on our minds is to make
the system responsive. It is the first of the reactive traits-responsiveness. We will explore
more of this in this chapter, along with the following topics:

Why reactive pattern
Reactive pattern principles
Blocking calls
Non-blocking calls
Back-pressure
Implementing reactive pattern using the Spring Framework
Spring Web reactive module
Implementing reactive at server side
Implementing reactive at client side
Request and response body type conversion

This chapter will teach you how to make a system responsive in the face of any variable
load, partial outages, program failure, and more. Nowadays, systems are distributed across
different nodes to efficiently serve requests.

Let's look at the aforementioned topics in detail.

Understanding the reactive pattern
Today, the modern applications must be more robust, more resilient, more flexible, and
better positioned to meet the requirements of the organizations, because, in the recent
couple of years, the requirements for applications have changed dramatically. As we have
seen in the last table, 10 to 15 years ago, a large application had 10 server nodes, the
response time taken to serve a request was in seconds, we required a couple of hours of
downtime for maintenance and deployment, and the data was in gigabytes. But today, an
application requires thousands of server nodes, because it is accessed by multiple channels
such as mobile devices. The server responses are expected within milliseconds, and the
downtime for deployment and maintenance is near to 0%. Data has been increased from
terabytes to petabytes.

Implementing Reactive Design Patterns

[329]

Ten-year old systems cannot fulfill the requirements of today's applications; we need a
system that can fulfill all user's requirements either at the application level or the system
level, which means we need a responsive system. Responsiveness is one of the properties of
the reactive pattern. We want a system that must be responsive, resilient, elastic, and
message-driven. We know these systems as reactive systems. These systems are more
flexible, loosely-coupled, and scalable.

A system must react to failure and stay available, that is, it should be resilient, and the
system must react to variable load conditions, and not be overloaded. The system should
react to events--event-driven or message-driven. If all these properties are associated with a
system, then it will be responsive, that is, if a system reacts to its users, it is responsive. To
create a reactive system, we must focus on the system level and application level. Let's see
first the all reactive traits.

The reactive pattern traits
The following are the principles of the Reactive pattern:

Responsive: This is the goal of each application today.
Resilient: This is required to make an application responsive.
Scalable: This is also required to make an application responsive; without
resilience and scalability, it is impossible to achieve responsiveness.
Message-driven: A message-driven architecture is the base of a scalable and
resilient application, and ultimately, it makes a system responsive. Message-
driven either based on the event-driven or actor-based programming model.

The preceding points mentioned are core principles of the reactive pattern. Let's explore
each principle of the reactive pattern in detail, and understand why all of them must be
applied together in order to make a reactive system with quality software for a modern
context application, which is able to handle millions of parallel requests in milliseconds
without any failure. Let's first understand these principles with the following diagram:

Implementing Reactive Design Patterns

[330]

As you can see in the preceding diagram, to make a system reactive, we need scalability and
resilience. To make a system scalable and resilient, we need an event-driven or message-
driven architecture of the application. Ultimately, these principles, scalability, resilience,
and event-driven architecture make a system responsive to the client. Let's see these
properties in detail.

Responsiveness
When we say that a system or an application is responsive, it means that the application or
system responds quickly to all users in a given time in all conditions, and that is in good
condition as well as bad. It ensures a consistent positive user experience.

Responsiveness is required for a system for usability and utility. A responsive system
means that up on system failure, either because of an external system or a spike in traffic,
the failures are detected quickly, and dealt with effectively in a short time without the users
knowing of the failure. An end user must be able to interact with the system by providing
rapid and consistent response times. A user must not face any failure during interaction
with the system, and it must deliver a consistent quality of service to the user. That
consistent behavior solves the failures and builds end-user confidence in the system.
Quickness and a positive user experience under various conditions make a system
responsive. It depends on the two other traits of a reactive application or system, that is,
resilience and scalability. Another trait, that is, event-driven or message-driven architecture,
provides the overall foundation for a responsive system. The following diagram illustrates a
responsive system:

Implementing Reactive Design Patterns

[331]

As you can see in the preceding diagram, a responsive system depends on resilient and
scalability of the system, and these depend on its event-driven architecture. Let's look at the
other traits of a reactive application.

Resilience
When we design and develop a system, we have consider all conditions--good and bad. If
we consider only the good conditions, then we tend to implement a system that may fail
after just a few days. A major application failure results in downtime and data loss and
damages your application's reputation in the market.

So, we have to focus on every condition to ensure the responsiveness of the application
under all conditions. Such a system or application is known as a resilient system.

Every system must be resilient to ensure responsiveness. If a system is not resilient, it will
be unresponsive after a failure. So, a system must be responsive in the face of failure as well.
In the whole system, failure can exist in any component of the application or system. So,
each component in the system must be isolated from each other so that at the time of failure
of a component, we can recover it without compromising the system as a whole. Recovery
of an individual component is achieved by replication. If a system is resilient, then it must
have replication, containment, isolation, and delegation. Take a look at the following
diagram, which illustrates the resilient traits of a reactive application or system:

Implementing Reactive Design Patterns

[332]

As you can see in the preceding diagram, resilience is achieved by replication, containment,
isolation, and delegation. Let's discuss these points in detail:

Replication: This ensures high-availability, where necessary, at the time of
component failure.
Isolation: This means that the failure of each component must be isolated, which
is achieved by decoupling the components as much as possible. Isolation is
needed for a system to self-heal. If your system has isolation in place, then you
can easily measure the performance of each component, and check the memory
and CPU usage. Moreover, the failure of one component won't impact the
responsiveness of the overall system or application.
Containment: The result of decoupling is containment of the failure. It helps
avoid failure in the system as a whole.
Delegation: After failure, the recovery of each component is delegated to another
component. It is possible only when our system is composable.

Modern applications not only depend on the internal infrastructure but are also integrated
with other web services via network protocols. So, our applications must be resilient at their
core in order to stay responsive under a variety of real-world in the opposite conditions.
Our applications must not only be resilient at the application level but also at the system
level.

Let's see another principle of the reactive pattern.

Scalable
Resiliency and scalability together make a system consistently responsive. A scalable
system or an elastic system can easily be upgraded under a varying workload. A reactive
system can be made scalable on demand by increasing and decreasing the resources
allocated to service these inputs. It supports multiple scaling algorithms by providing
relevant live performance for the scalability of the application. We can achieve scalability by
using cost-effective software and cheap commodity hardware (for example, the Cloud).

An application is scalable if it can be extended according to its usage, in the following ways:

scale-up: It makes use of parallelism in multi-core systems.
scale-out: It makes use of multi-server nodes. Location transparency and
resilience are important for this.

Implementing Reactive Design Patterns

[333]

Minimizing the shared mutable state is very important for scalability.

Elasticity and Scalability are both the same! Scalability is all about the
efficient use of resources already available, while elasticity is all about
adding new resources to your application on demand when the needs of
the system changed. So, eventually, the system can be made responsive
anyway--by either using the existing resources of the system or by adding
new resources to the system.

Let's see the final foundation of the resilient and scalability of the reactive pattern, that is,
message-driven architecture.

Message-driven architecture
A message-driven architecture is the base of a responsive application. A message-driven
application can be an event-driven and actor-based application. It can also be a combination
of both architectures--event-driven and actor-based architecture.

In event-driven architecture, events and event observers play the main role. Events happen,
but are not directed to a specific address; event listeners listen to these events, and take
actions. But in message-driven architecture, the messages have a proper direction to the
destination. Let's look at the following diagram that illustrates message-driven and event-
driven architectures:

Implementing Reactive Design Patterns

[334]

As you can see in the preceding diagram, in event-driven architecture, if an event happens,
then listeners listen to it. But in the message-driven one, one generated message
communication has an addressable recipient and a single purpose.

Asynchronous message-driven architecture acts as the foundation for a reactive system by
establishing limitations between the components. It ensures loose coupling, isolation, and
location transparency. Isolation between components fully depends on the loose coupling
between them. And isolations and loose coupling develop the base of resilience and
elasticity.

A large system has multiple components. These components either have smaller
applications, or they may have reactive properties. This means that the reactive design
principles have to apply at all levels of the scale to make a large system composable.

Traditionally, large systems are composed of multiple threads which communicate with a
shared synchronized state. It tends to have strong coupling and is hard to compose, and it
also tends to block stage. But, for now, all large systems are composed of loosely coupled
event handlers. And events can be handled asynchronously without blocking.

Let's look at the blocking and non-blocking programming models.

In very simple terms, reactive programming is all about non-blocking applications that are
asynchronous and event-driven, and require a small number of threads to scale vertically
rather than horizontally.

Blocking calls
In a system, a call may be holding the resources while other calls wait for the same
resources. These resources are released when the other one finishes using them.

Implementing Reactive Design Patterns

[335]

Let's come to the technical words--actually, blocking a call means some operations in the
application or system that take a longer time to complete, such as file I/O operations and
database access using blocking drives. The following is a diagram of blocking calls for the
JDBC operation in a system:

As you can see in the preceding diagram, the blocking operations, shown here in red, are
the ones where the user calls the servlet to fetch data, then that moves to the JDBC and DB
connection with the DB server. Until that time, the current thread waits for the result set
from the DB server. If the DB server has latency, then this wait time can increase. That
means that thread execution depends on the DB server latency.

Let's look at how to make this a non-blocking execution.

Non-blocking calls
Non-blocking execution of a program means that a thread competes for a resource without
waiting for it. A non-blocking API for the resources allows calling the resources without
waiting for the blocked call such as database access and network calls. If the resources are
not available at the time of calling, then it moves to other work rather than waiting for the
blocked resources. The system is notified when the blocked resources are available.

Implementing Reactive Design Patterns

[336]

Take a look at the following diagram that shows the JDBC connection to access data
without the blocking thread execution:

As you can see in the preceding diagram, thread execution does not wait for the result set
from the DB server. The thread makes the DB connection and SQL statement for the DB
server. If the DB server has latency in the response, then the thread moves on to do other
work rather than be blocked waiting for the resource to become available.

Back-pressure
A reactive application is never given up in overload conditions. Back-pressure is a key
aspect of a reactive application. It is a mechanism to ensure that the reactive application
doesn't overwhelm the consumers. It tests aspects for the reactive application. It tests the
system response gracefully under any load.

Implementing Reactive Design Patterns

[337]

The back-pressure mechanism ensures that the system is resilient under load. In a back-
pressure condition, the system makes itself scalable by applying other resources to help
distribute the load.

Until now, we have seen the reactive pattern principles; these are mandatory to make a
system responsive in the blue sky or grey sky. Let's see, in the upcoming section how Spring
5 implements reactive programming.

Implementing reactive with the Spring 5
Framework
The most highlighted feature of the latest version of the Spring Framework is the new
reactive stack web framework. Reactive is the update that takes us to the future. This area of
technology is gaining popularity with every passing day, which is the reason why Spring
Framework 5.0 has been launched with the capability of reactive programming. This
addition makes the latest version of the Spring Framework convenient for event-loop style
processing, which enables scaling with a small number of threads.

The Spring 5 Framework implements the reactive programming pattern by using the
reactor internally for its own reactive support. A reactor is a Reactive Stream
implementation that extends the basic Reactive Streams. Twitter has been implemented as a
reactive passed by using Reactive Streams.

Reactive Streams
Reactive Streams provide a protocol or rule for asynchronous stream processing with non-
blocking back-pressure. This standard is also adopted by Java 9 in the form of
java.util.concurrent.Flow. Reactive Streams is composed of four simple Java
interfaces. These interfaces are Publisher, Subscriber, Subscription, and Processor.
But the main goal of the Reactive Streams is handling the backpressure. As discussed
earlier, backpressure is a process that allows a receiver to ask about a data quantity from the
emitter.

You can use the following Maven dependency for adding Reactive Streams in your
application development:

 <dependency>
 <groupId>org.reactivestreams</groupId>
 <artifactId>reactive-streams</artifactId>
 <version>1.0.1</version>

Implementing Reactive Design Patterns

[338]

 </dependency>
 <dependency>
 <groupId>org.reactivestreams</groupId>
 <artifactId>reactive-streams-tck</artifactId>
 <version>1.0.1</version>
 </dependency>

The preceding Maven dependency code adds the required libraries for the Reactive Streams
in your application. In the upcoming section, we'll see how Spring implements Reactive
Streams in the web module of Spring and the Spring MVC Framework.

Spring Web reactive module
As of Spring 5.0 Framework, Spring has introduced a new module for reactive
programming--the spring-web-reactive module. It is based on Reactive Streams. Basically,
this module uses the Spring MVC module with reactive programming, so, you can still use
the Spring MVC module for your web application either separately or with the spring-web-
reactive module.

This new module in the Spring 5.0 Framework contains support for the Reactive-web-
functional- based programming model. It also supports the Annotation-based
programming model. The Spring-web-reactive module contains support for reactive HTTP
and WebSocket clients to call the reactive server application. It also enables the reactive web
client to make a connection with a reactive HTTP connection with a reactive web
application.

The following diagram shows a Spring-web-reactive module with its components that give
reactive behavior to the Spring web application:

Implementing Reactive Design Patterns

[339]

As you can see in the preceding diagram, there are two parallel modules--one for the
traditional Spring MVC framework, and the other for the Spring-reactive web modules. On
the left side in the diagram are the Spring-MVC-related components such as the @MVC
controllers, spring-web-mvc module, Servlet API module, and Servlet Container. On the
right side in the diagram are the spring-web-reactive related components such as the Router
Functions, spring-web-reactive module, HTTP/Reactive Streams, Reactive version of
Tomcat, and so on. Spring-web-reactive related components such as the Router Functions,
spring-web-reactive module, HTTP/Reactive Streams, Reactive version of Tomcat, and so
on.

In the preceding diagram, you must focus on the placement of the modules. Each module
on the same level has comparisons between the traditional Spring MVC and Spring-web-
reactive modules. These comparisons are given as follows:

In the Spring web reactive modules, the Router functions are similar to the
@MVC controllers in the Spring MVC modules such as the @Controller,
@RestController, and @RequestMapping annotations.
The Spring-web-reactive module is parallel to the Spring-web-MVC modules.
In the traditional Spring MVC Framework, we use the Servlet API for the
HttpServletRequest and HttpServletResponse in the servlet container. But
in the Spring-web-reactive framework, we use HTTP/Reactive Streams, which
creates HttpServerRequest and HttpServerResponse under the reactive
support of the tomcat server.
We can user Servlet Container for the traditional Spring MVC Framework, but a
reactive-supported server is required for the Spring-web-reactive application.
Spring provides support for Tomcat, Jetty, Netty, and Undertow.

In Chapter 10, Implementing MVC Pattern in a Web Application using Spring, you learned how
to implement a web application using the Spring MVC module. Let's now see how to
implement a reactive web application by using the Spring web reactive module.

Implementing Reactive Design Patterns

[340]

Implementing a reactive web application at the
server side
Spring reactive web modules support both programming models--Annotation-based or the
Functional-based programming model. Let's see how these models work on the server side:

Annotations-based programming model: It is based on MVC annotations such
as @Controller, @RestController, @RequestMapping, and many more.
Annotations are supported by the Spring MVC framework for server-side
programming for a web application.
Functional programming model: It is a new paradigm of programming
supported by the Spring 5 Framework. It is based on the Java 8 Lambda style
routing and handling. Scala also provides the functional programming paradigm.

The following are the Maven dependencies that we have to add for a reactive web
application based on Spring Boot:

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.0.M3</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-
 8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF
 -8</project.reporting.outputEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>io.projectreactor</groupId>

Implementing Reactive Design Patterns

[341]

 <artifactId>reactor-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

As you can see in the preceding Maven configuration file for dependencies, we have added
the spring-boot-starter-webflux and reactor-test dependencies to the application.

Let's create a reactive web application based on the Annotation-based programming model.

The Annotation-based programming model
You can use the same annotations that you have used in Chapter 10, Implementing MVC
pattern in a Web Application with Spring. Annotations such as @Controller and
@RestController of Spring MVC are also supported on the reactive side. There is no
difference till now between the traditional Spring MVC and Spring web with reactive
module. The actual difference starts after the @Controller annotation configuration
declaration, that is, when we go to the internal working of the Spring MVC, starting with
HandlerMapping and HandlerAdapter.

The main difference between the traditional Spring MVC and Spring web reactive comes
into play in the request-handling mechanism. Spring MVC without reactive handles the
requests using the blocking HttpServletRequest and the HttpServletResponse
interfaces of the Servlet API, but the Spring web reactive framework is non-blocking, and
operates on the reactive ServerHttpRequest and ServerHttpResponse rather than on
HttpServletRequest and HttpServletResponse.

Let's see the following example with a reactive controller:

 package com.packt.patterninspring.chapter11.
 reactivewebapp.controller;

 import org.reactivestreams.Publisher;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.web.bind.annotation.GetMapping;
 import org.springframework.web.bind.annotation.PathVariable;
 import org.springframework.web.bind.annotation.PostMapping;
 import org.springframework.web.bind.annotation.RequestBody;
 import org.springframework.web.bind.annotation.RestController;

 import com.packt.patterninspring.chapter11.
 reactivewebapp.model.Account;
 import com.packt.patterninspring.chapter11.
 reactivewebapp.repository.AccountRepository;

Implementing Reactive Design Patterns

[342]

 import reactor.core.publisher.Flux;
 import reactor.core.publisher.Mono;

 @RestController
 public class AccountController {
 @Autowired
 private AccountRepository repository;
 @GetMapping(value = "/account")
 public Flux<Account> findAll() {
 return repository.findAll().map(a -> new
 Account(a.getId(), a.getName(),
 a.getBalance(), a.getBranch()));
 }
 @GetMapping(value = "/account/{id}")
 public Mono<Account> findById(@PathVariable("id") Long id) {
 return repository.findById(id)
 .map(a -> new Account(a.getId(), a.getName(), a.getBalance(),
 a.getBranch()));
 }
 @PostMapping("/account")
 public Mono<Account> create(@RequestBody
 Publisher<Account> accountStream) {
 return repository
 .save(Mono.from(accountStream)
 .map(a -> new Account(a.getId(), a.getName(), a.getBalance(),
 a.getBranch())))
 .map(a -> new Account(a.getId(), a.getName(), a.getBalance(),
 a.getBranch()));
 }
 }

As you can see in the preceding Controller code of AccountController.java, I have used
the same Spring MVC annotations such as @RestController to declare a controller class,
and @GetMapping and @PostMapping are used to create the request handler methods for
the GET and POST request methods respectively.

Let's focus on the return types of the handler methods. These methods return values as
Mono and Flux types. These are types of the reactive steams provided by the reactor
framework. Also, the handler method takes the request body using the Publisher type.

Reactor is a Java Framework from the Pivotal open-source team. It builds directly on
Reactive Streams, so there is no need for a bridge. The Reactor IO project provides wrappers
around low-level network runtimes like Netty and Aeron. Reactor is a "4th Generation"
library according to David Karnok's Generations of Reactive classification.

Implementing Reactive Design Patterns

[343]

Let's look at the same controller class using the functional programming model to handle
requests.

The functional programming model
The functional programming model uses the API that has functional interfaces such as
RouterFunction and HandlerFunction. It uses Java 8 Lambda style programming with
routing and request handling instead of the Spring MVC annotations. They are simple, but
powerful, building blocks for creating web applications.

The following is an example of functional request handling:

 package com.packt.patterninspring.chapter11.web.reactive.function;

 import static org.springframework.http.MediaType.APPLICATION_JSON;
 import static org.springframework.web.reactive.
 function.BodyInserters.fromObject;

 import org.springframework.web.reactive.
 function.server.ServerRequest;
 import org.springframework.web.reactive.
 function.server.ServerResponse;

 import com.packt.patterninspring.chapter11.
 web.reactive.model.Account;
 import com.packt.patterninspring.chapter11.
 web.reactive.repository.AccountRepository;

 import reactor.core.publisher.Flux;
 import reactor.core.publisher.Mono;

 public class AccountHandler {

 private final AccountRepository repository;

 public AccountHandler(AccountRepository repository) {
 this.repository = repository;
 }

 public Mono<ServerResponse> findById(ServerRequest request) {
 Long accountId = Long.valueOf(request.pathVariable("id"));
 Mono<ServerResponse> notFound =
 ServerResponse.notFound().build();
 Mono<Account> accountMono =
 this.repository.findById(accountId);
 return accountMono

Implementing Reactive Design Patterns

[344]

 .flatMap(account -> ServerResponse.ok().contentType
 (APPLICATION_JSON).body(
 fromObject(account)))
 .switchIfEmpty(notFound);
 }
 public Mono<ServerResponse> findAll(ServerRequest request) {
 Flux<Account> accounts = this.repository.findAll();
 return ServerResponse.ok().contentType
 (APPLICATION_JSON).body(accounts,
 Account.class);
 }
 public Mono<ServerResponse> create(ServerRequest request) {
 Mono<Account> account = request.bodyToMono(Account.class);
 return ServerResponse.ok().build(this.
 repository.save(account));
 }
 }

In the preceding code, the class file, AccountHandler.java, is based on the functional
reactive programming model. Here, I have used the reactor framework to handle the
request. Two functional interfaces, ServerRequest and ServerResponse, are used to
handle requests and to generate responses.

Let's see the Repositories classes of this application. The following AccountRepository
and AccountRepositoryImpl classes are the same for both type of applications-
Annotation-based and the functional-based programming model.

Let's create an interface AccountRepository.java class as follows:

 package com.packt.patterninspring.chapter11.
 reactivewebapp.repository;
 import com.packt.patterninspring.chapter11.
 reactivewebapp.model.Account;

 import reactor.core.publisher.Flux;
 import reactor.core.publisher.Mono;

 public interface AccountRepository {
 Mono<Account> findById(Long id);
 Flux<Account> findAll();
 Mono<Void> save(Mono<Account> account);
 }

Implementing Reactive Design Patterns

[345]

The preceding code is an interface, let's implements this interface with the
AccountRepositoryImpl.java class as following:

 package com.packt.patterninspring.chapter11.
 web.reactive.repository;

 import java.util.Map;
 import java.util.concurrent.ConcurrentHashMap;

 import org.springframework.stereotype.Repository;

 import com.packt.patterninspring.chapter11.web.
 reactive.model.Account;

 import reactor.core.publisher.Flux;
 import reactor.core.publisher.Mono;

 @Repository
 public class AccountRepositoryImpl implements AccountRepository {
 private final Map<Long, Account> accountMap = new
 ConcurrentHashMap<>();
 public AccountRepositoryImpl() {
 this.accountMap.put(1000l, new Account(1000l,
 "Dinesh Rajput", 50000l,
 "Sector-1"));
 this.accountMap.put(2000l, new Account(2000l,
 "Anamika Rajput", 60000l,
 "Sector-2"));
 this.accountMap.put(3000l, new Account(3000l,
 "Arnav Rajput", 70000l,
 "Sector-3"));
 this.accountMap.put(4000l, new Account(4000l,
 "Adesh Rajput", 80000l,
 "Sector-4"));
 }
 @Override
 public Mono<Account> findById(Long id) {
 return Mono.justOrEmpty(this.accountMap.get(id));
 }

 @Override
 public Flux<Account> findAll() {
 return Flux.fromIterable(this.accountMap.values());
 }

 @Override
 public Mono<Void> save(Mono<Account> account) {
 return account.doOnNext(a -> {

Implementing Reactive Design Patterns

[346]

 accountMap.put(a.getId(), a);
 System.out.format("Saved %s with id %d%n", a, a.getId());
 }).thenEmpty(Mono.empty());
 // return accountMono;
 }
 }

As you can see in the preceding code, we created the AccountRepository class. This class
has only three methods: findById(), findAll(), and save(). We implemented these
methods according to the business requirements. In this repository class, I have, especially,
used the Flux and Mono react types to make it a reactive-based application.

Let's create the server for the functional-based programming model. In Annotation-based
programming, we use the simple tomcat container to deploy the web application. But for
this functional-based programming, we have to create a Server class to start the Tomcat
server or Reactor server, as follows:

 package com.packt.patterninspring.chapter11.web.reactive.function;

 //Imports here

 public class Server {

 public static final String HOST = "localhost";
 public static final int TOMCAT_PORT = 8080;
 public static final int REACTOR_PORT = 8181;
 //main method here, download code for GITHUB
 public RouterFunction<ServerResponse> routingFunction() {
 AccountRepository repository = new AccountRepositoryImpl();
 AccountHandler handler = new AccountHandler(repository);

 return nest(path("/account"), nest(accept(APPLICATION_JSON),
 route(GET("/{id}"), handler::findById)
 .andRoute(method(HttpMethod.GET), handler::findAll)
).andRoute(POST("/").and(contentType
 (APPLICATION_JSON)), handler::create));
 }

 public void startReactorServer() throws InterruptedException {
 RouterFunction<ServerResponse> route = routingFunction();
 HttpHandler httpHandler = toHttpHandler(route);

 ReactorHttpHandlerAdapter adapter = new
 ReactorHttpHandlerAdapter(httpHandler);
 HttpServer server = HttpServer.create(HOST, REACTOR_PORT);
 server.newHandler(adapter).block();
 }

Implementing Reactive Design Patterns

[347]

 public void startTomcatServer() throws LifecycleException {
 RouterFunction<?> route = routingFunction();
 HttpHandler httpHandler = toHttpHandler(route);

 Tomcat tomcatServer = new Tomcat();
 tomcatServer.setHostname(HOST);
 tomcatServer.setPort(TOMCAT_PORT);
 Context rootContext = tomcatServer.addContext("",
 System.getProperty("java.io.tmpdir"));
 ServletHttpHandlerAdapter servlet = new
 ServletHttpHandlerAdapter(httpHandler);
 Tomcat.addServlet(rootContext, "httpHandlerServlet", servlet);
 rootContext.addServletMapping("/", "httpHandlerServlet");
 tomcatServer.start();
 }
 }

As you can see in the preceding Server.java class file, I have added both, the Tomcat and
Reactor servers. The Tomcat server uses port 8080, but the Reactor server uses the port
8181.

This Server.java class has three methods. The first method, routingFunction(), is
responsible for handling client requests by using the AccountHandler class. It depends on
the AccountRepository class. The second method, startReactorServer(), is
responsible for starting the Reactor server by using the ReactorHttpHandlerAdapter
class of the reactor server. This class takes an object of the HttpHandler class as a
constructor argument to create the request handler mapping. Similarly, the third method,
startTomcatServer(), is responsible for starting the Tomcat server. And it is bound to
the HttpHandler object through a reactor adapter class, ServletHttpHandlerAdapter.

You can run this server class file as a Java application, and see the output on the browser by
typing the URL, http://localhost:8080/account/:

Implementing Reactive Design Patterns

[348]

You can also type the same URL with port 8181 for the Reactor server, as follows, and you
will get the same output:

http://localhost:8181/account/

In this section, you learned how to create a reactive web application using the Spring-web-
reactive module. We created the web application by using both the programming
paradigms: Annotation-based and Functional-based.

Implementing Reactive Design Patterns

[349]

In the next section, we'll discuss client-side code, and how a client accesses the reactive web
application.

Implementing a Reactive Client-Side application
The Spring 5 Framework introduces a functional and reactive WebClient. It is a fully non-
blocking and reactive web client, and an alternative to RestTemplate. It creates the
network input and output in the form of reactive ClientHttpRequest and
ClientHttpRespones. It creates the body of the request and response in the form of
Flux<DataBuffer> instead of InputStream and OutputStream.

Let's see the code for the web client, which creates a Client.java class:

 package com.packt.patterninspring.chapter11.web.reactive.function;

 //Imports here

 public class Client {

 private ExchangeFunction exchange = ExchangeFunctions.create(new
 ReactorClientHttpConnector());

 public void findAllAccounts() {
 URI uri = URI.create(String.format("http://%s:%d/account",
 Server.HOST,
 Server.TOMCAT_PORT));
 ClientRequest request = ClientRequest.method(HttpMethod.GET,
 uri).build();

 Flux<Account> account = exchange.exchange(request)
 .flatMapMany(response -> response.bodyToFlux(Account.class));

 Mono<List<Account>> accountList = account.collectList();
 System.out.println(accountList.block());
 }

 public void createAccount() {
 URI uri = URI.create(String.format("http://%s:%d/account",
 Server.HOST,
 Server.TOMCAT_PORT));
 Account jack = new Account(5000l, "Arnav Rajput", 500000l,
 "Sector-5");

 ClientRequest request = ClientRequest.method(HttpMethod.POST,
 uri)

Implementing Reactive Design Patterns

[350]

 .body(BodyInserters.fromObject(jack)).build();

 Mono<ClientResponse> response = exchange.exchange(request);

 System.out.println(response.block().statusCode());
 }
 }

The preceding class, Client.java, is a web client class for Server.java. It has two
methods. The first method is findAllAccounts(). It fetches all accounts from the account
repository. It uses the org.springframework.web.reactive.function.client. The
ClientRequest interface to create a request to the http://localhost:8080/account/
URI with the GET http method. By using the
org.springframework.web.reactive.function.client. The ExchangeFunction interface, it
calls the server, and fetches the result as the JSON format. Similarly, the other method,
createAccount(), creates a new account in the server by using the URI with the POST
method http://localhost:8080/account/.

Let's run the Client class as a Java application and see the output on the console, which is as
follows:

It creates a new record and fetch all five record in the form of JSON list.

The AsyncRestTemplate also supports non-blocking interactions. The
main difference is that it can't support non-blocking streaming, for
example, Twitter one, because, fundamentally, it's still based and relies on
InputStream and OutputStream.

In the next section, we'll talk about the request and response body parameters in a reactive
web application.

http://localhost/%5C/Users%5C/Dinesh.Rajput%5C/.m2%5C/repository%5C/org%5C/springframework%5C/spring-webflux%5C/5.0.0.RC1%5C/spring-webflux-5.0.0.RC1.jar%3Corg
http://localhost/%5C/Users%5C/Dinesh.Rajput%5C/.m2%5C/repository%5C/org%5C/springframework%5C/spring-webflux%5C/5.0.0.RC1%5C/spring-webflux-5.0.0.RC1.jar%3Corg.springframework
http://localhost/%5C/Users%5C/Dinesh.Rajput%5C/.m2%5C/repository%5C/org%5C/springframework%5C/spring-webflux%5C/5.0.0.RC1%5C/spring-webflux-5.0.0.RC1.jar%3Corg.springframework.web
http://localhost/%5C/Users%5C/Dinesh.Rajput%5C/.m2%5C/repository%5C/org%5C/springframework%5C/spring-webflux%5C/5.0.0.RC1%5C/spring-webflux-5.0.0.RC1.jar%3Corg.springframework.web.reactive
http://localhost/%5C/Users%5C/Dinesh.Rajput%5C/.m2%5C/repository%5C/org%5C/springframework%5C/spring-webflux%5C/5.0.0.RC1%5C/spring-webflux-5.0.0.RC1.jar%3Corg.springframework.web.reactive.function
http://localhost/%5C/Users%5C/Dinesh.Rajput%5C/.m2%5C/repository%5C/org%5C/springframework%5C/spring-webflux%5C/5.0.0.RC1%5C/spring-webflux-5.0.0.RC1.jar%3Corg.springframework.web.reactive.function.client
http://localhost/%5C/Users%5C/Dinesh.Rajput%5C/.m2%5C/repository%5C/org%5C/springframework%5C/spring-webflux%5C/5.0.0.RC1%5C/spring-webflux-5.0.0.RC1.jar%3Corg
http://localhost/%5C/Users%5C/Dinesh.Rajput%5C/.m2%5C/repository%5C/org%5C/springframework%5C/spring-webflux%5C/5.0.0.RC1%5C/spring-webflux-5.0.0.RC1.jar%3Corg.springframework
http://localhost/%5C/Users%5C/Dinesh.Rajput%5C/.m2%5C/repository%5C/org%5C/springframework%5C/spring-webflux%5C/5.0.0.RC1%5C/spring-webflux-5.0.0.RC1.jar%3Corg.springframework.web
http://localhost/%5C/Users%5C/Dinesh.Rajput%5C/.m2%5C/repository%5C/org%5C/springframework%5C/spring-webflux%5C/5.0.0.RC1%5C/spring-webflux-5.0.0.RC1.jar%3Corg.springframework.web.reactive
http://localhost/%5C/Users%5C/Dinesh.Rajput%5C/.m2%5C/repository%5C/org%5C/springframework%5C/spring-webflux%5C/5.0.0.RC1%5C/spring-webflux-5.0.0.RC1.jar%3Corg.springframework.web.reactive.function
http://localhost/%5C/Users%5C/Dinesh.Rajput%5C/.m2%5C/repository%5C/org%5C/springframework%5C/spring-webflux%5C/5.0.0.RC1%5C/spring-webflux-5.0.0.RC1.jar%3Corg.springframework.web.reactive.function.client

Implementing Reactive Design Patterns

[351]

Request and response body conversion
In Chapter 10, Implementing MVC Pattern in a Web Application with Spring, we discussed
message conversion for the request body and response body either from Java to JSON, or
from JSON to Java object, and many more. Similarly, conversion is also required in the case
of a Reactive web application, . The spring core module provides reactive Encoder and
Decoder to enable the serialization of a Flux of bytes to and from the typed objects.

Let's see the following example for request body type conversions. Developers do not need
to forcefully do type conversion--the Spring Framework automatically converts it for you in
both types of approaches: Annotation-based programming, and functional-based
programming.

Account account: This means that the account object is deserialized before the
controller is called without blocking.
Mono<Account> account: This means that AccountController can use the
Mono to declare logic. The account object is first deserialized, and then this logic
is executed.
Flux<Account> accounts: This means that AccountController can use Flux in
case of the input streaming scenario.
Single<Account> account: This is very similar to the Mono, but here the
Controller uses RxJava.
Observable<Account> accounts: This is also very similar to Flux, but in this case,
the Controller uses input streaming with RxJava.

In the preceding list, you saw the Spring Framework for type conversion in the reactive
programing model. Let's see the following return types in the example for the response
body:

Account: This serializes without blocking the given Account; implies a
synchronous, non-blocking controller method.
void: This is specific to the annotation-based programming model. Request
handling completes when the method returns; this implies a synchronous, non-
blocking controller method.
Mono<Account>: This serializes without blocking the given Account when the
Mono completes.
Mono<Void>: This implies that request handling completes when the Mono
completes.

Implementing Reactive Design Patterns

[352]

Flux<Account>: This is used in the streaming scenario, possibly, the SSE depends
on the requested content type.
Flux<ServerSentEvent>: This enables SSE streaming.
Single<Account>: The same, but uses RxJava.
Observable<Account>: The same, but uses the RxJava Observable type.
Flowable<Account>: The same, but uses the RxJava 2 Flowable type.

In the preceding list, you have seen the return types of the handler methods. The Spring
Framework does type conversions in the reactive programing model.

Summary
In this chapter, you learned about the Reactive pattern and its principles. It is not a new
innovation in programming--it is a very old concept, but it very fits in very well with the
demands of modern applications.

Reactive programming has four principles: responsiveness, resilience, elasticity, and
message-driven architecture. Responsiveness means a system must be responsive in all
conditions: odd conditions and even conditions.

The Spring 5 Framework provides support for the reactive programming model by using
the Reactor framework and reactive stream. Spring has introduced new a reactive web
module, that is, spring-web-reactive. It provides the reactive programming approach to a
web application by either using Spring MVC's annotations, such as @Controller,
@RestController, and @RequestMapping, or by using the functional programming
approach using the Java 8 Lambda expression.

In this chapter, we created a web application by using the spring web reactive modules. The
code for this application is available on GitHub. In the next chapter, you will learn about
implementation of concurrency patterns.

12
Implementing Concurrency

Patterns
In Chapter 11, Implementing Reactive Design Patterns, we discussed the Reactive Design
Pattern and how it fulfills the requirements of today's applications. Spring 5 Framework has
introduced the Reactive Web Application Modules for the web application. In this chapter,
we will explore some of the Concurrency Design Patterns and how these patterns solve the
common problems of the multithreaded application. Spring 5 Framework's reactive
modules also provide the solution for the multithreaded application.

If you are a software engineer or are in the process of becoming one, you must be aware of
the term concurrency. In geometric properties, concurrent circles or shapes are those shapes
that have a common center point. These shapes can differ in dimensions but have a
common center or midpoint.

The concept is similar in terms of software programming as well. The term concurrent
programming in the technical or programming means the ability of a program to carry out
multiple computations in parallel and also the capability of a program to handle multiple
external activities taking place in a single time interval.

As we are talking in terms of software engineering and programming, concurrency patterns
are those design patterns that help in dealing with multi-threaded programming models.
Some of the concurrency patterns are as follows:

Handling concurrency with concurrency patterns
Active object pattern
Monitor object pattern
Half-Sync/Half-Async patterns
Leader/followers pattern

Implementing Concurrency Patterns

[354]

Thread-specific storage
Reactor pattern
Best practices for concurrency module

Let's now explore each of these five concurrency design patterns in depth.

Active object pattern
The active object type of concurrency design pattern differentiates/distinguishes the method
execution from the method invocation. The job of this pattern is the enhancement of
concurrency along with simplification in the synchronized access to objects that reside in
separate and distinguishable threads of control. It is used for dealing with the multiple
client requests that arrive all at once, and also for improving the quality of the service. Let's
see the following diagrams, which illustrates the active object design pattern in the
concurrency and multithread-based application:

Implementing Concurrency Patterns

[355]

As you can see in the preceding diagram, the following components of this concurrency
design pattern:

Proxy: This is the active object that is visible to the client. The proxy advertises its
interface.
Servant: There is a method that is defined in the interface of the proxy. The
servant is the provider of its implementation.
Activation list: This is a serialized list that contains method request objects that
the proxy inserts. This list allows the servant to run concurrently.

So, how does this design pattern work? Well, the answer to this is that every concurrent
object belongs to or resides in a separate thread of control. This is also independent of the
thread of control of the client. This invokes one of its methods, which means that both the
method execution and method invocation take place in separate threads of control.
However, the client sees this process as an ordinary method. In order for the proxy to pass
the requests of the client to the servant at runtime, both must be run in separate threads.

In this design pattern, what the proxy does after receiving a request is that it sets up a
method request object and inserts it in an activation list. This method carries out two jobs;
holds the method request objects and keeps track of on which method request it can
execute. Request parameters and any other information are contained in the method request
object for executing the desired method later. This activation list in return helps the proxy
and the servant to run concurrently.

Let's see another concurrency design pattern in the upcoming section, which is the monitor
object pattern.

Monitor object pattern
The monitor object pattern is another concurrency design pattern that helps in the execution
of multi-threaded programs. It is a design pattern implemented to make sure that at a single
time interval, only one method runs in a single object, and for this purpose, it synchronizes
concurrent method execution.

Unlike the active object design pattern, the monitor object pattern does not have a separate
thread of control. Every request received is executed in the thread of control of the client
itself, and until the time the method returns, the access is blocked. At a single time interval,
a single synchronized method can be executed in one monitor.

Implementing Concurrency Patterns

[356]

The following solutions are offered by the monitor object pattern:

The synchronization boundaries are defined by the interface of the object, and it
also makes sure that a single method is active in a single object.
It must be ensured that all the objects keep a check on every method that needs
synchronization and serialize them transparently without letting the client know.
Operations, on the other hand, are mutually exclusive, but they are invoked like
ordinary method calls. Wait and signal primitives are used for the realization of
condition synchronization.
To prevent the deadlock and use the concurrency mechanisms available, other
clients must be allowed to access the object when the method of the object blocks
during execution.
The invariants must always hold when the thread of control is interrupted
voluntarily by the method.

Let's see the following diagram, which illustrates more about the monitor object design
pattern in the concurrency application:

In this preceding diagram, the client object calls the monitor object that has several
synchronized methods and the monitor object associated with the monitor conditions and
monitor locks. Let's explore each component of this concurrency design pattern as follows:

Monitor object: This component exposes the methods that are synchronized to
the clients
Synchronized methods: The thread-safe functions that are exported by the
interface of the object are implemented by these methods
Monitor conditions: This component along with the monitor lock decides
whether the synchronized method should resume its processing or suspend it

Implementing Concurrency Patterns

[357]

The active object and the monitor object patterns are the branches of design patterns of
concurrency.

Now, the other type of concurrency patterns that we will discuss are the branches of
architectural patterns for concurrency.

Half-Sync/Half-Async patterns
The job of Half-Sync and Half-Async is to distinguish between the two types of processing
called asynchronous and synchronous, for the simplification of the program without
hindering its performance.

The two layers intercommunicating are introduced for both asynchronous and synchronous
services for the purpose of processing with a queuing layer in between.

Every concurrent system contains both asynchronous and synchronous services. To enable
these services to communicate with each other, the Half-Sync/Half-Async pattern
decomposes the services in the system into layers. Using the queuing layer, both these
services pass messages to each other for intercommunication.

Let's see the following diagram that illustrates these design patterns:

As you can see in the preceding diagram, there are three layers--Synchronous Service
Layer, Queuing Layer, and Asynchronous Service Layer. Synchronous layer contains the
services that are working synchronously to the queue at the Queuing Layer, and this query
performs asynchronously using Asynchronous services at the Asynchronous Service Layer.
These Asynchronous Services at this layer are using the external event-based resources.

Implementing Concurrency Patterns

[358]

As you can see in the preceding diagram, there are three layers included here. Let's look at
these layers:

Synchronous Task Layer: The tasks in this layer are active objects. High-level
input and output operations are carried by these tasks, which transfer the data
synchronously towards the queuing layer.
Queuing Layer: This layer provides the synchronization and buffering required
between the synchronous and asynchronous task layers.
Asynchronous Task Layer: The events from the external sources are handled by
the tasks present in this layer. These tasks do not contain a separate thread of
control.

We have discussed the Half-Sync and Half-Async design patterns of the concurrency
pattern. Let's move to another concurrency pattern, that is, the leader/follower Pattern.

Leader/follower pattern
Detection, demultiplexing, dispatching, and processing of service requests in the event
sources is carried out in an efficient way in a concurrency model, in which many multiple
threads process one by one to use the set on event sources. Another replacement for the
Half-Sync/Half-Async is the leader/follower pattern. This pattern can be used instead of the
Half-Sync/Half-Async and active object patterns for improvement in the performance. The
condition of using this is that there must be neither ordering nor synchronization
constraints while processing multiple threads of requests:

Implementing Concurrency Patterns

[359]

The focused job of this pattern is to process multiple events concurrently or simultaneously.
Due to concurrency-related overheads, it might not be possible to connect a separate thread
with each single socket handle. The highlighted feature of this design is that by using this
pattern, demultiplexing the associations between threads and event source becomes
possible. When the events arrive on the event sources, this pattern builds up a pool of
threads. This is done to share a set of event sources efficiently. These event sources
demultiplex the arriving events turn by turn. Also, the events are synchronously dispatched
to application services for processing. Out of the pool of threads structured by the
leader/follower pattern, only a single thread waits for the occurrence of the event; other
threads queue up waiting. A follower is promoted as the leader when a thread detects an
event. It then processes the thread and dispatches the event to the application handler.

In this type of pattern, processing threads can be run concurrently, but only one thread is
allowed to wait for the upcoming new events.

Let's see another concurrency-based design pattern in the upcoming section.

Reactor pattern
The reactor pattern is used to handle service requests that are received concurrently by a
service handler from a single or multiple input sources. The received service requests are
then demultiplexed by the service handler and dispatched to the associated request
handlers. All the reactor systems are commonly found in single threads, but they are also
said to exist in a multi-threaded environment.

The key benefit of using this pattern is that the application components can be divided into
multiple parts such as modular or reusable. Furthermore, this allows simple coarse-grain
concurrency without the additional complexity of multiple threads to the system.

Implementing Concurrency Patterns

[360]

Let's see the following diagram about the reactor design pattern:

As you can see in the preceding diagram, the dispatcher uses the demultiplexer to notify
handler and the handler performs the actual work to be done with an I/O event. A reactor
responds to I/O events by dispatching the appropriate handler. Handlers perform non-
blocking actions. The preceding diagram has the following components of this design
pattern:

Resources: These are the resources through which input is provided or output is
consumed.
Synchronous event demultiplexer: This blocks all resources via an event loop.
When there is a possibility that a synchronous operation will start, the resource is
sent to the dispatcher through the demultiplexer without blocking.
Dispatcher: The registering or unregistering of request handler is handled by this
component. Resources are dispatched to the respective request handler through
the dispatcher.
Request Handler: This handles the request dispatched by the dispatcher.

Now, we are moving on to our next and the last concurrency pattern that is the thread-
specific storage pattern.

Implementing Concurrency Patterns

[361]

Thread-specific storage pattern
A single logical global access point can be used to retrieve an object local to the thread. This
concurrency design pattern allows multiple threads to carry this function out. This is done
without incurring locking overhead on each access to the object. Sometimes, this particular
pattern can be viewed as an antithesis among all the concurrency design patterns. This is
due to the fact that several complexities are addressed by the thread-specific storage by
prevention of sharing of the available resources among the threads.

The method appears to be invoked on an ordinary object by the application thread.
Actually, it is invoked on a thread-specific object. A single thread-specific object proxy can
be used by multiple application threads for accessing the unique thread-specific objects
associated to each of them. The proxy to distinguish between the thread-specific object it
encapsulates uses the application thread identifier.

Best practices for concurrency module
Here is a list of considerations that a programmer must look into when carrying out
concurrency. Let's look at the following best practices to consider when you to get a chance
to work with the concurrent application module.

Obtaining an executor: The Executor Framework for obtaining an executor
supplies the executors utility class. Various types of executors offer specific
thread executions policies. Here are three examples:

ExecutorService newCachedThreadPool(): This creates a thread
pool using the previously constructed threads if available. The
performance of the programs that make use of the short-lived
asynchronous tasks is enhanced using this type of thread pool.
ExecutorService newSingleThreadExecutor(): A worker thread
that is operating in an unbounded queue is used here to create an
executor. In this type, the tasks are added to the queue that is then
executed one by one. In case, this thread fails during the execution,
a new thread will be created and replace the failed thread so that
the tasks can be executed without interruption.

Implementing Concurrency Patterns

[362]

ExecutorService newFixedThreadPool(int nThreads): A fixed
number of threads that are operating in a shared unbounded queue
are reused in this case for the creation of a thread pool. At threads,
the tasks are being actively processed. While all the threads in the
pool are active and new tasks are submitted, the tasks will be
added in the queue until a thread becomes available for the
processing of the new task. If before the shutdown of the executor,
the thread fails, a new thread will be created for carrying out the
execution of the task. Note that these thread pools exist only when
the executor is active or on.

Use of cooperative synchronized constructs: It is recommended to use
cooperative synchronized constructs when possible.
No unnecessary lengthy tasks and oversubscription: Lengthy tasks are known
to cause deadlock, starvation, and even prevent other tasks from functioning
properly. Larger tasks can be broken down into smaller tasks for proper
performance. Oversubscription is also a way to avoid the deadlock, starvation,
and so on. Using this, more threads than the available number of threads can be
created. This is highly efficient when a lengthy task contains a lot of latency.
Use of concurrent memory-management functions: If in a situation, ensuing
concurrent memory management functions can be used, it is highly
recommended to use it. These can be used when objects with a short lifetime are
used. The functions such as Allot and Free are used to free memory and
allocate, without memory barriers or using locks.
Use of RAII to manage the lifetime of concurrency objects: RAII is the
abbreviation for Resource Acquisition Is Initialization. This is an efficient way
to manage the lifetime of a concurrency object.

This was all about the concurrency and it's design patterns that can be used to handle and
implement concurrency. These are the most common five design patterns for concurrency
programs. Also, some of the best practices for carrying out concurrency modules were
discussed. Hope this was an informative a piece and helped you understand how
concurrency patterns work!

Implementing Concurrency Patterns

[363]

Summary
In this chapter, you learned several concurrency design patterns and also saw the use cases
of these patterns. In this book, I have covered only the basic of the concurrency design
patterns. We have included the active object, monitor object, Half-Sync/Half-Async,
leader/followers, thread-specific storage, and reactor patterns. These all are the part of the
concurrency design patterns in the multithreaded environment of the application. We also
discussed some best practices consideration to use the concurrency design pattern in the
application.

Index

@
@CachePut annotation
 cache key, customizing 263
 conditional caching 264
@RequestMapping
 handler methods, defining 298
 at class level 296
 used, for mapping requests 294

A
Abstract Factory pattern
 applying, common problems 47
 benefits 47
 implementing, in Spring 145
 implementing, in Spring (FactoryBean interface)

144

 implementing, in Spring Framework 48
 sample implementation 48, 145
 used, for resolving dependency 144
accountCache 262
AccountServiceImpl class 258
active object pattern
 about 354
 activation list 355
 proxy 355
 servant 355
adapter design pattern
 benefits 67
 implementing, in Spring Framework 68
 requirements 68
 sample implementation 69
 UML diagram 68
advice
 about 185
 after 185, 197
 after returning 194

 after returning, example 195
 after throwing 195
 after throwing, example 196
 after, example 197
 after-returning 185
 after-throwing 185
 around 185, 198
 around, example 198
 before 185, 193
 before, example 193
 implementing 193
advised method 185
after advice 24
annotation-based configuration
 using, with dependency injection pattern 133
Annotation
 used, for enabling caching proxy 259
AOP proxies 202
Apache tile view resolver
 configuring 321
 used, for creating View pattern 320
Apache Tomcat 7 291
AppConfig.javaconfiguration class
 creating 125
 dependency injection pattern configuration,

approach 127
 Spring beans, declaring into configuration class

125

 Spring beans, injecting 126
application development
 aspects, applying for cross-cutting concerns 19
 dependencies between POJOs, injecting 11
 DI pattern, used for dependent components 15
 POJO pattern, using 10
 simplifying, with Spring 9
application requirements 327
Aspect-Oriented Programming (AOP)

[365]

 about 8, 20, 176, 179
 resolved problems 180
 terminology and concepts 184
aspect
 about 186, 190
 defining, Annotation used 191
 defining, XML configuration used 200
Autowiring DI pattern
 and disambiguation 142
 disambiguation, resolving 143
autowiring
 @Autowired, using with fields 141
 @Autowired, using with setter method 141
 about 134
 beans, annotating 139

B
back-pressure mechanism 337
bean scopes
 about 168
 custom scopes 171
 custom scopes, creating 171
 other scopes 171
 prototype bean scope 170
 request bean scope 171
 session bean scope 170
 singleton bean scope 169
BeanPostProcessors (BPPs) 160
before advice 24
Behavioral design patterns
 about 66, 97
 Chain of Responsibility design pattern 98
 Command Design pattern 99
best practices
 for configuring, DI pattern 147
 for JDBC 229
blocking calls 334
Bridge design pattern
 about 71
 benefits 72
 implementing, in Spring Framework 72
 sample implementations 73
 solution, to issues 72
 UML structure 74
Builder design pattern

 about 60, 61
 applying, to common issues 62
 benefits 60
 implementation, for creating embedded data

source 219
 implementing, in Spring Framework 61
 UML class structure 60

C
cache abstraction
 about 257
 cache configuration 258
 caching declaration 258
cache storage configuration
 about 270
 CacheManager, setting up 270
cache
 about 256
 enabling, via Proxy pattern 258
caching proxy
 enabling, Annotation used 259
 enabling, XML namespace used 260
caching
 best practices, in web application 274
 using 257
Chain of Responsibility design pattern
 about 98
 in Spring Framework 99
code scattering 20
code tangling 20
Command Design pattern
 about 100
 in Spring Framework 100
 used, for data binding 308
component scanning
 about 134
 used, for searching beans 137
composite design pattern
 about 77
 benefits 79
 sample implementation 80
 solutions, to issues 78
 UML structure 78
concurrency module
 best practices 361

[366]

constructor based dependency injection
 advantages 118
 disadvantages 119
 example 119
 versus setter-based dependency injection 122
core design patterns
 Behavioral design patterns 41
 creational design pattern 41
 structural design pattern 41, 66
creational design pattern
 about 42
 Abstract Factory pattern 47
 factory design pattern 43
cross-cutting concerns
 about 176, 178, 179
 template pattern, applying to eliminate boilerplate

code 25
custom caching annotations
 creating 273

D
DAOs based on plain Hibernate API
 implementing 242
data access object (DAO) pattern
 about 206, 236, 239
 creating, with Factory design pattern in Spring

237

 domain model pattern 239
 lazy loading pattern, proxying 240
 participants 236
 Spring's Hibernate template pattern 240
 used, for abstracting database access 220
 using, with Spring Framework 221
data binding
 Command Design pattern, using 308
 customizing, @ModelAttributes used 310
data source
 configuring 214
 configuring, JDBC driver used 215
 configuring, pool connections used 217
data-access
 designing, approaches 206
DataSource Transaction Manager 250
Declarative Annotation-based caching
 @Cacheable annotation 261

 @CacheConfig annotation 266
 @CacheEvict annotation 265
 @CachePut annotation 262
 @Caching annotation 266
 about 261
declarative transaction management 245
Declarative XML-based caching 267
Decorator design pattern
 about 82
 benefits 82
 implementing 86
 in Spring Framework 88
 solutions, to issues 83
 UML structure 85
 used, for proxying classes 177
dependency injection (DI) pattern
 types 118
 about 8, 10, 111, 112
 annotation-based configuration, using 133
 avoiding 113
 configuring, best practices 147
 configuring, with Spring 123
 constructor-based 118
 factory helper pattern, using 13
 Java-based configuration, using with 124
 setter-based 120
 Stereotype annotations 134
 used, for dependent components 19
 used, for solving issues 112
 using 116
 working 12
 XML-based configuration, using 128
dependency injector 116
design patterns
 about 10, 40
 characteristics 40
destruction phase, Spring bean life cycle 165
DispatcherServlet configuration, as Front Controller
 defining, as XML configuration 287
 defining, by Java configuration 288

E
Ehcache-based cache
 about 271
 XML-based configuration 272

[367]

embedded data source
 creating, by implementing Builder pattern 219
enterprise applications
 data access layer 207
 infrastructure layer 207
 service layer 207

F
Facade design pattern
 about 89
 implementing 92
 in Spring Framework 94
 UML structure 93
 using, situations 89
factory design pattern
 benefits 43
 implementing, in Spring Framework 43
 issues 43
 sample implementation 44
Flux type 342
forms input parameters
 validating 311, 314
Front Controller design pattern
 DispatcherServlet Front Controller 287
 life of request, processing 282
 using 281

G
Gang of Four (GOF) pattern
 about 110, 169
 overview 41

H
Half-Sync/Half-Async patterns
 about 357
 Asynchronous Task Layer 358
 Queuing Layer 358
 Synchronous Task Layer 358
Hibernate
 integrating, with Spring 240

I
initialization phase, Spring bean life cycle
 about 152

 application context from configuration, creating
152

 bean customization, BeanPostProcessor used
158

 bean instances, initializing 157
 Initializer extension point 160
 load bean definitions 154
Interpreter Design pattern
 about 101
 in Spring Framework 102
Inversion of Control (IoC) pattern 116
Iterator Design Pattern
 about 102
 in Spring Framework 103

J
Java Data Objects (JDO) 232, 233
Java Management Extensions (JMX) 9
Java Message Service (JMS) 9
Java Persistence API (JPA) 206, 232, 233
Java transactions
 global (distributed) transactions - multiple 244
 local transactions - single resource 244
Java-based configuration
 using, with Java-based configuration 124
Jdbc callback interfaces
 ResultSetExtractor, implementing 227
 RowCallbackHandler, implementing 226
 RowMapper class, creating 225
 RowMapper, implementing 225
JDBC driver
 used, for data source configuration 215
JdbcTemplate
 callback interfaces 225
 configuring 229
 creating, in application 223
 JDBC-based repository, implementing 223
 using 222
 working with 222
JEE design patterns
 about 42, 107
 at business layer 108
 at integration layer 108
 at presentation layer 108
join points 184, 186

[368]

L
leader/follower pattern 358

M
Model 2 architecture MVC pattern
 with Spring 280
model data
 form handling controller, implementing 305
 passing, to view 299
 request parameters, adding 300
 web page, processing forms 303
Model View Controller pattern (MVC pattern)
 Controller 278
 implementing, in web application 278
 Model 278
 View 278
 View, implementing 314
monitor object pattern
 about 355
 monitor conditions 356
 monitor object 356
 synchronized method 356
Mono type 342

N
non-blocking calls 335

O
object pool pattern
 configuring 214
object pooling
 connection pooling 229
 statement pooling 229
Object Relational Mapping (ORM)
 about 205, 231
 and patterns used 233
 consistent exception handling and translation

235

 resource and transaction management 234
Object-oriented programming (OOP) 179
Observer Design Pattern
 about 104
 in Spring Framework 106
ORM DAO

 creating, Spring Framework benefits 233

P
phases, Spring bean life cycle
 destruction phase 165
 initialization phase 152
 use phase 163
pointcut
 about 184, 186
 defining 187
 writing 188
pool connections
 used, for data source configuration 217
program-to-interface (P2I) 14
programmatic transaction demarcation and

implementation 250
prototype bean scope 170
Prototype design pattern
 about 56
 benefits 56
 sample implementation 58
 UML class structure 57
proxies
 CGLib Proxy 164
 JDK Proxy 164
Proxy design pattern
 about 95
 caching, enabling via 258
 implementing 96
 in Spring Framework 97
 purpose 95
 UML structure 95

R
reactive pattern
 about 328
 traits 329
Reactive Streams 337
reactor pattern
 about 359
 dispatcher 360
 Request Handler 360
 resources 360
 synchronous event demultiplexer 360
request bean scope 171

[369]

request body conversion 351
request parameters, modal data
 query parameters, taking 301
 taking, via path variables 302
resilience
 containment 332
 delegation 332
 isolation 332
 replication 332
resolved problems, Aspect-Oriented Programming

(AOP)
 about 180
 code scattering 181
 code tangling 180
 working, for problem resolution 183
resource management problem 209
response body conversion 351

S
session bean scope 170
setter-based dependency injection
 about 120
 advantages 120
 disadvantages 121
 example 121
 versus constructor 122
singleton bean scope 169
Singleton design pattern
 about 53
 applying, in issues 54
 benefits 54
 early instantiation 53
 implementation, Spring Framework 54
 lazy instantiation 53
 sample implementation 55
Spring 5 Framework
 reactive, implementing 337
Spring AOP
 working 21
Spring bean life cycle
 phases 151
Spring beans, injecting
 constructor injection, using 130
 setter injection, using 131
Spring beans, Spring container

 about 117
 bean 31
 life cycle 31
Spring container
 application contexts 28
 bean factory 29
 Bean factory 28
 creating, with application context 29
 Hibernate's SessionFactory, configuring 241
 using 28
Spring Expression Language (SpEL) 102
Spring Framework 5.0
 features 35
Spring Framework
 about 8
 benefits 9
Spring Inversion of Control (IOC) 8
Spring modules
 about 33
 AOP module 34
 core Spring container 34
 data access and integration 34
 ORM 35
 web MVC 35
Spring MVC
 controller with @Controller, defining 293
 controllers, implementing 293
 enabling 291
 requests, mapping with @RequestMapping 294
 ViewResolver, defining 315
Spring ORM
 best practices, in application 252
Spring Web reactive module
 about 338
 annotation-based programming model 340, 341
 comparisons 339
 functional programming model 340, 343, 347
 implementing, at server side 340
 Reactive Client-Side application, implementing

349

Spring
 dependency injection pattern, configuring 123
 Hibernate, integrating with 240
 Model 2 architecture MVC pattern 280
 Proxy pattern 177

 Template Design pattern 26
 transaction management strategies 244
 used, for simplifying application development 10
Stereotype annotations
 about 134
 automatic wiring, creating 134
 used, for creating auto searchable beans 135
structural design pattern
 about 66
 adapter design pattern 67
 Bridge design pattern 71
 composite design pattern 77
 composition 66
 Decorator design pattern 82
 Facade Design Pattern 89
 inheritance 66
 Proxy design pattern 95

T
template design pattern
 about 106
 benefits 106
 implementing 210
 issues, solving with Spring's JdbcTemplate 212
 traditional JDBC, issues 211
third-party cache implementations
 about 271
 Ehcache-based cache 271
thread-specific storage pattern 361
traits, reactive pattern
 message-driven 329
 message-driven architecture 333
 resilience 331
 resilient 329
 responsiveness 329, 330
 scalable 329, 332
transaction demarcation
 about 245
 declaring 247
transaction management strategies
 in Spring 244

transaction manager
 deploying 246
 implementing 246
transaction module
 best practices, in application 252

U
use phase, Spring bean life cycle
 about 163
 Decorator and Proxy patterns, implementing in

Spring 164

V
View Helper pattern 318
ViewResolver
 registering, with Spring MVC 316
 View, implementing 315

W
weaving 186
web application design
 best practices 323
web application
 caching best practices 274
wiring 16
Wrapper 82

X
XML configuration
 used, for defining aspects 200
XML namespace
 used, for enabling caching proxy 260
XML-based configuration file
 creating 129
 Spring beans, declaring 129
 Spring beans, injecting 130
 using, with dependency injection pattern 128

Y
Your Application Classes (POJOs) 124

	Cover
	Title Page
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Dedication
	Table of Contents
	Preface
	Chapter 1: Getting Started with Spring Framework 5.0 and Design Patterns
	Introducing Spring Framework
	Simplifying application development using Spring and its pattern
	Using the power of the POJO pattern
	Injecting dependencies between POJOs
	How DI works and makes things easy for development and testing
	Using factory helper pattern for dependent components

	Using DI pattern for dependent components
	Applying aspects for cross cutting concerns
	How Spring AOP works

	Applying the template pattern to eliminate boilerplate code
	The Template Design pattern in Spring

	Using a Spring container to manage beans with the Factory pattern
	Bean factory
	Application contexts
	Creating a container with an application context

	Life of a bean in the container
	Spring modules
	Core Spring container
	Spring's AOP module
	Spring DAO - data access and integration
	Spring's ORM
	Spring web MVC

	New features in Spring Framework 5.0
	Summary

	Chapter 2: Overview of GOF Design Patterns - Core Design Patterns
	Introducing the power of design patterns
	Common GoF Design Pattern overview
	Creational design patterns
	Factory design pattern
	Implementing the Factory design pattern in Spring Framework
	Sample implementation of the Factory design pattern

	Abstract factory design pattern
	Common problems where you should apply the Abstract factory design pattern
	Implementing the Abstract factory design pattern in the Spring Framework
	Sample implementation of the Abstract Factory design pattern

	Singleton design pattern
	Common problems where you should apply Singleton pattern
	Singleton design pattern implementation in the Spring Framework
	Sample implementation of the Singleton design pattern

	Prototype design pattern
	Benefits of the Prototype design pattern
	UML class structure
	Sample implementation of the Prototype design pattern

	Builder design pattern
	Benefits of the Builder pattern:
	UML class structure
	Implementing the Builder pattern in the Spring Framework
	Common problems where you should apply Builder pattern
	Sample implementation of the Builder design pattern

	Summary

	Chapter 3: Consideration of Structural and Behavioral Patterns
	Examining the core design patterns
	Structural design patterns
	The adapter design pattern
	Benefits of the adapter pattern
	Common requirements for the adapter pattern
	Implementation of the adapter design pattern in the Spring Framework
	Sample implementation of the adapter design pattern

	The Bridge design pattern
	Benefits of the Bridge pattern
	Common problems solved by the Bridge design pattern
	Implementing the Bridge design pattern in the Spring Framework
	Sample implementation of the Bridge design pattern

	Composite design pattern
	Common problems solved by the composite pattern
	UML structure of the Composite design pattern
	Sample implementation of the Composite design pattern

	Decorator design pattern
	Common problems solved by the Decorator pattern
	Implementing the Decorator pattern
	Decorator design pattern in the Spring Framework

	Facade Design Pattern
	Knowing when to use the Facade Pattern
	Implementing the Facade design pattern
	The UML structure for the Facade design pattern
	Facade Pattern in the Spring Framework

	Proxy design pattern
	Purpose of the Proxy pattern
	UML structure for the Proxy design pattern
	Implementing the Proxy design pattern
	Proxy pattern in the Spring Framework

	Behavioral design patterns
	Chain of Responsibility design pattern
	Chain of Responsibility pattern in the Spring Framework

	Command design pattern
	Command design pattern in the Spring Framework

	Interpreter Design pattern
	Interpreter design pattern in the Spring Framework

	Iterator Design Pattern
	Iterator design pattern in the Spring Framework

	Observer pattern in the Spring Framework
	Template Design Pattern

	JEE design patterns
	Summary

	Chapter 4: Wiring Beans using the Dependency Injection Pattern
	The dependency injection pattern
	Solving problems using the dependencies injection pattern
	Without dependency injection
	With dependency injection pattern

	Types of dependency injection patterns
	Constructor-based dependency injection pattern
	Setter-based dependency injection

	Configuring the dependency injection pattern with Spring
	Dependency injection pattern with Java-based configuration
	Creating a Java configuration class - AppConfig.java
	Declaring Spring beans into configuration class
	Injecting Spring beans
	Best approach to configure the dependency injection pattern with Java

	Dependency injection pattern with XML-based configuration
	Creating an XML configuration file
	Declaring Spring beans in an XML file
	Injecting Spring beans
	Using constructor injection
	Using setter injection

	Dependency injection pattern with Annotation-based configuration
	What are Stereotype annotations?
	Creating auto searchable beans using Stereotype annotations
	Searching beans using component scanning
	Annotating beans for autowiring
	Using @Autowired with setter method
	Using @Autowired with the fields

	The Autowiring DI pattern and disambiguation
	Resolving disambiguation in Autowiring DI pattern
	Implementing the Abstract Factory Pattern in Spring (FactoryBean interface)
	Implementation of FactoryBean interface in Spring
	Sample implementation of FactoryBean interface

	Best practices for configuring the DI pattern
	Summary

	Chapter 5: Understanding the Bean Life Cycle and Used Patterns
	The Spring bean life cycle and its phases
	The initialization phase
	Creating the application context from configuration
	Load bean definitions
	Initializing bean instances
	Customizing beans using a BeanPostProcessor
	The Initializer extension point

	The Use phase of beans
	Implementing the Decorator and Proxy patterns in Spring using Proxies

	The destruction phase of the beans

	Understanding bean scopes
	The singleton bean scope
	The prototype bean scope
	The session bean scope
	The request bean scope
	Other scopes in Spring
	Custom scopes
	Creating custom scopes

	Summary

	Chapter 6: Spring Aspect Oriented Programming with Proxy and Decorator pattern
	Proxy pattern in Spring
	Proxying classes using Decorator pattern in Spring

	What are cross-cutting concerns?
	What is Aspect-Oriented Programming?
	Problems resolved by AOP
	Code tangling
	Code scattering

	How AOP Works to solve problems

	Core AOP terminology and concepts
	Advice
	Join Point
	Pointcut
	Aspect
	Weaving

	Defining pointcuts
	Writing pointcuts

	Creating aspects
	Define aspects using Annotation

	Implementing Advice
	Advice type - Before
	Before Advice example

	Advice Types: After Returning
	After Returning Advice example

	Advice Types: After Throwing
	After Throwing Advice example

	Advice Types: After
	After Advice example

	Advice Types - Around
	Around Advice example

	Define aspects using XML configuration
	Understanding AOP proxies
	Summary

	Chapter 7: Accessing a Database with Spring and JDBC Template Patterns
	The best approach to designing your data-access
	The resource management problem
	Implementing the template design pattern
	Problems with the traditional JDBC
	Solving problems with Spring's JdbcTemplate

	Configuring the data source and object pool pattern
	Configuring a data source using a JDBC driver
	Configuring the data source using pool connections

	Implementing the Builder pattern to create an embedded data source
	Abstracting database access using the DAO pattern

	The DAO pattern with the Spring Framework
	Working with JdbcTemplate
	When to use JdbcTemplate
	Creating a JdbcTemplate in an application
	Implementing a JDBC-based repository
	Jdbc callback interfaces
	Creating a RowMapper class
	Implementing RowCallbackHandler
	Implementing ResultSetExtractor

	Best practices for Jdbc and configuring JdbcTemplate
	Summary

	Chapter 8: Accessing Database with Spring ORM and Transactions Implementing Patterns
	ORM Framework and the patterns used
	Resource and transaction management
	Consistent exception handling and translation

	The data access object pattern
	Creating DAOs using the Factory design pattern in Spring
	The Data Mapper pattern
	The domain model pattern
	Proxy for the lazy loading pattern
	Spring's Hibernate template pattern

	Integrating Hibernate with Spring
	Configuring Hibernate's SessionFactory in a Spring container
	Implementing DAOs based on the plain Hibernate API

	Transaction management strategies in Spring
	Declarative transaction demarcation and implementation
	Deploying the transaction manager
	Step 1 - Implementing the transaction manager
	Step 2 - Declaring the transaction demarcation

	Programmatic transaction demarcation and implementation

	Best practices for Spring ORM and transaction module in an application
	Summary

	Chapter 9: Improving Application Performance Using Caching Patterns
	What is cache?
	Where do we use caching?

	Understanding cache abstraction
	Enabling caching via the Proxy pattern
	Enabling the caching proxy using Annotation
	Enabling the Caching Proxy using the XML namespace

	Declarative Annotation-based caching
	The @Cacheable annotation
	The @CachePut annotation
	Customizing the cache key
	Conditional caching

	The @CacheEvict annotation
	The @Caching annotation
	The @CacheConfig annotation

	Declarative XML-based caching
	Configuring the cache storage
	Setting up the CacheManager

	Third-party cache implementations
	Ehcache-based cache
	XML-based configuration

	Creating custom caching annotations
	Top caching best practices to be used in a web application
	Summary

	Chapter 10: Implementing the MVC Pattern in a Web Application using Spring
	Implementing the MVC pattern in a web application
	Model 2 architecture MVC pattern with Spring
	The Front Controller design pattern
	Processing the life of a request
	Configuring DispatcherServlet as the Front Controller
	Defined by XML configuration
	Defined by Java configuration

	Enabling the Spring MVC
	Implementing controllers
	Defining a controller with @Controller

	Mapping requests with @RequestMapping
	@RequestMapping at method level
	@RequestMapping at the class level
	Defining @RequestMapping handler methods

	Passing model data to the view
	Accepting request parameters
	Taking query parameters
	Taking request parameters via path variables

	Processing forms of a web page
	Implementing a form handling controller

	Data binding with Command Design pattern
	Using @ModelAttributes for customizing data binding

	Validating forms input parameters
	Implementing View in the MVC pattern
	Defining ViewResolver in the Spring MVC
	Implement the View
	Register ViewResolver with Spring MVC

	The View Helper pattern
	Composite View pattern using Apache tile view resolver
	Configuring a Tiles ViewResolver

	Best practices for web application design
	Summary

	Chapter 11: Implementing Reactive Design Patterns
	Understanding application requirement over the years
	Understanding the reactive pattern
	The reactive pattern traits
	Responsiveness
	Resilience
	Scalable
	Message-driven architecture

	Blocking calls
	Non-blocking calls
	Back-pressure
	Implementing reactive with the Spring 5 Framework
	Reactive Streams

	Spring Web reactive module
	Implementing a reactive web application at the server side
	The Annotation-based programming model
	The functional programming model
	Implementing a Reactive Client-Side application

	Request and response body conversion
	Summary

	Chapter 12: Implementing Concurrency Patterns
	Active object pattern
	Monitor object pattern
	Half-Sync/Half-Async patterns
	Leader/follower pattern
	Reactor pattern
	Thread-specific storage pattern
	Best practices for concurrency module

	Summary

	Index

