

Mastering Spring Boot 2.0

Build modern, cloud-native, and distributed systems using
Spring Boot

Dinesh Rajput

BIRMINGHAM - MUMBAI

Mastering Spring Boot 2.0
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Merint Mathew
Acquisition Editor: Karan Sadawana
Content Development Editor: Akshada Iyer
Technical Editor: Supriya Thabe
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Aishwarya Gangawane
Graphics: Jisha Chirayil
Production Coordinator: Shraddha Falebhai

First published: May 2018

Production reference: 1300518

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78712-756-2

www.packtpub.com

http://www.packtpub.com

First, I want to dedicate this book to all the soldiers of the Indian Army.

To my parents, my lovely wife, and my kids, Arnav and Rushika.

Specially dedicated to my grandfather, the late Mr. Arjun Singh, and my maternal grandfather,
the late Mr. Durjan Lal Rajput.

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Dinesh Rajput is the founder of Dineshonjava, a blog for Spring and Java techies. He is a
Spring enthusiast and a Pivotal Certified Spring Professional. He has written a bestselling
book, Spring 5 Design Patterns. He has more than 10 years of experience with different
aspects of Spring and cloud-native development, such as REST APIs and microservices
architecture.

He is currently working as an architect at a leading product. He worked as a tech lead at
Bennett, Coleman & Co. Ltd and Paytm.

He completed his master's degree in computer engineering at JSS Noida, and he lives in
Noida, India.

Technically, I authored this book, but it was not possible without the unconditional
support of my wife, Anamika, who helped me focus on this book. Thanks to my kids, Arnav
and Rushika. I have taken away a lot of time that I'd spend playing with them to write this
book.

A huge thanks go to my father, Shrikrashan Rajput, and mother, Indira Rajput, and
Surendra Singh who encouraged me to do work that they can feel proud of.

About the reviewers
Samer ABDELKAFI has 13 years of experience as a software architect and engineer, a
major in open source technologies. He has contributed to numerous and diverse projects in
different sectors such as banking, insurance, education, public services, and utility billing.
In 2016, he created DEVACT, a company specializing in information technology consulting.
He has also reviewed two books related to Spring projects titled, Spring MVC Blueprints and
Mastering Spring Cloud. In addition to this, he shares his experience on his blog and writes
articles related to Java and web technologies.

Yogendra Sharma is a developer with experience of the architecture, design, and
development of scalable and distributed applications. He was awarded a bachelor's degree
from Rajasthan Technical University in computer science. With a core interest in
microservices and Spring, he also has hands-on experience in technologies such as AWS
Cloud, Python, J2EE, NodeJS, JavaScript, Angular, MongoDB, and Docker. Currently, he
works as an IoT and cloud architect at Intelizign Engineering Services Pune.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started with Spring Boot 2.0 7
Introducing Spring Boot 8
Simplifying Spring application development using Spring Boot 10
The essential key components of Spring Boot 12

Spring Boot Starters 12
Spring Boot Starter Parent POM 14

Spring Boot auto-configuration 15
Enabling Spring Boot auto-configuration 17
Spring Boot CLI 19
Spring Boot Actuator 20

Setting up a Spring Boot workspace 21
Setting up Spring Boot with Maven 21
Setting up Spring Boot with Gradle 22

Developing your first Spring Boot application 23
Using a web interface for Spring Initializr 24
Creating a Spring Boot project using the STS IDE 26

Implementing the REST service 29
New features in Spring Boot 2.0 31
Summary 32

Chapter 2: Customizing Auto-Configuration in Spring Boot Application 33
Understanding auto-configuration 34

Learning how auto-configuration works 35
Customizing Spring Boot 36

Customizing using Spring Boot properties 36
Replacing generated beans 38
Disabling specific auto-configuration classes 38
Changing a library's dependencies 39

Externalizing configuration with properties 40
Order of evaluation for overridden properties 40
Renaming application.properties in the Spring application 42

Externally configuring application properties 43
Using the @EnableConfigurationProperties annotation 44

Fine-tuning with logging 45
Logging output 46

Using YAML for configuration 46
YAML for properties 46

Table of Contents

[ii]

Multiple profiles inside a single YAML file 47
Customizing application error pages 48
Summary 49

Chapter 3: Getting Started with Spring CLI and Actuator 50
Getting started with using Spring Boot CLI 51

Installing the Spring Boot CLI 51
Manually installing from a downloaded distribution 52
Installation with SDKMAN! 52
Installing with OSX Homebrew 53

MacPorts installation 53
Command-line completion 53

Using the Initializr with the Spring Boot CLI 54
Spring Boot Actuator – taking Application's Insights 59

Enabling Spring Boot's Actuator in your application 59
Analyzing the Actuator's endpoints 60
Exposing configuration details 62
Exposing metrics endpoints 67
Exposing application information 68
Shutting down your application 69
Customizing your Actuator endpoints 70

Enabling or disabling endpoints 71
Changing endpoint IDs 72
Changing the sensitivity of the Actuator's endpoints 72
Writing custom health indicators 73

Creating a custom endpoint 75
Securing the Actuator endpoints 77
The Actuator with Spring Boot 2.X 78
Summary 79

Chapter 4: Getting Started with Spring Cloud and Configuration 80
Cloud-native application architecture 81

Microservices architecture 82
Microservice benefits 84
Microservice challenges 85

Introduction to Spring Cloud 86
Building blocks of the cloud and microservice applications 87
Usages of Spring Cloud 90

Configuring the Spring Cloud application 90
Creating the configuration producer Spring Cloud Config Server 91

Project setup and dependencies 91
Implementing Cloud Config Server 92

Configuring the application.properties file 93
Creating a Git repository as configuration storage 94

Running your configuration application 94
Configuring multiple repositories using patterns 97

Table of Contents

[iii]

Authentication 98
Force-pull property 99

Creating the configuration consumer Spring Cloud Config client 99
Summary 101

Chapter 5: Spring Cloud Netflix and Service Discovery 102
Introduction to Spring Cloud Netflix 103
The need for Service Discovery in the microservices architecture 104
Implementing Service Discovery – Eureka Server 105

The Maven build configuration file 106
The Gradle build configuration file 107
Enabling the Eureka server as a Discovery Service server 108

Implementing Service Discovery – Eureka clients 110
Adding the Maven dependencies configuration 110
The Gradle build configuration 111

Registering a client with Eureka 112
Consuming the REST service 115
Using EurekaClient 115

Using DiscoveryClient 116
Client-side load balancing using Netflix Ribbon 117

Using the registry-aware Spring Cloud Netflix FeignClient client 121
Summary 125

Chapter 6: Building Spring Boot RESTful Microservice 127
Microservices with Spring Boot 128

Brief introduction to bootstrap.yml and application.yml 128
A simple microservice example 130

Creating a discovery service 132
Creating a microservice (the Producer) 136
Creating microservice consumers 141

Load-balanced RestTemplate 142
Brief introduction to Spring Data 145

Apache Ignite repository 146
Spring Data MongoDB 146

Spring MongoDB data highlights 147
Spring Data JPA 148

Summary 148

Chapter 7: Creating API Gateway with Netflix Zuul Proxy 149
The need for an API Gateway pattern 149

Pros of the API Gateway pattern 151
Cons of the API Gateway pattern 152
API Gateway pattern components 152

Implementing API Gateway using Netflix Zuul Proxy 153
Including Zuul using Maven dependency 154
Enabling the Zuul service proxy 155

Table of Contents

[iv]

Configuring Zuul properties 155
Adding Zuul filters 159

Registering Zuul filters 160
Summary 161

Chapter 8: Simplify HTTP API with Feign Client 162
Declarative REST client – Feign basics 163
Including Feign in the cloud application 166

Overriding Feign defaults 170
Creating Feign clients 173

Feign inheritance support 174
Multiple interfaces 175

Advanced usage of the Feign client 175
Feign logging 176

Exception handling 177
Custom encoders and decoders 178

Custom encoder 178
Custom decoder 179

Feign and Hystrix 180
Unit testing Feign clients 181
Summary 182

Chapter 9: Building Event-Driven and Asynchronous Reactive Systems 183
Event-driven architecture patterns 184

Mediator topology 184
Broker topology 184

Introduction to reactive programming 185
Spring Reactive 186
ReactiveX 187

Introduction to Command Query Responsibility Segregation 188
Introduction to the Event Sourcing pattern 189
Introduction to Eventual consistency 191

Building an event-driven Reactive Asynchronous System 192
Introducing Spring Cloud Streaming 193

Adding Kafka to your application 195
Installing and running Kafka 195
Configuration properties for Kafka 196
Service used to write to Kafka 196
Rest API controller 197
Listening to a Kafka topic 198

Summary 202

Chapter 10: Building Resilient Systems Using Hystrix and Turbine 203
Circuit-breaker pattern 204
Using the Hystrix library with a reference implementation 207
Configuring Hystrix in your application 208

Table of Contents

[v]

Maven dependency 209
Enabling circuit-breaker 209
Adding the Hystrix annotation in services 210

Error propagation 213
Implementing a REST controller in customer service 213
Building and testing customer service 216
Customizing the default configuration 218
Hystrix Metrics Stream 220
Implementing Hystrix Dashboard in our project 221
Turbine dashboard 223

Turbine stream 227
REST consumer with Hystrix and Feign 227
Summary 229

Chapter 11: Testing Spring Boot Application 230
Test-driven development 231
Unit testing 231

Advantages 235
Disadvantages 235
Other mock libraries 236

Integration testing 236
Benefits of testing with Spring 238
Activating profiles for a test class 239

JUnit tests for the Spring Boot application 239
Using Mockito for mocking services 241
Postman for testing RESTful service contracts 242
Summary 246

Chapter 12: Containerizing Microservice 247
Introducing containers to the microservice architecture 248

Virtual machines versus containers 250
Benefits of a container-oriented approach 251
Drawbacks of a container-oriented approach 252

Key concepts of the containers-oriented approach 252
Getting started with Docker 253

Installing Docker 254
Installing Docker on Linux 254
Installing Docker on Windows 256

Docker commands 257
Container-specific commands 258

Docker architecture 258
Docker Engine 260
Docker container 261
Writing Dockerfile 263

Dockerizing any Spring Boot application 265

Table of Contents

[vi]

Creating a Docker image using Maven 270
Getting started with Docker Compose 271

Installing Docker Compose 271
Using Docker Compose 273
Writing a docker-compose file 273
Orchestration using a docker-compose file 275
Scaling containers using docker-compose and load balancing 279

Introducing Kubernetes 280
Summary 282

Chapter 13: API Management 283
API Management 284

Advantages of using API Management software tools 284
API Management tools 285

Rate limiting 285
Implementing rate limiting 286

Learning about KONG 287
Microservice REST APIs with the KONG architecture 288
Using APIs without the KONG architecture 288
Installing KONG 289
Using the KONG API 291

Features of the KONG API 298
Swagger 299

Usage of Swagger 300
Using Swagger in a microservice 300

Adding a Maven dependency 301
Configuring Swagger 2 in your project 301
Configuring Swagger UI in your project 304
Customizing the Swagger UI meta-configuration 307

Filtering an API from Swagger's documentation 307
Customizing with Swagger annotations 311

Advantages of Swagger 314
Summary 314

Chapter 14: Deploying in Cloud (AWS) 315
Spinning up an AWS EC2 instance 316
Microservices architecture on AWS 322

Publishing microservices to the Docker Hub 324
Installing Docker on AWS EC2 326
Running microservices on AWS EC2 329
Summary 331

Chapter 15: Production Ready Service Monitoring and Best Practices 332
Monitoring containers 333
Logging challenges for the microservices architecture 333
Centralized logging solution for the microservices architecture 335

Table of Contents

[vii]

Log aggregation using the ELK stack 338
Install Elasticsearch 339
Install Logstash 340
Install Kibana 340

Requesting tracing using Sleuth 346
Requesting tracing with Zipkin 350

Adding the Zipkin server to your machine 351
Summary 356

Other Books You May Enjoy 357

Index 360

Preface
Mastering Spring Boot 2.0 is for all Java developers who want to learn Spring Boot and
Spring Cloud as enterprise-distributed cloud-based applications. Therefore, enterprise Java
and Spring developers will find this book particularly useful in helping them understand
cloud-native design patterns using the microservices architecture used by Spring Boot 2.0
and Spring Cloud, how the microservices architecture solves the common design problems
of the cloud-native infrastructure in distributed applications, and they will appreciate the
examples presented in this book. Before reading this book, readers should have basic
knowledge of the basics of Core Java, Spring Core Framework, and Spring Boot. You can
read my other book, Spring 5 Design Patterns to learn more about Spring Framework.

Spring Boot 2.0 has been newly launched by Pivotal with the reactive programming and the
cloud. Spring Boot 2.0 introduces many new features and enhancements we will discuss in
this book. Mastering Spring Boot 2.0 is a mastering book that will give you in-depth insight
into the Spring Boot and cloud microservices architecture.

The great part of today's Spring Boot is that many companies have already adopted it as a
primary framework for the development of the enterprise applications, especially for the
REST APIs using the microservices architecture. For Spring Boot, no external enterprise
servers are needed to start working with them.

The goal of writing this book is to discuss the common designs used behind cloud-native
applications and how they are implemented in the Spring Cloud module of the Spring Boot
2.0. Here, the author has also outlined some best practices that should be used during
logging of the distributed design and development of the application.

The book contains 15 chapters, which cover everything from the development of
microservices-based cloud applications to the deployment of microservices by either using
virtual machines or containers such as Docker.

Mastering Spring Boot 2.0 is divided into four parts. The first part introduces you to the
essentials of Spring Boot 2.0, Spring Boot CLI, and Spring Cloud. Part 2 steps behind the
interservice communication in the microservices architecture using Rest Template, Spring
Cloud Netflix Feign. Part 3 expands on that by explaining how to build an event-driven
resilient system with Spring Cloud Stream and Kafka. This part also shows you how to
monitor using Hystrix and Turbine. Finally, part 4 explains how to test and build APIs, and
deploy to containers such as Docker, and also to clouds, such as AWS.

Preface

[2]

Who this book is for
Mastering Spring Boot 2.0 is for all Java developers who want to learn Spring Boot and
Spring Cloud in the enterprise-distributed cloud-based applications. Therefore, enterprise
Java and Spring developers will find it particularly useful in understanding cloud-native
design patterns using the microservices architecture used by Spring Boot 2.0 and Spring
Cloud, how microservices architecture solves common design problems of the cloud-native
infrastructure in the distributed application, and they will most fully appreciate the
examples presented in this book. Before reading this book, readers should have basic
knowledge of Core Java, Spring Core Framework, and Spring Boot basics.

What this book covers
Chapter 1, Getting Started with Spring Boot 2.0, will give you an overview of Spring Boot 2.0
and all its new features, including some essential key components. You'll also get an
overview of the greater the Spring Boot.

Chapter 2, Customizing Auto-Configuration in Spring Boot Application, will give an overview
of the Spring Boot auto-configuration feature and explains how you can override the
default autoconfiguration.

Chapter 3, Getting Started with Spring CLI and Actuator, will show you several ways to
create Spring Boot applications using Spring Boot's web-based interface, the STS IDE, and
Spring Boot CLI. In this chapter, we will discuss Spring Boot CLI deeply and will also see
how to install it on your machine and how to use it to create Spring Boot applications. Also,
you'll see Spring Boot's production-ready features using the Actuator.

Chapter 4, Getting Started with Spring Cloud and Configuration, will explore how to create a
configuration server to provide a set of configuration files from a Git repository to client
applications. In this chapter, the reader will also learn about Spring Cloud configuration
service and how to build and consume the configuration service.

Chapter 5, Spring Cloud Netflix and Service Discovery, will explore Spring Cloud Netflix and
Service Discovery with Eureka.

Chapter 6, Building Spring Boot RESTful Microservice, will build a RESTful atomic
microservice that performs CRUD operations on an in-memory database, either HSQL or
H2, using Spring Cloud and Spring Data, enable the service for service discovery
registration to the Eureka server.

Preface

[3]

Chapter 7, Creating API Gateway with Netflix Zuul Proxy, will explore the need of the API
gateway pattern for microservices communication, either from UI components or from inter
service calls. We will implement an API gateway using the Netflix API Zuul. We will see
how to set up a Zuul proxy in your application.

Chapter 8, Simplify HTTP API with Feign Client, will explore what Feign is and how it
works. It gives a detailed explanation of how Feign can be extended/customized for
business needs, with a reference implementation for a custom encoder, decoder, Hystrix,
and exception handling with unit testing.

Chapter 9, Building Event-Driven and Asynchronous Reactive Systems, will provide a detailed
overview of how to use event-driven architectures to build event-driven microservices as
cloud-native applications. We will look at some of the important concepts and themes
behind handling data consistency in distributed systems.

Chapter 10, Building Resilient Systems Using Hystrix and Turbine, will explore the circuit
breaker pattern with a reference implementation using the Netflix Hystrix library, touching
base on configuring the Turbine dashboard to aggregate hystrix streams from multiple
services.

Chapter 11, Testing Spring Boot Application, will explore unit testing Spring Boot Services
using JUnit and Mockito. All our reference implementation will have unit testing done, so
this chapter is more of an aggregation of the different testing mechanisms available for
microservices.

Chapter 12, Containerizing Microservice, will provide an introduction to containers,
dockerizing the services built in the previous chapter, writing a Dockerfile, orchestrating
the containers using docker-compose, and providing an orchestration example in
Kubernetes.

Chapter 13, API Management, will explore the need for an API manager in distributed
systems, setting up KONG open source API manager, configuring the API endpoints built
in the previous chapters in the KONG API Manager, introducing Swagger for API
standards, and finally closing with demonstrating rate limiting and logging using KONG.

Chapter 14, Deploying in Cloud (AWS), will explore deploying microservices in AWS EC2
instances manually and using cloudformation scripts. You will learn how to run a Docker-
enabled Spring Boot microservice application on Amazon EC2 instances.

Chapter 15, Production Ready Service Monitoring and Best Practices, will elaborate on some of
the best practices in building distributed systems and also will elaborate on performance
monitoring for production ready services. We will introduce log aggregation using the
ELK(Elasticsearch/Logstash/Kibana) stack for a distributed application.

Preface

[4]

To get the most out of this book
This book can be read without a computer or laptop at hand, in which case you need
nothing more than the book itself. However, to follow the examples in the book, you need
Java 8, which you can download from http:/ /www. oracle. com/ technetwork/ java/
javase/downloads/ jdk8- downloads- 2133151. html, and you will also need your favorite
IDE. I have used the Software Spring Tool Suite; download the latest version of Spring Tool
Suite (STS) from https:/ / spring. io/ tools/sts/ all according to your OS. Java 8 and STS
work on a variety of platforms—Windows, macOS, and Linux.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in the text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here
is an example: "Let's configure Zuul properties in our application using the
application.yml configuration file."

A block of code is set as follows:

 @RestController
 class HelloController {
 @GetMapping("/")
 String hello() {
 "Hello World!!!"
 }
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 </dependencies>

Any command-line input or output is written as follows:

$ Spring run HelloController.groovy

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click the Generate Project button, and we have a ready-to-run application."

Warnings or important notes appear like this.

Preface

[6]

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Getting Started with Spring

Boot 2.0
As we know, the Spring Framework makes development very easy for both core and
enterprise Java applications. Spring has settled, and is now a very popular framework. The
Spring team is continuously inventing something new to enhance software development
and they are focused on making software development easy. The Spring team released one
of its major projects for the Spring Framework in 2013, Spring Boot.

This project from the Spring team makes software development with Java easy. Spring Boot
is built on top of the existing Spring Framework. So basically, Spring Boot is not a separate
framework, but it is similar. It's a collection of ready-made things to just pick and use
without taking any overhead configuration.

The Spring team is introducing many exciting things to the Spring ecosystem to sustain it in
the market. There are many new things such as cloud computing, big data, schemaless data
persistence, and reactive programming. But one of the most exciting and game changing
features has come with Spring Boot in the past year. Spring Boot is a great invention for the
Spring Framework by the Spring team. That is why Spring has settled for a long time and is
winning major laurels.

Spring Boot is a tricky framework to understand. This chapter will help you to understand
Spring Boot 2.0 and the underlying important concepts—starter projects, auto-
configuration, and starter parents. You will also understand how Spring Boot makes
software development easy. As a bonus, I will discuss the story behind the success of
Spring Boot. This chapter will cover a demo application with Spring Boot and create a REST
service.

At the end of this chapter, you will understand how Spring Boot develops Spring
applications with agility and provides an already prepared menu for creating a REST
service. You will learn how Spring Boot solves common problems at the configuration level
of an enterprise application by using auto-configure.

Getting Started with Spring Boot 2.0 Chapter 1

[8]

This chapter will cover the following points:

Introducing Spring Boot
Simplifying Spring application development using Spring Boot
The essential key components of Spring Boot

Spring Boot Starter projects
Auto-configuration
Spring Boot CLI
Spring Boot Actuator

Setting up a Spring Boot workspace
Developing your first Spring Boot application
New features in Spring Boot 2.0

Let's look at these topics in detail.

Introducing Spring Boot
In my opinion, Spring Boot is like a cooked meal waiting to be eaten. In terms of Spring
application development, Spring applications typically require a lot of setup. Suppose you
are working with JPA. You need DataSource, TransactionManager,
EntityManagerFactory, and so on. If you are working with a web MVC application, you
need WebApplicationInitializer/web.xml, ContextLoaderListener, and
DispatcherServlet. If you are working on an MVC application using JPA, you would
need all of these. But much of this is predictable. Spring Boot can do most of this setup for
you.

Spring Boot provides a new strategy for application development with the Spring
Framework, with minimal fuss. It enables you to focus only on the application's
functionality rather than Spring metaconfiguration. Spring Boot requires either minimal or
zero configuration in the Spring application.

According to the Spring Boot documentation:

"Spring Boot makes it easy to create stand-alone, production-grade Spring based
Applications that you can "just run.""

Getting Started with Spring Boot 2.0 Chapter 1

[9]

Spring Boot has changed the way Spring applications are being developed. If you look at
the initial versions of the Spring Framework, Spring was a very lightweight and POJO-
oriented framework. That means it was decoupled and had less component code, with
configurations being set up using XML. As of Spring version 2.5, annotations were
introduced, which reduced the XML configurations by using component-scanning. Spring
3.0 came with Java configuration; do note that there was still no escape from configuration.
Eventually, with the latest Spring version, component-scanning reduced configuration and
Java configuration made it less time-consuming, but Spring still required a lot of
configuration.

All these configurations in the Spring application affect the development of actual business
functionality. It works as a source of friction in Spring application development. There is no
doubt the Spring Framework does much more for us in the area of application development
using Java. But if a mistake happened in the configuration level, it required a lot of time to
debug and solve it.

Another point of friction is project dependency management. Adding dependencies is very
hectic work that gives developers headaches when it comes to deciding what libraries need
to be part of the project build. It is even more challenging to identify the versions of
depending libraries.

Overall, you can see that configurations, dependency management, and deciding versions
of depending libraries consume a lot of the development time of the software engineer.
Finally, it reduces the productivity of developers.

Spring Boot has changed all of that, but remember it is not a code generator or an IDE
plugin.

Spring Boot has an opinionated view of the Spring application. An opinionated runtime for
Spring Projects supports different project types, such as Web and Batch, and it handles
most low-level, predictable setup for you.

What is an opinionated runtime? Spring Boot uses sensible defaults, opinions, mostly based
on the classpath contents. For example, it sets up a JPA Entity Manager Factory if a JPA
implementation is on the classpath. Spring Boot uses a default Spring MVC setup if Spring
MVC is on the classpath. Still, everything can be overridden easily, but most of the time
there is no need to override anything.

Let's see how Spring Boot simplifies Spring application development.

Getting Started with Spring Boot 2.0 Chapter 1

[10]

Simplifying Spring application development
using Spring Boot
As we have discussed in the previous section, the Spring Framework provides lot of
flexibility to configure beans in the Spring application in multiple ways such as XML,
annotation, and Java configuration. But remember, if the number of modules and features
increases in the Spring application, it also increases the complexity in the configuration.
After a point, your Spring application tends to become tedious and error-prone.

Here, Spring Boot comes into the picture to address the complexity of the configuration of
your Spring application.

Spring Boot does exactly what you are looking for. It will do things automatically for you
but allows you to override the defaults if required. (Remember the point about it being an
opinionated framework?)

Spring Boot is not a separate framework, but it is Spring at heart. It is built on top of the
Spring Framework to remove tedious work from the developer end and allow developers
to focus on the business code with minimal or zero configurations.

See the following diagram that shows what Spring Boot is exactly:

Getting Started with Spring Boot 2.0 Chapter 1

[11]

In the preceding diagram, you can see that Spring Boot is the surface layer over the Spring
Framework, with all of the modules such as Web (MVC), JDBC, Security, Batch, and so on.
It presents a small surface area for User to approach and extract value from the rest of
Spring.

Suppose you are working with a task, a Hello World web application. If you are choosing
to develop with the Spring Framework, what would you need to do?

The following are the bare minimum configurations required for a small web application:

Creating a project structure either by using Maven or Gradle and defining
required dependencies such as Spring MVC and the Servlet API dependencies
for your case.
A deployment descriptor file, that is, web.xml. In the case of Java configuration,
you require the WebApplicationInitializer implementation class that
declares Spring's DispatcherServlet.
The Spring MVC configuration class to enable the Spring MVC module for your
Hello World application.
You have to create a controller class that will respond to your request.
You require a web application server such as Tomcat.

Of these points, most are generic boilerplate code and common configuration for a Spring
web application, except writing application-specific controllers. So, Spring Boot provides all
common configurations and boilerplate code based on the available library of the classpath.
You don't need to take responsibility for writing this common and generic code.

Let's create the same Hello World application using Spring Boot. Suppose for a moment
we are using a Groovy-based controller class as follows:

@RestController
class HelloController {
 @GetMapping("/")
 String hello() {
 "Hello World!!!"
 }
}

This code is a complete Spring web application, with nothing required to configure. No
web.xml file, no build specification, and not even an application server. This is the entire
application. We can run this application using Spring Boot CLI with the following
command:

$ Spring run HelloController.groovy

Getting Started with Spring Boot 2.0 Chapter 1

[12]

So, you can see how Spring Boot simplifies Spring application development. We will also
see the same application using Java in the next section of this chapter.

Spring Boot does not compete with the Spring or Spring MVC
Framework. It makes it easy to use them in the Spring application.

The essential key components of Spring
Boot
You have seen how Spring Boot simplifies Spring application development. But how does
Spring Boot make it possible? What is the magic behind it? Spring Boot brings this magic to
Spring application development. The following are essential key components of Spring
Boot:

Spring Boot Starters
Automatic configuration
Spring Boot CLI
Spring Boot Actuator

These four core key components are the reason behind Spring Boot's magic. These
components make Spring application development easy. Let's see these components in
detail.

Spring Boot Starters
Starter is like a small Spring project for each module such as web MVC, JDBC, ORM, and so
on. For your Spring application, you just add the starters of the respective module in the
classpath, and Spring Boot will ensure that the necessary libraries are added to the build by
using Maven or Gradle. As a developer, you don't need to worry about the module libraries
and dependent versions of libraries, that is, transitive dependencies.

Spring Boot documentation says Starters are a set of convenient
dependency descriptors that you can include in your application. You get
a one-stop-shop for all the Spring and related technologies that you need,
without having to hunt through sample code and copy-paste loads of
dependency descriptors.

Getting Started with Spring Boot 2.0 Chapter 1

[13]

Suppose you want to create a web application or an application to expose RESTful services
using the Spring web MVC module to your Spring application; just include the spring-
boot-starter-web dependency in your project, and you are good to go.

Let's see what it would look like in the Spring application:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
</dependencies>

This starter dependency resolves the following transitive dependencies:

spring-web-*.jar

spring-webmvc-*.jar

tomcat-*.jar

jackson-databind-*.jar

See the following diagram about spring-boot-starter-web:

The spring-boot-starter not only reduces the build dependency count, but also adds
specific functionality to your build. In your case, you added the web starter to your Spring
application, so it provides web functionality that your application needs. Similarly, if your
application will use ORM, then you can add the orm starter. If it needs security, you can
add the security starter.

Getting Started with Spring Boot 2.0 Chapter 1

[14]

Spring Boot provides a wide range of Starter projects. Spring Boot provides the following
application Starters under the org.springframework.boot group:

spring-boot-starter-web-services: For building applications exposing
SOAP web services
spring-boot-starter-web: Build web applications and RESTful applications
spring-boot-starter-test: Write great unit and integration tests
spring-boot-starter-jdbc: Traditional JDBC applications
spring-boot-starter-hateoas: Make your services more RESTful by adding
HATEOAS features
spring-boot-starter-security: Authentication and authorization using
Spring Security
spring-boot-starter-data-jpa: Spring Data JPA with Hibernate
spring-boot-starter-cache: Enabling the Spring Framework's caching
support
spring-boot-starter-data-rest: Expose simple REST services using Spring
Data REST

Spring Boot Starter Parent POM
The Starter Parent POM defines key versions of dependencies and Maven plugins. It
typically uses spring-boot-starter-parent as the parent in the pom.xml file:

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
</parent>

Spring Boot Starter Parent POM allows us to manage the following things for multiple child
projects and modules:

Configuration: Java version and other properties
Dependency management: Version of dependencies
Default plugin configuration: This includes configurations such as build plugins

It is an easy way to bring in multiple coordinated dependencies including transitive
dependencies.

Getting Started with Spring Boot 2.0 Chapter 1

[15]

Let's see the Spring Boot auto-configuration.

Spring Boot auto-configuration
Spring Boot can automatically provide configuration for application functionality, which is
common to many Spring applications. Auto-configuration works by analyzing the
classpath as follows:

If you forget a dependency, Spring Boot can't configure it
A dependency management tool is recommended
Spring Boot Parent and Starters make it much easier
Spring Boot works with Maven, Gradle, and Ant/Ivy

Spring Boot offers auto-configuration of those modules in your Spring application based on
the JAR dependencies that you have added. Suppose you added the JPA starter
dependency (spring-boot-starter-data-jpa) in your Spring application classpath;
Spring Boot attempts to automatically configure JPA to your Spring application. Now, you
have not manually configured any database connection beans related to JPA. Similarly, if
you want to add an in-memory database such as HSQLDB, just add it (org.hsqldb) in the
classpath of your Spring application, and it will auto-configure an in-memory database.

Spring Boot provides the auto-configuration feature in the following ways:

First, Spring Boot looks for frameworks available on the classpath
After that, it checks existing configuration for the application

Based on these points, Spring Boot provides the basic configuration needed to configure the
application with these frameworks. This is called auto-configuration.

In another book, Spring 5 Design Patterns, I have written an application related to the
backend that accesses a relational database by using JDBC. As we know that the Spring
Framework provides JdbcTemplate, we have to register this JdbcTemplate as a bean in
the application context of our application as follows:

@Bean
public JdbcTemplate jdbcTemplate(DataSource dataSource) {
 return new JdbcTemplate(dataSource);
}

Getting Started with Spring Boot 2.0 Chapter 1

[16]

This configuration creates an instance of JdbcTemplate and injects it with another bean
dependency, DataSource. So, also we have to register this DataSource bean to be met.
Let's see in the following configuration how the HSQL database is configured with a
DataSource bean:

@Bean
public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setType(EmbeddedDatabaseType.HSQL)
 .addScripts('schema.sql', 'data.sql')
 .build();
}

This configuration creates an instance of DataSource specifying the SQL scripts
schema.sql and data.sql with the HSQL embedded database.

You can see that the two bean methods are not too complex to define, but are also not part
of the application logic. This represents just a fraction of application configuration. If you
add the Spring MVC module to the same application, then you have to register another
corresponding bean method. These methods will be the same for each Spring application
where you want to use the same modules. We can say that this is
boilerplate configuration code in each Spring application.

In short, the configuration, whatever we have defined, is a common configuration for each
application. Ideally, we should not have to write it for each application.

Spring Boot addresses this problem of common configuration. It can automatically
configure these common configuration bean methods. Spring Boot provides this auto-
configuration based on the available library in your application's classpath. So, if we have
to add the HSQL database library in your application's classpath, then it will automatically
configure an embedded HSQL database.

If a Spring JDBC-related library is in the classpath of your Spring application, then it will
also configure a JdbcTemplate bean for your application. There is no need to configure
these beans manually in your Spring application. These beans will be automatically
configured for you; just use them for business logic. Spring Boot reduces such boilerplate
code configuration at the developer's end.

Getting Started with Spring Boot 2.0 Chapter 1

[17]

Enabling Spring Boot auto-configuration
Spring Boot provides the @EnableAutoConfiguration annotation that is responsible for
enabling the auto-configuration feature. This annotation is used in the main application file
of the Spring Boot application. The @EnableAutoConfiguration annotation on a Spring
Java configuration class causes Spring Boot to automatically create beans it thinks you
need, usually based on classpath contents, that it can easily override.

Let's see the following code that represents the main application launcher class in the
Spring Boot application:

@Configuration
@EnableAutoConfiguration
public class MyAppConfig {
 public static void main(String[] args) {
 SpringApplication.run(MyAppConfig.class, args);
 }
}

But, Spring Boot also provides a shortcut for this configuration file by using another
annotation, @SpringBootApplication.

It is very common to use @EnableAutoConfiguration, @Configuration, and
@ComponentScan together. Let's see the following updated code:

@SpringBootApplication
public class MyAppConfig {
 public static void main(String[] args) {
 SpringApplication.run(MyAppConfig.class, args);
 }
}

In this code, @ComponentScan, with no arguments, scans the current package and its sub-
packages.

@SpringBootApplication has been available since Spring Boot 1.2.

Getting Started with Spring Boot 2.0 Chapter 1

[18]

Let's see the following diagram to explain it better than the code:

In this diagram, we can say that the @SpringBootApplication annotation has composed
functionality from three annotations—@EnableAutoConfiguration, @ComponentScan,
and @Configuration.

Spring Boot Starter reduces a build's dependencies and Spring Boot auto-
configuration reduces the Spring configuration.

If you want to exclude auto-configuration for some of the modules, then you use the
exclude property of @SpringBootAnnotation. Let's look at the following code:

@SpringBootApplication(exclude = {DataSourceAutoConfiguration.class,
HibernateJpaAutoConfiguration.class})
public class MyAppConfig {
 ...
}

As you can see in the code, this Spring Boot application will consider
DataSourceAutoConfiguration.class and
HibernateJpaAutoConfiguration.class for the auto-configuration.

Let's see the following diagram that explains all about the Spring Boot auto-configuration
feature:

Getting Started with Spring Boot 2.0 Chapter 1

[19]

As you can see in the diagram, you just include the required modules in your Spring
application. At runtime, Spring Boot checks libraries at the classpath of your application. If
the required libraries are available on the classpath of your application, then Spring Boot
configures the required beans and other configuration for your application. You don't need
to worry about the configuration of the modules in the Spring Boot application.

Let's discuss another key component, Spring Boot CLI, in the next section.

Spring Boot CLI
Spring Boot also provides a command-line tool that can be used to quickly write Spring
applications. You can run Groovy scripts with Spring Boot CLI. Groovy code has almost
zero boilerplate code compared with Java.

The Spring Boot documentation says:

"You don't need to use the CLI to work with Spring Boot but it's definitely the quickest
way to get a Spring application off the ground."

Spring Boot's CLI gives you more free time from having to add starter dependencies and
auto-configuration to let you focus only on writing your application-specific code. We have
seen this in this chapter in the Groovy script HelloController. We can run this Groovy
script with Spring Boot CLI.

Spring Boot CLI is a smart tool, because in the Groovy script, if you noticed, there are no
import lines. But, Spring Boot CLI allows us to run it. What about dependent libraries, you
ask? We don't have Maven or Gradle here. CLI is smart; it detects classes being used in
your application and it also knows which Starter dependencies should be used for these
classes; accordingly, Spring Boot CLI adds dependencies to the classpath to make it work.

As Spring Boot CLI adds dependencies, a series of auto-configuration kicks in and adds the
required bean method configuration so that your application is able to respond to HTTP
requests.

CLI is an optional feature of Spring Boot; it just allows you to write a complete application
with your application code only as, it doesn't need to build a traditional project. CLI
provides tremendous power and simplicity for Spring development. In Chapter 2,
Customizing Auto-Configuration in Spring Boot Application, we will see how to set up Spring
Boot CLI.

Let's move to another key component of Spring Boot's building blocks. This is Spring Boot
Actuator, which gives us insight about running a Spring Boot application.

Getting Started with Spring Boot 2.0 Chapter 1

[20]

Spring Boot Actuator
There are a lot of frameworks that provide tools for application development. But Spring
Boot doesn't only provide application development-specific features; it also provides a
post-production grade feature. This allows you to monitor your Spring application during
production using HTTP endpoints or with JMX.

Spring Boot Actuator is the final key component of its building blocks. Other parts of
Spring Boot's building blocks simplify Spring development; the Actuator instead offers the
ability to inspect the internals of your application at runtime. The Actuator provides data
on auditing, metrics, and the health of your Spring Boot application using HTTP endpoints
or with JMX. It helps to you manage your application when it's pushed to production.

The Actuator installed in a Spring Boot application provides the following benefits:

It provides details of all beans configured in the Spring application context
Actuator also provides details about Spring Boot's auto-configuration
It also ensures all environment variables, system properties, configuration
properties, and command-line arguments are available to your application
The Actuator gives various metrics pertaining to memory usage, garbage
collection, web requests, and data source usage
It provides a trace of recent HTTP requests handled by your application
It also gives information about the current state of the threads in the Spring Boot
application

Spring Boot Actuator provides the listed information in two ways:

You could use web endpoints
Or you could use it via a shell interface

We'll explore Spring Boot Actuator's capabilities in detail when we get to Chapter
3, Getting Started with Spring CLI and Actuator.

We have seen all the building blocks of Spring Boot. These blocks serve to simplify Spring
application development in its own way.

Now, let's move to the next section of this chapter, and see how to set up a Spring Boot
workspace to develop your first Spring Boot application.

Getting Started with Spring Boot 2.0 Chapter 1

[21]

Setting up a Spring Boot workspace
Let's see how to set up a Spring Boot workspace to create a Spring Boot application. No
special tool integration is required to set up a Spring Boot application. You can use any IDE
or text editor. But, Spring Boot 2.0's minimum system requirements are as follows:

Java SDK v1.8 or higher
Spring Framework 5.0.0.RELEASE or above
Maven (3.2+) and Gradle 4
Tomcat 8.5, that is, a Servlet 3.0+ compatible container

Let's see the following ways to set up the workspace for the Spring Boot application:

Set up Spring Boot with Maven
Set up Spring Boot with Gradle

Now, we will explore how to set up a Spring Boot application with Maven and Gradle in
detail.

Setting up Spring Boot with Maven
Spring Boot is compatible with Apache Maven 3.2 or above. If your machine doesn't
already have Java 8 or above, first download Java 8 or above from Oracle's official website:

http://www.oracle. com/ technetwork/ java/ javase/ downloads/ jdk8- downloads- 2133151.
html

And if you don't already have Maven, first download it from https:/ /maven. apache. org/ ;
Ubuntu users can run sudo apt-get install maven. Let's see the following Spring Boot
dependencies with the org.springframework.boot groupId:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <parent> <groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.0.2.RELEASE</version> <relativePath/> <!-- lookup parent
from repository --> </parent>

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/

Getting Started with Spring Boot 2.0 Chapter 1

[22]

 <dependencies>
 <dependency>
<groupId>org.springframework.boot</groupId> <artifactId>spring-
boot-starter-web</artifactId>
 </dependency>

 </dependencies>
 ...
 ...
</project>

This .pom file is the minimum requirement for the Spring Boot 2.0 application.

Let's see the Gradle setup for the Spring Boot application.

Setting up Spring Boot with Gradle
We have seen that Java 8 is the minimum requirement for Spring Boot 2.0, both with Maven
and Gradle. However, if you want to use Gradle, then first install Gradle 4 or above in your
machine from www.gradle.org/.

Now, see the following Gradle Spring Boot dependencies file with
org.springframework.boot groupId. Here's what the build.gradle file should look
like:

buildscript {
 repositories {
 jcenter()
 maven { url 'http://repo.spring.io/snapshot' }
 maven { url 'http://repo.spring.io/milestone' }
 }
 dependencies {
 classpath 'org.springframework.boot:spring-boot-gradle-
plugin:2.0.0.M7'
 }
}
apply plugin: 'java'
apply plugin: 'org.springframework.boot'
apply plugin: 'io.spring.dependency-management'

jar {
 baseName = 'HelloWorld'
 version = '0.0.1-SNAPSHOT'
}

http://www.gradle.org/

Getting Started with Spring Boot 2.0 Chapter 1

[23]

repositories {
 jcenter()
 maven { url "http://repo.spring.io/snapshot" }
 maven { url "http://repo.spring.io/milestone" }
}

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 testCompile("org.springframework.boot:spring-boot-starter-test")
}

The preceding Gradle file has minimum requirements for the Spring Boot application. You
could use either Maven or Gradle since the process is the same. Spring Boot creates an
application using the same process.

Let's create your first Spring Boot application and see how to set up the project's structure
using Spring Boot Initializr.

Developing your first Spring Boot
application
Let's create a Hello World REST application in Java, and create a simple REST service that
returns the Hello World message on request. In this application, we will use Maven to
build this project.

You would have noticed that whenever you create a simple project structure, you face some
difficulties to create it. Where will you place configuration files, properties files, and so on,
and build files with dependencies? Traditionally, to resolve this problem and find an easy
solution for the project structure, you would have to go to Google and search multiple
blogs. I have spent quite some time doing this!

However, things have changed because the Spring Boot team has provided a solution for
the project structure. This is the Spring Boot Initializr.

The Spring Boot Initializr provides solutions to all these problems related to setup work,
and it creates a more traditional Java project structure.

Getting Started with Spring Boot 2.0 Chapter 1

[24]

The Spring Boot Initializr is nothing but a web application that can create a Spring Boot
project structure for you. It generates a basic project structure, either a Maven or Gradle
build specification; it depends on you what you choose from the menu. But remember, it
doesn't generate any application code. You can use this Spring Initializr in several ways:

Spring Boot Initializr through a web-based interface (https:/ /start. spring. io)
You can also use it through an IDE such as Spring Tool Suite (STS) and IntelliJ
IDEA
Using the Spring Boot CLI

We will explore Spring Initializr with Spring Boot CLI in Chapter 3, Getting Started with
Spring CLI and Actuator. Let's check the other two ways of using Spring Initializr and start
with the web-based interface.

Using a web interface for Spring Initializr
The Spring team provides a web application hosted at: https:/ /start. spring. io. It is the
most simple way to create a Spring Boot application and the most straightforward way to
use the Spring Initializr. It has all the menu options for you, just choose them and use them
in your application.

Let's see the following screenshot of what the home page look like:

https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io

Getting Started with Spring Boot 2.0 Chapter 1

[25]

As you can see, there are a number of options you need to fill in. They are:

Project type: Maven or Gradle
Language: Java, Kotlin, or Groovy
Spring Boot version

On the SPRING INITIALZR home page, on the left side of the form, it asks to specify
minimum project metadata, so you must provide the project's Group and Artifact.

You can enter minimal details for whatever SPRING INITIALZR asks about your
application, pick your build system, favorite language, and version of Spring Boot you wish
to use, whatever you want. After that, choose your application's dependencies from the
menu and also provide your project's Group and Artifact. Click the Generate Project
button, and we have a ready-to-run application.

Here, I have selected the Spring Boot 2.0.2, Maven build from the drop-down menu and
Java as the language from the drop-down menu. Next, I have given my
project's Group and Artifact as follows:

Group: com.dineshonjava.masteringspringboot
Artifact: mastering-spring-boot

Let's see another interesting thing about the web-based interface. Once you click the Switch
to the full version link at the bottom of the web interface, it expands to provide more
options. It lets you pick the ingredients for your application, like picking off a delicious
menu. And also, you can specify additional metadata such as version and base package
name.

As you can see in the previous screenshot, I have added some more ingredients such as
project description, package name, packaging style (either JAR or WAR), and you could
also choose a Java version as well. Let's click on the Generate Project button on the form to
have Spring Initializr generate a project for you.

Spring Initializr presents this project to you as a ZIP file, named as the value in the Artifact
field, that is downloaded by your browser. In our case, this ZIP file is named mastering-
spring-boot.zip.

Getting Started with Spring Boot 2.0 Chapter 1

[26]

Let's unzip this file and you will have a project structure as follows:

As you can see, there's very little code in this project and it also creates a couple of empty
directories. The generated project contains the following:

pom.xml: A Maven build specification
MasteringSpringBootApplication.java: A class with a main() method to
bootstrap the application
MasteringSpringBootApplicationTests.java: An empty JUnit test class
instrumented to load a Spring application context using Spring Boot auto-
configuration
application.properties: An empty properties file for you to add
configuration properties to as you see fit
static directory: Here, you can put any static content (JavaScript, style sheets,
images, and so on) to be served from the web application
templates directory: Here, you can put templates that render model data

Finally, import this project to your favorite IDE. If you are using the Spring Tool Suite IDE,
it supports creating Spring Boot applications, so you don't need to go to the web-based
interface.

Let's have a look at how to create a Spring Boot project by using the STS IDE.

Getting Started with Spring Boot 2.0 Chapter 1

[27]

Creating a Spring Boot project using the STS IDE
Spring Tool Suite is one of most popular IDEs for Java developers to develop Spring-based
applications. If you don't have STS in your machine, first download the latest version of
STS from the following link:

http://spring.io/ tools/ sts

Let's create a new Spring Boot application in the STS by selecting the
New | Spring Starter Project menu item from the File menu. Let's see the following
screenshot; STS will present you with a dialog box:

http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts
http://spring.io/tools/sts

Getting Started with Spring Boot 2.0 Chapter 1

[28]

As you can see in the screenshot, this dialog box asks for the same information as the web-
based Spring Initializr. So, let's fill it in with the same information, whatever we filled in the
web-based Spring Initializr with.

Let's click the Next button. It will present us with a second dialog box like the one shown in
the following screenshot:

Let's click on the Finish button. It will present the project structure in your workspace with
the same directory structure and default file as the web-based approach presented to you in
the ZIP file.

You must be connected to the internet in order for it to work, because STS internally
delegates to the Spring Initializr at http:/ /start. spring. io to produce the project.

Now that the project has been imported into your workspace, let's create your application
files, such as controllers.

http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io

Getting Started with Spring Boot 2.0 Chapter 1

[29]

Implementing the REST service
Let's start by creating a simple REST controller as follows:

package com.dineshonjava.masteringspringboot.controller;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class HelloController {

 @GetMapping("/hello")
 String sayHello(){
 return "Hello World!!!";
 }
}

Let's see this small REST controller (HelloController) in detail:

@RestController annotation: It indicates that this is the controller class and its
result writes into the response body and doesn't want to render view
@GetMapping annotation: It indicates a request handler method and it is a
shorthand annotation for @RequestMapping(method = RequestMethod.GET)
sayHello() method: It returns a greeting message

In the STS IDE, you could run your application as a Spring Boot application with an
embedded server by selecting Run As | Spring Boot Application from the Run menu as
follows:

Spring Initialzr creates the main application launcher class as follows:

package com.dineshonjava.masteringspringboot;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication

Getting Started with Spring Boot 2.0 Chapter 1

[30]

public class MasteringSpringBootApplication {

 public static void main(String[] args) {
 SpringApplication.run(MasteringSpringBootApplication.class, args);
 }
}

This tiny class is actually a fully operational web application! Let's see some details:

@SpringBootApplication: This annotation tells Spring Boot, when launched,
to scan recursively for Spring components inside this package and register them.
It also tells Spring Boot to enable auto-configuration, a process where beans are
automatically created based on classpath settings, property settings, and other
factors.
main() method: It is a simple public static void main() method to run the
application.
SpringApplication.run(): The SpringApplication class is responsible for
creating the Spring application's context, and the run() method initializes the
application's context in your Spring application.

Let's run your Spring Boot application and observe the logs on the console as follows:

Getting Started with Spring Boot 2.0 Chapter 1

[31]

As you can see in the console logs, you can observe several things:

Logs have the Spring Boot banner at the top of the logs and Spring Boot version.
You can also add your own ASCII banner by creating banner.txt or
banner.png and putting it into the src/main/resources/ folder.
There is an embedded Tomcat server with the server port 8080; it is the default
port, but you can customize it by adding the server.port property to the
application.properties file as follows:

server.port= 8181

Logs also shows all possible request mappings of your application as follows:

As you can see, your application is running on the default embedded Tomcat server with
the default server port, 8080. Let's verify it on the system browser, where it will look as
follows:

In this chapter, we have created a very simple Hello World REST application and run this
application on the embedded Tomcat server of Spring Boot.

Let's see what new features and enhancements have been added to the new version of
Spring Boot, 2.0.

New features in Spring Boot 2.0
Spring Boot was first released four years ago in 2014. In 2018, a newer version of Spring
Boot was released. There are many new features and updates in Spring Boot 2.0. Here are
some of the most important changes:

There are many new packages and Starters that help with dependency
management.

Getting Started with Spring Boot 2.0 Chapter 1

[32]

Spring Boot 2.0 also supports auto-configuration. This helps in reducing the
configuration that was needed in previous Spring apps.
It has introduced better longing through features like Actuator.
Software quality testing and utilities have been enhanced. This helps in a better
user experience. With spring-boot-devtools, you can have much more
enhanced feedback loops.
Spring Boot 2.0 supports Java version 8 and greater only. It is one of the few
options available where you can use the latest Java 9.
The Gradle plugin is replaced by BootJar and BootWar.
The dependency management plugin is no longer activated automatically.
It's far more secure.
Reactive models have new starters of different types, such as WebFlux.
Actuator has been upgraded with huge changes. Earlier, only Spring MVC could
be supported by Actuator, but with version 2.0, Actuator is independent.

You can see that a lot of exciting new features and enhancements can be found in Spring
Boot 2.0. So in this book, we will look at many of these new features with examples.

Summary
This chapter has given you a quick overview of what Spring Boot has to offer. In this
chapter, we have learned how Spring Boot simplified Spring application development.
Spring Boot made this magic possible by using its key components such as Spring Boot
auto-configuration, Starters, Spring Boot CLI, and Spring Boot Actuator. You can take
advantage of Spring Boot Starter dependencies and auto-configuration; you can do rapid
development of the Spring application by just focusing only on the application logic, rather
than configurations and build dependencies, libraries, and version management.
Meanwhile, auto-configuration frees you from boilerplate configuration.

We have also created a very simple Hello World REST application by using the web-
based Spring Initializr and Spring Tool Suite IDE, and we have run this application, where
we used the embedded Tomcat container.

In Chapter 2, Customizing Auto-Configuration in Spring Boot Application, we'll dive deeper
into Spring Boot auto-configuration and its customization in the Spring Boot application.

2
Customizing Auto-Configuration

in Spring Boot Application
Spring Boot gives us a free hand when it comes to overriding auto-configurations in each
module. It doesn't force us to use default configurations. It is very opinionated about the
configurations. In this chapter, we will explore how to override auto-configurations using
properties and YML files.

Some days ago, one of my friends purchased a car. You know that car companies also
provide full control of exterior decoration to make it look like a sports car. You could
change the color combination, headlights, wheels, door LEDs, and so on. The car can be
changed according to your precise specifications.

But on the other hand, most models of car can't be overridden. You have to purchase them
with auto-configuration. Some car companies offer a form of auto-configuration so, you
don't have to explicitly specify the colors of the external and internal body. Either the
companies already applied the color customization within offers, or they will not give you
a hand when choosing the body color.

Most of the cars or car companies will let you customize your car, so that you can purchase
a pre-configured car with default configuration. Similarly, if you are working with a
traditional Spring configuration, you have full control over what goes into your Spring
configuration, much like purchasing a car and explicitly specifying all of the features you
want.

On the other hand, Spring Boot auto-configuration is like purchasing a car on offer. It's
easier to let Spring Boot handle the details than to declare each and every bean in the
application's context. Fortunately, Spring Boot auto-configuration is flexible. Spring Boot
will let you step in and influence how it applies auto-configuration.

Customizing Auto-Configuration in Spring Boot Application Chapter 2

[34]

At the end of this chapter, you will understand how Spring Boot provides flexibility to
override auto-configuration by using explicit configuration overrides and fine-grained
configuration with properties.

This chapter will cover the following points:

Understanding auto-configuration
Customizing Spring Boot

Overriding the auto-configuration of Spring Boot
Externalizing configuration with properties
Fine-tuning with logging
Using YAML for configuration
Customizing application error pages

Let's see these topics in detail.

Understanding auto-configuration
Spring Boot auto-configuration provides automatic configuration to your Spring
application based on the modules and associated library dependencies of those modules
that you have added. For instance, if you have added the embedded in-memory database
H2 in your classpath, you are not required to manually configure any bean related to the
database such as DataSource, JdbcTemplate, and so on. Spring Boot provides your H2
database with auto-configuration after adding dependency on the H2 database in your
application's classpath.

Spring Boot provides the magic of autoconfiguration by extensive use of pre-written
@Configuration classes for each module of Spring Framework. But these auto-
configurations are activated based on:

The contents of the classpath of your Spring application
Properties you have set in the application
Beans already defined in your application

The @Profile annotation of Spring Framework is an example of conditional configuration.
Spring Boot takes this idea to the next level and provides a layer of auto-configuration on
top of the traditional Spring Framework. That is why Spring Boot is not a separate
framework by heart; it is Spring Framework.

Customizing Auto-Configuration in Spring Boot Application Chapter 2

[35]

@Profile is a special case of @Conditional.

Learning how auto-configuration works
Let's see what the @Conditional annotation does:

It allows conditional bean creation. It only creates a bean if other beans exist (or
don't exist) as follows:

 @Bean
 @ConditionalOnBean(name={"dataSource"})
 public JdbcTemplate jdbcTemplate(DataSource dataSource) {
 return new JdbcTemplate(dataSource);
 }

Or @Conditional annotations allow us to create the bean by checking the type
of other classes:

 @Bean
 @ConditionalOnBean(type={DataSource.class})
 public JdbcTemplate jdbcTemplate(DataSource dataSource) {
 return new JdbcTemplate(dataSource);
 }

There are many other options available under @Conditional annotation, as
follows:

@ConditionalOnClass

@ConditionalOnProperty

@ConditionalOnMissingBean

@ConditionalOnMissingClass

Let's see what the auto-configuration class looks like in Spring Boot.

It is a pre-written Spring configuration in
the org.springframework.boot.autoconfigure package in the spring-boot-
autoconfigure JAR file:

@Configuration
public class DataSourceAutoConfiguration implements EnvironmentAware {
 ...

Customizing Auto-Configuration in Spring Boot Application Chapter 2

[36]

 @Conditional(...)
 @ConditionalOnMissingBean(DataSource.class)
 @Import(...)
 protected static class EmbeddedConfiguration { ... }
 ...
}

Spring Boot defines many of these configuration classes. They are activated in response to
dependencies on the classpath of your Spring application.

Let's see how to customize Spring Boot auto-configuration in your Spring application in the
next section.

Customizing Spring Boot
Spring Boot offers you full control over auto-configuration. You can control what Spring
Boot does. There are several options for customizing Spring Boot configuration. They are as
follows:

You can customize by setting some of Spring Boot's properties in the properties
or YAML files
Also, you can define certain beans yourself so Spring Boot won't use the default
You can disable some autoconfiguration explicitly
Change dependencies

Let's see these four points in detail, and how to use them to customize Spring Boot auto-
configuration in your Spring application.

Customizing using Spring Boot properties
Spring Boot allows you to customize your application configurations and you can use the
same application code in different environments such as staging, production, and so on.
Spring Boot provides several methods for this customization—you can use properties files,
YAML files, environment variables, and command-line arguments to externalize
configuration.

Customizing Auto-Configuration in Spring Boot Application Chapter 2

[37]

Spring Boot gives you a free hand to override auto-configuration using a lot of Spring Boot
properties. So that you can easily override these properties. Let's see how to override the
values of these Spring Boot properties using the application.properties file. By
default, Spring Boot looks for application.properties in these locations (in this order):

The /config sub-directory of the working directory
The working directory
The config package in the classpath
The classpath root

You can create a PropertySource based on these files. There are many, many
configuration properties available in Spring Boot.

Let's see the following configuration example of the DataSource bean. In this example, we
will see how to control or override Spring Boot's default configuration of the DataSource
bean in the Spring application. There are the following typical customizations:

Use the predefined properties
Change the underlying data source connection pool implementation
Define your own DataSource bean

Let's see the following common properties configurable from the properties file; first, we
have to override the DataSource bean configuration:

Connection settings

spring.datasource.url=
spring.datasource.username=
spring.datasource.password=
spring.datasource.driver-class-name=

SQL scripts to execute

spring.datasource.schema=
spring.datasource.data=

Connection pool settings

spring.datasource.initial-size=
spring.datasource.max-active=
spring.datasource.max-idle=
spring.datasource.min-idle=

Customizing Auto-Configuration in Spring Boot Application Chapter 2

[38]

As you can see, you have to define your setting for the DataSource bean definition, such
as Connection settings, SQL scripts to execute, and Connection pool
settings. But Spring Boot creates a pooled DataSource bean by default if a known pool
dependency is available. The spring-boot-starter-jdbc or spring-boot-starter-
jpa Starter pulls in the tomcat-jdbc connection pool by default. But you can override this
to use alternatives—Tomcat, HikariCP, and Commons DBCP 1 and 2.

Let's see another example for web container configuration using Spring Boot properties.
Here's the configuration code:

server.port=9000
server.address=192.168.11.21
server.session-timeout=1800
server.context-path=/accounts
server.servlet-path=/admin

Let's see how to override auto-configuration in the Spring Boot application by replacing
generated beans in the next section.

Replacing generated beans
You can also customize Spring Boot auto-configuration by defining certain beans yourself
in your Spring application, so Spring Boot won't use default configuration for those beans.

Normally, beans you declare explicitly disable any auto-created ones. Let's see the
following example:

@Bean
public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder().
 setName("AccountDB").build();
}

In the preceding code, we have explicitly defined a DataSource bean; your DataSource
bean configuration stops Spring Boot from creating a default DataSource. Bean names are
often not important. It works with XML-based configuration, annotation, and/or Java-based
configuration.

Let's see another way of customizing Spring Boot autoconfiguration.

Customizing Auto-Configuration in Spring Boot Application Chapter 2

[39]

Disabling specific auto-configuration classes
At any point in time, if you don't want to use some of the specific auto-configuration classes
or if they don't suit your needs, you can disable those auto-configuration classes. For this,
you can use the exclude attribute of the @EnableAutoConfiguration annotation. Let's
see the following example:

@EnableAutoConfiguration(exclude=DataSourceAutoConfiguration.class)
public class ApplicationConfiguration {
 ...
}

As per the code snippet, we have used the @EnableAutoConfiguration annotation with
the exclude attribute. The DataSourceAutoConfiguration class will be excluded from
the auto-configuration. Similarly, we can define a list of auto-configuration classes that
need to be excluded.

You can define exclusions both at the annotation level and by using the
property.

Let's move to another point of customizing auto-configuration in the Spring Boot
application.

Changing a library's dependencies
Spring Boot includes auto-configuration based on the starter's JAR, which is available on
the classpath of the Spring application. Spring Boot POMs has dependencies on the Starters,
so you can override dependency versions by setting the appropriate Maven property in
your pom.xml like this:

<properties>
 <spring.version>5.0.0.RELEASE</spring.version>
</properties>

There are good reasons to override dependency version sometimes, such as a bug in the
given version, or your company policies. Ideally, you should avoid changing a dependency
version because it makes your life more complicated as you won't be able to manage the
version's transitive dependencies in your application.

Customizing Auto-Configuration in Spring Boot Application Chapter 2

[40]

If some libraries don't suit your Spring application, you could exclude them from the
classpath of the Spring application. Let's see the following example:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-websocket</artifactId>
 <exclusions>
 <exclusion>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 </exclusion>
 </exclusions>
</dependency>

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
</dependency>

As you can see, I have excluded the default logback library from the spring-boot-
starter-websocket starter and added the log4j library for application logging.

Let's move to another section about customizing configuration of Spring Boot.

Externalizing configuration with properties
Spring Boot offers you more than 1,000 properties for fine-tuning. Spring Boot
documentation (https:/ /docs. spring. io/spring- boot/ docs/ 2.0.2. RELEASE/ reference/
htmlsingle/#common- application- properties) gives an exhaustive list of these properties.
You can use these properties to adjust the settings of your Spring application. You can
specify these properties via environment variables, Java system properties, JNDI, command
line arguments, or property files. But Spring Boot has an order of overriding these
properties in case you define same properties on all of them. Let's see the order of
evaluation of the properties in the next section.

Order of evaluation for overridden properties
Let's see the following order of evaluation for overridden properties:

Defined properties for the Devtools global settings in your home directory1.
Defined properties for @TestPropertySource annotations on your tests2.

https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-boot/docs/2.0.2.RELEASE/reference/htmlsingle/#common-application-properties

Customizing Auto-Configuration in Spring Boot Application Chapter 2

[41]

Properties as command-line arguments3.
Defined properties from SPRING_APPLICATION_JSON4.
The properties with ServletConfig init parameters5.
The properties with ServletContext init parameters6.
JNDI attributes from java:comp/env7.
Java system properties8.
OS environment variables9.
Property file(s)—including application.properties and its YAML variant10.

This preceding list is in order of precedence. That means if you set any property from a
source higher in the list, Spring will override the same property defined in the source lower
in the list. The test environment and command-line arguments override properties from
any other property source.

Let's see the following order of evolution of the properties file and YAML variants:

A RandomValuePropertySource class that injects properties with random1.
value into configuration file define as random.*
Profile-specific application properties outside of your packaged JAR, that is, in2.
the /config subdirectory of the directory from which the application is run
(application-{profile}.properties and YAML variants)

Select a profile by executing the JAR with param
Dspring.profiles.active=dev or setting the property
spring.profiles.active=dev.

Profile-specific application properties outside of your packaged JAR but in a3.
directory from which the application is run (application-
{profile}.properties and YAML variants)
Profile-specific application properties packaged inside your JAR but in a package4.
named config (application-{profile}.properties and YAML variants)
Profile-specific application properties packaged inside your JAR but at the root of5.
the classpath (application-{profile}.properties and YAML variants)
Application properties outside of your packaged JAR, that is, in the /config6.
subdirectory of the directory from which the application is run
(application.properties and YAML variants)
Application properties outside of your packaged JAR but in a directory from7.
which the application is run (application.properties and YAML variants)

Customizing Auto-Configuration in Spring Boot Application Chapter 2

[42]

Application properties packaged inside your JAR but in a package named config8.
(application.properties and YAML variants)
Application properties packaged inside your JAR but at the root of the classpath9.
(application.properties and YAML variants)
@PropertySource annotations on your @Configuration classes10.
Default properties (specified using11.
SpringApplication.setDefaultProperties)

According to the order of precedence, if you set any properties in a profile-specific
application-{profile}.properties will override the same properties set in an
application.properties file at the same location as the application-
{profile}.properties file.

Again, this list is in order of precedence. That is, an application.properties file in a
/config subdirectory will override the same properties set in
a application.properties file in the application's classpath.

Let's see how to customize the name of the application property file
(application.properties).

Renaming application.properties in the Spring
application
Spring Boot doesn't force us to use only one properties file with the name
application.properties or application.yml. It allows you to override the name of
this file. For example, you could use myapp.properties as follows:

package com.dineshonjava.masteringspringboot;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class MasteringSpringBootApplication {

 public static void main(String[] args) {
 System.setProperty("spring.config.name", "myapp");
 SpringApplication.run(MasteringSpringBootApplication.class, args);
 }
}

Customizing Auto-Configuration in Spring Boot Application Chapter 2

[43]

The property filename must be defined as myapp, not
myapp.properties; if we use myapp.properties, the file would get
named as myapp.properties.properties.

As you can see in the code snippet, here, I am using the myapp.properties file instead of
using the application.properties file.

Let's see how to create external application properties by using beans and how to register
with the Spring application as a property file.

Externally configuring application properties
Spring Boot allows you to create your own customized configuration of application
properties with beans. You can register these beans as properties with Spring Boot by using
the @ConfigurationProperties annotation, and after this, you can set these properties
by using either the application.properties or application.yml file.

Spring Boot provides alternative ways of working with properties that allow you to
strongly type safe beans and validate the configuration of your application. Let's see the use
of the @ConfigurationProperties annotation for a dedicated container bean:

This @ConfigurationProperties annotation will hold the externalized
properties
It avoids repeating the prefix
Data members automatically set from corresponding properties

Let's see the following example:

 @Component
@ConfigurationProperties(prefix="accounts.client")
public class ConnectionSettings {
 private String host;
 private int port;
 private String logdir;
 private int timeout;
 ...
 // getters/setters
 ...
}

Customizing Auto-Configuration in Spring Boot Application Chapter 2

[44]

This POJO defines the following properties in the application.properties file:

accounts.client.host=192.168.10.21
accounts.client.port=8181
accounts.client.logdir=/logs
accounts.client.timeout=4000

You could set these properties as environment variables, or you could specify these
properties as command-line arguments, or you can add these in any of the other places
where configuration properties can be set.

Don't forget to add @EnableConfigurationProperties in one of your Spring
configuration classes because the @ConfigurationProperties annotation won't work
unless you have enabled it by adding the @EnableConfigurationProperties
annotation.

Using the @EnableConfigurationProperties
annotation
The @EnableConfigurationProperties annotation in the configuration class specifies
and auto-injects the container bean. Let's see the following configuration class file:

@Configuration
@EnableConfigurationProperties(ConnectionSettings.class)
public class AccountsClientConfiguration {
 // Spring initialized this automatically
 @Autowired
 ConnectionSettings connectionSettings;

 @Bean
 public AccountClient accountClient() {
 return new AccountClient(
 connectionSettings.getHost(),
 connectionSettings.getPort(),
 ...
);
 }
}

Customizing Auto-Configuration in Spring Boot Application Chapter 2

[45]

This is often unnecessary, however, because all of the configuration classes behind Spring
Boot auto-configuration are already annotated with @EnableConfigurationProperties.

Fine-tuning with logging
Logging is very important in each application to debug and analyze the application's bugs
during runtime. If you are working with the old-fashioned Spring Framework, then you
have to configure the logging framework explicitly in your application. But Spring Boot
provides support for several logging frameworks and also allows you to customize and
fine-tune logging in to your Spring application. Spring Boot includes, by default:

SLF4J: Logging facade
Logback: SLF4J implementation

But as a best practice, stick to default logging in your application and use the SLF4J
abstraction in the application code. Spring Boot also supports other logging frameworks
such as Java Util Logging, Log4J, and Log4J2. You can use another logging frameworks by
just adding a dependency, as follows:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-websocket</artifactId>
 <exclusions>
 <exclusion>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
</dependency>

According to this code, we are using log4j12 instead of the logback logging framework.
Let's see how to configure logging output in a Spring application.

Customizing Auto-Configuration in Spring Boot Application Chapter 2

[46]

Logging output
Spring Boot logs, by default, to the console, but you can also log to rotating files. You can
specify a file or path in application.properties. Let's see the following configuration:

Use only one of the following properties

absolute or relative file to the current directory
logging.file=accounts.log

will write to a spring.log file
logging.path=/var/log/accounts

Spring Boot can also configure logging by using the appropriate
configuration file of the underlying logging framework.

As you have seen how we can customize the logging activity in a Spring Boot application,
let's move to the next section and see an alternative to the properties file.

Using YAML for configuration
In a Spring Boot application, the SpringApplication class automatically supports YAML
as an alternative to properties. YAML isn't a markup language. It is an alternative to
.properties files and it allows you to define properties in the hierarchical configuration.
The Java parser for YAML is called SnakeYAML. It must be in the classpath, but it is
automatically added to the classpath by spring-boot-starters.

YAML for properties
Spring Boot supports YAML for properties as an alternative to properties files. YAML is
convenient for hierarchical configuration data. Spring Boot properties are organized in
groups, for example, server, database, and so on.

Let's see the following properties:

In application.properties:

database.host = localhost
database.user = admin

Customizing Auto-Configuration in Spring Boot Application Chapter 2

[47]

In application.yml:

database:
 host: localhost
 user: admin

Let's see, in the following section, how to define multiple profiles in a single YAML file.

Multiple profiles inside a single YAML file
A YAML file can contain configuration for multiple profiles. You can define multiple
profile-specific configurations in a single YAML file. Spring Boot provides a
spring.profiles key to indicate when the document applies. Let's see the following
example of how to define multiple profile-specific configurations in a single YAML file:

#Used for all profiles

logging.level:
org.springframework: INFO

#'dev' profile only

spring.profiles: dev
database:
 host: localhost
 user: dev

#'prod' profile only

spring.profiles: prod
database:
 host: 192.168.200.109
 user: admin

In this application.yml file, we have defined database settings according to two profiles,
dev and prod, by using a spring.profile key. In the file, '---' implies a separation between
profiles.

Customizing Auto-Configuration in Spring Boot Application Chapter 2

[48]

Also, I've found that if you have both application.properties and application.yml
side by side at the same level of precedence, properties in application.yml will override
those in application.properties.

Let's see how to customize the error page in the Spring web application.

Customizing application error pages
Every application has a chance of encountering an error, even if it is an extremely robust
application. So, designing custom error pages is important for any enterprise application.
Spring Boot applications provide a default error page. You can see one in the following
screenshot:

But if you want to use a custom error page for a given status code, you can add a file to the
/error folder. You can create a custom error page by using static HTML, FreeMarker,
Velocity, Thymeleaf, JSP, and so on. The name of the file should be the exact status code or
a series mask.

Let's see the following image to map 404 to a static HTML file; your folder structure would
be as follows:

Customizing Auto-Configuration in Spring Boot Application Chapter 2

[49]

As you can see, I have added a custom 404 error page (static error page 404.html) under
the /resource/public/error directory; see the following output from the error page:

As you can see, Spring Boot now displays a custom error page instead of the default
WhiteLabel error page as part of auto-configuration.

Summary
Spring Boot takes care of the boilerplate configuration that's often required in Spring
applications. Auto-configuration can be overridden or disabled, and framework versions
can be overridden too. Spring Boot enhances Spring configuration externalization
mechanisms by using properties/YAML files, which are it's easier to override Spring auto-
configuration by using Properties and YAML file.

Spring Boot provides fine-tuning with logging frameworks, and you can exclude some
default frameworks from your application. Spring Boot also auto-configures a simple
whitelabel error page for you.

In the next chapter, we'll understand Spring Cloud and Spring CLI installation.

3
Getting Started with Spring CLI

and Actuator
In the previous chapters, we have seen several ways to create a Spring Boot application
using the Spring Boot web-based interface, STS IDE, and Spring Boot CLI. In this chapter,
we will discuss Spring Boot CLI a bit deeper and will also see how to install CLI in your
machine and how to create a Spring Boot application using the CLI interface.

By the end of this chapter, you will understand how to install and use Spring Boot CLI to
develop Spring applications with more simplicity and understand how you can run this
application using the CLI. Also, you will get understanding of Spring Boot's production-
ready feature, the Actuator. The Spring Boot Actuator provides many endpoints to look at
what's going on with your application in production.

This chapter will cover the following points:

Getting started with using Spring Boot CLI:
Installing the Spring Boot CLI

Using the Initializr with the Spring Boot CLI
Spring Boot Actuator:

Taking Application's Insights
Enabling Spring Boot's Actuator in your application
Analyzing the Actuator's endpoints
Exposing configuration details
Exposing metrics endpoints
Exposing application information
Shutting down your application
Customizing your Actuator endpoints

Securing the Actuator endpoints
The Actuator with Spring Boot 2.X

Getting Started with Spring CLI and Actuator Chapter 3

[51]

Let's look at these topics in detail.

Getting started with using Spring Boot CLI
Spring Boot provides two interfaces, Spring Boot ApplicationRunner and Spring Boot
CommandLineRunner. Let's dig a bit deeper into Spring Boot CLI.

Spring Boot CLI, as the name suggests, is another command-line prototyping tool. It's
famous for being super fast and easy. Spring, however, is a Java application framework. It
is a popular framework in the Java community, used by any Java application and for
building web applications.

Spring Boot makes it easier to create Spring-powered applications and services with less
hassle. And Spring Boot CLI assists in executing the applications and services created by
Spring Boot. Spring Boot CLI is not necessarily used with Spring Boot IDE, but it is quicker
to execute Spring applications if both are used together. The Spring Boot CLI is self-
sufficient and doesn't require any additional platforms to run.

As we discussed earlier, the Spring Boot CLI offers an interesting, albeit unconventional,
approach to developing Spring applications. Let's look at how to install the Spring Boot CLI
so that you can run the code we looked at in Chapter 1, Getting Started with Spring Boot 2.0.

Installing the Spring Boot CLI
The Spring community provides several ways to install the Spring Boot CLI. Let's see the
following ways:

Manually installing from a downloaded distribution
Installation with SDKMAN!
Installing with OSX Homebrew
MacPorts installation
Command-line completion

Let's look at each installation option. But we'll start with how you can install the Spring
Boot CLI manually from a distribution.

Getting Started with Spring CLI and Actuator Chapter 3

[52]

Manually installing from a downloaded distribution
Spring Boot CLI can be downloaded from the official site of Spring Framework:

https:// repo. spring. io/ snapshot/ org/springframework/ boot/ spring- boot-
cli/2. 0. 0.BUILD- SNAPSHOT/ spring- boot- cli-2. 0.0. BUILD- SNAPSHOT- bin.zip

https:// repo. spring. io/ snapshot/ org/springframework/ boot/ spring- boot-
cli/2. 0. 0.BUILD- SNAPSHOT/ spring- boot- cli-2. 0.0. BUILD- SNAPSHOT- bin.tar.
gz

These sites offer manual installation through CLI distributions from the Spring software
repository. Once you've downloaded the distribution from the site, there is a text file in it
by the name of INSTALL.txt. It contains instructions on how to install the Spring Boot
CLI. In short, there is a Spring script in bin/directory which is to be executed.
Spring.bat for Windows users a Spring script for Unix.

Spring Boot CLI requires Java JDK v1.8 or above in order to run. No specific environment
variables are required to run the CLI; however, you may want to set SPRING_HOME to point
to a specific installation. You should also add SPRING_HOME/bin to your PATH
environment variable.

To test if you have successfully installed the CLI, you can run the following command:

spring --version

Let's see the following screenshot:

It has displayed the Spring Boot CLI version on the Command Prompt.

It is a very simple, manual way to install Spring Boot CLI, so it doesn't require more
configuration. But the Spring community offers other ways of installing it. Let's see another
way of installing the Spring Boot CLI.

Installation with SDKMAN!
The second option provided is via the Software Development Kit Manager (SDKMAN!).
It is utilized when you have to handle many versions of SDKs that are binary, such as
Groovy. You can get SDKMAN! from sdkman.io and then install Spring Boot CLI with the
commands in the first link provided, under this section.

https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.0.0.BUILD-SNAPSHOT/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz

Getting Started with Spring CLI and Actuator Chapter 3

[53]

For Linux machines, use the following command:

$ curl -s get.sdkman.io | bash

Once SDKMAN! is installed, you can install Spring Boot's CLI as follows:

$ sdk install springboot
$ spring --version

Installing with OSX Homebrew
Another installation option is for a Mac users who use Homebrew. It is a package
management system for macOS:

$ brew tap pivotal/tap
$ brew install springboot

Homebrew installs Spring to /usr/local/bin path.

MacPorts installation
If you have Mac machine, then you can set Spring Boot CLI to use MacPorts, one of the
popular installers for macOS X. First, install MacPorts according to your Mac version from
https://www.macports. org/ . Once you have MacPorts installed, you can install the Spring
Boot CLI at the command-line as follows:

$ sudo port install spring-boot-cli

MacPorts will install the Spring Boot CLI to /opt/local/share/java/spring-boot-
cli and put a symbolic link to the binary in /opt/local/bin, which should already be in
your system path from installing MacPorts. You can verify the installation by checking the
version that was installed:

$ spring -version

This command displays the version of Spring Boot.

Command-line completion
For users of Linux operating systems, a command-line completion method is provided. The
script named Spring which is initialization bash (system wide) has to be sourced. In a
Debian system, these scripts are found in the /shell-completion/bash directory; also,
all the scripts in this directory can be used when one shell is initialized.

https://www.macports.org/
https://www.macports.org/
https://www.macports.org/
https://www.macports.org/
https://www.macports.org/
https://www.macports.org/
https://www.macports.org/
https://www.macports.org/
https://www.macports.org/
https://www.macports.org/

Getting Started with Spring CLI and Actuator Chapter 3

[54]

Using the Initializr with the Spring Boot CLI
You can also use Spring Initializr from the Spring Boot CLI. It offers some commands that
can be used to kick-start development. The Spring Boot CLI provides an init command to
create a Spring Boot application structure and acts as a client interface to the Spring
Initializr. Let's see how to use the init command to create a Spring Boot project as follows:

$ spring init

Let's see the following output of the init command:

As you can see in the preceding screenshot, a demo.zip file is created and saved to the
workspace. If you unzip this project, you'll find a typical project structure with a Maven
pom.xml build specification. Download the project with very minimal configuration with
the Maven specification, and test it.

But actually, if you want to create a web application using Spring MVC that uses JPA for
data persistence, let's see the following command that includes all the required
dependencies for your application:

$ spring init -dweb, jpa

You can specify those initial dependencies with either --dependencies
or -d.

The preceding command also creates the same file, named demo.zip, with same project
structure, but with Spring Boot's Web and JPA Starters expressed as dependencies in
pom.xml:

Getting Started with Spring CLI and Actuator Chapter 3

[55]

It's important to not type a space between -d and the dependencies.

As shown, I didn't define any build specification; by default, it includes the Maven build
specification but if you want to specify the Gradle build specification, you have to use the
following command:

spring init -dweb,jpa --build gradle

We specify Gradle as the build type with the --build parameter:

Now, the demo.zip file is saved in the working directory with the Gradle build
specification instead of Maven. And one more thing, by default, a demo.zip project with
either Maven or Gradle build specification will produce an executable JAR file. If you want
to create WAR instead of JAR, then you can specify one more parameter in the following
command:

$ spring init -dweb,jpa --build gradle -p war

You can specify this with the --packaging or -p parameter.

You can find other parameters by using the following command:

$ spring help init

Getting Started with Spring CLI and Actuator Chapter 3

[56]

You can use the following command to find out what choices are available for those
parameters by using the --list parameter with the init command:

$ spring init -list

You have seen the Spring Boot CLI init command for creating your Spring project. The
Spring community offers a web-based interface, Spring Tool Suite, or Spring Boot CLI to
initialize your Spring Boot project.

Getting Started with Spring CLI and Actuator Chapter 3

[57]

Spring Boot CLI has no need to specify the build specification. CLI gets hits from the code
and resolves dependencies accordingly and produces deployment artifacts. Spring Boot
CLI produces an almost friction-free development experience and eliminates all code noise.

After your installation is complete, you can also run a simple application, whatever we
have created in Chapter 1, Getting Started with Spring Boot 2.0. To do so, you will have to
use the same web application, by the name of app.groovy, as follows:

@RestController
class HelloController {
 @GetMapping("/")
 String hello() {
 return "Hello World!!!"
 }
}

Save this file as app.groovy in a directory and let's run the application from a shell by
using the following command:

$ spring run app.groovy

Open http://localhost:8080/ from the browser. If the output shows you Hello
World or whatever you might have asked your application to do—the installation was
successful.

Let's see the following console after running the preceding command at the Spring Boot
CLI. The first line in the console is resolving dependencies, but in this application we didn't
define the dependencies. Spring Boot CLI automatically resolves the dependencies based
on the classes we have written for the application. But, you can define explicit library
dependencies by using the @Grab annotation. Let's see the following @Grab annotation for
the HSQL database in your application. Let's run this application using Spring Boot CLI as
follows:

@Grab("HSQL")

Getting Started with Spring CLI and Actuator Chapter 3

[58]

Let's see the following screenshot of the output in the browser:

As you can see, the Spring Boot CLI provides the quickest way of developing without any
code friction.

Getting Started with Spring CLI and Actuator Chapter 3

[59]

Let's discuss another important feature and key component of Spring Boot.

Spring Boot Actuator – taking Application's
Insights
Have you ever thought to look at what's going on with your Spring application in
production? How many objects have been created? How much free or used memory is left?
Let's consider, if any framework can allow you to watch all these insights, you can manage
your application very well during production by using HTTP endpoints or with JMX. You
can find out how your application is behaving and check on its health.

Here, I am going to explain a key component of Spring Boot, Actuator. The Spring Boot
Actuator allows you to monitor production-ready features, such as metrics and the health
of the Spring application.

Spring Boot Actuator is a sub-project of Spring Boot, with a lot more functionalities at your
disposal. You can control the sensitivity and security of your application more effectively
with Spring Boot Actuator. Monitoring the metrics, incoming traffic, and state of a database
in your applications becomes very easy when Actuator is enabled. The main advantage is
that these production-grade tools are available to you, without you having to implement
these features.

Let's see how to enable these production-ready features in your Spring application.

Enabling Spring Boot's Actuator in your
application
To enable Spring Boot Actuator in your application, you will have to add Spring Boot
Actuator dependency in your package manager. This is the simplest way to enable the
production-ready features in your Spring application, by adding a Starter
dependency, spring-boot-starter-actuator.

Getting Started with Spring CLI and Actuator Chapter 3

[60]

Let's add the Actuator to a Maven-based project as follows in your Spring Boot project:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>
</dependencies>

The preceding Maven script will enable the production-ready features that are Spring
Boot's Actuator. Now let's see how to enable the Actuator with a Gradle-based project.

Let's use the following declaration:

dependencies {
 compile("org.springframework.boot:spring-boot-starter-actuator")
}

The preceding "Gradle script will enable the production-ready features in your Spring
application.

After enabling the production-ready features, let's see what all the endpoints are that
Spring Boot's Actuator provides.

Analyzing the Actuator's endpoints
Spring Boot's Actuator offers you several web endpoints; these let you monitor your
running Spring application and you can view the internals of your application in
production. It provides you a number of predefined endpoints for your Spring application,
but you can also add your own custom endpoint for monitoring your application in
production.

For example, the health endpoint provides basic application health information and you
can also find out how beans are wired together in the Spring application context, determine
what environment properties are available to your application, get a snapshot of runtime
metrics, and more.

You can easily make use of your application and optimize it by invoking HTTP endpoints if
your application is configured with Spring Boot Actuator. There is a wide range of HTTP
endpoints that Spring Boot Actuator can support. Some of these are:

Bean details
Logger details

Getting Started with Spring CLI and Actuator Chapter 3

[61]

Configuration details
Health details
Version details

With these built-in endpoints in Spring Boot Actuator, it also allows you to add your own
endpoint or customize an existing one. Spring Boot sets the sensitive default to some HTTP
endpoints, which cannot be exposed publicly. These endpoints require a password or a
username.

The Spring Boot's Actuator exposes a number of endpoints in multiple ways, but these
depend on the technology you are using. Once Spring Boot Actuator is configured into
your application, it provides you several Actuator REST endpoints. If you are choosing
HTTP web endpoints, then you can see the following endpoints:

REST endpoints Description

/actuator

It gives a discovery platform in place of a page for other endpoints. To
enable Actuator, you have to put Spring HATEOS on the classpath.
Actuators are sensitive by default and hence require username and
password, or they can be disabled due to disabled web security.

/auditevents All information on audit and events is contained in this endpoint.

/autoconfig
It provides an auto-configuration report of all the auto-configurations
applied in the application.

/beans
It shows all the beans configured in the application. Beans are super
important for applications configured in Spring. It is an object that is
initialized, assembled, and managed in Spring IoC container.

/configprops It shows you the details of config properties.
/dump This is for dumping a thread.
/env It shows different properties of all configurable environments in Spring.
/flyway This helps when you want to see database migrations.

/health
This displays the health information of an application. Health
information includes security, authentication of connections made, and
message details of authentications for an application.

/info This is the arbitrary application information.

/loggers
You can use it if you want to show or change the config of different
loggers in your application.

/liquibase This is in case you want to see migrations of liquibase.
/metrics This shows metric information for an application.

Getting Started with Spring CLI and Actuator Chapter 3

[62]

/mappings
This shows a queue of the entire request mapping paths in the
application.

/shutdown
It is enabled to allow the application a graceful shutdown. Spring Boot
Actuator does not enable it by default. You will have to enable it should
you require it.

/trace
Shows trace data (timestamp, headers, and so on) which is the 100 latest
HTTP requests.

The preceding table has several web endpoints. You can organize these endpoints into the
following three categories:

Configuration endpoints
Metrics endpoints
Application information endpoints

Let's take a look at how to expose these endpoints that provide insight into the
configuration of your application. Since endpoints may contain sensitive information,
careful consideration should be given about when to expose them. Out of the box, Spring
Boot will expose all enabled endpoints over JMX, but only the health and info endpoints
over HTTP.

Exposing configuration details
Spring Boot Actuator provides some endpoints that expose the configuration details of
your Spring application. These endpoints provide you all configured bean details and also
provide insight into the decisions that auto-configuration made when populating the
Spring application context. Let's see the most essential endpoint for exploring an
application's Spring context, which is the /beans endpoint. This endpoint returns
information in the form of JSON as follows:

[
{
context: "application",
parent: null,
beans:
[
{
bean: "springBootActuatorApplication",
scope: "singleton",
type:
"com.dineshonjava.sba.SpringBootActuatorApplication$$EnhancerBySpringCGLIB$

Getting Started with Spring CLI and Actuator Chapter 3

[63]

$ee8dc6d9",
resource: "null",
dependencies: []
},
{
bean:
"org.springframework.boot.autoconfigure.internalCachingMetadataReaderFactor
y",
scope: "singleton",
type:
"org.springframework.core.type.classreading.CachingMetadataReaderFactory",
resource: "null",
dependencies: []
},
{
bean: "loginService",
scope: "singleton",
type: "com.dineshonjava.sba.LoginService",
resource: "file [D:/packt-spring-boot-
ws/SpringBootActuator/target/classes/com/dineshonjava/sba/LoginService.clas
s]",
dependencies:
[
"counterService"
]
},
{
bean: "myCustomEndpoint",
scope: "singleton",
type: "com.dineshonjava.sba.MyCustomEndpoint",
resource: "file [D:/packt-spring-boot-
ws/SpringBootActuator/target/classes/com/dineshonjava/sba/MyCustomEndpoint.
class]",
dependencies: []
},.....

As you can see in the preceding JSON data of the /beans endpoint, all configured beans in
the application have the following information about the bean:

Bean: A bean is a name or ID of the configured bean in your Spring application
Dependencies: The dependency is a list of bean IDs that this bean is injected
with
Scope: It exposes the bean's scope
Type: The bean's Java type

Getting Started with Spring CLI and Actuator Chapter 3

[64]

The /beans shows all the beans configured in the application. Beans are super important
for applications configured on Spring. It is an object that is initialized, assembled, and
managed at Spring IoC container. The /autoconfig endpoint provides an auto-
configuration report of all the auto-configurations applied in the application. Spring Boot
auto-configuration is built upon Spring conditional configuration. Spring Boot provides
multiple configuration classes with @Conditional annotations. This @Conditional
annotation decides whether beans should be automatically configured. Let's see the
following JSON data that the /autoconfig endpoint provides:

{
positiveMatches:
{
AuditAutoConfiguration#auditListener:
[
{
condition: "OnBeanCondition",
message: "@ConditionalOnMissingBean (types:
org.springframework.boot.actuate.audit.listener.AbstractAuditListener;
SearchStrategy: all) found no beans"
}
],
AuditAutoConfiguration#authenticationAuditListener:
[
{
condition: "OnClassCondition",
message: "@ConditionalOnClass classes found:
org.springframework.security.authentication.event.AbstractAuthenticationEve
nt"
},
{
condition: "OnBeanCondition",
message: "@ConditionalOnMissingBean (types:
org.springframework.boot.actuate.security.AbstractAuthenticationAuditListen
er; SearchStrategy: all) found no beans"
}
..........
],
negativeMatches:
{
CacheStatisticsAutoConfiguration:
[
{
condition: "OnBeanCondition",
message: "@ConditionalOnBean (types:
org.springframework.cache.CacheManager; SearchStrategy: all) found no
beans"

Getting Started with Spring CLI and Actuator Chapter 3

[65]

}
],
CacheStatisticsAutoConfiguration.CaffeineCacheStatisticsProviderConfigurati
on:
[
{
condition: "OnClassCondition",
message: "required @ConditionalOnClass classes not found:
com.github.benmanes.caffeine.cache.Caffeine,org.springframework.cache.caffe
ine.CaffeineCacheManager"
},
{
condition: "ConditionEvaluationReport.AncestorsMatchedCondition",
message: "Ancestor
'org.springframework.boot.actuate.autoconfigure.CacheStatisticsAutoConfigur
ation' did not match"
}
],.....
}

The preceding JSON is the output of the /autoconfig endpoint. This JSON is divided into
two parts—positiveMatches and negativeMatches. Data under negativeMatches
means there's a condition that decides whether to configure a bean. And
positiveMatches means you'll find a condition used to decide whether Spring Boot
should auto-configure a bean.

Let's look at another configuration endpoint, /env; it shows different properties of all
configurable environments in Spring:

{
profiles: [],
server.ports: {
local.server.port: 8080
},
commandLineArgs: {
spring.output.ansi.enabled: "always"
},
servletContextInitParams: { },
systemProperties: {
.....
sun.boot.library.path: "C:Program FilesJavajre1.8.0_151bin",
java.vm.version: "25.151-b12",
java.vm.vendor: "Oracle Corporation",
java.vendor.url: "http://java.oracle.com/",
java.rmi.server.randomIDs: "true",
path.separator: ";",
java.vm.name: "Java HotSpot(TM) 64-Bit Server VM",

Getting Started with Spring CLI and Actuator Chapter 3

[66]

file.encoding.pkg: "sun.io",
user.name: "Dinesh.Rajput",
com.sun.management.jmxremote: "",
java.vm.specification.version: "1.8",
sun.java.command: "com.dineshonjava.sba.SpringBootActuatorApplication --
spring.output.ansi.enabled=always",
java.home: "C:Program FilesJavajre1.8.0_151",
sun.arch.data.model: "64",
sun.desktop: "windows",
sun.cpu.isalist: "amd64"
},
systemEnvironment: {
.....
LOCALAPPDATA: "C:UsersDinesh.RajputAppDataLocal",
PROCESSOR_LEVEL: "6",
FP_NO_HOST_CHECK: "NO",
USERDOMAIN: "TIMESGROUP",
LOGONSERVER: "\TGNOIFCTYDC01",
JAVA_HOME: "C:Program FilesJavajdk1.8.0_121",
SESSIONNAME: "Console",
APPDATA: "C:UsersDinesh.RajputAppDataRoaming",
USERNAME: "Dinesh.Rajput",
ProgramFiles(x86): "C:Program Files (x86)",
VBOX_MSI_INSTALL_PATH: "C:Program FilesOracleVirtualBox",
CommonProgramFiles: "C:Program FilesCommon Files",
.....
},
applicationConfig: [classpath:/application.properties]: {
endpoints.health.enabled: "true",
endpoints.health.id: "health",
management.port: "8080",
info.app.description: "This is my first Working Spring Actuator Examples",
info.app.version: "0.0.1-SNAPSHOT",
endpoints.info.id: "info",
endpoints.metrics.id: "metrics",
endpoints.metrics.sensitive: "false",
endpoints.metrics.enabled: "true",
security.user.name: "admin",
management.security.enabled: "true",
security.user.password: "******",
management.context-path: "/",
info.app.name: "Spring Boot Actuator Application",
endpoints.health.sensitive: "false",
security.basic.enabled: "true",
endpoints.info.enabled: "true",
endpoints.info.sensitive: "false"
}
}

Getting Started with Spring CLI and Actuator Chapter 3

[67]

Now let's see how the endpoint exposes the metric of your application.

Exposing metrics endpoints
Spring Boot Actuator allows you to inspect some interesting parameters of your running
application, such as application memory circumstances (available versus free). The
following listing shows a sample of what the /metrics endpoint might give you:

{
mem: 308564,
mem.free: 219799,
processors: 4,
instance.uptime: 3912392,
uptime: 3918108,
systemload.average: -1,
heap.committed: 254976,
heap.init: 131072,
heap.used: 35176,
heap: 1847808,
nonheap.committed: 54952,
nonheap.init: 2496,
nonheap.used: 53578,
nonheap: 0,
threads.peak: 25,
threads.daemon: 23,
threads.totalStarted: 29,
threads: 25,
classes: 6793,
classes.loaded: 6793,
classes.unloaded: 0,
gc.ps_scavenge.count: 8,
gc.ps_scavenge.time: 136,
gc.ps_marksweep.count: 2,
gc.ps_marksweep.time: 208,
httpsessions.max: -1,
httpsessions.active: 0,
gauge.response.beans: 20,
gauge.response.env: 16,
gauge.response.autoconfig: 14,
gauge.response.unmapped: 1,
counter.status.200.beans: 2,
counter.login.failure: 2,

Getting Started with Spring CLI and Actuator Chapter 3

[68]

counter.login.success: 10,
counter.status.200.autoconfig: 2,
counter.status.401.unmapped: 3,
counter.status.200.env: 2
}

As you can see, a lot of information is provided by the /metrics endpoint.

Now let's check the health of the application by using the /health endpoint:

{
 status: "UP",
 diskSpace:
 {
 status: "UP",
 total: 290391584768,
 free: 209372835840,
 threshold: 10485760
 }
}

As you can see, the preceding information is about the health of your Spring application.
Along with the basic health status, you're also given information regarding the amount of
available disk space and the status of the database that the application is using.

Let's see how to expose application information by using /info endpoints.

Exposing application information
In Spring Boot, Actuator also provides arbitrary application information by using
the /info endpoint. If you make a GET request call to the /info endpoint, by default it will
return empty JSON, {}.

The empty JSON means Spring Boot doesn't provide default information for your
application. The /info endpoint provides any information for your Spring application that
you want to expose to your client or the public. You can add any information about your
application to this endpoint in application.properties or application.yml as
follows:

application.properties

info.app.name=Spring Boot Actuator Application
info.app.description=This is my first Working Spring Actuator Examples
info.app.version=0.0.1-SNAPSHOT

Getting Started with Spring CLI and Actuator Chapter 3

[69]

info.helpline.email=admin@dineshonjava.com
info.helpline.phone=0120-000001100
application.yml
info:
 app:
 name: Spring Boot Actuator Application
 description: This is my first Working Spring Actuator Examples
 version: 0.0.1-SNAPSHOT
 helpline:
 email: admin@dineshonjava.com
 phone: 0120-000001100

In the preceding examples, you can see that we want to provide some information about
our application such as application name, description, version, email, and helpline
number in the /info endpoint response. Now let's request the /info endpoint; you'll get
the following response:

{
 helpline:
 {
 email: "admin@dineshonjava.com",
 phone: "0120-00000110"
 },
 app:
 {
 description: "This is my first Working Spring Actuator Examples",
 version: "0.0.1-SNAPSHOT",
 name: "Spring Boot Actuator Application"
 }
}

As shown, the Spring Boot Actuator /info endpoint exposes information about your
application to the outside of your application. This information might be useful for callers.

Let's see in the next section how to kill your application using an Actuator's endpoint.

Shutting down your application
You can also shut down your application by using the /shutdown endpoint. But by default,
this endpoint is disabled, so first, you have to enable the /shutdown endpoint, and then
you can use it as follows:

endpoints.shutdown.enabled=true

Getting Started with Spring CLI and Actuator Chapter 3

[70]

Let's enable it by using the application.yml file:

endpoints:
 shutdown:
 enabled: true

Let's invoke the /shutdown endpoint and see what happens:

POST http://localhost:8080/shutdown

The preceding is a POST request. It returns the following response:

{
 "message": "Shutting down, bye..."
}

This /shutdown endpoint can kill your application, so you have to take care with this
endpoint.

Spring Boot's Actuator provides most of the insight you require concerning your running
application in production, but sometimes it is not enough for your needs. That is why
Spring Boot also allows you to customize the Actuator endpoints.

Let's see in the next section how to customize the endpoints of Spring Boot's Actuator.

Customizing your Actuator endpoints
You can also customize your Actuator endpoints by using Spring properties. Endpoints can
be customized in the following ways:

Enabling/disabling endpoints
Sensitivity
Changing endpoint IDs
Writing custom health indicators
Creating custom endpoint
Many more customizations

To customize the properties in your application, you can enable or disable an endpoint,
make its sensitivity true or false, and customize its ID. You can also customize all endpoints
globally, and also create exceptions for the ones you want to. Let's see how to customize the
Actuator.

Getting Started with Spring CLI and Actuator Chapter 3

[71]

Enabling or disabling endpoints
By default in Spring Boot, all endpoints are enabled except /shutdown, but you can disable
some of them. You can also enable the /shutdown endpoint.

In the application.properties file, it would look like this:

endpoints.shutdown.enabled=true

In the application.yml file, it would look like this:

endpoints:
 shutdown:
 enabled: true

Similarly, you can also disable any of the other endpoints as follows:

endpoints._endpoint-id.enabled = false

In the application.yml file, it would look like this:

endpoints:
 _endpoint-id:
 enabled: false

Let's suppose you want to disable the /health endpoint. Then in the
application.properties file, you have to set the following property:

endpoints.health.enabled=true

In application.yml, it would look like this:

endpoints:
 health:
 enabled: false

You can also disable all endpoints at once by setting the following property to false in
the application.properties file:

endpoints.enabled=false

In the application.yml file, it would look like this:

endpoints:
 enabled: false

Getting Started with Spring CLI and Actuator Chapter 3

[72]

As you can see, all endpoints will be disabled, so you can enable specific endpoints if you
want to enable then by setting endpoints._endpoint-id.enabled = true.

Changing endpoint IDs
As you have seen in the table of all Actuator endpoints, each of the Actuator endpoints has
an ID that is used to call that endpoint as a REST service. For example /health, /metrics,
and /beans endpoints have health, metrics, and beans, respectively, as their IDs. But you
can change this endpoint ID and set what you want for your application as follows:

endpoints.endpoint-id.id=new_id

For example, let's customize the ID of the /health endpoint. Now I want to change it to
GET requests sent to /status. In the application.properties file, it looks like this:

health.id = status

In the application.yml file, it looks like this:

health:
 id: status

Now you can check the health of your application by using the /status custom endpoint.
It will work the same as the /health endpoint.

Changing the sensitivity of the Actuator's endpoints
By default, many of the Actuator's endpoints are sensitive. All default endpoints in Spring
Boot Actuator are automatically sensitive. Hence the endpoints can be secured by using
default properties for fault security. These include username, password, and role, within
the properties file of your application. But you can also mark sensitive as false if the
endpoint doesn't expose sensitive information, as follows:

endpoints._endpoint-id.sensitive = false

In the application.yml file, it would look like the following:

endpoints:
 _endpoint-id:
 sensitive: false

You can also set it to true if all endpoints expose sensitive information.

Getting Started with Spring CLI and Actuator Chapter 3

[73]

For example, let's set the /health endpoint's sensitive value to false:

endpoints.health.sensitive=false

Or in application.yml file:

endpoints:
 health:
 sensitive: false

Now you can access the /health endpoint without any authentication security.

Spring Boot Actuators also allows you to create your own endpoint, with your own
configurations and implementations. To do so, all you have to do is implement the
endpoint interface and override its method.

Writing custom health indicators
Spring Boot's Actuator allows you to write a custom health indicator for your application.
The Actuator's default /health endpoint provides information about your application
status and disk space as follows:

{
 status: "UP",
 diskSpace: {
 status: "UP",
 total: 290391584768,
 free: 209125543936,
 threshold: 10485760
 }
}

As you can see in the preceding JSON, the /health endpoint returns default health
indicator data for common needs such as reporting the health of a disk or database. But you
can also provide custom health information—you can register Spring Beans that implement
the HealthIndicator interface. You need to provide an implementation of the health()
method and return a Health response. The Health response should include a status and
can optionally include additional details to be displayed. The following code shows a
sample HealthIndicator implementation:

package com.dineshonjava.sba;

import org.springframework.boot.actuate.health.Health;
import org.springframework.boot.actuate.health.HealthIndicator;

Getting Started with Spring CLI and Actuator Chapter 3

[74]

import org.springframework.stereotype.Component;
import org.springframework.web.client.RestTemplate;

@Component
public class DineshonjavaHealth implements HealthIndicator{

 @Override
 public Health health() {
 try {
 RestTemplate rest = new RestTemplate();
 rest.getForObject("https://www.dineshonjava.com",
 String.class);
 return Health.up().build();
 } catch (Exception e) {
 return Health.down().build();
 }
 }
}

As you can see in the preceding code, we are going to plug in a custom health indicator that
will check the health of the linking application website https:/ /www. dineshonjava. com
and it will return a response with the health status of this website as follows:

{
 status: "UP",
 dineshonjavaHealth: {
 status: "UP"
 },
 diskSpace: {
 status: "UP",
 total: 290391584768,
 free: 209125003264,
 threshold: 10485760
 }
}

The DineshonjavaHealth class overrides the health() method of
the HealthIndicator interface and simply uses Spring's RestTemplate to perform a GET
request to the https:/ /www. dineshonjava. com page. If it works, it returns a Health object
indicating that Dineshonjava is UP. Otherwise, it will throw an exception and returns a
Health object indicating that Dineshonjava is DOWN. Let's see what the following response
will return if https:/ /www. dineshonjava. com is down:

{
 status: "DOWN",
 dineshonjavaHealth: {

https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com
https://www.dineshonjava.com

Getting Started with Spring CLI and Actuator Chapter 3

[75]

 status: "DOWN"
 },
 diskSpace: {
 status: "UP",
 total: 290391584768,
 free: 209124999168,
 threshold: 10485760
 }
}

As you can see, the status is DOWN but you can also add more details about its failure to
access this website by using the withDetail() method on the Health builder as follows:

return Health.down().withDetail("reason", e.getMessage()).build();

Let's see the response of the /health endpoint again.
 {
 status: "DOWN",
 dineshonjavaHealth: {
 status: "DOWN",
 reason: "I/O error on GET request for
"https://www.dineshonjava.com": www.dineshonjava.com; nested exception is
java.net.UnknownHostException: www.dineshonjava.com"
 },
 diskSpace: {
 status: "UP",
 total: 290391584768,
 free: 209124995072,
 threshold: 10485760
 }
}

As shown in the preceding example you can add additional details, whatever you want,
with success or failure, by calling the withDetail() method of the Health builder class.

Now let's see how to create a custom endpoint.

Creating a custom endpoint
We have seen that the Actuator provides several endpoints for your application. But Spring
Boot's Actuator also allows you to create a custom endpoint by implementing
the EndPoint interface. Let's see the following example:

package com.dineshonjava.sba;

Getting Started with Spring CLI and Actuator Chapter 3

[76]

import java.util.ArrayList;
import java.util.List;

import org.springframework.boot.actuate.endpoint.Endpoint;
import org.springframework.stereotype.Component;
@Component
public class MyCustomEndpoint implements Endpoint<List<String>>{

 @Override
 public String getId() {
 return "myCustomEndpoint";
 }

 @Override
 public List<String> invoke() {
 // Custom logic to build the output
 List<String> list = new ArrayList<>();
 list.add("App message 1");
 list.add("App message 2");
 list.add("App message 3");
 list.add("App message 4");
 return list;
 }
 @Override
 public boolean isEnabled() {
 return true;
 }

 @Override
 public boolean isSensitive() {
 return true;
 }
}

As you can see, the MyCustomEndpoint class implemented the EndPoint interface and it
overrode four methods, getId(), invoke(), isSensitive(), and isEnabled(). The
getId() method returns endpoint ID or name, and by using it you can
access /myCustomEndpoint for now. Let's see what the following response returns:

[
"App message 1",
"App message 2",
"App message 3",
"App message 4"
]

Getting Started with Spring CLI and Actuator Chapter 3

[77]

The invoke() method returns an application message—whatever you want to expose from
this custom endpoint. The isEnabled() and isSensitive() methods are used for
enabling this endpoint for your application and setting the sensitivity of this endpoint
respectively.

There are many more ways of customizing Spring Boot's Actuator. Spring Boot allows us to
customize all of the Actuator. That is why Spring Boot is opinionated.

Many of the Actuator endpoints expose sensitive data, so you have to protect these
endpoints from any unwanted activity. Spring Boot allows you to secure these Actuator
endpoints. In the next section, let's see how to make these Actuator endpoints secure.

Securing the Actuator endpoints
The Actuator's endpoints provide many insights into your Spring application to callers, but
some of that information might be unsafe if you expose it to the caller. For example, the
/shutdown endpoint can kill your application in production. So the /shutdown endpoint
can be very dangerous for your application if you expose it publicly. Similarly, many
endpoints in Spring Boot's Actuator expose information that might be very sensitive. So,
you have to secure those Actuator endpoints and make them only available to authorized
callers. You can use Spring Security to make secure the Actuator endpoints.

Although Spring Boot will not apply any security on your behalf, it does provide some
convenient RequestMatchers that can be used in combination with Spring Security. In a
Spring Boot application, this means adding the Security Starter as a build dependency and
letting security auto-configuration take care of locking down the application, including the
Actuator endpoints.

Let's add the following Starter dependency for Spring Security:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

It will secure all Actuator endpoints, but you can disable basic security as follows:

In the application.properties file:

security.basic.enabled=false

Getting Started with Spring CLI and Actuator Chapter 3

[78]

In the application.yml file, it looks like this:

 basic:
 enabled: false

The preceding configuration change leaves only the sensitive Actuator endpoints secured
and leaves the rest open for access.

Now you can secure sensitive endpoints by defining the default security properties, such
username, password, and role, in the application.properties file:

security.user.name=admin
security.user.password=secret
management.security.role=SUPERUSER

The preceding configuration will secure the Actuator endpoints. If any call reaches these
endpoints, then it asks for username and password. That means no one can access these
Actuator endpoints without authentication.

This Spring Security configuration is provided by the auto-configuration of the Spring Boot.
You can also customize the Spring Security configuration to lock some of the more
dangerous Actuator endpoints such as /shutdown or provide this Actuator endpoint for a
very specific role.

Let's see what changes are introduced with Spring Boot 2.0.

The Actuator with Spring Boot 2.X
The new version of Spring Boot Actuator—2.x Actuator, has been introduced with a
simplified model, extended capabilities, and better incorporated defaults. In this version,
the security model is integrated with the application for simplification. Some more HTTP
requests and responses, and Java APIs, have also been added. The newest version also
supports CRUD against the model of read-write it had before.

Actuator 2.x defines the extensible model, which is also pluggable and does not depend on
MVC. Hence, you can utilize MVC and Web Flux. In the new version, endpoints also come
disabled by default. Should you want to turn them all on, you can use the following:

management.endpoints.web.expose = *.

Or if you do not want to enable all the endpoints, you can simply list the ones you want to
enable and let others be. All Actuator endpoints are now also set under /actuator path by
default.

Getting Started with Spring CLI and Actuator Chapter 3

[79]

Spring Boot 2.x Actuator has also introduced some more built-in endpoints:

/conditions: This is simply auto-config renamed
/Prometheus: This is also the same as metrics, but it supports a Prometheus
server
Scheduledtasks: This endpoint provides details of every scheduled task in the
application
/sessions: This is a list of HTTP sessions using Spring Sessions
/threaddump: This endpoint dumps the thread information

Spring Boot 2.x Actuator allows you to manipulate the endpoints in similar ways to
previous versions. You can customize them; however, there have been a few changes
introduced to the method of customization. This is mostly because 2.x Actuator supports
CRUD operations instead of just read and write. And you can also add new endpoints to
existing ones, with your own configurations and implementations.

Spring Boot Actuator allows you to manipulate and manage your application very easily.

Summary
In this chapter, we have learned about the Spring Boot CLI and how to install it in your
machine. The Spring Boot CLI offers you a very simple and fast way of developing the
Spring Boot application. You can run the Spring Boot application with the Groovy language
using the CLI; it makes it possible to develop the Spring application with minimal code
noise and reduces all code friction. The Spring Boot CLI is also able to automatically resolve
several dependency libraries. You can also take advantage of the Gradle @Grab annotation
to explicitly declare dependencies; no need to define a build specification, either using
Maven or Gradle.

We have also run a very simple Hello World REST application by using the web-based
Spring Boot CLI.

You have seen in this chapter how to find out about your Spring application in production.
Spring Boot provides you a production-ready feature, Spring Boot Actuator. The Actuator
provides many endpoints and you can monitor these endpoints using the web-based REST
services, remote shell, and JMX client. But in this chapter, I have explained only web-based
REST endpoints. You can also customize these Actuator endpoints.

In Chapter 4, Getting Started with Spring Cloud and Configuration, we'll start to understand
Spring Cloud and configurations.

4
Getting Started with Spring

Cloud and Configuration
In the previous chapter, we discussed the Spring Boot CLI installation as well as application
creation and execution using the CLI. Spring Boot provides the CLI for quick application
implementation with zero code friction. We also looked at Spring Boot's production-ready
feature—the Actuator. The Actuator provides all the production Ops metrics and the
application's health status in production. Spring Boot provides several extraordinary
features.

In this chapter, we will explore another extension from Spring Boot, Spring Cloud. So what
is Spring Cloud? What is it used for? How does Spring Cloud provide solutions for
building robust cloud-native applications and solve common problems faced when moving
to a distributed environment?

At the end of this chapter, you will have answers to these questions. And you will
understand how to configure the Spring Cloud server and client for your distributed
application.

This chapter will cover the following points:

Cloud-native application architecture
Microservices architecture:

Benefits
Challenges

Introduction to Spring Cloud
Usages of Spring Cloud
Projects under Spring Cloud

Getting Started with Spring Cloud and Configuration Chapter 4

[81]

Getting started with Spring Cloud:
Mastering Spring Cloud Configuration management
Implementing the Spring Cloud Config Server
Implementing the Spring Cloud Config Client

Let’s look at these topics in detail.

Cloud-native application architecture
Many top companies are moving ahead very rapidly due to a lot of innovations in business
and innovations in the software they are using. As Mark Andreessen said, Software is eating
the world. So software is also one of the main pillars for each business. Top companies are
innovating the following common features:

Software speed
Availability of services
Software scalability
Software user experiences for all devices, such as computer and mobile

So moving to the cloud is one of the major evolutions in software innovations; providing
cloud-native solutions and architecture to software is one of the major innovations taken by
many top companies. Cloud provides on-demand storage resources and networking
solutions elastically. Such services include Amazon Web Services, Google Cloud, and
Microsoft Azure.

Using cloud-native application architecture gives you several benefits and addresses the
common problems of scalability, durability, and availability. Here are some common
motivations for the cloud-native application architecture:

Speed of the application
Safety and security
Software scalability
Monitoring the application
Fault isolation and tolerance

Getting Started with Spring Cloud and Configuration Chapter 4

[82]

So, as you can see, your application must follow cloud-native patterns because it is based
on the distributed nature and easily scalable. The application must be designed as
horizontally scalable rather than vertically scalability. Microservices architecture is one of
the examples of horizontally scalable application architectures. You could create a number
of small applications or services based on the bounded context instead of creating a single
large application. The cloud-native pattern provides optimal resource utilization; if your
application needs resources, it provides the resource elastically on demand. Suppose your
application doesn't need more resources, then it must release these zero utilization
resources. The elasticity of the cloud demands ephemerality.

Horizontally scalable means we can add resources on demand to the
existing application without making any changes in the application. In the
case of vertical scalability, we have to change the application architecture.

If you want to create applications, then at the initial level of design you have to focus on
some key characteristics of the cloud-native application architecture. The following are key
characteristics of the cloud-native application:

Twelve-Factor applications: A set of patterns for an optimized application to
improve application design for speed, safety, and scale.
Microservices: An architecture pattern. According to this pattern, we create
individual and independent services such as deploying these without impacting
other business services. It allows each capability to move independently and
autonomously, and in turn faster and safer.
Self-service agile infrastructure: It is related to the cloud platforms and
infrastructure that enable development teams to operate at an application and
service-abstraction level.
API-based collaboration: It defines service-to-service interaction between several
microservices.
Antifragility: It is related to responsiveness, which means that as we increase
load on the system using sudden traffic or speed and scale, the system improves
its ability to respond, increasing safety.

The preceding points are the best practices for any cloud-based application. Spring Cloud
facilitates these styles of development. So let's move to the next section and explore one of
the characteristics of the cloud-native application—the microservices architecture.

Getting Started with Spring Cloud and Configuration Chapter 4

[83]

Microservices architecture
Microservices is not a new word, the term was coined in 2005 by Dr Peter Rodgers. It was
first called micro web services and based on SOAP. The term microservice is meant to convert
large software into a number of pieces. Each piece focuses on a particular point of business.
It is just like a little service with a microscopic scope for a specific target, compared to
existing monolithic applications where the scope is very broad.

So, it divides the monolithic application into smaller microservices and manages and
deploys these services as a single business goal; communication across these distributed
services is a difficult task for developers. Use Spring Cloud to simplify integration between
these distributed services.

Nowadays, industries are working on new functionality implementations and innovations
every day or every week, constantly growing the application to a large size. A lot of
complexity and coupling between various systems makes it difficult to change anything in
the application. So various modules' teams must take care regarding impact on various
parts of the application, either for large changes or the tiniest changes.

Let's look at the following diagram of a monolithic application without the microservices
architecture:

As you can see, the preceding diagram shows, the Banking Application using a monolithic
architecture without microservices. It's an all-in-one application, which means all modules,
such as AccountService, CustomerService, and Notification Service, are in a single
application.

Suppose you change CustomerService, you have to ensure the functionality of other
modules' notification and account services is not impacted by the style of the architecture.

Getting Started with Spring Cloud and Configuration Chapter 4

[84]

Let's divide this monolithic application into separate pieces according to the modules, and
create with the microservice architecture. See the following diagram:

As you can see, we've now created the Banking Application with the microservices-based
architecture. Here, the main application has been divided in a set of sub-applications, called
microservices.

As core Spring concepts are applied to application architecture, Spring enables a separation
of concerns between the application components, such as loose coupling, which means the
effect of the change is isolated, and tight cohesion, which means the code performs a single,
well-defined task. Similarly, microservices exhibit the same strengths, that is, loose
coupling between the collaborating services of the application, and you can change these
services independently. Another strength is tight cohesion, which means an application
service that deals with a single view of data; it also known as Bounded
Contexts or Domain-driven design (DDD).

Let's look at the following benefits of the microservice architecture.

Microservice benefits
These are following benefits if you are using the microservice architecture in your
application:

Smaller code bases are easy to maintain
Easy to scale means you can scale individual components
Technology diversity means you can use mix libraries, frameworks, data storage,
and languages

Getting Started with Spring Cloud and Configuration Chapter 4

[85]

Fault isolation means component failure should not bring the whole system
down
Better support for smaller, parallel teams
Independent deployment
Reduced team size also reduces the overhead associated with keeping a team
focused and moving in one direction

There are several benefits to the microservices architecture approach; most of these benefits
focus on reliability and agility. It also has some challenges, which we will discuss in the
next section.

Microservice challenges
Even though we have a lot of benefits with the microservices, it also has some challenges.
Let's see:

Difficulty to achieve strong consistency across services, such as maintaining
ACID transactions within multiple processes
Because of distributed system, it's harder to debug/trace
Greater need for end-to-end testing
How applications are developed and deployed
Communication across services and service-to-service calls

There are numerous challenges related to the microservice infrastructure. There are
multiple processes working together as a single business unit. Because of this distributing
nature, the following issues arise:

Difficulty Solution
How do multiple microservices find each other? It is service discovery.

How do we decide which instance of a service to use? It is client-side load
balancing.

What happens if a particular microservice is not responding? It is a fault tolerance.
How do we control the access of a microservice, such as
providing security and rate limits? It is service security.

How do multiple microservices communicate with each
other? It is messaging.

Getting Started with Spring Cloud and Configuration Chapter 4

[86]

So far, we have seen that there are several challenges with microservices and distributed
systems. But Spring Boot makes microservices-based approaches easy to use. And Spring
Cloud comes into the picture to provide the solution to all these challenges. Spring Cloud
makes the development of distributed microservices quite practical by using leverage
capabilities of the auto-configuration.

Spring Boot makes for easy development with the microservices:

You can create numerous services by using Spring Boot
You can expose resources via RestController
You can also consume these remote services using RestTemplate

Spring Cloud leverages capabilities for continuous deployment, rolling upgrades of new
versions of code, quick rollback in case of defects, and running multiple versions of the
same service at the same time. And more, which we'll discuss in the next section.

Introduction to Spring Cloud
The Spring team provided Spring Boot on top of the Spring Framework to make Spring
application development easy, by using a lot of auto-configuration for most of all modules.
As Spring Boot is an extension of the Spring Core Framework, Spring Cloud is also an
extension of Spring Boot, which provides various libraries and focuses on several cloud-
native patterns. Spring Cloud expands on Spring Boot by giving us a bundle of libraries
that improve the working of an application when added to classpath. You can exploit the
basic default behavior to begin rapidly and, after that, you can design or stretch out to
make a custom code.

Spring Cloud is an umbrella project of the Spring team; Spring Cloud has multiple sub-
projects under it. It is the collection of the Spring sub-projects that provide solutions for
cloud-native problems. These problems come into the picture when your application grows
in size and traffic and also whenever you move to a mobile platform. As we have discussed
in the previous section about the cloud-native application architecture, the microservices
architecture is one of the solutions for cloud-native problems.

Getting Started with Spring Cloud and Configuration Chapter 4

[87]

Spring Cloud gives room for coders to rapidly assemble a portion of the regular patterns in
distributed systems (for example, configuration administration, circuit breakers, routing,
micro-proxy, and control bus). By using Spring Cloud, coders can easily, and in no time, set
applications and configurations using distributed systems. They will function great in a
distributed environment, including the coder's own particular workstation, uncovered
metal servers, and other platforms such as Cloud Foundry.

Building blocks of the cloud and microservice
applications
Spring Cloud is a building block for the cloud and microservice based on the application's
architecture. It provides platform support for the Spring-based cloud-native application:
microservices. Let's look at the building blocks required for the cloud-native services:

Platform support and IaaS: Access platform-specific information and services
available for Cloud Foundry, AWS, and Heroku.
Microservices infrastructure: It provides useful services such as service
discovery, configuration server, and monitoring. There are several based on
other open source projects such as Netfilx OSS and HashiCorp's Consul.
Dynamic Cloud reconfiguration: You can create distributed configuration for
the services. Spring Cloud Config provides a client and server approach for
creating and serving distributed configurations across multiple applications and
environments.
Cloud utilities: There are several cloud utilities provided by the Spring Cloud,
such as Spring Cloud Security, CLI, and Cloud Stream. Spring Cloud Security is
required for securing services and controlling access. And Spring Cloud Stream
is required for messaging and event-based cloud applications. Spring Cloud CLI
is being used to create applications rapidly in Groovy.
Data ingestion: This building block of the Spring Cloud is used for the data flow
of microservices-based information pipelines. For example, Spring Cloud Data
Flow and Spring Cloud Modules.
Uses Spring Boot style Starters: Spring Cloud is an extension of Spring Boot. So,
the cloud-native application requires Spring Boot to work.

Let's look at the following diagram, which has all the building blocks of cloud and the
microservice application:

Getting Started with Spring Cloud and Configuration Chapter 4

[88]

As you can see in the preceding diagram, there are several sub-projects associated with
Spring Cloud. Spring Cloud provides a solution for each cloud-native problem. Let's look at
all the associated main projects of Spring Cloud:

Spring Cloud Config: External configuration management that is centralized
and upheld by a Git repository. The configuration assets delineate to the Spring
environment, however they could be utilized by non-Spring applications if you
wanted.
Spring Cloud Bus: An event bus for connecting service instances and services
together with distributed messaging. Helpful for spreading state changes over a
group (for example: config change events).
Spring Cloud Netflix: Integrated and mixed with different Netflix OSS segments
(Eureka, Hystrix, Zuul, Archaius, and so on).
Spring Cloud Cluster: It has stateful patterns and leadership election with an
abstraction and usage for Zookeeper, Redis, Hazelcast, and Consul.
Spring Cloud Consul: Service disclosure and design administration with
Hashicorp Consul.
Cloud Foundry: Incorporates your application with Cloud Foundry. Gives an
implementation of a service, and makes it simple to execute SSO and OAuth2-
secured assets, as well as to make a service of the Cloud Foundry broker.

Getting Started with Spring Cloud and Configuration Chapter 4

[89]

Spring Cloud Foundry Service Broker: Gives a beginning stage to build a broker
service that deals with a Cloud Foundry administrated service.
Spring Cloud Connectors: Makes it simple for PaaS applications in an
assortment of stages to associate with backend running services such as
databases and the message broker (the venture previously known as Spring
Cloud).
Spring Cloud for Amazon Web Services: Simple mix with a host facilitated by
Amazon Web Services. It gives a helpful method to collaborate with AWS' given
services utilizing understood Spring idioms and APIs, for example, the
messaging API. Coders can fabricate their application around the facilitated
services without caring about foundation or support.
Spring Cloud Security: Offers help for stack-adjusted OAuth2 REST customer
and authentication or confirmation header transfers in a Zuul proxy.
Spring Cloud Sleuth: Spring Cloud applications' distributed tracing, perfect
with Zipkin, HTrace, and log-based (for example: ELK) following.
Spring Cloud Data Flow: A cloud-native arrangement service for microservice
applications on present-day runtimes. Simple-to-utilize DSL, intuitive GUI, and
REST-APIs together disentangle the general organization of microservice-based
information pipelines.
Spring Cloud Stream: A small-size event-based microservices structure to
rapidly assemble applications that can associate with outside frameworks. Basic
revelatory model to send and get messages between Spring Boot applications
utilizing Apache Kafka or RabbitMQ.
Stream App Starters in Spring Cloud: These are the Spring Boot Starters where
S=starters. These are enhanced when used with external frameworks.
Spring Cloud Task: A fleeting microservices framework to rapidly fabricate
applications that perform limited measures of information processing. Basic
decisive for including both useful and non-useful highlights to Spring Boot
applications.
Spring Cloud Zookeeper: Apache Zookeeper's service discovery and also
configuration.
Spring Cloud Starters: Spring Boot-style Starter activities to simplify reliance
administration for customers of Spring Cloud. (Ceased as an undertaking and
converged with alternate ventures after Angel.SR2.)
Spring Cloud CLI: A plugin for Spring Boot for making Spring Cloud
applications quickly in Groovy.

Getting Started with Spring Cloud and Configuration Chapter 4

[90]

Spring Cloud Contract: It solves issues for developers where they need to have a
customer-driven contracts method.
Spring Cloud Gateway: Spring Cloud Gateway is a keen and programmable
switch in light of Project Reactor.

Usages of Spring Cloud
As we have seen, Spring Cloud has many several modules depending on the usages. There
are many use cases supported by Spring Cloud, such as cloud integration, dynamic
reconfiguration, service discovery, security, and data ingestion. We will talk more about
microservices support, such as service discovery, and client-side load balancing.

Let's see the following typical use cases of the Spring Cloud and also give you an extensible
system:

Distributed configuration
Service registration
Service discovery
Intelligent routing
Distributed messaging
Load balancing
Circuit breakers
Leadership election and cluster state
Global locks
Service-to-service calls

Now we will explore some configurations for Spring Cloud. Let's see how to configure a
distributed system using the Spring Cloud Config.

Configuring the Spring Cloud application
One of the major issues of the cloud-native application is maintaining and distributing
configuration across the distributed services; developers spend lot of time configuring each
environment-specific configuration. But at the time of scaling our service horizontally, we
have to again reconfigure our services. Spring Cloud provides a module or sub-project for
this cloud-native problem. This module is known as a Spring Cloud Config.

Getting Started with Spring Cloud and Configuration Chapter 4

[91]

Spring Cloud Config is a sub-project of the Spring Cloud ecosystem. It provides a server
and client approach to store and sever distributed configurations across several
environments and distributed systems.

External configuration management is centralized and upheld by a Git repository. The
configuration assets delineate to the Spring environment, but could be utilized by non-
Spring applications if we wanted. We can create an external configuration and we can use
the existing configuration on the central place, such Git version control. Spring Cloud
Config provides support for both creating and using the configuration:

Spring Cloud Config Server
Spring Cloud Config Client

This configuration fits very well in the Spring application and you use it through
Environment, PropertySource or @Value for any environment with any programming
language. In the Continuous Deployment (CD) pipeline, a Spring application moves from
deployment to test and then test to production; you can easily manage the configurations in
all environments. It also ensures that the Spring application has every resource at every
place, which is required for running at the time of its migration.

By default, the Spring Cloud Config Server uses Git implementation. It also easily supports
labelled versions of configuration environments. But you can easily add alternative
implementations and plug them in with Spring configuration.

Let's solve this configuration problem, and accumulate all of our configurations into a
single Git repository and connect that to one application that manages a configuration for
all our applications. We are going to be setting up a very simple implementation.

Creating the configuration producer Spring
Cloud Config Server
Here, we'll explore an example of how to set up a Git-backed Config Server and use it in a
simple REST application server.

Let's go to http:/ /start. spring. io, select Maven and Spring Boot 2.0.2.RELEASE, and
set the Artifact to cloud-config-app. Also select dependencies for Config Server and add
that module. Then generate the application and you will be able to download a ZIP file
with a preconfigured project.

http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io

Getting Started with Spring Cloud and Configuration Chapter 4

[92]

Project setup and dependencies
The following dependencies will be shared between all the projects:

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
</parent>

<properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
 <java.version>1.8</java.version>
 <spring-cloud.version>Finchley.BUILD-SNAPSHOT</spring-cloud.version>
</properties>

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-config-server</artifactId>
 </dependency>
</dependencies>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

In the preceding Maven POM configuration file, you can see that we are using
the Finchley.BUILD-SNAPSHOT version of the Spring Cloud release train. This release
train manages the dependencies for all associated modules as you can see in
the <dependencyManagement> tag. We added a spring-cloud-config-server module
for our cloud-config-app application. After setup dependencies management, let's
implement Cloud Config Server.

Getting Started with Spring Cloud and Configuration Chapter 4

[93]

Implementing Cloud Config Server
Let's implement an application main class that has more special annotations.
Here, @SpringBootApplication will pull all the default and required configurations, and
another annotation, @EnableConfigServer, will turn our application into a configuration
server:

package com.dineshonjava.cloudconfigapp;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.config.server.EnableConfigServer;

@SpringBootApplication
@EnableConfigServer
public class CloudConfigApplication {
 public static void main(String[] args) {
 SpringApplication.run(CloudConfigApplication.class, args);
 }
}

As you can, this enables the application as a configuration server. But by default, the server
port will be 8080. We can change this default port configuration, and we have to provide
the Git URI, which provides our version-controlled configuration content. Let's look at the
following application.properties file.

Configuring the application.properties file
Let's use the application.properties file:

server.port=8888
spring.application.name=cloud-config
spring.cloud.config.server.git.uri=file://${user.home}/app-config-repo

As you can see, we have configured three properties, server.port,
spring.application.name, and spring.cloud.config.server.git.uri, where
${user.home}/app-config-repo is a Git repository containing YAML and properties
files.

If you are using a Windows machine, then you need to give an extra / as
file:/// in the file URL. If you using Unix, then use file://.

Getting Started with Spring Cloud and Configuration Chapter 4

[94]

Let's look at how to create a local Git repository on your local machine.

Creating a Git repository as configuration storage
Let's create a Git repository in this example:

$ cd $HOME
$ mkdir app-config-repo
$ cd app-config-repo
$ git init .
$ echo 'user.role=Dev' > application-dev.properties
$ echo 'user.role=Admin' > application-prod.properties
$ git add .
$ git commit -m 'Initial commit for application properties'

As you can see, you can add multiple configuration files depending on your requirements.

Remember, using the local filesystem for your Git repository is intended for testing only.
Use a server to host your configuration repositories in production.

Running your configuration application
Let's run your configuration application by using the command line, type mvn spring-
boot:run. The Git-backed configuration API provided by our server can be queried using
the following paths:

/{application}/{profile}[/{label}]
/{application}-{profile}.yml
/{label}/{application}-{profile}.yml
/{application}-{profile}.properties
/{label}/{application}-{profile}.properties

Let's understand the following variables for parameterized environment resources:

The {application} variable maps to the
spring.application.name property's value on the client side
The {profile} variable maps to spring.profiles.active property's value
on the client side
The {label} refers to a Git branch name, commit ID, and tag

You can find the configuration by using the preceding URI, let's retrieve some of them.

Getting Started with Spring Cloud and Configuration Chapter 4

[95]

Suppose our Config client is running under the development profile in the branch master
via:

/{application}/{profile}[/{label}]

Let's see the following example of the preceding pattern:

http://localhost:8888/cloudconfig/dev/master

Let's look at the following screenshot as output:

Let's retrieve the configuration as the following URI:

/{application}-{profile}.yml

Let's see the following example of the preceding pattern:

http://localhost:8888/cloudconfig-dev.yml

As you can see in the preceding screenshots, we can get these configurations from the cloud
configuration application.

Getting Started with Spring Cloud and Configuration Chapter 4

[96]

Currently we have used the local repository by using the prefix file, so it is a simple and
quick way to use the Git repository without a server. In this scenario, our cloud server
application operates on the local Git repository without cloning it. But if you want to scale
your Cloud Config Server with high availability, then you have to use the central remote
Git repository instead of directly using the local Git repository using the ssh—protocol or
the HTTP protocol. This shared file system repository can be cloned and you can use it as
local working copy as a cache.

The {label} parameter of the HTTP resource represents the mapping for the repository
implementation. Here, Git label means commit ID, branch name, or tag, so if the Git branch
contains a slash in the name, then the label in the HTTP URL has been resolved by using an
underscore ("_") instead of the slash ("/") to remove the ambiguity of URL paths.

Let's configure the Spring Cloud Config Server application using a Git repository URL with
placeholders for the {application}:

spring.cloud.config.server.git.uri=https://github.com/dineshonjava/{applica
tion}

Similarly, here's the configuration in the .yml file:

spring:
 cloud:
 config:
 server:
 git:
 uri:
https://github.com/dineshonjava/{application}

As you can see, the preceding configuration is based on the one repo per application policy.

If you want to use multiple organizations with your Spring Cloud server application, then
use the following configuration:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/{application}

So you could use "(_)" within your {application} parameters to configure multiple
organizations, such as {application}, which will be provided at request time as
dineshonjava(_)application.

Getting Started with Spring Cloud and Configuration Chapter 4

[97]

Configuring multiple repositories using
patterns
Spring Cloud Config also supports configurations for multiple repositories using matching
patterns of the application and profile name. The pattern can be configured in multiple
ways, such as a comma-separated list of {application}/{profile} names with
wildcards.

Let's look at the following configuration for the pattern matching multiple repositories
configuration:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/dineshonjava/app-config-repo
 repos:
 dev:
 pattern:
 - '*/development'
 - '*/staging'
 uri:
https://github.com/dineshonjava/development/app-config-repo
 staging:
 pattern:
 - '*/qa'
 - '*/production'
 uri:
https://github.com/dineshonjava/staging/app-config-repo

As you can see, we have configured multiple repositories according to the patterns, such as
'*/development', '*/staging', and '*/qa', '*/production'. The https:/ /github.
com/dineshonjava/development/ app- config- repo Git URI will be used for
the '*/development', '*/staging' URL patterns, and the https:/ /github. com/
dineshonjava/staging/ app- config- repo Git URI will be used for the '*/qa',
'*/production' URL patterns.

By default, the server clones remote repositories when configuration is first requested. You
can also configure it to clone the Git repository at startup time by using the cloneOnStart
property making true:

spring:
 cloud:

https://github.com/dineshonjava/development/app-config-repo
https://github.com/dineshonjava/development/app-config-repo
https://github.com/dineshonjava/development/app-config-repo
https://github.com/dineshonjava/development/app-config-repo
https://github.com/dineshonjava/development/app-config-repo
https://github.com/dineshonjava/development/app-config-repo
https://github.com/dineshonjava/development/app-config-repo
https://github.com/dineshonjava/development/app-config-repo
https://github.com/dineshonjava/development/app-config-repo
https://github.com/dineshonjava/development/app-config-repo
https://github.com/dineshonjava/development/app-config-repo
https://github.com/dineshonjava/development/app-config-repo
https://github.com/dineshonjava/development/app-config-repo
https://github.com/dineshonjava/development/app-config-repo
https://github.com/dineshonjava/development/app-config-repo
https://github.com/dineshonjava/development/app-config-repo
https://github.com/dineshonjava/staging/app-config-repo
https://github.com/dineshonjava/staging/app-config-repo
https://github.com/dineshonjava/staging/app-config-repo
https://github.com/dineshonjava/staging/app-config-repo
https://github.com/dineshonjava/staging/app-config-repo
https://github.com/dineshonjava/staging/app-config-repo
https://github.com/dineshonjava/staging/app-config-repo
https://github.com/dineshonjava/staging/app-config-repo
https://github.com/dineshonjava/staging/app-config-repo
https://github.com/dineshonjava/staging/app-config-repo
https://github.com/dineshonjava/staging/app-config-repo
https://github.com/dineshonjava/staging/app-config-repo
https://github.com/dineshonjava/staging/app-config-repo
https://github.com/dineshonjava/staging/app-config-repo
https://github.com/dineshonjava/staging/app-config-repo
https://github.com/dineshonjava/staging/app-config-repo

Getting Started with Spring Cloud and Configuration Chapter 4

[98]

 config:
 server:
 git:
 uri: https://github.com/dineshonjava/app-config-repo
 repos:
 dev:
 pattern:
 - '*/development'
 - '*/staging'
 cloneOnStart: true
 uri:
https://github.com/dineshonjava/development/app-config-repo
 staging:
 pattern:
 - '*/qa'
 - '*/production'
 cloneOnStart: false
 uri: https://github.com/dineshonjava/staging/app-config-repo

In the preceding configuration file, the server clones dev's app-config-repo on startup
time before it accepts any requests. And other repository staging doesn't clone on startup
time, the server clones staging's app-config-repo at first request.

Authentication
Suppose your remote repository requires basic authentication to access it, then we have to
configure username and password properties in the configuration file:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/dineshonjava/app-config-repo
 username: arnav
 password: sweety

Here, username and password are for the Git remote repository. As we have seen, Spring
Cloud Config Server makes a clone of the remote Git repository to your local copy, but after
some time, the local copy of the repository gets dirty due to a lot of testing and
development. So, Spring also supports force-pull in the Git repository.

Getting Started with Spring Cloud and Configuration Chapter 4

[99]

Force-pull property
There is a force-pull property provided and by default it is false. You can make it true to
avoid making your local repository dirty. Let's look at the following configuration:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/dineshonjava/app-config-repo
 username: arnav
 password: sweety
 force-pull: true

Let's see how to implement the Spring Cloud Config Client application in the next section.

Creating the configuration consumer Spring
Cloud Config client
Let's create a Spring Boot application that connects with the Spring Config Server to take
advantage of reading external property sources from the central configuration server. So,
for the client project, we have to add the following Maven configuration for the spring-
cloud-starter-config and spring-boot-starter-web modules:

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-config</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
</dependencies>

Next, let's create a client class that is a simple REST controller with one GET method
mapping:

package com.dineshonjava.cloudconfigclient;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.web.bind.annotation.GetMapping;

Getting Started with Spring Cloud and Configuration Chapter 4

[100]

import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class ConfigClientController {
 @Value("${user.role}")
 private String role;
 @GetMapping("/profile/{name}")
 public String getActiveProfile(@PathVariable String name){
 return "Hello "+name+"! active profile name is "+role;
 }
}

As you can see, the REST controller class has one request handler method and
one role property. This property is annotated with the @Value annotation to populate the
value of ${user.role}. It will be fetched from our Cloud Config Server hosted at
http://localhost:8888/. But it must be placed in a resource file named
bootstrap.properties, because this file will be loaded very early while the application
starts. Let's see the configuration of the bootstrap.properties file:

spring.application.name=config-client
spring.profiles.active=dev
spring.cloud.config.uri=http://localhost:8888

As you can see, we have set the application name, and also put the active profile and the
connection details for the Spring Cloud server application.

Suppose your Spring Cloud Config Server application is configured with security. Then
you also have to give username and password to access the Config Server application.
Let's see the bootstrap.properties file with the security configuration:

spring.application.name=config-client
spring.profiles.active=dev
spring.cloud.config.uri=http://localhost:8888
spring.cloud.config.username=root
spring.cloud.config.password=s3cr3t

Now, I have added the security configuration to access the Config Server. Let's run the
client application and see the output of the REST service:

package com.dineshonjava.cloudconfigclient;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication

Getting Started with Spring Cloud and Configuration Chapter 4

[101]

public class CloudConfigClientApplication {

 public static void main(String[] args) {
 SpringApplication.run(CloudConfigClientApplication.class, args);
 }
}

Let's call the http://localhost:8080/profile/Dinesh REST service:

As you can see in the preceding screenshot, the role of the user is fetched from the Spring
Cloud Config Server.

Summary
In this chapter, we discussed cloud-native application patterns and problems due to the
cloud-native architecture. We have also discussed the microservices architecture and
learned that it breaks monolithic applications into separate pieces of the application to
focus on the bounded context. Spring Cloud addresses and provides solutions for cloud-
native problems.

We have created a configuration server to provide a set of configuration files from a Git
repository to client applications. In this chapter, we learned about the Spring Cloud
configuration service and how to build and consume the configuration service.

In this chapter, we explored the need for the configuration service and the solution, by
Spring Cloud Config, to store config in environments and retrieve the config through a
simple point-to-point service call.

In the next chapter, we'll look at the Eureka Client and Server for the service discovery.

5
Spring Cloud Netflix and

Service Discovery
In this chapter, we will explore Spring Cloud Netflix and Service Discovery with Eureka. In
the previous chapter, we discussed the cloud-native application architecture and the
problems associated with this cloud-native pattern. We also discussed how Spring Cloud
provides solutions for the configuration management of cloud-based applications. Spring
Cloud provides the Spring Cloud Config module, which is helpful in managing the
configuration for the distributed applications, such as microservices.

We implemented our own Spring Cloud Config server application and also created a
consumer for this Cloud Config Server. In this chapter, we will go another step ahead and
see how Spring Cloud provides support with regard to communication between multiple
distributed services.

The following topics are going to be discussed in this chapter. These topics will give you a
better understanding of the Service Discovery with Eureka:

Introduction to Spring Cloud Netflix
Need for Service Discovery in microservices architecture
Implementing Service Discovery—Eureka Server:

Enabling Eureka Server as a Discovery Service Server
Implementing Service Discovery—Eureka Clients:

Registering clients with Eureka
Consuming the REST service
Using EurekaClient
Using DiscoveryClient
Client-side load balancing using Netflix Ribbon
Using the registry-aware client, Spring Cloud Netflix
FeignClient

Spring Cloud Netflix and Service Discovery Chapter 5

[103]

Let's look at these topics in detail.

Introduction to Spring Cloud Netflix
The Spring Cloud Netflix project is one of the key sub-projects of Spring Cloud. This project
provides integration between Netflix OSS and the Spring Boot application using the auto-
configuration behavior of Spring Boot. You can build a large, distributed application by
using some annotations of Spring Cloud; these annotations enable the Netflix components
for your distributed systems. Netflix OSS provides multiple components for the distributed
applications for several purposes, such as Service Discovery (Eureka), Circuit Breaker
(Hystrix), Intelligent Routing (Zuul), and Client-Side Load Balancing (Ribbon). In this
chapter, we will explore more about client-side Service Discovery and registering services
to the Discovery server via Spring Cloud Netflix Eureka.

As you know, distributed cloud-native systems are built by several services hosted at
different commodity servers. Netflix provides the Eureka server for the cloud-based
application and it acts as both a Discovery Service server and client. The server-side Service
Discovery allows you to register your services to the Eureka cloud server, and the client-
side Service Discovery allows services to find and communicate with each other without
hardcoding the hostname and port. The registered services have to send a heartbeat signal
to the registry to be informed about the presence of these services.

With Netflix Eureka, you can register multiple services and also register multiple instances
of a service. These register instances of the service act as a server and replicate its status to
the connected peer clients. Netflix Eureka manages these requests to the instances of a
service using a load balancing algorithm. The client retrieves a list of all connected
instances of a service registry and distributes the loads to these instances using a load-
balancing algorithm, what it Client Side Load Balancing (Ribbon) does.

You could also see this process as a drawback, because all clients must implement certain
logic to interact with this fixed point of Eureka and it takes an additional network round-
trip before the actual request.

Let's implement this server-side service registry (Eureka Server) and also implement a
REST service that registers itself at the registry (Eureka Client):

Implementing Service Discovery—Eureka Server
Implementing Service Discovery—Eureka Clients

Spring Cloud Netflix and Service Discovery Chapter 5

[104]

In this chapter, we will concentrate on the microservices support, which is Service
Discovery. Let's discuss, what is the need of Service Discovery in your microservices-based
project?

The need for Service Discovery in the
microservices architecture
As we know, in the microservices architecture, various protocols may be used for
connecting services to each other. But how do these services find each other?

And also, one service may have multiple instances. So, what happens if we run multiple
instances? Let's look at the following diagram:

As you can see, there are two services running in this microservices-based
application—Account Service and Customer Service. Account Service requests Customer
Service to fetch records of a customer in JSON format. And both services have their own
DB access—Account DB and Customer DB, respectively. Also, Customer Service has
multiple running instances due to high availability and throughput, and to make it
resilient. But how will Account Service call Customer Service? Which instance should be
called?

Spring Cloud Netflix and Service Discovery Chapter 5

[105]

To answer these questions, Service Discovery comes into the picture and solves these
cloud-native problems. Let's look at the diagram with Discovery Service:

As you can see, the discovery server has been used to register the microservices and
consulted to use microservices. Let's see the workflow:

Account Service registers itself with Eureka Discovery Server1.
Customer Service also registers itself with Eureka Discovery Server2.
Account Service consults with Discover Server to find Customer Service3.
Account Service knows about the Customer Service's instance to be called4.

As you have seen, Discovery Service solves the cloud-native problems of the microservices-
based architecture. Spring Cloud supports several implementations of Service Discovery,
such as Netflix Eureka and Hashicorp Consul, Spring Cloud makes it easy to utilize either
of those servers while hiding their internal complexity. But, in this chapter, we will discuss
the Netflix Eureka Service Discovery and its implementation.

Implementing Service Discovery – Eureka
Server
Let's implement Eureka Server for a service registry. It is very easy to implement by adding
spring-cloud-starter-eureka-server to the dependencies. You can see the following
Maven configuration required to create a Eureka server for a service registry.

Spring Cloud Netflix and Service Discovery Chapter 5

[106]

The Maven build configuration file
Let's see the following configuration in the pom.xml file:

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
</parent>

<properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
 <java.version>1.8</java.version>
 <spring-cloud.version>Finchley.M7</spring-cloud.version>
</properties>

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-
server</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Spring Cloud Netflix and Service Discovery Chapter 5

[107]

If the application is a Gradle project then build.gradle will be look like as following.

The Gradle build configuration file
See the following configuration:

apply plugin: 'java'
apply plugin: 'eclipse'
apply plugin: 'org.springframework.boot'
apply plugin: 'io.spring.dependency-management'

group = 'com.dineshonjava'
version = '0.0.1-SNAPSHOT'
sourceCompatibility = 1.8

repositories {
 mavenCentral()
 maven { url "https://repo.spring.io/snapshot" }
 maven { url "https://repo.spring.io/milestone" }
}

ext {
 springCloudVersion = 'Finchley.M7'
}

dependencies {
 compile('org.springframework.cloud:spring-cloud-starter-netflix-eureka-
server')
 testCompile('org.springframework.boot:spring-boot-starter-test')
}

dependencyManagement {
 imports {
 mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${springCloudVersion}"
 }
}

As you can see, with the pom.xml Maven configuration file and the build.gradle Gradle
configuration file, you have added the Starter with the org.springframework.cloud
group and spring-cloud-starter-netflix-eureka-server artifact ID. This starter
provides the auto-configuration about Netflix's Eureka server to a service registry.

Spring Cloud Netflix and Service Discovery Chapter 5

[108]

But, by default, the Eureka server doesn't enable. So you have to enable the Eureka server
by using the @EnableEurekaServer annotation in a main Spring Boot application class
that is also annotated with the @SpringBootApplication annotation.

Enabling the Eureka server as a Discovery
Service server
Let's see the following main Spring Boot application class:

package com.dineshonjava.eurekaserver;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.server.EnableEurekaServer;

@SpringBootApplication
@EnableEurekaServer
public class EurekaServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(EurekaServerApplication.class, args);
 }
}

If you run this main application class, it will start the Eureka Server. This server has a home
page with a UI. This server also has HTTP API endpoints for the normal Eureka
functionality under /eureka/*. By default, every Eureka server is also a Eureka client. So
you can also disable this default client registry with the Eureka server by setting
registerWithEureka to false.

Let's see the following application.yml file for your Eureka server:

server:
 port: 8761

eureka:
 instance:
 hostname: localhost
 client:
 registerWithEureka: false
 fetchRegistry: false
 serviceUrl:
 defaultZone:
http://${eureka.instance.hostname}:${server.port}/eureka/

Spring Cloud Netflix and Service Discovery Chapter 5

[109]

As you can see, the application.yml file is a configuration file to configure the properties
in YAML format. The server.port property defines the server port for Eureka; here we
are configuring this application port to 8761, and it is the default one for Eureka servers.
We are also configuring the Eureka server instance's hostname to localhost. We are
telling the built-in Eureka client not to register with itself, because this application should
be acting as a server. And the serviceUrl is pointing to the same host as the local
instance.

Finally, we can point our browser to http://localhost:8761 to view the Eureka
dashboard as follows:

Spring Cloud Netflix and Service Discovery Chapter 5

[110]

As you can see, currently we don't have any registered service instances. We will discuss
this later, but at the moment, we can see basic indicators, such as status and health
indicators.

Now, let's move on to the next section to create a Eureka client and also create a REST
service that registers itself at the registry server.

Implementing Service Discovery – Eureka
clients
Service Discovery is one of the key patterns of a microservice-based architecture. Spring
Cloud provides Service Discovery functionality with Netflix OSS's Eureka. Eureka is the
Cloud Service Discovery Server and Client. In the previous section, we saw how to
implement the Netflix Service Discovery server. Here, I am going to implement the Netflix
Service Discovery client.

Adding the Maven dependencies configuration
To implement Eureka Client in your project, include the Spring Cloud Starter with
the org.springframework.cloud group and the id spring-cloud-starter-
netflix-eureka-client artifact. Also include spring-boot-starter-web in pom.xml
and implement a REST controller to create a simple REST service to be registered with the
Eureka Discovery Server. Let's see the following Maven configuration file:

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
</parent>

<properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
 <java.version>1.8</java.version>
 <spring-cloud.version>Finchley.M7</spring-cloud.version>
</properties>

<dependencies>
 <dependency>

Spring Cloud Netflix and Service Discovery Chapter 5

[111]

 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-
client</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

As you can see, I have added two dependencies here, one for the Spring web module and
another for the Spring cloud Netflix Eureka client. You can choose to create this application
as a Gradle project. Let's next look at the configuration of the build.gradle file.

The Gradle build configuration
Let's see the following configuration:

apply plugin: 'java'
apply plugin: 'eclipse'
apply plugin: 'org.springframework.boot'
apply plugin: 'io.spring.dependency-management'

group = 'com.dineshonjava'
version = '0.0.1-SNAPSHOT'
sourceCompatibility = 1.8

repositories {

Spring Cloud Netflix and Service Discovery Chapter 5

[112]

 mavenCentral()
 maven { url "https://repo.spring.io/snapshot" }
 maven { url "https://repo.spring.io/milestone" }
}

ext {
 springCloudVersion = 'Finchley.M7'
}

dependencies {
 compile('org.springframework.boot:spring-boot-starter-web')
 compile('org.springframework.cloud:spring-cloud-starter-netflix-eureka-
client')
 testCompile('org.springframework.boot:spring-boot-starter-test')
}

dependencyManagement {
 imports {
 mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${springCloudVersion}"
 }
}

This file has dependencies for the Spring web module and the Spring cloud Netflix Eureka
client module. Now let's register this client with Eureka.

Registering a client with Eureka
Registering a client with Eureka means that a client provides it's own meta-information,
such as hostname with port, health indicator URL, and homepage. Each instance of a
service sends heartbeat messages to the Eureka server; if Eureka doesn't receive the
heartbeat over a configurable timetable, the instance is normally removed from the registry.

Let's create the main application class annotated with @SpringBootApplication for this
client application. By default, Spring Discovery Client doesn't enable, so we have to use
either @EnableDiscoveryClient or @EnableEurekaClient to enable it. Here is an
example Eureka client:

package com.dineshonjava.eurekaclient;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;

Spring Cloud Netflix and Service Discovery Chapter 5

[113]

@SpringBootApplication
@EnableEurekaClient
public class EurekaClientApplication {

 public static void main(String[] args) {
 SpringApplication.run(EurekaClientApplication.class, args);
 }
}

Let's create a REST service to be registered with Eureka server.

package com.dineshonjava.eurekaclient;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class HelloController {
 @GetMapping("/hello")
 public String greeting() {
 return "Hello to the Dineshonjava from EurekaClient!";
 }
}

Now let's create an application configuration file for this client application, in the form of
an application.yml file, as follows:

spring:
 application:
 name: spring-cloud-eureka-client

server:
 port: 80

eureka:
 client:
 serviceUrl:
 defaultZone: ${EUREKA_URI:http://localhost:8761/eureka}
 instance:
 preferIpAddress: true

This configuration file has a Spring application name to uniquely identify our client in the
list of registered applications, it also has server port 80. But we can let Spring Boot choose
a random port for us, because later we are accessing this service with its name, and finally,
we have to tell our client where to locate the registry.

Spring Cloud Netflix and Service Discovery Chapter 5

[114]

Let's run this client application and go to http://localhost:8761 again on the browser.
Now you can see the client registration status on the Eureka Dashboard. Let's look at the
following screenshot:

As you can see, now it has one registered instance of a REST service. The registered service
name is SPRING-CLOUD-EUREKA-CLIENT as we have given the application name in the
configuration file. You can set up home-page-url, health-check-url, and status-
page-url-path as follows:

spring:
 application:
 name: spring-cloud-eureka-client

server:

Spring Cloud Netflix and Service Discovery Chapter 5

[115]

 port: 80

eureka:
 client:
 service-url:
 default-zone: ${EUREKA_URI:http://localhost:8761/eureka}
 instance:
 prefer-ip-address: true
 status-page-url-path: https://${eureka.instance.hostName}/info
 health-check-url: https://${eureka.instance.hostName}/health
 home-page-url: https://${eureka.instance.hostName}/

Eureka internally registers these properties for status and homepage and publishes a non-
secure URL for status and homepage. In the preceding configuration file, I have overridden
those properties explicitly to secure HTTP protocol.
The ${eureka.instance.hostName} property will be resolved from a defined hostname
under the eureka.instance property. And you can set your hostname at runtime using
environment variables, for example, eureka.instance.hostname=${HOST_NAME}.

Let's consume the microservices registered to the Eureka server.

Consuming the REST service
In this section, we will explore several ways to consume the REST services hosted on the
Eureka Server. Let's create a web application that is consuming the REST service using
com.netflix.discovery.EurekaClient.

Using EurekaClient
Let's create the HomeController class and auto-wire
com.netflix.discovery.EurekaClient:

package com.dineshonjava.eurekaclient;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.Controller;

import com.netflix.appinfo.InstanceInfo;
import com.netflix.discovery.EurekaClient;
import com.netflix.discovery.shared.Application;

@Controller

Spring Cloud Netflix and Service Discovery Chapter 5

[116]

public class HomeController {
 @Autowired
 private EurekaClient eurekaClient;
 public String serviceUrl() {
 Application application = eurekaClient.getApplication("spring-cloud-
eureka-client");
 InstanceInfo instanceInfo = application.getInstances().get(0);
 String hostname = instanceInfo.getHostName();
 int port = instanceInfo.getPort();
 // we can find many information related to the instance
 return instanceInfo.getHomePageUrl();
 }
 ...
}

As you can see, we have put EurekaClient into our controller with which we could
receive service information by service name as an Application object.

Don't use EurekaClient in the @PostConstruct or @Scheduled methods.
Because it is initialized in SmartLifecycle (with phase=0), the earliest you
can rely on it being available is in another SmartLifecycle with a higher
phase.

By default, EurekaClient uses Jersey for HTTP communication. But you can avoid using
it by excluding Jersey from the Maven dependencies. Spring Cloud will auto-configure the
org.springframework.web.client.RestTemplate template of the Spring. Spring
Cloud provides alternatives to the native Netflix EurekaClient. So, if you don't want to
use the native Netflix EurekaClient, Spring cloud supports Feign and also Spring
RestTemplate. They use logical Eureka service identifiers instead of physical URLs.

Using DiscoveryClient
Spring Cloud also
provides org.springframework.cloud.client.discovery.DiscoveryClient for
consuming a REST service. DiscoveryClient is not related to Netflix and it provides a
simple API for discovery clients. Let's see the following example:

package com.dineshonjava.eurekaclient;
import java.net.URI;
import java.util.List;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.cloud.client.ServiceInstance;
import org.springframework.cloud.client.discovery.DiscoveryClient;
import org.springframework.web.bind.annotation.GetMapping;

Spring Cloud Netflix and Service Discovery Chapter 5

[117]

import org.springframework.web.bind.annotation.Controller;
@Controller
public class HelloController {
@Autowired
private DiscoveryClient discoveryClient;
public URI serviceUrl() {
List<ServiceInstance> list = discoveryClient.getInstances("spring-cloud-
eureka-client");
if (list != null && list.size() > 0) {
return list.get(0).getUri();
}
return null;
}
...
}

This example has used DiscoveryClient to get the URI of the instance. You can use this
URI to consume the REST service with Spring's RestTemplate.

Use of either EurekaClient or DiscoveryClient is not suitable because these clients
return the information about the services registered with Eureka. Eventually you have to
call these services using RestTemplate or HttpClient. Explicitly, you have to manage
the loads to these services. Spring Cloud Netflix Ribbon can be used to manage the load; it
is a load balancer in the Spring Cloud-based application.

This chapter will also cover some details about client-side load balancing on the
microservice architecture. We have used Service Discovery to communicate with services
and find each other. Now I am going to discuss client-side load balancing using Neflix
Ribbon.

Client-side load balancing using Netflix Ribbon
Client-side load balancing is used to balance incoming loads to the microservices because
each service is typically deployed as multiple instances, so, for fault-tolerance and load-
sharing, how do we decide which service instance to use?

Implementing client-side load balancing provides a way to distribute the load across
multiple instances. The Discovery server returns the location of these multiple instances.
The multiple instances are only for resilience and load-sharing, but the client needs to pick
only one instance of the service. So, Spring Cloud Netflix Ribbon comes into the picture and
provides several algorithms for client-side load-balancing. Spring also provides a smart
RestTemplate.

Spring Cloud Netflix and Service Discovery Chapter 5

[118]

Spring's RestTemplate is a smart client to call microservices registered on the Eureka
server, and it automatically integrates two Netflix utilities, such as the Eureka Service
Discovery and Ribbon client-side load balancer. Eureka returns the URL of all available
instances. Ribbon determines the best available service to use. Just inject the load-balanced
RestTemplate by using the @LoadBalanced annotation. And Spring Cloud provides
@LoadBalanced annotation, it has built-in Service discovery and load balancing. Service
Discovery is automatic lookup by using logical service-name of registered microservice.

Let's see following Maven dependency required for Ribbon:

<dependencies>
....
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-ribbon</artifactId>
</dependency>
....
</dependencies>

As you can see, the spring-cloud-starter-netflix-ribbon starter will add the
Ribbon libraries to your application. This includes the starters that we have added to create
a web application and register this application to the Eureka as a service, such as spring-
boot-starter-web and spring-cloud-starter-netflix-eureka-client.

Ribbon is a client-side load balancer that gives you a lot of control over the behavior of
HTTP and TCP clients. And RestTemplate can be automatically configured to use Ribbon.
To create a load-balanced RestTemplate, create an @Bean RestTemplate and use the
@LoadBalanced qualifier:

package com.dineshonjava.ribbonclient;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.client.loadbalancer.LoadBalanced;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.context.annotation.Bean;
import org.springframework.web.client.RestTemplate;
@SpringBootApplication

Spring Cloud Netflix and Service Discovery Chapter 5

[119]

@EnableEurekaClient
public class RibbonClientApplication {
public static void main(String[] args) {
SpringApplication.run(RibbonClientApplication.class, args);
}
@Bean
@LoadBalanced
public RestTemplate restTemplate() {
return new RestTemplate();
}
}

As you can see, the main application class has a bean definition for the RestTemplate. If
you want to use RestTemplate in your application then you have to define a bean method
for RestTempplate because a RestTemplate bean is no longer created via auto-
configuration. It must be created by individual applications.

Now let's create a service by using this RestTemplate and call the service registered with
Eureka:

package com.dineshonjava.ribbonclient.service;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.cloud.client.loadbalancer.LoadBalanced;
import org.springframework.stereotype.Service;
import org.springframework.web.client.RestTemplate;
@Service
public class HelloServiceClient {
@Autowired
@LoadBalanced
RestTemplate restTemplate;
public String sayHello(){
return restTemplate.getForObject("http://SPRING-CLOUD-EUREKA-CLIENT/hello",
String.class);
}
}

Spring Cloud Netflix and Service Discovery Chapter 5

[120]

As you can see, here we have autowired the load-balanced RestTemplate to call the
services. The RestTemplate is nothing but a high-level implement of the HTTP Client and
exposed several methods to call services. But these methods need a URI, and the URI needs
to use a virtual host name that is service name, not a host name.

Let's see the application configuration class, that is, application.yml:

spring:
 application:
 name: spring-cloud-ribbon-client

server:
 port: 8181

eureka:
 client:
 service-url:
 default-zone: ${EUREKA_URI:http://localhost:8761/eureka}
 instance:
 prefer-ip-address: true

This configuration file has defined the application name as spring-cloud-ribbon-
client, the server port as 8181, and other configurations as the same as we used earlier in
this chapter.

Let's run this client application and open the browser with
the http://localhost:8761/ URL:

As you can see, on the preceding Eureka Dashboard, there are two services registered as
SPRING-CLOUD-EUREKA-CLIENT, and SPRING-CLOUD-RIBBON-CLIENT.

Spring Cloud Netflix and Service Discovery Chapter 5

[121]

After running this example, we'll open our browser and go to
http://localhost:8181/say-hello and it should display something like the following:

As you can see, RestTemplate called the SPRING-CLOUD-EUREKA-CLIENT service
registered with Eureka to fetch the Hello to the Dineshonjava from Eureka Client! string.

Spring Cloud also supports another client that internally implements load-balancing
functionality. Let's discuss another client that is already aware of the cloud registry. Here
there is no need to get the information about a service's instance such as URI. You just give
the application name.

Using the registry-aware Spring Cloud Netflix
FeignClient client
Let's look at a simple example about Feign Client. In Chapter 8, Simplify HTTP API with
Feign Client, we will discuss more about the Spring Cloud Netflix Feign Client. Feign Client
is a discovery-aware Spring RestTemplate using interfaces to communicate with
endpoints. This client is a registry server-aware client. It will be used as the Discovery-
server-aware Spring RestTemplate using an interface with service endpoints to
communicate, and these interfaces will be automatically implemented at runtime. The
Spring Cloud Netflix Feign Client is using services-names instead of the service-urls.

Feign already uses Ribbon, so if you are using @FeignClient then this
section also applies.

Let's see the simple example of this Feign Client. First, to set up Feign Client on your
application, you have to add the following dependencies to your pom.xml:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>

Spring Cloud Netflix and Service Discovery Chapter 5

[122]

 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-
client</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-openfeign</artifactId>
 </dependency>

</dependencies>

As you can see, I have added four Maven dependencies to the pom.xml file. These
dependencies are spring-cloud-starter-openfeign,spring-cloud-starter-
netflix-eureka-client,spring-boot-starter-web, and spring-boot-starter-
thymeleaf. spring-cloud-starter-openfeign provides Feign client. Let's see the
following Feign client interface:

package com.dineshonjava.feignclient.service;

import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.GetMapping;

@FeignClient("spring-cloud-eureka-client")
public interface HelloServiceClient {
 @GetMapping("/hello")
 String sayHello();
}

As you can see, this interface has one method in this example with the @GetMapping
annotation. And you can also see this interface is annotated with
the @FeignClient annotation with the spring-cloud-eureka-client service name. We
don't need to implement this interface in our example as Spring will do it at runtime. But
remember, the @FeignClient annotation will work only when you have enabled the
Spring Cloud Netflix Feign Client support for your application by using the
@EnableFeignClients annotation on the configuration class that is annotated with
@Configuration:

package com.dineshonjava.feignclient;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.openfeign.EnableFeignClients;

@SpringBootApplication

Spring Cloud Netflix and Service Discovery Chapter 5

[123]

@EnableEurekaClient
@EnableFeignClients
public class FeignClientApplication {

 public static void main(String[] args) {
 SpringApplication.run(FeignClientApplication.class, args);
 }
}

As you can see, the main application class is annotated with three
annotations: @SpringBootApplication, @EnableEurekaClient, and
@EnableFeignClients. The @SpringBootApplication annotation is used for auto-
configuration related to Spring Cloud and @EnableEurekaClient is used to register this
application a service to the Eureka server. Finally, the @EnableFeignClients annotation
is used to enable the Netflix Feign module to your Spring cloud application.

Let's create an application controller class and auto-wire the Feign client interface into this
controller:

package com.dineshonjava.feignclient.controller;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.ModelMap;
import org.springframework.web.bind.annotation.GetMapping;

import com.dineshonjava.feignclient.service.HelloServiceClient;

@Controller
public class HelloWebController {
 @Autowired
 HelloServiceClient helloServiceClient;
 @GetMapping("/say-hello")
 String sayHello(ModelMap model){
 model.put("message", helloServiceClient.sayHello());
 return "hello";
 }
}

Spring Cloud Netflix and Service Discovery Chapter 5

[124]

This web controller has one request handler method, sayHello(), and it populates the
model object with the message returned by the feign client, that is, HelloServiceClient,
and fetched data from our REST service. Here, dependency for starters, such as spring-
boot-starter-web and spring-boot-starter-thymeleaf, is used to present a view.

Let's see the following view for this web application example:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
 <head>
 <title>Say Hello Page | Dineshonjava.com</title>
 </head>
 <body>
 <h2 th:text="${message}"/>
 </body>
</html>

This is the thymeleaf view file, which renders the view and value of the message return
from the controller.

So .yml configuration file will be same as we have used previously. In this example, I am
using the .yml format for the configuration file. So, this file will be the same as the one we
used for the REST service, the only differences being the application name and server port.
You can see this file as follows:

spring:
 application:
 name: spring-cloud-feign-client

server:
 port: 8080

eureka:
 client:
 service-url:
 default-zone: ${EUREKA_URI:http://localhost:8761/eureka}
 instance:
 prefer-ip-address: true

Spring Cloud Netflix and Service Discovery Chapter 5

[125]

Let's run this application and see the Eureka Dashboard again:

Now you can see that there are three services currently registered with Eureka
server—SPRING-CLOUD-EUREKA-CLIENT, SPRING-CLOUD-FEIGN-CLIENT, and SPRING-
CLOUD-RIBBON-CLIENT.

After running this example, we'll open our browser, go to
http://localhost:8080/say-hello, and it should display something like the
following:

Summary
You should now know what a microservice architecture is, as well as its advantages and
challenges, and how Spring Cloud solves these microservice challenges by using several
Spring Cloud modules, such as Discovery Service and Client-side Load Balancing.

We can now implement a service registry using the Spring Netflix Eureka server and
register some Eureka clients with it. We have also implemented several client applications
using EurekaClient and Feign client. The Feign client resolves the Discovery Service by
using service-name, and it by default provides support for load balancing as well. That
means if you are using the Feign client to access the services registered with Eureka, you
don't need to add Ribbon explicitly to manage the load across the multiple instances of a
service.

Spring Cloud Netflix and Service Discovery Chapter 5

[126]

With Feign Client and our registry, we can easily locate and consume the REST service,
even when the location changes.

In the next chapter, we will explore and implement a RESTful microservices example.

6
Building Spring Boot RESTful

Microservice
In this chapter, we will be building a RESTful atomic microservice that performs CRUD
operations on in-memory databases (either HSQL or H2) using Spring Cloud and Spring
Data. This service will be enabled for service discovery registration to the Eureka Server as
we have created in Chapter 5, Spring Cloud Netflix and Service Discovery; and configures the
service through bootstrap.yml and application.yml.

In the previous chapter, we learned about microservice architecture and its advantages and
challenges. We also created the Eureka Server and Eureka Client, and registered this Client
with Eureka Server. But in this chapter, we are going to create a simple microservice
example using Spring Boot and Cloud.

At the end of this chapter, you will have a better understanding of microservices and how
to create a simple microservice that focuses on a targeted situation rather than solving too
many problems. This chapter will cover the following points:

Microservices with Spring Boot
A simple microservice example:

Brief introduction to Spring Data
Brief introduction to bootstrap.yml and application.yml

Developing a simple microservices example
Creating discovery server:

@EnableEurekaServer

Creating microservice (the Producer):
@EnableEurekaClient

@EnableDiscoveryClient

@RestController

Building Spring Boot RESTful Microservice Chapter 6

[128]

Creating microservice consumers
@SpringBootApplication and @SpringCloudApplication

Let's see these topics in detail.

Microservices with Spring Boot
As we have already discussed, the microservice architecture allows us to divide a large
system into a number of collaborating components. As you know, the Spring Framework
provides loosely coupled components at the component level; similarly, the microservice
with Spring Boot provides loosely coupled processes at the process level.

Here we are dividing a monolithic application into smaller microservices, and deploying
each service as a single responsibility within a bounded context.

By using the auto-configuration behavior of Spring Boot, we can easily create several
microservices. Spring Boot provides Starters that we can add to the microservice
application and deploy with the embedded containers.

Spring Cloud extends Spring Boot into the realm of cloud-native microservices, making the
development of distributed microservices quite practical. Spring Boot's real power is in
creating microservice-based applications. Spring Boot also supports distributed
configurations for cloud-native applications.

Let's see where to use different configuration files for the Spring Boot and Spring Cloud
applications.

Brief introduction to bootstrap.yml and
application.yml
In the Spring Boot application, the configuration files are either
application.properties or application.yml. The application.yml config file will
contain application-related configurations, such as server port, JPA configuration, and data
source configuration.

Building Spring Boot RESTful Microservice Chapter 6

[129]

In the case of the Spring Cloud application, we need some configurations that would be
used in multiple microservices. We require two types of configuration files in the case of
the Spring Cloud application. These files are:

The Bootstrap application configuration file (bootstrap.yml)
The application configuration file (application.yml)

By default, Bootstrap properties are added with high precedence, so they cannot be
overridden by local configuration. The bootstrap.yml (or bootstrap.properties) file
is loaded before application.yml (or application.properties). The Bootstrap
application configuration file is similar to the application.yml file, but it will be loaded
at the Bootstrap phase of the application context.

The bootstrap.yml file is typically used for the case of the Spring Cloud Config Server
application. You can specify spring.application.name and
spring.cloud.config.server.git.uri inside the bootstrap.yml file, as we have
seen in the Chapter 4, Getting Started with Spring Cloud and Configuration, and also add
some encryption/decryption information. A parent Spring ApplicationContext (known
as Bootstrap Application Context) loads the Bootstrap Application configuration
file, bootstrap.yml.

The Spring Cloud application usually loads the configuration data from the Spring Cloud
Config Server. So, loading the URL and other connection configurations, such as passwords
and encryption/decryption information, first we need that Bootstrap configuration. Thus,
we have to use the bootstrap.yml file to put in the configurations that are used to load
the real configuration data.

Let's see the following example for the bootstrap.yml file:

spring:
 application:
 name: foo
 cloud:
 config:
 uri: ${SPRING_CONFIG_URI:http://localhost:8888}

As you can see in the preceding Bootstrap configuration file, it typically contains two
properties, such as the location of the configuration server, spring.cloud.config.uri,
and the name of the application, spring.application.name. So, at the startup time of the
Spring Cloud application, it makes an HTTP call to load these attributes from the Config
Server.

Building Spring Boot RESTful Microservice Chapter 6

[130]

You can disable the Bootstrap process completely by setting
spring.cloud.bootstrap.enabled=false.

Let's discuss a simple microservice example in the next section.

A simple microservice example
We will discuss a simple microservice example with Spring Boot and Cloud. In a previous
chapter, we saw an example of the Bank application with three
microservices—AccountService, CustomerService, and Notification Service.

Without the microservice architecture, let's see the following diagram of the monolith
application with these three modules:

In the preceding diagram, you can see that Banking Application has three
modules—AccountService, CustomerService, and Notification Service. AccountService
manages the account of the customer in the banking system, such open account, get details
of an account, update details of an account, and close an account.

Let's divide this monolithic banking application into separate pieces according to the
AccountService, CustomerService, and NotificationService modules. These modules
process independently of each other. We can deploy each service separately without
hampering other services. Its scope is microscopic and focuses only on a unit of task rather
than too many tasks. Let's see the following diagram of this banking application based on
the microservice architecture:

Building Spring Boot RESTful Microservice Chapter 6

[131]

As you can see in the preceding diagram, we created the banking application with a
microservices-based architecture. The banking application has been divided into a set of
sub-applications, called microservices.

I am going to discuss how to implement a large system by building the simplest possible
subsystems step-by-step. Therefore, I will only implement a small part of the big
system—the user account service. I will discuss only one module of this large banking
application. Let's see the following diagram of one of modules of the application:

Building Spring Boot RESTful Microservice Chapter 6

[132]

I am going to create an AccountService microservice for one of the modules of the Banking
application. The web application makes a request to access data from AccountService using
the RESTful API. We need to add a discovery service, so that other processes can find each
other.

Finally, we will create an account resource exposing several RESTful services using the
proper URIs and HTTP methods, as follows:

Retrieve all accounts: @GetMapping("/account")
Get details of a specific account: @GetMapping("/account/{accountId}")
Delete an account: @DeleteMapping("/account/{accountId}")
Create a new account: @PostMapping("/account")
Update account details: @PutMapping("/account/{accountId}")

As you can see, the preceding URIs provide all the CRUD operations for the account
microservice.

Creating a discovery service
Let's create a discovery service. As we know, a discovery service can solve the following
problems of the cloud-native application:

How do services find each other?
What happens if we run multiple instances for a service?

Let's see the following diagram with the cloud-native problems:

Building Spring Boot RESTful Microservice Chapter 6

[133]

We have already discussed the preceding diagram in detail in Chapter 5, Spring Cloud
Netflix and Service Discovery.

Let's see the following Maven dependencies required for the discovery service:

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
</parent>

<properties>
 ...
 <spring-cloud.version>Finchley.M8</spring-cloud.version>
</properties>

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-
server</artifactId>
 </dependency>
</dependencies>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

The preceding Maven configuration is included in Spring Cloud with
the Finchley.M8 version and accordingly, in this version, it manages all transitive
dependencies required for Spring Cloud.

Building Spring Boot RESTful Microservice Chapter 6

[134]

So now spring-cloud-starter-eureka-server dependency is present in the Maven
build configuration (pom.xml), and because of this dependency, the application will be
started as a Eureka Server. As you can see, the spring-cloud-starter-eureka-server
dependency starter is part of the Spring Cloud project and it uses the latest Spring Cloud
release train (currently Finchley.M8) to manage your Maven dependency versions for
other cloud-related dependencies.

After adding the Starter dependency for the Eureka Server, we now need to add a Eureka
Service registry. It is a very simple and regular Spring Boot application with one additional
annotation apart from @SpringBootApplication. This annotation is added to enable the
service registry. So, you can use Spring Cloud's @EnableEurekaServer annotation to
create and enable a Eureka registry server. The application can talk to this registry server
and register itself.

Let's see the following code to create the discovery registry service and enable it to register
the microservices:

package com.dineshonjava.eurekaserver;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.server.EnableEurekaServer;

@SpringBootApplication
@EnableEurekaServer
public class EurekaServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(EurekaServerApplication.class, args);
 }
}

As you can see, the preceding code is a very simple Spring Boot application class. Spring
Boot's opinionated design makes it easy to create a Eureka Server just by annotating the
entry point class with @EnableEurekaServer. This class is only required to implement the
registry service.

You can see I have used two annotations:

@SpringBootApplication

@EnableEurekaServer

Building Spring Boot RESTful Microservice Chapter 6

[135]

As you know, the @SpringBootApplication annotation enables your application to load
the auto-configurations related to the Spring Cloud, and the @EnableEurekaServer
annotation enables and starts this application as a Eureka Server.

Let's see the required basic configuration for this server application in the
application.properties or application.yml file:

server:
 port: 8761

eureka:
 instance:
 hostname: localhost
 client:
 registerWithEureka: false
 fetchRegistry: false
 serviceUrl:
 defaultZone:
http://${eureka.instance.hostname}:${server.port}/eureka/

As per the preceding configuration, when this Eureka Server application starts, it will listen
for registrations on server port 8761. All our microservices, at the time of start, will register
themselves with this Eureka Server by making a call to this Eureka Server application
running at server port 8761. Other services or web applications can query this Eureka
Server to find other registered services. You can access the Eureka dashboard by using
the http://localhost:8761 URI, because Eureka also provides a simple status
dashboard:

Building Spring Boot RESTful Microservice Chapter 6

[136]

The dashboard shows that the Eureka Server is running smoothly, but currently there are
no instances registered with Eureka.

Now that we have created and started up a service registry, let's move on to create a client
that registers itself with the Eureka registry server and also uses either Spring Cloud
DiscoveryClient or EurekaClient to expose its own registry with the host and port.

Creating a microservice (the Producer)
We will discuss and create a microservice, account-service, as we have seen in the
preceding diagram. This microservice registers itself with the registry service or discovery
service with its logical service name as account-service.

First, we need to add the required Maven dependencies. Again, use the spring-cloud
release train to manage versions:

<properties>
 ...
 <spring-cloud.version>Finchley.M8</spring-cloud.version>
</properties>

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-
client</artifactId>
 </dependency>
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
 </dependency>
</dependencies>

<dependencyManagement>
 <dependencies>
 <dependency>

Building Spring Boot RESTful Microservice Chapter 6

[137]

 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

The preceding Maven configuration has the spring-cloud-starter-netflix-eureka-
client dependency for @EnableEurkaClient instead of the @EnableDiscoveryClient
annotation. But you can also use the @EnableDiscoveryClient annotation to register this
service with the registry server. And this configuration also has the spring-boot-
starter-data-jpa dependency for creating the Spring Data JPA repository, spring-
boot-starter-web for creating @RestController, and the h2 in-memory database to
save the data associated with the account application.

Let's see the following main class of the Spring Boot application for accountservice:

package com.dineshonjava.accountservice;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;

@SpringBootApplication
@EnableEurekaClient
public class AccountServiceApplication {

 public static void main(String[] args) {
 SpringApplication.run(AccountServiceApplication.class, args);
 }
}

The preceding main application class is annotated with @SpringBootApplication and
@EnableEurekaClient. @SpringBootApplication is used for the Spring Boot auto-
configuration, as we have already discussed. The next annotation, @EnableEurekaClient,
is used to activate the Netflix EurekaClient implementation.

Building Spring Boot RESTful Microservice Chapter 6

[138]

We can also enable discovery with the @EnableDiscoveryClient annotation on a
@Configuration class or the @SpringBootApplication entry point
class. @EnableDiscoveryClient activates the Netflix Eureka DiscoveryClient
implementation.

There are multiple implementations of Discovery Service, such as Eureka, Consul, and
Zookeeper. In this example, we have used @EnableEurekaClient explicitly but it will be
available only when the spring-cloud-starter-netflix-eureka-client dependency
is available on your application classpath, and it only works for Eureka. You could also use
@EnableDiscoveryClient; it lives in spring-cloud-commons and picks the
implementation on the classpath. And there is no difference between either using the
@EnableEurekaClient or the @EnableDiscoveryClient annotation. They are
effectively the same.

Let's create a configuration file, application.properties (or application.yml), with a
couple of configuration settings:

spring:
 application:
 name: account-service

server:
 port: 6060

eureka:
 client:
 service-url:
 default-zone: ${EUREKA_URI:http://localhost:8761/eureka}
 instance:
 prefer-ip-address: true

This file tells us the application name is account-service, and the server port will be
6060. And this tells the application where the Eureka Server is to register itself with
the account-service logical service name.

Building Spring Boot RESTful Microservice Chapter 6

[139]

Now let's start account-service and you can see that it will be registered with Eureka
discovery service:

The ACCOUNT-SERVICE microservice is registered with Eureka discovery service, as you
can see under Instances currently registered with Eureka in the Dashboard.

The @EnableEurekaClient annotation makes this application account-service into
both a Eureka instance by registering itself, as you can see in the preceding dashboard, and
also a client, so that it can access or query other registered services. We can control the
behavior of this instance, and also we can see the health of this instance by configuring
some settings with the eureka.instance.* configuration keys.

Let's see other classes of this service. We have created a REST Controller by using
the @RestController annotation. You can refer to my book, Spring 5 Design Patterns—it
explains the Spring MVC module in details. Here I am just going to use the
@RestController annotation without explaining much about the Spring MVC module, to
create the REST controller to handle RESTful API calls:

package com.dineshonjava.accountservice.controller;
import java.util.List;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.DeleteMapping;

Building Spring Boot RESTful Microservice Chapter 6

[140]

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RestController;

import com.dineshonjava.accountservice.domain.Account;
import com.dineshonjava.accountservice.repository.AccountRepository;

@RestController
public class AccountController {
 @Autowired
 AccountRepository accountRepository;
 @PostMapping(value = "/account")
 public Account save (@RequestBody Account account){
 return accountRepository.save(account);
 }
 @GetMapping(value = "/account")
 public Iterable<Account> all (){
 return accountRepository.findAll();
 }
 @GetMapping(value = "/account/{accountId}")
 public Account findByAccountId (@PathVariable Integer accountId){
 return accountRepository.findAccountByAccountId(accountId);
 }
 @PutMapping(value = "/account")
 public Account update (@RequestBody Account account){
 return accountRepository.save(account);
 }
 @DeleteMapping(value = "/account")
 public void delete (@RequestBody Account account){
 accountRepository.delete(account);
 }
 ...
}

This REST controller has several request handler methods to perform the CRUD operations.
The save() request handler method creates a new account, we can read all accounts using
the all() handler method, the update() handler method updates the existing account of
a given account ID. And also we can delete an account using the delete() handler
method.

Building Spring Boot RESTful Microservice Chapter 6

[141]

The AccountController REST controller has an AccountRepository property. This
repository is an interface extending with the CrudRepository interface of the Spring Data
JPA. We will cover Spring Data in the next section. This repository uses the H2 database to
store all information about the account. You can find complete a example on GitHub about
this account service application.

Let's see whether the following URIs have been exposed by this REST controller of the
account microservice:

Create a new account: @PostMapping("/account")
Read all accounts: @GetMapping("/account")
Get details of a specific account: @GetMapping("/account/{accountId}")
Update account details: @PutMapping("/account/{accountId}")
Delete an account: @DeleteMapping("/account")

The preceding endpoints have been used by the web application to access the account
microservice.

Let's create microservice consumers.

Creating microservice consumers
To consume this RESTful microservice, let's create a consumer web application. This web
application will consume RESTful service endpoints. Spring provides several ways to
consume microservices, but in this web application, we will use the RestTemplate class.
This RestTemplate class allows you to send HTTP requests to a RESTful server and fetch
data in a number of formats, such as JSON and XML.

The format of data depends on the presence of marshalling classes on the classpath of the
web application. The web application will support the JSON format if Jackson JARS are
present in the classpath. Similarly, it will support the XML format if JAXB JARS are present
in the classpath.

In this web application, the WEB-APPLICATION component depends on the backend
microservice (ACCOUNT-SERVICE). This application will talk to the account microservice by
using a logical service name rather than hardcoding the location of the microservice, and
this web application asks Eureka to resolve the host and port of this microservice.

Building Spring Boot RESTful Microservice Chapter 6

[142]

Let's see the following main application class of this web application:

package com.dineshonjava.webapplication;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.client.loadbalancer.LoadBalanced;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.context.annotation.Bean;
import org.springframework.web.client.RestTemplate;

@SpringBootApplication
@EnableEurekaClient
public class WebApplication {

 public static void main(String[] args) {
 SpringApplication.run(WebApplication.class, args);
 }
 @LoadBalanced
 @Bean
 RestTemplate restTemplate() {
 return new RestTemplate();
 }
}

This class has the @EnableEurekaClient annotation to register itself with the registry
service. And, one more thing; I have configured a bean that is RestTemplate using
the @LoadBalanced annotation. That means our web application has load-balanced
RestTemplate.

Load-balanced RestTemplate
The RestTemplate bean will be intercepted and auto-configured by Spring Cloud (due to
the @LoadBalanced annotation) to use a custom HttpRequestClient that uses Netflix
Ribbon to do the microservice lookup. Ribbon is also a load balancer, so if you have
multiple instances of a service available, it picks one for you. (Neither Eureka nor Consul
on their own performs load balancing, so we use Ribbon to do it instead.)

From the Brixton Release Train (Spring Cloud 1.1.0.RELEASE), the
RestTemplate is no longer created automatically. Previously it was
created for you, which caused confusion and potential conflicts.

Building Spring Boot RESTful Microservice Chapter 6

[143]

The loadBalancer takes the logical service name (as registered with the discovery server)
and converts it to the actual hostname of the chosen microservice. A RestTemplate
instance is thread-safe and can be used to access any number of services in different parts of
your application.

Let's see the configuration file of this web application:

spring:
 application:
 name: web-application

server:
 port: 6464

eureka:
 client:
 service-url:
 default-zone: ${EUREKA_URI:http://localhost:8761/eureka}
 instance:
 prefer-ip-address: true

After configuration file creation, let's run this main application class and see the following
Eureka dashboard:

Building Spring Boot RESTful Microservice Chapter 6

[144]

As you can see, WEB-APPLICATION is registered with the Eureka discovery service. Let's
see the WebAccountService class, which accesses the account microservice by using
names rather than server addresses:

package com.dineshonjava.webapplication.service;

import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.cloud.client.loadbalancer.LoadBalanced;
import org.springframework.stereotype.Service;
import org.springframework.web.client.RestTemplate;

import com.dineshonjava.webapplication.domain.Account;
import com.dineshonjava.webapplication.exception.AccountNotFoundException;

@Service
public class WebAccountsService {
 @Autowired
 protected RestTemplate restTemplate;
 // ACCOUNTS-SERVICE is the name of the microservice we're calling
 protected String serviceUrl = "http://ACCOUNT-SERVICE";
 public Account getByNumber(String accountNumber) {
 Account account = restTemplate.getForObject(serviceUrl
 + "/account/{accountId}", Account.class, accountNumber);
 if (account == null)
 throw new AccountNotFoundException(accountNumber);
 else
 return account;
 }
 public List<Account> getAllAccounts(){
 return restTemplate.getForObject(serviceUrl+ "/account",
List.class);
 }
 ...
 ...
}

Building Spring Boot RESTful Microservice Chapter 6

[145]

The service class accesses the backend microservice for this web application. The
@LoadBalanced annotated RestTemplate will resolve application names (ACCOUNT-
SERVICE) to a real server name and port by querying Eureka. The @LoadBalanced
annotation tells Spring Boot to customize RestTemplate
with ClientHttpRequestFactory that does a Eureka lookup before making the HTTP
call. To make this work, you'll need to add a new config setting to
application.properties:

ribbon.http.client.enabled=true

You can find complete web application from GitHub (https:/ /github. com/
PacktPublishing/Mastering- Spring- Boot- 2.0).

Let's discuss the Spring Data project of the Spring Framework in the next section.

Brief introduction to Spring Data
Spring Data is a mutation of Spring Source Projects, designed with the purpose of unifying
and easing the access to different kinds of data storage, such as relational databases and
NoSQL data stores. Spring Data aims to provide a consistent and reliable platform to access
data while keeping the special traits of the data stores intact. The model of Spring Data is
based on Spring-based programming.

Using Spring Data provides easy-to-utilize data storing technologies, such as:

Relational databases
Non-relational databases
Map-reduced frameworks
Cloud-based data services

Developers of Spring Data interact and work together with the many companies and
developers of these technologies to bring you Spring Data. Spring Data projects are like
umbrella projects with many sub-projects specific to the technology you require.

There are many features of Spring Data, and some are:

A powerful repository
Customized object-mapping abstractions
Query derivations from the names of the repository
Domain-based classes that provide basic properties are implemented

https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0

Building Spring Boot RESTful Microservice Chapter 6

[146]

Transparent auditing, such as created and last changed, are supported
Customized repository codes can be integrated into the projects
Easy Spring integration can be done through customized XML namespaces or
JavaConfig
Advanced integration can be done with Spring MVC models

To manage the different independent projects under the Spring Data projects, a Bill of
Materials is published with the set of dependencies for all the projects. The released trains
are classified by names instead of versions. Spring Data's central goal is to provide a well-
known and reliable, Spring based coding model for hiding verbosity.

It makes it simple to utilize information get to innovations, all kinds of databases, outline
structures, and cloud-based services. This is an umbrella venture that contains numerous
sub-projects that are particular to a given database. The activities are produced by
cooperating with a significant number of organizations and engineers that are behind these
energizing advances.

Apache Ignite repository
Spring Data Framework gives a brought-together and broadly utilized API that permits
abstracting fundamental information stockpiling from the application layer. Spring Data
causes you to abstain from locking to a particular database merchant, making it simple to
change, starting with one database then onto the next with negligible endeavors.

Apache Ignite actualizes the Spring Data CrudRepository interface that backs the
fundamental CRUD activities and gives access to the Apache Ignite SQL Grid by means of
the bound-together Spring Data API.

Spring Data MongoDB
Spring Data for MongoDB is part of the umbrella Spring Data venture that plans to give a
natural and steady Spring-based programming model to new datastores while holding
store-particular highlights and abilities.

Building Spring Boot RESTful Microservice Chapter 6

[147]

The Spring Data MongoDB venture gives coordination the MongoDB report database. Key
practical territories of Spring Data MongoDB are a POJO-driven model for connecting with
a MongoDB DBCollection and effortlessly composing repository-style information to layer.

Spring MongoDB data highlights
Here are some highlights of the Spring MongoDB data:

Spring setup bolster utilizing Java-based @Configuration classes or an XML
namespace for a Mongo driver occasion and imitation sets
The mongo template assistant class builds efficiency performing normal Mongo
activities
Incorporates coordinated protest mapping among records and POJOs
Special case interpretation into Spring's versatile Data Access Exception chain of
importance
Highlight Rich Object Mapping coordinated with Spring's Conversion Service
Explanation-based mapping metadata, yet extensible to help other metadata
positions
Steadiness and mapping life cycle occasions
Low-level mapping utilizing MongoReader/MongoWriter reflections
Java-based Query, Criteria, and Update DSLs
Programmed usage of Repository interfaces, including support for custom
discoverer strategies
QueryDSL coordination to help compose safe inquiries
Cross-store persistence, support for JPA Entities with fields straightforwardly
endured/recovered utilizing MongoDB
Log4j log appender
GeoSpatial
Guide Reduce
JMX organization and checking
CDI bolster
GridFS

Building Spring Boot RESTful Microservice Chapter 6

[148]

Spring Data JPA
Spring Data JPA, some portion of the bigger Spring Data group, makes it simple to
effortlessly execute JPA-based repositories. This module manages an upgraded bolster for
JPA-based information to get layers. It makes it simpler to fabricate Spring-fueled
applications that utilize information gets to advancements.

Summary
We created a microservice called ACCOUNT-SERVICE and registered this service with the
Eureka discovery service. We also created a consumer of the microservice as a web
application, and it registered itself with the Eureka discovery service to consume the
accountservice by using its logical service name rather than using a hardcoded
hostname and server port.

Netflix's Eureka works as service discovery and client. Spring Cloud provides support to
Netflix's Eureka to provide solutions to the cloud-native problems.

Netflix's Ribbon provides client-side load balancing with the Spring's RestTemplate.
Spring Cloud promotes service registration and client-side load-balancing features
to create a more resilient system.

We have also discussed some parts of the Spring Data project. How Spring creates a
repository using interfaces. In this chapter, we have created a repository and built a CRUD
operation using the H2 database.

In the next chapter, we will explore and implement asynchronous reactive systems.

7
Creating API Gateway with

Netflix Zuul Proxy
In the previous chapter, we created microservices and registered with the Eureka registry
server. This chapter will explore the need for the API Gateway pattern for microservices
communication, either from UI components or from inter-service calls. We will implement
API Gateway using the Netflix Zuul API. We will see how to set up Zuul Proxy in your
application.

Spring Cloud provides support for Netflix Zuul to implement the API Gateway proxy for
routing and filtering the actual microservice requests. This chapter will explore the
following points and you will get a better understanding of API Gateway and Zuul proxy.

This chapter will cover the following topics:

The need for an API Gateway pattern
API Gateway pattern components
Implementing the API Gateway using Netflix Zuul proxy
Including Zuul using Maven dependency
Enabling the Zuul service proxy
Configuring Zuul properties
Adding Zuul filters

The need for an API Gateway pattern
In the microservices architecture, lots of API services work together for the distributed
application. There could be more than 100 API services and UI components talking to each
other for a business goal. So, these UI components must know about all microservices
endpoints with a port to call these API services if you are not using API Gateway.

Creating API Gateway with Netflix Zuul Proxy Chapter 7

[150]

An API Gateway mechanism is required when you want to implement the common aspects
for your distributed application, such as CORS, authentication, security, and monitoring, in
terms of this design. If you are not using API Gateway, then you have to implement these
aspects into all API services, so the same code will be repeated over all microservices. To
avoid this problem, we have to use a common service or entry point where all common
aspect code is written and the client will call that common service.

Let's see the following diagram of a distributed application without an API Gateway
service:

As you can see, each UI component must be aware of each service endpoint using the
Eureka Server. The UI component of the Customer-Service must have information about
the endpoint of the Customer microservice that is registered with the Eureka Server.
Similarly, the UI component of the account must be aware of the endpoints of the Account
microservice. It is sometimes very complex to maintain and remember the endpoints of
each API service, and our microservices implementations don't want to expose these
endpoints to the outside world for security reasons. We want to keep these API services
private. In this case, instead of letting UI components know about all the actual endpoints
of the API services, we can provide API Gateway, which will delegate all API calls to the
individual microservices working behind the scenes.

API Gateway is a unified proxy interface delegating the calls to several microservices-based
on the URL pattern. In this chapter, we will implement this API Gateway proxy using
Spring Cloud's Zuul Proxy. This API Gateway interface allows us to expose a set of public
services to the outside client without any security breaches. Let's see the following diagram
with an API Gateway interface to call API services:

Creating API Gateway with Netflix Zuul Proxy Chapter 7

[151]

As you can see in the preceding diagram, the UI component calls the API services through
API Gateway. Now, each UI component doesn't need to know the actual endpoint of the
individual microservice. We have exposed a single service, that is, the API Gateway service
with a host and port for all UI components. This API Gateway service is also known as Edge
Service because this service sits on top of all the other microservices in a distributed
application. All clients will call this Edge Service as a proxy for all internal microservices.

Let's see the pros and cons of using the API Gateway proxy service in the next section.
There are many reasons to use the API Gateway service on microservices-based
applications, we have discussed some of them. There are listed pros and cons of the API
Gateway pattern in the next sections.

Pros of the API Gateway pattern
These are the advantages of using an API Gateway proxy in your distributed application:

API Gateway provides an easier way for clients to call API services
You can apply client-specific policies, such as authentication and rate-limiting, at
a single place rather than across multiple services
You can also expose selected APIs to the clients with exposing internal
microservices endpoints
Microservices endpoints can be changed without forcing the clients to refactor
consuming logic
You can implement any routing rules or any filter implementation
API Gateway is like an Edge microservice and is independently scalable

Creating API Gateway with Netflix Zuul Proxy Chapter 7

[152]

You have seen some pros of using the API Gateway proxy service in your microservices
architecture, and now let's look at some cons of using this API Gateway pattern.

Cons of the API Gateway pattern
These are the disadvantages of using an API Gateway proxy in your distributed
application:

API Gateway is the single entry point to apply all common aspects, it could be
risky sometimes because of the single point of failure if proper measures are not
taken to make it highly available
Managing API information of various microservices might be difficult in the API
Gateway service

We have discussed some pros and cons of using the API Gateway pattern in your
microservices-based application. Let's see the API Gateway pattern components in the next
section.

API Gateway pattern components
The API Gateway pattern is based on calling API services using a proxy. The API Gateway
proxy service has mainly four types of filters. These filters intercept the HTTP requests
coming from the client applications. You can also add your own custom filters for a specific
URL pattern. Let's see the following diagram that displays API Gateway's components:

Creating API Gateway with Netflix Zuul Proxy Chapter 7

[153]

API Gateway has mainly four filters as follows:

Pre filter: These filters will be invoked before the HTTP request is routed

Post filter: These filters will be invoked after the HTTP request has been routed

Route filter: These filters will be used to route the HTTP request

Error filter: These filters will be invoked when an error occurs while handling
the HTTP request

As per the preceding diagram, the Client Applications send the HTTP request to the API
Gateway service, the pre filter intercepts the HTTP request coming from the client
applications and forwards it to the route filter to route these requests to the internal
individual microservices, such as Account Microservice and Customer Microservice. The
microservices send a response to the post filter, and finally, the post filter forwards the
HTTP Response to the Client Applications.

We have discussed the API Gateway pattern in the microservices architecture. Let's
implement this pattern using Spring Cloud's Netflix Zuul API in your microservice
application.

Implementing API Gateway using Netflix
Zuul Proxy
Let's implement routing for your microservice application. We have discussed the
importance of routing for API services. In this chapter, we have created two
microservices— Account and Customer. Also, we have a Eureka registry application. For
example, /api/accounts is mapped to the Account service and /api/customers is
mapped to the Customer service.

In this example, we have used Netflix's Zuul API to implement the API Gateway proxy to
route API calls. Spring has strong bonding with Netflix Zuul and provides a Spring Cloud
Netflix Zuul module. Zuul is a JVM-based router and also used as server-side loadbalancer
by Netflix.

Here, we will call both the Account and Customer services by using the Zuul proxy, which
can be used to create API Gateway. Also, we have to create another microservice
application for API Gateway Edge service.

Creating API Gateway with Netflix Zuul Proxy Chapter 7

[154]

Let's create a Spring Boot project using the web interface of Spring Initializr (http:/ / start.
spring.io/). The application name will be Api-Zuul-Service and select Zuul and
Eureka Discovery module. This Edge Service will be a Eureka client itself.

Let's include Spring Cloud's Netflix Zuul library in your microservice application.

Including Zuul using Maven dependency
First, we need to add a dependency to the Zuul support from Spring Cloud to our UI
application's pom.xml file:

<dependencies>
...
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-zuul</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
...
</dependencies>

As you can see in the Maven configuration file, we have added the Zuul library with
spring-cloud-starter-netflix-zuul artifactId and org.springframework.cloud
groupId. And also we have added the spring-cloud-starter-netflix-eureka-
client dependency to register this api-gateway-service with the Eureka registry
server.

As of now, we have added the Zuul Maven dependency to our Spring Boot application but,
by default, Zuul will not be enabled, so we have to enable the Zuul proxy service. Let's see
in the next section.

http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/

Creating API Gateway with Netflix Zuul Proxy Chapter 7

[155]

Enabling the Zuul service proxy
Now add the @EnableZuulProxy annotation on top of the
ApiZuulServiceApplication Spring Boot application class. This annotation will enable
the Zuul service proxy in our application and will also enable all the features of an API
Gateway layer. Along with the @EnableZuulproxy annotation, we have also added
another @EnableDiscoveryClient annotation on top of
the ApiZuulServiceApplication class. Let's see the following main application class of
the api-gateway-service application:

package com.dineshonjava.apizuulservice;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import org.springframework.cloud.netflix.zuul.EnableZuulProxy;
@EnableZuulProxy
@EnableDiscoveryClient
@SpringBootApplication
public class ApiZuulServiceApplication {
public static void main(String[] args) {
SpringApplication.run(ApiZuulServiceApplication.class, args);
}
}

As you can see, the ApiZuulServiceApplication class is annotated with the
@EnableZuulProxy annotation to enable the Zuul proxy service in our microservice
application. Now, we will see how to configure Zuul properties in our
application.properties or application.yml file. In this chapter, I have used
the application.yml configuration file to configure Zuul properties, but we can also use
the bootstrap.properties file to configure come configurations that are required at the
startup time of the application.

Configuring Zuul properties
Let's configure Zuul properties in our application using the application.yml
configuration file. These are the configurations we have created for our application
configuration file:

spring:
application:
name: API-GATEWAY
server:
port: 8080

Creating API Gateway with Netflix Zuul Proxy Chapter 7

[156]

eureka:
client:
service-url:
default-zone: ${EUREKA_URI:http://localhost:8761/eureka}
instance:
prefer-ip-address: true
zuul:
ignoredServices: '*'
prefix: /api
routes:
account-service:
path: /accounts/**
serviceId: ACCOUNT-SERVICE
customer-service:
path: /customers/**
serviceId: CUSTOMER-SERVICE
host:socket-timeout-millis: 30000

In the preceding application configuration file, first, we have configured the application
name as API-GATEWAY and the server port with 8080 for the Edge Service application. And
we have defined configurations related to the Eureka client for registering this Edge Service
application with the Eureka Server.

If you want to use routing based on service IDs, you need to provide
Eureka on the classpath and have to register this service with the Eureka
registry server. You can also use Zuul without the Eureka Server, but you
have to provide the exact URL of the service where it will be redirected:
zuul.routes.account-service.url=http://localhost:6060.

Finally, we have configured Zuul properties in the application configuration file. First, we
have to skip all the default services from the Zuul proxy by using the following
configuration:

zuul:
ignoredServices: '*'
account-service:
path: /accounts/**

In the preceding example, all services are ignored except account-service.

We can also use a common prefix for URLs, such as /api, for which we want Zuul to proxy
by setting zuul.prefix property:

zuul:
prefix: /api

Creating API Gateway with Netflix Zuul Proxy Chapter 7

[157]

We can also customize the path mappings of services as follows:

zuul:
routes:
account-service:
path: /accounts/**
serviceId: ACCOUNT-SERVICE

Here, zuul.routes.account-service.path will route all traffic to request the service
with the ACCOUNT-SERVICE service ID. Now,
the http://localhost:8080/api/accounts/account URL will be forwarded to the
ACCOUNT-SERVICE microservice. Let's configure another microservice Customer similar to
Account microservice in the example.

Finally, we have configured the Zuul host socket timeout with the following configuration:

zuul:
host:
socket-timeout-millis: 30000

In the preceding configuration, we have configured it to instruct Spring Boot to wait for the
response for 30000 ms.

Now, our microservice application for the API Gateway service is ready to run and test.
Let's start Eureka Server, AccountService, CustomerService, and APIZuulService
application.

Let's open the Eureka dashboard with the http://localhost:8761/ URL, as follows:

In the preceding screenshot, you can see our three microservices are running and registered
with Eureka.

Let's hit the following URL of Customer service for customer UI application.
http://localhost:8080/api/customers/customer/1001, you will see this URL will
be routed to the Customer service internally with the
http://localhost:6161/customer/1001 URL.

Creating API Gateway with Netflix Zuul Proxy Chapter 7

[158]

Let's see the following screenshot for the public API call for Customer service using API
Gateway http://localhost:8080/api/customers/customer/1001:

As you can see, we have called the Customer microservice using the API Gateway Zuul
proxy. Internally, this Zuul proxy calls the Customer service with
the http://localhost:6161/customer/1001 URL. Similarly, the Account UI
component can call the Account microservice using the API Gateway Zuul proxy service
using the http://localhost:8080/api/accounts/account/100 URL:

Creating API Gateway with Netflix Zuul Proxy Chapter 7

[159]

As you can see, we have called the Account microservice using the API Gateway Zuul
proxy. Internally, it will call the actual service with
the http://localhost:6060/account/100 URL.

Adding Zuul filters
We can also add custom filters in the Zuul microservice for implementing some cross-
cutting concerns, such as security and rate-limiting. In the API Gateway components section,
we discussed four filters—pre, post, route, and error. We can create these filters by
extending the com.netflix.zuul.ZuulFilter class. We have to override filterType,
filterOrder, and shouldFilter, and run methods. Let's see the
following PreFilter custom filter:

package com.dineshonjava.apizuulservice.filters;
import java.util.UUID;
import javax.servlet.http.HttpServletRequest;
import com.netflix.zuul.ZuulFilter;
import com.netflix.zuul.context.RequestContext;
import com.netflix.zuul.exception.ZuulException;
public class PreFilter extends ZuulFilter{
@Override
public Object run() throws ZuulException {
RequestContext ctx = RequestContext.getCurrentContext();
HttpServletRequest request = ctx.getRequest();
if (request.getAttribute("AUTH_HEADER") == null) {
//generate or get AUTH_TOKEN, ex from Spring Session repository
String sessionId = UUID.randomUUID().toString();
ctx.addZuulRequestHeader("AUTH_HEADER", sessionId);
}
return null;
}
@Override
public boolean shouldFilter() {
return true;
}
@Override
public int filterOrder() {
return 0;
}
@Override
public String filterType() {
return "pre";
}
}

Creating API Gateway with Netflix Zuul Proxy Chapter 7

[160]

In the preceding class, we have created PreFilter by extending the ZuulFilter abstract
class of Netflix's Zuul API. Similarly, we can create RouteFilter, PostFilter, and
ErrorFilter. You can find the complete code on the GitHub repository at https:/ /
github.com/PacktPublishing/ Mastering- Spring- Boot- 2.0. In the preceding filter class,
we modified the run() method by adding AUTH_HEADER as a request header using
RequestContext.addZuulRequestHeader(). This header will be forwarded to the
internal microservices.

After creating Zuul filters, we have to register these filters with the Zuul proxy service by
creating the bean definitions.

Registering Zuul filters
Let's create the bean definition of these filters, as follows:

@EnableZuulProxy
@EnableDiscoveryClient
@SpringBootApplication
public class ApiZuulServiceApplication {
public static void main(String[] args) {
SpringApplication.run(ApiZuulServiceApplication.class, args);
}
@Bean
public PreFilter preFilter() {
return new PreFilter();
}
@Bean
public PostFilter postFilter() {
return new PostFilter();
}
@Bean
public ErrorFilter errorFilter() {
return new ErrorFilter();
}
@Bean
public RouteFilter routeFilter() {
return new RouteFilter();
}
}

https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0

Creating API Gateway with Netflix Zuul Proxy Chapter 7

[161]

Let's run the preceding class again and access any public API Gateway service for
Customer or Account and check the console of the eclipse:

As you can see in the console log, as we have refreshed the
http://192.168.225.208:8080/api/customers/customer/1001 API call, all filters
are executed and print log on the console, respectively.

Summary
We learned about the API Gateway pattern for the microservices architecture and also
discussed the need for API Gateway for microservices-based applications. API Gateway has
several benefits of being used in cloud-based distributed applications. In this chapter, we
discussed how to implement the API Gateway proxy service using Spring Cloud's Netflix
Zuul API.

We implemented a microservice, Edge Service, to provide a Zuul-based proxy service on
top of the internal multiple microservices. The Edge Service can be used for common
functionality implementations or cross-cutting concerns.

We also created multiple Zuul filters and registered with the Zuul proxy service.

In the next chapter, we will explore the Feign client in microservices-based applications.

8
Simplify HTTP API with Feign

Client
In the previous chapters, we developed microservices and client applications for these
microservices using load-balancing RestTemplate, EurekaClient, and
DiscoveryClient. This way of client implementation requires a lot of boilerplate code for
enabling microservices to communicate with each other. In light of these discussions, we
will learn about Feign, which is nothing but a declarative HTTP client developed by
Netflix.

In this chapter, we will explore what Feign is and how it works. We will also have a
detailed discussion on how Feign can be extended or customized for business needs with a
reference implementation for a custom encoder, decoder, Hystrix, and exception handling
with unit testing.

We will learn how Feign simplifies the HTTP API clients. We don't need to use a lot of
boilerplate code to make the HTTP API clients application to access the microservices. You
just simply put in an annotated interface, while the actual implementation will be created at
the runtime.

By the end of this chapter, you will have a better understanding of the declarative REST
client, Feign client, and how to access the microservices using only annotated interfaces
without implementing these interfaces by yourself.

Simplify HTTP API with Feign Client Chapter 8

[163]

This chapter will cover the following points:

Feign basics
Feign inheritance support
Multiple interfaces
Advanced usage
Feign and Hystrix
Logging
Exception handling
Custom encoders and decoders
Unit testing Feign clients

Let's look at these topics in detail.

Declarative REST client – Feign basics
According to the Feign documentation:

"Feign is a Java to HTTP client binder inspired by Retrofit, JAXRS-2.0, and WebSocket.
Feign's first goal was reducing the complexity of binding Denominator uniformly to
HTTP APIs regardless of ReSTfulness."

Netflix has developed a declarative web service client called Feign. It is very easy to create
compared to other web service clients, such as Spring's RestTemplate,
DiscoveryClient, and EurekaClient. To create a Feign REST client, create an interface
and annotate this interface with an annotation provided by the Netflix Feign library. You
don't need to implement this interface in your cloud application to use the microservice.
The Feign client provides support to use Feign annotations and JAX-RS annotations. And
you can also use the Spring MVC annotations and the same HttpMessageConverters as
we used in the Spring web module, the Feign client supports all annotations of the Spring
MVC module for a REST application. It also provides support for pluggable encoders and
decoders. Feign, by default, provides the functionality of Ribbon and Eureka to provide a
load-balanced HTTP client.

In the previous chapters, we created microservices and its consumers. In the examples,
account-consumer (that is, a web application or another microservice CUSTOMER-
SERVICE) consumed the REST services exposed by the account-service producer using
RestTemplate. Let's look at the following diagram, which illustrates the consumption of
microservices without using Feign:

Simplify HTTP API with Feign Client Chapter 8

[164]

As you can see, microservices communicating with each other without the Feign client
required a lot of boilerplate code related to Eureka, Ribbon, and load-balancing. The
required code also increases the complexity in the client application when the number of
microservices increases. Let's see the following requirements for which we have to write a
lot of code:

To make a resilient system we have to create a load-balancing client using Ribbon
To know the Service instance and then the Base URL of a microservice using
Eureka
To make use of RestTemplate for consuming service

The following code shows how to consume an account microservice:

package com.dineshonjava.webapplication.service;

import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.cloud.client.loadbalancer.LoadBalanced;
import org.springframework.stereotype.Service;
import org.springframework.web.client.RestTemplate;

import com.dineshonjava.webapplication.domain.Account;
import com.dineshonjava.webapplication.exception.AccountNotFoundException;

@Service
public class WebAccountsService {
 @Autowired
 @LoadBalanced
 protected RestTemplate restTemplate;
 protected String serviceUrl = "http://ACCOUNT-SERVICE";

Simplify HTTP API with Feign Client Chapter 8

[165]

 public Account getByNumber(String accountNumber) {
 Account account = restTemplate.getForObject(serviceUrl
 + "/account/{accountId}", Account.class,
 accountNumber);
 if (account == null)
 throw new AccountNotFoundException(accountNumber);
 else
 return account;
 }
 ...
 ...
}

Now, let's use the Feign declarative REST client and see how it resolves the complexity of
communicating with microservices. Let's see the following diagram using the Feign client:

We don't need to write the code for Eureka, Ribbon, and load-balancing, it's automatically
added if these libraries or dependencies are available on the classpath of your client
application. You don't even need to write a class for the client code, just create an interface
with the @FeignClient annotation with a logical service name as the annotation
argument. This is a much easier and cleaner way of using Netflix Feign. If the Netflix
Ribbon dependency is also in the classpath, then Feign takes care of load-balancing by
default.

Simplify HTTP API with Feign Client Chapter 8

[166]

Let's see how to include Feign in the client application.

Including Feign in the cloud application
First we will include the Netflix Feign dependency in the pom.xml file:

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.2.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
</parent>

<properties>
 ...
 <spring-cloud.version>Finchley.M8</spring-cloud.version>
</properties>

<dependencies>
 ...
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-
 client</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-openfeign</artifactId>
 </dependency>
 ...
</dependencies>

To include Feign in your client application project based on the Spring Cloud, use the
Starter with the org.springframework.cloud group and the spring-cloud-starter-
openfeign artifact ID.

Simplify HTTP API with Feign Client Chapter 8

[167]

Now, let's define a Feign client by creating an interface with the @FeignClient annotation.
This interface is working as a client to access microservices registered on the discovery
server. But how do we access these services? We have to specify the name value as account-
service on the @FeignClient annotation (it is the logical service name of the account
microservice using Eureka for discovery). Let's see the following code for this interface:

package com.dineshonjava.customerservice.service;

import java.util.List;

import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;

import com.dineshonjava.customerservice.domain.Account;

@FeignClient("account-service")
public interface AccountService {
 @GetMapping(value = "/account/customer/{customer}")
 List<Account> findByCutomer (@PathVariable("customer") Integer
 customer);
 @PutMapping(value = "/account/{accountId}", consumes =
 "application/json")
 Account update(@PathVariable("storeId") Integer
 accountId, Account account);
 @DeleteMapping(value = "/account/{accountId}")
 void delete(@PathVariable("accountId") Integer accountId);
 @PostMapping(value = "/account/customer/", consumes =
 "application/json")
 Account update(@RequestBody Account account);
}

We have used the @FeignClient("account-service") annotation with the account-
service logical service name. And we have defined the method call to be made to
consume this account REST microservice exposed by the account-service module with
the /account/customer/{customer} endpoint.

To make sure this @FeignClient annotation is working, we have to enable the Feign client
cloud behavior in your application. Finally, we annotate the Spring Boot main class with
@EnableFeignClients. Let's see the following main class of the application:

package com.dineshonjava.customerservice;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.openfeign.EnableFeignClients;

Simplify HTTP API with Feign Client Chapter 8

[168]

@SpringBootApplication
@EnableFeignClients
public class CustomerServiceApplication {

 public static void main(String[] args) {
 SpringApplication.run(CustomerServiceApplication.class, args);
 }
}

Next create another microservice, CUSTOMER-SERVICE, and it will access the account
microservice to fetch all accounts associated with a customer in the banking application.
Let's see the following class that will use the accountService by using Feign:

package com.dineshonjava.customerservice.controller;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RestController;

import com.dineshonjava.customerservice.domain.Customer;
import com.dineshonjava.customerservice.repository.CustomerRepository;
import com.dineshonjava.customerservice.service.AccountService;

@RestController
public class CustomerController {
 @Autowired
 CustomerRepository customerRepository;
 @Autowired
 AccountService accountService;
 @PostMapping(value = "/customer")
 public Customer save (@RequestBody Customer customer){
 return customerRepository.save(customer);
 }
 @GetMapping(value = "/customer")
 public Iterable<Customer> all (){
 return customerRepository.findAll();
 }
 @GetMapping(value = "/customer/{customerId}")
 public Customer findByAccountId (@PathVariable Integer customerId){
 Customer customer =
 customerRepository.findByCustomerId(customerId);
 customer.setAccount(accountService.findByCutomer(customerId));

Simplify HTTP API with Feign Client Chapter 8

[169]

 return customer;
 }
 @PutMapping(value = "/customer")
 public Customer update (@RequestBody Customer customer){
 return customerRepository.save(customer);
 }
 @DeleteMapping(value = "/customer")
 public void delete (@RequestBody Customer customer){
 customerRepository.delete(customer);
 accountService.delete(customer);
 }
}

An interface AccountService annotated with @FeignClient has autowired with this
controller class of the customer microservice. The complete code of these microservices
(AccountService,Customer Service, and, web application service) is available on
GitHub:
https://github.com/ PacktPublishing/ Mastering- Spring- Boot- 2.0.

Feign clients can be used to consume text-based HTTP APIs only, which
means that they cannot handle binary data, for example, file uploads or
downloads.

Let's run these microservices along with the Eureka Server, following the console output
with the registered services with Eureka:

Now access the following URL endpoint of the customer microservice:

http://192.168.225.208:6161/customer/1001

This will fetch information about the customer whose customer ID is 1001 and also fetch
the account associated with this customer from the account microservice. Let's see the
following output:

https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0

Simplify HTTP API with Feign Client Chapter 8

[170]

In this example, there are two accounts associated with the 1001 customer ID. In the next
section, let's look at how to override the default configurations of the Feign client.

Overriding Feign defaults
The default configuration is used by each Spring Cloud Feign using
FeignClientsConfiguration. Spring Cloud creates a new configuration context on-
demand for each named client using the FeignClientsConfiguration file. This
configuration file has almost all the required attributes of FeignClient, such
as feign.Decoder, feign.Encoder, and feign.Contract. But Spring Cloud allows you
to override these configuration attributes by adding an additional configuration file on top
of FeignClientsConfiguration.

Simplify HTTP API with Feign Client Chapter 8

[171]

Spring Cloud Netflix provides the following beans as default configurations for Feign:

Decoder feignDecoder: ResponseEntityDecoder class provides feignDecode
bean
Encoder feignEncoder: SpringEncoder class provides feignEncoder bean
Logger feignLogger: Slf4jLogger class provides feignLogger bean
Contract feignContract: SpringMvcContract class provides feignContract
bean
Feign.Builder feignBuilder: HystrixFeign.Builder class provides
feignBuilder bean
Client feignClient: If Ribbon is enabled it is a LoadBalancerFeignClient,
otherwise the default Feign client is used

We can override all these listed default configurations for Feign either using the custom
configuration file or the configuration properties file (YMAL or properties).

Let's see the following example of the configuration file:

@FeignClient(name = "account-service", configuration =
AccountConfiguration.class)
public interface AccountService {
 //..
}

Now, this AccountService client will be used for both
the FeignClientsConfiguration and AccountConfiguration configurations, but the
same attributes will be overridden by the attributes in the AccountConfiguration file.

In the Feign client configuration, we don't need to annotate the
AccountConfiguration class with @Configuration. If you have
annotated it with the @Configuration annotation, then take care to
exclude it from any @ComponentScan because this configuration will
become the default source for feign.Decoder, feign.Encoder,
feign.Contract, and so on. So, you have to avoid putting it with the
common configuration files and put this file in a separate, non-
overlapping package from any @ComponentScan or
@SpringBootApplication, or you can also explicitly exclude this
configuration file from the component scanning by using
@ComponentScan.

Simplify HTTP API with Feign Client Chapter 8

[172]

The @FeignClient annotation also supports placeholders in the name and URL attributes
of this annotation. Let's see the following example:

@FeignClient(name = "${feign.name}", url = "${feign.url}", configuration =
AccountConfiguration.class)
public interface AccountService {
 //..
}

Let's see the following configuration file that will be used with the @FeignClient
annotation:

@Configuration
public class AccountConfiguration {
 @Bean
 public Contract feignContract() {
 return new feign.Contract.Default();
 }

 @Bean
 public BasicAuthRequestInterceptor basicAuthRequestInterceptor() {
 return new BasicAuthRequestInterceptor("user", "password");
 }
}

This configuration file replaces SpringMvcContract with feign.Contract.Default
and adds a RequestInterceptor bean.

Spring Cloud also allows you to override the default configuration of the @FiegnClient
annotation using configuration properties, let's see the following .yml file:

feign:
 client:
 config:
 feignName:
 connectTimeout: 5000
 readTimeout: 5000
 loggerLevel: full
 errorDecoder: com.dineshonjava.decode.CustomErrorDecoder
 retryer: com.dineshonjava.CustomRetryer
 requestInterceptors:
 - com.dineshonjava.interceptor.AccountRequestInterceptor
 - com.dineshonjava.interceptor.CustomRequestInterceptor
 decode404: false
 encoder: com.dineshonjava.CustomEncoder
 decoder: com.dineshonjava.CustomDecoder
 contract: com.dineshonjava.CustomContract

Simplify HTTP API with Feign Client Chapter 8

[173]

Spring Cloud also allows you to configure default configuration in the
@EnableFeignClients attribute, defaultConfiguration. The given configuration in
the @EnableFeignClients annotation will apply to all Feign clients. Let's see the
following:

package com.dineshonjava.customerservice;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.openfeign.EnableFeignClients;

@SpringBootApplication
@EnableFeignClients(defaultConfiguration=BasicFeignConfig.class)
public class CustomerServiceApplication {

 public static void main(String[] args) {
 SpringApplication.run(CustomerServiceApplication.class, args);
 }
}

Suppose we have both the @Configuration bean and configuration properties in our
project, then configuration properties will be used. The configuration properties file
overrides the @Configuration values. But you can change the priority to
@Configuration by setting feign.client.default-to-properties to false.

Spring Cloud also allows you to create the Feign client manually, let's see it in the next
section.

Creating Feign clients
You can create your own Feign client by using Feign.builder() to configure our
interface-based client. Let's see the following class, which creates two Feign clients using
the same interface:

@Import(FeignClientsConfiguration.class)
@RestController
class CustomerController {
 private AccountService customerAccuntService;
 private AccountService adminAccuntService;

 @Autowired
public CustomerController(
 Decoder decoder, Encoder encoder, Client client, Contract contract) {
 this.customerAccuntService = Feign.builder().client(client)

Simplify HTTP API with Feign Client Chapter 8

[174]

 .encoder(encoder)
 .decoder(decoder)
 .contract(contract)
 .requestInterceptor(new BasicAuthRequestInterceptor("customer",
 "customer"))
 .target(AccountService.class, "http://ACCOUNT-SERVICE");

 this.adminAccuntService = Feign.builder().client(client)
 .encoder(encoder)
 .decoder(decoder)
 .contract(contract)
 .requestInterceptor(new BasicAuthRequestInterceptor("admin",
 "admin"))
 .target(AccountService.class, "http://ACCOUNT-SERVICE");
 }
}

We have created two Feign clients of
the AccountService type, cutomerAccountService and adminAccountService, using
the Feign Builder API.

Feign inheritance support
We can also inherit interfaces to avoid boilerplate code for the same type of services. Feign
allows grouping common operations into convenient base interfaces. Let's see the following
example:

@FeignClient(name="account-service")
public interface AccountService {
 @GetMapping(value = "/account/customer/{customer}")
 List<Account> findByCutomer (@PathVariable("customer") Integer
 customer);
 ...
}

We can inherit this interface in the creation of another FeignClient service:

@FeignClient("users")
public interface AdminAccountService extends AccountService {
 ...
}

Simplify HTTP API with Feign Client Chapter 8

[175]

Multiple interfaces
Spring Cloud Netflix allows you to create multiple Feign client interfaces. These are defined
as Target<T>, which allow for dynamic discovery and decoration of requests prior to
execution:

AccountService accountService = Feign.builder().target(new
CloudIdentityTarget<AccountService>(user, apiKey));

Advanced usage of the Feign client
Feign supports inheritance and multiple inheritance; it helps to remove boilerplate code for
a service to follow the same conventions. You can create a base API interface and inherit it
for a specific API interface.

Let's see the example:

interface BaseAPI<T> {
 @GetMapping("/health")
 T get();

 @GetMapping("/all")
 List<T> all();
}

Let's define a specific API interface by inheriting the base interface methods:

interface CustomAPI extends BaseAPI<T> {
 @GetMapping("/custom")
 T custom();
}

Sometimes the resource representations are also consistent. So, you can declare to accept
type parameters on the base API interface and you can inherit this base API interface to the
specific interfaces. Let's see the example:

@Headers("Accept: application/json")
interface BaseApi<T> {

 @GetMapping("/api/{key}")
 T get(@PathVariable("key") String key);

 @GetMapping("/api")
 List<T> list();

Simplify HTTP API with Feign Client Chapter 8

[176]

 @Headers("Content-Type: application/json")
 @PutMapping("/api/{key}")
 void put(@PathVariable("key") String key, T value);
}

interface AccountApi extends BaseApi<Account> { }

interface CustomerApi extends BaseApi<Customer> { }

You can use the Feign to develop APIs interfaces, per our requirements, by using
inheritances and defining base API interfaces for common conventions and common
configurations related to the resource representation either for headers or responses.

Feign logging
As you know, logging is very important for every project. The Feign client only responds to
a DEBUG level and, by default, the file name of the log is the full class name of the interface
used to create the Feign client. A logger is created for each Feign client. The log level can be
changed by setting the logging.level.project.user.UserClient property in the
configuration property.

Let's see the following application.yml configuration file:

logging:
 level:
 project:
 user:
 UserClient: debug

You have the following choices of log level for your client application:

NONE: No logging (DEFAULT)
BASIC: This level of log responds to the request method and URL and the
response status code and execution time
HEADERS: This level of log responds to the basic information along with the
request and response headers
FULL: This level of log responds to the headers, body, and metadata for both
requests and responses

Simplify HTTP API with Feign Client Chapter 8

[177]

Define the log level by using the Java configuration file for the Feign client, let's see the
following example, set Logger.Level to FULL:

@Configuration
public class AccountConfiguration {
 @Bean
 Logger.Level feignLoggerLevel() {
 return Logger.Level.FULL;
 }
}

Exception handling
By default, Spring Cloud Netflix Feign throws FeignException for any type errors in any
situation, but it is not always suitable and you don't want this same exception for every
situation in your project. Netflix Feign allows you to set your own application-specific
exception instead. You can do it easily by providing your own implementation of
feign.codec.ErrorDecoder to Feign.builder.errorDecoder().

Let's see an example of such an ErrorDecoder implementation:

public class AccountErrorDecoder implements ErrorDecoder {

 @Override
 public Exception decode(String methodKey, Response response) {
 if (response.status() >= 400 && response.status() <= 499) {
 return new AccountClientException(
 response.status(),
 response.reason()
);
 }
 if (response.status() >= 500 && response.status() <= 599) {
 return new AccountServerException(
 response.status(),
 response.reason()
);
 }
 return errorStatus(methodKey, response);
 }
}

Simplify HTTP API with Feign Client Chapter 8

[178]

Now you can use the preceding created exception by providing your Feign.builder().
Let's see the following example:

return Feign.builder()
 .errorDecoder(new AccountErrorDecoder())
 .target(AccountService.class, url);

AccountErrorDecoder sets a custom error decoder to the Feign Builder API. This code is
simply adding a custom error decoder to the Feign client. We can create custom decoders
and encoders for the Feign Builder API.

Custom encoders and decoders
The Feign Builder API allows us to create custom encoders for a request, and decoders for a
response, to the Feign client.

Custom encoder
Let's create a custom encoder for a request body.

The request body data has been sent to the server by a POST method using either
the String or byte[] parameter. You can add a Content-Type header:

interface AccountService {
 @PostMapping("/account/")
 @Headers("Content-Type: application/json")
 Account create(@RequestBody Account account);
}

Let's configure your own custom encoder; now it will be the type-safe request body.
Let's see the following example using the feign-gson extension:

class Account {
 Integer accountId;
 Double balance;
 Integer customerId;
 String accountType;
 String branchCode;
 String bank;

public Account(Integer accountId, Double balance, Integer customerId,
String accountType, String branchCode,
 String bank) {

Simplify HTTP API with Feign Client Chapter 8

[179]

 super();
 this.accountId = accountId;
 this.balance = balance;
 this.customerId = customerId;
 this.accountType = accountType;
 this.branchCode = branchCode;
 this.bank = bank;
 }
 ...
}

interface AccountService {
 @PostMapping("/account/")
 @Headers("Content-Type: application/json")
 Account create(@RequestBody Account account);
}
...
AccountService client = Feign.builder()
 .encoder(new GsonEncoder())
 .target(AccountService.class,
 "http://ACCOUNT_SERVICE");

client.create(new Account(1001, 2304.32, 100, 'SAVING', 'HDFC0011',
'HDFC'));

Custom decoder
Feign.builder() allows you to create a custom decoder and also allows you to add this
decoder to the configuration of the Feign client to decode a response. You have to configure
a non-default decoder if your interface returns some custom type or a type besides
Response, String, byte[], or void. Let's see following example of using the feign-gson
extension:

AccountService client = Feign.builder()
 .decoder(new GsonDecoder())
 .target(AccountService.class, "http://ACCOUNT-
 SERVICE");

As you can see in the preceding code, GsonDecoder has been added as a response decoder
to this Feign client. We can also create a custom decoder class for this Feign client.

Netflix Feign also supports Hystrix for the circuit-breaker pattern. Let's see this in the next
section.

Simplify HTTP API with Feign Client Chapter 8

[180]

Feign and Hystrix
To create a resilient system, we have to implement reactive patterns, such as circuit-breaker
patterns. The Feign client supports the circuit-breaker pattern by using Hystrix. We will
discuss Hystrix and how we can write fallback methods in Chapter 10, Building Resilient
Systems Using Hystrix and Turbine. Feign clients have direct support for fallbacks. If Hystrix
is on the classpath and feign.hystrix.enabled=true, Feign will wrap all methods with
a circuit-breaker. Returning com.netflix.hystrix.HystrixCommand is also available.

To implement the Feign client with Hystrix, just implement the interface with the fallback
code, which will then be used when the actual call to the endpoint delivers an error.

Let's see the following example:

@FeignClient(name = "account-service", fallback =
HystrixClientFallback.class)
interface HystrixClient {
 @GetMapping("/account/{accountId}")
 Account get(@PathVariable Integer accountId);
}

class HystrixClientFallback implements HystrixClient {
 @Override
 public Account get() {
 return new new Account();
 }
}

As you can see in the preceding code, we have created the HystrixClient interface
annotated with @FeignClient with its two attributes, name and fallback. The fallback
attribute sets up with the HystrixClientFallback class, which has a fallback method.
This fallback method will be executed when the circuit is open or there is an error. The
fallback attribute of the given @FeignClient enables fallbacks to the class name that
implements the fallback methods.

The HystrixClientFallback class has implemented the HystrixClient interface,
overridden its get() method, and returned an account object with a default constructor.

You can also access the failure cause that made the fallback trigger, you can use the
fallbackFactory attribute inside @FeignClient:

@FeignClient(name = "account-service", fallbackFactory =
HystrixClientFallbackFactory.class)
protected interface HystrixClient {

Simplify HTTP API with Feign Client Chapter 8

[181]

 @GetMapping("/account/{accountId}")
 Account get(@PathVariable Integer accountId);
}

@Component
static class HystrixClientFallbackFactory implements
FallbackFactory<HystrixClient> {
 @Override
 public HystrixClient create(Throwable cause) {
 return new HystrixClient() {
 @Override
 public Account get() {
 return new new Account("fallback; reason was: " +
 cause.getMessage());
 }
 };
 }
}

We have learned how to set up circuit-breaker pattern by using Hystrix in the Feign client.
This makes our system more resilient. We will discuss Hystrix more in Chapter 10, Building
Resilient Systems Using Hystrix and Turbine.

Prior to the Spring Cloud Dalston release, if Hystrix was on the classpath,
Feign would have wrapped all the methods in a circuit-breaker by default.
This default behavior was changed in Spring Cloud Dalston in favor of an
opt-in approach.

Finally, let's see how to write a unit test using the Feign client in the cloud application.

Unit testing Feign clients
Let's create a unit test class; this test class can have several test methods but in this example,
we have created three @Test methods, to test our client. The test will use static imports
from the org.hamcrest.CoreMatchers.* and org.junit.Assert.* packages:

@Test
public void findAllAccountTest() throws Exception {
 List<Account> accounts = accountService.findAll();
 assertTrue(accounts.size() > 4);
}
@Test
public void findOneAccountTest() throws Exception {
 Account account = accountService.findByAccountId(1001);

Simplify HTTP API with Feign Client Chapter 8

[182]

 assertThat(account.getCustmer().getCustomerName(),
 containsString("Arnav"));
}
@Test
public void createAccountTest() throws Exception {
 Account account = new Account(1001, 2304.32, 100, 'SAVING',
 'HDFC0011', 'HDFC')
 accountService.create(account);
 account = accountService.findByAccountId(1001);
 assertThat(account.getBank(), containsString("HDFC"));
}

We have written unit test cases to test the accountService Feign client. In the first test
method, we fetched all accounts in a list—the size of the list must be greater than five. In
the second test method, we fetched one account with the 1001 account ID—the associated
customer name must be Arnav. In the third test method, we created an account using
the accountService Feign client.

Summary
In this chapter, we introduced and explained Feign, a declarative HTTP client developed by
Netflix. We have learned how Feign simplifies HTTP API clients. We don't need to use a lot
of boilerplate code to make the HTTP API clients application to access the microservices.
You just simply use an annotated interface while the actual implementation will be created
at the runtime.

The reader can learn to use Feign client and Hystrix support with the Feign client. This
chapter has also implemented a custom encoder/decoder with exception handling for the
Feign requests and responses. We have created some unit test cases to test the Feign client.
The reader can also learn to use and customize the configurable options, such as logging
and request compression.

In the next chapter, we will explore and implement event-driven systems.

9
Building Event-Driven and

Asynchronous Reactive
Systems

This chapter will provide a detailed overview of event-driven architecture to build event-
driven microservices as cloud-native applications. We will look at some of the important
concepts and themes behind handling data consistency in distributed systems, we will be
building a reference application using Spring Cloud and Reactor in the following chapter.

In the previous chapters, we have created microservice applications and we have seen how
to implement routing for distributed applications using the Netflix Zuul API, and we
implemented a REST client using the declarative Feign client.

By the end of this chapter, you will have a better understanding of the event-driven
microservices architecture and how to build an event-driven and asynchronous reactive
system using Spring Cloud Stream. This chapter will explore the need and solution for
asynchronous service communication, using reactive programming, with a reference
application using ReactiveX and Reactive Spring.

This chapter will cover the following topics:

Event-driven architecture patterns
Introduction to reactive programming
Spring Reactive
ReactiveX
Introduction to Command Query Responsibility Segregation
Introduction to Event Sourcing
Introduction to Eventual consistency
Building an event-driven Reactive Asynchronous System

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[184]

Event-driven architecture patterns
An event-driven architecture is a software architecture pattern that supports the
production, deduction, consumption, and reaction to events. This is a commonly
distributed architecture that is asynchronous and is used to develop highly scalable
systems.

The main purpose of event-driven architecture patterns is to intercept the events and
process them asynchronously. There are two types of topologies contained by event-driven
architectures.

Mediator topology
Mediator topology contains a single event queue and a mediator that arranges for the
events in the queue to be directed to their respective processors. The events are then passed
through a filter or a preprocessor of events from an event channel.

The event queue can be implemented in the form of a simple message queue or an interface
that passes messages in a large distributed system. The second form of implementation also
requires the involvement of complex messaging protocols, such as Rabbit MQ, and Kafka.

Broker topology
Broker topology does not contain any event queue. In fact, the processors themselves are
responsible for extracting the events and processing them. After one event is done
processing, the processors have to indicate to another event, and then extract and process it.
As per the name of the topology, the processor here acts as a broker to the chain of events,
processing one event and then publishing another to process, and so the cycle goes on.

Some of the event-driven web frameworks include:

Spring Reactor (JAVA)
ReactiveX
Netty (JAVA)
Vert.X (JVM Languages)
React PHP (PHP)

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[185]

Since the event-driven architecture is asynchronous, the pattern lacks atomicity because no
execution sequence is available for the events. The event processors are implemented to be
highly distributed and asynchronous, hence the results are expected to be provided at any
time in the future, most probably depending on the sequence of the callback.

Testability of this pattern is a bit difficult because of the asynchronous nature of the event-
driven architecture. However, the performance of the event-driven architecture patterns is
great because of the asynchronous and non-blocking nature of its executions. This allows
the processes to be parallel and there is no queuing overhead involved.

Even though the scalability score of event-driven architecture is high, the effort of
development is doubled. While the asynchronous nature of the pattern allows the
architecture to be highly scalable, it also makes the testing of the pattern and its
components difficult. The decoupled nature of the architecture also allows the processors to
process the events parallel to each other, parallelism increasing the scalability even further.

One of the resulting benefits of the event-driven architecture pattern is that it allows the
application to maintain data consistency over multiple servers and services without the
help of any distributed transactions. However, this functionality also makes the complete
model more complex, making it harder to understand and more difficult to be developed.
The application will also automatically update the database and publish events.

Introduction to reactive programming
Reactive programming is customizing with non-concurrent information streams. That
means it is coded with asynchronous data.

Streams are shoddy and omnipresent. Anything can be a stream—factors, client inputs,
properties, reserves, information structures, and so forth. For instance, envision your
Twitter channel as an information stream in a similar manner to snap occasions. You can
tune in to that stream and respond as needs be.

Over that, you are given an astounding tool stash of capacities to consolidate, make, and
channel any of those streams. That is the place the practical enchantment kicks in. A stream
can be utilized as a contribution to another. Indeed, even different streams can be utilized
as contributions to another stream. You can consolidate two streams. You can channel a
stream to get another that has just those occasions you are keen on. You can delineate
esteems starting with one stream then on to the next new one.

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[186]

Let's see the following uses of reactive programming:

External service calls: Many of the backend services these days implement the
RESTful model and operate over HTTP. This makes their underlying protocols
synchronous and blocking. External service calls help you avoid waiting for
every IO completion.

Concurrent message consumers: Message processing in the reactive
programming framework includes measuring micro-benchmarks and is fast and
efficient. The results of messages routing are at the staggering rate of tens of
millions per second.

Let's see the following technologies and frameworks based on the reactive programming
model in the next section.

Spring Reactive
Spring Reactive is a framework for Reactive web applications with reactive programming
based. At the very least, reactive programming allows you to create applications with non-
blocking services.

Most Java-based applications are built on the Servlet API, which was created with support
for synchronous and blocking semantics. However, with increasing support for non-
blocking I/O and asynchronous events, Spring MVC found it feasible to add an HTTP
request that handles the existing applications.

But it is also true that introducing non-blocking I/O in an existing environment of
frameworks and applications is not as easy or effective. For this reason, Spring Reactive
was introduced to deal with asynchronous and non-blocking I/O. In the traditional Spring
MVC, there is now a TestController section for Reactive web applications. This directs
the applications to a new reactive engine with integration tests.

For Spring Reactive to work efficiently and effectively, the Reactive Stream spec is the most
important aspect. The spec allows the connection among async component providers such
as HTTP servers, web frameworks, and database drivers.

The Reactive Stream spec is small and consists of only four interfaces and some rules. To
compose the asynchronous logic, however, the Reactive Stream spec needs an
infrastructure, as it is exposed as an API. Spring Reactive uses a small library, known as
Reactor Core, that is focused and serves as a foundation for other functions, libraries, and
frameworks that wish to build on Reactive Streams.

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[187]

Their quality lies in their ability to serve more demand simultaneously, and to deal with
activities with inactivity, for example, asking for information from a remote server, all the
more productively. Not at all like customary preparing, which hinders the present string
while at the same time holding up an outcome, a Reactive API that holds up costs nothing,
asks for just the measure of information it can process, and carries new abilities, since it
manages the stream of information, not just singular components one by one.

Spring Reactive programming models allow for writing non-blocking services and
applications. It shifts your imperative programming approach to the async, non blocking
and functional styled code at time of interacting external resources.

I needed to think about three illustrations—a situation where the already present Java 8
CompletableFuture is reverted as a type; where RxJava's Observable is reverted as a
type; and a third with Spring Reactor Core's Flux compose.

ReactiveX
ReactiveX is a library for asynchronous and event-driven programs. It supports sequences
of data and events by extending the observer pattern. It has operators that allow declaring
sequences while being free of worries regarding things such as low-level threading, thread
safety, synchronization, and non-blocking IOs. ReactiveX is functional, reactive, and
operates on discrete values that have changed over time.

The ReactiveX Observable model was designed to help you deal with asynchronous events
as easily as arrays. It removes the complexity of the callback, making your code more
readable and less vulnerable to bugs. Some of the advantages of the ReactiveX Observable
model are:

Composable: The ReactiveX Observable model makes creating a flow of
asynchronous events very easy and helps compose their flows and the sequence
of the event. Although other techniques, such as Java Future, are very
straightforward for the use of asynchronous events, they add unnecessary non-
trivial complexity.

Flexible: This model supports many different types of values instead of just
scalar values. This allows the model some flexibility and elegance that helps in
other use cases.

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[188]

Less opinionated: The observable model can be implemented using thread loops,
event loops, non-blocking I/O, or whatever implementation meets your
requirements. It is not biased toward particular sources of concurrency and
asynchronicity.

No callbacks: Callbacks create a lot of problems in the code when used with the
nested execution of asynchronous events.

Polyglot implementation: ReactiveX is implementing a number of different
languages in the Observable model.

Let's see another pattern for making a system reactive and event-driven asynchronous.

Introduction to Command Query
Responsibility Segregation
This pattern is based on the idea of command-query separation (CQS). So, according to
CQS, we have to divide our command and query separately to make the system more
reactive and robust. This command means the query to write something into the database
to change the state of the domain, and the query means ready only query that doesn't
change the state of the domain. These queries are based on the ready on access either from
another database or somewhere in the cache. Let's look at the following:

Commands, changing state of the system
Queries, getting some information from the system

The CQRS naturally fits with some other architectural patterns, such as event-based
programming models. It's common to see CQRS systems split into separate services
communicating with event collaboration. This allows these services to easily take
advantage of Event Sourcing.

This architectural pattern improves the performance of a distributed application where the
application is required to process complex domain-driven programming. So, it separates
this domain-driven module from the other part where we are querying data for
representation and reading only. We can use either messaging or event-driven software
architecture asynchronously with non-blocking calls to write into the database. Let's see the
following application architecture and see how the CQRS pattern is used in the system
architecture:

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[189]

As you can see, the system has divided into two different parts, such as read only query
(the components used for reading) and command query (the components used for writing).
The commands are responsible for performing an action or changing states of the system.
The Autonomous Component is a piece of business logic that can update the Domain
model and inform the client about whether this change has been accepted or not. The
Autonomous Component also notifies everyone whenever any changes are detected. In the
preceding diagram, the first AC component publishes a domain event to update the
database and also notifies another AC component to update cache using in the application.

The second part is querying data for representation for the client, it is getting information
from the system without changing its state. This part uses only the View model rather than
the Domain model. This CQRS pattern is all about the separation of concerns between
the Domain and View models, and these models can operate asynchronously to improve
the performance of the application. Let's see another pattern that is commonly used with
the CQRS pattern—the Event Sourcing pattern.

Introduction to the Event Sourcing pattern
According to the Event Sourcing pattern, to capture all changes to the system states as a
sequence of events is known as event sourcing.

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[190]

We can say that all information and data in the system is persisted in the form of events,
and an event is nothing but a piece of information to tell the system about something that
has occurred, such as domain creation, update, and deletion. The generated events are
immutable by nature, you cannot modify or delete them. So, it is totally based on the
occurrences in the system, if something has occurred in the system, the events will be
triggered.

The main concept behind the Event Sourcing pattern is capturing every change of the state
of an application during processing into an event object. These event objects are stored in
the sequence to be triggered in the same scope as the application-processing scope.

Suppose we have a distributed application with two microservices, Account and
Customer for example, and we want to trigger a notification to the customers for any new
customer added or any modification to the data of customers. And also we want to trigger
a mobile notification when any change happens to the accounts associated with customers.
Let's see the following diagram:

In this example, as you can see in the preceding diagram, we have introduced the Event
Sourcing pattern, and added a step to this process. Now the service creates an event object
to record the change and processes it to update the customer and account.

We have seen an Event Sourcing-based system with Command Query Responsibility
Segregation, which has two parts, command and querying. The command query is all
about writing databases, and querying is all about reading data for the frontend. But
having separate models raises questions about the data consistency for those models which
are used in the frontend. Let's see how to maintain data consistency in the distributed
event-driven system using Eventual consistency.

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[191]

Introduction to Eventual consistency
Eventual consistency is a consistency model for the event-based distributed application to
achieve high availability. If there are no changes for domain into a system, then it will
return the last updated value for that domain. Eventual consistency is also known as
optimistic replication and strongly used in distributed systems.

In the diagram of the CQRS pattern, we have used the cache for returning data for queries
sent by the client, so, the cache will be updated if there are no changes for domain into a
system. In fact, almost every cache is based on Eventual consistency.

Typically in event-sourced systems with Command Query Responsibility Segregation that
need to display data to a client, we have three components that must cooperate:

As you can see, the Write Model accepts Commands and generates Event to its database
and Cache to be updated. The read model accepts events and returns data objects to the
frontend client.

We have discussed some patterns for the event-driven distributed system, such as event-
driven architecture, Command Query Responsibility Segregation, Event Sourcing, and the
Eventual consistency model. Now we will implement an event-driven asynchronous
system using a messaging queue, such as Kafka and Spring Cloud Stream, in the next
section.

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[192]

Building an event-driven Reactive
Asynchronous System
Let's build a sample project that demonstrates how to create a real-time streaming
application using event-driven architecture, Spring Cloud Stream, Spring Boot, Apache
Kafka, and Spring Netflix Eureka. Let's see the application architecture:

We have used Netflix Hystrix to implement the circuit breaker pattern, we will discuss it in
Chapter 10, Building Resilient Systems Using Hystrix and Turbine. We also configured the
API Gateway proxy using Netflix Zuul, as we have already discussed in Chapter 7,
Creating API Gateway with Netflix Zuul Proxy.

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[193]

In previous chapters, we have discussed using microservices architectures to decouple
large and complex systems into simple independent micoservices. In this chapter, we are
discussing the Event-driven microservices architecture, it is a methodology used to
produce, handle events, and implement applications where events transmit among
decoupled software components and services.

We are going to create an application with microservices, such as Account, Customer, and
Notification. Whenever we create a customer record or create an account for a customer,
a notification service sends an email and a mobile notification.

We have three decoupled services—Account, Customer, and Notification. All of them
are independently deployable applications. And also we have the edge service for API
Gateway using Netflix Zuul. The Account service can be used to create, read, update,
delete customer accounts. The Account service sends a message to the Kafka topic when a
new account is created.

Similarly, the Customer service is used to create, read, update, delete a customer in the
database. The Customer service sends a message to the Kafka topic when a new customer
is created. And the Notification service sends email and SMS notifications. The
Notification service listens on topics from incoming customer and account messages
and then processes these messages by sending notifications to the given email and mobile.

The Account and Customer microservices have their own H2 database, and
Notification service uses MongoDB. In this application, we will use the Spring Cloud
Stream module to provide abstract messaging mechanisms in the application; it is a
framework for building event-driven microservice applications.

Introducing Spring Cloud Streaming
Spring Cloud Stream is a framework to build message-driven microservice applications. It
abstracts away the message producer and consumer code from message-broker-specific
implementations. Spring Cloud Stream provides input and output channels to service
communications to the outside world. Spring Cloud Stream is created on top of Spring
Boot, it can create a standalone and production-grade applications.Spring Integration
provides the message broker's connectivity to the Spring Cloud Stream. Message brokers,
such as Kafka and RabbitMQ, can be added easily by just injecting a binding dependency to
the code of your application.

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[194]

Let's see the Maven dependency for Spring Cloud Stream:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-stream-reactive</artifactId>
</dependency>

In the preceding Maven dependency, we have added the Spring Cloud Stream dependency
reactive model. Let's see how to enable the application to connect with the message broker:

@EnableBinding(NotificationStreams.class)
public class StreamsConfig {
}

In the preceding code, the @EnableBinding annotation is used to enable connectivity
between the application and message broker. This annotation takes one or more interfaces
as parameters, in our case, we have passed the NotificationStreams interface as a
parameter, let's see this interface:

public interface NotificationStreams {
String INPUT = "notification-in";
String OUTPUT = "notification-out";
@Input(INPUT)
SubscribableChannel subscribe();
@Output(OUTPUT)
MessageChannel notifyTo();
}

As you can see, the interface declares input and/or output channels. This is our custom
interface in this example but you can also use interfaces such as Source, Sink, and
Processor, provided by the Spring Cloud Stream:

Source: This interface can be used for an application that has a single outbound
channel
Sink: This interface can be used for an application that has a single inbound
channel
Processor: This interface can be used for an application that has both an inbound
and an outbound channel

And also in the preceding code, the @Input annotation is used to identify an input channel
by using this identifier it receives message which enter to the application. Similarly, the
@Output annotation is used to identify an output channel, by using this identifier,
published messages leave the application.

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[195]

The @Input and @Output annotations take the name parameter as a channel name, if name
is not provided, then by default name of the annotated method will be used. In this
application, we have used Kafka as a message broker. Let's learn more about Kafka.

Adding Kafka to your application
Apache Kafka is a publish-subscribe-based high-performance and horizontally-scalable
messaging platform. It is fast, scalable, and distributed by design. LinkedIn develops it.
Spring Cloud Stream supports binder implementations for Kafka and RabbitMQ. First, we
have to install Kafka in your machine. Let's see how to install it.

Installing and running Kafka
Let's download Kafka from https:/ / kafka.apache. org/ downloads and untar it using the
following commands:

> tar -xzf kafka_2.12-1.1.0.tgz
> cd kafka_2.12-1.1.0

Let's start ZooKeeper and Kafka on Windows:

> bin\windows\zookeeper-server-start.bat configzookeeper.properties
> bin\windows\kafka-server-start.bat configserver.properties

You can start ZooKeeper and Kafka on Linux by using the following commands:

> bin/zookeeper-server-start.sh config/zookeeper.properties
> bin/kafka-server-start.sh config/server.properties

After starting Kafka on your machine, let's add the Kafka Maven dependency in your
application:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-stream-binder-kafka</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-stream-binder-kafka-streams</artifactId>
</dependency>

https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[196]

As you can see, we have added Spring Cloud Stream and Kafka binder. After adding these
dependencies, let's configure the configuration properties for Kafka.

Configuration properties for Kafka
Let's see the following application.yml configuration file for a microservice:

spring:
 application:
 name: customer-service
 cloud:
 stream:
 kafka:
 binder:
 brokers:
 - localhost:9092
 bindings:
 notification-in:
 destination: notification
 contentType: application/json
 notification-out:
 destination: notification
 contentType: application/json

As you can see, this file configures the address of the Kafka server to connect to, and the
Kafka topic we use for both the inbound and outbound streams in our code. The
contentType properties tell Spring Cloud Stream to send or receive our message objects as
strings in the streams.

Service used to write to Kafka
Let's see the following service class that is responsible for writing to Kafka in our
application:

@Servicepublic class NotificationService {

 private final NotificationStreams notificationStreams;

 public NotificationService(NotificationStreams notificationStreams) {
 super();
 this.notificationStreams = notificationStreams;
 }

 public void sendNotification(final Notification notification) {

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[197]

 MessageChannel messageChannel = notificationStreams.notifyTo();
 messageChannel.send(MessageBuilder.withPayload(notification)
 .setHeader(MessageHeaders.CONTENT_TYPE, MimeTypeUtils.APPLICATION_JSON)
 .build());
 }
}

In the preceding service class, the sentNotification() method uses an injected
NotificationStreams object to send message represented by the Notification object
in our application. Let's see the following Controller class that will trigger sending the
message to Kafka.

Rest API controller
Let's see a Rest Controller class that we'll use to create a REST API endpoint. This controller
will trigger sending a message to Kafka using the NotificationService Spring Bean:

@RestController
public class CustomerController {
...
@Autowired
CustomerRepository customerRepository;
@Autowired
AccountService accountService;
@Autowired
NotificationService notificationService;
@PostMapping(value = "/customer")
public Customer save (@RequestBody Customer customer){
Notification notification = new Notification("Customer is created",
"admin@dineshonjava.com", "9852XXX122");
notificationService.sendNotification(notification);
return customerRepository.save(customer);
}
...
...
}

As you can see in the preceding Controller class of Customer service, this class has a
dependency with NotificationService. The save() method is responsible for creating
a customer in the corresponding database, and also it creates a notification message using
the Notification object and sends it to Kafka using the sendNotification() method of
NotificationService. Let's see another side how Kafka listen to this message using topic
name notification.

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[198]

Listening to a Kafka topic
Let's create a listener NotificationListener class that will be used to listen to messages
on the Kafka notification topic and send email and SMS notifications to the customer:

@Component
public class NotificationListener {
@StreamListener(NotificationStreams.INPUT)
public void sendMailNotification(@Payload Notification notification) {
System.out.println("Sent notification to email: "+notification.getEmail()+"
Message: "+notification.getMessage());
}
@StreamListener(NotificationStreams.INPUT)
public void sendSMSNotification(@Payload Notification notification) {
System.out.println("Notified with SMS to mobile:
"+notification.getMobile()+" Message: "+notification.getMessage());
}
}

The NotificationListener class has two methods—sendMailNotification() and
sendSMSNotification(). These methods will be invoked by Spring Cloud Stream with
every new Notification message object on the Kafka notification topic. These methods
are annotated with @StreamListener. This annotation makes the method listener cause it
to receive events for stream processing.

This chapter doesn't have the complete code for this event-driven application, you can find
the complete code in the GitHub repository at https:/ /github. com/PacktPublishing/
Mastering-Spring- Boot- 2. 0.

Let's run this application and test how this event-driven works. First, we have to ensure we
run Kafka and Zookeeper as we discussed in the previous section. The Kafka server will be
run at http://localhost:9092.

Now let's run EurekaServer, ApiZuulService, AccountService, CustomerService,
and NotificationService. Let's open Eureka dashboard on the browser:

https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[199]

As you can see, all services are running now, let's create a Customer object to trigger the
event to Kafka. Here I am using Postman as a REST client, we will discuss in Postman in
Chapter 11, Testing Spring Boot Application. Let's see the following diagram, where we have
created a new customer using
the http://localhost:8080/api/customers/customer API endpoint through Zuul
API Gateway:

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[200]

As you can see, we have entered a new customer record in the database. As we have
discussed, whenever a new customer is created, it will trigger a message to Kafka to send
email and SMS notifications using the Notification microservice. Let's see the following
console output of the Notification microservice:

We have created a new customer using Customer service and it will trigger a notification
to be sent to the customer using the Kafka broker. It is a message-driven asynchronous call.

Similarly, whenever we create an account record for a new customer, Kafka will listen for
another new notification message for the account creation:

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[201]

Let's verify the console of the Notification microservice:

As you can see, we have created an account record for the customer, it has triggered a
message to Kafka to send email and SMS notifications to the customer, let's check the
customer record for the customer we just created by
visiting http://localhost:8080/api/customers/customer/2001:

As you can see, the customer has complete information including an associated account
object. So, in this chapter, we created an event-driven microservice using the Spring Cloud
Stream, Kafka Event Bus, Spring Netflix Zuul, and Spring Discovery service. You can find
the complete code for this chapter in the GitHub repository https:/ /github. com/
PacktPublishing/Mastering- Spring- Boot- 2.0.

https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0

Building Event-Driven and Asynchronous Reactive Systems Chapter 9

[202]

Summary
We have explored some design patterns, such as event-driven architecture patterns,
Command Query Responsibility Segregation, Event Sourcing, and Eventual consistency.
Spring Cloud Stream provides another way to create a distributed application based on the
event-driven and message-driven architecture.

We created a system based on the event-driven architecture with multiple microservices.
We used Kafka as a message broker and Spring Cloud Stream to provide support for the
Kafka and RabbitMQ binder. But, in this chapter, we implemented this event-driven system
using Kafka.

In the next chapter, we will explore and implement a Resilient System using Hystrix and
Turbine.

10
Building Resilient Systems
Using Hystrix and Turbine

In this chapter, we will explore the circuit-breaker pattern with a reference implementation
using the Netflix Hystrix library, looking at configuring the Turbine dashboard to
aggregate Hystrix streams from multiple services. We will also cover some important
aspects of the Turbine dashboard to aggregate the data streams from multiple services.

In microsystem architecture, we have seen that a monolithic application is divided into
several pieces of software, and each is deployed as an individual service. This system is
known as a distributed system. It has a lot of benefits, as we discussed in Chapter 4, Getting
Started with Spring Cloud and Configuration. Due to the distributed nature of cloud-native
applications, they have more potential failure modes than monolith applications. As the
number of services will be increased in distributed systems, it will also increase the chance
of cascading failures.

As each incoming request must now potentially touch tens or even hundreds of different
microservices, some failure in one or more of those dependencies is virtually guaranteed.
Let's see the famous quote regarding fault tolerance:

"Without taking steps to ensure fault tolerance, 30 dependencies each with 99.99% uptime
would result in 2+ hours downtime/month (99.99%30= 99.7% uptime = 2+ hours in a
month)."

 – Ben Christensen, Netflix engineer

In this chapter, we will discuss a pattern to prevent the cascading failures of these
microservices and avoid negative availability services in the distributed systems.

By the end of this chapter, you will have a better understanding of fault tolerance, and the
circuit-breaker pattern, how to use the Netflix Hystrix library to prevent cascading failures
in a distributed system, and how to enable Hystrix and Turbine dashboard to monitor the
failures.

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[204]

This chapter will cover the following points:

Circuit-breaker pattern
Using the Hystrix library with a reference implementation
Customizing the default configuration
Hystrix Metrics Stream
Hystrix Dashboard
Turbine dashboard
REST consumer with Hystrix and Feign

Let's look at these topics in detail.

Circuit-breaker pattern
In distributed software systems, it is very common to make several remote calls to the
services running in the different machines with different environments across a network.
As you know, remote calls can fail due to the overload from clients without a response until
a timeout limit is reached. So, it is a very serious problem for distributed systems. In
monoliths, it is not very common to call remote services outside of the application,
monoliths mostly require in-memory calls. There is a big difference between in-memory
calls and remote calls, remote calls can fail.

The circuit-breaker can help prevent these failures in a distributed software system. The
idea behind the circuit-breaker is very simple, you just create a circuit-breaker object for a
remote function call that monitors for cascading failures in the distributed software
systems. Every circuit-breaker has a threshold of failures, once it is reached, the circuit-
breaker opens in the system. All further calls to the circuit-breaker return with an error, an
empty object, or hardcoded values without the protected call being made at all.

The circuit-breaker prevents failures from constantly recurring in a system. Design patterns
provide solutions for the recurring issues, tasks, and bugs a developer comes across during
software programming. One of the lesser-known examples of these design patterns is the
circuit-breaker design pattern. The circuit-breaker pattern plans to open the circuit in the
wake of hitting a configurable edge of mistaken method calls. A characteristic fit is the
utilization of an interceptor to gauge the execution and screen the exceptions; subsequent to
achieving the limit, the interceptor returns without calling the objective.

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[205]

Let's see the following diagram of a distributed software system:

In this diagram, a Consumer calls the remote services of the Producer through the Circuit
Breaker. This Circuit Breaker monitors the failures. If any problem occurs in the system
related to network failures, the system hangs due to overload that is situation of the
timeout, Circuit Breaker monitor all such type failure and prevents cascading failure once
it reached threshold of failures. The Circuit Breaker opens and serves the request without
calling the remote service produced by the Producer in the distributed software system.

While timeouts constrain framework asset utilization, the circuit-breaker pattern is more
useful. An electrical switch recognizes failures and keeps the mobile app from endeavoring
to play out an activity that is destined to fall flat. As opposed to the HttpClient Retry
design, this design pattern tends to eradicate recurring bugs.

You can utilize the circuit-breaker design pattern to spare client-side assets from any calls
that are bound to fail, and additionally to spare assets of the server side. In case the server
is in a wrong state, for example an overload state, which is not a smart thought to include
additional heap on the server as a rule.

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[206]

The circuit-breaker design pattern enlivens and screens a secured work call. Contingent
upon the present state, the call will either be rejected or executed. As a rule, a circuit-
breaker actualizes three kinds of states:

Closed
Open
Half-open

Let's see the following diagram about the circuit-breaker states:

The circuit-breaker will be Closed for all success remote calls or fail under threshold for
certain threshold. Once the failures cross the limit of the threshold, the circuit-breaker
opens. And after, the circuit will reset timeout and move to a half Open state, once it
successful it will be closed.

Inside the closed state, transactions and their metrics will now be saved and the call is
executed. These measurements are important to execute. It's more about the system's
health. In the case the health of the system is affected, the circuit-breaker passes away from
any confining open state. Within this state, the majority of the calls are dismissed instantly
with no calls that are. The motivation behind the open state is to give the server side time to
recoup and redress the issue.

At the point when the circuit-breaker goes to an open state, a timeout clock is begun. In the
event that this clock lapses, the electrical switch changes into a half-open state. Inside the
half-open state, most of the calls are executed once in a while to check whether the issue has
been settled. Assuming everything is alright, at that point the state changes back to closed.

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[207]

The circuit-breaker channel actualizes a before execution and an after execution strategy.
Inside the before execution technique, the system verifies whether the demand execution is
permitted. A devoted circuit-breaker example is utilized for each objective host, keeping in
mind the end goal to dodge reactions. In the case that this call is permitted, the HTTP
exchange shall be maintained to keep up the measurements. This exchange metric question
will be closed inside the after execution technique by appointing the outcome to the
exchange. A 5xx status reaction will be translated as an error.

The circuit-breaker example can, likewise, be executed on the server side. The extent of the
server-side channel is the objective task rather than the objective host. If the objective task
being prepared is incorrect, calls will be instantly dismissed with the error status. Utilizing
a server-side channel guarantees that a wrong activity won't be permitted to devour an
excessive number of assets.

In the next section, let's look at how Spring Cloud supports this circuit-breaker pattern by
using Netflix Hystrix as a fault tolerance in the distributed microservices.

Using the Hystrix library with a reference
implementation
Spring Cloud supports Netflix utilities, and Netflix has produced a library based on the
circuit-breaker pattern implementation called Hystrix. In a microservice architecture, we
can use the Hystrix library to prevent cascading failures, because it is very common in the
microservice architecture to have several individual services hosted on different machines
across a network. The microservice-based system has multiple layers of service calls.

In a microservice architecture, the failure of a lower-level service can be caused due to the
cascading failure of the whole distributed system. So, Netflix Hystrix provides a way to
prevent the failure of a whole system by using fallback calls and the developer can provide
a fallback. Each circuit-breaker has its own threshold for failure. In Hystrix, if a particular
service is called more than circuitBreaker.requestVolumeThreshold (default: 20
requests) and failure attempt percentage is more than
circuitBreaker.errorThresholdPercentage (default: >50%) in a trip defined by
metrics.rollingStats.timeInMilliseconds (default: 10 seconds), then Hystrix opens
and a call is not made to that particular service.

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[208]

Let's see how the Hystrix fallback prevents cascading failures:

Hystrix Fallback prevents cascading failures in the distributed system, which has several
services, such as Service A, Service B, Service C, Service D, and Service E. Service
Consumer calls these remote services using the API gateway, but any specific service
failure can be the cause of the whole system failure. Having an open circuit stops this whole
failure of the system and allows the failing services time to heal. This fallback is provided
by the developer and it can be another Hystrix protected call, empty object, or some static
data. The developer can also define a chain of Fallback to make a call for a business task
that turns another fallback into static data or an empty business object. It is totally
dependent on the business need.

Let's see how to include and configure the Hystrix in our application.

Configuring Hystrix in your application
We will cover Spring Cloud Netflix Hystix with an example we discussed in the previous
chapters. We will use the same example and implement the circuit-breaker pattern, which
creates a strategy against cascading failure at lower levels of services in a distributed
system. We will configure Hystrix in our application of customer and Account
microservices, as we discussed in the previous chapters:

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[209]

Account microservice: This microservice will give some basic functionality to the
Account entity. We will call this Account service from customer service to
understand circuit-breaker. It will run on port 6060 in localhost.
Customer microservice: This is also a REST-based microservice where we will
implement the circuit-breaker using Hystrix. The Account microservice will be
invoked from this Customer microservice and we will see the fallback path once
the Account service is unavailable. It will run on port 6161 in localhost.

Hystrix is monitoring methods that call the remote services for failing calls. If there is such
a failure, it will open the circuit and forward the call to a fallback method. The Hystrix
library will tolerate failures up to a threshold. As the threshold is reached, it opens the
circuit-breaker to forward all subsequent calls to the fallback method, to prevent failure of
the whole system at once and it gives a time to failure service for recovering from its failing
state to a healthy state.

Maven dependency
Add the Starter with the org.springframework.cloud group and the spring-cloud-
starter-netflix-hystrix artifact ID to include Hystrix in your application. Let's see
the following Maven dependency in the pom.xml file:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
</dependency>

Add this Maven dependency to your project to include the Hystrix library.

Enabling circuit-breaker
Add the @EnableCircuitBreaker annotation to the main configuration application to
enable the circuit-breaker in your project. Let's see the following code:

package com.dineshonjava.customerservice;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import
org.springframework.cloud.client.circuitbreaker.EnableCircuitBreaker;
import org.springframework.cloud.client.loadbalancer.LoadBalanced;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[210]

import org.springframework.context.annotation.Bean;
import org.springframework.web.client.RestTemplate;

@SpringBootApplication
@EnableEurekaClient
@EnableCircuitBreaker
public class CustomerServiceApplication {

 public static void main(String[] args) {
 SpringApplication.run(CustomerServiceApplication.class, args);
 }
 ...
 ...
}

I have used the @EnableCircuitBreaker annotation to enable the circuit-breaker pattern
in the application. Let's see how to add Hystrix functionalities in the service layer of the
application.

Adding the Hystrix annotation in services
Netflix Hystrix provides an annotation, @HystrixCommand, which we can use at the service
layer to add the functionality of the circuit-breaker pattern. Let's see the following code:

package com.dineshonjava.customerservice.service;

import java.util.ArrayList;
import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.cloud.client.loadbalancer.LoadBalanced;
import org.springframework.stereotype.Service;
import org.springframework.web.client.RestTemplate;

import com.dineshonjava.customerservice.domain.Account;
import com.netflix.hystrix.contrib.javanica.annotation.HystrixCommand;

@Service
public class AccountServiceImpl implements AccountService {
 @Autowired
 @LoadBalanced
 RestTemplate restTemplate;
 @HystrixCommand(fallbackMethod = "defaultAccount")
 public List<Account> findByCutomer(Integer customer) {
 //do stuff that might fail

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[211]

 return restTemplate.getForObject("http://ACCOUNT-
 SERVICE/account/customer/{customer}", List.class, customer);
 }
 public List<Account> defaultAccount() {
 /* something useful */;
 return new ArrayList<>();
 }
}

We have used an annotation, @HystrixCommand(fallbackMethod =
"defaultAccount"), on top of the findByCutomer(Integer customer) method. And
the fallbackMethod attribute denotes the defaultAccount() method for a fallback
condition. The fallback method can have any access modifier. As you know, Netflix has
produced a very powerful library for fault tolerance. Hystrix allows you to wrap the code
in HystrixCommand objects after wrapping that code in a circuit-breaker.

Spring Cloud creates a proxy for those Spring Beans that are annotated with the
@HystrixCommand annotation, and that proxy is connected to the Hystrix circuit-breaker.
And that circuit-breaker monitors when to open and close the circuit, and also takes
decisions in the case of a failure to perform an action. You can also use the
commandProperties attribute with a list of @HystrixProperty annotations to configure
@HystrixCommand.

It's important to remember that the Hystrix command and fallback should be placed in the
same class and have the same method signature (optional parameter for failed execution
exception).

As we have declared a method, defaultAccount, it will be used to process fallback logic
in case of any errors. If you need to run the defaultAccount fallback method as separate
Hystrix command, then you need to annotate it with the HystrixCommand annotation:

 @HystrixCommand(fallbackMethod = "defaultAccount")
 public Account getAccountById(String id) {
 return accountService.getAccountById(id);
 }

 @HystrixCommand
 private Account defaultAccount(String id) {
 return new Account();
 }

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[212]

As you can see, we have marked a fallback method with @HystrixCommand, now this
defaultAccount fallback method also has another fallback method:

@HystrixCommand(fallbackMethod = "defaultAccount")
 public Account getAccountById(String id) {
 return accountService.getAccountById(id);
 }

 @HystrixCommand(fallbackMethod = "defaultUserSecond")
 private Account defaultAccount(String id) {
 return new Account();
 }
 @HystrixCommand
 private Account defaultAccountSecond(String id) {
 return new Account("1002", "2000");
 }

We have declared second a defaultAccountSecond fallback method as a fallback method
of the first defaultAccount fallback method.

The Hystrix library also allows you to pass the extra parameter in order to get an exception
thrown by a command. Let's see the following example:

@HystrixCommand(fallbackMethod = "fallback1")
public Account getAccountById(String id) {
 throw new RuntimeException("getAccountById command raised error");
}

@HystrixCommand(fallbackMethod = "fallback2")
Account fallback1(String id, Throwable e) {
 throw new RuntimeException("fallback1 raised error");
}

@HystrixCommand(fallbackMethod = "fallback3")
Account fallback2(String id) {
 throw new RuntimeException("fallback2 raised error");
}

@HystrixCommand(fallbackMethod = "staticFallback")
Account fallback3(String id, Throwable e) {
 throw new RuntimeException("fallback3 raised error");
}

Account emptyObjectFallback(String id, Throwable e) {
 return new Account();
}

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[213]

This code has several fallback methods, with an extra parameter of the Throwable type
and each fallback has its own fallback method with an extra Throwable parameter to
propagate an exception at the command to the fallback method.

Error propagation
The @HystrixCommand annotation has the ability to specify exceptions types that should be
ignored:

 @HystrixCommand(ignoreExceptions = {BadRequestException.class})
 public Account findAccountById(String id) {
 return accountService.findAccountById(id);
 }

If accountService.findAccountById(id) throws an exception of
the BadRequestException type, then this exception will be wrapped in
HystrixBadRequestException and be-thrown without triggering the fallback logic.

Let's create a REST controller for the customer service.

Implementing a REST controller in customer
service
Let's implement a CustomerController REST controller to the Customer microservice
and expose endpoints for the CRUD operations. The /customer/{customerId} endpoint
will simply return the customer details of a given customer ID along with its associated
account details. For the account details, it will call another microservice that is already
developed and deployed with its host and port number, exposing some endpoints such as
/account/customer/{customer}. Let's see the following REST controller class:

package com.dineshonjava.customerservice.controller;

import java.util.ArrayList;
import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[214]

import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RestController;

import com.dineshonjava.customerservice.domain.Customer;
import com.dineshonjava.customerservice.repository.CustomerRepository;
import com.dineshonjava.customerservice.service.AccountService;

@RestController
public class CustomerController {
 @Autowired
 CustomerRepository customerRepository;
 @Autowired
 AccountService accountService;
 @PostMapping(value = "/customer")
 public Customer save (@RequestBody Customer customer){
 return customerRepository.save(customer);
 }
 @GetMapping(value = "/customer")
 public Iterable<Customer> all (){
 List<Customer> customers = new ArrayList<>();
 for(Customer customer : customerRepository.findAll()){
customer.setAccount(accountService.findByCutomer(customer.getCustomerId()))
;
 }
 return customers;
 }
 @GetMapping(value = "/customer/{customerId}")
 public Customer findByAccountId (@PathVariable Integer customerId){
 Customer customer =
customerRepository.findByCustomerId(customerId);
 customer.setAccount(accountService.findByCutomer(customerId));
 return customer;
 }
 @PutMapping(value = "/customer")
 public Customer update (@RequestBody Customer customer){
 return customerRepository.save(customer);
 }
 @DeleteMapping(value = "/customer")
 public void delete (@RequestBody Customer customer){
 customerRepository.delete(customer);
 }
}

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[215]

As you can see, there are two properties that have been injected, AccountService and
CustomerRepository. CustomerRepository is used to access the customer data and
AccountService is a delegating service for the Account microservice. Let's see how to
create an AccountService.java delegate layer to call the Account service:

package com.dineshonjava.customerservice.service;

import java.util.ArrayList;
import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.cloud.client.loadbalancer.LoadBalanced;
import org.springframework.stereotype.Service;
import org.springframework.web.client.RestTemplate;

import com.dineshonjava.customerservice.domain.Account;
import com.netflix.hystrix.contrib.javanica.annotation.HystrixCommand;

@Service
public class AccountServiceImpl implements AccountService {
 @Autowired
 @LoadBalanced
 RestTemplate restTemplate;
 @HystrixCommand(fallbackMethod = "defaultAccount")
 public List<Account> findByCutomer(Integer customer) {
 return
restTemplate.getForObject("http://ACCOUNT-SERVICE/account/customer/{custome
r}", List.class, customer);
 }
 private List<Account> defaultAccount(Integer customer) {
 List<Account> defaultList = new ArrayList<>();
 defaultList.add(new Account(0000, 1.000, 0000, "UNKNOWN
ACCOUNT TYPE", "UNK", "FALLBACK BANK"));
 return defaultList;
 }
}

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[216]

In the code for AccountService, we have performed the following steps to enable the
Hystrix circuit-breaker:

Account microservice is invoked by the Spring Framework provided by1.
RestTemplate.

Use the @HystrixCommand(fallbackMethod = "defaultAccount")2.
annotation to add the Hystrix command to enable a fallback method, and we will
have to add another defaultAccount method with the same signature as the
command method has findByCutomer(Integer customer), which will be
invoked when the actual Account service will be down.
Add the defaultAccount(Integer customer) fallback method, which will3.
return a default value.

This Hystrix-enabled Customer microservice will use the Account microservice registered
with the Eureka registry server. The account REST service will be the same as the one we
created in the previous chapters. You can find the complete example on GitHub (https:/ /
github.com/PacktPublishing/ Mastering- Spring- Boot- 2.0).

Let's build and test the customer service.

Building and testing customer service
Let's create builds for the Eureka server, customer, and Account service using the mvn
clean install command and after that run all these services using the Java command.
You can find customer service in port 6161. And Account service is available at port
6060. But we are using the Spring Cloud Eureka registry server, so you don't need to use
the actual hostname and port to call Account service in the customer service, just use the
logical service name (http://ACCOUNT-SERVICE).

https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[217]

Now fetch the customer service by opening the browser and type
http://localhost:6161/customer/1001. It should show the following output in the
browser:

As you can see in the preceding screenshot, the customer with the 1001 customer ID has
been rendered with two accounts by calling the Account service internally by the
customer service. So if both services are running fine, the customer service is displaying
the data returned by the Account service. That means the circuit-breaker is in the CLOSED
state right now. Now let's move to test the Hystrix circuit-breaker by shutting down the
Account service. After shutdown, the Account service and refreshed same URI endpoint
as we have opened is at http://localhost:6161/customer/1001.

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[218]

Let's see the following screenshot after refreshing the browser with the given URI:

This time it will return the fallback method response. Here, Hystrix comes into the picture,
it monitors the Account service in frequent intervals and as it is down, the Hystrix
component has opened the circuit and enabled the fallback path.

Let's start the Account service again; after a few times, go back to the customer service,
and refresh the browser again so you can see the response in normal flow.

Now we will explore how the Hystrix library allows us to customize the default
configuration.

Customizing the default configuration
The Hystrix library allows you to customize the default configuration by using some
properties for command and fallback. The command properties can be set using
commandProperties of the @HystrixCommand annotation:

@HystrixCommand(commandProperties = {
 @HystrixProperty(name =
"execution.isolation.thread.timeoutInMilliseconds", value = "300")
})
public Account findAccountById(String id) {
 return accountService.findAccountById(id);
}

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[219]

We have customized the default timeout to 300 milliseconds. Similar to
commandProperties, we can customize the thread pool properties by using the
threadPoolProperties of @HystrixCommand:

@HystrixCommand(commandProperties = {
 @HystrixProperty(name =
"execution.isolation.thread.timeoutInMilliseconds", value = "300")
 },
 threadPoolProperties = {
 @HystrixProperty(name = "coreSize", value = "30"),
 @HystrixProperty(name = "maxQueueSize", value = "101"),
 @HystrixProperty(name = "keepAliveTimeMinutes", value = "2"),
 @HystrixProperty(name = "queueSizeRejectionThreshold", value =
 "15"),
 @HystrixProperty(name = "metrics.rollingStats.numBuckets",
 value = "12"),
 @HystrixProperty(name =
 "metrics.rollingStats.timeInMilliseconds", value = "1200")
 })
public Account findAccountById(String id) {
 return accountService.findAccountById(id);
}

We have set threadPoolProperties, such as coreSize, maxQueueSize,
keepAliveTimeMinutes, and queueSizeRejectionThreshold. Sometimes we are
required to set some common properties to all Hystrix commands. The Hystrix library also
allows us to set default properties at the class level so that these can be applicable for all
Hystrix commands.

Netflix's Hystrix provides the @DefaultProperties annotation. It is a class-level
annotation that allows us to set default command properties, such as groupKey,
threadPoolKey, commandProperties, threadPoolProperties, ignoreExceptions,
and raiseHystrixExceptions.

By default, specified properties will be used for each command within an annotated class
by using the @DefaultProperties annotation unless a command specifies those
properties explicitly using the corresponding @HystrixCommand parameters. Let's see the
following:

@DefaultProperties(groupKey = "DefaultGroupKey")
class AccountService {
 @HystrixCommand // hystrix command group key is 'DefaultGroupKey'
 public Object commandInheritsDefaultProperties() {
 return null;
 }

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[220]

 @HystrixCommand(groupKey = "SpecificGroupKey") // command overrides
 default group key
 public Object commandOverridesGroupKey() {
 return null;
 }
}

Let's enable the Hystrix Metrics Stream in the next section.

Hystrix Metrics Stream
You can also enable the Hystrix Metrics Stream by adding a dependency on spring-boot-
starter-actuator. Hystrix will expose the metrics stream by using /hystrix.stream
as a management endpoint:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

Also add the following configurations to the application property file
(application.propeties):

management.endpoint.health.enabled=true
management.endpoints.jmx.exposure.include=*
management.endpoints.web.exposure.include=*
management.endpoints.web.base-path=/actuator
management.endpoints.web.cors.allowed-origins=true
management.endpoint.health.show-details=always

These configurations are required to expose the Hystrix Metrics Stream in Spring Boot 2.0.

Let's access the /hystrix.stream endpoint on the browser to see the Hystrix Metrics
Stream. The http://localhost:6161/actuator/hystrix.stream URI represents a
continuous stream that Hystrix generates. This stream is generated by Hystrix to monitor
health and all the service calls that are being monitored. Let's see the sample output in the
screenshot:

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[221]

You can see in the preceding screenshot which JSON data represents the status for the
health checkup of the services and the monitoring data stream for the service calls. It is very
difficult to monitor because it looks like a very complex JSON format. Hystrix provides a
Hystrix Dashboard for the Hystrix Metrics Stream and it will render the same data in GUI
format in a very simple way. In the next section, we will explore Hystrix Dashboard.

Implementing Hystrix Dashboard in our
project
Hystrix Dashboard provides benefits to monitoring the set of metrics on a dashboard. It
displays the health of each circuit-breaker in a very simple way. Let's include Hystrix
Dashboard in your project by using the Starter with the
org.springframework.cloudand group and the spring-cloud-starter-netflix-
hystrix-dashboard artifact ID:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-hystrix-dashboard</artifactId>
</dependency>

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[222]

We have to add in the pom.xml file. But it is not enough to add Hystrix Dashboard in your
project, we have to add one more annotation, @EnableHystrixDashboard, to your Spring
Boot main class:

@SpringBootApplication
@EnableEurekaClient
@EnableCircuitBreaker
@EnableHystrixDashboard
public class CustomerServiceApplication {

 public static void main(String[] args) {
 SpringApplication.run(CustomerServiceApplication.class, args);
 }
 ...
}

Now run the main class as a Spring Boot application to run Hystrix Dashboard in your
project. You can visit /hystrix endpoint to see the dashboard for an individual-instance
/hystrix.stream endpoint in a Hystrix client application. Let's access the
http://localhost:6161/hystrix URI and see the following output on the browser:

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[223]

The preceding diagram is a visual dashboard in its initial state. Now let's add the
http://localhost:6161/actuator/hystrix.stream URI in the dashboard and click
on the Monitor Stream button to get a meaningful dynamic visual representation of the
circuit being monitored by the Hystrix component. Let's see the following visual dashboard
after providing the stream input in the homepage:

Hystrix provides information about the individual instance using the /hystrix.stream
endpoints, but in a distributed system, we must have more than one instance. So, getting a
collaborated view about all instances in a distributed system is not possible with Hystrix
Dashboard. Spring Cloud Netflix provides a solution to aggregate all the information about
all the instances, which is Turbine. Let's discuss it in the next section.

Turbine dashboard
Turbine is a tool for aggregating events produced on Hystrix. Suppose that we have a
distributed system with more than 10 microservices and each one with Hystrix. So, it is
very difficult to monitor all the circuits. Spring Cloud Netflix offers Turbine to provide
aggregation for the circuit-breakers. Turbine is a system that aggregates all the
/hystrix.stream endpoints of all microservices of a distributed system into a combined
/turbine.stream for use in Hystrix Dashboard.

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[224]

To include Turbine in your project, add the following Turbine Maven dependency to your
pom.xml file:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-turbine</artifactId>
</dependency>

We have added a Maven dependency for Turbine. The spring-cloud-starter-
netflix-turbine Starter provides the @EnableTurbine annotation. Annotate your main
application class with this annotation to enable Turbine functionality in your project.

Let's see the main application class for this Turbine application:

package com.dineshonjava.turbine;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import
org.springframework.cloud.netflix.hystrix.dashboard.EnableHystrixDashboard;
import org.springframework.cloud.netflix.turbine.EnableTurbine;

@SpringBootApplication
@EnableTurbine
@EnableEurekaClient
@EnableHystrixDashboard
public class TurbineApplication {

 public static void main(String[] args) {
 SpringApplication.run(TurbineApplication.class, args);
 }
}

The main application class has been annotated with the @EnableTurbine annotation to
enable Turbine functionality in your project. Other annotations are the same ones we used
in earlier examples in the chapter.

Let's see the following configuration files for this Turbine application (application.yml)
file:

spring:
 application:
 name: turbine

server:

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[225]

 port: 6262

eureka:
 client:
 service-url:
 default-zone: ${EUREKA_URI:http://localhost:8761/eureka}
 instance:
 prefer-ip-address: true
turbine:
 aggregator:
 cluster-config:
 - CUSTOMER-SERVICE
 app-config: CUSTOMER-SERVICE

This configuration file has a configuration for application name, server port, and Eureka
registry information, and it has Turbine configurations of the aggregator cluster config and
appConfig, which means we have to add those services with @HystrixCommand. Here I
have added only one service, (CUSTOMER-SERVICE), to the Turbine aggregator for the
Turbine dashboard.

Let's run this Turbine application and look the following Eureka Server Dashboard:

As you can in the preceding screenshot, there are three running instances registered with
the Eureka registry server.

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[226]

Let's open Turbine, following the same steps we completed for Hystrix Dashboard. But
here we have to inform the cluster via Turbine as follows:
http://localhost:6262/turbine.stream?cluster=CUSTOMER-SERVICE

Now open same screen that we opened with Hystrix with
http://localhost:6262/hystrix and use the /turbine.stream endpoint
(http://localhost:6262/turbine.stream?cluster=CUSTOMER-SERVICE) instead of
the /hystrix.stream endpoint to access the Turbine dashboard. It will open the same
screen as Hystrix, but if you have more services, they will appear in an aggregated way.
Let's see the following screenshot:

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[227]

As you can see, it is very similar to the Hystrix Dashboard, but here it is the Turbine
dashboard that aggregates all the /hystrix.stream endpoints to a single
/turbine.stream endpoint.

Let's discuss the Turbine stream and what t is used for.

Turbine stream
The environments, such as PaaS, the classic Turbine model that pulls metrics from all the
distributed Hystrix commands that doesn't work. In such cases, you can push your Hystrix
command push metrics to Turbine by using Spring Cloud messaging. These are following
dependencies required for your client application:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-turbine-stream</artifactId>
</dependency>

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-rabbit</artifactId>
</dependency>

I have added the spring-cloud-starter-netflix-turbine-stream and the spring-
cloud-starter-stream-rabbit Starters. But you can add any messaging broker Starter
of Spring cloud, using spring-cloud-starter-stream-*, of your choice. And also, you
have to annotate the Spring Boot application class with the @EnableTurbineStream
annotation.

REST consumer with Hystrix and Feign
We've used Spring Framework's RestTemplate to consume microservices. Now, we are
going to use Spring's Netflix Feign as a declarative REST client, instead of Spring
RestTemplate, to consume microservices. We have already discussed the Spring Netflix
Feign client to access REST API in Chapter 8, Simplify HTTP API with Feign Client. In this
section, we will use the Feign client with the circuit-breaker pattern.

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[228]

If Hystrix is on the classpath and feign.hystrix.enabled=true, Feign will wrap all
methods with a circuit-breaker.

Prior to the Spring Cloud Dalston release, if Hystrix was on the classpath, Feign would
have wrapped all methods in a circuit-breaker by default. This default behavior was
changed in Spring Cloud Dalston in favor of an opt-in approach.

To add the Feign client in your project, add the following Maven dependency:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>

Now, let's enable fallbacks for a given @FeignClient by setting the class name to the
fallback attribute of this annotation that implements the fallback. And also you have to
declare your implementation as a Spring Bean. Let's see the following AccountService as
a Feign client interface:

@FeignClient(name="account-service", fallback=AccountServiceFallback.class)
public interface AccountService {
 @GetMapping(value = "/account/customer/{customer}")
 List<Account> findByCutomer (@PathVariable("customer") Integer
customer);
}

class AccountServiceFallback implements AccountService {
 @Override
 private List<Account> findByCutomer(Integer customer) {
 List<Account> defaultList = new ArrayList<>();
 defaultList.add(new Account(0000, 1.000, 0000, "UNKNOWN
 ACCOUNT TYPE", "UNK", "FALLBACK BANK"));
 return defaultList;
 }
}

The name property of the @FeignClient is mandatory. It is used to look up the application
either by service discovery via a Eureka Client or via URL, if this property is given.

Building Resilient Systems Using Hystrix and Turbine Chapter 10

[229]

Summary
We have covered creating a Spring Cloud Hystrix circuit-breaker and the circuit-breaker
Pattern for fault tolerance in the distributed application. We created an application using
Spring Netflix Hystrix to test both the circuit's open path and the circuit's closed path. We
have implemented the client application to consume REST services by using Spring's
RestTemplate and also used Spring Cloud's Netflix Feign.

We saw how to customize the default configuration of the Hystrix command and fallback.
We also explored error propagation in the Hystrix command.

We created two REST consumer applications, one using RestTempate and another using
the Feign client. And finally, we created a Hystrix Dashboard to monitor the metrics of
your project. The Turbine dashboard helps to aggregate all the /hystrix.stream
endpoints of all the microservices in the distributed system to a combine
the /turbine.stream endpoints.

We learned why circuit-breaker implementation is necessary for building distributed
systems and how to use the Hystrix library and customize it for business needs. You have
also learned to configure the Hystrix Dashboard with data streams from individual services
and configure the Turbine dashboard to aggregate the data streams from multiple services.

In the next chapter, we will explore Spring Boot support for testing.

11
Testing Spring Boot Application

Test cases are important for your application, as they not only verify the code but also make
sure it does everything you expect it to do. In this chapter, we will explore how to write
tests to make sure that things don't break as your application continues to evolve. You
could either write tests before or after the code has been written.

Spring doesn't provide an API to write unit tests for an application. Spring promotes loose
coupling and interface-driven design. So, it makes it easy to write unit tests for any Spring
application. On the other hand, integration tests require some help from Spring
Framework, because Spring does bean wiring between the application components in your
production application. So, Spring is responsible for configuring and creating the
application components in your production application.

Spring provides us with a separate module for testing—Spring test. The Spring test module
provides the SpringJUnit4ClassRunner class to help load a Spring application context in
JUnit-based application tests. But Spring Boot, by default, enables auto-configuring support
and provides another class, SpringRunner. Spring Boot also offers a handful of useful
testing utilities.

We'll start by looking at how to test with a fully Spring Boot-enabled application context.
You will learn to unit test Spring Boot services and also learn to mock Spring Boot services.
You'll also learn about the different tools available to test service contracts with basic usage.
In this chapter, we will create a REST application by exposing some REST URIs and then
we will test these using the Postman and SoapUI tools. By the end of this chapter, you will
have a better understanding of how Spring Boot supports testing.

This chapter will cover the following points:

Test-driven development
JUnit test for Spring Boot

Testing Spring Boot Application Chapter 11

[231]

Using Mockito for mocking services
Postman for testing RESTful service contracts
SoapUI for testing RESTful service contracts

Let's look at these topics in detail.

Test-driven development
Test-driven development (TDD) is about writing automated tests that verify whether the
code actually works. TDD focuses on development with well-defined requirements in the
form of tests. Every development process includes testing either in an automated or manual
way. Automated tests result in an overall faster development cycle. Efficient TDD is faster
than development without tests. Comprehensive test coverage provides confidence in the
application development and this confidence enables refactoring for the application.
Refactoring is essential to the agile development of an application. Let's see the following
diagram:

Refactoring promotes agile development; it is easy to discover failures and it fixes them.

Testing makes you think about your design. If your code is hard to test, then the design
should be reconsidered. A test case helps you focus on what matters. It helps you not to
write code that you don't need and it finds problems early during development. Let's see
the different types testing in software.

Unit testing
Unit testing tests one unit of functionality and it keeps dependencies minimal and isolated
from the environment, including Spring. We can use simplified alternatives for
dependencies such as stubs and/or mocks.

Testing Spring Boot Application Chapter 11

[232]

In unit testing, there must not be any external dependencies, because external dependencies
aren't available since we are testing a unit. So, remove links with dependencies. The test
shouldn't fail because of external dependencies. You can remove external dependencies of
your implementation for testing purposes by using stubs and mocks. Stubs create a simple
test implementation and a mock dependency class generated at startup-time using a
mocking framework.

Let's see the following diagram related to the unit testing example:

Here, you can see both modes of your application, the production mode and unit test mode.
In the production mode, the Spring Framework injects dependencies by using the Spring
configuration, but in the unit testing mode, Spring doesn't have any role, and dependencies
have been resolved by creating stub implementations. The stub implementations are fake
objection creation with dummy data.

In this example, I want to create a unit test for the AccountServiceImpl class and test two
methods, findAccountByAccountId() and findAllByCustomerId().
The findAccountByAccountId() method will return the account object associated
account ID and findAllByCustomerId() will return the list of accounts for a customer.

Testing Spring Boot Application Chapter 11

[233]

Let's create the AccountServiceImpl class and test this class with unit testing:

public class AccountServiceImpl implements AccountService {
 @Autowired
 AccountRepository accountRepository;

 public AccountServiceImpl(AccountRepository accountRepository) {
 this.accountRepository = accountRepository;
 }
 @Override
 public Account findAccountByAccountId(Integer accountId) {
 return accountRepository.findAccountByAccountId(accountId);
 }
 @Override
 public List<Account> findAllByCustomerId(Integer customerId) {
 return accountRepository.findAllByCustomerId(customerId);
 }
 ...
}

The preceding service class had a dependency with the AccountRepoistory
implementation. Let's implement a stub implementation of AccountRepository for unit
testing the AccountServiceImpl class:

public class StubAccountRepository implements AccountRepository {
 ...
 @Override
 public Account findAccountByAccountId(Integer accountId) {
 return new Account(100, 121.31, 1000, "SAVING", "HDFC121",
 "HDFC");
 }
 @Override
 public List<Account> findAllByCustomerId(Integer customerId) {
 List<Account> accounts = new ArrayList<>();
 accounts.add(new Account(100, 121.31, 1000, "SAVING",
 "HDFC121", "HDFC"));
 accounts.add(new Account(200, 221.31, 1000, "CURRENT",
 "ICIC121", "ICICI"));
 return accounts;
 }
 ...
}

Testing Spring Boot Application Chapter 11

[234]

The StubAccountRepository class is a stub implementation of AccountRepository, by
implementing methods with dummy data without calling the actual database. Let's see the
following diagram that explains the two implementations of AccountRepository:

According to the preceding diagram, our application has two implementations of
AccountRepository. JPAAccountRepository is used at the production mode, using
database integration, but another class, StubAccountRepository, is used for unit testing
without integrating database dependency. Let's see the following class to create a unit test
using this stub repository:

AccountServiceImplTest is a unit test using a stub repository. Refer to the following
code:

package com.dineshonjava.accountservice;

import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;

import org.junit.Before;
import org.junit.Test;

import com.dineshonjava.accountservice.repository.StubAccountRepository;
import com.dineshonjava.accountservice.service.AccountService;
import com.dineshonjava.accountservice.service.AccountServiceImpl;

public class AccountServiceImplTest {
 AccountService accountService;
 @Before
 public void setUp() {
 accountService = new AccountServiceImpl(new
 StubAccountRepository());
 }
 @Test
 public void findAccountByAccountId() {
assertTrue(accountService.findAccountByAccountId(100).getBalance().intValue

Testing Spring Boot Application Chapter 11

[235]

() == 121);
 }
 @Test
 public void findAllByCustomerId() {
 assertFalse(accountService.findAllByCustomerId(1000).size() ==
 3);
 }
}

The preceding class has three methods. The setup() method initializes
AccountRepository; it is annotated with the @Before annotation. That means setup()
will be called before the test methods execute. The other two methods,
findAccountByAccountId() and findAllByCustomerId()), in the testing class are test
methods and are also annotated with the @Test annotation, which indicates that these are
test methods. We have testing logic inside these testing methods and we are using
assertions to write the test logic.

Advantages
Let's see the following advantages of using the stub implementation in unit tests:

Easy to implement and understand
Reusable

Disadvantages
Let's see the following disadvantages of using the stub implementation in unit tests:

A change to an interface requires a change to a stub
Your stub must implement all methods, even those not used by a specific
scenario
If a stub is reused, refactoring can break other tests

Testing Spring Boot Application Chapter 11

[236]

Other mock libraries
Apart from the stub implementation, there are many mocking frameworks available; you
can use them to create unit tests. There are several mocking libraries available, such as
Mockito, jMock, and EasyMock. You need to complete the following steps in order to
perform tests with a Mock library:

Use a mocking library to generate a mock object that implements the dependent1.
interface on the fly
Record the mock with expectations of how it will be used for a scenario2.
Exercise the scenario3.
Verify the mock expectations were met4.

The preceding mock considerations have the following benefits:

No additional class to maintain
You only need to set up what is necessary for the scenario you're testing

The only disadvantage is that these libraries are a little hard to understand at first.

Integration testing
Integration testing is also known as system testing; it tests the interactions of multiple units
working together. All units should work well individually as we've already performed unit
testing to confirm that, and integration testing involves testing application classes in the
context of their surrounding infrastructure without running the entire project. Use the
Apache DBCP connection pool instead of a container-provider pool obtained through JNDI,
and use ActiveMQ to avoid expensive commercial JMS licenses.

Testing Spring Boot Application Chapter 11

[237]

Let's see the following diagram about integration testing:

As you can see in the preceding diagram, AccountServiceImpl is using the actual
AccountRepository implementation instead of its stub implementation as we have used
in the unit tests. But JpaAccountRepository will fetch data from the testing DB instead of
the production DB. Spring supports integration testing using the Spring-test.jar
library, and Spring can use the same application configuration for the testing environment
to inject dependencies between the application components.

Spring provides a separate module (spring-test.jar) for integration testing and consists
of several JUnit test-support classes. Spring has a central support class, which is
SpringJUnit4ClassRunner. It caches a shared ApplicationContext across test
methods.

Let's see the following class with integration testing:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes=SystemTestConfig.class)
public final class AccountServiceImplTest {
 @Autowired
 AccountService accountService;

 @Test
 public void findAccountByAccountId() {
assertTrue(accountService.findAccountByAccountId(100).getBalance().intValue

Testing Spring Boot Application Chapter 11

[238]

() == 121);
 }
 @Test
 public void findAllByCustomerId() {
 assertFalse(accountService.findAllByCustomerId(1000).size() ==
 3);
 }
}

The preceding test class, AccountServiceImplTest, is annotated with the @RunWith
annotation by passing the SpringJUnit4ClassRunner class; it indicates this test will run
with Spring support. The @ContextConfiguration annotation is used to include the
testing configuration and the SystemTestConfig class points to the system test
configuration file. You may notice that we didn't use the @Before annotation here because
the AccountService dependency will be injected by Spring, so we don't need to use
the @Before annotation.

In addition to loading the application context, SpringJUnit4ClassRunner also makes it
possible to inject beans from the application context into the test itself via autowiring.
Because this test is targeting an AccountService bean, it is autowired into the test. Finally,
the findAccountByAccountId() method makes calls to the address service and verifies
the results. As we've looked at integration testing, let's look at the benefits of testing with
Spring.

Benefits of testing with Spring
Using Spring in integration testing offers the following benefits:

No need to deploy to an external container to test application functionality, runs
everything quickly inside your IDE
Supports continuous integration testing and allows the reuse of your
configuration between test and production environments, and application
configuration logic is typically reused

Testing Spring Boot Application Chapter 11

[239]

Activating profiles for a test class
The Spring test module provides the @ActiveProfiles annotation inside the test class.
This annotation activates the profile in the test environment. Beans associated with that
profile are instantiated and also those beans which are not associated with any profile
instantiated. For example, there are two profiles activated—prod and dev:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes=TestConfig.class)
@ActiveProfiles({ "prod", "dev" })
public class AccountServiceImplTest {
 ...
}

JUnit tests for the Spring Boot application
Spring Boot provides two modules for test support—sprint-boot-test and spring-
boot-test-autoconfigure. spring-boot-test contains core items, and spring-
boot-test-autoconfigure supports auto-configuration for tests. These modules have a
number of utilities and annotations to help when testing your application. It is very simple
to add these modules in the Spring Boot application by adding the spring-boot-
starter-test starter dependency in your Maven file. This starter imports both Spring
Boot test modules as well as JUnit, AssertJ, Hamcrest, and a number of other useful
libraries. Let's see the following Maven dependency to include test support in the Spring
Boot application:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
</dependency>

The preceding Maven dependency will add the following libraries to your Spring Boot
application:

JUnit: This is related to unit testing Java applications
Spring test and Spring Boot test: They add utilities and integration-test support
for Spring Boot applications
AssertJ: It is an assertion library
Hamcrest: This library is related to constraints or predicates

Testing Spring Boot Application Chapter 11

[240]

Mockito: It is a Java mocking framework
JSONassert: This library is used to assert in JSON support
JsonPath: XPath for JSON

These libraries are useful for writing tests. Spring Boot provides an annotation,
@SpringBootTest. This annotation can be used as an alternative to the
@ContextConfiguration annotation of the Spring test module. This annotation is used to
create ApplicationContext in your tests using SpringApplication. Let's see the
following class:

package com.dineshonjava.accountservice;

import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;

import com.dineshonjava.accountservice.service.AccountService;

@RunWith(SpringRunner.class)
@SpringBootTest
public class AccountServiceApplicationTests {
 @Autowired
 AccountService accountService;
 @Test
 public void findAccountByAccountId() {
assertTrue(accountService.findAccountByAccountId(100).getBalance().intValue
() == 3502);
 }
 @Test
 public void findAllByCustomerId() {
 assertFalse(accountService.findAllByCustomerId(1000).size() ==
 3);
 }

}

Testing Spring Boot Application Chapter 11

[241]

The class is annotated with the @SpringBootTest annotation, no need to add
the @ContextConfiguration annotation.

Using Mockito for mocking services
Let's see following quote about the role of mocking:

"Mockito is a mocking framework that tastes really good. It lets you write beautiful tests
with a clean & simple API. Mockito doesn't give you hangover because the tests are very
readable and they produce clean verification errors."

 – Mockito. Mockito Framework Site. N.p., n.d. Web. 28 Apr. 2017.

When running tests, it is sometimes necessary to mock certain components within your
application context. For example, you may have a facade over some remote service that is
unavailable during development. Mocking can also be useful when you want to simulate
failures that might be hard to trigger in a real environment. Let's see the following test class
where I have used Mocking:

package com.dineshonjava.accountservice;

import static org.hamcrest.CoreMatchers.is;
import static org.hamcrest.CoreMatchers.notNullValue;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertThat;
import static org.junit.Assert.assertTrue;
import static org.mockito.Mockito.*;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.boot.test.mock.mockito.MockBean;
import org.springframework.test.context.junit4.SpringRunner;

import com.dineshonjava.accountservice.domain.Account;
import com.dineshonjava.accountservice.service.AccountService;

@RunWith(SpringRunner.class)
@SpringBootTest
public class AccountControllerTest {
 @MockBean
 AccountService accountService;
 @Test

Testing Spring Boot Application Chapter 11

[242]

 public void findAllByCustomerId() {
 assertFalse(accountService.findAllByCustomerId(1000).size() ==
 3);
 }
 @Test
 public void testAddAccount_returnsNewAccount(){
 when(accountService.save(any(Account.class))).thenReturn(new
 Account(200, 200.20, 1000, "SAVING", "SBIWO111", "SBIW"));
 assertThat(accountService.save(new Account(200, 200.20, 1000,
 "SAVING", "SBIWO111", "SBIW")), is(notNullValue()));
 }
 @Test
 public void findAccountByAccountId() {
assertTrue(accountService.findAccountByAccountId(200).getBalance().intValue
() == 200);
 }

}

Spring Boot includes a @MockBean annotation that can be used to define a Mockito mock
for a bean inside your ApplicationContext. You can use the annotation to add new
beans or replace a single existing bean definition. The annotation can be used directly on
test classes, on fields within your test, or on @Configuration classes and fields. When
used on a field, the instance of the created mock is also injected. Mock beans are
automatically reset after each test method.

Postman for testing RESTful service
contracts
Postman is a REST client that started off as a Chrome browser plugin but recently came out
with native versions for both Mac and Windows. Postman supports every HTTP method
you can think of including some you might not even know about. Let's install Postman in
your machine and open it after installation is completed. It is very easy to use, just open
Postman and log in with your Google account. Now Postman is ready to test your REST
API.

Testing Spring Boot Application Chapter 11

[243]

Let's see the following screenshot about Postman testing a REST API:

The preceding screenshot is about Postman. Here I have tested a RESTful web service to
create an account for a customer with the 1000 customer ID:

http://192.168.225.208:6060/account/customer?customer=1000

Testing Spring Boot Application Chapter 11

[244]

The header contains the following information:

As you can see, it is displaying information about the request and response headers. In the
request header, Content-Type is application/json. In the response header, the content type
is also application/json and is displaying the date and encoding information of the
response of the API.

Testing Spring Boot Application Chapter 11

[245]

Postman also allows you to write test cases for an API; let's see the following screenshot:

I have created some test cases using the Postman tool; click on the Tests tab and, in the
right menu, there is a JavaScript snippet. We have created three tests here. The first test case
checks the response code, the second test case checks the content type of the response, and
the third test checks the return JSON data value.

Testing Spring Boot Application Chapter 11

[246]

Summary
Testing is an essential part of any development. Unit testing tests a class in isolation and
external dependencies should be minimized. You can consider creating stubs or mocks to
unit test. You don't need Spring to unit test. Integration testing tests the interaction of
multiple units working together. Spring provides good integration testing support and
profiles for different test and deployment configurations.

There are many tools available to test services such as Postman and SoapUI. In this chapter,
we saw how to use Postman to test RESTful services. Postman provides support for all
HTTP methods with every content type.

In the next chapter, we will explore the Docker container and will create Docker images.

12
Containerizing Microservice

This chapter will provide an introduction to containers, dockerizing the services built in the
previous chapter, writing the Dockerfile and orchestrating the containers using docker-
compose, and providing orchestration examples in Kubernetes.

In the previous chapter, we learned about microservice architecture and its advantages and
challenges. One of the major challenges in the microservice-distributed application is the
deployment of several microservices across multiple machines (VMs). How will they share
common resources of VMs? In production, deploying and managing a system composed of
many independent services is an operational complexity.

In microservice architecture, you create and deploy services independently, and you have
to re-test your services after deployment on the same VMs. A microservice wouldn't impact
on the other microservices, but you could never really guarantee that because the service is
independent of the other services, it is using common resources of VMs.

In the favor of microservice architecture, containerized deployment is the topping on the
pizza. The microservice is already autonomous by its functional service, but the
containerization makes microservices more autonomous by self-containing the underlying
infrastructure. So, containerization is making the microservices cloud-neutral.

In this chapter, we will introduce the containerized deployment of microservices and
concepts of virtual machine images. Readers will get an understanding of building Docker
images for microservices, which are developed with Spring Boot and Spring Cloud. We will
also explore how to deploy Docker images in production-like environments, and how to
manage and maintain these Docker images.

Containerizing Microservice Chapter 12

[248]

By the end of this chapter, you will have a better understanding of containerization and
how to containerize a microservice developed with Spring Boot and Spring Cloud.

This chapter will cover the following points:

Introducing containers in the microservice architecture
Getting started with Docker
Dockerizing any Spring Boot application
Writing Dockerfile
Using docker-compose
Writing the docker-compose file
Orchestration using docker-compose
Introducing Kubernetes
Orchestration using Kubernetes

Let's look at these topics in detail.

Introducing containers to the microservice
architecture
The microservice architecture is another approach to developing a distributed application.
This approach is suitable for the agility, scale, and reliability requirements of modern cloud
applications. As we know, a microservice application is decomposed into separate
components independently to work together to achieve the whole system.

In microservice architecture, you can scale out independently on the specific functionality
rather than unnecessarily scaling out other areas of the application. So, you can scale the
resources, such as processing power or network bandwidth, for a specific microservice. But
what about sharing infrastructures with another microservice? In this chapter, we will
discuss this challenge. Containerization comes into the picture to solve the problem of
sharing infrastructure between microservices and allowing microservices to be more
autonomous.

Containerizing Microservice Chapter 12

[249]

Containerization allows you to run your microservices in a completely isolated
environment. So, according to the containerization approach, a container is an artifact in
which a microservice and its versioned set of dependencies, plus its environment
configuration, are abstracted as deployment manifest files. The container contains all
infrastructure-related dependencies, environment variables, and configurations. It is
packaged together as a container image. And this image is tested as a unit and deployed to
a host operating system.

Containerization is nothing but it is a different approach to development and deployment
of the microservices. The container is an isolated and runnable instance of an image. That
image contains everything required to run an application. In the container, an application
can run without using the resources of another container or host machine. You also have
full control over a container to create, delete, move, start, and stop this container using a
CLI, such as the Docker client. Containers can be connected to each other using a network.
A container acts like a separate, independent, and isolated physical or virtual machine.

Although a container looks like a physical or virtual machine, the containers use the
technology and concepts very differently from virtual machines. Although a container runs
an operating system, it has a file system, and it can be accessed over a network, just like a
virtual machine. Let's see the following diagram on virtual machine:

Containerizing Microservice Chapter 12

[250]

As you can see in the preceding diagram, Virtual Machines include the application, the
required dependencies, and a full guest operating system. Hypervisor is a computer
software that shares and manages hardware. Let's see the following diagram about
Containers:

As you can see in the preceding diagram, Containers include the application and its
required dependencies. Unlike virtual machines, Containers share the Operating System
and underlying Infrastructure with other containers. These are running as an isolated
process on the host operating system. Because Containers share resources, they require
fewer resources than virtual machines.

Virtual machines versus containers
Let's see the following differences between virtual machines and containers:

Virtual machines Containers
Virtual machines include the
applications, the required
dependencies, and a full guest
operating system

Containers include the applications and the
required dependencies, and share operating
systems and underlying infrastructure

Containerizing Microservice Chapter 12

[251]

Each virtual machine has its own guest
operating system; because of this, it
requires more resources

Because containers share resources, they require
fewer resource, the minimal kernel of the
operating system present for each container

The hypervisor manages VMs,
environments The container engine manages containers

You have to add specific resources for
scaling

You can scale out containers by creating another
container of an image

Fewer virtual machines can be created
for the same hardware and resources

More containers can be created for the same
hardware and resources

Virtual machines are virtualizing the
underlying hardware

Containers are virtualizing the underlying
operating system

A VM can take up several GB
depending on guest OS

Containers don't require that many GB, because
they share resources, they merely use dozens of
MB

Virtual machines are generally more
suitable for monolithic applications
with high-security concerns

Containers are generally more suitable for
microservice-based applications, or other cloud-
native applications, where security is not the major
concern

As we have seen in the previous table, VMs and containers cannot replace each other. So,
we can choose according to application requirements and application architecture.

Benefits of a container-oriented approach
The following are the advantages of a container-oriented development and deployment
approach:

A container-oriented approach eliminates the challenges that arise from
inconsistent environment setups.
You can do fast application scale-up by instancing new containers as required.
Requires minimal usage of kernels on the operating system.
You can create the number of containers for a microservice, depending on
application requirements.
You can easily allocate resources to processes and run your application in
various environments.
Containerization decreases the time of development, testing, and deployment of
applications and services.

Containerizing Microservice Chapter 12

[252]

Bug fixing and tracking are also less complicated as there is no difference
between running your application, testing, and production.
It is a very cost-effective solution.
It is a great option for microservice-based applications, such as DevOps, and
continuous deployment.
Container images are reusable artifacts in similar situations.
Containers are popular choices for cloud-based elastic applications because of
their scalability. Container images are very small, don't require booting of the OS,
and take little time to start and shut down.

We have seen some benefits of a container-oriented approach to application development
and deployment. There are some key limitations of containers. Let's see some drawbacks or
challenges to this approach.

Drawbacks of a container-oriented approach
The following are the drawbacks or challenges of the container-oriented approach to
application development and deployment:

Containers can only run Linux-based operating systems.
The containerization approach requires some extra configurations at the time of
deployment and networking. So, maintaining an adequate network connection
can be tricky.
Security is one the major problems of the container-oriented approach, because
containers share the kernel and host operating system, and have root access.

So, we have seen the drawbacks of the container-oriented approach for application
development and deployment. Let's see the key concepts of the container-oriented
approach.

Key concepts of the containers-oriented approach
The container-oriented approach has the following key concepts:

Container Host: The Container Host is like an engine for containers and it can
run multiple containers. And it can configure the virtual machine to host
containers.
Container: It is a runtime instance of an image.

Containerizing Microservice Chapter 12

[253]

Container image: An application needs several resources to run, such as layered
filesystems, OS, and configurations. The container image consists of everything
an application requires. The container image is immutable in nature. It cannot
change its state as it's deployed to different environments.
Container OS image: The container OS image is created from several other
container images to make up a container. It also can't be modified.
Container repository: It is used to store the container image and its related
dependencies. It can be local repository used each time a container image is
created. You can reuse these images many times on the container host. Docker
Hub is an example of a container repository. They can be used across different
container hosts.

As you can see, the preceding list outlined key concepts and approaches for using a
container-based infrastructure for your microservices-based application. This is a very
popular approach and adopted by several companies in distributed application
development and deployment. Docker is an example and implementation of this approach.
Let's discuss Docker as a container in the next section.

Getting started with Docker
In the previous section, we discussed the container-oriented approach of an application's
development and deployment, and its benefits. Docker is one of the container-
implementation and software platforms for containerization. Due to the popularity of
Docker, sometimes containerization is referred to as Dockerization. Docker is an open-
source computer program designed to assist with creating, deploying, and running
applications using containers. Containers allow the developers to partition all the different
parts of an application, such as libraries, dependencies, and exceptions, and then store it in
the form of a package. This process of containerization assures the developer that the
application will execute on any Linux machine, despite the change in settings between the
machine the application was made on and the machine it is supposed to be tested on.

Due to being open source, Docker can also be manipulated to meet the needs of any
particular user. And anyone can contribute to it, making it more and more suitable for use,
improving its condition, and adding different useful features to it.

Containerizing Microservice Chapter 12

[254]

Docker was originally developed for the Linux operating system, making use of the
isolating features of the Linux Kernel, for example, groups and namespaces of the kernels.
The filing systems available in Linux, such as OverlayFS, allow different containers to run
in a single Linux instance instead of bearing the overhead of the setup, installation, and
maintenance of virtual machines. Docker can somewhat be perceived as a virtual machine
but, unlike a VM, Docker does not create a whole virtual operating system. In fact, it lets
the applications use the machine's kernel, only supplying the application requirements that
are not already in the machine. While providing the application a perfect environment to
execute, it also provides a significant performance boost and reduces the memory space
taken up by the application.

Docker is a software tool that is not only useful for developers, but also for system
administrators, which makes it part of the DevOps toolchain. Docker allows developers to
concentrate on their coding rather than being worried about whether the code will run on
certain systems or not, and the system administrators can rest easy about not having to be
worried about system specifications because Docker allows the application to run on any
system. Docker also provides flexibility and reduces the number of systems required, due
to its small footprints and even lower overhead.

Docker provides security to the applications executing in the shared environment, but
containers are not able to replace proper security measures required by any application.
However, if Docker is not run on a system shared by multiple parties, and the machine is
running good security practices for the containers, Docker security does not remain your
concern. Some people also confuse Docker as an alternative to virtual machines, but it is
really not that simple.

Installing Docker
As we have seen, the Docker software platform is used to build, ship, and run lightweight
containers. These containers are based on Linux kernels, so Docker has a default support
for Linux platforms. But Docker also has support for macOS and Windows using Docker
Toolbox, which runs on top of VirtualBox.

Docker also supports cloud platforms, such as Amazon Web Service (AWS), Microsoft
Azure, and IBM Cloud. Amazon EC2 Container Service (ECS) has out-of-the-box support
for Docker on AWS EC2 instances. We will discuss cloud deployment in Chapter 14,
Deploying in Cloud (AWS).

Containerizing Microservice Chapter 12

[255]

Installing Docker on Linux
To install the latest Docker version on a Linux machine, perform the following steps:

Update your apt packages index by using the following command:1.

$ sudo apt-get update

After updating apt package, let's start the docker-engine installation by using2.
the following command:

 $ sudo apt-get install docker-engine

The preceding command will install Docker on your Linux machine. Now let's3.
start the Docker daemon by using the following command:

$ sudo service docker start

You can test Docker on your machine by using the following command:4.

$ sudo docker run hello-world

The preceding command verifies that Docker is installed correctly by running the hello-
world image; this command downloads a test image and runs it in a container. The
following output will be displayed after executing the preceding command:

Containerizing Microservice Chapter 12

[256]

Installing Docker on Windows
Let's see how to install Docker on your Windows-based machine. First, you have to
download it from https:/ / download. docker. com/win/ stable/
Docker%20for%20Windows%20Installer. exe; it is available for Windows 10. If you have old
Windows (8), then you have to download Docker Toolbox from https:/ /download.
docker.com/win/stable/ DockerToolbox. exe and then install it by double-clicking on the
installer. After Docker Toolbox is installed, it will add Docker Toolbox, VirtualBox, and
Kinematic to your applications folder. Let's start Docker Toolbox and run a simple Docker
command. You will see the following icons on your desktop after successfully installing
Docker Toolbox:

The three icons are verifying proper installation of Docker Toolbox. Click on the Docker
QuickStart icon to launch a preconfigured Docker Toolbox terminal. Once opened, you will
see Docker configured and launched. You will get an interactive shell for Docker, as
follows:

https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/DockerToolbox.exe
https://download.docker.com/win/stable/DockerToolbox.exe
https://download.docker.com/win/stable/DockerToolbox.exe
https://download.docker.com/win/stable/DockerToolbox.exe
https://download.docker.com/win/stable/DockerToolbox.exe
https://download.docker.com/win/stable/DockerToolbox.exe
https://download.docker.com/win/stable/DockerToolbox.exe
https://download.docker.com/win/stable/DockerToolbox.exe
https://download.docker.com/win/stable/DockerToolbox.exe
https://download.docker.com/win/stable/DockerToolbox.exe
https://download.docker.com/win/stable/DockerToolbox.exe
https://download.docker.com/win/stable/DockerToolbox.exe
https://download.docker.com/win/stable/DockerToolbox.exe
https://download.docker.com/win/stable/DockerToolbox.exe
https://download.docker.com/win/stable/DockerToolbox.exe
https://download.docker.com/win/stable/DockerToolbox.exe

Containerizing Microservice Chapter 12

[257]

Let's test the preceding terminal and type the $ docker version command to check the
version of Docker:

Docker commands
The following Docker commands are frequently used:

Command Description

docker ps
This command will be used to list all running containers with
information such as ID, name, base image name, and port forwarding.

docker build
This command will be used to create a definition for the container.
You can create new container definitions by using this command with
the Docker build file.

docker pull
[image name]

You can use this command to pull Docker images from the Docker
repository, either the remote or local repository.

docker run
This command is responsible for starting a Docker container either
from the local or remote container definition.

docker push
This command will be used to publish your application's Docker
container to the Docker repository, such as DockerHub.

Containerizing Microservice Chapter 12

[258]

Container-specific commands
These container-specific commands take either a container ID or container name as a
parameter:

Command Description
docker stats [container
name/ID] [container
name/ID]

You can use this command to show the load status, such
as CPU percentage, memory usage, and network traffic,
for each container.

docker logs [-f]
[container name/ID]

This command will be responsible for showing log
output from the container. You can also use the -f
option as like tail the -f command.

docker inspect [container
name/ID]

You can use this command to dump all of the
configuration information on the container in JSON
format.

docker port [container
name/ID]

This command will be used to display all available
forwarding ports between the container host and the
container.

docker exec [-i] [-t]
[container name/ID]

You can use this command to execute a command to the
target container.

Docker architecture
Docker is based on a client-server architecture. Docker has three main components to its
architecture:

Docker client
Docker daemon
Docker registries

Containerizing Microservice Chapter 12

[259]

Let's see the following diagram of the Docker architecture:

Docker client: It is an interface (CLI) to run the Docker commands, such as build,
run, and stop. The Docker client interacts with the Docker daemon server. You
can also connect the Docker client with the remote Docker daemon. It uses REST
APIs to build communication between the Docker client and the Docker daemon
server using Unix sockets or a network interface.

Docker daemon: It is a process running in the background. It can listen for all
requests of the Docker API and it can manage Docker objects, such as images,
containers, networks, and volumes.

Docker registries: This component is used to store Docker images either publicly
or privately. Docker Hub and Docker Cloud are examples of the public Docker
registry; anyone can use this type of registry. Docker Datacenter (DDC) and
Docker Trusted Registry (DTR) are examples of private Docker registries.

Docker Host: It is the complete Docker environment required to run your
application. Docker Host provides Docker images, containers, and the Docker
daemon server.

Docker image: It is an immutable Docker object and it cannot be changed once
created. Docker images are one of the key components of the Docker architecture.
It contains all required resources for running your application, such as operating
system and libraries. It can be run from any Docker platform after creation.

Containerizing Microservice Chapter 12

[260]

For example, in a Spring Boot microservice, the accumulated package of operating systems,
such as Ubuntu, Alpine, JRE, and the Spring Boot application JAR file, is a Docker image.
Let's see the following diagram of the Docker image:

As you can see, it contains Spring Boot application JAR, Java Runtime (JRE), and operating
systems, such as Ubuntu. It is a runnable artifact and can be run on any Docker machine.

To see the list of images that are available locally, use the docker images command. Let's
see the output of this command:

The preceding screenshot displays a list of Docker images containing information such as
REPOSITORY, TAG, Image ID, CREATED time, and SIZE. REPOSITORY refers to the local
repository name for a Docker image. TAG means the version of a Docker image and IMAGE
ID represents a unique identifier for a Docker image. Let's see another component of the
Docker architecture.

Docker Engine
Docker Engine is a client-server application that has the following major components:

A daemon process, which is a server and long-running process in the
background

Containerizing Microservice Chapter 12

[261]

A REST service interface, which used to talk to the daemon process and instruct
it what to do
A command-line interface (CLI) client

Let's see the following diagram about Docker Engine:

As you can see, the Docker CLI is the client that manages container, image, network, and
data volumes. The Docker client uses the REST API to interact with the server, which is a
docker daemon process.

Docker container
The Docker containers are running instances of a Docker image. Docker provides
CLI commands to run, start, stop, move, or delete a container. You can set environment
variables and provide configuration for the network from a container. The containers will
get their own network configuration and filesystem. Each container process has its own
isolated process space using kernel features that are ensured by Docker at runtime. The
Docker containers use the kernel of the host operating system at runtime. They share the
host kernel with other containers running on the same operating system host. Even the
containers are initiated from the same Docker image and they have own specific resource
allocation, such as memory and CPU.

Containerizing Microservice Chapter 12

[262]

Let's see the following diagram about the Docker container:

As you can see, Docker Engine manages the Docker containers, and a Docker container is
nothing but a running instance of a Docker image that has an application and associated
library dependencies.

Let's see how to create a Docker container from a Docker image using the following
command:

$ docker run hello-world

The preceding command has three parts:

docker: It is Docker Engine and used to run a Docker program. It tells to the
operating system that you are running for the docker program.
run: It is used to create and run a docker container.
hello-world: It is the name of an image. You need to specify the name of an
image that is to load into the container.

So, we have discussed that each container has its own copy of resources, such kernel of host
operating system, RAM, and file system. How are we going to do that? We can do that by
using Dockerfile. Let's discuss how to create Dockerfile in the next section.

Containerizing Microservice Chapter 12

[263]

Writing Dockerfile
Dockerfile is sometimes called the Docker build file. It is a simple text file that has a set
of commands that the Docker client calls at the time of image creation. Dockerfile
automates the Docker image creation process. The Dockerfile commands are almost
identical to their equivalent Linux commands. So, there is no special syntax required for
this build file, you can easily create your own Dockerfile to build Docker containers.

Docker uses Dockerfile to build a Docker image, and you can define all required
dependencies and steps to run the Docker image inside your container. How to access
resources, such as storage and network interfaces, can be defined in this Dockerfile. You
can also virtualize disk drives inside this environment using Dockerfile. All resources
that you have defined inside this Dockerfile will be isolated from the outside of your
container. But you can define the application port to use it the outside world.

After the creation of Dockerfile, put this file in the application directory. Let's start
creating a new blank file in our text editor and save it into the application directory. The
following are the steps to write Dockerfile:

Create a file using the vim command and save it as Dockerfile. Note that the filename
must be Dockerfile with a capital D.

Let's write the Dockerfile instructions into your Dockerfile:

#This is a Dockerfile for a microservice application

Use an official Java 8 runtime as a parent image
FROM openjdk:8-jdk-alpine

#Set maintainer email id
MAINTAINER admin@dineshonjava.com

Set the working directory to /app
WORKDIR /app

Copy the current directory contents into the container at /app
ADD . /app

Install any needed packages libraries
RUN mvn clean install

Build and create jar using maven command
RUN mvn package

Containerizing Microservice Chapter 12

[264]

Make port 80 available to the world outside this container
EXPOSE 80

Define environment variable
ENV JAVA_OPTS=""

Run accounts-microservice.jar when the container launches
CMD ["java $JAVA_OPTS -Djava.security.egd=file:/dev/./urandom -jar
accounts-microservice.jar", "accounts-microservice.jar"]

As you can see, the preceding Dockerfile has some instructions to create a Docker image
and container. The following points need to be noted from the Dockerfile:

The instructions in Dockerfile are case-insensitive; that means it is not
necessary to write commands in a particular case, but you must follow
conventions that recommend using uppercase.
Docker follows the top-to-bottom order to run instructions of Dockerfile. Each
Dockerfile must have the first instruction as FROM in order to specify the base
image. In our example, we are creating an image from the openjdk:8-jdk-
alpine image.
In the preceding Dockerfile, a statement beginning with # is treated as a
comment, such as #This is a Dockerfile for a microservice
application. Other instructions, such as RUN, CMD, FROM, EXPOSE, and ENV can
be used in our Dockerfile.
The next command is the person who is going to maintain this image. Here you
specify the MAINTAINER keyword and just mention the email ID.
You can use the WORKDIR command to set the working directory for any RUN,
CMD, and COPY instruction that follows it in Dockerfile. If the working
directory does not exist, it will be created by default. This command can be used
multiple times in Dockerfile.
The ADD command is used to copy the current directory contents into the
container at /app.

Containerizing Microservice Chapter 12

[265]

The RUN command is used to run instructions against the image. In our case, the
first RUN command is used to run the mvn command install and clean any needed
packages libraries in our microservice application. The second RUN command
creates a JAR file by running the mvn package maven command.
The EXPOSE command of Dockerfile is used to make port 80 available to the
world outside this container.
The ENV command can be used to define the environment variables for our
microservice application.
The last CMD command is used to execute the microservice application by the
image.
Save Dockerfile and in the next section, we will discuss how to build the image
using Spring Boot application.

As we have created Dockerfile with some instructions, there are more instructions
available for Dockerfile as per as your application requirements. Because all instruction
commands are very simple and easy to write, I am not going to explain them. The docker
build command looks up the Dockerfile for instructions for building. Let's move to
create a Spring Boot application and dockerize it.

Dockerizing any Spring Boot application
In this section, I'll focus on how to dockerize a Spring Boot application (Account-Service)
to run in an isolated environment, which is a container. In the previous chapters, we have
created some microservices, such as Account-Service and Customer-Service. Now I
will describe the process of migrating a Spring Boot Account-Service to Docker. We will
start by modifying a build file, then we will create Dockerfile so it can be run locally.

So let's go ahead and create Dockerfile in our Spring Boot project:

#This is a Dockerfile for a microservice application

Use an official Java 8 runtime as a parent image
FROM maven:3.5-jdk-8-alpine

VOLUME /tmp

#Set maintainer email id
MAINTAINER admin@dineshonjava.com

Set the working directory to /app

Containerizing Microservice Chapter 12

[266]

WORKDIR /app

Copy the current directory contents into the container at /app
ADD . /app

Build and create jar using maven command
#RUN mvn package -DskipTests=true -Ddir=app

Copy the current directory contents into the container at /app
ADD target/account-service-0.0.1-SNAPSHOT.jar accounts-microservice.jar

Make port 80 available to the world outside this container
EXPOSE 80

Define environment variable
ENV JAVA_OPTS=""

Run accounts-microservice.jar when the container launches
ENTRYPOINT ["sh", "-c", "java $JAVA_OPTS -
Djava.security.egd=file:/dev/./urandom -jar accounts-microservice.jar"]

The preceding Dockerfile is very simple, but that file has all you need to run a Spring
Boot application and create a JAR file using the maven command mvn package. The project
JAR file is added to the container as accounts-microservice.jar and then executed
in ENTRYPOINT.

Let's see the following screenshot of this application directory structure:

Containerizing Microservice Chapter 12

[267]

As you can see, Dockerfile has placed the application on a directory parallel to
the pom.xml file. Now, let's create a Docker image by using the following command:

$ docker build -t spring-boot-app .

spring-boot-app is the name of the image. We can give our Docker image any name. The
preceding command will build the image from Dockerfile, we need to specify the
Dockerfile path. In the previous command, we mentioned "." at end of the command,
its means Dockerfile is located in the current working directory.

The -t option is for tagging, it tags the new image followed by the version:

$ docker build -t spring-boot-app:1.0.1 .

Let's see the following screenshot of the output of preceding command:

Containerizing Microservice Chapter 12

[268]

As you can see, the Docker image has been created successfully. Now, we can run our
Docker image using the docker run command. The following command is used to run
spring-boot-app:

$ docker run -p 8080:8080 spring-boot-app:latest

Let's see the following screenshot of the preceding docker run command to run the
container of the created spring-boot-app Docker image:

As you can see, our Account-Service has been run successfully. Now, we can see that
after running spring-boot-app, it produced on the browser by accessing the following
URL:

http://192.168.99.100:8080/account

Containerizing Microservice Chapter 12

[269]

As you can see in the preceding screenshot, it is rendering data access from the H2 DB, as
we discussed in previous chapters. Now, our ACCOUNT-SERVICE microservice has been
dockerized and is running as a Docker container. http://192.168.99.100 is the IP of the
container to access it outside, and 8080 is the port of this particular container.

So far, we have created a microservice and built it as a Docker image by using the docker
build command. We can also create a Docker image by using Maven or Gradle. Let's see
the following section.

Containerizing Microservice Chapter 12

[270]

Creating a Docker image using Maven
If you have used Maven to resolve dependencies but the Maven provides support to create
a build by adding some plugins to the Maven configuration file pom.xml. So, if you want to
create a Docker image by using the Maven commands, you have to add a new plugin in the
Maven pom.xml file. Consider the following:

<properties>
 ...
 <docker.image.prefix>doj</docker.image.prefix>
</properties>

<build>
 <plugins>
 <plugin>
 <groupId>com.spotify</groupId>
 <artifactId>dockerfile-maven-plugin</artifactId>
 <version>1.3.4</version>
 <configuration>
<repository>${docker.image.prefix}/${project.artifactId}</repository>
 <buildArgs>
<JAR_FILE>target/${project.build.finalName}.jar</JAR_FILE>
 </buildArgs>
 </configuration>
 </plugin>
 ...
 </plugins>
</build>

As you can see in the preceding Maven pom.xml file, we have configured a new plugin
with groupId com.spotify and artifactId dockerfile-maven-plugin with the
following two configurations:

The repository with the image name, which will end up here as doj/account-
account-service

The name of the JAR file, exposing the maven configuration as a build argument
for Docker

Now you can use the following Maven command to build a Docker image:

$./mvnw install dockerfile:build

You can also push this Docker image to Docker Hub using the following command:

./mvnw dockerfile:push

Containerizing Microservice Chapter 12

[271]

Similarly, you can use Gradle to build a Docker image using the Gradle build command.

Now let's move on and discuss Docker Compose in the next section.

Getting started with Docker Compose
Docker Compose is a Docker tool that is used to run multiple containers as a single service.
For example, we have an application that requires ACCOUNT-SERVICE and CUSTOMER-
SERVICE, so, you could create only one file, which will be used to start and stop the
containers as a single service without the need to start and stop individually.

In this section, we will discuss Docker Compose and see how to get started with it. Then,
we will look at how to get a single service with ACCOUNT-SERVICE and CUSTOMER-
SERVICE up and running using Docker Compose.

As we have seen, each individual container has its own Docker command and particular
Dockerfile. This Dockerfile is suitable for creating individual containers. But an
enterprise system is not about a single container; it must have multiple containers to
operate on a network of isolated applications, or the container management quickly
becomes cluttered.

Docker Compose comes into the picture to solve that with its own build file in YAML
format, which is better suited to managing multiple containers. For example, it is able to
start or stop a composite of services in one command or merge logging output of multiple
services together into one pseudo-tty. It is a great tool for development, testing, and
staging environments. Let's see how to install Docker Compose on your machine.

Installing Docker Compose
OrchardUp launched a tool, called Fig, to make isolated development environments work
with Docker. Currently, this tool is known as Docker Compose because when Fig was
gaining popularity in the industry, it was acquired by Docker Inc. and rebranded as Docker
Compose. It is available to install for macOS, Windows, and Linux.

On Windows and Mac, Docker Toolbox already includes Compose along with other Docker
apps. So, you don't need to install Docker Compose separately.

Containerizing Microservice Chapter 12

[272]

On Linux, let's download the Docker Compose binary from the Compose repository release
page on GitHub. Follow the instructions from the link, which involve running the curl
command on the command line to download the binaries. Then follow these step-by-step
instructions:

Run the following command to download the latest version of Docker Compose:

sudo curl -L
https://github.com/docker/compose/releases/download/1.21.0/docker-compose-$
(uname -s)-$(uname -m) -o /usr/local/bin/docker-compose

Apply executable permissions to the binary:

sudo chmod +x /usr/local/bin/docker-compose

Test the installation, as follows:

Now that we have Docker Compose installed, we can jump to the next step, that is, how to
use Docker Compose and how to write the docker-compose.yml file.

Let's create an example of two microservice applications running in different Docker
containers. These services will communicate with each other and be presented as a single
application unit to the host system. So, we will create Account and Customer services
here, as you can see in the following screenshot:

There are three containers running currently image name as doj/account-service,
doj/constomer-service, and doj/eureka-server. Let's see how to use Docker
Compose. You can find the complete code for all these services on GitHub at https:/ /
github.com/PacktPublishing/ Mastering- Spring- Boot- 2.0.

Our target is to run these services as a single isolated system rather than individually
running three separate containers. Using Docker Compose provides support to run these
services as a single isolated system using a single command. Let's see in the following
section how to use Docker Compose.

https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0

Containerizing Microservice Chapter 12

[273]

Using Docker Compose
Docker Compose is very easy to use; basically, it has a three-step process:

Define the environment of your services with Dockerfile so it can be recreated1.
anywhere.
After defining the microservices that will be used as a single application in2.
the docker-compose.yml file. By using this docker-compose.yml file, you can
run these services together in an isolated environment.
Run docker-compose up and Compose will start and run your entire app.3.

We have seen three steps to use Docker Compose in an isolated application; let's see how to
write a Docker Compose file.

Writing a docker-compose file
The Docker Compose file is a simple YAML-format file that contains instructions about an
isolated system with links to multiple containers. We can also define the environment of
each individual container. It is able to start or stop a composite of services with one
command. A typical docker-compose.yml file looks like the following:

version: "2"
services:
 eureka:
 image: doj/eureka-server
 ports:
 - "8080:8761"
 account:
 image: doj/account-service
 ports:
 - "8181:6060"
 links:
 - eureka
 customer:
 image: doj/customer-service
 ports:
 - "8282:6060"
 links:
 - eureka
 - account

Containerizing Microservice Chapter 12

[274]

As you can see in the preceding docker-compose.yml file, it is very easy and has a
simple yml syntax. Let's take a close look and what the file means:

At the parent level, the version key defines the format of the Docker Compose
file. This field is mandatory.
At the same level, the services key defines the names of our services, such as
account, customer, and eureka.
Each service requires an image to run the Docker container, so we have added
additional image parameters.
The image keyword is used to specify the image from Docker Hub for eureka,
account, and customer services:

For eureka, we just refer to the doj/eureka-server image
available on Docker Hub
For account, we refer to the doj/account-service image
available on Docker Hub
For customer, we refer to the doj/customer-service image
available on Docker Hub

The ports keyword mentions the ports that need to be exposed to eureka,
account, and customer services:

For eureka, we have exposed ports to 8080:8761 to access it
outside
For account, we have exposed ports to 8181:6060 to access it
outside
For customer, we have exposed ports to 8282:6060 to access it
outside

We also specify the links variables for account and customer, which are
required to create an internal network link between these services and the listed
services:

The account service links with the eureka service
The customer service links with eureka and account services

Containerizing Microservice Chapter 12

[275]

Now we need to clear out our old running containers with a new version; let's use the
docker stop <container ID> command to stop old running containers:

As we have stopped all old running containers, you can check it with the following
command:

$ docker ps

The following output will be displayed:

In an enterprise application, running three services very few, this could be tens or
hundreds, so managing these containers and ensuring that all of the various command-line
parameters link up to these containers can be a little frustrating. Docker Compose comes
and organizes a fleet of containers and makes this work easy.

This process is also known as orchestrating or running the containers. Let's see the
following section about orchestration using docker-compose and build a Docker Compose
example.

Orchestration using a docker-compose file
In the Docker Compose file, you can define it to compose a set of containers. This is a
YAML configuration file. docker-compose manages runtime configuration of the
containers with the right options and configuration. We have created a docker-
compose.yml file in the preceding section. Let's test the configuration of this file for syntax
errors by using the following command:

$ docker-compose config

Containerizing Microservice Chapter 12

[276]

You can see the following output:

In the case of a syntax error, it renders as the following:

You must be inside the directory with the docker-compose.yml file in
order to execute most Compose commands.

Finally, we can start it with one command:

$ docker-compose up -d

Let's see the output of the preceding command:

Containerizing Microservice Chapter 12

[277]

The preceding command is running containers in the detached mode because of the -d
option. Let's check the container's status using the following command:

$ docker-compose ps

It renders the following output:

As you can see, the service containers are running successfully; we can test it by accessing
the following URLs in the browser.

Let's first test account-service by using
the http://192.168.99.100:8181/account/101 URL. It renders data as follows:

Containerizing Microservice Chapter 12

[278]

Let's test the customer-service by using
the http://192.168.99.100:8282/customer/1001 URL. It renders data as follows:

Let's stop the services from running by using the following command:

$ docker-compose down

Let's see the following output:

Containerizing Microservice Chapter 12

[279]

As you can see, all containers have been stopped.

Scaling containers using docker-compose and
load balancing
You can use the following command to scale the container of a particular service:

$ docker-compose scale [compose container name]=3

Consider the following example:

$ docker-compose scale account=3

Let's see the following output:

As you can see, our account container now has three instances. But there is a problem here:
how will a client call an instance of account-service since their ports have changed?

There are some solutions available to solve this issue, such as Kubernetes and AWSs' ECS.
We'll discuss Kubernetes in the next section, and deployment with AWSs' ECS in Chapter
14, Deploying in Cloud (AWS).

Here I am going to use a very easy solution provided by a company named Tutum. They
provide an extension of HAProxy. This proxy can auto-configure itself based on linked
containers, and it can be used as a load balancer for our multiple containers. Let's update
our docker-compose.yml by adding the following configuration related to the
tutum/haproxy image:

version: "2"
services:
 eureka:

Containerizing Microservice Chapter 12

[280]

 image: doj/eureka-server
 ports:
 - "8080:8761"
 account:
 image: doj/account-service
 links:
 - eureka
 customer:
 image: doj/customer-service
 ports:
 - "8282:6060"
 links:
 - eureka
 - account
 ha_account:
 image: tutum/haproxy
 links:
 - account
 ports:
 - "8181:80"

We have removed the static port configuration for the account service because if we have
the static port then it doesn't allow us to create multiple instances of account-service
with the same static port. The HAProxy Docker container works as a load balancer by
default using the round-robin (RR) algorithm across the three running instances.

Let's discuss another tool for orchestrating Docker containers, Kubernetes. Let's see it in the
next section.

Introducing Kubernetes
Kubernetes is a portable and open source platform used for the management of
containerized applications and services. It is used to facilitate the configuration and
automation of applications. Kubernetes is growing fast, and its support, services, and tools
are available to the masses.

Kubernetes is a Google project that was made open source in 2014, and hence it is
developed with the decades of Google's experience of handling large-scale workloads,
integrated with the best ideas and practices contributed by the community.

Kubernetes works with a lot of different tools, including Docker, to provide the
containerized applications a platform for the purposes of scaling, operations, and
automation of deployment.

Containerizing Microservice Chapter 12

[281]

Joe Beda, Brendan Burns, and Craig McLuckie first developed Kubernetes. Different
engineers at Google, such as Brian Grant and Tim Hockin, soon joined them. The Borg
system of Google has been a heavy influence on the design and development of
Kubernetes, as many of the top contributors first worked on the Borg project.

In 2015, Google released Kubernetes v1.0, partnered with Linux Foundation, and went on
to form Cloud Native Computing Foundation (CNCF).

Some of the features of Kubernetes are as follows:

A container platform
A microservice platform
A portable cloud platform

The theme of the Kubernetes platform is to support container-related management
environments. Kubernetes provides portability, simplicity, and flexibility over different
infrastructures, mimicking Platform as a Service (PaaS) and Infrastructure as a Service
(IaaS) on some levels. Kubernetes offers a lot of functionalities, however, the open source
nature of this platform enables constant improvement and added features to the system.
This regular update system is exactly why Kubernetes was envisioned as a platform so that
it builds an ecosystem of components and tools that would assist in the deployment,
scaling, and management of the application, making it all easier to handle.

The design of Kubernetes has allowed a number of different systems to be built upon it.
Labels allow the users to organize the resources per their desire, and annotations offer them
a chance to customize the resources and information to suit their workflow and manage
their tools.

The APIs on which the Kubernetes control plane is built are also available to developers
and users, and hence, users can build their own customized controls and APIs. They can
also be easily targeted by any general CLI tool and manipulated as per the requirements of
the developer.

Despite its many awesome functionalities, Kubernetes is still not an alternative to a PaaS
system. It can be perceived as such because of its many similarities, such as providing a
platform for applications to be deployed, scaled, logged, and monitored. Kubernetes is
aimed to support a variety of diverse applications with their workloads and data
processing. However, only containerized applications will perform well on the Kubernetes
platform.

Containerizing Microservice Chapter 12

[282]

Summary
As we have learned in this chapter, a container is isolated in nature and portable. You can
run a container on any Docker platform. The container-based approach has been adopted
by many enterprises and its popularity is increasing every day.

Container-based virtualization is a much better solution for the microservice architectural
style, where application features are divided into small, well-defined, distinctive services.
Containers and VMs are not independent of each other; they can be viewed as
complementary solutions. An excellent example of this is the Netflix Cloud, where
containers are running on virtual machines.

This concludes our tour of Docker Compose. With Docker Compose, you can pause your
services, run a one-off command on a container, and even scale the number of containers.

In the next chapter, we will explore and implement a Swagger and KONG API manager.

13
API Management

This chapter will explore the need for API Manager in distributed systems, set up the
KONG open source API Manager, configure the API endpoints built in the previous
chapters in KONG API Manager, introduce you to Swagger for API standards, and end by
demonstrating rate limiting and logging using KONG.

In the previous chapters, we learned about the container architecture and its advantages
and challenges. We also created Docker containers and deployed the Account and
Customer microservices on the Docker containers. Now we will discuss API management
and the tools used for it, such as Swagger and KONG. I will use an example of the
microservices system using Spring, Spring Boot, and Spring Cloud.

By the end of this chapter, you will have a better understanding of KONG and Swagger,
and how to use these tools to manage and document the REST API.

This chapter will cover the following points:

API Management
Rate limiting
KONG
Swagger

Let's look at these topics in detail.

API Management Chapter 13

[284]

API Management
API Management is a mechanism to manage APIs from the outside clients, such as
controlling an API's access through throttling or rate limiting. Rate limiting is a mechanism
to control access for a specific consumer of an API. For example, you want to give access to
a customer to use a specific API with only 100 requests per day. You can monetize your
APIs using API Management tools by restricting the access to an API using rate limiting.

API Management tools help to manage the administrative complexities of APIs. As we
know, API usage is increasing in the market. A lot of businesses depend on APIs. So, the
API Management process is also important for API providers. The API development
process is totally different from the API Management process.

If you want to use APIs properly, then strong documentation of them is also very
important. Other parameters of API Management, such as increased levels of security,
comprehensive testing, routine versioning, and high reliability, are important to have for
your APIs. The API Management tools and software provide all these functionalities for
API requirements.

Advantages of using API Management software
tools
These are the advantages provided by the API Management tools:

Can monitor traffic coming from individual apps
Can control connections between an API and the apps that are using the API
Manages API consistency with its versions
Provides a caching mechanism and memory management process to improve
application performance
Provides security and protects APIs from outside threats

Now let's see the number of API Management solution providers.

API Management Chapter 13

[285]

API Management tools
There are many API Management tools available; let's see some of the popular API
Management tools:

Kong
3scale API Management
Akana platform
Apigee
Azure API Management
TIBCO Mashery
MuleSoft
WSO2
Amazon Web Services API Gateway

Let's see one of the functionalities of the API Management platform, which is very
important from a security and business point of view.

Rate limiting
Rate limiting is a pattern for a special counter that is used to limit the rate at which an
operation can be performed. The classic materialization of this pattern involves limiting the
number of requests that can be performed against a public API.

The API provider has a silver bullet for these issues—rate limiting. Rate limiting is the
process by which an API rejects requests for a variety of reasons, ranging from having too
many concurrent connections, to the requester forming a poor request for high amounts of
data. By implementing rate limiting, the developer essentially installs a spigot that can be
relaxed to allow for greater flow or tightened to reduce the flow within the system. Another
one of the reasons to implement rate limiting is to defend applications against Denial of
Service (DoS) attacks.

In a safety context, the developer needs to consider the limitations of a system, so as to
prevent overflowing. Just like, packed road results in congestion and accidents so do an
over-limited logical connection.

API Management Chapter 13

[286]

From a business context, API providers can implement rate limiting as a profit-and-cost-
negation technique. By requiring high-volume users to pay for premium plans, the
increased operating expense can be negated and turned instead into a revenue stream.

Implementing rate limiting
There are so many simple and direct ways you can implement rate limiting. One of the
most common and easy ways to do so is to use internal caching on the server.

Another implementation we can use is Redis, which utilizes rate limit patterns as follows:

FUNCTION LIMIT_API_CALL(ip)
ts = CURRENT_UNIX_TIME()
keyname = ip+":"+ts
current = GET(keyname)
IF current != NULL AND current > 10 THEN
 ERROR "too many requests per second"
ELSE
 MULTI
 INCR(keyname,1)
 EXPIRE(keyname,10)
 EXEC
 PERFORM_API_CALL()
END

Basically, we have a counter for every IP, for every seconds. But these counters are always
incremented, setting an expiry time of 10 seconds, so that they'll be removed by Redis
automatically when the current second changes.

You can also use the interceptor to implement rate limiting for APIs in your microservice
project. There are many algorithms available for implementing rate limiting, either for fixed
or distributed systems. You can also use the Kong API to quickly set up rate limiting for
APIs.

Let's see the KONG API Management tool in the following section.

API Management Chapter 13

[287]

Learning about KONG
In this section, we will discuss about the KONG, let's see the following quote about the
KONG:

"Kong allows developers to reduce complexity and deployment times in implementing an
API solution on the NGINX platform."
 – Owen Garrett, head of products at NGINX

Kong is an open source and scalable API layer, running in front of RESTful APIs that have
been extended through plugins. This way, Kong provides extra functionality and services
that are way beyond the services provided by the core platform.

The original purpose of building KONG at Mashape was to secure, manage, and extend the
APIs and microservices that are above 15,000, for the purposes of marketplace related to
APIs. This method generates huge numbers, going into the billions, of requests over a
month for more than 2,00,000 developers. Now KONG APIs are used for the deployment of
critical missions in various organizations of different scales, small or large.

As we have said, KONG is an API gateway, which is a filter that sits in front of your
RESTful API. This gateway will provide the following functionality:

Access control: Only allows authenticated and authorized traffic
Rate limiting: Restricts how much traffic is sent to your API
Analytics, metrics, and logging: Tracks how your API is used
Security filtering: Makes sure the incoming traffic is not an attack
Redirection: Sends traffic to a different endpoint.

Any client makes a call to your REST API by going through KONG. It will send proxy
client requests to the REST API. It executes all common functionalities that you have set up
for your REST API, such as the rate limit plugin installed. KONG will check and make sure
the request doesn't exceed the specified limits before calling your API. Let's see the
following diagram:

As you can see, the client will call the API through the KONG server. KONG orchestrates
common functionality, such as rate limiting, access control, and logging.

API Management Chapter 13

[288]

Microservice REST APIs with the KONG
architecture
Let's see the following diagram about KONG's architectural flow:

As you can see, KONG provides centralized and unified functionality in one place. The
KONG architecture is distributed and ready to scale and expand functionality from one
place with a simple command. You can configure KONG very easily at the server side
without doing any modification at the microservice application level. Developers don't
need to worry about API Management mechanisms; just focus on the product, Kong does
the REST.

Using APIs without the KONG architecture
The KONG tool provides a centralized solution for the API Management mechanism; if you
don't have KONG configuration at the server level for APIs, then you have to implement
common functionalities of API Management across your multiple microservices. This
means code duplicity will be increased and it will be difficult to maintain and expand
without impacting other microservices. The systems tend to be monolithic, as you can see
in the following diagram about these common functionalities without the KONG
configuration:

API Management Chapter 13

[289]

Common functionality codes are distributed across the APIs. It is very difficult to manage,
and developers are responsible for API Management, apart from the business code. Let's
see in the following section how to install KONG on your system.

Installing KONG
Kong is available to install in multiple operating environments and for containers such as
Docker. We will go through the installation process using Docker.

Before installing KONG, you will need to know about Docker; please read through Chapter
12, Containerizing Microservice.

API Management Chapter 13

[290]

Here, I am going to use the DockerHub repository to find the Docker image of KONG. In
the following example, I will link a KONG Docker container to a Cassandra Docker
container. Perform the following steps:

Use the Cassandra container to store information related to the KONG API. Use1.
the following command:

Migrate the Cassandra database with the KONG container by using the2.
following command:

Start KONG:3.

I have used port 8000 for a non-SSL API call, and port 8443 is used for an
SSL-enabled API call. The port 8001 is used to administrate your KONG
installation through the RESTful Admin API.

API Management Chapter 13

[291]

Verify the KONG installation:4.

I have accessed http://192.168.99.100:8001/. It returns data in JSON format from the
KONG API.

Using the KONG API
We have installed KONG in Docker, now let's use the KONG API and configure your REST
API that we are going to expose to consumers. Perform the following steps:

Configure a service in Kong. After installing and starting Kong, use the Admin1.
API on port 8001 to add a new service. Services represent your upstream servers
exposing APIs/microservices; let's see the following command:

$ curl -i -X POST --url http://192.168.99.100:8001/services/ --
data 'name=account' --data
'url=http://192.168.99.100:8181/account/'

Let's see this command on the console as following screenshot:

API Management Chapter 13

[292]

The preceding screenshot rendered the response to the preceding command. Let's
see the following output in the browser, at
http://192.168.99.100:8001/services:

Add a route to expose the service. Once you have a service, expose it to the2.
clients by adding one (or many) routes for it. Routes control how client requests
are matched and proxied to services; let's see the following command:

curl -i -X POST --url
http://192.168.99.100:8001/services/account/routes/ --data
'host=dineshonjava.com'

We have run the preceding command to add a route to expose the service.

After adding a proxy route, let's see this setting in the browser by accessing
http://192.168.99.100:8001/services/account/routes/:

API Management Chapter 13

[293]

The preceding screenshot has information about the added service to KONG.

Configure plugins. Add extra functionality by using KONG plugins. You can3.
also create your own plugins. Let's see the following command:

curl -i -X POST --url http://192.168.99.100:8001/plugins/ --
data 'name=rate-limiting' --data 'service_id=ac443bb1-4865-4f7a-
acde-1eb892357979' --data 'config.minute=100'

We used service_id as we have generated in the first step of usage of KONG.
Let's see the following screenshot:

API Management Chapter 13

[294]

You can check the settings of the rate-limiting plugin after this command by
accessing http://192.168.99.100:8001/plugins/ on the browser:

Rate limiting has been enabled for the API with the
service_id: ac443bb1-4865-4f7a-acde-1eb892357979.

Proxy a request. Clients can now consume your upstream API/microservice4.
through KONG's proxy server, running on port 8000 by default. Let's see the
following command:

curl -i -X GET --url http://192.168.99.100:8000/ --header 'Host:
dineshonjava.com'

Let's see the following screenshot for this command with a response:

API Management Chapter 13

[295]

It returns an account service response using the KONG proxy route. Similarly,
you can use multiple plugins on the KONG API for this account service; let's add
another key authentication plugin, as follows:

curl -i -X POST --url http://192.168.99.100:8001/plugins/ --
data 'name=key-auth' --data 'service_id=ac443bb1-4865-4f7a-
acde-1eb892357979'

In the following screenshot, we have created authentication key to use for the
service:

Now, the key-auth plugin has been added to the KONG API; you can check it in
your browser at http://192.168.99.100:8001/plugins/:

API Management Chapter 13

[296]

Now, let's access the service again using the KONG proxy, it prevents to call
service because of authentication key:

Note that we now get a 401 response: HTTP/1.1 401 Unauthorized.

Adding consumers. Let's add a consumer; in order to use the API now, we will5.
need to create a consumer and add a key:

curl -X POST http://192.168.99.100:8001/consumers --data
"username=dineshonjava" --data "custom_id=1234"

Let's see the following screenshot for adding service consumer:

You can check added consumers to this service in the browser by accessing the
http://192.168.99.100:8001/consumers URL:

I have added one consumer with the dineshonjava username and its custom ID as 1234.
After adding a consumer, let's create an authentication key for this consumer. Let's use
service with key-auth:

$ curl -X POST
http://192.168.99.100:8001/consumers/dineshonjava/key-auth --data
""

API Management Chapter 13

[297]

Let's check the authentication key by using
http://192.168.99.100:8001/consumers/dineshonjava/key-auth:

The plugin auto-generated a key for us. The value of key will be used in order to call the
API. You can pass this key in the body of the request.

Let's access this API again and make sure this consumer is now able to access this API
using their API key generated from the preceding screenshot code. We need to pass in a
new apikey header with the key, as follows:

curl -i -X GET --url http://192.168.99.100:8000/ --header 'Host:
dineshonjava.com' --header 'apikey: yyBFOR5LDfaAb4ksT9IqfHWwLOpVYbtG'

Let's see the following screen shot where we have used apikey to access the secure API:

API Management Chapter 13

[298]

Now the consumer is able to access the restricted API by using the API key as an
authentication Key. So, we have seen that KONG is a great framework for API
Management. It provides a lot of extensible functionality for your REST APIs by putting
your services behind Kong and adding powerful functionality through Kong plugins, all in
one command. Look at the following diagram:

KONG is placed on the bottom to provide API Management functionalities to your REST
APIs. Let's see the important features of the KONG API in the next section.

Features of the KONG API
Some features of the KONG API include:

Scalability: You can increase the scalability of the KONG API very easily; all you
have to do is increase the number of machines horizontally. Scalability offers you
an advantage of being able to handle any load while keeping the latency of the
system low.
Modularity: KONG allows you to divide your API into different portions so that
it can handle the workload easily. The KONG API can be modulated by adding
additional plugins to the API. These plugins can be easily configured by the
source of the RESTful API relating to the admin.
Runnable on any infrastructure: You can deploy KONG almost anywhere, on
any infrastructure. Be it cloud or local, KONG is ready-made to run per your
instructions. This also includes data centers, with either single or multiple setups
for all kinds of APIs, whether they are public, private, or invite-only.

API Management Chapter 13

[299]

The client requests the workflow provided by KONG for the APIs. KONG servers are
provided the requested APIs and serve as a platform for the APIs. After the setup is
completed, all the requests that will be made to the API will go to the KONG server first,
who will then forward it to the final API. Between the time of request sent and the response
received, KONG decides to execute a plugin that you are prompted to download. Should
you decide to download it, the installed plugin will then empower your API further. This
way, the KONG server will become the main point of entry for all incoming API requests.

KONG helps us to micromanage the APIs more easily and much faster than ever before.
The technology companies, e-commerce innovators, major bank firms, and even a lot of
government agencies, prefer to get KONG as the main server for all their web-related
workloads. This also increases the popularity of the KONG platform among developers
around the globe, who then actively contribute to the innovations done over the KONG
platform. The company of KONG platforms focuses on customer satisfaction and
technological advancements, building a platform worthy of international fame. Not only do
they develop the APIs, but also help customers realize the importance of the infrastructure
with microservices for security, agility, and scalability.

Let's see how to create REST API documentation in your Spring Boot microservice project
in the next section.

Swagger
Swagger is an open source platform that provides a variety of tools for developers to assist
them in designing, building, documenting, and consuming RESTful web services. Although
Swagger is generally known for its user interface tools, it also provides the user with other
tools, such as automation and test cases.

At first, the popularity of the Swagger API was limited to the reach of small-scale
organizations and individual developers. Most of the time, mechanisms that support
machine readability are not available with RESTful APIs, but the Swagger API provided an
easy and simple way of doing so. However, soon enough, with the help of an open source
license from Apache 2.0, products and online services started offering Swagger as a part of
their toolkit. This soon led to global companies, such as Apigee, Intuit, Microsoft, and IBM,
to start endorsing the Swagger project publicly.

Let's see the usage of the Swagger for the REST APIs in the next section.

API Management Chapter 13

[300]

Usage of Swagger
These are some of the important usages of the Swagger API toolkit:

Developing APIs: The Swagger toolkit for API development can be utilized to
automatically create an Open API document related to the code. The informal
word used for it would be the code-first or bottom-up development of an API.
Using another tool provided by the Swagger API, called Swagger Codegen, coders
can decouple the open API documentation, and the client-side and server-side
code can then be directly generated from it.
Interaction with APIs: Swagger Codegen allows the end users to generate the
SDK code exactly from the Open API Doc, and hence abate the requirement for
the code for clients generated by humans. As of 2017, the Swagger Codegen
project now supports more than 50 formats and languages for the code generated
for the SDK Client.
Documentation: According to the Open API Document, this API is an open
source toolkit that can be utilized to directly interact with this API through
Swagger UI. Connections to the APIs are also allowed by the project directly via
an HTML-based interactive user interface.

Let's see the implementation of Swagger for a REST API for the Account microservice.

Using Swagger in a microservice
Let's see the example of creating a REST API for Account microservice as we have used
this example in this book, any REST API must have good documentation with usage.

Managing and creating documentation is a tedious job, so, we have to move with
automation of the process. Such that every change in the API should be simultaneously
described in the reference documentation. Swagger comes into the picture to automate the
documentation process of a REST API.

In this section, we will discuss the usage with examples of Swagger 2 for a Spring REST
web service. We will use the SpringFox implementation of the Swagger 2 specification in
this example.

We will explore some examples of the Account microservice of the previous chapters, so,
let's start by adding Maven dependencies for the SpringFox implementation of Swagger 2
in the pom.xml file of the Account microservice example.

API Management Chapter 13

[301]

Adding a Maven dependency
There is a Maven dependency required to have the SpringFox implementation of the
Swagger 2 specification in your Account microservice project:

<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger2</artifactId>
 <version>${swagger.version}</version>
</dependency>

In the preceding Maven dependency, we have added the SpringFox Maven dependency for
Swagger 2 with groupId io.springfox and the springfox-swagger2 artifact ID. Let's
configure Swagger using the following configuration:

<properties>
 ...
 <swagger.version>2.7.0</swagger.version>
</properties>

After adding the Swagger 2 dependency with our example of the Account microservice,
let's integrate the Swagger 2 configuration.

Configuring Swagger 2 in your project
Let's configure Swagger 2 in your Account microservice project using Java-based
configuration:

package com.dineshonjava.accountservice.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import springfox.documentation.builders.PathSelectors;
import springfox.documentation.builders.RequestHandlerSelectors;
import springfox.documentation.spi.DocumentationType;
import springfox.documentation.spring.web.plugins.Docket;
import springfox.documentation.swagger2.annotations.EnableSwagger2;

@Configuration
@EnableSwagger2
public class SwaggerConfig {
 @Bean
 public Docket api() {
 return new Docket(DocumentationType.SWAGGER_2)

API Management Chapter 13

[302]

 .select()
 .apis(RequestHandlerSelectors.any())
 .paths(PathSelectors.any())
 .build();
 }
}

We have used two annotations, @Configuration and @EnableSwagger2, at the top of our
configuration class; here this configuration class mainly centers on the Docket bean. The
@Configuration annotation is used to make this class a configuration class for this project.
The @EnableSwagger2 annotation is used to enable the Swagger 2 functionality into your
project.

In the preceding configuration, we defined a bean Docket. This Docket bean of
DocumentationType.SWAGGER_2 will be created by this bean definition. As you can see in
the configuration code, the select() method will return an instance of
ApiSelectorBuilder. ApiSelectorBuilder will provide a way to control the endpoints
exposed by Swagger. Another method, paths(), will return an instance of a predicate.
And the predicate will provide a way to select RequestHandlers. RequestHandlers can
be configured by using RequestHandlerSelectors and PathSelectors.

Finally, PathSelectors's any() method will prepare documentation for your entire APIs,
available through Swagger. This configuration is enough to integrate Swagger 2 into the
existing Spring Boot project for the Account microservice. Let's run this project and verify
that SpringFox is working.

Open the following URL in your favorite browser and see the output at

http://localhost:6060/v2/api-docs. This URL will render as JSON data of the
documentation of the REST API. Let's see the following screenshot:

API Management Chapter 13

[303]

The result is a JSON response with a large number of key-value pairs (the screenshot
displays some of the output only). This response is not very human-readable. Swagger also
provides Swagger UI for the REST API documentation by adding another maven
dependency in your Account microservice Spring Boot project. Let's see the next section.

API Management Chapter 13

[304]

Configuring Swagger UI in your project
You can easily configure Swagger UI in your microservice project by using a built-in
solution in the Swagger 2 library, which creates Swagger UI with the Swagger-generated
API documentation. Let's configure another Maven dependency for the Swagger UI:

<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger-ui</artifactId>
 <version>${swagger.version}</version>
</dependency>

We have added a dependency with groupId io.springfix and the springfox-
swagger-ui artifact ID with the given version. This is enough to configure Swagger UI in
your project to see API documentation. All required HTML pages will be rendered by this
library only, we don't need to place any HTML for the Swagger UI.

Let's run your Spring Boot Account microservice project again and you can test it in your
favorite browser by accessing following URL:

http://localhost:6060/swagger-ui.html#/

It renders Swagger UI as follows:

API Management Chapter 13

[305]

It renders Swagger UI for your Spring Boot project's Account microservice. It displays a list
of controllers because Swagger scans your project code and exposes the documentation for
all controllers. The client can use this URL and Swagger UI to learn how to use your REST
APIs. It displays all HTTP methods to call for each URL and also displays input documents
to send and the status code to expect.

In the preceding screenshot of Swagger UI, let's click on any controller from the rendered
list. It will render a list of HTTP methods, such as DELETE, GET, HEAD, OPTIONS, PATCH,
POST, and PUT. Click on any method in Swagger UI and it will render additional details,
such as content type, response status, and parameters. You can test this method using a Try
it Out button on Swagger UI.

As you can see the following screenshot, when I clicked on the account controller link in
Swagger UI, it expands with available methods of the account controller (as you can
see, delete() with HTTP DELETE, all() with HTTP GET, save() with HTTP POST, and
update() with HTTP PUT):

API Management Chapter 13

[306]

In the preceding screenshot, click on any of the delete(), all(), save(),
or update() methods and Swagger UI will display the following UI:

It has displayed the details such as Response Status, Input Parameters, Response Content
Type, and HTTP Status Code. You can also use the Try it out button to test this API
method.

So far, we have created API documentation for only one controller, AccountController,
Swagger can easily synchronize with your code base if you add another controller,
CustomerController, to the same application. Let's add the following controller:

@RestController
public class CustomerController {
 @GetMapping("/customer/name")

API Management Chapter 13

[307]

 public String customerName(){
 return "Arnav Rajput";
 }
 @PostMapping("/customer/name")
 public String addCustomerName(){
 return "Aashi Rajput";
 }
}

After adding the controller and refreshing your browser with Swagger UI, it will display a
list of controllers, including CustomerController:

You have seen the default meta-configuration provided by the Swagger, you can also
customize this meta-configuration according to your application parameters by using the
Docket bean. Let's see how to add extra configuration in your Spring Boot project with
Swagger.

Customizing the Swagger UI meta-configuration
You can customize the Docket bean configuration in your application to give it more
control over the REST API documentation generation. Let's see how to filter some APIs for
Swagger response.

Filtering an API from Swagger's documentation
Let's see the following updated Docket bean configuration:

@Bean
public Docket api() {
 return new Docket(DocumentationType.SWAGGER_2)
 .select()
.apis(RequestHandlerSelectors.basePackage("com.dineshonjava.accountservice.
controller")) .paths(PathSelectors.ant("/customer/*"))
 .build();
}

API Management Chapter 13

[308]

In the preceding configuration of the Docket bean, we have filtered some APIs from the
documentation. Sometimes, we don't want to expose the documentation of some APIs. You
can pass parameters to the apis() and paths() methods of the Docket class to restrict
Swagger's response. The RequestHandlerSelectors class allows you to use the any or
none predicates. You can use RequestHandlerSelectors to filter the API according to
the base package (com.dineshonjava.accountservice.controller), class annotation,
and method annotations.

Swagger also allows you to filter using predicates. The paths() method takes the
PathSelectors class as a parameter to provide additional filtering.
The PathSelectors class has several methods, such as any(), none(), regex(), or
ant(), to scan the request paths of your application.

In the preceding example, Swagger will include only the
com.dineshonjava.accountservice.controller package with a specific path that
contains /customer/* in the URL, using the ant() predicate. Let's refresh the browser of
Swagger UI:

Swagger has created the documentation only for those REST APIs that contains the
/customer/* URL pattern. In the preceding screenshot, you can see other information,
such as API version, API Documentation, and Created by Contact Email. You can also
change this API information in your application.

API Management Chapter 13

[309]

Let's see the following example to add custom API information, you can use the
apiInfo(ApiInfo apiInfo) method to change the API information, such as API version,
API documentation, and created by contact email:

@Bean
public Docket api() {
 return new Docket(DocumentationType.SWAGGER_2)
 .select()
.apis(RequestHandlerSelectors.basePackage("com.dineshonjava.accountservice.
controller"))
 .paths(PathSelectors.ant("/customer/*"))
 .build()
 .apiInfo(apiInfo());
}
private ApiInfo apiInfo() {
 return new ApiInfo(
 "Customer Microservice REST API",
 "These are customer service APIs.",
 "API 2.0",
 "https://www.dineshonjava.com/Termsofservice",
 new Contact("Dinesh Rajput", "https://www.dineshonjava.com",
"admin@dineshonjava.com"),
 "License of API", "https://www.dineshonjava.com/license",
Collections.emptyList());
}

As you can see in the preceding configurations, the Docket bean has been configured with
the apiInfo() method. The apiInfo() method provides the API with information such
as API documentation name, API version, API description, contact information, and terms
of service URL. Let's refresh Swagger UI in the browser:

API Management Chapter 13

[310]

It renders the API information, such as API version, API documentation, and created by
contact email, to Swagger UI. Swagger also allows us to customize the messages for
response methods. Let's see in the following example:

For customizing messages for response methods, let's see the following updated Docket
bean configuration:

@Bean
public Docket api() {
 return new Docket(DocumentationType.SWAGGER_2)
 .select()
.apis(RequestHandlerSelectors.basePackage("com.dineshonjava.accountservice.
controller"))
 .paths(PathSelectors.ant("/customer/*"))
 .build()
 .apiInfo(apiInfo())
 .useDefaultResponseMessages(false)
 .globalResponseMessage(RequestMethod.GET,
 newArrayList(
 new ResponseMessageBuilder()
 .code(500)
 .message("500 : Internal Server Error into
 customer microservice")
 .responseModel(new ModelRef("Error"))
 .build(),
 new ResponseMessageBuilder()
 .code(403)
 .message("API Request Forbidden!")
 .build(),
 new ResponseMessageBuilder()
 .code(404)
 .message("Request API Not Found!")
 .build()
));
 }

As you can see in the preceding configuration for the Docket API bean, we have set the
default response message to false to instruct Swagger not to use default response messages,
and we have overridden global response messages of HTTP methods through Docket's
globalResponseMessage() method. In our example, I have overridden three response
messages with the 500, 403, and 404 codes for all methods of the Customer microservice.

API Management Chapter 13

[311]

Let's see the following screenshot after refreshing the browser:

We have overridden the default response messages of HTTP status, code such as 403, 404,
and 500. Apart from the Docket bean configuration, Swagger also allows us to customize
API documentation by using Swagger annotations. Let's see, in the next sub section.

Customizing with Swagger annotations
Swagger provides some additional annotations required on top of existing Spring MVC
annotations. Let's see the following example using these annotations.

In the microservice application, each REST controller that is supposed to be documented
should be annotated with the @Api annotation:

@Api(value = "/customer", description = "Manage Customer")
public class CustomerController {
 // ...
}

API Management Chapter 13

[312]

The CustomerController class has been annotated with the @Api annotation with the
value and description attributes. The @Api annotation narrates the description about the
responsibilities of the controller.

Next, each request handler methods of the Rest Controller class that is supposed to be
documented should be annotated with the @ApiOperation annotation. This annotation
narrates the responsibility of the specific method. You can also use another Swagger
annotation, @ApiResponses/@ApiResponse, with request handler methods. Let's see the
following example:

@ApiOperation(value = "Returns Customer Name")
@ApiResponses(
 value = {
 @ApiResponse(code = 100, message = "100 is the message"),
 @ApiResponse(code = 200, message = "Successful Return Customer Name")
 }
)
@GetMapping("/name")
public String customerName(@ApiParam(name="name", value="Customer Name")
String name){
 return "Arnav Rajput";
}

The request handler method of CustomerController has annotated with
the @ApiOperation and @ApiResponse/@ApiResponses.

If the request handler method accepts parameters, those should be annotated with
the @ApiParam annotation. As you can see in the preceding example, the @ApiOperation
annotation narrates the responsibility of the specific method.

Similarly, you can also document your model classes to provide the model schema, which
helps with documenting the request-response structure using the specific annotation, such
as using the @ApiModel annotations. The REST resource classes or model classes require
special annotations—@ApiModel and @ApiModelProperty. Let's see the following
Customer model class:

@ApiModel(value = "Customer", description = "Customer resource
representation")
public class Customer {
@ApiModelProperty(notes = "Name of the Customer") String name;
@ApiModelProperty(notes = "Email of the Customer") String email;
@ApiModelProperty(notes = "Mobile of the Customer") String mobile;
@ApiModelProperty(notes = "Address of the Customer") String address; //...
}

API Management Chapter 13

[313]

Let's run your Spring Boot microservice project and refresh the browser:

It has rendered the details about the model of the customer class. Now, Swagger provided
more descriptive API documentation. So, you can easily customize the API documentation
using Swagger annotations.

Swagger enables the REST API service producer to update the API documentation in real
time. The client and API documentation system are creating at the same pace as the server.
Swagger is maintaining the synchronization in APIs and its documentation with the
methods, parameters, and models described in the server code.

API Management Chapter 13

[314]

Advantages of Swagger
The following are advantages of the Swagger Framework:

Synchronizes the API documentation with the server and client at the same pace.
Allows us to generate REST API documentation and interact with the REST API.
The interaction with the REST API using the Swagger UI Framework gives clear
insight into how the API responds to parameters.
Provides responses in the format of JSON and XML.
Implementations are available for various technologies, such as Scala, Java, and
HTML5.

We have seen the implementation of the Swagger Framework in our Spring Boot
microservice project to expose Account and Customer REST APIs. In this example, we
created REST API documentation for the Account and Customer REST APIs. You can find
the complete code for this example on GitHub at https:/ /github. com/ PacktPublishing/
Mastering-Spring- Boot- 2. 0.

Summary
In this chapter, we learned how to manage your API when we expose to the consumers.
API Management includes providing rate limiting, authentication, and logging. Rate
limiting is nothing but a simple algorithm to restrict consumption of the API due to
business needs, either for monetizing or for safety from DOS attacks.

We saw how to run KONG using Docker. We also created a use case to manage using the
KONG management API. KONG plugins offer a lot of flexibility and customization for
your APIs.

Finally, we set up Swagger 2 to generate documentation for a Spring REST API. We also
explored the Swagger UI Framework to visualize and customize Swagger's output.

In the next chapter, we will explore how to deploy your microservice to the AWS cloud.

https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0
https://github.com/PacktPublishing/Mastering-Spring-Boot-2.0

14
Deploying in Cloud (AWS)

This chapter will explore manually deploying microservices in AWS EC2 instances and
using CloudFormation scripts. You will learn here how to run a Docker-enabled Spring
Boot microservice application on the Amazon Elastic Compute Cloud (EC2) instances.

In previous chapters, we have discussed different aspects of the microservices architecture
and its benefits, such as it is highly scalable, fault-tolerant, and so on. However, there are
many challenges with the microservices architecture, such as managing the deployment of
microservices and infrastructure dependencies for distributed applications.
Containerization comes with a solution for these problems. Docker provides a
containerization approach to develop and deploy microservices without infrastructure
dependencies. We have already discussed Docker in Chapter 12,
Containerizing Microservice. We can easily deploy Docker containers to Amazon Web
Services (AWS), Azure, Pivotal Cloud Foundry, and so on.

This chapter will cover the following topics:

Spinning up an AWS EC2 instance
Microservices architecture on AWS
Publishing microservices to the Docker Hub
Installing Docker on AWS EC2
Running microservices on AWS EC2

At the end of this chapter, you will have a better understanding of how to manually deploy
microservices and Docker containers to AWS EC2 instances and use CloudFormation
scripts.

Deploying in Cloud (AWS) Chapter 14

[316]

Spinning up an AWS EC2 instance
Amazon Web Services (AWS) provides lots of platforms for cloud computing solutions.
You can use AWS to build and deploy applications. Amazon EC2 is a service that provides
resizable computing capacity in the cloud and makes web-scale cloud computing easier for
developers.

Another platform is the AWS Elastic Container Service. It is used to deploy microservices
using Docker. Microservices can be deployed to Amazon ECS by creating a Docker image
of your application. You can easily push this Docker image to the Amazon Elastic
Container Registry (ECR).

In this chapter, I will deploy a microservice using a Docker image of your application to the
Amazon EC2. I will use the Docker registry to the Docker Hub to push a Docker image.
Let's see how to set up an Amazon EC2 instance:

First of all, we need to have an Amazon account. You can create an Amazon Free1.
Tier account at https:/ /aws. amazon. com/ free/ :

https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/

Deploying in Cloud (AWS) Chapter 14

[317]

Log in to the AWS Management Console. After a successful login, you should see2.
the following screen:

The preceding screenshot displays all the available AWS services. You can use
any service by just clicking and configuring it accordingly.

Click on the EC2 service on the Amazon AWS dashboard, as shown in the3.
following screenshot:

In the preceding screenshot, the EC2 dashboard displays all the available options
for the EC2 instance.

Deploying in Cloud (AWS) Chapter 14

[318]

To create an EC2 instance, click on the Launch Instance button. It will render4.
options to choose an Amazon Machine Image (AMI), as shown in the following
screenshot:

As you can see in the preceding screenshot, you can select any AMI according to
your application and business requirements. AWS has more than 35 AMIs,
depending on your application requirements and usage. They have multiple
platforms, such as Linux, Windows, and more.

Select any AMI. We are going to use a Linux-based AMI and SSD volume type5.
with 64-bit OS. The following screenshot illustrates how to select an instance type
of this AMI:

Deploying in Cloud (AWS) Chapter 14

[319]

The preceding screenshot has displayed all the available options to choose an
instance type. Here, I have chosen the t2.micro instance. Amazon EC2 provides
lots of instance types according to different use cases. Instances are used to run
applications as virtual machines. They have different capacities with various
combinations of CPU, memory, storage, and networking capacity. This gives you
the flexibility to choose the appropriate mix of resources for your applications.

AWS also allows you to configure EC2 instances to suit your requirements. Let's6.
click on the Configure Instance Details button, as shown in the preceding
screenshot:

As you can see in the preceding screenshot, you can launch multiple instances from the
same AMI, and other options are also included.

Also, you can add additional EBS volumes and instance store volumes to your7.
instance as per as your application requirement, as shown in the following
screenshot:

Deploying in Cloud (AWS) Chapter 14

[320]

After attaching additional storage, let's add a tag to this instance to help you8.
manage your instances, images, and other Amazon EC2 resources. As shown in
the following screenshot, you can see I have added the key Name and value of
this key, AccountService:

You can also configure the security group for this instance to protect it and make9.
it secure. It is very simple to configure the security group to this instance by
clicking the Configure Security Group button in the preceding screenshot. There
are a lot of security groups available for several requirements, such as firewall
rules that control the traffic for your instance, as shown in the following
screenshot:

After configuring the security group, let's click on the Review and10.
Launch button, shown in the preceding screenshot. It will ask you to create a key
pair, as shown in the following screenshot:

Deploying in Cloud (AWS) Chapter 14

[321]

In the preceding screenshot, I have created a key pair with the name
dineshonjava and saved it to the local drive. We will use this
dineshonjava.pem file to access this instance using SSH.

Next, you can also configure a key pair to access this instance from clients such as
PuTTY or FileZilla. If you have an existing key pair, then just use it for this
instance, or you can create a new key pair. A key pair consists of a public key that
AWS stores, and a private key file that you store.

Let's launch this t2.micro instance of the AWS EC2 service. It will display the11.
following message:

As you can see in the preceding screenshot, we have successfully launched an
EC2 service instance. Let's click on the generated instance ID to see this running
instance, as shown in the following screenshot:

You have seen how to configure and launch the EC2 service instance (t2.micro). We have
named the instance AccountService.

The AWS EC2 instance is very simple to configure and launch. It is very easy to use and it
has several benefits, including the following:

Elastic web-scale computing
Completely controlled
Flexible cloud hosting services
Integrated
Reliable
Secure
Inexpensive
Easy to start

Deploying in Cloud (AWS) Chapter 14

[322]

Now that you have seen the benefits of the AWS EC2 instance, let's look at the
microservices architecture on AWS in the next section.

Microservices architecture on AWS
We have discussed the microservices architecture and its benefits in previous chapters of
this book. In this section, we will discuss the microservices architecture on AWS and how to
use several Amazon services to provide better cloud-native solutions to a microservice-
based distributed application. The following diagram illustrates the simple microservice
architecture on AWS:

In the preceding diagram, the microservices-based application architecture is designed with
four layers, Content Delivery, API Layer, Application Layer, and Persistence Layer.

AWS provides several services for each aspect of the application, such as the frontend (user
interface), and the backend, such as the service layer and persistence layer. In the frontend
layer of the application, services are required to manage static content, such as scripts,
images, CSS, and so on, and dynamic content, such as rendering web pages. Services such
as Amazon Simple Storage Service (Amazon S3) and Amazon CloudFront are used to
serve static web content.

AWS CloudFront is an AWS service used to manage content for your
websites and APIs, such as video content and other web assets. It is a
global content delivery network (CDN) service used to accelerate static
content delivery.

Deploying in Cloud (AWS) Chapter 14

[323]

AWS services such as Amazon S3 and Amazon CloudFront provide solutions for static and
dynamic content and are used to accelerate the delivery of content. The Amazon S3 service
is used to store static content, such as images, CSS, JS, and so on. And Amazon CloudFront
delivers this static content. The REST API uses microservices to serve dynamic content for
the frontend. To reduce the latency of networks, we can use other caching mechanisms.

The API layer is an abstract layer for the application layer. This layer hides application logic
from the content layer. This layer serves all requests coming from the content layer using
the HTTP REST API. Amazon Elastic Load Balancing has used it to manage and distribute
traffic. This API layer is also responsible for client request routing, filtering, caching,
authentication, and authorization.

Amazon ELB is used to manage and distribute incoming application
traffic across multiple Amazon EC2 instances.

At the persistence layer, you can configure data storage, such as caching (Memcached or
Redis), NoSQL DB, or SQL DB. AWS also provides Relation DB support, such as Amazon
RDS. The Amazon ElastiCache service is used to manage caching mechanisms. The
application layer has actual business logic to connect the persistence layer and caching, and
this layer is also used by ELB to scale EC2 instances and manage incoming traffic from the
API layer.

Let's look at another typical microservice architecture on AWS. In the previous architecture,
we have used different layers, such as the content delivery layer, API layer, application
layer, and persistence layer. In the microservice architecture, we divide an application into
separate verticals based on the specific functionality rather than technological layers. The
following diagram illustrates another aspect of a microservices application on AWS:

Deploying in Cloud (AWS) Chapter 14

[324]

So, as you can see in the preceding diagram, the User interface is very similar to the content
delivery layer in the previous diagram. It serves static content using the Amazon S3 service.

In this architecture, I have used Amazon ECS (EC2 Container Service) to run the
application using containers. This service supports Docker containers and allows you to
easily run applications on a managed cluster of Amazon EC2 instances.

You can also scale the Amazon ECS depending on incoming traffic from the client. Amazon
ELB can be used to manage the incoming traffic across these containers, and it distributes
the traffic to Amazon ECS container instances running REST APIs.

Amazon ECS eliminates the specific requirement for the infrastructure of your application
in this architecture of AWS. You can use container-based approach technologies, such as
Docker, for deploying the services. We have discussed several benefits in Chapter 12,
Containerizing Microservice.

Similar to the persistence layer in the previous diagram, we can use several data stores,
such as Amazon RDS and Amazon ElastiCache, to persist data needed by the
microservices. Amazon ElastiCache is used to optimize application performance by using
an in-memory data store or cache in the cloud. It is easy to deploy, operate, and scale.

Publishing microservices to the Docker Hub
The Docker Hub is a central repository to store all Docker images. The Docker Hub allows
you to create either a public or private repository to store these Docker images. The steps to
publish microservices to the Docker Hub are described next.

Let's follow these steps to set up and run a local registry:

Create an account on the Docker Hub at https:/ /hub. docker. com/ .1.
Create a repository (private or public) for the Docker images, as shown in the2.
following screenshot:

https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/

Deploying in Cloud (AWS) Chapter 14

[325]

As you can see in the preceding screenshot, we have created three repositories
named dineshonjava/account, dineshonjava/customer, and
dineshonjava/doj. Of the three, one repository is private and the other two
are public.

Log in to the Docker cloud using the Docker login command:3.

Tag your Docker image using the Docker tag:4.

Push your image to the Docker Hub using docker push:5.

Deploying in Cloud (AWS) Chapter 14

[326]

Check that the image you just pushed appears in the Docker cloud at https:/ /6.
hub.docker. com/ r/ dineshonjava/ account/ tags/ :

As you can see in the preceding screenshot, I have pushed two tags of the Account
microservice.

We have seen in this section how to set up and use the Docker Hub to publish the Docker
images. We can globally access the Docker images by this convenient mechanism. We have
published three Docker images to the Docker Hub from the local machine. Let's look at how
to download and run these images to the AWS EC2 instances. But first, we have to install
Docker on the AWS EC2 instance.

Installing Docker on AWS EC2
You can easily install Docker on the AWS EC2 instance. Let's connect the EC2 instance
using PuTTY. In this section, we will install Docker on the EC2 instance. Follow these steps
to install Docker:

Let's run the EC2 instance and generate a private key using PuTTYgen. You have1.
to load the dineshonjava.pem file that we generated in the previous section. It
will generate the dineshonjava.ppk file. It will be used to connect the EC2
instance using Putty.

https://hub.docker.com/r/dineshonjava/account/tags/
https://hub.docker.com/r/dineshonjava/account/tags/
https://hub.docker.com/r/dineshonjava/account/tags/
https://hub.docker.com/r/dineshonjava/account/tags/
https://hub.docker.com/r/dineshonjava/account/tags/
https://hub.docker.com/r/dineshonjava/account/tags/
https://hub.docker.com/r/dineshonjava/account/tags/
https://hub.docker.com/r/dineshonjava/account/tags/
https://hub.docker.com/r/dineshonjava/account/tags/
https://hub.docker.com/r/dineshonjava/account/tags/
https://hub.docker.com/r/dineshonjava/account/tags/
https://hub.docker.com/r/dineshonjava/account/tags/
https://hub.docker.com/r/dineshonjava/account/tags/
https://hub.docker.com/r/dineshonjava/account/tags/
https://hub.docker.com/r/dineshonjava/account/tags/
https://hub.docker.com/r/dineshonjava/account/tags/
https://hub.docker.com/r/dineshonjava/account/tags/

Deploying in Cloud (AWS) Chapter 14

[327]

Open Putty and connect to the EC2 instance. In Host Name, use Public DNS to2.
connect this EC2 instance and port 22. Also, load the private key file for
authentication. In the category section, go to Connection | SSH | Auth and
upload the private key file for authentication, as shown in the following
screenshot:

Upload a private key file, dineshonjava.ppk, and click on the Open button. It3.
will connect to the AWS EC2 instance, as shown in the following screenshot:

Deploying in Cloud (AWS) Chapter 14

[328]

As you can see in the preceding screenshot, we have connected to the AWS EC2
instance using Putty. Now you can easily install Docker on the EC2 instance.

Install Docker, using the following command:4.

$ sudo yum install docker

Start the Docker service, using the following command:5.

$ sudo service docker start

Let's see the following screenshot about the preceding command:

The preceding command will install Docker on the EC2 instance. Verify the6.
installation with the following command:

$ sudo docker version

Let's see the following screenshot about the preceding command:

As you can see in the preceding screenshot, we have successfully installed Docker on the
AWS EC2 instance. Let's see in the next section how to run the microservice on the AWS
EC2 instance using Docker images.

Deploying in Cloud (AWS) Chapter 14

[329]

Running microservices on AWS EC2
In this section, we will set up account and customer microservices on the EC2 instance. We
are using Spring Boot 2.0 in this example:

We have to install Java 8 as well our EC2 instance using the following command:1.

wget -c --header "Cookie: oraclelicense=accept-securebackup-cookie

You can also refer to the following link:

http://download. oracle. com/ otn-pub/ java/ jdk/ 8u131- b11/
d54c1d3a095b4ff2b6607d096fa80163/ jdk- 8u131- linux- x64. tar. gz

The preceding command will download a jdk-8u131-linux-x64.tar.gz file.
We extract this file using the following command:

$ sudo tar -xvf jdk-8u131-linux-x64.tar.gz

After untar, let's set up the JAVA_HOME and PATH environment variables, as2.
follows:

$ JAVA_HOME=/home/ec2-user/jdk1.8.0_131
$ PATH=/home/ec2-user/jdk1.8.0_131/bin:$PATH
$ export JAVA_HOME PATH

Let's check the Java version, using the following command:

As you can see, we have set up Java 8 in the EC2 instance. Let's run a3.
microservice on this EC2 instance.

Execute the following commands in sequence:

$ sudo docker run -p 80:8761 dineshonjava/doj:1.0
$ sudo docker run -p 8181:6060 dineshonjava/account:1.0
$ sudo docker run -p 8282:6060 dineshonjava/customer:1.0

http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.tar.gz

Deploying in Cloud (AWS) Chapter 14

[330]

Let's validate that all the services are working by opening the following URL in4.
the browser:

http://ec2- 18- 219- 255- 59. us- east- 2.compute. amazonaws. com/

Note that we will be using the public IP or public DNS of the EC2 instance. This
URL will open the Eureka dashboard, as shown in the following screenshot:

As you can see in the preceding screenshot, we have registered two microservices,
Account and Customer, with the Eureka server running on the AWS EC2
instance.

Let's deploy the customer microservice to AWS EC2 using the Docker image with5.
the following command:

$ sudo docker run -p 80:6060 dineshonjava/customer:1.0

Let's test this microservice using the browser by navigating to the following URL:6.

http://ec2- 18- 219- 255- 59. us- east- 2.compute. amazonaws. com/ customer/ 1001

http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001
http://ec2-18-219-255-59.us-east-2.compute.amazonaws.com/customer/1001

Deploying in Cloud (AWS) Chapter 14

[331]

It will render the details of a customer with the customer ID 1001, as shown in
the following screenshot:

Summary
In this chapter, we have learned about several AWS services. We have discussed the
microservices architecture on AWS. We have set up AWS EC2 instances and also installed
Java 8 and Docker on the EC2 instances. The Docker Hub provides an easy solution to
register Docker images of your microservices to a registry server. We have registered three
microservices in this chapter to the Docker Hub.

Finally, we have installed Docker on the AWS EC2 instance and pulled all Docker images
from the Docker Hub and deployed these images to the EC2 instances.

In the next chapter, Chapter 15, Production Ready Service Monitoring and Best Practices, we
will explore how to monitor logs of the distributed system.

15
Production Ready Service

Monitoring and Best Practices
Monitoring and logging are very important for any enterprise application, especially when
we are dealing with a microservices-based distributed application with the involvement of
several technologies. But logging and monitoring for individual microservices-based
applications are very challenging due to the distributed behavior of the application's
deployment. In a distributed application, several microservices are running together on
several machines, so logs generated by different microservices are very difficult to trace
end-to-end transactions.

In this chapter, we will elaborate on some of the best practices in building distributed
systems and on performance monitoring for production-ready services. We will introduce
log aggregation using the Elasticsearch/Logstash/Kibana stack for distributed applications.

By the end of this chapter, you will have a better understanding of how to monitor a
distributed system and how to aggregate distributed logs generated by individual
microservices of a distributed application.

This chapter will cover the following topic:

Monitoring containers
Logging challenges in the microservices architecture
Centralized logging for microservices
Log aggregation using the ELK stack
Request tracing using Sleuth
Request tracing using Zipkin

Production Ready Service Monitoring and Best Practices Chapter 15

[333]

Monitoring containers
Container monitoring is the activity of monitoring the performance of microservice
containers in different environments. Monitoring is the first step toward optimizing and
improving performance.

Logging challenges for the microservices
architecture
As we know, logging is very important for any application to debug and audit business
metrics, because logs contain important information to analyze. So, logging is a process to
write a file, and logs are streams of events coming from running applications on a server.
There are a number of frameworks are available to implement logging on your application,
such as Log4j, Logback, and SLF4J. There are very popular logging frameworks used in
J2EE traditional applications.

In a J2EE application, most logs are written into the console or in a filesystem on your disk
space, so, we have to take care with the disk space and we have to implement a shell script
to recycle the log files after a particular amount of time to avoid logs filling up all the disk
space. So, a best practice of log-handling for your application is to avoid unnecessary log
writing in the production environment, because of the cost of disk I/O. The disk I/O can
slow down your application and also fill all the disk space; it can be cause of to down or
stop your application on the production server.

Logging frameworks, such as Log4j, Logback, and SLF4J, provide log levels (INFO,
DEBUG, ERROR) to control logging at runtime and also restrict what has to be printed.
These logging frameworks allow you to change the logging level and configuration at
runtime to control the logging in your application. Sometimes, we can't restrict some log
entries because they are required for business analysis and to understand the application's
behavior.

In a traditional J2EE monolithic application, we can avoid the problem of disk space and
also scale hardware for logging easily, but what happens when we move from the
traditional J2EE monolithic application to cloud-based distributed application? A cloud-
based deployment doesn't bind with a predefined machine. A distributed cloud-based
system can be deployed over multiple virtual machines and containers.

Production Ready Service Monitoring and Best Practices Chapter 15

[334]

As we discussed in Chapter 12, Containerizing Microservice, containers, such as Docker, are
short-lived. So, we can't rely on the container and its persistent state of the disk, because as
a container is stopped or restarted, it will lose all logs written to the desk.

In the microservices architecture, a distributed application will be running on several
isolated machines, either virtual or physical, which means log files will be generated in all
machines separately. So, it is impossible to trace these files' end-to-end transactions,
because they are processed by multiple microservices. Let's see the following diagram:

As you can see, microservices are running on separate infrastructure and machines, and
each microservice emits logs to that local machine. Suppose one task calls Microservice A
followed by calling Microservice E and Microservice F. So, Microservice A,
Microservice E, and Microservice F are running different machines and each service writes
a log for this task on different log files on different machines. This makes it harder to debug
and analyze logs for a particular end-to-end task in the microservice-based application. So,
we have to set up a tool for log aggregation at the service level. Let's see in the next section
how to achieve a centralized logging solution for the microservices-based distributed
application.

Production Ready Service Monitoring and Best Practices Chapter 15

[335]

Centralized logging solution for the
microservices architecture
Logging frameworks, such as Log4j, Logback, and SLF4J, provide logging functionality for
each microservice application. Now we need a tool that can aggregate all logs coming from
multiple microservices to a central location from local virtual machines and running
analytics on top of the log messages. This solution must provide the logging to track end-
to-end transactions. The centralized logging solution can eliminate dependency on the local
disk space and keep logs for a long time for analysis in the future.

According to the centralized logging solution, all log messages must be stored in a central
location rather than on each local machine of each microservice. This solution provides a
separation of concerns between log storage and the service execution environments. We can
use any big data technology, such as HDFS, to store a large number of log messages. So,
actual logs are written into the local machine shipped from the execution environment to a
central big data store.

Let's see the following diagram, which elaborates on the centralized logging solution for the
microservices-distributed application:

Production Ready Service Monitoring and Best Practices Chapter 15

[336]

There are a number of components working together for the centralized logging solution, as
follows:

Log streams: These are logging messages generated by the microservices. In a
microservice, we can use any logging framework to generate log streams, such as
Log4j, Logback, and SLF4J.
Log shippers: This component has a responsibility to collect all log streams
generated by several microservices from different machines. The log shippers
ship these log messages to the central storage such as a database, pushing to a
dashboard, or to any stream-processing units for analysis in real time.

Logstash is one of the very popular log shipper solutions for centralized logging;
this tool can be used for collecting and shipping log files from multiple
distributed microservices. Logstash works as a broker, it accepts log streams from
multiple endpoints and sinks these log streams to other destinations
(Elasticsearch, HDFS, or any other database).

The logging framework, such as Log4j and Logback, can be used to send log
messages to Logstash from Spring Boot microservices using its appenders. After
that, Logstash will send these log message to the connected log storage. We will
discuss Logstash with examples in the next section of this chapter.

The other tools, such as Fluentd and Logspout, are very similar to Logstash. But
these tools can be more appropriate in different environments and infrastructures,
such as a Docker-based environment.

Log storages: This is the central place where all log streams will be stored for
real-time analysis, such as the NoSQL database and HDFS.

We will discuss log storage, with examples, in the Elasticsearch section.
Elasticsearch can be used to store real-time log messages. Elasticsearch is a text-
based search technology that a client can query by using text-based indexes.

HDFS can be used to store archive log messages, and other metadata, such as
transaction counts, can be stored in either MongoDB or Cassandra. Finally, we
can use the Hadoop map-reduce programs for this offline log processing.

Log stream processor: It is a log-analysis engine in real-time for making quick
decisions. It can send information to the log dashboard. And also it can process
to send alerts and take action to resolve the problems in case of self-healing
system.

Production Ready Service Monitoring and Best Practices Chapter 15

[337]

Sometimes we need a real-time-based system that can analyze the log streams on
the fly and can also make decisions for critical situations to self-healing and to be
handled as soon as possible. So, the log stream processor can be used optionally
in a situation of self-healing and be analyzing log messages in real time on the fly.

We can use a combination of Flume and Kafka for stream processing with Storm
or Spark Streaming. The log stream processors (Storm or Spark) process, on the
fly, all log messages coming from Kafka and then send them to Elasticsearch or
other log storages. We can use the Log4j logging framework, it has Flume
appenders to collect log messages and send them into distributed Kafka message
queues.

There are many other solutions for log streaming processes provided by the
Spring Framework, such as Spring Cloud Stream, Spring Cloud Stream modules,
and Spring Cloud Data Flow.

Log dashboard: This is a log visualization component of the central logging
solution, it displays log analysis reports in the form of graphs and charts. The log
dashboard is useful for decision makers in business teams.

There are several logging dashboard solutions to display log analysis reports, such as
Kibana, Graphite, and Grafana. Kibana is one of the logging dashboards that can be used
for log analysis on top of an Elasticsearch data store.

As we have seen, this centralized approach for logging implementation into distributed
microservice-based applications doesn't force us to write logs into the local machine's disk
space.

In the centralized logging approach, we have to follow a standard for log messages, the log
message must have a context, message, and correlation ID. The context information will be
the IP address, user information, process details, timestamp, and log type. The message will
be a simple bit of text, and the correlation ID will be used for linking end-to-end tracing for
a specific task across microservices.

There are a number solutions available for the centralized logging approach, based on
different application architectures and technologies. There are many prebuilt tools available
to provide end-to-end centralized logging solutions, such as Graylog and Splunk. Graylog is
an open source log management tool and it uses Elasticsearch for log storage, and GELF
libraries for Log4j log streaming. Splunk is another commercial log management tool.

Production Ready Service Monitoring and Best Practices Chapter 15

[338]

There are a number of cloud logging services available as SaaS solutions. Loggly, AWS
CloudTrail, Papertrail, Logsene, Sumo Logic, Google Cloud Logging, and Logentries are
examples of other cloud-based logging solutions.

Let's see how to implement a centralized custom logging solution using
Elasticsearch/Logstash/Kibana in the next section.

Log aggregation using the ELK stack
As we have seen about the centralized logging approach for the distributed microservices
based application. The components, such as Log streams, Log shippers, Log storage, and
Log Dashboard, work together to provide a centralized logging solution for distributed
applications, deployed either on the container-based environment or on virtual/physical
machines.

Logstash is an open source tool for collecting, parsing, and storing logs for future use.
Kibana is a web interface that can be used to search and view the logs that Logstash has
indexed. Both of these tools are based on Elasticsearch, which is used for storing logs.

The Elasticsearch, Logstash, and Kibana tools, collectively known as the ELK stack, provide an
end-to-end logging solution in the distributed application. The ELK is one of the most
commonly used architectures for custom logging management. The following diagram
shows the centralized log-monitoring architecture:

Production Ready Service Monitoring and Best Practices Chapter 15

[339]

As you can see in the diagram of ELK stack tools, the multiple microservices, A, B, C, and
D, are using Log4j/Logback to emit log streams and Logback appenders to write log
streams to the Logstash directly, and Logstash is working as a broker between log streams
and log storage, sending log messages to Elasticsearch. The Elasticsearch tool saves the
generated logs in the form of text-based indexes. Kibana uses these indexes, it is working as
a log dashboard to display log analysis reports.

Let's see the following steps to implement the ELK stack for central custom logging:

Step 1: Install all three components of the centralized logging approach that we have to
download and install Elasticsearch, Kibana, and Logstash on a single server, known as the
ELK server.

Install Elasticsearch
Elasticsearch is available for all platforms, either Linux or Windows. Download it from
https://www.elastic. co/ , here I am using Window system, so I have downloaded
https://www.elastic. co/ guide/ en/ elasticsearch/ reference/ current/ zip- windows.
html, and unzip Elasticsearch. In the Linux system, you can install Elasticsearch from our
package repositories using apt or yum. After installation, let's test it by running the
Elasticsearch service using the following command:

.bin/elasticsearch.exe

Let's see the following screenshot after executing this command:

https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/zip-windows.html

Production Ready Service Monitoring and Best Practices Chapter 15

[340]

As you can see in the preceding screenshot, Elasticsearch is running on port 9200; let's
access it using the browser by accessing http://localhost:9200/:

Your Elasticsearch node is running by sending an HTTP request to port 9200.

Install Logstash
Similar to Elasticsearch, you can download the Logstash archive from https:/ /www.
elastic.co/downloads/ logstash. It is also available for all platforms. As we are using a
Windows machine, let's download the ZIP archive for the Windows machine and unzip it.
You can run the Logstash service on your machine by using the following command on the
CLI:

bin/logstash -f logstash.conf

Here logstash.conf is the configuration file we will see in the example.

Install Kibana
Kibana is also available for all platforms; you can download it from https:/ /www. elastic.
co/downloads/kibana. If you're using a Windows machine, download the ZIP archive for
Windows and unzip it.

https://www.elastic.co/downloads/logstash
https://www.elastic.co/downloads/logstash
https://www.elastic.co/downloads/logstash
https://www.elastic.co/downloads/logstash
https://www.elastic.co/downloads/logstash
https://www.elastic.co/downloads/logstash
https://www.elastic.co/downloads/logstash
https://www.elastic.co/downloads/logstash
https://www.elastic.co/downloads/logstash
https://www.elastic.co/downloads/logstash
https://www.elastic.co/downloads/logstash
https://www.elastic.co/downloads/logstash
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana

Production Ready Service Monitoring and Best Practices Chapter 15

[341]

If you want to customize the Kibana configuration, open config/kibana.yml in an editor
and customize the given information according to your application infrastructure. Finally,
you can run Kibana by using the following command:

bin/kibana

Let's see the following screenshot:

As you can see in the preceding screenshot, Kibana by default is running on port 5601.
Let's access http://localhost:5601 in the browser:

Production Ready Service Monitoring and Best Practices Chapter 15

[342]

Step 2: Change into our microservices (eureka, account, and customer services) by
adding some log statements. We are using slf4j to generate log messages; let's add the
following logs in the AccountController and CustomerController controller classes:

...
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
...
@RestController
public class AccountController {
private static final Logger logger =
LoggerFactory.getLogger(AccountController.class);
...
@GetMapping(value = "/account")
public Iterable<Account> all (){
logger.info("Find all accounts information ");
return accountRepository.findAll();
}
...
}

As you can see in the preceding code snippet, I have added logs to all the request methods
of AccountController. Similarly, I have added the CustomerController:

...
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
...
@RestController
public class CustomerController {
private static final Logger logger =
LoggerFactory.getLogger(CustomerController.class);
...
@GetMapping(value = "/customer/{customerId}")
public Customer findByAccountId (@PathVariable Integer customerId){
Customer customer = customerRepository.findByCustomerId(customerId);
customer.setAccount(accountService.findByCutomer(customerId));
logger.info("Find Customer information by id: "+customerId);
return customer;
}
...
}

As you can see, we have added a logger with info level in each request method of this
CustomerController. Let's add the Maven dependency for Logstash.

Production Ready Service Monitoring and Best Practices Chapter 15

[343]

Step 3: Add the Logstash Maven dependency into Maven configuration file of each
microservices:

<dependency>
<groupId>net.logstash.logback</groupId>
<artifactId>logstash-logback-encoder</artifactId>
<version>5.0</version>
</dependency>

As you can see in the preceding code snippet, we have added the Logstash dependency to
integrate logback to Logstash in all microservices using the pom.xml file.

Step 4: We have to override the default logback configuration because we have to add
appenders for logstash. You can add a new logback.xml under src/main/resources.
Let's see the following logback.xml file be added to each microservices:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<include resource="org/springframework/boot/logging/logback/defaults.xml"/>
<include resource="org/springframework/boot/logging/logback/console-
appender.xml" />
<appender name="stash"
class="net.logstash.logback.appender.LogstashTcpSocketAppender">
<destination>localhost:4567</destination>
<!-- encoder is required -->
<encoder class="net.logstash.logback.encoder.LogstashEncoder" />
</appender>
<root level="INFO">
<appender-ref ref="CONSOLE" />
<appender-ref ref="stash" />
</root>
</configuration>

As you can see in the preceding logback configuration file (logback.xml), this file
overrides the default logback configuration. The custom logback configuration file has a
new TCP socket appender. This appender streams all log messages to the Logstash service,
which is running on port 4567. We have to configure this port into a Logstash
configuration file. We can see in step 5. It is important to add an encoder, as mentioned in
the preceding configuration.

Step 5: Create a Logstash configuration file:

input {
tcp {
port => 4567
host => localhost

Production Ready Service Monitoring and Best Practices Chapter 15

[344]

}
}
output {
elasticsearch {
hosts => ["localhost:9200"]
}
stdout {
codec => rubydebug
}
}

As you can see in the preceding logstash.conf file, we have configured the input and
output. Logstash will use port 4567 to take input from the socket and also configure
output, Elasticsearch will be used at port 9200. stdout is optional and set for debugging.
We can place this file anywhere and run the Logstash service.

Step 6: Run all services, Elasticsearch, Logstash, and Kibana, from their respective
installation folders:

./bin/elasticsearch

./bin/kibana

./bin/logstash -f logstash.conf

Step 7: Run all microservices of the example, such as the Account microservice and
the Customer service. The Access customer microservice will print logs into Logstash.

Step 8: Open the Kibana dashboard in the browser at http://localhost:5601 and go to
the settings to create an index pattern:

Production Ready Service Monitoring and Best Practices Chapter 15

[345]

As you can see in the preceding screenshot, we have set up indexes, logstash-*.

Step 9: Click on the Discover option on the menu. It will render the log dashboard:

As you can see in the preceding screenshot of the Kibana UI, on the Kibana dashboard, the
log messages are displayed. Kibana provides out-of-the-box features to build summary
charts and graphs using log messages.

Production Ready Service Monitoring and Best Practices Chapter 15

[346]

Requesting tracing using Sleuth
We have seen how to get solutions for the distributed and fragmented logging to the
centralized logging architecture. So, with this approach, we have solved the problems
related to the distributed logging into separate local machines, now we have to aggregate
all the logs in central storage. But how do we trace these logs for a single request for end-to-
end transactions? All transactions are spreading across microservices, so in order to track
them from end to end, we need a correlation ID. We need a solution that can focus on
tracking how a request travels through the microservices, especially when you may not
have any insight into the implementation of the microservice you are calling.

Spring Cloud provides a library, Spring Cloud Sleuth, to help with this exact problem.
Spring Cloud Sleuth provides unique IDs to each log message, and this unique ID will be
consistent across micsroservice calls for a single request. By using this unique ID, you can
find all log messages generated for a transaction. Twitter's Zipkin, Cloudera's HTrace, and
Google's Dapper are examples of distributed tracing systems.

Spring Cloud Sleuth has two key concepts, Span and Trace, and it works based on these
two concepts. It creates IDs for these two concepts, which are Span ID and Trace ID. Span
means a basic unit of a task and Span ID represents a unit of a task, such as an HTTP call to
a resource. Trace means a set of tasks or set of spans, which means a Trace ID denotes a set
of Span IDs generated for end-to-end transactions. So, for a specific task, the trace ID will be
the same across the microservices calls. You can use the trace ID to track a call from end to
end:

Production Ready Service Monitoring and Best Practices Chapter 15

[347]

As you can see in the preceding diagram, there are multiple microservices running on
different nodes. So, Microservice A calls B and C, and B calls D, D calls E, and so on. In this
case, as you can see in the diagram, the trace ID will be passed across all microservices and
this trace ID will be used for tracking end-to-end log transactions.

Let's update our previous example of the Account and Customer microservices. A new
Maven dependency will be added for the Spring Cloud Sleuth library. These are the steps
to create an example using Spring Cloud Sleuth in your distributed application:

Add another Maven dependency for Spring Cloud Sleuth in your distributed1.
application:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>

The Logstash dependency will be same as we have added in previous examples2.
for implementing centralized logging.
You can set the application name by setting a spring.application.name3.
property in either application.yml or bootstrap.yml. But you can also add
this application name into the Logback configuration file of each microservice:

<property name="spring.application.name" value="account-service"/>
<property name="spring.application.name" value="customer-service"/>

The preceding given application name will show up as part of the tracing
produced by Spring Cloud Sleuth.

Add log messages if you don't have any, and also ensure one service can call4.
another service to check log tracing in this distributed application. I have added
one request method to demonstrate the propagation of the trace ID across
multiple microservices. This method in the customer service will call the
account service to fetch account information of a customer using
RestTemplate and also added log messages on these methods of both services.

In the CustomerController class:

@GetMapping(value = "/customer/{customerId}")
public Customer findByAccountId (@PathVariable Integer customerId){
Customer customer =
customerRepository.findByCustomerId(customerId);
logger.info("Customer's account information by calling account-
service ");

Production Ready Service Monitoring and Best Practices Chapter 15

[348]

List<Account> list =
restTemplate.getForObject("http://localhost:6060/account/customer/"
+customerId, List.class, customer);
customer.setAccount(list);
logger.info("Find Customer information by id with fetched account
info: "+customerId);
return customer;
}

In the AccountController class:

@GetMapping(value = "/account/customer/{customer}")
public List<Account> findByCutomer (@PathVariable Integer
customer){
logger.info("Find all Accounts information by customer:
"+customer);
return accountRepository.findAllByCustomerId(customer);
}

Run both services Customer and Account, and hit the following endpoint in the5.
browser: http://localhost:6161/customer/1001.
Let's look at the log messages on the console logs to see the trace ID and span IDs6.
printed.

The Customer microservice console logs:

2018-05-09 00:51:00.639 INFO [customer-service,9a562435c0fb488a,
9a562435c0fb488a,false] Customer's account information by calling
account-service
2018-05-09 00:51:00.766 INFO [customer-service,9a562435c0fb488a,
9a562435c0fb488a,false] Find Customer information by id with
fetched account info: 1001

As you can see in the preceding log statement, Sleuth adds [customer-
service,9a562435c0fb488a, 9a562435c0fb488a, false]. The first part
(customer-service) is the application name, the second part is the trace ID, the
third part is the span ID, and the last part indicates whether the span should be
exported to Zipkin.

Production Ready Service Monitoring and Best Practices Chapter 15

[349]

The Account microservice console logs:

2018-05-09 00:51:00.741 INFO [account-service, 9a562435c0fb488a,
72a6bb245fccafd9,false] Find all Accounts information by customer:
1001
2018-05-09 00:53:38.109 INFO [account-service,,] Resolving eureka
endpoints via configuration

You can see in the preceding logs of both services, the trace IDs are the same but
the span IDs are different.

You can also check the same thing on the Kibana dashboard:

We have discussed the Sleuth library to store the log messages. Let’s see how Zipkin helps
to analyze the latency of the service calls.

Production Ready Service Monitoring and Best Practices Chapter 15

[350]

Requesting tracing with Zipkin
Spring Cloud also provides integration to the Zipkin library. We will discuss how to add
Zipkin to our microservices-based application. Zipkin provides a mechanism for log-
message tracing into your application, such as sending, receiving, storing, and visualizing
traces. Zipkin also allows us to trace log activity across servers and gives a much clearer
picture of your application and what is happening in our microservices.

As we have discussed in the previous section about Spring Cloud Sleuth, by using it, you
can easily trace the log messages in your distributed application. Any library could provide
the additional information in your log messages, which would be great for your
application. So, we have used ELK, which helps to collect and analyze log messages for
your microservices, and it can be helpful for your application monitoring. We can use the
trace ID to search all log message across all microservices and provide a picture of how the
request passed from one microservice to the next. But sometimes we want more
information in our log messages, such as timing information to calculate how long a
request took to get from one microservice to the next microservice. To solve this problem,
Spring Cloud supports the Zipkin library and provides the Spring Cloud Sleuth Zipkin
module. You can add this module by adding the Spring-cloud-sleuth-Zipkin Maven
dependency in your project.

Spring Cloud Sleuth will send tracing information to the Zipkin server where you point it.
By default, Zipkin is running at http://localhost:9411. You can customize it by setting
the spring.zipkin.baseUrl property in your application's properties. Let's enable our
application to use Spring Cloud Sleuth Zipkin and send tracing information to the Zipkin
server. Let's see the following Maven dependency:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-sleuth-zipkin</artifactId>
</dependency>

By default, if you add spring-cloud-starter-zipkin as a dependency to your project
when the span is closed, it is sent to Zipkin over HTTP. The communication is
asynchronous. You can configure the URL by setting the spring.zipkin.baseUrl
property, as follows:

spring.zipkin.baseUrl: http://localhost:9411/

Production Ready Service Monitoring and Best Practices Chapter 15

[351]

Adding the Zipkin server to your machine
Let's add the Zipkin server to your machine, you can create the Zipkin server application
by using the following Maven Zipkin dependencies:

<dependency>
 <groupId>io.zipkin.java</groupId>
 <artifactId>zipkin-server</artifactId>
</dependency>
<dependency>
 <groupId>io.zipkin.java</groupId>
 <artifactId>zipkin-autoconfigure-ui</artifactId>
 <scope>runtime</scope>
</dependency>

The preceding Maven dependencies have the Zipkin server and Zipkin UI application, but
you have to enable it by using an annotation.

It will be a Spring Boot application and enable the Zipkin server by using
the @EnableZipkinServer annotation in the main application class:

@SpringBootApplication
@EnableZipkinServer
public class ZipkinServerApplication {
 ...
}

By default, the Zipkin server will run at http://localhost:9411. The
@EnableZipkinServer annotation will use it to listen for incoming spans and the
http://localhost:9411 URL UI for querying.

But it doesn't need to create a Zipkin server application, you can use the built-up Zipkin
application. Zipkin has a Docker image and an executable JAR of this application at
https://zipkin.io/ pages/ quickstart. html. You just download it to your machine and
run it by using the following command:

$ java -jar zipkin-server-2.8.3-exec.jar

https://zipkin.io/pages/quickstart.html
https://zipkin.io/pages/quickstart.html
https://zipkin.io/pages/quickstart.html
https://zipkin.io/pages/quickstart.html
https://zipkin.io/pages/quickstart.html
https://zipkin.io/pages/quickstart.html
https://zipkin.io/pages/quickstart.html
https://zipkin.io/pages/quickstart.html
https://zipkin.io/pages/quickstart.html
https://zipkin.io/pages/quickstart.html
https://zipkin.io/pages/quickstart.html
https://zipkin.io/pages/quickstart.html
https://zipkin.io/pages/quickstart.html

Production Ready Service Monitoring and Best Practices Chapter 15

[352]

Let's see the following screenshot after running the Zipkin application on the machine:

As you can see in the preceding screenshot, the Zipkin server is started, you can access it
by navigating to http://localhost:9411 in your favorite browser:

Production Ready Service Monitoring and Best Practices Chapter 15

[353]

As you can see, the Zipkin UI can be used to find traces and spans.

After adding and starting the Zipkin server, let's add the Spring Cloud Sleuth Zipkin
dependency to your microservices, such as the Account and Customer services, by adding
the following Maven dependency to each microservice:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>

The preceding Zipkin starter dependency will also include the Spring Cloud Sleuth library
(spring-cloud-starter-sleuth), so it doesn't require you to add it separately.

We have already discussed the Sleuth tool, it is used to generate the trace IDs and span IDs.
Sleuth adds information, such as trace IDs and span IDs, to the service calls in the headers,
so that the Zipkin tool and ELK can use this information.

So far, we have integrated Zipkin and Sleuth in our microservices applications. So,
whenever we call customer service endpoints, Sleuth works automatically and sends this
service call information to the attached Zipkin server. And Zipkin will calculate the service
call latency along with some other information.

Let's see the following diagram, when we call the Customer service:

Production Ready Service Monitoring and Best Practices Chapter 15

[354]

As you can see in the preceding diagram, Zipkin will store this latency information. Let's
open the Zipkin dashboard after calling the customer service in the browser, as follows:

As you can see in the preceding screenshot, it has included the latency of service calls with
span IDs. Let's click on the trace ID in the dashboard. It will render information regarding
the trace ID:

Production Ready Service Monitoring and Best Practices Chapter 15

[355]

As you can see, the preceding screenshot has information about a particular trace ID, which
means a particular end-to-end transaction. You can also see the details of the trace,
including all span IDs, by clicking on this row, and it will be displayed as in the following
screenshot:

The preceding screenshot has more details about the trace ID for a particular end-to-end
transaction of the microservices.
I hope you have learned to use the Zipkin library to analyze the latency of the service calls
across the microservices in a distributed system. Sleuth passes the API call information to
Zipkin.

Production Ready Service Monitoring and Best Practices Chapter 15

[356]

Summary
We discussed the importance of monitoring microservices and containers; we also created a
central logging approach to solve the problems of traditional logging systems using ELK.

The Spring Cloud Sleuth API provides a log-tracing mechanism and end-to-end log tracing
of a transaction in a distributed microservices-based application. Zipkin also provides log-
tracing techniques with timestamps. So, the Zipkin library is very useful for distributed
applications.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Spring Boot 2.0 Cookbook - Second Edition
Alex Antonov

ISBN: 978-1-78712-982-5

Get to know Spring Boot Starters and create custom auto-configurations
Work with custom annotations that enable bean activation
Use DevTools to easily develop and debug applications
Learn the effective testing techniques by integrating Cucumber and Spock
Observe an eternal application configuration using Consul
Move your existing Spring Boot applications to the cloud
Use Hashicorp Consul and Netflix Eureka for dynamic Service Discovery
Understand the various mechanisms that Spring Boot provides to examine an
application's health

https://www.packtpub.com/application-development/spring-boot-cookbook-second-edition

Other Books You May Enjoy

[358]

Spring: Microservices with Spring Boot
Ranga Rao Karanam

ISBN: 978-1-78913-258-8

Use Spring Initializr to create a basic spring project
Build a basic microservice with Spring Boot
Implement caching and exception handling
Secure your microservice with Spring security and OAuth2
Deploy microservices using self-contained HTTP server
Monitor your microservices with Spring Boot actuator
Learn to develop more effectively with developer tools

https://www.packtpub.com/application-development/spring-microservices-spring-boot

Other Books You May Enjoy

[359]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Actuator endpoints
 securing 77
Amazon Machine Image (AMI) 318
Amazon Simple Storage Service (Amazon S3) 322
Amazon Web Service (AWS)
 about 254, 315
 microservices architecture 322, 323, 324
Apache Ignite repository 146
API Gateway pattern
 advantages 151
 components 152
 disadvantages 152
 implementing, with Netflix Zuul Proxy 153
 need for 149, 151
 Zuul filters, adding 159
 Zuul properties, configuring 155, 159
 Zuul service proxy, enabling 155
 Zuul, including with Maven dependency 154
API Gateway
 filters 153
API Management
 about 284
 advantages 284
 tools 285
application error pages
 customizing 48, 49
application properties
 @EnableConfigurationProperties annotation,

using 44
 configuring externally 43
auto-configuration
 about 15, 34
 working 35
AWS EC2 instance
 spinning up 316, 317, 319, 321

AWS EC2
 Docker, installing 326, 328
 microservices, executing 329, 330, 331

B
Bootstrap Application Context 129
Bounded Contexts 84
broker topology 184

C
centralized logging solution
 Elasticsearch, installing 339
 for microservices architecture 335
 Kibana, installing 340, 343, 345
 log aggregation, with ELK stack 338
 log dashboard 337
 log shippers 336
 log storages 336
 log stream processor 336
 log streams 336
 logstash, installing 340
 tracing request, with Sleuth 346, 349
 tracing request, with Zipkin 350
circuit-breaker pattern
 about 204, 205, 207
 enabling 209
cloud application
 Feign, including 166, 169
Cloud Config Server
 application.properties file, configuring 93
 configuration application, executing 94, 96
 Git repository, creating as Configuration Storage

94

 implementing 93
Cloud Native Computing Foundation (CNCF) 281
cloud-native application architecture

[361]

 about 81
 antifragility 82
 API-based collaboration 82
 microservices 82
 microservices architecture 83
 self-service agile infrastructure 82
 twelve-Factor applications 82
command-line interface (CLI) 261
command-query separation (CQS)
 about 188
 Event Sourcing pattern 190
 event-driven Reactive Asynchronous System,

building 192
 eventual consistency 191
concurrent message consumers 186
Configuration Consumer Spring Cloud Config client
 creating 99, 101
Configuration Producer Spring Cloud Config Server
 creating 91
 dependencies, setting up 92
 project, setting up 92
containers
 about 252
 benefits 251
 Container Host 252
 container image 253
 container OS image 253
 container repository 253
 disadvantages 252
 key concepts 252
 using, in microservice architecture 248
 versus virtual machines 250
Continuous Deployment (CD) 91
custom decoders 178, 179
custom encoder 178
customer service
 building 216, 218
 testing 216, 218

D
default configuration
 customizing 218
Denial of Service (DoS) attacks 285
Docker Compose
 about 271

 container, scaling with docker-compose 279
 container, scaling with load balancing 279
 docker-compose file, using for orchestration 275,

279

 docker-compose file, writing 273
 installing 271
 using 273
Docker Datacenter (DDC) 259
Docker Hub
 microservices, publishing 324, 326
Docker image
 creating, with Maven 270
Docker Toolbox
 URL 256
Docker Trusted Registry (DTR) 259
Docker
 about 253
 architecture 258
 client 259
 commands 257
 container 261
 container-specific commands 258
 daemon 259
 Docker Engine 260
 dockerfile, writing 263
 host 259
 image 259
 installing 254
 installing , on AWS EC2 326, 328
 installing, on Linux 255
 installing, on Windows 256
 registries 259
Dockerization 253
Domain-driven design (DDD) 84

E
EC2 Container Service (ECS) 254
Elastic Compute Cloud (EC2) 315
Elastic Container Registry (ECR) 316
Elasticsearch
 URL 339
ELK stack
 using, for log aggregation 338
Eureka clients
 Gradle build configuration 111

[362]

 implementing 110
 Maven dependencies configuration, adding 110
Eureka
 client, registering 112, 114
 client-side load balancing 117
 DiscoveryClient, using 116
 EurekaClient, using 115
 Netflix Ribbon, using 117
 registry-aware Spring Cloud Netflix FeignClient

client, using 121, 124
 REST service, consuming 115
Event Sourcing pattern 190
event-driven architecture patterns
 about 184
 broker topology 184
 mediator topology 184
event-driven Reactive Asynchronous System
 building 192
eventual consistency 191
exception handling 177
external service calls 186

F
Feign
 about 163, 165, 180
 client, advanced usage 175
 clients, creating 173
 clients, unit testing 181
 defaults, overriding 170
 exception handling 177
 including, in cloud application 166, 169
 inheritance support 174
 logging 176
 multiple interfaces 175
 REST consumer 227
filters, API Gateway
 post filter 153
 pre filter 153
 route filter 153
fine-tuning
 output, logging 46
 with logging 45

G
Gradle
 Spring Boot, setting up 22

H
Hystrix Dashboard
 implementing, in project 221
Hystrix Metrics Stream 220
Hystrix
 about 180
 annotations, adding in services 210, 213
 circuit-breaker, enabling 209
 configuring, in application 208
 error propagation 213
 library, using with reference implementation 207
 maven dependency 209
 REST consumer 227

I
Infrastructure as a Service (IaaS) 281
integration testing
 about 236
 profiles, activating for test class 239
 Spring, using 238

J
JUnit tests
 for Spring Boot application 239

K
Kibana
 URL 340
KONG
 about 287
 avoiding 288
 installing 289, 291
 KONG API, features 298
 KONG API, using 291, 294, 295, 297, 298
 microservice REST APIs 288
Kubernetes 280

[363]

L
Linux
 Docker, installing 255
logging
 challenges 333
Logstash
 URL 340

M
Maven dependency 209
Maven
 Spring Boot, setting up 21
 used, for creating Docker image 270
microservices architecture
 about 83
 benefits 84
 challenges 85
 containers, using 248
 on AWS 322, 323, 324
 Service Discovery, need for 104
microservices
 about 131
 executing, on AWS EC2 329, 330, 331
 publishing, to Docker Hub 324, 326
 with Spring Boot 128
mocking services
 Mockito, using 241
Mockito
 used, for mocking services 241

N
Netflix Zuul Proxy
 used, for implementing API Gateway 153

O
OSX Homebrew
 command-line completion 53
 MacPorts installation 53
 used, for installing Spring Boot CLI 53
overridden properties
 order of evaluation 40

P
patterns
 used, for configuring repositories 97
Platform as a Service (PaaS) 281
Postman
 used, for testing RESTful service contracts 242
projects, Spring Cloud
 Cloud Foundry 88
 Spring Cloud Bus 88
 Spring Cloud CLI 89
 Spring Cloud Cluster 88
 Spring Cloud Config 88
 Spring Cloud Connectors 89
 Spring Cloud Consul 88
 Spring Cloud Contract 90
 Spring Cloud Data Flow 89
 Spring Cloud for Amazon Web Services 89
 Spring Cloud Foundry Service Broker 89
 Spring Cloud Gateway 90
 Spring Cloud Netflix 88
 Spring Cloud Security 89
 Spring Cloud Sleuth 89
 Spring Cloud Starters 89
 Spring Cloud Stream 89
 Spring Cloud Task 89
 Spring Cloud Zookeeper 89
 Stream App Starters 89
properties
 application.properties, renaming 42
 configuration, externalizing 40
 overridden properties, order of evalution 40

R
rate limiting
 about 285
 implementing 286
reactive programming
 about 185
 ReactiveX 187
 Spring Reactive 186
ReactiveX
 about 187
 callbacks, avoiding 188
 composable 187

[364]

 flexible 187
 opinionated 188
 Polyglot, implementation 188
registry-aware Spring Cloud Netflix FeignClient

client
 using 124
repositories
 authentication 98
 configuring, with patterns 97
 force-pull property 99
REST consumer
 with Feign 227
 with Hystrix 227
REST controller
 implementing, in customer service 213, 216
REST service
 implementing 29, 31
RESTful service contracts
 testing, with Postman 242
round-robin (RR) algorithm 280

S
Service Discovery
 Eureka clients, implementing 110
 Eureka server, enabling 108
 Gradle build configuration file 107
 implementing 105
 Maven build configuration file 106
 need for, in microservices architecture 104
Sleuth
 used, for tracing request 346, 349
SnakeYAML 46
Software Development Kit Manager (SDKMAN!)
 using, for Spring Boot CLI installation 52
Spring application development
 simplifying, with Spring Boot 10
Spring Boot 2.0
 features 31
Spring Boot Actuator
 about 59
 application information, exposing 68
 application, shutting down 69
 configuration details, exposing 62, 67
 custom endpoint, creating 75
 custom health indicators, writing 73, 75

 enabling, in application 59
 endpoint sensitivity, modifying 72
 endpoints IDs, modifying 72
 endpoints, analyzing 60
 endpoints, customizing 70
 endpoints, disabling 71
 endpoints, enabling 71
 metrics endpoints, exposing 67
 with Spring Boot 2.X 78
Spring Boot application
 developing 23
 dockerizing 265, 268
 JUnit tests 239
 Spring Boot project, creating with STS IDE 27
 web interface, using for Spring Initializr 24
Spring Boot CLI
 Initializr, using 54, 57
 installation, with SDKMAN 52
 installing 51
 installing manually, from downloaded distribution

52

 installing, with OSX Homebrew 53
 using 51
Spring Boot workspace
 setting up 21
 setting up, with Gradle 22
 setting up, with Maven 21
Spring Boot
 about 8
 application.yml 128
 auto-configuration 15
 auto-configuration, enabling 17, 19
 bootstrap.yml 128
 customizing 36
 discovery service, creating 132, 134, 136
 generated beans, replacing 38
 key components 12
 library dependencies, modifying 39
 Load-balanced RestTemplate 142, 145
 microservice consumers, creating 141
 microservice example 130, 132
 microservice, creating 136, 139, 141
 microservices 128
 properties, used for customizing 36
 specific auto-configuration classes, disabling 39

[365]

 Spring application development, simplifying 10
 Spring Boot Actuator 20
 Spring Boot CLI 19
 starter 12
 Starter Parent POM 14
Spring Cloud application
 configuring 90
Spring Cloud Config 90
Spring Cloud Netflix 103
Spring Cloud Streaming
 about 193
 Kafka properties, configuration 196
 Kafka, adding to application 195
 Kafka, executing 195
 Kafka, installing 195
 Kafka, listening 198, 201
 Rest API controller 197
 services, used for writing Kafka 196
Spring Cloud
 about 86
 building blocks 87
 cloud utilities 87
 data ingestion 87
 dynamic cloud reconfiguration 87
 IaaS 87
 microservices infrastructure 87
 platform support 87
 projects 88
 Spring Boot style Starters, uses 87
 usage 90
Spring Data MongoDB
 about 146
 highlights 147
Spring Data
 about 145
 Apache Ignite repository 146
 Spring Data JPA 148
 Spring Data MongoDB 146
Spring Framework
 references 52
Spring Initializr
 URL 154
 using, with Spring Boot CLI 54, 57
 web interface, using 24
Spring Reactive 186

Spring Tool Suite (STS) 24
starter 12
Swagger
 about 299
 advantages 314
 annotation, using for customization 311, 313
 API, filtering from documentation 307, 310
 Maven dependency, adding 301
 Swagger 2, configuring 301
 Swagger UI meta-configuration, customizing 307
 Swagger UI, configuring 304, 307
 usage 300
 using 300
system testing 236

T
Test-driven development (TDD) 231
Turbine dashboard
 about 223, 225
 Turbine stream 227

U
unit testing
 about 231, 233, 235
 advantages 235
 disadvantages 235
 mock libraries 236

V
virtual machines
 versus containers 250

W
Windows
 Docker, installing 256

Y
YAML
 multiple profiles 47
 using, for configuration 46
 using, for properties 46

Z
Zipkin
 server, adding to machine 351, 353, 355
 used, for tracing request 350
Zuul service proxy

 enabling 155
Zuul
 filters, adding 159
 filters, registering 160
 including, with Maven dependency 154
 properties, configuring 155, 159

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Spring Boot 2.0
	Introducing Spring Boot
	Simplifying Spring application development using Spring Boot
	The essential key components of Spring Boot
	Spring Boot Starters
	Spring Boot Starter Parent POM

	Spring Boot auto-configuration
	Enabling Spring Boot auto-configuration
	Spring Boot CLI
	Spring Boot Actuator

	Setting up a Spring Boot workspace
	Setting up Spring Boot with Maven
	Setting up Spring Boot with Gradle

	Developing your first Spring Boot application
	Using a web interface for Spring Initializr
	Creating a Spring Boot project using the STS IDE

	Implementing the REST service
	New features in Spring Boot 2.0
	Summary

	Chapter 2: Customizing Auto-Configuration in Spring Boot Application
	Understanding auto-configuration
	Learning how auto-configuration works

	Customizing Spring Boot
	Customizing using Spring Boot properties
	Replacing generated beans
	Disabling specific auto-configuration classes
	Changing a library's dependencies

	Externalizing configuration with properties
	Order of evaluation for overridden properties
	Renaming application.properties in the Spring application

	Externally configuring application properties
	Using the @EnableConfigurationProperties annotation

	Fine-tuning with logging
	Logging output

	Using YAML for configuration
	YAML for properties
	Multiple profiles inside a single YAML file

	Customizing application error pages
	Summary

	Chapter 3: Getting Started with Spring CLI and Actuator
	Getting started with using Spring Boot CLI
	Installing the Spring Boot CLI
	Manually installing from a downloaded distribution
	Installation with SDKMAN!
	Installing with OSX Homebrew
	MacPorts installation
	Command-line completion

	Using the Initializr with the Spring Boot CLI
	Spring Boot Actuator – taking Application's Insights
	Enabling Spring Boot's Actuator in your application
	Analyzing the Actuator's endpoints
	Exposing configuration details
	Exposing metrics endpoints
	Exposing application information
	Shutting down your application
	Customizing your Actuator endpoints
	Enabling or disabling endpoints
	Changing endpoint IDs
	Changing the sensitivity of the Actuator's endpoints
	Writing custom health indicators

	Creating a custom endpoint

	Securing the Actuator endpoints
	The Actuator with Spring Boot 2.X
	Summary

	Chapter 4: Getting Started with Spring Cloud and Configuration
	Cloud-native application architecture
	Microservices architecture
	Microservice benefits
	Microservice challenges

	Introduction to Spring Cloud
	Building blocks of the cloud and microservice applications
	Usages of Spring Cloud

	Configuring the Spring Cloud application
	Creating the configuration producer Spring Cloud Config Server
	Project setup and dependencies

	Implementing Cloud Config Server
	Configuring the application.properties file
	Creating a Git repository as configuration storage
	Running your configuration application

	Configuring multiple repositories using patterns
	Authentication
	Force-pull property

	Creating the configuration consumer Spring Cloud Config client
	Summary

	Chapter 5: Spring Cloud Netflix and Service Discovery
	Introduction to Spring Cloud Netflix
	The need for Service Discovery in the microservices architecture
	Implementing Service Discovery – Eureka Server
	The Maven build configuration file
	The Gradle build configuration file
	Enabling the Eureka server as a Discovery Service server

	Implementing Service Discovery – Eureka clients
	Adding the Maven dependencies configuration
	The Gradle build configuration

	Registering a client with Eureka
	Consuming the REST service
	Using EurekaClient
	Using DiscoveryClient
	Client-side load balancing using Netflix Ribbon

	Using the registry-aware Spring Cloud Netflix FeignClient client

	Summary

	Chapter 6: Building Spring Boot RESTful Microservice
	Microservices with Spring Boot
	Brief introduction to bootstrap.yml and application.yml
	A simple microservice example
	Creating a discovery service
	Creating a microservice (the Producer)
	Creating microservice consumers
	Load-balanced RestTemplate

	Brief introduction to Spring Data
	Apache Ignite repository
	Spring Data MongoDB
	Spring MongoDB data highlights

	Spring Data JPA

	Summary

	Chapter 7: Creating API Gateway with Netflix Zuul Proxy
	The need for an API Gateway pattern
	Pros of the API Gateway pattern
	Cons of the API Gateway pattern
	API Gateway pattern components

	Implementing API Gateway using Netflix Zuul Proxy
	Including Zuul using Maven dependency
	Enabling the Zuul service proxy
	Configuring Zuul properties
	Adding Zuul filters
	Registering Zuul filters

	Summary

	Chapter 8: Simplify HTTP API with Feign Client
	Declarative REST client – Feign basics
	Including Feign in the cloud application
	Overriding Feign defaults
	Creating Feign clients
	Feign inheritance support
	Multiple interfaces

	Advanced usage of the Feign client
	Feign logging

	Exception handling
	Custom encoders and decoders
	Custom encoder
	Custom decoder

	Feign and Hystrix
	Unit testing Feign clients
	Summary

	Chapter 9: Building Event-Driven and Asynchronous Reactive Systems
	Event-driven architecture patterns
	Mediator topology
	Broker topology

	Introduction to reactive programming
	Spring Reactive
	ReactiveX

	Introduction to Command Query Responsibility Segregation
	Introduction to the Event Sourcing pattern
	Introduction to Eventual consistency

	Building an event-driven Reactive Asynchronous System
	Introducing Spring Cloud Streaming
	Adding Kafka to your application
	Installing and running Kafka
	Configuration properties for Kafka
	Service used to write to Kafka
	Rest API controller
	Listening to a Kafka topic

	Summary

	Chapter 10: Building Resilient Systems Using Hystrix and Turbine
	Circuit-breaker pattern
	Using the Hystrix library with a reference implementation
	Configuring Hystrix in your application
	Maven dependency
	Enabling circuit-breaker
	Adding the Hystrix annotation in services
	Error propagation

	Implementing a REST controller in customer service
	Building and testing customer service
	Customizing the default configuration
	Hystrix Metrics Stream
	Implementing Hystrix Dashboard in our project
	Turbine dashboard
	Turbine stream

	REST consumer with Hystrix and Feign
	Summary

	Chapter 11: Testing Spring Boot Application
	Test-driven development
	Unit testing
	Advantages
	Disadvantages
	Other mock libraries

	Integration testing
	Benefits of testing with Spring
	Activating profiles for a test class

	JUnit tests for the Spring Boot application
	Using Mockito for mocking services
	Postman for testing RESTful service contracts
	Summary

	Chapter 12: Containerizing Microservice
	Introducing containers to the microservice architecture
	Virtual machines versus containers
	Benefits of a container-oriented approach
	Drawbacks of a container-oriented approach
	Key concepts of the containers-oriented approach

	Getting started with Docker
	Installing Docker
	Installing Docker on Linux
	Installing Docker on Windows
	Docker commands
	Container-specific commands

	Docker architecture
	Docker Engine
	Docker container
	Writing Dockerfile

	Dockerizing any Spring Boot application
	Creating a Docker image using Maven
	Getting started with Docker Compose
	Installing Docker Compose
	Using Docker Compose
	Writing a docker-compose file
	Orchestration using a docker-compose file
	Scaling containers using docker-compose and load balancing

	Introducing Kubernetes
	Summary

	Chapter 13: API Management
	API Management
	Advantages of using API Management software tools
	API Management tools

	Rate limiting
	Implementing rate limiting

	Learning about KONG
	Microservice REST APIs with the KONG architecture
	Using APIs without the KONG architecture
	Installing KONG
	Using the KONG API
	Features of the KONG API

	Swagger
	Usage of Swagger
	Using Swagger in a microservice
	Adding a Maven dependency
	Configuring Swagger 2 in your project
	Configuring Swagger UI in your project
	Customizing the Swagger UI meta-configuration
	Filtering an API from Swagger's documentation

	Customizing with Swagger annotations

	Advantages of Swagger

	Summary

	Chapter 14: Deploying in Cloud (AWS)
	Spinning up an AWS EC2 instance
	Microservices architecture on AWS
	Publishing microservices to the Docker Hub

	Installing Docker on AWS EC2
	Running microservices on AWS EC2
	Summary

	Chapter 15: Production Ready Service Monitoring and Best Practices
	Monitoring containers
	Logging challenges for the microservices architecture
	Centralized logging solution for the microservices architecture
	Log aggregation using the ELK stack
	Install Elasticsearch
	Install Logstash
	Install Kibana

	Requesting tracing using Sleuth
	Requesting tracing with Zipkin
	Adding the Zipkin server to your machine

	Summary

	Other Books You May Enjoy
	Index

