Unity Game
Optimization

Third Edition




Unity Game Optimization
Third Edition

Enhance and extend the performance of all aspects of your
Unity games

Dr. Davide Aversa
Chris Dickinson

BIRMINGHAM - MUMBAI



Unity Game Optimization
Third Edition

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Larissa Pinto

Content Development Editor: Keagan Carneiro
Senior Editor: Martin Whittemore

Technical Editor: Suwarna Patil

Copy Editor: Safis Editing

Project Coordinator: Kinjal Bari

Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Joshua Misquitta

First published: November 2015
Second edition: November 2017
Third edition: November 2019

Production reference: 1281119
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83855-651-8

www.packt.com


http://www.packt.com

To Gioia, with whom I am writing my most important book.

- Davide Aversa



Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.


https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors

Dr. Davide Aversa holds a PhD in artificial intelligence and an MSc in artificial intelligence
and robotics from the University of Rome La Sapienza in Italy. He has a strong interest in
artificial intelligence for the development of interactive virtual agents and procedural
content generation. He served as a Program Committee member of video game-related
conferences such as the IEEE conference on computational intelligence and games, and he
also regularly participates in game-jam contests. He also writes a blog on game design and
game development.

I'd like to thank my family for the stability I needed during this year; the Unity devs on
Twitter that helped me clarify the most obscure elements of Unity internals; and, finally,
Keagan and the other Packt Publishing editors for helping me during this work and for
being understanding of my delays.

Chris Dickinson grew up in a quiet little corner of England with a strong passion for
mathematics, science and, in particular, video games. He loved playing them, dissecting
their gameplay, and trying to figure out how they worked. Watching his dad hack the hex
code of a PC game to get around the early days of copy protection completely blew his
mind! His passion for science won the battle at the time; however, after completing a
master's degree in physics with electronics, he flew out to California to work in the field of
scientific research in the heart of Silicon Valley. Shortly afterward, he had to admit to
himself that research work was an unsuitable career path for his temperament. After firing
resumes in all directions, he landed a job that finally set him on the correct course in the
field of software engineering (this is not uncommon for physics grads, I hear).



His time working as an automated tools developer for IPBX phone systems fit his
temperament much better. Now he was figuring out complex chains of devices, helping its
developers fix and improve them, and building tools of his own. Chris learned a lot about
how to work with big, complex, real-time, event-based, user-input driven state machines
(sounds familiar?). Being mostly self-taught at this point, Chris's passion for video games
was flaring up again, pushing him to really figure out how video games were built. Once
he felt confident enough, he returned to school for a bachelor's degree in game and
simulation programming. By the time he was done, he was already hacking together his
own (albeit rudimentary) game engines in C++ and regularly making use of those skills
during his day job. However, if you want to build games, you should just build games, and
not game engines. So, Chris picked his favorite publically available game engine at the
time—an excellent little tool called Unity 3D—and started hammering out some games.

After a brief stint of indie game development, Chris regretfully decided that the demands
of that particular career path weren't for him, but the amount of knowledge he had
accumulated in just a few short years was impressive by most standards, and he loved to
make use of it in ways that enabled other developers with their creations. Since then, Chris
has authored a tutorial book on game physics (Learning Game Physics with Bullet Physics and
OpenGL, published by Packt) and two editions of a Unity performance optimization book
(which you are currently reading). He has married the love of his life, Jamie, and works
with some of the coolest modern technology as a software development engineer in Test
(SDET) at Jaunt Inc. in San Mateo, CA, a VR/AR startup that focuses on delivering VR and
AR experiences, such as 360 videos (and more!).

Outside of work, Chris continues to fight an addiction to board games (particularly
Battlestar: Galactica and Blood Rage), an obsession with Blizzard's Overwatch and Starcraft
II, cater to the ever-growing list of demands from a pair of grumpy yet adorable cats, and
gazing forlornly at the latest versions of Unity with a bunch of game ideas floating around
on paper. Someday soon, when the time is right (and when he stops slacking off), his plans
may come to fruition



About the reviewer

Vincent Chu is a professional Unity lead developer (a certified expert) who leads multiple
game projects across the globe and ranks highly in global algorithm contests. He has
expertise in Unity game development, software architecture, 3D modeling and animation,
rendering and shaders, networking, and cloud solutions.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.


http://authors.packtpub.com

Table of Contents

Preface

Section 1: Base Scripting Optimization

Chapter 1: Evaluating Performance Problems
Gathering profiling data using the Unity Profiler
Launching the Profiler
Editor or standalone instances
Connecting to a WebGL instance
Remote connection to an iOS device
Remote connection to an Android device
Editor profiling
The Profiler window
Profiler controls
Add Profiler
Playmode
Record
Deep Profile
Allocation Callstack
Clear
Load
Save
Frame Selection
Timeline View
Breakdown View Controls
Breakdown View
The CPU Usage area
The GPU Usage area
The Rendering area
The Memory area
The Audio area
The Physics 3D and Physics 2D areas
The network messages and network operations areas
The Video area
The Ul and Ul Details areas
The Global lllumination area
Best approaches to performance analysis
Verifying script presence
Verifying script count
Verifying the order of events
Minimizing ongoing code changes
Minimizing internal distractions
Minimizing external distractions
Targeted profiling of code segments
Profiler script control

11
12
13
14
14
15
16
17
17
18
18
18
19
20
20
20
20
21
22
22
22
24
25
25
26
27
27
27
28
28
28
29
30
31
32
33
35
35
36



Table of Contents

Custom CPU profiling 37

Final thoughts on profiling and analysis 41
Understanding the Profiler 42
Reducing noise 42
Focusing on the issue 43
Summary 44
Chapter 2: Scripting Strategies 45
Obtaining components using the fastest method 46
Removing empty callback definitions 47
Caching component references 51
Sharing calculation output 53
Update, coroutines, and InvokeRepeating 54
Faster GameObject null reference checks 58
Avoid retrieving string properties from GameObjects 59
Using appropriate data structures 61
Avoiding re-parenting transforms at runtime 62
Considering caching transform changes 63
Avoiding Find() and SendMessage() at runtime 65
Assigning references to pre-existing objects 69
Static classes 71
Singleton components 74

A global messaging system 78

A globally accessible object 79
Registration 80
Message processing 81
Implementing the messaging system 81
Message queuing and processing 82
Implementing custom messages 85
Message sending 86
Message registration 86
Message cleanup 89
Wrapping up the messaging system 90
Disabling unused scripts and objects 91
Disabling objects by visibility 92
Disabling objects by distance 93
Using distance-squared over distance 94
Minimizing deserialization behavior 95
Reducing serialized object size 96
Loading serialized objects asynchronously 96
Keeping previously loaded serialized objects in memory 97
Moving common data into ScriptableObjects 97
Loading scenes additively and asynchronously 97
Creating a custom Update() layer 99
Summary 104

[ii]



Table of Contents

Section 2: Graphical Optimizations

Chapter 3: The Benefits of Batching
Draw calls
Materials and shaders
The Frame Debugger
Dynamic batching
Vertex attributes
Mesh scaling
Dynamic batching summary
Static batching
The Static flag
Memory requirements
Material references
Static batching caveats
Edit Mode debugging of static batching
Instantiating static meshes at runtime
Static batching summary
Summary

Chapter 4: Optimizing Your Art Assets
Audio

Importing audio files

Loading audio files

Encoding formats and quality levels

Audio performance enhancements
Minimizing active audio source count
Enabling Force to Mono for 3D sounds
Resampling to lower frequencies
Considering all compression formats
Being cautious of streaming
Applying filter effects through mixer groups to reduce duplication
Using remote content streaming responsibly
Consider using audio module files for background music

Texture files

Texture compression formats

Texture performance enhancements
Reducing texture file size
Using mipmaps wisely
Managing resolution downscaling externally
Adjusting anisotropic filtering levels
Consider atlasing
Adjusting compression rates for nonsquare textures
Sparse textures
Procedural materials
Asynchronous texture uploading

Mesh and animation files

106
107
110
113
114
116
118
119
121
121
122
122
123
123
123
124
125

126
127
127
128
132
133
134
134
135
135
135
136
136
137
137
138
141
141
142
144
144
145
148
148
150
150

151

[ iii]



Table of Contents

Reducing the polygon count
Tweaking mesh compression
Using Read-Write Enabled appropriately
Considering baked animations
Combining meshes
Asset bundles and resources
Summary

Chapter 5: Faster Physics
Understanding the physics engine
Physics and time
Maximum Allowed Timestep
Physics updates and runtime changes
Static colliders and dynamic colliders
Collision detection
Collider types
The Collision Matrix
Rigidbody active and sleeping states
Ray and object casting
Debugging physics
Physics performance optimizations
Scene setup
Scaling
Positioning
Mass
Using static colliders appropriately
Using trigger volumes responsibly
Optimizing the Collision Matrix
Preferring discrete collision detection
Modifying the fixed update frequency
Adjusting the Maximum Allowed Timestep
Minimizing raycasting and bounding-volume checks
Avoiding complex Mesh Colliders
Using simpler primitives
Using simpler Mesh Colliders
Avoiding complex physics components
Letting physics objects sleep
Modifying the solver iteration count
Optimizing ragdolls
Reducing joints and colliders
Avoiding inter-ragdoll collisions
Replacing, deactivating, or removing inactive ragdolls
Knowing when to use physics
Summary

Chapter 6: Dynamic Graphics
Exploring the Rendering Pipeline

152
152
153
154
154
155
156

157
158
159
161
161
163
163
165
167
168
169
169
171
171
172
172
173
174
175
176
177
178
180
180
182
183
184
185
186
187
189
189
190
190
191

192

193
194

[iv]



Table of Contents

The GPU frontend 196
The GPU backend 196
Fill Rate 197
Overdraw 198
Memory bandwidth 200
Lighting and shadowing 201
Forward Rendering 203
Deferred Shading 203
Vertex-Lit shading (legacy) 204
Global lllumination 204
Multithreaded Rendering 206
Low-level rendering APls 207
Detecting performance issues 207
Profiling rendering issues 208
Brute force testing 210
Rendering performance enhancements 212
Enabling/disabling GPU skinning 212
Reducing geometric complexity 212
Reducing tessellation 213
Employing GPU instancing 213
Using mesh-based LOD 214
Culling groups 216
Making use of Occlusion Culling 216
Optimizing Particle Systems 218
Making use of Particle System culling 218
Avoiding recursive Particle System calls 219
Optimizing Unity Ul 220
Using more Canvases 220
Separating objects between static and dynamic Canvases 222
Disabling Raycast Target for non-interactive elements 222
Hiding Ul elements by disabling the parent Canvas component 222
Avoiding Animator components 223
Explicitly defining the event camera for World Space Canvases 223
Don't use alpha to hide Ul elements 224
Optimizing ScrollRects 224
Make sure to use a RectMask2D 224

Disable Pixel Perfect for ScrollRects 224
Manually stop ScrollRect motion 225

Using empty UlText elements for full-screen interaction 225
Checking the Unity Ul source code 225
Checking the documentation 226
Shader optimization 226
Consider using shaders intended for mobile platforms 227
Using small data types 227
Avoiding changing precision while swizzling 228
Using GPU-optimized helper functions 229
Disabling unnecessary features 230
Removing unnecessary input data 230
Exposing only necessary variables 230

[v]



Table of Contents

Reducing mathematical complexity 230
Reducing texture sampling 231
Avoiding conditional statements 232
Reducing data dependencies 233
Surface Shaders 234
Use shader-based LOD 234
Using less texture data 235
Testing different GPU texture compression formats 235
Minimizing texture swapping 236
VRAM limits 237
Preloading textures with hidden GameObjects 237
Avoid texture thrashing 237
Lighting optimization 238
Using real-time shadows responsibly 238
Using culling masks 240
Using baked lightmaps 240
Optimizing rendering performance for mobile devices 241
Avoiding alpha testing 241
Minimizing draw calls 241
Minimizing Material count 242
Minimizing texture size 242
Making textures square and the power-of-two 243
Using the lowest possible precision formats in shaders 243
Summary 243

Section 3: Advance Optimizations

Chapter 7: Optimizations for Virtual and Augmented Reality 245
Overview of XR technology 246
Developing XR products 247

User comfort 249
Performance enhancements in XR 252
The kitchen sink 252
Single Pass versus Multi Pass Stereo rendering 253
Applying antialiasing 255
Using forward rendering 256
Applying image effects in VR 256
Backface culling 257
Spatialized audio 257
Avoiding camera physics collisions 257
Avoiding Euler angles 258
Exercise restraint 259
Keeping up to date with the latest developments 259
Summary 259

Chapter 8: Masterful Memory Management 260

The Mono platform 261
Memory domains 264

[vil



Table of Contents

The stack 265

The heap 265
Garbage collection 266
Memory fragmentation 267
Garbage collection at runtime 269
Threaded garbage collection 270

Code compilation 271
IL2CPP 272
Profiling memory 274
Profiling memory consumption 274
Profiling memory efficiency 275
Memory management performance enhancements 276
Garbage collection tactics 276
Manual JIT compilation 277
Value types and reference types 278
Pass by value and by reference 281

Structs are value types 283

Arrays are reference types 285

Strings are immutable reference types 286

String concatenation 288
StringBuilder 290

String formatting 290
Boxing 291
The importance of data layout 293
Arrays from the Unity API 294
Using InstancelDs for dictionary keys 295
foreach loops 296
Coroutines 297
Closures 297
The .NET library functions 298
Temporary work buffers 299
Object pooling 299
Prefab pooling 302
Poolable components 306

The Prefab pooling system 309

Prefab pools 312

Object spawning 313
Instance prespawning 314

Object despawning 315

Prefab pool testing 316

Prefab pooling and scene loading 317

Prefab pooling summary 318
IL2CPP optimizations 319
WebGL optimizations 319
Summary 320
Chapter 9: The Data-Oriented Technology Stack 321

[ vii ]



Table of Contents

The problem of multithreading 322
A small example 323
The Unity Job System 327
A basic job 327

A more complex example 330
The new ECS 335
Mixing ECS and jobs 336
The burst compiler 343
Summary 344
Chapter 10: Tactical Tips and Tricks 345
Editor hotkey tips 346
Working with GameObjects 346
Scene window 347
Arrays 348
Interface 349
In-editor documentation 350
Editor Ul tips 350
Script Execution Order 351
Editor files 351
The Inspector window 353
The Project window 355
The Hierarchy window 356
The Scene and Game windows 356
Playmode 358
Scripting tips 359
General 359
Attributes 359
Variable attributes 360

Class attributes 360
Logging 361
Useful links 361
Custom Editor scripts and menu tips 362
External tips 363
Other tips 364
Summary 365
Other Books You May Enjoy 366
Index 369

[ viii ]




Preface

User experience is a critical component of any game. This not only includes our game's
story and its gameplay but also how smoothly the graphics run, how reliably the game
connects to multiplayer servers, how responsive it is to user input, and even how large the
final application file size is due to the prevalence of mobile devices and cloud downloads.
The barrier of entry into game development has been lowered considerably thanks to tools
such as Unity, which offer an enormous array of useful development features while still
being accessible to individual developers. However, due to the amount of competition in
the gaming industry, the level of quality of the final product that our players expect us to
provide is increasing with every passing day. We should expect that players and critics can
and will scrutinize every facet of our game.

The goals of performance optimization are deeply entwined with user experience. Poorly
optimized games can result in low frame rates, freezes, crashes, input lag, long loading
times, inconsistent and jittery runtime behavior, physics engine breakdowns, and even
excessively high battery power consumption (an often-neglected metric for mobile devices).
Having just one of these issues can be a game developer's worst nightmare as reviews will
tend to focus on the one thing that we did poorly, ignoring all the things that we did well.

One goal of performance optimization is to make the best use of the available resources,
including CPU resources such as the number of cycles consumed, how much main memory
space we're using (known as RAM), as well as Graphics Processing Unit (GPU) resources,
which includes its own memory space (known as VRAM), Fill Rate, Memory Bandwidth,
and so on. However, the most important goal of performance optimization is to ensure that
no single resource causes a bottleneck at an inappropriate time and that the highest priority
tasks get taken care of first. Even small, intermittent hiccups and sluggishness in
performance can pull the player out of the experience, breaking the game immersion and
limiting our potential to create the experience we intended. Another consideration is that
the more resources we can save, the more activity we can afford to implement in our
games, allowing us to generate more exciting and dynamic gameplay.

It is also vital to decide when to take a step back and stop making performance
enhancements. In a world with infinite time and resources, there will always be another
way to make it better, faster, and more efficient. There must be a point during development
where we decide that the product has reached an acceptable level of quality. If not, we risk
dooming ourselves to repeatedly implementing changes that result in little or no tangible
benefit, while each change also risks the chance that we introduce more bugs.



Preface

The best way to decide whether a performance issue is worth fixing is to answer the
question, will the user notice it?. If the answer to this question is no, then performance
optimization will be a wasted effort. There is an old saying in software development:

Premature optimization is the root of all evil.

Premature optimization is the cardinal sin of reworking and refactoring code to enhance
performance without any proof that it is necessary. This can mean either making changes
without showing that a performance problem even exists, or making changes because we
only believe a performance issue might stem from a particular area before it has been
proven to be true.

Of course, the original version of this common saying by Donald Knuth goes on to say that
we should still write our code to avoid the more straightforward and obvious performance
problems. However, the real performance optimization work toward the end of a project
can take a lot of time, and we should plan the time to polish the product properly while
avoiding the desire to implement more costly and time-consuming changes without any
valid proof. These kinds of mistakes have cost software developers, as a collective whole, a
depressing number of work hours for nothing.

This book intends to give you the tools, knowledge, and skills you need to both detect and
fix performance issues in a Unity application, no matter where they stem from. These
bottlenecks can appear within hardware components such as the CPU, GPU, and RAM, or
within software subsystems such as physics, rendering, and the Unity engine itself.

Optimizing the performance of our games will give them a much better chance of
succeeding and standing out from the crowd in a marketplace that is inundated with new,
high-quality games every single day.

Who this book is for

The book is intended for game developers who want to learn optimization techniques for
building high performant games with the latest Unity version.

What this book covers

Chapter 1, Evaluating Performance Problems, provides an exploration of the Unity Profiler
and a series of methods to profile our application, detect performance bottlenecks, and
perform root cause analysis.

[2]



Preface

Chapter 2, Scripting Strategies, deals with the best practices for our Unity C# script code,
minimizing MonoBehaviour callback overhead, improving inter-object communication,
and more.

Chapter 3, The Benefits of Batching, explores Unity's dynamic batching and static batching
systems, and how they can be utilized to ease the burden on the rendering pipeline.

Chapter 4, Optimizing Your Art Assets, helps you to understand the underlying technology
behind art assets and learn how to avoid common pitfalls with importing, compression,
and encoding.

Chapter 5, Faster Physics, is about investigating the nuances of Unity's internal physics
engines for both 3D and 2D games, and how to properly organize our physics objects for
improved performance.

Chapter 6, Dynamic Graphics, provides an in-depth exploration of the rendering pipeline,
and how to improve applications that suffer rendering bottlenecks in the GPU or CPU, how
to optimize graphical effects such as lighting, shadows, and particle effects, ways in which
to optimize shader code, and some graphics optimization specific for mobile devices.

Chapter 7, Optimizations for Virtual and Augmented Reality, focuses on the new
entertainment mediums of VR and AR, and includes several techniques for optimizing
performance that is unique to apps built for these platforms.

Chapter 8, Masterful Memory Management, examines the inner workings of the Unity
engine, the Mono framework, and how memory is managed within these components to
protect our application from excessive heap allocations and runtime garbage collection.

Chapter 9, The Data-Oriented Technology Stack, examines the new Unity optimizations for
multithreading intensive games: DOTS. We introduce the new C# Job System, the new
Unity ECS, and the burst compiler.

Chapter 10, Tactical Tips and Tricks, concludes the book with a multitude of useful
techniques used by Unity professionals to improve project workflow and scene
management.

To get the most out of this book

The majority of this book will focus on features and enhancements that apply to Unity 2019
and Unity 2020. Many of the techniques explored within this book can be applied to Unity
2018 projects and older, but some features may be different. These differences will be
highlighted, where applicable.

[3]



Preface

It is worth noting that the code it is supposed to work on Unity 2020 but at the time of
writing we could only test it on the alpha version. Additional incompatibilities may arise
when Unity 2020 comes out of alpha.

Download the example code files

You can download the example code files for this book from your account at
www .packt . com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the Support tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Unity-Game-Optimization-Third-Edition.In
case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt-cdn.com/downloads/
9781838556518_ColorImages.pdf.

[4]


http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Unity-Game-Optimization-Third-Edition
https://github.com/PacktPublishing/Unity-Game-Optimization-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838556518_ColorImages.pdf

Preface

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "These can be accessed through the UnityEngine.Profiling.Profiler class
through its BeginSample () and EndSample () methods."

A block of code is set as follows:

void DoSomethingCompletelyStupid() {
Profiler.BeginSample ("My Profiler Sample");
List<int> 1listOfInts = new List<int>();
for(int i = 0; i < 1000000; ++1i) {
listOfInts.Add (1) ;

}
Profiler.EndSample () ;

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"When a Unity application is compiled in Development Mode."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

[5]



Preface

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[6]


https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

Section 1: Base Scripting
Optimization

The reader will learn how to identify performance bottleneck using the built-in Profiler and
how to fix the most common issues. The chapters in this section as follows:

e Chapter 1, Evaluating Performance Problems
® Chapter 2, Scripting Strategies



Evaluating Performance
Problems

Performance evaluation for most software products is a very scientific process. First, we
determine the maximum/minimum supported performance metrics, such as the allowed
memory usage, acceptable CPU consumption, and the number of concurrent users. Next,
we perform load testing against the application in scenarios with a version of the
application built for the target platform, and test it while gathering instrumentation data.
Once this data is collected, we analyze and search it for performance bottlenecks. If
problems are discovered, we complete a Root Cause Analysis (RCA), and then make
changes in the configuration or application code to fix the issue and repeat it.

Although game development is a very artistic process, it is still exceptionally technical. Our
game should have a target audience in mind, which can tell us what hardware limitations
our game might be operating under and, perhaps, tell us exactly what performance targets
we need to meet (particularly in the case of console and mobile games). We can perform
runtime testing on our application, gather performance data from multiple subsystems
(CPU, GPU memory, the physics engine, the Rendering Pipeline, and so on), and compare
them against what we consider to be acceptable. We can then use this data to identify
bottlenecks in our application, perform additional instrumentation measurements, and
determine the root cause of the issue. Finally, depending on the type of problem, we should
be capable of applying a number of solutions to improve our application's performance.



Evaluating Performance Problems Chapter 1

However, before we spend even a single moment making performance fixes, we will first
need to prove that a performance problem exists. It is unwise to spend time rewriting and
refactoring code until there is a good reason to do so since pre-optimization is rarely worth
the hassle. Once we have proof of a performance issue, the next task is figuring out exactly
where the bottleneck is located. It is important to ensure that we understand why the
performance issue is happening; otherwise, we could waste even more time applying fixes
that are little more than educated guesses. Doing so often means that we only fix a
symptom of the issue, not its root cause, and so we risk it manifesting itself in other ways in
the future, or in ways we haven't yet detected.

In this chapter, we will explore the following:

e How to gather profiling data using the Unity Profiler
¢ How to analyze Profiler data for performance bottlenecks
¢ Techniques to isolate a performance problem and determine its root cause

With a thorough understanding of the problems you're likely to face, you will then be
ready for the information presented in the remaining chapters, where you will learn what
solutions are available for the types of issue we detect.

Gathering profiling data using the Unity
Profiler

The Unity Profiler is built into the Unity Editor itself and provides an expedient way of
narrowing down our search for performance bottlenecks by generating usage and statistics
reports on a multitude of Unity3D subsystems during runtime. The different subsystems
for which it can gather data are listed as follows:

e CPU consumption (per-major subsystem)

e Basic and detailed rendering and GPU information

¢ Runtime memory allocations and overall consumption
¢ Audio source/data usage

¢ Physics engine (2D and 3D) usage

e Network messaging and operation usage

¢ Video playback usage

e Basic and detailed user interface performance

o Global Illumination (GI) statistics

[9]



Evaluating Performance Problems Chapter 1

There are generally two approaches to making use of a profiling tool: instrumentation and
benchmarking (although, admittedly, the two terms are often used interchangeably).

Instrumentation typically means taking a close look into the inner workings of the
application by observing the behavior of targeted function calls, where/how much memory
is being allocated, and, generally getting an accurate picture of what is happening with the
hope of finding the root cause of a problem. However, this is normally not an efficient way
of starting to identify performance problems because profiling of any application comes
with a performance cost of its own.

When a Unity application is compiled in Development Mode (determined by the
Development Build flag in the Build Settings menu), additional compiler flags are enabled
causing the application to generate special events at runtime, which get logged and stored
by the Profiler. Naturally, this will cause additional CPU and memory overhead at runtime
due to all of the extra workload the application takes on. Even worse, if the application is
being profiled through the Unity Editor, then even more CPU and memory use will be
incurred, ensuring that the Editor updates its interface, renders additional windows (such
as the Scene window), and handles background tasks. This profiling cost is not always
negligible. In excessively large projects, it can sometimes cause all kinds of inconsistent and
unexpected behavior when the Profiler is enabled: Unity can go out of memory, some
scripts may refuse to run, physics may stop being updated (the time used for a frame may
be so large that the physics engine reaches the maximum allowed updates per frame), and
more. This is a necessary price we pay for a deep analysis of our code's behavior at runtime,
and we should always be aware of its implications. Therefore, before we get ahead of
ourselves and start analyzing every line of code in our application, it would be wiser to do
some benchmarking.

Benchmarking involves performing a surface-level measurement of the application. We
should gather some rudimentary data and perform test scenarios during a runtime session
of our game while it runs on the target hardware; the test case could simply be, for
example, a few seconds of gameplay, playback of a cutscene, or a partial playthrough of a
level. The idea of this activity is to get a general feel for what the user might experience and
keep watching for moments when performance becomes noticeably worse. Such problems
may be severe enough to warrant further analysis.

The important metrics we're interested in when we carry out a benchmarking process are
often the number of frames per-second (FPS) being rendered, overall memory
consumption, how CPU activity behaves (looking for large spikes in activity), and
sometimes CPU/GPU temperature. These are all relatively simple metrics to collect and can
be used as a go-to first approach to performance analysis for one important reason: it will
save us an enormous amount of time in the long run. It ensures that we only spend our
time investigating problems that users would notice.

[10]



Evaluating Performance Problems Chapter 1

We should dig deeper into instrumentation only after a benchmarking test indicates that
further analysis is required. It is also very important to benchmark by simulating actual
platform behavior as much as possible if we want a realistic data sample. As such, we
should never accept benchmarking data that was generated through Editor mode as being
representative of real gameplay, since Editor mode comes with some additional overhead
costs that might mislead us, or hide potential race conditions in a real application. Instead,
we should hook the profiling tool into the application while it is running in a standalone
format on the target hardware.

Many Unity developers are surprised to find that the Editor sometimes calculates the
results of operations much faster than a standalone application does. This is particularly
common when dealing with serialized data such as audio files, Prefabs, and scriptable
objects. This is because the Editor will cache previously imported data and is able to access
it much faster than a real application would.

Now, let's cover how to access the Unity Profiler and connect it to the target device so that
we can start to make accurate benchmarking tests.

Users who are already familiar with connecting the Unity Profiler to their
applications can skip to the section entitled The Profiler window.

Launching the Profiler

We will begin with a brief tutorial on how to connect our game to the Unity Profiler within
a variety of contexts:

e Local instances of the application, either through the Editor or a standalone
instance

¢ Local instances of a WebGL application running in a browser

¢ Remote instances of the application on an iOS device (for example, iPhone or
iPad)

¢ Remote instances of the application on an Android device (for example, an
Android tablet or phone)

e Profiling the Editor itself

We will briefly cover the requirements for setting up the Profiler in each of these contexts.

[11]



Evaluating Performance Problems Chapter 1

Editor or standalone instances

In this instance, the only way to access the Profiler is to launch it through the Unity Editor
and connect it to a running instance of our application. We will use the same Profiler
windows irrespective of whether we execute our game in Playmode within the Editor,
running a standalone application on the local or remote device, or wish to profile the Editor
itself.

To open Profiler, navigate to Window | Analysis | Profiler within the Editor or use Ctrl +
7 (or cmd + 7 on macOS):

GameObject Component Help <SP O ‘a

Minimize #8M inux Standalone - Unity 2020.1.0a8 Perso
I [o]center

Zoom
# Scene
Shaded

fdLocal

Bring All to Front
Layouts >

o All

Asset Store #9 |
Package Manager

Asset Management

TextMeshPro

General
Rendering
Animation
Audio
Sequencing
Analysis Profiler

Frame Debugger

Physics Debugger

VVYVRAAV VVYY VvV YV

UlElements Debugger
IMGUI Debugger S5

If the Editor is already running in Playmode, then we should see profiling data
continuously populating the Profiler window.

To profile standalone projects, ensure that the Development Build and Autoconnect
Profiler flags are enabled when the application is built.

[12]



Evaluating Performance Problems Chapter 1

Choosing whether to profile an Editor-based instance (through the Editor's Playmode) or a
standalone instance (built and running separately from the Editor) can be achieved through
the Connected Player option in the Profiler window:

© Profiler

Profiler Modules

4

OSXPlayer(phoebe) v| @ | | » | #H Frame: 1840 / 1840 Clear

&, CPU Usage Playmode

m Renderin Editor

m Scripts J v 0OSXPlayer(phoebe)
g 127.0.0.1

= Physics 0.0

<Enter IP>

1 Animation

m GarbageCollector
m VSync

® Global lllumination
m Ul

m Others

4ms (250FPS)

Tms (1T000FPS) N LA TRA RGN L JEEEENE A A B B R S & A4 A

Note that switching back to the Unity Editor while profiling a separate
standalone project will halt all data collection since the application will
not be updated while it is in the background.

Connecting to a WebGL instance

The Profiler can also be connected to an instance of the Unity WebGL Player. This can be
achieved by ensuring that the Development Build and Autoconnect Profiler flags are
enabled when the WebGL application is built and run from the Editor. The application will
then be launched through the operating system's default browser. This enables us to profile
our web-based application in a more real-world scenario through the target browser and
test multiple browser types for inconsistencies in behavior (although this requires us to
keep changing the default browser).

Unfortunately, the Profiler connection can only be established when the application is first
launched from the Editor. It currently cannot be connected to a standalone WebGL instance
already running in a browser. This limits the accuracy of benchmarking WebGL
applications since there will be some Editor-based overhead, but it's the only option we
have available for the moment.

[13]



Evaluating Performance Problems Chapter 1

Remote connection to an iOS device

The Profiler can also be connected to an active instance of an application running remotely
on an iOS device, such as an iPad or iPhone. This can be achieved through a shared Wi-Fi
connection.

Note that remote connection to an iOS device is only possible when Unity
0 (and hence the Profiler) is running on an Apple Mac device.

Observe the following steps to connect the Profiler to an iOS device:

1. Ensure that the Development Build and Autoconnect Profiler flags are enabled
when the application is built

2. Connect both the iOS device and macOS device to a local Wi-Fi network, or to an
ad hoc Wi-Fi network

3. Attach the iOS device to the macOS via the USB or Lightning Cable

Begin building the application with the Build & Run option as usual

5. Open the Profiler window in the Unity Editor and select the device under
Connected Player

-~

You should now see the iOS device's profiling data gathering in the Profiler window.

that these ports are available for outbound traffic if there is a firewall on
the network.

8 The Profiler uses ports 54998 to 55511 to broadcast profiling data. Ensure

To troubleshoot problems with building iOS applications and connecting the Profiler to
them, consult the following documentation page: https://docs.unity3d.com/Manual/
TroubleShootingIPhone.html.

Remote connection to an Android device

There are two different methods for connecting an Android device to the Unity Profiler:
either through a Wi-Fi connection or by using the Android Debug Bridge (ADB) tool.
Either of these approaches will work from an Apple macOS, or a Windows PC.

[14]


https://docs.unity3d.com/Manual/TroubleShootingIPhone.html
https://docs.unity3d.com/Manual/TroubleShootingIPhone.html
https://docs.unity3d.com/Manual/TroubleShootingIPhone.html
https://docs.unity3d.com/Manual/TroubleShootingIPhone.html
https://docs.unity3d.com/Manual/TroubleShootingIPhone.html
https://docs.unity3d.com/Manual/TroubleShootingIPhone.html
https://docs.unity3d.com/Manual/TroubleShootingIPhone.html
https://docs.unity3d.com/Manual/TroubleShootingIPhone.html
https://docs.unity3d.com/Manual/TroubleShootingIPhone.html
https://docs.unity3d.com/Manual/TroubleShootingIPhone.html
https://docs.unity3d.com/Manual/TroubleShootingIPhone.html
https://docs.unity3d.com/Manual/TroubleShootingIPhone.html
https://docs.unity3d.com/Manual/TroubleShootingIPhone.html
https://docs.unity3d.com/Manual/TroubleShootingIPhone.html

Evaluating Performance Problems Chapter 1

Perform the following steps to connect an Android device over a Wi-Fi connection:

1. Ensure that the Development Build and Autoconnect Profiler flags are enabled
when the application is built

Connect both the Android and desktop devices to a local Wi-Fi network
Attach the Android device to the desktop device via a USB cable
Begin building the application with the Build & Run option as usual

S N

Open the Profiler window in the Unity Editor and select the device under
Connected Player

The application should then be built and pushed to the Android device through the USB
connection, and the Profiler should connect through the Wi-Fi connection. You should then
see the Android device's profiling data gathering in the Profiler window.

The second option is to use ADB. This is a suite of debugging tools that comes bundled
with the Android Software Development Kit (SDK). For ADB profiling, perform the
following steps:

1. Ensure that the Android SDK is installed by following Unity's guide for Android
S[)KJPJEH(Seth:https://docs.unitde.com/Manual/androidfsdksetup.html

2. Connect the Android device to your desktop machine via the USB cable

3. Ensure that the Development Build and Autoconnect Profiler flags are enabled
when the application is built

4. Begin building the application with the Build & Run option as usual

5. Open the Profiler window in the Unity Editor and select the device under
Connected Player

You should now see the Android device's profiling data gathering in the Profiler window.

To troubleshoot problems with building Android applications and connecting the Profiler
to them, consult the following documentation page: https://docs.unity3d.com/Manual/
TroubleShootingAndroid.html.

Editor profiling

We can profile the Editor itself. This is normally used when trying to profile the
performance of custom editor scripts. This can be achieved by enabling the Profile Editor
option in the Profiler window and configuring the Connected Player option to Editor, as
shown in the following screenshot:

[15]


https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/android-sdksetup.html
https://docs.unity3d.com/Manual/TroubleShootingAndroid.html
https://docs.unity3d.com/Manual/TroubleShootingAndroid.html
https://docs.unity3d.com/Manual/TroubleShootingAndroid.html
https://docs.unity3d.com/Manual/TroubleShootingAndroid.html
https://docs.unity3d.com/Manual/TroubleShootingAndroid.html
https://docs.unity3d.com/Manual/TroubleShootingAndroid.html
https://docs.unity3d.com/Manual/TroubleShootingAndroid.html
https://docs.unity3d.com/Manual/TroubleShootingAndroid.html
https://docs.unity3d.com/Manual/TroubleShootingAndroid.html
https://docs.unity3d.com/Manual/TroubleShootingAndroid.html
https://docs.unity3d.com/Manual/TroubleShootingAndroid.html
https://docs.unity3d.com/Manual/TroubleShootingAndroid.html
https://docs.unity3d.com/Manual/TroubleShootingAndroid.html
https://docs.unity3d.com/Manual/TroubleShootingAndroid.html

Evaluating Performance Problems

Chapter 1

© Profiler |

Profiler Modules

4

% cPU Usage

= Rendering

m Scripts

m Physics

= Animation

m GarbageCollector
m VSync

® Global lllumination
m Ul

m Others

Editor ¥ L

Playmode

v Editor

127.0.0.1
<Enter IP>

4ms (250FPS)

1ms (1000FPS)

® [Frame: 2978 /

Note that both options must be configured if we want to profile the Editor: if nothing
happens in the graph, then it is possible you have not selected the Profile Editor button, or
you may accidentally be connected to another game build!

The Profiler window

We will now cover the essential features of the Profiler as they can be found within the

interface.

The Profiler window is split into four main sections:

Profiler Controls

Timeline View
Breakdown View Controls
Breakdown View

These sections are shown in the following screenshot:

Profiler
Controls

Timeline View

Breakdown
View Controls

Breakdown
View

© Profiler |

Profiler Modules
8, CPU Usage

m Rendering

m Scripts

m Physics

= Animation

® GarbageCollector
= VSync

™ Global lllumination
= Ul

m Others

9, Rendering
= Batches

Hierarchy v | 'Main Thread

v Playmode | @ | M | i | » |Frame: 753 / 753| Clear

v CPU:186.29ms GPU:--ms 2

Clear on Play Deep Profile Call Stacks

* | No Details

5]

Overview

Total

Self Calls GCAlloc | Timems

Self ms

EditorLoop
» PlayerLoop
» Profiler.CollectEditorStats

99.4%

0.4%
0.0%

99.4% 2 0B 185.29
0.0% 2 0B 0.83
0.0% 1 0B 0.12

185.29
0.06
0.00

[16]



Evaluating Performance Problems Chapter 1

We'll now cover each of these sections in detail.

Timeline View has a lot of colors, but not everyone sees colors in the
same way. Luckily, if you are colorblind, Unity has thought of you! In the
top-right hamburger menu, you can enable Color Blind Mode:

Color Blind Mode

Maximize
Close Tab

Add Tab >

UlElements Debugger  fnF5

Profiler controls

The top bar in the previous screenshot contains multiple drop-down and toggle buttons we
can use to affect what is being profiled and how deeply in the subsystem that data is
gathered from. These are covered in the next subsections.

Add Profiler

By default, the Profiler will collect data for several different subsystems that cover

the majority of the Unity engine's subsystems in Timeline View. These subsystems

are organized into various areas containing relevant data. The Add Profiler option can be
used to add additional areas or restore them if they have been removed. Refer to the
Timeline View section for a complete list of subsystems we can profile.

[17]



Evaluating Performance Problems Chapter 1

Playmode

The Playmode drop-down lets us select the target instance of Unity we want to profile. This
can be the current Editor application, a local standalone instance of our application, or an
instance of our application running on a remote device.

Record

Enabling the Record option (the record icon) makes the Profiler record profiling data. This
will happen continuously while this option is enabled. Note that runtime data can only be
recorded if the application is actively running. For an app running in the Editor, this means
that Playmode must be enabled and it should not be paused; alternatively, for a standalone
app, it must be the active window. If Profile Editor is enabled, then the data that appears
will be collected for the Editor itself.

Deep Profile

Ordinary profiling will only record the time and memory allocations made by common
Unity callback methods, such as Awake (), Start (), Update (), and FixedUpdate ().
Enabling the Deep Profile option recompiles our scripts with a much deeper level of
instrumentation, allowing it to measure each and every invoked method. This causes a
significantly greater instrumentation cost during runtime than normal, and uses
substantially more memory since data is being collected for the entire callstack at runtime.
As a consequence, deep profiling may not even be possible in large projects, as Unity may
run out of memory before testing even begins, or the application may run so slowly as to
make the test pointless.

Note that toggling Deep Profile requires the entire project to be
completely recompiled before profiling can begin again, so it is best to
avoid toggling the option back and forth between tests.

Since this option blindly measures the entire callstack, it would be unwise to keep it
enabled during most of our profiling tests. This option is best reserved for when default
profiling does not provide sufficient detail to figure out the root cause, or if we're testing
the performance of a small test scene, which we're using to isolate certain activities.

If deep profiling is required for larger projects and scenes, but the Deep Profile option is
too much of a hindrance during runtime, then there are alternative approaches that can be
used to perform more detailed profiling; see the upcoming section entitled Targeted profiling
of code segments.

[18]



Evaluating Performance Problems Chapter 1

Allocation Callstack

By activating the Allocation Callstack option, Unity Profiler will collect more info about
the game's memory allocations without requiring Deep Profile:

Main Thread

Render Thread

I Scripting Threads
" Background Job

> Profiler
- Other Threads

> Progressiveabs
I Cloudjob
P> Bakinglobs

If the option is enabled, you can click on the red boxes representing memory allocations
and Profiler will show you the origin and the cause of that memory allocation:

|| Hierarchy - CPU:254.34ms_ GPU—-ms TG Show Related Objects = B
Overview Total Self calls GC Alloc Timems | Self ms A AW | Name Total GC Alloc Time ms

GC.Alloc X 2 N/A 0.0% 178 0.00

GC.Alloc 0.0% 0.0% 1 178 0.00 0.00

Shadows.CullingCallbacks 0.0% 0.0% 1 0B 0.00 0.00

Callstack:
0 libmonobdwgc-2.0.dylib 0x000000013cb5ab65 mono_
1 libmonobdwgc-2.0.dylib 0x000000013cb5aa26 mono_
2 libmonobdwgc-2.0.dylib 0x000000013cb5abe6 ves_ical
3 m 0x000000013d591790 0x0 + 5324216
4 libmonobdwgc-2.0.dylib 0x000000013c9957e8 mono_j
5 libmonobdwgc-2.0.dylib 0x000000013cb56f81 do_runt
6 libmonobdwgc-2.0.dylib 0x000000013cb56edf mono_r
7 Unity 0x000000010476a5dd _ZN19Scripting!
8 Unity 0x000000010476a351 _ZN19Scripting
9 Unity 0x000000010170bd6a _ZN9Scripting1
10 Unity 0x0000000101c33ad2 _Z11InputUpda
11 Unity 0x0000000101c39317 _ZZ30Internall
12 Unity 0x0000000104121ec7 _z22PlayerSend
13 Unity 0x00000001027d252b _ZN17Repaint
14 Unity 0x00000001035143eb _Z62EditorGUl

15 (Mono JIT Code) (wrapper managed-to-native) UnityEditor.Editor
6 7 0x0000000000000000 0x0 + 0
0x0000000000000000 0x0 + 0
OXFFFFF00000000 00 + 1844674406
0x0000000000002000 0x0 + 8192
0x0000000400000000 0x0 + 1717986
0x000000000000008¢ 0x0 + 140
0x0000000000000000 0x0 + 0
0x0000000000000000 0x0 + 0
0x0000000000000000 0x0 + 0
0x0000000000000000 0x0 + 0

In Hierarchy view, instead, you still need to select an allocation call. Then, you need to
switch to Show Related Objects in the drop-down menu in the upper-right corner and
then select one of the N/A objects. After that, you'll see Callstack info in the box
underneath.

[19]



Evaluating Performance Problems Chapter 1

We will talk more about memory allocations in Chapter 8, Masterful Memory Management.

At the time of writing, in Unity 2019.1, Allocation Callstack works only
when profiling in the Editor.

Clear

The Clear button clears all profiling data from Timeline View.

Load

The Load icon button will open up a dialog window to load in any previously saved
profiling data (by using the Save option).

Save

The Save icon button saves any Profiler data currently presented in Timeline View to a
file. Only 300 frames of data can be saved in this fashion at a time, and a new file must be
manually created for any more data. This is typically sufficient for most situations, since,
when a performance spike occurs, we then have about five to ten seconds to pause the
application and save the data for future analysis (such as attaching it to a bug report) before
it gets pushed off the left-hand side of Timeline View. Any saved Profiler data can be
loaded into the Profiler for future examination using the Load option.

Frame Selection

The frame selection area is composed of several sub-elements. The Frame Counter shows
how many frames have been profiled and which frame is currently selected in Timeline
View. There are two buttons to move the currently selected frame forward or backward by
one frame and a third button (the Current button) that resets the selected frame to the most
recent frame and keeps that position. This will cause Breakdown View to always show
profiling data for the current frame during runtime profiling; it will display the word
Current.

[20]



Evaluating Performance Problems Chapter 1

Timeline View

Timeline View reveals during runtime,

¢ A graphical representation of profiling data on the right

* A series of checkboxes (the colored squares in the following screenshot) to
enable/disable different activities/data types on the left:

8 CcPU Usage

m Rendering

m Scripts

m Physics

= Animation

m GarbageCollector
m VSync

m Global lllumination
m Ul

m Others

Tms (1000FPS)

L

9, Rendering
= Batches

m SetPass Calls
m Triangles

o Vertices

These colored boxes can be toggled, which changes the visibility of the corresponding data
types within the graphical section of Timeline View.

When an area is selected in Timeline View, more detailed information for that subsystem
will be revealed in Breakdown View (beneath Timeline View) for the currently selected
frame. The kind of information displayed in Breakdown View varies depending on which
area is currently selected in Timeline View.

Areas can be removed from Timeline View by clicking on the X in the top-right corner of
an area. If you want to show an area that you removed again, you can use the Add Profiler
option in the Controls bar.

At any time, we can click a location in the graphical part of Timeline View to reveal
information about a given frame. A large vertical white bar will appear (usually with some
additional information on either side coinciding with the line graphs), showing us which
frame is selected.

[21]



Evaluating Performance Problems Chapter 1

Depending on which area is currently selected (determined by which area is currently
highlighted in blue), different information will be available in Breakdown View, and
different options will be available in Breakdown View Controls. Changing the area that is
selected is as simple as clicking on the relevant box on the left-hand side of Timeline View
or on the graphical side; however, clicking inside the graphical area might also change
which frame has been selected, so be careful clicking in the graphical area if you wish to see
Breakdown View information for the same frame.

Breakdown View Controls

Different dropdowns and toggle button options will appear within Breakdown View
Controls, depending on which area is currently selected in Timeline View. Different areas
offer different controls, and these options dictate what information is available, and how
that information is presented in Breakdown View.

Breakdown View

The information revealed in Breakdown View will vary enormously based on which area
is currently selected and which Breakdown View Controls options are selected. For
instance, some areas offer different modes in a dropdown within Breakdown View
Controls, which can provide Simple or Detailed views of the information or even a
graphical layout of the same information so that it can be parsed more easily.

Now, let's cover each area and the different kinds of information and options available in
Breakdown View.

The CPU Usage area

This area shows data for all CPU Usage and statistics. It is perhaps the most complex and
useful since it covers a large number of Unity subsystems, such as

MonoBehaviour components, cameras, some rendering and physics processes, the user
interface (including the Editor's interface, if we're running through the Editor), audio
processing, the Profiler itself, and more.

There are three different modes for displaying CPU Usage data in Breakdown View:

e Hierarchy mode
¢ Raw Hierarchy mode
e Timeline mode

[22]



Evaluating Performance Problems Chapter 1

Let's take a look at each of these modes individually:

¢ Hierarchy mode reveals most callstack invocations, while grouping similar data
elements and global Unity function calls together for convenience. For instance,
rendering delimiters, such as BeginGUI () and EndGUI () calls, are combined
together in this mode. Hierarchy mode is helpful as an initial first step for
determining which function calls take the most CPU time to execute.

e Raw Hierarchy mode is similar to Hierarchy mode, except it will separate global
Unity function calls into separate entries rather than their being combined into
one bulk entry. This will tend to make Breakdown View more difficult to read,
but may be helpful if we're trying to count how many times a particular global
method is invoked, or for determining whether one of these calls is costing more
CPU/memory than anticipated. For example, each BeginGUI () and EndGUI ()
call will be separated into different entries, making it clearer how many times
each is being called compared to the Hierarchy mode.

Perhaps the most useful mode for the CPU Usage area is the Timeline mode
option (not to be confused with the main Timeline View). This mode organizes
CPU Usage during the current frame in line with how the callstack expanded and
contracted during processing.

¢ Timeline mode organizes Breakdown View vertically into different sections that
represent different threads at runtime, such as Main Thread, Render Thread,
and various background job threads called the Unity Job System, used for
loading activities such as scenes and other assets. The horizontal axis represents
time, so wider blocks are consuming more CPU time than narrower blocks. The
horizontal size also represents relative time, making it easy to compare how
much time one function call took compared to another. The vertical axis
represents the callstack, so deeper chains represent more calls in the callstack at
that time.

Under Timeline mode, blocks at the top of Breakdown View are functions (or,
technically, callbacks) called by the Unity Engine at runtime (such as Start (),
Awake (), or Update () ), whereas blocks beneath them are functions that those
functions had called into, which can include functions on other components or
regular C# objects.

The Timeline mode offers a very clean and organized way to determine which particular
method in the callstack consumes the most time and how that processing time measures up
against other methods being called during the same frame. This allows us to gauge the
method that is the biggest cause of performance problems with minimal effort.

[23]



Evaluating Performance Problems Chapter 1

For example, let's assume that we are looking at a performance problem in the following
screenshot. We can tell, with a quick glance, that there are three methods that are causing a
problem, and they each consume similar amounts of processing time, due to their similar
widths:

Timeline N CPL28.73ms GPWIO.00ms
Main Thread

UIUpdate Update() date()
B.54ms

Fender Thread

Unity Job System

In the previous screenshot, we have exceeded our 16.667 ms budget with calls to three
different MonoBehaviour components. The good news is that we have three possible
methods through which we can find performance improvements, which means lots of
opportunities to find code that can be improved. The bad news is that increasing the
performance of one method will only improve about one-third of the total processing for
that frame. Hence, all three methods may need to be examined and optimized in order get
back under budget.

It's a good idea to collapse the Unity Job System list when using Timeline
mode, as it tends to obstruct the visibility of items shown in the Main
Thread block, which is probably what we're most interested in.

In general, the CPU Usage area will be most useful for detecting issues that can be solved
by solutions that will be explored in chapter 2, Scripting Strategies.

The GPU Usage area

The GPU Usage area is similar to the CPU Usage area, except that it shows method calls
and processing time as it occurs on the GPU. Relevant Unity method calls in this area will
relate to cameras, drawing, opaque and transparent geometry, lighting and shadows, and
SO on.

[24]



Evaluating Performance Problems Chapter 1

The GPU Usage area offers hierarchical information similar to the CPU Usage area and
estimates the time spent calling into various rendering functions such

as Camera.Render () (provided rendering actually occurs during the frame currently
selected in Timeline View).

The GPU Usage area will be a useful tool to refer to when you go through chapter ¢,
Dynamic Graphics.

The Rendering area

The Rendering area provides some generic rendering statistics that tend to focus on
activities related to preparing the GPU for rendering, which involves a set of activities that
occur on the CPU (as opposed to the act of rendering, which is an activity handled within
the GPU and is detailed in the GPU Usage area). Breakdown View offers useful
information, such as the number of SetPass calls (otherwise known as draw calls), the total
number of batches used to render the scene, the number of batches saved from dynamic
batching and static batching and how they are being generated, and memory consumed for
textures.

The Rendering area also offers a button to open Frame Debugger, which will be explored
more in Chapter 3, The Benefits of Batching. The remainder of this area's information will
prove useful when you go through chapter 3, The Benefits of Batching, and Chapter 6,
Dynamic Graphics.

The Memory area

The Memory area allows us to inspect the memory usage of the application in Breakdown
View in the following two modes:

¢ Simple mode
¢ Detailed mode

Simple mode provides only a high-level overview of the memory consumption of
subsystems. This include Unity's low-level Engine, the Mono framework (total heap size
that is being watched by the garbage collector), graphical assets, audio assets and buffers,
and even memory used to store data collected by the Profiler.

Detailed mode shows memory consumption of individual GameObjects and
MonoBehaviours for both their native and managed representations. It also has a column
explaining the reason why an object may be consuming memory and when it might be
deallocated.

[25]



Evaluating Performance Problems Chapter 1

The garbage collector is a common feature provided by C#—the Unity's
scripting language of choice—that automatically releases any memory we
have allocated to store data; but, if it is handled poorly, it has the potential
to stall our application for brief moments. This topic, and many more
related topics, such as native and managed memory spaces, will be
explored in Chapter 8, Masterful Memory Management.

Note that information only appears in Detailed mode through manual sampling by
clicking on the Take Sample <TargetName> button. This is the only way to gather
information when using Detailed mode, since performing this kind of analysis
automatically for each update would be prohibitively expensive:

B Object Count
[ Total GC Allocated
N CC Allocated

Detailed | Take Sample Editor | Gather object references | Memory usage in the Editor is not the same as it would be in a Player. |
Name |Memor~,r
» Other (155) 0.99 CB
b Assets (836) 91.0 MB
P Builtin Resources (573) 9.9 MB

» Not Saved (175) 4.0 MB

> Scene Memaory (66) 126.5 KB

Breakdown View also provides a button labelled Gather Object References, which can
gather more in-depth memory information pertaining to some objects.

The Memory area will be a useful tool to use when we dive into the complexities of
memory management, native versus managed memory, and the garbage collector in
Chapter 8, Masterful Memory Management.

The Audio area

The Audio area grants an overview of audio statistics and can be used both to measure
CPU Usage from the audio system and total memory consumed by audio sources (both for
those that are playing or paused) and audio clips.

Breakdown View provides lots of useful insights into how the audio system is operating
and how various audio channels and groups are being used.

The Audio area may come in handy as we explore art assets in Chapter 4, Optimizing Your
Art Assets.

[26]




Evaluating Performance Problems Chapter 1

but audio can become a surprisingly large source of bottlenecks if it is not
managed properly due to the potential amount of hard disk access and

8 Audio is often overlooked when it comes to performance optimization,
CPU processing required. Don't neglect it!

The Physics 3D and Physics 2D areas

There are two different physics areas, one for Physics 3D (NVIDIA 's PhysX), and another
for the Physics 2D system (Box2D). This area provides various physics statistics, such as
Rigidbody, Collider, and Contact counts.

The Breakdown View for each physics area provides some rudimentary insight into the
subsystem's inner workings, but we can gain further insight by exploring the physics
debugger, which we will introduce in chapter 5, Faster Physics.

The network messages and network operations areas

These two areas provide information about Unity's networking system, which was
introduced during the Unity 5 release cycle. The information present will depend on
whether the application is using the High-Level API (HLAPI) or Transport Layer

API (TLAPI) provided by Unity. HLAPI is an easier-to-use system for managing player
and GameObject network synchronization automatically, whereas TLAPI is a thin layer
that operates just above the socket level, allowing Unity developers to conjure up their own
networking system.

Optimizing network traffic is a subject that fills an entire book all by itself, where the right
solution is typically very dependent on the particular needs of the application. This will not
be a Unity-specific problem, and, as such, the topic of network traffic optimization will not
be explored in this book.

The Video area

If our application happens to make use of Unity's VideoPlayer API, then we might find this
area useful for profiling video playback behavior.

Optimization of media playback is also a complex, non-Unity-specific topic and will not be
explored in this book.

[27]



Evaluating Performance Problems Chapter 1

The UI and Ul Details areas

These areas provide insight into applications making use of Unity's built-in user interface
system. If we're using a custom-built or third-party user interface system (such as the
popular Asset Store plugin Next-Gen UI (NGUI)), then these areas will probably provide
little benefit.

A poorly optimized user interface can often affect one or both of the CPU and GPU, so we
will investigate some code optimization strategies for Uls in cChapter 2, Scripting Strategies,
and graphics-related approaches in chapter 6, Dynamic Graphics.

The Global Illumination area

The Global Illumination area gives us a very detailed insight into Unity's GI system. If our
application makes use of GI, then we should refer to this area to verify that it is performing

properly.

This area may prove useful as we explore lighting and shadowing in chapter 6, Dynamic
Graphics.

Best approaches to performance analysis

Good coding practices and project asset management often make finding the root cause of a
performance issue relatively simple, at which point the only real problem is figuring out
how to improve the code. For instance, if the method only processes a single gigantic

for loop, then it will be a pretty safe assumption that the problem is either with how many
iterations the loop is performing, whether or not the loop is causing cache misses by
reading memory in a non-sequential fashion, how much work is done in each iteration, or
how much work it takes to prepare for the next iteration.

Of course, whether we're working individually or in a group setting, a lot of our code is not
always written in the cleanest way possible, and we should expect to have to profile some
poor coding work from time to time. Sometimes, we are forced to implement a

hacky solution for the sake of speed, and we don't always have the time to go back and
refactor everything to keep up with our best coding practices. In fact, many code changes
made in the name of performance optimization tend to appear very strange or arcane, often
making our code base more difficult to read. The common goal of software development is
to make code that is clean, feature-rich, and fast. Achieving one of these is relatively easy,
but the reality is that achieving two will cost significantly more time and effort, while
achieving all three is a near-impossibility.

[28]



Evaluating Performance Problems Chapter 1

At its most basic level, performance optimization is just another form of problem solving,
and when we overlook the obvious while problem solving, it can be an expensive mistake.
Our goal is to use benchmarking to observe our application looking for instances of
problematic behavior, and to then use instrumentation to hunt through the code for clues
about where the problem originates. Unfortunately, it's often very easy to get distracted by
invalid data or jump to conclusions because we're being too impatient or have overlooked a
subtle detail. Many of us have run into occasions during software debugging where we
could have found the root cause of the problem much faster if we had simply challenged
and verified our earlier assumptions. Hunting down performance issues is no different.

A checklist of tasks would be helpful to keep us focused on the issue, and ensure we don't
waste time by trying to implement any possible optimization that has no effect on the main
performance bottleneck. Of course, every project is different, with its own unique
challenges to overcome, but the following checklist is general enough that it should be able
to apply to any Unity project:

Verify that the target script is present in the scene

Verify that the script appears in the scene the correct number of times

Verify the correct order of events
¢ Minimize ongoing code changes
e Minimize internal distractions
e Minimize external distractions

Verifying script presence

Sometimes, there are things we expect to see, but don't. These are usually easy to spot
because the human brain is very good at pattern recognition and spotting differences we
didn't expect. However, there are also times where we assume that something has been
happening, but it didn't. These are generally more difficult to notice, because we're often
scanning for the first kind of problem, and we’re assuming that the things we don't see are
working as intended. In the context of Unity, one problem that manifests itself this way is
verifying that the scripts we expect to be operating are actually present in the scene.

Script presence can be quickly verified by typing the following into the Hierarchy window
textbox:

t :<monobehaviour name>

[29]



Evaluating Performance Problems Chapter 1

For example, typing t :mytestmonobehaviour (note that it is not case-sensitive) into the
Hierarchy textbox will show a shortlist of all GameObjects that currently have at least one
MyTestMonoBehaviour script attached as a component.

Note that this shortlist feature also includes any GameObjects with
components that derive from the given script name.

We should also double check that the GameObjects they are attached to are still enabled,
since we may have disabled them during earlier testing since someone or something may
have accidentally deactivated the object.

Verifying script count

If we're looking at our Profiler data and note that a certain MonoBehaviour method is
being executed more times than expected, or is taking longer than expected, we might want
to double-check that it only occurs as many times in the scene as we expect it to. It's entirely
feasible that someone created the object more times than expected in the scene file, or that
we accidentally instantiated the object more than the expected number of times from code.
If so, the problem could be due to conflicting or duplicated method invocations generating
a performance bottleneck. We can verify the count using the same shortlist method used in
the Best approaches to performance analysis section.

If we expected a specific number of components to appear in the scene, but the shortlist
revealed more (or fewer!) of these components, then it might be wise to write some
initialization code that prevents this from ever happening again. We could also write some
custom Editor helpers to display warnings to any level designers who might be making this
mistake.

Preventing casual mistakes such as this is essential for good productivity, since experience
tells us that, if we don't explicitly disallow something, then someone, somewhere, at some
point, for whatever reason, will do it anyway. This is likely to cost us a frustrating
afternoon hunting down a problem that eventually turned out to be caused by human
error.

[30]



Evaluating Performance Problems Chapter 1

Verifying the order of events

Unity applications mostly operate as a series of callbacks from Native code to Managed code.
This concept will be explained in more detail in chapter 8, Masterful Memory Management,
but for the sake of a brief summary, Unity's main thread doesn't operate as a simple console
application would. In such applications, code would be executed with some obvious
starting point (usually amain () function), and we would then have direct control of the
game engine, where we initialize major subsystems, and then the game runs in a big

while loop (often called the game loop) that checks for user input, updates the game,
renders the current scene, and repeats. This loop only exits once the player chooses to quit
the game.

Instead, Unity handles the game loop for us, and we expect callbacks such as Awake (),
Start (), Update (), and FixedUpdate () to be called at specific moments. The big
difference is that we don't have fine-grained control over the order in which events of the
same type are called. When a new scene is loaded (whether it's the first scene of the game
or a later scene), every MonoBehaviour component's Awake () callback gets called, but
there's no way of predicting the order in which this will happen.

So, if we take one set of objects that configure some data in their Awake () callback, and
then another set of objects does something with that configured data in its own Awake ()
callback, some reorganization or recreation of scene objects or a random change in the code
base or compilation process (it's unclear what exactly causes it) may cause the order of
these Awake () calls to change, and then the dependent objects will probably try to do
things with data that wasn't initialized how we expected. The same goes for all other
callbacks provided by MonoBehaviour components, such as Start () and Update ().

In any sufficiently complex project, there's no way of telling the order in which the same
type of callback gets called among a group of MonoBehaviour components, so we should
be very careful not to assume that object callbacks are happening in a specific order. In fact,
it is essential practice to never write code in a way that assumes these callbacks will need to
be called in a certain order because it could break at any time.

A better place to handle late-stage initialization is in a MonoBehaviour component's

Start () callback, which is always called after every object's Awake () callback is called and
just before its first Update () call. Late-stage updates can also be done in the

LateUpdate () callback.

If you're having trouble determining the actual order of events, then this is best handled by
either step-through debugging with an IDE (MonoDevelop, Visual Studio, and so on) or by
printing simple logging statements with Debug.Log ().

[31]



Evaluating Performance Problems Chapter 1

Be warned that Unity's logger is notoriously expensive. Logging is
unlikely to change the order of the callbacks, but it can cause some
unwanted spikes in performance if used too aggressively. Be smart and do
targeted logging only on the most relevant parts of the code base.

Coroutines are typically used to script some sequence of events, and when they're triggered
will depend on what yield types are being used. The most difficult and unpredictable type
to debug is perhaps the WaitForSeconds yield type. The Unity Engine is non-
deterministic, meaning that you'll get a slightly different behavior from one session to the
next, even on the same hardware. For example, you might get 60 updates called during the
first second of application runtime during one session, 59 in the next, and 62 in the one after
that. In another session, you might get 61 updates in the first second, followed by 60, and
then 59.

A variable number of Update () callbacks will be called between when the coroutine starts
and when it ends, and so if the coroutine depends on the Update () function of something
being called a specific number of times, we will run into problems. It's best to keep a
coroutine's behavior dead simple and dependency-free of other behavior once it begins.
Breaking this rule may be tempting, but it's essentially guaranteed that some future change
is going to interact with the coroutine in an unexpected way, leading to a long, painful
debugging session for a game-breaking bug that's very hard to reproduce.

Minimizing ongoing code changes

Making code changes to the application in order to hunt down performance issues is best
done carefully, as the changes are easy to forget as time wears on. Adding debug logging
statements to our code can be tempting, but remember that it costs us time to introduce
these calls, recompile our code, and remove these calls once our analysis is complete. In
addition, if we forget to remove them, then they can incur unnecessary runtime overhead in
the final build since Unity's debug Console window logging can be prohibitively expensive
in terms of both CPU and memory.

A good way to combat this problem is to add a flag or comment anywhere we made a
change with our name so that it's easy to find and remove it later. Hopefully, we're also
wise enough to use a source control tool for our code base, making it easy to differentiate
between the content of any modified files and revert them to their original state. This is an
excellent way to ensure that unnecessary changes don't make it into the final version. Of
course, this is by no means a guaranteed solution if we also applied a fix at the same time
and didn't double-check all of our modified files before committing the change.

[32]



Evaluating Performance Problems Chapter 1

Making use of breakpoints during runtime debugging is the preferred approach, as we can
trace the full callstack, variable data, and conditional code paths (for example, if-else
blocks), without risking any code changes or wasting time on recompilation. Of course, this
is not always an option if, for example, we're trying to figure out what causes something
strange to happen in one out of a thousand frames. In this case, it's better to determine a
threshold value to look for and add an i f statement, with a breakpoint inside, which will
be triggered when the value has exceeded the threshold.

Minimizing internal distractions

The Unity Editor has its own little quirks and nuances, which can sometimes make it
confusing to debug some kinds of problems.

Firstly, if a single frame takes a long time to process, such that our game noticeably freezes,
then the Profiler may not be capable of picking up the results and recording them in the
Profiler window. This can be especially annoying if we wish to catch data during
application/scene initialization. The Custom CPU profiling, section later will offer some
alternatives to explore with a view to solving this problem.

One common mistake (that I have admittedly fallen victim to multiple times during the
writing of this book) is that if we are trying to initiate a test with a keystroke and have the
Profiler window open, we should not forget to click back into the Editor's Game window
before triggering the keystroke. If the Profiler is the most recently clicked window, then the
Editor will send keystroke events to that, instead of the runtime application, and hence, no
GameObject will catch the event for that keystroke. This can also apply to the GameView
for rendering tasks and even coroutines using the WaitForEndOfFrame yield type. If the
Game window is not visible and active in the Editor, then nothing is being rendered to that
view, and therefore, no events that rely on Game window rendering will be triggered. Be
warned!

Vertical sync (otherwise known as VSync) is used to match the application's frame rate to
the frame rate of the device it is being displayed to; for example, a monitor may run at 60
Hertz (60 cycles per second, about 16 ms). If a rendering loop in our game is running faster
than a monitor cycle — for instance, 10 ms — then the game will sit and wait for another 6 ms
before outputting the rendered frame. This feature reduces screen tearing, which occurs
when a new image is pushed to the monitor before the previous image was finished, and,
for a brief moment, part of the new image overlaps the old image.

[33]



Evaluating Performance Problems Chapter 1

Executing the Profiler with VSync enabled will probably generate a lot of noisy spikes in
the CPU Usage area under the WaitForTargetFPS heading, as the application intentionally
slows itself down to match the frame rate of the display. These spikes often appear very
large in Editor mode, since the Editor is typically rendering to a very small window, which
doesn’t take a lot of CPU or GPU work to render.

This will generate unnecessary clutter, making it harder to spot the real issue(s). We should
ensure that we disable the VSync checkbox under the CPU Usage area when we're on the
lookout for CPU spikes during performance tests. We can disable the VSync feature
entirely by navigating to Edit | Project Settings | Quality and then to the sub-page for the
currently selected platform.

We should also ensure that a drop in performance isn't a direct result of a massive number
of exceptions and error messages appearing in the Editor Console window. Unity's
Debug.Log () and similar methods, such as Debug.LogError () and
Debug.LogWarning (), are notoriously expensive in terms of CPU Usage and heap
memory consumption, which can then cause garbage collection to occur resulting in even
more lost CPU cycles (refer to chapter 8, Masterful Memory Management, for more
information on these topics).

This overhead is usually unnoticeable to a human being looking at the project in Editor
mode, where most errors come from the compiler or misconfigured objects. However, they
can be problematic when used during any kind of runtime process, especially during
profiling, where we wish to observe how the game runs in the absence of external
disruptions. For example, if we are missing an object reference that we were supposed to
assign through the Editor, and it is being used in an Update () callback, then a single
MonoBehaviour instance could throw new exceptions every single update. This adds lots
of unnecessary noise to our profiling data.

Note that we can hide different log level types with the buttons shown in the next
screenshot. The extra logging still costs CPU and memory to execute, even though they are
not being rendered, but it does allow us to filter out the junk we don't want. However, it is
often good practice to keep all of these options enabled to verify that we're not missing
anything important:

|.:.f_.':12|&0|01_3|

[34]



Evaluating Performance Problems Chapter 1

Minimizing external distractions

This one is simple, but absolutely necessary. We should double-check that there are no
background processes eating away CPU cycles or consuming vast swathes of memory.
Being low on available memory will generally interfere with our testing, as it can cause
more cache misses, hard drive access for virtual memory page-file swapping, and generally
slow responsiveness on the part of the application. If our application is suddenly behaving
significantly worse than anticipated, double-check the system's task manager (or
equivalent) for any CPU/memory/hard disk activity that might be causing problems.

Targeted profiling of code segments

If our performance problem isn't resolved by the checklist mentioned previously, then we
probably have a real issue on our hands that demands further analysis. The Profiler
window is effective at showing us a broad overview of performance; it can help us find
specific frames to investigate and can quickly inform us which MonoBehaviour and/or
method may be causing issues. We would then need to figure out whether the problem is
reproducible, under what circumstances a performance bottleneck arises, and from where
exactly within the problematic code block the issue is originating.

To accomplish these, we will need to perform some profiling of targeted sections of our
code, and there are a handful of useful techniques we can employ for this task. For Unity
projects, they essentially fit into two categories:

¢ Controlling the Profiler from script code
e Custom timing and logging methods

bottlenecks through C# code. Detecting the source of bottlenecks in other
engine subsystems will be discussed in their related chapters.

0 Note that the next section focuses on how to investigate scripting

[35]



Evaluating Performance Problems Chapter 1

Profiler script control

The Profiler can be controlled in script code through the Profiler class. There are several
useful methods in this class that we can explore within the Unity documentation, but the
most important methods are the delimiter methods that activate and deactivate profiling at
runtime. These can be accessed through the UnityEngine.Profiling.Profiler class
through its BeginSample () and EndSample () methods.

Note that the delimiter methods, BeginSample () and EndSample (), are
only compiled in development builds, and, as such, they will not be
compiled or executed in release builds where Development Mode is
unchecked. This is commonly known as non-operation, or no-op, code.

The BeginSample () method has an overload that allows a custom name for the sample to
appear in the CPU Usage area's Hierarchy mode. For example, the following code will
profile invocations of this method and make the data appear in Breakdown View under a
custom heading, as follows:

void DoSomethingCompletelyStupid() {
Profiler.BeginSample ("My Profiler Sample");
List<int> 1listOfInts = new List<int>();
for(int 1 = 0; 1 < 1000000; ++i) A
1listOfInts.Add (i) ;

}
Profiler.EndSample () ;

You can download the example code files from your account at http://
www . packtpub. com for all the Packt Publishing books you have purchased.
If you purchased this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the files emailed directly to
you.

[36]


http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Evaluating Performance Problems Chapter 1

We should expect that invoking this poorly designed method (which generates a List
containing a million integers, and then does absolutely nothing with it) will cause a huge
spike in CPU Usage, chew up several megabytes of memory, and appear in the Profiler

Breakdown View under the My Profiler Sample heading, as shown in the following
screenshot:

© profiler |
Profiler Modules v Playmode ¥

8, CPU Usage

m Rendering

m Scripts

m Physics

= Animation

m GarbageCollector
m VSync

u Global lllumination
m Ul

m Others

i0 @
@ | 1 | M | »M Frame: 3117 / 3272| Clear | Clear on Play | Deep Profile | Call Stacks | [€ [ | @ |

Selected: My Profiler Sample
10ms (100FPS)

5ms (200FPS)

@, Rendering

= Batches
m SetPass Calls
m Triangles
o Vertices
£¥ Memory Z
Hierarchy ¥ | Main Thread v | CPU:16.43ms GPU:--ms (2 No Details v
Overview Total Self Calls GC Alloc Time ms | Self ms iy
w PlayerLoop 62.4% 0.3% 2 8.0 MB 10.26 0.06 R
v Update.ScriptRunBehaviourUpdate 59.3% 0.0% 1 8.0 MB 9.75 0.00
v BehaviourUpdate 59.3% 0.0% 1 8.0 MB 9.75 0.01
v Assembly-CSharp.dlll::SomethingStupid.Update() 59.2% 0.0% 1 8.0 MB 9.73 0.00
» My Profiler Sample 59.2% 59.2% 1 8.0 MB ©.7/8 9.72
Assembly-CSharp.dlll::ArrayExample.Update() 0.0% 0.0% 5 0B 0.00 0.00

Custom CPU profiling

The Profiler is just one tool at our disposal. Sometimes, we may want to perform
customized profiling and logging of our code. Maybe we're not confident that the Unity
Profiler is giving us the right answer, maybe we consider its overhead cost too great, or
maybe we just like having complete control of every single aspect of our application.
Whatever our motivations, knowing some techniques to perform an independent analysis
of our code is a useful skill to have. It's unlikely we'll only be working with Unity for the
entirety of our game development careers, after all.

[371]



Evaluating Performance Problems Chapter 1

Profiling tools are generally very complex, so it's unlikely we would be able to generate a
comparable solution on our own within a reasonable time frame. When it comes to testing
CPU Usage, all we should really need is an accurate timing system, a fast, low-cost way of
logging that information, and some piece of code to test against. It just so happens that the
.NET library (or, technically, the Mono framework) comes with a Stopwatch class under
the System.Diagnostics namespace. We can stop and start a Stopwatch object at any
time, and we can easily acquire a measure of how much time has passed since the
Stopwatch object was started.

Unfortunately, this class is not perfectly accurate; it is accurate only to milliseconds, or
tenths of a millisecond, at best. Counting in a high-precision, real-time manner with a CPU
clock can be a surprisingly difficult task when we start to get into it. So, in order to avoid a
detailed discussion of the topic, we should try to find a way for the stopwatch class to
satisfy our needs.

If precision is important, then one effective way to increase it is by running the same test
multiple times. Assuming that the test code block is both easily repeatable and not
exceptionally long, we should be able to run thousands, or even millions, of tests within a
reasonable time frame and then divide the total elapsed time by the number of tests we just
performed to get a more accurate time for a single test.

Before we get obsessed with the topic of high precision, we should first ask ourselves if we
even need it. Most games expect to run at 30 FPS or 60 FPS, which means that they only
have around 33 ms or 16 ms, respectively, to compute everything for the entire frame. So,
hypothetically, if we need to bring only the performance of a particular code block under 10
ms, then repeating the test thousands of times to get microsecond precision is too many
orders of magnitude away from the target to be worthwhile.

The following is a class definition for a custom timer that uses a Stopwatch object to count
time for a given number of tests:

using System;
using System.Diagnostics;

public class CustomTimer : IDisposable {
private string _timerName;
private int _numTests;
private Stopwatch _watch;

// give the timer a name, and a count of the

// number of tests we're running

public CustomTimer (string timerName, int numTests) {
_timerName = timerName;
_numTests = numTests;

[38]



Evaluating Performance Problems Chapter 1

if (_numTests <= 0) {
_numTests = 1;

t
_watch = Stopwatch.StartNew() ;

}

// automatically called when the 'using()' block ends
public void Dispose () {

_watch.Stop () ;

float ms = _watch.ElapsedMilliseconds;

UnityEngine.Debug.Log (string.Format ("{0} finished: {1:0.00} " +
"milliseconds total, {2:0.000000} milliseconds per-test " +
"for {3} tests", _timerName, ms, ms / _numTests, _numTests));

Adding an underscore before member variable names is a common and
useful way of distinguishing a class's member variables (also known as
fields) from a method's arguments and local variables.

The following is an example of CustomTimer class usage:

const int numTests = 1000;
using (new CustomTimer ("My Test", numTests)) {
for(int 1 = 0; 1 < numTests; ++1i) {

TestFunction () ;

}

} // the timer's Dispose() method is automatically called here
There are three things to note when using this approach:

e Firstly, we are only making an average of multiple method invocations. If
processing time varies enormously between invocations, then that will not be
well represented in the final average.

¢ Secondly, if memory access is common, then repeatedly requesting the same
blocks of memory will result in an artificially higher cache hit rate (where the
CPU can find data in memory very quickly because it's accessed the same region
recently), which will bring the average time down when compared to a typical
invocation.

e Thirdly, the effects of Just-In-Time (JIT) compilation will be effectively hidden
for similarly artificial reasons, as it only affects the first invocation of the method.
JIT compilation is a .NET feature that will be covered in more detail in chapter
8, Masterful Memory Management.

[39]



Evaluating Performance Problems Chapter 1

The using block is typically used to safely ensure that unmanaged resources are properly
destroyed when they go out of scope. When the using block ends, it will automatically
invoke the object's Dispose () method to handle any cleanup operations. In order to
achieve this, the object must implement the IDisposable interface, which forces it to
define the Dispose () method.

However, the same language feature can be used to create a distinct code block, which
creates a short-term object, which then automatically processes something useful when the
code block ends; this is how it is being used in the preceding code block.

Note that the using block should not be confused with the using
statement, which is used at the start of a script file to pull in additional
namespaces. It's extremely ironic that the keyword for managing
namespaces in C# has a naming conflict with another keyword.

As a result, the using block and the CustomTimer class give us a clean way of wrapping
our test code that makes it obvious when and where it is being used.

Something else to worry about is application warm-up time. Unity has a significant start-up
cost when a scene begins, given the amount of data that needs to be loaded from disk, the
initialization of complex subsystems, such as the physics and rendering systems, and the
number of calls to various Awake () and Start () callbacks that need to be resolved before
anything else can happen. This early overhead might only last a second, but that can have a
significant effect on the results of our testing if the code is also executed during this early
initialization period. This makes it crucial that, if we want an accurate test, then any
runtime testing should begin only after the application has reached a steady state.

Ideally, we would be able to execute the target code block in its own scene after its
initialization has completed. This is not always possible; so, as a backup plan, we could
wrap the target code block in an Input .GetKeyDown () check in order to assume control
over it when it is invoked. For example, the following code will execute our test

method only when the spacebar is pressed:

if (Input.GetKeyDown (KeyCode.Space)) {

const int numTests = 1000;
using (new CustomTimer ("Controlled Test", numTests)) {
for(int i = 0; i < numTests; ++i) {

TestFunction () ;
t
t
t

[40]



Evaluating Performance Problems Chapter 1

As mentioned previously, Unity's Console window logging mechanism is prohibitively
expensive. As a result, we should try not to use these logging methods in the middle of a
profiling test (or during gameplay, for that matter). If we find ourselves absolutely in need
of detailed profiling data that prints out lots of individual messages (such as performing a
timing test on a loop to figure out which iteration is costing more time than the rest), then it
would be wiser to cache the logging data and print it all out at the end, as the
CustomTimer class does. This will reduce runtime overhead, at the cost of some memory
consumption. The alternative is that many milliseconds are lost to printing each
Debug.Log () message in the middle of the test, which pollutes the results.

The CustomTimer class also makes use of string.Format (). This will be covered in more
detail in chapter 8, Masterful Memory Management, but a short explanation is that this
method is used because generating a custom string object using the + operator (for
example, code such as Debug.Log ("Test: " + output) ;) can resultin a surprisingly
large number of memory allocations, which attracts the attention of the garbage collector.

Doing otherwise would conflict with our goal of achieving accurate timing and analysis
and should be avoided.

Final thoughts on profiling and analysis

One way of thinking about performance optimization is the act of stripping away unnecessary
tasks that waste valuable resources. We can do the same and maximize our own productivity
by minimizing any wasted effort. Effective use of the tools we have at our disposal is of
paramount importance. It would serve us well to optimize our own workflow by remaining
aware of some best practices and techniques.

Most, if not all, advice for using any kind of data-gathering tool properly can be
summarized into three different strategies:

¢ Understanding the tool
¢ Reducing noise
¢ Focusing on the issue

[41]



Evaluating Performance Problems Chapter 1

Understanding the Profiler

The Profiler is a well-designed and intuitive tool, so understanding the majority of its
feature set can be gained by simply spending an hour or two exploring its options with a
test project and reading its documentation. The more we know about a tool in terms of its
benefits, pitfalls, features, and limitations, the more sense we can make of the information it
is giving us, so it is worth spending the time to use it in a playground setting. We don't
want to be two weeks away from release, with a hundred performance defects to fix, with
no idea how to do performance analysis efficiently.

For example, always remain aware of the relative nature of Timeline View graphical
display. Timeline View does not provide values on its vertical axis and automatically
readjusts this axis based on the content of the last 300 frames; it can make small spikes
appear to be a bigger problem than they really are because of the relative change. So, just
because a spike or resting state in the timeline seems large and threatening does not
necessarily mean there is a performance issue.

Several areas in Timeline View provide helpful benchmark bars, which appear as
horizontal lines with a timing and FPS value associated with them. These should be used to
determine the magnitude of the problem. Don't let the Profiler trick us into thinking that
big spikes are always bad. As always, it's only important if the user will notice it.

As an example, if a large CPU Usage spike does not exceed the 60 FPS or 30 FPS benchmark
bars (depending on the application's target frame rate), then it would be wise to ignore it
and search elsewhere for CPU performance issues, since no matter how much we improve
the offending piece of code, it will probably never be noticed by the end user, and therefore
isn't a critical issue that affects user experience.

Reducing noise

The classical definition of noise (at least in the realm of computer science) is meaningless
data, and a batch of profiling data that was blindly captured with no specific target in mind
is always full of data that won't interest us. More sources of data take more time to
mentally process and filter, which can be very distracting. One of the best methods to avoid
this is to simply reduce the amount of data we need to process by stripping away any data
deemed non-vital to the current situation.

Reducing the clutter in the Profiler's graphical interface will make it easier to determine
which subsystems are causing a spike in resource usage. Remember to use the colored
checkboxes in each Timeline View area to narrow the search.

[42]



Evaluating Performance Problems Chapter 1

Be warned that these settings are autosaved in the Editor, so ensure that
you re-enable them for the next profiling session, as this might cause us to
miss something important next time.

Also, GameObjects can be deactivated to prevent them from generating profiling data,
which will also help to reduce clutter in our profiling data. This will naturally cause a slight
performance boost for each object we deactivate. However, if we're gradually deactivating
objects and performance suddenly becomes significantly more acceptable when a specific
object is deactivated, then clearly that object is related to the root cause of the problem.

Focusing on the issue

This category may seem redundant, given that we've already covered reducing noise. All
we should have left is the issue at hand, right? Not exactly. Focus is the skill of not letting
ourselves become distracted by inconsequential tasks and wild-goose chases.

You will recall that profiling with the Unity Profiler comes with a minor performance cost.
This cost is even more severe when using the Deep Profile option. We might even
introduce more minor performance costs into our application with additional logging. It's
easy to forget when and where we introduced profiling code if the hunt continues for
several hours.

We are effectively changing the result by measuring it. Any changes we implement during
data sampling can sometimes lead us to chase after non-existent bugs in the application
when we could have saved ourselves a lot of time by attempting to replicate the scenario
without additional profiling instrumentation. If the bottleneck is reproducible and
noticeable without profiling, then it's a candidate for beginning an investigation. However,
if new bottlenecks keep appearing in the middle of an existing investigation, then keep in
mind that they could be bottlenecks we introduced with our test code and not an existing
problem that's been newly exposed.

Finally, when we have finished profiling, completed our fixes, and are now ready to move
on to the next investigation, we should make sure to profile the application one last time to
verify that the changes have had the intended effect.

[43]



Evaluating Performance Problems Chapter 1

Summary

You learned a great deal throughout this chapter on how to detect and analyze
performance issues within your applications. You learned about many of the Profiler's
features and secrets, explored a variety of tactics to investigate performance issues with a
more hands-on approach, and have been introduced to a variety of different tips and
strategies to follow. You can use these to improve your productivity immensely, so long as
you appreciate the wisdom behind them and remember to exploit them when the situation
makes it possible.

This chapter has introduced us to the tips, tactics, and strategies we need in order to
identify a performance issue that requires improvement. In the remaining chapters, we will
explore methods on how to fix issues and improve performance whenever possible. So,
give yourself a pat on the back for getting through the boring part first. We will now move
on to best practices for C# development and how to avoid common performance pitfalls in
your Unity scripts.

[44]



Scripting Strategies

Since scripting will consume a great deal of our development time, it will be enormously
beneficial to learn some best practices. Scripting is a very broad term, so we will try to limit
our exposure in this chapter to situations that are very Unity-specific, focusing on problems
surrounding MonoBehaviours, GameObjects, and related functionality.

We will discuss the nuances and advanced topics of the C# language,
NET library, and Mono framework in Chapter 8, Masterful Memory
Management.

In this chapter, we will explore ways of applying performance enhancements for the
following;:

¢ Obtaining components in other game objects

¢ Optimizing component callbacks (Update (), Awake (), and so on)
¢ Using coroutines

¢ Using GameObject and Transform efficiently

¢ Exchanging messages between different objects

¢ Optimizing mathematical calculations

e Serializing/deserializing during scene and Prefab loading

Whether you have some specific problems in mind that you wish to solve or you just want
to learn some techniques for future reference, this chapter will introduce you to a wide
array of methods that you can use to improve your scripting efforts now and in the future.
In each case, we will explore how and why the performance issue arises, an example
situation in which the problem occurs, and one or more solutions to combat the issue.



Scripting Strategies Chapter 2

Obtaining components using the fastest
method

There are several variations of the GetComponent () method, and they each have a
different performance cost, so it is prudent to call the fastest possible version of this
method. The three overloads available are Get Component (string),

GetComponent<T> (), and GetComponent (typeof (T) ). It turns out that the fastest
version depends on which version of Unity we are running since several optimizations
have been made to these methods through the years; however, if you are using any version
of Unity (from Unity 2017 onward), it is best to use the Get Component<T> () variant.

Let's prove this with some simple testing:

int numTests = 1000000;
TestComponent test;

using (new CustomTimer ("GetComponent (string)", numTests)) {
for (var i = 0; 1 < numTests; ++i) {
test = (TestComponent)GetComponent ("TestComponent") ;
}
}
using (new CustomTimer ("GetComponent<ComponentName>", numTests)) {
for (var i = 0; 1 < numTests; ++i) {
test = GetComponent<TestComponent> () ;
}
}
using (new CustomTimer ("GetComponent (typeof (ComponentName) )", numTests)) {
for (var i = 0; 1 < numTests; ++i) {
test = (TestComponent)GetComponent (typeof (TestComponent) ) ;

}

The preceding code tests each of the Get Component () overloads a million times. This is far
more tests than would be sensible for a typical project, but it helps to make the relative
costs clear.

Here is the result we get when the tests complete (of course, the specific numeric values
may be different on your machine):

[46]



Scripting Strategies Chapter 2

1y GetCoemponent(string) finished: §413.00ms total, 0.006413ms per test for 1000000 tests
= UnityEngine.Debug:Log(Object)

1y GetComponent<ComponentMame = finished: 89.00ms total, 0.000089ms per test for 1000000 tests
= UnityEngine.Debug:Log(Object)

1 GetComponent(typecf(Componentlame)) finished: 95.00ms total, 0.000095ms per test for 1000000 tests
" UUnityEngine.Debug:Log{Object)

As you can see, the Get Component<T> () method is only a tiny fraction faster than
GetComponent (typeof (T) ), whereas GetComponent (string) is significantly slower
than the alternatives. Therefore, it is pretty safe to use either of the type-based versions of
GetComponent () because of the small performance difference. However, we should
ensure that we never use GetComponent (string) since the outcome is identical, and there
are no benefits for the costs incurred. There are some very rare exceptions. Imagine that we
were writing a custom debug console for Unity that can parse a user-input string to
acquire a component. In this case, we would acquire a component by using the

expensive GetComponent (string) only during debugging and diagnostics situations. In
these cases, performance isn't too important. On the contrary, for a production-level
application, the use of GetComponent (string) isjust a needless waste of CPU cycles.

Removing empty callback definitions

The primary means of scripting in Unity is to write callback functions in classes derived
from MonoBehaviour, which we know Unity will call when necessary. Perhaps the four
most commonly used callbacks are Awake (), Start (), Update (), and FixedUpdate ().

Awake () is called the moment MonoBehaviour is first created, whether this occurs during
scene initialization or when a new GameObject instance containing

the MonoBehaviour component is instantiated at runtime from a Prefab. start () will be
called shortly after Awake () but before its first Update () . During scene initialization, every
MonoBehaviour component's Awake () callback will be called before any of their start ()
callbacks are.

After this, Update () will be called repeatedly, each time the rendering pipeline presents a
new image. Update () will continue to be called provided MonoBehaviour is still present
in the scene, it is still enabled, and its parent GameObject is active.

[47]



Scripting Strategies Chapter 2

Finally, FixedUpdate () is called just before the physics engine updates. Fixed updates are
used whenever we want activity similar in behavior to Update () but that isn't tied directly
to the render frame rate and is called more consistently over time.

Refer to the following page in the Unity documentation for an accurate
picture of when various Unity callbacks are called: https://docs.
unity3d.com/Manual/ExecutionOrder.html.

Whenever a MonoBehaviour component is first instantiated in our scene, Unity will add
any defined callbacks to a list of function pointers, which it will call at key moments.
However, it is important to realize that Unity will hook into these callbacks even if the
function body is empty. The core Unity Engine has no awareness that these function bodies
may be empty and only knows that the method has been defined and, therefore, that it
must acquire it and then call it when necessary. Consequently, if we leave empty
definitions of these callbacks scattered throughout the code base, then they will waste a
small amount of CPU due to the overhead cost of the engine invoking them.

This can be a problem since, anytime we create a new MonoBehaviour script file in Unity,
it will automatically generate two boilerplate callback stubs for us for start () and
Update ():

// Use this for initialization
void Start () |

}

// Update is called once per-frame
void Update () A

}

It can be easy to accidentally leave these empty definitions on scripts that don't actually
need them. An empty Start () definition is liable to cause any object to initialize a little
more slowly, for no good reason. This effect may not be particularly noticeable for a
handful of MonoBehaviours, but as development on the project continues and we populate
our scenes with thousands of custom MonoBehaviours with lots of empty Start ()
definitions, it could start to become a problem, causing slow scene initialization and
wasting CPU time whenever a new Prefab is created via GameObject.Instantiate ().

[48]


https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html

Scripting Strategies Chapter 2

Such calls typically happen during key gameplay events; for instance, when two objects
collide, we might spawn a particle effect, create some floating damage text, play a sound
effect, and so on. This can be a critical moment for performance because we've suddenly
requested that the CPU makes a lot of complicated changes, but with only a finite amount
of time to complete them before the current frame ends. If this process takes too long, then
we would experience a frame drop as the Rendering Pipeline isn't allowed to present a new
frame until all of the Update () callbacks—counted across all MonoBehaviours in the
scene—have finished. Ergo, a bunch of empty Start () definitions being called at this time
is a needless waste and could potentially cut into our tight time-budget at a critical
moment.

Meanwhile, if our scene contains thousands of MonoBehaviours with these empty
Update () definitions, then we would be wasting a lot of CPU cycles every frame,
potentially causing havoc on our frame rate.

Let's prove all of this with a simple test. Our test scene should have GameObjects with two
types of component, EmptyClassComponent, with no methods defined at all, and
EmptyCallbackComponent, with an empty Update () callback defined:

public class EmptyClassComponent : MonoBehaviour {

}

public class EmptyCallbackComponent : MonoBehaviour {
void Update () {}
}

The following are the test results for 30,000 components of each type. If we enable all
GameObijects with attached EmptyClassComponents during runtime, then nothing
interesting happens under the CPU Usage area of the Profiler. There will be a small
amount of background activity, but none of this activity will be caused by
EmptyClassComponents. However, as soon as we enable all objects with
EmptyCallbackComponent, we will observe a huge increase in CPU usage:

Frofiler
Add Profiler Fecord Deep Profile  Profile Editer  Connzscted Play Clear Load
-y

A4, CPU Usage

m SarbageCollector

m REendering
Seripts 4ms (250FPS5)

m FPhysics

B VSyne

® Global Ilumination

m UI

m Others

1ms (1000FPS)

EmptyClassComponents EmptyCallbackComponents
Enabled Enabled

[49]



Scripting Strategies Chapter 2

It's hard to imagine a scene with more than 30,000 objects in it, but keep in mind that
MonoBehaviours contain the Update () callback, not GameObjects. A single

GameObject instance can contain multiple MonoBehaviours at once, and each of their
children can contain even more MonoBehaviours, and so on. A few thousand or even a
hundred empty Update () callbacks will inflict a noticeable impact on frame rate budget,
for zero potential gain. This is particularly common with Unity UI components, which tend
to attach a lot of different components in a very deep hierarchy.

The fix for this is simple: delete the empty callback definitions. Unity will have nothing to
hook into, and nothing will be called. Finding such empty definitions in an expansive code
base may be difficult, but if we use some basic regular expressions (known as regex), we
should be able to find what we're looking for relatively easily.

All common code-editing tools for Unity, such as MonoDevelop, Visual
Studio, and even Notepad++, provide a way to perform a regex-based
search on the entire code base. Check out the tool's documentation for
more information, since the method can vary greatly depending on the
tool and its version.

The following regex search should find any empty Update () definitions in our code:
void\s*Update\s*?\ (\s*2\)\s*?2\n*2\{\n*?\s*?2\}

This regex checks for a standard method definition of the Update () callback, while
including any surplus whitespace and newline characters that can be distributed
throughout the method definition.

Naturally, all of the preceding is also true for the non-boilerplate Unity callbacks, such as
OnGUI (), OnEnable (), OnDestroy (), and LateUpdate (). The only difference is that
only Start () and Update () are defined automatically in a new script.

Check out the MonoBehaviour Unity Documentation page for a complete
list of these callbacks at http://docs.unity3d.com/ScriptReference/
MonoBehaviour.html.

It might also seem unlikely that someone generated so many empty versions of these
callbacks in our code base, but never say never. For example, if we use a common base
class, MonoBehaviour, throughout all of our custom components, then a single empty
callback definition in that base class will permeate the entire game, which can cost us
dearly. Be particularly careful of the OnGUI () method, as it can be invoked multiple times
within the same frame or Ul event.

[50]


http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Scripting Strategies Chapter 2

Perhaps the most common source of performance problems in Unity scripting is to misuse
the Update () callback by doing one or more of the following things:

¢ Repeatedly recalculating a value that rarely or never changes
e Having too many components perform work for a result that could be shared
¢ Performing work far more often than is necessary

It's worth getting into the habit of remembering that literally every single line of code we
write in an Update () callback, and functions called by those callbacks, will eat into our
frame rate budget. To hit 60 fps, we have 16.667 milliseconds to complete all of the work in
all of our Update () callbacks, every frame. This seems like plenty of time when we start
prototyping, but somewhere in the middle of development, we will probably start noticing
things getting slower and less responsive because we've gradually been eating away at that
budget, due to an unchecked desire to cram more stuff into our project.

Let's cover some tips that directly address these problems.

Caching component references

Repeatedly recalculating a value is a common mistake when scripting in Unity, and
particularly when it comes to the Get Component () method. For example, the following
script code is trying to check a creature's health value, and if its health goes below 0, it will
disable a series of components to prepare it for a death animation:

void TakeDamage () A

Rigidbody rigidbody = GetComponent<Rigidbody> () ;

Collider collider = GetComponent<Collider>();
AIControllerComponent ai = GetComponent<AIControllerComponent>();
Animator anim = GetComponent<Animator>();

if (GetComponent<HealthComponent> () .health < 0) {
rigidbody.enabled = false;
collider.enabled = false;
ai.enabled = false;
anim.SetTrigger ("death");

[51]



Scripting Strategies Chapter 2

Each time this poorly optimized method executes, it will reacquire five different component
references. This is not very friendly on CPU usage. This is particularly problematic if the
main method was called during Update (). Even if it is not, it still might coincide with
other important events, such as creating particle effects, replacing an object with a Ragdoll
(hence invoking various activity in the Physics Engine), and so on. This coding style can
seem harmless, but it can cause a lot of long-term problems and runtime work for very little
benefit.

It costs us a small amount of memory space (only 32 or 64 bits each time—Unity version,
platform, and fragmentation permitting) to cache these references for future use. So, unless
you're extremely bottlenecked on memory, a better approach would be to acquire the
references during initialization and keep them until they are needed:

private HealthComponent _healthComponent;
private Rigidbody _rigidbody;

private Collider _collider;

private AIControllerComponent _ai;
private Animator _anim;

void Awake () {
_healthComponent = GetComponent<HealthComponent> () ;
_rigidbody = GetComponent<Rigidbody> () ;

_collider = GetComponent<Collider>();
_al = GetComponent<AIControllerComponent>();
_anim = GetComponent<Animator>();

}

void TakeDamage () A

if (_healthComponent.health < 0) {
_rigidbody.detectCollisions = false;
_collider.enabled = false;
_ai.enabled = false;
_anim.SetTrigger ("death");
}
}

Caching component references in this way spares us from reacquiring them each time
they're needed, saving us some CPU overhead each time. The cost is a small amount of
additional memory consumption, which is very often worth the price.

[52]



Scripting Strategies Chapter 2

The same tip applies to literally any piece of data we decide to calculate at runtime. There's
no need to ask the CPU to keep recalculating the same value every Update () callback
when we can just store it in memory for future reference.

Sharing calculation output

Performance can be saved by having multiple objects share the result of some calculation;
of course, this only works if all of them generate the same result. Such situations are often
easy to spot but can be tricky to refactor, and so exploiting this would be very
implementation-dependent.

Some examples might include finding an object in a scene, reading data from a file, parsing
data (such as XML or JSON), finding something in a big list or deep dictionary of
information, calculating pathing for a group of Artificial Intelligence (AI) objects, complex
mathematics-like trajectories, raycasting, and so on.

Think about each time an expensive operation is undertaken, and consider whether it is
being called from multiple locations but always results in the same output. If this is the
case, then it would be wise to restructure things so that the result is calculated once and
then distributed to every object that needs it to minimize the amount of recalculation. The
biggest cost is typically just a small loss in code simplicity, although we may inflict some
extra overhead by moving the value around.

Note that it's often easy to get into the habit of hiding some big complex function in a base
class, and then we define derived classes that make use of that function, completely
forgetting how costly that function is because we rarely glance at that code again. It's best to
use the Unity Profiler to tell us how many times that expensive function may be called, and
as always, don't preoptimize those functions unless it's been proven to be a performance
issue. No matter how expensive it may be, if it doesn't cause us to exceed performance
restrictions (such as frame rate and memory consumption), then it's not really a
performance problem.

[53]



Scripting Strategies Chapter 2

Update, coroutines, and InvokeRepeating

Another habit that's easy to fall into is to call something repeatedly in an Update ()
callback way more often than is needed. For example, we may start with a situation like
this:

void Update () {
ProcessAI();

}

In this case, we're calling some custom ProcessAI () subroutine every single frame. This
may be a complex task, requiring the Al system to check some grid system to figure out
where it's meant to move or determine some fleet maneuvers for a group of spaceships or
whatever our game needs for its AL

If this activity is eating into our frame rate budget too much, and the task can be completed
less frequently than every frame with no significant drawbacks, then a good trick to
improve performance is to simply reduce the frequency at which that ProcessAI () gets

called:

private float _aiProcessDelay = 0.2f;
private float _timer = 0.0f;

void Update () {
_timer += Time.deltaTime;
if (_timer > _aiProcessDelay) {
ProcessAI();
_timer -= _aiProcessDelay;

}
}

In this case, we've reduced the Update () callback's overall cost by only invoking
ProcessAI () about five times every second, which is an improvement over the previous
situation, at the expense of code that can take a bit of time to understand at first glance, and
a little extra memory to store some floating-point data—although, at the end of the day,
we're still having Unity call an empty callback function more often than not.

[54]



Scripting Strategies Chapter 2

This function is a perfect example of a function, which can be converted into a coroutine to
make use of their delayed invocation properties. As mentioned previously, coroutines are
typically used to script a short sequence of events, either as a one-time or repeated action.
They should not be confused with threads, which would run on a completely different CPU
core concurrently, and multiple threads can be running simultaneously. Instead, coroutines
run on the main thread in a sequential manner such that only one coroutine is handled at
any given moment, and each coroutine decides when to pause and resume via yield
statements. The following code is an example of how we might rewrite the

preceding Update () callback in the form of a coroutine:

void Start () {
StartCoroutine (ProcessAICoroutine ());

}

IEnumerator ProcessAICoroutine () |
while (true) {
ProcessAI();

yield return new WaitForSeconds (_aiProcessDelay);
}
}

The preceding code demonstrates a coroutine that calls ProcessAI (), then pauses at the
yield statement for the given number of seconds (the value of _aiProcessDelay) before
the main thread resumes the coroutine again, at which point, it will return to the start of the
loop, call ProcessAI (), pause on the yield statement again, and repeat forever (via

the while (true) statement) until asked to stop.

The main benefit of this approach is that this function will only be called as often as
dictated by the value of _aiProcessDelay, and it will sit idle until that time, reducing the
performance hit inflicted in most of our frames. However, this approach has its drawbacks.

For one, starting a coroutine comes with an additional overhead cost relative to a standard
function call (around three times as slow), as well as some memory allocations to store the
current state in memory until it is invoked the next time. This additional overhead is also
not a one-time cost because coroutines often constantly call yield, which inflicts the same
overhead cost again and again, so we need to ensure that the benefits of reduced frequency
outweigh this cost.

In a test of 1,000 objects with empty Update () callbacks, it took

1.1 milliseconds to process, whereas 1,000 coroutines yielding on
WaitForEndOfFrame (which has an identical frequency to Update ()
callbacks) took 2.9 milliseconds. So, the relative cost is almost three times
as much.

[551]



Scripting Strategies Chapter 2

Secondly, once initialized, coroutines run independently of the triggering MonoBehaviour
component's Update () callback and will continue to be invoked regardless of whether the
component is disabled or not, which can make them unwieldy if we're performing a lot of
GameObject construction and destruction.

Thirdly, the coroutine will automatically stop the moment the GameOb ject instance
that contains it is made inactive for whatever reason (whether it was set inactive or one of
its parents was) and will not automatically restart if GameObject is set to active again.

Finally, by converting a method into a coroutine, we may have reduced the performance hit
inflicted during most of our frames, but if a single invocation of the method body causes us
to break our frame rate budget, then it will still be exceeded no matter how rarely we call
the method. Therefore, this approach is best used for situations where we are only breaking
our frame rate budget because of the sheer number of times the method is called in a given
frame, not because the method is too expensive on its own. In those cases, we have no
option but to either dig into and improve the performance of the method itself or reduce
the cost of other tasks to free up the time it needs to complete its work.

There are several yield types available to us when generating coroutines.
WaitForSeconds is fairly self-explanatory; the coroutine will pause at the yield statement
for a given number of seconds. It is not really an exact timer, however, so expect a small
amount of variation when this yield type actually resumes.

WaitForSecondsRealTime is another option and is different from WaitForSeconds only
in that it uses unscaled time. WaitForSeconds compares against scaled time, which is
affected by the global Time.timeScale property while WaitForSecondsRealTime is not,
so be careful about which yield type you use if you're tweaking the time scale value (for
example, for slow-motion effects).

There is also WaitForEndOfFrame, which would continue at the end of the next

Update () callback, and then there's WaitForFixedUpdate, which would continue at the
end of the next FixedUpdate () invocation. Lastly, Unity 5.3 introduced waitUntil and
WaitWhile, where we provide a delegate function, and the coroutine will pause until the
given delegate returns true or false, respectively. Note that the delegates provided to
these yield types will be executed for each Update () until they return the Boolean value
needed to stop them, which makes them very similar to a coroutine using
WaitForEndOfFrame in a while loop that ends on a certain condition. Of course, it is also
important that the delegate function we provide is not too expensive to execute.

[561]



Scripting Strategies Chapter 2

Delegate functions are incredibly useful constructs in C# that allow us to
pass local methods around as arguments to other methods and are
typically used for callbacks. Check out the MSDN C# Programming Guide
for more information on delegates at https://docs.microsoft.com/en-
us/dotnet/csharp/programming—guide/delegates/.

The way that some Update () callbacks are written could probably be condensed down
into simple coroutines that always call yield on one of these types, but we should be
aware of the drawbacks mentioned previously. Coroutines can be tricky to debug since
they don't follow normal execution flow; there's no caller in the callstack we can directly
blame for why a coroutine triggered at a given time, and if coroutines perform complex
tasks and interact with other subsystems, then they can result in some impossibly difficult
bugs because they happened to be triggered at a moment that some other code didn't
expect, which also tend to be the kinds of bugs that are painstakingly difficult to reproduce.
If you do wish to make use of coroutines, the best advice is to keep them simple and
independent of other complex subsystems.

Indeed, if our coroutine is simple enough that it can be boiled down to a while loop that
always calls yield on WaitForSeconds or WaitForSecondsRealtime, as in the
preceding example, then we can usually replace it with an InvokeRepeating () call,
which is even simpler to set up and has a slightly lower overhead cost. The following code
is functionally equivalent to the previous implementation that used a coroutine to regularly
invoke a ProcessAI () method:

void Start () {
InvokeRepeating ("ProcessAI", 0f, _aiProcessDelay);

}

An important difference between InvokeRepeating () and coroutines is that
InvokeRepeating () is completely independent of the states of both MonoBehaviour and
GameObject. The only two ways to stop an InvokeRepeating () callis to either call
CancelInvoke (), which stops all InvokeRepeating () callbacks initiated by the given
MonoBehaviour (note that they cannot be canceled individually) or to destroy the
associated MonoBehaviour or its parent GameObject. Disabling either MonoBehaviour or
GameObject does not stop InvokeRepeating ().

A test of 1,000 InvokeRepeating () calls was processed in about 2.6
milliseconds; this is slightly faster than 1,000 equivalent
coroutine yield calls, which took 2.9 milliseconds.

[571


https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/

Scripting Strategies Chapter 2

That covers most of the useful information related to the Update () callback. Let's look into
some other useful scripting tips.

Faster GameObject null reference checks

It turns out that performing a null reference check against a GameObject will result in
some unnecessary performance overhead. GameObjects and MonoBehaviours are special
objects compared to a typical C# object, in that they have two representations in memory:
one exists within the memory managed by the same system managing the C# code we write
(managed code), whereas the other exists in a different memory space, which is handled
separately (native code). Data can move between these two memory spaces, but each time
this happens will result in some additional CPU overhead and possibly an extra memory
allocation.

This effect is commonly referred to as crossing the Native-Managed Bridge. If this happens,
it is likely to generate an additional memory allocation for an object's data to get copied
across the bridge, which will require the garbage collector to eventually perform some
automatic cleanup of memory for us. This subject will be explored in much more detail in
Chapter 8, Masterful Memory Management, but for the time being, just consider that there
are many subtle ways to accidentally trigger this extra overhead, and a simple null
reference check against GameObject is one of them:

if (gameObject != null) {
// do stuff with gameObject
t

An alternative that generates a functionally equivalent output that operates around twice as
quickly (although it does obfuscate the purpose of the code a little)
is System.Object.ReferenceEquals ():

if (!System.Object.ReferenceEquals (gameObject, null)) {
// do stuff with gameObject
}

This applies to both GameObjects and MonoBehaviours, as well as other Unity objects,
which have both native and managed representations such as the www class. However, some
rudimentary testing reveals that either null reference check approach still consumes mere
nanoseconds on an Intel Core i5 3570K processor. So, unless you are performing massive
amounts of null reference checks, the gains might be marginal at best. However, this is a
warning worth keeping in mind for the future, as it will come up a lot.

[581]



Scripting Strategies Chapter 2

Avoid retrieving string properties from
GameObjects

Ordinarily, retrieving a st ring property from an object is the same as retrieving any other
reference type property in C#; it should be acquired with no additional memory cost.
However, retrieving st ring properties from GameObjects is another subtle way of
accidentally crossing over the Native-Managed Bridge.

The two properties of GameObject affected by this behavior are tag and name. Therefore,
it is unwise to use either property during gameplay, and you should only use them in
performance-inconsequential areas, such as editor scripts. However, the tag system is
commonly used for the runtime identification of objects, which can make this a significant
problem for some teams.

For example, the following code would cause an additional memory allocation during
every iteration of the loop:

for (int i = 0; i < listOfObjects.Count; ++i) {
if (listOfObjects[i].tag == "Player") {
// do something with this object
}
}

It is often a better practice to identify objects by their components and class types and to
identify values that do not involve st ring objects, but sometimes we're forced into a
corner. Maybe we didn't know any better when we started, we inherited someone else's
code base, or we're using it as a workaround for something. Let's assume that, for whatever
reason, we're stuck with the tag system, and we want to avoid the Native-Managed Bridge
overhead cost.

Fortunately, the tag property is most often used in comparison situations, and
GameObject provides the CompareTag () method, which is an alternative way to compare
tag properties that avoids the Native-Managed Bridge entirely.

Let's perform a simple test to prove how this simple change can make all the difference:
void Update () {
int numTests = 10000000;
if (Input.GetKeyDown (KeyCode.Alphal))
for(int i = 0; 1 < numTests; ++i) {
{

if (gameObject.tag == "Player")
// do stuff

{

[591]



Scripting Strategies Chapter 2

if (Input.GetKeyDown (KeyCode.Alpha2)) |
for(int i = 0; i < numTests; ++i) {
if (gameObject.CompareTag ("Player")) |
// do stuff

We can execute these tests by pressing the 1 and 2 keys to trigger the respective for loops.
Here are the results:

" CPU Usage
® GarbageCollectaor
® Rendaring
Scripts
m FPhysics
| VSyne
m Global Illumination
m I
W Others

e

ﬂMemor\;

m Total Allocated

W Teuxture Memory

m Mesh Memaory

m Material Count

m Object Count

m Total GC Allocated
GC Allacated

Looking at the breakdown view for each spike, we can see two completely different
outcomes:

| Hierarchy | cpu;2350.15ms GPU:0.00ms (2 | Ha Details -]
Owverview | Total| Self| Calls| GC Alloc| Time msl Self ms| ﬂ |

¥ Update.ScriptRunBehaviourUpdate 99.6% 0.0% 1400.5 MB 2341.13 0.00
@ ¥ BehaviourUpdate 99,6% 0.0% 14005 MB 2341.13 0.00
¥ CompareTagTest.Update() 99.6% 80.5% 14005 MB Z341.12 1892.09
- GC.Collect 19.1% 19& 1 0B 449,03 449,03
¥ Update .ScriptRunBehaviourUpdate 99.5% 0.0% 1 0B 1093.09 0.00
m ¥ BehaviourUpdate 99.5% 0.0% 1 0B 1093.09 0.00
CcmEﬂreTﬂgTest.Updﬂte(} 99,5% 99.,5% 1 0B 109308 1093.08

[60]



Scripting Strategies Chapter 2

It's worth noting how the two spikes in the Timeline View appear
relatively the same height, and yet one operation took twice as long as the
other. The Profiler doesn't have the vertical resolution necessary to
generate relatively accurate peaks when we go beyond the 15FPS marker.
Both would result in a poor gameplay experience anyway, so the accuracy
doesn't really matter.

Retrieving the tag property 10 million times (way more than makes sense in reality, but
this is useful for comparison) results in about 400 megabytes of memory being allocated
just for string objects alone. We can see this memory allocation happening in the spike
within the GC Allocated element in the Memory Area of the Timeline View. Also, this
process takes around 2,000 milliseconds to process, where another 400 milliseconds are
spent on garbage collection once the st ring objects are no longer needed.

Meanwhile, using CompareTag () 10 million times costs around 1,000 milliseconds to
process and causes no memory allocations, and hence no garbage collection. This is made
apparent from the lack of a spike in the GC Allocated element in the Memory Area. This
should make it abundantly clear that we must avoid accessing the name and tag properties
whenever possible. If tag comparison becomes necessary, then we should make use of
CompareTag (). Unfortunately, there is no equivalent for the name property, so we should
stick to using tags where possible.

Note that passing in a st ring literal, such as "Player™", into
CompareTag () does not result in a runtime memory allocation since the
application allocates hardcoded strings like this during initialization and
merely references them at runtime.

Using appropriate data structures

C# offers many different data structures in the System.Collections namespace and we
shouldn't become too accustomed to using the same ones over and over again. A common
performance problem in software development is making use of an inappropriate data
structure for the problem we're trying to solve simply because it's convenient. The two
most commonly used are perhaps lists (List<T>) and dictionaries (Dictionary<k, V>).

[61]



Scripting Strategies Chapter 2

If we want to iterate through a set of objects, then a list is preferred, since it is effectively a
dynamic array where the objects and/or references reside next to one another in memory,
and therefore iteration causes minimal cache misses. Dictionaries are best used if two
objects are associated with one another and we wish to acquire, insert, or remove these
associations quickly. For example, we might associate a level number with a particular
scene file, or an enum representing different body parts on a character,

with Collider components for those body parts.

However, it's fairly common that we want a data structure that handles both scenarios; we
want to quickly figure out which object maps to another, while also being able to iterate
through the group. Typically, the developer of this system will use a dictionary and then
iterate over it. However, this process is unfortunately very slow, compared to iterating over
a list, since it must check every potential hash in the dictionary to iterate over it fully.

In these cases, it is often better to store data in both a list and a dictionary to better support
this behavior. This will cost additional memory overhead to maintain multiple data
structures, and insertion and deletion will require adding and removing objects from both
data structures each time, but the benefits of iteration on the list (which tends to happen
way more often) will be a stark contrast compared to iterating over a dictionary.

Avoiding re-parenting transforms at runtime

In earlier versions of Unity (version 5.3 and older), the references to Transform
components would be laid out in memory in a generally random order. This meant that
iteration over multiple Transform components was fairly slow due to the likelihood of
cache misses. The upside was that re-parenting GameObject to another one wouldn't really
cause a significant performance hit since the Transforms operated a lot like a heap data
structure, which tend to be relatively fast at insertion and deletion. This behavior wasn't
something we could control, and so we simply lived with it.

However, since Unity 5.4 and beyond, the Transform component's memory layout has
changed significantly. Since then, a Transform component's parent-child relationships
have operated more like dynamic arrays, whereby Unity attempts to store all Transforms
that share the same parent sequentially in memory inside a pre-allocated memory buffer
and are sorted by their depth in the Hierarchy window beneath the parent. This data
structure allows for much, much faster iteration across the entire group, which is
particularly beneficial to multiple subsystems such as physics and animation.

[62]



Scripting Strategies Chapter 2

The downside of this change is that if we re-parent GameObject to another one, the parent
must fit the new child within its pre-allocated memory buffer as well as sorting all of these
Transforms based on the new depth. Also, if the parent has not pre-allocated enough
space to fit the new child, then it must expand its buffer to be able to fit the new child, and
all of its children, in depth-first order. This could take some time to complete for deep and
complex GameObject structures.

When we instantiate a new GameObject through GameObject.Instantiate (), one of its
arguments is the Trans form component we wish to parent GameObject to, which is

null by default and which would place Transform at the root of the Hierarchy window.
All Transforms at the root of the Hierarchy window need to allocate a buffer to store its
current children as well as those that might be added later (child Transforms do not need
to do this). But, if we then re-parent Transform to another one immediately after
instantiation, then it discards the buffer we just allocated! To avoid this, we should provide
the parent Transform argument into the GameObject . Instantiate () call, which skips
this buffer allocation step.

Another way to reduce the costs of this process is to make root Transform pre-allocate a
larger buffer before we need it so that we don't need to both expand and re-parent another
GameObject instance into the buffer in the same frame. This can be accomplished by
modifying a Transform component's hierarchyCapacity property. If we can estimate
the number of child Transforms the parent will contain, then we can save a lot of
unnecessary memory allocations.

Considering caching transform changes

The Transform component stores data only relative to its own parent. This means that
accessing and modifying a Transform component's position, rotation,

and/or scale properties could potentially result in a lot of unanticipated matrix
multiplication calculations to generate the correct Transform representation for the object
through its parent Transforms. The deeper the object is in the Hierarchy window, the
more calculations are needed to determine the final result.

[63]



Scripting Strategies Chapter 2

However, this also means that using localPosition, localRotation,

and localScale has a relatively trivial cost associated with it since these are the values
stored directly in the given Transform component and they can be retrieved without any
additional matrix multiplication. Therefore, these local property values should be used
whenever possible.

Unfortunately, changing our mathematical calculations from world-space to local-space can
over-complicate what were originally simple (and solved) problems, so making such
changes risks breaking our implementation and introducing a lot of unexpected bugs.
Sometimes, it's worth absorbing a minor performance hit to solve a complex 3D
mathematical problem more easily.

Another problem with constantly changing a Transform component's properties is that it
also sends internal notifications to components such as Collider, Rigidbody, Light,
and Camera, which must also be processed since the physics and rendering systems both
need to know the new value of Transform and update accordingly.

It is not uncommon, during a complex event chain, that we replace a Transform
component's properties multiple times in the same frame (although this is probably a
warning sign of over-engineered design). This would cause the internal messages to fire
each and every time this happens, even if they occur during the same frame or even the
same function call. Ergo, we should consider minimizing the number of times we modify
Transform properties by caching them in a member variable and committing them only at
the end of the frame, as follows:

private bool _positionChanged;
private Vector3 _newPosition;

public void SetPosition (Vector3 position) {
_newPosition = position;
_positionChanged = true;

}

void FixedUpdate () {
if (_positionChanged) {
transform.position = _newPosition;
_positionChanged = false;
t
t

This code will only commit changes to position in the next FixedUpdate () method.

[64]



Scripting Strategies Chapter 2

Note that changing the Transform component in this manner does not result in strange-
looking behavior or teleporting objects during gameplay. The whole purpose of those
internal events is to make sure the physics and rendering systems are always synchronized
with the current Transform state. Hence, Unity doesn't skip a beat and fires the internal
events every time changes come through the Transform component, just to be sure
nothing gets missed.

Avoiding Find() and SendMessage() at
runtime

The SendMessage () method and family of GameObject .Find () methods are notoriously
expensive and should be avoided at all costs. The SendMessage () method is about 2,000
times slower than a simple function call, and the cost of the Find () method scales very
poorly with scene complexity since it must iterate through every GameObject in the scene.
It is sometimes forgivable to call Find () during the initialization of a scene, such as during
an Awake () or Start () callback. Even in this case, it should only be used to acquire objects
that we know for certain already exist in the scene and for scenes that have only a handful
of GameObjects in them. Regardless, using either of these methods for inter-object
communication at runtime is likely to generate a very noticeable overhead and, potentially,
dropped frames.

Relying on Find () and SendMessage () is typically symptomatic of poor design,
inexperience in programming with C# and Unity, or just plain laziness during prototyping.
Their usage has become something of an epidemic among beginner-level and intermediate-
level projects, so much so that Unity Technologies feels the need to keep reminding users to
avoid using them in a real game over and over again in their documentation and at their
conferences. They only exist as a less programmer-y way to introduce new users to inter-
object communication, and for some special cases where they can be used in a responsible
way (which are few and far between). In other words, they're so ridiculously expensive that
they break the rule of not pre-optimizing our code, and it's worth going out of our way to
avoid using them if our project is going beyond the prototyping stage (which is a distinct
possibility since you're reading this book).

[65]



Scripting Strategies Chapter 2

To be fair, Unity targets a wide demographic of users, from hobbyists to students and
professionals, to individual developers, to hundreds of people on the same team. This
results in an incredibly wide range of software development ability. When you're starting
out with Unity, it can be difficult to figure out on your own what you should be doing
differently, especially given how the Unity engine does not adhere to the design paradigms
of many other game engines we might be familiar with. It has some foreign and quirky
concepts relating to scenes and Prefabs and does not have a built-in God class entry point,
nor any obvious raw data storage systems to work with.

A God class is a fancy name for the first object we might create in our
application and whose job would be to create everything else we need
based on the current context (what level to load, which subsystems to
activate, and so on). These can be particularly useful if we want a single
centralized location that controls the order of events as they happen
during the entire lifecycle of our application.

Understanding how to exchange messages between intricate software architecture
components is not useful just for Unity's performance, but also for the design of any real-
time event-driven system (including, but not limited to games), so it is worth exploring the
subject in some detail, evaluating some alternative methods for inter-object communication.

Let's start by examining a worst-case example, which uses both Find () and
SendMessage () to communicate between objects, and then look into ways to improve
upon it.

The following is a class definition for a simple EnemyManagerComponent instance that
tracks a list of GameObjects representing enemies in our game and provides a Ki11A11 ()
method to destroy them all when needed:

using UnityEngine;
using System.Collections.Generic;

class EnemyManagerComponent : MonoBehaviour {
List<GameObject> _enemies = new List<GameObject> () ;

public void AddEnemy (GameObject enemy) {
if (!_enemies.Contains (enemy)) {
_enemies.Add (enemy) ;
}
}

public void KillAll () A
for (int i = 0; 1 < _enemies.Count; ++i) {
GameObject .Destroy (_enemies[i]);

[66]



Scripting Strategies Chapter 2

}

_enemies.Clear();
}
}

We would then place a GameObject instance in our scene containing this component, and
name it EnemyManager.

The following example method attempts to instantiate several enemies from a given Prefab,
and then notifies the EnemyManager object of their existence:

public void CreateEnemies (int numEnemies) {
for(int i = 0; i1 < numEnemies; ++1) {

GameObject enemy = (GameObject)GameObject.Instantiate (_enemyPrefab,
5.0f * Random.insideUnitSphere,
Quaternion.identity);

string[] names = { "Tom", "Dick", "Harry" };

enemy.name = names[Random.Range (0, names.Length)];

GameObject enemyManagerObj = GameObject.Find("EnemyManager");

enemyManagerObj.SendMessage ("AddEnemny",

enemnmy,
SendMessageOptions.DontRequireReceiver);

}

Initializing data and putting method calls inside any kind of loop, which always outputs to
the same result, is a big red flag for poor performance, and when we're dealing with
expensive methods, such as Find (), we should always look for ways to call them as few
times as possible. Ergo, one improvement we can make is to move the Find () call outside
of the for loop and cache the result in a local variable so that we don't need to keep
reacquiring the EnemyManager object over and over again.

Moving the initialization of the names variable outside of the for loop is
not necessarily critical since the compiler is often smart enough to realize
it doesn't need to keep reinitializing data that isn't being changed
elsewhere. However, it does often make the code easier to read.

Another big improvement we can implement is to optimize our usage of the
SendMessage () method by replacing it with a Get Component () call. This replaces a very
costly method with an equivalent and much cheaper alternative.

[671]



Scripting Strategies Chapter 2

This gives us the following result:

public void CreateEnemies (int numEnemies) {
GameObject enemyManagerObj = GameObject.Find("EnemyManager");
EnemyManagerComponent enemyMgr =
enemyManagerObj.GetComponent<EnemyManagerComponent> () ;

string[] names = { "Tom", "Dick", "Harry" };
for(int i = 0; 1 < numEnemies; ++1) {
GameObject enemy = (GameObject)GameObject.Instantiate (_enemyPrefab,

5.0f * Random.insideUnitSphere,
Quaternion.identity);
enemy.name = names[Random.Range (0, names.Length)];
enemyMgr .AddEnemy (enemy) ;
t
t

If this method is called during the initialization of the scene, and we're not overly
concerned with loading time, then we can probably consider ourselves finished with our
optimization work.

However, we will often need new objects that are instantiated at runtime to find an existing
object to communicate with. In this example, we want new enemy objects to register with
our EnemyManagerComponent so that it can do whatever it needs to<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>